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CHAPTER 1 INTRODUCTION TO CONVOLUTIONAL NEURAL
NETWORK

Convolutional neural networks (ConvNet) have improved the state of the art

in many applications, specially the face recognition area. In this chapter, we present a

review on latest face veri�cation techniques based on Convolutional Neural Networks.

In addition, we give a comparison on these techniques regarding their architecture,

depth level, number of parameters in the network, and the obtained accuracy in iden-

ti�cation and/or veri�cation. Furthermore, as the availability of large scale training

dataset has signi�cant e�ect on the performance of ConvNet-based recognition meth-

ods, we present a preface to the most common large scale face datasets, and then we

describe some of the successful automatic data collection procedures.

1.1 Introduction

A face recognition system is typically consist of two parts: i) face identi�cation,

and ii) face veri�cation. Face identi�cation is the process of classifying input images

into identity classes, while face veri�cation is the process of classifying a pair of images

in order to verify whether they belong to the same person or not.

One challenge in recognition is intra-class (intra-personal) variations; i.e. the

same identity may have variations in appearance that is caused by alternation in

illumination, facial expressions, poses, makeup and hair style, aging, etc. The other

challenge is inter-class (inter-personal) similarity; i.e. di�erent identities may have

similar appearance, like the similarities which are common between twins, relatives,

or even strangers.

On one hand, having di�erent light directions on the same identity makes it

hard for even human to verify the face. On the other hand, the di�erence between

two images of the same identity having distinct poses is higher than the di�erence

between two distinct identity having the same pose. Besides the pose variance, the
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facial expressions also make signi�cant deformation on the surface of the face. In

addition to that, disguising can cause a greater level of di�culty to recognize a face.

Accordingly, the face recognition is a complicated problem, and it can be even more

complicated on images which are taken in wild with so many varieties rather than

controlled circumstances.

To overcome these challenges, many identi�cation/veri�cation methods have

been proposed, e.g. in [69, 70, 92, 15, 52, 56]. These methods are known as shallow

methods, as the deep learning concepts has not been used in their procedure [57]. In

these methods, a representation of the face image is generated by using handcrafted

local image descriptors. Then, the local descriptors are aggregated into one single

descriptor through a pooling mechanism like Fisher vector [67].

Other than the shallow approaches, the deep learning techniques also enter to

the area of face recognition. Since the earliest face recognition techniques based on

ConvNet introduced in 1990's, ConvNet has become a point of interest for many face

recognition areas such as identi�cation, veri�cation or detection [42, 40].

Recently, the ConvNet-based face recognition techniques have reached to a

near perfect veri�cation accuracy on some datasets. This achievement has motivated

us to review the latest techniques of this category, with the main focus on veri�cation

area.

The organization of this report is as follows: in section 1.2 a brief explanation

is presented on convolutional neural networks. In addition, the general architecture of

ConvNet-based face recognition methods is given. Thereafter, in section 1.2 the most

recent successful applications of face identi�cation / veri�cation which use ConvNet

networks are introduced. The characteristics of the related ConvNet architecture

and the obtained accuracy is also given in this section. Then, in section 1.4 the

most common datasets which are used for training and testing the ConvNet-based
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techniques are introduced. Some speci�cations of these datasets are also given in this

part. Following that, in section 1.5 a summary of all reviewed techniques is given in

a table-wise manner. Finally, in section 1.6, a list of suggestions is given for future

research.

1.2 Background

In the following, we give a brief explanation on neural network structure in

subsection 1.2.1. Thereafter, we will describe the convolutional neural networks as

a customized neural network, and their characteristics in subsection 1.2.2. Then, in

subsection 1.2.3, we represent a general schema for most face recognition methods

which are built on ConvNet.

1.2 Neural Networks

Regular Neural Networks include an input layer, one or more hidden layers,

and an output layer. The input layer receives a vector of inputs and pass it to the

hidden layers. Each hidden layer contains a set of non-connected individual neurons

which are fully connected to all neurons in the previous hidden layer. The output

layer has the same structure as the hidden layers. The structure of a regular Neural

Network is illustrated in Fig. 1.1.

(a) (b)

Figure 1.1: Neural Network, (a) the general structure, and (b) an example of a neuron
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1.2 Convolutional neural networks

The regular neural networks can not e�ciently apply to images, as the fully

connected layers cause each neuron to deal with a massive number of weights. Regard-

ing this issue, the Convolutional Neural Networks are proposed as one type of Neural

Networks with the assumption that the inputs are in format of images. ConvNets

contain less fully-connectivity between neurons to avoid dealing with large number of

weights in each neuron. ConvNet is generally built up from input layer, convolutional

layer, pooling (sub-sampling) layer, normalization layer, fully connected layer, and

an output layer. A general structure of Convolutional Neural Networks is illustrated

in Fig. 1.2. In the following an explanation is given on each of the ConvNet layers.

Figure 1.2: General Convolutional Neural Network structure in face recognition prob-
lems

Input layer: The input layer maps the input image into a matrix of pixel

values with three channels of RGB colors, or one channel of gray-scale values.

Convolutional layer: Convolution is the operation of convolving an input by

a kernel in order to generate a feature map. In face recognition problems, the input

is the pixel-valued matrix which is received from the previous layers, and the kernel

is a �lter matrix. According to this, the convolution operation can be mapped to a
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matrix multiplication operation between the input matrix and �lter matrix, which

results in another matrix viewed as feature map [6].

As the kernels (�lters) are designed to be smaller than the input, the inter-

action between the layers becomes less than the interactions that happens in regular

neural network. This directly means the next layer deals with less parameters.

There are three strategies to generate the convolutional kernels, i) handcraft

designation, ii) unsupervised learning of the kernels, and iii) randomly initialization

of the kernels [6]. Some examples of handcrafted kernels are Gabor �lters, curvlets,

contoutlets, bandlets, Surfacelets, and etc. [53]. An example of Gabor �lters is given

in Fig. 1.3. Also, many unsupervised kernel learning approaches has been introduced

in [6]. But random �lters are reported to work better in practice [65, 16].

(a) (b) (c)

Figure 1.3: An example of Gabor kernels with (a) di�erent coordinate parameters,
(b) di�erent sinusoid parameters, and (c) di�erent Gaussian scale parameters.

Pooling layer: Almost all ConvNet designs employ a pooling layer after some

convolutional stages. Pooling is considered as a non-linear down-sampling method.

In pooling layer, a pooling function is applied to modify the output of the previous

stages. In the other words, the pooling function summarizes the results over a whole

neighborhood.
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Some example of pooling techniques are max-pooling [8], average-pooling, L2-

norm pooling [44], and weighted average pooling. The max-pooling function calculate

the output as the maximum value within a rectangular neighborhood, while average-

pooling calculates the average value presented as output. Similarly, L2-norm and

weighted average pooling functions respectively report the L2-norm and weighted

average of the a rectangular neighborhood presented as the output. Among these

functions, max-pooling is proved to work better for face recognitions problems in

practice [6]. In [9] the authors describe that which of pooling functions works better

for various applications of visual recognition.

In a regular ConvNet architecture, each convolutional layer is followed by a

pooling one, while it should be mentioned that convolution and pooling can lead to

under-�tting. This order is useful only when the assumptions made by the previous

layers are reasonably accurate [6].

Normalization layer: Contrast normalization, inter-map normalization, or

across maps normalization are some example of normalization functions that can

apply in this layer. Recently, it has been reported that these layers don't have much

contribution in practice, and thus they are not included in many recent ConvNet

architectures [73].

Fully connected layer: After several convolutional and max pooling layers,

fully connected layers are added to the network. Fully connected layers are similar to

regular neural networks layers in which the neurons are connected to all neurons of

the previous layer.

Loss layer: The last layer of ConvNet is usually a loss layer which applies a

loss function (e.g. SVM or SoftMax) to the last fully connected layer to calculate the

error between predicted labels and true labels.
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The �rst implementation of Convolutional Neural Networks was LeNet pro-

posed in 1998 [44]. This network included two convolutional layers individually fol-

lowed by two sub-sampling layers, and attached to two fully connected layers at the

end. This network was mainly designed for digit recognition. Thereafter, the �rst

face recognition ConvNet developed in 2012, named AlexNet [38]. AlexNet includes

5 convolutional layers, 3 pooling layers, and 3 fully connected layer. AlexNet con-

tains 60M parameters. This network was the �rst ConvNet structure in which not all

convolutional layers were followed by a pooling layer.

Another famous implementation of ConvNet is VGGNet proposed in 2014 [68].

VGGNet is considered to be very deep, as it includes 16 layers of convolution con-

taining 140M parameters. the pre-trained model of this network is publicly available.

Besides to VGGNet, another common ConvNet is GoogleNet developed in 2014

[79], which contains 22 layers with only 4M parameters (compare to 140M parameters

in VGGNet). GoogleNet outperforms VGGNet in terms of classi�cation.

In the following, we will give more explanation on face recognition architectures

which are designed based on Convolutional Neural Networks in order to apply the

identi�cation/veri�cation on face images.

1.2 General ConvNet-based Face Recognition Schema

The face recognition methods based on ConvNet generally follow some com-

mon steps, although there are varieties for performing each step. These steps are

illustrated in Fig. 1.4. In the following a brief explanation on each step is given.

Face Detection

In face recognition problems, the �rst step is usually to prepare a collection of

face images. The face detection algorithms are used to detect a human face within

an image or a video frame.
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Figure 1.4: General face recognition pipeline. In this structure, two di�erent frame-
works are employed for identi�cation and veri�cation

One example of of detection techniques is the Viola-Jones method [84] and its

variances [10]. The original Viola-Jones performs with a speed of 3 frames per second

and the detection rate of di�erent versions of this method varies between 50% to 70%

[10].

Another example of detection methods is Cascade-CNN [46] which is a deep

learning based detection technique with the speed of 14 frame per second. This

detector is more robust to variations of face appearance as a result of using ConvNet.
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The ConvNet architecture in this method includes 3 ConvNets for binary classi�cation

of face/non-face images, and another 3 ConvNets for calibration of bounding boxes.

Pre-processing

The detected face images are usually passed through a processing channel

before being fed to the learner. The reason behind pre-processing is to compensate the

face illumination or position, in order to minimize the variance that caused by these

two while keeping the variations that caused by deformation of the faces. As the result,

the images will be characterized under the similar conditions. Some pre-processing

examples are geometric normalization (i.e. alignment) and lighting normalization

[102].

The geometric normalization can include cropping, rotating, frontalization and

scaling. The goal of this function is to create a constant image size with almost frontal

orientation and known position of eyes.

The lighting normalization can include �ltering, histogram modi�cation (like

stretching or equalization), mirror re�ection, . The goal of this function is to minimize

the e�ect of lighting conditions.

ConvNet Training

After the pre-processing task, the designated ConvNet needs to be trained by

the processed face images. The characteristics of ConvNet such as depth, number

of convolutional layers and number of parameters in each layer varies in di�erent

implementations. The face images will be fed to the ConvNet through a feed forward

process. Based on the availability of the labels, there can be a back-propagation step

in order to to �ne-tune the network weights; the ConvNets which apply the back-

propagation of classi�cation error are considered to be supervised. The output of the

ConvNet is a set of feature vectors related to face images.
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Identi�cation

The identi�cation process can be perform by applying a classi�er on the feature

vector which is obtained for each face image. The classi�er categorizes similar feature

vectors in the same group to be considered as a unique identi�er. The trainable

classi�er can be any generic classi�er like SVM.

Metric Learning

After completing the identi�cation process, the classi�ed feature vectores can

be used to learn a veri�cation metric. The goal of metric learning is to train a

veri�cation model. Di�erent models can be used here, like Joint-Bayesian [12], Co-

sine similarity [54], energy-based similarity metric [14], deep metric learning [27], or

Triplet-similarity [64]. The chosen model is trained with pair of similar/non-similar

feature vectors. The trained model is then used to verify whether a pair of feature

vectors belong to the same identity or not.

Face Veri�cation

Having the trained model, the veri�cation can be applied directly to a pair of

images. For this purpose, the pair of face images pass through the same pre-processing

channel as described in the �rst steps of recognition (see Fig. 1.4). Thereafter, the

processed images are fed into the ConvNet which was trained in the previous steps.

The result of this task is a pair of feature vectors. After creating the feature vectors

for each of the test images, the trained model will apply to the feature pairs and

presents the result as a yes or a no (i.e. same identity or di�erent identities).

The above explanation presents a general face recognition method based on

ConvNet. Although, di�erent varieties have been proposed for face recognition till
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now. In the next section we will introduce the state of the art in ConvNet based face

recognition methods following with a summary on these algorithms.

1.3 Face Recognition Methods Based on ConvNet

In this work, we focus on face recognition specially the veri�cation task in

videos. We can categorize the face recognition methods into two parts from the deep

learning (DL) point of view: the shallow methods, which don't use DL techniques,

and the deep methods, which are based on DL. In shallow methods, a representation

of the face images is extracted using local image descriptors. Then the local image

descriptors are aggregated into a single face descriptor during a pooling mechanism,

like Fisher vector [56]. Whereas in deep methods, the representation of face images

is extracted using ConvNet. The performance of deep methods is widely related to

the structure of ConvNet and the scale of the training dataset.

In the following, we introduce some of the latest face recognition methods

which are built based on ConvNet, and we will brie�y explain the contribution of

each work.

1.3 DeepFace Model

The �rst convolution based face recognition method is known as "DeepFace"

presented by Taigman et. al. in 2014 [80]. This method was introduced as a Deep

Neural Network (DNN) for face veri�cation tasks.

The architecture proposed in this model includes four main parts: i) detec-

tion, ii) aligning, iii) representation, iv) classi�cation. In this method, after detecting

the face images, they are aligned through a 3D-alignment pipeline. Thereafter, the

3D-aligned RGB images pass through a ConvNet network to generate the face repre-

sentatives. This ConvNet includes two convolutional layers, one max-pooling layer,

three locally connected layers, and two fully connected layers. The output of this
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network is a set of image representatives. At the end, a classi�er is applied on face

image representatives to perform face Identi�cation task. The designated architecture

is illustrated in Fig. 1.5.

Besides the presented structure, a Siamese neural network is used to perform

face veri�cation. Siamese is a symmetric network including two networks which are

joined with an energy function. In this network, two similar images will map to

two locations which has a short distance in a space (lower energy); As the similarity

decreases, this distance increases (higher energy). An example of Siamse network is

given in [14] (see Fig. 1.6).

Figure 1.5: DeepFace ConvNet architecture for face identi�cation [80]

Figure 1.6: Siamese structure for face veri�cation [14]
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1.3 Web-Scaled DeepFace Model

Web-Scale [81] is another ConvNet-based model which was designed based on

DeepFace [80]. The architecture of this method is shown in Fig. 1.7.

Web-Scale bene�ts from a bootstrapping method that is applied on the large

training dataset to select an e�cient training subset. The e�cient subset contains

more of the hardest recognition cases and ignores the easy ones.

Web-Scale achieves a lower veri�cation accuracy in comparison to DeepFace,

whereas its obtains higher identi�cation accuracy. The identi�cation accuracy over

LFW and YTF dataset is reported as 95.0% and 80.7% respectively. Based on the fact

that Web-Scale identi�cation outperforms DeepFace whilst it has comparatively lower

feature vector dimension, the authors claim that high dimensional feature vectors are

not necessarily result in better accuracy.

Figure 1.7: The main architecture of Web-scaled DeepFace [81]

1.3 DeepID Model Series

Inspired by DeepFace, many ConvNet based methods have been designed to

improve the accuracy of identi�cation/veri�cation. DeepID model series are among

the popular successful methods which maid alternations in the structure of the net-

work to achieve higher accuracy. In the following, the DeepId model series, including
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DeepID [76], DeepID2 [74], DeepID2+ [77], and DeepID3 [75] are introduced and

their architectures are brie�y explained.

DeepID Model

DeepID model was introduces as a ConvNet based identi�cation/veri�cation

technique in 2014 [76]. The proposed ConvNet architecture includes three convolu-

tional layers where each of them is followed by a max-pooling layer. On the top of

these layers, there is a �nal convolutional layer which is joined to a fully connected

one. The features related to the �rst three convolutional layers are local, while the

ones related to the forth layer are more global. The schema of this model is presented

in Fig. 1.8.

In this model, �ve parts of the aligned face are detected: the centers of two

eyes, two corners of mouth and the nose tip. The ConvNet uses di�erent patches of

the face to extract features from di�erent parts of it. Then, a multi-classi�er is trained

to classify 10k unique identities. After training, the face representative features are

extracted from �nal layers of ConvNet network.

DeepID model uses the Joint Bayesian technique for face veri�cation tasks

[12]. Before training the Joint Bayesian model the feature space should be reduced

by using PCA.

DeepID2 Model

Based on DeepID, the method DeepID2 is proposed by Sun et al. [74]. The

structure of this model is presented in Fig. 1.9.

In DeepID2, the face identi�cation/veri�cation signals are used as supervisory

signals in order to decrease the intra-identity variations and increase the inter-identity

di�erences.
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Figure 1.8: The architecture of DeepID1 model [76].

Figure 1.9: The architecture of DeepID2 model [74].

DeepID2+ Model

DeepID2+ designed based on DeepID2, and it includes three convolutional

layers, each connected to a max-pooling layer, where the last max-pooling layer is

connected to one locally connected layer and one �nal fully connected layer [77]. The

terminal features are extracted from the �nal fully connected layer. In addition to

this, there are also three other fully connected layers which are attached to each of the

max-pooling layers. The goal of these early bind fully connected layers is to perform

early feature extraction. The supervisory signals are added to all fully connected

layers. The structure of this model is presented in Fig. 1.10.
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Based on the description, one can claim that two of the main di�erences in

DeepID2+ in comparison to DeepID2 are to create a more deep network and also to

send supervisory signals to early convolutional layers, which both leads to a higher

accuracy. Besides, The authors claim that the deep ConvNet-based face identi�ca-

tion/veri�cation systems are more robust. The author support this claim by the

demonstrating the evidence that the neurons in �nal layers of ConvNet are more

robust to corruption of image than lower level neurons.

Figure 1.10: The architecture of DeepID2+ model [75].

DeepID3 Model

DeepID3 o�ers a model which contains two very deep neural network for face

identi�cation / veri�cation [75]. Similar to DeppID2+, the two architecture also

contain early fully connected layers, whist they are much deeper than the DeepID2+
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[74]; i.e. DeepID2+ uses 5 feature extraction layers, while DeepID3 uses up to 15

feature extraction layers.

As mentioned, DeepID3 has two networks; network #1 includes 8 convolutional

layers, where each pair is followed by a max-pooling layer. The last (i.e. fourth) max-

pooling layer is followed by one locally connected layer and one �nal fully connected

layer. In addition to this, there are also four other fully connected layers which are

attached to each of the max-pooling layers. In companion with network #1, there

is network #2 which contains 2 pairs of convolutional network, where each pair is

followed by a max-pooling layer. There after, the network is followed by 3 plus 2

layers of inception, which both are followed by a max-pooling layer. Finally a fully

connected layer is attached to the end of network to represent the features. The

presented model is deeper than previous versions, but less shallow than GoogleNet

[79].

The model is �rst trained by the CelebFaces+ dataset [76] and WDref dataset

[12]. Then a joint bayesian model is also trained on the extracted features to be used

for veri�cation tasks [12]. The veri�cation accuracy of this method is reported as

99.53% on LFW dataset.

1.3 CASIA Model

At 2014, the institue of CASIA presented a strategy to collect a face dataset

named CASIA-WebFace [97]. Based on the dataset, the CASIA ConvNet network

designed with 11 layers of convolution and max-pooling. The veri�cation accuracy of

this model is reported as 96.33% and 90.60% on LFW and YTF dataset respectively.

Although this result is not much satisfactory in comparison to the previous methods,

but the contribution of this work is considerable in creating the state of the art of

largest training face dataset which is publicly available.
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1.3 FaceNet Model

Almost all of the ConvNet based methods proposed in 2014 need to perform

the identity recognition perior to run the veri�cation task. In 2015, the Google

research group introduced a face veri�cation method named FaceNet [66], in which

veri�cation and identi�cation can perform in the same framework. In FaceNet, a deep

ConvNet network is designed, which includes 11 convolution layers, 4 pooling layers,

and 3 fully connected layers. This ConvNet network is trained by an aligned triplet

matching/non-matching face patches in order to learn an Euclidean embedding for

each image. Accordingly, a triplet loss is also presented to train the embedding. The

training is such that the Euclidean distance between two face image in embedding

space directly represents their similarity, i.e. the small distances testify that the

two face images belong to the same person, and long distances shows that the two

face images belong to distinct people. After creating the embedding, a threshold

on the distances between two embedding can be chosen; this threshold is used for

face veri�cation procedure. Moreover, for face identi�cation purpose a simple K-NN

classi�cation technique can be used, e.g. k-means method.

FaceNet is reported to achieve an e�cient representation of features, so that

for each image only a 128 dimension of representative information is created. It should

be mentioned that the triplet selection is one of the challenges in this model which

a�ect the performance of veri�cation. The schema of triplet loss learning is illustrated

in Fig. 1.11.

1.3 VGG Model

VGG model is another method which used triplet loss learning in ConvNet

network [57]. In an study by VGG group, di�erent architectures of ConvNet were

explored and a �nal ConvNet architecture were designed for recognition. In the
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Figure 1.11: Triplet loss learning based on minimizing the distance between the anchor
and the image from the same identity, and maximizing the distance between the
anchor and the image from a very di�erent identity [66].

proposed architecture only one ConvNet network exists, while in many of other models

an ensemble of ConvNet networks are used. The proposed ConvNet includes 16

convolution layers, 5 max-pooling layers, and 3 fully connected layers. Besides that,

this method used triplet loss to learn the face embedding as explained in [66]. The

authors claim that the single ConvNet architecture is comparable to ensemble base

methods while it is much simpler. The veri�cation accuracy in this model is reported

as 98.95% on LFW dataset.

Another major contribution in this study is to present a routine to collect a

large dataset by a combination of automation and human in loop. The result dataset

contains hundreds of images for thousands of unique identities.

Based on this model, Berkeley vision and learning center has o�ered the Caf-

feNet model [1] which trained the VGG-CNN model [80] using the ImageNet dataset

[2]. Ca�eNet is proclaimed to be one of the best models presented in the ImageNet

ILSVCR Challenge 2014 [63].

1.3 Lightened-CNN Model

Although the previous methods achieved a high accuracy in veri�cation task,

but they are considered to be highly computational intensive. To overcome this isuue,

Wu et. al. proposed a lightened ConvNet-based face veri�cation method [93]. In this

method two ConvNet models are designed, where the �rst one is a shallow ConvNet
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model which includes 4 layers of convolution and 4M parameters, and the second

one is a ConvNet with reduced kernel size which includes Network in Network (NIN)

layers between its convolutional layers. The CASIA-WebFace [97] dataset has been

used to train the model. The structure of this method is shown in Fig. 1.12.

The authors claimed that although the number of layers are shallow in this

model, the results of this model is comparable to VGG-CNN model, while it has

reduced the computational cost by 9 times.

Figure 1.12: The lightened-CNN architecture. In this model, the MFM (Max-Feature-
Map) has been used as the activation function, instead of ReLU [93].

1.4 Common ConvNet Training and Testing Datasets

One of the important challenges for any face identi�cation/veri�cation problem

is to choose the right training and testing data. In this section a brief description on

common datasets that have been used in recent methods is given (Table 1.1).

In the beginning, a more detailed description is presented on CASIA-Webface

as the largest public training dataset, and MegaFace as the largest public testing

dataset. Thereafter, a description is given on IJB-A dataset as the most varied

testing dataset. Furthermore an explanation is given on recent VGG dataset collection

strategy, which can be followed by research groups to create large databases with less

human e�ort.
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1.4 CASIA-WebFace Dataset

Goal: Up to now, The CASIA-WebFace has the largest scale among face

image public datasets. This dataset has been generated in 2014 [97] and its goal is

mainly to present a large training dataset to be used in face identi�cation/veri�cation

algorithms.

Source: The images are initially extracted from celebrity web pages in IMBD.

Table 1.1: The common face recognition datasets and their characteristics, includ-
ing description, number of images, number of identities, availability, testing/training
type, and published year.

Database Name #Images #Identities Availability Type Year

LFW [29] 13,233 5,749 Public Test 2007

YTF [92] 3,425 videos 1,595 Public Test 2011

WDref [12] 99,773 2,995
Public

(Feature only)

Train 2012

CASIA WebFace [97] 494,414 10,575 Public Train 2014

CACD [11] 163,446 2,000 Public Train 2014

CelebFaces+ [76] 202,599 10,177 Private Train 2014

SFC [80] 4,400,000 4,030 Private Train 2014

MegaFace [33] 1M 690,572 Public Test 2015

IJB-A [37]
5,712 images

2,085 videos
500 Public Test 2015

VGG-dataset [57] 2.6M 2,622 Private Train 2015

FaceNet [66] 200M 8M Private Test 2015
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Dataset Collection steps: In order to create this dataset, a list of candidate

celebrities extracted and crawled from IMBD. Then, the photos were obtained from

each celebrity web page in IMBD. Since most photos contain more than one human

face, a fast clustering method was used to annotate the identity of faces. Moreover, a

multi-view face detector was applied to detect the faces and crop them. Thereafter, to

ensure that the subjects in the dataset are not overlapping to LFW, the duplication

removed by using edit distance between names. Finally, the whole dataset were

checked manually and the false annotations were corrected.

1.4 MegaFace Dataset

Goal: the MegaFace [33] has mainly generated to improve the performance

evaluation of face identi�cation/veri�cation algorithms at a scale of millions of images.

The number of distractors in this dataset goes from 10 to 1M. The motivation behind

creating this database was the fact that face recognition algorithms achieved a near

to perfect accuracy on LFW dataset; LFW includes only 13K photos, while MegaFace

is about 100 times larger, with a large number of distractors. Therefor, this database

can be considered as a good candidate for testing purposes.

Source: The images are extracted from Flickr (Yahoo's dataset), and are

publicly available.

Dataset Collection steps: the MegaFace dataset collection steps from Flicker

are described in the below:

1. At �rst, 500K unique users were selected from Flicker.

2. Then, for each user, the �rst photo which the containing face is larger than

50x50 was selected and added to dataset. If the image contained more than one

face, most probably it is a di�erent identity, so it added to the database as a

false positive example.
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3. A total number of 690K faces were gathered in this way, which are unique

identities with a high probability.

4. The process �nished after collecting 1.2M total images.

Resolution: More than 50% of images have a resolution of 40 pixels in Infor-

mation Object De�nition (IOD).

It has been reported in [33] that most of the algorithms that achieve 95%

accuracy on LFW dataset, achieve only up to 75% accuracy of face identi�cation on

MegaFace.

1.4 IJB-A Dataset

Goal: In 2015, the IJB-A dataset was introduced by Klare et. al. [37], which

was inspired by a need to push the frontiers of unconstrained face recognition. The

IJB-A dataset contains images which has a lot of variations in poses of each unique

identity.

The set includes 500 subjects, where each subject has an average of 11 images

and 4 videos related to it. The IJB-A is reported to have some bene�cial character-

istics as below:

• Containing huge number of pose variations for each subject

• Containing many geographical variations for each subject

• Including eye and nose positions

• Including both images and videos

• Suitable for both identi�cation and veri�cation tasks



24

Source: The images and videos are extracted from world wide web, and are

publicly available.

Dataset Collection steps: Most of collection steps for creating IJB-A dataset

has been performed manually with use of human e�ort. In the beginning, a collection

of images and videos were collected for some unique identities. Then, the position

of all the faces inside the images and videos were annotated manually by human.

The face detection algorithms has not been used here, in order to avoid the the false

detection of non-faces.

Resolution: One of the characteristics of this dataset is to have a variety of

resolutions, as the face images are collected in the wild.

1.4 VGG Dataset

Goal: The goal of Vgg group in creating the VGG dataset was to utilize a

combination of automation and human in the loop to build a large face dataset whilst

requiring only a limited amount of person-power for annotation [57]. VGG dataset

has used the knowledge sources available on the world wide web and the contributors

have announced that it will be publicly available to the research community.

Source: The images are initially extracted from IMBD, and then searched

through the web by using Bing and Google image search engines.

Dataset Collection steps: the VGG dataset collection steps are described

as below:

1. A list of candidate identity names were Bootstrapped and �ltered by utilizing

the following strategies:

(a) In the beginning, a list of 5K candidate identities extracted from IMBD

celebrity list which ranked by popularity. The list included males and

females with some other attributes like age.
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(b) Then, the identities which did not possess enough distinct images removed

from the candidate list. Thereafter, a set of 200 images downloaded for

each of the remaining identities. Then the images were given to some

human annotators to validate whether the set is 90% pure for each identity.

After this �ltering, a list of 3,250 identities were remained.

(c) Thereafter, any names appearing on LFW and YTF dataser were removed,

so that the dataset is fair for algorithms which use LFW and YTF as their

testing data. After this step, a list of 2,622 identities were remained.

2. Each of the remaining identities in the candidate list queried in Google and

Bing search engines, and 2000 images obtained for each.

3. Then, the purity improved with an automatic �lter. For this goal, a linear SVM

classi�er trained for each identity by using the Fisher Vector Faces descriptor

and used to rank the 2000 images for each identity. The top 1000 images

retained to be placed in dataset.

4. Afterward, the near duplicate images for each identity removed. For this pur-

pose, the VLAD descriptor for each image calculated and clustered using a very

tight threshold. As a result, each cluster contain very similar or near duplicate

images. So, a single image from each cluster retained.

5. Finally, a manual �ltering applied to increase the purity of the results. To do

so, blocks of 200 images were shown to annotators to be validated.

1.5 Summary

By reviewing the successful applications of ConvNet-based face recognition

methods the following points can be concluded:



26

• The size of the training dataset and the degree of variety in images a�ects the

perforamance of the trained model. One can claim that bigger dataset with

more varieties creates more accurate trained models [57].

• Most of the mentioned recognition methods use alignment techniques in pre-

processing steps to align the face. Most authors claim that alignment improves

the accuracy of identi�cation / veri�cation. FaceNet is one of the rare methods

that doesn't use alignment, and the reason is that the model is trained with a

super huge training dataset [66].

• Among the similarity metrics, the Joint Bayesian metric is proved to work better

in practice [12].

• Using multiple patches in training improves the feature representation of the

network.

• Although the veri�cation performance achieves a near to perfect level, the iden-

ti�cation hasn't reach to human performance yet.

1.6 Future Work

In future research path, we will mainly focus on designing a real-time face

veri�cation system based on ConvNet which is applicable on videos. The following

steps will be performed to complete the target system: i) automatic collection of

training dataset, and ii) ConvNet designation and training.

ConvNet Designation and Training

The goal of this step is to design a ConvNet which after being trained by

WayneFace dataset will be able to perform the veri�cation task under the speed

close to the speed of the video frame rate, i.e. while the video is representing, the
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faces can be detected and veri�ed simultaneously. Some decisions should be maid on

the depth of the network, number of parameters, veri�cation function, and having

patch/non-patch input.

The architectural design of the ConvNet is the most important key for speed.

Although less deep ConvNets are faster models, it has been proved that deeper Con-

vNets usually achieve higher accuracy. On the other hand, the ConvNets that are

trained with bigger dataset containing many face varieties obtain more accurate re-

sults [66].

Automatic Collection of Training Dataset

Collecting a reliable training dataset is one of the requirements for creating

a successful veri�cation method. Since our main focus is to design a video face

recognition application, we have to design a new strategy for creating a big dataset.

The dataset should contains large number of identities where each identity includes

face images. To achieve this goal, a big dataset named WayneFace is gathered by

following these steps:

1. Gathering videos: The videos which contain face images will be gathered. the

videos need to have varieties on illumination, resolution, races, gender, age, etc.

2. Detection: The viola-Jones face detection algorithm will be applied on each

video to collect all face images which exists in that video.

3. Classi�cation: The VGG pre-trained ConvNet [57] will apply on the faces ex-

tracted from the each video to classify the faces which belongs to the same

identity.

4. Merging repeated identities: In this part the identities which repeated in dataset

will merge together. To do so, one single representative image will be selected
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from each folder. Then, the VGG face veri�cation model will apply to all

representatives to �nd the repeats. After this step, the dataset will remain with

most likely all unique subjects.

5. Removing duplicate images: In this step, some of the images for each subject

which are duplicated or near to duplicate will be deleted. We will use a similar

duplication removal method as in [57]. That is, assume that there are 1000

images for a subject. The VLAD descriptor will be computed for each image,

and the descriptors will be clustered within 300 (or another suitable numbers)

clusters using a very tight threshold. A single image per cluster is then retained.

By applying this duplication removal method, we will end up with 300 or less

images for each identity.

6. Manually purifying: The goal in the �nal step is to purify the data as much as

possible. In this step, before using the human e�ort to validate the dataset, an

automatic ranking will apply to subject images to help the annotators to work

faster. For this purpose, a multi-way ConvNet will be trained to discriminate

between all subjects. We will �ne-tune the VGG pre-trained ConvNet on our

data set. After training of the ConvNet, the softmax scores will be used to rank

the images of each subject. Then the ranked images of each subject will be

shown to human workers to be validated. The blocks with purity less than 90%

(45 out of 50) will be excluded from the dataset.
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CHAPTER 2 LEARNING CONVNETS WITH APPLICATION TO
LONG-TERM FACE TRACKING

This Chapter investigates long-term face tracking of a speci�c person given

his/her face image in a single frame as query in a video stream. Through taking ad-

vantage of pre-trained deep learning models on big data, a novel system is developed

for accurate video face tracking in the unconstrained environments depicting various

people and objects moving in and out of the frame. In the proposed system, we present

a detection-veri�cation-tracking method (dubbed as 'DVT') which accomplishes the

long-term face tracking task through the collaboration of face detection, face veri�-

cation, and (short-term) face tracking. An o�ine trained detector based on cascaded

convolutional neural networks localizes all faces appeared in the frames, and an o�ine

trained face veri�er based on deep convolutional neural networks and similarity metric

learning decides if any face or which face corresponds to the query person. An online

trained tracker follows the face from frame to frame. When validated on a sitcom

episode and a TV show, the DVT method outperforms tracking-learning-detection

(TLD) and face-TLD in terms of recall and precision. The proposed system is also

tested on many other types of videos and shows very promising results.

2.1 Introduction

Consider a video stream taken in unconstrained environments depicting various

people and objects moving in and out of the camera's �eld of view. Given a bounding

box de�ning a face of a speci�c person in a single frame, the goal is to automatically

determine his/her face's bounding box or indicate that this person is available or not

in the rest frames of the video. The desired output is the person's faces and the

corresponding time slot when he/she appears in the video. This task is referred to as

long-term face tracking [32, 31, 78].
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Long-term face tracking is an appealing research direction with increasing

demands. For example in the era of social networking, when more and more videos

are continuously uploaded to the Internet via video blogs, social networking websites,

face tracking technology can track and retrieve all the shots containing a particular

celebrity from thousands of short videos captured by a digital camera; or it can locate

and track suspects from masses of city surveillance videos (e.g., Boston marathon

bombings event).

Long-term real-time tracking of human faces in the wild is a challenging prob-

lem because the video may include frame cuts, sudden appearance changes, long-

lasting occlusions, etc. This requires the tracking system to be robust and invariant

to such unconstrained changes. Since most of tracking methods [47, 71, 87] in the

literature have been aimed at the videos in which the target person is visible in every

frame, these methods cannot easily handle the long-term tracking situations.

In this work, we develop a new system for accurate long-term video face track-

ing in the wild by taking advantage of pre-trained deep learning models on big data.

The main idea is based on a detection-veri�cation-tracking (DVT) method in which

we propose to decompose the long-term face tracking task into a sequence of face

detection, face veri�cation, and (short-term) face tracking. Speci�cally, given a query

face of a speci�c person, the o�ine pre-trained detector based on cascaded convolu-

tional neural networks localizes all faces appeared in the frames, the o�ine pre-trained

face veri�er based on deep convolutional neural networks and similarity metric learn-

ing decides if any face or which face corresponds to the query person, and the online

trained tracker follows the veri�ed face from frame to frame. The system repeats this

procedure until the end of a video. To speed up the system or even make it to be

real-time, we can skip a number of frames in two cases: when each short-term track-

ing is done, and when no face in the current frame is veri�ed to belong to the query
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person. Since we apply deep convolutional neural networks trained on big data in the

wild to face detection and face veri�cation, the system is able to tackle videos taken

in unconstrained conditions. Fig. 3.4 provides an overall �owchart of the proposed

system which will be described in details in Section 2.3.

Our main contributions in this chapter are two-fold. (i) A DVT method is

presented which accomplishes the long-term face tracking task through the collab-

oration of face detection, face veri�cation, and (short-term) face tracking. To the

best of our knowledge, the face veri�cation is, for the �rst time, performed to guide

the (long-term) face tracking. (ii) Built on the DVT method, a novel and accurate

long-term face tracking system is designed and developed, which can handle various

types of video in the wild. Also, this system is an end-to-end one.

The rest of the chapter is organized as follows. Section 2.2 gives a brief in-

troduction on related works on face tracking. The proposed DVT method and the

developed system is elaborated in Section 2.3, which is followed by the experimental

results in Section 2.4. Finally, this chapter is concluded in Section 2.5.

2.2 Related Work

Many approaches have performed detection to improve the tracking procedure

while some of them used o�ine trained detector [91, 48], and some others used online

learned detectors [32, 23, 5, 31]. For example, in [91] the object tracking algorithm

applied a detection strategy to validate the tracking results. If the validation was

failed, the whole frame would have to be searched again to �nd the target. Another

example of tracking with o�ine detector [48] employed a detection strategy with

particle �ltering to improve the tracking algorithm. While these methods utilized pre-

trained detectors, adaptive discriminative trackers with an online learned detectors to

distinguish the target from the background were presented in [23, 5]. Although these
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methods achieves promising performance in continuous tracking, but if the target

leaves the scene slowly and gradually then there will a probability that the procedure

may lose tracking the main target and replace it with a wrong subject.

Tracking-learning-detection (TLD) [32] is a method to tackle long-term object

tracking in video. In TLD, starting from a single frame, the tracking procedure ex-

changed information with an online learned detector while the two procedures worked

independently. By using a randomized forest as classi�er the decision boundary be-

tween the object and its background can be represented. In [31], the TLD framework

was speci�ed to the application of long-term human face tracking. A validator was

employed to decide whether a face patch corresponds to the query face or not. The

method used the frontal face detector algorithm [30], and on top of that a module was

incorporated to analyze a face patch as a validator. The output was a con�dence level

which indicated the correspondence of the patch to the speci�c face. The validator

was performed on a collection of example frames which was initialized by a single

example in one frame and then extended during tracking by inserting more examples.

A tracking framework presented in [103] combined tracking and detection to

support precision and e�ciency of tracking under heavy occlusion conditions. Two

di�erent strategies based on TLD and wider search window approaches were used

for detection. Objects in tracking were represented by sparse representations learned

online with update.

Similarly, in this work we also use face detection to improve the tracking

procedure. Furthermore, we propose to perform face veri�cation as a validator to

guide the tracking. More importantly, we take advantage of deep learning models

for face detection and face veri�cation in our system, which enables high accuracy in

tracking.
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2.3 Methodology

In this section, we will present the proposed DVT method and the developed

system for long-term face tracking.

2.3 Detection-Veri�cation-Tracking (DVT)

We utilize face detection and face veri�cation to improve the tracking proce-

dure. In the DVT method, we propose to decompose the problem of long-term face

tracking into a sequence of face detection, face veri�cation, and (short-term) face

tracking. Speci�cally, given a query face of a speci�c person, the o�ine pre-trained

detector based on cascaded convolutional neural networks localizes all faces appeared

in the frames, the o�ine pre-trained face veri�er based on deep convolutional neural

networks and similarity metric learning decides if any face or which face corresponds

to the query person, and the online trained tracker follows the veri�ed face from frame

to frame.

Face Detection

Recently, the deep learning techniques have revolutionized the performance of

face detection. A survey on the most successful face detection methods is given in

[99]. Although several state-of-the-art face detection methods reached almost perfect

accuracy, they are not fast enough to be suitable for real-time applications. For ex-

ample, a novel deep learning convolutional network for face detection in [96] achieved

high accuracy but was computationally intensive and comparably slow. This impedes

its use to real-time purposes like online video tracking.

Considering a balance between e�ectiveness and e�ciency, we need a detection

algorithm which not only works well under unconstrained circumstances but also

performs at an acceptable speed. Here, we choose a convolutional neural network
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Figure 2.1: Flowchart of the proposed system for long-term face tracking. The input
is given as a cropped face which is �rst detected and then tracked for �ve frames.
Feature query is the average of �ve feature vectors which are obtained by applying a
pre-trained deep convolutional neural network to the �ve detected faces on the �ve
frames. Tracking continues until there is no frame or the query person disappears
from the scene. When he/she appears again, after detection and veri�cation, tracking
will be started. The procedure repeats until the end of a video. Ideally, the output
is all tracked faces of the query person and their corresponding time slots.

(ConvNet) detection algorithm, named a cascaded-CNN [46], that can achieve high

accuracy with a fast speed. This ConvNet cascade includes 6 ConvNets worked in a

cascaded way in 3 stages. In each stage, one ConvNet is used for detecting faces vs.

non-faces and the other ConvNet is used for bounding box calibration. The output

of one stage is used to adjust the detection window position which will be input to

the subsequent stage. This method reduces the number of face candidates at later

stages by using a ConvNet based calibration after each detection. More details can

be found in [46].
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Face Veri�cation

In recent years, ConvNet-based face recognition techniques have obtained a

near perfect veri�cation accuracy on some datasets [57, 74, 66]. VGG-face net [57]

investigates ConvNet architecture for face identi�cation and veri�cation with a deep

network in the sense that a long sequence of convolutional layers is used. This Con-

vNet was trained on 2.6 million face images from more than 2600 people and achieved

comparable veri�cation accuracy with the state-of-the-art methods on benchmark

data sets. The pre-trained ConvNet model is also publicly available from this link1.

In this work, we take advantage of the pre-trained model of VGG-face network

to extract features for faces. Speci�cally, the detected faces are �rst preprocessed in

the same way as in [57], and then we apply the VGG-face ConvNet to the faces and

take the output of the last fully connected layer (without the nonlinearity) as feature

representations each of which is a 4096-dimensional vector. Thereafter, we consider

the query feature vector and the feature vector of a detect face as a pair of feature

vectors. Cosine similarity metric learning is used to verify a pair of features to belong

to the same face or di�erent faces.

In the TLD method [32] the frames are treated as to be independent and the

whole frame is being scanned to detect the target. Unlike the TLD method, our

veri�cation strategy make the assumption that consecutive frames are related to each

other to some extent, therefore the scanning process is performed around the area

where the latest detected bounding box was located. This assumption decrease the

scanning process time in comparison to TLD.

1http://www.robots.ox.ac.uk/~vgg/software/vgg_face

http://www.robots.ox.ac.uk/~vgg/software/vgg_face
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Face Tracking

Most tracking algorithms employ a bounding box given in the �rst frame and

continue tracking based on the initial bounding box. Despite the fact that researchers

have been making progress in this �eld, it still remains highly challenging to design a

tracker which can handle all various situations, such as object deformations, illumi-

nation changes, fast motions, occlusion, and background clutters, etc. Furthermore,

another big challenge of tracking is to handle long-term tracking situations, in which

tracking algorithm will continuously confront di�erent conditions as the target may

leave the scene and re-appears later.

Most of the tracking algorithms use only one bounding box (or patch) to be

tracked [39, 22]. In this work, we employ the reliable patch tracker (RPT) method [47]

which identi�es and exploits multiple reliable patches instead of only one, where the

reliable patches can be tracked e�ectively through the tracking procedure. With the

collaborative use of face detection and veri�cation, the RPT method can handle long-

term tracking under the assumption that the object's motion between consecutive

frames is limited and whenever the object leaves the scene the veri�cation procedure

will stop the tracking.

2.3 System Framework

The goal is to design and implement a system which can track a speci�ed

human face in an unconstrained video with the long-term setting. Algorithm 1 gives

the pseudo code for this system framework. Details on the work �ow of the system

are described as follows.

The system starts by asking the user to select a face by cropping it in some

frame of the video. The ConvNet cascade-based face detection (see Section 2.3.1)

is then performed on the cropped face to obtain a bounding box which indicates
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the position of the target face in the selected frame. The bounding box is fed into

the RPT based tracking algorithm (see Section 2.3.1). At this point, the tracking

continues only for �ve frames to create a sequence of �ve face images. After the

preprocessing (i.e., resize the images to be 224x224x3 and subtract a mean image) of

the �ve face images, the VGG-face ConvNet (see Section 2.3.1) is applied to the �ve

images to produce �ve feature vectors. The dimension of each feature vector is 4096.

We consider the average of the �ve extracted feature vectors as a feature query (of

the query face).

Thereafter, the tracking continues until there is a signi�cant di�erence in the

distance of the position of target face in 2 two-consecutive frames. If the distance

di�erence is signi�cant, the tracking is stopped and face veri�cation on the face in

the latest frame is performed. In order to conduct face veri�cation, the feature rep-

resentation of the face in the latest frame is extracted using VGG-face ConvNet as

before and then is compared to the feature query using the cosine similarity metric.

If the cosine similarity score is larger than a prede�ned threshold, tracking continues;

otherwise, tracking stops.

The system then moves on to the face detection procedure. Face detection is

applied to the whole frame to �nd all possible human faces. Subsequently, the system

performs face veri�cation again on each of the detected faces as aforementioned. If the

cosine similarity between one of the detected faces and the query face is higher than

the threshold, the tracking continues; otherwise, a number of following frames are

skipped and the face detection procedure is conducted again. The skipping number

of frame can be de�ned based on the video type and the frame rate of the video. For

example, if faces in the video change fast and move fast, a small value should be set

for the skipping number of frame; otherwise, a larger value should be set.
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Thus, a sequence of detection, veri�cation and tracking will repeat until the

end of a video. All tracked faces of the query person and their corresponding time

slots are the output. In our system demo, we show the output in the video with

highlighted parts where tracked faces have been appeared in the frames.

2.4 Experiments and Results

(a) (b)

(c) (d)

Figure 2.2: A visualization of the user interface of the developed long-term face
tracking system, (a) the user selects a query face in some desired frame, (b, c, d) the
tracking system tracks the query face within the entire video. The time-bar represents
the duration of the video, and the highlighted parts in cyan indicate the time slots
when the query person appears in the video. The query face is also bounded in a
yellow box in each frame the query person appears.

This section presents the implementation of the system, the experiments and

the evaluation of tracking performances. The proposed DVT method was imple-

mented in Matlab using single thread without further optimization. The graphical

user interface (GUI) of the system was designed and implemented with Java in Intellij
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Algorithm 1 Long-term Video Face Tracking.
1: Video ← Read sample video
2: similarity-threshold← Set to a prede�ned value based on desired level of similarity
3: distance-threshold ← Set to a prede�ned value
4: skip-frame ← set to a prede�ned value based on the length of video
5: continue-tracking ← True: A �ag that indicates whether to stop or continue

tracking
6: if-reappear← False: A �ag that indicates whether the face reappears in proceed-

ing frames or not
7: f# ← Get the number of the frame where the target face exists: de�ned by user
8: initial-bounding-box← Get the position box of the target face in a speci�c frame

from the user
9: detected-face[f#] ← DETECT-FACE(initial-bounding-box, f#)

10: for i = f# : f#+ 5 do
11: detected-face[i+ 1] ← TRACK-ONE-FRAME (detected-face[i] , f#)
12: feature-vectors[i] ← EXTRACT-FEATURE (detected-face[i])
13: f#← f#+ 1

14: query ← Calculate the average of feature-vectors
15: while hasFrame(Video) do
16: while continue-tracking == True do
17: detected-face[f#+1] ← TRACK-ONE-FRAME(detected-face [f#] , f#)
18: if DISTANCE(detected-face[f#], detected-face[f#+1]) > distance-

threshold then
19: continue-tracking ← False

f# ← f# + 1

20: feature-vector ← EXTRACT-FEATURE(detected-face[f#])
21: cosine-score ← COSINE-SIMILARITY(feature-vector, query)
22: if cosine-score > similarity-threshold then
23: continue-tracking ← True
24: else
25: face-list ← DETECT-ALL-FACES(Video, f#)
26: if face-list is not empty then
27: for face ∈ face-list do
28: feature-vector ← EXTRACT-FEATURE(face)
29: cosine-score ← COSINE-SIMILARITY(feature-vector, query)
30: if cosine-score > similarity-threshold then
31: continue-tracking ← True
32: detected-face[f#] ← face
33: if-reappear ← True
34: break the loop

35: if if-reappear == false then
36: f#← f#+ skip-frame
37: frame ← readFrame(Video, f#)

38: else
39: f# ← f#+skip− frame
40: frame ← readFrame (Video, f#)
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IDEA, where all Matlab codes were compiled into Java Libraries. As the result, this

system is a Java Package that can be executed on any computer which has the Java

Virtual Machine and a Matlab compiler installed on it. This tracking model allows

users to adjust di�erent parameters based on their needs. These types of models

can be ambiguous since di�erent parameters may carry various meaning to di�erent

users. for example, the user can relate the "speed" parameter to either the "skip-

frame" parameter, or the "skip-time" parameter, or both. This ambiguity can be

avoided by adding semantic to the tracking model. In [36] three di�erent techniques

are introduced for adding semantics to the models.

For the evaluation, we test the proposed DVT method and the developed

system on a sitcom episode and a TV show on which the face-TLD method was also

validated [20]. In addition, we also conduct experiments on one short type of TV

show to visualize the results in a qualitative trend.

We compare the proposed DVT method with the standard TLD and face-

TLD by testing them on the sitcom IT-Crowd (�rst series, �rst episode). The episode

duration is 1418 seconds, with the frame rate of 29 frame per second. Table 1 provides

the performance comparison of the three methods in term of precision and recall

measures as described in [31] (computing precision and recall is a common practice in

many �elds such as software engineering [35, 82]). The developed system with DVT

method is able to detect the query face through the whole video. The overall recall is

75%, and the precision is 92%, both of which are much larger than TLD and face-TLD

methods. Moreover, for the initialization, the developed system is initialized with a

bounding box on the character Roy at any desired time within the video, while the

TLD and face-TLD methods need to perform the initialization on the �rst appearance

of the character.
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A visualization of the user interface of the DVT system is also given in Figure

2.2. In the provided graphical user interface, the user selects a query face in some

desired frame by drawing a bounding box around the target face. Thereafter, the

tracking system tracks the query face within the entire video regardless of the fact

that the selected query face might not be the �rst appearance of the target in the

video. After the tracking is completed, the GUI shows a time-bar which represents

the duration of the video with the highlighted parts in cyan which indicate the time

slots when the query person appears in the video. The query face is also bounded in

a yellow box in each frame the query person appears for better visualization.

In all experiments, the similarity threshold (Algorithm 1, line 2) is set to 70%.

The number of skipping frames (Algorithm 1, line 4) can be speci�ed by the user

through the GUI, where the default setting is 60. The number of skipping frames

indicates how many frames are skipped by the system when face veri�cation is failed.

Although decreasing this number will lead to an increase in recall value, it will increase

the running time of the system which is in contradiction to the goal of tracking in

real-time. A sample of DVT output sequence is given in Fig. 2.3.

Table 2.1: The comparison between TLD, Face-TLD and the proposed DVT method
in terms of precision and recall.

Method
Character Roy
Precision Recall

TLD 0.70 0.37
Face-TLD 0.75 0.54

DVT (the proposed) 0.95 0.75
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Figure 2.3: A sample of DVT output sequence.

2.5 Summary

In this chapter, we presented a deep-learning based detection-veri�cation-

tracking method and develops a system for long-term tracking of human faces in

unconstrained videos. The proposed system employs face detection and face veri�-

cation to boost the performance of long-term tracking. By testing the system with

DVT method on a sitcom episode, a TV show, and other types of videos, its e�cacy

is validated, and the system is promising to be used in real-time applications.
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CHAPTER 3 LEARNING CONVNETS FOR FACE VERIFICATION
USING VIDEOS IN THE WILD

Face recognition tasks have seen a signi�cantly improved performance due to

ConvNets. However, less attention has been given to face veri�cation from videos.

This Chapter makes two contributions along these lines. First, we propose a method,

called stream loss, for learning ConvNets using unlabeled videos in the wild. Sec-

ond, we present an approach for generating a face veri�cation dataset from videos

in which the labeled streams can be created automatically without human annota-

tion intervention. Using this approach, we have assembled a widely scalable dataset,

FaceSequence, which includes 1.5M streams capturing ∼500K individuals. Using this

dataset, we trained our network to minimize the stream loss. The network achieves

accuracy comparable to the state-of-the-art on the LFW and YTF datasets with much

smaller model complexity. We also �ne-tuned the network using the IJB-A dataset.

The validation results show competitive accuracy compared with the best previous

video face veri�cation results.

3.1 Introduction

Face veri�cation aims to determine whether two faces in a given pair of im-

ages or videos belong to the same identity or not, without having any prior knowledge

about that identity. A variety of image descriptors such as SIFT [70], LBP [92, 52],

HOG [21], and Fisher Vector [67, 24] has been proposed to be used for extracting fea-

tures in face veri�cation. However, due to variations in pose, illumination, resolution,

and facial expression, face veri�cation is still a challenging problem.

In the �eld of face recognition, deep learning models such as DeepFace [80], and

FaceNet [66] are proven to outperform the traditional shallow methods on the widely

used benchmarks such as LFW [29] and YTF [92]. In video-based face recognition,

these models fall into two main branches.
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In the �rst branch of video-based face recognition methods, a face video is

represented as a set of frame-level face features as in [80, 66, 57]. These methods

feed the video into the ConvNet as a series of selected frames and the rest of the

process is similar to still-image based face recognition tasks. Although these methods

have experimented on face video datasets, the temporal relationship between the

frames is ignored. In other words, these methods ignore motion information in the

dynamic content of videos, which can provide a promising improvement in the image

recognition tasks, especially in face veri�cation.

In the second branch of video-based face recognition methods, face veri�cation

is performed by sending the video directly to the ConvNet as an input. Although

few methods such as [19] have leveraged deep ConvNets in their face recognition

models, recognizing faces using deep neural networks in unconstrained videos is still

in its infancy. On the one hand, the quality of video frames are signi�cantly lower

than images in the standard face image datasets, and a few ConvNet-based face

recognition methods consider this characteristic of videos, i.e. motion blurred images,

when extending from image to video face recognition. On the other hand, existing face

video datasets are usually small in volume. Accordingly, due to lack of reliable training

data in video-based face veri�cation approaches, the ConvNets are �rst trained on

large-scale image datasets, and then �ne-tuned with existing small video datasets

[7]. However, an e�ective approach to enhance the performance of video-based face

veri�cation is to train the model using a real-world video dataset.

In face veri�cation methods, and more particularly in the case of using video

datasets, the feature representation of each face image obtained from a ConvNet

requires to be discriminative since the label prediction is not applicable while training

the ConvNet. These features need to be learned using a loss function that should be

computed in advance. Among di�erent types of loss functions, one can mention
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contrastive loss [25, 74, 89] which constructs loss for image pairs, and triplet loss [66]

which accepts a triple of images as the input and enhances the discriminative power

of face features. Triplet loss is employed for face veri�cation to minimize the distance

between two feature vectors from the same identity; however, when the data is video,

triplet loss does not take advantage of the sequence of the frames.

In this paper, we propose a new loss learning approach, entitled stream loss,

to enhance the power of discriminative face features in ConvNets using the temporal

connectivity of frames. Speci�cally, in addition to the original and the negative

face images, we leverage hidden information in videos by importing a sequence of

positive frames into the network. In other words, we account for encoded additional

information in videos by using a number of sequential frames for each identity. We

also approach the problem of the small volume of video training data with presenting

a new real-world face video dataset for training the model. To sum up, our main

contributions are as follows:

• We propose a new loss learning approach (called stream loss) for ConvNet train-

ing using an unlabeled video dataset. Stream loss achieves competitive perfor-

mance comparing to the state-of-the-art in face veri�cation while reducing the

number of model parameters and training samples required by half.

• We present an automatic strategy for generating a real-world video face veri�-

cation dataset from videos collected in-the-wild.

• We have assembled the FaceSequence dataset, which includes 1.5M streams that

capture more than 500K di�erent individuals to this end. A key distinction be-

tween this dataset and existing video datasets is that FaceSequence is generated

from publicly available videos and labeled automatically, hence widely scalable

at no annotation cost.
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In the remainder of this paper, �rst, we provide an overview of the most related ap-

proaches in video-based face veri�cation. Then, we introduce the proposed model,

including the architectural design and stream loss learning method. The face re-

trieval approach to obtain the video stream dataset is also explained. Thereafter, we

describe the training task and evaluation of the proposed model on the LFW and YTF

datasets. Following that, we present the experiment of transferring the knowledge of

parameters into a modi�ed network to evaluate and compare the proposed model

with state-of-the-art face veri�cation methods. Thereafter, we provide a comparison

between the generated dataset (i.e. FaceSequence) and other face datasets. Finally,

the summary and the scope for future work is given.

3.2 Related Work

In the recent past, many attempts have been made in face recognition algo-

rithms based on deep learning. Existing deep learning methods are mainly introduced

based on deep belief networks (DBN) [26], stacked auto-encoder [41], and convolu-

tional neural networks (ConvNet) [38, 79]. Among those, ConvNets have dramatically

improved the state-of-the-art in face recognition [43].

Although ConvNet-based methods have acquired promising results in face ver-

i�cation, they are mostly limited to still images, rather than videos. In this work, we

contribute to the second category and we propose a ConvNet-based metric learning

for face veri�cation using video streams. Here, we review the literature in two main

parts, 1) ConvNet-based loss learning methods for face recognition, and 2) ConvNet-

based face recognition methods for video streams.
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3.2 ConvNet-based Loss Learning Methods for Face Recognition

The loss functions learned by ConvNet-based face recognition methods can be

categorize into three groups, 1) contrastive loss [80, 104, 27, 74, 77, 13], 2) triplet loss

[66, 57, 49, 18, 72], and 3) multiple loss [90, 101, 28, 51].

In 2014, [80] developed an e�ective deep ConvNet that combines the output

of the network with PCA for dimension reduction and an SVM for classi�cation. For

veri�cation, the model employs the Siamese network as an end-to-end method for

learning a veri�cation metric. The veri�cation metric is de�ned as the L2 distance

between two feature vectors. Then, the model is trained using still face image datasets.

A similar approach has been used in [104] and [77].

In the same year, [74] proposed a deep ensemble ConvNet which is trained

by using a combination of classi�cation and veri�cation loss. The veri�cation loss is

de�ned as a joint Bayesian metric which minimizes the L2 distance between positive

face pairs, while it enforces a distance margin between negative pairs. In this method,

only one pair of images are compared in each training step [12]. Likewise, [97] and

[13] learned the joint Bayesian loss for veri�cation using a Siamese network.

In another attempt, [27] introduced a deep metric learning method for face

veri�cation using ConvNets. In this method, aMahalanobis distance metric is learned

to minimize the distance between faces of the same identity and maximize the distance

between faces of di�erent identities. The model utilized the unrestricted still images

taken from LFW imageset, as well as YTF video frames.

Later in 2015, [66] presented a ConvNet model for face veri�cation which

directly learns a mapping from face images into an Euclidean space. The proposed

ConvNet model learns triplet loss motivated from [86]. Triplet loss ensures that the

original image of a face identity (xo) is closer to positive examples of that identity
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(xp) than it is to negatives examples (xn). Unlike the previous methods in which only

pairs of images are compared, the triplet loss enforces a relative distance constraint

two pairs out of triplet images. The e�ectiveness of triplet loss has been demonstrated

in [57] and [49] for ConvNet-based face recognition.

Following that, a generalized version of triplet loss presented in [72], named

multi-class N-pair loss, which generalizes triplet loss by allowing joint comparison

among N-1 negative examples chosen from disparate still images.

In 2016, [90] proposed a multiple loss function named center loss. In this

approach, The ConvNet learns the center of each class of features and minimizes the

distances between the features and their corresponding class centers. The ConvNet

learning is then supervised by a combination of center loss with the softmax loss. A

similar approach has being provided in COCO algorithm in [51] in 2017.

In another study, [101] provided a multiple loss function called Range loss, in

which the optimization objective is to minimize the intra-class variations and enlarge

the inter-class di�erences.

Our proposed loss learning method falls into the third category, i.e. multiple

loss, where the objective is to optimize the similarity/dissimilarity of a video stream

with positive/negative examples.

3.2 ConvNet-based Face Recognition Methods for Video Streams

One simple approach toward adapting still-image-based ConvNet methods to

videos is to represent a video as individual frames where the frame-level features

are recognized individually, and then combined together to generate the video-level

features [98]. However, the in�uence of additional temporal or dynamic information

available in a sequence of frames is not considered in this recognition approach.
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Figure 3.1: The architecture of �Input Aggregated Network� for face video represen-
tation [19].

To the best of our knowledge, few attempts have been made on video-based

face veri�cation. [19] proposed an ensemble of three units network architecture called

�input aggregated network� to identify faces in videos. This network contains a deep

ConvNet as a frame representation unit and an aggregation unit in which frame

features are modeled as one Riemannian manifold point. These points are mapped

into high dimensional space through mapping unit (see Fig. 3.1).

In another study, [95] proposed a neural aggregation network (NAN) which

takes a face video or a set of face images and produces feature representation using

two modules, i) a deep ConvNet for mapping each face image into a feature vector,

and ii) an aggregation block to make a single feature (see Fig. 3.2).

To enhance the discriminative power of face representations, [18] proposed a

deep metric learning method called �Mean Distance Regularized Triplet Loss� (MDR-

TL) which regularizes the triplet loss by considering the distribution of triplet samples

(see Fig. 3.3).

In [18] researchers claim that most available video datasets are rather small in

volume for training video-based ConvNets. To alleviate this limitation, they simulated
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Figure 3.2: The architecture of NAN for video face recognition [95].

Figure 3.3: The architecture of Trunk-Branch Ensemble CNN (TBE-CNN) [18].

large amounts of video frames from existing still face image datasets. Then, they

applied a random arti�cial blur to the stream and trained the ConvNet with the

combination of the simulated streams and still face images. This method solved the

problem of image blur in video-based recognition, yet it ignores the temporal evolution

of the frames.

In the following, we explain our proposed stream-based ConvNet learning

method as well as the face video dataset collection and labeling strategy.
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3.3 Proposed Stream-based ConvNet Learning Method

In this section, we introduce the proposed stream-based ConvNet learning

method. First, we determine the architectural design of the network. Then, we

introduce the stream loss learning approach. And thereafter, we explain the stream

sampling strategy from videos.

3.3 Architecture Design

The proposed model is composed of (P + 2) base convolutional neural net-

works with similar architecture and shared parameters; each base network includes 5

convolution layers and 3 fully connected layers (inspired by AlexNet [38]). The �nal

fully-connected layers of all individual base networks meet in a (P +2)-way loss layer,

entitled stream loss. The architecture of the proposed network is summarized in Fig.

3.4. It is worth noting that in this architecture, the (P + 2) copies of AlexNet are

running in parallel while utilizing shared weights. Accordingly, the training time is

comparable to a similar architecture with only one copy of Alexnet. Besides, the base

networks can be replaced with deeper networks such as VGG ConvNet [68], to obtain

higher performance with the cost of higher computation time.

In the following section, we describe the concept of stream loss and how it can

be optimized.

3.3 Stream Loss Learning

In stream learning, the goal is to enforce the maximum distance between the

original example and positive example stream to be comparably less than the mini-

mum distance between the negative example and positive example stream.



52

}
}

}

Stream
Loss

Figure 3.4: The architecture of the proposed stream-based ConvNet for video face
recognition. The model is composed of (P+2) base ConvNets with shared parameters,
joining together in a (P + 2)-way loss layer, where P represents number of frames in
the stream.

Suppose that xo is the original face identity, {xpj}Pj=1 is a stream of P positive

examples of the original identity, and xn is a negative example. Hence, for each

individual identity, the network receives a set {xo, {xpj}Pj=1, xn} as the input images,

and generates a corresponding set {yo, {ypj}Pj=1, yn} as the output feature vectors.

Accordingly, the stream loss function E is de�ned in terms of the L2 distance

between each pair of samples yo, {ypj}Pj=1 and yn. Therefore, we minimize the loss:

E =
1

2K

K∑
i=1

Ei (yo, yp, yn) , (3.1)

Ei (yo, yp, yn) =

(
2Sα

({
Zpi,j

}P
j=1

)
− Zni − S−α

({
Znpi,j

}P
j=1

)
+ β

)
, (3.2)

where K is the number of identities in each batch, β is a margin that is enforced

between positive and negative streams, and Zp, Zn, Znp are the L2 Norm distance

between each pair of samples yo, yp and yn, which are formulated as below (note that
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index i represents the identity, and index j represents the positive examples of that

individual identity):

Zpi,j =
∥∥yoi − ypi,j∥∥22 , (3.3)

Zni = ‖yoi − yni‖
2
2 , (3.4)

Znpi,j =
∥∥ypi,j − yni∥∥22 , (3.5)

and Sα and S−α are correspondingly the smooth-max and smooth-min function, which

are di�erentiable approximation to the maximum and minimum function. Sα and S−α

are calculated as below:

Sα
({
Zpi,j

}P
j=1

)
=

∑P
j=1

(
Zpi,je

αZpi,j

)
∑P

j=1 e
αZpi,j

, (3.6)

S−α
({

Znpi,j

}P
j=1

)
=

∑P
j=1

(
Znpi,je

−αZnpi,j

)
∑P

j=1 e
−αZnpi,j

, (3.7)

in which α is a large positive value (in this experiment α = 1000). Here Sα approx-

imates the maximum distance between the original example yo and all P positive

examples {ypj}Pj=1. Similarly, S−α approximates the minimum distance between the

negative example yn and all P positive examples {ypj}Pj=1.
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We train the network using the standard backpropagation algorithm, in which

the value of E is calculated in the forward pass and the gradients of E are calculated

and propagated backward in order to update the model parameters. To do so, we

calculate the partial derivatives of E, denoted by
∂E

∂yo
,
∂E

∂yp
and

∂E

∂yn
, as follows:

∂E

∂yoi
=

P∑
j=1

(
2
∂Sα
∂Zpi,j

×
∂Zpi,j

∂yoi
− ∂Zni

∂yoi
− ∂S−α
∂Zni,j

×
∂Znpi,j

∂yoi

)
, (3.8)

{
∂E

∂ypi,j

}P
j=1

=

(
2
∂Sα
∂Zpi,j

×
∂Zpi,j

∂ypi,j
− ∂S−α
∂Znpi,j

×
∂Znpi,j

∂ypi,j

)
, (3.9)

∂E

∂yni
=

P∑
j=1

(
2
∂Sα
∂Zpi,j

×
∂Zpi,j

∂yni
− ∂Zni

∂yni
− ∂S−α
∂Znpi,j

×
∂Znpi,j

∂yni

)
. (3.10)

Since
∂Zpi,j

∂yni
and

∂Znpi,j

∂yoi
are equal to zero, we have:

∂E

∂yoi
=

P∑
j=1

(
2
∂Sα
∂Zpi,j

×
∂Zpi,j

∂yoi
− (yoi − yni)

)
, (3.11)

∂E

∂yni
=

P∑
j=1

(
(yoi − yni)−

∂S−α
∂Znpi,j

×
∂Znpi,j

∂yni

)
, (3.12)

where the gradient terms are de�ned as below:

∂Sα

({
Zpi,j

}P
j=1

)
∂Zpi,j

=
eαZpi,j∑P
k=1 e

αZpi,k

[
1 + α(Zpi,j − Sα

({
Zpi,j

}P
i=1

)]
, (3.13)
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∂S−α

({
Znpi,j

}P
j=1

)
∂Znpi,j

=
e−αZnpi,j∑P
k=1 e

−αZnpi,k

[
1− α(Znpi,j − S−α

({
Znpi,j

}P
i=1

)]
, (3.14)

∂Zpi,j

∂yoi
= −

∂Zpi,j

∂ypi
= yoi − ypi,j , (3.15)

∂Znpi,j

∂ypi
= −

∂Znpi,j

∂yni
= ypi,j − yni . (3.16)

For each set of original examples, positive streams, and negative examples, we

carry out a single backpropagation step.

The proposed learning method provides three advantages tailored to learning

from videos, which distinguish it from triplet selection:

1. In triplet loss, the distance between the positive example and negative example

is ignored, while in stream loss this distance is maximized.

2. In triplet loss, the hard-negative exemplars are selected from within a mini-

batch, while in stream loss the negative samples are e�ectively chosen from

the same video, with likely same video quality, lighting condition and matching

background.

3. In triplet loss, each anchor is paired with all positive samples in a mini-batch,

while in stream loss the same face is picked from di�erent frames in the sequence,

with same identity and varying poses. In [66] it is mentioned that correct sample

selection is important for fast convergence.
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3.3 Stream Sample Collection

One of our goals is to create the input streams {xo, {xpj}Pj=1, xn} in an auto-

matic manner. This approach improves the learning performance by avoiding the data

labeling e�ort. Therefore, we propose the following strategy to generate the video

stream dataset named FaceStream, inspired by VGG's dataset collection process [57].

The �rst stage of generating this dataset is to obtain a list of video URLs. The

initial list containing random video URLs is obtained by employing web crawlers. The

second stage is to manually recognize and select the videos which demonstrate human

faces, and to add them to a candidate list. This stage is repeated until the candidate

list of 500K video URLs is provided. The candidate videos are curated to control

biases in ethnicity, gender, age, and pose varieties. The next stage is to select the

original target examples, positive streams, and negative examples from each video,

which is explained in the following paragraph:

xo xp1 ...xp19 xn

Figure 3.5: An example of stream of frames available in FaceSequence dataset for
5 identities. The �rst column includes the original example xo, the last column
includes the negative example xn, and the middle columns indicate the stream of
positive examples {xpj}19j=1.

Original Target selection xo: Each original target face is selected from a ran-

dom frame of a video by employing the deep-learning-based face detection algorithm

presented in [46].
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Negative sample selection xn: After selecting the target, the face detection

algorithm continues to detect other faces which exist in the same frame. One can claim

that with high probability the mentioned faces have a di�erent identity from the target

face. One of the negative examples is chosen randomly in case that more than one

sample is detected. The motivation behind choosing the negative example from the

same frame as the target is that the identities in the same frame are mostly a�ected by

the similar conditions such as illumination, and resolution. Moreover, two faces that

appear in the same frame are more likely to have matching backgrounds. Accordingly,

the dissimilarity of these two examples is less dependent on the di�erences in their

backgrounds.

Positive sample stream selection xp: The last step is to select a stream of faces

from a sequence of frames in the video with the same identity as the target, whilst

they still have some variation in pose, shape, illumination, etc. Here, we deploy a face

tracking algorithm to track the target face in the same video for a speci�c time period

and select the tracked faces result as a positive stream. In this experiment, we utilize

the idea of the long term tracking method presented in [100]. The target is tracked

within the next P consequent frames. In this strategy, P is set to 19 sequences of

positive frames. In order to discuss the e�ect of P value on performance, it's worth

mentioning that the frame-rate of the collected videos varies from 19 to 23 frames per

second. Thus, we set the frame sequence length to the minimum frame rate, i.e. 19,

to present ∼1 sec movement of the face in the video. Therefore, a P much smaller

than 19 corresponds to small pose variations, which is unlikely to provide enough

dissimilarity between frames. Accordingly, we expect lower performance for reduced

P .

The original, negative and positive stream examples are assembled in a dataset

named FaceSequence. An example of �ve streams available in this dataset is provided
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in Fig. 3.5. As it is illustrated, for each identity xo in the FaceSequence dataset,

there exists one positive stream {xpj}19j=1 (including 19 consequent frames), and one

negative example xn. At the end, 1.5M number of streams are collected from 500K

videos, with an average of 3 identities per video. Table 3.1 shows the statistics of the

FaceSequence dataset.

Table 3.1: Characteristics of the FaceSequence dataset, including total number of
videos, number of streams extracted from videos, and number of frames per each
stream.

Dataset FaceSequece

# Videos 500K

# Streams 1.5M

# Frames-per-stream 21*

*
Here, P is set to 19 sequences of positive frames. Accord-

ingly, the length of the stream including xo, {xpj
}19j=1 and xn

is P + 2 = 21.

3.4 Experimental Results

Here, we evaluate the performance of the proposed model (stream-based Con-

vNet) using two di�erent protocols. First we follow the protocol of unrestricted with

labeled outside data and test our model on both still and video datasets, LFW and

YTF. Then we �ne-tune our pre-trained model on the IJB-A video dataset [37].

Thereafter, we provide the results of face veri�cation task on the IJB-A dataset .

Finally, we present a comparison between the generated dataset (i.e. FaceSequence)

and other face datasets.

3.4 Experiments on LFW and YTF datasets

We evaluate our method for face veri�cation by using two famous face datasets

in unconstrained environments, LFW [29] and YTF [92]. The LFW dataset includes

13,233 images from 5,749 di�erent identities, which is a standard dataset for eval-
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uating the face recognition tasks such as face veri�cation. The YTF dataset, as

a standard benchmark for unconstrained face veri�cation in videos, includes 3,425

videos from 1,595 di�erent identities. The length of video clips in YTF dataset

ranges from 48 to 6,070 frames, with the average of 181.3 frames per video. Our

model is trained on 1.5M face streams from the generated FaceSequence dataset with

no identity overlapping with LFW and YTF.

Veri�cation Evaluation

We followed the evaluation procedure as de�ned in [66]. In face veri�cation,

we are given a pair of face images {xo, xu}, where xo is the original image, and xu

is the identity to be veri�ed. The network maps the input pair to a feature space of

{yo, yu}. Accordingly, the L2 distance for the given input pair is de�ned as:

D(ao,au) = ‖yo − yu‖
2 (3.17)

Where D(xo,xu) is utilized to determine the classi�cation of di�erent identities (class:0)

or the same identity (class:1) (see Eq. 3.18):

C(xo,xu) =


0 if D(ao,au) ≤ d

1 otherwise.

(3.18)

where d is the distance threshold, which is set to 0.7, this value has been chosen based

on practical experiments, and some other models (e.g. FaceNet) has been used the

similar value as the threshold for veri�cation.

Following the mentioned veri�cation strategy, we test our model on 6K face

pairs in the LFW dataset, and 5K video pairs from the YTF dataset and report the

accuracy of the results in Table 3.2.
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From Table 3.2, it can be observed that the stream loss model achieves a VGG

level accuracy with 2× fewer parameters (60M vs 140M parameters) and 2× fewer

training data (1.5M data vs. 2.6M data) compared to VGG model. This demonstrates

the e�ectiveness of stream loss. Although the 1.5M streams contain 30M images,

nevertheless, the images in each stream are stills from 1sec of video, and hence are

rather similar. For example, FaceNet and VGG are trained on rather disparate stills,

thus having more information per image, while the proposed method e�ectively choose

only three still per stream. Therefore, we contend that the number of streams, rather

than the number of images, is the correct �gure of merit.

In Table 3.2, We also provide an accuracy comparison between stream loss

and COCO [51] on LFW and YTF. We highlight that the performance of COCO on

YTF is not reported. The COCO method achieves higher accuracy on LFW, but

it is di�cult to conjecture the performance beyond this dataset, since most algo-

rithms perform quite well, including CenterLoss, which has comparable performance

to COCO. CenterLoss and COCO are similar in spirit, and both methods make inter-

class features discriminative and use the idea of a class centroid for metric learning

[51]. On the YTF dataset, stream loss and VGG both outperform CenterLoss. We

expect a similar result from COCO.

3.4 Experiments on IJB-A video dataset

Transferring knowledge of parameters

Suppose that our face dataset is denoted as DS and the veri�cation learning

task is indicated as TS. We aim to transfer the learning from domain DS to a target

domain DT to perform the learning task TT to improve the learning of the target

prediction function. In this study, the target domain DT is the IJB-A video dataset

[37] for face recognition, and the TT is the identi�cation (classi�cation) task performed
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Table 3.2: Comparison of Veri�cation Performance of Di�erent Methods on the LFW
and YTF Datasets.

Method # Images # Networks Acc. on LFW Acc. on YTF

DDML (combined)[27] - 1 90.68% 82.3%

WebFace+PCA[97] 500K 1 96.33% 90.6%

DeepFace[80] 4M 3 97.35% 91.4%

DeepID2+[77] 300K 25 99.47% 93.2%

MFM 2/1[94] - 1 98.8% 93.4%

RangeLoss[101] 1.5M - 99.52% 93.7%

CenterLoss[90] 0.7M 1 99.28% 94.9%

FaceNet[66] 200M 3 99.63% 95.1%

VGG[57] 2.6M 3 98.95% 97.3%

Baidu[49] 1.3M 1 99.13% -

NAN[95] 3M 1 - 95.7%

COCO[51] - 1 99.78% -

SphereFace[50] 500K 1 97.88% - 99.42% 93.1% - 95.0%

NormFace[85] 500K 10 98.13% - 98.71% 94.72

Stream loss 1.5M* 21 98.97% 96.4%

*
Here, the the dataset includes 1.5M streams.

on subjects detected from videos.

One approach towards transfer learning is to share the knowledge of parameters [55,

88]. In this experiment, we transfer the weight parameters from the source trained

model to a new classi�cation model. Let's assume that the weight parameters of our

source model and target model are wS and wT respectively, therefore,

wT = wS + vT (3.19)

where vT is a speci�c set of parameters of the target task, i.e. face veri�cation.

In order to elaborate transferring the parameters' knowledge, we �ne-tuned

the pre-trained network on the IARPA Janus Benchmark A (IJB-A) dataset[37]. The
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Table 3.3: Performance comparison on the IJB-A dataset. TAR/FAR: True/False
Acceptance Rate for veri�cation.

Method
1:1 Veri�cation TAR

# Params FAR=0.001 FAR=0.01

CNN+AvgPool[95] 140M 0.771 0.913

VGG[57] 40M - 0.805

Template-Adaptation[17] 40M 0.836 0.939

NAN-cascaded-attention[95] 140M 0.860 0.933

Stream loss 26M 0.871 0.937

IJB-A dataset includes real world unconstrained image and video faces with 5,397

images and 2,042 videos from 500 subjects, with an average of 11.4 images and 4.2

videos per identity. Since, the identities in the IJB-A dataset come with signi�cant

variation in pose, illumination, expression, resolution, and occlusion which makes face

recognition very challenging.

Here, 333 identities are randomly sampled as the training set, and the remain-

ing 167 identities are placed in the testing set for evaluation. The results are discussed

in the following section.

Veri�cation Evaluation

We evaluate our method by �ne-tuning the proposed model on the IJB-A

dataset [37] for face veri�cation task. In veri�cation evaluation procedure utilized

Siamese network and Cosine similarity joint with Softmax. The �owchart of the

mentioned procedure is shown in Fig. 3.6.

In the proposed procedure, the pre-trained network generates feature repre-

sentations for each of input face image pairs xo and xu. Then the Cosine similarity

between the two vectors yo and yu is computed as cosin(yo, yu). This additional fea-

ture is concatenated along with the two feature vectors. Then the output of hidden
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Figure 3.6: The proposed �owchart for face veri�cation. For a given pair of {xo, xu},
we map them to a feature space of {yo, yu}. The two feature spaces are concatenated
in a joint layer with an additional feature vector of size 1×1. The output of the joint
layer is utilized in a softmax layer to determine whether the input pairs belong to the
same identity or not.

layer is passed to a softmax layer which expresses if the given pair belongs to the

same identity or not.

Following this procedure, we calculate the True Acceptance Rate (TAR) and

False Acceptance Rate (FAR). The results are demonstrated in Table 3.3. In the ver-

i�cation task, the TAR of our method at FAR=0.001 is 0.871 which reduces the error

of Template-Adaptation [17] and NAN-cascaded-attention [95] by about 21% and 8%

respectfully. In FAR=0.01, our method reduces the error of NAN-cascaded-attention

by about 6%. Note that the proposed model needs fewer parameters and train-

ing samples compare to Template-Adaptation and NAN-cascaded-attention methods
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(see Table 3.3). In addition to the speed gain, fewer parameters reduce the sample

complexity of the network, which explains the near-SOTA performance with fewer

data streams.

In Table 3.3, the only model that uses triplet loss is VGG which has been

�ne-tuned using triplet loss. The TAR of our method at FAR=0.01 reduces the error

of VGG by 67% which demonstrates a signi�cant improvement. Furthermore, the

VGG dataset is puri�ed and includes a small label noise, where the labels are used

later for �ne-tuning the VGG network. The stream loss dataset (i.e. FaceSequence),

by contrast, is automatically labeled and thus noisy. Therefore, stream loss is at a

disadvantage compared to VGG, yet it has comparable performance.

3.4 Comparison of FaceSequence to other face datasets

In early face recognition datasets the main focus was to collect stills from

subjects under controlled conditions such as lighting, pose, or facial expression, and

hence less individuals, e.g. Yale-B [45]. In recent datasets the focus moved to collect

photos of large number of individuals, and hence uncontrolled scenarios per each

individual, e.g. IJB-A [37], MegaFace [34], CASIA [97]. While, the FaceSequence have

the advantage of both. In FaceSequence, on the one hand, each subject's environment

is relatively static in terms of background, lighting, resolution, etc. On the other hand,

the images are assembled from ordinary people extracted from vast variety of videos

crawled from the web and publicly available at no cost, which makes it easily scalable

to millions of individuals.

In this work, we have assembled the FaceSequence dataset, which includes

1.5M streams that capture more than 500K di�erent individuals to this end. Our key

objectives for assembling the dataset are that:
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1. FaceSequence contains photo streams extracted from videos in the wild, un-

der variety of unconstrained conditions including resolution, pose, expression,

lighting, exposure, and blurriness.

2. The images in each stream are stills from ∼1 second of video, and hence more

similar in terms of background, lighting, and resolution per subject,

comparing to common still image datasets which include many disparate stills

images per individual.

3. And most importantly, it is widely scalable. Most public face datasets have

leveraged labeled celebrity photos crawled from the web, which makes it very

challenging to assemble millions of individuals. Private datasets on the other

hand, are scalable by involving human annotators which makes the process

costly and much more time consuming. Whilst, in FaceSequence, the streams

are automatically labeled with no human interaction in the loop which makes

it expandable.

FaceSequence will be publicly available1, to enable benchmarking and encour-

age development of video-based face veri�cation algorithms at scale.

3.5 Summary & Future Work

In this Chapter, a stream-based ConvNet architecture is presented for video

face veri�cation task. The proposed network is trained to optimize the di�erentiable

error function, referred to as stream loss, using unlabeled temporal face sequences. In

addition, a novel method for generating training dataset from videos (named Face-

Sequence) is presented based on long-term face tracking. Our method achieved com-

parable accuracy results on LFW and YTF datasets. Experiments on the large scale

1A sample set of the FaceSequence dataset and the dataset generation code are anonymously
available at: https://www.dropbox.com/sh/am32t666p7nzfpc/AAB2oJvytcWQtp3ObHWvId8Fa?dl=0
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face benchmark IJB-A also demonstrate the e�ectiveness of the proposed stream loss

function. For example, in comparison to VGG, our method demonstrates a signi�-

cant improvement in TAR/FAR, considering the fact that the VGG dataset is highly

puri�ed and includes a small label noise [59].

For future work, we will focus on introducing a new noise layer into the pro-

posed ConvNet which adapts the network to the noisiness nature of the generated

dataset. Following the approach presented in [83] in 2017, we can train our ConvNet

to clean noisy annotations in the large dataset (e.g. FaceSequence) using clean labels

from the same domain. Then we can �ne-tune the network using both the clean labels

and the full dataset with reduced noise.

We will also look into di�erent approaches for feeding streams of negative

examples into ConvNet (instead of only one negative example) to improve the loss

learning procedure. The stream loss function has to be re-designed accordingly.
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CHAPTER 4 CONCLUSION

Convolutional neural networks (ConvNet) have improved the state of the art

in many applications. Face recognition tasks, for example, have seen a signi�cantly

improved performance due to ConvNets. However, less attention has been given to

videos-based face recognition. Here, we make three contributions along these lines.

First, we proposed a ConvNet-based system for long-term face tracking from

videos. Through taking advantage of pre-trained deep learning models on big data,

we developed a novel system for accurate video face tracking in the unconstrained

environments depicting various people and objects moving in and out of the frame. In

the proposed system, we presented a Detection-Veri�cation-Tracking method (DVT )

which accomplishes the long-term face tracking task through the collaboration of

face detection, face veri�cation, and (short-term) face tracking. An o�ine trained

detector based on cascaded convolutional neural networks localizes all faces appeared

in the frames, and an o�ine trained face veri�er based on deep convolutional neural

networks and similarity metric learning decides if any face or which face corresponds

to the query person. An online trained tracker follows the face from frame to frame.

When validated on a sitcom episode and a TV show, the DVT method outperforms

tracking-learning-detection (TLD) and face-TLD in terms of recall and precision. The

proposed system is tested on many other types of videos and shows very promising

results.

Secondly, as the availability of large scale training dataset has signi�cant e�ect

on the performance of ConvNet-based recognition methods, we presented a successful

automatic video collection approach to generate a large scale video training dataset.

We designed a procedure for generating a face veri�cation dataset from videos based

on the long-term face tracking algorithm, DVT. In this procedure, the streams are

collected from videos, and labeled automatically without human annotation interven-
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tion. Using this procedure, we assembled a widely scalable dataset, FaceSequence.

FaceSequence includes 1.5M streams capturing ∼500K individuals. The three key

distinctions between this dataset and the existing video datasets are as below:

1. FaceSequence contains photo streams extracted from videos in the wild, un-

der variety of unconstrained conditions including resolution, pose, expression,

lighting, exposure, and blurriness.

2. The images in each stream are stills from ∼1 second of video, and hence more

similar in terms of background, lighting, and resolution per subject, comparing

to common still image datasets which include many disparate stills images per

individual.

3. And most importantly, it is widely scalable. Most public face datasets have

leveraged labeled celebrity photos crawled from the web, which makes it very

challenging to assemble millions of individuals. Private datasets on the other

hand, are scalable by involving human annotators which makes the process

costly and much more time consuming. Whilst, in FaceSequence, the streams

are automatically labeled with no human interaction in the loop which makes

it expandable.

Lastly, we introduced a stream-based ConvNet architecture for video face ver-

i�cation task. The proposed network is designed to optimize the di�erentiable error

function, referred to as stream loss, using unlabeled temporal face sequences. Using

the unlabeled video dataset, FaceSequence, we trained our network to minimize the

stream loss. The network achieves veri�cation accuracy comparable to the state of

the art on the LFW and YTF datasets with much smaller model complexity. The

stream loss model achieves a VGG level accuracy with 2× fewer parameters (60M vs
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140M parameters) and 2× fewer training data (1.5M data vs. 2.6M data) compared

to VGG model.

We also �ne-tuned the proposed video-based veri�cation network using the

IJB-A dataset. The validation results show competitive veri�ation accuracy com-

pared with the best previous video face veri�cation results. The TAR of our method

at FAR=0.01 reduces the error of VGG by 67% which demonstrates a signi�cant

improvement. Furthermore, the VGG dataset is puri�ed and includes a small label

noise, where the labels are used later for �ne-tuning the VGG network. The stream

loss dataset (i.e. FaceSequence), by contrast, is automatically labeled and thus noisy.

Therefore, stream loss is at a disadvantage compared to VGG, yet it has comparable

performance.



70

APPENDIX

Journal Publications (2014-2018)

J1. E. Rashedi, E. Rashedi, H. Nezamabadi-pour, �A Comprehensive Survey on Grav-

itational Search Algorithm�, Journal of Swarm and Evolutionary Computation,

In Press, 2018 [62].

J2. S. Adabi, E. Rashedi, A. Clayton, H. Mohebbi-Kalkhoran, X. Chen, S. Conforto,

M. Nasiriavanaki, �A Learnable Despeckling Framework for Optical Coherence

Tomography Images�, Journal of Biomedical Optics, vol. 20, no. 2, 2017 [3].

J3. E. Rashedi, A. Mirzaei, M. Rahmati, �Optimized Aggregation Function in Hier-

archical Clustering Combination�, Journal of Intelligent Data Analysis, vol. 20,

no. 2, 2016 [61].

J4. E. Rashedi, A. Mirzaei, M. Rahmati, �An Information Theoretic Approach to

Hierarchical Clustering Combination�, Journal of Neurocomputing, vol. 148, 2015

[60].

Journal Publications Under Review

R1. E. Rashedi, E. Barati, M. Nokleby, X. Chen, �Stream Loss: ConvNet learning

for face veri�cation using unlabeled videos in the wild�, Neurocomputing Journal,

2018 [59].

R2. E. Rashedi, S. Adabi, D. Mehregan, S. Conforto, X. Chen� �An Adaptive Cluster-

based Wiener Filtering Framework for Speckle Reduction of OCT Skin Images�,

Journal of Computer Methods and Programs in Biomedicine, 2018 [58].



71

Conference Publications

C1. K. Zhang, E. Rashedi, E. Barati, X. Chen, �Long-term face tracking in the wild

using deep learning�, KDD Workshop on Large-scale Deep Learning for Data

Mining (KDD'16), San Francisco, USA, August 2016 [100].

C2. S. Adabi, E. Rashedi, S. Conforto, D. Mehregan, Q. Xu, M. Nasiriavanaki,

�Speckle reduction of OCT images using an adaptive cluster-based �ltering�, Pro-

ceedings of SPIE, San Francisco, CA, January 2017 [4].



72

REFERENCES

[1] �http://ca�e.berkeleyvision.org/gathered/examples/imagenet.html.�

[2] �http://image-net.org/.�

[3] S. Adabi, E. Rashedi, A. Clayton, H. Mohebbi-Kalkhoran, X.-w. Chen, S. Con-

forto, and M. Nasiriavanaki, �Learnable despeckling framework for optical co-

herence tomography images,� Journal of biomedical optics, vol. 23, no. 1, p.

016013, 2018.

[4] S. Adabi, E. Rashedi, S. Conforto, D. Mehregan, Q. Xu, and M. Nasiriavanaki,

�Speckle reduction of oct images using an adaptive cluster-based �ltering,�

in Optical Coherence Tomography and Coherence Domain Optical Methods in

Biomedicine XXI, vol. 10053. International Society for Optics and Photonics,

2017, p. 100532X.

[5] B. Babenko, M.-H. Yang, and S. Belongie, �Visual tracking with online multiple

instance learning,� in Computer Vision and Pattern Recognition, 2009. CVPR

2009. IEEE Conference on. IEEE, 2009, pp. 983�990.

[6] Y. Bengio, I. J. Goodfellow, and A. Courville, Deep learning. Citeseer, 2015.

[7] J. R. Beveridge, H. Zhang, B. A. Draper, P. J. Flynn, Z. Feng, P. Huber,

J. Kittler, Z. Huang, S. Li, Y. Li et al., �Report on the fg 2015 video person

recognition evaluation,� in Automatic Face and Gesture Recognition (FG), 2015

11th IEEE International Conference and Workshops on, vol. 1. IEEE, 2015,

pp. 1�8.

[8] Y.-l. Boureau, Y. L. Cun et al., �Sparse feature learning for deep belief net-

works,� in Advances in neural information processing systems, 2008, pp. 1185�

1192.



73

[9] Y.-L. Boureau, J. Ponce, and Y. LeCun, �A theoretical analysis of feature pool-

ing in visual recognition,� in Proceedings of the 27th international conference

on machine learning (ICML-10), 2010, pp. 111�118.

[10] Z. Cha and Z. Zhengyou, �A survey of recent advances in face detection,� Mi-

crosoft Research, Microsoft Corporation, 2010.

[11] B.-C. Chen, C.-S. Chen, and W. H. Hsu, �Cross-age reference coding for age-

invariant face recognition and retrieval,� in Computer Vision�ECCV 2014.

Springer, 2014, pp. 768�783.

[12] D. Chen, X. Cao, L. Wang, F. Wen, and J. Sun, �Bayesian face revisited: A joint

formulation,� in Computer Vision�ECCV 2012. Springer, 2012, pp. 566�579.

[13] J.-C. Chen, V. M. Patel, and R. Chellappa, �Unconstrained face veri�cation

using deep cnn features,� in 2016 IEEE Winter Conference on Applications of

Computer Vision (WACV). IEEE, 2016, pp. 1�9.

[14] S. Chopra, R. Hadsell, and Y. LeCun, �Learning a similarity metric discrimina-

tively, with application to face veri�cation,� in Computer Vision and Pattern

Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, 2005,

pp. 539�546.

[15] R. G. Cinbis, J. Verbeek, and C. Schmid, �Unsupervised metric learning for

face identi�cation in tv video,� in Computer Vision (ICCV), 2011 IEEE Inter-

national Conference on. IEEE, 2011, pp. 1559�1566.

[16] D. Cox and N. Pinto, �Beyond simple features: A large-scale feature search

approach to unconstrained face recognition,� in Automatic Face & Gesture

Recognition and Workshops (FG 2011), 2011 IEEE International Conference

on, 2011, pp. 8�15.



74

[17] N. Crosswhite, J. Byrne, O. M. Parkhi, C. Stau�er, Q. Cao, and A. Zisserman,

�Template adaptation for face veri�cation and identi�cation,� arXiv preprint

arXiv:1603.03958, 2016.

[18] C. Ding and D. Tao, �Trunk-branch ensemble convolutional neural networks for

video-based face recognition,� arXiv preprint arXiv:1607.05427, 2016.

[19] Z. Dong, S. Jia, C. Zhang, and M. Pei, �Input aggregated network for face video

representation,� arXiv preprint arXiv:1603.06655, 2016.

[20] S. Dubuisson and C. Gonzales, �A survey of datasets for visual tracking,� Ma-

chine Vision and Applications, vol. 27, no. 1, pp. 23�52, 2016.

[21] M. Everingham, J. Sivic, and A. Zisserman, �Taking the bite out of automated

naming of characters in tv video,� Image and Vision Computing, vol. 27, no. 5,

pp. 545�559, 2009.

[22] M. Godec, P. M. Roth, and H. Bischof, �Hough-based tracking of non-rigid

objects,� Computer Vision and Image Understanding, vol. 117, no. 10, pp. 1245�

1256, 2013.

[23] H. Grabner, C. Leistner, and H. Bischof, �Semi-supervised on-line boosting for

robust tracking,� in Computer Vision�ECCV 2008. Springer, 2008, pp. 234�

247.

[24] M. Guillaumin, J. Verbeek, and C. Schmid, �Is that you? metric learning ap-

proaches for face identi�cation,� in Computer Vision, 2009 IEEE 12th interna-

tional conference on. IEEE, 2009, pp. 498�505.

[25] R. Hadsell, S. Chopra, and Y. LeCun, �Dimensionality reduction by learning an

invariant mapping,� in 2006 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition (CVPR'06), vol. 2. IEEE, 2006, pp. 1735�1742.

[26] G. E. Hinton, S. Osindero, and Y.-W. Teh, �A fast learning algorithm for deep

belief nets,� Neural computation, vol. 18, no. 7, pp. 1527�1554, 2006.



75

[27] J. Hu, J. Lu, and Y.-P. Tan, �Discriminative deep metric learning for face

veri�cation in the wild,� in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2014, pp. 1875�1882.

[28] C. Huang, C. C. Loy, and X. Tang, �Local similarity-aware deep feature em-

bedding,� in Advances in Neural Information Processing Systems, 2016, pp.

1262�1270.

[29] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, �Labeled faces in

the wild: A database for studying face recognition in unconstrained environ-

ments,� Technical Report 07-49, University of Massachusetts, Amherst, Tech.

Rep., 2007.

[30] Z. Kalal, J. Matas, and K. Mikolajczyk, �Weighted sampling for large-scale

boosting.� in BMVC, 2008, pp. 1�10.

[31] Z. Kalal, K. Mikolajczyk, and J. Matas, �Face-tld: Tracking-learning-detection

applied to faces,� in Image Processing (ICIP), 2010 17th IEEE International

Conference on. IEEE, 2010, pp. 3789�3792.

[32] ��, �Tracking-learning-detection,� Pattern Analysis and Machine Intelligence,

IEEE Transactions on, vol. 34, no. 7, pp. 1409�1422, 2012.

[33] I. Kemelmacher-Shlizerman, S. Seitz, D. Miller, and E. Brossard, �The

megaface benchmark: 1 million faces for recognition at scale,� arXiv preprint

arXiv:1512.00596, 2015.

[34] I. Kemelmacher-Shlizerman, S. M. Seitz, D. Miller, and E. Brossard, �The

megaface benchmark: 1 million faces for recognition at scale,� in Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp.

4873�4882.



76

[35] E. Khalaj, R. Vanciu, and M. Abi-Antoun, �Comparative evaluation of static

analyses that �nd security vulnerabilities,� Technical report, WSU, Tech. Rep.,

2014.

[36] M. E. Khalaj, S. Moaven, J. Habibi, and H. Ahmadi, �A semantic framework

for business process modeling based on architecture styles,� in Computer and

Information Science (ICIS), 2012 IEEE/ACIS 11th International Conference

on. IEEE, 2012, pp. 513�520.

[37] B. F. Klare, B. Klein, E. Taborsky, A. Blanton, J. Cheney, K. Allen, P. Grother,

A. Mah, M. Burge, and A. K. Jain, �Pushing the frontiers of unconstrained face

detection and recognition: Iarpa janus benchmark a,� in Computer Vision and

Pattern Recognition (CVPR), 2015 IEEE Conference on. IEEE, 2015, pp.

1931�1939.

[38] A. Krizhevsky, I. Sutskever, and G. E. Hinton, �Imagenet classi�cation with

deep convolutional neural networks,� in Advances in neural information pro-

cessing systems, 2012, pp. 1097�1105.

[39] J. Kwon and K. M. Lee, �Highly nonrigid object tracking via patch-based dy-

namic appearance modeling,� Pattern Analysis and Machine Intelligence, IEEE

Transactions on, vol. 35, no. 10, pp. 2427�2441, 2013.

[40] S. Lawrence, C. L. Giles, A. C. Tsoi, and A. D. Back, �Face recognition: A

convolutional neural-network approach,� Neural Networks, IEEE Transactions

on, 1997.

[41] Q. V. Le, W. Y. Zou, S. Y. Yeung, and A. Y. Ng, �Learning hierarchical invari-

ant spatio-temporal features for action recognition with independent subspace

analysis,� in Computer Vision and Pattern Recognition (CVPR), 2011 IEEE

Conference on. IEEE, 2011, pp. 3361�3368.



77

[42] Y. LeCun and Y. Bengio, �Convolutional networks for images, speech, and time

series,� The handbook of brain theory and neural networks, 1995.

[43] Y. LeCun, Y. Bengio, and G. Hinton, �Deep learning,� Nature, vol. 521, no.

7553, pp. 436�444, 2015.

[44] Y. LeCun, L. Bottou, Y. Bengio, and P. Ha�ner, �Gradient-based learning

applied to document recognition,� Proceedings of the IEEE, vol. 86, no. 11, pp.

2278�2324, 1998.

[45] K.-C. Lee, J. Ho, and D. J. Kriegman, �Acquiring linear subspaces for face

recognition under variable lighting,� IEEE Transactions on pattern analysis

and machine intelligence, vol. 27, no. 5, pp. 684�698, 2005.

[46] H. Li, Z. Lin, X. Shen, J. Brandt, and G. Hua, �A convolutional neural network

cascade for face detection,� in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2015, pp. 5325�5334.

[47] Y. Li, J. Zhu, and S. C. Hoi, �Reliable patch trackers: Robust visual track-

ing by exploiting reliable patches,� in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2015, pp. 353�361.

[48] Y. Li, H. Ai, T. Yamashita, S. Lao, and M. Kawade, �Tracking in low frame

rate video: A cascade particle �lter with discriminative observers of di�erent

life spans,� Pattern Analysis and Machine Intelligence, IEEE Transactions on,

vol. 30, no. 10, pp. 1728�1740, 2008.

[49] J. Liu, Y. Deng, T. Bai, Z. Wei, and C. Huang, �Targeting ultimate accuracy:

Face recognition via deep embedding,� arXiv preprint arXiv:1506.07310, 2015.

[50] W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song, �Sphereface: Deep hy-

persphere embedding for face recognition,� arXiv preprint arXiv:1704.08063,

2017.



78

[51] Y. Liu, H. Li, and X. Wang, �Rethinking feature discrimination and polymer-

ization for large-scale recognition,� arXiv preprint arXiv:1710.00870, 2017.

[52] C. Lu and X. Tang, �Surpassing human-level face veri�cation performance on

lfw with gaussianface,� arXiv preprint arXiv:1404.3840, 2014.

[53] Y. M. Lu and M. N. Do, �Multidimensional directional �lter banks and sur-

facelets,� Image Processing, IEEE Transactions on, vol. 16, no. 4, pp. 918�931,

2007.

[54] H. V. Nguyen and L. Bai, �Cosine similarity metric learning for face veri�ca-

tion,� in Computer Vision�ACCV 2010, 2010, pp. 709�720.

[55] S. J. Pan and Q. Yang, �A survey on transfer learning,� IEEE Transactions on

knowledge and data engineering, vol. 22, no. 10, pp. 1345�1359, 2010.

[56] O. Parkhi, K. Simonyan, A. Vedaldi, and A. Zisserman, �A compact and dis-

criminative face track descriptor,� in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2014, pp. 1693�1700.

[57] O. M. Parkhi, A. Vedaldi, and A. Zisserman, �Deep face recognition,� Proceed-

ings of the British Machine Vision, vol. 1, no. 3, p. 6, 2015.

[58] E. Rashedi, S. Adabi, D. Mehregan, X.-w. Chen, and M. Nasiriavanaki, �An

adaptive cluster-based �ltering framework for speckle reduction of oct skin im-

ages,� arXiv preprint arXiv:1708.02285, 2017.

[59] E. Rashedi, E. Barati, M. Nokleby, and X. Chen, �Stream loss: Convnet learning

for face veri�cation using unlabeled videos in the wild,� Neurocomputing, 2018.

[60] E. Rashedi, A. Mirzaei, and M. Rahmati, �An information theoretic approach

to hierarchical clustering combination,� Neurocomputing, vol. 148, pp. 487�497,

2015.

[61] ��, �Optimized aggregation function in hierarchical clustering combination,�

Intelligent Data Analysis, vol. 20, no. 2, pp. 281�291, 2016.



79

[62] E. Rashedi, E. Rashedi, and H. Nezamabadi-pour, �A comprehensive survey on

gravitational search algorithm,� Swarm and Evolutionary Computation, 2018.

[63] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,

A. Karpathy, A. Khosla, M. Bernstein et al., �Imagenet large scale visual recog-

nition challenge,� International Journal of Computer Vision, vol. 115, no. 3,

pp. 211�252, 2015.

[64] S. Sankaranarayanan, A. Alavi, and R. Chellappa, �Triplet similarity embedding

for face veri�cation,� arXiv preprint arXiv:1602.03418, 2016.

[65] A. Saxe, P. W. Koh, Z. Chen, M. Bhand, B. Suresh, and A. Y. Ng, �On random

weights and unsupervised feature learning,� in Proceedings of the 28th interna-

tional conference on machine learning (ICML-11), 2011, pp. 1089�1096.

[66] F. Schro�, D. Kalenichenko, and J. Philbin, �Facenet: A uni�ed embedding

for face recognition and clustering,� in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2015, pp. 815�823.

[67] K. Simonyan, O. M. Parkhi, A. Vedaldi, and A. Zisserman, �Fisher vector faces

in the wild,� in BMVC, 2013.

[68] K. Simonyan and A. Zisserman, �Very deep convolutional networks for large-

scale image recognition,� arXiv preprint arXiv:1409.1556, 2014.

[69] J. Sivic, M. Everingham, and A. Zisserman, �Person spotting: video shot re-

trieval for face sets,� in Image and Video Retrieval. Springer, 2005, pp. 226�236.

[70] ��, �"who are you?"-learning person speci�c classi�ers from video,� in Com-

puter Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on.

IEEE, 2009, pp. 1145�1152.

[71] A. W. Smeulders, D. M. Chu, R. Cucchiara, S. Calderara, A. Dehghan, and

M. Shah, �Visual tracking: An experimental survey,� Pattern Analysis and Ma-

chine Intelligence, IEEE Transactions on, vol. 36, no. 7, pp. 1442�1468, 2014.



80

[72] K. Sohn, �Improved deep metric learning with multi-class n-pair loss objective,�

in Advances in Neural Information Processing Systems, 2016, pp. 1857�1865.

[73] Stanford-University, �http://cs231n.stanford.edu/, course on convolutional neu-

ral networks for visual recognition.�

[74] Y. Sun, Y. Chen, X. Wang, and X. Tang, �Deep learning face representation by

joint identi�cation-veri�cation,� in Advances in Neural Information Processing

Systems, 2014, pp. 1988�1996.

[75] Y. Sun, D. Liang, X. Wang, and X. Tang, �Deepid3: Face recognition with very

deep neural networks,� arXiv preprint arXiv:1502.00873, 2015.

[76] Y. Sun, X. Wang, and X. Tang, �Deep learning face representation from pre-

dicting 10,000 classes,� in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2014, pp. 1891�1898.

[77] ��, �Deeply learned face representations are sparse, selective, and robust,� in

Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion, 2015, pp. 2892�2900.

[78] J. Supancic and D. Ramanan, �Self-paced learning for long-term tracking,� in

Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion, 2013, pp. 2379�2386.

[79] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, and A. Rabinovich, �Going deeper with convolutions,� in Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

2015, pp. 1�9.

[80] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, �Deepface: Closing the gap

to human-level performance in face veri�cation,� in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2014, pp. 1701�1708.



81

[81] ��, �Web-scale training for face identi�cation,� in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2015, pp. 2746�2754.

[82] R. Vanciu, E. Khalaj, and M. Abi-Antoun, �Comparative evaluation of archi-

tectural and code-level approaches for �nding security vulnerabilities,� in Pro-

ceedings of the 2014 ACM Workshop on Security Information Workers. ACM,

2014, pp. 27�34.

[83] A. Veit, N. Alldrin, G. Chechik, I. Krasin, A. Gupta, and S. Belongie, �Learn-

ing from noisy large-scale datasets with minimal supervision,� arXiv preprint

arXiv:1701.01619, 2017.

[84] P. Viola and M. J. Jones, �Robust real-time face detection,� International jour-

nal of computer vision, vol. 57, no. 2, pp. 137�154, 2004.

[85] F. Wang, X. Xiang, J. Cheng, and A. L. Yuille, �Normface: l_2 hypersphere

embedding for face veri�cation,� arXiv preprint arXiv:1704.06369, 2017.

[86] J. Wang, Y. Song, T. Leung, C. Rosenberg, J. Wang, J. Philbin, B. Chen,

and Y. Wu, �Learning �ne-grained image similarity with deep ranking,� in Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

2014, pp. 1386�1393.

[87] R. Wang, H. Dong, T. X. Han, and L. Mei, �Robust tracking via monocular

active vision for an intelligent teaching system,� The Visual Computer, pp. 1�16,

2016.

[88] K. Weiss, T. M. Khoshgoftaar, and D. Wang, �A survey of transfer learning,�

Journal of Big Data, vol. 3, no. 1, pp. 1�40, 2016.

[89] Y. Wen, Z. Li, and Y. Qiao, �Latent factor guided convolutional neural networks

for age-invariant face recognition,� in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2016, pp. 4893�4901.



82

[90] Y. Wen, K. Zhang, Z. Li, and Y. Qiao, �A discriminative feature learning ap-

proach for deep face recognition,� in European Conference on Computer Vision.

Springer, 2016, pp. 499�515.

[91] O. Williams, A. Blake, and R. Cipolla, �Sparse bayesian learning for e�cient

visual tracking,� Pattern Analysis and Machine Intelligence, IEEE Transactions

on, vol. 27, no. 8, pp. 1292�1304, 2005.

[92] L. Wolf, T. Hassner, and I. Maoz, �Face recognition in unconstrained videos with

matched background similarity,� in Computer Vision and Pattern Recognition

(CVPR), 2011 IEEE Conference on. IEEE, 2011, pp. 529�534.

[93] X. Wu, R. He, and Z. Sun, �A lightened cnn for deep face representation,� arXiv

preprint arXiv:1511.02683, 2015.

[94] X. Wu, R. He, Z. Sun, and T. Tan, �A light cnn for deep face representation

with noisy labels,� arXiv preprint arXiv:1511.02683, 2015.

[95] J. Yang, P. Ren, D. Chen, F. Wen, H. Li, and G. Hua, �Neural aggregation

network for video face recognition,� arXiv preprint arXiv:1603.05474, 2016.

[96] S. Yang, P. Luo, C.-C. Loy, and X. Tang, �From facial parts responses to face

detection: A deep learning approach,� in Proceedings of the IEEE International

Conference on Computer Vision, 2015, pp. 3676�3684.

[97] D. Yi, Z. Lei, S. Liao, and S. Z. Li, �Learning face representation from scratch,�

arXiv preprint arXiv:1411.7923, 2014.

[98] J. Yue-Hei Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. Monga,

and G. Toderici, �Beyond short snippets: Deep networks for video classi�ca-

tion,� in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2015, pp. 4694�4702.



83

[99] S. Zafeiriou, C. Zhang, and Z. Zhang, �A survey on face detection in the wild:

past, present and future,� Computer Vision and Image Understanding, vol. 138,

pp. 1�24, 2015.

[100] K. Zhang, E. Rashedi, E. Barati, and X. Chen, �Long-term face tracking in the

wild using deep learning,� in KDD Workshop on Large-scale Deep Learning for

Data Mining, 2016.

[101] X. Zhang, Z. Fang, Y. Wen, Z. Li, and Y. Qiao, �Range loss for deep face

recognition with long-tail,� arXiv preprint arXiv:1611.08976, 2016.

[102] W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld, �Face recognition: A

literature survey,� ACM computing surveys (CSUR), vol. 35, no. 4, pp. 399�458,

2003.

[103] W.-L. Zheng, S.-C. Shen, and B.-L. Lu, �Online depth image-based object track-

ing with sparse representation and object detection,� Neural Processing Letters,

pp. 1�14, 2016.

[104] Z. Zhu, P. Luo, X. Wang, and X. Tang, �Recover canonical-view faces in the

wild with deep neural networks,� arXiv preprint arXiv:1404.3543, 2014.



84

ABSTRACT

LEARNING CONVOLUTIONAL NEURAL NETWORKS
FOR FACE VERIFICATION

by

ELAHEH RASHEDI

August 2018

Advisor: Dr. Xue-wen Chen

Major: Computer Science

Degree: Doctor of Philosophy

Convolutional neural networks (ConvNet) have improved the state of the art

in many applications. Face recognition tasks, for example, have seen a signi�cantly

improved performance due to ConvNets. However, less attention has been given to

videos-based face recognition. Here, we make three contributions along these lines.

First, we proposed a ConvNet-based system for long-term face tracking from

videos. Through taking advantage of pre-trained deep learning models on big data,

we developed a novel system for accurate video face tracking in the unconstrained

environments depicting various people and objects moving in and out of the frame. In

the proposed system, we presented a Detection-Veri�cation-Tracking method (DVT )

which accomplishes the long-term face tracking task through the collaboration of

face detection, face veri�cation, and (short-term) face tracking. An o�ine trained

detector based on cascaded convolutional neural networks localizes all faces appeared

in the frames, and an o�ine trained face veri�er based on deep convolutional neural

networks and similarity metric learning decides if any face or which face corresponds

to the query person. An online trained tracker follows the face from frame to frame.

When validated on a sitcom episode and a TV show, the DVT method outperforms
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tracking-learning-detection (TLD) and face-TLD in terms of recall and precision. The

proposed system is tested on many other types of videos and shows very promising

results.

Secondly, as the availability of large scale training dataset has signi�cant e�ect

on the performance of ConvNet-based recognition methods, we presented a successful

automatic video collection approach to generate a large scale video training dataset.

We designed a procedure for generating a face veri�cation dataset from videos based

on the long-term face tracking algorithm, DVT. In this procedure, the streams can

be collected from videos, and labeled automatically without human annotation inter-

vention. Using this procedure, we assembled a widely scalable dataset, FaceSequence.

FaceSequence includes 1.5M streams capturing 500K individuals. A key distinction

between this dataset and the existing video datasets is that FaceSequence is generated

from publicly available videos and labeled automatically, hence widely scalable at no

annotation cost.

Lastly, we introduced a stream-based ConvNet architecture for video face ver-

i�cation task. The proposed network is designed to optimize the di�erentiable error

function, referred to as stream loss, using unlabeled temporal face sequences. Using

the unlabeled video dataset, FaceSequence, we trained our network to minimize the

stream loss. The network achieves veri�cation accuracy comparable to the state of

the art on the LFW and YTF datasets with much smaller model complexity. In com-

parison to VGG, our method demonstrates a signi�cant improvement in TAR/FAR,

considering the fact that the VGG dataset is highly puri�ed and includes a small

label noise. We also �ne-tuned the network using the IJB-A dataset. The validation

results show competitive veri�ation accuracy compared with the best previous video

face veri�cation results.
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