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1

CHAPTER 1 MOTIVATION AND BASIC CONCEPTS

1.1 Motivation

Understanding and properly modeling magnetic resonance imaging (MRI) sig-

nal behavior under different conditions has led to some of the important ad-

vancements in the field. Modeling can be purely analytical or numerical in na-

ture, allowing for the quantification and visualization of many different physi-

ological factors; including blood flow, blood oxygenation, fat content, magnetic

susceptibility, and diffusion. The better understanding and more accurate mod-

els we have, the more accurate such quantifications and visualizations can be,

nonetheless limited by factors such as noise and partial volume.

Magnetic susceptibility is a material property that tells how magnetized an

object becomes when placed in an external magnetic field. Given the high mag-

netic field strength of an MRI machine, even small susceptibility values can lead

to appreciable field effects. Iron is ferromagnetic and carries a very high magne-

tization. Biological tissues can have varying magnetic susceptibility values based

on their iron concentration. Such iron may be in the form of deoxyhemoglobin,

ferritin, hemosiderin, or other molecules. Being able to accurately quantify sus-

ceptibility in the body allows for the quantification of iron concentration as they

are linearly correlated. This is important for certain neurological diseases as

they have been found to be associated with iron [1]. Magnetic susceptibility

may be quantified using either magnitude or phase signal from MRI. Analytical

models that depict a random distribution of paramagnetic spheres containing

iron have been used to connect R∗2 and R2 to susceptibility [2, 3]. On the other
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hand, the Larmor equation states that phase information is proportional to the

induced magnetic field. Since it is well understood how magnetized objects

perturb the field around them, phase can be used to create entire susceptibility

maps [4], or to perform quantifications on single objects with simple geometries

as well [5, 6].

While it is well understood how a uniformly magnetized object creates mag-

netic field within and around it, most objects and tissues may not be uniformly

magnetized. Rather, they contain many small discrete magnetic inclusions, with

sizes usually on the order of molecules or cells. A vein, for example, consists of

plasma mixed with discrete red blood cells which contain numerous hemoglobin

molecules. Other tissues can have more complicated microsctructures. The

white matter in the brain, for example, consists of microscopic cylindrical tracts

called axons. Such a microsctructure leads to complicated macroscopic phase

behavior and has been the focus of recent studies [7–10]. Even just spherical in-

clusions can lead to complex behavior when the potential for clustering is taken

into account [11–13]. The necessity of proper modeling of microstructures, even

for spherical inclusions, to explain the MRI signal behavior is the main focus of

this dissertation.

This dissertation is organized into five major chapters. This chapter lays out

the basic motivation and also goes into some more detailed technical back-

ground about MRI signal and its behavior in the presence of spherical magnetic

inclusions. Chapters 2, 3, and 4 consist of original research projects. Chapter 2

focuses on developing a simulation based model of MRI signal in the presence



3

of spherical magnetic inclusions, with a focus on phase. Many simulation pa-

rameters were considered and some baseline criteria of parameters that lead to

accurate simulations are presented. This chapter has already been published

with myself as principal author [14]. Chapter 3 expands on the first work by

performing simulations of long cylinders filled with spherical magnetic inclu-

sions and comparing with experimental phantom data. It is shown that the

resulting phase inside the cylinders can become non-linear, depending on parti-

cle arrangement, the number of particles per voxel, and Gibb’s ringing, while the

phase outside the cylinders has no such dependencies. At the time of submitting

this dissertation, this chapter has been submitted for publication with myself as

principal author. Chapter 4 provides an application of how the phase outside

an object can be used to quantify iron tagged stem cells. This chapter has also

been published with myself as principal author [15] Chapter 5 closes with some

concluding remarks and potential future directions for the research.

1.2 Basic Concepts

The complex signal in MRI, in most cases, results from the transverse magne-

tization of hydrogen protons (or spins) from water molecules. Transverse refers

to the plane perpendicular to the main MRI magnetic field. When hydrogen

protons are exposed to an external magnetic field, their magnetization will align

either parallel or anti-parallel to the external field and will also precess about

the field at a frequency that is proportional to the external field strength. In fact,

all nuclei and electrons will behave this way, yet hydrogen protons are the focus

in MRI since their precession rate is in the radio frequency range that we can
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safely interact with and the human body contains an ample amount in the form

of water. Precession frequency is determined by the Larmor equation, given as

~ω = γ ~B, where γ is the gyromagnetic ratio and ~B is the external field. For the hy-

drogen proton, γ is 2π42.58 MHz/Tesla. At room temperature, under exposure

of typical strengths from the main magnetic field of an MRI machine, slightly

more hydrogen protons will align parallel with the main field than anti-parallel,

resulting in a net magnetization. In order to distinguish this net magnetization

from the original much stronger external magnetic field, its direction must be

changed. To accomplish this, a secondary magnetic field perpendicular to the

main magnetic field, rotating at the same precession frequency as the hydrogen

protons, is used to rotate the net magnetization toward the transverse plane.

Once tipped away from the main field, a transverse magnetization compo-

nent is introduced. The secondary rotating field is then removed and a simple

coil can be used to induce a measurable oscillating voltage from the transverse

rotating magnetization. This magnetization is broken down into real and imag-

inary components by the process of demodulation. The rotating magnetization

does not last forever, however. Due to interactions between spins, different spins

will be subject to different magnetic field strengths, and according to the Larmor

equation, will precess at different frequencies. The signal decay caused by this

process is referred to as T2 decay. On the other hand, inhomogeneities of the

main external field and magnetic fields induced by any large magnetized inclu-

sions will also influence the Larmor frequency over space. The signal decay due

to these varying Larmor frequency is referred to as T ′
2 decay. These two different
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signal decays together create what is referred to as T ∗2 decay. Mathematically,

the complex MRI signal, s, from the net transverse magnetization, neglecting

coil sensitivity and some other factors, can be written proportionally as

s(t) ∝
∫
d3r e−t/T2M⊥(0)eiγ∆Bz(~r)t (1.2.1)

where t is time, M⊥(0) is the initial transverse magnetization at t = 0, and the

integration is performed over space. It is assumed that T2 and initial transverse

magnetization does not vary over space, and that the demodulated frequency is

equal to the Larmor frequency of the hydrogen protons in the rotating frame,

resulting in ∆Bz(~r) = Bz(~r)− B0 after demodulation. The integral of the entire

eiγ∆Bz(~r)t essentially leads to the T
′
2 decay caused by the varying ∆Bz(~r) over

space.

Let us now see what the T ∗2 dephasing will be in the presence of a single

magnetized spherical particle. From here out, the term "particle" will be used

to represent a spherical magnetic inclusion. The component of the magnetic

field along the external field direction induced by a single sphere with magnetic

susceptibility χ, volume Vµ, radius R, subject to an external field strength B0, is

given by

∆Bz,sphere(~r) =
χ

4π
VµB0

3 cos2 θ − 1

r3
for r > R (1.2.2)

using spherical coordinates r and θ. Plugging this back into Eqn. 1.2.1 and

ignoring the T2 component gives
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s(t) ∝ 2π

∫ π

0

∫ ∞
R

drdθ r2 sin θM⊥(0) exp

(
iγ
χ

4π
VµB0

3 cos2 θ − 1

r3
t

)
(1.2.3)

While this equation neglects quite a few other factors on the signal, it demon-

strates the point that T ′
2 can be tied to the magnetic susceptibility and the volume

fraction of one or more particles.

Now imagine we have a single magnetized cylinder that has a uniform suscep-

tibility χ and radius R, and is placed under an external field strength B0, where

the direction of the field and axis of the cylinder intersect at an angle θ. Assume

this large cylinder occupies several voxels in an MRI image. The equation for

the component of the induced magnetic field along the external field direction

is given by magnetostatics, as

∆Bz,out(~r) =
χ

2
B0 sin2 θ

R2

ρ2
cos 2φ for ρ > R (1.2.4)

∆Bz,in(~r) =
χ

2
B0(1 + cos2 θ) for ρ < R (1.2.5)

using cylindrical coordinates under the condition that χ is very small, which

usually is the case in MRI applications (on the order of ppm). This is also under

the assumption that the cylinder has a uniform and continuous susceptibility

value. However, Equation 1.2.5 requires the Lorentz sphere correction, −2
3
χB0

(in SI units, which are used throughout this dissertation), in order to agree with

experimental measurements. After the Lorentz sphere correction, the induced
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field inside a cylinder is

∆Bz,in(~r) =
χ

6
B0(3 cos2 θ − 1) for ρ < R (1.2.6)

On the other hand, if there are many additional magnetized spheres inside

the cylinder, what would be the actual field, ∆B for the spin at position ~r0 inside

the cylinder? One would have to take into account the fields from all particles,

based on Eqn. 1.2.2. This would give

∆Bz(~r0) =
N∑
i=1

∆Bz,sphere(~r0 − ~ri) (1.2.7)

where ~ri is the position of the i-th particle out of N total particles. If the num-

ber of particles is large, it is difficult and sometimes even impossible to model

(although its necessity under certain conditions is the focus of this dissertation).

Imagine instead that a pseudo spherical region with a radius on the order of

several particles, centered at position ~r0, is selected. The field contributed from

particles inside this spherical region is called the near field. The field contributed

from particles outside this spherical region is called the far field. When there are

sufficient number of particles outside this spherical region, the region can be

treated as a continuous medium, and its contribution to the field at ~r0 can be

determined from Eqn. 1.2.6.

If the field contribution from particles inside the spherical region leads to zero,

then the overall field at position ~r0 is only the far field. In this case, the result is
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Eqn. 1.2.6. The phase term of the MRI signal is

φ(t) =
χ

6
γB0(3cos2θ − 1)t (1.2.8)

If there is enough spatial and temporal averaging of fields, the near-field con-

tributions from particles will indeed cancel out. As a result, the phase value of

the MRI signal due to many spherical particles inside a cylinder will agree with

Eqn. 1.2.8. On the other hand, there are numerous scenarios where such cancel-

lations will not occur. For example, if the atomic or molecular microstructures

inside an object of interest has some complicated geometry, or if the temporal

averaging of fields is not strong enough, these situations will not lead to cancel-

lations of near-fields.

In MR applications, the sufficient averaging of fields will depend on the size,

spacing, and magnetization of the inclusions that are mixed in with spins. In

order for enough averaging to occur, the spin, on its path of diffusion, should

be subject to a large variety of fields from inclusions. From this it is easily

seen that smaller spacing, smaller size, and smaller magnetization will help this

diffusion process. When the condition is met, this is referred to as the fast

diffusion regime. On the other hand, when inclusions are large and further

apart, diffusion will not lead to enough averaging and the fields induced by

inclusions will dominate the signal behavior. This is referred to as the static

dephasing regime.

In the static dephasing regime, with randomly distributed spherical particles,

it has already been found from Eqn. 1.2.3 that an additional frequency shift
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on top of Eqn. 1.2.6 will occur. But with different spatial arrangements of mi-

crostructures, the MRI signal will behave differently. The research in this disser-

tation focuses on spherical particle inclusions and how non-linear phase behav-

ior, not able to be described by a single frequency shift, can arise. Phase outside

the region of particles, however, will behave as if the object was a continuous

medium, and Eqn. 1.2.4 will still be valid.



10

CHAPTER 2 A STUDY OF MRI GRADIENT ECHO SIGNALS FROM DISCRETE
MAGNETIC PARTICLES WITH CONSIDERATIONS OF SEVERAL
PARAMETERS IN SIMULATIONS

2.1 Introduction

Magnetic resonance imaging (MRI) signal behavior in the presence of mag-

netic particles has been of great interest. An understanding of this signal behav-

ior from gradient echo images is important, as magnetic particles are related to

nanoparticle labeled cells, contrast agents, and natural biological forms of iron

such as ferritin and hemosiderin. Modeling the signals in the presence of such

particles provides the first step of proper quantification of particle concentra-

tions.

Quantification methods currently include R2, R∗2, or phase based methods

such as quantitative susceptibility mapping (QSM). So far the models used to

predict R2 and R∗2 from magnitude signals are typically based on statistical meth-

ods that are evaluated either analytically [2], or numerically with Monte-Carlo

simulations [16, 17]. While these models have considered the discrete parti-

cle nature of the system, modeling of phase values in QSM still assumes that

a system with discrete particles behaves as a continuous medium [4, 18, 19].

Under the continuous medium assumption, phase should behave linearly over

echo time. However, some recent work has shown that phase inside a system

of particles can become non-linear from gradient echo images when all particles

are included in the model [20]. This non-linearity deserves further studies. As

we can imagine, if the concentration of particles is low in a system, it is under-

standable that modeling of the system to be a continuous medium is no longer
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appropriate. An immediate question is how low the concentration is considered

to be low. In addition, given the current computing capabilities, which are not

sufficient to model trillions of particles in a simulation, it is also a question of at

least how many particles should be included in a simulation.

In this work, simulation based models are used to investigate phase signals

which depend on factors such as particle density, susceptibility, and particle dis-

tribution. In order to accurately represent actual systems of particles, careful

considerations are made on the minimal size and the total number of particles

in simulations. The R′
2 relaxation rate will also be calculated and compared to

theoretical estimates. In this first attempt to answer the questions that we want

to investigate, only a small cubic field of view (FOV) will be utilized for simula-

tions. Diffusion will not be considered in these simulations, as typically diffusion

plays little role when nanoparticles are involved [21]. Thus our simulations will

only be applicable to particle systems in the static dephasing regime [2]. Be-

cause of this, particle size in our simulations (given by the number of grid points

it takes up in a 3D matrix) only reflects how well each particle will represent

a perfect sphere. The bigger the particle is in our simulations, the more accu-

rate the result. Our simulated results can represent MRI signals from magnetic

particles in solutions or tissues that are actually in the static dephasing regime.

2.2 Theory

2.2.1 MRI Signal from a System of Particles

The induced magnetic field over space, ~B(~r), due to a source of magnetization,

~M(~r), can be written as
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~B(~r) =
µ0

4π

∫
V ′
d3r′

{
3 ~M(~r′) · (~r − ~r′)
|~r − ~r′|5

(~r − ~r′)−
~M(~r′)

|~r − ~r′|3

}
(2.2.1)

where µ0 is the permittivity of free space. If the magnetic susceptibility is a

scalar, the induced field along the z-direction is

Bz(~r) =
µ0

4π

∫
V ′
d3r′

{
3Mz(~r′)(z − z′)2

|~r − ~r′|5
− Mz(~r′)

|~r − ~r′|3

}
(2.2.2)

This expression can be further rewritten as a convolution of the magnetization

with a 3D Green’s function G3D

Bz(~r) = µ0

∫
V ′
d3r′Mz(~r′)G3D(~r − ~r′) (2.2.3)

where the Green’s Function in spherical coordinates (r, θ, ψ) is

G3D(~r) ≡ 1

4π
· 3 cos2 θ − 1

r3
(2.2.4)

For an object with a continuous magnetization, the above equation can be

used to calculate the induced magnetic field inside and outside the object. How-

ever, in many practical situations, an object contains discrete ferromagnetic or

superparamagnetic particles. Thus the integral in Equation 2.2.1 needs to be

rewritten as a sum over particles, leading to

Bz(~r) = µ0

N∑
i=1

µi ·G3D(~r − ~ri) (2.2.5)
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where µi is the relative magnetic moment of the i-th particle, defined as ∆χiViB0/µ0,

where ∆χi is the susceptibility of the i-th particle relative to its surrounding, Vi

is the volume of the particle, B0 is the main field strength, and ~ri is the position

of the particle. Here It is important to note that, as the susceptibility ∆χi is a

relative term, so are the magnetization and magnetic moment used throughout

the paper. The induced field in Equation 2.2.5 is the sum of fields from each in-

dividual particle, assuming that the total number of particles in this system is N .

In addition, Equation 2.2.5 can be calculated through discrete Fourier transform,

rather than directly adding Green’s functions. Furthermore, if the object size is

more than 50% of the FOV, and if discrete Fourier transform of the Green’s func-

tion is not used, then Fourier transform can introduce sufficient errors in those

calculations [5].

The complex MRI signal within a voxel obtained from a gradient echo se-

quence is found by convolving the true continuous signal with a sinc function.

Each spin will precess at a frequency γBz(~r), where γ is the gyromagnetic ratio

of the hydrogen proton, equal to 2π · 42.58 MHz/T. The induced magnetic field

Bz(~r) due to the susceptibility of the sample will vary over space according to

Equation 2.2.5 and the reconstructed images in the Cartesian coordinates at a

given echo time, TE, will be

ρ̂(x, y, z, TE)

= ρ(x, y, z) eiγBz(x,y,z)TE

∗
(

1

∆x∆y∆z

sinc(πx/∆x)

sinc(π∆kxx)

sinc(πy/∆y)

sinc(π∆kyy)

sinc(πz/∆z)

sinc(π∆kzz)
e−iπ(∆kxx+∆kyy+∆kzz)

)
(2.2.6)

where ρ is the spin density, ∗ represents the convolution operation, ∆x, ∆y,
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and ∆z are image resolutions, and ∆kx, ∆ky, and ∆kz are the resolutions in k-

space. The resolution in the image domain and k-space must satisfy the Nyquist

criterion along each dimension. This reconstruction process is performed in our

simulations following the diagram in Fig. 4.1.

2.3 Methods

Several factors need to be considered in our simulations. The general idea is to

simulate sizable particles in a large matrix and to obtain images through reduc-

tions of the matrix size, according to the concept in MRI acquisition (Fig. 4.1).

Each factor is discussed in each subsection below.

2.3.1 Simulation Procedures

Here we describe in detail of our simulation procedures, using Fig. 4.1 as a

guide. We first set up magnetic field distributions from discrete particles. A large

high-resolution 3D matrix is filled with particles, distributed and constrained

within a given geometry of an object, which is further placed within a larger

FOV. Magnetization of each particle is assigned to be ∆χB0/µ0. Magnetization

is zero outside the particles. A discrete Green’s function matrix of the same size

is also needed to generate field values over the entire space. The center of the

Green’s function is assigned to be zero in order to include the Lorentz sphere

correction [5]. The Fourier transform of both matrices is taken and then they

are multiplied together in order to perform the convolution in Equation 2.2.3.

The inverse Fourier Transform of this product provides a 3D matrix of magnetic

field distributions. A slightly different but nearly equivalent way of generating

fields from spherical particles is described in the Appendix. When the parti-
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cle setup has even symmetry over each dimension (as we choose in the ground

truth model described in Section 3.2), a discrete cosine transform rather than

a fast Fourier transform can be used to generate field values. Compared to

the usual fast Fourier transform, the cosine transform requires only 1/16 of the

computer memory and number of computations for a 3D calculation. A phase

matrix φ(~r) is calculated from this field matrix by multiplying by γTE. To com-

plete the complex signal calculation for the high resolution matrix, magnitude

values have been assigned to unity both inside and outside the given geometry

of the object, throughout the entire FOV. The magnitude and phase matrix to-

gether form one complex signal matrix ρ(~r) eiφ(~r), where ρ(~r) and φ(~r) are the

magnitude and phase matrix, respectively. The Fourier transform of this high

resolution complex matrix is then performed and only the central low frequency

k-space portion, where its size matches the desired reconstructed MR image ma-

trix size, is taken. The inverse Fourier transform is further performed on the

central k-space portion, leading to a low resolution complex matrix which is our

final image matrix. The ratio of initial to final matrix size is referred to as the

"reduction ratio" here.

MATLAB and Fortran were used to perform all simulations in this work. For

larger scale simulations that required over 16 GB of RAM, a Linux based com-

puting system centralized in our university was used. This computing system

contained 1.5 TB of RAM and utilized an Intel E5-2697v3 2.6 GHZ processor.

For smaller scale simulations, a Windows based system was used with 16 GB of

RAM and an AMD Phenom II X4 945 processor.
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2.3.2 Particle Models

It is important to ensure that magnetic fields near every particle surface are

set up accurately. While using a single point to represent each particle is desired

so that computer memory may be conserved, a larger sphere to represent each

particle may still be required for accuracy purposes. Here, one "point" simply

refers to one element in a 3D matrix. In order to test the accuracy from different

particle sizes, a "ground truth" model was developed for comparisons. In this

model, spherical particles were simulated large enough so that they may rep-

resent perfect spheres. Our previous experience suggested that a radius of 32

points would be a suitable choice for each spherical particle [6]. A cubic 51203

FOV was set up with particles being contained in the central 30723 portion. A re-

duction ratio of 10243 was used resulting in a final matrix of 53 where the central

33 voxels contain all particles. The arrangement of 33 voxels was needed, as we

had found out that particles in surrounding voxels will affect the MR signal in

the voxel at the center, which is our voxel of interest. Empty voxels were added

around the central 33 voxels, in order to avoid significant problems of aliasing

from the Green’s function [5]. This type of low resolution FOV was used for all

simulations presented in this work, with only the reduction ratio changing when

needed.

A total of 1728 large spherical particles were uniformly distributed within the

central 30723 volume with a lattice arrangement, providing a volume fraction,

λ, of 0.82%. The bulk susceptibility of the solution was defined as λ∆χ for all

cases and was assigned to be 10/64 ppm. This led to a particle susceptibility
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of roughly 19 ppm. The main magnetic field was assigned to be 3 T and was

used for all simulations presented in this work. Echo times of 1 ms to 99 ms in

increments of 2 ms were simulated using the procedures described above. These

parameters, except for susceptibility values, were chosen to be similar to those

in previous phantom experiments [22].

Several different particle sizes and shapes were compared to the ground truth

model. These included using a single point, a 33 cube, and spheres of radii

ranging from 2 to 5 and 16 points. In order to assign zero induced fields inside

particles in some simulations, we chose an alternate method to generate fields

(see 2.6). The matrix sizes of different models were reduced to the same desired

matrix size by using different reduction ratios, in order to compare the ground

truth to different particle models. Particle locations and distances were kept

consistent for all models. For example, for the single point model which was

64 times smaller than the original ground truth size, all 1728 point particles

were placed in the central 483 elements of a 803 high resolution matrix. The

bulk susceptibility of the central 33 voxels was kept at 10/64 ppm. However,

the volume fraction in this model was naturally increased to 1/64 due to the

inherent volume differences between a cube and a sphere. A reduction ratio of

643 was used for this model. For the model with particle sizes of 33 cubes, we

scaled up the single point model by a factor of 3 along each dimension, but kept

all other parameters the same.

For other spherical particle models, the same lattice particle arrangement as

in the ground truth was used, with every dimension scaled appropriately. The
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bulk susceptibility was kept at 10/64 ppm in all cases and the volume fraction

remained roughly the same as in the ground truth model, i.e., 0.82% (as we

are using discrete points to create spherical particles, the volume fraction can

change slightly for different particle sizes). The same echo times used in the

ground truth model were simulated.

The phase values from the central voxel of each model and from all echo times

were quantitatively compared to the phase values from the central voxel of the

ground truth model, in order to determine which model is acceptable for further

simulations.

2.3.3 Particle Susceptibility

Particle susceptibility in the ground truth simulation was varied from 1 ppm

to 21 ppm in increments of 5 ppm, in order to determine the effect of particle

susceptibility. As a result of the fixed volume fraction, the bulk susceptibility

of the solution was no longer 10/64 ppm. All other parameters were kept the

same. Since the phase value at any location in the matrix is proportional to the

field and echo time, it is expected that varying particle susceptibility will have

the same effect as scaling the echo time or field strength.

2.3.4 Particle Density and Distribution

Lattice and quasi-random arrangements were used to determine the effect

of particle distributions. Quasi-random arrangements of particles would pro-

vide a uniform distribution and avoid problems such as pockets of increased

and decreased particle densities [23]. Particles were modeled as spheres with

a radius of 4 points based on results from above simulations. Quasi-random
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arrangements were created by allowing each particle to be randomly placed

within a cubic sub-volume. The center of each cubic sub-volume followed a lat-

tice arrangement within an object described below. This concept is illustrated

in Fig. 2.2. Sub-volumes with sizes of 83, 163, 243, and 323 points were used.

In addition, in order to simulate 27, 216, and 1728 particles per voxel within

the central 33 voxels in low resolution images, the particles were first gener-

ated within the respective central 2883, 5763, and 11523 points (i.e., the object)

in high resolution matrices, and the entire FOV of each setup was downsized

with reduction ratios of 96, 192, and 384, respectively. These setups led to the

same volume fraction of roughly 0.82%. In addition, particles with lattice ar-

rangements were also generated within the central 33 voxels of low resolution

images. In each "sub-volume type" of the particle distribution with three differ-

ent particle densities (i.e., number of particles per voxel), except for the lattice

arrangement of particles, 30 different particle arrangements were simulated. A

bulk susceptibility of 10/64 ppm was again used. Here only echo times from

1 ms to 49 ms in increments of 2 ms were used in order to reduce the computa-

tional time. The resulting magnitude and phase value from the central voxel in

each arrangement were analyzed.

2.3.5 Volume Fraction

Only a quasi-random arrangement of particles with a sub-volume type of 243

points was used to test the effect of volume fractions. The bulk susceptibility

was kept constant at 10/64ppm, while the number of particles was changed to

172 and 344 per voxel such that the volume fraction of particles was either 5%
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or 10%. A reduction ratio of 963 and particles with a radius of 4 points were

used.

2.3.6 Continuous Medium

A simulation of a continuous medium (rather than discrete particles) was per-

formed, with the central 15363 points of a 25603 FOV having a bulk susceptibility

of 10/64 ppm. A reduction ratio of 5123 was used. As a result, the central 33

voxels out of the 53 FOV in low resolution images were filled by the continu-

ous medium. The purpose of this simulation is to show the differences between

discrete particle models and a continuous medium model.

2.3.7 Field of View

As mentioned above, when the ratio of the region containing particles to FOV

is large, some errors can be introduced into results [5]. Thus it is important to

make sure that the size of the FOV is large enough, in order to avoid significant

errors. To test the effect of FOV on our simulations, we repeat the simulations

with a quasi-random arrangement with a sub-volume type of 243 points and ex-

tend the FOV from 53 to 73 voxels in low resolution images, for particle densities

of 27 and 216 particles per voxel in the central 33 voxels.

2.4 Results

Results from the ground truth model demonstrate that phase behavior devi-

ates from the results of a continuous medium. Phase values from the ground

truth model are nonzero at most echo times (Fig. 4.2), while the phase value

from the center of a continuous cubic medium should be zero. The R
′
2 value

of 86.8 Hz calculated from the ground truth model is also higher than 50.5 Hz
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predicted from the static dephasing regime by Yablonskiy and Haacke [2]. This

is likely due to the lattice arrangement of particles which breaks the assumption

of randomness.

The phase as a function of echo time from other particle models, along with

the ground truth are shown in Fig. 4.3. It is seen that a particle radius of at least

4 points leads to results comparable to the ground truth, up until an echo time of

roughly 70 ms. The percentage errors between the two models are mostly within

10%. The single point particle and cubic model do not lead to good results and

they are not shown in Fig. 4.3. Beyond the echo time of 70 ms, the inaccuracy

of the induced fields near the surface of each particle becomes noticeable in our

simulations. In fact, when the echo time is very long and/or the particle suscep-

tibility is very high, such that phase values around each particle are too large,

it is a question whether the particle radius is large enough to properly model

the phase outside. This question arises when we observe erratic phase curves

at long echo times. However, as the dephasing effect around a particle becomes

strong in these conditions, a small particle size with large phase values around

the particle is equivalent to a large particle with small phase values around the

particle. Even with this interpretation, when the phase value outside a particle

becomes large, say, 10π, a 10% error can significantly change the phase signal.

With the proper size of particles used in simulations, the bulk phase values av-

eraged from 30 different particle arrangements for each sub-volume type seem

to be non-linearly proportional to the echo time (Fig. 4.4), yet different than the

nonlinear behaviors shown by [20].
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Even with the MR signal given by Equation 2.2.6, varying particle suscepti-

bility seems to only scale the phase plot in the time dimension. This indicates

that particles of different susceptibilities may be simulated by adjusting the echo

times of any other susceptibility appropriately. However, it is important to note

that, when the induced phase outside each particle is too small, the accuracy

of the phase value at each point again becomes more important. As a result,

particles must be modeled much larger, in order to achieve accuracy.

The effect of particle density and distribution on phase behavior from the cen-

tral voxel as a function of echo time is shown in Fig. 4.4. The averaged phase val-

ues from 30 quasi-randomly arranged particle distributions for each sub-volume

type and particle density are shown. Error bars at each echo time represent one

standard deviation. Two general trends can be seen. First, as the particle density

in each sub-volume type with a fixed volume fraction increases, the variance in

the resulting phase behavior decreases. The average over 30 arrangements for

each particle density shows a strong agreement when the number of particles

per voxel is at least 216, suggesting that the average from these simulations can

be used to predict results from even more particles per voxel with a fixed volume

fraction. Second, phase behavior seems to depend on the sub-volume type of the

particle distribution. As locations of particles become more and more restricted,

in the case of quasi-random arrangements, the phase behavior first shows more

biased toward negative values and then eventually begins to resemble the results

from the lattice arrangement. When using a lattice arrangement, the final sig-

nal behavior does not show any dependence on the number of particles present
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within a voxel.

This same trend is observed from increasing the volume fraction of particles,

as long as the bulk susceptibility is kept the same. Including more particles

in the system within the same FOV simply reduces the variance in the phase.

For the simulated volume fractions of 5% and 10%, the averaged phase values

remain in very good agreements. However, keeping the same particle suscepti-

bility while increasing the volume fraction will increase the bulk susceptibility

and thus different phase values.

It was found that R′
2 is much more sensitive to the sub-volume type of the

particle distribution than particle density. As particle distributions become less

random, R′
2 begins to increase and deviate away from the theoretical predic-

tion of 50.5 Hz. Within the same sub-volume type of the particle distribution,

the variance of R2’ is much lower than the variance of its corresponding phase

pattern. The distributions of R′
2 values for each sub-volume type are shown in

Fig. 2.6a. The signal decay of a quasi-random distribution with a sub-volume

type of 243 points shows a contradiction to the results from [21]. The natural

log of the magnitude signal decay becomes less linear, indicating bi-exponential

decays, as the particle density increases. This can be seen in Fig. 2.6b.

In the case of a continuous medium, the resulting phase from the center of the

FOV is nearly zero over all echo times, which is different from results of discrete

particles. Thus a continuous medium cannot be substituted by discrete particles

in the same system.

The FOV size has a much larger effect on phase from the 27 particles per voxel
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simulation than the 216 particles per voxel simulation, as shown in Figs. 2.7a

and 2.7b. While the shapes of averaged phase curves as a function of echo

time seem to be different slightly between the two FOVs, the differences are

within the one standard deviation. However, such high variances suggest that

we should use high particle densities in future simulations. The effect of FOV on

R
′
2 was much less. Using 27 particles per voxel, the 53 and 73 FOV resulted in

R
′
2 values of 57.3 Hz and 56.8 Hz, respectively. Using 216 particles, the 53 and

73 FOV resulted in R2’ values of 56.6 Hz and 54.4 Hz, respectively.

We have also compared the density of states between different particle ar-

rangements and densities. Density of states is calculated in each case by taking

the one dimensional Fourier transform of the complex signal over echo time

from the central voxel of the cubic FOV. For each type of arrangements, the av-

eraged density of states and the standard deviation at each point is plotted in

Fig. 2.8. For a highly random particle arrangement, the density of states be-

comes symmetric and appears to resemble a Lorentzian distribution. However,

as the particles become more restricted, the density of states starts to lose its

symmetry and leads to a bi-exponential decay of the MR magnitude signal.

If an MR magnitude signal shows a mono-exponential decay over time, its den-

sity of states should follow a Lorentzian distribution in the frequency domain.

Simulations of random particle arrangements in [21] with high particle densities

have shown a Lorentzian distribution. However, our simulations using their par-

ticle densities indicate that this should not be the case (see the bi-exponential

decay in Fig. 2.6b). This discrepancy is possibly due to the use of very small
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particle sizes in [21]. As we have shown in Fig. 4.3, the particle radius needs to

be simulated at a minimal size. Otherwise the phase outside each particle will

not be accurate enough to give correct MR signals.

2.5 Discussion

The above results suggest that, even when a high particle density is randomly

distributed, there may be an underlying bias in the resulting bulk phase behav-

ior in the static dephasing regime. This indicates that the near field around each

particle must be properly calculated. The fields at these locations will be domi-

nated by near-by particles. Such a bias in the phase behavior could possibly pose

a problem for applications of phase based quantification methods such as QSM,

which assumes a continuous medium and thus no such biases.

Our results also suggest that lower particle densities introduce nonzero phase

values with high variances in the central voxel of cubic systems over echo time.

This observed variance is caused by the unique arrangement of individual par-

ticles in voxels and the lack of spatial averaging of fields. As more particles are

added into the system, there is more spatial averaging occurring and the vari-

ance is reduced. Thus this variance will likely only be a problem when the entire

system has low numbers of particles. On the other hand, our results indicate

that it is suitable to use only 1728 particles per voxel to represent even more

particles with the same volume fraction in simulations.

If only a single voxel with particles was used in simulations, phase and R2’ val-

ues were significantly different than those shown in Figs. 4.4 and 2.6a. Extend-

ing the 33 voxels to larger cubic volumes did not make a significant difference,
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indicating that an additional single layer of voxels around the central voxel is

sufficient to demonstrate our results.

As our simulations do not include diffusion, they are only applicable to sys-

tems of particles in the static dephasing regime. The condition for this regime is

given by Yablonskiy and Haacke [2] as

δω
R2

6D
� λ−

1
3 (2.5.1)

where δω is the equatorial frequency deviation at the surface of a particle, R

is the radius of the particle, D is the coefficient of diffusion for spins, and λ is

the volume fraction of the particles in the system. It was noted in [21] that cells

labeled by SPIO (superparamagnetic iron oxide) may satisfy the criteria required

for the static dephasing, as long as they are large enough or have high enough

magnetizations. This has been shown to be the case with most iron-oxide loaded

cells [24].

The phenomenon of non-cancelling near fields around each particle will only

affect the phase values inside the region where particles occupy. The fields out-

side the particle region will still be induced from the combined far-fields of all

particles. This outside field may also be used to quantify the magnetic moment

of the object and it may be a more robust method since any near-field effects

will not exist.

The R′
2 value is less susceptible to variations in particle arrangements within

the same sub-volume type, as long as the distribution is quasi random and the
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particle density is high enough. This is somewhat expected since a fundamental

assumption in the analytical treatment from Yablonskiy and Haacke [2] is a

random arrangement with a uniform distribution. As more restriction of particle

arrangements is introduced into a system, the R2’ value increases. As a result, a

lattice arrangement of particles has the highest R2’ value. This concept is likely

the cause of the extremely large R2* values observed from frozen tissues, on the

order of 1000 Hz [25], where the increased spatial order in the system is more

directly from water molecules than from particles in water.

Another aspect of this work is to show the importance of choices of simulation

parameters. It is found that a particle radius of at least 4 points should be

used, with the field strength, susceptibility values, and echo times chosen in

our simulations. The FOV should be large enough compared to the object of

interest, in order to avoid aliasing of the phase due to Fourier transforms used

in simulations. It is also important that a sufficient particle density such as

1728 particles per voxel is better to be used. If the susceptibility value of each

particle or echo time is more than an order of magnitude different than that used

in our above simulations, then the ground truth model should be re-simulated

for comparisons, in order to ensure the correctness of the model with smaller

particle sizes.

2.6 Conclusion

When predicting phase behavior from a system of particles, the assumption of

a continuous medium may be invalid in the static dephasing regime. When a

large number of particles are present in the system, as would be more likely in
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a practical application, our results suggest that there will be a phase bias inside

the system over echo time. This bias may affect quantitative methods that are

based on phase information estimated from the continuous medium model. We

find that this bias arises from fields around particles. If the particles in a system

are more randomly distributed, R′
2 will decrease and approach to the predicted

value from the static dephasing theory. However, phase values as a function of

echo time are not predicted by the same theory.

Appendix: Generating Fields with Modeling Particles in the Magnetization
Matrix versus in the Green’s Function Matrix

The typical method of generating magnetic fields or phase from Equation 2.2.3

is to set up the geometry of objects and convolve the geometry with the Green’s

function, as described under Section 2.3.1. This method defines the object ge-

ometry in the magnetization matrix. However, if objects are a group of identical

spheres, the described method of generating fields would be equivalent to the

following procedure: the geometry of spherical objects can be replaced by their

centers (i.e., single points), and the size of the sphere is defined in the Green’s

function, with nonzero Green’s function values outside the sphere but with zeros

inside the sphere in the Green’s function. The convolution between the geometry

and the Green’s function will still lead to the correct field maps.

This alternate method of simulation was first tested in the ground truth, with

spherical particles of a radius of 32 points. The results from these two different

procedures are shown in Fig. 2.9. The differences between two results for echo

times less than 70 ms are less than 2.5%.
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Figure 2.1: A schematic representation of the procedure used for simulating MRI
complex signals. Convolution of a large 3D magnetization matrix
and the Green’s Function is used to create a high resolution phase
matrix. Combining the phase matrix and a spin density matrix cre-
ates a high resolution complex signal matrix. This matrix is cropped
in k-space to reach a final desired image resolution.

Using this alternate method allows us to simulate fields from a group of ran-

dom spherical particles faster. In addition, if simulated particles are not perfect

spheres, this alternate method ensures the induced field is zero inside particles,

but the induced field inside non-spherical particles will not be zero in the method

using the magnetization matrix.
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Figure 2.2: Two different sub-volume types of particle arrangements. Each sub-
volume type is defined by the size of the dashed box within each cell.
The center of each particle is randomly placed inside each dashed
box. The center of each dashed box follows the lattice arrangement
inside the 33 voxels (i.e., the object).
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Figure 2.3: Phase at the central voxel of the ground truth model plotted as a
function of echo time.
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Figure 2.4: Phase from using a lattice arrangement of spherical particles with
radii of 2, 3, 4, 5, and 16 points, compared to the ground truth
which uses a radius of 32 points for each particle.
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Figure 2.5: Phase values at the central voxel of the cubic FOV averaged from
(a) lattice arrangement, (b) 30 different quasi-random arrangements
with a sub-volume of 83 points, (c) 30 different quasi-random ar-
rangements with a sub-volume of 163 points, (d) 30 different quasi-
random arrangements with a sub-volume of 243 points, and (e)
30 different quasi-random arrangements with a sub-volume of 323

points. Each type of arrangement has 3 different particle densities;
27, 216, and 1728 particles per voxel. Error bars represent one stan-
dard deviation from the 30 arrangements. A particle radius of 4
points has been used in these simulations.
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Figure 2.6: (a) The distributions of R′
2 values for all different sub-volume types

of quasi-random arrangements. A particle density of 27 particles
per voxel is used here. Increasing the particle density will reduce
the variance of each measured R

′
2 value. When the order of the

arrangement increases, so does the R′
2 value. (b) The natural log of

the averaged signal decay is shown for three particle densities from
a quasi-random distribution. As the particle density increases (but
with a fixed volume fraction), the curve becomes less linear.
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Figure 2.7: A comparison of the averaged phase from the central voxel between
two different FOVs: 53 and 73 voxels. Thirty quasi-random arrange-
ments of particle locations were simulated for each FOV and for a
particle density of (a) 27 particles per voxel and (b) 216 particles
per voxel.
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Figure 2.8: (a) The averaged density of states for all different sub-volume types
of quasi-random particle arrangements. As the order of the arrange-
ment increases, the density of states starts to deviate away from a
Lorentzian shape. (b) The density of states for three different par-
ticle densities with a sub-volume type of 243 points for the particle
arrangement. As the particle density increases, the variance of the
density of states decreases.
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Figure 2.9: Two methods of generating data from the ground truth model, de-
scribed in the Appendix are shown in (a). For the conventional
method, the entire spherical particle is defined in the magnetiza-
tion matrix. For the alternate method, the particle size is defined in
the Green’s function matrix. The errors between the two curves are
shown in (b).
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CHAPTER 3 MIXTURES OF DISCRETE SPHERICAL PARTICLES WITH A CON-
STANT SUSCEPTIBILITY CAN LEAD TO ECHO TIME DEPEN-
DENT PHASE SHIFTS

3.1 Introduction

Phase and magnitude information from magnetic resonance imaging (MRI)

can be used for both the visualization and quantification of magnetic susceptibil-

ity. This is important clinically as the susceptibility of biological tissue is directly

related to iron content or other sources such as calcium. Iron content in the brain

is of interest as it has been associated with several diseases [1]. Quantitative sus-

ceptibility mapping (QSM) has also been an active research topic [26, 27].

In most applications, an object or a tissue consists of numerous discrete mag-

netic inclusions rather than a purely uniform continuous medium. While in-

duced magnetic fields from all these inclusions should be used to calculate the

complex MRI signal behavior of the object, due to the current computational

limitations, it has been convenient to treat the object as a continuous medium,

especially for calculations of MRI phase values. However, it has been shown

that the phase signal from the white matter does not agree with the model from

a uniform medium, due to the microstructure such as axons in the white mat-

ter [9, 28, 29].

From a different consideration in physics, magnetic field calculations from a

macroscopic object containing numerous discrete magnetic inclusions should in-

clude a far-field and a near-field contribution, in addition to the Lorentz sphere

correction. The far-field contribution can always be considered from an equiv-

alent bulk susceptibility of the macroscopic object containing inclusions [30].
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The near-field contribution is zero, for a continuous medium with an isotropic

susceptibility. For discrete spherical inclusions, the near-field is also zero if the

fast diffusion condition is met [13, 19]. However, in the static dephasing regime

where diffusion is neglected, the near-field contribution is not zero, as shown

from nuclei magnetic resonance (NMR) frequency shifts in [13] with a theoreti-

cal background described in [2].

As the frequency shift in NMR determined from [13] would imply echo-time

independent results, while our previous simulations of particles in cubes [14]

have shown echo-time dependent phase values from MRI, this major discrep-

ancy requires further investigations. In this work, the main goals are to (1)

simulate gradient echo MR images from Fe3O4 nanoparticle solutions and from

mixtures of polystyrene beads in gel, (2) analyze how several factors (the num-

ber of particles per voxel, the arrangement of particles, Gibb’s ringing, etc.) from

simulations can affect phase values, and (3) compare results to experimental

data (nanoparticles and beads) and current theories (Eqn. 3.2.2 and Eqn. 3.2.3

below).

3.2 Methods

3.2.1 Background

The analytical work done by [2] on randomly distributed spherical particles

within a large sphere has predicted a first-order frequency shift ∆ω in the static

dephasing regime.

∆ω = −0.053γB0λ∆χ (3.2.1)
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where B0 is the main field strength, λ is the volume fraction of particles, ∆χ is

the magnetic susceptibility of the particles relative to their surrounding, and γ is

the gyromagnetic ratio of the hydrogen proton with a value of 2π ·42.58 rad/s/T.

In NMR where cylindrical test tubes are used for containing discrete magnetic

inclusions, Ruh et al. [13] had expected such a frequency shift in addition to

the original NMR frequency shift. On the other hand, an infinitely long cylinder

with a uniform magnetic susceptibility ∆χ′ has the following phase inside the

cylinder.

φin = γB0TE∆χ′
[

3 cos2 θ − 1

6

]
(3.2.2)

where ∆χ′ = λ∆χ is the bulk susceptibility of the cylinder, TE is the echo time

and θ is the angle between the axis of the cylinder and the main field. The

left-handed system is adopted for the sign convention used in Eqn. 3.2.2.

In either phantom or in vivo studies, which involve numerous magnetic inclu-

sions inside long cylinders, most work so far has modeled those long cylinders

with uniform susceptibility values and used Eqn. 3.2.2. That is appropriate for

the fast diffusion regime [13]. However, for the static dephasing regime where

diffusion is neglected, results from [13] have suggested the following phase

value inside a cylinder consisting of numerous discrete spherical particles when

λ < 0.2.

φin = γB0TEλ∆χ

[
3 cos2 θ − 1

6
− 0.053

]
(3.2.3)
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The second term in Eqn. 3.2.3 may act as a near-field contribution to the original

phase term (i.e., the far-field contribution). One of our goals here is to examine

the validity of Eqn. 3.2.3.

3.2.2 Experiments

3.2.2.1 Fe3O4 Nanoparticles

In our previous work [22], we have prepared and imaged a phantom con-

taining four different susceptibility values of nanoparticle solutions in plastic

straws (0.29, 0.56, 1.11, and 2.20 ppm). Each straw had an inner radius of

2.98±0.03 mm and an outer radius of 3.20±0.03 mm. Images were acquired from

an 11-echo susceptibility weighted imaging (SWI) sequence on a 3 T Siemens Ve-

rio machine with the straws perpendicular and parallel to the main field. The

imaging parameters relevant to our simulation parameters provided later were:

1 mm isotropic resolution, 2.89 T actual main field, and TE ranging from 5.68 ms

to 29.58 ms in increments of 2.39 ms. The image matrix size was 256× 256 with

64 slices. Data from the first echo time of 5.68 ms or the highest susceptibility

were not used, as either the phase effect was too small to measure or the de-

phasing effect was too heavy to maintain the signal-to-noise ratios (SNR). All

other data were re-used in this work.

3.2.2.2 Polystyrene Beads

In addition to the existing nanoparticle data, we conducted an experiment us-

ing large 90µm diameter polystyrene spherical beads (Polysciences, Inc.) and

gel doped with Gd-DTPA (0.5 M Magnevist). This doped gel acted as a reference

in terms of susceptibility, and was used to mix with beads inside a plastic straw
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and to surround the straw as well. In this experiment, three identical 7-oz plas-

tic cups were used in order to remove background phase and the susceptibility

effect from the straw itself. Cup 1 consisted of a straw filled with polystyrene

beads and doped gel, surrounded by doped gel. Cup 2 consisted of a straw filled

with and surrounded by doped gel. Cup 3 only had doped gel. The phantom

construction procedure is as follows.

A single straw with the same dimensions used in the nanoparticle experiment

was cut in half and glued to the bottoms of Cups 1 and 2. Distilled water of

600 ml and Magnevist of 36 ml were mixed together and heated to roughly 40◦ C

using a hot plate. At this point, 15 g of gelatin powder was added and the whole

solution was mixed uniformly. This concentration should lead to a susceptibility

relative to water of about 9.4 ppm according to the molar susceptibility of Gd-

DTPA [31]. With a reported magnetic susceptibility for polystyrene relative to

water of −0.26 ppm [32], this would lead to a susceptibility difference of about

−9.66 ppm between polystyrene and the doped gel (However, later our results

show this was not the case). Roughly 312,000 polystyrene beads (about 0.12 ml

in total volume) was added to 3 ml of doped gel, resulting in a volume fraction

of about 3.8%, and transferred to the straw in Cup 1. This led to roughly 100

beads per mm3. Another 3 ml of gel with no beads was transferred to the straw

in Cup 2. The remaining doped gel solution was then poured into all three cups

outside the straws, all to the same height. All three phantoms were then covered

and placed in a refrigerator to solidify.

MRI imaging was performed on a Siemens 3T Verio system with a single loop
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6 cm diameter eye coil. In order to properly remove the background phase, it

was important that all 3 cups were imaged in the exact location relative to both

the main magnet and eye coil. To achieve this, we secured the eye coil to a fixed

position relative to the patient table. This allowed for each cup to be placed

directly into the eye coil where the increasing diameter of the cup allowed it to

sit firmly with the coil half way up the cup. For the parallel orientation, only the

reference cup (Cup 3) and Cup 1 were needed to be imaged. In this orientation,

each cup was secured on its side and the eye coil was laid flat onto the cup’s

side.

The SWI sequence was used for imaging, with a TR of 37 ms and 6 echo times

from 8.19 ms to 31.79 ms in increments of 4.72 ms. The read bandwidth per

pixel was 219 Hz. A 1 mm isotropic resolution was used and the total matrix

size was 128 × 128 × 64. When the straw was perpendicular or parallel to the

field, the imaging orientation was coronal or transverse, respectively. As T1 of

the high concentration Gd-DTPA was significantly shortened, a flip angle of 80◦

and 6 averages of images were used to help increase the SNR.

3.2.3 Simulation Procedures

In each simulation, we calculate magnetic fields and MRI signals from a distri-

bution of spherical particles inside a finite cylinder (which is shown in Fig. 3.1),

centered within a 3D rectangular field of view (FOV). Each simulated case cor-

responds to beads or nanoparticles inside a straw used in experiments. We try to

match as many simulation parameters to experimental values as possible. These

include echo times, cylinder diameter, center of the cylinder at the sub-voxel
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location, magnitude signal ratio between inside and outside the cylinder (in or-

der to match the Gibb’s ringing), bulk susceptibility, and number of particles per

voxel for polystyrene beads. However, as the volume fractions of nanoparticle

solutions are very low, which leads to very large grid sizes that cannot be han-

dled with current computer memory, higher volume fractions are used in our

nanoparticle simulations. As we have found out from our previous work [14],

as long as the bulk susceptibility and particle arrangement are the same, vary-

ing the volume fraction and particle susceptibility (in the range of 1 to 20 ppm)

leads to the same phase shifts as a function of echo time. In the end, 4 different

bulk susceptibilities (1 for polystyrene beads and 3 for nanoparticles) have been

simulated at orientations both perpendicular and parallel to the main field. Each

simulated case has been re-generated multiple times using different seed values

for the random number generator to produce different particle arrangements.

The basis of our simulation procedures have been described in [14]. Briefly,

the magnetic field distributions will be added from contributions of each individ-

ual spherical particle on a 3D high-resolution matrix. This process of addition is

circumvented by the convolution of the 3D Green’s function and the geometry of

all particles. The high-resolution field data are then converted to phase values.

A separate high-resolution spin density grid, in which the values inside particles

are set to zero but set to unity outside them, is combined with phase values to

form a high-resolution complex grid. The low-resolution magnitude and phase

images are created through a Fourier transform of the high-resolution complex

grid, a cropping in k-space (with its size described below), and an inverse Fourier



42

transform of the cropped grid. Due to the large scales of these simulations, sev-

eral modifications have to be made in order to conserve computer memory and

computation time.

The first modification utilizes the far-field and near-field concept. Regions of

particles far from a region of interest can be treated as a continuous medium.

Based on this concept and the linear summation of magnetic fields, an infinitely

long cylinder containing discrete particles can be decomposed to a combination

of a short cylindrical section containing particles and an infinitely long cylinder

filled by a continuous medium, with a subtraction of the same short section from

the continuous medium. This is illustrated in Fig. 3.1. The field distributions

calculated in the middle cross sectional plane of the cylinder will be analyzed.

The second modification takes advantage of the 3D even symmetry of the

Green’s function and of the finite cylinder in the rectangular FOV. As a cosine

Fourier transform performed on one half of a function with even symmetry is

equivalent to performing a fast Fourier transform on the entire function, the use

of a cosine Fourier transform on one half of the FOV in all three dimensions saves

a factor of 16 in computation time and memory. However, as a result, the par-

ticles will only be randomly placed within one octant of the cylinder, and then

reflected over other octants. This is shown in Fig. 3.2. Included in the saved

computation time, the actual reflection process only needs to be performed after

the high-resolution complex grid is cropped in k-space. A fast inverse Fourier

transform is then applied to the reflected k-space data and the final low resolu-

tion images of the entire FOV including the cylinder are reconstructed.
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Third, we tried to mimic the Gibb’s ringing from experiments by measuring

magnitude signals inside and outside each straw at every echo time, and then

matching these values in simulations. The center of each straw in the experi-

ment was obtained from the Complex Image Summation around a Spherical or

a Cylindrical Object (CISSCO) method [5] with sub-voxel accuracy, which was

also matched in simulations of cylinders by adding the appropriate linear phase

in k-space, in order to create a sub-voxel shift in the spatial domain.

Three different particle placement methods were used: one for purely ran-

dom particle arrangements, one for quasi-random particle arrangements, and a

lattice arrangement. For the purely random arrangements, particles were first

randomly placed throughout the entire high resolution grid, ensuring that no

overlap of particles would occur. For the quasi-random arrangements, each par-

ticle was constrained to a volume of 343 grid points and allowed a random place-

ment within a smaller cubic sub-volume. This idea was described in more detail

in [14]. Cubic sub-volume sizes of 83, 143, and 263 were used. After all particles

were placed, one octant of a cylinder was defined at the corner of the high reso-

lution matrix and all particles outside this cylinder were removed. In a separate

simulation, the exact same octant of the cylinder filled by a continuous medium

was defined and was used to generate field distributions as described above in

the first modification.

In all simulations, the radius of each spherical particle was chosen to be 4 grid

points in the high-resolution matrix [14] and this choice led to a volume of 257

grid points. The susceptibility value of each particle was set to be the desired
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bulk susceptibility of the cylinder (quantified from experimental data) divided

by the volume fraction of the particles. The final low-resolution matrix size of

the entire FOV was 16 × 16 × 40 and the final short cylinder had a radius of 3

pixels and a length of 20 slices. The size of the high-resolution matrix depended

on the desired number of particles per voxel and their volume fraction, whose

information are provided below. A main magnetic field of 2.89 T was used for

all simulations, as this was the actual field strength of our Siemens 3 T Verio

system. Echo times used in simulations were matched with their corresponding

values in experiments.

Fortran was used to perform all simulations. A Linux based computing system

centralized in our university was used. This computing system allowed for the

use of up to 1.5 TB of RAM and utilized an Intel E5-2697v3 2.6 GHZ processor.

3.2.3.1 Other Simulation Details for Fe3O4 Nanoparticles

The volume fractions were chosen somewhat arbitrarily; lower than 20% so

Eqn. 3.2.3 might be valid [13]. All simulations for nanoparticle concentra-

tions used 1728 particles per voxel. For particles randomly distributed inside

cylinders, volume fractions of roughly 2.8%, 5.2%, and 11.8% were chosen for

the bulk susceptibilities of 0.29, 0.56, and 1.11 ppm [22], respectively. These

values led to relatively consistent particle susceptibilities of roughly 10.4 ppm,

10.8 ppm, and 9.4 ppm, respectively, which also fell within the range of sus-

ceptibility values tested in [14]. The corresponding high-resolution grid sizes

were 2016 × 2016 × 5040, 1632 × 1632 × 4080, and 1248 × 1248 × 3120. With

the respective crop factors of 2523, 2043, and 1563 applied to the central por-
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tion of k-space, these high-resolution matrices were reduced to achieve the final

8× 8× 20 low-resolution matrices (16× 16× 40 after reflecting over each axis).

Two different random particle arrangements were simulated and averaged for

each bulk susceptibility and cylinder orientation, in order to improve the accu-

racy of the results. For the largest grid size, each arrangement took about 48

hours to simulate results from all 10 echo times. A set of simulated images are

shown in Fig. 3.3.

Only one quasi-random particle arrangement for the bulk susceptibility of

0.29 ppm with the cylinder perpendicular to the main field was simulated, as

it was found to agree better with the experimental results than the purely ran-

dom arrangement. This simulation used a high resolution grid size of 1904 ×

1904 × 4760 and a crop factor of 2383, in order to satisfy a multiple of the 343

unit volume used in our quasi-random arrangements. The cubic sub-volume

was 263 grid points. In this case, the resulting volume fraction was 3.3% and the

particle susceptibility was about 8.8 ppm.

3.2.3.2 Other Simulation Details for Polystyrene Beads

All simulations for polystyrene beads used 125 particles per voxel. For par-

ticles randomly distributed inside cylinders, a volume fraction of roughly 3.7%

and a particle susceptibility of roughly −6.5 ppm were used. These values led

to a bulk susceptibility of roughly −0.24 ppm, measured from experiments using

procedures described below. The high-resolution grid size was 760× 760× 1900

and the crop factor was 953. For quasi-random arrangements, as each particle

was allowed to move within a unit volume of 343 grid points, this led to a crop
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factor of 1703, a volume fraction of roughly 0.65%, and a high-resolution grid

size of 1360 × 1360 × 3400. As a result, the particle susceptibility was roughly

37 ppm, which fell outside the range tested in [14]. All 3 cubic sub-volumes

sizes of quasi-random arrangements and an additional randomly distributed ar-

rangement with the 0.65% volume fraction were used for simulating polystyrene

beads. In all these simulations, 16 arrangements were simulated and averaged

for each cylinder orientation, in order to effectively get closer to the desired

1728 particles per voxel and improve the accuracy of our results.

3.2.4 Data Analysis

For all experimental and simulated results, we would like to quantify the bulk

susceptibility of each cylinder using only the phase outside, containing only far-

fields from particles, to determine the SNR and phase values inside the cylinder

at each echo time, and to calculate R∗2. Uncertainties were estimated using the

error propagation method. Procedures of these tasks are described below.

3.2.4.1 Experimental Data from Fe3O4 Nanoparticles

Archived and processed complex images of nanoparticles in water from [22]

were re-analyzed. Sixteen pixels of each slice over the 9 central slices inside the

straw were averaged at each echo time for perpendicular and parallel orienta-

tions. The means and standard deviations (i.e., image noise) of both magnitude

intensities and phase values were calculated from those 144 voxels, which also

included Gibb’s ringing effects. Thus, SNRs were estimated from magnitude im-

ages and each R∗2 was determined by performing linear regression on the natu-

ral log of magnitude intensities over three echo times from 8.07 ms to 12.85 ms.
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Phase data from any echo time with an SNR less than 3:1 were omitted from

the results. With the known diameter of the straw, the CISSCO method was

applied to processed phase images in order to determine the bulk susceptibility

and sub-voxel center of each straw from the perpendicular orientation.

3.2.4.2 Experimental Data from Polystyrene Beads

The phase distributions inside each cup but outside each straw were measured

and symbolically expressed by:

φcup1 = φbkg + φstraw + φbeads

φcup2 = φbkg + φstraw

φcup3 = φbkg (3.2.4)

where φbkg was the background phase induced from eddy currents and the ge-

ometry of the cup itself. The induced phase φstraw was due to the susceptibility

difference between the straw wall and doped gel (∆χstraw−Gd). Similarly, φbeads

was the induced phase due to the susceptibility difference between each bead

and the doped gel (∆χbead−Gd).

The goals in this subsection were to quantify the correct phase inside the straw

containing beads (φin,beads) and to measure the bulk susceptibility of the beads

relative to that of gel doped with Gd-DTPA, λbeads∆χbead−Gd, where λbeads was the

volume fraction of the beads. Ideally we could subtract φcup2 from φcup1 through

a complex division, leaving only φbeads and φin,beads in phase images. However,

as the straw positions in Cups 1 and 2 did not match perfectly, the first required
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step was to remove φbkg from both φcup1 and φcup2 through complex divisions

with φcup3. After each complex division, a constant background phase still re-

mained in each set of phase images, φcup1 and φcup2. This constant phase needed

to be estimated and removed in order to obtain accurate measurements of φbeads

and φin,beads. To achieve this, we had to first roughly estimate and remove φstraw

and φstraw+φbeads from φcup1 and φcup2, respectively, with the remaining phase as-

sumed to be a constant. As the CISSCO method was insensitive to the additional

constant background phase for a cylinder perpendicular to B0 [5, 15], we used

CISSCO to quantify the effective magnetic moments and centers of the straws

(with and without beads) and used these information to forward simulate φstraw

and φstraw +φbeads. We then removed them from φcup2 and φcup1 through another

complex divisions, respectively, and estimated the constant background phase in

each set of images. After we removed the estimated constant background phase

values from φcup2 and φcup1, this resulted in more accurate phase distributions

inside and outside the straws. From here, the effective magnetic moments of

both straws (from Cups 1 and 2) were re-quantified. The difference of these

two effective magnetic moments led to the effective magnetic moment of the

cylindrical gel containing beads. Given the known inner radius of the straw, this

effective magnetic moment allowed us to directly calculate λbeads∆χbead−Gd. On

the other hand, as the straw had no effect on the phase inside, after removing

the constant background phase, we directly measured the remaining phase in-

side the straw containing beads (φin,beads) from φcup1. For the straw parallel to

B0, as φstraw = φbeads = 0 outside the straw, the constant background phase was
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directly measured and removed from complex divided images between Cups 1

and 3, i.e., −i ln(exp(iφcup1)/exp(iφcup3)). This whole procedure was performed

on the central slice of the straw for each echo time and the results were averaged

over all echo times.

Given the low number of particles per voxel, it was important to average the

phase over many voxels inside the straw for analysis. The same process to an-

alyze the nanoparticle magnitude and phase data was used here, by averaging

sixteen pixels from each slice over 9 central slices inside the straw. The R∗2 were

determined from the first three echo time of the bead data.

3.2.4.3 Simulated Data

Simulated images were analyzed in the same way as done for the above ex-

perimental data, except that sixteen pixels from each slice of only the central six

slices were averaged. This choice was because the simulated images were more

accurate for pixels closer to the central slice. Bulk susceptibilities, phase values

inside straws, and relaxation rates were all compared between simulations and

experiments.

3.3 Results

Bulk susceptibilities quantified from CISSCO are given in Table 3.1. These

results between experiments and simulations are in very good agreements.

Figures 3.4 and 3.5 show mean phase values inside straws from the experi-

ments, simulations, and theoretical values from Eqn. 3.2.2 and Eqn. 3.2.3. Data

points from images at long echo times with an SNR less than 3:1 are not shown.

Error bars in these plots represent the standard error of the mean. In general,
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simulated results from randomly distributed particles agree with experimental

results and the formula given by Eqn. 3.2.3, except for the nanoparticle solution

perpendicular to the field with a bulk susceptibility of 0.29 ppm (Fig. 3.4a) or for

long echo times (Figs. 3.4 and 3.5). As we see from simulated results shown in

Fig. 3.6, different particle arrangements inside a long cylinder can lead to non-

linear phase dependence of echo time. This nonlinear behavior appears more

obvious when we further restrict the particle’s freedom of movement toward a

lattice arrangement. In the case shown in Fig. 3.4a, simulated results with the

quasi-random arrangement using a cubic sub-volume of 263 grid points agree

better with experimental data.

As demonstrated from three different voxels in Fig. 3.7, it is clear that Gibb’s

ringing over the cross sectional plane of a simulated cylinder shows a large effect

from voxel to voxel. Thus, the simulated data must be averaged over a sufficient

number of symmetric voxels inside a narrow cylinder.

Table 3.2 shows R∗2 quantified from experiments and R′2 from corresponding

simulations with random particle arrangements. The R∗2 values from nanopar-

ticle experiments are in good agreements with original results from [22]. The R′2

values quantified from simulations agree with the theoreticalR′2 = 0.4γB0|∆χ′| [2]

within uncertainties, although each uncertainty of R′2 is quite large even when

no thermal noise is included in simulations. Those R′2 values from simulations

also agree with experimental data, except for the highest bulk susceptibility of

the nanoparticle solution. The disagreement in that case has been explained

in [22]. There appears to be no dependence of cylinder orientation on R∗2 from
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experiments or R′2 from simulations. In the quasi-random and lattice arrange-

ments of particles in simulations, it is seen that R′2 increases as the particles be-

come more ordered, while the quantified bulk susceptibility from phase outside

the cylinder is unaffected (Table 3.3). The former statement is in agreement

with results from [14]. When the particles are completely random, R′2 agrees

with the predictions from [2]. See Table 3.2 and Table 3.3.

Based on the quantified bulk susceptibility and known volume fraction, we es-

timated a susceptibility of roughly −6.5 ppm for our beads relative to the doped

gel, while its theoretical value was −9.66 ppm. From the effective magnetic mo-

ment quantified from the straw wall relative to Gd-DTPA doped gel (i.e., Cup

2), the estimated |∆χstraw−Gd| was 9.3 ppm, which agreed with the theoretical

molar susceptibility from [31]. Thus, our numbers here showed that the suscep-

tibility of our beads was not−0.26 ppm relative to that of water, as given by [32].

In fact, the mass density of polystyrene beads should be about 1.05 g/cm3, but

we have found that the mass density of our beads is at least 1.2 g/cm3, which

indicates that our beads are not made of pure polystyrene.

3.4 Discussion

Our experimental and simulated results from a simple system disagree with

current theories applicable to the static dephasing regime. Yablonskiy and Haacke [2]

have considered spherical magnetic particles randomly distributed in a large

space without a defined geometry. In other words, as long as spherical magnetic

particles are randomly distributed in a large space with a low volume fraction,

their theoretical formula, which gives a constant frequency shift shown in our
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Eqn. 3.2.3, is what we should expect when the factor δωs ·t, which is equal to the

absolute phase value on the equator of the spherical particle, is much larger than

1. However, it is in this range that we observe deviations from their prediction,

in both experiments and simulations.

The implication of this work will be applicable to the subcortical gray matter

in the basal ganglia, whose major susceptibility source is ferritin. As far as the

subcortical gray matter is considered, Eqn. 5 of [7] suggests that no (or little)

additional phase shift would be observed, after the Lorentz sphere correction

(Eqn. 2 of [7]). In other words, under the static dephasing regime, Yablonskiy

and Haacke [2] would suggest an additional phase shift in the subcortical gray

matter, but He and Yablonskiy [7] would not. However, Figs. 3.4 and 3.5 show

additional phase shifts from randomly distributed magnetic spheres inside large

cylinders, and those additional phase shifts do not completely agree with any

theory. We also note that those additional phase shifts at each echo time seem

to be independent of the orientation of the cylinders.

The phase shift as a function of echo time due to the presence of discrete

particles is nonlinear. In addition, different arrangements of particles can lead

to different phase values inside an object of interest. The recent work by [13]

has shown from simulations that the constant frequency shift from [2] is valid in

the static dephasing regime, as long as the volume fraction of spherical particles

is less than 20%. However, this statement is not the complete story, given that all

volume fractions of simulated spheres in our work are less than 20%. Looking

closely, each of our simulated results at the longest echo time from randomly
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distributed particles shows a deviation from Eqn. 12 in [2]. At those echo times,

the factor δωs ·t ranges from 17 to 27. From a theoretical point of view, the larger

the factor δωs · t is, the better the agreement between simulations and predicted

shift should be. However that is not the case here. When we simulate phase

values from echo times between 15 ms and 30 ms for the 1.11 ppm case, those

results become nonlinear and do not agree with Eqn. 3.2.3 at all. Furthermore,

when we simulated particles randomly distributed in a cube as described in [14],

the additional phase shift was completely different from Eqn. 12 in [2]. This

can already be seen from our previous work in [11].

Our results may explain the additional frequency shifts shown by [33, 34] in

the subcortical gray matter. In past work such as [7], microstructures such as

cylinders representing axons in the white matter lead to nonlinear phase shifts.

The recent trend is to use Generalized Lorentzian approach [7], susceptibility

anisotropy [35, 36], or ellipsoidal microstructures [37, 38] to explain the phe-

nomena. The focus has been white matter, not gray matter. Rudko et al. [39]

has shown additional phase shifts from the cortical gray matter, but that situa-

tion mimics myelin in the white matter. Schweser and Zivadinov [34] recently

has also stated and shown that additional frequency shifts appear in the subcorti-

cal gray matter, although they only suggest the possibility of chemical shifts and

fast exchange processes as the sources. They then go on to refer to such shifts

as “non-susceptibility contributions”, which were actually found to be larger in

the subcortical gray matter than in the white matter. A similar work by [33] had

considered those additional frequency shifts only as chemical shifts. Thus, with
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a relatively small volume fraction of magnetic spherical particles, no one else has

expected to see additional nonlinear phase shifts from spherical particles, which

only have a constant susceptibility value. Those “non-susceptibility” phase shifts

determined from [34] or “chemical shifts” from [33] may still be from the sus-

ceptibility effect, as we have demonstrated here. Furthermore, the consequence

of our work affects QSM methods, especially in the subcortical gray matter.

The phase shifts we observed demonstrate that our experiments are not in the

fast diffusion regime. For determining whether a particle is in the static dephas-

ing regime, we have considered two inequality formulas each given in [2, 40].

In either formula, our bead experiments are in the static dephasing regime. On

the other hand, as nanoparticles typically are smaller than 50 nm in diameter,

with a field strength of 3 T, a diffusion constant of 2.5µm2/ms, and an echo time

of 10 ms, either formula would predict the fast diffusion regime for nanoparti-

cle solutions. As a result, one would expect no additional phase shifts inside

the straws. This contradicts to our experimental results. This mismatch may be

explained by nanoparticle clustering. An effective nanoparticle size of around

120 nm [40] (or 270 nm [2]) in diameter would push the signals into the static

dephasing regime. Additional phase shifts observed from some ferritin solutions

in [22] also indicate clustering of ferritin to a diameter of at least 0.5µm. How-

ever, some diffusion effects apparently exist with the static dephasing effect, as

those observed phase shifts from ferritin solutions are much smaller than val-

ues estimated from Eqn. 3.2.1 or our simulated results. This is also supported

by the fact that the R∗2 measured from those ferritin solutions are much smaller
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than the R′2 estimated from simulations [22], as the diffusion effect will re-

duce R∗2 [16, 17]. Furthermore, increased R2 observed in tissues which contain

ferritin compared to ferritin solutions has been attributed to clustering in tis-

sues [41]. Histological staining for iron in the substantia nigra also indicates

clustering of ferritin with diameters on the order of 10µm [42] which would

put it well into the static dephasing regime. All these results suggest applica-

tions of QSM to iron quantification in the gray matter structure will likely lead

to erroneous results, as QSM utilizes phase data both inside and outside objects.

On the other hand, if only the phase outside an object is used for quantification,

without being affected by the factors studied here, the magnetic moment of the

object can be accurately quantified [43] and the bulk susceptibility of the object

may also be accurately quantified with the known volume of the object.

The fact that nonlinear additional phase shifts varying over echo time can

arise from only spherical particles with a constant susceptibility emphasizes the

need for knowing details of microstructures. This fact also makes it difficult

to establish a general theory, especially in the static dephasing regime that is

considered in this work. Before introducing a new theory such as [7] or sus-

ceptibility anisotropy of a tissue or object [35, 36], fields induced from discrete

magnetic inclusions should be added first in the fashion of classical physics for

the consideration of the additional phase shifts in tissues or objects containing

microstructures.
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3.5 Conclusion

We have shown that MRI phase signals inside long cylinders containing spher-

ical particles with a constant susceptibility can vary nonlinearly with echo time

especially when the number of particles per voxel is low or when Gibb’s ringing

is heavily affecting the phase inside the objects. This observation, based on the

principles of physics and MRI, is important to be taken into consideration, before

other theories or susceptibility anisotropy is introduced for the revision of QSM.

While only a simple model of discrete spheres within a cylinder is presented, it

should be easy to see how these results could be extended to at least the subcor-

tical gray matter which has more complicated geometries. The additional phase

shifts, whether nonlinear or not, can affect in vivo QSM results. In addition, the

fairly large uncertainties of R′2 from simulations may also appear in the quantifi-

cation of human data as well. On the other hand, phase distributions outside an

object containing discrete spherical magnetic particles such as ferritin can be a

more reliable source for accurate quantification of its bulk susceptibility.

Table 3.1: Bulk susceptibility ∆χ′ (in ppm) of each experimental and simulated
cylinder. These values are calculated from the known cylinder (or
straw) radius and the magnetic moments further quantified from the
CISSCO method.

Fe3O4
experiment 1.11± 0.02 0.56± 0.01 0.29± 0.03
simulations 1.08± 0.02 0.54± 0.01 0.28± 0.03

polystyrene beads experiment −0.24± 0.03
simulations −0.24± 0.01
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Table 3.2: R∗2 and R′2 (in units of Hz) of experimental and simulated data, re-
spectively. The theoretical values calculated for the static dephasing
regime are also included. For Fe3O4 nanoparticles, the values in the
displayed columns from left to right correspond to highest bulk sus-
ceptibility to lowest.

Fe3O4

experiment parallel 180± 42 135± 29 73± 13
perpendicular 201± 45 138± 26 74± 12

simulation parallel 318± 39 163± 14 90± 6
perpendicular 317± 39 162± 21 85± 7

theory N/A 343 173 90

polystyrene beads

experiment parallel 54± 36
perpendicular 57± 18

simulation parallel 70± 10
perpendicular 71± 11

theory N/A 74

Table 3.3: Quantified ∆χ′ and R′2 from simulations using different particle ar-
rangements. The more restricted arrangement of particles becomes,
the larger R′2 becomes, while the quantified bulk susceptibility ∆χ′

from phase outside the cylinder is barely affected. This fact demon-
strates the reliability of bulk susceptibility measurement from phase
outside an object.

arrangement sub-volume size ∆χ′ (ppm) R′2 (Hz)
random N/A −0.24±0.01 71±11

quasi-random 263 −0.24±0.01 87±12
quasi-random 143 −0.24±0.01 118±17
quasi-random 83 −0.25±0.01 135±19
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Figure 3.1: A graphical illustration of the first modification made to our simu-
lations. Regions far from the center of our finite cylinder can be
treated as continuous mediums. The cylinder is modeled within a
rectangular FOV, where all the fields and MRI signals are calculated
for each grid point. This modification reduces the memory required
for simulations as we only need to model the central finite section of
an infinitely long cylinder.
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Figure 3.2: A high-resolution cross-sectional phase image of the simulated cylin-
der containing randomly distributed spherical particles. This demon-
strates the second modification made to our simulations. Only one
octant of the cylinder is actually simulated and all other octants are
later reflected in the low resolution. This modification reduces the
memory and time required for simulations by a factor of 16.
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(a) (b)

(c) (d)

Figure 3.3: Simulated images with a bulk susceptibility of 0.29 ppm intended for
nanoparticles in an infinitely long cylinder perpendicular to the main
field. (a) Magnitude and (b) phase image display the middle cross
section (i.e., central slice) of the cylinder. (c) Magnitude and (d)
phase image display the cross section parallel to the cylinder axis.
The difference between the central finite section where individual
particles are simulated versus the sections which are treated as con-
tinuous above and below the central section can be seen in (d).
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(a) (b)

(c) (d)

Figure 3.4: Experimental and simulated results, as well as two theoretical pre-
dictions, of phase inside cylinders perpendicular to the field are
shown for bulk susceptibilities of (a) 0.29 ppm, (b) 0.56 ppm, (c)
1.11 ppm, and (d) −0.24 ppm. Asterisk markers represent the phase
calculated from Eqn. 3.2.2. Open circle markers represent phase cal-
culated from Eqn. 3.2.3. The blue lines represent the experimental
data and the green lines represent simulated results using random
particle arrangements. In (a), a quasi-random simulation is plotted
in magenta with each particle allowed to move within a sub-volume
of 263 grid points. These results seem to agree with the experimental
data better. In (d), the green and the red line are from particle vol-
ume fractions of 3.7% and 0.65%, respectively, with the same bulk
susceptibility. While both results agree well with the experimental
data, the outcome from the volume fraction of 3.7% agrees better
with the experimental data especially at the last echo time.
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(a) (b)

(c) (d)

Figure 3.5: Experimental and simulated results, as well as two theoretical pre-
dictions, of phase inside cylinders parallel to the field are shown for
bulk susceptibilities of (a) 0.29 ppm, (b) 0.56 ppm, (c) 1.11 ppm,
and (d) −0.24 ppm. Meanings of the symbols and curves have been
explained in the caption of Fig. 3.4.
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Figure 3.6: Simulated phase values inside a cylinder perpendicular to the main
field from different particle arrangements for a bulk susceptibility
of −0.24 ppm are shown as a function of echo time. Random parti-
cle arrangements, lattice, and quasi-random arrangements with each
particle restricted within sub-volumes of 263, 143, and 83 grid points
are simulated. Restricting particle arrangements leads to nonlinear
phase dependence of echo time.

(a) (b)

Figure 3.7: (a) Phase values from three individual voxels inside an infinitely long
cylinder perpendicular to the main field simulated for nanoparticles
with a bulk susceptibility of 0.56 ppm. (b) The cross sectional plane
of the simulated cylinder. Each color curve in (a) corresponds to the
same color voxel in (b).
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CHAPTER 4 QUANTIFICATIONS OF IN VIVO LABELED STEM CELLS BASED
ON MEASUREMENTS OF MAGNETIC MOMENTS

4.1 Introduction

Cell-based treatments have shown promising results in neurological diseases

in laboratory animals [44, 45] and patients [46, 47]. Therapeutic benefit using

neural progenitor cells (NPCs) depends on the migration and localizations of

the grafted cells within the target tissue [48–50]. Magnetic resonance imaging

(MRI) has demonstrated its ability in monitoring cell migration and distributions

using dextran-coated superparamagnetic iron oxide (SPIO) nanoparticles with

transfer agents [51–62]. Quantification of SPIO tagged cells may open the door

to more detailed studies on their behaviors after SPIO are administered into the

body, yet quantification of in vivo labeled cells remains a challenge. Assessment

of iron (e.g., brain iron) has typically involved the measurement of proton trans-

verse relaxation rate, R2 [63–68]. Several studies have observed a relationship

between R2 (or R∗2) and labeled cell concentration in vitro [69, 70] . However,

the relationship between R2 and labeled cell concentration is much more com-

plicated in vivo and may involve diffusion [71]. Quantifications of labeled cell

concentrations using R2 and diffusion require the removal of background effects

induced by neurological diseases [71].

Previously, Del Gratta et al. [72] had estimated numbers of cells ex vivo using a

Superconducting Quantum Interference Device (SQUID) magnetometer. In this

work, we propose to use the Complex Image Summation around a Spherical or

Cylindrical Object (CISSCO) method [6] to quantify the magnetic moment of
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SPIO nanoparticle tagged stem cells in a local cluster from MR images. In turn,

we estimate the number of cells from each cluster. For the magnetic moment

quantification of small objects, the CISSCO method has been tested and shown

to provide good accuracy [6].

Magnetostatic theory governs that small magnetized objects, regardless of ge-

ometry, can be modeled as perfect spheres. The magnetic moment of an object

can be expressed as the product of its mass magnetization and mass. Thus,

given the known mass magnetization of iron nanoparticles and the quantified

magnetic moment of the nanoparticle cluster, the mass of nanoparticles in a lo-

cal cluster can be calculated. Further, if the cellular iron uptake is known, the

mass of nanoparticles can be used to derive the number of cells. In order to ap-

ply the CISSCO method to in vivo images, we first simulate and study the effect

of high-pass (HP) filters and systematic errors on magnetic moment quantifica-

tions. High-pass filtering [73] has been a relatively easy and effective method

for eliminating background fields from phase images. Next, an improved version

of the CISSCO method for in vivo applications is tested on simulations and then

applied to six clusters of cells in several existing rat brain images.

4.2 Materials and Methods

4.2.1 Simulations

We simulated several spheres that represent cell clusters, which in reality con-

tains numerous nanoparticles. Given various magnetic moments and radii of

simulated spheres, each simulation was forward modeled on a 10243 matrix and

cropped down to 323 in the spatial frequency domain. Detailed procedures were
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given in [6]. For display purposes and analyses of HP filters, each of the 32

slices was zero-filled (zero phase value and a predefined constant magnitude in-

tensity outside the 32× 32 matrix) in image space to 2562. A total of 15 spheres

were simulated with targeted effective magnetic moments (p) of 8, 15, 20, 30,

and 100 radian·pixel3 and radii (a) of 1, 2, and 3 pixels in the 323 matrix. The

effective magnetic moment of each simulated sphere from CISSCO has been de-

fined as p = 0.5γ–∆χB0TE V , where γ– = 42.58 MHz/T, B0 is the main field, TE

is the echo time, ∆χ is the susceptibility difference between the sphere and its

surrounding, and V is the volume of the sphere. As 0.5γ–∆χB0TE is a prod-

uct of 4 parameters and can be rewritten as p divided by a3, it is more general

to consider the radius and the effective magnetic moment for each simulation

(rather than each individual parameter). This effective magnetic moment has a

unit of radian·pixel3 if the volume of the sphere is measured in terms of pixel3

directly from images. In the case of nanoparticles in tissues, ∆χB0V can be ap-

proximated by µ0µ [74], where µ0 = 4π × 10−7 Wb/(A·m) and µ is the overall

magnetic moment of nanoparticles within a cluster in a tissue and has a unit of

A·m2. For simplicity, p refers to the "magnetic moment" hereafter. No Gaussian

noise was added to any of the simulations in order to examine the effect of the

HP filter and its systematic errors. All magnetic moment quantifications from

CISSCO were performed using codes developed in Visual C++.

4.2.2 CISSCO Procedure

The procedure of magnetic moment quantifications using CISSCO has been

given in [6]. Briefly, each voxel is first interpolated into 1000 subvoxels for
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subsequent steps. Second, the center of an object of interest is identified by

minimizing the real part of the overall signal summed within an arbitrary sphere

chosen by the user. Third, the magnetic moment p of the object is solved from

the following equation

Re(S1 − S2)Re(f23(p)) = Re(S2 − S3)Re(f12(p)) (4.2.1)

where S1, S2, and S3 are the complex sums within three concentric pseudo

spheres with radii R1, R2, and R3 defined by the user, and f12(p) and f23(p)

are analytical functions given by equations 6, 9, and 10 of [6] and shown be-

low. They represent the normalized theoretical sums of complex signals within

pseudo shells defined by the three radii. Note that R1 > R2 > R3.

(4.2.2)
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4.2.3 Improved CISSCO Approach

As an in vivo object can be subject to local background magnetic fields in-

duced from other nearby tissues, it is important to correct this problem in the

CISSCO method. Given the fact that we are interested in small objects, we may

approximate those local background fields as a constant local field around each

object. This local constant background field may affect the determination of the

object center in CISSCO as well as the quantification of the magnetic moment.

To study the effect analytically, we have added a constant background phase φbkg
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to signal S defined in [6]. The signal becomes Seiφbkg . Regardless of the value of

φbkg, it should be clear from [6] that first derivatives and cross terms of second

derivatives of Seiφbkg are all zero, when the center of the object is identified at

r0 = 0. The remaining second derivatives can be written down according to Eq.

27 of [6].
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+3iφa

∫ 1

0
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+iφ1/3
a
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φR

dφ

φ1/3

∫ 1

0

dx(35x4 − 30x2 + 3)fφ

]
∂2Seiφbkg

∂y2
0

∣∣∣∣
r0=0

=
∂2Seiφbkg

∂x2
0

∣∣∣∣
r0=0

∂2Seiφbkg

∂z2
0
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r0=0

= −4πρ0ae
iφbkg

[∫ 1

0

dx (3x2 − 1)fa

+3φ1/3
a

∫ φa

φR

φ2/3dφ

∫ 1

0

dx(3− 5x2)2x2fφ

+3iφa

∫ 1

0

dx (5− 7x2)x2fa

+iφ1/3
a

∫ φa

φR

dφ

φ1/3

∫ 1

0

dx(35x4 − 30x2 + 3)fφ

]
(4.2.3)

where ρ0 is the spin density of the tissue around the object, fa ≡ exp{−iφa(3x2−

1)}, fφ ≡ exp{−iφ(3x2 − 1)}, φa ≡ p/a3, φR ≡ p/R3, and R is the radius of the

sphere that a user chooses to identify the center of the object. The goal is to

determine, under what φbkg, φa, and φR values that real parts of all three sec-

ond derivatives are positive. We consider φbkg ranging from −1.5 radians to +1

radian in an increment of 0.1 radian for a series of numerical evaluations. For

each value of φbkg, we have varied φa from 0.1 to 3π radians and φR from 0.1 to
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π radians in order to examine the signs of those second derivatives. As φR in-

directly defines the radius of the sphere that the user chooses to find the center

of the object, this gives a scale invariant variable to use, rather than to use the

magnetic moment p in these calculations. The range of φR under consideration

is always between 0 and π [6]. If φa is larger than 3π, given the dephasing effect

around the object of interest, in order to identify its center, the object can be

substituted by a larger object (but the same magnetic moment) such that its φa

is less than 3π.

Next, in order to eliminate this constant field term when we solve for the mag-

netic moment, based on the original derivations of the CISSCO method in [6],

we can consider the magnitude squared of the complex signals rather than their

real parts. We thus have

|S1 − S2|2|f23(p)|2= |S2 − S3|2|f12(p)|2 (4.2.4)

It should be clear from Eq. 4.2.4 that the local constant phase term will not af-

fect the quantification of the magnetic moment. To verify this, we will add a

constant background phase ranging from −1 to 1 radian in increments of 0.1

radian, to a simulated sphere with a radius of 1 pixel and a magnetic moment

of 20 radian·pixel3. Each case will be quantified by both the original CISSCO

method and the improved method. This alternate approach also requires red-

eriving the uncertainty of the quantified magnetic moment, including both the

Gaussian noise and systematic error. This has been accomplished using a stan-
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dard error propagation approach (See 4.6).

4.2.4 HP Filter

It was known that HP filters could affect phase values from large objects but

it was not clear how HP filters could affect the magnetic moment quantifica-

tion from CISSCO. Thus, high-pass filters with sizes of 16 × 16, 32 × 32, and

64 × 64, and with an additional Hanning filter multiplied to each HP filter in

k-space were applied to each slice of the simulated data. The magnetic moment

of each simulated sphere, before and after the applications of the HP filters, was

quantified using CISSCO. This was to evaluate systematic errors purely from HP

filters, rather than from Gibbs ringing or the partial volume effect. The radii of

the three pseudo spheres used in CISSCO were chosen at least 0.5 pixel away

from the surface of each spherical object and at least one pixel apart between

any two pseudo spheres [6].

4.2.5 In Vivo Data and Analyses

We applied a 32 × 32 HP filter to four sets of archived 3D gradient echo rat

images acquired in 2008 based on a stroke model performed in [71]. Neural pro-

genitor cells were labeled using a Ferumoxide-Sulfate solution and were injected

into those rat brains. Six isolated nanoparticle clusters from the four datasets

were quantified with the CISSCO method. Two example clusters are shown in

Fig. 4.1. The imaging parameters were TE = 10 ms, TR = 30 ms, B0 = 7 T, in-

plane field of view = 32 mm×32 mm, image resolution =

0.0625 mm×0.125 mm×0.25 mm, matrix size = 512×256×64, slab thick-

ness = 16 mm, flip angle = 25◦, number of averages = 4, and scan time = 32
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mins 46 sec. Original k-space data were used for image reconstructions. The re-

constructed images were further interpolated to 0.125 mm isotropic resolution

for CISSCO analyses. A T2-weighted spin echo dataset with the same in-plane

resolution was also obtained with the intent to estimate the volume of each

cluster. However, clusters in spin echo images were unidentifiable. As the slice

thickness of the spin echo images (0.8 mm) was about three times that of the

gradient echo images, and spin echo images had sufficient signal-to-noise ratios

in images, these facts implied that the overall volume of nanoparticles in each

cluster was still much smaller than a voxel in gradient echo images.

The number of cells in each cluster was calculated from the following equa-

tion, with the result rounded to the nearest integer.

Number of cells = µ(A ·m2)× 1

Ferumoxide mass magnetization

(
kg

A ·m2

)
× 1

cell iron uptake

(
cell

kg Fe

)
(4.2.5)

where µ was calculated from the measured magnetic moment p = 0.5γ–TEµ0µ.

The saturation mass magnetization of Ferumoxide is 93.6 ± 1.6 A·m2/kg iron

[75]. Values for cell iron uptake depend on the cell labeling agent and process,

along with the type of cell being used. We chose 14.5 pg/cell from Panizzo et

al. [76], as they used the same labeling agent, process, and cell type provided

in [71].
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4.3 Results

4.3.1 HP Filter

Simulations showed that, as the size of the applied HP filter increases, the

quantified magnetic moment decreases (Fig. 4.2). The error is larger when ei-

ther the magnetic moment or the radius of the simulated sphere is larger. The

percentage differences in magnetic moment quantifications caused by the 32×32

HP filter can vary by a large range depending on the magnetic moment and

radius of the sphere (Fig. 4.2d). For spheres with radii of 2 or 3 pixels, we

observed a minimal value (i.e., error) in Fig. 4.2d, at the magnetic moment

of about 30 radian·pixel3. When the magnetic moment is smaller, the error in-

creases. This is due to less than π radians of phase values outside the object such

that other systematic errors affect the results more.

4.3.2 Improved CISSCO Approach

Figure 4.3 indicates the largest radius R within which complex signals can

be summed over such that the center of an object of interest can be identified

through Eq. 4.2.3. With a given local constant background phase, the radius R

of the pseudo sphere needs to be chosen sufficiently large such that |p/R3| is less

than the maximal |φR| value shown in Fig. 4.3.

Figure 4.4 shows results for quantification of a simulated sphere with a radius

of 1 pixel and a true magnetic moment of 20 radian·pixel3 over a range of back-

ground phases, using both the original and improved CISSCO method. When

the original method was used, the quantified magnetic moment decreased from

24.3 radian·pixel3 to 14.7 radian·pixel3 as the background phase increased. On
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the other hand, results from the improved method remained at 19.95 radian·pixel3

for each background phase. It is clear that the improved approach is not at all

susceptible to the added local constant background phase.

4.3.3 Number of Cells from In Vivo Data

Table 4.1 summarizes results from six stem cell clusters quantified from the

CISSCO method. Each result was adjusted based on findings from the simulated

HP filter results. As the uncertainty of mass magnetization of Ferumoxide is

about 1.7% but the uncertainty of cell iron uptake is not known, the percentage

error of each cell count is the sum of 1.7% and the percentage error estimated

from CISSCO (third column in Table 4.1). All but one quantified results had less

than 10% uncertainty. Table 4.1 also indicates that if one cell contains 14.5 pg of

iron, then the quantified magnetic moment would be roughly 0.19 radian·pixel3.

Thus detecting one cell would require a higher image resolution than the cur-

rent resolution. On the other hand, Heyn et al. [77] had a cellular iron uptake of

43.3 pg/cell and they were able to visually detect one cell. This 43.3 pg of iron

per cell translates to a magnetic moment of roughly 0.56 radian·pixel3, which is

about the lower limit that our CISSCO method can quantify with an uncertainty

of roughly 100%. In general, other studies [77–80] also have cellular iron up-

takes at the same order of magnitude. Thus, their images can also be analyzed

with our method.

4.4 Discussion

Our work has demonstrated that magnetic moments of isolated clusters of

nanoparticle labeled cells can be accurately quantified from the applications of
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the high pass filter and the improved CISSCO method. While our results were

not validated by any histological method, several issues should be realized with

performing such a validation. Although cell concentrations measured by MRI

and histology were highly correlated, a histological approach has its own un-

certainties. Each quantified number of labeled cells can vary by a factor of 4,

indicated from private records in the work of [71]. Those uncertainties depend

on cell size, cell division, labeled macrophage, cell death, image resolution, and

also are based on the assumption that cells are uniformly distributed through-

out the cluster. As a result, there is a strong need of a better method for the

quantification of number of labeled cells, especially in vivo.

Although a larger magnetic moment will have a smaller uncertainty estimated

from the CISSCO method, it will nonetheless have a larger error after the appli-

cation of the HP filter. In addition, the larger the HP filter size is, the worse the

underestimation of the result will be. As we are not able to spot each nanopar-

ticle cluster from spin echo images, the overall volume of nanoparticles in a

cluster has to be much smaller than a voxel. This is also consistent with small

volumes estimated from quantified magnetic moments (Table 4.1) divided by a

large magnetization of nanoparticles. These facts suggest that the 32× 32 HP fil-

ter has little effects on our in vivo magnetic moment measurements. If we want

to make some adjustments, we can use the curve in Fig. 4.2d, when the radius

of the object a is 1 pixel.

While systematic error is ultimately unavoidable, it can be minimized by scan-

ning with an isotropic image resolution. Although the actual geometry of each
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cluster is not a perfect sphere, magnetostatic theory tells us that the magnetic

moment of such a small object can be well approximated by that from a sphere.

In order to improve the accuracy of each measurement, it is also important to

re-measure the mass magnetization of nanoparticles and cell iron uptake used

in a particular study. These two quantities can be measured in ex vivo settings.

Our results show that the improved CISSCO method is better than the original

method, as constant background phase has no effect on quantifications. For use

in center identification, our criteria on the radius R must be followed. Even

though the magnetic moment p is not known beforehand, p/R3 is the theoretical

phase value on the equatorial plane around the spherical object and thus is

roughly known from phase images. Because of that, and if the local constant

background phase φbkg can also be estimated from phase images, then we can

properly choose the radius R based on Fig. 4.3 for the determination of the

object center. From a different consideration, if |φbkg| is relatively large, say

more than 0.3 or 0.5 radian, we can consider subtracting a constant phase value

around the object such that the remanent local background phase is within ±0.3

or±0.5 radian. This will allow us to reduce the radius R, keep the pseudo sphere

compact, and effectively identify the center of the object.

4.5 Conclusions

We have presented an improved method of magnetic moment quantification

of labeled stem cell clusters from archived in vivo images. For this purpose, our

simulations confirm that images filtered by a 32 × 32 high-pass filter only lead

to slightly underestimated results. This improved CISSCO method is also insen-
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sitive to the existence of local background field. Although we have not directly

validated our method with histological results, past records indicate that histo-

logical results have large uncertainties. A better method of measuring number

of labeled cells is needed. On the other hand, from the quantified magnetic

moment, we can calculate the number of cells in each cluster to a reasonable

accuracy. This offers a new potential for the measurement of the number of cells

in vivo.

4.6 Appendix: Deriving Uncertainty of the Improved CISSCO Method

Error propagation is used to determine the uncertainty of the modified CISSCO

method presented in this work. The equation used to solve for the magnetic mo-

ment is given by Eq. 4.2.4. The variation of Eq. 4.2.4 leads to

δp

|p|
=

1

|D|

√
(δ(|S2 − S3|2))2

|f12|4
p2

+ (δ(|S1 − S2|2))2
|f23|4
p2

(4.6.1)

where

D =
∂|f12|2

∂p
|S2 − S3|2−

∂|f23|2

∂p
|S1 − S2|2 (4.6.2)

Note that fij is given in Eq. 4.2.2 and the uncertainty of |Si − Sj|2 is defined as

δ(|Si − Sj|2) =

√
(ηij|Si − Sj|2)2 +

16π

3
σ2(R3

i −R3
j )∆x∆y∆z|Si − Sj|2 (4.6.3)

where ηij represents the systematic error of |Si − Sj|2 and σ2 is the variance

of the MR signal. We have assumed that the real part and imaginary part of
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(a) (b)

Figure 4.1: Example (a) magnitude and (b) phase image of nanoparticle labeled
cell clusters in a rat. Clusters that were quantified are identified by
red arrows.

the MR image has the same variance, but their Gaussian noise is independent.

Equation 4.6.3 is derived from the error propagation method. The systematic

error ηij is equal to the difference between the summed |Si − Sj|2 from images

and the theoretical |Si − Sj|2 calculated from the integrals given in [6], divided

by the theoretical |Si− Sj|2. The partial derivatives of |fij|2 with respect to p are

∂|fij(p)|2

∂p
= 2Re(fij(p))

∂Re(fij(p))

∂p
+ 2Im(fij(p))

∂Im(fij(p))

∂p
(4.6.4)

The derivative of the real part of fij(p) is given by Eq. 14 in [6] and the

derivative of its imaginary part is

(4.6.5)

∂Im(fij(p))

∂p
= 2

∫ R3
i

R3
j

1

dx

x

[
cos

(
x
p

R3
i

)
− cos

(
2x

p

R3
i

)]
+

∫ 2

−1

dx

x
[2− (2− x)

√
1 + x]

[
cos

(
x
p

R3
j

)
− cos

(
x
p

R3
i

)]
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(a) (b)

(c) (d)

Figure 4.2: Percentage differences in magnetic moment quantifications as a
function of filter sizes for simulated spheres with (a) a radius of
1 pixel, (b) a fixed magnetic moment of 8 radian·pixel3, and (c) a
fixed magnetic moment of 30 radian·pixel3. (d) Percentage differ-
ences in magnetic moment quantifications as a function of magnetic
moments. These results are from a fixed 32×32 HP filter but with dif-
ferent sphere sizes. Lines connecting data points do not have specific
meanings.
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Figure 4.3: Maximal |φR| value as a function of the local constant background
phase, φbkg. As φR indicates the phase values induced from the ob-
ject on the equatorial plane, maximal |φR| associated with a given
φbkg value implies how large the radius R should be chosen for the
determination of the object center.
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Figure 4.4: Quantified magnetic moments as a function of the local constant
background phase using both the original (dotted line) and im-
proved (solid line) CISSCO method. The improved method is com-
pletely unaffected by the addition of the background phase.
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Cluster p′HP δp′/p′ (%) p′adj Cells η12 (%) η23 (%)
1 12.2 3.6 13.0 70 −0.5 0.3
2 5.38 2.4 5.72 31 −1.1 3.4
3 11.5 3.1 12.2 66 −0.5 −5.2
4 28.8 1.2 30.6 164 −1.4 2.4
5 7.66 8.8 8.15 44 −0.3 7.4
6 21.7 0.8 23.1 124 −1.6 0.9

Table 4.1: Quantified results of six nanoparticle clusters. The second column
p′HP represents each measured magnetic moment from CISSCO after
images have been high-pass filtered. The unit of each measurement
is radian·pixel3. The third column lists the uncertainty (in percent-
age) of each quantified magnetic moment. The fourth column lists
the HP filter corrected magnetic moment based on the value of p′HP
and the curve of a = 1 in Fig. 4.2d. The fifth column lists the num-
ber of cells calculated from the fourth column. The last two columns
give the systematic errors from the magnitude squared procedure for
each concentric shell used in the CISSCO method. Partial volume ef-
fects due to non-isotropic image resolutions are not included in these
systematic errors.
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CHAPTER 5 CONCLUSION AND FUTURE DIRECTIONS

In Chapter 2, guidelines of how to perform accurate simulations of mixtures of

spherical particles in the static dephasing regime were determined. Some of the

key findings here were that a particle radius of at least 4 grid points is needed to

accurately construct the magnetic fields around the particle, that at least 1728

particles per voxel are needed to represent MRI signal behaviors of larger num-

bers, that having less particles in a voxel can lead to a high variance of phase

values, that voxels surrounding a voxel of interest also need to be included in

a given model, and how restricting the particles freedom of movement affects

the magnitude and phase signal. These guidelines were then used to simulate

large cylinders consisting of particles in Chapter 3 and the results were com-

pared with experiments. Here it was shown how restricting particle freedom of

movements leads to non-linear phase behaviors, in agreement with results from

the cubic simulations in Chapter 2. It was also shown how Gibb’s ringing and

low numbers of particles per voxel can also lead to non-linear phase as a func-

tion of echo time. The simulated random arrangements and most experiments

did agree with the static dephasing theoretical shift at shorter echo times. Phase

outside the cylinder containing discrete particles where no near-fields from par-

ticles exist behaved as if the cylinder was a continuous medium. It was also

shown that the bulk susceptibility of the cylinder can be accurately quantified

using the CISSCO method. In 4 this concept of using outside phase as an accu-

rate reflection of bulk susceptibility was applied to clusters of iron-tagged stem

cells. It was shown that the magnetic moment of each cluster can be used to
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determine the number of cells in there. An improvement to the CISSCO method

by using the magnitude squared of the complex signal rather than the real part

was also developed.

The main focus in this thesis was to show that proper modeling of suscep-

tibility microstructures may be necessary in some cases to predict MRI signal

behaviors, even when such microstructures consist of simple spheres. However,

the phase outside an object of interest with such microstructures still behaves as

if the object consists of a uniform susceptibility. Thus phase outside the object

is better to be used for the quantification of bulk susceptibility, as the detailed

microstructures do not need to be taken into account.

Formulas from literature suggest that the iron oxide nanoparticle and water

mixtures analyzed in Chapter 3 should be in the fast diffusion regime, meaning

that no additional phase shifts should occur inside the mixture, contradicting

experimental results. One possible explanation is that clustering had led to ef-

fectively larger particle sizes and pushed the signal closer to the static dephas-

ing regime. Similar contradictions of signal relaxation noted in past work on

Ferritin [81] were later explained by cellular clustering of Ferritin [41], as in-

creasing particle radius (i.e. approaching the static dephasing regime) will lead

to increasing R∗2 and R2, up a certain point where R∗2 will plateau and R2 will

decrease [16, 17]. Thus it is possible that both these additional phase shifts and

increasing signal relaxation may be occurring in vivo as well due to cellular clus-

tering. This could lead to systematic errors when quantifying iron in the brain

using either R∗2, R2, or phase. On the other hand, a more detailed understand-
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ing of these shifts could lead to new methods for quantifying the magnitude of

particle clustering.

While phase results due to the random particle arrangements in cylinders

seem to agree with the static dephasing theoretical shift, it is unclear why this is

not the case with the cubic object simulated in Chapter 2. With a cube, a random

particle arrangement still leads to a non-linear phase behavior as a function of

echo time. This suggests that one cannot simply add the theoretical static de-

phasing frequency shift to the Lorentz sphere corrected theoretical frequency. It

is also curious in Chapter 3 why the nanoparticle experiment with a 0.29 ppm

bulk susceptibility perpendicular to the main field did not match with the results

from random particle arrangements. It was found that a quasi-random particle

arrangement actually does a better job predicting the phase in that case. This

may be due to a less random particle arrangement, yet one would think this

would be the case at higher concentrations as well.

Future work in this direction could involve simulations of other types of quasi-

random particle arrangements or more complicated microstructures. In order to

investigate why adding a shift term to a cube does not produce the same result as

simulating randomly placed particles, it would be interesting to simulate other

geometries and to determine when this shift agrees with theory. Diffusion could

also be added to our simulations through the use of Monte Carlo simulations, as

done in other work.
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Simulating signal behavior in Magnetic Resonance imaging (MRI) is often a

necessary step in being able to understand how signal relates to certain phys-

iological parameters. One such parameter of interest in the body is magnetic

susceptibility since it is related to iron content. The bulk magnetic susceptibil-

ity of an object is a property that describes how magnetized it becomes when

placed in an external magnetic field. When the bulk susceptibility of an object

arises from the presence of discrete magnetic inclusions, the MRI phase signal

inside the object can no longer be determined analytically by assuming it has

a continuous susceptibility. This phase will depend on the microstructure of

the inclusions and requires either simulations or some other analytical model-

ing which makes assumptions about the microstructure. Under static dephasing

conditions, if the discrete inclusions are spherical particles and randomly dis-

persed, then a known frequency shift will affect the phase signal. It has also

recently been shown that this shift can vary depending on the volume fraction

and clustering of the particles. The main focus dissertation is to demonstrate
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that spherical particles inside an object can lead to non-linear phase behavior

which is not describable by a signal frequency shift, while the phase outside the

object behaves as if it were continuous. This makes the phase outside the object

a more reliable source for susceptibility quantification, as it does not depend on

the microstructure of the object.

This dissertation consists of three major research projects. The first explores

different static dephasing simulation model parameters to predict MRI phase

from different quasi-random arrangements of spherical particles. Guidelines are

established on the required size of the modeled particles and how many are

needed per simulated MRI voxel to obtain precise and accurate results. It is

also shown how restricting the randomness of particles affects the simulated

voxel phase and R
′
2 values. The second research project uses these guidelines

to simulate long cylinders made up of discrete spherical particles. Both ran-

dom and quasi-random particle arrangements were used. Input parameters for

these simulations were taken from experimental phantom data which also con-

sisted of cylinders that contain mixtures of nanoparticles and polystyrene beads,

separately. Phase inside the cylinders, bulk susceptibility quantified from phase

outside them, and R
′
2 were compared between simulation and experiment. In

most cases, the averaged phase inside the simulated and experimental cylinders

agree with the theoretical shift for static dephasing regime, while one experi-

mental case agrees better with the quasi-random arrangement. The predicted

large variation of phase values from having low numbers or particles per voxel

was seen in experiment. The R
′
2 from simulations was generally higher than
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the quantified R∗2 from experiment. Bulk susceptibilities of simulated and ex-

perimental cylinders were in good agreement and shown to be insensitive to

particle arrangement. This supports the reliability of using outside phase for

quantification. In the third research project, this concept of using outside phase

as an accurate reflection of bulk susceptibility was applied to clusters of iron-

tagged stem cells. It was shown how the magnetic moment of the cluster should

can be used to determine the number of cells there.
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