
Wayne State University Wayne State University

Wayne State University Dissertations

January 2018

Deep Learning Methods For Visual Object Recognition Deep Learning Methods For Visual Object Recognition

Zeyad Hailat
Wayne State University, zmhailat@gmail.com

Follow this and additional works at: https://digitalcommons.wayne.edu/oa_dissertations

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Hailat, Zeyad, "Deep Learning Methods For Visual Object Recognition" (2018). Wayne State University
Dissertations. 2026.
https://digitalcommons.wayne.edu/oa_dissertations/2026

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has
been accepted for inclusion in Wayne State University Dissertations by an authorized administrator of
DigitalCommons@WayneState.

http://digitalcommons.wayne.edu/
http://digitalcommons.wayne.edu/
https://digitalcommons.wayne.edu/oa_dissertations
https://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F2026&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F2026&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wayne.edu/oa_dissertations/2026?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F2026&utm_medium=PDF&utm_campaign=PDFCoverPages

DEEP LEARNING METHODS FOR VISUAL OBJECT RECOGNITION

by

ZEYAD HAILAT

DISSERTATION

Submitted to the Graduate School,

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

2018

MAJOR: COMPUTER SCIENCE

Approved By:

———————————————————–
Advisor Date

———————————————————–

———————————————————–

———————————————————–

———————————————————–

c©COPYRIGHT BY

ZEYAD HAILAT

2018

All Rights Reserved

DEDICATION

To my parents

Majed Hailat & Amal Alshouha.

To my wife

Hebah & to my boys, Karam & Laith.

To my brothers & sisters.

ii

ACKNOWLEDGEMENTS

First and foremost, I would like to express my gratitude to Allah (God) for providing me

the ability and persistence to complete this dissertation and to Whom I owe everything

good in my life.

Moreover, I thank my advisor Dr. Xuewen Chen for his continuous insightful advice,

patient supervision, generous encouragement, and fruitful feedback throughout the jour-

ney of my Ph.D. at Wayne State University. This work would not be possible without his

guidance, encouragement, and support.

Furthermore, I would like to extend special thanks to all of my dissertation committee

members Dr. Jing Hua, Dr. Brahim Medjahed, and Dr. Zichun Zhong for their valuable

and constructive feedback.

I am also grateful to my colleagues and friends Dr. Thair Judeh, Dr. Melih Aslan,

Dr. Tarik Alafif, Dr. Tin Nguyen, and Artem Komarichev, for always being there whenever

needed.

Finally, I would like to dedicate special thanks my lovely family, my loving parents, my

sisters, and my brothers for all of the support, encouragement, and patience that they

gave me throughout my Ph.D. years.

iii

TABLE OF CONTENTS

Dedication . ii

Acknowledgements . iii

List of Tables . xiii

List of Figures .xviii

Chapter 1 INTRODUCTION . 1

Chapter 2 NOMENCLATURE AND BACKGROUND 4

2.1 Convolution Neural Network (CNN) . 4

2.2 Autotoencoder (AE) . 4

2.3 Neural Network Model Layers and Components 5

2.4 Residual Networks . 7

2.4.1 Residual Block (RB) . 7

2.4.2 Residual Units (RU) . 8

2.4.3 Sampling Component . 10

2.5 Loss Functions . 11

2.5.1 The Unsupervised Loss Function . 11

2.5.2 The Supervised Loss Function . 11

2.6 Sparsity . 12

2.7 Data Preprocessing Methods . 12

2.7.1 Mean Normalization . 12

2.7.2 Mean and Standard Deviation Normalization 14

2.7.3 Global Contrast and ZCA Whitening 15

iv

Chapter 3 A HYBRID RESIDUAL NETWORK METHOD FOR SUPERVISED DEEP
LEARNING (HYRESNET) . 16

3.1 Introduction . 16

3.1.1 Problem Formulation . 18

3.2 Method . 18

3.2.1 Models 1, 2, and 3 . 22

3.2.2 Model 4 . 22

3.2.3 Models 1, 2 and 3 versus Model 4 23

3.2.4 Models 5 and 6 . 24

3.3 Experiment . 24

3.3.1 Model 1 Variations . 25

3.3.2 Model 2 Variations . 26

3.3.3 Model 3 Variations . 28

3.3.4 Model 4 Variations . 29

3.3.5 The Effects of Dropout . 41

3.3.6 The Effects of Batch Normalization 42

3.3.7 The Unsupervised Component: Deconvolutional Layers 43

3.3.8 The Effects of the Preprocessing Methods 45

3.3.9 Model 5 Variations . 45

3.3.10 Model 6 Variations . 46

3.4 Conclusion . 46

Chapter 4 DEEP SEMI-SUPERVISED LEARNING 49

4.1 Introduction . 49

v

4.1.1 Contribution . 51

4.1.2 Problem Formulation. 52

4.2 Related Work . 53

4.3 Method . 55

4.3.1 DSSL Algorithm . 63

4.3.2 Split Layer . 65

4.4 Experiment . 67

4.4.1 CIFAR-10 . 69

4.4.2 CIFAR-100 . 72

4.4.3 STL-10 . 75

4.4.4 MNIST . 77

4.4.5 SVHN . 79

4.5 Discussion . 81

4.6 Conclusion . 86

Chapter 5 TEACHER/STUDENT DEEP SEMI-SUPERVISED LEARNING FOR
NOISY LABELS . 88

5.1 Introduction . 88

5.1.1 Problem Formulation . 90

5.1.2 Contribution . 91

5.2 Method . 93

5.2.1 TS-DSSL Architecture . 93

5.2.2 TS-DSSL Training . 95

5.2.3 Synthesizing the Noisy Labels . 96

vi

5.2.4 Baseline Methods . 98

5.3 Experimental Results . 99

5.3.1 CIFAR-10 . 99

5.3.2 MNIST . 102

5.3.3 Data Preprocessing . 105

5.3.4 Experimental Setup . 108

5.3.5 Hardware and Software . 109

5.4 Conclusion . 112

Chapter 6 CONCLUSION . 113

Appendix A: List of publications . 115

References . 116

Abstract . 124

Autobiographical Statement . 126

vii

LIST OF TABLES

Table 3.1 The architectural details of the HyResNet Models 1, 2 and 3. L∗

is the number of convolutional residual blocks in Model 1. We used

L = 3 (table 3.3) and L = 5 (table 3.4). The last row of the table

shows the SC that we used for all three models. 21

Table 3.2 The detailed architecture of Models 4, 5 and 6. ‡ We test various

kernel sizes. The second line in each model unit is the number of

feature maps. 24

Table 3.3 The performance of Model 1 with a single CRU in the convolutional

components. The CRU compiles three CRBs (L=3). We evaluate this

model on a ZCA-whitened version of CIFAR-10. The model Model

1-A is a CNN model. 26

Table 3.4 Model 1 with one CRU and five CRB (L=5). We applied the experi-

ments on a ZCA-whitened version of CIFAR-10 and without dropout.

Model 1-F is a CNN model. 26

Table 3.5 The variations of Model 2. All results in this table are for a ZCA-

whitened CIFAR-10 and without dropout. 27

Table 3.6 The results of Model 3 variations evaluated on CIFAR-10. 28

Table 3.7 The performance of Model 4 variations. All of the results in this table

are for mean-normalized CIFAR-10. 30

viii

Table 3.8 The accuracy of Model 4 22-4 models on a mean normalized CIFAR-

10. ∗ We developed and ran these models because they were not

provided in the original paper. Model 4 22-4 uses 4.2M parameters

and Model 4 22-4 HyResNet uses 5.3M parameters. 30

Table 3.9 The performance of the Model 4-C variations on CIFAR-10. Every

column is a model. The layers are top-down (top one is the first layer

in the model and so on). ∗ A minibatch of size 64 is used. 31

Table 3.10 We evaluate the Model 4-C1 with various kernel sizes for the last

deconvolutional layer on mean-normalized CIFAR-10. 33

Table 3.11 Model 4-N variations. Every column is a model. The layers are top-

down (top one is the first layer in the model and so on). 44

Table 3.12 The effects of various preprocessing methods on the performance of

the proposed HyResNet Model 4-C1 employed on CIFAR-10. More-

over, it shows the impact of dropout in the convolutional component. . 45

Table 3.13 The error rate (%) of the Models 5 & 6 on mean-normalized CIFAR-

10. ∗ as reported by [79] on mean/std normalization. ∗∗ The original

paper [79] did not report a result. 46

Table 3.14 A summary of state-of-the-art supervised neural network methods

performance on classifying the datasets CIFAR-10 and CIFAR-100.

1 We implemented and ran because it was not available in the original

paper. 2 Normalized with mean/std, 3 summary of our best results. . . 47

Table 4.1 The detailed architectures of the models DSSL 22-4 and 28-10. 60

ix

Table 4.2 Details and statistics of the evaluated datasets. The part‡ shows the

number of unlabeled images. The size shows the width and heights

of the images. 67

Table 4.3 Test results on CIFAR-10 and CIFAR-100. DSSL 22-4 results show

the mean and standard deviation of the classification error rate (mean

± std.). We evaluate DSSL 28-10 once. 71

Table 4.4 The effect of augmentation and dropout on DSSL 22-4 on top of 4K

labeled training examples from the CIFAR-10 dataset. 71

Table 4.5 The mean and standard deviation (mean ± std.) of the classification

error rates on STL-10. 72

Table 4.6 CIFAR 100 dataset coarse and fine classes details. 74

Table 4.7 The mean and standard deviation (mean ± std.) of the classifica-

tion error rates on various labeled / unlabeled ratios from the training

examples of MNIST. 79

Table 4.8 The mean and standard deviation of the classification error rates (%)

for evaluating the SVHN dataset with the DSSL 22-4 model (mean ±

std.). We construct and test multiple labeled / unlabeled ratios from

the SVHN dataset. We evaluate 1%, 5%, 10%, and 20% of the SVHN

training dataset examples. Moreover, we evaluate on all available

SVHN raining dataset as labeled and unlabeled. For each labeled

/ unlabeled ratio we create five different datasets. We evaluate all

labels five times. 81

x

Table 4.9 Summary of all DSSL results. The results show the mean and stan-

dard deviation of the classification error rates (%) (mean ± std.). The

DSSL 28-10 results are indicated by ‡, where we evaluate it once on

each dataset. All labels mean all available training data evaluated as

labeled and unlabeled, which is evaluated five times except STL-10

is evaluated three times. The boldface results indicates new state-of-

the-art record. 87

Table 5.1 The (mean ± std.) of the classification error rates of TS-DSSL on

a level of 50% uniform noise of CIFAR10 when we stop cleansing

(predicting labels) of the training data after epoch S. 102

Table 5.2 The (mean ± std.) of the classification error rates of TS-DSSL on

CIFAR-10 with 50% uniform noise. All results show (mean ± std.)

for three runs. α ∈ [0, 1] is the weight assigned to the teacher’s contri-

bution and (1−α) is the weight of the student’s classifier contribution.

. 103

Table 5.3 The (mean ± std.) of the classification error rates of TS-DSSL when

we switch the values of α and (1 − α) after epoch γ, between the

teacher and the student branches, respectively. The models evalu-

ated on CIFAR10 with a level of 50% uniform noise, α = 75%, and γ

is the percent of the total number of training epochs. 103

Table 5.4 The (mean ± std.) of the classification error rated of TS-DSSL with

various dropout ratios on CIFAR-10 with a of 50% uniform noise. . . . 103

xi

Table 5.5 The (mean ± std.) of classification error rates on various uniform

noise levels on MNIST. We also evaluated on MNIST with original

labels (true labels), TS-DSSL teacher achieves (0.3 ± 0.02), student

achieves (0.29 ± 0.02), and standard WRN achieves (0.3 ± 0.02). . 106

Table 5.6 The (mean± std.) of classification error rates on various non-uniform

noise levels on MNIST. 106

Table 5.7 The (mean ± std.) of the classification error rates of TS-DSSL and

three baseline methods on various uniform noise levels of CIFAR10. 109

Table 5.8 The (mean ± std.) of the classification error rates of TS-DSSL and

three baseline methods on various non-uniform noise levels of CI-

FAR10. 109

Table 5.9 The (mean± std.) of the classification error rates of the self-cleansing

I (baseline) model on CIFAR10 with a uniform noise level of 50%. The

results show various classification intervals and after what epoch the

first classification was performed. 110

Table 5.10 The (mean ± std.) of the classification error rates of TS-DSSL on

CIFAR-10 with different levels of uniform noise. The results show

the performance of TS-DSSL on various N classification intervals

and various classification starting point. The columns are when we

first start the classification which is either after the first epoch or after

N epochs. Then, we show the performance of the proposed method

when we change the frequency of labels prediction. 110

xii

Table 5.11 The (mean ± std.) of classification error rates of the self-cleaning I

baseline model after each phase. The table shows the performance

of the produced model on the testing data after completely training a

WRN model. The first model was trained on CIFAR10 with a level of

50% uniform noise. 111

xiii

LIST OF FIGURES

Figure 2.1 A convolutional residual block (CRB) with two branches and a number

of feature maps FM . The first branch [Conv(3 × 3)] × 2 comprises

a sequence of two convolutional layers. Each layer uses a kernel of

size (3 × 3). The second branch is an identity shortcut that passes

the same input signal. The last component denoted by Add is an

element-wise addition that sums up the forwarded signals from the

two branches then passes the results to the next component. 9

Figure 2.2 (b) A deconvolutional residual block (DRB). The top branch includes

a sequence of two deconvolutional layers that are [Deconv(4×4)] and

[Deconv(3 × 3)], respectively. The bottom layer is a deconvolutional

layer [Deconv(2×2)]. All layers use the same number of feature maps.

The last component denoted by add is an element-wise addition that

sums up the forwarded signals from the two branches then passes

the results to the next component. 9

Figure 3.1 The standard structure of a Hybrid Residual Network Model (HyRes-

Net) with the three main components: (a) Convolutional component

(CC), (b) Supervised component (SC) and (c)Unsupervised compo-

nent(UC) . 33

Figure 3.2 The convolutional component of Model 4. (HyResNet 22-4) 34

Figure 3.3 A comparison of CNN model Model 1-A and the HyResNet Model

1-C. The figure shows the performance of the models with a kernel

size of (3× 3) across all epochs on CIFAR-10. 35

xiv

Figure 3.4 A comparison of Model 1 variations. Model 1-F is a CNN model with

a kernel size of (5 × 5). The figure shows the accuracies of each

model across all epochs on CIFAR-10. 36

Figure 3.5 A comparison of the best HyResNet Model 2 configurations on CIFAR-

10. 37

Figure 3.6 A comparison of the best performing variations of Model 3. The re-

sults are on CIFAR-10. 38

Figure 3.7 HyResNet Model 4 architectural design. The figure shows the (a) su-

pervised component with the layers of MaxPooling ⇒ Linear ⇒

Softmax and (b) unsupervised component with two DRUs with a

DRB each. The DRBs are with 128 and 64 feature maps, respectively. 39

Figure 3.8 Compares the various settings of Model 4-C1 with various kernel

sizes of the last deconvolutional layer for a mean-normalized CIFAR-10. 40

Figure 3.9 The architectural details of the HyResNet Model 4. The figure shows

that (a) the supervised component is constructed with the sequence

of MaxPooling ⇒ Linear ⇒ Softmax and (b) the unsupervised

component with two up-sampling, 128 and 64 feature maps, respec-

tively. 44

xv

Figure 4.1 The structure of DSSL with the three main components: (a) Convolu-

tional component (CC), (b) Supervised component (SC) and (c) Un-

supervised component(UC). We identify three main paths in DSSL.

(1) The short-dashed line path shows the CC followed by the SC,

which can be viewed as a residual neural networks. (2) The dotted

line path shows the CC followed by the UC, which can be viewed as

a convolutional autoencoder. (3) The long-dashed line path, shows

the CC forks to the SC and the UC. 58

Figure 4.2 The DSSL model components (a) the supervised component with all

layers (left), (b) the unsupervised component with all layers (right). . . 66

Figure 4.3 Sample from CIFAR-10 dataset. CIFAR-10 compiles images from 10

different classes. All images are colorful and of the size 32× 32. . . . 70

Figure 4.4 Sample from CIFAR-100 dataset. CIFAR-100 compiles images from

20 different coarse classes and that compiles 100 different fine classes.

All images are colorful and of the size 32× 32. 73

Figure 4.5 Sample from STL-10 dataset. STL-10 compiles images from 10 dif-

ferent classes. All images are colorful and of the size 96× 96. 76

Figure 4.6 Sample from MINST dataset. MNIST dataset compiles images from

10 different classes. All images are gray scale and of the size 28× 28. 78

Figure 4.7 Sample from SVHN dataset. SVHN dataset compiles images from

10 different classes. All images are colorful and of the size 32× 32. . 80

xvi

Figure 4.8 This chart compares the performance of DSSL 22-4 vs. Sajjadi et

al. [64] on various ratios of labeled / unlabeled training datasets from

the SVHN dataset. DSSL 22-4 results show the mean and standard

deviation of classification error rates. Table 4.8 shows the details. . . 82

Figure 4.9 The performance of DSSL 22-4 on the 4, 000 labeled examples from

the CIFAR-10 dataset. The figure compares the classification error

rates of classifying the unlabeled data after every epoch for the 320

training epochs. The true labels of the unlabeled data are known and

only used to create this plot. Moreover, for the same model, it shows

the test classification error rates after every epoch. 83

Figure 4.10Compares the performance of DSSL 22-4 on three different ratios of

labeled / unlabeled CIFAR-10 datasets. We show the results of eval-

uating the datasets consisting of 4K and 8K labeled examples. More-

over, all training data labeled shows the results of using all available

training dataset as labeled and unlabeled. It shows the changes of

the classification error rate for each dataset after every epoch for 320

epochs. 84

Figure 5.1 The architecture of TS-DSSL. It is composed of three branches. The

first branch is a set of residual blocks that forks at the end into two su-

pervised branches. Each branch compiles a sequence of max pool-

ing, followed by two linear layers and finally a supervised learning

criterion. 94

xvii

Figure 5.2 An example of a 50% noisy label data taken from CIFAR10. The first

row shows a subset of 50% uniform noisy label dataset. The second

row shows a subset of 50% non-uniform noisy label dataset. The

labels in boldface are noisy labels, and the labels in italic are true

labels. 99

Figure 5.3 The (mean ± std.) of the classification error rates of TS-DSSL and

WRN on various non-uniform levels of noise on CIFAR10. The results

are measured on the standard test split provided with CIFAR10. . . . 100

Figure 5.4 The confusion matrices of various uniform/non-uniform noise levels

from CIFAR10 training data. 101

Figure 5.5 The error rates of three baseline models (standard WRN, self-cleansing

I, and self-cleansing II) after each of 200 training epochs on CIFAR10

with a level of 50% uniform noise. The results are measured on the

standard test split provided with CIFAR10. 104

Figure 5.6 The confusion matrices of various uniform/non-uniform noise levels

from MNIST training data. 105

Figure 5.7 The (mean ± std.) of classification error rates on various levels of

uniform noisy labels in MNIST. The results are measured on the stan-

dard test split provided with MNIST. 106

Figure 5.8 The (mean ± std.) of classification error rates on various uniform

noise levels in MNIST. The results are measured on the standard

test split provided with MNIST. 107

xviii

1

CHAPTER 1 INTRODUCTION

Deep learning methods show great performance in tackling various machine learning

problems [2, 4]. Supervised neural networks (e.g., CNNs) achieve state-of-the-art perfor-

mance on machine learning tasks in the presence of sufficiently large training examples.

In the past, conventional CNNs would learn a fairly small number parameters, which

includes a few convolutional layers (depth) and a few number of feature maps (width) due

to the need for massive computational power and memory resources. Training a CNN

model is also costly and may take several weeks. Shallow and thin CNN models such

as AlexNet [41] are among the state-of-the-art methods in the past few years. Given the

increase in computational resources via GPUs and the increase in memory resources,

deeper and wider CNN architectures with millions of parameters in their models are now

feasible. Deep models with hundreds and thousands of convolutional layers such as

VGG [68], Inception [75], and even deeper such as Resnets [27, 28]. Moreover, wider

models with hundreds and thousands of feature maps per convolutional layer are now

available as well [79].

We introduce the main concepts and nomenclatures that we use throughout this thesis

in chapter 2. We introduce a background for both supervised and unsupervised learning

methods. Then, we explain residual network basics. After that, we explain various neural

network components and functions. Finally, we close the chapter with data preprocessing

methods.

In chapter 3, we discuss a new supervised learning that we proposed. We call it Hy-

brid Residual Networks Method (HyResNet) . HyResNet combines the features of both

supervised (CNN) and unsupervised (Conv-AE) residual networks into a single super-

2

vised learning method.

Convolutional neural networks (CNNs) attain state-of-the-art performance on various

classification tasks assuming a sufficiently large number of labeled training examples. Un-

fortunately, curating a sufficiently large labeled training dataset requires human involve-

ment, which is expensive and time consuming. Semi-supervised methods can alleviate

this problem by utilizing a limited number of labeled data in conjunction with sufficiently

large unlabeled data to construct a classification model. Self-training techniques are

among the earliest semi-supervised methods proposed to enhance learning by utilizing

unlabeled data. In chapter 4, we propose a deep semi-supervised learning (DSSL) self-

training method that utilizes the strengths of both supervised and unsupervised learning

within a single model. We measure the efficacy of the proposed method on benchmark

semi-supervised visual object classification tasks.

Deep learning methods are at the front of state-of-the-art leading methods on various

supervised, unsupervised, and semi-supervised tasks in a diverse range of domains and

applications. Specifically, supervised deep learning class of methods attains topmost per-

formance assuming a sufficiently large number of noise-free labeled training examples.

Unfortunately, labeled data is artificially curated and cannot be found noise-free in nature.

It requires manual curation, which is expensive, time-consuming, and the labels are sub-

ject to noise. Semi-supervised methods can mitigate these obstacles by utilizing the noisy

label data to construct a classification model. In chapter 5, we propose a teacher/student

deep semi-supervised learning (TS-DSSL) self-training method that exploits the noise tol-

erance of supervised deep learning methods. We measure the efficiency of TS-DSSL on

benchmark semi-supervised visual object classification tasks using benchmark datasets.

3

TS-DSSL sets a new state-of-the-art record on the aforementioned datasets with various

levels of noisy labels. The experiments show that TS-DSSL transcends semi-supervised

state-of-the-art methods for most of the aforementioned datasets.

Finally, we conclude in chapter 6.

4

CHAPTER 2 NOMENCLATURE AND BACKGROUND

This chapter explains the basics and terminology of neural networks from a high-level

perspective. More details maybe found in [22, 66, 7]. This chapter explores neural net-

work methods in both supervised and unsupervised fashions including their layers and

parameters.

2.1 Convolution Neural Network (CNN)

CNN is a supervised type of feed-forward artificial neural network. The architecture of

a CNN model comprises a sequence of convolutional layers (e.g., Conv(5×5)) followed by

linear layers, and ends with a supervised loss function. CNNs are at the lead in tackling

various machine learning problems in various domains and applications such as visual

object recognition.

2.2 Autotoencoder (AE)

Autoencoder is an unsupervised artificial neural network method that aims to learn

an efficient encoding [6]. A standard AE architecture includes an encoding component

followed by a decoding component. Each encoding / decoding component is a stack of at

least one layer. The last component in the decoding component is an unsupervised loss

function, such as a mean squared error (MSE.)

Generally speaking, an AE receives an input data (e.g., image) into the encoder. The

encoder maps this input to a code. After that, the code is directed to the decoder to map

back to its the original form. Finally, an unsupervised loss function compares the original

input with the output of the decoder to measure the quality of the encoding component.

Then, it back-propagates the error of the loss function to update the parameters od the

autoencoder model .

5

An AE can be constructed from a stack of convolutional and deconvolutional layers,

which is called a convolutional autoencoder (Conv-AE). The encoding component of a

Conv-AE is a sequence of convolutional layers. Then, it is followed with a sequence of

deconvolutional layers that reconstruct or decode the encoded data.

2.3 Neural Network Model Layers and Components

Ideally, the architecture of a neural network model can be constructed from a com-

bination of various layers. For example, a standard convolutional neural network model

comprises a sequence of convolutional layers followed by another sequence of fully con-

nected layers and finally a supervised loss function. The architecture may include other

in-between layers to prevent overfitting, expedite the training process, and improve the

overall performance.

The complexity of a neural network model can differ from one to another by a vari-

ety of factors. The model depth represents the number of sequential components that

constructs the model. It is mainly measured by the number of consecutive convolutional

layers, i.e., more convolutional layers equals deeper model. Furthermore, the model width

is identified by the average number of feature maps per layers, i.e, more feature maps per

layer equals a wider model.

From the literature, avariety of layers and components can be included in a model to

enhance performance, expedite convergence, and to avoid degradation and overfitting.

Some examples include the dropout and batch normalization layers. The order of these

layers and components is very important. For example, two models with the same layers

but different orders may have widely different performance characteristics.

Additionally, training a neural network model includes deciding a set of hyper-parameters.These

6

need to be carefully selected given their impact on the overall performance of the model.

Some examples include the learning rate, the maximum number of epochs, the kernel

size, and the batch size.

We conclude this subsection with a discussion on different components and layers

used to improve the performance of CNN models.

Convolution Layer. The convolutional Layer is the primary component in typical neu-

ral network models. Selecting the right set of parameters for each convolutional layer in

a neural network model is crucial. The convolutional layer parameters such as the kernel

size and the number of feature maps (FMs). Throughout this dissertation, we denote

a component with n convolutional layers and a kernel size of (A × B) for each layer, as

[Conv(A×B)]× n

Deconvolutional Layer. The deconvolutional layer reverses the operations of the

convolutional layer. The deconvolutional layer is usually employed in the decoding part of

the convolutional autoencoder. A component with n deconvolutional layers and a kernel

size of (A×B) for each layer, is denoted as [Deconv(A×B)]× n

Dropout layer. Hinton et al. [30] introduced dropout to the fields of neural networks.

The dropout layer integrates randomness in the learning process. Dropout sets a random

ratio of the activations in a layer to zeros and keeps the values of the rest.

Batch Normalization. During training, the parameters of each layer in a neural net-

work model changes every iteration, which changes the inputs of the next layer. Unfortu-

nately, this change slows down the training by requiring lower learning rates and careful

parameter initialization. Ioffe et al. [36] proposed a Batch Normalization (BN) method.

BN performs a normalization for each minibatch in the training dataset. Ioffe et al. [36]

7

proved that the use of batch normalization after each convolutional layer improved the

performance of neural network. Employing BN on each layer input produced the same

accuracy with fewer training steps.

Subsampling Layers. It is common in neural network methods to apply a sub-

sampling after a few convolutional layers followed by reducing the size of each feature

map as well as increasing in the number of features maps. The sub-sampling methods

include max pooling, min pooling, and average pooling.

2.4 Residual Networks

A residual network is a convolutional neural network composed of special types of

modules called residual blocks [27]. In this section, we explore the various components

in residual networks.

2.4.1 Residual Block (RB)

Definition 2.1 (Residual Blocks). A residual neural network is composed of a sequence

of residual blocks [27]. A residual block is constructed from two parallel branches or

connections (Fig. 2.1). We denote the top branch as residual branch and the bottom

branch as shortcut. In general, we represnt a residual block by:

zr = F(Wshortcut, zr−1) + G(Wresid_branch, zr−1). (2.1)

where zr is the output of a residual block r that is used as an input to the next component,

zr−1 is the input to the residual block r, F is the shortcut branch function, Wshortcut are the

shortcut branch parameters (weights), G is the residual branch function, and Wresid_branch

8

are the residual branch parameters (weights).

The residual branch in DRB (Fig. 2.1) includes two deconvolutional layers with kernels

4 × 4 and 3 × 3, respectively. Each deconvolutional layer is preceded with a batch nor-

malization and a ReLU. The shortcut branch includes a single deconvolutional layer with

a 2× 2 kernel and a stride of 2.

We differentiate between two types of residual blocks based on the use of convolu-

tional or deconvolutional layers. The Convolutional Residual Blocks (CRB) uses a set

of convolutional layers. Figure 2.1 shows an example of a CRB. The second type is the

Deconvolutional Residual Blocks (DRB) that is constructed from a set of deconvolu-

tional layers. Figure 2.2 shows an example of a DRB.

Definition 2.2 (Deonvolutional Residual Block (DRB)). A deconvolutional residual block

(DRB) is a residual block that uses a set of deconvolutional layers.

Definition 2.3 (Convolutional Residual Block (CRB)). A convolutional residual block (CRB)

is a residual block that uses a set of convolutional layers.

2.4.2 Residual Units (RU)

A residual unit is composed of one or more residual blocks. All residual blocks in a

RU are of the same type, i.e., either CRB or DRB. Moreover, all residual blocks of one

residual unit share the same number of feature maps (FMs). We identify two types of

RU. First, the Convolutional Residual Units (CRU) comprises one or more convolutional

residual blocks. The first block of a CRU usually increases the number of feature maps

and reduces the data size. After that, all blocks in one unit maintains the same number of

feature maps and the same data size.

9

Figure 2.1: A convolutional residual block (CRB) with two branches and a number of
feature maps FM . The first branch [Conv(3×3)]×2 comprises a sequence of two convo-
lutional layers. Each layer uses a kernel of size (3× 3). The second branch is an identity
shortcut that passes the same input signal. The last component denoted by Add is an
element-wise addition that sums up the forwarded signals from the two branches then
passes the results to the next component.

Figure 2.2: (b) A deconvolutional residual block (DRB). The top branch includes a se-
quence of two deconvolutional layers that are [Deconv(4 × 4)] and [Deconv(3 × 3)], re-
spectively. The bottom layer is a deconvolutional layer [Deconv(2 × 2)]. All layers use
the same number of feature maps. The last component denoted by add is an element-
wise addition that sums up the forwarded signals from the two branches then passes the
results to the next component.

10

Definition 2.4 (Residual Unit (RU)). We call a sequence of residual blocks of the same

type (e.g., convolutional) and equal number of feature maps (FMs) a residual unit (RU).

The RU can be either a convolutional residual unit (CRU) or a deconvolutional residual

unit (DRU).

Second, Deconvolutional Residual Units (DRU) includes one or more deconvolu-

tional residual blocks with the same number of feature maps. The first block of the DRU

usually reduces the number of feature maps and increases the data size. After that, all

blocks in a unit maintain the same number of feature maps and the same data size.

Definition 2.5 (Convolutional Autoencoder (Conv-AE)). A deep learning model that is

constructed with CRBs followed by DRBs is called hereafter a convolutional autoencoder

(Conv-AE).

2.4.3 Sampling Component

We refer to the transition between two consecutive residual units as a transition con-

nection. The transition connection is a convolutional layer that may change the input

size and/or the number of feature maps. If the transition component is a convolutional

layer that decreases the size of input (e.g., image size from 32 ⇒ 16) and increases the

number of feature maps (e.g., feature maps from 64⇒ 128) then we call it down-sampling

convolutional connection; whereas, we call it up-sampling deconvolutional connection. If

it is a deconvolutional layer that increases the input size (e.g., image size from 16 ⇒ 32)

and decreases the number of feature maps (e.g., feature maps from 256 ⇒ 128,) we call

it an up-sampling deconvolutional connection.

11

2.5 Loss Functions

2.5.1 The Unsupervised Loss Function

On the top of the unsupervised component, we add an unsupervised loss function

such as mean square error (MSE). The MSE measures the difference between the original

input data (e.g., image) and the network output at the end of the network. The MSE loss

function is calculated by the following formula:

MSE =
1

N

N∑

i=1

(
||h(x)− x||2

)
. (2.2)

where N is the number of examples in the dataset (or minibatch), x is the input data (e.g.,

image), and h(x) is the input reconstruction.

2.5.2 The Supervised Loss Function

The supervised components ends with a Cross Entropy (CE) loss function followed by

a Softmax layer. The softmax and cross entropy equations are as follows:

Softmaxk =
egk(x)∑K
i=1 e

(gi(x))
. (2.3)

where Softmaxk is the prediction probability of class k and g(x) is the output from the

supervised branch.

JCrossEntropy = − 1

N

N∑

j=1

K∑

k=1

yjk log(Softmaxjk). (2.4)

12

where N is the number of examples in the dataset or the minibatch, K is the total number

of classes, y is the actual label, and Softmax is the predicted label.

2.6 Sparsity

Sparsity sets a few activation values in a layer to zero while retaining the rest. It

has been proved that sparsity learns better features. Several sparsity methods have been

proposed in the literature. Olshausen et al. [57] introduced sparse coding with (L_1-norm).

Ng [55] employed KL-divergence.

Makhzani et al. [49] proposed a spatial sparsity. In the feed-forward, the spatial

sparsity sets all activation values for each feature map to zeros except the highest K

values which are retained. Then, the error is back-propagated through the non-zero units

to update the model parameters.

2.7 Data Preprocessing Methods

It is common practice in machine learning to perform several preprocessing normal-

ization steps before training and testing on a dataset. Preprocessing aims to eliminate the

variations of between the dataset samples and expedite the model convergence during

training. Moreover, various studies such as [14, 4] show that choosing a proper sequence

of preprocessing steps play a major role in enhancing the overall model performance.

2.7.1 Mean Normalization

The mean normalization is one of the most direct and simplest normalization methods.

It aims to shift all dataset examples to the same mean. It is applied by calculating the

mean of the training dataset (XTrain). After that, the mean XTrain is used to shifting the

train and test datasets by subtracting every example from that XTrain (Eq. 2.6).

13

XTrain =
1

N ×M
N∑

i=1

M∑

j=1

Xi,j. (2.5)

where: XTrain is the mean of training dataset; N is number of samples in the training

dataset (e.g., the number of images); M is the number of data points in the sample i (e.g.,

the number of pixels in each image); Xi,j is the value in the position j (e.g., pixel in image)

within the example i.

This normalization can be employed on both colorful and gray-scale image datasets.

For the latter, we calculate the mean for the overall images and then use the mean in

normalization. In the former, it is common to calculate and use the mean for each channel

separately (Eq. 2.6) instead of the overall mean for all channels. Therefore, we repeatedly

use Eq. 2.6 for each channel and replace the Channel with R, G and B, respectively. After

that, we use the mean of each channel to normalize all samples in that channel.

X
Channel

Train =
1

N ×M
N∑

i=1

M∑

j=1

XChannel
i,j . (2.6)

Then normalized images will be calculated as:

X̂e = [(X(R)
e,p −X

(R)

Train); (X(G)
e,p −X

(G)

Train); (X(B)
e,p −X

(B)

Train)]. (2.7)

where: X̂e is the normalized examples from training or testing data and X
(R)
e,p is a data

point (e.g., pixel in images) p in the example e from the red (green or blue) channel.

14

2.7.2 Mean and Standard Deviation Normalization

In this normalization, we subtract the data points of each example from the mean of the

training dataset. After that, we divide the resulted data points by the standard deviation of

the training dataset. This is known as the image brightness and contrast normalization .

The mean (XTrain) and standard deviations are calculated for each channel for colorful

images. We use the calculated mean from the previous formula (Eq. 2.6.) Then we cal-

culated the standard deviations for each channel of the RGB channels across all training

dataset images.

The standard deviation for images is calculated first by finding the variance of each

channels varTrain for the training data (Eq. 2.8).

varChannelTrain =

√√√√ 1

N ×M
N∑

i=1

M∑

j=1

(XChannel
i,j −XChannel

Train)2. (2.8)

After that, we normalize each sample using the channel mean and standard deviation

(Eq. 2.9) represented in the formula below:

X̂Channel
e =

XChannel
e −X(Channel)

Train√
varChannelTrain

. (2.9)

Finally, the normalized dataset (ˆXRGB
e) is then restored into three normalized channels

per samples (Eq. 2.10).

X̂RGB
e = [X̂R

e ; X̂G
e ; X̂B

e]. (2.10)

15

2.7.3 Global Contrast and ZCA Whitening

Coates et al., [14] tested global contrast followed by ZCA whitening [35] on images

datasets . They showed that this normalization leads to better performance than other

types of normalizations.

16

CHAPTER 3 A HYBRID RESIDUAL NETWORK METHOD FOR SUPERVISED DEEP
LEARNING (HYRESNET)

3.1 Introduction

The number of convolutional layers (depth) and feature maps (width) in each unit of a

convolutional neural network (CNN) are two crucial performance factors. Unfortunately,

evaluating a large (deep and wide) CNN model on a large-scale dataset requires a system

with large amount of computational power and memory. Additionally, it may fall in various

problems such as gradient degradation and overfitting. Consequently, a few years ago, a

conventional CNN would be a fairly small model with a small number of parameters with

both shallow (few convolutional layers) and thin (few feature maps). Shallow and thin

CNN models, such as AlexNet [41], were among state-of-the-art lead methods for the

past few years.

Nowadays, given the increasing availability of computational resources via GPUs,

training deep and wide CNN models has become feasible. Deep models with hundreds

and thousands of convolutional layers include VGG [68], Inception [75], and residual net-

works(ResNets) [27, 28]. Wider models with hundreds and thousands of feature maps

per convolutional layer are now feasible [79].

Additionally, there has been great progress in investigated the effects of data flow

within neural networks leading to methods that alleviate the gradient vanishing and degra-

dation. He et al. [27] used a lightly connected components by passing a shortcut signal

with the data from one ResNet to the next. Huang et al., [33] used a densely connected

neural network to connect and pass signals across various layers.

Residual network (ResNet) is a convolutional neural network (CNN) that learns in

17

branches called residual block. A residual block is a simple network that comprises a

combination of convolutional layers, activation layers, and batch normalization layers. Ev-

ery residual block adds a small contribution to the overall network. He et al. [27] introduced

a deep residual network, which was then modified [28]. The modified models are scaled

to a depth of more than a thousand layers. It used a deeper architecture with various

layers, options and combinations. Their model achieved the best performance when it

was very deep. Their best performed model comprises 1k convolution layers, in addition

to other activation layers.

Zagoruyko et. al [79] modified the model proposed in [28] to reduce its depth and

increase the width. Unlike wide models, deep models are hard to parallelize, and con-

sequently, take longer to train. Zagoruyko et. al [79] discussed and tested various wide

residual network models.

While supervised learning methods use the class labels to learn and extract class-

specific features, unsupervised learning methods learns general set of features across all

dataset classes. The literature shows that supervised learning methods are much power-

ful and attain greater performance than unsupervised methods. This chapter introduces a

new supervised method that we call Hybrid Residual Network Method (HyResNet) [25] for

deep learning. The proposed method utilizes the power of supervised and unsupervised

methods in a supervised fashion by creating high-quality representations (features).

Unlike other hybrid models, HyResNet combines both supervised and unsupervised

neural networks in a single model. Other methods such as [10] employed a sequence

of two or more separate methods to train and test on a single dataset. The proposed

hybrid method starts with a shared set of layers before fork into two branches. One

18

represents a supervised learning method such as CNN with a supervised loss function

while the second branch is an unsupervised learning method such as autoencoder. The

unsupervised component tries to reconstruct the input after the set of deconvolutional

layers without any considerations to the label. The latter branch uses the mean squared

error to measure the difference between the input and the reconstructed data then uses

its derivative to back-propagate the gradient. To our knowledge, this methods is the first

of its kind.

3.1.1 Problem Formulation

The goal of supervised learning methods is to learn a decision modelM from n avail-

able labeled training examples. The training examples are denoted by Tn, where n is

the total number of different training examples in T . We denote a training example (e.g.,

image) by Xi ∈ Rd, where i ∈ {1, . . . , n}. Also, we denote the true class label of Xi by

Yi ∈ {1, . . . , C}, where C is the total number of different classes in Tn. In general, we

represent the labeled training dataset by Tn = {(Xi,Yi)}ni=1.

3.2 Method

We propose a Hybrid Residual Networks Method (HyResNet). The HyResNet utilizes

supervised and unsupervised residual networks. It combines a CNN and a Conv-AE in

one model. Algorithm 1 explains the training of a HyResNet. The HyResNet includes

three main components as shown in Figure 3.1:

1. Convolutional component (CC): the model starts with a shared common component

before branching into two components. The convolutional component is mainly a set

19

of convolutional residual units. Each unit is a set of CRBs with other components

such as a dropout, batch normalization and ReLU.

2. Supervised component (SC): it is a sequence of fully connected (linear) layers and

ends with a supervised loss function. The sequence of a convolutional component

followed by the supervised component forms a convolutional neural network (CNN)

model.

3. Unsupervised component(UC): it compiles a sequence of DRUs. Each DRU is a

sequence of DRBs. This component aims to use the CC output and reconstruct

(decode) it back to the original input data. Finally, it ends with an unsupervised loss

function (e.g., MSE.) that compares the input with the constructed one. A model

that is constructed with a sequence of the convolutional component followed by the

unsupervised component creates a Conv-AE.

Algorithm 1 The HyResNet AlgorithmAlgorithm 1 The HyResNet Algorithm
Require: DL = labeled training data
Require: fc, fs and fu = convolutional, supervised and unsupervised components, respec-

tively
Require: losss and lossu = supervised and unsupervised loss functions, respectively
1: for t in [1, no_epochs] do
2: for each minibatch b ∈ DL do
3: wb ← fc(aug(b)) . evaluates the convolutional component on augmented

minibatch
4: zs ← fs(wb) . evaluates the supervised component on wb

5: losss ← −
1

|b|
∑

i∈b
log zsi [yi] . the supervised criterion, y is the label

6: zu ← fu(wb) . evaluates the unsupervised component on wb

7: lossu ←
1

|b|
∑

i∈b
||zui
− bi||2 . the unsupervised criterion

8: updates weights using SGD with momentum
9: end for

10: end for

1

20

We construct and test the HyResNet model in various settings and configurations. We

study and compare HyResNet in the following dimensions:

1. Dropout: we study the effects of using the dropout layer at various components and

blocks in HyResNet. Furthermore, we test and compare various dropout ratios.

2. Batch normalization: batch normalization showed great improvement in the neural

network supervised learning performance. We study the effect of batch normaliza-

tion at various components of the models.

3. We construct and test the following unsupervised component scenarios:

(a) We refer to the deconvolutional layer that decreases the number of feature

maps and increases the output size as the up-sampling layer. We test the use

of zero, one, or two up-sampling layers on HyResNet.

(b) We move the last convolutional layer from the convolutional unit to the super-

vised component and the unsupervised components. After that, we add to the

unsupervised component either a set of up-sampling layers or residual decon-

volutional units.

(c) We construct the unsupervised component from a deconvolutional residual unit

with various number of DRBs.

4. We study the last deconvolutional layer of the HyResNet model with various kernel

sizes. We test the kernel sizes of (7× 7), (11× 11) and (15× 15).

5. We test the convolutional layers with various kernel sizes. We evaluate the kernels

of sizes of (3× 3), (5× 5) and (7× 7).

21

6. We study the position of the sparsity layer in the unsupervised component.

7. We evaluate HyResNet on several pre-processing methods. We test the mean nor-

malization, the mean and standard deviation normalization, and the global contrast

normalization followed by the ZCA-whitening.

After CC HyResNet branches into UC and SC. During feed-forward, copies of the out-

put of the CC is directed into the UC and SC. During feed-backward, the back-propagated

gradients from the SC gradSC are element-wise added to the back-propagated gradients

from the UC gradUC :

grad = gradSC + gradUC . (3.1)

Then, the result gradient grad is back-propagated through the CC.

Table 3.1: The architectural details of the HyResNet Models 1, 2 and 3. L∗ is the num-
ber of convolutional residual blocks in Model 1. We used L = 3 (table 3.3) and L = 5
(table 3.4). The last row of the table shows the SC that we used for all three models.

Unit Output, FM Model 1 Model 2 Model 3

CC

Conv1 (32× 32), 64 [Conv(5× 5)]×1 [Conv(5× 5)]×1 [Conv(5× 5)]×1
CRU1 (32× 32), 64 [CRB(5× 5)]×L∗ [CRB(5× 5)]×3 [CRB(5× 5)]×3
CRU2 (16× 16), 128 [CRB(5× 5)]×3 [CRB(5× 5)]×3
CRU3 (8× 8), 256 [CRB(5× 5)]×3

SC [(3× 3) MaxPool, stride 2]⇒ dropout⇒ FC-4096⇒ ReLU
⇒ Dropout⇒ FC-4096⇒ ReLU⇒ FC-10

We construct and evaluate the HyResNet method in various architectures. In this

section, we explain the architectural details of the used methods and report results for

each model variations.

22

3.2.1 Models 1, 2, and 3

This family of models includes the models 1, 2 and 3. The models of this family as de-

scribed in table 3.1. They use the same SC and different CCs and UCs. All three models

starts with a [Conv(5 × 5)] × 1 layer with 64 feature maps. The supervised component of

each model comprises the sequence of MaxPooling(3× 3)⇒ Dropout(0.5)⇒ Linear ⇒

ReLU ⇒ Dropout(0.5) ⇒ Linear ⇒ ReLU ⇒ Linear and finally the supervised loss

function.

The convolutional component of Model 1 is constructed from a single CRU with 64 fea-

ture maps. The CRU is tested with three and five CRBs. Model 2 comes with two CRUs.

The CRUs have 64 and 128 feature maps, respectively. Finally, Model 3 constructed from

three CRUs. The CRUs have 64, 128 and 256 feature maps, respectively.

3.2.2 Model 4

We adopt the convention introduced in [79] to design and construct fairly medium sized

HyResNet models. We use models that use an overall of 22 convolutional layers and a

widening factor of 4 (i.e., WRN22 − 4). We call this model Model 4. Table 3.2 shows the

layers and architecture of model 4. However, this exact model WRN22 − 4 is not tested

in [79]. We decided to construct and use it because it uses a fewer number of layers. This

model requires less memory and runs faster with comparable results.

We first evaluate the model WRN 22 − 4 as a baseline-supervised model (CNN). After

that, we modify it to construct our HyResNet model variations by integrating the unsuper-

vised component. Finally, we test the model with various configurations as described later

23

in this chapter. We test the model with two convolutional layer kernel sizes (3 × 3) and

(5× 5), which learn 4.3M and 11.85M parameters, respectively.

Model 4 starts with a Conv(k×k), where k is the kernel dimensions of the convolutional

layer. We evaluate k = 3 and k = 5. After the convolutional layer, the model includes a

sequence of three CRUs. Each CRU consists of three CRBs. The CRBs are construed

from two consecutive sequences of Batch Normalization ⇒ ReLU ⇒ Conv(k × k). The

supervised component of Model 4 comprises the sequence of AveragePooling(8 × 8) ⇒

Linear and finally a supervised loss function.

We report the performance of Model 4 with kernel size (3 × 3) and various normal-

ization methods on top of the CIFAR-10 dataset. Table 3.12 compares the various data

preprocessing methods. Furthermore, the classification accuracy of Model 4 with the ker-

nel size of Conv(5× 5) on mean-normalized CIFAR-10 achieves an accuracy of 94.85%.

3.2.3 Models 1, 2 and 3 versus Model 4

In this section, we compare the architectural differences between the two families of

models. The first layer of all models is a convolutional layer. It includes 64 feature maps

in the Models 1, 2 and 3 whereas it includes 16 feature maps in Model 4.

The output of the first convolutional layer is directed to the first CRB in the Models 1,

2 and 3. The residual branch of the first CRB starts with a batch normalization and ReLU

layers whereas the first convolutional layer of Model 4 followed by a batch normalization

and ReLU layers after that to the first CRB. Furthermore, the first layer of the first CRB in

Model 4 is a convolutional layer.

Additionally, the skip connection (shortcut) of the first CRB in the Models 1, 2 and 3

24

is an identity layer whereas it is a convolutional layer that increases the number of feature

maps from 16 to 64 in Model 4.

Table 3.2: The detailed architecture of Models 4, 5 and 6. ‡We test various kernel sizes.
The second line in each model unit is the number of feature maps.

Unit Output Model 4 Model 5 Model 6

CC

Conv1 32× 32
[Conv(3‡ × 3‡)]×1 [Conv(3× 3)]×1 [Conv(3× 3))]×1

16 16 16

CRU1 32× 32
[CRB (k × k)]×3 [CRB(3× 3)]×6 [CRB(3× 3)]×4

64 160 160

CRU2 16× 16
[CRB (k × k)]×3 [CRB(3× 3)]×6 [CRB(3× 3)]×4

128 320 320

CRU3 8× 8
[CRB (k × k)]×3 [CRB(3× 3)]×6 [CRB(3× 3)]×4

256 640 640
SC [AveragePooling(8× 8), stride 1]⇒ FC-10

3.2.4 Models 5 and 6

The Models 5 & 6 follow the convention introduced in [79]. They are constructed with

the large architectures for Models 5 WRN40 − 10 and Models 6 WRN28 − 10. Both

models use an overall of 40 and 28 convolutional layers, receptively. Furthermore, both of

the models use a widening factor of 10. Table 3.2 depicts the detailed architectural design

for both models.

3.3 Experiment

We train all models in this chapter from scratch. All of our experiments follow the

protocols introduced in [79]. We use a minibatch size of 128 samples. We train each

experiments for 200 epochs. The learning rate starts at 0.1. Then it is decreased after the

epochs 60,120 and 160 by a factor of 0.2.

We evaluate all of the proposed models on CIFAR-10 [40] dataset. CIFAR-10 consists

of 60, 000 RGB images of the size of 32 × 32 pixels. The dataset includes 10 different

25

classes with the same number of examples per class. Moreover, it is available in two

splits that we adopt hereafter in our experiments. These parts consist of 50, 000 and

10, 000 examples used for training and testing, respectively.

Moreover, we evaluate the best performed HyResNet models on CIFAR-100 [40]. Sim-

ilar to CIFAR-10, CIFAR-100 compiles 60, 000 images. Each image dimensions are 32×32

pixels. However, CIFAR-100 includes 100 classes compared to the 10 classes found in

CIFAR-10.

3.3.1 Model 1 Variations

Table 3.1 explains the architectural details of Model 1. We evaluate Model 1 with three

different kernel sizes. The sizes are (3× 3), (5× 5) and (7× 7). Furthermore, we evaluate

the model with 3 CRBs and 5 CRBs. The results are reported in the tables 3.3 and 3.4,

respectively.

We design models Model 1-A and Model 1-F as CNN models. Furthermore, we create

the HyResNet Model 1 variations Model 1-B, Model 1-C, Model 1-D and Model 1-E. The

unsupervised component of the HyResNet Model 1 variations ends with a sparsity layer

followed by a deconvolutional layer.

Each convolutional components of the models Model 1-A, Model 1-B, and Model 1-C

is constructed with a single CRU. The CRU is constructed from a sequence of three

CRBs (table 3.3). The models Model 1-A and Model 1-B do not us any dropout. Model

1-C employs a dropout with 0.5%.

Models Model 1-D, Model 1-E, and Model 1-F are constructed with a single CRU con-

volutional components that compiles five CRBs without a dropout. We test them on three

26

Table 3.3: The performance of Model 1 with a single CRU in the convolutional compo-
nents. The CRU compiles three CRBs (L=3). We evaluate this model on a ZCA-whitened
version of CIFAR-10. The model Model 1-A is a CNN model.

Models Accuracy (%)
Model 1-A 91.82
Model 1-B 92.25
Model 1-C 92.69

kernel sizes (3 × 3), (5 × 5) and (7 × 7). Additionally, we evaluate the models with differ-

ent deconvolutional layer kernel sizes. Table 3.4 shows the results of all aforementioned

configurations.

Table 3.4: Model 1 with one CRU and five CRB (L=5). We applied the experiments on a
ZCA-whitened version of CIFAR-10 and without dropout. Model 1-F is a CNN model.

Conv.
kernel size

Model 1-D
[Deconv(11×11)] Model 1-E Model 1-F

Conv(3×3) 92.25 92.61 [Deconv(7× 7)]
Conv(5×5) 92.55 92.11
Conv(7×7) 92.3 92.67 [Deconv(15× 15)]

3.3.2 Model 2 Variations

Model 2 uses the convolutional component and the supervised components depicted

in table 3.1. We modify and evaluate the unsupervised component of Model 2 in various

scenarios. Model 2 is evaluated on a ZCA-whitened version of CIFAR-10. Table 3.5

shows the performance of various Model 2 variations. All Model 2 experiments do not

employ any dropout. The unsupervised components that we use with Model 2 follow

below:

In Model 2-A, we add a sparsity layer to the unsupervised component. The sparsity

layer is added immediately after the fork split that comes at the end of the convolutional

component. Then, we use a sequence of a single up-sample deconvolutional layer fol-

27

lowed by batch normalization, ReLU, Deconv(11× 11), batch normalization, and an unsu-

pervised loss function. This model achieves an accuracy of 93.65%.

The unsupervised component of Model 2-B is constructed from the sequence of spar-

sity layer, a single up-sampling deconvolutional layer, ReLU, Deconv(11 × 11), and an

unsupervised loss function. This model achieves an accuracy of 93.99%.

Model 2-C unsupervised component consisting the sequence of sparsity, a single up-

sampling deconvolutional layer, ReLU, sparsity , Deconv(11 × 11), and an unsupervised

loss function. The achieved accuracy is 94.04%. Note that, Model 2-C is different from

Model 2-B where we add a second sparsity layer before the ReLU in Model 2-C.

Table 3.5: The variations of Model 2. All results in this table are for a ZCA-whitened
CIFAR-10 and without dropout.

Model Accuracy (%)
CNN Model 2 93.86

A single up-sampling
deconvolutional layer

Model 2-A 93.65
Model 2-B 93.99
Model 2-C 94.04
Model 2-D 93.78

A single DRB
Model 2-E 93.59
Model 2-F 94.03
Model 2-G 93.87

In Model 2-D, the unsupervised component is constructed from a single up-sampling

deconvolutional layer, ReLU, sparsity, Deconv(11 × 11), and the unsupervised loss func-

tion. The accuracy of Model 2-D is 93.78%.

The unsupervised component of Model 2-E is constructed from sparsity layer, a DRB

that includes a batch normalization, ReLU, Deconv(11× 11), batch normalization, and an

unsupervised loss function. The accuracy is 93.59%

The unsupervised component of Model 2-F includes a sparsity layer, a DRB compiles

28

the sequence of batch normalization, ReLU, Deconv(11×11), and finally an unsupervised

loss function. The accuracy for this model is 94.03%.

The last variation is Model 2-G. The unsupervised component is constructed from a

DRB with batch normalization, ReLU, sparsity, Deconv(11×11), and an unsupervised loss

function. The accuracy is 93.87%.

3.3.3 Model 3 Variations

We evaluate various configurations and components of the unsupervised component

in Model 3. Table 3.6 shows the performance of Model 3 variations.

Table 3.6: The results of Model 3 variations evaluated on CIFAR-10.
Model Accuracy (%)

CNN, no dropout Model 3 94.97

HyResNet Models

Model 3-A 94.27
Model 3-B 95.03
Model 3-C 95.03
Model 3-D 94.86
Model 3-E 94.92

The convolutional component of Model 3-A includes three CRUs. Each CRU includes

three CRBs, where the residual branch of each CRB is a sequence of three convolutional

layers Conv(3 × 3), Conv(5 × 5) and Conv(7 × 7), respectively. We apply a 50% dropout

layer between every two convolutional layers in the CRBs. The unsupervised component

comprises two up-sampling layers followed by Deconv(15 × 15). This model achieves

94.27% of accuracy on ZCA-whitened CIFAR-10.

In Model 3-B, the unsupervised component is constructed with two DRBs. Each block

includes two deconvolutional layers with kernel sizes (6 × 6) and (5 × 5), respectively.

There is neither batch normalization nor ReLU after the first DRB. Furthermore, there is

29

not dropout. We placed the sparsity before the last deconvolutional layer and after the

deconvolutional residual blocks. Moreover, the last deconvolutional layer in the unsuper-

vised component has a kernel size of (11×11). We test this model on a mean-normalized

CIFAR-10, and the classification accuracy is 95.3%

Model 3-C constructs the unsupervised component from a sequence of two up-sampling

layers followed by a sparsity layer and a Deconv(11× 11). This model employs a dropout.

It achieves a classification accuracy of 95.03% on mean-normalized CIFAR-10.

In Model 3-D, the unsupervised component is constructed from a DRU followed by

two up-sampling layers, sparsity, and a deconvolutional layer. The DRU consists of three

CRBs with 256 feature maps. We do not use dropout in this model. Moreover, all convo-

lutional and deconvolutional layers are preceded with a batch normalization. We evalu-

ate this model on a mean-normalized CIFAR-10. It achieves a classification accuracy of

94.86%

The unsupervised component of Model 3-E is constructed with a sequence of two

DRUs. Each DRU includes a DRB. We do not employ any batch normalization in the

unsupervised component of this model, but we use a dropout. The sparsity in this model

is placed before first DRUs. Model 3-E shows a classification accuracy of 94.92% on a

mean-normalized CIFAR-10.

3.3.4 Model 4 Variations

Figure 3.7 shows an example of the (a) supervised and (b) unsupervised components

in HyResNet Model 4.

Model 4-A is a wide residual network (WRN 22-4) designed following the convention

30

Table 3.7: The performance of Model 4 variations. All of the results in this table are for
mean-normalized CIFAR-10.

Model Accuracy (%)

Model 4-A CNN No dropout 95.64
dropout 95.89

Deconvolutional
Residual Blocks,

no dropout

Model 4-B 95.38
Model 4-C1 95.88
Model 4-C2 95.8
Model 4-C3 95.6
Model 4-C4 95.68
Model 4-D 95.68
Model 4-E 95.47
Model 4-F 95.56
Model 4-G 95.68

Deconvolutional
Residual Blocks

dropout

Model 4-H 95.69
Model 4-I 95.63
Model 4-J1 95.33
Model 4-J2 95.75
Model 4-K 95.51
Model 4-L1 95.59
Model 4-L2 95.62

Deconvolutional
Up-sampling
no dropout

Model 4-N1 95.76
Model 4-N2 95.65
Model 4-N3 95.42
Model 4-N4 95.42
Model 4-O 95.53

Table 3.8: The accuracy of Model 4 22-4 models on a mean normalized CIFAR-10. ∗ We
developed and ran these models because they were not provided in the original paper.
Model 4 22-4 uses 4.2M parameters and Model 4 22-4 HyResNet uses 5.3M parameters.

WRN 22-4∗ WRN 22-4 HyResNet
No Dropout 95.64 95.88
Dropout 95.89 95.69

proposed in [79]. However, this exact model does not exist in the original work of [79]. We

run Model 4-A on a mean-normalized CIFAR-10 with Conv(3 × 3). The model achieves

accuracies of 95.89% and 95.64% with and without the use of dropout, respectively.

After that, we adopt the CC and SC components of Model 4-A to construct HyResNet

with the settings discussed below.

Model 4-B modifies Model 4-A by adding the unsupervised component to formu-

31

late a HyResNet. The added unsupervised component constructs from a sparsity and

Deconv(7 × 7) layers. We evaluate this model on mean-normalized CIFAR-10, and it

achieves an accuracy of 95.38%.

We evaluate Model 4-C on mean-normalized CIFAR-10. The unsupervised compo-

nent of Model 4-C compiles two DRBs. Each deconvolutional layer of the DRBs is pre-

ceded with a batch normalization and a ReLU. We test the model appending different

sequences of layers at the end of the UC as illustrated below:

1. Model 4-C1: sparsity, Deconv(7× 7) achieves an accuracy 95.88%

2. Model 4-C2: BN , sparsity, Deconv(7× 7) achieves an accuracy 95.6%

3. Model 4-C3: BN , ReLU , sparsity, Deconv(7× 7) achieves an accuracy 95.68%

4. Model 4-C4: ReLU , sparsity, Deconv(7× 7) achieves an accuracy 95.8%

Table 3.9: The performance of the Model 4-C variations on CIFAR-10. Every column is
a model. The layers are top-down (top one is the first layer in the model and so on). ∗ A
minibatch of size 64 is used.

Model 4-C1 Model 4-C2 Model 4-C3 Model 4-C4
The

Unsupervised
Component

Layers

BN BN
ReLU ReLU

sparsity sparsity sparsity sparsity
Deconv(7× 7) Deconv(7× 7) Deconv(7× 7) Deconv(7× 7)

Accuracy (%) 95.88% (95.59%∗) 95.6% 95.68% 95.8%

Table 3.9 summaries the performance of Model 4. Moreover, we experiment and re-

port Model 4-C1 with a minibatch sizes of 64 and 128 that achieve accuracies of 95.59%

and 95.88%, respectively. We also evaluate various kernel sizes of the deconvolutional

layers in the DRBs of Model 4-C1.

• When we use the shortcut connection as a Deconv(1× 1), the accuracy is 95.36%.

32

• The last deconvolutional layer uses Deconv(3× 3). The accuracy is 95.39%.

• The first deconvolutional layer in each DRB is Deconv(3× 3). The accuracy is 95.4;

• The shortcut connection is Deconv(1× 1) and the first deconvolutional layer in each

DRB is Deconv(3× 3). The accuracy is 95.63%.

• The shortcut connection is Deconv(1 × 1). the first deconvolutional layer in each

DRB is Deconv(3 × 3) and the last deconvolutional layer uses Deconv(3 × 3). The

accuracy is 95.39%.

Finally, we evaluate Model 4-C1 with various kernel sizes of the last deconvolutional

layer. Table 3.10 shows the classification accuracy of each kernel size.

The deconvolutional component of Model 4-D constructs from two DRUs. Each DRU

comprises two DRB, where each deconvolutional layer of the DRBs is preceded with a

batch normalization and a ReLU. Then, one of the following sequences is appended to

the end of the UC and evaluated on a mean-normalized CIFAR-10.

1. The sequence of BN , ReLU , sparsity, and Deconv(7× 7). The classification accu-

racy is 95.68%.

2. The sequence of sparsity, and Deconv(7×7). The classification accuracy is 95.39%.

The UC of Model 4-E is constructed from three DRUs units, where each DRU com-

prises two DRBs. Each deconvolutional layer of the DRBs is preceded with a batch nor-

malization and a ReLU. The sequence of the layers BN , ReLU , sparsity, and Deconv(7×

7) is appended at the end of the UC. This model achieves a classification accuracy of

95.47% on a mean-normalized CIFAR-10.

33

Figure 3.1: The standard structure of a Hybrid Residual Network Model (HyResNet) with
the three main components: (a) Convolutional component (CC), (b) Supervised compo-
nent (SC) and (c)Unsupervised component(UC)

Table 3.10: We evaluate the Model 4-C1 with various kernel sizes for the last deconvolu-
tional layer on mean-normalized CIFAR-10.

kernel size Accuracy (%)
Deconv(3× 3) 95.39
Deconv(5× 5) 95.56
Deconv(7× 7) 95.88
Deconv(9× 9) 95.52
Deconv(11× 11) 95.61

34

Figure 3.2: The convolutional component of Model 4. (HyResNet 22-4)

35

0 50 100 150 200
Epoch Number

30

40

50

60

70

80

90

100

A
cc

u
ra

cy
 (

%
)

Model 1-A (Supervised version) (Best Acc. 91.82%, Epoch 164)

Model 1-C (Best Acc. 92.69%, Epoch 193)

Figure 3.3: A comparison of CNN model Model 1-A and the HyResNet Model 1-C. The
figure shows the performance of the models with a kernel size of (3×3) across all epochs
on CIFAR-10.

36

0 50 100 150 200
Epoch Number

30

40

50

60

70

80

90

100

A
cc

u
ra

cy
 (

%
)

Model 1-F (Supervised version) (Best Acc. 92.11%, Epoch 168)

Model 1-D, conv5x5, [deconv:11x11] (Best Acc. 92.55%, Epoch 175)

Model 1-E, conv3x3, [deconv:7x7] (Best Acc. 92.61%, Epoch 166)

Figure 3.4: A comparison of Model 1 variations. Model 1-F is a CNN model with a kernel
size of (5 × 5). The figure shows the accuracies of each model across all epochs on
CIFAR-10.

37

0 50 100 150 200
Epoch Number

30

40

50

60

70

80

90

100

A
cc

u
ra

cy
 (

%
)

Model 2 - Supervised version (Best Acc. 93.86%, Epoch 176)

Model 2-C (Best Acc. 94.04%, Epoch 173)

Model 2-F (Best Acc. 94.03%, Epoch 163)

Figure 3.5: A comparison of the best HyResNet Model 2 configurations on CIFAR-10.

38

0 50 100 150 200
Epoch Number

30

40

50

60

70

80

90

100

A
cc

u
ra

cy
 (

%
)

Model 3 - Supervised version (Best Acc. 94.97%, Epoch 187)

Model 3-B (Best Acc. 95.03%, Epoch 172)

Model 3-C (Best Acc. 95.03%, Epoch 185)

Figure 3.6: A comparison of the best performing variations of Model 3. The results are on
CIFAR-10.

39

Figure 3.7: HyResNet Model 4 architectural design. The figure shows the (a) supervised
component with the layers of MaxPooling ⇒ Linear ⇒ Softmax and (b) unsupervised
component with two DRUs with a DRB each. The DRBs are with 128 and 64 feature maps,
respectively.

40

0 50 100 150 200

Epoch Number

55

60

65

70

75

80

85

90

95

100

A
cc

u
ra

cy
 (

%
)

Different Kernel Sizes of the last Deconvolutional Layer

Deconv (9 x 9)(Best Acc. 95.52%)

Deconv (11 x 11)(Best Acc. 95.61%)

Deconv (3 x 3)(Best Acc. 95.39%)

Deconv (5 x 5)(Best Acc. 95.56%)

Deconv (7 x 7)(Best Acc. 95.8%)

Figure 3.8: Compares the various settings of Model 4-C1 with various kernel sizes of the
last deconvolutional layer for a mean-normalized CIFAR-10.

41

In Model 4-F, the unsupervised component uses two DRBs. Each deconvolutional

layer of the DRBs is preceded with batch normalization and ReLU. Then, we move the

layers BN and ReLU from the beginning of the second DRB and place them before the

beginning of the block and after the CC fork. Therefore, the input for both the shortcut

and the connection is normalized then passed through a ReLU . After that, we append

the layers sparsity and Deconv(7 × 7) to the end of the UC. We evaluate this model on

mean-normalized CIFAR-10, and the classification accuracy is 95.56%.

3.3.5 The Effects of Dropout

Dropout in Convolutional Component

We use Model 4-H to investigate the effects of various dropout ratios. We evaluate this

model twice with the dropout ratios of 0.3, and 0.5. This dropout applies to the convolu-

tional components only, and we do not use any dropouts in the unsupervised component.

The unsupervised component of this model uses two DRBs. Each deconvolutional

layer of the DRBs is preceded with a batch normalization and a ReLU. Then we append

the layers sparsity and Deconv(7× 7) to the end of the UC. The accuracies of 0.3 and 0.5

dropout on a mean-normalized CIFAR-10 are 95.69%s 94.71%, respectively.

Dropout in both Convolutional and Unsupervised Components

In Model 4-I, we apply a dropout ratio of 0.3 to both the convolutional and unsuper-

vised components. In this model, the unsupervised component uses two DRBs. Each

deconvolutional layer of the DRBs is preceded with batch normalization and ReLU. We

then append sparsity and Deconv(7 × 7) to the end of UC. The evaluation of this model

42

on a mean-normalized CIFAR-10 achieves a classification accuracy of 95.63%.

Dropout or Sparsity in the Unsupervised Component

Model 4-J1 is similar to Model 4-I except that there is no dropout in the convolutional

component. This method achieves an accuracy of 95.33%

Model 4-J2 is the same as Model 4-J1 but we replaced the dropout in the unsuper-

vised component with sparsity layers. The method achieves a classification accuracy of

95.75%.

Model 4-J3 is the same as Model 4-J1 except that we replace the batch normalization

layers in the DRBs with dropout layers. The accuracy is 95.58%

The unsupervised component of Model 4-K uses three DRBs, where the first block

maintains the same input number of features maps and input signal sizes. Each deconvo-

lutional layer of the DRBs is preceded with a batch normalization and a ReLU. The layers

sparsity and Deconv(7×7) are appended at the end of the UC. The accuracy of the model

with a dropout is 95.51%.

3.3.6 The Effects of Batch Normalization

The unsupervised component of Model 4-L uses two DRBs. We removed the batch

normalization from the deconvolutional component. Each deconvolutional layer of the

DRBs is preceded with ReLU. After that, we evaluate one of the following scenarios by

appending a sequence of layers to the end of the UC.

1. The sequence of layers ReLU , sparsity, and Deconv(7×7) achieves an accuracy of

95.59%.

43

2. The sequence of layers sparsity and Deconv(7×7) achieves an accuracy of 95.62%.

3.3.7 The Unsupervised Component: Deconvolutional Layers

In this family of models we use the unsupervised component as a sequence of de-

convolutional layers. The deconvolutional layers aim to reconstruct the original input.

Figure 3.9 shows an example of (a) a supervised component of a HyResNet Model 4 and

(b) an unsupervised component composed of three deconvolutional layers. Table 3.11

shows the variations of the unsupervised component of Model 4-N, which were evalu-

ated on mean-normalized CIFAR-10. The four scenarios are summarized below.

• Model 4-N1: the sequence Deconv(2 × 2), BN , ReLU , Deconv(2 × 2), BN , ReLU ,

sparsity, and Deconv(7× 7) achieves an accuracy of 95.76%.

• Model 4-N2: the sequence Deconv(2×2), BN , ReLU , Deconv(2×2), BN , sparsity,

and Deconv(7× 7) achieves an accuracy of 95.65%.

• Model 4-N3: the sequence Deconv(2 × 2), ReLU , Deconv(2 × 2), ReLU , sparsity,

and Deconv(7× 7) achieves an accuracy of 95.42%.

• Model 4-N4: the sequence Deconv(2× 2), BN , ReLU , Deconv(2× 2), sparsity, and

Deconv(7× 7) achieves an accuracy of 95.42%.

Model 4-O is similar to Model 4-N1 except that we apply a dropout of 0.3 in the con-

volutional component. This model achieves an accuracy of 95.53%.

44

Figure 3.9: The architectural details of the HyResNet Model 4. The figure shows that (a)
the supervised component is constructed with the sequence of MaxPooling ⇒ Linear ⇒
Softmax and (b) the unsupervised component with two up-sampling, 128 and 64 feature
maps, respectively.

Table 3.11: Model 4-N variations. Every column is a model. The layers are top-down (top
one is the first layer in the model and so on).

Model 4-N1 Model 4-N2 Model 4-N3 Model 4-N4

The
Unsupervised
Component

Layers

Deconv(2× 2) Deconv(2× 2) Deconv(2× 2) Deconv(2× 2)
BN BN BN

ReLU ReLU ReLU ReLU
Deconv(2× 2) Deconv(2× 2) Deconv(2× 2) Deconv(2× 2)

BN BN
ReLU ReLU

sparsity sparsity sparsity sparsity
Deconv(7× 7) Deconv(7× 7) Deconv(7× 7) Deconv(7× 7)

Accuracy (%) 95.76% 95.65% 95.42% 95.42%

45

3.3.8 The Effects of the Preprocessing Methods

We compare the performance of HyResNet Model 4-C1 after three different prepro-

cessing methods were employed. All experiments are evaluated on CIFAR-10. Each

model is evaluated with 0.3 dropout and then without a dropout. Table 3.12 summarizes

the results.

Table 3.12: The effects of various preprocessing methods on the performance of the
proposed HyResNet Model 4-C1 employed on CIFAR-10. Moreover, it shows the impact
of dropout in the convolutional component.

Preprocessing Accuracy (%)
No Dropout Dropout

Mean 95.64% 95.89%
Mean/Std 95.55% 95.48%
ZCA Whitening 95.04% 95.23%

The results show that HyResNet achieves the best performance when the data is pre-

processed by subtracting the means of the RGB channels with and without dropout with

accuracies of 95.89% and 95.64%, respectively. Furthermore, when dropout is employed,

HyResNet shows a better performance than removing the dropout.

3.3.9 Model 5 Variations

We adopt the WRN 40-10 structure to construct our HyResNet 40-10 model. The accu-

racy of HyResNet 40-10 on mean-normalized CIFAR-10 without dropout is 96.32. Further-

more, this model learns 62.1M parameters. Table 3.13 shows the results.

The unsupervised component of WRN 40-10 is constructed with two DRBs, where each

deconvolutional layer in the DRB is preceded with a batch normalization and a ReLU. The

UC ends with the layers sparsity and Deconv(7× 7).

46

Table 3.13: The error rate (%) of the Models 5 & 6 on mean-normalized CIFAR-10. ∗ as
reported by [79] on mean/std normalization. ∗∗ The original paper [79] did not report a
result.

Dropout No Dropout

Model 5 (40-10) CNN 96.2%∗ −∗∗
HyResNet 96.34% 96.16%

Model 6 (28-10) CNN 96.11%∗ 96%∗

HyResNet 96.06% 95.97%

3.3.10 Model 6 Variations

We adopt the WRN 28-10 to construct our HyResNet 28-10. We evaluated WRN 28-10

with and without dropout. WRN 28-10 learns 42.7M parameters. We named the mod-

els with dropout as Model 6-A and the ones without dropout as Model 6-B. Table 3.13

shows the model performance on CIFAR-10. The unsupervised component of the model

HyResNet 28-10 is constructed from two DRBs. Each deconvolutional layer of the DRBs

is preceded with a batch normalization and ReLU. Additionally, the layers sparsity and

Deconv(7 × 7) are appended at the end of the UC. We evaluated on mean-normalized

CIFAR-10 3.13. We achieved accuracies of 96.06% and 95.97% for Model 6-A and Model

6-B, respectively.

3.4 Conclusion

We proposed the Hybrid Residual Network Method (HyResNet). HyResNet utilizes

the power of both supervised and unsupervised learning in a single supervised model.

We conducted an empirical study to measure the efficacy of the proposed HyResNet

on visual object recognition tasks using the benchmark datasets CIFAR-10 and CIFAR-

100. We evaluated HyResNet in various configurations and settings. HyResNet achieved

comparable results to the state-of-the-art methods on CIFAR-10 with a classification error

47

Table 3.14: A summary of state-of-the-art supervised neural network methods perfor-
mance on classifying the datasets CIFAR-10 and CIFAR-100. 1 We implemented and ran
because it was not available in the original paper. 2 Normalized with mean/std, 3 summary
of our best results.

Test Error
Rate (%)

CIFAR-10 CIFAR-100

Method Dim
of

param. Dropout
No

Dropout Dropout
No

Dropout
Network in Network [46] 8.81% 35.68%
FitNet [60] 19 2.5M 8.39% 35.04%
Deeply-Supervised

Nets. [45] 2.5M 7.97% 34.57%
Highway Networks [73] 19 2.3M 7.76% 32.39%
All-CNN [71] 11 1.4M 9.08%
ELU [13] 18 6.55% 24.28%

Residual Networks

Deep ResNet [27] 110 1.7M 6.43% 25.16%
1202 10.2M 7.93% 27.82%

Pre ResNet [28]
110 1.7M 6.37%
164 1.7M 5.46% 24.33%
1001 10.2M 4.92(4.64)% 22.71%

Stochastic Depth
ResNet [34]

110 1.7M 5.23% 24.58%
1202 10.2M 4.91%

ResNet of ResNet [76] 58− 4 13.3M 3.77%
DenseNet-BC (k=40) [33] 190 25.6M 3.46% 17.18%

Wide ResNet [79]
40− 4 8.9M 4.53% 21.18%
40− 10 56.0M 3.8% 18.3%
16− 8 11.0M 4.27% 20.43%
28− 10 36.5M 3.89% 4.00% 18.85% 19.25%
22− 41,2 4.3M 4.52% 4.45%

HyResNet (ours)3
22− 4 5.3M 4.31% 4.12% 22.06%
40− 10 62.1M 3.71% 3.68% 18.85%
28− 10 42.7M 3.94% 4.03%

48

rate of 3.68%. Furthermore, HyResNet achieved comparable results on CIFAR-100. Ta-

ble 3.14 compares the HyResNet results with the state-of-the-art results in the literature

on the two aforementioned benchmark datasets.

49

CHAPTER 4 DEEP SEMI-SUPERVISED LEARNING

4.1 Introduction

Deep learning methods are among the best methods addressing various machine

learning problems including object recognition, classification, and image segmentation.

For example, CNNs have demonstrated great performance in handling computer vision

problems, specifically the visual object classification tasks [41]. In particular, a key to

the success of supervised deep learning methods is the availability of a sufficiently large

labeled training data [11]. Unfortunately, creating a sufficiently large labeled training data

with enough examples for each class (e.g., ImageNet [62], COCO [47], VGGFace2 [8])

is not an easy task. This task is time-consuming, expensive, susceptible to noise and

mislabeled [38] examples, and requires experienced human effort. On the other hand,

unlabeled data is easily available and inexpensive to collect. For example, a dataset

of unlabeled images can be collected from online publicly available resources such as

webpages and videos. Therefore, there has been a recognizable advance in exploiting

the available large unlabeled data alongside with the limited labeled data to enhance the

performance of deep learning methods.

Unlabeled data can be used to pre-train and initialize model parameters to achieve

superior performance over random initialization. In turn, this pre-training can help reduce

the total number of training epochs. In particular, Glorot et al. [21] introduced a smart ran-

dom initialization to achieve superior performance in a smaller number of epochs without

requiring any pre-training.

Generally speaking, supervised deep learning methods (e.g., CNN) learn class-specific

sets of features whereas unsupervised deep learning methods (e.g., AE) learn general

50

detailed features [4]. Given the relative strengths of each approach, methods to combine

both approaches have been forthcoming. Recently, several approaches were developed

to combine supervised and unsupervised learning methods into a single model. Hinton

et al. [29] proposed the use of unsupervised learning as a pre-training step for a super-

vised model. In other approaches [59, 58, 69, 23], supervised and unsupervised learning

methods were combined into a single model and trained simultaneously. Moreover, other

methods [10] used an unsupervised method to extract a general set of features that was

later used to train a supervised model.

Self-training [56] is a semi-supervised learning (SSL) method that utilizes the access

to large number of unlabeled examples and limited number of labeled data. Self-training

has been proven to be promising in many machine learning applications [81]. However,

it showed a few shortcomings: e.g., (1) its performance may fluctuate due to the fact that

some unlabeled instances will remain unlabeled during the training phase; (2) its accu-

racy may be deteriorated because erroneous predictions will lead to adding mislabeled

instances; this is especially true when the size of labeled data is small. Furthermore, the

performance of self-training methods also depends on other factors such as the character-

istic of data and confidence measures for adding instances during training: an erroneous

confidence measure often leads to mislabeled instances being added to the labeled set.

In this chapter [26], we combine the strengths of both supervised and unsupervised

neural networks into a single deep semi-supervised learning method (DSSL). DSSL ex-

ploits the availability of large-scale unlabeled data in conjunction with limited labeled data

to learn both generic features (unsupervised) and discriminative features (supervised). It

then combines the generic and discriminative features into a single set of features. DSSL

51

utilizes the state-of-the-art ResNet methods [27, 28, 79] to construct a residual-based

convolutional component. This convolutional component then forks into two branches.

The first branch is a supervised one ending with a supervised loss function. The second

branch uses a new residual deconvolutional component ending with an unsupervised loss

function. A DSSL model accepts a large number of unlabeled examples and a few labeled

examples for training. The number of labeled examples can be as small as 5% of the over-

all input data. Some applications can tolerate even a smaller percentage of labeled train-

ing examples. As such, DSSL aims to reduce curating large labeled training data to only

a few labeled examples while maintaining a high performance. This in turn helps reduce

the overall cost and time needed. Furthermore, it aims to reduce the effect of mislabeled

and noisy examples. Although DSSL is simple and easy to implement with existing ma-

chine learning libraries [37, 16, 1], it achieves state-of-the-art performance. Empirically,

we show DSSL achieves state-of-the-art performance on several semi-supervised tasks.

4.1.1 Contribution

The primary contribution of this chapter is a semi-supervised learning method using

the self-training ideas. The architecture of the proposed method combines the strengths

of both supervised and unsupervised neural networks into a single semi-supervised deep

learning method which we refer as DSSL. DSSL exploits the availability of large-scale

unlabeled data in conjunction with limited labeled data to learn both generic features (un-

supervised) and discriminative features (supervised) in a self-training fashion. To the best

of our knowledge, the proposed method trained in the proposed procedure is among the

first of its kind. The novelty of the proposed method is a generalization of self-training,

52

but differs standard self-training in three-fold: (1) The network architecture branches into

two parallel tracks after the input goes through a series of deep convolutional blocks. One

track is trained for the classification and the other is trained in an autoencoder fashion.

The gradient from each track is aggregated and back-propagated to the initial deep con-

volutional unit. (2) The training algorithm uses a self-training to assign labels to all of the

unlabeled samples and employs them later in the next epoch in the supervised training of

the model. (3) The proposed method utilizes every example, both labeled and unlabeled,

with both supervised and unsupervised methods.

4.1.2 Problem Formulation.

The goal in a classical supervised learning framework is to learn a decision modelM

from n available training examples. The training examples are denoted by Dn, where n is

the total number of training examples in D. We denote a training example (e.g., image)

by xi ∈ Rd, where i ∈ {1, . . . , n}. Also, we denote the class label of xi by yi ∈ {1, . . . , C},

where C is the total number of different classes in Dn. In general, the training dataset is

represented by Dn = {(xi, yi)}ni=1.

In SSL settings, the decision model is learned when the labels of a limited subset of

Dn are available. The labeled subset of l examples is denoted by Dl, where Dl ⊂ Dn. The

labels of the remaining u examples are not available. The unlabeled data is denoted by

Du, where Du ⊂ Dn and u = n− l. Consequently, the training data in a SSL framework is

denoted by Dn = {Dl ∪ Du}.

In particular, we employ self-training method, which is one of the common classes of

SSL [81]. Self-training methods are iterative algorithms, where a model M is learned

53

from the available labeled subset Dl first. Then, the learned modelM is used to predict

labels for the unlabeled subset Du. The predicted labels with confidence scores more

than a predefined confidence threshold p are retained and used in future steps. After that,

the modelM is retrained on the combined labeled and predicted data. This procedure is

repeated until meeting a stop condition.

4.2 Related Work

A variety of approaches to develop semi-supervised learning methods to learn from

large unlabeled data with a restricted number of labeled examples have been under-

taken [81]. In fact, a major focus of current research is to achieve semi-supervised method

performance comparable to the performance of state-of-the-art supervised methods.

The applications of self-training method include various machine learning problems

such as natural language processing [51] and object detection [61]. One common problem

of the self-training methods is that they are prone to error and poor prediction which can

delude the model. The common solution to the problem caused by poor prediction is to

set a predefined confidence threshold for using the labels with the confident score more

than the threshold in each iteration. DSSL is a self-training semi-supervised method that

considers standard prediction method. It predicts and uses the labels for all unlabeled

data without any thresholds. The DSSL architecture and training procedure overcome the

self-training problem of poor prediction. In the remaining part of this section, we focus on

semi-supervised deep learning methods closely related to our proposed method.

Sajjadi et al. [64] proposed a transform/stability semi-supervised loss function that re-

lies heavily on a learning model generating different outputs every time it is evaluated. The

variations in output stem from different sources of randomization within the model such

54

as dropout [72] and augmentation. In the approach of Sajjadi et al. [64], each minibatch

passes n times through heavy augmentation and model evaluation during training. The

loss term is calculated as the sum of all pairwise mean squared distances between the n

outputs. Additionally, they utilize a mutual-exclusivity supervised loss term [63]. The com-

putational cost of evaluating the transform/stability loss function during training increases

linearly as a function of the number of evaluations n. In the approach of Laine et al. [42],

they presented Π-model, a temporal self-ensembling semi-supervised method, which is a

special case of the transform/stability semi-supervised loss function of Sajjadi et al. [64]

with n = 2. Our DSSL differs from the previous methods by employing supervised and

unsupervised loss functions in a single model and evaluating the model on each train-

ing example only once for each epoch. This helps DSSL achieve superior computational

efficiency as the number of evaluations is constant for each epoch.

Rasmus et al. [59] introduced the Γ-model, a subset of the ladder networks [78] that

employed an encoder-decoder network architecture to tackle the semi-supervised learn-

ing problem. In the Γ-model, all ladder connections excluding the highest one are dis-

carded. The highest connection is then used to construct two parallel, identical branches.

One branch takes the original training input whereas the second branch accepts a noisy

copy of the original training input. In this method, the unsupervised loss term is calcu-

lated as the squared difference between the pre-activation output of both noisy and clean

branches. Our DSSL differs from the Γ-model by using one branch that splits into two su-

pervised and unsupervised branches. In DSSL, a clean input passes through the network

only once. Here, the unsupervised loss term is the mean squared difference between the

the original training input and the corresponding output of the unsupervised branch. Fur-

55

thermore, DSSL classifies the unlabeled data every other epoch and uses the predicted

labels to train the next epoch using both the supervised and unsupervised loss functions.

This approach differs from the one proposed by Rasmus et al. [59], which uses only the

unlabeled data with the unsupervised loss function.

Tarvainen et al. [77] proposed a technique to improve the semi-supervised learning

methods that averages the weights of deep neural networks after each iteration as op-

posed to each epoch[42] to better predict labels. Here, the consistency loss function was

used to estimate the distance between what they called a "student" model and a weight-

averaged model called a "teacher" model.

Finally, Generative Adversarial Networks (GANs) [24] have been employed in various

semi-supervised models [50, 70, 65, 39]. GANs learn generative models using game

theory. In general, GANs set up a game between a generator and a discriminator. The

discriminator is trained on a set of images. The generator creates images, which are

assumed to come from the same distribution as the training images. The discriminator

has to discriminate between fake and real images using a supervised loss function. The

final goal of the generator is to deceive the discriminator. In the spirit of Generative

Adversarial Networks, Salimans et al. [65] proposed a discriminative GAN model to tackle

the semi-supervised problem.

4.3 Method

We name the DSSL models following the same naming scheme introduced by Zagoruyko

et al. [79]. The name of a DSSL model shows the overall number of convolutional layers

and the widening factor. The widening factor determines the number of feature maps in

each layer.

56

DSSL is constructed from three components (Fig. 4.1 and Table 4.1). (a) A Con-

volutional Component (CC) consisting of sequence of deep convolutional blocks. (b) A

Supervised Component (SC) comprising an average pooling layer, a linear layer, and a

supervised loss function. We employ a supervised loss function that combines the nega-

tive log likelihood of softmax. The supervised loss function is described as:

lossCE(zsc, y) = −
∑

j

log

(
ezscj [yj]∑
i e
zscj [i]

)
. (4.1)

where j is the example number in a minibatch b, zscj is the output of the SC, which is a

vector with a score for each class, yj is the index of the target class of the example j.

(c) An Unsupervised Component (UC) comprising a sequence of deconvolutional blocks

followed by a sparsity layer, a deconvolutional layer, a Tanh layer, and finally an unsuper-

vised loss function. The unsupervised loss function measures the mean squared error

between the original input and the output of the UC, which is defined as:

lossMSE(zuc, b) =
∑

k

||zuck − bk||22. (4.2)

where b is an input minibatch to the model, bk is the kth example (e.g., image) in b, and zuc

is the output of the UC.

The convolutional component includes the following sequence. A single convolutional

layer with a kernel size of (3 × 3). This convolutional layer accepts the original data

as input (e.g., images) and produces an output of the same height and width as the

input. Furthermore, the produced output has 16 feature maps. The convolutional layer

57

is followed with three convolutional residual units (CRUs). Each CRU is assigned to an

initial number of features. The initial number of the feature maps for the three CRUs in

a DSSL are 16, 32 and 64, respectively. The final number of feature maps of each CRU

is the widening factor times the predefined constant factor of that CRU. Consequently,

the number of feature maps for the three CRUs of DSSL 22-4 are 64 (4 × 16), 128 (4 ×

32), and 256 (4 × 64), receptively. A CRU in DSSL is constructed from a sequence of

convolutional residual blocks. The convolutional residual block is constructed from two

parallel branches: a residual branch and a shortcut branch. The residual branch consists

of two convolutional layers, each with kernel size (3 × 3). Each convolutional layer is

succeeded with a batch normalization and a ReLU. The shortcut branch passes the same

input signal (identity).

The first CRB in a CRU increases the number of feature maps (FMs) of its input and

reduces the width and height. For example, assuming that the input size to the CRU1 is of

the size (32× 32) and 16 feature maps, the first CRB of the CRU1 reduces the input size

to (16× 16) and increases the number of FMs to 64. All other CRBs in the CRU preserve

the same input size and number of FMs.

The supervised component (SC) comprises two layers. An average pooling layer with

a region size of (8 × 8) and a stride of 1, and a linear layer (denoted by FC in Table 4.1).

Finally, the SC ends with a supervised loss function.

Generally speaking, a network constructed with a convolutional component (CC) fol-

lowed by a supervised component (SC) makes a wide residual network (WRN) proposed

by [79].

The unsupervised component (UC) in DSSL includes a sequence of two deconvolu-

58

Figure 4.1: The structure of DSSL with the three main components: (a) Convolutional
component (CC), (b) Supervised component (SC) and (c) Unsupervised component(UC).
We identify three main paths in DSSL. (1) The short-dashed line path shows the CC
followed by the SC, which can be viewed as a residual neural networks. (2) The dotted
line path shows the CC followed by the UC, which can be viewed as a convolutional
autoencoder. (3) The long-dashed line path, shows the CC forks to the SC and the UC.

59

tional residual units (DRUs), a batch normalization layer, a ReLU, a sparsity, a deconvo-

lutional layer with a kernel size of (7 × 7), a Tanh layer, and finally an unsupervised loss

function. Each DRU in DSSL is constructed from a single DRB block. The residual branch

of the DRB includes two deconvolutional layers with kernel sizes (4 × 4) and (3 × 3), re-

spectively. The shortcut branch is a deconvolutional layer with a kernel size of (2× 2) and

a stride of 2. The DRU reverses the CRU operations. In particular, a DRB reduces the

number of feature maps, and increases the width and height of input. For example, in

DSSL 22-4, the UC accepts an input of the width and height (8 × 8), and 256 FMs. The

first DRU creates output of (16× 16) and 128 feature maps.

The sparsity layer in UC can be any type of sparsity. DSSL utilizes the spatial sparsity

proposed by Makhzani et al. [49]. In the feed-forward, the spatial sparsity sets all of the

activation values in every feature map to zeros except the highest value is retained. Then,

the error is back-propagated through the non-zero units to update the model parameters.

Similar to [79], the total number of convolutional layers in a DSSL is determined by the

following formula:

m = 6c+ 4. (4.3)

where c is the number of CRB in a CRU, and m is the total number of convolutional layers.

For example, the DSSL 22-4 model includes 3 CRBs in each CRU. Therefore, it includes

22 convolutional layers.

A residual neural network compiles a sequence of residual blocks [27]. A residual

block is constructed from two parallel branches or connections (Fig. 2.2). We denote the

top branch as residual branch and the bottom branch as shortcut. In general, a residual

60

Table 4.1: The detailed architectures of the models DSSL 22-4 and 28-10.

Unit
Output

size DSSL 22-4 DSSL 28-10

CC

Conv1 (32× 32) [Conv(3× 3)]×1, 16 [Conv(3× 3)]×1, 16
CRU1 (32× 32) [CRB (3× 3)]×3, 64 [CRB (3× 3)]×4, 160
CRU2 16× 16) [CRB (3× 3)]×3, 128 [CRB (3× 3)]×4, 320
CRU3 (8× 8) [CRB (3× 3)]×3, 256 [CRB (3× 3)]×4, 640

SC [(8× 8) AveragePool, stride 1]⇒ FC

UC
DRU1 (16× 16) [DRB (4× 4),(3× 3)]×1, 128 [DRB (4× 4),(3× 3)]×1, 320
DRU2 (32× 32) [DRB (4× 4),(3× 3)]×1, 64 [DRB (4× 4),(3× 3)]×1, 160

BN⇒ ReLU⇒ Sparsity⇒ Deconv(7× 7) ⇒ Tanh

block is represented by the following formula:

xi = F(Wshortcut, xi−1) + G(Wresid−branch, xi−1). (4.4)

where xi−1 is the input to the residual block i, xi is the output of a residual block i that is

used as an input to the next component, F is the shortcut branch function and Wshortcut

are the shortcut branch parameters (weights), and G is the residual branch function and

Wresid−branch are the residual branch parameters (weights).

A residual branch includes at least one convolutional or deconvolutional [48] layer.

Each layer is preceded with a set of layers such as batch normalization and ReLU. The

shortcut can either be a skip connection that passes the same input signal (identity) or a

single convolutional / deconvolutional layer that samples the data. The join after the two

connections is an element-wise addition summing up the output of the branches. The out-

put of the join is then passed to the next component. We discriminate between two types

of residual blocks based on the use of convolutional or deconvolutional layers. A convolu-

tional residual block (CRB) uses a convolutional set of layers whereas a deconvolutional

residual block (DRB) uses deconvolutional layers.

61

Algorithm 2 The DSSL AlgorithmAlgorithm 1 The DSSL Algorithm
Require: D = training, Dl = labeled, and Du = unlabeled datasets.
Require: fcc, fsc and fuc = convolutional, supervised and unsupervised components, re-

spectively.
Require: lossCE and lossMSE = cross-entropy (supervised) and mean-squared error (unsu-

pervised) loss functions.
Require: gate = a split that decides which branches contribute to the model in every epoch.
1: for epoch_no ∈ [1,max_no_epochs] do
2: if epoch_no is Odd then
3: gate← on-off
4: D ← Dl

5: else if epoch_no == 2 then
6: gate← off-on
7: D ← {Dl ∪ Du}
8: else . The epoch_no is even AND > 2
9: gate← on-on

10: Classify Du and then update Du labels
11: D ← {Dl ∪ Du}
12: end if
13: for each minibatch b ∈ D do
14: wb ← fcc(aug(b))
15: if gate == on-on OR gate == on-off then
16: zsc ← fsc(wb)

17: lossCE(zsc, y)← −
∑

j

log

(
ezscj [yj]∑
i e

zscj [i]

)

18: end if
19: if gate == on-on OR gate == off-on then
20: zuc ← fuc(wb)

21: lossMSE(zuc, b)←
∑

k

||zuck − bk||22

22: end if
23: Update weights using SGD with momentum
24: end for
25: end for

1

62

The residual branch in DRB (Fig. 2.2) includes two deconvolutional layers with kernels

(4 × 4) and (3 × 3), respectively. Each deconvolutional layer is preceded with a batch

normalization and a ReLU. The shortcut branch includes a single deconvolutional layer

with a (2 × 2) kernel and a stride of 2. Similar to Zagoruyko et al. [79], a residual branch

of the CRBs includes a sequence of two (3 × 3) convolutional layers. Each convolutional

layer is preceded with a batch normalization and a ReLU. A dropout layer separates the

second convolutional layer from the previous ReLU layer.

We call a sequence of residual blocks of the same type (e.g., convolutional) and equal

number of feature maps (FMs) a residual unit (RU). The RU can be either a convolutional

residual unit (CRU) or a deconvolutional residual unit (DRU). The first residual block of

the RU changes the number of FMs and the input size. All following blocks within an RU

maintain the same number of FMs and data size. For instance, in a CRU, the first CRB

decreases the input size (e.g., from 32 to 16) and increases the number of feature maps

(e.g., from 64 to 128). Furthermore, in a DRU, the first DRB increases the input size (e.g.,

image size from 8 to to 16) and decreases the number of FMs (e.g., feature maps from

256 to 128).

DSSL is constructed from three components (Fig. 4.1). (a) A Convolutional Compo-

nent (CC) that includes a sequence of CRUs. (b) A Supervised Component (SC) com-

prising an average pooling layer, a linear layer and a softmax layer. (c) An Unsupervised

Component (UC) comprising of a sequence of DRUs followed by a sparsity layer, a de-

convolutional layer, a Tanh layer, and finally an unsupervised learning criterion. A model

constructed with a CC followed by an SC only is a ResNet. A model constructed with

a CC followed by a UC can be viewed as a convolutional autoencoder (Coanv-AE). In

63

this project, we construct our CC based on the Wide Residual Network proposed by

Zagoruyko et al. [79]. However, the CC can be replaced with any convolutional compo-

nent such as deep ResNet [27], VGG [68], and GoogLeNet [75].

DSSL implements a fork with a gate (Fig. 4.1) that joins the CC from one end with

the UC and SC from the other end. The gate is assigned one of three mode to decide

which active components to learn in the feed-forward as well as contributing to the model

in back propagation by directing the output of the convolutional component w to the right

components. The gate mode is updated only at the beginning of every epoch and does not

change until the beginning of the next epoch. If the gate mode is on-on, then in the feed-

forward a copy of the CC output w is directed to both the SC and UC simultaneously. In the

feed-backward, the gradients from both the SC and UC are back-propagated to update

the weights of both components, respectively. Finally, the gradients are summed up and

back-propagated to update the CC weights. All three components learn and contribute to

the model in this mode. In the on-off gate mode, the SC is on which means it learns and

contributes. The UC, on the other hand, is off and neither learns nor contributes to the

model. The final gate mode is the off-on mode where the SC is off and the UC is on.

4.3.1 DSSL Algorithm

A DSSL (Algorithm 2) accepts an input of a dataset D. D consists of labeled data DL,

unlabeled data DU , or both. Moreover, the labels of DL never change whereas the labels

of DU are initially assigned to random values. Training a DSSL model starts the first epoch

(t = 1) with mode of the gate = on-off and D = DL (short-dashed path in Fig. 4.1). This

step helps to learn CC and SC weights with all available labeled training data DL. After

64

the first epoch is completed, the mode of the gate is switched such that gate = off-on

and the dataset consists of D = DU ∪ DL. The second epoch (t = 2) is evaluated on

D = DU ∪ DL (the dotted line in Fig. 4.1). This epoch aims to learn UC weights using

all available training data regardless of the labels. In the third epoch (t = 3), the mode of

the gate is switched once more such that gate = on-off and D = DL. Then, the model

is evaluated to produce a supervised model Mt. After that, DSSL uses Mt to classify the

unlabeled dataset DU . These labels are saved and used accordingly in future epochs.

Next, the mode of the gate is switched back such that gate = on-on and D = DU ∪ DL.

It should be noted that this D now includes the new predicted labels from the previous

epoch. Then, DSSL is evaluated on D for the fourth epoch (t = 4) (long-dashed path in

Fig. 4.1). In this epoch, the supervised loss function uses the labels of both DL and DU .

The model then alternates between the steps of epochs t = 3 and t = 4 with gate modes

alternating between on-off and on-on until the maximum number of epochs is reached.

We study DSSL using various architectures and different settings of hyper-parameters.

We report the best performing models. For example, we study DSSL with convolutional

layer kernel (filter) sizes (3× 3), (5× 5), and (7× 7). DSSL attains the best performance

with a kernel size of (3 × 3). Therefore, all of the used models throughout this chapter

have kernel sizes of (3 × 3) unless specified otherwise. Moreover, we tested various

combinations of deconvolution layer kernel sizes with DSSL. Our experiments show that

selecting the right deconvolutional layer kernel size plays a significant role in determining

the overall performance of a DSSL model.

(1) First epoch (t = 1): gate = on-off and D = DL (short-dashed path).

65

(2) Second epoch (t = 2): gate = off-on and D = DU ∪DL (the dotted line).

(3) Third epoch (t = 3): gate = on-off and D = DL.

• This epoch produces a supervised model Mt.

• Use Mt to classify DU and save the new predicted labels.

(4) Fourth epoch (t = 4): gate =on-on and D = DU ∪DL (long-dashed path).

(5) The model repeats the epochs t = 3 and t = 4 until it the maximum number of

epochs.

4.3.2 Split Layer

The Input signal to the split layer includes also four dimensions zN×M×D×D2 ; where N

is the number of samples per minibatch, M is the number of input feature maps, D×D is

the size of each input the sample.

• The network Feed - Forward: The output z of the common part of the model is

copied twice to both branches (unsupervised and supervised).

• The network Feed - Backward: During back-propagation gradsup (gradients from

supervised branch) and gradunsup (gradients from unsupervised branch) add to each

other in element-wise fashion:

grad = gradsup + gradunsup. (4.5)

Then calculated grad back-propagates through the common part.

66

Figure 4.2: The DSSL model components (a) the supervised component with all layers
(left), (b) the unsupervised component with all layers (right).

67

Table 4.2: Details and statistics of the evaluated datasets. The part‡ shows the number of
unlabeled images. The size shows the width and heights of the images.

Dataset #Classes #Training #Testing Color Size
CIFAR-10 [40] 10 50K 10K X 32× 32
CIFAR-100 [40] 100 50K 10K X 32× 32
STL-10 [15] 10 5K (100K‡) 8K X 96× 96
MNIST [44] 10 60K 10K 28× 28
SVHN [54] 10 73,257 26,032 X 32× 32

4.4 Experiment

In this section, we empirically show the efficiency of DSSL on the benchmark datasets

CIFAR-10 [40], CIFAR-100 [40], STL-10 [15], SVHN [54], and MNIST [44]. Table 4.2

shows the statistics of the used datasets.

Experiment Setup

We train all models in this project from scratch and do not fine-tune any one of them.

Unless otherwise specified, all of our experiments adopt the protocols used by Zagoruyko

et al. [79]. For every dataset, we report the mean and standard deviation (mean ± std.)

of the classification error rates. For each dataset, we generate multiple random partitions

consisting of different ratios of labeled/unlabeled data. These error rates are calculated

by taking the average and standard deviation of error rates of the random partitions. The

state-of-the-art results are provided in the tables using a boldface font.

Unfortunately, the state-of-the-art residual network models use a massive number

of parameters which require several days of continuous training on powerful machines

equipped with multiple GPUs and a huge amount of RAM. For example, the state-of-the-

art WRN model [79] (named in the original paper as WRN-40-10) that achieved the best

results on CIFAR-10 uses 56M parameters. Therefore, we constructed our DSSL with a

68

fairly medium sized CC.

We limit preprocessing to the following steps only. For CIFAR-10 and CIFAR-100, we

divide the images by 255 to scale them to the range of [0, 1]. We then subtract the means

of the RGB channels. We normalize STL-10 by subtracting the means and dividing by

the standard deviation of the channels. We normalize SVHN and MNIST by dividing the

images by 255 to scale it in the range [0, 1]. We do not apply aggressive augmentation.

Instead, we only apply the standard augmentation presented by Lee et al. [45] on CIFAR-

10, CIFAR-100 and STL-10. This includes random horizontal flips and random crops after

padding each side of the image by 4 pixels. For the SVHN and MNIST datasets, we only

take random crops after padding each side of an image by 4 pixels each.

In all of our experiments, we use a minibatch size of 128 images except for the STL-10

experiments. For the STL-10 experiments we use a minibatch size of 32 since for this

dataset the image sizes are large. We train our networks using SGD with Nestrov mo-

mentum. We also employ the cross-entropy and mean squared error for the supervised

and unsupervised loss, respectively. DSSL shows the best performance when we use

dropout [30] and batch normalization [36]. Furthermore, we employ the rectified linear

units (ReLU) activation function [52]. Moreover, we find that turning off biases in all lay-

ers leads to better performance. Therefore, we turn off biases in all of our experiments.

We initialize all layers with the method introduced by Glorot et al. [21]. We run the ex-

periments in two settings. First, CIFAR-10, CIFAR-100, STL-10, and MNIST experiments

are evaluated for 320 epochs. In this situation, the learning rate starts at 0.1 and then

decreases after at epochs 120, 240 and 280 at a rate of 0.2 with a dropout of 0.3. Second,

the SVHN experiments are evaluated for 280 epochs with a starting learning rate of 0.01.

69

The learning rate decreases at epochs 160 and 240 at a rate of 0.1 with a dropout of 0.4.

We study DSSL using various architectures and different settings of hyper-parameters.

We report the best performing models. For example, we study DSSL with convolutional

layer kernel (filter) sizes (3× 3), (5× 5), and (7× 7). DSSL attains the best performance

with a kernel size of (3 × 3). Therefore, all of the used models throughout this project

have kernel sizes of (3 × 3) unless specified otherwise. Moreover, we tested various

combinations of deconvolutional layer kernel sizes with DSSL. Our experiments show that

selecting the right deconvolutional layer kernel size plays a significant role in determining

the overall performance of a DSSL model.

4.4.1 CIFAR-10

The CIFAR-10 dataset consists of 60, 000 RGB images of size 32 × 32 pixels. The

dataset is divided evenly into 10 different classes. Furthermore, it is available in two pre-

defined parts that we adopt hereafter in our experiments. These parts consist of 50, 000

and 10, 000 examples used for training and testing, respectively. Figure 4.3 shows a sam-

ple from CIFAR-10 dataset.

We preprocess CIFAR-10 by dividing images by 255 to shift them to the range of [0, 1].

Then, we subtract the means of RGB channels. We use the means 0.49, 0.48, and 0.45

for red, green and blue channels, respectively.

We create five labeled datasets with 4, 000 labeled examples each. We construct

each dataset by randomly selecting 400 examples per class from the CIFAR-10 training

dataset (i.e., DL). We retain their actual labels and then treat the rest of the training

data as unlabeled (i.e., DU). We evaluate DSSL 22-4 once on each dataset. Moreover,

70

Table 1: Sample from CIFAR 10 dataset.
Airplane Automobile bird Cat Deer Dog Frog Horse Ship Truck

1

Figure 4.3: Sample from CIFAR-10 dataset. CIFAR-10 compiles images from 10 different
classes. All images are colorful and of the size 32× 32.

71

we repeat the previous steps to construct and evaluate five other labeled datasets on

DSSL 22-4, each consisting of 8, 000 labeled examples. Finally, we use all of the available

training dataset as both labeled and unlabeled data and evaluate DSSL 22-4 five times

(Table 4.3). We also use one 4, 000 labeled dataset from CIFAR-10 to evaluate a large

DSSL 28-10 model for one time. It achieves an error rate of 9.77% and is within 1.06% of

the overall performance improvement on the medium DSSL 22-4. Moreover, we compare

the performance of a fully supervised WRN 22-4 CNN model using training data consisting

of 4, 000 labeled examples that we run one time with our DSSL 22-4. WRN 22-4 achieves

error rate of 20.81% 1 compared to our DSSL that achieves an error rate of 10.83%.

Table 4.3: Test results on CIFAR-10 and CIFAR-100. DSSL 22-4 results show the mean
and standard deviation of the classification error rate (mean ± std.). We evaluate DSSL
28-10 once.
Method CIFAR-10 CIFAR-100

4,000
labels

8,000
labels

All
labels

10,000
labels

All
labels

Γ-model [59] 20.40± 0.47
Conv-CatGAN [70] 19.58± 0.58 9.38
Improved GAN [65] 18.63± 2.32 17.72± 1.82
Ensemble GAN [65] 15.59± 0.47 14.87± 0.89
Π - model [42] 12.36± 0.31 5.56± 0.10 39.19 ± 0.36 26.32 ± 0.04
TE [42] 12.16± 0.31 5.60± 0.10 38.65 ± 0.51 26.30 ± 0.15
WAC [77] 12.31± 0.28 5.56± 0.03
Sajjadi et al. [64] 11.29± 0.24 21.43 ± 0.16
DSSL 22-4 10.83 ± 0.4 8.73± 0.24 4.56 ± 0.08 33.08 ± 0.23 22.4 ± 0.24
DSSL 28-10 9.77 30.26 18.33

Table 4.4: The effect of augmentation and dropout on DSSL 22-4 on top of 4K labeled
training examples from the CIFAR-10 dataset.

Dropout Augmentation Error Rate (%)
X X 10.83%

X 11.4%
X 16.96%

24.49%

1We evaluate WRN 22-4 CNN using the training dataset consisting of 4, 000 labeled examples once. We
run this experiment ourselves as the result is not available in the original paper.

72

Table 4.5: The mean and standard deviation (mean ± std.) of the classification error rates
on STL-10.

Method 1,000 labels All labels
Exemplar CNN [19] 27.2 ± 0.4
Huang et al. [32] 23.2 ± 0.3
CC-GAN [18] 22.21 ± 0.8
SCI [31] 18.66 ± 0.1
DSSL 22-4 19.88 ± 1.35 10.69 ± 0.09

Additionally, we evaluate the effect of dropout and augmentation on DSSL 22-4 on

one 4, 000 labeled CIFAR-10 dataset. We run every combination of enabling/disabling

dropout and augmentation as an experiment with a dropout of 0.3. When we disable

both dropout and augmentation, DSSL 22-4 achieves an error rate of 24.49%. The error

rate decreases to 16.96%, when we enable dropout and disable augmentation. When

we disable dropout while keeping augmentation the error rate decreases even further to

11.4%. Finally, DSSL 22-4 achieves the best error rate of 10.83%, when we enable both

dropout and augmentation. From these results, we see that the augmentation has more

effect than dropout on DSSL, but it benefits from having them both enabled.

Table 4.4 shows the effect of augmentation and dropout on DSSL on a dataset from

CIFAR-10 dataset with 4,000 labeled examples. We run each experiment once.

4.4.2 CIFAR-100

Similar to CIFAR-10, CIFAR-100 is a collection of 60, 000 images with size 32 × 32

pixels. However, CIFAR-100 includes 100 classes compared to the 10 classes found in

CIFAR-10. This creates the challenge of having a large number of classes with a smaller

number labeled examples per class. In our experiments, we adopt the two publicly avail-

able parts of CIFAR-100, namely the 50, 000 and 10, 000 examples for training and testing,

73

Table 1: Sample of CIFAR100 images with coarse classes.

Aquatic
mammals

Fish

Flowers

Food
containers

Fruit and
vegetables

Household
electrical devices

Household
furniture

Insects

Large
carnivores

Large man-made
outdoor things

Large natural
outdoor scenes

Large omnivores
and herbivores

Medium-sized
mammals

Non-insect
invertebrates

People

Reptiles

Small
mammals

Trees

Vehicles 1

Vehicles 2

2
Figure 4.4: Sample from CIFAR-100 dataset. CIFAR-100 compiles images from 20
different coarse classes and that compiles 100 different fine classes. All images are
colorful and of the size 32× 32.

74

Table 4.6: CIFAR 100 dataset coarse and fine classes details.
Coarse classes Fine classes
Aquatic Mammals Beaver, Dolphin, Otter, Seal, Whale
Fish Aquarium Fish, Flatfish, Ray, Shark, Trout
Flowers Orchids, Poppies, Roses, Sunflowers, Tulips
Food Containers Bottles, Bowls, Cans, Cups, Plates
Fruit and Vegetables Apples, Mushrooms, Oranges, Pears, Sweet Peppers
Household Electricals Clock, Computer Keyboard, Lamp, Telephone, TV
Household Furniture Bed, Chair, Couch, Table, Wardrobe
Insects Bee, Beetle, Butterfly, Caterpillar, Cockroach
Large Carnivores Bear, Leopard, Lion, Tiger, Wolf
Large Man-Made Outdoor Things Bridge, Castle, House, Road, Skyscraper
Large Natural Outdoor Scenes Cloud, Forest, Mountain, Plain, Sea
Large Omnivores and Herbivores Camel, Cattle, Chimpanzee, Elephant, Kangaroo
Medium-Sized Mammals Fox, Porcupine, Possum, Raccoon, Skunk
Non-Insect Invertebrates Crab, Lobster, Snail, Spider, Worm
People Baby, Boy, Girl, Man, Woman
Reptiles Crocodile, Dinosaur, Lizard, Snake, Turtle
Small Mammals Hamster, Mouse, Rabbit, Shrew, Squirrel
Trees Maple, Oak, Palm, Pine, Willow
Vehicles 1 Bicycle, Bus, Motorcycle, Pickup Truck, Train
Vehicles 2 Lawn-Mower, Ocket, Streetcar, Tank, Tractor

respectively. We preprocess CIFAR-100 similar to CIFAR-10. We use the means of RGB

channels 0.51, 0.49, and 0.44 for red, green and blue channels, respectively. Figure 4.4

shows a sample from CIFAR-10 dataset. Table 4.6 shows the coarse and fine classes of

CIFAR-100.

We construct and evaluate DSSL 22-4 for five labeled training datasets. Each dataset

is constructed by randomly selecting 100 examples per class (i.e., 20%) while keeping their

actual labels. We then assign the rest of the training data to a random set of labels. Finally,

we evaluate DSSL 22-4 on all available training examples as labeled and unlabeled data

(Table 4.3).

We also evaluate the large DSSL 28-10 once on labeled training dataset consisting

of 10, 000 training examples. The remaining training examples were treated as unlabeled.

Table 4.3 shows a significant performance improvement when we use a larger model in

75

both cases.

4.4.3 STL-10

The STL-10 dataset includes 10 different classes with 500 and 800 colorful images

per class for training and testing, respectively. STL-10 also includes 100, 000 unlabeled

images that were selected from labeled examples on ImageNet. These images were ex-

tracted from a similar but broader distribution to the training labeled images. All images

have the same size of 96 × 96 pixels. STL-10 is similar in spirit to CIFAR-10. However,

STL-10 is more challenging because all STL-10 examples have higher resolution. Fur-

thermore, STL-10 also includes a smaller number of labeled images per class compared

to CIFAR-10. Finally, the unlabeled data comes from a wider distribution than the labeled

data distribution. Figure 4.5 shows examples from STL-10 dataset.

Since the unlabeled dataset of the STL-10 was collected from a distribution differ-

ent from the distribution of the labeled training and testing datasets. We preprocess the

STL-10 training and testing dataset with one set of parameters different from the set of

parameter that we use for the unlabeled data.

For the unlabeled data, we subtract the means of the GRB channels 112.35, 108.96,

and 98.38 for the red, green and blue channels, respectively. Then, we divide images

by standard deviations of channels 68.5, 66.62, 68.47 of red, green and blue channels,

respectively.

Similar to the STL-10 unlabeled data, we preprocess the STL-10 labeled training and

testing datasets by subtracting the means of the RGB channels 113.91, 112.15, and 103.70

for red, green and blue channels, respectively. Then, we divide by the standard deviations

76

Table 1: Sample from CIFAR 10 dataset.

Airplane

bird

Car

Cat

Deer

Dog

Horse

Monkey

Ship

Truck

1

Figure 4.5: Sample from STL-10 dataset. STL-10 compiles images from 10 different
classes. All images are colorful and of the size 96× 96.

77

of the RGB channels of 66.39, 65.43, and 69.17 from the red, green and blue channels,

respectively.

We evaluated DSSL 22-4 on five randomly selected training folds from the 10 folds

provided with STL-10 dataset due to time limitations. Each fold includes 100 labeled

training examples for each class. Given the increased image size, DSSL needs more

training examples to avoid overfitting. Therefore, we replicate the labeled examples of

each fold 10 times. We then randomly select 50, 000 examples from the unlabeled data for

DU . We do not use all available unlabeled data due to resource and time limitations. As a

second experiment, we use all available 5, 000 training labeled examples as a DL. DU is

as defined in the previous experiment. We report the performance of the aforementioned

model on the 8, 000 labeled testing examples (Table 4.5).

4.4.4 MNIST

The MNIST dataset is a famous classification benchmark dataset of handwritten digits.

It collects 70, 000 grayscale labeled images of size 28×28 pixels. We adopt the suggested

parts of 60, 000 and 10, 000 images for training and testing, respectively. Figure 4.6 shows

sample of MNIST dataset. We preprocess the MNIST datasets by dividing each image by

255 to make them in the range of [0,1].

We create five different labeled datasets from MNIST training dataset. For each

dataset, we randomly select 5% labeled examples from the training dataset while us-

ing the rest as unlabeled. We follow the same steps mentioned before to construct five

other datasets consisting of 10% labeled examples per class. We evaluate the perfor-

mance of DSSL 22-4 on the datasets after we remove the Tanh layer from the UC. Finally,

78

Table 1: Sample from MNIST dataset.

1

Figure 4.6: Sample from MINST dataset. MNIST dataset compiles images from 10 differ-
ent classes. All images are gray scale and of the size 28× 28.

79

we evaluate DSSL 22-4 five times on all available training dataset as labeled and unla-

beled (Table 4.7).

4.4.5 SVHN

Table 4.7: The mean and standard deviation (mean ± std.) of the classification error rates
on various labeled / unlabeled ratios from the training examples of MNIST.

Model 5% labeled 10% labeled All labels
Conv-CatGAN [70] 0.48
Sajjadi et al. [64] 0.27 ± 0.02
Our DSSL 22-4 0.41±0.06 0.39± 0.02 0.24 ± 0.01

The Street View House Numbers (SVHN) is a digit classification dataset that compiles

73, 257 primary training labeled images, 531, 131 extra labeled training images, and 26, 032

testing images. All images are colorful and are of size 32×32 pixels. The large variations in

the images makes the SVHN dataset harder than MNIST to classify. We use the standard

training images because it is the common in semi-supervised tasks [65, 42]. Figure 4.7

shows sample of SVHN dataset. We evaluate DSSL 22-4 after removing Tanh layer UC

on various percentages of labeled/unlabeled data from SVHN. We preprocess the SVHN

datasets by dividing each image by 255 to make them in the range of [0,1].

We construct five different datasets with 1% of labeled training examples. For each

dataset, we randomly select 1% of the labeled examples and keep their labels and the

rest of the training data as unlabeled. We repeat the previous steps with the proportions

5%, 10% and 20% of labeled examples, and create five datasets for each proportion.

Additionally, we evaluated DSSL 22-4 on all available labeled training examples as labeled

and unlabeled.

DSSL suffers from an overfitting problem for the 1% datasets because the number of

80

Table 1: Sample from MNIST dataset.

1

Figure 4.7: Sample from SVHN dataset. SVHN dataset compiles images from 10 different
classes. All images are colorful and of the size 32× 32.

81

labeled examples is very small and insufficient for training. Therefore, we replicate every

1% dataset 10 times. The mean of error rates of the 1% labeled dataset with 10 replicas is

4.56% (Fig. 4.8)

Table 4.8: The mean and standard deviation of the classification error rates (%) for eval-
uating the SVHN dataset with the DSSL 22-4 model (mean ± std.). We construct and
test multiple labeled / unlabeled ratios from the SVHN dataset. We evaluate 1%, 5%, 10%,
and 20% of the SVHN training dataset examples. Moreover, we evaluate on all available
SVHN raining dataset as labeled and unlabeled. For each labeled / unlabeled ratio we
create five different datasets. We evaluate all labels five times.

Model 1% labeled 5% labeled 10% labeled 20% labeled All labeles
DSSL 4.56 ± 0.4 3.72 ± 0.11 3.5 ± 0.08 3.14 ± 0.07 2.36 ± 0.08

Hardware and Software

We adopt and modify the code released by [79] 2. Then we constructed and ran all of

this report experiments in Torch 7 [16]. Moreover, the best pretrained models and code

will be made available for public access.

We use our research lab server to conduct all reported results. The server is equipped

with 3× NVidia Tesla K40 GPUs, 256 GB of RAM, 4× CPUs, with 16 cores a CPU. All of

our experiments used a single GPU.

4.5 Discussion

The proposed DSSL method uses self-training, but alleviates the aforementioned self-

training shortcomings by utilizing every training example (both labeled and unlabeled)

during training phases. It adds every unlabeled example by predicting their labels without

using any confidence thresholds. It also includes an unsupervised branch to fully exploit

the information provided through both labeled and unlabeled data. The nature of DSSL
2 The source code is publicly available on https://github.com/szagoruyko/wide-residual-networks

(As of February 23, 2017)

82

2

3

4

5

6

7

8

9

1 5 10 20 100

Er
ro
r	R

at
e	
(%
)

Percent	of	labeled	data

SVHN

Semi-HyResNet Sajjadi	et	al.	2016

Figure 4.8: This chart compares the performance of DSSL 22-4 vs. Sajjadi et al. [64]
on various ratios of labeled / unlabeled training datasets from the SVHN dataset. DSSL
22-4 results show the mean and standard deviation of classification error rates. Table 4.8
shows the details.

83

0

10

20

30

40

50

60

70

80

90

100

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301

Er
ro
r	R

at
e	
(%
)

Epoch	Number

CIFAR	10	with	4,000	labeled	examples
Test	Error	Rate Error	Rate	of	classifying	unlabeled	data

Figure 4.9: The performance of DSSL 22-4 on the 4, 000 labeled examples from the
CIFAR-10 dataset. The figure compares the classification error rates of classifying the
unlabeled data after every epoch for the 320 training epochs. The true labels of the unla-
beled data are known and only used to create this plot. Moreover, for the same model, it
shows the test classification error rates after every epoch.

84

0

10

20

30

40

50

60

70

80

90

100

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301

Er
ro
r	R

at
e	
(%
)

Epoch	Number

CIFAR	10
4K	Labeled	Examples 8K	Labeled	Examples All	training	data	labeled

Figure 4.10: Compares the performance of DSSL 22-4 on three different ratios of labeled
/ unlabeled CIFAR-10 datasets. We show the results of evaluating the datasets consisting
of 4K and 8K labeled examples. Moreover, all training data labeled shows the results of
using all available training dataset as labeled and unlabeled. It shows the changes of the
classification error rate for each dataset after every epoch for 320 epochs.

85

training prevents it from falling into the problem of poor prediction. Moreover, the DSSL ar-

chitecture that includes the supervised and unsupervised components is one more factor

that helps avoid this problem.

The unsupervised component in DSSL complements the supervised model in the ab-

sence of sufficiently large labeled training examples via the presence of large unlabeled

examples. Additionally, DSSL benefits from unlabeled data by using it to train an unsuper-

vised component that later increases the number of labeled examples per class used by

the supervised branch. Furthermore, we note that the performance of DSSL improves as

the number of labeled examples increases. This is consistent with other methods whose

performance increase as the number of labeled examples increases such as [64].

CIFAR-10 results show that DSSL behaves similar to neural network methods where

dropout and augmentation enhance the overall model performance. However, it does

not rely on them to run. Moreover, augmentation influences DSSL more than dropout.

Using both together improves the overall performance. Despite the fact that we use fairly

medium sized models (e.g., DSSL 22-4) due to time and resources limits, we are able

to set a new state-of-the-art record for most of the semi-supervised tasks demonstrated

above. Moreover, the performance of DSSL can be improved even further by using larger

models such as DSSL 40-10.

DSSL adds a new set of parameters compared to the original corresponding WRN

models. For example, the models DSSL 22-4 and 28-10 add 19% and 14.8% of the overall

parameters to the original WRN 22-4 and 28-10, respectively. The DSSL 22-4 and 28-10

models use 5.3M and 42.8M parameters, respectively.

The overall time complexity of a DSSL model is similar to the corresponding ResNet

86

model complexity except that the former runs a classifier every other epoch to classify

the unlabeled data. For example, we train DSSL 22-4 on CIFAR-10 with 4K labeled

examples for a total of 320 epochs. We classify the 46K unlabeled images 159 times.

The average time of classifying all of the 46K images with a minibatch size of 100 is 30

seconds. Moreover, the time and number of basic operations that DSSL takes to train an

epoch is not the same for all epochs. DSSL turns off the unsupervised branch in half of

the epochs and evaluates only the labeled data. For example, evaluating DSSL on the 4K

CIFAR-10 labeled dataset is very fast. In the second half of the epochs, only then DSSL

runs on all available training dataset.

Fig. 4.9 shows the classification error rates of the unlabeled data classification during

training across all epochs, as the true labels are known and used only to create this plot.

We use the DSSL 22-4 model evaluated on a CIFAR-10 dataset with 4, 000 labeled exam-

ples. Moreover, for the same model, it shows the classification error rates on the testing

data after every epoch. The DSSL trains for 320 epochs and classified the unlabeled data

159 times.

Fig. 4.10 shows the behavior of the DSSL model on CIFAR-10 dataset with multiple

ratios of labeled / unlabeled examples.

4.6 Conclusion

In this chapter, we presented DSSL, a semi-supervised classification method that uti-

lizes both supervised and unsupervised neural networks. DSSL uses a limited number

of labeled training examples in conjunction with sufficiently large unlabeled examples to

create a classification model. We empirically measured the performance of DSSL method

on five benchmark datasets with various labeled / unlabeled ratios of training examples

87

Table 4.9: Summary of all DSSL results. The results show the mean and standard de-
viation of the classification error rates (%) (mean ± std.). The DSSL 28-10 results are
indicated by ‡, where we evaluate it once on each dataset. All labels mean all avail-
able training data evaluated as labeled and unlabeled, which is evaluated five times ex-
cept STL-10 is evaluated three times. The boldface results indicates new state-of-the-art
record.

Dataset Labeled Data ratio Error Rate% (mean ± std.)

CIFAR-10
4K 10.83± 0.4 (9.77‡)
8K 8.73±0.24
All labeles 4.56 ±0.08

CIFAR-100 10K 33.08 ± 0.23 (30.26‡)
All labels 22.4±0.24 (18.33‡)

STL-10 1K 19.88± 1.35
All labels 10.69 ± 0.09

MNIST
5% 0.41±0.06
10% 0.39±0.02
All 0.24±0.01

SVHN

1% 4.56±0.40
5% 3.72±0.11
10% 3.5±0.08
20% 3.14±0.07
All labels 2.36±0.08

and then compared our results with state-of-the-art methods. The experiments show that

DSSL set a new state-of-the-art record for CIFAR-10 with 4K and 8K labeled training

examples, CIFAR-100 with 10K labeled training examples and STL-10 with 1K labeled

training examples with mean of error rates of 9.77%, 8.73%, 30.08% and 19.96%, respec-

tively. Furthermore, DSSL attains the state-of-the-art performance on the SVHN dataset

using various ratios of labeled / unlabeled training examples. On the MNIST dataset,

DSSL is competitive with other state-of-the-art methods. Table 4.9 shows a summary of

all DSSL results on various semi-supervised tasks.

88

CHAPTER 5 TEACHER/STUDENT DEEP SEMI-SUPERVISED LEARNING FOR
NOISY LABELS

5.1 Introduction

Supervised deep learning methods achieve excellent performance tackling a wide

range of machine learning problems. In particular, convolutional neural networks (CNNs)

attain state-of-the-art performance for applications such as including automated speech

recognition [43, 3, 17], text classification [67, 80], object recognition [27, 25], spam detec-

tion, face recognition and verification [2, 4], and image segmentation [9, 5]. One major

limitation, however, is the requirement for a sufficiently large number of labeled data [11]

(e.g., ImageNet [62]). Furthermore, noisy label training datasets impair the performance

of CNNs.

Unfortunately, curating a sufficiently large labeled dataset (e.g., ImageNet [62], COCO [47])

with a minimal number of noisy labels is not a simple task. Labeling the dataset in many

domains is objective (e.g., texture data) [12] and varies by the background and expertise

of the labeling person. In addition, labeling dataset in many cases requires domain expe-

rience such as in medical datasets (e.g., ultrasound images, X-Ray images) which is hard

to acquire. In fact, many of the data labeling tasks are done by hiring people remotely

over the Internet using frameworks such as Amazon Mechanical Turk, where the dataset

is labeled in most cases by unknown individuals with a diverse set of experiences and

backgrounds.

Generally speaking, the quality of the dataset examples affect the quality of the pro-

duced labels. For instance, labeling small images where two different objects share similar

properties may confuse labeling individuals. Alternatively, automated labeling methods

89

(e.g., clustering, search engines) are more practical and can assist in curating labeled

data. Fortunately, automated labeling is more accessible, more practical compared to hu-

man labor, and cheaper. However, high-quality labels from automated labeling methods

are not guaranteed.

The combination of the aforementioned labeling problems and limitations increases

the probability of producing inaccurate and noisy labels. Although learning from noisy la-

bel dataset has been presented in various machine learning methods such as KNN, SVM,

and logistic regressions [53, 20], there is no sufficient attention to this direction. Recently,

a few semi-supervised learning (SSL) methods such as self-training (ST) exploited train-

ing dataset that is contaminated with a level of noisy labels, where the noisy part of the

dataset is unknown [38, 74, 81].

Typically, ST methods are iterative algorithms. In one common variation, the algorithm

starts initially by learning a model from a noise-free small labeled dataset. Then, the

learned model is used to predict labels for a larger noisy label (or unlabeled) training

dataset. Examples with high confidence are added to the labeled training dataset, and

the model is retrained on the new labeled dataset. The algorithm repeats the previous

steps until the end of training.

Standard ST methods suffer several shortcomings and limitations. They are suscep-

tible to poor prediction, which is in turn deceives the model during training toward deteri-

orating the model’s performance. A common strategy to alleviate this problem is to set a

predefined confidence threshold. This threshold is used to determine whether to accept

the predicted labels and add them to the labeled training data. However, deciding the

optimal threshold requires great efforts and several experiments.

90

Further, the frequent change of labels during training ST methods results in more fre-

quent changes in the learned model. These changes produce an unstable model that

has fluctuating performance during training and leads to degradation in performance later

during the advanced training steps. Moreover, a few proposed self-training solutions as-

sume a prior knowledge of the noise distribution [74], which in most of the practical life

applications and datasets is not typical as the true labels are unknown.

5.1.1 Problem Formulation

The objective of a typical supervised learning method is to learn a decision modelM

from n available labeled training examples. The training examples are denoted by Tn,

where n is the total number of different training examples in T . We denote a training

example (e.g., image) by Xi ∈ Rd, where i ∈ {1, . . . , n}. Also, we denote the true class

label of Xi by Yi ∈ {1, . . . , C}, where C is the total number of different classes in Tn. In

general, we represent the labeled training dataset by Tn = {(Xi,Yi)}ni=1.

We use noisy class label (noisy label for short) example to indicate an example with

a flipped class label, i.e., a label flipped to a label different from the true class label. For

instance, an example Xm with a true class label Ym is considered a noisy label example if

it appears in the dataset with a class label Ŷm, Ym 6= Ŷm, and Ŷm ∈ {1, . . . C}. Additionally,

a dataset with a level of∇% noisy labels includes∇% of the total number of examples are

noisy label examples, and the rest of the (100−∇)% of the total number of examples are

true label examples, where ∇ ∈ [0, 100]. Generally speaking, we denote a dataset with

noisy labels by T̃n = {(Xi, Ŷi)}ni=1.

In this chapter, we add one more set of labels Y(p) ∈ {1, . . . C} to the noisy label

91

dataset. Y(p) is a set of predicted labels during training, where initially Y(p) = Ŷ. We

denote the training noisy label dataset hereafter by T̂n = {(Xi, Ŷi,Y(p)
i)}ni=1.

5.1.2 Contribution

In this chapter, we propose a new self-training teacher/student deep semi-supervised

learning (TS-DSSL) method to train deep learning methods on noisy label dataset. In

particular, TS-DSSL uses the common class of semi-supervised learning (SSL) meth-

ods; namely, self-training [81] (ST). TS-DSSL integrates two classifiers into a single semi-

supervised learning (SSL) model. The first is a teacher classifier that gains knowledge

during training. Then, it uses the knowledge to cleanse the noisy labels. The second

is a student classifier that learns from the teacher during the training. The teacher and

the student in the TS-DSSL model complement each other. The teacher classifier edu-

cates the student classifier, stabilizes the overall model, and cleans the noisy label in the

training dataset. The student classifier exploits the knowledge gained by the teacher to

enhance the overall model. Additionally, we propose a training procedure for TS-DSSL

that overcomes the aforementioned shortcomings of ST. TS-DSSL sets state-of-the-art

record on benchmark datasets with various levels of uniform and non-uniform noisy label

training datasets.

The novelty of TS-DSSL originates from the following facts. First, we presume that TS-

DSSL has access to only noisy labeled dataset to learn a decision model, and we do not

assume the availability of any clean labels. Second, we assume that TS-DSSL does not

have access to how much is the fraction of the noisy labels in the training dataset. Third,

TS-DSSL does not have access to any information about which part of the training dataset

92

has the class labels and which one has the noisy labels. Fourth, it does not assume any

prior information about the distribution of the noisy labels. In fact, it accepts any noisy

label dataset regardless of the noisy labels information. Finally, TS-DSSL does not use

any confidence thresholds as it uses all examples in the noisy label training dataset in

each epoch of the training.

Algorithm 3 The algorithm for training TS-DSSLAlgorithm 1 The algorithm for training TS-DSSL

Require: T̂n = {(Xi, Ŷi,Y(p)
i)}ni=1; T̂n = training dataset consists of n training examples X

associated with noisy labels Ŷ , Y(p) = predicted labels of X classified during training.
Initially Y(p) = Ŷ

Require: G, TeacherF and StudentF = convolutional layers, teacher branch, and student
branch, respectively.

Require: Teacherloss and Studentloss = loss functions for the teacher and the student,
respectively.

Require: α=determines the contribution of teacher/student branches, α ∈ [0, 1].
Require: γ=determines the epoch when α and (1−α) will switch between the teacher and

the student, respectively.
Require: β=determines the frequency of classifying the training dataset, and then updating
Y(p)

Require: δ=determines the training dataset is first classified.
Require: S=determines when to stop classification, S <max_no_epochs.
1: Y(p) ← Ŷ
2: for epoch_no ∈ [1, max_no_epochs] do
3: for each minibatch b ∈ T̂n do
4: wb ← G(Augmentation (b))
5: w1 ← TeacherF(wb)

6: Teacherloss (w1, Ŷ)← −
∑

j

log

(
ew1j

[Ŷj]

∑
i e

w1j
[i]

)

7: w2 ← StudentF(wb)

8: Studentloss (w2,Y(p))← −
∑

j

log

(
ew2j

[Y(p)
j]

∑
i e

w2j
[i]

)

9: if (epoch_no == γ) then α = 1− α end if
10: Update the weights using SGD with momentum, and (α∗ Teacherloss) and ((1−α)∗

Studentloss)
11: end for
12: if (epoch_no%β == 0) AND (epoch_no < S) AND (epoch_no ≥ δ then
13: Y(p) ← Classify X with the model constructed from the sequence of {G, TeacherF ,

and Teacherloss}
14: end if
15: end for

1

93

5.2 Method

5.2.1 TS-DSSL Architecture

TS-DSSL is a single model that starts with a sequence of convolutional layers (Fig. 5.1).

Then, the model forks into two branches. The two branches are the teacher and the stu-

dent, respectively. Each branch is a classifier that is constructed from a pooling layer

followed by a set of linear layers, and ends with a supervised criterion (e.g., cross en-

tropy.) Note that both classifiers are constructed from an identical sequence of layers. We

employ a supervised loss function that combines the negative log likelihoods of softmax.

The supervised loss function is described by:

CEloss(w,Y) = −
∑

j

log

(
ewj [Yj]
∑

i e
wj [i]

)
. (5.1)

where j is the example number in a minibatch b, wj is the output of the sequence of

convolutional layers of the network consisting of a vector with a score for each class, and

Yj is the index of the target class of the example j.

TS-DSSL can be constructed from any learning method components (e.g., ResNet [27]

and GoogLeNet [75]). In this chapter, we utilize the state-of-the-art wide residual net-

work (WRN) [79] to construct the sequence of convolutional residual blocks (CRBs.) The

size of a WRN model is represented by the number of convolutional layers (i.e., the net-

work depth) followed by the widening factor (i.e., number of feature maps). For example,

Fig. 5.1 shows a sequence of CRBs used from WRN 10-2 to construct the TS-DSSL. The

sequence includes 10 convolutional layers and a width of 2. In general, we represent a

94

+

BN
RELU

Dropout

BN
RELU

Dropout

+
+

BN
RELU

Dropout

BN
RELU

Input Data

Max	Pooling
FC

FC

Max	Pooling
FC

FC

Classifier	1
(Teacher)

Classifier	2
(Student)

BN
RELU

(1 X 1)
Conv,

32

(1 X 1)
Conv,

64

(1 X 1)
Conv,

128

(3 X 3)
Conv,

32

(3 X 3)
Conv,

32

(3 X 3)
Conv,

64

(3 X 3)
Conv,

64

(3 X 3)
Conv,

128

(3 X 3)
Conv,

128

C
onv

(3 X 3)
16

+

Figure 5.1: The architecture of TS-DSSL. It is composed of three branches. The first
branch is a set of residual blocks that forks at the end into two supervised branches. Each
branch compiles a sequence of max pooling, followed by two linear layers and finally a
supervised learning criterion.

95

convolutional residual block by:

Ot = Γ(Wshortcut,Ot−1) + Λ(Vresid_branch,Ot−1). (5.2)

where Ot is the output of the residual block t that is used as an input to the next compo-

nent, Ot−1 is the input to the residual block t, Γ is the shortcut branch function, Wshortcut

are the shortcut branch parameters (weights), Λ is the residual branch function, and

Wresid_branch are the residual branch parameters (weights). In all of the experiments re-

ported in this paper, we use a fairly medium sized WRN to construct our TS-DSSL. Basi-

cally, we construct the sequence of convolutional layers in all models from a WRN 10-2.

5.2.2 TS-DSSL Training

TS-DSSL training procedure aims to create a stable model. Moreover, it aims to re-

duce the computational burden by finding the optimal predication frequency and the best

time to prune the prediction. The teacher and the student are trained simultaneously us-

ing the same training examples but with different sets of labels. In particular, the teacher

training is limited to only the initially given noisy labels Ŷ, which never changes. On the

other hand, the student is trained with the predicted labels Y(p) that changes frequently

during the training.

TS-DSSL accepts as input a noisy label training dataset T̂n. TS-DSSL starts initially

by setting Y(p) = Ŷ. Training a TS-DSSL (Algorithm 3) starts the first epoch (t = 1) by

training the modelM with T̂n. The model is trained for (t = δ) epochs with the same input.

Then, at the end of δth epoch the model Mδ is saved to be used in the next step. Next,

96

TS-DSSL uses the teacher of Mδ to classify the training dataset T̂ and then saves the

predicted labels in Y(p). After that, TS-DSSL repeats the previous steps but re-classify

after every β epochs. After (t = S) epochs, the model prunes the classification step and

continues the training without the classification step until the maximum number of training

epochs.

TS-DSSL exploits the stability and the knowledge of the teacher during training to

clean the noisy labels of the training dataset. The student thereafter utilizes the cleansed

labels to learn in the next epoch. In practice, the classification step in TS-DSSL can be

performed in parallel for all training examples. Therefore, it can be fairly quick.

In each epoch of the training, the feedforward feeds the data into the sequence of

convolutional layers. Then, the output is passed into the fork that passes a copy to each

classifier. After that, the backpropagated gradients are passed back from the classifiers to

the fork that sums gradients up then backpropagates it to the sequence of convolutional

layers.

The performance of the teacher and student varies during training. In the early steps

of the training, the teacher is more stable and has better performance than the student.

Toward the end of training, the student is more stable and has better performance. TS-

DSSL gives a weight α ∈ [0, 1] to the contribution of the teacher and a weight (1 − α) to

the contribution of the student.

5.2.3 Synthesizing the Noisy Labels

We synthesize noisy label datasets from the benchmark datasets CIFAR10 [40] and

MNIST [44]. The synthesized datasets simulate noisy labels in real-life practical applica-

97

tions. It is worthwhile to mention that we leave the labels of the test split of each dataset

intact. We synthesize the noisy label training datasets using a probabilistic model of label

noise. Initially, we presume that for any pair of examples Xt and Xz with the true labels

Yt and Yz, the noisy labels Ŷt and Ŷz are independent of each other. Additionally, we

assume p(Ŷt|Yt) = p(Ŷz|Yz) both have identical distribution. Moreover, we assume that

each noisy label in our model (i.e., the change of the true label) Ŷ is independent from

the example itself X and depends only on the true label of the example Y. We represent

the probabilistic noisy label model Φ by a C × C probability transition matrix Φ ∈ RC×C. We

define the noisy label Ŷ distribution by:

p(Ŷ = z|Y = t) = φz,t. (5.3)

where z, t ∈ {1, . . . C}, and φz,t is the element (z, t) in Φ.

TS-DSSL is independent of the noise distribution and does not use any information

about the label noise distribution. Because TS-DSSL works for any label noise distribution

Φ (Eq. 5.3), we use the noise model described by Eq. 5.3 to simulate and create two

noise scenarios (close to practical life noisy labels) with various ∇% levels of noisy labels

ranging from 25% − 80% of the total number of training examples (Fig. 5.2). First, is a

non-uniform label noise scenario denoted by

Φnon-uniform = (1−∇)I +∇U. (5.4)

where I is the identity matrix, ∇ is the noise level, and U is a matrix where all columns are

98

uniformly selected from a set of vectors with non-negative values that sum to one (i.e.,

unit simplex). Second, we use a uniform label noise scenario denoted by

Φuniform = (1−∇)I +
1

C∇J. (5.5)

where J is a matrix where all elements are ones.

5.2.4 Baseline Methods

Although state-of-the-art methods used the same standard datasets we use to syn-

thesize noisy label training datasets, their methods were evaluated on small models.

Therefore, their results are incomparable to the results of TS-DSSL. We compare the

performance of TS-DSSL with three baseline methods that have a similar architecture to

TDS-DSSL. We implement, train, and evaluate the three baseline methods with consistent

settings and parameters with TS-DSSL to make a fair comparison.

The three baselines methods are

1. Standard WRN baseline method. It is a standard WRN model trained on the noisy

label dataset.

2. Self-cleansing I. It is a standard WRN with self-training. In this method, we first train

the model for one epoch. Second, we classify and update the labels of the training

dataset using the model produced from the previous steps. Third, we resume the

training for the next epoch using the predicted labels from the previous step. We

repeat the previous steps until the maximum number of epochs.

99

3. Self-cleansing II. A self-training method in which we train a WRN until the maximum

number of epochs and save the final model. Then, we use the final model to classify

and label the training dataset. After that, we use the new labels to train a new model.

We repeat the previous steps three times and report the results.

III. EXPERIMENTAL RESULTS

We study the TS-DSSL model from various dimensions with different variations. In this section, we
present the variations and results of each method.

Additionally, we compare the performance of TS-DSSL with three baseline methods.

airplane horse bird cat deer truck frog autom. dog ship

airplane horse bird cat deer deer frog dog dog ship

Fig. 2: An example of a 50% noisy label data taken from CIFAR10. The first row shows a subset of 50%
uniform noisy label dataset. The second row shows a subset of 50% non-uniform noisy label dataset. The
labels in boldface are noisy labels, and the labels in italic are true labels.

A. Synthesizing the noisy labels
We synthesize noisy label versions of the standard datasets CIFAR10 and MNIST training datasets that

simulates the noise in real-life practical applications. We leave the labels of the test portion intact. For
that, we set the two assumptions: for any pair of examples Xt and Xz with the true labels Yt and Yz, the
noisy labels Ŷt and Ŷz are independent of each other. Additionally, we assume p(Ŷt|Yt) = p(Ŷz|Yz) both
have identical distribution.

We synthesize the noisy label training datasets by presume a probabilistic model of label noise. A
probabilistic model that assumes each noisy label (i.e., the change of the true label) Ŷ is independent
from the example itself X and depends only on the true label of the example Y . We represent the
probabilistic noisy label model Φ by a C ×C probability transition matrix Φ ∈ RC×C . We define the noisy
label Ŷ distribution by:

p(Ŷ = z|Y = t) = φz,t, (3)

where z, t ∈ {1, . . . C}, and φz,t is the element (z, t) in Φ.
TS-DSSL is noise distribution independent and does not use and presume any prior information about

the label noise distribution. Consequently, TS-DSSL works for any label noise distribution Φ (Eq. 3).
Therefore, we use the noise model described by Eq. 3 to simulate as close as possible of two real-life
noise scenarios with various ∇% label noise levels. Noise levels as high as 80% of the total number of
training examples. First, non-uniform label noise scenario denoted by:

Φnon-uniform = (1−∇)I +∇U, (4)

where I is the identity matrix, ∇ is the noise level, and U is a matrix where all columns are uniformly
selected from a set of vectors with non-negative values that sum to one (i.e., unit simplex). Second,
uniform label noise scenario denoted by:

Φuniform = (1−∇)I +
1

C∇1, (5)

where 1 is a matrix with all elements are ones. Figure 2 shows an example of a subset of data from
CIFAR10 with 50% uniform noise, where the 50% of the data has noisy labels.

Figure 5.2: An example of a 50% noisy label data taken from CIFAR10. The first row
shows a subset of 50% uniform noisy label dataset. The second row shows a subset of
50% non-uniform noisy label dataset. The labels in boldface are noisy labels, and the
labels in italic are true labels.

5.3 Experimental Results

In this section, we investigate the performance of TS-DSSL on the datasets CIFAR10

and MNIST. All models in this chapter are trained from scratch. We generate a noisy

label dataset from uniform and non-uniform noise distributions for each level of noise.

We evaluate every dataset three times then we report the mean and standard deviation

(mean±std.) of the classification error rates. The state-of-the-art results are provided in

the tables using a boldface font.

5.3.1 CIFAR-10

CIFAR-10 dataset compiles 60, 000 colorful RGB images of size 32 × 32 pixels each

image. The dataset is divided evenly into 10 different classes (airplane, automobile, bird,

car, deer, dog, frog, horse, ship, and truck). Additionally, it is available in two predefined

100

10

15

20

25

30

35

30 50 70

Cl
as
si
fic
at
io
n	
Er
ro
r	R

at
e

Noise	Ratio	(%)

Non-Uniform	Noise

Teacher	(TS-DSSL) Standard	WRN

Figure 5.3: The (mean ± std.) of the classification error rates of TS-DSSL and WRN
on various non-uniform levels of noise on CIFAR10. The results are measured on the
standard test split provided with CIFAR10.

101

portions that we use hereafter in our experiments. These splits comprise 50, 000 and

10, 000 examples used for training and testing, respectively.

We evaluate TS-DSSL on two main types of noisy label training data synthesized from

CIFAR10 (Fig. 5.4). First, we construct six different uniform noisy label datasets where the

noise levels span ∇ ∈ {0.25, 0.3, 0.5, 0.7, 0.75}. Second,we synthesize three non-uniform

noisy label datasets (Fig. 5.3) where the noise levels span ∇ ∈ {0.3, 0.5, 0.7}.

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) 30% Uniform

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

0.1

0.2

0.3

0.4

0.5

0.6

(b) 50% Uniform

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

0.1

0.15

0.2

0.25

0.3

(c) 80% Uniform

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(d) 30% Non-Uniform

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

(e) 50% Non-Uniform

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

(f) 80% Non-Uniform

Fig. 7: The confusion matrices of various uniform/non-uniform noise levels from MNIST training data.

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

0.1

0.2

0.3

0.4

0.5

0.6

(a) 30% Uniform
1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

(b) 50% Uniform

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

0.1

0.15

0.2

0.25

0.3

(c) 80% Uniform

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

(d) 30% Non-Uniform

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(e) 50% Non-Uniform

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

0.05

0.1

0.15

0.2

0.25

(f) 80% Non-Uniform

Fig. 8: The confusion matrices of various uniform/non-uniform noise levels from CIFAR10 training data.

Figure 5.4: The confusion matrices of various uniform/non-uniform noise levels from CI-
FAR10 training data.

Additionally, we use a noisy label dataset with 50% uniform noise from CIFAR10 to

evaluate the following parameters in TS-DSSL. First, we investigate the optimal starting

epoch of the classification step δ in TS-DSSL. We evaluate the values of δ ∈ {1, 3, 5, 7, 14, 21}

epochs (Table 5.10). We also evaluate TS-DSSL when α ∈ {0.95, 0.75, 0.65, 0.5, 0.35, 0.25, 0.05}

(Table 5.2). Moreover, we evaluate TS-DSSL when γ ∈ {20%, 50%, 55%, 80%, 100%} (Ta-

102

ble 5.3). Further, we experiment TS-DSSL with different frequency of classification β that

determins haw many epochs pass before the self-cleaning step is performed to update

Y(p). We test β ∈ {3, 5, 7, 14, 21} (Table 5.10). Additionally, we study the optimal prune of

the classification step S after various percentages of the total number of training epochs

S ∈ {20%, 50%, 80%, 100%} (Table 5.1). Finally, we evaluate TS-DSSL on various rates of

dropout (Table 5.4).

TS-DSSL attains the best performance with a dropout of 30%, when the first classifi-

cation starts after 7 epochs (β = 7) and repeats every 7 epoch (δ = 7), prunes the clas-

sification at 80% of the total number of epochs S = 80%, the contributions of the teacher

and the student at the first 80% of the total number of epochs are 0.65 (α = 0.65) and 0.35,

respectively. Additionally, when the contributions of the teacher and the students switches

at 70% of the total number of epochs (γ = 70%) to 0.35 (α = 0.35) and 0.65, respectively.

Table 5.1: The (mean ± std.) of the classification error rates of TS-DSSL on a level of
50% uniform noise of CIFAR10 when we stop cleansing (predicting labels) of the training
data after epoch S.

Stop at
epoch S Teacher Student

20% 22.39±0.30 18.06±0.04
50% 16.29±0.53 15.83±0.27
55% 15.62±0.24 15.65±0.19
80% 14.54±0.34 15.37±0.33

No stop 14.82 ± 0.17 15.48±0.21

5.3.2 MNIST

MNIST dataset is a famous classification benchmark dataset of handwritten digits. It

collects 70, 000 grayscale labeled images of size 28 × 28 pixels. We adopt the suggested

splits of 60, 000 and 10, 000 images for training and testing, respectively. We synthesize

103

Table 5.2: The (mean ± std.) of the classification error rates of TS-DSSL on CIFAR-10
with 50% uniform noise. All results show (mean ± std.) for three runs. α ∈ [0, 1] is the
weight assigned to the teacher’s contribution and (1 − α) is the weight of the student’s
classifier contribution.

α 1− α Teacher Student
0.95 0.05 18.22±0.13 17.53±0.09
0.75 0.25 14.49±0.16 15.35±0.16
0.65 0.35 14.01±0.1 15.05±0.23
0.50 0.50 16.76±0.68 17.16±0.66
0.35 0.65 17.53±0.27 17.34±0.16
0.25 0.75 21.03±0.34 20.81±0.44
0.05 0.95 39.93±2.58 39.51±2.52

Table 5.3: The (mean ± std.) of the classification error rates of TS-DSSL when we
switch the values of α and (1 − α) after epoch γ, between the teacher and the student
branches, respectively. The models evaluated on CIFAR10 with a level of 50% uniform
noise, α = 75%, and γ is the percent of the total number of training epochs.

Switch
after γ epoch Teacher Student

20% 14.58±0.33 15.56±0.23
50% 15.11±0.24 15.90±0.24
55% 14.72±0.39 15.35±0.16
70% 14.49±0.16 15.44±0.06

Table 5.4: The (mean ± std.) of the classification error rated of TS-DSSL with various
dropout ratios on CIFAR-10 with a of 50% uniform noise.

Dropout % Teacher Student
No dropout 18.25 ± 0.82 18.30 ± 0.94

30% 14.78 ± 0.23 15.59 ± 0.21
50% 16.13 ± 0.49 16.12 ± 0.68
70% 23.26 ± 0.37 22.36 ± 0.29

104

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191

Er
ro
r	
Ra

te

Epoch	Nomber

Standard	WRN Self-cleansing	II Self-cleansing	I

Figure 5.5: The error rates of three baseline models (standard WRN, self-cleansing I,
and self-cleansing II) after each of 200 training epochs on CIFAR10 with a level of 50%
uniform noise. The results are measured on the standard test split provided with CIFAR10.

105

uniform and non-uniform noisy label datasets from MNIST. For each noise distribution, we

create six different noisy label datasets when noise levels of∇ ∈ {0.3, 0.4, 0.5, 0.6, 0.7, 0.8}

(Fig. 5.6). Table 5.5 and Table 5.6 show the evaluation results of TS-DSSL on various

levels of uniform and non-uniform noisy label training datasets, respectively. Furthermore,

we compare the performance of TS-DSSL with standard WRN on various levels of noise

(Figures 5.8 and 5.7).

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) 30% Uniform

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

0.1

0.2

0.3

0.4

0.5

0.6

(b) 50% Uniform

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

0.1

0.15

0.2

0.25

0.3

(c) 80% Uniform

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(d) 30% Non-Uniform

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

(e) 50% Non-Uniform

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

(f) 80% Non-Uniform

Fig. 7: The confusion matrices of various uniform/non-uniform noise levels from MNIST training data.

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

0.1

0.2

0.3

0.4

0.5

0.6

(a) 30% Uniform
1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

(b) 50% Uniform

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

0.1

0.15

0.2

0.25

0.3

(c) 80% Uniform

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

(d) 30% Non-Uniform

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(e) 50% Non-Uniform

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

0.05

0.1

0.15

0.2

0.25

(f) 80% Non-Uniform

Fig. 8: The confusion matrices of various uniform/non-uniform noise levels from CIFAR10 training data.

Figure 5.6: The confusion matrices of various uniform/non-uniform noise levels from
MNIST training data.

5.3.3 Data Preprocessing

The data preprocessing of the dataset is limited to the following steps. We normalize

the MNIST by scaling the images in the range [0, 1] by dividing them by 255. We prepro-

cess CIFAR10 by dividing images by 255 to shift them to the range of [0, 1]. Then, we

106

Table 5.5: The (mean ± std.) of classification error rates on various uniform noise
levels on MNIST. We also evaluated on MNIST with original labels (true labels), TS-
DSSL teacher achieves (0.3 ± 0.02), student achieves (0.29 ± 0.02), and standard WRN
achieves (0.3 ± 0.02).

Noise % Teacher Student Standard CNN
30% 0.57 ± 0.06 0.62 ± 0.05 0.68 ± 0.04
40% 0.54 ± 0.06 0.61 ± 0.05 0.78 ± 0.01
50% 0.74 ± 0.02 0.82 ± 0.03 0.89 ± 0.03
60% 0.81 ± 0.06 0.89 ± 0.06 1.11 ± 0.04
70% 0.84 ± 0.06 0.90 ± 0.08 1.43 ± 0.05
80% 1.28 ± 0.11 1.56 ± 0.11 2.00 ± 0.09

Table 5.6: The (mean ± std.) of classification error rates on various non-uniform noise
levels on MNIST.

Noise % Teacher Student Standard CNN
30% 0.62 ± 0.06 0.67 ± 0.05 0.75 ± 0.05
40% 0.63 ± 0.05 0.77 ± 0.06 0.75 ± 0.11
50% 0.82 ± 0.00 0.97 ± 0.06 1.02 ± 0.05
60% 0.87 ± 0.02 1.02 ± 0.11 1.26 ± 0.07
70% 1.60 ± 0.03 2.07 ± 0.09 1.73 ± 0.09
80% 3.37 ± 0.25 3.98 ± 0.14 4.69 ± 0.18

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

30 40 50 60 70 80

Cl
as
si
fic
at
io
n	
Er
ro
r	R

at
e

Noise	Ratio	(%)

Non-Uniform	Noise

Teacher	(TS-DSSL)	 CNN

Figure 5.7: The (mean ± std.) of classification error rates on various levels of uniform
noisy labels in MNIST. The results are measured on the standard test split provided with
MNIST.

107

0.00

0.50

1.00

1.50

2.00

2.50

30 40 50 60 70 80

Cl
as
si
fic
at
io
n	
Er
ro
r	R

at
e

Noise	Ratio	(%)

Uniform	Noise

Teacher	(TS-DSSL)	 Standard	WRN

Figure 5.8: The (mean ± std.) of classification error rates on various uniform noise levels
in MNIST. The results are measured on the standard test split provided with MNIST.

108

subtract the means of the RGB channels. We use the means 0.49, 0.48, and 0.45 for red,

green and blue channels, respectively.

We do not apply aggressive augmentation. Instead, we only apply the standard aug-

mentation presented by [45] on CIFAR-10. This includes random horizontal flips and

random crops after padding each side of the image by 4 pixels. For the MNIST datasets,

we only take random crops after padding each side of an image by 4 pixels each.

5.3.4 Experimental Setup

We study the TS-DSSL model with different levels of uniform and non-uniform levels of

noisy labels. TS-DSSL state-of-the-art results are provided in the tables of results in bold-

face. In all of our experiments, we use a minibatch size of 128 images. We train TS-DSSL

models using SGD with Nesterov momentum. TS-DSSL shows the best performance

when we use dropout [30, 72] and batch normalization [36]. Furthermore, we employ the

rectified linear units (ReLU) activation function [52]. Moreover, we turn off biases in all of

our experiments. We initialize all layers with the method introduced by [21]. We run all

TS-DSSL experiments for 350 epochs. The learning rate starts at 0.1 and then decreases

after epochs 100, 200 and 250 at a rate of 0.2, and a dropout factor of 0.3. We train all of

our models from scratch and do not fine-tune any model. We retain the given test parti-

tion of each dataset intact, and we use it to measure and report the performance of each

method. We report the mean and standard deviation (mean ± std.) of the classification

error rate for three runs for each model unless noted otherwise.

Unfortunately, the state-of-the-art WRN models use large number of parameters that

require several days of continuous training. For example, the state-of-the-art WRN model [79]

109

with 40 convolutional layers and a width of 10 uses 56M parameters. Hence, we created

our TS-DSSL models from a fairly medium sized WRNs so we are able to run more ex-

periments and more detailed results.

5.3.5 Hardware and Software

We adopt and modify the code released by [79] 3. Then, we construct, implement,

and run all of the experiments in this chapter with Torch 7 [16]. We use our research

lab server to conduct all experiments. The server is equipped with 3× NVidia Tesla K40

GPUs, 256 GB of RAM, 4× CPUs, with 16 cores a CPU. All of our experiments use a

single GPU.

Table 5.7: The (mean ± std.) of the classification error rates of TS-DSSL and three
baseline methods on various uniform noise levels of CIFAR10.

Noise %
TS-DSSL
Teacher

Standard
WRN

Self-cleansing
I (baseline)

Self-cleansing
II (baseline)

original (true labels) 7.61±0.06 9.32±0.01
25% 11.11±0.15 13.17±0.43
30% 11.61±0.17 13.44±0.14 38.56±1.24
50% 14.63±0.18 18.82±0.37 44.63±1.46 17.05±0.30
70% 23.91±0.95 31.16±0.10 59.12±2.98
75% 30.26±0.81 35.72±0.61

3. The source code is publicly available on https://github.com/szagoruyko/wide-residual-networks
(As of June 10, 2018)

Table 5.8: The (mean ± std.) of the classification error rates of TS-DSSL and three
baseline methods on various non-uniform noise levels of CIFAR10.

Noise % Teacher Student
Standard

WRN
Self-learning
I (baseline)

30% 11.45±0.46 12.26±0.33 13.44±0.10 38.29±1.11
50% 14.65±0.18 16.50±0.05 18.67±0.39 44.87±2.48
70% 25.03±0.92 26.82±0.55 30.08±0.63 59.66±3.21

110

Table 5.9: The (mean ± std.) of the classification error rates of the self-cleansing I
(baseline) model on CIFAR10 with a uniform noise level of 50%. The results show various
classification intervals and after what epoch the first classification was performed.

Interval (β) δ = 1 δ = β
3 60.03 ± 1.20 51.88 ± 1.25
5 60.44 ± 1.11 49.59 ± 2.33
7 60.64 ± 1.17 44.63 ± 1.64

Table 5.10: The (mean ± std.) of the classification error rates of TS-DSSL on CIFAR-10
with different levels of uniform noise. The results show the performance of TS-DSSL on
various N classification intervals and various classification starting point. The columns
are when we first start the classification which is either after the first epoch or after N
epochs. Then, we show the performance of the proposed method when we change the
frequency of labels prediction.

Teacher Student
Noise% β δ = 1 δ = β δ = 1 δ = β

original
(true labels)

3 7.61±0.06 7.70±0.09 7.45±0.14 7.53±0.24
5 8.68±0.43 7.78±0.14 8.20±0.35 7.62±0.14
7 7.75±0.27 7.82±0.18 7.50±0.21 7.59±0.16

25%
3 11.22±0.13 11.15±0.11 11.37±0.16 11.39±0.16
5 11.21±0.20 11.24±0.16 11.31±0.22 11.37±0.13
7 11.11±0.15 11.36±0.12 11.29±0.12 11.47±0.13

30%
3 11.73±0.20 11.61±0.17 11.95±0.35 11.69±0.20
5 11.63±0.20 11.66±0.27 11.86±0.16 11.92±0.22
7 11.88±0.32 11.58±0.37 12.09±0.27 11.86±0.41

50%

3 14.74±0.06 14.71±0.20 15.47±0.17 15.65±0.20
5 14.72±0.51 14.80±0.28 15.74±0.26 15.60±0.25
7 14.72±0.28 14.63±0.18 15.55±0.26 15.53±0.18

14 15.12±0.08 15.17±0.35 16.10±0.19 16.15±0.31
21 15.30±0.16 15.13±0.36 16.22±0.24 16.17±0.20

70%
3 24.79±0.82 24.38±1.21 27.06±0.66 26.23±1.05
5 25.17±0.83 24.70±0.65 27.23±0.69 27.24±0.90
7 23.91±0.95 25.19±0.70 26.09±0.80 27.27±0.81

75%
3 30.67±0.68 30.26±0.81 32.61±0.67 32.21±1.07
5 31.72±1.34 31.10± 0.52 33.97±1.02 33.15±0.68
7 30.68±0.85 32.45±0.61 32.69±0.53 34.32±0.90

111

Table 5.11: The (mean ± std.) of classification error rates of the self-cleaning I baseline
model after each phase. The table shows the performance of the produced model on
the testing data after completely training a WRN model. The first model was trained on
CIFAR10 with a level of 50% uniform noise.

Phase Error Description
Phase 1 18.82 ± 0.37 The results of

models trained
on 50% uniform
noise

Phase 2 16.79 ± 0.11 The results of
models trained
on dataset with
predicted labels
from the trained
model from
previous phase
(phase 1)

Phase 3 17.05 ± 0.30 The results of
models trained
on dataset with
predicted labels
from the trained
model from
previous phase
(phase 2)

112

5.4 Conclusion

In this chapter, we presented TS-DSSL, a semi-supervised classification method. TS-

DSSL accepts as input a noisy training dataset and employs a self-training and self-

cleansing techniques to train a model. The training protocol maintains the model stability

and enhances the overall classification performance. TS-DSSL is constructed from a se-

quence of convolutional layers forked at the end into two classifiers. The primary classifier

is called a teacher. It uses the initially given noisy label training data to build a knowledge

that guides the secondary classifier through cleansing the noisy labels and maintain the

model’s stability. The secondary classifier is the student. It uses the knowledge learned

by the teacher in previous training steps to clean the noisy labels in the training data, and

then it uses the cleaned labels to train the following training steps.

Moreover, we measured the performance of TS-DSSL on the benchmark datasets

CIFAR10 and MINIST with different levels of uniform and non-uniform noises in the labels

of the training dataset. We also compared the efficiency of TS-DSSL with three baseline

methods, as the state-of-the-art methods use small models with low performance. The

experiments show that TS-DSSL sets a new state-of-the-art record for CIFAR-10 and

MNIST datasets with different percents of noisy label training examples.

113

CHAPTER 6 CONCLUSION

We now summarize our main contributions in this dissertation in the following three

main facets. First, we presented in chapter 3 a new Hybrid Residual Network Method

(HyResNet) that exploits the power of both supervised and unsupervised deep learning

methods into a single deep supervised learning model. We tested HyResNet via em-

pirical studies on visual object recognition tasks using benchmark datasets with various

configurations and settings. HyResNet showed comparable results to the state-of-the-art

methods on the benchmark datasets.

Second, we proposed a deep semi-supervised learning method (DSSL) in chapter

4. DSSL utilizes both supervised and unsupervised neural networks. The novelty of

DSSL originates from its nature in employing a limited number of labeled training exam-

ples in conjunction with sufficiently large unlabeled examples to create a classification

model. The combination of DSSL architecture and self-training has a joint impact on the

performance over the DSSL. We measured the performance of DSSL method on five

benchmark datasets with various labeled / unlabeled levels of training examples and then

compared our results with state-of-the-art methods. The experiments show that DSSL

sets a new state-of-the-art record for various benchmark tasks.

Finally, we introduced in chapter 5 a new teacher/student semi-supervised deep learn-

ing methods (TS-DSSL). TS-DSSL accepts as input a noisy training dataset and employs

a self-training and self-cleansing techniques to train a deep learning model. The integra-

tion of TS-DSSL architecture with the proposed training protocol maintains the stability

of the TS-DSSL model and enhances the overall model performance. TS-DSSL is con-

structed from a sequence of convolutional layers forked at the end into two classifiers. The

114

primary classifier is called a teacher and another helper classifier is called the student.

Moreover, we evaluated the performance of TS-DSSL on benchmark semi-supervised

learning tasks with different noisy labels distributions. The experiments showed that TS-

DSSL sets new state-of-the-art records for on the benchmark tasks.

115

APPENDIX A: LIST OF PUBLICATIONS

• Zeyad Hailat, Xuewen Chen, “Teacher/Student Deep Semi-Supervised Learning,”

Submitted and under review.

• Zeyad Hailat, Artem Komarichev, Xuewen Chen, “Deep Semi-Supervised Learn-

ing,” 24th International Conference on Pattern Recognition (ICPR), 2018.

• Zeyad Hailat, Artem Komarichev, Xuewen Chen, “HyResNet: A Hybrid Residual

Network for Supervised Deep Learning,” Wayne State University, Technical Report,

2017.

• Tarik Alafif, Zeyad Hailat, Melih Aslan, Xuewen Chen, “On Classifying Facial Races

with Partial Occlusions and Pose Variations.” 16th IEEE International Conference

on Machine Learning and Applications (ICMLA), 2017.

• Melih Aslan, Zeyad Hailat, Tarik K. Alafif, and Xuewen Chen, “Multi-channel multi-

model feature learning for face recognition.” .Pattern Recognition Letters 85 (2017):

79-83.

• Tarik Alafif, Zeyad Hailat, Melih Aslan, Xuewen Chen, “On Detecting Partially Oc-

cluded Faces with Pose Variations,” I-SPAN (2017).

• Zhe Zhang, Zeyad Hailat, Marni J. Falk, and Xuewen Chen, “Integrative analysis of

independent transcriptome data for rare diseases.” textitMethods 69, no. 3 (2014):

315-325.

116

REFERENCES
[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard

et al., “Tensorflow: a system for large-scale machine learning.”

[2] T. Alafif, Z. Hailat, M. Aslan, and X. Chen, “On detecting partially occluded faces with pose vari-

ations,” in The 14th International Symposium on Pervasive Systems, Algorithms, and Networks (I-

SPAN). IEEE Computer Society Conference Publishing Services (CPS), 2017.

[3] D. Amodei, S. Ananthanarayanan, R. Anubhai, J. Bai, E. Battenberg, C. Case, J. Casper, B. Catanzaro,

Q. Cheng, G. Chen et al., “Deep speech 2: End-to-end speech recognition in english and mandarin,”

in International Conference on Machine Learning, 2016, pp. 173–182.

[4] M. S. Aslan, Z. Hailat, T. K. Alafif, and X.-W. Chen, “Multi-channel multi-model feature learning for face

recognition,” Pattern Recognition Letters, vol. 85, pp. 79–83, 2017.

[5] S. Bell, P. Upchurch, N. Snavely, and K. Bala, “Material recognition in the wild with the materials in

context database,” Computer Vision and Pattern Recognition (CVPR), 2015.

[6] Y. Bengio et al., “Learning deep architectures for AI,” Foundations and trends R© in Machine Learning,

vol. 2, no. 1, pp. 1–127, 2009.

[7] C. Bishop, C. M. Bishop et al., Neural networks for pattern recognition. Oxford university press, 1995.

[8] Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman, “Vggface2: A dataset for recognising faces

across pose and age,” in Automatic Face & Gesture Recognition (FG 2018), 2018 13th IEEE Interna-

tional Conference on. IEEE, 2018, pp. 67–74.

[9] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Deeplab: Semantic image seg-

mentation with deep convolutional nets, atrous convolution, and fully connected crfs,” IEEE transac-

tions on pattern analysis and machine intelligence, vol. 40, no. 4, pp. 834–848, 2018.

[10] X.-w. Chen, M. S. Aslan, K. Zhang, and T. S. Huang, “Learning multi-channel deep feature represen-

tations for face recognition,” in Proceedings of The 1st International Workshop on Feature Extraction:

Modern Questions and Challenges, NIPS, 2015, pp. 60–71.

117

[11] X.-W. Chen and X. Lin, “Big data deep learning: challenges and perspectives,” IEEE Access, vol. 2,

pp. 514–525, 2014.

[12] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and A. Vedaldi, “Describing textures in the wild,” in

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 3606–

3613.

[13] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate deep network learning by exponen-

tial linear units (elus),” arXiv preprint arXiv:1511.07289, 2015.

[14] A. Coates, H. Lee, and A. Y. Ng, “An analysis of single-layer networks in unsupervised feature learning,”

Ann Arbor, vol. 1001, no. 48109, p. 2, 2010.

[15] A. Coates, A. Ng, and H. Lee, “An analysis of single-layer networks in unsupervised feature learning,”

in Proceedings of the fourteenth international conference on artificial intelligence and statistics, 2011,

pp. 215–223.

[16] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A matlab-like environment for machine learn-

ing,” in BigLearn, NIPS Workshop, no. EPFL-CONF-192376, 2011.

[17] R. Collobert, C. Puhrsch, and G. Synnaeve, “Wav2letter: an end-to-end convnet-based speech recog-

nition system,” arXiv preprint arXiv:1609.03193, 2016.

[18] E. Denton, S. Gross, and R. Fergus, “Semi-supervised learning with context-conditional generative

adversarial networks,” arXiv preprint arXiv:1611.06430, 2016.

[19] A. Dosovitskiy, J. T. Springenberg, M. Riedmiller, and T. Brox, “Discriminative unsupervised feature

learning with convolutional neural networks,” in Advances in Neural Information Processing Systems,

2014, pp. 766–774.

[20] B. Frénay and M. Verleysen, “Classification in the presence of label noise: a survey,” IEEE transactions

on neural networks and learning systems, vol. 25, no. 5, pp. 845–869, 2014.

[21] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural networks.” in

Aistats, vol. 9, 2010, pp. 249–256.

118

[22] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, http://www.

deeplearningbook.org.

[23] I. Goodfellow, M. Mirza, A. Courville, and Y. Bengio, “Multi-prediction deep boltzmann machines,” in

Advances in Neural Information Processing Systems, 2013, pp. 548–556.

[24] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio,

“Generative adversarial nets,” in Advances in neural information processing systems, 2014, pp. 2672–

2680.

[25] Z. Hailat, A. Komarichev, and X. Chen, “Hyresnet: A hybrid residual network for supervised deep

learning.” Wayne State University, 2017, Technical Report.

[26] Z. Hailat, A. Komarichev, and X. Chen, “Deep semi-supervised learning,” in 24th International Confer-

ence on Pattern Recognition (ICPR), 2018.

[27] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.

[28] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual networks,” in European

Conference on Computer Vision. Springer, 2016, pp. 630–645.

[29] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with neural networks,”

science, vol. 313, no. 5786, pp. 504–507, 2006.

[30] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov, “Improving neural

networks by preventing co-adaptation of feature detectors,” arXiv preprint arXiv:1207.0580, 2012.

[31] E. Hoffer, I. Hubara, and N. Ailon, “Deep unsupervised learning through spatial contrasting,” arXiv

preprint arXiv:1610.00243, 2016.

[32] C. Huang, C. Change Loy, and X. Tang, “Unsupervised learning of discriminative attributes and visual

representations,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

2016, pp. 5175–5184.

http://www.deeplearningbook.org
http://www.deeplearningbook.org

119

[33] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten, “Densely connected convolutional net-

works,” arXiv preprint arXiv:1608.06993, 2016.

[34] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger, “Deep networks with stochastic depth,” in

European Conference on Computer Vision. Springer, 2016, pp. 646–661.

[35] A. Hyvärinen and E. Oja, “Independent component analysis: algorithms and applications,” Neural

networks, vol. 13, no. 4, pp. 411–430, 2000.

[36] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal

covariate shift,” arXiv preprint arXiv:1502.03167, 2015.

[37] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell,

“Caffe: Convolutional architecture for fast feature embedding,” in Proceedings of the 22nd ACM inter-

national conference on Multimedia. ACM, 2014, pp. 675–678.

[38] I. Jindal, M. Nokleby, and X. Chen, “Learning deep networks from noisy labels with dropout regu-

larization,” in Data Mining (ICDM), 2016 IEEE 16th International Conference on. IEEE, 2016, pp.

967–972.

[39] D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling, “Semi-supervised learning with deep

generative models,” in Advances in Neural Information Processing Systems, 2014, pp. 3581–3589.

[40] A. Krizhevsky, “Learning multiple layers of features from tiny images,” 2009.

[41] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural

networks,” in Advances in neural information processing systems, 2012, pp. 1097–1105.

[42] S. Laine and T. Aila, “Temporal ensembling for semi-supervised learning,” arXiv preprint

arXiv:1610.02242, 2016.

[43] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553, p. 436, 2015.

[44] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recogni-

tion,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

120

[45] C.-Y. Lee, S. Xie, P. W. Gallagher, Z. Zhang, and Z. Tu, “Deeply-supervised nets.” in AISTATS, vol. 2,

no. 3, 2015, p. 5.

[46] M. Lin, Q. Chen, and S. Yan, “Network in network,” arXiv preprint arXiv:1312.4400, 2013.

[47] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft

COCO: Common objects in context,” in European conference on computer vision. Springer, 2014,

pp. 740–755.

[48] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation,” in

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 3431–

3440.

[49] A. Makhzani and B. Frey, “A winner-take-all method for training sparse convolutional autoencoders,” in

NIPS Deep Learning Workshop. Citeseer, 2014.

[50] A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey, “Adversarial autoencoders,” arXiv preprint

arXiv:1511.05644, 2015.

[51] D. McClosky, E. Charniak, and M. Johnson, “Reranking and self-training for parser adaptation,” in

COLINGâĂć ACL 2006, 2006, p. 337.

[52] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann machines,” in Proceedings

of the 27th international conference on machine learning (ICML-10), 2010, pp. 807–814.

[53] N. Natarajan, I. S. Dhillon, P. K. Ravikumar, and A. Tewari, “Learning with noisy labels,” in Advances in

neural information processing systems, 2013, pp. 1196–1204.

[54] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng, “Reading digits in natural images with

unsupervised feature learning.”

[55] A. Ng, “Sparse autoencoder,” CS294A Lecture notes, vol. 72, no. 2011, pp. 1–19, 2011.

[56] K. Nigam and R. Ghani, “Analyzing the effectiveness and applicability of co-training,” in Proceedings

of the 9th International CIKM. ACM, 2000, pp. 86–93.

121

[57] B. A. Olshausen and D. J. Field, “Sparse coding with an overcomplete basis set: A strategy employed

by v1?” Vision research, vol. 37, no. 23, pp. 3311–3325, 1997.

[58] M. Ranzato and M. Szummer, “Semi-supervised learning of compact document representations with

deep networks,” in Proceedings of the 25th international conference on Machine learning. ACM, 2008,

pp. 792–799.

[59] A. Rasmus, M. Berglund, M. Honkala, H. Valpola, and T. Raiko, “Semi-supervised learning with ladder

networks,” in Advances in Neural Information Processing Systems, 2015, pp. 3546–3554.

[60] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and Y. Bengio, “Fitnets: Hints for thin deep

nets,” arXiv preprint arXiv:1412.6550, 2014.

[61] C. Rosenberg, M. Hebert, and H. Schneiderman, “Semi-supervised self-training of object detection

models,” in 2005 7th IEEE Workshops on Applications of Computer Vision (WACV/MOTION’05)-

Volume 1.

[62] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,

M. Bernstein et al., “Imagenet large scale visual recognition challenge,” International Journal of Com-

puter Vision, vol. 115, no. 3, pp. 211–252, 2015.

[63] M. Sajjadi, M. Javanmardi, and T. Tasdizen, “Mutual exclusivity loss for semi-supervised deep learning,”

in Image Processing (ICIP), 2016 IEEE International Conference on. IEEE, 2016, pp. 1908–1912.

[64] M. Sajjadi, M. Javanmardi, and T. Tasdizen, “Regularization with stochastic transformations and per-

turbations for deep semi-supervised learning,” in Advances in Neural Information Processing Systems,

2016, pp. 1163–1171.

[65] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen, “Improved techniques

for training gans,” in Advances in Neural Information Processing Systems, 2016, pp. 2226–2234.

[66] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural networks, vol. 61, pp. 85–

117, 2015.

122

[67] F. Sebastiani, “Machine learning in automated text categorization,” ACM computing surveys (CSUR),

vol. 34, no. 1, pp. 1–47, 2002.

[68] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,”

arXiv preprint arXiv:1409.1556, 2014.

[69] R. Socher, J. Pennington, E. H. Huang, A. Y. Ng, and C. D. Manning, “Semi-supervised recursive

autoencoders for predicting sentiment distributions,” in Proceedings of the conference on empirical

methods in natural language processing. Association for Computational Linguistics, 2011, pp. 151–

161.

[70] J. T. Springenberg, “Unsupervised and semi-supervised learning with categorical generative adversar-

ial networks,” arXiv preprint arXiv:1511.06390, 2015.

[71] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving for simplicity: The all convolu-

tional net,” arXiv preprint arXiv:1412.6806, 2014.

[72] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a simple way

to prevent neural networks from overfitting.” Journal of Machine Learning Research, vol. 15, no. 1, pp.

1929–1958, 2014.

[73] R. K. Srivastava, K. Greff, and J. Schmidhuber, “Highway networks,” arXiv preprint arXiv:1505.00387,

2015.

[74] S. Sukhbaatar, J. Bruna, M. Paluri, L. Bourdev, and R. Fergus, “Training convolutional networks with

noisy labels,” arXiv preprint arXiv:1406.2080, 2014.

[75] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabi-

novich, “Going deeper with convolutions,” in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2015, pp. 1–9.

[76] S. Targ, D. Almeida, and K. Lyman, “Resnet in resnet: generalizing residual architectures,” arXiv

preprint arXiv:1603.08029, 2016.

123

[77] A. Tarvainen and H. Valpola, “Weight-averaged consistency targets improve semi-supervised deep

learning results,” arXiv preprint arXiv:1703.01780, 2017.

[78] H. Valpola, “From neural PCA to deep unsupervised learning,” Advances in Independent Component

Analysis and Learning Machines, pp. 143–171, 2015.

[79] S. Zagoruyko and N. Komodakis, “Wide residual networks,” arXiv preprint arXiv:1605.07146, 2016.

[80] X. Zhang, J. Zhao, and Y. LeCun, “Character-level convolutional networks for text classification,” in

Advances in neural information processing systems, 2015, pp. 649–657.

[81] X. Zhu, “Semi-supervised learning literature survey,” world, vol. 10, p. 10, 2005.

124

ABSTRACT

DEEP LEARNING METHODS FOR VISUAL OBJECT RECOGNITION

by

ZEYAD HAILAT

August 2018

Advisor: Dr. Xuewen Chen

Major: Computer Science

Degree: Doctor of Philosophy

Convolutional neural networks (CNNs) attain state-of-the-art performance on vari-

ous classification tasks assuming a sufficiently large number of labeled training exam-

ples. Unfortunately, curating sufficiently large labeled training dataset requires human

involvement, which is expensive, time-consuming, and susceptible to noisy labels. Semi-

supervised learning methods can alleviate the aforementioned problems by employing

one of two techniques. The first approach os to utilize a limited number of labeled data in

conjunction with sufficiently large unlabeled data to construct a classification model. The

second approach is to utilize sufficiently large noisy label training data to learn a classifica-

tion model. In this dissertation, we proposed new methods to mitigate the aforementioned

problems. We summarize our main contributions below.

First, we presented a new Hybrid Residual Network Method (HyResNet) that exploits

the power of both supervised and unsupervised deep learning methods into a single deep

supervised learning model. Our experiments show the efficacy of HyResNet on visual

object recognition tasks. We tested HyResNet on benchmark datasets with various con-

figurations and settings. HyResNet showed comparable results to the state-of-the-art

methods on benchmark datasets.

Second, we proposed a new deep semi-supervised learning method (DSSL). DSSL

utilizes both supervised and unsupervised neural networks. The novelty of DSSL orig-

125

inates from its nature in employing a limited number of labeled training examples in

conjunction with sufficiently large unlabeled examples to create a classification model.

The combination of DSSL architecture and self-training has a joint impact on the perfor-

mance over the DSSL. We measured the performance of DSSL method on five bench-

mark datasets with various labeled / unlabeled ratios of training examples and then com-

pared our results with state-of-the-art methods. The experiments show that DSSL sets a

new state-of-the-art record for various benchmark tasks.

Finally, we introduced a new teacher / student semi-supervised deep learning method

(TS-DSSL). TS-DSSL accepts as input a noisy labeled training dataset and then it em-

ploys a self-training technique to train a deep learning model. The integration of TS-DSSL

architecture with the proposed training protocol maintain the stability of the method and

enhance the overall method performance. We evaluated the efficiency of TS-DSSL on

benchmark semi-supervised learning tasks with different levels of noisy labels that we

synthesized from uniform and non-uniform noise distributions. The experiments showed

that TS-DSSL sets a new state-of-the-art record on the benchmark tasks.

126

AUTOBIOGRAPHICAL STATEMENT

Zeyad Hailat is currently a Ph.D. candidate in the Department of Computer Science at

Wayne State University, Detroit, MI, USA. He works under the supervision of Dr. Xuewen

Chen. Before joining Wayne State University, Mr. Hailat has received a Bachelor’s and

a Master’s degrees in Computer Science from Yarmouk University, Jordan, in 2006 and

2009, respectively.

The academic experience of Mr. Hailat includes teaching courses in diverse computer

topics for various undergraduate levels. On the practical computer side, he is exposed to

various state-of-the-art computer technologies, general purpose programming languages,

artificial intelligence tools, and a wide range of computer hardware and software.

His research interests broadly include artificial intelligence, data sciences, deep learn-

ing, machine learning, data mining, computer vision, and big data. Specifically, his re-

search focus mainly on developing and implementing new machine learning (supervised,

unsupervised, and semi-supervised deep learning) methods to solve real-life challenging

problems as well as problems in computer vision, natural language processing, speech

recognition, and bioinformatics.

	Deep Learning Methods For Visual Object Recognition
	Recommended Citation

	Dedication
	Acknowledgements
	List of Tables
	List of Figures
	 INTRODUCTION
	NOMENCLATURE AND BACKGROUND
	 Convolution Neural Network (CNN)
	Autotoencoder (AE)
	Neural Network Model Layers and Components
	Residual Networks
	Residual Block (RB)
	Residual Units (RU)
	Sampling Component

	Loss Functions
	The Unsupervised Loss Function
	The Supervised Loss Function

	Sparsity
	Data Preprocessing Methods
	Mean Normalization
	Mean and Standard Deviation Normalization
	Global Contrast and ZCA Whitening

	A HYBRID RESIDUAL NETWORK METHOD FOR SUPERVISED DEEP LEARNING (HYRESNET)
	Introduction
	Problem Formulation

	Method
	Models 1, 2, and 3
	Model 4
	Models 1, 2 and 3 versus Model 4
	Models 5 and 6

	Experiment
	Model 1 Variations
	Model 2 Variations
	Model 3 Variations
	Model 4 Variations
	The Effects of Dropout
	The Effects of Batch Normalization
	The Unsupervised Component: Deconvolutional Layers
	The Effects of the Preprocessing Methods
	Model 5 Variations
	Model 6 Variations

	Conclusion

	DEEP SEMI-SUPERVISED LEARNING
	Introduction
	Contribution
	Problem Formulation.

	Related Work
	Method
	DSSL Algorithm
	Split Layer

	Experiment
	CIFAR-10
	CIFAR-100
	STL-10
	MNIST
	SVHN

	Discussion
	Conclusion

	TEACHER/STUDENT DEEP SEMI-SUPERVISED LEARNING FOR NOISY LABELS
	Introduction
	Problem Formulation
	Contribution

	Method
	TS-DSSL Architecture
	TS-DSSL Training
	Synthesizing the Noisy Labels
	Baseline Methods

	Experimental Results
	CIFAR-10
	MNIST
	Data Preprocessing
	Experimental Setup
	Hardware and Software

	Conclusion

	CONCLUSION
	Appendix A: List of publications
	References
	Abstract
	Autobiographical Statement

