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Chapter 1 : An Electroactive Materials-Based Repair Strategy for Neural Tissue 

Engineering with Hyaluronic Acid-Carbon Nanotube Nanofibers 

Portions of this chapter are contained within the publication:  

Steel E.M., Sundararaghavan H.G. (2016) Electrically Conductive Materials for Nerve 

Regeneration. In: Zhang L., Kaplan D. (eds) Neural Engineering. Springer, Cham. 

Problem and Significance 

Peripheral nerve injuries (PNI) annually affect upwards of 250,000 people in the United 

States and 300,000 in Europe (Mokarram et al., 2017; Seil and Webster, 2010). Patient 

quality of life is impacted when functional loss occurs following when a nerve transection or 

crush injuries caused by trauma or surgical complications (Mukhatyar). Coaptation (surgical 

term for suturing two segments together) is employed to connect nerve defects of less than 

20 mm (Bellamkonda, 2006). The current gold standard for repair of long gap PNI (defects 

greater than 30 mm in humans) is to autograft the sural nerve due to the ease of access and 

the low donor site morbidity at the second surgical site (Bellamkonda, 2006; Kawamura et 

al., 2010). Currently, autografts only successfully restore useful function in 40% of patients 

treated for long gap PNI (>30 mm) (Mokarram et al., 2017). The research conducted in this 

thesis sought to develop a biomaterial for neural tissue engineering therapies to improve upon 

insufficient patient outcomes following repair using gold standard autografting techniques. 

Nerve guide conduits (NGC) offer an alternative strategy for repair of PNI. Currently, 

natural and synthetic biomaterials used in FDA-approved NGCs range from degradable 

materials such as Type I Collagen, polyglycolic acid, poly(caprolactone) to those that do not 

degrade such as elastomer hydrogels (Seil and Webster, 2010). While tubular guidance 

channels have been successful in repairing human PNI that are less than 30 mm, there is a 

clear unmet clinical need for NGC design that leverages the inherent regenerative capacity of 

the peripheral nervous system to promote and accelerate functional tissue regeneration in 

long gap PNI (>30 mm) (Wrobel and Sundararaghavan, 2014). In recent years, a materials 

based repair strategy to control cues in the injury microenvironment has been investigated 
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to augment NGCs for improving patient functional outcomes (Wrobel and Sundararaghavan, 

2014). 

Cells are magnificent integration centers, responding to cues in their 

microenvironment through a variety of signaling mechanisms. Increasing evidence has 

established that mechanics (Anderson et al., 2015; Koch, 2012) and topography (Jang et al., 

2010; Kim; Whitehead et al., 2018) of a cell’s microenvironment influences neuron 

regeneration. Additionally, several groups have demonstrated that exogenous electrical cues 

(either through extracellular fluid or through a conductive substrate) activate intracellular 

signaling pathways favorable towards regenerative behavior. Such behavior in the realm of 

neural tissue includes Schwann cells releasing NGF (Koppes et al., 2014a; Koppes et al., 

2011; Koppes et al., 2014c) and neurons increasing BDNF expression (Wenjin et al., 2011; 

Zheng et al., 2011) which has then been correlated to increased neurite/axonal outgrowth. 

The goal of the research reported in this thesis was to design a conductive nanofibrous 

biomaterial to augment current NGC repair strategies through a multi-combinatorial approach 

using topographical, mechanical, and electrical cues.  

Nervous system response to injury 

The peripheral nervous system (PNS) inherently employs systematic repair processes 

to regenerate axotomized nerves (Mukhatyar). Within hours following peripheral nerve injury, 

the impacted axons undergo the process of Wallerian degeneration during which Schwann 

cells (SCs) breakdown myelin by secreting phospholipases and recruit macrophages by 

releasing cytokines (Chan et al., 2014). Within 2 days of injury, SCs revert to a proliferative 

phenotype in response to neurotrophins, axon-derived calcitonin gene-related peptide, 

neuregulin, and IL-1α/β. SCs migrate and align to form the Bands of Büngner which support 

and guide regenerating axons (Chan et al., 2014). SCs release growth factors within the first 

few weeks which influence damaged neurons to regenerate. Under conditions permissive to 

regeneration, neurons increase the expression of tubulin, actin, and growth-associated 
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protein 43 (GAP43) at the growth cone front which extends out in filopodia to probe the 

microenvironment (Chan et al., 2014). 

Several molecular pathways are involved in peripheral nerve regeneration. The 

tropomyosin related kinase (Trk) receptor expressed by neurons bind nerve growth factor 

(NGF) secreted by SCs which activates the phosphatidylinositol-3 kinase (PI3K)-AKt pathway 

that inhibits apoptosis and promotes neurite outgrowth (Chan et al., 2014). Neurite outgrowth 

and neuron survival is also promoted by neurotrophins binding to Trk to activate the 

extracellular signal-regulated kinase (ERK) pathway (Kaplan and Miller, 2000). The second 

messenger cyclic AMP (cAMP) is involved in the promotion of axon elongation through the 

upregulation of cytoskeletal protein synthesis as well as the secretion of polyamines that serve 

to reduce the inhibitory effects of myelin and myelin associated glycoproteins (Gao et al., 

2004; Hannila and Filbin, 2008). The Rho-ROCK signaling pathway is activated following nerve 

injury and is involved in mediating growth cone interactions with its microenvironment serving 

to inhibit axon outgrowth; inhibiting ROCK has been shown to increase neurite 

outgrowth.(Cheng et al., 2008) In addition to NGF, the neurotrophins NT-3 and NT-4 as well 

as brain-derived neurotrophic factor (BDNF) have been established in promoting neuron 

survival (Varma et al., 2013). 

For short injuries less than 10 mm, the oriented fibrin matrix Bands of  Büngner forms 

within the injury microenvironment directing Schwann cells and fibroblasts to migrate, 

multiply, and differentiate to support and guide neuron regrowth and axonal targeting 

(Mokarram et al., 2017) (Seil and Webster, 2010). Once Schwann cells and fibroblasts migrate 

across the injury gap, axons from the proximal nerve segment can bridge the injury gap and 

reconnect with target tissue at the distal end of the nerve injury. For injuries longer than 30 

mm, the fibrin matrix cable responsible for directing support cell infiltration to guide axonal 

targeting fails to form resulting in incomplete bridging of nerve defects (Bellamkonda, 2006). 

The failure of natural PNS repair processes to effectively bridge critical injury gaps reduces 

functional reinnervation of target tissues (Kawamura et al., 2010). Neuron axonal elongation 
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rates have been measured to be 0.5-1mm per day in vitro (Seil and Webster, 2010). However, 

bridging long nerve defects requires weeks to traverse the harsh in vivo microenvironment 

causing clinical concern for motor endplate degeneration before the axonal front can 

reconnect (Kawamura et al., 2010; Seil and Webster, 2010).  

Current Treatments and Shortcomings 

The current treatments available for peripheral nerve injuries depend on the size of 

the injury gap. Coaptation by suturing two segments together is employed to connect nerve 

defects of less than 20 mm (Bellamkonda, 2006). The current gold standard for peripheral 

nerve repair for defects greater than 20 mm is to autologous nerve grafting (Bellamkonda, 

2006; Kawamura et al., 2010). The disadvantages to autologous nerve grafts are the need 

for a second surgery to obtain graft tissue, loss of function from the donor site, and difference 

in tissue size and structure (Li et al., 2014). The use of allografts is hampered by the need 

for immunosuppressive therapy, but is sometimes necessary in cases when the required graft 

length exceeds the length available from an autograft (Kehoe et al., 2012; Li et al., 2014). 

An FDA approved acellular human nerve allograft called Avance® Nerve Graft restored 

between 77-89% meaningful recovery of function for sensory, motor, and mixed peripheral 

nerve injuries between 5-50 mm in length in patients in clinical trials between 2007-2010 

(Brooks et al., 2012). FDA approved synthetic and natural materials have been available 

commercially as grafting options in the form of nerve guide conduits by which the severed 

nerve is joined by entubulation (Li et al., 2014). The collagen conduit NeuraGen has been 

shown to be equally as effective as coaptation for short gap peripheral nerve repair (<20 

mm).(Kehoe et al., 2012) Polyglycolic acid (PGA) and poly D,L lactide-co-ε-caprolactone (PCL) 

conduits, Neurotube and Neurolac respectively, have demonstrated comparable efficacy to 

autografts for 20 mm defects (Kehoe et al., 2012). The limitations to PGA conduits are the 

high degradation rate and acidic degradation products. PCL conduits are extremely rigid, 

complicating the surgical procedure, and resulted in some cases of severe foreign body 

reactions that led to neuroma formations (Kehoe et al., 2012). The field of neural tissue 
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engineering (NTE) has the potential to advance NGC design by developing biomaterials which 

surmount size and immunogenicity constraints of autografts and allografts while engineering 

the microenvironment with permissive cues for modulating regenerative cell behavior. 

Tissue Engineering and Regenerative Medicine for PNI 

To achieve complete functional recovery that fails to occur with current conventional 

treatments, tissue engineering approaches seek to incorporate a combination of biomaterials, 

cells, and/or growth factors to accelerate nerve regrowth. Biomaterials can be tailored with 

customized cues to mimic a favorable microenvironment that stimulates the processes of cell 

migration and axonal elongation and targeting that are required for complete repair. These 

processes can be influenced by topographical, chemical, mechanical, and electrical cues from 

the microenvironment (Figure 1-1) (Rodriguez and Schneider, 2013; Wrobel and 

Sundararaghavan, 2014). 

The prominent role of bioelectricity in the body 

makes it an attractive factor to manipulate to 

accelerate wound healing. Bioelectricity plays its 

most notable role in the body in the form of 

electrical signals throughout tissues in the 

nervous system, influencing a wide variety of 

active and passive biological functions ranging 

from movement and thinking to sensory 

perception and respiration. External electric fields can influence ion influx through ionic 

membrane channels to affect intracellular signal transduction pathways through second 

messengers such as cAMP and Ca2+ which can in turn affect enzyme phosphorylation and alter 

gene expression (Brushart et al., 2002). Application of a range of voltages from 15.6 μV/mm 

to 300 mV/mm using both AC and DC currents have successfully elicited neurite outgrowth in 

various cell types including dorsal root ganglia neurons, spinal cord neurons and neural stem 

cells with Feng calculating a threshold to be 16mV/mm (Feng et al., 2012; Graves et al., 

 
 Figure 1-1. Directed cell behavior 

from cues in the microenvironment.  

Adapted from (Rodriguez and Schneider, 

2013) 
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2011; Royo-Gascon et al., 2013; Seil and Webster, 2010; Wrobel and Sundararaghavan, 

2014). Electrical stimulation has been shown to accelerate and enhance expression of 

regeneration-associated genes such as GAP-43 (associated with motoneuron growth), the 

factor BDNF and its receptor trk-B, and the cytoskeleton proteins tubulin and actin (Al-Majed 

et al., 2004; Hronik-Tupaj et al., 2013). Calcium channels and two pore domain potassium 

(2-PK) channels can be influenced by electrical stimulation serving to activate neurite 

outgrowth through cytoskeletal protein synthesis (Huang et al., 2012; Mathie et al., 2003). 

Electric field stimulation may regulate protein kinase A and C phosphorylation which mediate 

the activation of the 2-PK channel (Mathie et al., 2003). Two groups have demonstrated that 

electrical stimulation of Schwann cells activates T-type voltage gated calcium channels leading 

to increased intracellular calcium production resulting in calcium-dependent exocytosis of NGF 

(Huang et al., 2010; Koppes et al., 2014a). Figure 1-2 provides a summary of the molecular 

mechanisms influenced by electrical stimulation to increase regeneration. Topographical, 

 
 Figure 1-2. Proposed molecular pathways affected by 

electrical stimulation associated with neuronal regeneration.  

(Hronik-Tupaj et al., 2013)  
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chemical, mechanical, and electrical cues have all separately (and in limited combination) 

been shown to guide and direct these behaviors (Wrobel M, 2013). Ideally, multiple cues 

could be presented spatially and temporally during the regeneration process. Many groups 

have demonstrated biocompatibility of a variety of materials as candidates for treatment of 

traumatic injury in the nervous system.  

Conductive Biomaterials 

Examples from the Literature 

Several groups have delivered electrical cues to neuronal cells through a conductive 

material scaffold. Common conductive polymers used are polypyrrole (PPy) or polyaniline 

(PANi). PPy and its composites are brittle, nonbiodegradable, and can undergo spontaneous 

oxidation/reduction reactions with environmental H+/OH- and metal ions resulting in 

irreversible degradation affecting the polymer’s composition, structure, and ability to conduct 

charge (Maksymiuk, 2006; Zhang et al., 2007b). PPy is a poor choice for biochemical 

modification for bioactive molecule delivery because covalent modification techniques change 

the polymer structure leading to decreased conductivity (Lee et al., 2009). PPy also lacks 

functional groups making it poorly adhesive to cells (Lee, 2013). Although electrical 

stimulation through nanofibrous PANi/PCL/gelatin scaffolds have improved neurite outgrowth 

in vitro, (Ghasemi-Mobarakeh et al., 2009) PANi is inherently brittle, nonbiodegradable, and 

is poor in processibility due to its insolubility in many organic solvents (Valipour et al., 2012). 

In addition to electrically conductive polymers, piezoelectric materials have also been 

investigated. Polyvinylidene fluoride (PVDF) films have been shown to enhance spinal cord 

neurons outgrowth when stimulated at 50 Hz using a custom vibration platform (Royo-Gascon 

et al., 2013). Though this system has potential in accelerating growth in vitro, PVDF is not 

biodegradable and electrical conductivity would be difficult to control in vivo. 

Carbon Nanotubes 

Carbon nanotubes exhibit unique properties with diverse potential for clever 

modifications and applications in biomaterials for tissue engineering (Steel and 
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Sundararaghavan, 2016). Not only do CNT networks possess conductivity ranging from 10-

103 S/cm, they possess high tensile strength and thermal and chemical stability (Steel and 

Sundararaghavan, 2016). These qualities make them an attractive constituent for a 

conductive NGC composite material engineered to span a critical gap length of >30 mm and 

deliver a stable electrical stimulus without causing a concomitant increase in tissue 

temperature (Steel and Sundararaghavan, 2016). Electrical current passing through resistive 

tissue can generate heat that denatures proteins, and should thus be considered during 

material selection. Another consideration for electrode material choice is to limit the potential 

for electrochemical injury. By carefully considering the environment in which the electrode 

will be used, unwanted effects like electroconformational protein denaturation, electroporation 

of the cell membrane, and neurotoxicity can be avoided (Meng S, 2011). 

Electrical Stimulation and CNTs for tissue regeneration 

One study systematically reviewed the effect of MWCNT surface charge on neurite 

outgrowth from rat hippocampal neurons (Hu et al., 2004). Hu et. al. prepared a series of 

MWCNTs with various charges via chemical functionalization to assess neurite growth and 

branching. MWCNTs were either functionalized with carboxylic groups to carry a negative 

charge (MWCNT-COOH), poly-m-aminobenzene sulfonic acid to carry a zwitterionic charge 

(+/-, MWCNT-PABS), or ethylenediamine to carry a positive charge (MWCNT-EN). Number of 

neurons, growth cones and neurites, neurite length, and neurite branching were quantified 

by fluorescence microscopy using calcein for viability or the neuron-specific FITC-conjugated 

C fragment of tetanus toxin. All three functionalized MWCNTs supported neuronal growth as 

assessed by positive uptake of calcein. Growth cone number and neurite length were greatest 

for the positively charged MWCNT-EN compared to MWCNT-PABS and MWCNT-COOH. Hu et 

al concluded that the negatively charged MWCNT-COOH (deprotonated at pH = 7.35) are not 

as effective in promoting initiation of growth cones, whereas the amine groups of the MWCNT-

EN are positively charged (Hu et al., 2004).  
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Results of several studies support the incorporation of MWCNTs in electroactive 

scaffolds. Cho and Borgens developed MWCNTs/collagen composite films by dispersing HCl-

treated MWCNTs in a 1% w/v collagen solution (Cho and Borgens, 2010). SEM analysis 

demonstrated that composites containing 5% CNT resulted in composites with CNTs tangled 

within the collagen matrix and dispersed on the surface compared to the 0.1% CNT composite 

in which the CNTs did not appear at the surface. The uniform dispersion of the 5% CNT 

composite resulted in increased conductivity and lower resistivity (105 Ωcm), measured by 

cyclic voltammetry and four-point probe method. The cyclic voltammograms for CNT/collagen 

composite films indicated the collagen/CNT composite’s ability to transfer electrons to the 

working electrode surface compared to collagen only, characterized by increased peak 

current. Higher CNT concentration decreased PC12 metabolic activity, regardless of the 

exposure to 100 mV DC for 6 hours. Although 5% CNT/collagen composites exhibited 

significantly less viability compared to the 100% collagen control, it did not appear that the 

CNT concentration had a deleterious effect at concentrations of 10% CNT and below. PC12 

cells cultured on 5% CNT/collagen composites and stimulated with 100mV for 6 hours 

revealed an increase in neurite extension versus unstimulated cells. (Cho and Borgens, 2010)  

Aligned electrospun poly (L-lactic acid-co-caprolactone) (PLCL) nanofibers have been 

coated with MWCNTs following anionic modification with potassium sodium tartrate (Jin et al., 

2011a, b). SEM analysis revealed MWCNT coated PLCL fibers to be generally rougher than the 

PLCL fibers alone; diameters were measured to be between 1.3-1.5 μm. Jin et. al. assessed 

neurite outgrowth of rat dorsal root ganglia neurons cultured on aligned MWCNT-coated PLCL 

fibers for up to 9 days by fluorescence microscopy after staining with Phalloidin to visualize 

actin filaments.  Compared to control aligned PLCL fibers, PC12 neurite length on aligned 

MWCNT-coated PLCL fibers was significantly greater. Notably, PC12 FAK expression, indicative 

of integrin-mediated signal transduction involved in neurite outgrowth, was assessed on the 

MWCNT-coated PLCL fibers by western blot band intensity and found to be higher compared 

to the control (Jin et al., 2011b). 
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The limitations to using carbon nanotubes in biomaterials can be classified as 

manufacturing and quality and toxicological concerns (Serrano et al., 2014). Toxicity concerns 

are minimized by eliminating the catalyst impurities remnant from fabrication, selecting an 

aspect ratio of ≥ 1000, reducing aggregation, and making chemical modifications to increase 

hydrophilicity (Arora et al., 2015). Toxicological studies investigating the immune response 

to carbon nanotubes in vivo reported that hydrophilic CNTs do not cause acute toxicity in vivo 

and observed biodistribution led to accumulations in the liver and spleen (Firme Iii and 

Bandaru, 2010). 

Material Design Constraints 

 We used the example application of a long gap traumatic peripheral nerve injury as a 

frame of reference for developing a conductive nanofibrous biomaterial for a material-based 

repair strategy utilizing electrical stimulation to elicit neuron regeneration. We simplified the 

application of a traumatic long gap PNI to be modeled as a “black box” with an input of an 

electrical stimulus to the neural injury microenvironment with the resulting output of 

increased neurite growth. Motivated by the goal to translate the material developed in this 

thesis to augment a commercially available NGC conduit for enhanced PNI repair, Kehoe et 

al. (2012) provides factors in the PNI microenvironment that substantiates it as an 

advantageous model for “first application” in the clinic: 

(i) clearly defined cell phenotypes, physiology, and tissue structure with well-

documented inherent regenerative capacity  

(ii) literature- and evidence-based in vitro and in vivo models  

(iii) opportunity for new treatment methods due to clear, unmet clinical need for long 

gap nerve repair (>30 mm)(Mokarram et al., 2017) 

(iv) defined regulatory pathway and reimbursement procedures 

The barriers identified in clinical translation of an electroactive materials-based strategy 

 for long-gap peripheral nerve repair include: 

(i) lack of a clearly defined target molecular mechanism for electrical signal input 
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(ii) disagreement and inconsistency in the literature for electrical stimulus parameters, 

including the strength and applied duration of DC, AC, pulsatile electrical signals. Moreover, 

cell response varies according to the properties of a time-dependent signal such as frequency, 

duty cycle, pulse train parameters. 

 Main design criteria were to demonstrate the ability to transfer electrical conduction 

to ionic conduction while maintaining topographical and mechanical properties relevant to the 

peripheral nerve microenvironment. Physical guidance of regenerating axons can be achieved 

by aligned fibers of nanoscale diameter. The ideal mechanical and electrical properties would 

be to match native peripheral nerve tissue.  The Young’s moduli of acellular rat sciatic nerves 

were measured to be approximately between 0.5 MPa – 1 MPa during studies investigating 

acellular nerve tissue as a potential autograft substitute (Borschel et al., 2003).  

 Our electrical conductivity target for our composite HA-CNT nanofibrous substrate was 

10,000 Ohm/cm2, the resistance of a typical patch of passive membrane.(Donnelly, 1994; 

Gutkin et al., 2003) The actual resistance of any given passive neuron could be estimated by 

its area and modeling it as a simple RC-circuit; for example, in the  simple case of a sphere 

with an area of 20 microns, the membrane resistance for the cell is close to 200 MOhms 

(Gutkin et al., 2003). The purpose of our material is to initiate a functional response from the 

cell by causing local membrane potential change in the cell membrane when an electrical 

stimulus is passed through the substrate. Measuring the electrical impedance of a monopolar 

and dipolar electrode inserted into pork submersed in a cerebrospinal fluid substitute resulted 

in the ability to differentiate nerve tissue (6 kOhms) from other tissues along the distance of 

the probe (Sharp et al., 2017). Elsewhere desirable electroactive material properties have 

been described to be mimic “tissue as a liquid” such that the material interface function can 

transition between solid and wet as an ion permeable network (Cui et al., 2001; Richardson-

Burns et al., 2007). Material properties describing electrical properties in an electrolyte 

solution can be characterized using electrochemical techniques (Liu et al., 2011). Conductivity 

can be measured through electrical impedance spectroscopy and capacitance can be qualified 
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through cyclic voltammetry (Cui et al., 2001). The goal is for the scaffold to allow for delivery 

of 200 μA and an electric field on the order of 15 μV/mm based from a study that observed 

similar directed neurite outgrowth from 1k Hz AC and DC stimuli of these voltage and 

amperage magnitudes (Graves et al., 2011).  

Predicted Challenges 

 The main challenge in observing cell-matrix responses to electrical stimulation passed 

through the substrate is to convert electron conductivity from metallic electrodes to ionic 

conductivity in the electrolyte without inducing a confounding factor of current passing 

through the media. A sophisticated review of the role of bioelectricity in embryogenesis and 

wound repair describes traditional experimental methods like the use of salt bridges (McCaig 

et al., 2005). Using these concepts as a foundation along with designs (Durgam et al., 2010; 

Xia et al., 2007) published and validated for ES studies with sample replicates, we designed 

a reproductible and stable in vitro electrical stimulation chamber from common and readily 

available materials and equipment that allow for separating the power source from the culture 

medium. The long-term goal would be to test the composite material in animal model for 

nerve regeneration and thus considered techniques that would merge a rat sciatic nerve model 

(Daly et al., 2013). The electrical stimulus parameters of an oscillating charge-balanced AC 

waveform (Borgens, 2000) with 200 µA amplitude (Graves et al., 2011) square pulses at 20 

Hz for 1 h has been reported in a series of studies to enhance regeneration and reinnervation 

(Al-Majed et al., 2000a; Al-Majed et al., 2000b; Al-Majed et al., 2004; Brushart et al., 2005; 

Geremia et al., 2007; Vivo et al., 2008). Additionally, the primary mode of conduction in the 

salt bridge technique is through the media which can be problematic when salt leeches from 

the bridges by Fickian diffusion causing an inhomogeneous culture medium. Our prediction is 

that electrical stimulation activates Voltage-Gated Calcium Channels in the cell membrane 

permitting calcium influx. Calcium, known as a second messenger, is a potent mediator of 

cellular pathways controlling cytoskeletal organization via the calcium/calmodulin signaling 

pathway (McCaig et al., 2002) as well as BDNF production in neurons (Wenjin et al., 2011; 
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Zheng et al., 2011) and release from Schwann cells (Luo et al., 

2014). Thus, it is important to maintain a homogenous culture 

medium with known quantities of each ionic component (Meng 

S, 2011). 

Proposed Solution 

The critical barrier currently in the field of nerve 

regeneration is that no approach achieves complete functional 

recovery or accelerates nerve regeneration enough to avoid 

target muscle loss. The current project seeks to implement 

neural tissue engineering therapies to overcome these barriers 

by accelerating regrowth and improving axonal targeting 

through electrical and topographical cues delivered by a conductive biopolymer composite 

scaffold. The strategy of this study proposes to achieve a conductive biopolymer composite 

by incorporating carboxylated multi-walled carbon nanotubes (COOH-MWCNTs) as the 

conductive constituents into a hyaluronic acid (HA) based nanofibrous scaffold (HA-CNT). It 

is hypothesized that scaffold conductance is achieved via charge hopping from one MWCNT 

to the next, similar to electrical conductance achieved in thin polymer films containing carbon 

nanotubes (CNTs) (Liu et al., 2009). HA, one of the primary components of neural tissue 

extracellular matrix, is a naturally derived biocompatible biopolymer that is biodegradable, 

promotes cell attachment, and possesses the capability to be biochemically modified to fine 

tune stiffness and degradation properties (Prestwich et al., 1998; Suri and Schmidt, 2010). 

MWCNTs synthesized by chemical vapor deposition comprise multiple sheets of 

graphene rolled into cylindrical nanostructures nesting within one another (Figure 1-3) 

(Balasubramanian and Burghard, 2005; Sung et al., 2004). Due to the innate electrical and 

mechanical properties of MWCNTs based on their chemical stability and electronic structure, 

incorporating MWCNTs within a polymer composite improves electrical conductivity and 

mechanical strength compared to the pristine polymer (Sung et al., 2004). CNT size, shape, 

 
Figure 1-3. Illustration 

of Multi-Walled Carbon 

Nanotubes (MWCNTs). 

MWCNTs are comprised 

of concentric graphene 

tubes (Balasubramanian 

and Burghard, 2005). 



14 

 

functionalization, and concentration have been characterized as influential factors in affecting 

cytotoxicity and biocompatibility on a cell type dependent basis (Hopley et al., 2014). Carbon 

nanotube, carbon nanofiber, and graphene film substrates have been cultured with neurons, 

Schwann cells, microglia and astrocytes to investigate cellular response. Functionalizing 

carbon nanotubes with carboxyl groups improves hydrophilicity and supports neuronal growth 

evidenced by neurite length, number, and branching (Balasubramanian and Burghard, 2005; 

Hu et al., 2004). Electrically stimulated CNT rope structures induced differentiation of neural 

stem cells and increased neurite outgrowth (Huang et al., 2012). Schwann cells cultured on 

carbon nanofibers displayed statistically similar viability, proliferation, and intracellular levels 

of reactive oxygen species (ROS) compared to SCs cultured on tissue culture plastic (Jain et 

al., 2013). Astrocytes cultured on CNT-PEG films and microglia cultured on 2D graphene did 

not exhibit significant evidence of inflammation (Gottipati et al., 2014; Song et al., 2014). 

Although previous efforts have combined CNTs with synthetic materials such as poly 

(L-lactic-acid-co-caprolactone) (PLCL) and poly(methyl methacrylate) (PMMA) to achieve 

conductivity, (Jin et al., 2011b; Sung et al., 2004) directing cell behavior by electrical 

stimulation cues through these composite materials has not been investigated. The 

PMMA/CNT composite study by Sung demonstrated the feasibility of electrospinning CNTs 

within a polymer; however, the low conductivity (~10-10 S/cm) regardless of CNT 

concentration made the mechanically stronger composite ill-suited for its intended application 

for battery electrodes or electronic devices (Sung et al., 2004). In the study using CNT-coated 

PLCL fibers, PC-12 neuron-like cells expressed the focal adhesion kinase, FAK, at significantly 

higher levels in comparison to PLCL controls (Jin et al., 2011b). The Jin group attributed the 

observed increases in neurite length to the increased FAK expression for its role in integrin-

mediated signal transduction (Jin et al., 2011b). Yu et al. (2014) incorporated MWCNTs into 

electrospun collagen/PCL nanofibers to form nerve guide conduits to study treatment efficacy 

as well as the biocompatibility and toxicology of MWCNTs in an in vivo rat sciatic nerve injury 

model.  The Yu study demonstrated the MWCNT-Col/PCL composite did not elicit infection, 
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rejection, or toxicity. Cho et. al. fabricated a 

conductive composite by combining collagen and 

5% w/w CNTs to achieve a resistivity of 105 Ωcm; 

while PC-12 neuronal-like cells maintained good 

viability, DC electrical stimulation with 100 mV for 

6 h did not produce significantly enhanced neurite 

outgrowth (Cho and Borgens, 2010). A few studies 

have described incorporating MWCNTs into 

hydrogels whether to increase mechanical strength 

or to enhance electrical conductivity. One of the 

few studies to investigate CNT/HA composites 

combined carboxylated single-walled CNTs into HA 

hydrogels to enhance mechanical properties 

(Bhattacharyya et al., 2008b). The researchers attributed a 300% increase in storage 

modulus to CNT networks that formed between the hydrogel cross-linker divinyl sulfone (DVS) 

and the hydroxyl groups on the carboxylated CNTs (Bhattacharyya et al., 2008b). The 

rheological properties of the CNT/HA solution were unaffected without the addition of DVS 

highlighting the contribution of the cross-linking method on mechanical properties 

(Bhattacharyya et al., 2008b). Luo et al. (2010) fabricated poly(methacrylic acid) (PMAA) and 

MWCNT composite hydrogels with improved compressive strength, swelling, and 

cytocompatibility compared to pure PMAA hydrogels. Arslantunali et al. (2014) incorporated 

MWCNTs into poly(2-hydroyethyl methacrylate) (pHEMA) hydrogels to improve electrical 

conductivity to 8x10-2 Ω-1.cm-1, an improvement over 10-fold relative to native pHEMA 

hydrogels. Neuroblastoma viability was improved in cultures grown on pHEMA/MWCNT 

composite compared to pHEMA hydrogels following 10 minutes of 1 or 2V electrical stimulation 

every hour for 12 hours (Arslantunali et al., 2014). The combined results of these studies 

 
Figure 1-4. TEM micrograph of a 

MWCNT-PMMA nanofiber. 

 

Example of literature precedence for 

electrospinning MWCNTs within 

electrospun polymer nanofibers, in 

this case PMMA. Scale bar = 100 nm.  

(Sung et al., 2004)  
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establish the potential for MWCNT polymer composites to support and improve neuronal 

growth for regenerative applications when using optimized electrical stimulation parameters.  

The proposed study is the first to incorporate COOH-MWCNTs within a methacrylated 

hyaluronic acid nanofibrous composite as a means to deliver electrical stimulation to 

manipulate cell behavior. The proposed material is the first to combine MWCNTs and 

hyaluronic acid in the effort to achieve a degradable, conductive, nanofibrous biopolymer 

scaffold. It is hypothesized that aligning MWCNTs within aligned nanofibers will provide a 

directed electrical signal cue. Several groups have demonstrated the feasibility of aligning 

MWCNTs within nanofibers by electrospinning using PMMA and PLGA (Figure 1-4) (Sung et 

al., 2004; Zhang, 2011). Most research studies found during our literature investigation about 

electrically mediated neural regeneration uses DC stimulation reported in V/mm across the 

culture area. This type of stimulation would result in an electrical field gradient as the voltage 

drops across any material, especially in a resistive polymer scaffold. To avoid this issue, this 

study proposes to use an alternating current (AC) to deliver electrical stimulation. Graves 

demonstrated that average neurite length of Xenopus neurons were statistically similar for 

AC- and DC-stimulated cells with preferential growth towards the cathode (Graves et al., 

2011). 

The advantage of using the proposed material is that the CNTs serve as the conductive 

constituent within the biopolymer HA that can adjust stiffness through crosslinking and to be 

modified with bioactive molecules through Michael addition reactions. Electrical conductance 

can be tuned by varying the concentration of CNTs (Liu et al., 2009). It is hypothesized that 

scaffold conductance is achieved via charge hopping of electrons trapped in the CNTs; a 

biomaterial for tissue engineering is the first application of its kind for this phenomenon which 

also has been observed with molecular wires and disordered semiconductors (Ambegaokar et 

al., 1971; Berlin et al., 2003). The proposed HA-CNT degradable material boasts the ability 

to deliver topographical, mechanical, and electrical cues to enhance and accelerate tissue 

regeneration. 
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Rationale, Hypothesis, and Specific Aims 

Rationale 

 Delivery of electrical stimulation through the proposed conductive HA-CNT material 

will be investigated using two scaffold types, nanofibers and hydrogels. The conductive, 

aligned HA-CNT nanofibers could support robust neurite outgrowth by providing the 

topographical benefits of mimicking native extracellular matrix in size and structure and the 

ability to deliver an electrical cue to direct outgrowth in comparison to the hydrogels. 

Functionalizing pristine MWCNTs with carboxylic acid groups will facilitate dispersion (Ding et 

al., 2014) of the MWCNTs in the aqueous hyaluronic acid polymer solution, allowing for 

homogenous distribution of MWCNTs within the resulting nanofibrous or hydrogel constructs. 

Aligned HA-CNT nanofibers will be fabricated by electrospinning. The nanotopography of the 

fibers mimic the extracellular matrix while the fiber alignment has been previously 

demonstrated to direct and guide neurite growth (Chow et al., 2007; Corey et al., 2007; Patel 

et al., 2007; Schnell et al., 2007). Electrical and topographical cues have been shown to 

synergistically increase and direct neurite growth on a PPy nanofibrous scaffold (Xie et al., 

2009b). Hyaluronic acid based hydrogels have been demonstrated to improve motor neuron 

survival as well as sensory neurite outgrowth both in vitro and in vivo (Jin et al., 2013; Schizas 

et al., 2014). Electrical stimulation has not only improved neuron growth but has also been 

shown to influence glial cell behavior by increasing Schwann cell secretion of nerve growth 

factor. Exposure of glial cells to carbon nanotube substrates have demonstrated a reduction 

in inflammation. Culture of astrocytes on carbon nanotube films reduced astrocyte activation 

indicated by a decrease in GFAP expression (Gottipati et al., 2014). Electrical stimulation 

through a HA-CNT based scaffold is a promising modality by not only directing neuron growth 

but also enhancing support cell activity. 

Central Hypothesis 

The driving hypothesis in this thesis is that electrical stimulation cues can be delivered 

through aligned hyaluronic acid-carbon nanotube (HA-CNT) nanofibrous scaffolds to control 



18 

 

nerve growth by increasing neurite length, viability, and production and delivery of 

neurotrophins. 

To test this hypothesis, a series of specific questions were investigated to 

systematically determine (1) optimal material components and properties and (2) electrical 

stimulus parameters that would provide experimental evidence that electrical cues via a 

material-based repair strategy can activate regenerative cell behavior. 

Specific Aims and Hypotheses 

Three specific aims were developed to investigate these research questions. 

Specific Aim 1 

SA1: To fabricate and characterize material properties of hyaluronic acid carbon 

nanotube (HA-CNT) composite nanofibrous scaffolds. 

We hypothesize that carbon nanotubes embedded within HA nanofibers by the 

electrospinning technique will result in increased electroactivity as measured by electrical 

impedance and cyclic voltammetry. 

We hypothesize that composite nanofibers will meet mechanical and topographical 

design criteria for the peripheral nerve environment. 

Specific Aim 2 

SA2:  To characterize in vitro cell responses to HA-CNT nanofibrous scaffolds  

We hypothesize that HA-CNT based scaffolds will not induce cytotoxicity assessed by 

an in vitro L929 fibroblast model. 

We hypothesize that in the absence of electrical stimulation, attachment assays using 

an in vitro dissociated dorsal root ganglia model will establish that neurite outgrowth on HA-

CNT nanofibers will be no different than that observed on HA nanofibers. 

Specific Aim 3 

SA3:  To demonstrate an electrical stimulus can be delivered through HA-CNT 

nanofibers to increase and accelerate neuron growth as measured by neurite extension and 

neuron number. 
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We hypothesize that a stable electrical stimulation system will enable reproducible and 

repeatable experimental conditions to observe in vitro cell response to electrical stimuli 

delivered through a conductive nanofibrous biomaterial. 

We hypothesize electrical stimulation delivered through the HA-CNT nanofibrous scaffold 

will result in significantly greater neurite length in chick dissociated dorsal root ganglia 

neurons.  
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Chapter 2 : Fabrication and Material Characterization Of Conductive Hyaluronic 

Acid-Carbon Nanotube Nanofibers For Neural Tissue Engineering Applications 

 

Introduction 

 The field of bio-inspired electroactive materials is experiencing a resurgence for their 

potential in delivering electrical stimulation in neural tissue engineering and electroceutical 

medical device applications (Anderson et al., 2015; Fairfield, 2017; Steel and 

Sundararaghavan, 2016). Modulating neuronal activity via electrical stimuli has been 

successful in the clinical treatment of an array of neurological disorders (Fairfield, 2017). 

Historically, the most commonly known and successful neuromodulation device to sense, 

stimulate and suppress neurological activity is the cochlear implant. Deep brain and spinal 

stimulators are electrical devices used to treat medical disorders. These electroceutical 

devices have been developed for the clinical treatment of Parkinson’s disease, epilepsy, 

depression, pain and incontinence (Fairfield, 2017). However, there remain outstanding 

concerns surrounding the long-term safety and efficacy of electroactive biomaterials due to a 

lack of clarity in the molecular pathways responsible for observed cell behavior. In an ideal, 

simplified system based on circuit logic, a defined input of an electrical stimulus is delivered 

to the cell to initiate predictable outputs. Depending on the input, an output could encompass 

the resulting action from cascades initiated by cell-matrix and/or cell-cell signaling pathways. 

We sought to design a versatile electroactive nanofibrous biomaterial by building on existing 

knowledge at the interface of biology, chemistry, neuroscience, and electrical engineering. 

Robust and reproducible evidence of molecular mechanisms can be elucidated once a 

physiologically relevant extracellular matrix mimic (in terms of size scale, mechanics, and 

ionic conduction) is developed that is capable of interfacing with a metal electrode. 

 The focus of our study was to develop a biomaterial that incorporated electrical cues 

into existing peripheral nerve guide conduit approaches, while also maintaining modification 

potential for applications across other organ systems. Whether presented to the cell 

individually or in combination, topography, mechanics, and electrical properties can impact 
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neuron outgrowth and viability. Recognizing challenges facing other electrical stimulation 

modalities, such as the reduced signal-to-noise ratio and efficacy of chronic electrodes caused 

by the foreign body response to topography and mechanical mismatch, we sought to design 

an extracellular mimic in terms of topography and mechanics, while increasing material 

conductivity.  

 Main design criteria were to demonstrate the ability to transfer electrical conduction 

to ionic conduction while maintaining topographical and mechanical properties relevant to the 

peripheral nerve microenvironment. Physical guidance of regenerating axons can be achieved 

by aligned fibers of nanoscale diameter. The ideal mechanical and electrical properties would 

be to match native peripheral nerve tissue. The mechanical property benchmark for bulk 

Young’s Modulus is between 0.5 – 1 MPa, the stiffness native to the in vivo peripheral nerve 

environment. Rat sciatic nerve was measured to be approximately 500 kPa during studies 

comparing the effects of acellularization processing on nerve mechanical properties (Borschel 

et al., 2003). Local mechanical properties influence neuron function and regeneration. Dorsal 

root ganglion (DRG) neurons exhibited maximal outgrowth on substrates with a Young’s 

Modulus around ~1000 Pa (Koch, 2012). The Young’s Modulus of myelinated axons from 

murine sciatic nerves have been measured by atomic force microscopy force mapping to be 

between 100 – 300 kPa (Heredia et al., 2007). The electrical conductivity target for composite 

HA-CNT nanofibrous substrate was 10,000 Ohm/cm2, the resistance of a typical patch of 

passive membrane (Donnelly, 1994; Gutkin et al., 2003).  

 We hypothesized that we could achieve target topographical, mechanical, and 

electrical characteristics by embedding carbon nanotubes within electrospun hyaluronic acid 

nanofibers. One of the primary motivations of this strategy was to expand upon our previously 

well characterized nanofibrous platform comprised of hyaluronic acid nanofibers electrospun 

out of an aqueous solution (Sundararaghavan and Burdick, 2011; Whitehead et al., 2018; 

Wrobel 2017). Not only do aqueous formulations eliminate the need to use organic solvents, 

but also are more conducive to maintaining bioactivity of molecules if the adoption of a 
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chemical cue is desired. Carboxylated multi-walled carbon nanotubes (CNTs) were chosen to 

serve as the conductive constituent of the composite based on their excellent electrical 

properties and minimal toxicological issues due to favorable chemical functionalization and an 

aspect ratio of 1000 (Kim, 2011). We utilized methacrylated hyaluronic acid (MeHA) for its 

tunable properties - stiffness and degradation rates can be adjusted through 

photocrosslinking, and covalent immobilization of bioactive molecules. Electrical conductance 

can be tuned by varying the concentration and dispersion of CNTs (Liu et al., 2009). The 

hyaluronic acid-carbon nanotube (HA-CNT) composite boasts the ability to deliver electrical, 

mechanical, and topographical cues to enhance and accelerate tissue regeneration. 

 To complete Aim 1, hyaluronic acid-carbon nanotube (HA-CNT) composite nanofibrous 

scaffolds were fabricated and material properties were characterized for concentrations of 

0.01%, 0.02%, 0.03%, 0.5%, and 1% w/w CNT to HA polymer solution. We hypothesized 

that carbon nanotubes embedded within HA nanofibers by the electrospinning technique 

would result in increased electroactivity as measured by electrical impedance and cyclic 

voltammetry. We hypothesized that composite nanofibers will meet mechanical and 

topographical design criteria for the peripheral nerve environment. 

Experimental Methods 

Methacrylated Hyaluronic Acid Synthesis 

 Methacrylated hyaluronic acid (MeHA) was synthesized as previously described such 

that 60% of the HA hydroxyl groups will be modified with methacrylate groups (Marklein and 

Burdick, 2010; Smeds and Grinstaff, 2001). Briefly, a 1 wt% solution of sodium hyaluronate 

(HA, 66 kDA, ECM Science, Detroit, MI) in DI H2O will be reacted with methacrylic anhydride 

(2.22 mL per gram of HA, Sigma), adjusted to pH 8 with 5N NaOH, on ice for ~24 hours. The 

resulting macromer solution will be purified by dialysis against water for 48 hours and 

lyophilized to recover the final product.  
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Scaffold Fabrication 

 Nanofibrous scaffolds were fabricated using an electrospinning technique previously 

described (Whitehead, 2017; Wrobel 2017). Briefly, HA nanofibers were electrospun onto 12-

mm diameter cover glass adhered to a rotating mandrel from an aqueous solution, ejected 

from a blunt 18G needle, containing 2% methacrylated hyaluronic acid (HA), 2% polyethylene 

oxide (PEO, 900kDa), and 0.05% I2959 photo-initiator for controls (HA). Variations in 

formulation and methods for HA-CNT nanofibers are denoted as “Generation 1,” “Generation 

2,” and “Generation 3.” Nanofibrous scaffolds were cross-linked under a long wave UV light 

for 30 minutes and stored in a desiccator cabinet until use. 

 We performed an optimization of our HA-CNT electrospinning formulation to achieve 

aligned composite nanofibers by electrospinning. This optimization was achieved by 

implementing an iterative design and revision approach to achieve target material 

characteristics. 

Generation 1 HA-CNT Fabrication 

MWCNT Functionalization  

 Pristine MWCNTs were fabricated by members of Dr. Ming-Cheng Cheng’s laboratory 

using the Wayne State University nanofabrication facility and the Chemical Vapor Deposition 

technique. MWCNTs were functionalized with carboxylic acid groups to render them 

hydrophilic to facilitate homogeneous dispersion in the HA polymer solution during scaffold 

fabrication. Carboxylic acid groups form on the surface of MWCNTs by acid surface treatment 

due to the free oxygen atoms released by strong acids reacting with unstable carbon atoms 

(Kar and Choudhury, 2013). To prepare COOH-MWCNTs, pristine MWCNTs were suspended 

in a 3:1 v/v mixture of concentrated H2SO4 and HNO3, sonicated in a water bath for 2 hours, 

then refluxed at 90°C for 18 hours while stirring. The COOH-MWCNTs and acid mixture were 

diluted in deionized (DI) water, neutralized to pH 7.4 using NaOH, and centrifuged at 5000 

rpm for 45 minutes. The MWCNTs were resuspended in DI water then dialyzed for 48 hours 

using a 12-14 kDa MWCO membrane to remove salts. Water was removed via lyophilization.  
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 HA-CNT electrospinning solution containing 1% (w/w) CNT was electrospun onto a 

mandrel rotating at 10 m/s to obtain randomly oriented nanofibers or at 18 m/s to obtain 

aligned nanofibers. Electrospinning solution was ejected at a flow rate of 150 µ/h. 

Generation 2 HA-CNT Fabrication 

 Generation 2 scaffolds were fabricated with the formulation described above with the 

several optimized parameters. Carboxylated multi-walled carbon nanotubes were sourced 

from an external supplier (Cheaptubes.com), with similar specifications to the in-house 

fabricated CNTs used in Generation 1 (20-30 nm diameter, 20-30 µm length).  HA-CNT 

electrospinning solution containing 0.5% (w/w) CNT was dispersed within an aqueous solution 

containing 1% bovine serum albumin (BSA) in 0.85% physiological saline (1% BSA saline) 

and sonicated for 10 minutes using a standard ultrasonic cleaner bath (35kHz, 48W, VWR) 

adapting a technique reported in 2011 in Archives in Toxicology (Kim, 2011). CNT dispersion 

was suspended to form a working electrospinning solution with final concentrations (w/w) 2% 

HA, 2% PEO and 0.05% I2959 photo-initiator. Generation 2 formulation was electrospun onto 

a mandrel rotating at 18 m/s and using a flow rate of 900 µl/h resulting in aligned nanofibers. 

Generation 3 HA-CNT Fabrication 

 COOH-MWCNTs (Cheaptubes.com, 20-30 nm diameter, 20-30 μm length) were 

dispersed in 1% BSA physiological saline using a bath sonicator (40 kW) at a concentration 

of either 0.01% w/w, 0.02% w/w, or 0.3% w/w. Hyaluronic acid (40 kDa, ECM Science, 

Detroit, MI) was dissolved in deionized water and methacrylated to approximately 30% 

methacrylation by adding methacrylic anhydride (Sigma) dropwise while maintaining a basic 

pH using NaOH. Nanofibers were electrospun at 24kV ejected at a 1.7 ml/hr flow rate from 

an 18G blunt needle at an 11 cm distance onto a rotating mandrel (21.25 m/s) using an 

aqueous mixture of the dispersed CNT solution (1/3 v/v), 2% w/w MeHA, and 2% w/w PEO. 

Control hyaluronic acid nanofibers were electrospun using the same formulation but with 

deionized water in place of the CNT dispersion solution. 
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Material Characterization 

Generation 1 HA-CNT 

Chemical Functionalization Characterization 

 Successful functionalization of MWCNTs with carboxylic acid groups was confirmed by 

Fourier transform IR-attenuated total reflectance (FTIR-ATR) spectroscopy. Spectra were 

collected in a frequency range between 400 and 4000 cm-1 under nitrogen with a spectral 

resolution of 4 cm-1 and averaged over 75 scans for pristine carbon nanotubes, carboxylated 

carbon nanotubes, HA nanofibers, and HA-CNT nanofibers using a Nicolet 8700 FT-IR 

(ThermoFisher Scientific, Waltham, MA). The autobaseline function was used within the 

SpectraMax software following spectra acquisition. 

Topographical Characterization 

 Scanning electron microscopy (SEM) and scanning transmission electron microscopy 

(TEM) was performed on HA and CNT-HA nanofibers electrospun onto either glass coverslips 

and Au-sputter coated or onto copper TEM sample grids. 

Electrical Characterization 

 A four-point probe instrument was used to measure scaffold conductivity. The probes 

were connected to the material surface through silver paste point contacts patterned on the 

material surface. A known current was passed through the two outer probes (referred to as 

source and drain) while voltage was measured through the two inner probes to calculate 

resistance using Ohm’s Law. 

Generation 2 HA-CNT 

Topographical Characterization 

 Scanning electron microscopy (SEM) and scanning transmission electron microscopy 

(TEM) was performed on HA and CNT-HA nanofibers electrospun onto either glass coverslips 

and Au-sputter coated or onto copper TEM sample grids. 
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Electrical Characterization 

 A 3-electrode cell was employed for electrochemical impedance spectroscopy (EIS, HP 

4284 impedance analyzer) in phosphate buffered saline (PBS) at room temperature, where 

28.3 mm2 nanofibrous substrates served as the working electrode, platinum as the auxiliary 

electrode, and Ag/AgCl electrode as the reference. 

Generation 3 HA-CNT  

 Topographical and electrical characterization was performed on HA and 0.01%, 0.02%. 

and 0.3% HA-CNT nanofibers. Surface and mechanical characterization was performed only 

on HA and 0.01% HA-CNT nanofibers once it was determined that optimal topography and 

electrical parameters were achieved with the 0.01% HA-CNT electrospinning formulation. 

Topographical Characterization 

 Scanning electron microscopy (SEM) and scanning transmission electron microscopy 

(TEM) was performed on HA and CNT-HA nanofibers electrospun onto either glass coverslips 

and Au-sputter coated or onto copper TEM sample grids. 

Electrical Characterization 

 A 3-electrode cell was employed for electrochemical impedance spectroscopy (EIS, HP 

4284 impedance analyzer) and cyclic voltammetry (CV, Gamry PC4 potentiostat) in PBS at 

room temperature, where 28.3 mm2 nanofibrous substrates served as the working electrode, 

Pt as the auxiliary electrode, and Ag/AgCl electrode as the reference. CV data collected with 

a -0.8 to 0.8 V potential range and 50mV/s scan rate with 2 mV step. EIS applied a 10 mV 

AC signal in a frequency sweep from 0.20 Hz-150 kHz. EIS results are reported as impedance 

magnitude as obtained from the Gamry Analysis software. CV results were calculated as 

interfacial capacitance calculated by using a custom MatLAB script to integrate the area under 

the CV curve between the scan voltage limits then divided by the geometric area for specific 

capacitance.  
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Surface Characterization 

 Droplets of phosphate buffered saline (PBS, 6 µl) on the surface of the nanofibrous 

scaffolds were imaged from three locations on each of three nanofibrous samples of HA and 

HA-CNT to determine wettability by quantifying the droplet contact angle. One set of images 

were taken with the camera angle perpendicular to fiber alignment, a second set of images 

were taken with the camera angle parallel to fiber alignment. Contact angle images were 

acquired using a goniometer (SI-CAM2000) and analyzed using the Contact Angle ImageJ 

plug-in.  

Mechanical Characterization 

Bulk Mechanical Testing 

 Tensile properties of hydrated nanofibrous samples for both HA and HA-CNT (n = 5) 

were measured at a strain rate of 1% min-1 (10 cm gauge length, Instron 3342, 50N load 

cell). Prior to testing, scaffolds were immersed in PBS for 24 h then the gauge length, width 

and thickness of each sample was recorded. Instron Bluehill 3 software was used to record 

the stress-strain curves; raw data was analyzed in Microsoft Excel. The slope of the linear 

portion of the stress-strain curve was calculated to be the Young’s modulus; the maximum 

stress recorded for each curve was the ultimate stress. 

Local Modulus Mapping 

 Nanofibrous samples were immersed in PBS 24 h prior to imaging, then secured to 

double-sided tape in a 35mm culture dish and imaged using the Quantitative Nanomechanical 

Mapping (QNM) mode in fluid (PBS) using a Bruker Bioscope Catalyst Atomic Force Microscope 

(AFM). Prior to imaging the nanofibrous samples, the silicon nitride DNP-D cantilever (0.06 

N/m nominal spring constant, nominal spring constant 18kHz) was calibrated in air according 

to Bruker absolute calibration documentation using a series of standards (fused silica standard 

for deflection sensitivity, thermal tuning, then titanium roughness and 2.5 MPa PDMS 

standards for tip radius). To ensure deformation of the 2.5 MPa PDMS standard during tip 

radius calibration, a peak force setpoint of 8 nN was employed. Prior to imaging the 
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nanofibrous samples in fluid, the thermal tune was repeated for fluid condition. The PeakForce 

settings employed were 0.25 kHz PeakForce frequency and 1000 nm PeakForce amplitude 

with 1200 nm lift height.  

 Scans with the dimensions of 10 x 10 nm, 128x128 lines were acquired with PeakForce 

Capture enabled such that a force curve was acquired at each point. Using Nanoscope Analysis 

1.5, force curves were analyzed and fit to a Sneddon model to calculate Young’s Modulus, 

Young’s modulus (Oyen and Cook, 2009). 

Statistical Analysis 

 All data is reported as mean ± standard error. Microsoft Excel was used to calculate 

descriptive statistics. Microsoft Excel Data Analysis Add-in was employed for F-test and 

Student’s t-tests. For p value < 0.05 for the F-Test Two-Sample for Variances, the Student’s 

t test assuming unequal variances was applied; otherwise, the Student’s t test assuming equal 

variances was used. Statistical significance was accepted at α = 0.05. 

Results 

Generation 1 HA-CNT  

Chemical Functionalization Characterization 

 Successful functionalization of MWCNTs with carboxylic acid groups was confirmed by 

Fourier transform IR-attenuated total reflectance (FTIR-ATR) spectroscopy. The spectra in 

Figure 2-1 (A) reveals bands near 1600, 1356, and 1092 cm-1 which correspond to –COOH 

group stretching vibrations (Kar and Choudhury, 2013). The broad band around 3400 cm-1 

denotes the O-H stretching in the terminal carboxyl group (Kar and Choudhury, 2013). Due 

to the presence of carboxylic acid moieties in hyaluronic acid, it is difficult to distinguish 

differences between the COOH-CNT, HA, and CNT-HA samples. The bands at 936 and 1492 

cm-1 in Figure 2-1 (B) distinguish the methacrylate carbon double bonds in the HA and CNT-

HA nanofibers sample spectra. 
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Topographical Characterization  

 Scanning transmission electron microscopy (TEM) was performed on pristine MWCNTs 

and COOH-MWCNTs to qualitatively review morphology before and after acid treatment. 

Figure 2-2 provides visual evidence that there was no change in MWCNT morphology before 

and after –COOH functionalization, respectively. SEM was performed to observe nanofiber 

topography (Figure 2-3, random and Figure 2-4, aligned) and quantify nanotube and 

 

 
Figure 2-1. COOH-CNT Functionalization 

 

FTIR spectra of pristine CNTs and COOH-CNTs (A) and 

HA and Generation 1 CNT-HA nanofiber samples (B). 

A 

B 
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nanofiber morphology (Figure 2-3 panel D, Table 2-1). Generation 1 Results tabulated in Table 

2-1.  

Electrical Characterization  

 Dry 1% HA-CNT nanofibrous mats were measured using four-point probe. Scaffolds 

50 µm thick resulted in a sheet resistance of 34 MΩ. 

 
Figure 2-2. Transmission Electron Micrographs of MWCNTs and COOH-

MWCNTs. 

 

No visual differences observed between pristine MWCNTs (left) and MWCNTs 

functionalized with carboxylate groups using an acid treatment (right). 

 

Table 2-1. “Generation 1” Topographical Characterization. 
 

Mean diameter and alignment for CNTs, HA nanofibers, and 1% HA-CNT nanofibers 

Condition 
MeanDiameter 

(nm) 

Alignment      

(%) 

Number of fibers 

(n) 

Pristine CNTs 29.4 ± 7.4 n/a 100 

HA-CNT 104.4 ± 24.2 9.6 ± 1.3 135 

HA Control 130.0 ± 30.8 12.6 ± 4.6 135 
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Figure 2-3. Scanning Electron Micrographs of MWCNTs, HA and HA-CNT 

“Generation 1” Nanofiber Scaffolds. 

 

Scanning electron micrographs depict the topography of (A) pristine MWCNTs (B) 

HA nanofibers and (C) Generation 1 HA-CNT nanofibers with 1% CNT (w/w). (scale 

bar 1 μm) (D) Quantification of nanotube and nanofiber diameter confirms the 

average diameter of CNTs relative to HA and HA-CNT nanofibers are significantly 

smaller. The average diameter of HA and HA-CNT nanofibers are no different.  
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Figure 2-4. Scanning Electron Micrographs of “Generation 1” Aligned HA-

CNT Nanofibers. 

 

Increasing mandrel speed during electrospinning resulted in Generation 1 HA-CNT 

nanofibers with an aligned topography (scale bar 5 μm). 



33 

 

Generation 2 HA-CNT  

Topographical Characterization   

 Nanofiber topography was characterized by scanning electron and transmission 

electron microscopy (Figure 2-5). SEM images revealed smooth nanofiber topography 

between the HA and HA-CNT conditions. The 0.5% HA-CNT nanofibers display rough patches 

in several areas where the CNTs disrupt the nanofiber surface. In the TEM images, aligned 

bundles of CNTs are visualized within the HA nanofibers.  

 

 
Figure 2-5. Scanning Electron and Transmission Electron Micrographs of 

“Generation 2” Nanofibers. 

  

Top row: SEM micrographs of HA (left) and 0.5% HA-CNT (right).  

Bottom row: TEM micrograph of supplier sourced COOH-MWCNTs (left) and aligned 

CNT bundle within HA nanofiber (right). 
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Electrical Characterization 

Electrical impedance results from Generation 2 HA-CNT nanofibers (0.5%) is displayed in 

Figure 2-6. Impedance was observed to decrease with increasing frequency. 

Generation 3 HA-CNT 

Topographical and electrical characterization was performed on HA and 0.01%, 0.02%. 

and 0.3% HA-CNT nanofibers. Surface and mechanical characterization was performed only 

on HA and 0.01% HA-CNT nanofibers once it was determined that optimal topography and 

electrical parameters were achieved with the 0.01% HA-CNT electrospinning formulation. 

Topographical Characterization 

The 0.01% CNT dispersion resulted in nanofibers with a smooth uniform surface, 

visually no different than the HA control nanofibers. Conversely, SEM revealed rough bumps 

on the surface of the 0.02% and 0.3% CNT nanofibers (Figure 2-7). These bumps were 

measured to be on the same size scale (~120 nm) as the agglomerates that breached the 

surface of the nanofibers imaged by TEM (Figure 2-8). Although there was a difference in fiber 

diameter calculated from SEM measurements (n = 100 nanofibers) between HA (137.4±11.7 

 
Figure 2-6. “Generation 2” 0.5% HA-CNT Nanofiber Impedance. 

 

Impedance magnitude dropped slightly from 33 kOhms to 27.5 kOhms. 

Frequencies displayed are those relevant to the peripheral nervous 

system (20 Hz) and central nervous system (1 kHz). 
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nm) and 0.01% CNT (201.3±2.8), there was no statistical difference in between percent 

alignment. Our transmission electron micrographs are consistent with TEM images of PEO/CNT 

(Dror et al., 2003) and PCL/silk fibroin/CNT nanofibers (Wu et al., 2017) demonstrating CNTs 

embedded within the nanofiber and aligned along the fiber axis. In Figure 2-8, the CNTs 

visualized in Panel A can be seen dispersed as bundles within the nanofiber in Panel B. Figure 

2-8 panels C and D show that a poorly dispersed solution of CNT concentrations of 0.02% 

result in CNT aggregates protruding from the nanofiber surface. The protruding CNT 

aggregate in Figure 2-8 Panel C measures to be 129 nm in diameter parallel to the nanofiber 

axis. Measurements of rough features in 0.02% HA-CNT nanofibers like those in Figure 2-7 

are approximately 114 nm. 

 
Figure 2-7. Scanning Electron Micrographs of “Generation 3” HA-CNT 

Nanofibers. 

 

SEM micrographs of varying w/v concentrations of CNTs electrospun into HA 

nanofibers (scale bar = 1 µm). HA (upper left), 0.01% CNT (upper right), 0.02% 

CNT (bottom left) and 0.3% CNT (bottom right). 
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Three SEM micrographs (10,000 magnification) were analyzed to determine nanofiber 

diameter and alignment. A significant difference was found between fiber diameter but no 

significant alignment for HA and HA-CNT nanofibers (Table 2-3). HA nanofibers overall 

 
Figure 2-8. Transmission Electron Micrographs of “Generation 3” HA-CNT 

Nanofibers. 

 

TEM micrographs of (a) COOH-MWCNTs (scale bar = 100 nm, Cheaptubes.org), (b) 

0.01% HA-CNT nanofibers (scale bar = 20 nm). TEM micrographs in (c) and (d) are 

representative of nanofibers spun from formulations with higher concentrations of 

CNTs (scale bars = 100 nm). Nanofiber morphology at this size scale is consistent with 

the surface roughness observed in SEM at lower magnifications. TEM shows clear 

evidence of CNT agglomerates hanging out of the fiber. 
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exhibited a 75% alignment while the HA-CNT were measured to be 63%. Diameters were on 

the nanoscale with measurements of 137 ± 12 and 201 ± 38 for HA and HA-CNT, respectively. 

Electrical Characterization 

 HA and HA-CNT (0.01%, 0.02%, and 0.3%) HA-CNT nanofibers were characterized for 

their resistance to passing current (impedance) and ability to store charge (CV). Graphical 

results are depicted in Figure 2-9. EIS results indicate that the agglomerations present in the 

TEM/SEM images for the 0.02% and 0.3% CNT HA-composites increase the impedance of the 

nanofibers. The 0.01% HA-CNT composite indicates the lowest impedance across the 

frequency scan, while there is some overlap amongst the other groups at frequencies 100 Hz 

and lower. Relevant frequencies for the nervous system are 20 Hz (peripheral) and 100 Hz 

(central). Relative to HA, the 0.01% HA-CNT composite exhibits a modest decrease in 

impedance by a factor of 1.7 at 20 Hz and 1.2 at 1000 Hz. Analysis of the cyclic voltammetry 

data was performed to quantify relative specific capacitance values to HA using a method 

previously described (Yi et al., 2015). CV results reveal that the specific capacitance of the 

0.01% HA-CNT material doubles over HA (results tabulated in Table 2-2). Notably, the 

nanofibers fabricated from the 0.02% and 0.3% CNT dispersion solutions exhibited poor 

electrical properties as evidenced by increased impedance and decreased specific capacitance. 

CNT aggregation at higher concentrations decreased CSC and increased impedance compared 

to well-dispersed formulations. 

Table 2-2. “Generation 3” Electrical Characterization Summary. 
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Figure 2-9. Electrical Characterization of “Generation 3” Nanofibers. 

 

Electrochemical behavior of HA and HA-CNT (0.01%, 0.02%, 0.3%) nanofibers was 

characterized by impedance spectroscopy (top panel, impedance magnitude) and 

cyclic voltammetry (bottom panel). Impedance decreased by a factor of 1.7 at 20 

Hz and 1.2 at 1k Hz (top) and charge storage capacity (CSC) doubled in 0.01% CNT 

versus HA nanofibers (bottom). 
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Mechanical Characterization 

Bulk tensile testing 

 The Young’s modulus for bulk mechanical testing was not statistically different between 

HA and HA-CNT nanofibers (Table 2-3). The ultimate strength of the HA-CNT nanofibers was 

three times higher than the HA nanofibers. Typical stress-strain curves are shown in Figure 

2-10. 

Local Modulus Mapping 

 PeakForce QNM mode in fluid (Bruker Bioscope Catalyst) was utilized to measure local 

modulus values of hydrated HA and HA-CNT nanofibers. Absolute calibration of Bruker DNP-

D tips (nominal spring constant 0.06 N/m) was conducted using the Bruker Standard fused 

silica, titanium roughness, and 2.5 MPa PDMS samples to determine deflection sensitivity, tip 

half angle, and tip radius. Thermal tune was conducted in fluid prior to imaging nanofiber 

samples fully hydrated to equilibrium in PBS. Additional parameters were set with Poisson’s 

ratio as 0.30, PeakFrequency 250 Hz, PeakFroce amplitude 1000 nm, lift height 300 nm, Sync 

Distance QNM ~600 nm, and PeakForce setpoint at 2-4.25 nN. 

 
Figure 2-10. Tensile testing of hydrated “Generation 3” Nanofibers. 

 

There was no statistical difference in Young’s Modulus between HA and HA-CNT 

nanofibers; however, the Ultimate Strength of 0.01% HA-CNT nanofibers was 

approximately 3 times higher. 
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 The Young’s Modulus was calculated by applying the Sneddon model using first the 

Baseline Correction and then Indentation Analysis functions in the Bruker NanoScope Analysis 

1.5 software package. Figure 2-11 displays the average Young’s Modulus obtained from 

averaging 10 force curves obtained from N = 3 PeakForce Capture scans of HA and HA-CNT 

nanofiber samples (10 nm x 10 nm, such as those in Figure 2-11 panels E, F). Figure 2-12 

displays AFM QNM PeakForce Capture images hydrated HA nanofibers (panels A, C, E) and 

hydrated HA nanofibers (panels B, D, F). Mechanical characterization results are summarized 

in Table 2-3. 

 
Figure 2-11. Young’s Modulus from AFM Force Mapping of Nanofibers. 

 

HA-CNT nanofibers (0.01%) displayed a significantly higher mean local Young’s 

Modulus than HA nanofibers. 

Table 2-3. “Generation 3” Topographical and Mechanical Characterization 

Summary. 
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Figure 2-12. Quantitative Nanomechanical Mapping by Atomic Force Microscopy.   
 

Fluid Imaging of hydrated nanofibers immersed in PBS (A) Hyaluronic acid nanofibers 

displayed swelling behavior that decreased distinct nanoscale topography relative to the 

morphology of (B) HA-CNT nanofibers. (C, D) Height images and (E, F) Force Volume images 

of 10 x 10 nm scan of the nanofiber samples displayed in (A,B). Local modulus determined 

by scanning with a calibrated tip with PeakForce Capture enabled and applying the Sneddon 

Model to fit force-displacement curves. 
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Contact Angle 

The surface of HA-CNT nanofiber substrates was measured to be more hydrophilic in the 

direction perpendicular to nanofiber orientation using a surface contact angle method and 

goniometer. The droplet volume was 3 ul and experiments were conducted in an ambient 

environment. Contact angle was found to be higher for HA-CNT perpendicular to fiber 

orientation. There was no significant difference found when comparing the contact angle 

parallel to fiber orientation between HA and HA-CNT. Figure 2-13 provides representative 

sample images. 

 

Discussion 

The Generation 3 HA-CNT electrochemical characterization data taken in conjunction 

with the evidence of CNT agglomeration from SEM and TEM leads us to conclude that 

aggregated CNTs inhibit efficient electron flow. Highly aggregated and poorly dispersed CNTs 

throughout the nanofibers act as the equivalent of frayed wiring, effectively shorting out the 

ability of current to pass through the substrate. CNT agglomeration has been shown to 

decrease conductivity in composites with carbon nanofillers (J. et al., 2007; Sebastian et al., 

2018). Increases in interfacial area of nanostructured surfaces are known to decrease material 

impedance (Cui et al., 2001; Yi et al., 2015). The primary factor influencing the decrease in 

impedance observed with the HA-CNT nanofibers versus HA is the increased interfacial area 

that would arise from well-formed, lesser swollen nanofibers. We observed increased swelling 

in the HA substrates during AFM fluid imaging.  

Contact angle measurements indicate that the surface of the HA-CNT nanofibers may 

be more hydrophilic in the direction of the nanofiber alignment than the HA control nanofibers. 

Figure 2-13. Representative contact angle measurements for “Generation 3” HA and 

0.01% HA-CNT nanofibers. 
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FTIR spectra qualify the presence of COOH- groups in the multi-walled carbon nanotubes used 

in both our Generation 1 and Generation 2/Generation 3 HA-CNT nanofibers. The main 

difference between COOH-MWCNTs in Generation 1 HA-CNT and Generation 2/3 was carbon 

nanotube supplier. The MWCNTs reported in Generation 1 were generously supplied by Wayne 

State University (WSU) Electrical Engineering Professor Mark Ming-Cheng Cheng and 

fabricated by Wenwen Yi during her Ph.D research. Dr. Yi and Dr. Cheng collaborated with 

the WSU BME department to demonstrate the application of an aligned MWCNT electrode 

interface with parylene to rat peripheral nerve stimulation and recordings (Yi et al., 2015). 

Once initial Generation 1 HA-CNT nanofibrous scaffold assays provided confirmation for the 

potential of the composite to promote neuron regeneration, COOH-MWCNTs were obtained 

from a commercial supplier that matched specifications discussed previously in terms aspect 

ratio, chemical functionalization. FTIR confirms the presence of -COOH moieties relative to 

pristine MWCNTs and COOH-MWCNTs, both those functionalized in-house by EM Steel by the 

standard strong acid method as well as those supplied by Cheaptubes.com. The as-received 

COOH-MWCNTs were not be stable long-term in deionized water or PBS solution, thus 

necessitating further investigation on methods to achieve a stable dispersion. 

 Extensive experimental data in the literature provides evidence that aligned nanofibers 

provide physical guidance to the extending neurites of regenerating neurons, including a 

synergistic effect on neurite length upon introduction of an electrical cue (Jin et al., 2011a, 

b; Jin et al., 2013; Jin et al., 2016; Koppes et al., 2014b; Xie et al., 2009a). Here, we provide 

clear quantified data supporting the ability to fabricate hydrophilic carbon nanotubes enclosed 

within hyaluronic acid by the electrospinning method. Unique to our formulation is the ability 

to achieve these material properties using an aqueous fabrication formulation with an ultra-

low carbon nanotube weight percentage without the need for organic solvents. The differences 

in alignment as measured from dry samples imaged under vacuum are negligible under 

hydrated conditions. Observations with AFM height data (5 um scale) with HA-CNT versus (15 

µm scale) with HA to probe for distinguishing fiber characteristics provided qualitative 
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comparison that HA nanofiber topography is inconsistent and not reproducible upon reaching 

equilibrium swelling. Further, attempts to collect AFM height data at 5, 10, 15 µm scales 

provided insight as to the effect the swelling behavior had on sample stability. Locally, 

nanofibers were not stably fixed to the underlying glass substrate resulting from apparent 

unpredictable and uncontrolled substrate morphology. During in vitro cell culture 

experiments, the pronounced HA nanofiber swelling observed over different culture times 

(24h versus 72h) could potentially account for some of the differences seen in neurite 

extension parameters measured. While substrate swelling and degradation rate were material 

properties not explicitly characterized in this body of work, the two parameters have been 

shown historically in the literature to be interconnected. Increased water retention within the 

hyaluronic acid supramolecular polymer matrix provides increased opportunity for hydrolytic 

degradation mechanisms. Proteolytic degradation by hyaluronidase is required for full 

breakdown of the polymer; degree of methacrylation provides a mechanism to control 

degradation further. Most instructive from the characterization described here in our 

composite polymer system is the theory that the CNTs physically entangled with HA molecules 

acting serving as a filler not only for electrical conduction but also as a mediator of nanofiber 

topography by reducing the amount of water molecules that could infiltrate between 

polysaccharide side groups as reported extensively in the molecular modeling literature 

through the 1990s (Haxaire et al., 2000). 

 Reports in literature regarding difficulty in engaging with the surface of low modulus 

biomaterial substrates corroborate with our difficulty in measuring local modulus properties 

for collagen, HA hydrogels, and HA nanofibers (Ouasti et al., 2011). Ouasti, et. al. switched 

to performing nanoindentation in “hydrated” state versus fluid immersion. In this body of 

work, we offer a method to map the nanomechanical properties of hydrated biopolymer 

nanofibers using AFM QNM in Fluid. While it is possible to obtain this data, it is critical to 

consider sample preparation and fixation to prevent micromotion during imaging, load 

amplitude and frequency (PeakForce closed loop mode), ramp amplitude (deformation control 
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mode), ramp rate, cantilever calibration and characterization. However, differences in moduli 

by mode of data collection (local versus bulk) may indicate that HA on the nanoscale responds 

to load in more viscoelastic behavior while in the bulk material indicates that HA nanofibers 

behave more elastic. This behavior is opposite in the composite, where the CNT clusters 

physically inhibiting adjacent movement of water molecules and reducing number of water 

molecules intercalated throughout the matrix results in a more plastic deformation on the 

nanoscale while on the bulk scale, there is a viscoelastic toe-in region observed.  

 The limitations of the mechanical characterization experiments and this interpretation 

is that the bulk tensile testing was performed using a 50N load cell with a load cell sensitivity 

(0.05 N) that was being operated toward the lower range of its sensitivity due to the low 

modulus of the hydrated nanofiber mats. Bulk testing was performed with a 1% strain 

following a pre-loading scheme that employed a 0.01% strain rate 0.02 N trigger value as 

measured by the load transducer. The trigger value of 0.02 N (the predictable and 

reproducible lower limit just above the noise threshold of the force sensor). Future bulk testing 

experimentation under physiological conditions could be successful using a 5N load cell. The 

other option would be to electrospin nanofiber mats 2-3x thicker (7 and 10 ml thicknesses 

were investigated, with the 10 ml thicknesses being reported here). We opted to forego this 

line of testing in the present body of work due to the amount of MeHA that would be required 

to fabricate the samples relative to the perceived value of data acquired from such a study 

(cost to benefit assessment of materials).  

 Pioneering work using biomacromolecules such as hyaluronic acid to modify and 

control the microenvironment with various cues to influence cell function provides background 

into the rheological behavior of HA hydrogels. Electrospun HA nanofibers are essentially 

hydrogels in a controlled cylindrical fiber structure. Control of mechanical properties using 

varying degrees of methacrylation, either in traditionally casted hydrogels (Burdick et al., 

2005) or in nanofibrous mats (Sundararaghavan and Burdick, 2011). Mechanical property 

characterization techniques include measurement of rheological modulus (reduced modulus, 
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G*) (Burdick et al., 2005), moduli from nanoindentation (Ouasti et al., 2011) or AFM 

(Sundararaghavan and Burdick, 2011), or bulk tensile modulus (Whitehead 2017). Limitations 

to comparing our local modulus values to the existing biomaterials literature requires the 

assumption of the Poisson’s ratio; while we consulted the literature to arrive to this value, not 

all literature reports of mechanical data as measured by AFM enumerates the assumed 

Poisson’s ratio which further complicates comparison. The data reported here assumes a value 

of 0.3 for the Poisson’s ratio (Boudou et al., 2006; Fung, 1989; Lin, 2008; Mow et al., 1989) 

while elsewhere values from 0.45 - 0.5 are employed assuming a nearly incompressible 

material (Caliari and Burdick, 2016). A Poisson's ratio assumption can result in 10-20% 

difference in reported modulus. Seidlits et al reported spatial variations in local modulus over 

70 x 70 µm areas of methacrylated hyaluronic acid hydrogels, with an average of 7.2±0.03 

kPa (Poisson’s ratio not reported) (Seidlits et al., 2010).  A hyaline cartilage structural biology 

study studying the effects of staining on the mechanics of the hyaluronic acid rich extraceullar 

matrix used a Poisson’s ratio of 0.35. These two example studies are consistent with our 

reports in achieving spatial variation in Young’s Modulus. The hyaline cartilage study reported 

Young’s moduli of 265±53 kPa for pericellular matrix (PCM) and 636±123 kPa for 

interterritorial matrix (ITM). Compositionally, PCM is high in hyaluronic acid and Type VI 

collagen whereas ITM contains high amounts of aggrecan and Type II collagen as well as Type 

IX and Type XI collagens and keratan sulfate. Comparatively, native peripheral nerve 

extracellular matrix secreted by Schwann Cells is high in type IV collagen, laminin, and type 

V collagen (Rutka, 1988). High concentrations of hyaluronic acid associated with GAGs are 

located at the nodes of Ranvier suggesting a role in homeostatic functions (Rutka, 1988). 

Recently, hyaluronic acid has been implicated in modulating synaptic calcium channel activity 

(Kochlamazashvili et al., 2010a). Our HA-CNT biopolymer ECM mimic matches both the 

topography and mechanics necessary for promoting nerve regeneration, while also offering a 

functionally relevant biological and biochemical interface to regenerating neurons. 
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 Recently, catechol functionalized hyaluronic acid (HA-CA) hydrogels incorporated with 

0.5 % single-walled carbon nanotubes were reported to have an impedance of 1.94 c at 

frequencies below 10 Hz as well as an Elastic Modulus on the order of 1.2 kPa (Shin et al., 

2017). The HA-CA conjugate solution was reported to facilitate dispersion of SWCNTs whereas 

incorporation into traditional methacrylated hyaluronic acid (HA-ME) produced large 

agglomerates. Our dispersion technique using 1% BSA saline facilitated dispersion leading to 

successful nanofiber fabrication without CNT agglomeration for our 0.01% HA-CNT conditions 

using carboxylated carbon nanotubes. While Shin and colleagues achieved a lower impedance 

with their HA-CA CNT hydrogels, their CNT material was not functionalized. Carboxylation of 

CNTs can lead to lower conductivity, perhaps partially accounting for their 1.94 kΩ relative to 

our 10.3 kΩ impedance magnitude. The HA-CA CNT hydrogels also exhibited lower Elastic 

Modulus at ~1.2 kPa than our 1% HA-CNT nanofibers which were approximately 174 kPa. The 

lower conductivity and higher Elastic Modulus in our nanofibers may be a function of the 

nanofiber structure versus the bulk hydrogel structure.  

Polymeric network mesh and porosity, monomer size, and extent of cross-linking affect 

not just mechanics and degradation of the material but also diffusion of ions throughout the 

polymer network (Bhattacharyya et al., 2008a; Peppas et al., 2000). Seidlits reported 

fluorescent dye diffusion that supports the concept that diffusion of molecules through 

methacrylated hydrogels can differ dependent on structure. HA and HA-CNT polymeric 

networks could be assessed in the future by time lapse microcopy to capture the diffusion 

rates of DAPI or toluidine blue to measure differences in crosslinking density, porosity, and 

CNT entanglement within the polymeric network in terms of barrier to ion diffusion (Allen and 

Mao, 2004; Seidlits et al., 2010). Toluidine blue strongly binds to electronegative moieties 

and is used commonly in orthopaedic histomorphology studies to ascertain extracelullar 

matrix structure (Allen and Mao, 2004). Future investigation using simple methods to 

elucidate polymeric network and local electronegative side chain concentrations in turn may 
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provide functional insight into how current passes through HA and HA-CNT materials upon 

voltage application and thus activate voltage-gated ion channels.  

Conclusions 

 There are reports in the neuroscience literature successfully using conductive 

hyaluronic acid and carbon nanotube biomaterial composites to support neuronal growth, 

such as SWCNT-HA hydrogels (Shin et al., 2017; Thompson et al., 2009) and SWCNT-HA fiber 

microelectrodes (Lynam et al., 2009; Razal, 2008). These preceding reports of hyaluronic acid 

single-walled carbon nanotube composites exhibit higher conductivity than our SI converted 

conductivity of 68 mS/m, HA-SWCNT microfibers were measured to be 1.86E07 mS/m 

(Lynam et al., 2009) and 515 mS/m for HA-CA SWCNT hydrogels (Shin et al., 2017). 

Advantages of our HA-CNT material includes nanoscale topography, electrical conductivity, 

and <1 MPa Elastic Modulus while the Lynam HA-CNT microfibers exhibited 5-8 GPa and the 

Shin hydrogels require cell encapsulation to achieve a 3D environment. Further, we are the 

first to report incorporation of MWCNTs into nanoscale diameter hyaluronic acid fibers using 

an aqueous formulation solution and the electrospinning fabrication technique.  

Cumulatively considering the material characterization data, we have demonstrated 

the ability to fabricate conductive nanofibers by incorporating hydrophilic carbon nanotubes 

within aligned hyaluronic acid nanofibers with mechanical properties relevant to peripheral 

nerve (<1 MPa) and fiber diameters on the nanoscale even when fully hydrated to equilibrium. 

Electroactivity as assessed by electrical impedance and charge storage capacity is significantly 

enhanced with the addition of an ultra-low concentration of well-dispersed COOH-MWCNTs.  

Chapter 3 will explore the neuron cytocompatibility and fibroblast biocompatibility 

behavior observed when chick dorsal root ganglia are cultured on HA-CNT nanofibers in a 

series of attachment experiments on Generation 1, Generation 2, and Generation 3 scaffolds. 
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Chapter 3 : HA-CNT Nanofibrous Scaffolds Exhibit L-929 Fibroblast Biocompatibility 

and Support Neurite Outgrowth 

 
Introduction 

 One of the clinical challenges in implementing medical treatments involving carbon 

nanotubes are the toxicological concerns. Chapter 1 introduced systemic toxicological 

evaluations that identified influential characteristics of carbon nanotubes (CNT)s that 

determine cytotoxicity and biocompatibility on a cell type dependent basis (Ahn et al., 2015; 

Arora et al., 2015; Firme Iii and Bandaru, 2010). These factors include CNT size, shape, 

functionalization, concentration, and agglomeration. have been characterized as influential 

factors in affecting cytotoxicity and biocompatibility on a cell type dependent basis (Arora et 

al., 2015; Firme Iii and Bandaru, 2010; Hopley et al., 2014). Chapter 2 described in detail 

the material characterization techniques employed to quantify the topographical, mechanical 

and electrochemical properties of hyaluronic acid-carbon nanotube (HA-CNT) nanofibers 

fabricated from an optimized formulation of 2% methacrylated hyaluronic acid and 2% 

polyethylene oxide (900,000 Da). Electrochemical characterization qualified the HA-CNT 

0.02% and 0.3% wt. nanofibers as having higher impedance and lower charge storage 

capacity; these outcomes were attributed to the CNT agglomerations visualized in both 

tunneling and scanning electron microscopy. HA-CNT (0.01%) composite nanofibers were 

determined to have: (1) electrochemical properties of lower impedance and higher 

capacitance, (2) topographical properties of smooth nanofibers with reduced agglomeration, 

and (3) mechanical elastic modulus within the kPa range. 

 In Chapter 3, we will discuss the observations made during in vitro evaluation of HA-

CNT nanofibers fabricated from three different formulations, termed as “Generation 1,” 

“Generation 2,” and “Generation 3.” We provide evidence that 0.01% HA-CNT nanofibrous 

scaffolds are an appropriate material for a materials-based therapy for neural tissue 

engineering (NTE) through a series of in vitro cell characterization assays. The in vitro 

characterization methods described in this chapter are guided by the ASTM standard 
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“Standard Practice for Direct Contact Cell Culture Evaluation of Materials for Medical Devices,” 

also known as ASTM F813-07(2012). To translate a biomaterial to a specific biomedical 

application, it is necessary to follow guidelines like those outlined in ASTM F813 as a point of 

reference when determining whether a material is biocompatible.  

 First, we will present direct contact cell culture evaluation performed with 0.01% HA-

CNT nanofibers using the L-929 cell line (ATCC, gift from Professor Olivia Merkel, Ludwig-

Maximilians-Universität München). The L-929 cell line is well-characterized with demonstrated 

reproducibility for use in cytotoxicity testing as a first line evaluation for biomaterials which 

will have direct contact with cells and tissues in the body. Next, guided by ASTM F813, a 

second cell culture technique using a cell model relevant to the target tissue in which the 

material will be applied can demonstrate the compatibility of HA-CNT nanofibrous scaffolds to 

support neuron outgrowth. By establishing a reproducible in vitro neuron model relevant to 

the peripheral nervous system, we seek to demonstrate the cytocompatibility of HA-CNT 

nanofibers as a biomaterial for peripheral nerve regeneration. 

 Neuron behavior was evaluated by immunofluorescence analysis of cell morphology. 

Two significant outcomes result from the body of work presented in Chapter 3. First, we 

demonstrate a reproducible in vitro chick dorsal root ganglia (DRG) neuron model relevant to 

the peripheral nervous system. This in vitro neuron model protocol was optimized as we 

optimized the electrospinning formulation. We documented the advantages we observed from 

quantifying DRG single neuron morphology over DRG explant morphology. Secondly, we 

demonstrate the potential for HA-CNT nanofibers to be considered for the treatment of PNI 

as described in Chapter 1, by performing sequential assessment of proliferation of L-929 and 

cytocompatibility of dissociated DRG cultures on “Generation 3” HA-CNT. 

 To complete Aim 2, in vitro experiments were performed to determine 

cytocompatibility of L-929 fibroblasts and neurons behavior on HA-CNT nanofibers.
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Experimental Methods 

General Procedures 

Scaffold Fabrication 

 Nanofibrous scaffolds were fabricated using the electrospinning techniques outlined in 

Chapter 2. Briefly, HA nanofibers were electrospun onto 12-mm diameter cover glass adhered 

to a rotating mandrel from an aqueous solution, ejected from a blunt 18G needle, containing 

2% methacrylated hyaluronic acid (HA), 2% polyethylene oxide (PEO, 900kDa), and 0.05% 

I2959 photo-initiator for controls (HA). Variations in formulation and methods for HA-CNT 

nanofibers denoted as “Generation 1,” “Generation 2,” and “Generation 3” are discussed in 

detail in Chapter 2 and will be introduced briefly to provide context about the differences of 

CNT percent weight content. Nanofibrous scaffolds were cross-linked under a long wave UV 

light for 30 minutes and stored in a desiccator cabinet until use. For in vitro experiments, 

cover slips were transferred to a sterile cell culture plate under aseptic conditions and 

sterilized under long-wave UV for 20 minutes. Nanofibrous scaffolds were rinsed at least 3 

times with sterile 1X PBS pH 7.4 prior to onset of culture experiments to remove PEO and 

allow MeHA to reach hydrated equilibrium (Burdick et al., 2005). 

Chick Dorsal Root Ganglia Neuron Cell Culture 

 Dorsal root ganglia (DRG) were dissected from E9-E13 chick embryos. Eggs were 

incubated at 37 °C and ~60% humidity until dissection day. The egg plate was broken with 

EtOH sterilized forceps and the embryo was removed. The embryo head, internal organs, and 

skin were removed prior to plucking DRGs from the vertebral column with fine forceps. DRGs 

were transferred to ice cold HBSS until time of seeding for no more than 2 hours.
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“Generation 1” HA-CNT in vitro Neuron Attachment 

 Generation 1 scaffolds were fabricated with the formulation described above. 

Carboxylated multi-walled carbon nanotube source was produced in-house as described in 

Chapter 2, briefly pristine multi-walled carbon nanotubes were fabricated using chemical 

vapor deposition onto a silicon wafer, released, and underwent a strong acid treatment to 

remove iron oxide catalyst impurities and functionalize with –COOH groups following an 

established method optimized for our application (Kar and Choudhury, 2013). HA-CNT 

electrospinning solution containing 1% (w/w) CNT was electrospun onto a mandrel rotating 

at 10 m/s flow rate of 150 µ/h resulting in randomly oriented nanofibers. All other handling 

and standard culture techniques were the same as previously described. 

 A single intact DRG was dissected as described under the general procedures from E9-

E11 embryos, then seeded in the center of each scaffold and allowed to adhere for up to 16 

hours. The scaffold and DRG containing wells were then gently flooded with serum free media 

(SFM) composed of 1:1 v/v DMEM/Hams F-12 (Sigma), 2 mM L-glutamine, 50 U/mL 

penicillin/streptomycin (P/S, Sigma), 0.6% B27 supplement (Lonza, Allendale, NJ) and 50 

ng/mL nerve growth factor (NGF, R&D systems, Minneapolis, MN) and cultured for 48h at 

37°C at 5% CO2. 

 The FITC and DAPI channels were separated and then processed using a custom 

MatLab script which determined an automatic threshold from greyscale images, converted to 

binary, and summed pixels to quantify area. To measure relative growth, the FITC area was 

divided by the DAPI area to normalize for DRG body size. The major and minor axes of an 

ellipse fit to the peripheral DRG neurite area was used calculate aspect ratio, which is equal 

to the major axis divided by the minor axis. 

“Generation 2” HA-CNT in vitro Neuron Attachment 

 Generation 2 scaffolds were fabricated with the formulation described above with the 

several optimized parameters. Carboxylated multi-walled carbon nanotubes were sourced 

from an external supplier (Cheaptubes.com), with similar specifications to the in-house 
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fabricated CNTs used in Generation 1 (20-30 nm diameter, 20-30 µm length).  HA-CNT 

electrospinning solution containing 0.5% (w/w) CNT was dispersed within an aqueous solution 

containing 1% bovine serum albumin (BSA) in 0.85% physiological saline (1% BSA saline) 

and sonicated for 10 minutes using a standard ultrasonic cleaner bath (35kHz, 48W, VWR) 

adapting a technique reported in 2011 in Archives in Toxicology(Kim, 2011). CNT dispersion 

was suspended to form a working electrospinning solution with final (w/w) 2% HA, 2% PEO 

and 0.05% I2959 photo-initiator. Generation 2 formulation was electrospun onto a mandrel 

rotating at 18 m/s and using a flow rate of 900 µl/h resulting in aligned nanofibers. All other 

handling and standard culture techniques were the same as previously described. 

 A single cell suspension of dissociated DRGs from intact DRGs dissected from E11 eggs 

were transferred from ice cold HBSS to 0.25% trypsin in a 15-ml conical tube and incubated 

at 37°C for 5 minutes followed by vortexing at maximum speed for 30 seconds. The tube was 

incubated at 37°C for 5 more minutes and vortexing was repeated. Trypsin was inactivated 

by adding 2 ml of DMEM with 10% FBS. The cell suspension was centrifuged for 3 minutes at 

2000 rpm to isolate the cell pellet. The supernatant was discarded, and the pellet was 

triturated in 2 mL SFM. Dissociated neurons were counted using a hemacytometer and plated 

at a density of 6000-8000 cells/cm.2 Cells were cultured under standard conditions for 48h.  

 At end of culture period, samples were gently rinsed with warmed 1X PBS pH 7.4 

followed by fixation for 20 minutes with 4% paraformaldehyde and fluorescently labeled with 

a secondary goat anti-mouse FITC-congugated Alexa Fluor 488 secondary antibody specific 

to an anti-mouse anti-neurofilament primary antibody. Nuclei were labeled with DAPI. Every 

neuron meeting exclusion criteria was imaged on each 12-mm dia. nanofibrous substrate 

cover glass using a 10X Short Path Length objective in each of 3 channels Bright Field, FITC, 

DAPI. Every neuron counted towards analysis was required to meet the following inclusion 

criteria: (1) single neuron with a (2) neurite extending at least twice in length of the diameter 

of the soma and (3) not contacting any other neuron. Assessment of inclusive cell morphology 

was cross-referenced between each of the BF, FITC, and DAPI channels. Statistical 
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significance was determined using F-test for sample variance and Student’s t-test with α = 

0.05 value considered for significance. 

“Generation 3” HA-CNT 

Nanofiber Fabrication 

 Nanofibers were electrospun at 24kV ejected at a 1.7 ml/hr flow rate from an 18G 

blunt needle at 11 cm distance from a rotating mandrel (21.25 m/s) using an aqueous mixture 

of the dispersed CNT solution (1/3 v/v), 2% w/w MeHA, and 2% w/w PEO. Control hyaluronic 

acid nanofibers were electrospun using the same formulation but with deionized water in place 

of the CNT dispersion solution. Nanofibrous scaffolds were cross-linked under a long wave UV 

light for 30 minutes and stored in a desiccator cabinet until use. For in vitro experiments, 

cover slips were transferred to a sterile cell culture plate under aseptic conditions and 

sterilized under long-wave UV for 20 minutes. then rinsed at least 3 times with sterile 1X PBS 

pH 7.4 prior to onset of culture experiments to remove PEO and allow MeHA to reach hydrated 

equilibrium. 

L-929 Fibroblast Attachment 

 L-929 were seeded onto scaffolds at a density of 25,000 cells/well in high glucose 

DMEM supplemented with 10% FBS and PenStrep and cultured at 37C, 5% CO2 for 24h. 

Media supplemented with 10% Alamar Blue reagent (AB, Fisher) was replaced on cultures 

and incubated for 4 hours. Aliquots (100 µl) were transferred to a flat-bottom 96 well plate 

using a spectrophotometer to measure absorbance following manufacturer’s guidance. 

Experiment was repeated 3 times, each with n ≥3 culture samples (glass, HA, 0.01% HA-

CNT) for each condition with AB assay performed in triplicate for each sample. A standard 

curve was generated from known seeding densities on glass coverslips cultured under same 

conditions within the same 24 well plate (0, 25k, 50k, 100k, 150k). Each treatment type 

(glass, HA, and HA-CNT) had a blank well in which media without cells served as a background 

reference for each cell culture sample. Statistical analysis was a one-way ANOVA with α = 

0.05 for to determine significance. 
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in vitro Neuron Attachment 

 In general, Generation 3 HA-CNT in vitro assays with neurons were conducted using 

lumbar dorsal root ganglia (DRG) dissected from E10-E13 chick embryos. Otherwise, 

dissociation and media formulation are the same as described in Generation 2 protocol. Two 

independent in vitro neuron attachment assays were performed. First, one trial of neurons 

from an E10 dissociation were seeded and cultured for 24h on HA and 0.01%, 0.02%, and 

0.3% HA-CNT nanofibers (n = 3 culture samples of each nanofiber type). Second, 2 

independent trails from E11 dissociations were seeded and cultured for each end-point time 

of 24h or 48h. 

 At end of culture period, samples were gently rinsed with warmed 1X PBS pH 7.4 

followed by fixation for 20 minutes with 4% paraformaldehyde and fluorescently labeled with 

a secondary goat anti-mouse FITC-conjugated Alexa Fluor 488 secondary antibody specific to 

an anti-mouse anti-neurofilament primary antibody. Nuclei were labeled with DAPI. Every 

neuron meeting exclusion criteria was imaged on each 12-mm dia. nanofibrous substrate 

cover glass using a 10X Short Path Length objective in each of 3 channels Bright Field, FITC, 

DAPI. Every neuron counted towards analysis was required to meet the following inclusion 

criteria: (1) single neuron with a (2) neurite extending at least twice in length of the diameter 

of the soma and (3) not contacting any other neuron. Assessment of inclusive cell morphology 

was cross-referenced between each of the BF, FITC, and DAPI channels. Statistical 

significance was determined using F-test for sample variance and Student’s t-test with α = 

0.05 value considered for significance. 
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Results 

“Generation 1” HA-CNT 

in vitro Neuron Attachment 

 Preliminary attachment tests using whole DRGs from E9-E11 chicks revealed that 1% 

HA-CNT fibers had no observable negative effects on neurite outgrowth from the chick embryo 

DRGs. Rather, HA-CNT fibers appear to promote DRG attachment and encourage neurite 

outgrowth. Relative neurite outgrowth (measured as total neurite area/DRG body area) was 

4.31 +/- 1.09 for the HA-CNT scaffolds and only 3.18 +/- 0.33 for control scaffolds (Figure 

3-1). Student’s t-test revealed that relative neurite outgrowth was not statistically different, 

however, p=0.07 indicates a strong trend towards improved growth on the composite 

nanofibers.  

 
Figure 3-1. “Generation 1” Neuron Attachment. 

  

(A) DRG grown on HA Fibers. (B) DRG grown on HA-CNT 

fibers. (C) Aspect ratio measurements of DRGs grown on HA 

and HA-CNT nanofibers. (D) Normalized neurite outgrowth 

on HA and HA-CNT fibers (p<0.07). (Scale bar = 500 µm) 
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“Generation 2” HA-CNT  

in vitro Neuron Attachment 

 Dissociated E11 DRG neurons were cultured for 48h on aligned HA nanofibers 

electrospun either with or without CNTs. Generation 2 electrospinning solution for HA-CNT 

contained 0.5% w/w CNT/HA. Student’s t-test revealed a significant increase in neurite 

length. Trial included n = 25 neurons for each condition. 

 
Figure 3-2. “Generation 2” Dissociated DRG 48 Attachment. 

 
Top left: HA, Top right: HA-CNT, scale bar = 50 microns. Generation 2 HA-CNT 

incorporated 0.5% w/w within HA nanofibers. Bottom graph displays results of an 

attachment trial of dissociated DRG neurons (HA n = 24; HA-CNT n =28) 
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“Generation 3” HA-CNT 

L-929 Fibroblast Attachment 

 The L-929 proliferation assay method produced reliable and reproducible results. 

Figure 3-3 (top) provides an example standard curve employed when comparing cell number 

24h post-seeding to one another. There was no statistically significant difference in metabolic 

activity as assessed by Alamar Blue reduction between any substrate type.  

 
Figure 3-3. L929 Alamar Blue 24h Attachment Assay.  

 

Alamar Blue assay standard curve for L-929 fibroblasts (top) for 25000, 50000, 100000, 

and 150000 cells. Assay results in no significant difference in cell attachment between 

conditions. 
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HA-CNT (0.01%, 0.02%, 0.3%) in vitro Neuron Attachment 

 Figure 3-4 depicts the results from one trial of dissociated E10 chick lumbar DRG 

neurons seeded and cultured for 24h on HA and 0.01%, 0.02%, and 0.3% HA-CNT nanofibers 

(n = 3 culture samples of each nanofiber type). The number of neurons counted according to 

exclusion criteria for each scaffold type HA, 0.01% HA-CNT, 0.02% HA-CNT, and 0.3% HA-

CNT were n = 29, n = 31, n = 43, and n = 23, respectively. Test for homogeneity resulted in 

unequal variances between the cell populations measured in the trial, thus eliminating the 

ability to perform a one-way ANOVA to test for effect of CNT concentration on the cell behavior 

outcome measure neurite length. Therefore, statistical analysis was conducted to compare 

each HA-CNT concentration type to the control HA nanofiber condition. An F-Test for variance 

between two sample samples was conducted for each comparison before choosing between a 

two-tail Student’s t-Test assuming either Equal or Unequal Variance. HA and HA-CNT 0.3% 

exhibited no significant variance between one another, and no difference in neurite length 

using a Two-Sample Student’s t-Test assuming Equal Variances. HA-CNT 0.01% and 0.02% 

conditions both did not pass the F-Test Two-Sample for Variances check prompting the 

associated Student’s t-tests to be conducted assuming unequal variances. HA-CNT 0.02% did 

not result in an observed effect of CNT presence relative to HA on neurite length. HA-CNT 

0.01% did result in an observed effect of CNT presence relative to HA on neurite length (p < 

0.01). 
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Figure 3-4. “Generation 3” DRG Neuron 24h Attachment 0.01%, 
0.02%, 0.3% HA-CNT Nanofibers. 
 
Dissociated DRGs from E10 chick embryos displayed varying neurite lengths 

dependent on percent CNT incorporated into HA nanofibers. Cumulatively 

considering the attachment data presented to this point prompted usage of lumbar 

DRGs explanted from E12-E13 chicks in future DRG dissociations. 
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HA-CNT (0.01%) in vitro Neuron Attachment 

 Figure 3-5 depicts epifluorescence images merged with bright field for E12-E13 DRG 

neuron dissociations cultured on HA and 0.01% HA-CNT nanofibers. Images represent 

neurons with neurite lengths which fall within the standard deviation. Neurons are labeled 

with FITC secondary antibody specific to primary anti-neurofilament antibody, DAPI labels the 

nuclei.  

 Mean neurite length and number of neurite-bearing neurons are reported in Figure 3-

6 with error bars signifying standard error. Panels A and B show that significantly increased 

neurite length from a significantly higher number of number of neurite bearing neurons were 

measured on HA-CNT nanofibrous substrates at 24 hours.  At 48 hours, neurite length was 

measured to be longer than the 24-hour population for both HA-CNT and HA conditions, as 

displayed in panel C. Panel D notably provides evidence that the number of neurite-bearing 

neurons on HA-CNT is maintained over 48 hours when compared to the independent 24-hour 

time point. Interestingly, the number of neurites measured from neurons cultured on HA 

increases increased between 48 hours.  

 
Figure 3-5. “Generation 3” 0.01% HA-CNT Neuron Attachment. 
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Figure 3-6. “Generation 3” 0.01% HA-CNT Neuron Length and Number. 

 
Dissociated DRGs exhibited improved neurite outgrowth as measured by neurite 

length and number of neurite-bearing neurons on HA-CNT 0.01% nanofibers 

relative to HA controls for both 24h and 48h. 



63 

 

Discussion 

“Generation 1” HA-CNT in vitro Neuron Attachment 

 The outgrowth aspect ratio was not significantly different between the two conditions 

(HA-CNT: 1.56 +/- 0.11, HA control: 1.39 +/- 0.17) (Figure 3-1). This behavior was attributed 

to low fiber alignement and similar nanofiber diameter characteristics for HA and HA-CNT 

nanofibers. From these cell behavior results and SEM qualitative observeation of surface 

roughness, we hypothesized that the HA-CNT fibers showed improved cell interactions over 

HA controls because of increased fiber surface roughness from the presence of the CNTs. 

Although not quantified in this thesis, our prediction proffered a theory that neuron behavior 

was a result of surface roughness which previously had been studied by other groups as a 

mechanism to improve neuronal cell attachment, longevity, and neurite outgrowth(Khan et 

al., 2005; Li et al., 2010).  

“Generation 2” HA-CNT in vitro Neuron Attachment 

 Dissociated DRGs exhibited greater neuron length on HA-CNT nanofibers electrospun 

with 0.5% w/w CNT to HA. Notably, the bright field images for the HA-CNT condition reveal 

large black agglomerates as visualized under 10X conditions. This prompted further 

optimization methods to reduce agglomeration and aggregation. 

“Generation 3” HA-CNT 

L-929 Fibroblast Attachment 

 One-way ANOVA statistical analysis was performed to test for the effect of CNT 

incorporated into HA nanofibers by culturing L929 fibroblasts on glass, HA nanofibers, and 

HA-CNT nanofibers. The statistical analysis indicated L-929 proliferation was not altered 

significantly following assessment by Alamar Blue after a 24h culture period. There was no 

difference between any of the three groups. 

HA-CNT (0.01%, 0.02%, 0.3%) in vitro Neuron Attachment 

 Electrospun HA and HA-CNT with 0.01, 0.02, and 0.3 wt. % (HA-CNT) scaffolds were 

evaluated for their abilities to maintain cell viability and promote neurite extension in vitro 
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over a 24h culture time. Dissociated DRGs from E10 chick embryos displayed varying neurite 

lengths dependent on percent CNT incorporated into HA nanofibers. The adaptation for 

dissociated spinal lumbar dorsal root ganglia technique (Song and Uhrich, 2007) employed 

within Chapter 3 was informed by the stage-dependent behavior observed by Ebendal in 1979 

when culturing chick spinal DRGs on collagen gels cocultured with explanted heart (Ebendal, 

1979). Ebendal reported peak neurite length from E8 whole DRG explants in the presence of 

NGF when co-cultured with heart explants followed by a short decline between E8-E10 and a 

plateau between E10-E12 followed by a sharp decline (Ebendal, 1979). Cumulatively 

considering the attachment data presented in Chapter 3 and electrochemical characterization 

of Chapter 2 prompted usage of lumbar DRGs explanted from E12-E13 chicks in DRG 

dissociations for the electrical stimulation studies presented in Chapter 4. These results and 

conclusions prompted us to conduct the 24h and 48h in vitro neuron attachment study using 

E12-E13 DRG neurons cultured on 0.01% HA-CNT. 

HA-CNT (0.01%) in vitro Neuron Attachment 

 Electrospun HA and 0.01 wt.% HA-CNT were evaluated for their abilities to maintain 

cell viability and promote neurite extension in vitro over 24h and 48h culture periods. The 

dissociated DRG neurons displayed material attachment preference to HA nanofibers 

containing CNT. Neurite length is increased when neurons are cultured on HA-CNT substrates 

regardless of a culture time of 24h or 48h. Under bright field, we observed HA nanofiber 

topography to be less distinct between time points relative to HA-CNT nanofibers which 

appeared to maintain their nanofiber structure. Chapter 2 contact angle and FTIR studies data 

provided evidence to support our conclusion that –COOH moieties located on the surface of 

the CNTs influence the surface charge of the scaffold thus increasing hydrophilicity that 

promotes increased neuron attachment, as evidenced in Figure 2-10.  

 These in vitro outcome measurements are significant in the context of observations 

made by our research groups that neurons do not attach easily and consistently to uncoated 

polymer surfaces like PCL and methacrylated hyaluronic acid. Wrobel(Wrobel and 
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Sundararaghavan, 2014) explored the incorporation of adhesive guidance cues like fibronectin 

and laminin, while investigating the potential for combinatorial approaches to establish 

positive and negative cues as opposing gradients to guide neural regeneration. Hamzeh Omar 

(unpublished) conducted axial strain experiments exploring the effect of mechanical cues on 

neurite extension from DRG explants cultured on PCL nanofibers. Whitehead has reported 

neurite extension on uncoated methacrylated hyaluronic acid nanofibers compared to 

nanofibers embedded with microspheres for controlled delivery of neurotrophic factors 

(Whitehead et al., 2018). Cumulatively, our group has observed that chick dorsal root ganglia 

(explanted or dissociated) prefer aligned nanofiber substrates combined with an adhesive 

coating like laminin or fibronectin, mechanical stimulation, or an introduced chemical cue like 

NGF (in vitro, (Whitehead et al., 2018)) or BDNF (in vivo, (Whitehead, 2017)).  

Biocompatibility of HA-CNT Nanofibers 

 A robust trend in increased neurite outgrowth was measured on unstimulated HA-CNT 

nanofibers regardless of electrospinning formulation (denoted as Generation 1, 2, or 3) and 

CNT weight percentage (1% Generation 1, 0.5% Generation 2) or dispersion volume 

percentage (0.3%, 0.02% and 0.01% Generation 1). As discussed in Chapter 3.4.1 discussion 

of Generation 1 HA-CNT nanofibers, the early observations of robust neurite outgrowth on 

HA-CNT nanofibers relative to HA in juxtaposition to surface roughness observed in 

concomitant SEM images led us to consider surface roughness may play a role in neuronal 

attachment behavior.  

 The sequential formulation optimization and dispersion optimization methods outlined 

in Chapter 2 resulted in comprehensive material characterization enabled near-time 

simultaneous cell behavior interpretation. Observing and measuring material characteristics 

of the HA-CNT nanofibers while performing in vitro attachment trials throughout the 

optimization process enabled educated decision making on which material characteristics 

were most relevant to neuron behavior, which characteristics may need further optimization, 

and which may have nominal effects relative to HA nanofibers.  
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 Chapter 2 provides qualitative visual evidence from Generation 3 atomic force 

microscopy imaging that HA-CNT nanofibers hydrated to equilibrium do not display a rough 

topography on the nanofiber surface. Considering the expansion of the Generation 3 0.01% 

HA-CNT nanofibers as discerned from the scale on the height image from the 3D panel 

(Chapter 2 Figure 2-9) relative to the diameters measured from SEM images taken under 

vacuum, it may be reasonable to infer that the hydrated hyaluronic acid polymer network 

overcomes the nominal 20 nm scale contribution of CNT agglomerates as measured in TEM 

and SEM images. These topographical observations led us to perform contact angle 

measurements to discern how surface chemistry of the nanofibers may contribute to 

hydrophilicity. 

 Chapter 2 contact angle data measuring the degree of water droplet spreading on HA 

and HA-CNT nanofibers provided material characterization evidence that surface chemistry 

may be influenced by the HA-CNT composite material constituents. In this thesis, the 

increased hydrophilicity is assigned to a relative increase in number of –COOH groups 

(qualitative FTIR data presented in Chapter 2) within the composite polymer network due to 

the addition of carboxylated carbon nanotubes. A slight hydrophobic surface property of 

methacrylated hyaluronic acid could be contributed to the formation of methylene groups 

during photo-crosslinking of the methacrylated hyaluronic acid polysaccharide chains. 

Sundararaghavan and Burdick(Sundararaghavan and Burdick, 2011) report “inter- and  intra- 

fibrous crosslinks (to) occur during the polymerization process” to enable stabilized nanofibers 

and a cohesive nanofibrous mat. Further, the study reported an indirect fluorescence 

measurement technique using methacrylated rhodamine (MeRho) to correlate rhodamine 

(1500-1700 cm-1) to methylene groups (2800-3000 cm-1) present in methacrylated hyaluronic 

acid nanofibers containing known concentrations of MeRho. using a Attenuated Total 

Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) technique. In comparison to 

the gradient techniques (Sundararaghavan and Burdick, 2011; Wrobel 2017) previously 

studied by the Sundararaghavan group, embedding an ultra-low concentration of 
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carboxylated carbon nanotubes within methacrylated hyaluronic acid nanofibers offers an 

additional mechanism to improve cell attachment for directed cell behavior. 

 Aligned HA-CNT nanofibers from the Generation 3 subset fabricated with an 0.01% 

(w/v) CNT dispersion were concluded to be the most attractive nanofibers to use in an 

electrical stimulation application for neural regeneration in peripheral nerve injuries. This 

conclusion is drawn from the cumulative data regarding material characterization (Chapter 

2), namely electrochemical properties optimized by improved CNT dispersion, and the 

resulting in vitro cell behavior documented within Chapter 3 of this thesis. L-929 fibroblast 

proliferation was not aberrantly altered when cultured on 0.01% HA-CNT nanofibers versus 

HA or glass. Neurite length and number of neurite-bearing neurons were significantly 

improved when cultured on HA-CNT substrates at both 24h and 48.  

Study Limitations 

 While evidence in this thesis documents the biocompatibility of HA-CNT nanofibrous 

substrates with no discernable or measured toxicity potential, it is important to note that 

these results were evaluated relative to HA nanofibrous substrates and not to positive and 

negative controls specifically designed with expected results of positive and negative cytotoxic 

responses. The use of such positive and negative controls would be most appropriate when 

HA-CNT nanofibrous scaffolds are fabricated under GMP standards and evaluated under GLP 

practices for consideration in advancement to pre-clinical and clinical trials as part of 

regulatory documentation to include in the Design History File for an HA-CNT based nerve 

guide conduit. 

Conclusions 

 The HA-CNT nanofiber constructs were concluded to be cytocompatible following the 

methods relevant to ASTM standard for testing material contact with biological tissues. L-929 

proliferation was not altered indicating compatibility. Additionally, neurite outgrowth resulted 

in increased neuron lengths on unstimulated HA-CNT nanofibers. This behavior is attributed 

to increased hydrophilicity measured by contact angle, which is assigned to the increased 
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number of –COOH groups within the composite polymer network due to the addition of 

carboxylated carbon nanotubes. A slight hydrophobic surface property of methacrylated 

hyaluronic acid could be contributed to the formation of methylene groups during photo-

crosslinking of the methacrylated hyaluronic acid polysaccharide chains. In comparison, 

embedding an ultra-low concentration of carboxylated carbon nanotubes within 

methacrylated hyaluronic acid nanofibers offer a mechanism to improve cell attachment. Now 

that a reproducible biomaterial can be fabricated with defined topography, mechanics, and 

electrochemistry, the next Chapter will validate the scaffold for electrical stimulation (ES) for 

neural tissue engineering applications using a custom ES stimulation system.  
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Chapter 4 : Electrical Stimuli Delivered Through HA-CNT Nanofibers Enhances 

Neuron Growth 

 

Introduction 

In Chapter 3, our primary research question was whether HA-CNT nanofibers were 

cytocompatible as assessed by attachment experiments using L-929 fibroblasts and 

dissociated dorsal root ganglia (DRG).  Our driving motivation in Chapter 4 is to determine 

whether an electrical stimulus can be passed through Generation 3 HA-CNT nanofibrous 

scaffolds to enhance neuron length and viability. Voltage-gated calcium channels, specifically 

L-type VGCCs and the pathways involved with the predicted molecular mechanism involving 

BDNF expression and secretion have been established in avian species within the chicken 

family (Barde, 1989; Burt, 2005; McCaig et al., 2005). We predicted that HA-CNT nanofibers 

would provide a suitable permissive environment to recapitulating the extracellular matrix of 

healthy neural tissue.  

A comprehensive 2005 review from McCaig, Rajnicek, Song, and Zhao illustrates the 

nearly 30-year evolution of studies demonstrating the effect of electrical stimulation on 

embryogenesis, nervous system wound repair, and neuritogenesis and growth cone guidance 

(McCaig et al., 2005).  The Borgens Neuroscience 1999 article translated effects of electrical 

gradients during embryonic development to a tissue-engineered approach by applying 

electrical stimulation (ES) within polymeric guidance channels (Borgens, 1999). Graves et al. 

(2011) offered quantified experimental evidence that 200 μA AC waveforms resulted in 

significantly longer neurite outgrowth and neuronal guidance in an in vitro Xenopus laevis 

model. Phase 1 human clinical trials implanted oscillating field stimulators to enhance 

regeneration in spinal cord injuries using a 200 μA stimulus (Shapiro, 2014; Shapiro et al., 

2005). 

The conduction properties defined in chapter 2 provided a baseline from which to 

calculate an equivalent voltage amplitude that could be delivered through our HA-CNT 

nanofibers. By achieving the delivery of a biphasic 200 μA electrical stimulus target as 
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described in the above literature, I hypothesized that the resulting dissociated DRG neuronal 

response would  result in extended neurite outgrowth and concomitant neuronal viability that 

may result from successfully VGCC activated BDNF production (Wenjin et al., 2011). The 

expression and release of the neurotrophin BDNF is calcium dependent through calcium 

responsive elements affecting the cis-element in the BDNF promoter (Zheng et al., 2011) and 

has been experimentally linked to L-type VGCC activation in neurons (Wenjin et al., 2011). 

In Chapter 4, we will present the validation of the custom electrical stimulation system using 

an L-929 model to test toxicity and culminate with the validation that the HA-CNT nanofibers 

engineered in Chapter 2 and tested for cytotoxicity in Chapter 3 are capable of delivering a 

controlled electrical stimulus to predict a neuronal response of increased neurite outgrowth 

and number of neurite-bearing neurons. The outcome measures are endpoint measurement 

of neurite length and number of neurite-bearing neurons cultured on HA-CNT nanofibers 

following electrical stimulation. Finally, we will present a method and preliminary results for 

a calcium imaging assay to test activation of voltage-gated calcium channels in neurons 

cultured on 1% HA-CNT nanofibers following electrical stimulation. 

In clinical neuroanatomy, the peripheral nervous system tissue structure known as the 

dorsal root ganglia is defined to contain “cell bodies of primary sensory neurons that innervate 

the skin and deep tissues of the back of the head, neck, limbs, and trunk” (Martin and 

McGraw-Hill Professional eBook Library - Medical: Primary, 2012). The Zhang PNAS 2007 

study implicates L-type VGCCs in cell-cell signaling between neurons and satellite cells 

through soma driven ATP release following electrical stimulation of DRG explants as measured 

by electrophysiology and calcium imaging (Zhang et al., 2007a). Confocal microscopy imaging 

technique at 60x magnification provided the resolution at the cell-cell interface necessary to 

capture sequential, time-resolved evidence of glial-neuron signaling occurring in the tissue 

explant as the result of electrical stimulation. Moreover, the group collected evidence that 

satellite cell release of TNFα is receptor-mediated process in ganglia (Zhang et al., 2007a). 

When considering this glial function of satellite cells with other evidence in the literature that 
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show the pro-inflammatory TNFα cytokine has the potential to Chapter 3 attachment results 

demonstrated that measuring cell response to culture on the HA-CNT nanofibers gave more 

direct quantification of a cell-matrix interaction and eliminating the confounding variables of 

a cell culture model that was based in tissue level structure that has both cell-cell and cell-

matrix components.  

The main challenge to initiating a cellular response to electrical stimulation through a 

conductive biomaterial is converting electron conductivity from metallic electrodes to ionic 

conductivity in the electrolyte (Meng S, 2011). While traditional experimental methods use 

salt bridges, vacuum grease, and cover slips to assemble electrical stimulation chambers 

(McCaig et al., 2005), testing hydrogel nanofibers using similar components was not feasible 

beyond preliminary proof of concept studies for two main reasons. First, we decided to use a 

capacitively coupled (CC) design as it was most appropriate for the delivery of an AC signal 

which eliminated the salt bridge set-up which is for in vitro DC application. Second, the 

vacuum grease and cover slip strategy resulted in a more than 20% loss of samples. This 

sample loss value was comparable to similar percent loss experienced and confirmed by 

generous correspondence with Professors John H. Hardy and Christine E. Schmidt 

(unpublished). Building on these foundations along with designs (Durgam et al., 2010; Xia et 

al., 2007) published and validated for ES studies with sample replicates, we designed a 

reproducible and stable in vitro electrical stimulation chamber from common and readily 

available materials and equipment that allow for a stable electrical connection that is 

connected to the conductive nanofibers while separated from the culture media. We achieved 

an improvement in sample recovery from approximately 80% to 94.6%. Sample recovery 

was calculated by dividing the number of ES chambers that produced quantifiable data by the 

number of ES chambers fabricated. 

The next consideration for ES experimental set-up is testing efficacy of the chosen 

electrical stimulus. We chose electrical stimulus parameters to be 20 Hz square wave for 1 

hour, consistent with studies reported using these parameters to enhance regeneration and 
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reinnervation (Al-Majed et al., 2000a; Al-Majed et al., 2000b; Al-Majed et al., 2004; Brushart 

et al., 2005; Geremia et al., 2007). Our prediction is that electrical stimulation activates 

Voltage Gated Calcium channels in the cell membrane, permitting calcium influx. Calcium, a 

potent second messenger, mediates cellular pathways controlling cytoskeletal organization 

(calcium/calmodulin signaling pathway (Aigner, 1995; Onuma and Hui, 1988)) as well as 

BDNF production in neurons (Wenjin et al., 2011; Zheng et al., 2011) and release from 

Schwann cells (Luo et al., 2014). Media formulation is a crucial experimental design factor 

when testing cell behavior. Kotwal and Schmidt (2001) tested how immediate and delayed 

electrical stimulation altered protein adsorption to a biomaterial surface. The serum protein 

fibronectin significantly adsorbed to the surface of the conducting polymer polypyrrole 

substrate immediately after stimulation resulting in enhanced neurite outgrowth; whereas, 

delayed stimulation after cell seeding resulted in no difference in fibronectin adsorption or 

neurite length when compared to a 4 h room temperature adsorption timepoint (Kotwal and 

Schmidt, 2001). We eliminated these known confounding factors by implementing a 

standardized procedure for electrical stimulation application at least 12 h under normal culture 

conditions.  

 In Specific Aim 3, we demonstrate that an electrical stimulus can be delivered through 

HA-CNT nanofibers to increase and accelerate neuron growth as measured by neurite 

extension and number of neurite-bearing neurons. 

 We hypothesize that a stable electrical system will enable reproducible and repeatable 

experimental conditions to observe in vitro cell response to electrical stimuli delivered through 

a conductive nanofibrous biomaterial. 

 We hypothesize electrical stimulation delivered through the HA-CNT nanofibrous 

scaffold will result in significantly greater neurite length in chick dissociated dorsal root ganglia 

neurons. 
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Experimental Methods 

Custom Electrical Stimulation Chambers 

Nanofibrous scaffolds were electrospun onto 12x12 mm standard Number 2 glass 

cover slips using permanent double-sided tape (3M) adhered to standard Painter’s tape (3M) 

to withstand the forces of the rotating mandrel. Custom ES chambers were assembled as 

depicted in Figure 4-1. Custom glass bottom culture plates were created by drilling holes 

through the wells of standard 12-well or 35 mm culture dishes using a Dremel mounted on a 

drill press kit equipped with a diamond blade drill bit (6mm diameter). The nanofibrous 

samples on glass first underwent a procedure to prepare the surfaces for bonding with the 

custom culture dishes. A 6mm x 12mm (height x length) rectangular strip of aligned 

nanofibers were retained within the center of the cover glass, while the outer edges above 

and below were scraped away with a razor blade. Anecdotally, from a process optimization 

perspective, it was observed that scraping was easier to achieve prior to UV cross-linking of 

the HA substrates. Regardless, samples must be cross-linked prior to advancing to the next 

step. Fine tipped cotton applicators soaked in ethanol (200 proof, Sigma Aldrich) and blotted 

on a delicate task wipe to remove excess were then utilized to prepare the surface of the 

glass coverslips and the underside of the custom cut plastic culture dishes. Prior to using the 

drill press scheme to cut a 6-mm diameter hole in each well. The underside of the dishes was 

gently but firmly scored with a sanding block and debris was wiped away with a delicate task 

wipe and 200 proof ethanol. These surface preparation procedures were optimized based on 

documentation provided by 3M for effective environmental sealing using Very High Bond 

(VHB) adhesive. Immediately following the surface treatments of the culture dish, VHB tape 

was applied to the bottom, then holes were drilled. Separately, two strips of copper tape (one-

side adhesive) was applied over the top of the rectangular fibrous mat (adhesive side against 

glass) in an orientation which would flank the well in parallel. This orientation treats the 

nanofibrous scaffold as a circuit element that is connected to one copper electrode which 

provides the voltage input from the function generator and the opposite side copper electrode 
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Figure 4-1. Custom Electrical Stimulation Culture Dish. 

 

(A) Illustration of custom electrical stimulation (ES) culture plate designed to 

promote interlab adaptability for early-stage electroactive biomaterials testing.  

(B) Each custom well experienced an AC Waveform from Function Generator to 

simulate a pulsatile electrical stimulus: 20 Hz biphasic square wave, ±25 ms pulse 

width, ±50% duty cycle. ES stimuli from every experiment stored through custom 

DAQ system (Raspberry Pi B/Ubuntu Mate/python interfaced with digital 

oscilloscope via USB).  

(C) Illustration of each custom well (I) within commercially available 12-well cell 

culture dish assembled by drilling 6mm-dia. hole through bottom of well and (II) 

high bond acrylic foam adhesive. (III) Copper tape (*) is overlaid nanofibers cross-

linked to glass coverslip (IV). The copper tape in the III-IV assembly is connected 

to longer copper tape rails (–/+). Following curing at RT for 24h, the conformable 

foam adhesive (II) provides a seamless hydrophobic barrier between assemblies I-

II and III-IV enabling the nanofibers to be hydrated while separating electrodes 

from the culture media.  

(D) Photographs of a fully assembled, cured culture plate following insulation of 

copper tape. Thin layer of liquid vinyl around each glass coverslip and vinyl electrical 

tape along the length of the copper rails insulates the electrodes from the 

environment providing stable electrical stimulation conditions. This custom 

assembly fits a standard fluorescence microscope allowing live or endpoint imaging, 

achieving a 94.6% sample recovery rate as calculated by the number of nanofiber 

sample wells from which immunofluorescence data was collected relative to the 

total number of nanofiber sample wells assembled. 
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connected to a common ground. The scaffold area exposed to electrolyte media was limited 

by the unique properties of 3M VHB. Prior to curing, VHB exhibits viscous flow at the surface 

enabling it to create a thin, tight seal between bonding surfaces. These properties are why 

the surface treatments were necessary, particularly when bonding glass, metal, and plastic 

to effectively initiate a hydrophobic seal at the surface of the HA These steps resulted in no 

observable copper electrode corrosion even after sitting in a humid environment for 2-3 years 

(unpublished); these observations are in stark contrast to methods that used vacuum grease 

to separate media from copper electrodes during preliminary studies. In those cases, 

corrosion evident by the classic green color of copper oxide could be observed within 12 hours.  

Following assembly of the custom stimulation chambers, the same 100 W long wave 

UV light used to cross-link the HA scaffolds was employed for 20 minutes to sterilize the 

dishes in preparation for cell culture. All electrical stimulation waveforms described in this 

chapter were delivered by an analog function generator (GW INSTEK GFG-8020H) connected 

to a breadboard (Jameco). Shorter copper electrodes from each custom well were connected 

to a longer copper strip (Figure 4-1, panels b and c); all exposed copper electrodes were 

shielded from the environment by a combination of liquid electrical tape and standard 

electrical tape, except for a small square at the end which enabled connection by alligator 

clips to the Jameco breadboard.  A Raspberry Pi and custom python script implementing the 

PYTHONUSBTMC driver (2013, Alex Forencich) was employed for digital data acquisition from 

two channels of a digital oscilloscope (RIGOL DS1102E) that were connected to the 

breadboard, Channel 1 monitored the function generator input, and Channel 2 was wired to 

observe the “output” copper bus from the custom ES culture dish that was connected to a 

common ground.  

Reliable and stable electrical connections are the foundation for effective electrical 

engineering methods. Electrical connections employed in this study were: (1) culture plate 

copper rails connected by alligator clips to wire jumpers on breadboard and (2) power source 

(function generator) cathode and anode connected to breadboard by alligator clips to wire 
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jumpers secured in binding posts. This versatile set-up was designed with an “electroactive 

biomaterial plug-and-play” strategy for integration with diverse culture environments and 

conditions, including a standard incubator and a fluorescence microscope outfitted with an 

environmental chamber. The 6-mm diameter “custom well” resulted in dimensions 

comparable in scale for 96-well plate assays, while also enabling interfacing with readily-

available components common to electronics laboratories. eliminating the need for the design, 

validation, and costs associated with other approaches.  

Electrical Stimulation in vitro Assays 

L929 Cytotoxicity Assays with Electrical Stimulation 

 To assess potential cytotoxic effects of electrical stimulation parameters and culture 

conditions, ES was delivered through HA and HA-CNT nanofiber scaffolds (n = 3 scaffolds 

each HA, HA-CNT) to L929 fibroblasts cultured in a custom 12-well plate format like the 

illustration depicted in Figure 4-1 and the real example in the bottom center of Figure 4-1. 

The Alamar Blue proliferation assay described in Chapter 3 was adapted and scaled to 

appropriate dimensions. Empirical testing was performed to determine media and Alamar Blue 

reagent volumes and cell density that were appropriate for a 6mm custom culture well (akin 

to a 96-well plate assay). All glass control conditions were unstimulated but otherwise 

mirrored the nanofiber culture conditions in this experimental method by utilizing the middle 

row of wells in the 12-plate format.  

 L929 fibroblasts seeded and cultured as described in Chapter 3 except at a lower cell 

number to accommodate the reduction in culture surface area. The volume of each culture 

well is 100 µL. Cells were seeded by dropping a 75 µL aliquot of a single cell suspension 

(30000 cells/ml) to seed approximately 2250 cells in each custom well. The cell suspension 

aliquot was gently added to 25 µL of media. Cell density and the custom well back-filling 

volume was determined empirically. The data reported here are the results following 

establishing these parameters. The 25 µL of media backfilling strategy was determined to 

promote homogeneous attachment across the scaffold surface by preventing fluid wicking 
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towards outer edges of the confined culture area. Four hours after cell seeding to allow for 

attachment, 300 µl of modified DMEM supplemented with Alamar Blue (ThermoFisher, 

abbreviated as AB) reagent was used to gently flood the custom well to a final AB 

concentration to the supplier suggested final concentration of 10% AB. Twenty-four hours 

following fibroblast seeding, a 300 mV biphasic, 1 Hz(Cho et al., 2002) square wave electrical 

stimulus was applied for 5 minutes. L929 were cultured for 72h total with aliquots of culture 

media containing 10% AB were transferred to a 384 well plate for optical measurements using 

a UV/VIS spectrophotometer (Fisher Scientific, GO) according to supplier protocols and 

mirroring measurement methods established in Chapter 3. Each experiment included blanks, 

including the aliquots from the AB-containing stock media as well as aliquots obtained from 

AB-containing stock media applied to the first well in the 4-well scaffold type sample series. 

The latter set of blanks served as a cell-free scaffold blank for background subtraction from 

the 3 cell-containing scaffold samples.  The AB-containing stock media was freshly prepared 

for each experiment and stored in incubator during the duration of the experiment. Aliquots 

were collected and transferred for measurement 24h post-seeding immediately preceding 

electrical stimulation, and then at 24h and 48h post-stimulation. The AB assay and 

experimental volume allowed for the samples to be cultured in the same media throughout 

the duration of the experiment, with aliquots collected and measured at the timepoints 

described above.  

Two 12-well plates were included in each experiment (N = 3). One set of L929 samples 

cultured within the middle row on glass (n=3) were prepared as outlined above including the 

first well serving as a blank. The set of 4 glass L929 culture samples on the other 12-well 

plate served as the standard curve samples, with L929 seeded at a density of 0, 2000, 4000, 

and 8000 cells/well. A typical standard curve generated employing this technique with the 

custom electrical stimulation chambers can be seen in (Figure 3-3A). Statistical analysis of 

the 24h attachment, pre-stimulation conditions were performed using a One-Way ANOVA, α 

= 0.05. Statistical analyses for the electrical stimulation data 24h and 48h post stimulation 
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were employed using F-test Two-sample tests for variance between unstimulated and 

stimulated samples for each nanofiber type followed by a two-tail t-Test with α = 0.05 

(Microsoft Excel Data Analysis Add-on). 

Electrical Stimulation Assays with Dissociated Dorsal Root Ganglia 

Lumbar dorsal root ganglia were dissected from E11-E12 chick embryos, dissociated, 

and seeded on nanofibrous substrates (2250 cells/custom well) in serum-free media 

composed of 1:1 v/v DMEM/Hams F-12 supplemented with 50 ng/ml NGF. The same back-fill 

technique described earlier was employed here. Cells were cultured on HA and HA-CNT 

substrates for 24h before electrical stimulation groups were connected to the custom ES 

circuit described earlier. Briefly, alligator clips connected the custom ES culture plate like a 

circuit element being spliced into a test circuit mounted on a breadboard. The power source 

connected to the circuit board was a standard analog function generator (GW INSTEK, GFG-

8020H). The same electrical stimulation regime was delivered to the neurons cultured on HA 

and HA-CNT samples (n = 4 each nanofiber type), powered by the culture plate electrode 

connections through the bread board. The neuron electrical stimulation assays were 

performed based on a factorial design outlined in Table A1 in Appendix A. Briefly, electrical 

stimulus parameters were applied 24h after seeding constituting either 30- or 60-minute 

applications of either 150, 200, or 250 mV/mm bi-phasic square AC waveforms. Unstimulated 

neuron cultures served as controls and were cultured using the same configuration described 

above, with the exception of connecting the custom culture dish electrodes to the breadboard. 

Neurons were fixed 48h after ES, for a total culture time of 72h. Neurons labeled with 

anti-neurofilament and DAPI were imaged and quantified to analyze neurite length and 

number of neurite-bearing neurons. Inclusion criteria for analysis required a neuron consisting 

of a single soma with neurites whose length were at least twice the width of the soma and 

not touching adjacent neurons. Inclusion criteria were cross-checked between Bright Field, 

FITC, and DAPI channels. Each experiment included one unstimulated and one stimulated 

culture plate of each electrical stimulus regime described in Table A1, with a total of N ≥ 3 
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experimental cultures derived from independent cell suspensions. Results are reported as raw 

neurite lengths as measured from data collected from every neuron in each custom well that 

met inclusion criteria. As cited earlier, 94.6% of samples seeded with neurons were intact and 

quantifiable by the end immunofluorescent labeling and imaging of each experiment. The 

neurons counted for each condition are listed in Appendix A - Table A1. 

All data is reported as mean +/- standard error. Statistical tests were performed using 

SPSS for 3-way ANOVA (nanofiber type, voltage amplitude, ES stimulus duration) and Tukey 

post-hoc analyses (α = 0.05). Microsoft Excel was used to calculate descriptive statistics. 

Descriptive statistics reported in Appendix A – Table A1 were part of the SPSS 3-way ANOVA 

Output Report. For the dependent variables of Neurite Length and Number of Neurite-bearing 

Neurons, the Levene’s Test of Equality of Error Variances resulted in a p = 0.000. 

Consequently, 3-Way ANOVA results for Between-Subjects Effects were only considered for 

significance for main effects which each were confirmed to have an Observed Power greater 

than 0.8; the 3-Way interaction was not considered with an Observed Power of 0.082 (Table 

A3, Appendix A).  

Since there were no data points excluded following the data point being collected 

provided inclusion criteria were maintained, we employed a secondary set of statistical tests 

to compare two means for groups part of factorial design interactions that fell below an 

Observed Power of 0.80. As evident in the Descriptive Statistics reported in Table A2 listed in 

the Appendix A, there was a disproportionately lower number of neurons on HA nanofibrous 

substrates that met the strict single neuron inclusion criteria. The Microsoft Excel Data 

Analysis Add-in was employed for computing an F-test for variance when comparing two 

means when considering a result of a Tukey post-hoc from the SPSS analysis, as a second 

means of evaluation for significance in an effort to avoid Type I error.  In other words, we 

approached Tukey post-hoc analyses with a degree of skepticism since the assumption of 

homogeneity was clearly violated and employed Student’s t test for unequal variances. In 

these cases, an Excel F-Test Two-Sample for Variances yielded a p-value < 0.05, and a 
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Student’s t test assuming unequal variances was applied. Statistical significance for all tests 

discussed were accepted at p < 0.05 (denoted by *) and p < 0.01 (denoted by **). 

 The mean number of neurite-bearing neurons for each condition in Appendix A Table 

A1 was calculated by dividing the total number of neurons in a conclusion that met inclusion 

criteria by the total number of wells in the experiment. This distinction is important because 

there were some wells that had zero neurons meeting inclusion criteria and were included as 

a n = 0 when calculating the mean value reported for neurite-bearing neurons. Descriptive 

statistics and Two-Way ANOVA statistical analysis were performed in SPSS, Outputs for which 

can be viewed in the Appendix A Tables A4 – A7. The dependent variable was “mean number 

of neurite-bearing neurons” and the fixed factors were ES Amplitude and Time of ES 

application. Due to the variance in results in mean number of neurite-bearing neurons for 

each experimental group, data was analyzed using the Two-Way ANOVA statistical method 

described with Tukey post-hoc. Statistical significance for all tests discussed were accepted 

at p < 0.05 (denoted by *) and p < 0.01 (denoted by **).  

Mechanistic Studies 

Rationale 

Several studies have reported accelerated motoneuron axonal regeneration in 

response to an AC square wave signal that was associated with an upregulation in BDNF and 

the receptor trkB (Al-Majed et al., 2000a; Al-Majed et al., 2004). Multiple promoters can be 

activated to induce BDNF transcription by pathways involving trkB receptors as well as 

through calcium influx through voltage-gated calcium channels and NMDA receptors. Ca2+-

dependent signaling is propagated to calcium responsive elements regulated by calcium 

stimulated protein kinases (Zheng et al., 2011). After being released from the post-synaptic 

membrane, BDNF can act in an autocrine fashion on local trkB receptors triggering the MAPK 

signaling cascade that increases actin polymerization (Brushart et al., 2002; Difato et al., 

2011; Hronik-Tupaj et al., 2013). Calcium influx has also been associated with f-actin 
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polymerization during growth cone formation (Kamber et al., 2009). GAP-43 stabilizes f-actin 

polymerization and microtubule formation in the growth cone (Aigner, 1995). 

 Wenjin et al. (2011) demonstrated that BDNF expression following electrical 

stimulation is dependent on calcium influx through voltage-gated calcium channels (VGCC) 

which activates the extracellular signal regulated kinase (Erk) pathways. Electrical stimulation 

of spinal cord neuron cultures treated with the L-type VGCC inhibitor nifedipine resulted in a 

reduction in the upregulation of BDNF expression seen with the stimulated controls (Wenjin 

et al., 2011). Nifedipine is in the dihydropyridine class of antagostic molecules that block L-

type VGCC activity (Gurkoff et al., 2013). We sought to develop a method to assay for changes 

in intracellular calcium levels in response to electrical stimulation. The rationale for using 

electrical stimulation in combination with conductive nanofibers for neural regeneration is that 

voltage-gated calcium channels are responsible for increased neurite outgrowth and increased 

neuron viability. By using a calcium imaging assay, we hypothesize that there will be no 

change in intracellular calcium concentration in unstimulated neurons and will increase in 

electrically stimulated neurons. Further, neurons treated with the L-Type VGCC inhibitor 

nifedipine will exhibit no increase in intracellular calcium concentrations. 

Mechanistic Experimental Method 

 Experimental cultures were either unstimulated or stimulated. One set of cultures were 

pre-treated with 10 uM nifidipine for 30 minutes. As a selective inhibitor for L-type VGCCs, 

the nifedipine group served as a test of the hypothesis that L-Type VGCCs are involved in 

activating calcium sensitive signaling pathways responsible for increased neurite outgrowth 

and neuron viability. 

 DRG neurons were cultured on 0.01% HA-CNT nanofibers in 35 mm custom electrical 

stimulation dishes for 24h using culture methods previously described. Neurons were 

incubated at room temperature for 30 minutes protected from light in an HBSS+/+ solution 

containing 2.5 µM Fluo-4 AM (ThermoFisher). Fluo-4 AM is a calcium indicator that fluoresces 

under 488 nm excitation upon binding with calcium. HBSS solutions used during the 
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experiment either contained calcium and magnesium (HBSS+/+) or contained no divalent 

cations (HBSS-/-) (Gibco).  

 After Fluo-4 AM loading, the solution was exchanged with HBSS+/+ and protected from 

light until imaging. The culture plate was then mounted on the microscope and the lid was 

replaced with a custom perfusion lid attached to microfluidic tubing connected to two Leur 

lock syringes to allow for manual solution exchange. Solutions were exchanged by slowly and 

steadily drawing on one syringe to induce solution to drain from the culture chamber while 

slowly advancing the exchange solution through the second syringe. Solution exchange 

occurred such that the volume never depleted the custom well. A region of interest (ROI) was 

chosen and focused using 5 ms exposures to BrightField. Once an ROI was selected, 

approximately three 300 ms FITC exposures were captured to ensure sufficient focus so that 

cell boundaries were apparent during analysis.  

 Once the ROI was selected, an automated 10-minute image acquisition program was 

initiated. Brightfield and FITC filtered images were captured every 10 seconds using a PL FL 

20X objective with a Nikon Ti-E inverted microscope illuminated with a Xenon arc lamp. The 

first 3 minutes of images serve as a fluorescence baseline for each experiment. At the 2-

minute mark, 5 ml of HBSS+/+ was exchanged. At the 5-minute mark, electrical stimulation 

was applied for 5 minutes using a 20 Hz, 250 mV/mm biphasic square wave from a function 

generator. Afterwards, 4 µM Ethidium homodimer-1 solution was exchanged through the 

chamber to distinguish live and dead cells (ThermoFisher Cytotoxicity Kit). A composite still 

image was then acquired using BrightField, FITC, and Texas Red. Cells staining positive for 

Ethidium homodimer-1 were not included in subsequent analysis.  

 Each cell of interest was outlined using the Nikon Elements software Bezier tool to 

obtain the mean FITC intensity value, F. The first 3 minutes of image acquisition was averaged 

and served as the baseline FITC fluorescence value, F0, representing the intracellular calcium 

concentration. Experimental values are reported as a ratio F/F0, where F is the mean intensity 

at each time point. 
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Experimental Results 

L929 Cytotoxicity Assays with Electrical Stimulation 

 No evidence of cytotoxicity in L929 fibroblasts was observed either morphologically 

(Figure 4-2) or when considering Alamar Blue assay results (Figure 4-3). There was no 

statistical difference detected between any groups as assessed by the percent reduction of 

Alamar Blue reagent which correlates to metabolic activity. After 24h, prior to electrical 

stimulation, there was no evidence of altered cell proliferation between L929 cultured on HA 

and HA-CNT nanofibers compared to L929 cultured on glass (Figure 4-3 Panel B). As expected 

 
Figure 4-2. Cytotoxicity Testing with L-929. 

 

Cytotoxicity testing of custom electrical stimulation system for in vitro experiments 

using L-929 fibroblasts cultured on HA and HA-CNT nanofibers. L-929 fixed and 

labeled with FITC-phalloidin (green) and DAPI (blue) to visualize cell morphology and 

nuclei following 72h in culture (first row). Bright field images (2
nd

 row) merged with 

epifluorescence images allow for visualization of cells on nanofibers. Results from 

metabolic assay via Alamar Blue show no difference in cell attachment (A) 24hr after 

cell seeding and no difference in proliferation (B) 24hr post stimulation and (C) 48 h 

post stimulation. These results support the conclusion that the custom electrical 

stimulation culture chambers and the electrical stimulus parameters for L929 (5 min, 

300 mV/mm, biphasic 1 Hz AC square waveform) were suitable to adapt to in vitro 

studies using neurons. 



84 

 

in the absence of cytotoxic effects of culture conditions on nanofibers and materials used in 

custom ES chamber fabrication, there was no change in L929 proliferation as measured by 

percent Alamar Blue reduction. These results were standard across the board, regardless of 

fiber type and whether the samples received electrical stimulation or not. Moreover, the 

proliferation rate was not altered as evidenced by percent increases in Alamar Blue reductions 

from 24h to 48h post-treatment, with no differences between any groups. 

 
 

Figure 4-3. Cell Attachment with L-929. 

 

Results from metabolic assay via Alamar Blue show no difference in cell attachment (A) 

24hr after cell seeding and no difference in proliferation (B) 24hr post stimulation and (C) 

48 h post stimulation. These results support the conclusion that the custom electrical 

stimulation culture chambers and the electrical stimulus parameters for L929 (5 min, 300 

mV/mm, biphasic 1 Hz AC square waveform) were suitable to adapt to in vitro studies 

using neurons. 



85 

 

Electrical Stimulation Assays with Dissociated Dorsal Root Ganglia 

Neuron cultures were either unstimulated or stimulated for 30 or 60 minutes using a 

charge balanced, biphasic square wave with amplitude of 150 mV/mm, 200 mV/mm, or 250 

mV/mm. Examples of fluorescence images can be seen in Figure 4-4 as a result of merging 

Bright Field, FITC, and DAPI channels. The neurofilament labeled with FITC clearly delineates 

axons aligned with the nanofibers viewable in the Bright Field channel. The DAPI-labeled 

nuclei are more easily distinguished in the individual panels displayed in Figure 4-4.  

The bar charts displayed in parts b and c of Figure 4-4 depict the neurite length and 

number of neurite bearing neurons analyzed from the 14 experimental groups from Appendix 

A Table A1. Three-way ANOVA revealed significant main effects for nanofiber type, time, and 

amplitude (p < 0.01) (Table A3, Appendix A). After 72h in culture, neurons on unstimulated 

HA-CNT nanofibers were longer than those cultured on HA which follows the behavior seen 

after 48h reported in the attachment studies in Chapter 3. There appears to be a threshold 

for obtaining longer neurite outgrowth with a voltage amplitude of at least 200 mV/mm for 

both the HA and HA-CNT nanofibers, with neurites on the 200 mV/mm 30-minute condition 

being significantly longer than 150 mV/mm and the unstimulated conditions. For neurons 

grown on the HA substrates, the 200 mV/mm 30-minute condition resulted in significantly 

longer neurites when compared to the unstimulated and 150 mV/mm conditions but not the 

250 mV/mm 30 min condition.  

On the other hand, neurons stimulated on HA-CNT nanofibers for 30 min at both 200 

and 250 mV/mm were significantly longer than those on the unstimulated control. While there 

was a significant difference between HA and HA-CNT for the 30-minute 150 mV/mm for HA-

CNT condition, there was no difference at the higher amplitude 30-minute conditions when 

comparing fiber type. However, when stimulation time was doubled to 60 minutes, a definitive 

improvement in neurite growth on HA-CNT nanofibers was achieved at all voltage amplitudes 

when compared to both unstimulated fiber type and the HA nanofibers at the same ES 
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conditions. The 250 mV/mm 60-minute HA-CNT group resulted in statistically longer neurons 

than all other groups. 

The average number of neurons bearing neurites per well on HA-CNT nanofibers 

following the 60-minute electrical stimulation regimes at all amplitudes far outnumbered the 

unstimulated and 30-minute conditions of both fiber types. While there was no statistical 

significance between the 150, 200, 250 mV/mm amplitude conditions at 60 minutes for the 

HA-CNT nanofibers, each of these conditions were statistically different than all other groups.  

FIGURE 4-4 panel c and the statistical reports in Appendix A (Tables A4 – A7) should be 

considered together when drawing conclusions regarding the effects of electrical stimuli on 

neuron number, as this output measure is dependent on the quantification of number of 

neurite-bearing neurons and considered each well within these experiments. In other words, 

there were some wells in which no individual neurons which met the inclusion criteria could 

be counted. When reporting the mean number of neurite-bearing neurons for each condition 

in Appendix Table A1, wells that had zero neurons meeting inclusion criteria were included as 

a n = 0 when calculating the mean value reported for neurite-bearing neurons. For example, 

for the HA 200 mV/mm 30-minute condition, there were a total of 11 wells from 3 separate 

experiments but only 7 of those wells contained neurons that met the inclusion criteria. The 

reported length values discussed earlier do not take into account this parameter, but this 

phenomenon was observed and reportable in a reproducible and consistent manner following 

this method. 
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Calcium Imaging and Electrical Stimulation Assay Results 

Figure 4-5 displays results obtained from a preliminary study in which neurons loaded 

 

 
Figure 4-4. Electrical Stimulation of Neurons Cultured on HA and 0.01% HA-CNT 

nanofibers. 

 

Merged fluorescence micrographs (scale bar 50 µm) of dissociated dorsal root ganglia neurons 

fixed after 72h of culture in serum-free media supplemented with 50ng/ml NGF. 24h after 

attachment, neurons were electrically stimulated with a 200 mV/mm biphasic 20 Hz AC square 

waveform for either 30 minutes (B, E) or 60 minutes (C, F). Compared to unstimulated neurons 

on HA and HA-CNT (A, D), stimulated neurons cultured on nanofibers exhibited significantly 

longer neurites. Moreover, neurites measured from neurons cultured in each HA-CNT condition 

were longer than their HA counterparts, both unstimulated and stimulated. The number of 

neurite-bearing neurons significantly increased with electrical stimulation at 60-minute 200 

mV/mm compared to unstimulated for all groups. Again, there were significant increases relative 

to unstimulated HA-CNT and unstimulated HA when considering neuron number. The inclusion 

criteria for quantification of neurite length and neuron number were single soma neurons with 

a neurite at least twice the width of the soma and not touching any other neuron or its processes. 

Notably, the number of neurons that fit these criteria were decreased in the 30-minute 

conditions for both HA and HA-CNT relative to the unstimulated and 60-minute conditions. 
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with a calcium sensitive indicator were either left unstimulated or were electrically stimulated 

with a 20 Hz, 250 mV biphasic square wave. One of the electrical stimulation experimental 

conditions included pre-treatment with the L-Type VGCC inhibitor nifedipine. In the 

unstimulated condition, there was a negligible increase in intracellular calcium concentration 

(<1%). There was approximately 10% increase in intracellular calcium in the electrically 

stimulated condition and a 17% decrease in the nifedipine condition. These percent changes 

are based on the F/F0 values at the onset of electrical stimulation divided by the final F/F0 

value at the end of the experiment. No statistical analysis was performed due to low number 

of trials per treatment (N = 1 trial, n = 2 neurons Unstimulated; N =1, n = 5 neurons, 

Nifedipine; N = 2, n = 6 neurons Stimulated). 
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Figure 4-5. Relative Intracellular Calcium Changes in Neurons Upon 

Electrical Stimulation. 

 
DRG neurons loaded with FITC-conjugated calcium indicator to probe calcium 

responsiveness to (A) electrical stimulation and (B) electrical stimulation after pre-

treatment with nifedipine. (C) Neurons loaded with a fluorescent calcium indicator 

were unstimulated, stimulated or were treated with the L-Type VGCC inhibitor 

nifedipine and then stimulated. Each diamond on the line at the top of the graph 

denotes an experimental event dividing the experiment into sections. The F/F0 

values within the first section were averaged to serve as a baseline. Consecutive 

flushes of HBSS-/- followed by an HBSS+/+ exchange occurred during the second 

section. At time = 300 seconds, the electrical stimulus was applied for the duration 

of the third segment. Comparing the endpoint relative fluorescence (F/F0) to those 

values at the onset of electrical stimulation, intracellular calcium concentration 

increased for the electrical stimulation condition, decreased for the nifedipine 

condition, and approximately no net change in the unstimulated condition.  
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Discussion 

The electrical stimulation assays testing L929 proliferation when cultured in the custom 

electrical stimulation chambers on glass and HA and HA-CNT substrates illustrate several key 

findings. First, L929 proliferation was not altered regardless of substrate type within 24h of 

initial cell seeding. Second, L929 proliferation was not impacted when comparing metabolic 

activity between cells cultured on HA and HA-CNT nanofibrous substrates with or without 

electrical stimulation using a 300 mV/mm biphasic square AC waveform. Considering these 

two outcomes, we concluded that our custom electrical stimulation system: (1) provided a 

biocompatible electrical stimulation environment for (2) observing cell behavior on 

electroactive biomaterial substrates in a (3) with reproducible, predictable outcomes. By 

establishing these 3 key factors, we concluded our electrical stimulation system was well-

suited for experimental observations in cell types known to be sensitive to culture conditions 

and microenvironments.  

We report the quantification of neuron behavior as measured by neurite length and 

number of neurite-bearing neurons following electrical stimulation through HA and HA-CNT 

nanofibrous systems using a dissociated DRG in vitro model. We demonstrate that HA-CNT 

nanofibrous substrates increase the effectiveness of sustained neuron growth as evidenced 

by neurite length and neuron number through 72h with only 1 hour of an applied 20 Hz 

biphasic AC waveform 24h following initial seeding. While it should be noted that there are 

three potential cell phenotypes present in a dissociated DRG cell suspension, Schwann cells, 

neurons, and satellite cells, our results are nonetheless profound. Future advancement in the 

field would ideally quantify cell behavior of all phenotypes present in a co-culture.  

Other groups have reported the use of carbon nanotubes as part of bioactive material 

composites to elicit cellular repair mechanisms (Huang et al., 2012). Our results corroborate 

evidence previously reported by (Koppes et al.)that electrical stimulation significantly 

enhances DRG neurite growth regardless of the integration of SWCNT to 3D collagen I-

matrigel hydrogels. Moreover, they observed increased neurite length both with and without 
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electrical stimulation in SWCNT composite hydrogels, reporting their results were not 

attributable to bulk mechanical properties based on rheological data.  

The main contribution of this thesis to the neural engineering field is the 

comprehensive quantitative material characterization that underscores the additive roles of 

biochemical and electrochemical material properties in activating cell behavior in response to 

electrical stimulation. The topography and composition, bulk and nanoscale mechanical data, 

and contact angle data provide evidence that topography, mechanics, and surface chemistry 

support neurite outgrowth in both HA and HA-CNT culture conditions. AFM topographical 

images of hydrated nanofibers confirmed the nanoscale fiber topography is conserved when 

COOH-MWCNTs are incorporated within the nanofiber core. Comparatively, the HA nanofibers 

displayed significant swelling behavior apparent both in traditional brightfield microscopy and 

in height AFM images. The addition of the electrical cue during culture significantly increased 

neurite number and length. By providing extensive quantitative nanomechanics and 

electrochemical data in conjunction with neuron behavior in response to electrical stimuli, we 

demonstrate the unique contribution of this work proposing the combination of extracellular 

matrix mimicry combined with electrical stimulation for neural regeneration applications. 

Several studies have reported the important roles hyaluronic acid and mature extracellular 

matrix play in regulating synaptic activity by affecting the diffusion of signaling molecules and 

function of membrane receptors, such as L-type VGCCs (Frischknecht et al., 2009; 

Kochlamazashvili et al., 2010b). 

 Experimental perturbations investigated the role of L-type Voltage-Gated Calcium 

Channels (VGCCs) in modulating calcium influx using an electrical stimulus that previously 

resulted in significantly increased neurite outgrowth and neuron viability. Preliminary data 

indicated a potential role of L-type VGCCs in neuron response when electrically stimulated in 

culture on HA-CNT nanofibers. We present here a method for future exploration of the 

molecular mechanisms underlying the effects of electrical stimulation on the regenerative 

behavior in dorsal root ganglia neurons.  
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 Method development was challenging given the multiple factors contributing to 

experimental success. Examples of experimental factors contributing to successful trials 

include cell density, Fluo-4 AM loading concentration and time, imaging conditions and 

acquisition including illumination intensity. It is possible to use an excitation intensity that is 

too high; we observed membrane blebbing in earlier trials indicative of the activation of 

apoptotic cascades. It was determined the observed apoptosis was due to phototoxicity. By 

reducing the power of the illumination source, increasing the time between frame acquisition, 

and incorporating an endpoint viability stain, we were able to confirm that apoptotic responses 

to experimental conditions were eliminated. Using a perfusion set-up enabled a stable region 

of interest to be imaged enabling data collection throughout the time course of the 

experiment, from initial baseline cytoplasmic fluorescence through the live/dead stain at the 

end of each experimental trial.  

 There are two major limitations in the experimental method and preliminary data 

shown reported here. First, perfusion was performed manually versus by a peristaltic or 

syringe pump which results in inconsistent temporal resolution between experimental groups. 

Second, there is a limited sample size. The preliminary data reported here includes one trial 

and low sample number for each of the nifedipine (n = 5 cells) and unstimulated (n = 2 cells) 

groups. The reported stimulated data set is an average of 2 trials with n = 3 cells each.  

 Future work should explore the relationships between electrical stimulation of 

neurons cultured on conductive nanofibers and molecular mechanisms that are dependent on 

voltage-gated calcium channels. Calcium signaling and calcium-sensitive protein transcription 

such as BDNF and its receptor trkB which have been demonstrated to have downstream effect 

on increased f-actin polymerization during growth cone formation (Al-Majed et al., 2000a; 

Kamber et al., 2009; Wenjin et al., 2011). 

A major contribution of the work presented in this chapter is the elucidation of electrical 

stimulation (ES) parameters and their effects on neuron growth, particularly the parameters 

of time duration of application and voltage magnitude. In the electrical stimulation for neural 
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tissue engineering and regeneration literature, time durations for ES range from one 

application for 1 hour duration to four consecutive days of ES for 6-8 h durations each time 

(Steel and Sundararaghavan, 2016). For realistic clinical therapeutic applications, Al Majed et 

al demonstrated the feasibility in vivo of a 1-hour stimulation. Our results here provide the 

first to our knowledge demonstration in vitro of side by side comparison of single application 

of AC waveform regimes delivered through conductive nanofibrous biomaterial substrate on 

neuron outgrowth and viability. Not only did we verify previous reports in the literature of 

short durations of electrical exposure with lasting results (72h post stimulation), we also have 

identified a threshold signal intensity (200 mV) for despite substrate type. If considering the 

20 Hz impedance values for HA-CNT versus HA (approximately 9800 Ohms and 16500 Ohms 

respectively), it could be logical to infer that a lower impedance material would exhibit a time 

dependent dose response effect compared to a higher impedance material under the same 

stimuli given that impedance describes resistance to the flow of current. If downstream BDNF 

expression is dependent on ionic influx and ion flow across the membrane can be described 

as ion current, it may be a reasonable to identify the calcium-dependent BDNF expression 

and release as a target molecular mechanism in our system.  

Previous work has shown whole DRGs to exhibit significantly more neurite outgrowth 

following electrical stimulation when compared to unstimulated controls.(Xie et al., 2009b) 

Recent work by the Thompson group has revealed that Schwann cells increase secretion of 

NGF following electrical stimulation.(Koppes et al., 2014a) It is possible that the enhanced 

neurite outgrowth observed in the Xie study was due to increased secretion of NGF by 

Schwann cells. A limitation of our study is that other cell types present as a result of the use 

of a dissociated tissue explant that were affected by the applied ES prevents us from assigning 

neuron behavior purely as a results of neuron response to ES. However, we can recognize 

that if Schwann cells were affected by ES, there is supporting evidence in the literature that 

there is T-Type VGCC mediation of NGF production and release in Schwann cells (Luo et al., 

2014) and that ES has a significant growth-promoting effect on neurons (Koppes et al., 
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2014a; Koppes et al., 2011). T-type VGCC is related to a Schwann cell proliferation and a 

pro-mylenating SC phenotype, with far reaching implications for treatments beyond traumatic 

nerve injury to de-mylenating neurodegenerative diseases (Luo et al., 2014). Moreover, 

Schwann cells have also been implicated in NGF production and release in response to ES 

(Koppes et al., 2014a; Thompson et al., 2014). There is potential that electrical stimulation 

activates intracellular molecular cascades for any cell type present in the dissociated DRG 

culture that contains membrane voltage gated channels. Future studies are required to 

identify which voltage sensitive channels act synergistically to activate regenerative behavior 

when neuron and support cells cultured on conductive materials are electrically stimulated. 

Conclusion  

 With the comprehensive consideration of the material characterization presented in Ch 

2, the data supporting the appropriate in vitro model in Ch 2 and Ch3 culminating in a clear 

cell response to electrical stimuli delivered through electroactive nanofibrous HA scaffolds, 

further enhanced by the presence of ultra-low concentration of dispersed and confined COOH-

MWCNTs within the nanofiber geometry, we conclude that it is reasonable to advance 

investigations to molecular biological techniques to quantify major players in the L-type VGCC 

- BDNF pathway. RT-PCR, microarray, and more specific techniques like single cell analysis 

could elucidate the cellular phenotypes and sub-phenotypes responsible for this observed 

behavior. This body of work has great potential in providing a foundation to merge biomaterial 

scientists with efforts like those of the Human Cell Atlas consortium to usher in a deeper 

understanding of unresolved mechanisms of cell behavior responses to biomaterials. 
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Chapter 5 : Successful Biomaterials Engineering Requires Failure 

 
Portions of this chapter are contained in the publication:  

 Steel E.M., Sundararaghavan H.G. (2016) Electrically Conductive Materials for Nerve 

Regeneration. In: Zhang L., Kaplan D. (eds) Neural Engineering. Springer, Cham. 

Design Iteration for Biomaterial Development 

To Engineer Is Human: The Role of Failure in Successful Design by Henry Petroski 

provides a window into the engineering ethos and oft underappreciated humanistic factors 

that are the foundations of the greatest advancements in human civilization. Engineering 

solutions for society’s greatest problems require an understanding of as applied to a specific 

system. To design a solution for a problem, the circumstances and parameters of the problem 

must be defined. For complex problems, all the parameters of the system under investigation 

are not known quantitatively. In these cases, to converge upon a solution, quantitative 

measurements must be acquired to reduce the number of unknowns and in cases for which 

it is impossible or impractical to replace an unknown with a value derived from quantified 

data, it is necessary for the practitioner to substitute the unknown with an assumption. The 

assumption should be derived from what is generically referred to as “an educated guess” 

which should be backed by a clear rationale and an understanding that presented new 

evidence, that “educated guess” can be replaced with a refined value. Thus, Professor 

Petroski’s main argument provides an apt perspective for the process to fabricate, test, and 

validate the HA-CNT nanofibers for electrically stimulating regeneration in Neural Tissue 

Engineering (NTE) applications: “… the concept of failure… is central to understand(ing) what 

engineering is and what engineers do.” Further, “to understand how failures can happen” 

contributes more to technological advances than do successes (Petroski, 1992). The body of 

work reported here is the result of design iterations seeking to match our material properties 

(topography(Xie et al., 2009a), modulus(Borschel et al., 2003), impedance(Donnelly, 1994; 

Sharp et al., 2017)) and cell responses (Xie et al., 2009a) to the predicted “educated guesses” 
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obtained from the associated literature (Borschel et al., 2003; Harris et al., 2013; McCaig et 

al., 2005). 

Chapter 1 and the introductions of each of the subsequent chapters provide a sampling 

of the expansive body of literature substantiating the effects of electrical stimulation on 

nervous system development, repair, and neuronal guidance and the application of that 

knowledge to investigating a variety of biomaterials to facilitate tissue regeneration with 

combinatorial cues. Chapter 2 provided comprehensive material characterization evidence of 

the successful fabrication of hyaluronic-acid carbon nanotube nanofibers through an 

environmentally-controlled electrospinning technique using an optimized formulation. Design 

targets of topographical, mechanical, and conductive properties relevant to peripheral nerve 

(PN) regeneration were achieved. SEM and TEM were used to validate the electrospun 

nanofibers were incorporated with CNTs within the nanofibers with reduced number of 

agglomerations with a well-dispersed CNTs at ultra-low concentrations as opposed to higher 

concentrations.  Smooth, aligned nanofibers encapsulating an ultra-low concentration of 

COOH-MWCNTs were successfully electrospun within methacrylated hyaluronic acid 

nanofibers to achieve a material with modulus below the 1 MPa and 10,000 Ω targets for PN. 

To our knowledge, this is the first demonstration of COOH-MWCNTs incorporated into 

hyaluronic acid nanofibers electrospun from an aqueous medium. Moreover, this study is the 

first to chronicle the local moduli of fully submersed biopolymer CNT composite nanofibers in 

PBS by performing Atomic Force Microscopy in Fluid using the Quantitative Nanomechanical 

Mapping Mode. Electrochemical characterization surveyed the impedance and capacitance 

properties of HA-CNT nanofibers demonstrating the ability of carbon nanotubes to conduct 

electrons and ions in PBS. Further, when compared to impedance values of native tissue, HA-

CNT nanofibers more closely resemble peripheral nerve. The nanostructured nature of these 

composite hydrogel nanofibers offers the first hydrogel-based peripheral nerve interface that, 

at 50 μm thickness, mimics native tissue matrix mechanics and topography, possesses the 

electrochemical behavior to deliver a stable and effective electrical stimulus, and has the 
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potential to be degradable. The next nearest peripheral nerve interface has been fabricated 

by the Otto, Judy, and Schmidt at University of Florida; the TEENI device is revolutionary in 

its function but unfortunately elicits a foreign body response due to its topological and 

mechanical mismatch with surrounding tissue (Spearman et al., 2017). 

Chapter 3 validates the HA-CNT nanofibrous material as non-cytotoxic and permissive 

to neuron growth. Chapter 4 provides statistically significant evidence from electrical 

stimulation assays using dissociated dorsal root ganglia neurons that an Alternating Current 

electrical stimulus can be delivered through the HA-CNT nanofibers to elicit increased neurite 

outgrowth and viability. Further, when our in vitro functional end-point outcome measures 

are juxtaposed to the electrochemical characterization data, there is a clear, predictable 

pattern that emerges validating our biomaterial design using the 200 μA electrical stimulus 

to increase neurite outgrowth and number of responding neurons as framed in the historical 

context of successful in vitro and human clinical trials of safe and efficacious oscillating field 

stimulators (Graves et al., 2011; Hamid and Hayek, 2008; Shapiro, 2014; Shapiro et al., 

2005). 

Study Strengths: in vitro neuron model 

We used a primary neuron cell model of dorsal root ganglia (DRG) neurons dissociated 

from DRG explants from the lumbar spinal regions of chick embryos embryonic stages day 

11-13 (Song and Uhrich, 2007). Other Neural Tissue Engineering (NTE) researchers use 

primary neuronal cell models like those DRG dissected from chick embryos or neonatal rats, 

including suspensions that have been cryogenically stored (Seggio et al., 2008). Studies using 

other cell sources are well documented in the literature and reviewed in Biomaterials by Gu 

et al. including the PC-12 line, neural stem cells, and neural progenitor cells derived from 

induced pluripotent stem (iPS) and human embryonic stem cells, and support cells derived 

from marrow stromal cells (Gu et al., 2014). Chick dorsal root ganglia have a number of 

advantages when conducting early stage biomaterial testing. The chick embryo is a well-

established model organism for embryonic development of the nervous system, embryonic 
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development is critically dependent on the bioelectric behavior and pathways being 

investigated in in Chapter 4 (Burt, 2005). It is of utmost concern for researchers to consider 

an in vitro model appropriate for the systems and pathways being affected by the biomaterial 

being tested. The chick embryo was deemed an appropriate animal model from which to 

derive our primary cell samples based on the evolutionary conservation of the nervous system 

physiological pathways under investigation (Barde, 1989; McCaig et al., 2005; Tyler, 2017). 

Phylogenetic mapping of intracellular signaling pathways downstream from the calcium 2nd 

messenger influx through VGCCs would be necessary in order to determine an appropriate 

model (Burt, 2005; Tyler, 2017). It should be noted that findings discussed in this body of 

work should be considered in the context of the in vitro model employed. To effectively 

translate electroceutical and electroactive tissue engineering based treatments into humans, 

relevant in vivo models should be employed, particularly when evaluating a combinatorial 

approach for potential in treatment of human critical gap defects (Bellamkonda, 2006; Kaplan 

et al., 2015). 

Future Directions 

 Repeating the calcium imaging experiments for the method developed in Chapter 4 

would elucidate the molecular pathways involved to increase regeneration following electrical 

stimulation of neurons cultured on conductive nanofibers. The first step in this would be to 

perform high resolution, functional calcium imaging on neuron and glial voltage-gated calcium 

channel (VGCCs) activity (Luo et al., 2014; Shin et al., 2017; Wang, 2009; Wenjin et al., 

2011). Neurons are known to express L-type VGCCs, Schwann cells T-type VGCCs, and cell-

cell interactions like those described by Zhang with satellite cells releasing ATP make tissue 

level physiology feedback responses to electrical stimulation especially complex (Zhang et al., 

2007a). 

Developmental models can be advantageous to use when defining fundamental cell 

processes using basic science techniques, even if there is call for concern that chick and rodent 

models do not “directly translate” to human regenerative processes. By implementing the 
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technique outlined in this thesis, the next step is to quantify BDNF and other neurotrophic 

expression dynamics. Just as Borgens and colleagues used lower order animal models to 

elucidate basic mechanisms, and other groups like McCaig and et. al. (McCaig et al., 2002; 

McCaig et al., 2005) spring boarded to define mechanisms for neuronal targeting behavior, 

biomedical engineers should consider the strategy to refine molecular mechanisms in a 

simplified model. This strategy may then prove fruitful in long-term device development to 

adapt solid, fundamental cell and developmental biology to medical device development when 

underlying mechanisms are evolutionarily conserved. With the advent and exponential 

capacity of the scientific community to move from a basic model that has thorough genomic, 

proteomic, and cytomic characterization due to the capability of single cell analysis, 

evolutionary biologists like Dean Scott Lanyon at the University of Minnesota propose greater 

success can be achieved in relevant pre-clinical trials by performing phylogenetic mapping of 

developmental models against large animal models.  

This body of work fills a gap identified by the 2014 Thompson review of electrical 

stimuli in the central nervous system that there are few comprehensive studies that 

investigate electrical stimulation in combination with other cues like topography, chemical, 

and mechanics (Thompson et al., 2014). Our future goals, that future work must 

systematically characterize the molecular mechanisms underlying regenerative cell behavior 

following electrical stimulation. Understanding the conductive material-protein -cell 

interactions informs material selection during scaffold design. Integration of these knowledge 

bases is crucial in developing clinically translational neural tissue engineering treatments. 

Challenges experienced by biomaterials researchers are ever-increasing as we have 

more information at our finger tips than ever, but less bandwidth and capacity to review, 

integrate, and distill which studies are grounded in foundational concepts. Particularly 

challenging, is reviewing the literature and selecting material design criteria without a specific 

goal in mind. We found it particularly useful in the thesis reported here to choose a specific 

application within the nervous system, and further a specific application in the peripheral 
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nerve system. We believe our HA-CNT composite material has the potential to be developed 

for future applications across multiple indications of various nervous disorder and dysfunction 

as well as other systems. By simplifying our first use case, we created a simplified in vitro 

model using our nanofibrous scaffold. Most importantly, we modeled a dynamic system rather 

than a static system given the wealth of information available. Moving forward, future 

research could employ computer generated neural network seeded with values from literature 

reports could be used by biomaterials researchers to model their proposed material design 

akin to finite element modeling and analysis. Atomic Force Microscopy extracellular matrix 

topographical mapping of Type I collagen has served as a foundation(Wallace et al., 2010) 

for finite element modeling and analysis to predict cortical bone fracture.(Wang and Ural, 

2018) This type of advancement could accelerate product development and decrease the 

resources necessary such as budgetary expenditures and time to market, thus ultimately 

impacting our intended customers. While training as a graduate level biomedical engineer, I 

was fascinated to learn that my target customers were not patients but the clinicians, 

insurance companies, regulatory entities, and other key decision-makers.  

Reports in the literature of material characterization as a resistance value, an 

impedance value, and as dielectric constants make electroactive material design challenging 

for researchers to discern which differences are the most crucial for a given application. An 

understanding of the underling electrical engineering and mathematics to model the cell 

membrane could be instructive when designing a biomaterial for a specific application. If one 

is designing a material to target a single cell, or a tissue, could affect the selection of initial 

design parameters. Cellular, systems, and organismal level feedback mechanisms can be 

modeled using engineering techniques like mathematical modeling is applied to neurons, 

circuits, and systems.(Gutkin et al., 2003) 

Electrical Stimulation: Incomplete Mechanistic Evidence 

A handful of studies have provided evidence identifying molecular targets affected by 

electrical stimulation. The 2012 Guo study observed an increase in the expression of the 
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extracellular matrix proteins collagen I, elastin, and fibronectin I by NIH 3T3 fibroblasts 

piezoelectrically excited through polyurethane (PU)/PVDF scaffolds affixed to a flexible-

bottomed culture plate (Flexcell) by applying an 8% deformation at 0.5 Hz (Guo et al., 2012). 

The protein expression from cells cultured on nonpiezoelectric-excited PU/PVDF scaffolds and 

PU scaffolds under the same deformation conditions were not significantly different from one 

another (Guo et al., 2012). When PC12 neuronal-like cells were cultured on a CNT-coated 

PLCL fibrous scaffold, Jin et al. discovered increased expression of focal adhesion kinase 

(FAK), which plays a role in integrin-mediated binding (Jin et al., 2011b). Although this result 

suggests that FAK activation due to integrin receptors binding to CNTs may be involved in the 

pathway responsible for increased neurite outgrowth, further investigation is needed to 

determine if this observation is repeatable and quantifiable under electrical stimulation 

conditions. Using adult rat DRG neurons and PC12 cells, Eva et. al. demonstrated that the 

proteins ARF6 and Rab11 are required for optimal integrin-dependent axon regeneration 

following injury, due to their roles in trafficking of the integrin subunits, α9 and β1 (Eva et 

al., 2012). These integrins may serve as viable targets to elucidate their involvement in FAK 

activation in future studies. 

Other studies investigating receptor-mediated mechanisms indicate voltage-gated 

calcium channels to play a role in enhanced neurite outgrowth. Several studies have reported 

accelerated motoneuron axonal regeneration in response to an AC square wave signal that 

was associated with an upregulation of BDNF and the receptor trkB (Al-Majed et al., 2000a; 

Al-Majed et al., 2004). Multiple promoters can be activated to induce BDNF transcription by 

pathways involving trkB receptors as well as through calcium influx through voltage-gated 

calcium channels and NMDA receptors. Ca2+-dependent signaling is propagated to calcium 

responsive elements regulated by calcium stimulated protein kinases (Zheng et al., 2011). 

After being released from the post-synaptic membrane, BDNF can act in an autocrine fashion 

on local trkB receptors triggering the MAPK signaling cascade that downstream increases actin 

polymerization (Brushart et al., 2002; Difato et al., 2011; Hronik-Tupaj et al., 2013). Calcium 
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influx has also been associated with f-actin polymerization during growth cone formation 

(Kamber et al., 2009). GAP-43 stabilizes f-actin polymerization and microtubule formation in 

the growth cone (Aigner, 1995). Interestingly, the electrical stimulation studies that found 

increased expression of BDNF and its receptor trk-B associated with accelerated motoneuron 

growth, also found an increase in GAP-43 expression and the cytoskeletal proteins tubulin 

and actin (Al-Majed et al., 2004; Hronik-Tupaj et al., 2013).   

Wenjin et al. (2011) demonstrated that BDNF expression following electrical 

stimulation is dependent on calcium influx through voltage-gated calcium channels (VGCC) 

which activates the extracellular signal regulated kinase (Erk) pathways. Electrical stimulation 

of spinal cord neuron cultures treated with the L-type VGCC inhibitor nifedipine resulted in a 

reduction in the upregulation of BDNF expression seen with the stimulated controls.(Wenjin 

et al., 2011) Nifedipine is in the dihydropyridine class of antagonistic molecules that block L-

type VGCC activity.(Gurkoff et al., 2013) The Erk phosphorylation inhibitor PD98059 

eliminated the upregulation of BDNF seen in stimulated controls and reduced expression 

beyond the basal levels measured in the unstimulated controls. PD98058 specifically blocks 

the phosphorylation of Erk which then prevents the phosphorylation of the transcription factor 

CREB required in BDNF transcription.(Wenjin et al., 2011) 

Calcium channels and two-pore domain potassium (2-PK) channels can be influenced 

by electrical stimulation serving to activate neurite outgrowth through cytoskeletal protein 

synthesis (Huang et al., 2012; Mathie et al., 2003). Electric field stimulation may regulate 

protein kinase A and C phosphorylation, which mediate the activation of the 2-PK channel 

(Mathie et al., 2003). Two groups have demonstrated that electrical stimulation of Schwann 

cells activates T-type voltage-gated calcium channels leading to increased intracellular 

calcium production resulting in calcium-dependent exocytosis of NGF (Huang et al., 2010; 

Koppes et al., 2014a). Similarly, through the use of calcium imaging, VGCCs have been 

identified as the transducers of electrical cues in neural stem cells differentiated into 
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neurons(Park et al., 2011) and embryonic rat hippocampal neurons(Wang et al., 2006) when 

stimulated through graphene and CNT substrates.   

Towards defining electrical cue signal parameters, Shi et. al. applied both voltage-

defined signals (100 mV/mm) and current defined signals (2.5, 25, and 250 µA/mm) to 

human cutaneous fibroblasts cultured on gold-coated Petri dishes (Shi et al., 2008). They 

found no significant effect of the surface current density on cell adhesion or viability; whereas, 

the constant 100 mV/mm electrical field significantly increased adhesion and viability. These 

results taken in accordance with the previous discussion on VGCCs suggest that voltage rather 

than current modulates the effects of electrical stimulation on cell behavior. One theory 

suggests that enhanced neurite outgrowth may be due to ionic current in the culture medium 

or interstitial fluid due to the applied electric field (Patel and Poo, 1982; Schmidt et al., 1997).  

There is debate concerning the method of electrical stimulation, as to whether the 

electrodes that are delivering the electrical signal to the conductive material must be 

separated from the media surrounding the cells during culture (Pires et al., 2015). Schmidt 

argues that if the stimulus is under the point at which electrolysis of water occurs (1.2 V), 

then the electrodes can in contact with the cell media..(Schmidt et al., 1997) Results from 

both Patel and Schmidt provide evidence that field-induced ion transport through the media 

played no role in  the effects elicted by  electrical stimulation. The former discovered more 

growth-controlling membrane glycoproteins in growth cones near the cathode, suggesting an 

electrophoretic redistribution of charged membrane components (Patel and Poo, 1982). When 

cells are cultured on plastic withan exogenously applied current, Schmidt and colleagues 

found results similar to the non-stimulated control (Schmidt et al., 1997).  

Other studies attribute enhanced cell behavior to be due to the attraction and 

adsorption of serum proteins to the surface of the stimulated substrate. Kotwal and Schmidt 

observed enhanced neurite outgrowth in PC12 cells following surface adsorption of fibronectin 

to PPy films.(Kotwal and Schmidt, 2001) Interestingly, neurite outgrowth was not increased 

if stimulation was delayed for 2 hours. The group offered altered protein conformation 
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following stimulation to explain enhanced neurite outgrowth. Recently, Schmidt and 

colleagues have systematically investigated the effects of protein adsorption and electric field 

strength on Schwann cell behavior. Their results suggest that Schwann cell migration 

directionality towards the anode is a function of electric-field-mediated phenomenon whereas 

migration speed is an integrin- or receptor-mediated phenomenon (Forciniti et al., 2014). The 

group notes that other studies which conclude that Schwann cell migration was an electric-

field-mediated phenomenon cannot make that claim due to the confounding factors of using 

composite PPy materials or co-culturing Schwann cells with neurons. For example, Quigley 

observed increased migration distance of Schwann cells from DRG explants after electrical 

stimulation on a PPy platform upon which 75:25 PLA:PLGA fibers had been wet-spun.(Quigley 

et al., 2009) Cell-cell interactions between neurons and Schwann cells as well as the polymer 

blend may have influenced Schwann cell behavior.  

While there is an ever-growing body of studies indicating benefits of electrical 

stimulation, future in vitro studies should include data to elucidate the molecular mechanisms 

behind enhanced neural and glial cell behavior. Experiments which utilize quantitative RT-

PCR, in-cell western blot analyses, and flow cytometry function to determine the targets and 

molecular pathways involved. It could also be informative to use siRNA to knockdown gene 

expression suspected to be associated with growth and migration processes. siRNA 

knockdown studies could help determine signal transduction pathways that may be affected 

by electrical stimulation. Once more comprehensive evidence of molecular mechanisms has 

been collected, electrical stimulation of co-cultures of neurons and glial cells could be 

informative to gain a systems understanding. Further, once molecular pathway targets have 

been identified, the exact parameters of the electrical stimulus or waveform necessary to elicit 

desired effects can be defined. 

  In vivo assessment of scaffold efficacy is also required to demonstrate the potential 

for clinical efficacy. It is critical to drive forward animal testing to gain crucial information 

regarding long-term physiological response to conductive materials, functional recovery of 
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nerves, and immune response to degradation products. In a review of peripheral nerve 

regeneration, Bellamkonda emphasizes several key points with regards to evaluating scaffold 

efficacy in animal models. First, the scaffolds in question should repair nerve defects greater 

than 15 mm (in rats) and be compared to control autografts. If these repairs are successful, 

the scaffolds should then be tested in a larger animal model with gap lengths greater than 40 

mm. He asserts that in order for these interventions to be clinically translatable, it is equally 

important to perform electrophysiological studies to assess the functional repair of sensory 

and motor nerve fibers in addition to histological measurement of neuromuscular junctions 

(Bellamkonda, 2006). Extending these principles to in vivo electrical stimulation studies is 

essential for characterizing the efficacy of interventions using conductive scaffolds.  

From the conductive scaffold design and synthesis side, fabrication techniques utilizing 

3D printing and extrusion technologies may become more widespread. Mire et. al. embedded 

conductive PEDOT tracks into chitosan and HA based substrates using custom-built extrusion 

printing systems with programmable xyz-translation paving the way for future gel matrix 

based, integrated structures containing embedded conductive components, cells, and 

microdevices (Mire et al., 2011). Inkjet printing techniques allow for high resolution for 

enhanced spatial control over cell behavior when delivering electrical stimulation.(Mire et al., 

2011; Weng et al., 2012) Recently, a stereolithography-based platform was used to 3D 

bioprint complex tissue using UV crosslinking after printing different types of materials.(Miri 

et al.) Our hyaluronic acid-CNT formulation could be integrated into this system, used as 

either a bioink or as nanofibers combined in a layer by layer approach for integration of nano- 

and micron- features.(Miri et al.) 

Conclusion 

To summarize, the contributions of this dissertation research demonstrated the 

potential for electrically conductive HA-CNT nanofibrous substrates to elicit regenerative 

behavior in neural tissue cell types. To our knowledge, the data presented is the first to 

demonstrate electrospun methacrylated hyaluronic acid nanofibers containing carboxylated 
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multi-walled carbon nanotubes within the nanofiber core. The fabrication method was 

performed using an aqueous solution using biocompatible dispersants (1% BSA saline) to 

minimize aggregation. Further, an ultra-low concentration of carbon nanotubes achieved 

conductivity and charge capacity capable of transmitting electronic stimuli in a physiological 

environment while maintaining an elastic modulus relevant to peripheral nervous tissue (local 

Young’s modulus ~200 kPa). Moreover, this is the first report of electrochemical 

characterization of hyaluronic acid nanofibers demonstrating that the nanoscale fiber diameter 

topography alone without a conductive filler contributes to low impedance (6.3 kΩ at 1 kHz) 

and high capacitance (15.3 mF/cm2) relative to nanofibers containing CNT aggregates that 

disrupt the nanofiber surface (e.g. 0.3% CNT). Interestingly, electrical stimulation parameters 

of time duration and amplitude each were statistically significant drivers in increasing neurite 

growth and neuron viability for neurons cultured on either HA or HA-CNT nanofibers.  The 

largest gains in neurite growth and neuron viability were observed in neurons cultured on 

0.01% HA-CNT nanofibers for 60 minutes at 150 mV/mm amplitude and above. Furthermore, 

the enhanced neuron growth for neurons cultured on HA-CNT relative to HA can be attributed 

to the electrochemical properties of charge capacity. Graves et al. (2011) demonstrated that 

a biphasic, charge balanced AC rectangular wave of 200 µA amplitude induced the greatest 

neurite outgrowth. The cyclic voltammetry data presented in Chapter 2 give quantitative 

evidence that at 150 mV/mm a 200 µA current amplitude is achieved in the HA-CNT 

nanofibers, whereas 200 mV/mm is the threshold required for the HA nanofibers. In 

conclusion, HA nanofibers containing an ultra-low concentration of hydrophilic carbon 

nanotubes offer a promising conductive biomaterial for electrical stimulation biomedical 

applications by matching extracellular matrix properties with enhanced electronic to ionic 

conductive properties. 

Future success in clinical translation of this early phase HA-CNT conductive nanofibrous 

composite material is dependent upon: 
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(1) characterizing the molecular mechanisms activated by electrical stimulation 

that influence cell behavior  

(2) designing conductive materials that meet all the design criteria  

(3) and systematically testing efficacy in functional in vivo studies. 

The implications of developing effective conductive biomaterials that modulate cell behavior 

based on mechanistic understanding extend beyond neural tissue into the broader realm of 

all organ systems in the tissue engineering and regenerative medicine fields. The HA-CNT 

conductive nanofibrous system in this work is poised to advance to the next stages of study 

to realize fully functional neural regeneration.  
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APPENDIX A 

 

Table A-1. Descriptive Statistics from SPSS Output 3-way ANOVA.  

 
The Dependent Variable reported here is Neurite Length. See Table A4 for Descriptive 

Statistics for Number of Neurite-bearing neurons, taking note that the number of observations 

are the same and are paired to the originating neuron with a qualifying length according to 

inclusion criteria described in the Methods. 

 
  

Dependent 

Variable: 
Length

Mean
Std. 

Deviation
N

CNT 198.71 153.07 146

HA 139.24 152.90 51

Total 183.32 154.85 197

CNT 198.71 153.07 146

HA 139.24 152.90 51

Total 183.32 154.85 197

CNT 211.91 157.14 94

HA 135.64 119.79 76

Total 177.81 146.30 170

CNT 273.19 167.05 83

HA 229.07 167.28 32

Total 260.91 167.56 115

CNT 288.77 153.02 103

HA 227.07 225.70 9

Total 283.81 159.59 112

CNT 258.35 161.64 280

HA 168.23 149.18 117

Total 231.79 163.15 397

CNT 316.12 206.42 177

HA 192.59 132.74 94

Total 273.27 193.17 271

CNT 348.40 194.67 121

HA 252.10 174.84 37

Total 325.85 194.03 158

CNT 299.74 204.01 177

HA 234.45 170.01 55

Total 284.26 198.10 232

CNT 318.24 203.06 475

HA 216.81 154.54 186

Total 289.69 195.93 661

CNT 198.71 153.07 146

HA 139.24 152.90 51

Total 183.32 154.85 197

CNT 279.97 196.85 271

HA 167.13 129.88 170

Total 236.47 182.43 441

CNT 317.80 187.21 204

HA 241.42 170.51 69

Total 298.49 185.82 273

CNT 295.70 186.66 280

HA 233.41 176.78 64

Total 284.11 186.20 344

CNT 280.26 188.62 901

HA 189.58 155.07 354

Total 254.68 184.31 1255

Total

60

150

200

250

Total

Total

0

150

200

250

Descriptive Statistics

Time

0

0

Total

30

150

200

250

Total
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Table A-2. Tests of Between-Subjects Effects from SPSS Output 3-Way ANOVA. 

 

 
  

Dependent Variable: Length

Source

Type III Sum of 

Squares df Mean Square F Sig. Noncent. Parameter Observed Power
b

Corrected Model 5037213.406
a 13 387477.954 12.802 .000 166.420 1.000

Intercept 36783616.323 1 36783616.323 1215.258 .000 1215.258 1.000

Time 292957.639 1 292957.639 9.679 .002 9.679 .875

Amplitude 583403.151 2 291701.575 9.637 .000 19.274 .982

Type 930663.637 1 930663.637 30.747 .000 30.747 1.000

Time * Amplitude 119673.597 2 59836.799 1.977 .139 3.954 .410

Time * Type 40315.686 1 40315.686 1.332 .249 1.332 .211

Amplitude * Type 45977.487 2 22988.744 .760 .468 1.519 .180

Time * Amplitude * 

Type
12210.350 2 6105.175 .202 .817 .403 .082

Error 37562788.341 1241 30268.161

Total 124000385.302 1255

Corrected Total 42600001.747 1254

Tests of Between-Subjects Effects

a. R Squared = .118 (Adjusted R Squared = .109)

b. Computed using alpha = .05
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Table A-3. Descriptive Statistics for Dependent Variable Number of Neurite-bearing 

Neurons on HA nanofibers. 

 

Table A-4. Tests of Between-Subjects Effects for Two-Way ANOVA for HA. 

 

Between-subject effects for the dependent variable Number of Neurite-bearing Neurons on 

HA nanofibers considering fixed factors of Amplitude and Time 

  

Dependent 

Variable: 

Amplitude Mean
Std. 

Deviation
N

0 0 1.70 1.860 30

Total 1.70 1.860 30

150 30 2.45 3.161 31

60 6.27 5.861 15

Total 3.70 4.541 46

200 30 2.00 2.221 16

60 3.08 2.999 12

Total 2.46 2.589 28

250 30 .50 .985 18

60 4.58 5.230 12

Total 2.13 3.884 30

Total 0 1.70 1.860 30

30 1.80 2.605 65

60 4.77 4.997 39

Total 2.64 3.610 134

Neurite-bearing Neurons on 

HA Nanofibers

Descriptive Statistics

Dependen

t Variable: 

Source

Type III 

Sum of 

Squares df

Mean 

Square F Sig.

Corrected 

Model
361.562a 6 60.260 5.581 .000

Intercept 960.615 1 960.615 88.969 .000

Amplitude
77.694 2 38.847 3.598 .030

Time 210.275 1 210.275 19.475 .000

Amplitude 

* Time
40.009 2 20.004 1.853 .161

Error 1371.244 127 10.797

Total 2668.000 134

Corrected 

Total
1732.806 133

Tests of Between-Subjects Effects

a. R Squared = .209 (Adjusted R Squared = .171)

Neurite-bearing Neurons on HA Nanofibers
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Table A-6. Descriptive Statistics for the dependent variable Number of Neurite-

bearing Neurons on HA-CNT nanofibers.  

 

Dependen

t Variable: 

Mean
Std. 

Deviation
N

0 4.29 2.970 34

Total 4.29 2.970 34

30 3.03 3.125 31

60 11.06 10.063 16

Total 5.77 7.361 47

30 4.15 3.265 20

60 10.08 8.207 12

Total 6.38 6.241 32

30 1.95 5.236 20

60 14.75 8.024 12

Total 6.75 8.905 32

0 4.29 2.970 34

30 3.04 3.900 71

60 11.88 8.939 40

Total 5.77 6.752 145

Neurite-bearing Neurons 

on HA-CNT Nanofibers

Descriptive Statistics

Amplitude

0

150

200

250

Total



112 

 

Table A-7. Tests of Between-Subjects Effects for Two-Way ANOVA for HA-CNT. 

 

Between-subject effects for the dependent variable Number of Neurite-bearing Neurons on 

HA-CNT nanofibers considering fixed factors of Amplitude and Time. 

  

Dependent 

Variable: 

Source

Type III 

Sum of 

Squares df

Mean 

Square F Sig.

Corrected 

Model
2289.859a 6 381.643 12.318 .000

Intercept 6000.584 1 6000.584 193.674 .000

Amplitude
34.476 2 17.238 .556 .575

Time 1981.848 1 1981.848 63.966 .000

Amplitude 

* Time
187.881 2 93.940 3.032 .051

Error 4275.631 138 30.983

Total 11397.000 145

Corrected 

Total
6565.490 144

Tests of Between-Subjects Effects

a. R Squared = .349 (Adjusted R Squared = .320)

Neurite-bearing Neurons on HA-CNT Nanofibers
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Traumatic peripheral nerve injuries affect 50,000 patients annually with USD 7 billion 

in healthcare costs. Current treatments like the gold standard autograft and commercially 

available nerve guide conduits (NGC) are insufficient to repair long gap peripheral nerve 

injuries. Autografts have a severe size mismatch limitation resulting in incomplete 

functional recovery further confounded by harvest site co-morbidities. NGCs can aid 

recovery but lack key microenvironment cues that promote nerve regeneration over long 

gap injuries. We hypothesized that providing topographical, mechanical, and electrical 

guidance cues into a nanofibrous composite biopolymer would result in improve neuron 

growth metrics in an in vitro model. We embedded hydrophilic carbon nanotubes (CNT) 

within hyaluronic acid (HA) nanofibers by electrospinning. The aims of this study were (1) 

to define the topographical, nanomechanical, and electrochemical material properties of 

HA-CNT nanofibers and (2) to determine the electrical stimulus parameters required to elicit 

increased neurite outgrowth on our nanofibrous scaffold. 

HA-CNT toppography was visualized as smooth nanofibers, nanoscale in diamter, 

with CNTs contained within the nanofiber core, as characterized by scanning electron 

microscopy and tunneling electron microscopy. Mechanical properties were evaluated under 

physiological conditions by hydrating nanofibers to equilibrium, then testing samples fully 

immersed in electrolyte buffer. A reduced elastic modulus was obtained by fitting 
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quantitative nanomechanical mapping data to the Sneddon model using atomic force 

microscopy imaging in fluid. Local modulus was measured to The electrochemical 

characterization performed was electrical impedance spectroscopy (EIS) and cyclic 

voltammetry (CV). EIS resulted in a decreased resistance to current flow by a factor of 1.7 

at 20 Hz and 1.2 at 1kHz. CV revealed a 2.1-fold increase in specific capacitance (mF/cm2) 

of HA-CNT relative to HA nanofibers.  

Chick dorsal root ganglia neurons grown on HA or HA-CNT substrates for 24h were 

either unstimulated or stimulated at 20Hz for 30min or 60min using a bi-phasic 150, 200, 

or 250mV/mm square wave. Significant effects of fiber type and stimulus amplitude and 

time were observed when measuring neuron viability and neuron outgrowth after 72 h. 

Neuron outgrowth was significantly longer on HA-CNT substrates electrically stimulated for 

60min at all stimulus amplitudes versus all other groups (p < 0.01 3-Way ANOVA, α).  This 

study demonstrates the potential of combining electrical stimulation with material based 

repair strategies for neural regeneration. Further, the results contribute to defining the 

electrical stimulus parameters necessary for regeneration in the peripheral nerve 

environment. Incorporating well-dispersed hydrophilic CNTs in HA nanofibers significantly 

enhances neural regeneration following electrical stimulation. Future work encompasses 

characterizing glial responses to electrical stimulation including electrophysiological calcium 

imaging assays to elucidate the governing molecular mechanisms for both neuronal and 

glial behavior. 
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