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CHAPTER 1 INTRODUCTION

1.1 Introduction

Owing to the demand of modeling, analysis, and computation of complex networked

systems, much attention has been devoted to building more realistic dynamic system mod-

els. It has been well recognized that in many real-world applications, traditional models

using continuous processes represented by solutions to deterministic differential equations

and stochastic differential equations alone are often inadequate. Arising from control engi-

neering, queueing networks, manufacturing and production planning, parameter estimation,

filtering of dynamic systems, ecological and biological systems, and financial engineering,

etc., numerous complex systems contain both continuous dynamics and discrete events. The

discrete events in these systems are not normally representable by solutions of the usual

differential equations. Because of the demand, switching diffusions (also known as hybrid

switching diffusions) have drawn growing and resurgent attention. A switching diffusion is

a two-component process (X(t), α(t)) in which the continuous component X(t) evolves ac-

cording to the diffusion process whose drift and diffusion coefficients depend on the state of

α(t), whereas α(t) takes values in a set consisting of isolated points. Because of their impor-

tance, many papers have been devoted to such hybrid dynamic systems; see [26, 45, 61, 57]

and the references therein. In their comprehensive treatment of hybrid switching diffusions,

Mao and Yuan [31] focused on α(t) being a continuous-time and homogeneous Markov chain

independent of the Brownian motion and the generator of the Markov chain being a constant
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matrix. Realizing the need, treating the two components jointly, Yin and Zhu [60] extended

the study to the Markov process (X(t), α(t)) by allowing the generator α(t) to depend on

the current state X(t). Properties of the underlying process including recurrence, positive

recurrence, ergodicity, Feller properties, stability, and invariance among others were investi-

gated. Such study provides us with a clear picture of the underlying processes. Nevertheless,

in both of the aforementioned books and most related papers to date, the switching process

α(t) is assumed to have a finite state space. One question naturally arises. What happens if

the switching process has a countable state space? Much of the argument in [60] relies on the

interplay of stochastic processes and the associated systems of partial differential equations.

Because the state space of α(t) was assumed to be a finite set, one can essentially treat a

system of partial differential equations with a finite number of equations. When we consider

problems involving a countable state space, the number of equations becomes infinite. Much

more complex situation is encountered. Different methods have to be developed to treat the

systems.

There are plenty of real-world applications involving such switching diffusions. Perhaps,

one of the most widely used control models in the literature is the so-called LQG (linear

quadratic Gaussian regulator) problem; see [14, pp.165-166] for a traditional model. However,

for many new applications in networked systems, it has been found that in addition to the

random noise represented by Brownian type of disturbances, there is a source of randomness

owing to the presence of random environment that can be modeled by a continuous-time

Markov chain. Let α(t) be a continuous-time Markov chain with state space Z+ (the set of
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positive integers) and generator Q. Consider the controlled dynamic system

dX(t) = [A(α(t))X(t) +B(α(t))u(t)]dt+ σ(α(t))dW (t),

X(s) = x, for s ≤ t ≤ T,

(1.1)

where X(t) ∈ Rn1 is the continuous state variable, u(t) ∈ Rn2 is the control, A(i) ∈ Rn1×n1

and B(i) ∈ Rn1×n2 are well defined and have finite values for each i ∈ Z+. One may wish to

find the optimal control u(·) so that the expected quadratic cost function

J(s, i, x, u(·)) = E
[∫ T

s

[X>(t)M(α(t))X(t) + u>(t)N(α(t))u(t)]dt+X>(T )DX(T )
]

(1.2)

is minimized. The use of α(t) stems from the formulation of discrete events, and the use of

Z+ enlarges the applicability of previous consideration of finite state space cases. Switched

dynamic systems can also be found in, for example, modeling impatient customers and cus-

tomer abandonment of Markov-modulated service speeds in the heavy-traffic regime and the

many-server systems in the Halfin-Whitt regime and the non-degenerate slowdown regime;

see [18]. We also refer the reader to Whitt [52] for further reading on limit results in queueing

theory and many references therein. In fact, in most of the queueing models, the discrete set

is countable rather than finite.

In another example, we consider an extension of the Markov-modulated-rate fluid models

treated in [63]. Stemming from queueing systems, this example is simple in that it is even

without the Brownian motion part, but it explains the modeling view point of the past

depend switching with a countable state space. Consider the fluid buffer model with an

infinite capacity. Let X(t) be the amount of fluids in the buffer at time t, known as buffer

content or buffer level. The fluids enter and leave the buffer at random rates. The input and
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output of fluids are modulated by a switching process α(t) with state space Z+ = {1, 2, . . .},

known as a stochastic external environment. Using α(t) to determine the input and output

rates, we introduce a drift function f(·) (see Kulkarni [28]): f(·) : Z+ 7→ (−∞,∞). Different

from [63], we do not assume α(t) to be a Markov chain, but rather, we assume that the

transition rates satisfy (1.6). That is, the transition rates depends on the history of the

process X(t).

Note that formally, the net rate that is the difference of the input and the output rates

at time t is given by f(α(t)). The dynamics of the buffer content {X(t) : t ≥ 0} can be

described by the following differential equation:

d

dt
X(t) =


f(α(t)), if X(t) > 0

(f(α(t)))+, if X(t) = 0,

= f(α(t))1{X(t)>0} + (f(α(t)))+1{X(t)=0},

(1.3)

where x+ = max{x, 0}. Note that X(t) can be rewritten as

X(t) = X(0) + Y (t)−
(

inf
0≤s≤t

{Y (s) +X(0)}
)
∧ 0 (1.4)

with

Y (s) =

∫ s

0

f(α(v))dv,

where a ∧ b = min(a, b) for two real numbers a and b, and

−( inf
0≤s≤t

{Y (s) +X(0)}) ∧ 0

measures the amount of potential output lost up to time t due to the emptiness of the buffer.
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Many of the current interests are concerned with the fluid model above such as long-run

average control problems or stability of the systems.

Two more dynamic systems are to be presented in the next section, in which the main

interests are to find long-term behavior and control design in an ecological system and to

find optimal strategies under long-run average criteria for a pollution management problem.

In order to study the aforesaid problems, we first need to ensure that the systems under

consideration have unique solutions and that the solutions possess good properties. Moti-

vated by these examples, we take up the challenge of considering a nonlinear hybrid diffusion

(X(t), α(t)) whose discrete component α(t) has an infinite state space in this paper. More-

over, in lieu of allowing the switching process to depend on the current state X(t) only, we

assume that it is past dependent. That is, we assume that the generator of α(t) depends on

the past history of the continuous process. This paper provides conditions for the existence

and uniqueness of the solutions for given initial data, and to demonstrate the Markov-Feller

property of a function-valued stochastic process associated with the equation. Our study will

build a bridge for future study on related control systems.

The rest of this dissertation is organized as follows. The formulation and some more

examples of switching diffusions with past-dependent switching and countably many possible

switching locations is given in Sections 1.2 and 1.3 of Chapter 1. The existence and uniqueness

of solutions to the stochastic equations are then proved under suitable conditions in Section

3.1 of Chapter 3. Section 3.2 studies the Markov and Feller properties of a function-valued

stochastic process associated with our equation. The proof for the Feller property is rather
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complex because the state space of α(t) is infinite, the space of continuous functions is not

locally compact, and we do not assume uniform continuity of the switching intensities. In

Chapter 4, we consider the recurrence and ergodicity of the process. Chapter 5 provides

conditions for stability and instability of the system.

1.2 Formulation

Let r be a fixed positive number. Denote by C([a, b],Rn) the set of Rn-valued continuous

functions defined on [a, b]. In what follows, we mainly work with C([−r, 0],Rn), and simply

denote it by C := C([−r, 0],Rn). Denote by |x| the Euclidean norm of x ∈ Rn. For φ ∈ C, we

use the norm ‖φ‖ = sup{|φ(t)| : t ∈ [−r, 0]}. For y(·) ∈ C([−r,∞),Rn) and t ≥ 0, we denote

by yt the so-called segment function (or memory segment function) yt(·) := y(t + ·) ∈ C.

Let (Ω,F , {Ft}t≥0,P) be a complete filtered probability space with the filtration {Ft}t≥0

satisfying the usual condition, i.e., it is increasing and right continuous while F0 contains

all P-null sets. Let W (t) be an Ft-adapted and Rd-valued Brownian motion. Suppose b(·, ·) :

Rn × Z+ → Rn and σ(·, ·) : Rn × Z+ → Rn×d, where Z+ = N \ {0} = {1, 2, . . . }, the set

of positive integers. Consider the two-component process (X(t), α(t)), where α(t) is a pure

jump process taking value in Z+, and X(t) satisfies

dX(t) = b(X(t), α(t))dt+ σ(X(t), α(t))dW (t). (1.5)

We assume that if α(t−) := lims→t− α(s) = i, then it can switch to j at t with intensity qij(Xt)

where qij(·) : C → R. When qi(φ) :=
∑∞

j=1,j 6=i qij(φ) is uniformly bounded in (φ, i) ∈ C ×Z+,
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and qi(·) and qij(·) are continuous, one may view the aforementioned assumption as

P{α(t+ ∆) = j|α(t) = i,Xs, α(s), s ≤ t} = qij(Xt)∆ + o(∆) if i 6= j and

P{α(t+ ∆) = i|α(t) = i,Xs, α(s), s ≤ t} = 1− qi(Xt)∆ + o(∆).

(1.6)

However, when qi(φ) and qij(φ) are either discontinuous or unbounded, it does not seem

appropriate to use (1.6) to model the switching intensity. To formulate the problem in a

general setting without the boundedness and continuity assumptions mentioned above, we

construct α(t) as the solution to a stochastic differential equation with respect to a Poisson

random measure. We elaborate on the idea below. Let p(dt, dz) be a Poisson random measure

with intensity dt×m(dz) and m is the Lebesgue measure on R such that p(·, ·) is independent

of the Brownian motion W (·). Let p̃ be the Poisson point process associated with p(·, ·) (see

e.g., [48]). Then p̃ can lie in a set A with intensity m(A), that is, the expected number of

Poisson points lying in A during the period dt is dt×m(A). Using this fact, for each i ∈ Z,

we can construct disjoint sets {∆ij(φ), j 6= i} such that m(∆ij(φ)) = qij(φ). Let p̃ govern the

switching of α(t) in the manner that if α(t−) = i and there is a Poisson point in ∆ij(Xt)

at time t, then α(t) = j. If α(t−) = i and there is no Poisson point in ∪j 6=i∆ij(Xt) at time

t, α(t) remains i. Using this idea, we formulate the equation for α(t) as follows. For each

function φ : [−r, 0] → Rn, and i ∈ Z+, let ∆ij(φ), j 6= i be the consecutive left-closed and

right-open intervals of the real line, each having length qij(φ). That is,

∆i1(φ) = [0, qi1(φ)), ∆ij(φ) =
[ j−1∑
k=1,k 6=i

qik(φ),

j∑
k=1,k 6=i

qik(φ)
)
, j > 1, j 6= i.

Define h : C ×Z+ ×R 7→ R by h(φ, i, z) =
∑∞

j=1,j 6=i(j − i)1{z∈∆ij(φ)}, where 1{z∈∆ij(φ)} = 1 if

z ∈ ∆ij, otherwise 1{z∈∆ij(φ)} = 0, is the indicator function. The process α(t) can be defined
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as a solution to

dα(t) =

∫
R
h(Xt, α(t−), z)p(dt, dz).

The pair (X(t), α(t)) is therefore a solution to the system of equations
dX(t) = b(X(t), α(t))dt+ σ(X(t), α(t))dW (t)

dα(t) =

∫
R
h(Xt, α(t−), z)p(dt, dz).

(1.7)

A strong solution to (1.7) on [0, T ] with initial data (φ, i0) being C × Z+-valued and F0-

measurable random variable, is an Ft-adapted process (X(t), α(t)) such that

• X(t) is continuous and α(t) is cadlag (right continuous with left limits) almost surely

(a.s.).

• X(t) = φ(t) for t ∈ [−r, 0] and α(0) = i0

• (X(t), α(t)) satisfies (1.7) for all t ∈ [0, T ] a.s.

We will show in the Appendix that the solution (X(t), α(t)) to (1.7), satisfies (1.6) under

suitable conditions. Let f(·, ·) : Rn × Z+ 7→ R be twice continuously differentiable in x and

bounded in (x, i) ∈ Rn × Z+. We define the “operator” Lf(·, ·) : C × Z+ 7→ R by

Lf(φ, i) =∇f(φ(0), i)b(φ(0), i) +
1

2
tr
(
∇2f(φ(0), i)A(φ(0), i)

)
+

∞∑
j=1,j 6=i

qij(φ)
[
f(φ(0), j)− f(φ(0), i)

]
=

n∑
k=1

bk(φ(0), i)fk(φ(0), i) +
1

2

n∑
k,l=1

akl(φ(0), i)fkl(φ(0), i)

+
∞∑

j=1,j 6=i

qij(φ)
[
f(φ(0), j)− f(φ(0), i)

]
,

(1.8)

where b(x, i) = (b1(x, i), . . . , bn(x, i))>, ∇f(x, i) = (f1(x, i), . . . , fn(x, i)) ∈ R1×n and
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∇2f(x, i) = (fij(x, i))n×n are the gradient and Hessian of f(x, i) with respect to x, re-

spectively, with

fk(x, i) = (∂/∂xk)f(x, i), fkl(x, i) = (∂2/∂xk∂xl)f(x, i), and

A(x, i) = (akl(x, i))n×n = σ(x, i)σ>(x, i),

with z> denoting the transpose of z. We have Itô’s formula:

f(X(t), α(t))− f(X(0), α(0)) =

∫ t

0

Lf(Xs, α(s−))ds+M1(t) +M2(t) a.s., (1.9)

where M1(·) and M2(·) are local martingales, defined by

M1(t) =

∫ t

0

∇f(X(s), α(s−))σ(X(s), α(s−))dW (s),

M2(t) =

∫ t

0

∫
R

[
f
(
X(s), α(s−) + h(Xs, α(s−), z)

)
− f(X(s), α(s−))

]
µ(ds, dz).

(1.10)

It should be noted that L is not the generator of the Markov process (Xt, α(t)). However this

operator is very useful for analyzing the process (X(t), α(t)). In view of (1.10), if τ1 ≤ τ2 are

stopping times that are bounded above by T a.s., and f(·, ·) and Lf(·, ·) are bounded and

qα(t)(Xt) <∞ on [τ1, τ2], then

Ef(X(τ2), α(τ2)) = Ef(X(τ1), α(τ1)) + E
∫ τ2

τ1

Lf(Xt, α(t−))dt.

Remark 1.1. If α(t) depends on the continuous state, but there is no past dependence (that

is, Xt is replaced by X(t) in (1.6), and φ and φ(0) are replaced by the current state X(t) = x

in (1.8), respectively), then L is indeed the generator of the process (X(t), α(t)). Even in

this case, the current paper settles the matter of the state space of the switching process

being countable thus generalizes the study of finite state space cases as considered in [60].
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1.3 Examples

Example 1.2. This example stems from applications in ecological systems and biological

control. Consider the evolution of two interacting species. One is micro, which is described

by a logistic differential equation perturbed by a white noise. The other is macro, we assume

that its number of individuals follows a birth-death process. Let X(t) be the density of the

micro species and α(t) the population of the macro species. The life cycle of a micro species is

usually very short, so it is reasonable to assume that the evolution of X(t) can be described

by the following past-independent equation

dX(t) = X(t)
[
a(α(t))− b(α(t))X(t)

]
dt+ σ(α(t))X(t)dW (t), (1.11)

where a(i), b(i), σ(i) are positive constants for each i ∈ Z+.

On the other hand, the reproduction process of α(t) is assumed to be non-instantaneous.

More precisely, suppose the reproduction depends on the period of time from egg formation

to hatching, say r. Then we have

dα(t) =

∫
R
h(Xt, α(t−), z)p(dt, dz), (1.12)

where h(φ, i, z) =
∑∞

j=1,j 6=i(j − i)1{z∈∆ij(φ)}, ∆i,i+1(φ) = [0, βi(φ)), ∆i,i−1(φ) = [0, δi(φ)),

∆i,j(φ) = ∅ if j /∈ {i−1, i, i+1} or i = 0. Usually βi(φ), δi(φ) can be given in the integral from

βi(φ) =
∫ 0

−r β̃i(t)φ(t)dt, δi(φ) =
∫ 0

−r δ̃i(t)φ(t)dt, for some appropriate weighting functions

β̃i, δ̃i. As can be seen from the above, the switching process at t in fact depends on past

history of the state X(·). Investigating the interactions between the two species are very

important to biological control. A basic biological control problem aims to choose a suitable
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living organism to control a particular pest (see e.g., [19, 30]). This chosen organism might be

a predator, parasite, or disease, which will attack the harmful insect. To design and evaluate

effectiveness of a biological control, some questions should be answered first. For example,

under which conditions the species will be permanent forever or they will extinct at some

instance? Whether or not there is an invariant measure associated with the system under

consideration. Mathematically, these questions are related to the stability and ergodicity of

the corresponding stochastic systems, which will be studied in a future paper.

Example 1.3. Pollution management is vitally important and has a significant impact on

environment. A major issue is concerned with the tradeoff of pollution accumulation and con-

sumption, which affects environmental policy making. Following the seminal paper of Keeler

et al. [23], much work has been devoted to the study of optimal control of dynamic eco-

nomic systems. In [22], Kawaguchi and Morimoto treated a pollution accumulation problem

of maximizing the long-run average welfare using a controlled diffusion model. Assume that

an economy consumes some good and meanwhile generates pollution. The pollution stock

is gradually degraded and its instantaneous growth rate incorporates a random disturbance

with mean zero and constant variance. The social welfare is defined by the utility of the

consumption net of the disutility of pollution. The problem is to find optimal consumption

strategies for the society in the long-run average sense. Departing from their formulation, we

consider an extension of their model. Suppose that there is a switching process α(t) taking

values in Z+ such that α(t) represents the level of pollution at time t. Assume that the

stock of pollution at time t is given by X(t), a real-valued process, and there is a positive
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real-valued function ρ(·) so that for each i ∈ Z+, the rate of pollution decay is ρ(i). The

consumption rate (or flow of pollution) is a control process, which is denoted by c(t) at time

t; the social utility function of the consumption c is denoted by U(c), whereas the social

disutility of the pollution stock x is D(x). We say that the consumption rate is admissible

if it is Ft-measurable, where Ft = {(X(s), α(s)) : s ≤ t} such that 0 ≤ c(t) ≤ K0 for some

K0 > 0. The ultimate objective is to maximize the long-run average welfare

J(c(·)) = lim inf
T→∞

1

T
E
∫ T

0

[U(c(t))−D(X(t))]dt, (1.13)

subject to

dX(t) = [c(t)− ρ(α(t))X(t)]dt+ σ(X(t), α(t))dW (t). (1.14)

Assume that the pollution level α(·) satisfies the conditions (1.6). First, it is reasonable that

the level of pollution can be modeled by a continuous-time process taking values in Z+.

Second, to be more realistic, the pollution level depends on the pollution stock X(t) as well

as some past history as given in (1.6). As another generalization of [22], we assume that

σ in fact depends on (X(t), α(t)), and the switching rate depends on some past history of

the pollution stock X(·) as in (1.6), and σ2(x, i) > 0 for each i ∈ Z+. Treating the optimal

pollution management problem, it is natural to consider the replacement of the average in

(1.13) by the average with respect to an invariant measure (if it exists) of the controlled

systems. To do so, we need to make sure that (1.14) indeed has an invariant measure. Before

this matter can be settled, we need to show that the system has a unique solution for each

initial data, and the solution possesses certain desired properties such as Markov and Feller
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properties.
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CHAPTER 2 WELL-POSEDNESS AND MARKOV-

FELLER PROPERTIES OF SOLU-

TIONS

2.1 Existence and Uniqueness of Solutions

We are now in a position to prove the existence and uniqueness in the strong sense of a

solution with given initial data under suitable conditions. We give several sets of conditions.

The main reason is due to the past dependence and the use of Z+. First in contrast to the case

of switching process staying in a finite set, care needs to be exercised regarding uniformity

with respect to the switching set. Second, the past dependence requires careful handling of

the use of Lipschitz continuity etc. and the uniformity with respect to the element in the

corresponding function spaces. Depending on the preference, Assumptions 2.1 allows certain

bounds to be dependent of the switching state i, but uniform in the variable in the function

space, whereas Assumption 2.2 requires uniformity in the bounds w.r.t. i, but requires the

past dependent part be localized. Assumptions 2.3 and 2.4 relax the Lipschitz condition to

local Lipschitz together with certain growth conditions presented by using bounds with the

help of Lyapunov functions.

Assumption 2.1. Assume the following conditions hold.

(i) For each i ∈ Z+, there is a positive constant Li such that

|b(x, i)− b(y, i)|+ |σ(x, i)− σ(y, i)| ≤ Li|x− y| ∀x, y ∈ Rn.

(ii) qij(φ) is measurable in φ ∈ C for all i and j ∈ Z+. Moreover,

M := sup
φ∈C,i∈Z+

{qi(φ)} <∞.
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Theorem 2.1. Under Assumption 2.1, for each initial data (ξ, i0), there exists a unique

solution (X(t), α(t)) to (1.7).

Proof. It is well-known that part (i) of Assumption 2.1 guarantees the existence and unique-

ness of strong solutions to the following diffusion

dY (t) = b(Y (t), i)dt+ σ(Y (t), i)dW (t) for each i ∈ Z+. (2.1)

Then, given a stopping time τ and an Fτ -measurable Rn-valued random variable y = y(τ)

(depending on τ), there exists a unique strong solution to (2.1) in [τ,∞) satisfying Y (τ) =

y(τ) (see [31, Remark 3.10]). We can now construct the solution to (1.7) with initial data

(ξ, i0) by the interlacing procedure similar to [3, Chapter 5]. Let Ỹ (0)(t), t ≥ 0 be the solution

with initial data ξ(0) to

dỸ (0)(t) = b(Ỹ (0)(t), i0)dt+ σ(Ỹ (0)(t), i0)dW (t).

We also set Ỹ (0)(t) = ξ(t) for t ∈ [−τ, 0]. Let

τ1 = inf{t > 0 :

∫ t

0

∫
R
h(Ỹ (0)

s , i0, z)p(ds, dz) 6= 0} and

i1 = i0 +

∫ τ1

0

∫
R
h(Ỹ (0)

s , i0, z)p(ds, dz),

and Ỹ (1)(t), t ≥ τ1 be the solution with Ỹ
(1)
τ1 = Ỹ

(0)
τ1 to

dỸ (1)(t) = b(Ỹ (1)(t), i1)dt+ σ(Ỹ (1)(t), i1)dW (t). (2.2)

Define

τ2 = inf{t > τ1 :

∫ t

τ1

∫
R
h(Ỹ (1)

s , i1, z)p(ds, dz) 6= 0} and

i2 = i1 +

∫ τ2

τ1

∫
R
h(Ỹ (1)

s , i1, z)p(ds, dz).
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Note that, in the notation above, Ỹ
(k)
t is the function s ∈ [−r, 0] 7→ Ỹ (k)(t + s). Continuing

this procedure, let τ∞ = lim
k→∞

τk and set

X(t) = Ỹ (k)(t), α(t) = ik if τk ≤ t < τk+1. (2.3)

Clearly, X(t) satisfies that for every t ≥ 0,
X(t ∧ τk) = X(0) +

∫ t∧τk

0

[
b(X(s), α(s))ds+ σ(X(s), α(s))dW (t)

]
α(t ∧ τk) = i0 +

∫ t∧τk

0

∫
R
h(Xs, α(s−), z)p(ds, dz).

(2.4)

To show that X(t) is a global solution, we need only prove that τ∞ =∞ a.s. For any T > 0,

P{τk ≤ T} =P
{∫ T∧τk

0

∫
R

1{z∈[0,qα(s−)(Xs))}p(ds, dz) = k
}

≤P
{∫ T∧τk

0

∫
R

1{z∈[0,M)}p(ds, dz) ≥ k
}

≤P
{∫ T

0

∫
R

1{z∈[0,M)}p(ds, dz) ≥ k
}

=
∞∑
l=k

e−MT (MT )l

l!
.

(2.5)

It follows that P{τk ≤ T} → 0 as k → ∞. As a result τ∞ = ∞ a.s. By this construction,

it can be seen that X(t) is continuous and α(t) is cadlag almost surely. The uniqueness

of (X(t), α(t)) follows from the uniqueness of Ỹ (k)(t) on [τk, τk+1] and the uniqueness of ik

defined by

ik = ik−1 +

∫ τk

τk−1

∫
R
h(Ỹ

(k−1)
t , ik−1, z)p(dt, dz).

This concludes the proof.

Assumption 2.2. Assume the following conditions hold.
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(i) There is a positive constant L such that

|b(x, i)− b(y, i)|+ |σ(x, i)− σ(y, i)| ≤ L|x− y|, ∀x, y ∈ Rn, i ∈ Z+.

(ii) qij(φ) is measurable in φ ∈ C for each (i, j) ∈ Z2
+. Moreover, for any H > 0,

MH := sup
φ∈C,‖φ‖≤H,i∈Z+

{qi(φ)} <∞.

Remark 2.2. We can use either Assumption 2.1 or Assumption 2.2 to obtain the existence

and uniqueness of solutions to (1.7). Recall that now Z+ is a countable set, so care must

be taken to distinct it with a finite state case. In Assumption 2.1, the Lipschitz constants

of b(·, i), σ(·, i) depend on i, and qi(φ) is assumed to be bounded uniformly in (φ, i) ∈

C ×Z+. In contrast, the uniform boundedness of qi(φ) is relaxed, but the Lipschitz constant

of b(·, i), σ(·, i) is assumed to be in i ∈ Z+.

Theorem 2.3. Under Assumption 2.2, for each initial data (ξ, i0), there exists a unique

solution (X(t), α(t)) to (1.7).

Proof. Without loss of generality, we may assume that (ξ, i0) is bounded, since we can use

the truncation method in [16, Theorem 3 in §6] to obtain the result for general (ξ, i0) once

we have proved for the case (ξ, i0) being bounded. Construct the process (X(t), α(t)) as in

the proof of Theorem 2.1. We need to show that τ∞ = ∞ a.s. Following the proof of [32,

Lemma 3.2, p. 51], there is a K = K(T ) such that

E
(

sup
0≤t≤T∧τk

|X(t)|2
)
≤ K ∀ k ∈ Z+.

As a result, for any ε > 0, there is an Hε such that

P{‖Xt‖ ≤ Hε ∀ t ∈ [0, T ∧ τk]} > 1− ε

2
. (2.6)
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Let ηHε = inf{t ≥ 0 : ‖Xt‖ ≥ Hε} and MHε = supφ∈C,‖φ‖≤Hε,i∈Z+
{qi(φ)} <∞. Then

P{τk ≤ T ∧ ηHε} =P
{∫ T∧τk∧ηHε

0

∫
R

1{z∈[0,qα(s−)(Xs))}p(ds, dz) = k
}

≤P
{∫ T∧τk∧ηHε

0

∫
R

1{z∈[0,MHε )}p(ds, dz) ≥ k
}

≤P
{∫ T

0

∫
R

1{z∈[0,MHε )}p(ds, dz) ≥ k
}

=e−MHεT

∞∑
l=k

(MHεT )l

l!
.

(2.7)

For sufficiently large k, we have

P{τk ≤ T ∧ ηHε} ≤ e−MHεT

∞∑
l=k

(MHεT )l

l!
≤ ε

2
. (2.8)

From (2.6) and (2.8), P{τk ≥ T} ≥ P({τk∧T < ηHε}∩{τk > T ∧ηHε}) ≥ 1−ε for sufficiently

large k. Thus, we obtain that P{τ∞ ≥ T} ≥ 1− ε. It holds for every T > 0 and ε > 0, so we

obtain the desired result.

Remark 2.4. To obtain the existence and uniqueness of solutions, Assumptions 2.1 and 2.2

can be relaxed by replacing the global Lipschitz conditions with local Lipschitz conditions to-

gether with Lyapunov-type functions. To be specific, let V (·) : Rn 7→ R be twice continuously

differentiable in x. For each i ∈ Z+, let LiV (x) = ∇V (x)b(x, i) +
1

2
tr
(
∇2V (x)A(x, i)

)
. For

instance (1) of Assumption 2.1 and (1) of Assumption 2.2 can be replaced by the following

Assumptions 2.3 and 2.4, respectively.

Assumption 2.3. Assume the following conditions hold.

(i) For each H > 0, i ∈ Z+, there is a positive constant LH,i such that

|b(x, i)− b(y, i)|+ |σ(x, i)− σ(y, i)| ≤ LH,i|x− y|, ∀|x|, |y| ≤ H, i ∈ Z+.
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(ii) For each i ∈ Z+, there exist a twice continuously differentiable function Vi(x) and a

constant Ci > 0 such that

lim
R→∞

(
inf{Vi(x) : |x| ≥ R}

)
=∞ and LiVi(x) ≤ Ci(1 + Vi(x))∀x ∈ Rn.

Assumption 2.4. Assume the following conditions hold.

(i) For each H > 0, i ∈ Z+, there is a positive constant LH,i such that

|b(x, i)− b(y, i)|+ |σ(x, i)− σ(y, i)| ≤ LH,i|x− y| ∀|x|, |y| ≤ H, i ∈ Z+.

(ii) There exist a twice continuously differentiable function V (x) and a constant C > 0

independent of i ∈ Z+ such that

lim
R→∞

(
inf
|x|≥R
{V (x)}

)
=∞ and LiV (x) ≤ C(1 + V (x)), x ∈ Rn, i ∈ Z+.

Theorem 2.5. For given initial data (ξ, i0), there exists a unique solution (X(t), α(t)) to

(1.7) if either of the following conditions is satisfied

• Assumption 2.3 and (ii) of Assumption 2.1,

• Assumption 2.4 and (ii) of Assumption 2.2.

Proof. It is well known that Assumption 2.3 guarantees the existence and uniqueness of

solutions to (2.1). Hence, if (ii) in Assumption 2.1 is satisfied, we can prove the desired result

by using the proof of Theorem 2.1. Now, suppose Assumption 2.4 and (ii) of Assumption 2.2

hold. Similar to the proof of Theorem 2.3, we can assume that (ξ, i0) is bounded. Consider

X(t) and define τk as in the proof of Theorem 2.1. Then X(t) is the solution with initial

data (ξ, i0) to (1.7) on [0, T ∧ τk) for any T > 0, k ∈ Z+. We have from the generalized Itô
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formula that

EV (X(T ∧ τk ∧ ηH)) = EV (ξ(0), i0) + E
∫ T∧τk∧ηH

0

LiV (X(t), α(t−))dt

≤ EV (ξ(0), i0) + CE
∫ T∧τk∧ηH

0

(1 + V (X(t))dt,

where ηH = inf{t ≥ 0 : |X(t)| > H}. Using the estimate above and the argument in [31,

Theorem 3.19], we can show that

EV (T ∧ τk ∧ ηH) ≤ K = K(ξ, T )∀H > 0, k ∈ Z+.

In view of the property lim
R→∞

(
inf{V (x) : |x| ≥ R}

)
= ∞, for any ε > 0, there is Hε > 0

such that

P{ηHε > T ∧ τk} > 1− ε

2
∀ k ∈ Z+.

Then, proceeding similarly as in the proof of Theorem 2.3 yields the existence and uniqueness

of solutions with initial data (ξ, i0) to (1.7).

Example 2.6. (cont. of Example 1.2) We come back to Example 1.2. We want to show that

X(t) > 0 for all t ≥ 0 under certain conditions. To proceed, we can set Y (t) = lnX(t) to

obtain

dY (t) = [a(α(t)− σ2(α(t))

2
− b(α(t)) exp(Y (t))]dt+ σ(α(t))dW (t). (2.9)

To demonstrate (1.11) and (1.12) has a unique solution with X(t) > 0 for all t ≥ 0, it is

equivalent to show that (2.9) and (1.12) has a strong solution on [0,∞). Let V (y) = ey+e−y.
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By direct calculation,

LiV (y) =b(i) + (σ2(i)− a(i))e−y + a(i)ey − b(i)e2y

≤c(i) + (σ2(i)− a(i))V (y),

where c(i) = max
y∈R
{b(i) + (2a(i)− σ2(i))ey − b(i)e2y}. Applying Theorem 3.3, we can see that

the equation has a unique solution if one of the following is satisfied

• βi(φ) + δi(φ) is bounded uniformly in φ ∈ C+ := {ψ ∈ C : ψ(t) > 0∀t ∈ [−r, 0]} and

i ∈ Z+.

• c(i) and σ2(i) − a(i) are bounded above uniformly and for each i ∈ Z+, βi(φ) + δi(φ)

is bounded in each compact subset of φ ∈ C+.

It can be shown by applying the result of the next section that the process (Yt, α(t)) has

the Markov-Feller property if βi(·) and δi(·) are continuous in addition to one of the above

conditions.

Example 2.7. (cont. of Example 1.3) To study the long-run average control problem in

Example 1.3, it is important to make sure that the system under consideration processes

ergodicity. Before the ergodicity can be verified, we need (1.14) has a unique solution for

each initial condition. Denote the control set by K̃ and assume it is a compact and convex

set. Using a relaxed control representation mt(·) (see [29]) to represent the consumption rate

c(·), we can rewrite (1.14) as

dX(t) =
[ ∫

K̃

c(u)mt(du)− ρ(α(t))X(t)
]
dt+ σ(X(t), α(t))dW (t). (2.10)

Assume that for each i ∈ Z+, σ(x, i) satisfies the conditions in Assumption 2.1 (i), and Q(φ)

satisfies Assumption 2.1 (ii). Then the conditions of Theorem 2.1 are all verified. As a result,
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(2.10) has a unique solution for each initial condition.

2.2 Markov and Feller Properties

This section establishes the Markov and Feller properties of the process (Xt, α(t)). While

the Markov property can be derived by the well-known arguments, it requires much more

efforts to obtain the Feller property. As already seen in the previous section, the past de-

pendence and the use of Z+ make the analysis more complex than that of the switching

diffusions with diffusion-dependent switching living in a finite set. To overcome the difficul-

ties, in this section, we carry out the analysis by introducing some auxiliary or intermediate

processes. First, it would be better if we could untangle the past dependence of the switching

process and the infinity of the cardinality of its state space. For this purpose, we introduce

a continuous-time Markov chain independent of the past and continuous state; we call this

process γ(t). Then naturally, associated with γ(t), we examine a pair of process (Z(t), γ(t)).

Even after this introduction, in the analysis, we still need to look into the details of the

switching process α(t) such as when it jumps and the post jump location etc. To do so, we

introduce another auxiliary process Y (t), which is a “fixed”-i process. We then have another

pair of processes (Y (t), β(t)) to deal with. These auxiliary processes help us to establish the

desired results. Their connections and interactions will be further specified in what follows.

First, note that the Brownian motion and the Poisson point process associated to

p(dt, dz) possess stationary strong Markov property, that is, for any finite stopping time

η, {W ∗(t)}t≥0 = {W (t + η)−W (η)}t≥0 is an F∗t -Brownian motion and p∗([t, t + s)× U) =

p([t+η, t+s+η)×U) is a Poisson random measure with density dt×m(dz) (see [48, Theorem
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101]). Hence, by standard arguments, we can obtain the following theorem whose proof is

omitted. In fact, the theorem can be proved essentially by imitating the proof in [42, Chap.

5], [3, Chap. 6], or [40, Chap. 7].

Theorem 2.8. Assume that the hypotheses of Theorem 2.1, or Theorem 2.3, or Theorem

2.5 are satisfied. Let (X(t), α(t)) be a solution to (1.7). Then (Xt, α(t)) is a homogeneous

strong Markov process taking value in C × Z+ with transition probabilities

P (φ, i, t, A× {j}) = P{Xφ,i
t ∈ A,α(t) = j},

where Xφ,i(t) is the solution to (1.7) with initial data (φ, i) ∈ C × Z+.

We proceed with obtaining the Feller property of (Xt, α(t)). Assuming that the hypothe-

ses of Theorem 2.1, or Theorem 2.3, or Theorem 2.5 are satisfied leads to the existence

and uniqueness of strong solutions. Next, we introduce an auxiliary hybrid diffusion with

Markov switching. Let γi(t) be a Markov chain starting at i with generator Q̃ = (ρij) for

(i, j) ∈ Z+ × Z+, where ρii = −1 and ρij = 2−j if j < i and ρij = 2−j+1 if j > i, that is,

Q̃ =



−1 1/2 1/4 · · ·

1/2 −1 1/4 · · ·

1/2 1/4 −1 · · ·

...
...

...
. . .


.

We recursively define a sequence of stopping times {θik} with θik being the first jump time of

γi(t) after θik−1 as follows

θi0 = 0, θik = inf{t > θik−1 : γi(t) 6= γi(θik−1)}, k ∈ Z+.
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For (φ, i) ∈ C × Z+, let Zφ,i(t) be the solution to

dZ(t) = b(Z(t), γ(t))dt+ σ(Z(t), γ(t))dW (t) , t ≥ 0

satisfying Zφ,i(t) = φ(t) in [−r, 0] and γ(0) = i.

Similar to Girsanov’s theorem, which tells us how to convert an Itô process to a Brownian

motion under a change of measure, we aim to establish a change of measure allowing us to

“convert” a hybrid diffusion with past-dependent switching to a hybrid diffusion with Markov

switching. To establish such a change of measure, we need to find the distribution of jump

times of α(t). Because of the interactions between α(t) and X(t), we need to introduce

another auxiliary (or intermediate) process, which helps to examine the distribution of the

jump times of α(t). Let (Y φ,i(t), βφ,i(t)) be the solution to
dY (t) = b(Y (t), i)dt+ σ(Y (t), i)dW (t), t ≥ 0

dβ(t) =

∫
R
h(Yt, β(t−), z)p(dt, dz), t ≥ 0

(2.11)

satisfying Y φ,i(t) = φ(t) in [−r, 0] and βφ,i(0) = i. By the definition, αφ,i(t) =

βφ,i(t), Xφ,i(t) = Y φ,i(t) up to the first jump time of the two process α(t) and β(t). There

is an advantage working with (Y φ,i(t), βφ,i(t)). Unlike the pair (X(t), α(t)) in which α(t)

depends on the continuous state, the process Y φ,i(t) evolving for a fixed discrete state i that

does not depend on βφ,i(t). Thus, it is easier to examine, for example, the first jump time of

βφ,i(t) (or αφ,i(t)).

Next we recursively define sequences of stopping times associated with β(t) and α(t) so

that λφ,ik and τφ,ik are the first jump times of the processes βφ,i(t) and αφ,i(t) after λφ,ik−1 and
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τφ,ik−1, respectively. More specifically, for k ∈ Z+, let

λφ,i0 = 0, λφ,ik = inf{t > λφ,ik−1 : βφ,i(t) 6= βφ,i(λφ,ik−1)}, i ∈ Z+.

and

τφ,i0 = 0, τφ,ik = inf{t > τφ,ik−1 : αφ,i(t) 6= αφ,i(τφ,ik−1)}, i ∈ Z+.

To simplify the notation, we put

αφ,ik := αφ,i(τφ,ik ), βφ,ik := βφ,i(λφ,ik ), γik := γi(θik),

and

Xφ,i
(k) := Xφ,i

τφ,ik

, Y φ,i
(k) := Y φ,i

λφ,ik
, Zφ,i

(k) := Zφ,i

θik
,

where we use the subscript k with parentheses to avoid confusion with the function-valued

processes Xφ,i
t , Y φ,i

t , Zφ,i
t at t = k.

Lemma 2.9. Let g : C × R+ × Z+ 7→ R be a bounded and measurable function, and FWT be

the σ-algebra generated by {W (t), t ∈ [0, T ]}. The following assertions hold:

(i) P
(
{λφ,i1 > t}

∣∣FWT ) = E
[
1{λφ,i1 >t}

∣∣∣FWT ] = exp
(
−
∫ t

0

qi(Y
φ,i
s )ds

)
∀ t ∈ [0, T ].

(ii) E
[
g(Y φ,i

(1) , λ
φ,i
1 , βφ,i1 )1{λφ,i1 ≤T}

∣∣∣FWT ] =
∞∑

j=1,j 6=i

∫ T

0

g(Yt, t, j)qij(Yt) exp(−
∫ t

0

qi(Ys)ds)dt.

As indicated previously, it is difficult to estimate the difference of Xφ1,i
t and Xφ2,i

t be-

cause the states of αφ1,i(t) and αφ2,i(t) may differ significantly due to the continuous state

dependence. In contrast, it is considerably easier to compare Zφ1,i
t and Zφ2,i

t because of

the continuous-state-dependent switching is replaced by the continuous-state-independent
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Markov chain. With help of the intermediate process (Y (t), β(t)) and Lemma 2.9, we obtain

the following change of measure formula, which is a bridge to connect the continuous-state-

dependent and continuous-state-independent processes.

Proposition 2.10. For any T > 0, let f(·, ·) : C×Z+ 7→ R be a bounded continuous function.

For any l = 0, 1, . . . , any ik ∈ Z+ with ik 6= ik+1 and k = 1, . . . , l+1, and any (φ, i) ∈ C×Z+,

E
[
f(Xφ,i

T , αφ,i(T ))1{τφ,il ≤T<τ
φ,i
l+1}

l∏
k=1

1{αφ,ik =ik}

]
= exp(T )E

[
f(Zφ,i

T , il)1{θil≤T<θil+1}

l∏
k=1

(
1{γik=ik}

qikik+1
(Zφ,i

(k))

ρikik+1

)
×

× exp
{
−
∫ T

0

qγi(s)(Z
φ,i
s )ds

}]
.

(2.12)

Remark 2.11. The proofs of Lemma 2.9 and Proposition 2.10 will be given in the Appendix.

We are now in a position to prove the Feller property for the solution to (1.7). In addition

to the sufficient conditions for the existence and uniqueness of solution, we prove the Feller

property of the solution only with an additional condition that qij(φ) is continuous in φ for

any i, j ∈ Z+. There are some difficulties because the process {Xt} takes value in an infinite

dimensional Banach space and the switching {α(t)} has an infinite state space. Moreover,

although we suppose that qij(φ) is continuous, neither the uniform continuity in φ ∈ C nor

equi-continuity in i, j ∈ Z+ is assumed. Because of these difficulties, we divide the proof into

several steps. First, we make the following assumptions, which will be relaxed later.

Assumption 2.5. Assume the following conditions hold.

(i) For each i ∈ Z+, b(x, i) and σ(x, i) are Lipschitz continuous functions that are vanishing

outside {x : |x| ≤ R} for some R > 0.
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(ii) M := sup{qi(φ) : i ∈ Z+, φ ∈ C} <∞.

(iii) For each i, j ∈ Z+, j 6= i, qi(·) and qij(·) are continuous on C.

Before applying (2.12) to prove the continuous dependence of

uf (φ, i) = Eφ,if(XT , α(T )) on (φ, i), we first need the following lemma.

Lemma 2.12. Assume that Assumption 2.5 is satisfied. Let (φ0, i0) ∈ C×Z+ with ‖φ0‖ ≤ R

and T > 0. For each ∆ > 0, there exist m = m(∆) ∈ Z+, nm = nm(∆) ∈ Z+, and

dm = dm(∆) > 0 such that

P
(
{τφ,i0m+1 > T} ∩ {αφ,i0(t) ∈ Nnm ,∀t ∈ [0, T ]}

)
≥ 1−∆, ∀‖φ− φ0‖ < dm,

where Nk = {1, . . . , k}.

This lemma allows us to confine our attention to a finite subset of Z+ (the state space of

αφ,i0(·)) and a finite number of jumps when φ is close to φ0. It is a crucial step in providing

some uniform estimates because we do not assume the equi-continuity of qij(·) in either i

or j. Since the switching intensity of αφ,i0(t) depends on Xφ,i0
t , in order to obtain Lemma

2.12, we need to show that with an arbitrarily large probability, Xφ,i0
t , t ∈ [0, T ] belongs to a

compact set in C for any φ sufficiently close to φ0. Note that under some suitable conditions,

sample paths of a diffusion process in a finite interval [0, T ] are Hölder continuous. Thus,

it is easy to find a compact set in which sample paths of a diffusion process lie with a

large probability. Our arguments rely on this fact. However, the initial data φ of our process

X(t) does not always satisfy the Hölder continuity. Moreover, X(t) depends on the state of

α(t). We therefore need to introduce the following operator, which is motivated by merging

trajectories of X(t) at jump times. For A,B ⊂ C, we define the set of continuous functions
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that are formed by merging functions in A and B as follows.

A ] B := A ∪ B ∪ {ψ ∈ C : ∃ψ1 ∈ A,ψ2 ∈ B, s ∈ [0, r] such that

ψ(t) = ψ1(s+ t)∀t ∈ [−r,−s];ψ(t) = ψ2(t+ s− r)∀t ∈ [−s, 0]}.

By virtue of the Arzelá-Ascoli theorem, if A and B are compact, so is A ] B. Using this

fact and the Hölder continuity of sample paths of a diffusion process, we can find a suitable

compact set to which Xφ,i0
t , t ∈ [0, T ], belongs with a large probability for any φ which

is sufficiently close to φ0. Then, Lemma 2.12 can be proved. The details of the proof are

postponed to the Appendix. Now, we point out some nice properties of the diffusion process

with Markov switching (Z(t), γ(t)), which are useful to compare the sample paths of Z(t)

with different initial values.

Lemma 2.13. Fix i0 ∈ Z+. For each k ∈ Z+ and ε > 0, there is an ~k = ~k(ε) > 0 such

that

P
{

sup
t,s∈[0,T∧ιk],0<t−s<~k

|Zφ,i0(t)− Zφ,i0(s)|
(s− t)0.25

≤ 4
}
> 1− ε ∀ |φ(0)| ≤ R,

and

E
[

sup
t∈[0,T∧ιk]

|Zφ,i0 − Zψ,i0|2
]
≤ C|φ− ψ|2,

where ιk = inf{t > 0 : γi0(t) > k} and C is some positive constant.

Proof. Since b(x, i) and σ(x, i) are Lipschitzian in x uniformly in Nk, by standard arguments

(e.g., [31, Theorem 3.23]), we can show that

E|x(t ∧ ιk)− x(s ∧ ιk)|6 < C̃k(t− s)3,∀0 ≤ s ≤ t ≤ T.
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Using the Kolmogorov-Centsov theorem, we obtain the first inequality. The details are similar

to the proof of Lemma 2.12 in the Appendix. The second claim is proved in the same manner

as that of [60, Lemma 2.14].

Having Lemmas 2.12 and 2.13, we are ready to use the change of measure (2.12) to prove

the Feller property of (Xt, α(t)) under Assumption 2.5.

Proposition 2.14. Suppose that Assumption 2.5 is satisfied. Let f(·, ·) : C × Z+ 7→ R be

continuous and bounded. Then for any T > 0, uf (φ, i) = Ef(Xφ,i
T , αφ,i(T )) is a continuous

function in φ ∈ C.

Proof. We suppose without loss of generality that |f(φ, i)| ≤ 1∀ (φ, i) ∈ C×Z+. Fix (φ0, i0) ∈

C × Z+. We show that for any ∆ > 0, there exists d∗ = d∗(∆, φ0, i0) > 0 such that

∣∣Ef(Xφ,i0
T , αφ,i0(T ))− Ef(Xφ0,i0

T , αφ0,i0(T ))
∣∣ ≤ 3∆∀ ‖φ− φ0‖ < d∗. (2.13)

In view of Lemma 2.12, there are m, nm ∈ Z+, and dm > 0 such that

P
(
{τφ,i0m+1 > T} ∩ {αφ,i0(t) ∈ Nnm ,∀t ∈ [0, T ]}

)
≥ 1−∆∀‖φ− φ0‖ <

dm
2
. (2.14)

Let ε = ε(∆) > 0 (to be specified later). Let ~k be as in Lemma 2.13. Denote

H̃ =
{
ψ(·) ∈ C : ‖ψ‖ ≤ R + 1 and sup

t,s∈[−r,0],0<t−s<~nm

|ψ(s)− ψ(t)|
(s− t)0.25

≤ 4
}

and K̃ = {φ0} ] H̃. By the compactness of K̃, there is a d̃m > 0 such that

‖qij(ψ)− qij(φ)‖ < ε, |f(ψ, i)− f(φ, i)| < ε (2.15)

if φ ∈ K̃, i, j ∈ Nnm and ‖ψ − φ‖ < d̃m. In view of Lemma 2.13, we can choose d̂m > 0 such
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that

P
{

sup
t∈[0,T∧ιk]

‖Zφ,i0
t − Zφ0,i0

t ‖ ≤ d̃m

}
< ε if ‖φ− φ0‖ ≤ d̂m. (2.16)

Let Aφ be the event {τφ,i0m ≤ T < τφ,i0m+1, ιnm > T} and l(T ) be the number of jumps up to

time T of γi0(t). It follows from Proposition 2.10 that

E
[
f(Xφ,i0

T , αφ,i0(T ))1Aφ
]
− E

[
f(Xφ0,i0

T , αφ0,i0(T ))1Aφ0
]

= exp(T )E
[
1{l(T )<m+1,ιnm>T}

[
g(Zφ,i0(·), γi0(·))− g(Zφ0,i0(·), γi0(·))

]]
,

(2.17)

where

g(Zφ,i0(·), γi0(·)) = f(Zφ,i0
T , γi0(T ))

l(T )∏
k=1

q
γ
i0
k γ

i0
k+1

(Zφ,i0
(k+1))

ρ
γ
i0
k γ

i0
k+1

e
−

∫ T
0 q

γi0 (s)
(Z
φ,i0
s )ds

.

Let Dφ
m be the event

Dφ
m :=

{
sup

t∈[0,T∧ιk]

‖Zφ,i0
t − Zφ0,i0

t ‖ ≤ d̃m

}
∩
{

sup
t,s∈[0,T∧ιk],0<t−s<~nm

|Zφ0,i0(s)− Zφ0,i0(t)|
(s− t)0.25

≤ 4
}
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Using (2.17) and the estimates in [60, Lemma 2.17], we obtain for l ≥ 1,∣∣∣E[f(Xφ,i0
T , αφ,i0(T ))1Aφl

]
− E

[
f(Xφ0,i0

T , αφ0,i0(T ))1
A
φ0
l

]∣∣∣
≤KE

[
1{θi0l ≤T<θ

i0
l+1,ιnm>T}

× sup
i∈Nnm

|f(Zφ,i0
T , i)− f(Zφ0,i0

T , i)|
]

+KE
[
1{θi0l ≤T<θ

i0
l+1,ιnm>T}

× sup
t∈[0,T ],i,j∈Nnm

|qij(Zφ,i0
t )− qij(Zφ0,i0

t )|
]

≤KE
[
1{θi0l ≤T<θ

i0
l+1,ιnm>T}

1Dφm × sup
i∈Nnm

|f(Zφ,i0
T , i)− f(Zφ0,i0

T , i)|
]

+KE
[
1{θi0l ≤T<θ

i0
l+1,ιnm>T}

1Dφm × sup
t∈[0,T ],i,j∈Nnm

|qij(Zφ,i0
t )− qij(Zφ0,i0

t )|
]

+ 2K(M + 1)P(Ω \Dφ
m),

where K is a constant depending only on T,m, nm.

Note that if ω ∈ {θi0l ≤ T < θi0l+1, ιnm > T} ∩Dφ
m, then Zφ0,i0

t ∈ K̃ and ‖Zφ,i0
t − Zφ0,i0

t ‖ ≤

d̃m ∀t ∈ [0, T ] which implies in view of (2.15) that

sup
i∈Nnm

|f(Zφ,i0
T , i)− f(Zφ0,i0

T , i)|+ sup
t∈[0,T ],i,j∈Nnm

|qij(Zφ,i0
t )− qij(Zφ0,i0

t )| < 2ε.

On the other hand, Lemma 2.13 and (2.16) imply that

P(Ω \Dφ
m) ≤ 3ε if ‖φ− φ0‖ ≤ d̂m.

Hence for ‖φ− φ0‖ ≤ d̂m, we have that

∣∣∣E[f(Xφ,i0
T , αφ,i0(T ))1Aφ

]
− E

[
f(Xφ0,i0

T , αφ0,i0(T ))1Aφ0
]∣∣∣ ≤ 2K(4 + 3M)ε, (2.18)

Note that

P
(
Ω \ Aφ

)
= P

(
{τφ,i0m+1 < T} ∪ {αφ,i0(t) /∈ Nnm for some t ∈ [0, T ]}

)
< ∆,
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which implies

∣∣∣E[f(Xφ,i0
T , αφ,i0(T ))1Ω\Aφ

]
− E

[
f(Xφ0,i0

T , αφ0,i0(T ))1Ω\Aφ
]∣∣∣ ≤ 2∆. (2.19)

Choosing ε =
∆

2K(4 + 3M)
, we have from (2.18) and (2.19) that

∣∣∣E[f(Xφ,i0
T , αφ,i0(T ))

]
− E

[
f(Xφ0,i0

T , αφ0,i0(T ))
]∣∣∣ ≤ 3∆

if ‖φ− φ0‖ < d∗ :=
dm
2
∧ d̂m.

With the above technical preparations, we are now in a position to prove the main

theorem of this section. By using truncation arguments, we can obtain the Feller property

of (Xt, α(t)) even if b(·, i), σ(·, i) do not vanish outside a bounded region and qi(φ) is not

bounded. The precise condition is given below.

Theorem 2.15. Assume that the hypotheses of Theorem 2.1, or Theorem 2.3, or Theorem

2.5 hold. Assume further that qij(·) is a continuous function for any i, j ∈ Z+. Then the

solution to (1.7) has the Feller property.

Proof. Let f(·, ·) : C ×Z+ 7→ R be a continuous function with |f(φ, i)| ≤ 1∀ (φ, i) ∈ C ×Z+.

Fix R > 0, T > 0. Suppose that ‖φ0‖ < R. Under the hypotheses of Theorem 2.1, or Theorem

2.3, or Theorem 2.5, it is shown in the proofs of those theorems that for any ε > 0, there

exists an R̃ > 0 such that

P{‖Xφ,i0
t ‖ ≤ R̃} > 1− ε

8
∀‖φ‖ ≤ R + 1. (2.20)

Let Φ(x) : Rn 7→ R be a twice continuously differentiable satisfying Φ(x) = 1 if |x| ≤ R̃ and
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Φ(x) = 0 if |x| ≥ R̃ + 1. Let (X̃φ,i0
t , α̃φ,i0(t)) be the solution with initial data (φ, i0) to

dX̃(t) = Φ(X̃(t))b(X̃(t), α̃(t))dt+ Φ(X̃(t))σ(X̃(t), α̃(t))dW (t)

dα̃(t) =

∫
R
h(X̃t, α̃(t−), z)p(dt, dz).

(2.21)

Then (X̃φ,i0(t), α̃φ,i0(t)) = (Xφ,i0(t), αφ,i0(t)) up to the time that ‖Xφ,i0
t ‖ > R̃, which com-

bined with (2.20) implies

P{Ω̃φ,i0} > 1− ε

8
, ∀ ‖φ‖ < R

where Ω̃φ,i0 := {X̃φ,i0
T = Xφ,i0

T , α̃φ,i0(T ) = αφ,i0(T )}. As a result, if ‖φ‖ < R, we have∣∣∣Ef(Xφ,i0
T , αφ,i0(T ))− Ef(X̃φ,i0

T , α̃φ,i0(T ))
∣∣∣

≤E
[
1Ω̃cφ,i0

∣∣∣f(Xφ,i0
T , αφ,i0(T ))− f(X̃φ,i0

T , α̃φ,i0(T ))
∣∣∣] (with Ω̃c

φ,i0
= Ω \ Ω̃φ,i0)

≤2P
(
1Ω̃cφ,i0

)
≤ 2

ε

8
=
ε

4
.

(2.22)

It follows from Proposition 2.14 that there exists a δ ∈ (0, 1) such that if ‖φ − φ0‖ < δ,

we have

∣∣∣Ef(X̃φ,i0
T , α̃φ,i0(T ))− Ef(X̃φ0,i0

T , α̃φ0,i0(T ))
∣∣∣ < ε

2
. (2.23)

Since ‖f‖ ≤ 1, we can easily obtain from (2.22) and (2.23) that∣∣∣Ef(Xφ,i0
T , αφ,i0(T ))− Ef(Xφ0,i0

T , αφ0,i0(T ))
∣∣∣

≤
∣∣∣Ef(X̃φ,i0

T , α̃φ,i0(T ))− Ef(X̃φ0,i0
T , α̃φ0,i0(T ))

∣∣∣
+
∣∣∣Ef(Xφ,i0

T , αφ,i0(T ))− Ef(X̃φ,i0
T , α̃φ,i0(T ))

∣∣∣
+
∣∣∣Ef(Xφ0,i0

T , αφ0,i0(T ))− Ef(X̃φ0,i0
T , α̃φ0,i0(T ))

∣∣∣
<
ε

2
+
ε

4
+
ε

4
= ε, if ‖φ− φ0‖ < δ.
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The proof of the theorem is complete.

2.3 Feller Property of Hybrid Diffusion without Past Dependence

Now, we suppose that the qij, i, j ∈ Z+ associated with α(t) depend only the current state

of X(t). To be more precise qij(·) is a function from Rn to R for each (i, j) ∈ Z+ ×Z+. As a

special case of the hybrid diffusion with past-dependent switching, we obtain the following

theorem.

Theorem 2.16. Assume that qij(·) is a continuous function for any i, j ∈ Z+. Assume

further that one of the following conditions is satisfied:

(a) Assumption 2.3 and qi(y) =
∑

j 6=i qij(y) is bounded uniformly in (i, y) ∈ Z+ × Rn.

(b) Assumption 2.4 and qi(y) is bounded uniformly in (i, y) ∈ Z+ × K for each compact

subset K of Rn.

Then the unique solution to (1.7) is a Markov process having the Feller property.

Remark 2.17. If for each discrete state i ∈ Z+, the diffusion Y (i)(t), which is the solution

process to

dY (i)(t) = b(Y (i)(t), i)dt+ σ(Y (i)(t), i)dW (t) (2.24)

has the strong Feller property, we do not need the continuity of qij(·) to get the Feller

property of (X(t), α(t)). In fact, we will obtain a stronger result, namely, the strong Feller

property. The condition for the strong Feller property of Y (i)(t) is essentially the ellipticity

of A(x, i) or the Hörmander condition for hyperellipticity (see e.g., [38, 50]).

Theorem 2.18. Assume that qij(·) is measurable for any i, j ∈ Z+ and either (A) or (B)

in Theorem 2.16 holds. If for each i ∈ Z+, the solution process Y (i)(t) to (2.24) has the
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strong Feller property, then the unique solution to (1.7) has the strong Feller property, that

is, for each bounded measurable function g(y, i) : Rn × Z+ → R, the function (x, i) →

Eg(Xx,i(T ), αx,i(T )) is continuous for each T > 0.

Proof. We assume without loss of generality that |g(z, i)| ≤ 1 ∀z ∈ Rn, i ∈ Z+. Let Y y,i(t)

be the solution with initial data y to (2.24). Fix (x, i) ∈ Rn × Z+ and ε > 0. Under the

assumption (A) or (B), we can show that for each x ∈ Rn, there is a K > 0 satisfying

P((Ωy,i
ε )c) <

ε

8
∀y ∈ B(x, 1) := {z : |x− z| < 1}, (2.25)

where Ωy,i
ε = {|Y y,i(t)| ≤ K, t ∈ [0, 1]}, (Ωy,i

ε )c = Ω \ Ωy,i
ε .

Let M = supi∈Z+,|z|≤K qi(z) and t0 ∈ (0, 1) satisfying 1 − exp{−Mt0} <
ε

16
. It follows

from (2.25) and (i) of Lemma 2.9 that

P{τ y,i > t0} > 1− 3ε

16
∀y ∈ B(x, 1), (2.26)

where

τ y,i := inf{t > 0 : αy,i(t) 6= i} = inf
{
t > 0 :

∫ t

0

∫
R
h(Y y,i(s), i, u)p(ds, du) 6= 0

}
.

Denote Φ(y, i) := Eg
(
Xy,i(T−t0), αy,i(T−t0)

)
. The condition |g(y, i)| ≤ 1 implies |Φ(y, i)| ≤

1 for all y ∈ Rn, i ∈ Z+. By the strong Feller property of Y (i)(t), there is a δ > 0 such that

|EΦ(Y y,i(t0), i)− EΦ(Y x,i(t0), i)| ≤ ε

4
∀y ∈ B(x, δ). (2.27)

By the strong Markov property of X(t), we have

Eg
(
Xy,i(T ), αy,i(T )

)
= EΦ(Xy,i(t0), αy,i(t0))

= E
[
1{τy,i>t0}Φ(Xy,i(t0), αy,i(t0))] + E

[
1{τy,i≤t0}Φ(Xy,i(t0), αy,i(t0))].

(2.28)
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Applying (i) of Lemma 2.9, we obtain

E
[
1{τy,i>t0}Φ(Xy,i(t0), αy,i(t0))]

=E
[
Φ(Y y,i(t0), αy,i(t0))e−

∫ t0
0 qi(Y

y,i(s))ds
]

=E
[
Φ(Y y,i(t0), αy,i(t0))

]
+ E

[
1(Ωy,iε )cΦ(Y y,i(t0), αy,i(t0))

(
e−

∫ t0
0 qi(Y

y,i(s))ds − 1
)]

+ E
[
1Ωy,iε

Φ(Y y,i(t0), αy,i(t0))
(
e−

∫ t0
0 qi(Y

y,i(s))ds − 1
)]
.

(2.29)

Note that if |g(z, i)| ≤ 1 ∀z ∈ Rn, i ∈ Z+ then |Φ(z, i)| ≤ 1 ∀z ∈ Rn, i ∈ Z+. We have

the following estimates for y ∈ B(x, δ) using (2.25), (2.26), (2.27), and the fact that

|g(z, i)|, |Φ(z, i)| ≤ 1 ∀z ∈ Rn, i ∈ Z+.

∣∣∣E[1(Ωy,iε )cΦ(Y y,i(t0), αy,i(t0))
(
e−

∫ t0
0 qi(Y

y,i(s))ds − 1
)]∣∣∣ ≤ P((Ωy,i

ε )c) ≤ ε

8
, (2.30)

∣∣∣E[1Ωy,iε
Φ(Y y,i(t0), αy,i(t0))

(
e−

∫ t0
0 qi(Y

y,i(s))ds − 1
)]∣∣∣ ≤ 1− exp(−Mt0) ≤ ε

16
, (2.31)

E
[
1{τy,i≤t0}Φ(Xy,i(t0), αy,i(t0))]

∣∣∣ ≤ P{τ y,i ≤ t0} ≤
3ε

16
. (2.32)

Applying estimates (2.27), (2.30), (2.31), and (2.32) to (2.28) and (2.29), we have

∣∣∣EΦ(Xy,i(T ), αy,i(T ))− EΦ(Xx,i(T ), αx,i(T ))
∣∣∣ ≤ ε, ∀y ∈ B(x, δ).

The proof is complete.

Remark 2.19. Sufficient conditions for the strong Feller property of (X(t), α(t)), in which

the rates of switching qij for i, j ∈ Z+ depend only on the current continuous state X(t), was

obtained in Shao [44]. However, the conditions there are restrictive. To obtain the strong

Feller property, it is assumed in [44] that qij(x), b(x, i) and σ(x, i) are Lipschitz in x uniformly

in i ∈ Z+. The ellipticity of A(x, i) is also assumed to be uniform in (x, i) ∈ Rn × Z+.
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Moreover, it is assumed that qij(x) = 0 if |i − j| < k for some constant k. It can be seen

that our conditions in this paper are much more relaxed compared with the aforementioned

reference.
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CHAPTER 3 RECURRENCE AND ERGODICITY

Throughout this chapter, we suppose that one of the assumptions for existence and

uniqueness of solutions in Chapter 2 is satistifed, that is, any of the following holds

• Assumption 2.1,

• Assumption 2.2,

• Assumption 2.3 and (ii) of Assumption 2.1,

• Assumption 2.4 and (ii) of Assumption 2.2.

We also assume that qi,j(φ) is continuous in C for each (i, j) ∈ Z2
+. To proceed, we need the

functional Itô formula.

3.1 The Functional Itô Formula

Now we state the functional Itô formula for our process (see [10] for more details). Let

D be the space of cadlag functions f : [−r, 0] 7→ Rn. For φ ∈ D, we define horizontal and

vertical perturbations for h ≥ 0 and y ∈ Rn as

φh(s) =


φ(s+ h) if s ∈ [−r,−h],

φ(0) if s ∈ [−h,−0],

and

φy(s) =


φ(s) if s ∈ [−r, 0),

φ(0) + y,
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respectively. Let V : D × Z+ 7→ R. The horizontal derivative at (φ, i) and vertical partial

derivative of V are defined as

Vt(φ, i) = lim
h→0

V (φh, i)− V (φ)

h
(3.1)

and

∂iV (φ, i) = lim
h→0

V (φhei , i)− V (φ)

h
(3.2)

if these limits exist. In (3.2), ei is the standard unit vector in Rn whose i-th component is 1

and other components are 0. Let F be the family of function V (·, ·) : D×Z+ 7→ R satisfying

that

• V is continuous, that is, for any ε > 0, (φ, i) ∈ D × Z+, there is a δ > 0 such that

|V (φ, i)− V (φ′, i)| < ε as long as ‖φ− φ′‖ < δ.

• The derivatives Vt, Vx = (∂kV ), and Vxx = (∂klV ) exist and are continuous.

• V , Vt, Vx = (∂kV ) and Vxx = (∂klV ) are bounded in each BR := {(φ, i) : ‖φ‖ ≤ R, i ≤

R}, R > 0.

Remark 3.1. Recently, a functional Itô formula was developed in [11], which encouraged

subsequent development (for example, [10, 41]). We briefly recall the main idea in what

follows. Consider functions of the form

V (φ, i) = f1(φ(0), i) +

∫ 0

−r
g(t, i)f2(φ(t), i)dt,

where f2(·, ·) : Rn×Z+ 7→ R is a continuous function and f1(·, ·) : Rn×Z+ 7→ R is a function

that is twice continuously differentiable in the first variable and g(·, ·) : R+ × Z+ 7→ R be
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a continuously differentiable function in the first variable. Then at (φ, i) ∈ C × Z+ we have

(see [41] for the detailed computations)

Vt(φ, i) = g(0, i)f2(φ(0), i)− g(−r, i)f2(φ(−r), i)−
∫ 0

−r
f2(φ(t), i)dg(t, i),

∂kV (φ, i) =
∂f1

∂xk
(φ(0), i), ∂klV (φ, i) =

∂2f1

∂xk∂xl
(φ(0), i).

Let V (·, ·) ∈ F, we define the operator

LV (φ, i) =Vt(φ, i) + Vx(φ, i)b(φ(0), i) +
1

2
tr
(
Vxx(φ, i)A(φ(0), i)

)
+

∞∑
j=1,j 6=i

qij(φ)
[
V (φ, j)− V (φ, i

]
=Vt(φ, i) +

n∑
k=1

bk(φ(0), i)Vk(φ, i) +
1

2

n∑
k,l=1

akl(φ(0), i)Vkl(φ, i)

+
∞∑

j=1,j 6=i

qij(φ)
[
V (φ, j)− V (φ, i)

]
,

(3.3)

for any bounded stopping time τ1 ≤ τ2, we have the functional Itô formula:

EV (Xτ2 , α(τ2)) = EV (Xτ1 , α(τ1)) + E
∫ τ2

τ1

LV (Xs, α(s))ds (3.4)

if the expectations involved exist. Equation (3.4) is obtained by applying the functional Itô

formula for general semimartingales given in [9, 10] specialized to our processes.

3.2 Recurrence and Ergodicity

First, we need some conditions for irreducibility of the process {(Xt, α(t)) : t ≥ 0}.

(H1) (a) For any i ∈ Z+, A(x, i) is elliptic uniformly on each compact set, that is, for any

R > 0, there is a θR,i > 0 such that

y>A(x, i)y ≥ θR,i|y|2 ∀|x| ≤ R, y ∈ Rd. (3.5)
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(b) There is an i∗ satisfying that for any i ∈ Z+, there exist i1, . . . , ik ∈ Z+ and

φ1, . . . , φk+1 ∈ C such that qii1(φ1) > 0, qil,il+1
(φl+1) > 0, l = 1, . . . , k − 1, and

qik,i∗(φk+1) > 0.

(H2) There exists an i∗ ∈ Z+ such that

(a) A(x, i∗) is elliptic uniformly on each compact set;

(b) for any (φ, i) ∈ C × Z+, there exist positive integers i = i1, . . . , ik = i∗ satisfying

qil,il+1
(φ) > 0, l = 1, . . . , k − 1.

Let (Xφ,i, αφ,i(t)) be the solution to (1.7) with initial data (φ, i) ∈ C × Z+. To simplify

the notation, we denote by Pφ,i the probability measure conditioned on the initial data (φ, i),

that is, for any t > 0,

Pφ,i{(Xt, α(t)) ∈ ·} = P{(Xφ,i
t , αφ,i(t)) ∈ ·},

and Eφ,i the expectation associated with Pφ,i. To proceed, we state some auxiliary lemmas.

Lemma 3.2. Let φ ∈ C and qij(φ) > 0. For any ε > 0, there is a δ > 0 such that

inf
ψ∈C:‖ψ−φ‖<δ

Pψ,i{‖Xδ − φ‖ < ε, α(δ) = j} > 0.

Lemma 3.3. For any i > 0, R > 0 and ε > 0, there is a compact set A ∈ C such that

inf
‖φ‖≤R

Pφ,i{Xr ∈ A, α(r) = i} > 0. (3.6)

Moreover, if (3.5) holds for i, then for any k > 0, there is a T = T (k, i, R) > 0 such that

inf
‖φ‖≤R

Pφ,i{‖Xt‖ > k for some t ∈ [0, T ]} > 0. (3.7)
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Lemma 3.4. Assume that either (H1) or (H2) is satisfied. There is a nontrivial measure

ν(·) on B(C) such that ν(D) > 0 if D is a nonempty open subset of C and that for any

R > 0, T > r, there is a dR,T > 0 satisfying

Pφ,i∗{XT ∈ B and α(T ) = i∗} ≥ dR,Tν(B), B ∈ B(C) given that ‖φ‖ ≤ R. (3.8)

The three lemmas above will be proved in the appendix.

Lemma 3.5. Assume that either (H1) or (H2) holds. For any i ∈ Z+, there is a Ti > 0 such

that for any T > Ti and any open set B ⊂ C, we have

Pφ,i{XT ∈ B, α(T ) = i∗} > 0, φ ∈ C

where i∗ is as in (H1) or (H2) accordingly.

Proof. Suppose that (H1) holds with i = i1, . . . , ik = i∗ ∈ Z+ and φ1, . . . , φk+1 ∈ C such that

qil,il+1
(φl+1) > 0, l = 1, . . . , k − 1. Since qil,i1+1(φl+1) > 0, it follows from Lemma 3.2 that

Pψ,il{‖Xεl − φl+1‖ < 1, α(εl) = il+1} > 0 if ‖ψ − φl+1‖ < εl (3.9)

for some εl ∈ (0, 1). In view of Lemma 3.4,

Pψ,il{‖X1+r − φl+1‖ < εl, α(1 + r) = il} > 0 for any ψ ∈ C, (3.10)

and

Pψ,i∗{X1+r+T ′ ∈ B, α(1 + r + T ′) = i∗} > 0 for any ψ ∈ C, T ′ ≥ 0. (3.11)

By (3.9), (3.10), and the Markov property of (Xt, α(t)), we have

Pψ,il{‖X1+r+εl − φl‖ < 1, α(1 + r + εl) = il+1} > 0 for any ψ ∈ C. (3.12)
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Using (3.11), (3.12), and applying the Kolmogorov-Chapman equation again, we obtain

Pψ,i
{
Xk(1+r)+

∑
εl+T ′ ∈ B, α

(
k(1 + r) +

∑
εl + T ′

)
= i∗

}
> 0 for any ψ ∈ C. (3.13)

The lemma is proved with Ti = k(2 + r) ≥ k(1 + r) +
∑
εl.

Now, suppose that (H2) holds, it follows from Lemma 3.2 and the Kolmogorov-Chapman

equation that

Pφ,i{‖Xε − φ‖ < 1, α(ε) = i∗} > 0 (3.14)

for sufficiently small ε. The desired result follows from (3.11) and (3.14) with Ti = 2 + r.

Lemma 3.6. Assume that either (H1) or (H2) holds. Let

ηk = inf{t > 0 : ‖Xt‖ ∨ α(t) > k}. (3.15)

Then for any (φ, i) ∈ C × Z+, we have Pφ,i{ηk <∞} = 1, ∀k ∈ Z+.

Proof. Suppose that p0 = P{ηk <∞} < 1. Since A(x, i∗) is elliptic, in view of (3.7), there is

a T > 0 such that

Pϕ′,i∗{ηk < T} > 0, ∀k > 1, ‖ϕ′‖ ≤ 1. (3.16)

In view of Lemma 3.5 and (3.16), ∀(ψ, j) ∈ C × Z+ there are Tψ,j, pψ,j > 0 such that

Pψ,j{ηk < Tψ,j} > 2pψ,j. (3.17)

Due to the Feller property of (Xt, α(t)), there exists a δψ,j > 0 such that

Pψ′,i{ηk ≤ Tφ,i∗} > pψ,j, ∀ ψ′ ∈ C, ‖ψ − ψ′‖ < δψ,j. (3.18)
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Since σ(·, i) and b(·, i) are locally compact for each i ∈ Z+, similar to Lemma 2.13, we can

show that there is an hk > 0 such that for any t > 0,

Pφ,i
{
|X(s)−X(s′)|

(s− s′)0.25
≤ hk, ∀ 0 ∨ (ηk ∧ t− r) ≤ s′ < s < ηk ∧ t

}
>

1 + p0

2
. (3.19)

Since the set

Ak =

{
ψ ∈ C : |ψ| ≤ k,

|ψ(s)− ψ(s′)|
(s− s′)0.25

≤ hk,∀ − r ≤ s′ < s ≤ 0

}
is compact in C, we have from (3.18) that there exist Tk and p̃k such that

Pψ,j{ηn < Tk} > p̃k > 0, ∀ ψ ∈ Ak, j ≤ k. (3.20)

Since limt→∞ Pφ,i{ηk < t} = p0 < 1, there is a T ′ > 0 such that

p0 ≥ Pφ,i{ηk ≤ T ′} ≥ p0 −
1− p0

2
p̃k. (3.21)

In view of (3.19) and (3.21), we have Pφ,i{T ′ < ηk, XT ′ ∈ Ak} > 1−p0
2

. By the Markov

property and (3.20),

Pφ,i{T ′ < ηk <∞} ≥ Pφ,i{XT ′ ∈ Ak, T ′ < ηk}

≥ Eφ,i
[
1{T ′<ηk,XT ′∈Ak}PXT ′ ,α(T ′)

{
ηk <∞

}]
>

1− p0

2
p̃k.

(3.22)

We have from (3.21) and (3.22) that

p0 = Pφ,i{ηk <∞} =Pφ,i{ηk ≤ T ′}+ Pφ,i{T ′ < ηk <∞}

>p0 −
1− p0

2
p̃k +

1− p0

2
p̃k = p0,

which is a contradiction. Thus p0 = 1.
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Definition 3.7. The process {(Xt, α(t)) : t ≥ 0} is said to be recurrent (resp., positive

recurrent) relative to a measurable set E ∈ C × Z+ if

Pφ,i{(Xt, α(t)) ∈ E for some t ≥ 0} = 1

(
resp. Eφ,i [inf{t > 0 : (Xt, α(t)) ∈ E}] <∞

)
for any (φ, i) ∈ C × Z+.

Theorem 3.8. Suppose that either hypothesis (H1) or (H2) holds. Let D be a bounded open

subset of C and N be a finite subset of Z+. If (Xt, α(t)) is recurrent relative to D ×N then

(Xt, α(t)) is recurrent relative to D′ ×N ′ for any open set D′ ⊂ C and a finite set N ′ ⊂ Z+

containing i∗ with i∗ given in either (H1) or (H2) according to which hypothesis is satisfied.

Proof. Let (φ0, i0) ∈ C ×Z+. In view of Lemma 3.3, there exists a compact set AD ⊂ C such

that

inf
{(ψ,j)∈D×N}

Pψ,j{Xr ∈ AD, α(r) ∈ N} := pD,N > 0. (3.23)

Since i∗ ∈ N ′, by Lemma 3.5, the Feller property of (Xt, α(t)) and the compactness of AD,

there is a T > 0 such that

inf
{(ψ,j)∈AD×N}

Pψ,j{XT ∈ D′ ×N ′} ≥ ε0. (3.24)

Define the stopping times ϑ0 = 0, ϑk+1 = inf{t > ϑk+T : Xηk+1
∈ D×N}. By the hypothesis

of the theorem,

Pφ0,i0{ϑk <∞} = 1, ∀ k ∈ Z+.
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On the other hand, it follows from (3.23) and (3.24) that

Pψ,j{(XT , α(T ) ∈ D′ ×N ′} ≥ pD,Nε0, for all (ψ, j) ∈ D ×N. (3.25)

Consider the events

Ak = {(Xϑk+T /∈ D′ ×N ′}, k ∈ Z+.

By the strong Markov property of (Xt, α(t)), we have

Pφ0,i0

(
∞⋂
k′=k

Ak
′

)
= lim

l→∞
Pφ0,i0

(
l⋂

k′=k

Ak
′

)
≤ lim

l→∞
(1− pD,Nε0)l−k = 0.

Thus

Pφ0,i0

(
∞⋂
k′=k

Ak
′

)
= 0.

It indicates that the event
{(
Xϑk+T , α(ϑk + T )

)
∈ D′ ×N

}
must occur with probability 1.

Theorem 3.9. Suppose that either hypothesis (H1) or (H2) holds. Let V (·, ·) ∈ F such that

lim
n→∞

inf{V (φ, i) : |φ(0)| ∨ i ≥ n} =∞.

Suppose further that there are positive constants C and H such that

LV (φ, i) ≤ C1{V (φ,i)≤H}. (3.26)

Then the process (Xt, α(t)) is recurrent relative to D × N , where D is any open bounded

subset of C and N ⊂ Z+ contains i∗.

Proof. Let υH = inf{t > 0 : V (Xt, α(t)) ≤ H} and ηk be defined as in Lemma 3.6. In view
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of Lemma 3.6, Pψ,j{ηk <∞} = 1, ∀k ∈ Z+. Let t > 0. By Itô’s formula

Eψ,jV
(
Xt∧υH∧ηk , α(t ∧ υH ∧ ηk)

)
≤ V (ψ, j).

Letting t→∞, we obtain

Eψ,jV
(
XυH∧ηk , α(υH ∧ ηk)

)
≤ V (ψ, j),

which implies

Pψ,j{υH > ηk} ≤
V (ψ, j)

inf{V (φ, i) : |φ(0)| ∨ i ≥ k}
.

Letting k →∞ yields Pψ,j{υH > ηk} → 0. Thus,

Pψ,j{υH <∞} = 1, ∀(ψ, j) ∈ C × Z+. (3.27)

Now, let k0 > 0 such that inf{V (φ, i) : |φ(0)|∨i ≥ k0} ≥ 2(H+C+r). For any (ψ, j) ∈ C×Z+

satisfying V (ψ, j) ≤ H. We have from (3.26) and Itô’s formula that

Eψ,jV
(
Xr∧ηn0 , α(r ∧ ηn0)

)
≤ H + C + r,

which implies

Pψ,j{ηn0 < r} ≤ H + C + r

2(H + C + r)
≤ 1

2
. (3.28)

Thus,

Pψ,j{‖Xr‖ < n0, α(r) < n0} ≥ Pψ,j{ηn0 > r} > 1

2
provided V (ψ, j) ≤ H. (3.29)

Now, fix (φ0, i0) ∈ C × Z+. By (3.27) and Lemma 3.6, we can define almost surely finite
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stopping times

ζ1 = inf{t ≥ 0 : V (Xt, α(t)) ≤ H},

ζ2k = inf{t ≥ ζ2k−1 + r : |Xt| ∨ α(t) ≥ n0},

ζ2k+1 = inf{t ≥ ζ2k : V (Xt, α(t)) ≤ H}.

(3.30)

Define events Bk = {‖Xζ2k+1+r‖∨α(ζ2k+1+r) ≤ n0}. In view of (3.29) and the strong Markov

property of (Xt, α(t)), we can use standard arguments in Theorem 3.8 to show that

Pφ0,i0{Bk occurs for some k} = 1.

Thus, (Xt, α(t)) is recurrent relative to {(φ, i) : ‖φ‖∨ i ≤ n0}. Combining this with Theorem

3.8 yields the desired result.

Example 3.10. Let

q12(φ) = 1, q1j(φ) = 0 for j ≥ 3;

qi,i−1(φ) = Ci + (1 + ‖φ‖)−1, qi,i+1(φ) = Ci + (1 + ‖φ‖)−1 for i ≥ 2, Ci ≥ 0;

qij(φ) = 0 for i ≥ 2, j /∈ {i− 1, i, i+ 1}.

Suppose the switching diffusion is given by

dX(t) = σ(X(t), α(t))dW (t)−X(t)b(X(t), α(t))dt

where b(x, i) > 0, σ(x, i) are locally Lipchitz in x and uniformly bounded in K×Z+ for each

compact set K ∈ R. Let f(x) be twice continuously differentiable such that f(x) > 0 and

f(x) = |x| if |x| ≥ 1. Let

κ := sup
|x|≤1,i∈Z+

∣∣∣∣− [ dfdx(x)

]
xb(x, i) +

1

2

[
d2f

dx2
f(x)

]
σ2(x, i)

∣∣∣∣ <∞. (3.31)
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Let

V (φ, i) = f(φ(0)) + 2κi.

Direct computation leads to

LV (φ, i) =


−
[
df

dx
(φ(0))

]
φ(0)b(φ(0), i) + σ2(i)

2

[
d2f
dx2

(φ(0))
]
− 2κ(1 + ‖φ‖)−1 if i > 1,

−
[
df

dx
(φ(0))

]
φ(0)b(φ(0), i) +

[
d2f
dx2

(φ(0))
]

+ 2κ if i = 1.

(3.32)

In view of (3.31) and the fact that d
dx
f(x) = sgn(x), d2

dx2
f(x) = 0 for |x| ≥ 1, i > 1 we have

LV (φ, i) ≤ 0 ∀φ ∈ C, i > 1. (3.33)

By (3.32), if we assume further limx→∞ |x|b(x, 1) =∞, then we can verify that

LV (φ, 1) ≤ C̃11{|φ(0)|<H̃} − C̃2,∀φ ∈ C, (3.34)

where C̃1, C̃2, H̃ are some positive constants. In view of (3.33) and (3.34), we can easily check

that (3.26) holds in this example, for V (φ, i) defined above and suitable C,H. Thus, if there

exists i∗ ∈ Z+ such that σ(x, i∗) 6= 0 for any x ∈ R, then the conclusion of Theorem 3.9

holds for this example.

To proceed, let us recall some technical concepts and results needed to prove the main

theorem. Let Φ = (Φ0,Φ1, . . . ) be a discrete-time Markov chain on a general state space

(E,E), where E is a countably generated σ-algebra. Denote by P the Markov transition

kernel for Φ. If there is a non-trivial σ-finite positive measure ϕ on (E,E) such that for any
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A ∈ E satisfying ϕ(A) > 0 we have

∞∑
n=1

Pn(x,A) > 0, x ∈ E

where Pn is the n-step transition kernel of Φ then the Markov chain Φ is called ϕ-irreducible.

It can be shown (see [39]) that if Φ is ϕ-irreducible, then there exists a positive integer d

and disjoint subsets E0, . . . , Ed−1 such that for all i = 0, . . . , d− 1 and all x ∈ Ei we have

P(x,Ej) = 1 where j = i+ 1 (mod d)

and

ϕ

(
E \

d−1⋃
i=0

Ei

)
= 0.

The smallest positive integer d satisfying the above is called the period of Φ. An aperiodic

Markov chain is a chain with period d = 1. A set C ∈ E is called petite if there exists a

non-negative sequence (an)n∈Z+ with
∑∞

n=1 an = 1 and a nontrivial positive measure ν on

(E,E) satisfying that

∞∑
n=1

anPn(x,A) ≥ ν(A), x ∈ C,A ∈ E.

Lemma 3.11. Assume either (H1) or (H2) holds. The Markov chain {(Xk, α(k)) : k ∈ Z+}

is irreducible and aperiodic. Moreover, for every bounded set D ∈ C and a finite set N ∈ Z+,

the set D ×N is petite for {(Xk, α(k)) : k ∈ Z+}.

Proof. Similar to (3.25), there are k0 ∈ Z+, k0 > r, d̃D,N > 0 such that

Pφ,i{Xt ∈ D, αk0 = i∗} ≥ d̃D,N for all (φ, i) ∈ D ×N. (3.35)

By the Markov property, we deduce from (3.8) and (3.35) that for any k > r, there exists a
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d̂D,N,k > 0 such that

Pφ,i{Xk+k0 ∈ B and α(k + k0)i∗} ≥ d̂D,N,kν(B), B ∈ B(C), (φ, i) ∈ D ×N. (3.36)

Let ν̂(·) be the measure on B(C × Z+) given by ν̂(E) = ν({φ ∈ C : (φ, i∗) ∈ E}) for

E ∈ B(C × Z+). Then (3.36) can be rewritten as

Pφ,i{(Xk+k0 , α(k + k0)) ∈ E} ≥ d̂D,N,kν̂(E), E ∈ B(C × Z+), (φ, i) ∈ D ×N. (3.37)

It can be checked that (3.37) implies that the Markov chain {(Xk, α(k)) : k ∈ Z+} is ν̂-

irreducible and every nonempty bounded set in C × Z+ is petite. Moreover, suppose that

(Xk, α(k)) is not aperiodic. Then, there are disjoint set E0, . . . , Ed−1, d > 1 such that

ν̂

(
(C × Z+) \

d−1⋃
j=0

Ej

)
= 0 (3.38)

and

Pφ,i{(X1, α(1)) ∈ Ej} = 1 if j = j′ + 1 (mod d) if (φ, i) ∈ Ej′ ,

which results in

Pφ,i((Xm, α(m)) ∈ Ej) =


1 where m = j + 1 (mod d)

0 otherwise

if (φ, i) ∈ Ej. (3.39)

In view of (3.36), for any m > k0 + r and (φ, i) ∈ C × Z+, there is a p̃φ,i,k > 0 such that

Pφ,i{(Xm, α(m)) ∈ E} ≥ p̃φ,i,kν̂(E) (3.40)

for any measurable set E ∈ B(C × Z+). As a result of (3.39) and (3.40), we have that
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ν̂(Ej) = 0 for any j = 0, . . . , d− 1. Thus,

ν̂

(
(C × Z+) \

d−1⋃
j=0

Ej

)
= ν̂(C × Z+) > 0, (3.41)

which contradicts (3.38). This contradiction implies that (Xk, α(k)) is aperiodic.

Theorem 3.12. Suppose that either (H1) or (H2) holds. Let V (·, ·) ∈ F such that

lim
n→∞

inf{V (φ, i) : |φ(0)| ∨ i ≥ n} =∞. (3.42)

Suppose further that there are positive constants C1, C2 and H such that

LV (φ, i) ≤ −C1 + C21{V (φ,i)≥H}. (3.43)

Then, (Xt, α(t)) is positive recurrent relative to any set of the form D × N where D is a

nonempty open set of C and N 3 i∗ with i∗ given in either (H1) and (H2). Moreover, there

is a unique invariant probability measure µ∗, and for any (φ, i) ∈ C × Z+

lim
t→∞
‖P (t, (φ, i), ·)− µ∗‖TV = 0.

Proof. Let υH = inf{t ≥ 0 : V (Xt, α(t)) ≤ H}. In view of the functional Itô formula,

Eφ,iV (X1∧υH , α(1 ∧ υH)) =V (φ, i) + Eφ,i
∫ 1∧υH

0

LV (Xs, α(s))ds

≤V (φ, i)− C1Eφ,i1 ∧ υH

≤V (φ, i)− C1Pφ,i{υH ≥ 1}.

(3.44)
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For any t ≤ 1 and V (φ, i) ≤ H, we have

Eφ,iV (Xt, α(t)) =V (φ, i) + Eφ,i
∫ t

0

LV (Xs, α(s))ds

≤V (φ, i) + C2t

≤H + C2.

(3.45)

It follows from (3.45) and the strong Markov property of (Xt, α(t)) that

Eφ,i
[
1{υH<1}V (X1, α(1))

]
≤(H + C2)Pφ,i{υH < 1}

≤2(H + C2)− (H + C2)Pφ,i{υH < 1}.
(3.46)

Let CV := {(ψ′, j′) : V (ψ, j) ≤ 2(H + C2)}. In view of (3.44) and (3.46),

Eφ,iV (X1, α(1)) ≤Eφ,i
[
1{υH<1}V (X1, α(1))

]
+ Eφ,iV (X1∧υH , α(1 ∧ υH))

≤V (φ, i)−min{C1, H + C2}+ 2(H + C2)1{(φ,i)∈CV }.

(3.47)

Let n0 ∈ Z+ such that

V (φ, i) ≥ 2(2H + 2C2 + C2r) for any ‖φ‖ ∨ i ≥ n0, (3.48)

and define ζ̂V = inf{t ≥ 0 : V (Xt, α(t)) ≥ 2(2H + 2C2 + C2r)}. Similar to (3.28), we have

Pφ,i{ζ̂V ≤ r} ≤1

2
for (φ, i) ∈ CV . (3.49)

Thus,

Pφ,i{‖Xr‖ ∨ α(r) ≤ n0} ≥ Pφ,i{V (Xr, α(r)) ≥ H + C2r + 1}

≥ 1− Pφ,i{ζ̂V ≤ r} =
1

2
, (φ, i) ∈ CH .

(3.50)

In view of (3.37) and (3.50),

Pφ,i{(Xk+k0 , α(k + k0)) ∈ E} ≥ d̂H,kν̂(E), E ∈ B(C × Z+), if V (φ, i) ≤ H, k > r (3.51)
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for some d̂H,k > 0. Thus, the set {(φ, i) ∈ C × Z+ : V (φ, i) ≤ H} is petite for {(Xk, α(k)) :

k ∈ Z+}. Using this and (3.51), it follows from [51, Theorem 2.1] (or [33]) that

lim
n→∞

‖P (n, (φ, i), ·)− µ∗‖TV = 0

where P (t, (φ, i), ·) is the transition probability of (Xt, α(t)) and µ∗ is an invariant probability

measure of the Markov chain {Xk, α(k), k ∈ Z+}. It is easy to show that µ∗ is also an invariant

probability measure of the process {(Xt, α(t))}. Thus ‖P (t, (φ, i), ·)−µ∗‖TV is decreasing in

t, which leads to

lim
t→∞
‖P (t, (φ, i), ·)− µ∗‖TV = 0.

Now we show that the process (Xt, α(t)) is positive recurrent. Similar to (3.44), we deduce

from the functional Itô formula that

Eφ,iυH ≤ C−1
1 V (φ, i).

Owing to this and (3.51), we can use the arguments in the proof of [57, Lemma 3.6] to show

that (Xt, α(t)) is positive recurrent.

Example 3.13. In Example 3.10, if we assume further that

lim
|x|→∞

inf
i∈Z+

{|x|b(x, i)} > 0 (3.52)

then it follows from (3.31) and (3.32) that

LV (φ, i) ≤ −Ĉ for φ ∈ C, i ≥ 2,

for some positive constant Ĉ. This combined with (3.34) shows that (3.43) holds for the
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switching diffusion (X(t), α(t)) and the function V (φ, i) in Example 3.10. Thus the conclu-

sion of Theorem 3.12 holds for the switching diffusion in Example 3.10 with the additional

condition (3.52).

Theorem 3.14. Suppose that either (H1) or (H2) holds. Let V (·, ·) ∈ F such that

lim
n→∞

inf{V (φ, i) : |φ(0)| ∨ i ≥ n} =∞. (3.53)

Suppose further that there are C1 and C2 > 0 such that

LV (φ, i) ≤ −C1V (φ, i) + C2. (3.54)

Then, there is a unique invariant probability measure µ∗ and θ > 0 such that for any (φ, i) ∈

C × Z+

lim
t→∞

exp(θt)‖P (t, (φ, i), ·)− µ∗‖TV = 0. (3.55)

Proof.

Eφ,i exp{C1(ηk ∧ t)}V (Xηk∧t, α(ηk ∧ t))

=V (φ, i) + Eφ,i
∫ ηk∧t

0

eC1s[LV (Xs, α(s)) + C1V (Xs, α(s))]ds

≤V (φ, i) + C2Eφ,i
∫ ηk∧t

0

eC1sds

≤V (φ, i) + C−1
1 C2e

C1t.

(3.56)

Letting k →∞, we obtain

Eφ,iV (Xt, α(t)) ≤e−C1tV (φ, i) + C−1
1 C2

(3.57)
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Let γ1 = e−C1 and γ2 ∈ (γ1, 1). It follows from (3.57) and (3.46) that

EV (X1, α(1)) ≤γ1V (φ, i) + C−1
1 C2

=γ2V (φ, i) +
[
C−1

1 C2 − (γ2 − γ1)V (φ, i)
]

≤γ2V (φ, i) + [C−1
1 C2]1{V (φ,i)≤H′}

(3.58)

where H ′ = C−1
1 C2(γ2 − γ1)−1. Similar to (3.51), the set {(φ, i) ∈ C × Z+ : V (φ, i) ≤ H ′} is

petite, which combined with (3.58) implies the existence of γ3 ∈ (0, 1) such that

lim
n→∞

γn3 ‖P (n, (φ, i), ·)− µ∗‖TV = 0

due to a well-known theorem (see, e.g., [33]). Then (3.55) follows from (3.58) and the de-

creasing property of ‖P (t, (φ, i), ·)− µ∗‖TV in t.

Example 3.15. Suppose that

q12(φ) = 1, q1j(φ) = 0 for j ≥ 3;

qi,1(φ) = 2

∫ 0

−r
|φ(s)|ds, qi,i+1(φ) = i

∫ 0

−r
|φ(s)|ds for i ≥ 2

qij(φ) = 0 for i ≥ 2, j /∈ {1, i, i+ 1}.

and that the equation for the diffusion part is

dX(t) = σ(X(t), α(t))dW (t)− b(X(t), α(t))X(t)dt

where σ(x, i), b(x, i) are locally Lipchitz in x and uniformly bounded in K × Z+ for each

compact set K ∈ R. Let V (φ, i) be defined as in Example (3.10). Similar to Examples 3.10

and 3.13, under the assumption that b := inf(x,i)∈R×Z+{b(x, i)} > 0. one can show that (3.54)

holds in this example with this function V . Thus, the conclusion of Theorem 3.9 holds for

this example. if there exists i∗ ∈ Z+ such that σ(x, i∗) 6= 0 for any x ∈ R.
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Example 3.16. Let

q12(φ) = 1, q1j(φ) = 0 for j ≥ 3;

qi,i−1(φ) = Ci + 2|φ(0)|, qi,i+1 = Ci + |φ(−r)| for i ≥ 2, Ci ≥ 0;

qij(φ) = 0 for i ≥ 2, j /∈ {i− 1, i, i+ 1}.

Consider the general equation for diffusion (1.5), where σ(x, i), b(x, i) are locally Lipchitz in

x in K × Z+ for each compact set K ∈ R. Suppose there is a function U(x) : Rn 7→ R+

satisfying

• U(x) is twice continuously differentiable in x.

• lim|x|→∞ U(x, i) =∞.

• There are positive constants C1, C2, H such that

LiU(x) ≤ −C1U(x) + C2. (3.59)

Let V (x, i) = U(x) + i+
∫ t

0
exp{ ln 2

r
(s+ r)}ds. By Remark 3.1,

LV (φ, i) =


LiU(x)− i− ln 2

r

∫ t

0

exp

{
ln 2

r
(s+ r)

}
ds+ 2 if i > 1

LiU(x)− ln 2

r

∫ t

0

exp

{
ln 2

r
(s+ r)

}
ds+ 1 if i = 1

(3.60)

As a consequence of (3.59) and (3.60), there are C3 and C4 > 0 such that

LV (φ, i) ≤ −C3V (φ, i) + C4 for (φ, i) ∈ C × Z+.

Thus, the conclusion of Theorem 3.9 holds for this example if there exists i∗ ∈ Z+ such that

A(x, i∗) is elliptic.
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3.3 Recurrence of Past-Independent Switching Diffusions

This section is devoted mainly to characterizing the recurrence of (X(t), α(t)) using the

corresponding system of partial differential equations when the switching intensities of α(t)

depends only on the current state of X(t), that is qij(·), i, j ∈ Z+ are functions on Rn

rather than on C. To simplify the presentation, throughout this section, we set qii(x) = 0

for (x, i) ∈ Rn × Z+. Thus, qi(x) = −
∑

j∈Z+
qij(x). In this section, we use the following

assumption.

Assumption 3.1. Suppose that

1. either Assumption 2.3 or Assumption 2.4 holds with φ ∈ C replaced by x ∈ Rn;

2. for each i ∈ Z+, A(x, i) is uniformly elliptic in each compact set;

3. for any x ∈ Rn, there are q̂ = q̂(x) > 0 and nq̂ = nq̂(x) > 0 such that

∑
j≤np̂

qij(x) ≥ q̂ for any i > nq̂. (3.61)

Remark 3.17. We note the following facts.

• Part 3 of Assumption 3.1 stems from a familiar condition for uniform ergodicity of the

Markov chain having a countable state space. In other word, if (3.61) holds, for each

x ∈ Rn, the Markov chain α̂x(t) with generator Q(x) has a property that

sup
i∈Z+

Eiς <∞

where ς is the first time the process α̂x(t) jumps to {1, . . . , n0} and Ei is the expectation

with condition α̂x(0) = i.

• Since qij(x) is continuous in x ∈ Rn, with the use of the Heine-Borel covering theorem,

it is easy to show that for any bounded set D ∈ Rn, there is ε0 = ε0(D) and n0 = n0(D)
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such that

∑
j≤n0

qij(x) ≥ ε0 for any i > n0, x ∈ D. (3.62)

For an open set D ⊂ Rn, define

τ̃D = inf{t ≥ 0 : X(t) /∈ D},

and W 2,p
loc (D) is the set of functions u : D 7→ R that has generalized derivatives Dβu for any

multiple-index β = (β1, . . . , βn) with |β| =
∑
βi ≤ 2 satisfying Dβu ∈ Lploc(D) if |β| ≤ 2. Let

Hp(D) be the set of functions u(x, i) in D × Z+ satisfying that

• For each i ∈ Z+, u(·, i) ∈ W 2,p
loc (D) and u(·, i) is continuous in the closure D of D.

• For any compact set K ⊂ Rn, sup(x,i)∈(K∩D)×Z+
{u(x, i)} <∞.

Let Li be defined as in Remark 2.4. We state the two main results of this section.

Theorem 3.18. Suppose that Assumption 3.1 holds. Let D1 be a bounded open set of Rn

with ∂D1 ∈ C2 and D = D1
c

be the complement of D1. Let p > n. The process X(t) is

recurrent relative to D1, if and only if the Dirichlet problem
Liu(x, i)− qi(x)u(x, i) +

∑
j∈Z+

qij(x)u(x, j) = 0 in D × Z+

u(x, i) = f(x, i) on ∂D × Z+.

(3.63)

has a unique solution in Hp(D) given that f(x, i) is continuous in x ∈ ∂D and bounded in

∂D × Z+.

Theorem 3.19. Suppose that Assumption 3.1 holds. Let D1 be a bounded open set of Rn

with boundary ∂D1 ∈ C2 and D = Dc
1 be its complement. Let p > n. Suppose further that
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for each compact set K ∈ Rn, the function u(x, i) = Ex,iτ̃D is bounded in K × Z+. Then

{u(x, i)} ∈ Hp(D), p > n is a strong solution to
Liu(x, i)− qi(x)u(x, i) +

∑
j∈Z+

qij(x)u(x, j) = −1 in D × Z+

u(x, i) = 0 on ∂D × Z+.

(3.64)

The solution is unique in Hp(D), p > n.

Lemma 3.20. Let D ⊂ Rn be an open bounded set with ∂D ∈ C2. The Dirichlet problem
Liu(x, i)− qi(x)u(x, i) +

∑
j∈Z+

qij(x)u(x, j) = f(x, i) in D × Z+

u(x, i)
∣∣
∂D

= φ(x, i) on ∂D × Z+.

(3.65)

has a unique strong solution {u(x, i)} ∈ Hp(D), p > n if φ(x, i) and f(x, i) are continuous

and bounded on ∂D × Z+ and D × Z+ respectively.

Proof. The proof is motivated by that of [12, Proposition A]. However, because there are

infinitely many equations, significant modification is needed. Let p > n and

M̂ = sup
(x,i)∈∂D×Z+

{|φ(x, i)|}+ sup
(x,i)∈D×Z+

{|f(x, i)|} <∞. (3.66)

By [54, Theorem 9.1.5], for each i ∈ Z+, there exists a strong solution u0(x, i) ∈ W 2,p
loc (D) ∩

C(D) to 
Liu0(x, i)− qi(x)u(x, i) = 0 in D × Z+

u0(x, i)
∣∣
∂D

= φ(x, i) on ∂D × Z+.

(3.67)

Let Y x,i(t) be the solution to

dY (t) = b(Y (t), i)dt+ σ(Y (t), i)dW (t), t ≥ 0 (3.68)



61

with initial condition x and τx,iD = inf{t ≥ 0 : Y x,i(t) /∈ D}. In view of the Feyman-Kac

formula for diffusion processes

u0(x, i) =Ex,i
[
φ(Y (τD)), i) exp

(
−
∫ τD

0

qi(Y (s))ds

)]
− Ex,i

∫ τD

0

exp

(
−
∫ t

0

qi(Y (s))ds

)
f(Y (t), i)dt.

(3.69)

Note that in (3.69) and what follows, we drop the superscripts x and i in Y x,i and τx,iD

whenever the expectation Ex,i or probability Px,i is used. By part (2) of Assumption 3.1,

supx∈D Ex,iτD <∞ for any i ∈ Z+. In view of (3.69), we have

|u0(x, i)| ≤ sup
x∈∂D
{|φ(x, i)|}+ sup

x∈D
{|f(x, i)|} sup

x∈D
{Ex,iτD}. (3.70)

Let n0 and ε0 satisfy (3.62). In particular, for i > n0, qi(x) ≥ ε0 > 0 in D, we can have the

following estimate from (3.69):

|u0(x, i)| ≤Ex,i|φi(Y (τD))|+ Ex,i
∫ τD

0

exp

(
−
∫ t

0

qi(Y (s))ds

)
|f(Y (t), i)|dt

≤ sup
x∈∂D
{|φ(x, i)|}+ sup

x∈D
{|f(x, i)|}Ex,i

∫ τD

0

exp(−ε0t)dt

≤ sup
x∈∂D
{|φ(x, i)|}+ sup

x∈D
{|f(x, i)|}Ex,i

∫ τD

0

exp(−ε0t)dt

≤ sup
x∈∂D
{|φ(x, i)|}+ ε−1

0 sup
x∈D
{|f(x, i)|}.

(3.71)

As a result of (3.66), (3.70), and (3.71),

M0 := sup
(x,i)∈D×Z+

|u0(x, i)| ≤ sup
x∈∂D,i∈Z+

{|φ(x, i)|}+ ε−1
0 sup

x∈D,i>n0

{|f(x, i)|}

+ sup
x∈D,i≤n0

{|f(x, i)|} sup
x∈D,i≤n0

{Ex,iτD} <∞.
(3.72)

Since u0(x, i) is continuous in D × Z+ and qi(x) =
∑

j∈Z+
qij(x) is continuous and bounded
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in D × Z+, it is easy to show that
∑

j∈Z+
qiju0(x, j) is continuous in D × Z+ and

sup
(x,i)∈D×Z+

∣∣∣∣∣∣
∑
j∈Z+

qiju0(x, j)

∣∣∣∣∣∣ := M̂0 <∞. (3.73)

Thus, for each i ∈ Z+, there exists a strong solution u1(x, i) ∈ W 2,p
loc (D) ∩ C(D) to

Liu1(x, i)− qi(x)u1(x, i) = −
∑

j∈Z+
qij(x)u0(x, j) in D × Z+

u1(x, i)
∣∣
∂D

= φ(x, i) on ∂D × Z+.

(3.74)

owing to [54, Theorem 9.1.5]. Similar to (3.72), we can use (3.73) to obtain that

sup
(x,i)∈D×Z+

|u1(x, i)| := M1 <∞. (3.75)

Continuing this way, we can define recursively {um+1(x, i)} ∈ H2,p(D), the strong solution

to 
Lium+1(x, i)− qi(x)um+1(x, i) = −

∑
j∈Z+

qij(x)um(x, j) in D × Z+

um+1(x, i)
∣∣
∂D

= φ(x, i) on ∂D × Z+.

(3.76)

By the Feyman-Kac formula,

um+1(x, i) =Ex,i
[
φi(Y (τD))) exp

(
−
∫ τD

0

qi(Y (s))ds

)]
+ Ex,i

∫ τD

0

exp

(
−
∫ t

0

qi(Y (s))ds

)∑
j∈Z+

qij(Y (t))um(Y (t), j)dt

− Ex,i
∫ τD

0

exp

(
−
∫ t

0

qi(Y (s))ds

)
f(Y (t), i)dt.

(3.77)

Let ∆m(x, i) = um+1(x, i)− um(x, i) and

∆i
m = sup{|∆m+1(x, i)| : x ∈ D}
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It follows from (3.77) that

|∆m+1(x, i)| =Ex,i
∫ τD

0

exp

(
−
∫ t

0

qi(Y (s))ds

)∑
j∈Z+

qij(Y (t))|∆m(Y (t), j)|dt

≤ sup
{i∈Z+}

{∆i
m}Ex,i

∫ τD

0

exp

(
−
∫ t

0

qi(Y (s))ds

)
qi(Y (t))dt

= sup
{i∈Z+}

{∆i
m}Ex,i

[
1− exp

(
−
∫ τD

0

qi(Y (s))ds

)]
.

(3.78)

Let

p := max
{i≤n0}

Ex,i
[
1− exp

(
−
∫ τD

0

qi(Y (s))ds

)]
< 1.

We have from (3.78) that

max
{i≤n0}

{∆i
m+1} ≤ p sup

{i∈Z+}
{∆i

m}. (3.79)

It also follows from (3.78) that

sup
{i∈Z+}

{∆i
m+1} ≤ sup

{i∈Z+}
{∆i

m}. (3.80)
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For i > n0, using (3.78) again and then using (3.79) and (3.80), we have

|∆m+2(x, i)| ≤ max
{i≤n0}

{∆i
m+1}Ex,i

∫ τD

0

exp

(
−
∫ t

0

qi(Y (s))ds

)∑
j≤n0

qij(Y (t))dt

+ sup
{i>n0}

{∆i
m+1}Ex,i

∫ τD

0

exp

(
−
∫ t

0

qi(Y (s))ds

)∑
j>n0

qij(Y (t))dt

≤p sup
{i∈Z+}

{∆i
m+1}Ex,i

∫ τD

0

exp

(
−
∫ t

0

qi(Y (s))ds

)∑
j≤n0

qij(Y (t))dt

+ sup
{i∈Z+}

{∆i
m+1}Ex,i

∫ τD

0

exp

(
−
∫ t

0

qi(Y (s))ds

)∑
j>n0

qij(Y (t))dt

≤p sup
{i∈Z+}

{∆i
m+1}Ex,i

∫ τD

0

exp

(
−
∫ t

0

qi(Y (s))ds

)∑
j∈Z+

qij(Y (t))dt

+ (1− p) sup
{i∈Z+}

{∆i
m+1}Ex,i

∫ τD

0

exp

(
−
∫ t

0

qi(Y (s))ds

)∑
j>n0

qij(Y (t))dt.

(3.81)

Let

MD = sup
(x,i)∈D×N

qi(x). (3.82)

Note that ∑
j>n0

qij(x)

qi(x)
= 1−

∑
j≤n0

qij(x)

qi(x)
≤ 1− ε0

MD

:= ε1 for i > n0,

which implies that

Ex,i
∫ τD

0

exp

(
−
∫ t

0

qi(Y (s))ds

)∑
j>n0

qij(Y (t))dt

≤ε1Ex,i
∫ τD

0

exp

(
−
∫ t

0

qi(Y (s))ds

)
qi(Y (t))dt

≤ε1 for i > n0.

(3.83)
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In view of (3.81) and (3.83), we have

sup
{i>n0}

∆i
m+2 ≤ [p+ (1− p)ε1] sup

{i∈Z+}
{∆i

m+1}. (3.84)

By (3.79) and (3.80),

sup
{i≤n0}

{∆i
m+2} ≤ p max

{i∈Z+}
{∆i

m+1} ≤ max
{i∈Z+}

{∆i
m}. (3.85)

By (3.85) and (3.84),

sup
{i∈Z+}

{∆i
m+2} ≤ [p+ (1− p)ε1] max

{i∈Z+}
{∆i

m}. (3.86)

In view of (3.72) and (3.73), supi∈Z+
{∆i

1} ≤M0 +M1 <∞. Since p+(1−p)ε1 < 1, it follows

from (3.80) and (3.86) that the series
∑∞

m=1 sup{i∈Z+}{∆
i
m+2} is convergent. Thus um(x, i)

converges uniformly in (x, i) to a function u(x, i). For each i ∈ Z+, since qi(x) =
∑

j qij(x) is

continuous, the convergence limk→∞
∑

j<k qij(x) = qi(x) is uniform. Thus, it is easy to show

that as m → ∞,
∑

j qij(x)um(x, j) converges uniformly to
∑

j qij(x)u(x, j), (which is also

continuous in x). Using this uniform convergence, passing the limit in (3.77) we have

u(x, i) =Ex,i
[
φi(Y (τD))) exp

(
−
∫ τD

0

qi(Y (s))ds

)]
+ Ex,i

∫ τD

0

exp

(
−
∫ t

0

qi(Y (s))ds

)∑
j∈Z+

qiju(Y (t), j)dt

− Ex,i
∫ τD

0

exp

(
−
∫ t

0

qi(Y (s))ds

)
f(Y (t), i)dt.

(3.87)

Since
∑

j qij(x)u(x, j) is continuous in x for each i ∈ Z+, the representation (3.87) shows

that u(x, i) satisfies

Liu(x, i)− qi(x)u(x, i) = f(x, i)−
∑
j∈Z+

qij(x)u(x, j) in D × Z+
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Since um(x, i) = φ(x, i) on ∂D × Z+ for all m ∈ Z+, we have u(x, i) = φ(x, i) on ∂D × Z+.

The existence of solutions is therefore proved. To prove the uniqueness, it suffices to consider

the uniqueness in Hp(D) of the system
Liv(x, i)− qi(x)v(x, i) +

∑∞
j=1 qij(x)v(x, j) = 0 in D × Z+

v(x, i)
∣∣
∂D

= 0 on ∂D × Z+.

(3.88)

Let {v(x, i)} ∈ Hp(D) be a solution of (3.88). Then we have

v(x, i) = −Ex,i
∫ τD

0

exp

(
−
∫ t

0

qi(Y (s))ds

)∑
j∈Z+

qijv(Y (s), j)ds. (3.89)

Similar to (3.79), it follows from (3.89) that

sup
i≤n0,x∈D

{|v(x, i)|} ≤ p sup
i∈Z+,x∈D

{|v(x, i)|}.

Similar to (3.84), the above inequality and (3.89) imply that

sup
i∈Z+,x∈D

{|v(x, i)|} ≤ [p+ (1− p)ε1] sup
i∈Z+,x∈D

{|v(x, i)|}.

Thus supi∈Z+,x∈D{|v(x, i)|} = 0, that is, (3.88) has a unique solution.

Lemma 3.21. Let D be an open and bounded set of Rn. Let ξ0 = 0 and ξk = inf{t ≥ 0 :

α(t) 6= α(ξk−1)}, k ∈ Z+. Let f(x, i) and g(x, i) are bounded and measurable functions on

D × Z+ and ∂D × Z+ respectively. Then

Ex,i1{ξ1≤τ̃D}f(X(ξ1), α(ξ1)) + Ex1{ξ1>τ̃D}g(X(τ̃D), i)

=Ex,i
∫ τD

0

qij(Y (t))f(Y (t), j) exp

(
−
∫ t

0

qi(Y (s))ds

)
+ Ex,ig(Y (τD), i) exp

(
−
∫ τD

0

qi(Y (t))dt

)
.

(3.90)
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Proof. Define

βx,i(t) = i+

∫ t

0

∫
R
h(Y x,i

t , βx,i(t−), z)p(dt, dz).

Let λx,i1 = inf{t ≥ 0 : βx,i(t) 6= i}. We have that

(Xx,i(t), αx,i(t)) = (Y x,i(t), βx,i(t)) up to λx,i1 = ξx,i1 , (3.91)

where (Xx,i(t), αx,i(t)) is the solution to (1.7) with initial value (x, i) and ξx,i1 is the first

moment of jump for αx,i(t). Thus,

Px,i{ξ1 ∧ τ̃D <∞} = Px,i{λ1 ≤ τD} ≥ Px,i{τD <∞} = 1. (3.92)

In view of Lemma 2.9,

Ex,i1{λ1≤τD}f(Y (λ1), β(λ1)) + Ex,i1{λ1>τD}g(Y (τD), i)

=Ex,i
∫ τD

0

qij(Y (t))f(Y (t), j) exp

(
−
∫ t

0

qi(Y (s))ds

)
+ Ex,ig(Y (τD), i) exp

(
−
∫ τD

0

qi(Y (t))dt

)
.

(3.93)

Combining (3.91) and (3.93), we obtain (3.90).

Lemma 3.22. Let D be an open bounded set in Rn. For any ε > 0, there is an n2 = n2(ε) > 0

such that

Px,i{ξn2 ≤ τ̃D} < ε

for any (x, i) ∈ B × Z+. As a result,

Px,i{τ̃D <∞} = 1.
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Moreover, for any k > 0, there is a T > 0 such that

Px,i{ξk ∧ τ̃D > T} < ε.

Proof. For each i ∈ Z+, we have that

pi,D := sup
x∈D

Ex,iτD <∞.

By Lemma 3.21, with MD defined as in (3.82), we have

Px,i{ξ1 > τ̃D} =Ex,i exp

(
−
∫ τD

0

qi(Y (t))dt

)
≥Ex,i exp (−MDτD)

≥ exp (−MDEx,iτD)

≥ exp (−MDpi,D) .

(3.94)

Let p̃ := min{i≤n0}{exp (−MDpi,D)}. By (3.62), for i > n0,∑
j≤n0

qij(x)

qi(x)
≥ ε0

MD

> 0, x ∈ D.

Applying Lemma 3.21 again, we have

Px,i{ξ1 ≤ τ̃D, α(ξ1) ≤ n0} =Ex,i
∫ τB

0

∑
j≤n0

qij(Y (t)) exp

(
−
∫ t

0

qi(Y (s))ds

)

≥ ε0

MD

Ex,i
∫ τB

0

qi(Y (t)) exp

(
−
∫ t

0

qi(Y (s))ds

)
=
ε0

MD

Px,i{ξ1 ≤ τ̃D}.

(3.95)
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By the strong Markov property, (3.94), and (3.95), we have for i > n0 that

Px,i{ξ1 ≤ τ̃D, ξ2 > τ̃D} ≥Px,i{ξ2 < τ̃D, ξ1 ≥ τ̃D, α(ξ1) ≤ n0}

≥Px,i{ξ1 ≤ τ̃D, α(ξ1) ≤ n0}
[

inf
{y∈D,j≤n0}

Py,j{ξ1 < τ̃D}
]

≥ p̃ε0

MD

Px,i{ξ1 ≤ τ̃D}.

(3.96)

Since p̃ < 1 and
ε0

MD

≥ 1, we have from (3.95) that

Px,i{ξ2 > τ̃D} ≥P{ξ1 > τ̃D}+ Px,i{ξ1 ≤ τ̃D, ξ2 > τ̃D}

≥P{ξ1 > τ̃D}+
p̃ε0

MD

Px,i{ξ1 ≤ τ̃D}

≥ p̃ε0

MD

for x ∈ D, i > n0.

(3.97)

In light of (3.94),

Px,i{ξ2 > τ̃D} ≥P{ξ1 > τ̃D} ≥ p̃ for x ∈ D, i ≤ n0. (3.98)

Thus, for any x ∈ D and i ∈ Z+, we have

Px,i{ξ2 > τ̃D} ≥
p̃ε0

MD

. (3.99)

Using the strong Markov property, we have from (3.99) that

Px,i{ξ2k ≤ τ̃D} ≤
(

1− p̃ε0

MD

)k
. (3.100)

By letting n2 = 2k2+1 with k2 being sufficiently large so that

(
1− p̃ε0

MD

)k2
< ε, we complete

the proof for the first part of this lemma.

To prove the second part, note that Ex,iτD ≤ pi,D < ∞, thus for any ε′ > 0, there is
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T1 > 0 such that

Px,i{ξ1 ∧ τ̃D ≤ T1} =Px,i{λ1 ∧ τD ≤ T1}

≥Px,i{τD ≤ T1} > 1− ε′ for all x ∈ D, i ≤ n0.

(3.101)

For i > n0, we have

Px,i{ξ1 ∧ τ̃D > T} =Px,i{τD > T, λ1 > T}

≥Ex,i
[
1{τD>T}

∫ T

0

qi(Y (t)) exp

(
−
∫ t

0

qi(Y (s))ds

)
dt

]
=Ex,i

[
1{τD>T} exp

(
−
∫ T

0

qi(Y (s))ds

)]
≤Ex,i

[
1{τD>T} exp (−Tε0)

]
(since qi(x) > ε if x ∈ D, i > n0).

(3.102)

Let T2 > T1 such that exp(−T2ε0) < ε′. We have from (3.102) that

Px,i{ξ1 ∧ τ̃D ≤ T2} > 1− ε′ for x ∈ D, i > n0. (3.103)

Using (3.101) and (3.103),

Px,i{ξ1 ∧ τ̃D ≤ T2} > 1− ε′ for x ∈ D, i ∈ Z+. (3.104)

Using the strong Markov property, it is easy to show that

Px,i{ξk ∧ τ̃D ≤ kT2} > (1− ε′)k for x ∈ D, i ∈ Z+. (3.105)

By choosing ε′ such that (1− ε′)k > 1− ε, we obtain the second part of this lemma.

Lemma 3.23. Let D ∈ Rn be a bounded set. For i0 ∈ Z+, T > 0, ε > 0, there is a k0 =

k0(i0, T, ε) > 0 such that

Px,i0{ζk0 > T} < ε, x ∈ D,
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where ζk = inf{t > 0 : α(t) ≥ k}.

Proof. This lemma is a direct consequence of Lemma 2.12 and the Heine-Borel covering

theorem.

To proceed, we need the following lemma, which is a weak form of Harnack’s principle.

Lemma 3.24. Let D be an open bounded set in Rn with ∂D ∈ C2 and fix (x0, i0) ∈ D×Z+.

Let B ⊂ B ⊂ D be a ball centered at x0. Then for any ε > 0, there is a c0 = c0(B, i0, ε) > 0

satisfying

u(x, i0) ≤ c0u(x0, i0) + ε sup
{(y,i)∈∂D×Z+}

{u(y, i)}, x ∈ B,

where {u(x, i)} ∈ Hp(D) satisfies

Liu(x, i)− qi(x)u(x, i) +
∑
j∈Z+

qij(x)u(x, j) = 0 in D × Z+.

Proof. Let φ(x, i) = u(x, i)|∂D and

ζk = inf{t > 0 : α(t) ≥ k}.

Let

uk(x, i) =


u(x, i) if i < k

0 if i ≥ k.

By Itô’s formula,

Ex,iuk(X(τ̃D ∧ ζk ∧ t), α(τ̃D ∧ ζk ∧ t))

=uk(x, i) + Ex,i
∫ τ̃D∧ζk∧t

0

Luk(X(s), α(s))ds

=uk(x, i)− Ex,i
∫ τ̃D∧ζk∧t

0

∑
j≥k

qα(s),j(X(s))uk(X(s), j)ds.

(3.106)
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Letting k →∞ and then t→∞, we obtain from the dominated convergence theorem that

u(x, i) = Ex,iφ(X(τ̃D), α(τ̃D)). (3.107)

As a result of Lemmas 3.22 and 3.23, there is a k1 = k1(i0, ε) ∈ Z+ such that

Px,i{τ̃D > ξk1} < ε. (3.108)

In view of (3.107) and (3.108),

u(x, i0) =Ex,i01{τ̃D<ξk1}φ(X(τ̃D), α(τ̃D)) + Ex,i01{τ̃D>ξk1}φ(X(τ̃D), α(τ̃D))

≤Ex,i01{τ̃D<ξk1}φ(X(τ̃D), α(τ̃D)) + ε sup
(y,j)∈∂D×Z+

{φ(y, j)}.
(3.109)

Let

ũ(x, i) = Ex,i1{τ̃D<ξk1}φ(X(τ̃D), α(τ̃D))

for i < k. The process {(X(t), α(t)), 0 ≤ t < ξk1} can be considered as a switching diffusion

process on Rn × {1, . . . , k1 − 1} with lifetime ξk1 . Its generator is

L̃if(x, i) = Lif(x, i)− qi(x)u(x, i) +
∑
j<k1

qij(x)f(x, j),

for i = 1, . . . , k − 1. Then [8, Theorem 3.6] reveals that ũ(x, i) satisfying
L̃iũ(x, i) = 0 in D × {1, . . . , k1 − 1}

ũ(x, i)
∣∣
∂D

= φ(x, i) on ∂D × {1, . . . , k1 − 1}.

(3.110)

By the Harnack principle for weakly coupled elliptic systems (see e.g., [7]), there is a c0 =

c0(k1) such that

ũ(x, i0) ≤ c0ũ(x0, i0) ≤ c0u(x0, i0) (3.111)
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The desired result follows from (3.109) and (3.111).

Remark 3.25. In (3.69) and (3.77), we apply the Feyman-Kac formula for functions in the

class W 2,p
loc (D)∩C(D) rather than C2(D). Feyman-Kac formula is proved using Itô’s formula,

which is usually stated for C2-functions. However, Itô’s formula also holds for diffusion

processes with functions in W 2,p
loc (D) ∩ C(D) when p > n. The proof for this claim can be

found in [27, Theorem 2.10.2]. With a careful consideration, we can generalize the result for

diffusion processes to switching diffusion processes in which the switching has a finite state

space. Thus, (3.106) holds as long as u(·, i) ∈ W 2,p
loc (D) ∩ C(D).

Proof of Theorem 3.19. Let k0 ∈ Z+ sufficiently large such that D1 ⊂ {x ∈ Rn : |x| < k0}.

For k > k0, define Dk = D ∩ {x ∈ Rn : |x| < k}. By (3.107), uk(x, i) := Ex,iτ̃Dk satisfies the

equation
Liuk(x, i)− qi(x)uk(x, i) +

∑
j∈Z+

qij(x)uk(x, j) = −1 in Dk × Z+

uk(x, i)
∣∣
∂D

= 1 on ∂Dk × Z+.

(3.112)

Let B1 ⊂ B2 be two balls in D and fix (x0, i0) ∈ B1 × Z+ and let k1 > k0 be such that

B2 ⊂ Dk1 . Suppose that Ex,iτ̃D < M for any (x, i) ∈ B2×Z+. Then uk(x, i) < M for k > k0

and (x, i) ∈ B2 × Z+. Let vk,m = uk(x, i)− um(x, i) for k > m > k1, we have

Livk,m(x, i)− qi(x)vk,m(x, i) +
∑
j∈Z+

qij(x)vk,m(x, j) = 0 in B2 × Z+. (3.113)

By Lemma 3.24, for any ε > 0, there is a c0 > 0 such that

vk,m(x, i0) ≤c0vk,m(x0, i0) + ε sup{vk,m(y, j) : (y, j) ∈ B2 × Z+}

≤c0vk,m(x0, i0) +Mε for any x ∈ B1.

(3.114)
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For any ε > 0, since uk(x0, i0) = Ex0,i0 τ̃Dk → Ex0,i0 τ̃D as k →∞, there exists k2 = k2(ε) such

that c0vk,m(x0, i0) = c0[uk(x0, i0)− um(x0, i0)] < ε for any k > m > k2. In view of (3.114),

vk,m(x, i0) ≤ (M + 1)ε for any (x, i0) ∈ B1 × Z+, k > m > k2 (3.115)

Thus, uk(x, i0) converges uniformly in each compact subset of D. The limit u(x, i0) is there-

fore continuous for any i0. Now, let φ(x, i) = u(x, i)|∂B2 . Since φ(x, i) is continuous and

uniformly bounded, by Lemma 3.20, for each i ∈ Z+, there exists {ũ(x, i)} ∈ Hp(B2) satis-

fying 
Liũ(x, i)− qi(x)ũk(x, i) +

∑
j∈Z+

qij(x)ũ(x, j) = −1 in B2 × Z+

ũ(x, i)
∣∣
∂D

= φ(x, i) on ∂B2 × Z+.

(3.116)

Similar to (3.107), by applying Itô’s formula we have that

ũ(x, i) =Ex,iτ̃B2 + Ex,iφ(X(τ̃B2), α(τ̃B2))

=Ex,iτ̃B2 + Ex,iEX(τ̃B2
),α(τ̃B2

)τ̃D

=Ex,iτ̃D (due to the strong Markov property)

=u(x, i).

The proof is concluded.

Proof of Theorem 3.18. After having Lemma 3.24, we adapt the proof of [24, Theorem 3.10]

to obtain the desired result. First, suppose that (3.63) has a unique solution in Hp(D) for

some p > 0 given that f(x, i) is continuous and bounded on D×Z+. We define Dk as in the

proof of Theorem 3.19 and vk(x, i) := Px,i{X(τ̃Dk) ∈ ∂D}. By (3.107), vk(x, i) is the strong
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solution to

Livk(x, i)− qi(x)vk(x, i) +
∑

j∈Z+
qij(x)vk(x, j) = 0 in Dk × Z+

vk(x, i)
∣∣
∂D

= 1 on ∂D × Z+.

vk(x, i)
∣∣
∂D

= 0 on {y ∈ Rn : |y| = k} × Z+.

(3.117)

By the definition of vk(x, i), we have that

lim
k→∞

vk(x, i) = v(x, i) := Px,i{τ̃D <∞} (3.118)

On the other hand, owing to Lemma 3.24, we can use arguments in the proof of Theorem

3.19 to show that {v(x, i)} ∈ Hp(D) is the solution to
Liv(x, i)− qi(x)v(x, i) +

∑
j∈Z+

qij(x)v(x, j) = 0 in D × Z+

v(x, i)
∣∣
∂D

= 1 on ∂D × Z+.

(3.119)

Clearly, v(x, i) ≡ 1 is the solution to (3.120). By the uniqueness of solutions among the class

Hp(D), we have

Px,i{τ̃D <∞} = v(x, i) ≡ 1.

Now, suppose that Px,i{τ̃D < ∞} ≡ 1 and (3.63) has two solutions {v(1)(x, i)} and

{v(2)(x, i)} for the same f(x, i) being continuous and bounded in ∂D × Z+. Let v(3)(x, i) =

v(1)(x, i)− v(2)(x, i). Then {v(3)(x, i)} ∈ Hp(D) and satisfies
Liv(3)(x, i)− qi(x)v(3)(x, i) +

∑
j∈Z+

qij(x)v(3)(x, j) = 0 in D × Z+

v(3)(x, i)
∣∣
∂D

= 0 on ∂D × Z+.

(3.120)



76

Let M (3) = sup(x,i)∈D×Z+
{v(3)(x, i)}. In view of (3.106), for k > k0 ∨ |x|, we have

|v(3)(x, i)| =
∣∣∣Ex,i1{|X(τ̃Dk )|=k}v

(3)(X(τ̃Dk), α(τ̃Dk))
∣∣∣ ≤M (3)[1− Px,i{X(τ̃Dk) ∈ ∂D}]

Letting k → ∞ and using Px,i{X(τ̃Dk) ∈ ∂D} → Px,i{τ̃D < ∞} = 1 as k → ∞, we obtain

v(3)(x, i) ≡ 0.
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CHAPTER 4 STABILITY AND INSTABILITY

In this chapter, we consider stability and instability of switching diffusions. Although

our results hold true for past-dependent switching diffusions, we restrict our consideration

to the case of past-independent switching diffusions in order to elaborate the main ideas of

our results. Comments on stability and instability of past-independent switching diffusions

are given in Section 4.3.

4.1 Formulation and Auxiliary Results

Consider the two-component process (X(t), α(t)), where α(t) is a pure jump process

taking value in Z+ = N \ {0} = {1, 2, . . . }, the set of positive integers, and X(t) ∈ Rn

satisfies

dX(t) = b(X(t), α(t))dt+ σ(X(t), α(t))dW (t). (4.1)

We assume that the jump intensity of α(t) depends on the current state of X(t), that is,

there are functions qij(·) : Rn → R for i, j ∈ Z+ satisfying

P{α(t+ ∆) = j|α(t) = i,X(s), α(s), s ≤ t} = qij(X(t))∆ + o(∆) if i 6= j and

P{α(t+ ∆) = i|α(t) = i,X(s), α(s), s ≤ t} = 1− qi(X(t))∆ + o(∆).

(4.2)

Throughout this paper, qij(x) ≥ 0 for each i 6= j and
∑

j∈Z+
qij(x) = 0 for each i and all

x ∈ Rn. Denote qi(x) =
∑∞

j=1,j 6=i qij(x) (so qii(x) = −qi(x)). and Q(x) = (qij(x))Z+×Z+ . The

process α(t) can be defined rigorously as the solution to a stochastic differential equation

with respect to a Poisson random measure. For each function x ∈ Rn, i ∈ Z+, let ∆ij(x), j 6= i

be the consecutive left-closed, right-open intervals of the real line, each having length qij(x).
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That is,

∆i1(x) = [0, qi1(x)),

∆ij(x) =
[ j−1∑
k=1,k 6=i

qik(x),

j∑
k=1,k 6=i

qik(x)
)
, j > 1, j 6= i.

Define h : Rn × Z+ × R 7→ R by h(x, i, z) =
∑∞

j=1,j 6=i(j − i)1{z∈∆ij(x)}. The process α(t) can

be defined as the solution to

dα(t) =

∫
R
h(Xt, α(t−), z)p(dt, dz), (4.3)

where a(t−) = lim
s→t−

α(s) and p(dt, dz) is a Poisson random measure with intensity dt×m(dz)

and m is the Lebesgue measure on R such that p(dt, dz) is independent of the Brownian

motion W (·). The pair (X(t), α(t)) is therefore a solution to
dX(t) = b(X(t), α(t))dt+ σ(X(t), α(t))dW (t)

dα(t) =

∫
R
h(X(t), α(t−), z)p(dt, dz).

(4.4)

A strong solution to (4.4) on [0, T ] with initial data (x, i) ∈ Rn×Z+ is an Ft-adapted process

(X(t), α(t)) such that

• X(t) is continuous and α(t) is cadlag (right continuous with left limits) with probability

1 (w.p.1).

• X(0) = x and α(0) = i0

• (X(t), α(t)) satisfies (4.4) for all t ∈ [0, T ] w.p.1.

Let f(·, ·) : Rn × Z+ 7→ R be twice continuously differentiable in x. We define the operator
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Lf(·, ·) : Rn × Z+ 7→ R by

Lf(x, i) =[∇f(x, i)]>b(x, i) +
1

2
tr
(
∇2f(x, i)A(x, i)

)
+

∞∑
j=1,j 6=i

qij(x)
[
f(x, j)− f(x, i)

]
=

n∑
k=1

bk(x, i)fk(x, i) +
1

2

n∑
k,l=1

akl(x, i)fkl(x, i) +
∞∑

j=1,j 6=i

qij(x)
[
f(x, j)− f(x, i)

]
,

(4.5)

where ∇f(x, i) = (f1(x, i), . . . , fn(x, i)) ∈ R1×n and ∇2f(x, i) = (fij(x, i))n×n are the gradi-

ent and Hessian of f(x, i) with respect to x, respectively, with

fk(x, i) = (∂/∂xk)f(x, i), fkl(x, i) = (∂2/∂xk∂xl)f(x, i), and

A(x, i) = (aij(x, i))n×n = σ(x, i)σ>(x, i),

where z> denotes the transpose of z. If (X(t), α(t)) satisfies (4.4), then by modifying the

proof of [47, Lemma 3, p.104], we have the generalized Itô formula:

f(X(t), α(t))− f(X(0), α(0)) =

∫ t

0

Lf(X(s), α(s−))ds+M1(t) +M2(t)

where M1(·) and M2(·) are two local martingales defined by

M1(t) =

∫ t

0

∇f(X(s), α(s−))σ(X(s), α(s−))dW (s),

M2(t) =

∫ t

0

∫
R

[
f
(
X(s), α(s−) + h(X(s), α(s−), z)

)
− f(X(s), α(s−))

]
µ(ds, dz),

(4.6)

and µ(ds, dz) is the compensated Poisson random measure given by

µ(ds, dz) = p(ds, dz)−m(dz)ds.

Throughout this chapter, we assume that either one of the following assumptions are satisfied.

Under either of them, it is proved in Chapter 2 that (4.4) has a unique solution with given

initial data. Moreover, the solution is a Markov-Feller process.
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Assumption 4.1.

1. For each i ∈ Z+, H > 0, there is a positive constant Li,H such that

|b(x, i)− b(y, i)|+ |σ(y, i)− σ(x, i)| ≤ Li,H |x− y|

if x, y ∈ Rn and |x|, |y| ≤ H.

2. For each i ∈ Z+, there is a positive constant L̃i such that

|b(x, i)|+ |σ(x, i)| ≤ L̃i(|x|+ 1).

3. qij(x) is continuous in x ∈ Rn for each (i, j) ∈ Z2
+. Moreover,

M := sup
x∈Rn,i∈Z+

{|qi(x)|} <∞.

Assumption 4.2.

1. For each i ∈ Z+, H > 0, there is a positive constant Li,H such that

|b(x, i)− b(y, i)|+ |σ(x, i)− σ(y, i)| ≤ Li,H |x− y|

if x, y ∈ Rn and |x|, |y| ≤ H.

2. There is a positive constant L̃ such that

|b(x, i)|+ |σ(x, i)| ≤ L̃(|x|+ 1).

3. qij(x) is continuous in x ∈ Rn for each (i, j) ∈ Z2
+. Moreover, for any H > 0,

MH := sup
x∈Rn,|x|≤H,i∈Z+

{|qi(x)|} <∞.

We suppose throughout this chapter that b(0, i) = 0 and σ(0, i) = 0 for i ∈ Z+ and give

the following definitions of stability.
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Definition 4.1. The trivial solution X(t) ≡ 0 is said to be

• stable in probability, if for any h > 0,

lim
x→0

inf
i∈Z+

Px,i
{
X(t) ≤ h∀ t ≥ 0

}
= 1.

• asymptotic stable in probability, if it is stable in probability and

lim
x→0

inf
i∈Z+

Px,i
{

lim
t→∞

X(t) = 0
}

= 1.

We state a general result that can be proved by well-known arguments; see [60, Section

7.2].

Theorem 4.2. Let D be a neighborhood of 0 ∈ Rn. Suppose there exist three functions

V (x, i) : D × Z 7→ R+, µ1(x) : D 7→ R+, µ2(x) : D 7→ R+ such that

• µ1(x), µ2(x) are continuous on D, µk(x) = 0 if and only if x = 0 for k = 1, 2;

• V (x, i) is continuous on D and twice continuously differentiable in D \ {0} for each

i ∈ Z+;

• µ1(x) ≤ V (x, i) for any (x, i) ∈ D × Z+.

Then the following conclusions hold.

• if LV (x, i) ≤ 0 for any (x, i) ∈ D × Z+, the trivial solution is stable in probability.

• if LV (x, i) ≤ −µ2(x) for any (x, i) ∈ D × Z+ the trivial solution is asymptotically

stable in probability.

Let α̂(t) be the Markov chain with bounded generator Q(0) and transition probability

p̂ij(t)

Definition 4.3. The Markov chain α̂(t) is said to be
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• ergodic, if it has an invariant probability measure ν = (ν1, ν2, . . . ) and

lim
t→∞

p̂ij(t) = νj for any i, j ∈ Z+

or equivalently,

lim
t→∞

∑
j∈Z+

|p̂ij(t)− νj| = 0 for any i ∈ Z+,

• strongly ergodic, if

lim
t→∞

sup
i∈Z+

∑
j∈Z+

|p̂ij(t)− νj|

 = 0.

• strongly exponentially ergodic, if there exist C > 0 and λ > 0 such that

∑
j∈Z+

|p̂ij(t)− νj| ≤ Ce−λt for any i ∈ Z+, t ≥ 0. (4.7)

We refer to [1] for some properties and sufficient conditions for the aforementioned er-

godicity.

4.2 Certain Practical Conditions for Stability and Instability

For each h > 0, denote by Bh ⊂ Rn the open ball centered at 0 with radius h. Throughout

this section, let D be a neighborhood of 0 satisfying D ⊂ B1. We also denote by α̂(t)

the continuous-time Markov chain with generator Q(0). Denote by Li the generator of the

diffusion when the discrete component is in state i, that is,

LiV (x) = ∇V (x)b(x, i) +
1

2
tr
(
∇2V (x)A(x, i)

)
.

We first state a theorem, which generalizes [26, Theorem 4.3], a result for switching diffusions

when the switching takes values in a finite set.
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Theorem 4.4. Suppose that the Markov chain α̂(t) is strongly exponentially ergodic with

invariant probability measure ν = (ν1, ν2, . . . ) and that

sup
i∈Z+

∑
j 6=i

|qij(x)− qij(0)| → 0 as x→ 0. (4.8)

Let D be a neighborhood of 0 and V : D 7→ R+ satisfying that V (x) = 0 if and only if x = 0

and that V (x) is continuous on D, twice continuously differentiable in D \ {0}. Suppose that

there is a bounded sequence of real numbers {ci : i ∈ Z+} such that

LiV (x) ≤ ciV (x)∀x ∈ D \ {0}. (4.9)

Then, if
∑

i∈Z+
ciνi < 0, the trivial solution is asymptotic stable in probability.

Proof. Let λ = −
∑

i∈Z+
ciνi. Since

∑
i∈Z+

νi = 1, we have
∑

i∈Z+
(ci + λ)νi = 0. Since α̂(t)

is strongly exponentially ergodic, it follows from Lemma C.1 that there exists a bounded

sequence of real numbers {γi : i ∈ Z+} such that

∑
j∈Z+

qij(0)γj = λ+ ci for any i ∈ Z+ (4.10)

Since
∑

j∈Z+
qij(0) = 0 for any i ∈ Z+ it follows from (4.10) that

∑
j∈Z+

qij(0)γj =
∑
j∈Z+

qij(0)(1− pγj) = −p(λ+ ci) for any i ∈ Z+ (4.11)

Since {γi} is bounded, we can choose p ∈ (0, 1) such that

p|γi| ≤ min{0.25λ, 0.5} (4.12)

In view of (4.8) and (4.12), there is an h > 0 sufficiently small such that

∑
j∈Z+

(1− pγj)|qij(x)− qij(0)| < pλ

4
∀x ∈ Bh. (4.13)
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Define the function U(x, i) : Bh × Z+ 7→ R+ by U(x, i) = (1 − pγi)V p(x). By Itô’s formula,

(4.8), (4.11), and (4.13), we have

LU(x, i) =p(1− pγi)V p−1LiV (x)− p(1− p)
2

V p−2 |Vx(x)σ(x, i)|2 + V p(x)
∑
j∈Z+

(1− pγj)qij(x)

≤cip(1− pγi)V p−1 + V p(x)
∑
j∈Z+

(1− pγj)qij(0) + V p(x)
∑
j∈Z+

(1− pγj)|qij(x)− qij(0)|

≤cip(1− pγi)V p−1 − p(λ+ ci)V
p(x) + V p(x)

∑
j∈Z+

(1− pγj)|qij(x)− qij(0)|

≤p(−λ− pγi)V p(x) + V p(x)
∑
j∈Z+

(1− pγj)|qij(x)− qij(0)|

≤ − 0.75pλV p(x) + 0.25pλV p(x) = −0.5pλV p(x) for (x, i) ∈ Bh × Z+.

(4.14)

By Theorem 4.2, it follows from (4.14) that the trivial solution is asymptotically stable.

The hypothesis of this theorem seems to be restrictive. It requires the strongly exponential

ergodicity of Q(0) and the uniform convergence to 0 of the sum
∑

j 6=i |qij(x)−qij(0)|. To treat

cases in which Q(0) is strongly ergodic (not exponentially ergodic) or even only ergodic, as

well as to relax the condition (4.8), we need a more complicated method. Our method, which

is inspired by the idea in [6], utilizes the ergodicity of Q(0) and the analysis of the Laplace

transform. Similar techniques of using the Laplace transform can also be seen in the large

deviations theory and related applications [5, 64]. We also take a step further by estimating

the pathwise rate of convergence of solutions.

Let Γ be a family of increasing and differentiable functions g : R+ 7→ R+ such that

g(y) = 0 iff y = 0 and dy
dy

is bounded on [0, 1]. Since dg
dy

(y) is bounded on [0, 1] and g(0) = 0,
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it is easy to show that the function

G(y) := −
∫ 1

y

dz

g(z)
on [0, 1] (4.15)

is non-positive and strictly decreasing and limy→0G(y) = −∞. Its inverse G−1 : (−∞, 0] 7→

(0, 1] satisfies

lim
t→∞

G−1(−t) = 0.

We state some assumptions to be used in what follows; we will also provide some lemmas

whose proofs are relegated to the appendix.

Assumption 4.3. There are functions g ∈ Γ, V : D 7→ R+ such that

• V (x) = 0 if and only if x = 0

• V (x) is continuous on D and twice continuously differentiable in D \ {0}.

• there is a bounded sequence of real numbers {ci : i ∈ Z+} such that

LiV (x) ≤ cig(V (x))∀x ∈ D \ {0}. (4.16)

Lemma 4.5. Under Assumption 4.3, For any ε, T, h > 0, there exists an h̃ = h̃(ε, T, h) such

that

Px,i{τh ≤ T} < ε, for all (x, i) ∈ Bh̃ × Z+

where τh = inf{t ≥ 0 : |X(t)| ≥ h}.

Lemma 4.6. Let Y be a random variable, θ0 > 0 a constant, and suppose

E exp(θ0Y ) + E exp(−θ0Y ) ≤ K1.
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Then the log-Laplace transform φ(θ) = lnE exp(θY ) is twice differentiable on
[
0, θ0

2

)
and

dφ

dθ
(0) = EY, and 0 ≤ d2φ

dθ2
(θ) ≤ K2 , θ ∈

[
0,
θ0

2

)
for some K2 > 0. As a result of Taylor’s expansion, we have

φ(θ) ≤ θEY + θ2K2, for θ ∈ [0, 0.5θ0).

Lemma 4.7. Under the assumption b(0, i) = 0, σ(0, i) = 0, i ∈ Z+, we have

Px,i {X(t) = 0 for some t ≥ 0} = 0 for any x 6= 0, i ∈ Z+.

With the auxiliary results above, we can prove our main results.

Theorem 4.8. Suppose that the Markov chain α̂(t) is ergodic with invariant probability

measure ν = (ν1, ν2, . . . ) and Assumption 4.3 is satisfied with additional conditions:

lim sup
i→∞

ci < 0, (4.17)

and

Mg := sup
x∈D,i∈Z+

{∣∣∣∣Vx(x)σ(x, i)

g(V (x))

∣∣∣∣} <∞. (4.18)

Then, if
∑

i∈Z+
ciνi < 0, the trivial solution is asymptotic stable in probability, that is, for

any h > 0 such that Bh ⊂ D, and ε > 0, there exists δ = δ(h, ε) > 0 such that

Px,i
{
X(t) < h∀ t ≥ 0, and lim

t→∞
X(t) = 0

}
> 1− ε for any (x, i) ∈ Bδ × Z+.

Moreover, there is a λ > 0 such that

Px,i
{

lim
t→∞

V (X(t))

G−1(−λt)
≤ 1

}
> 1− ε for any (x, i) ∈ Bδ × Z+. (4.19)
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Remark 4.9. Before proceeding to the proof of the theorem, let us make a brief comment. In

addition to providing sufficient conditions for asymptotic stability, a significant new element

here is the rate of convergence given in (4.19). Although there are numerous treatment of

stochastic stability by a host of authors for diffusions and switching diffusions. The rate

result in Theorem 4.8 appears to the first one of its kind.

Proof. The proof is divided into two steps. We first show the trivial solution is stable in

probability and then we prove asymptotic stability and estimate the path-wise convergence

rate.

Step 1: Stability. Shrinking D if necessary, we can assume without loss of generality

that V (x) ≤ 1 in D. Let h > 0 such that Bh ⊂ D. Since {ci} is bounded,

lim
k→∞

∑
i≤k

ciνi =
∑
i∈Z+

ciνi < 0. (4.20)

This and (4.17) show that there exists k0 ∈ Z+ such that

−λ1 :=
∑
i≤k0

ciνi < 0

and

−2λ2 := sup
i>k0

ci < 0.

Let c = supi∈Z+
|ci| and m0 be an positive integer satisfying m0λ2 > c + Mg + 1. Define

G(y) = −
∫ 1

y
g−1(z)dz. In view of Lemma 4.7, if X(0) 6= 0, then X(t) 6= 0 a.s, which leads

to g(V (X(t)) 6= 0 a.s. Thus, we have from Itô’s formula and the increasing property of g(·)
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that

G
(
V (X(τh ∧ t))

)
=G(V (x)) +

∫ τh∧t

0

Lα(s)V (X(s))

g(V (X(s)))
ds

−
∫ τh∧t

0

dg

dy
(V (X(s)))

∣∣∣Vx(X(s))σ(X(s), α(s))
∣∣∣2

2g2(V (X(s)))
ds

+

∫ τh∧t

0

Vx(X(s))σ(X(s), α(s))

g(V (X(s)))
dW (s) ≤ G(V (x)) +H(t),

(4.21)

where

H(t) =

∫ τh∧t

0

cα(s)ds+

∫ τh∧t

0

Vx(X(s))σ(X(s), α(s))

g(V (X(s)))
dW (s).

By Itô’s formula,

eθH(t) =1 +

∫ t∧τh

0

eθH(s)

[
θcα(s) +

θ2

2

|Vx(X(s))σ(X(s), α(s))|2

2g2(V (X(s)))

]
ds

+ θ

∫ t∧τh

0

eθH(s)Vx(X(s))σ(X(s), α(s))

g(V (X(s)))
dW (s).

(4.22)

Let ςk = inf{t ≥ 0 : |H(t)| ≥ k}. It follows from (4.22) that

Ex,ieθH(t∧ςk) =1 + Ex,i
∫ t∧ςk∧τh

0

eθH(s)

[
θcα(s) +

θ2

2

|Vx(X(s))σ(X(s), α(s))|2

2g2(V (X(s)))

]
ds

≤1 + [c+Mg]Ex,i
∫ t∧ςk∧τh

0

eθH(s)ds

≤1 + [c+Mg]

∫ t

0

Ex,ieθH(s∧ςk)ds.

In view of Gronwall’s inequality, for any t ≥ 0 and (x, i) ∈ Bh × Z+, we have

Ex,ieθH(t∧ςk) ≤ eθ[c+Mg ]t, θ ∈ [−1, 1]. (4.23)
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Letting k →∞ and applying the Lebesgue dominated convergence theorem we obtain

Ex,ieθH(t) ≤ eθ[c+Mg ]t, θ ∈ [−1, 1]. (4.24)

On the other hand, we have

Ex,iH(t) ≤ Ex,i
∫ τh∧t

0

cα(s)ds

≤ Ex,i
∫ t

0

cα(s)ds− Ex,i
∫ t

τh∧t
cα(s)ds

≤ Ex,i
∫ t

0

cα(s)ds+ tcPx,i{τh < t}.

(4.25)

Because of the ergodicity of α̂(t), there exists a T > 0 depending on k0 such that

E0,i

∫ t

0

cα(s)ds = Ei
∫ t

0

cα̂(s)ds ≤ −
3λ1

4
t ∀ t ≥ T, i ≤ k0. (4.26)

By the Feller property of (X(t), α(t)) there exists an h1 ∈ (0, h) such that

Ex,i
∫ t

0

cα(s)ds ≤ −
λ1

2
t ∀ t ∈ [T, T2], |x| ≤ h1, i ≤ k0, (4.27)

where T2 = (m0 + 1)T . In view of Lemma 4.5, there exists an h2 ∈ (0, h1) such that

cPx,i{τh < m0T + T} ≤ λ1

4
provided |x| ≤ h2, i ∈ Z+. (4.28)

Applying (4.27) and (4.28) to (4.25), we obtain

Ex,iH(t) ≤ −λ1

4
t if 0 < |x| ≤ h2, i ≤ k0, t ∈ [T, T2]. (4.29)

By Lemma 4.6, it follows from (4.24) and (4.29) that for θ ∈ [0, 0.5], 0 < |x| < h2, i ≤ k0, t ∈
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[T, T2], we have

lnEx,ieθH(t) ≤θEx,iH(t) + θ2K

≤− θλ1t

4
+ θ2K

(4.30)

for some K > 0 depending on T2, c and Mg. Let θ ∈ (0, 0.5] such that

θK <
λ1T

8
, and θMg < λ2 (4.31)

we have

lnEx,ieθH(t) ≤ −θλ1t

8
for 0 < |x| < h2, i ≤ k0, t ∈ [T, T2]

or equivalently,

Ex,ieθH(t) ≤ exp

{
−θλ1t

8

}
for 0 < |x| < h2, i ≤ k0, t ∈ [T, T2]. (4.32)

In what follows, we fix a θ ∈ (0, 0.5] satisfying (4.31). Exponentiating both sides of the

inequality G(V (X(τh ∧ t))) ≤ G(V (x)) + H(t) we have for 0 < |x| < h2, i ≤ k0, t ∈ [T, T2]

that

Ex,iU(X(τh ∧ t)) ≤ U(x)Ex,ieθH(t) ≤ U(x) exp

{
−θλ1t

8

}
. (4.33)

where U(x) = exp(θG(V (x))). Since limx→0G(V (x)) = −∞ then

lim
x→0

U(x) = 0. (4.34)

Using the inequality G(V (X(τh ∧ t))) ≤ G(V (x)) +H(t) and (4.24) we have

Ex,iU(X(τh ∧ t)) ≤ U(x) exp {θ[c+Mg]t} , for all (x, i) ∈ Bh × Z+, t ≥ 0. (4.35)
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Now, let ∆ = inf{U(x) : h2 ≤ |x| ≤ h} > 0. Define stopping times

ξ = inf{t ≥ 0 : α(t) ≤ k0}, and ζ = inf{t ≥ 0 : U(X(t)) ≥ ∆}.

Clearly, if X(0) ∈ Bh then ζ ≤ τh and if t < ζ then |X(t)| < h2. By computation and (4.31),

we have

LiU(x) ≤ θU(x)

[
ci + [θ − ġ(V (x)]

|Vx(x)σ(x, i)|2

g(V (x))

]
≤θ(−2λ2 + θMg)U(x)

≤− θλ2U(x), for 0 < |x| < h, i > k0.

It follows from Itô’s formula that

Ex,ieθλ2(t∧ξ∧ζ)U(X(t ∧ ξ) =U(x) + Ex,i
∫ t∧ξ∧ζ

0

eλ2s
[
θλ2U(X(s)) + Lα(t)U(X(s))

]
ds

≤U(x), for 0 < |x| < h, i ∈ Z+.

(4.36)

We have the following estimate for 0 < |x| < h, i > k0.

Ex,ieθλ2(T2∧ξ∧ζ)U(X(T2 ∧ ξ ∧ ζ)) =Ex,i1{ξ∧ζ<m0T}e
θλ2(T2∧ξ∧ζ)U(X(T2 ∧ ξ ∧ ζ))

+ Ex,i1{m0T≤ξ∧ζ<T2}e
θλ2(T2∧ξ∧ζ)U(X(T2 ∧ ξ ∧ ζ))

+ Ex,i1{ξ∧ζ≥T2}eθλ2(T2∧ξ∧ζ)U(X(T2 ∧ ξ ∧ ζ))

≥Ex,i1{ξ∧ζ≤m0T}U(X(ξ ∧ ζ))

+ eθλ2m0TEx,i1{m0T≤ξ∧ζ<T2}U(X(ξ ∧ ζ))

+ eθλ2T2Ex,i1{ξ≥T2}U(X(T2)).

(4.37)

Since Px,i{ζ = 0} = 1 if i ≤ k0, (4.37) holds for 0 < |x| < h, i ∈ Z+. Noting that U(x)∧∆ ≤ ∆

for any x ∈ Bh, we have

E
[
U(X(T2 ∧ τh)) ∧∆

∣∣∣ζ < m0T, ζ ≤ ξ
]
≤ ∆ ≤ U(X(ζ)) = U(X(ξ ∧ ζ)).
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If ξ < ζ, then U(X(ξ)) < ∆. By strong Markov property of (X(t), α(t)), (4.33), and (4.24),

we have

E
[
U(X(T2 ∧ τh)) ∧∆

∣∣∣ξ < m0T ∧ ζ
]
≤ U(X(ξ)) = U(X(ξ ∧ ζ))

and

E
[
U(X(T2 ∧ τh)) ∧∆

∣∣∣m0T ≤ ξ < T2 ∧ ζ
]
≤ U(X(ξ))eθ(c+Mg)T = U(X(ξ ∧ ζ))eθ(c+Mg)T .

From the three estimates above, we have

Ex,i1{ξ∧ζ≤m0T}
[
U(X(T2 ∧ τh)) ∧∆

]
=Ex,i1{ζ<m0T,ζ≤ξ}

[
U(X(T2 ∧ τh)) ∧∆

]
+ Ex,i1{ξ<m0T∧ζ}

[
U(X(T2 ∧ τh)) ∧∆

]
≤Ex,i1{ξ∧ζ<m0T}U(X(ξ ∧ ζ)),

(4.38)

and,

Ex,i1{m0T≤ξ∧ζ<T2}
[
U(X(T2 ∧ τh)) ∧∆

]
≤eθ(c+Mg)TEx,i1{m0T≤ξ∧ζ<T2}U(X(ξ ∧ ζ))

≤eθλ2m0TEx,i1{m0T≤ξ∧ζ<T2}U(X(ξ ∧ ζ)),

(4.39)

where the last line follows from m0λ2 > c+Mg + 1. Applying (4.38) and (4.39) to (4.37), we

obtain

Ex,i
[
U(X(T2 ∧ τh)) ∧∆

]
≤ U(x) for any (x, i) ∈ Bh × Z.

Since Ex,i
[
U(X(T2 ∧ τh)) ∧∆

]
≤ ∆, we have

Ex,i
[
U(X(T2 ∧ τh)) ∧∆

]
≤ U(x) ∧∆ for any (x, i) ∈ Bh × Z. (4.40)

This together with the Markov property of (X(t), α(t)) implies that {M(k) :=
[
U(X(kT2 ∧

τh)) ∧ ∆
]
, k ∈ Z+} is a super-martingale. Let η = inf{k ∈ Z+ : M(k) = ∆}. Clearly,
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{η <∞} ⊃ {τh <∞}. For any ε > 0, if U(x) < ε∆ we have that

Px,i{η < k} ≤ Ex,iM(η ∧ k)

∆
≤ U(x)

∆
≤ ε.

Letting k →∞ yields

Px,i{τh <∞} ≤ Px,i{η <∞} ≤ ε, if U(x) < ε∆. (4.41)

We complete the proof of this step by noting that {x : U(x) < ε∆} is a neighborhood of x

due to the fact that limx→0 U(x) = 0.

Step 2: Asymptotic stability and pathwise convergence rate.

To prove the asymptotic stability in probability, we fix h > 0 and define U(x), T2,m0,∆

depending on h as in the first step. By virtue of (4.37), we have

Ex,ieθλ2(T2∧ξ∧ζ)U(X(T2 ∧ ξ ∧ ζ)) ≥Ex,i1{ξ∧ζ<m0T}U(X(ξ ∧ ζ))

+ eθλ2m0TEx,i1{m0T≤ξ∧ζ<T2}U(X(ξ ∧ ζ))

+ eθλ2T2Ex,i1{ξ∧ζ≥T2}U(X(T2))

≥Ex,i1{ξ<m0T,ζ>ξ}U(X(ξ))

+ eθλ2m0TEx,i1{m0T≤ξ<T2,ζ>ξ}U(X(ξ))

+ eθλ2T2Ex,i1{ξ∧ζ≥T2}U(X(T2)).

(4.42)
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Recalling that ζ ≤ τh and X(t) < h2 if t < ζ, we have from (4.32) and (4.35) that

Ex,i1{ζ≥T2}1{ξ<m0T}U(X(T2)) =Ex,i1{ζ≥T2}1{ξ<m0T}U(X(T2 ∧ τh))

≤Ex,i1{ξ<ζ}1{ξ<m0T}U(X(T2 ∧ τh))

≤Ex,i
[
1{ξ<m0T∧ζ}U(X(ξ)) exp

{
−θλ

8
(T2 − ξ)

}]
≤ exp

{
−θλT

8

}
Ex,i

[
1{ζ≥ξ}1{ξ<m0T}U(X(ξ))

]
(4.43)

and

Ex,i1{m0T≤ξ<T2,ζ≥T2}U(X(T2)) ≤Ex,i1{m0T≤ξ<T2∧ζ}U(X(T2 ∧ τh))

≤Ex,i
[
1{m0T≤ξ<T2∧ζ}U(X(ξ)) exp {θ(c+Mg)(T2 − ξ)}

]
≤ exp {θ(c+Mg)T}Ex,i

[
1{m0T≤ξ<T2∧ζ}U(X(ξ))

]
≤ exp{−θT} exp {θλ2m0T}Ex,i

[
1{m0T≤ξ<T2∧ζ}U(X(ξ))

]
.

(4.44)

On the other hand, we can write

Ex,i1{ξ∧ζ≥T2}U(X(T2)) = e−θλ2T2eθλ2T2Ex,i1{ξ∧ζ≥T2}U(X(T2)). (4.45)

Letting p = max

{
exp

{
−θλT

8

}
, exp{−θT}, exp{−θλ2T2}

}
< 1 and adding (4.43), (4.44),

and (4.44) side by side and then using (4.42) we have

Ex,i1{ζ≥T2}U(X(T2)) ≤ pU(x), for (x, i) ∈ Bh × Z+.
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By the strong Markov property of the process (X(t), α(t)),

Ex,i1{ζ≥2T2}U(X(2T2)) =Ex,i
[
1{ζ≥T2}EX(T2),α(T2)1{ζ≥T2}U(X(T2))

]
≤pEx,i1{ζ≥T2}U(X(T2))

≤p2U(x), for (x, i) ∈ Bh × Z+.

Continuing this way we have

Ex,i1{ζ≥kT2}U(X(kT2)) ≤ pkU(x), for (x, i) ∈ Bh × Z+.

Since 2θ < 1, we have from (4.24) that Ex,ie2θH(s) ≤ e2θ[c+Mg ]s. This and the Burkholder-

Davis-Gundy inequality imply

Ex,i sup
t≤T2

∣∣∣∣∫ t∧τh

0

eθH(s)Vx(X(s))σ(X(s), α(s))

g(V (X(s)))
dW (s)

∣∣∣∣
≤
[
Ex,i

∫ T2∧τh

0

e2θH(s) |Vx(X(s))σ(X(s), α(s))|2

g2(V (X(s)))
ds

] 1
2

≤
[
M2

gEx,i
∫ T2

0

e2θH(s)ds

] 1
2

≤
[
M2

g

∫ T2

0

e2θ[c+Mg ]sds

] 1
2

:= K̃1.

(4.46)

On the other hand

Ex,i sup
t≤T2

∣∣∣∣∫ t∧τh

0

eθH(s)

[
θcα(s) +

θ2

2

|Vx(X(s))σ(X(s), α(s))|2

2g2(V (X(s)))

]
ds

∣∣∣∣
≤(c+Mg)Ex,i

∫ T2∧τh

0

eθH(s)ds

≤(c+Mg)

∫ T2

0

eθ[c+Mg ]ds := K̃2.

(4.47)
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It follows from (4.46) and (4.47) that

Ex,i sup
t≤T2

U(X(t ∧ τh)) =U(x)Ex,i sup
t≤T2

eθHt

≤U(x)[1 + K̃1 + K̃2] := U(x)K̃3.

(4.48)

By the strong Markov property of (X(t), α(t)), we derive from (4.48) that

Ex,i1{ζ=∞} sup
t∈[kT2,(k+1)T2]

U(X(t ∧ τh))

≤ Ex,i1{ζ≥kT2} sup
t∈[kT2,(k+1)T2]

U(X(t ∧ τh))

≤ K̃3Ex,i1{ζ≥kT2}U(X(kT2)

≤ K̃3U(x)ρk,

(4.49)

which combined with Markov’s inequality leads to

Px,i

{
1{ζ=∞} sup

t∈[kT2,(k+1)T2]

U(X(t ∧ τh)) > (ρ+ ε̃)k

}

≤ 1

(ρ+ ε̃)k
Ex,i

[
1{ζ=∞} sup

t∈[kT2,(k+1)T2]

U(X(t ∧ τh))

]

≤ K̃3U(x)
ρk

(ρ+ ε̃)k
k ∈ Z+,

(4.50)

where ε̃ is any number in (0, 1−ρ). In view of the Borel-Cantelli lemma, for almost all ω ∈ Ω,

there exists random integer k1 = k1(ω) such that

1{ζ=∞} sup
t∈[kT2,(k+1)T2]

U(X(t)) < (ρ+ ε̃)k for any k ≥ k1.

Thus, for almost all ω ∈ {ζ =∞}, we have

G(V (X(t))) ≤ [t/T2] ln(ρ+ ε̃) ≤ −λt for t ≥ k1T2. (4.51)

where [t/T2] is the integer part of t/T2 and λ = − ln(ρ+ ε̃)

2T2

> 0. Since G(y) is decreasing
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and maps (0, h] onto (−∞, 0], (4.19) follows from (4.41) and (4.51). The proof is complete.

In Theorem 4.8, under the condition that α(t) is merely ergodic, we need and additional

condition (4.17) to obtain the stability in probability of the system. If α(t) is strongly ergodic,

the condition (4.17) can be removed.

Theorem 4.10. Suppose that

• for any T > 0 and a bounded function f : Z+ 7→ R, we have

lim
x→0

sup
i∈Z+

{∣∣∣∣Ex,i ∫ T

0

f(α(s))ds− Ei
∫ T

0

f(α̂(s)ds

∣∣∣∣} = 0. (4.52)

• Assumption 4.3 is satisfied

• the Markov chain α̂(t) is strongly ergodic with invariant probability measure ν =

(ν1, ν2, . . . ).

Suppose further that (4.18) is satisfied and
∑

i∈Z+
ciνi < 0. Then the conclusion of Theorem

4.8 holds.

Remark 4.11. We will prove in the Appendix that (4.52) holds if Assumption 4.3 and (4.8)

hold.

Proof of Theorem 4.10. Let λ = −
∑

i∈Z+
ciνi. Because of the uniform ergodicity of α̂(t),

there exists a T > 0 such that

E0,i

∫ t

0

cα(s)ds = Ei
∫ t

0

c(α̂(s))ds ≤ −3λ

4
t ∀ t ≥ T, i ∈ Z+. (4.53)

By (4.52), there exists an h1 ∈ (0, h) such that

Ex,i
∫ T

0

cα(s)ds ≤ −
λ

2
T ∀ |x| ≤ h1, i ∈ Z+. (4.54)
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In view of Lemma 4.5, there exists an h2 ∈ (0, h1) such that

cPx,i{τh < T} ≤ λ

4
provided |x| ≤ h2, i ∈ Z+. (4.55)

Applying (4.54) and (4.55) to (4.25), we have

Ex,iH(T ) ≤ −λ
4
T if 0 < |x| ≤ h2, i ∈ Z+. (4.56)

Using (4.56), we can use arguments in the proof Theorem 4.8 to show that

Ex,ieθH(T ) ≤ exp

{
−θλT

8

}
for 0 < |x| < h2 (4.57)

for a sufficiently small θ > 0. This implies that

Ex,iU
(
X(T ∧ τh)

)
≤ exp

{
−θλT

8

}
U(x), (4.58)

where U(x) = exp(θG(V (x))). Thus, {Mk := U
(
X
(
(kT ) ∧ τh

))
, k = 0, 1, . . . } is a bounded

supermartingale. Then we can easily obtain the stability in probability of the trivial solution.

Moreover, proceeding as in Step 2 of the proof of Theorem 4.8, we can obtain the asymptotic

stability as well as the rate of convergence. The arguments are actually simpler because (4.58)

holds uniformly in i ∈ Z+, rather than i ∈ {1, . . . , k0} in the proof of Theorem 4.8.

Remark 4.12. Consider the special case g(y) ≡ y. With this function we have U(X(t)) =

V (X(t)). Thus, if Assumption 4.3 holds with g(y) ≡ y, then the conclusion on stability

in Theorems 4.8 and 4.10 are still true without the condition (4.18) because we still have

EV (X(t ∧ τh)) ≤ V (x)ect, which can be used in place of (4.35). However, in order to obtain

asymptotic stability and rate of convergence, (4.18) is needed. In that case, if the initial

value is sufficiently closed to 0, V (X(t)) will converges exponentially fast to 0 with a large
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probability.

Theorem 4.13. Consider the case that the state space of α(t) is finite, sayM = {1, . . . ,m0}

for some positive integer m0, rather than Z+. Suppose that Q(0) is irreducible and let ν be

the invariant probability measure of the Markov chain with generator Q(0). If
∑

i∈M ciνi < 0

then the trivial solution is asymptotically stable in probability, and for any ε > 0, there are

λ > 0, δ > 0 such that

Px,i
{

lim
t→∞

V (X(t))

G−1(−λ3t)
≤ 1

}
> 1− ε for any (x, i) ∈ Bδ ×M.

We now provide some conditions for instability in probability.

Theorem 4.14. Suppose that the Markov chain α̂(t) is ergodic with invariant probability

measure ν = (ν1, ν2, . . . ) and that there are functions g ∈ Γ, V : D 7→ R+ such that

• V (x) = 0 if and only if x = 0

• V (x) is continuous on D and twice continuously differentiable in D \ {0}.

• there is a bounded sequence of real numbers {ci : i ∈ Z+} such that

LiV (x) ≥ cig(V (x))∀x ∈ D \ {0}. (4.59)

If (4.18) is satisfied and if
∑

i∈Z+
ciνi < 0 and lim supi→∞ ci < 0, then the trivial solution is

unstable in probability.

Proof. Define G(y) = −
∫ 1

y
g−1(z)dz as in Theorem 4.8. We have from Itô’s formula,

−G
(
V (X(τh ∧ t))

)
=−G(V (x))−

∫ τh∧t

0

Lα(s)V (X(s))

g(V (X(s)))
ds

+

∫ τh∧t

0

ġ(V (X(s)))|Vx(X(s))σ(X(s), α(s))|2

2g2(V (X(s)))
ds

−
∫ τh∧t

0

Vx(X(s))σ(X(s), α(s))

g(V (X(s)))
dW (s) ≤ −G(V (x)) + H̃(t)

(4.60)
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where

H̃(t) =−
∫ τh∧t

0

cα(s)ds−
∫ τh∧t

0

Vx(X(s))σ(X(s), α(s))

g(V (X(s)))
dW (s).

Then using (4.60) and proceeding in the same manner as in the proof of Theorem 4.8 with

H(t) replaced with H̃(t), we have can find a sufficiently small θ̃, ∆̃ > 0 and a sufficiently

large T3 > 0 such that

Ex,i1{ζ̃≥kT3}Ũ(X(kT2)) ≤ pkŨ(x), for (x, i) ∈ Bh × Z+.

where Ũ(x) = exp
{
− θ̃G(V (x))

}
, and ζ̃ = inf{k ≥ 0 : U(X(kT3)) ≤ ∆̃−1}. Note that,

unlike U(x), we have limx→0 Ũ(x) =∞. Since U(X(kT3)) ≥ ∆̃−1 if ζ̃ ≥ k, we have that

Px,i{ζ̃ =∞} = lim
k→∞

Px,i{ζ̃ ≥ k} = 0.

Similarly, we can obtain a counterpart of Theorem 4.10 for instability.

Theorem 4.15. Suppose that the Markov chain α̂(t) is strongly ergodic with invariant prob-

ability measure ν = (ν1, ν2, . . . ) and that there are functions g ∈ Γ, V : D 7→ R+ such that

• V (x) = 0 if and only if x = 0

• V (x) is continuous on D and twice continuously differentiable in D \ {0}.

• there is a bounded sequence of real numbers {ci : i ∈ Z+} such that

LiV (x) ≥ cig(V (x))∀x ∈ D \ {0}. (4.61)

If (4.18) and (4.8) are satisfied and if
∑

i∈Z+
ciνi > 0 then the trivial solution is unstable in

probability.
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4.3 Stability and Instability of Linearized Systems

Suppose that (4.52) is satisfied and that α̂(t) is a strongly ergodic Markov chain.

Assumption 4.4. Suppose that for i ∈ Z+, there exist b(i), σk(i) ∈ Rn×n bounded uniformly

for i ∈ Z+ such that

ξi(x) := b(x, i)− b(i)x, ζi(x) := σ(x, i)− (σ1(i)x, . . . , σd(i)x)

satisfying

lim
x→0

sup
i∈Z+

{
|ξi(x)| ∨ |ζi(x)|

|x|

}
= 0. (4.62)

For i ∈ Z+, k ∈ {1, . . . , n}, let Λ1,i and Λ2,i,k be the maximum eigenvalues of
b(i) + b>(i)

2

and σk(i)σ
>
k (i) respectively. Similarly, denote by λ1,i and λ2,i,k be the minimum eigenvalues

of
b(i) + b>(i)

2
and σk(i)σ

>
k (i) respectively.

Suppose that Λ1,i and Λ2,i,k are bounded in i ∈ Z+ then we claim that if

∑
i∈Z+

νi

(
Λ1,i +

1

2

n∑
k=1

Λ2,i,k

)
< 0,

then the trivial solution is asymptotic stable.

To show that, let ε > 0 be sufficiently small such that

∑
i∈Z+

νi

(
ε+ Λ1,i +

1

2

n∑
k=1

Λ2,i,k

)
< 0. (4.63)

Define V (x) = |x|p, carry out the calculation and obtain the estimates as in that of [26,

Theorem 4.3], we can find a sufficiently small p > 0 and ~ > 0 such that

LiV (x) ≤ p

(
ε+ Λ1,i +

1

2

n∑
k=1

Λ2,i,k

)
V (x) for 0 < |x| < ~. (4.64)
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(Note that the existence of such p and ~ satisfying (4.64) uniformly for i ∈ Z+ is due to

(4.64) and the boundedness of Λ1,i and Λ2,i,k.)

By (4.63) and (4.64), it follows from Theorem 4.10 that the trivial solution is asymptotic

stable and for any ε > 0, there exists δ > 0, λ > 0 such that

Px,i
{

lim
t→∞

eλt|X(t)| ≤ 1
}
≥ 1− ε for (x, i) ∈ Bδ × Z+.

Similarly, if
∑

i∈Z+
νi

(
λ1,i +

1

2

∑n
k=1 λ2,i,k

)
> 0, and if λ1,i and λ2,i,k are bounded in

i ∈ Z+, k = 1, . . . , n, we have that the trivial solution is unstable. To sum up, we have the

following result.

Proposition 4.16. Let Assumption 4.4 is satisfied. We claim that,

• if Λ1,i and Λ2,i,k are bounded in i ∈ Z+ and

∑
i∈Z+

νi

(
Λ1,i +

1

2

n∑
k=1

Λ2,i,k

)
< 0,

then the trivial solution is asymptotically stable in probability;

• if λ1,i and λ2,i,k are bounded in i ∈ Z+, k = 1, . . . , n, and

∑
i∈Z+

νi

(
λ1,i +

1

2

n∑
k=1

λ2,i,k

)
> 0,

then the trivial solution is unstable in probability.

4.4 Examples

This section provides several examples.

Example 4.17. Consider a real-valued switching diffusion

dX(t) = b(α(t))X(t)[|X(t)|γ ∨ 1]dt+ σ(α(t)) sin2X(t)dW (t), 0 < γ < 1, (4.65)
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where a ∨ b = max(a, b) for two real numbers a and b, and Q(x) =
(
qij(x)

)
Z+×Z+

with

qij(x) =



−p̌1(x) if i = j = 1

p̌1(x) if i = 1, j = 2

−p̂i(x)− p̌i(x) if i = j ≥ 2

p̂i(x) if i ≥ 2, j = i− 1

p̌i(x) if i ≥ 2, j = i+ 1.

Note that the drift grow faster than linear and the diffusion coefficient is locally like x2

near the origin for the continuous state. Suppose that b(i), σ(i), p̌i(x), p̂i(x) are bounded for

(x, i) ∈ R× Z+ and p̌i(x), p̂i(x) are continuous in Rn for each i ∈ Z+. It is well known (see

[1, Chapter 8]) that if

ν∗ :=
∞∑
k=2

k∏
`=2

p̌`−1(0)

p̂`(0)
<∞,

then α̂(t) is ergodic with the invariant measure ν given by

ν1 =
1

ν∗
, νk =

1

ν∗

k∏
`=2

p̌`−1(0)

p̂`(0)
, k ≥ 2.

We suppose that

∑
b(i)νi < 0, and lim sup

i→∞
b(i) < 0.

we will show that the trivial solution is stable. Let 0 < ε < −
∑
b(i)νi then

∑
[b(i)+ε]νi < 0.

Let

V (x) = x2
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We have

LiV (x) = 2b(i)|x|2+2γ + σ2(i) sin4(x)

Since γ < 1 and σ(i) is bounded, there exists an ~ > 0 such that σ2(i) sin4(x) ≤ ε|x|2+2γ

given that |x| ≤ ~. then

LiV (x) ≤ [2b(i) + ε]|x|2+2γ = [2b(i) + ε]V 1+γ(x) in [−~, ~]× Z+.

By Theorem 4.8, the trivial solution is asymptotically stable in probability. Moreover, for the

function g(y) = y1+γ,

G(y) := −
∫ 1

y

1

g(z)
ds = 1− y−γ, y ∈ (0, 1]

has the inverse

G−1(−t) =
1

[t+ 1]1/γ
, for t ≥ 0

Thus, for any ε > 0, there exists a δ > 0 such that if (x, i) ∈ [0, δ]×Z+, then, there exists a

λ > 0 such that

Px,i
{

lim sup
t→∞

t1/γX2(t) ≤ λ

}
> 1− ε.

Example 4.18. This example consider a random-switching linear systems of differential

equations:

dX(t) = A(α(t))X(t)dt (4.66)

where A(i) ∈ Rn×n satisfying supi∈Z+
{|λi| ∨ |Λi|} < ∞ with λi,Λi being the minimum and
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maximum eigenvalues of A(i), respectively. Let

Q(x) =



−1− sin |x| 1 + sin |x| 0 0 0 · · ·

1 + sin |x| −2− 2 sin |x| 1 + sin |x| 0 0 · · ·

1 + sin |x| 0 −2− 2 sin |x| 1 + sin |x| 0 · · ·

1 + sin |x| 0 0 −2− 2 sin |x| 1 + sin |x| · · ·

...
...

...
...

...
. . .


.

By [1, Proposition 3.3], it is easy to verify that the Markov chain α̂(t) with generators Q(0)

is strongly ergodic. Solving the system

νQ(0) = 0,
∑

νi = 1

we obtain that the invariant measure of α̂(t) is (νi)
∞
i=1 = (2−i)∞i=1. Thus, if

∑
λi2
−i > 0 the

trivial solution to (4.66) is unstable. In case
∑

Λi2
−i < 0 the trivial solution to (4.66) is

asymptotically stable in probability. In particular, suppose that n = 2 and A(i) are upper

triangle matrices, that is,

A(i) =

 ai bi

0 ci

 .

If ai and ci are positive for i ≥ 2, then the system dX(t) = A(i)X(t)dt is unstable. However,

if a1, c1 < − supi≥2{ai, ci}, then
∑

(ai ∨ ci)2−i < 0. Thus, the switching differential system is

asymptotically stable. The stability of the system at state 1 and the switching process become

a stabilizing factor.

On the other hand, if ai ∧ ci is negative for i ≥ 2, then the system dX(t) = A(i)X(t)dt is

asymptotically stable. Suppose further that a1, c1 > supi≥2{−(ai∧ci)}, then
∑

(ai∨ci)2−i > 0.
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Under this condition, the switching differential system is unstable.

4.5 Further Remarks

Using a new method, we provide sufficient conditions for stability and instability in

probability of a class of regime-switching diffusion systems with switching states belonging

to a countable set. The conditions are based on the relation of a “switching-independent”

Lyapunov function and the generator of the switching part.

Although the systems under consideration are memoryless, the main results of this paper

hold if we assume that the switching intensities qij depend on the history of {X(t)} rather

than the current state of X(t), (see [34, 36] for fundamental properties of this process).

The problem can be formulated as follows. Let r be a fixed positive number. Denote by C

the set of Rn-valued continuous functions defined on [−r, 0]. For φ ∈ C, we use the norm

‖φ‖ = sup{|φ(t)| : t ∈ [−r, 0]}. For t ≥ 0, we denote by yt the so-called segment function (or

memory segment function) yt = {y(t+ s) : −r ≤ s ≤ 0}. We assume that the jump intensity

of α(t) depends on the trajectory of X(t) in the interval [t−r, t]. That is, there are functions

qij(·) : C → R for i, j ∈ Z+ satisfying that qi(φ) :=
∑∞

j=1,j 6=i qij(φ) is uniformly bounded in

(φ, i) ∈ C × Z+ and that qi(·) and qij(·) are continuous such that

P{α(t+ ∆) = j|α(t) = i,Xs, α(s), s ≤ t} = qij(Xt)∆ + o(∆) if i 6= j and

P{α(t+ ∆) = i|α(t) = i,Xs, α(s), s ≤ t} = 1− qi(Xt)∆ + o(∆).

(4.67)

It is proved in Chapter 2 that if either Assumption 4.4 or Assumption 4.2 is satisfied with

x, y ∈ Rn replaced by φ, ψ ∈ C, then there is a unique solution to the switching diffusion

(4.1) and (4.67) with a given initial value. Moreover, the process (Xt, α(t)) has the Markov-
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Feller property. With slight modification in the proofs, the theorems in Section 3 still hold

for system (4.1) and (4.67).

Our method can also be applied to regime-switching jump diffusion processes. The results

obtain by using our method will generalize existing results (e.g., [56, 59]) to the case of

regime-switching jump diffusions with countable regimes.

On the other hand, there is a gap between sufficient conditions for stability and insta-

bility in Proposition 4.1. To overcome the difficulty, we need to make a polar coordinate

transformation to decompose of X(t) into the radial part r(t) = |X(t)| and the angular part

Y (t) = X(t)/r(t). Then, the Lyapunov exponents with respect to invariant measures of the

linearized process of (Y (t), α(t)) will determine whether or not the system is stable. This ap-

proach has been used to treat many linear and linearized stochastic systems (e.g., [2, 5, 24]).

In our setting, the switching α(t) take values in a noncompact space, thus, it is more difficult

to examine invariant measures. We will address this problem together necessary conditions

of stability in a subsequent paper.
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APPENDIX A: SUPPLEMENTS FOR CHAPTER 2

This section is devoted to the proofs of some technical results. To simplify the notation,

we denote by Pφ,i the probability measure conditional on the initial value (φ, i), that is, for

any t > 0,

Pφ,i{(Xt, α(t)) ∈ ·} = P{(Xφ,i
t , αφ,i(t)) ∈ ·},

Pφ,i{(Yt, β(t)) ∈ ·} = P{(Y φ,i
t , βφ,i(t)) ∈ ·},

and

Pφ,i{(Zt, γ(t)) ∈ ·} = P{(Zφ,i
t , γφ,i(t)) ∈ ·}.

Let Eφ,i be the expectation associated with Pφ,i. First, we prove the following result.

Lemma A.1. Let either Assumption 2.1 or Assumption 2.3 combined with (ii) of Assumption

2.1 be satisfied. Assume further that qi(·), qij(·) are continuous functions in C for each i, j ∈

Z+. Then the solution (Xt, α(t)) to (1.7) satisfies (1.5) and (1.6).

Proof. It is clear that the solution (Xt, α(t)) to (1.7) satisfies (1.5). Fix φ ∈ C, i, j ∈ Z+, i 6= j.

Applying the generalized Itô formula to the function V (ψ, k) = 0 if k 6= j and V (ψ, j) = 1

we have

Pφ,i{α(∆) = j} = Eφ,iV (X∆, α(∆) = Eφ,i
∫ ∆

0

qα(t),j(Xt)dt, for ∆ > 0.

where qii(φ) := −qi(φ) = −
∑

j 6=i qij(φ). Since α(t) is cadlag and X(t) is continuous,

limt→0+ α(t) = i and limt→0+ Xt = φ Pφ,i-a.s. In light of the continuity of qij(·) we obtain
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limt→0+ qα(t),j(Xt) = qij(φ) Pφ,i − a.s. which implies that

lim
∆→0+

1

∆

∫ ∆

0

qα(t),j(Xt)dt = qij(φ) Pφ,i − a.s.

Since qij(·) is uniformly bounded, so is
1

∆

∫ ∆

0

qα(t),j(Xt)dt. By virtue of the Lebegue domi-

nated convergence theorem, we have

lim
∆→0+

Pφ,i{α(∆) = j}
δ

= lim
∆→0+

Eφ,i
(

1

∆

∫ ∆

0

qα(t),j(Xt)dt

)
= qij(φ). (A.1)

In the same manner, applying the generalized Itô formula to the function V (ψ, k) = 1 if

k 6= i and V (ψ, i) = 0, we obtain that

lim
∆→0+

1− Pφ,i{α(∆) = i}
δ

= qi(φ). (A.2)

The proof is complete by noting that (1.6) follows from (A.1) and (A.2) and the Markov

property of (X(t), α(t)).

Next, we provide the proofs of some results in Section 4.

Proof of Lemma 2.9. To prove claim (i), we apply the generalized Itô formula to V (j) = 1

if j = i, and V (j) = 0 if j 6= i. We have

V (β(λ1 ∧ t)) = −
∫ λ1∧t

0

qi(Ys)ds+

∫ λ1∧t

0

∫
R

(
V
(
i+ h(Yt, i, z)

)
− 1)

)
µ(ds, dz).

Since W (·) is independent of the Poisson random measure, taking the conditional expectation
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with respect to FWT yields

Eφ,i
[
1{λ1>t}

∣∣FWT ] =Eφ,i
[
V (λ1 ∧ t)

∣∣FWT ] = −Eφ,i
[ ∫ λ1∧t

0

qi(Ys)ds
∣∣FWT ]+ 1

=− Eφ,i
[ ∫ t

0

qi(Ys)ds1{λ1>s}
∣∣FWT ]+ 1

=−
∫ t

0

qi(Ys)Eφ,i
[
1{λ1>s}

∣∣FWT ]ds+ 1.

Hence,

d

dt
Eφ,i
[
1{λ1>t}

∣∣FWT ] = −qi(Yt)Eφ,i
[
1{λ1>t}

∣∣FWT ].
Since Eφ,i

[
1{λ1>0}

∣∣FWT ] = 1, we obtain

Pφ,i
(
{λ1 > t}

∣∣FWT ) = Eφ,i
[
1{λ1>t}

∣∣FWT ] = exp
(
−
∫ t

0

qi(Ys)ds
)
. (A.3)

Now we prove claim (ii). First, we try to find the distribution of (λ1, β1) conditioned on FWT

when λ1 ∈ [0, T ]. Fix j 6= i and let f(t, k) : [0, T ] × Z+ → Z+ be any bounded measurable

function satisfying f(t, k) = 0 if k 6= j. Applying the generalized Itô formula, we obtain

f(λ1 ∧ T, β(λ1 ∧ T )) =

∫ λ1∧T

0

qij(Yt)f(t, j)dt

+

∫ λ1∧T

0

∫
R

(
f
(
s, i+ h(Yt, i, z)

)
− f(Yt, i)

)
µ(ds, dz).

Since W (·) is independent of the Poisson random measure, taking the conditional expectation
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with respect to FWT , we have

Eφ,i
[
f(λ1 ∧ T, β(λ1 ∧ T ))

∣∣FWT ] =Eφ,i
[ ∫ λ1∧T

0

qij(Yt)f(t, j)dt
∣∣∣FWT ]

=Eφ,i
[ ∫ T

0

qij(Yt)f(t, j)dt1{λ1>t}dt
∣∣∣FWT ]

=

∫ T

0

qij(Yt)f(t, j)E
[
1{λ1>t}

∣∣FWT ]dt
=

∫ T

0

qij(Yt)f(t, j) exp(−
∫ t

0

qi(Ys)ds)dt.

As a result, for t ∈ [0, T ],

Pφ,i
{
λ1 ∈ dt, β(λ1) = j

∣∣FWT } = qij(Yt) exp(−
∫ t

0

qi(Ys)ds)dt.

Thus,

Eφ,i
[
g(Y(1), λ1, β1)1{λ1≤T}

∣∣∣FWT ]
=

∞∑
j=1,j 6=i

∫ T

0

g(Yt, t, j)Pφ,i
{
λ1 ∈ dt, β(λ1) = j

∣∣FWT }
=

∞∑
j=1,j 6=i

∫ T

0

g(Yt, t, j)qij(Yt) exp(−
∫ t

0

qi(Ys)ds)dt

as desired.

The proof of Proposition 2.10. First, we prove (2.12) for the case l = 0. Since (Xt, α(t)) =

(Yt, λ(t)) up to the moment α1 = λ1, we have

Eφ,i
[
f(XT , α(T ))1{τ1>T}

]
= Eφ,i

[
f(YT , i)1{λ1>T}

]
=Eφ,i

[
Eφ,i
(
f(YT , i)1{λ1>T}|FWT

)]
= Eφ,i

[
f(YT , i)Eφ,i

(
1{λ1>T}|FWT

)]
=Eφ,i

[
f(YT , i) exp

(
−
∫ T

0

qi(Ys)ds
)]
,

(A.4)

where the last equality is consequence of (i) of Lemma 2.9. Since γ(·) and Y (·) are indepen-
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dent, Zt = Yt up to the moment θ1 and Pφ,i{θ1 > T} = exp(−T ), we obtain

Eφ,i
(
f(ZT , γ(T ))1{θ1>T} exp{−

∫ T

0

qi(Zs)ds}
)

=Eφ,i
(
f(YT , i)1{θ1>T} exp{−

∫ T

0

qi(Ys)ds}
)

=Pφ,i{θ1 > T}Eφ,i
(
f(YT , i) exp{−

∫ T

0

qi(Ys)ds}
)

= exp(−T )Eφ,i
(
f(YT , i) exp{−

∫ T

0

qi(Ys)ds}
)
.

(A.5)

From (A.4) and (A.5), we have for t ∈ [0, T ] that

Ef(XT , α(T ))1{τ1>T} = exp(T )E
(
f(ZT , γ(T ))1{θ1>T} exp{−

∫ T

0

qi(Zs)ds}
)
. (A.6)

We now prove (2.12) for l = 1. Let g(φ, t, i), g̃(φ, t, i) : C × [0,∞) × Z+ → R be bounded

measurable functions and g(φ, t, i) = g̃(φ, t, i) = 0 if t > T . It follows from (ii) of Lemma 2.9

that

Eφ,ig(X(1), τ1, α1) = Eφ,ig(Y(1), λ1, β1)

=
∑
i1 6=i

∫ T

0

Eφ,i
(
g(Yt, t, i1)qii1(Yt) exp(−

∫ t

0

qi(Ys)ds)
)
dt.

(A.7)

On the other hand,

Eφ,i
[
g̃(Z(1), θ1, γ1) exp(−

∫ θ1

0

qi(Zs)ds)
]

=Eφ,i
[
g̃(Y(1), θ1, γt) exp(−

∫ θ1

0

qi(Ys)ds)
]

=
∑
i1 6=i

∫ T

0

Eφ,i
(
g̃(Yt, t, i1) exp(−

∫ t

0

qi(Ys)ds)
)
Pφ,i{θ1 ∈ dt, γ1 = i1}

=
∑
i1 6=i

∫ T

0

Eφ,i
(
g̃(Yt, t, i1) exp(−

∫ t

0

qi(Ys)ds)
)
ρii1 exp(−t)dt.

(A.8)
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Substituting g̃(φ, t, i) = g(φ, t, i) exp(t)× qii(φ)

ρii
into (A.8), we have

Eφ,i
[
g(Z(1), θ1, γ1) exp(θ1)× qiγ1(Zs)

ρiγ1
exp(−

∫ θ1

0

qi(Zs)ds)
]

=
∑
i1 6=i

∫ T

0

Eφ,i
[
g(Yt, t, i1) exp(t)

qii1(Yt)

ρii1
exp(−

∫ t

0

qi(Ys)ds)
]
ρii1 exp(−t)dt

=
∑
i1 6=i

∫ T

0

Eφ,i
[
g(Yt, t, i1)qii1(Yt) exp(−

∫ t

0

qi(Ys)ds)
]
dt.

(A.9)

It follows from (A.7) and (A.9) that

Pφ,i{τ1 ∈ dt, α1 = i1, X(1) ∈ dφ1}

=Eφ,i
[
1{θ1∈dt,γ1=i1,Z(1)∈dφ1} exp(t)× qiii(Zt)

ρii1
exp(−

∫ t

0

qi(Zs)ds)
]
.

(A.10)

We now use the strong Markov property of (Xt, α(t)) and (Zt, γ(t)), (A.10) as well as (A.6)

with φ, i, T replaced by φ1, i1, T − t, respectively;

Eφ,if(XT , α(T ))1{τ1≤T<τ2}1{α1=i1}

=

∫ T

0

∫
C

[
P{τ1 ∈ dt, α1 = i1, X(1) ∈ dφ1} × Eφ1,i1f(XT−t, α(T − t))1{τ1>T−t}

]
=

∫ T

0

∫
C

[
Eφ,i
(
1{θ1∈dt,γ1=i1,Z(1)∈dφ1} exp(t)× qiii(Zs)

ρii1
exp(−

∫ t

0

qi(Zs)ds)
)

× exp(T − t)Eφ1,i1f(ZT−t, γ(T − t))1{θ1>T−t} exp{−
∫ T−t

0

qi1(Zs)ds}
]

= exp(T )Eφ,i
[
f(ZT , γ(T ))1{θ1≤T<θ2}1{γ1=i1} exp

(
−
∫ T

θ1

qi1(Zs)ds
)

qii1(Z(1))

ρii1
exp

(
−
∫ θ1

0

qi(Zs)ds
)]
.

(A.11)

We have already proved (2.12) for l = 0, 1. Using the same argument, the induction, and

the strong Markov property of (Xt, α(t)) and (Zt, γ(t)), we can obtain (2.12) for any l ∈ Z+.
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The proof of Lemma 2.12. By (2.5), we can find m ∈ Z+ such that

Pφ,i0
{
τm+1 < T

}
<

∆

2
, ∀ (φ, i) ∈ C × Z+. (A.12)

Now, let ε = ε(∆) > 0 (to be specified later). In view of [32, Theorem 4.3, p. 61], for each

i ∈ Z+, there is a constant Ci such that

Eφ,i0|Y (t)− Y (s)|6 ≤ Ci|t− s|3 ∀t, s ∈ [0, T ], ∀ ‖φ‖ ≤ R + 1. (A.13)

By the Kolmogorov-Centsov theorem (see [21, Theorem 2.8]), there is a positive random

variable hφi (ω) such that

Pφ,i0
{

sup
t,s∈[0,T ],0<t−s<hφi (ω)

|Y φ,i(t)− Y (s)|
(t− s)0.25

≤ 4
}

= 1.

Since Ci in (A.13) does not depend on φ ∈ {ψ : ‖ψ‖ ≤ R+ 1}, it can be seen from the proof

of the Kolmogorov-Centsov theorem that for any ε > 0, there is a constant hi > 0 satisfying

Pφ,i0
{

sup
t,s∈[0,T ],0<t−s<hi

|Y (t)− Y (s)|
(s− t)0.25

≤ 4
}
> 1− ε, ∀ ‖φ‖ ≤ R + 1. (A.14)

Without loss of generality, we can choose hi+1 < hi,∀i ∈ Z+. Let

Hi,T =
{
ψ(·) ∈ C([0, T ],R) : ‖ψ‖ ≤ R + 1 and sup

t,s∈[0,T ],0<t−s<hi

|ψ(s)− ψ(t)|
(s− t)0.25

≤ 4
}
,

and

Hi =
{
ψ(·) ∈ C : ‖ψ‖ ≤ R + 1 and sup

t,s∈[−r,0],0<t−s<hi

|ψ(s)− ψ(t)|
(s− t)0.25

≤ 4
}
.

Hence Hi+1,T ⊃ Hi,T and Hi+1 ⊃ Hi. For d > 0 and a compact set K ⊂ C, we define

Kd := {ψ ∈ C : ∃φ ∈ K such that ‖ψ − φ‖ < d}.
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Define K0 = {ψ(·) = φ0(·) + c : c ∈ Rn, |c| ≤ 1}, which is compact, and K1 = K0 ] Hi0 . For

each φ ∈ K1, there is nφ,i0 > i0 such that

∞∑
k=nφ,i0+1

qi0,k(φ) = qi0(φ)−
nφ,i0∑

k=1,k 6=i0

qi0k(φ) <
ε

2
.

By the continuous of qi0 and qi0k(φ), there is a dφ,i0 > 0 such that

∞∑
k=n(φ)+1

qi0,k(φ
′) = qi0(φ

′)−
nφ,i0∑

k=1,k 6=i0

qi0k(φ
′) < ε∀ ‖φ′ − φ‖ < dφ,i0 .

Since K1 is compact, there exist n1 > 0 and d1 > 0 such that

∞∑
k=n1+1

qi0,k(φ) < ε∀φ ∈ K1
d1
.

Define K2 = K1 ] Hn1 . Using the compactness of K2, there exist n2 > n1 and d2 ∈ (0, d1]

such that

∞∑
k=n2+1

qi,k(φ) < ε∀i ∈ Nn1 , φ ∈ K2
d2
.

Continuing this way, for Km = Km−1 ] Hnm−1 , there exists nm > nm−1 and dm ∈ (0, dm−1]

such that

∞∑
k=nm+1

qi,k(φ) < ε∀i ∈ Nnm−1 , φ ∈ Kmdm .

Set Kφ,1 = {φ}]Hi0 and Kφ,k = Kφ,k−1]Hnk−1
for φ ∈ C and k = 2, . . . ,m. It is not difficult

to verify that

Kφ,k ⊂ Kkdk ∀ k = 1, . . . ,m, for ‖φ− φ0‖ <
dm
2
. (A.15)

Denote by {Y (·) ∈ Hn0,T} the event {t ∈ [0, T ] 7→ Y (t) is a function belonging to Hn0,T}.
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Clearly, if Y (·) ∈ Hi0,T , then Yt ∈ Kφ,1 ∀t ∈ [0, T ]. Thus, we can proceed as follows:

Pφ,i0
{
τ1 ≤ T,

(
X(1), α1

)
/∈ Kφ,1 ×Nn1

}
=Pφ,i0

(
{τ1 ≤ T, α1 > n1} ∪ {τ1 ≤ T,X(τ1) /∈ Kφ,1}

)
=Pφ,i0

(
{λ1 ≤ T, β1 > n1} ∪ {λ1 ≤ T, Y (λ1) /∈ Kφ,1}

)
≤Pφ,i0{λ1 ≤ T, Y (·) ∈ Hn0,T , β1 > n1}+ P{Y (·) /∈ HT

n0
}

≤Eφ,i0
[
E
(
1{Y (·)∈Hn0,T }1{λ1≤T,β1>n1}|FWT

)]
+ ε

=Eφ,i0
[
1{Y (·)∈Hn0,T }E

(
1{λ1≤T,β1>n1}|FWT

)]
+ ε

=Eφ,i0
[
1{Y (·)∈Hn0,T }

∫ T

0

∑
i>n1

qi0,i(Yt) exp
(
−
∫ t

0

qi0(Ys)ds
)
dt
]

+ ε

≤Eφ,i0
[
1{Y (·)∈Hn0,T }

∫ T

0

εdt
]

+ ε ≤ (T + 1)ε.

(A.16)

Similarly, if (φ1, i1) ∈ Kφ,1 × N1, then Pφ1,i1
{
τ1 ≤ T,

(
X(1), α1

)
/∈ Kφ,2 × Nn2

}
≤ (T + 1)ε.

Using the strong Markov property of (Xt, α(t)), we obtain

Pφ,i0
{
τ1 < T,

(
X(1), α1

)
∈ Kφ,1 ×Nn1 , τ2 ≤ T,

(
X(2), α2

)
/∈ Kφ,2 ×Nn2

}
≤Pφ,i0

{
τ1 < T,

(
X(1), α1

)
∈ Kφ,1 ×Nn1

}
× Pφ,i0

[
τ2 ≤ T + τ1,

(
X(2), α2

)
/∈ Kφ,2 ×Nn2

∣∣∣τ1 < T,
(
X(1), α1)

)
∈ Kφ,1 ×Nn1

]
≤ sup

(φ1,i1)∈Kφ1×Nn1

Pφ1,i1
{
τ1 ≤ T,

(
X(1), α1

)
/∈ Kφ,2 ×Nn2

}
≤ (T + 1)ε.

Continuing this way, we can show for any k = 1, . . . ,m that

Pφ,i0
{
τk ≤ T,

(
Xτk , αk

)
/∈ Kφk ×Nnk ,

(
X(j), αj

)
∈ Kφj ×Nnj , j = 1, . . . , k − 1

}
≤ (T + 1)ε.

(A.17)
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Consequently,

Pφ,i0
{
∃k = 1, . . . ,m : τk ≤ T and

(
X(k), αk

)
/∈ Kφk ×Nnk

}
≤ (T + 1)mε.

Hence, if we choose ε =
1

2m(T + 1)
∆,

Pφ,i0
{
∀k = 1, . . . ,m : τk > T or αk ∈ Nnk

}
≥P
{
∀k = 1, . . . ,m : τk > T or

(
X(k), αk

)
∈ Kφk ×Nnk

}
≥ 1− ∆

2
.

(A.18)

It follows from (A.12) and (A.18) that

Pφ,i0
(
{τm+1 > T} ∩

{
∀k = 1, . . . ,m : τk > T or αk ∈ Nnk

})
≥ 1−∆.

It is easily verified that if ω ∈ {τm+1 > T} ∩ {∀k = 1, . . . ,m : τk > T or αk ∈ Nnk}, then

α(t) ∈ Nnm ,∀t ∈ [0, T ]. The assertion of the lemma is proved.
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APPENDIX B: SUPPLEMENTS FOR CHAPTER 3

Let Y x,i(t) be the solution to

dY (t) = b(Y (t), i)dt+ σ(Y (t), i)dW (t), t ≥ 0 (B.1)

with initial condition (x, i) ∈ Rn × Z+. For (φ, i) ∈ C × Z+, we denote by Y φ,i(t), t ≥ −r

be the process satisfying Y φ,i(t) = φ if t ∈ [−r, 0] and Y φ,i(t) solves (B.1) for t > 0. Clearly

Y φ,i(t) = Y φ(0),i(t) for t ≥ 0. Let βφ,i be the solution to

βφ,i(t) = i+

∫ t

0

∫
R
h(Y φ,i

t , βφ,i(t−), z)p(dt, dz), t ≥ 0 (B.2)

satisfying Y φ,i(t) = φ(t) in [−r, 0] and βφ,i(0) = i. Let ξφ,i1 (t) and λφ,i1 (t) be the first jump

times of αφ,i(t) and βφ,i(t), respectively. Clearly we have that

Xφ,i(t) = Y φ,i(t), αφ,i(t) = βφ,i(t) up to ξφ,i1 (t) = λφ,i1 (t). (B.3)

Proof of Lemma 3.2. Since qij(·) is continuous, there is an ε ∈ (0, 1) such that qij(ψ) > 0

given that ‖ψ − φ‖ < ε. Let Mφ = supψ∈C,‖ψ−φ‖<1{qi(ψ)} <∞. Let δ1 > 0 such that

|φ(s)− φ(s′)| < ε

5
provided |s− s′| < δ1, s, s

′ ∈ [−r, 0]. (B.4)

Under either Assumption 2.3 or Assumption 2.4, standard arguments show that there exists

a sufficiently small δ2 ∈ (0, δ1] satisfying

Pψ,i
{
|Y (t)− ψ(0)| ≤ ε

5
∀t ∈ [0, δ2]

}
≥ 1

2
, ∀ψ ∈ C, ‖ψ − φ‖ < ε, (B.5)

and

Pψ′,j
{
|Y (t)− ψ′(0)| ≤ ε

5
∀t ∈ [0, δ2]

}
≥ 1

2
, ∀ψ′ ∈ C, ‖ψ′ − φ‖ < ε. (B.6)
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In view of (B.4), it can be checked that

‖Y ψ,i
t − φ‖ ≤ 3ε

5
∀t ∈ [0, δ2] if |Y ψ,i(t)− ψ(0)| ≤ ε

5
∀t ∈ [0, δ2] and ‖ψ − φ‖ < ε

5
(B.7)

and

‖Y ψ′,j
t − φ‖ ≤ ε ∀t ∈ [0, δ2] if |Y ψ′,j(t)− ψ′(0)| ≤ ε

5
∀t ∈ [0, δ2] and ‖ψ′ − φ‖ < 3ε

5
. (B.8)

By virtue of (B.5), (B.7), and Lemma 2.9, for ψ ∈ C, ‖ψ − φ‖ < ε

5
we have

Pψ,i
{
‖Yλ1 − φ‖ ≤

3ε

5
and λ1 < δ2, β(λ1) = j

}
= Eψ,i

∫ δ2

0

1{‖Yt−φ‖≤ 3ε
5
}qi,j(Yt) exp

(
−
∫ t

0

qi(Ys)ds

)
dt

≥ Eψ,i
[
1{|Y (u)−ψ(0)|≤ ε

5
∀u∈[0,δ2]}

∫ δ2

0

qi,j(Yt) exp

(
−
∫ t

0

qi(Ys)ds

)
dt

]
≥ δ2

2
inf

φ′∈C:‖φ′−φ‖≤ 3ε
5

{
qi,j(φ

′)
}
× inf

φ′∈C:‖φ′−φ‖≤ 3ε
5

{
exp

(
−
∫ δ2

0

qi(φ
′(s))ds

)
dt

}
:= p1 > 0.

(B.9)

Now, we have from the Markov property that

Pψ,i{‖Xδ2 − φ‖ < ε, α(δ2) = j}

≥ Pψ,i
{
ξ1 < δ2, α1 = j, ‖Xξ1 − φ‖ <

3ε

5

}
× Pψ,i

{
‖Xδ2 − φ‖ < ε, ξ2 > δ2

∣∣∣ξ1 < δ2, α1 = j, ‖Xξ1 − ψ‖ < ε
}
.

(B.10)
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By (B.5) and (B.8), if ‖ψ′ − φ‖ ≤ 3ε

5
, then

Pψ′,j{‖Xt − φ‖ < ε∀ t ∈ [0, δ2], ξ1 > δ2}

= Pψ′,j{‖Yt − φ‖ < ε∀ t ∈ [0, δ2], λ1 > δ2}

≥ Eψ′,j
[
1{‖Yt−φ‖<ε∀t∈[0,δ2]} exp

(
−
∫ δ2

0

qj(Ys)ds

)]
≥ Pψ′,j

{
|Y (t)− ψ′(0)| ≤ ε

5
∀t ∈ [0, δ2]

}
× inf

φ′∈C:‖φ′−φ‖≤ε

{
exp

(
−
∫ δ2

0

qi(φ
′(s))ds

)}
:= p2 > 0.

(B.11)

By the strong Markov property of (Xt, α(t)), applying estimates (B.9) and (B.11) to (B.10),

we obtain

sup
ψ∈C:‖ψ−φ‖≤ ε

5

Pψ,i{‖Xδ2 − φ‖ < ε, α(δ2) = j} > p1p2 > 0.

Proof of Lemma 3.3. Using the Kolmogorov-Centsov theorem [21, Theorem 2.8], for each

i ∈ Z+ and R > 0, there exists an hi,R > 0 such that

Pφ,i

{
sup

t,s∈[0,r],0<t−s<hi,R

|Y (t)− Y (s)|
(s− t)0.25

≤ 4

}
>

1

2
, ∀ ‖φ‖ ≤ R. (B.12)

Let

A =

{
φ ∈ C : |φ(−r)| ≤ R, sup

t,s∈[−r,0],0<t−s<hi,R

|φ(t)− φ(s)|
(s− t)0.25

≤ 4

}
.

Let R′ > R such that ‖φ‖ < R′ for any φ ∈ A and MR′ = sup‖φ‖<R′{qi(φ)} < ∞. For
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‖φ‖ ≤ R, we have that

Pψ,i{Xr ∈ A, ξ1 > r} =Pψ,i{Yr ∈ A, λ1 > r}

=Eψ,i
[
1{Yr∈A}

∫ r

0

exp(−qi(Yt))dt
]

≥Eψ,i1{Yr∈A} exp(−rMR′)

≥0.5 exp(−rMR′),

which implies (3.6).

To prove (3.7), note that sup(x,i)∈Rn×Z+
Ex,iτk < ∞ where τk = inf{t ≥ 0 : |Y (t)| ≥ k},

(see e.g., [24, Corrolary 3.3] or [57, Theorem 3.1]). Thus, there is a T > 0 such that

Px,i
{
τk < T

}
>

1

2
, ∀x ∈ Rn.

Denote τ̃k = inf{t ≥ 0 : ‖Xt‖ ≥ k}. For φ ∈ C with ‖φ‖ ≤ R < k we have from (B.3) and

Lemma 2.9 that

Pφ,i
{
τ̃k < T

}
≥Pφ,i

{
τ̃k < T, α(t) = i for t ∈ [0, τ̃k)

}
=Pφ,i

{
τk < T, β(t) = i for t ∈ [0, τk)

}
=Eφ,i

[
1{τk<T} exp

(
−
∫ τk

0

qi(Ys)ds

)]
≥ exp (−MkT )Eφ,i1{τk<T} ≥ 0.5 exp (−MkT ) ,

where Mk = sup‖φ‖<k{qi(φ)} <∞. The proof is therefore complete.

We need an auxiliary lemma to obtain Lemma 3.4.

Lemma B.1. Fix i ∈ Z+ and suppose A(x, i) is elliptic uniformly in each compact subset of

Rn. For D be a bounded open set in Rn and K1, K2 be open sets whose closures are contained
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in D. Then

inf
{φ∈C:φ(0)∈K1}

Pφ,i
(
{Y (T ) ∈ K2} ∩ {Y (t) ∈ D∀t ∈ [0, T ]}

)
> 0 (B.13)

and there is a measure ν on B(C) such that

Pφ,i{YT+r ∈ B, Y (t) ∈ D, t ∈ [0, T + r]} ≥ ν(B).

Moreover, if B ⊂ {φ ∈ C : φ(t) ∈ D, t ∈ [−r, 0]} is an open set of C, then ν(B) > 0.

Proof. For a bounded continuous function f(x) : Rn 7→ R vanishing outside K2, let uf (t, x)

be the solution to 

∂u

∂t
+ Liu = 0 in D × [0, T )

u (T, x) = f(x) on D,

u(t, x) = 0 on ∂D × [0, T ] .

(B.14)

It is well known (see, e.g., [32, Theorem 2.8.2]) that

uf (t, x) = Ex,i
[
f
(
Y (T − t)

)
1{Y (s)∈D ∀s∈[0,T−t]}

]
.

Let g be a continuous function in D such that 0 ≤ g(x) ≤ 1 ∀x ∈ D, g(x) = 0 outside

K2 and g(x) > 0 for some x ∈ K2. By the strong maximum principle for parabolic equations

(see [13, Theorem 7.12]), ug(0, x) > 0 for all x ∈ D, which implies that

uC := inf{ug(0, x) : x ∈ K1} > 0. (B.15)

By the definition of g(·), we can obtain that

Px,i {Y (T ) ∈ K2, Y (s) ∈ D ∀s ∈ [0, T ]} ≥ ug(0, x)∀x ∈ D. (B.16)
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The first desired result follows from (B.15) and (B.16). Moreover, in view of Harnack’s

inequality (see [13, Theorem 7.10]), there is ρ̃i > 0 such that uf (y, T ) ≥ ρ̃iuf (x0,
T
2
) for all

y ∈ K2 and f being bounded continuous. Thus

Ex,i
[
f
(
Y (T )

)
1{Y (s)∈D ∀s∈[0,T−t]}

]
≥ ρiEx0,i

[
f (Y (0.5T )) 1{Y (s)∈D ∀s∈[0,T−t]}

]
for any bounded and continuous function f . Thus, we obtain that

Px,i {Y (T ) ∈ B and Y (s) ∈ D ∀s ∈ [0, T ]}

≥ρ̃iPx0,i {Y (0.5T ) ∈ B, and Y (s) ∈ D ∀s ∈ [0, 0.5]}

≥ρiν̃(B)

for any Borel set B, where

ν(·) = Px0,i {Y (0.5T ) ∈ ·, and Y (s) ∈ D ∀s ∈ [0, 0.5T ]}

and ρi = ρ̃iPx0,i {Y (s) ∈ D ∀s ∈ [0, 0.5T ]} , which is positive due to (B.13). Denote D̂ = {φ ∈

C : φ(t) ∈ D, t ∈ [−r, 0]}. For any Borel set B ⊂ C, we have from the Markov property of

Y i(t) that

Px0,i {YT+r ∈ B and Y (s) ∈ D ∀s ∈ [0, T + r]}

=P
{
YT+r ∈ B ∩ D̂

∣∣∣Y (T ) = y
}
Pφ0,i {Y (T ) ∈ dy and Y (s) ∈ D ∀s ∈ [0, T + r]}

≥ρi
∫
y∈D

P
{
YT+r ∈ B ∩ D̂

∣∣∣Y (T ) = y
}
ν̃(dy)

=ν(B ∩ D̂).

Now, let B be an open subset of D̂. Denote B = {φ(−r) : φ ∈ B}. Then B is an open subset
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of D. By the support theorem (see [50, Theom 3.1])),

Py,i {YT+r ∈ B} > 0 for any y ∈ B. (B.17)

In light of (B.13),

ν̃(B) = Pφ0,i {Y (0.5T ) ∈ B, and Y (s) ∈ D ∀s ∈ [0, 0.5T ]} > 0. (B.18)

In view of (B.17) and (B.18),

ν(B) ≥
∫
y∈B

Py,i {YT+r ∈ B} ν̃(dy) > 0

if B is an open subset of D̂.

Proof of Lemma 3.4. Let D = {x ∈ Rn : |x| < R + 1}, K1 = K2 = {x ∈ Rn : |x| < R} and

MR,i = sup{q(φ, i) : ‖φ‖ ≤ R + 1} <∞. In view of Lemma B.1,

Pφ,i∗ {YT+r ∈ B, Y (t) < R + 1, t ∈ [0, T + r]} ≥ ν(B)

where ν(·) is defined as in Lemma B.1 with i replaced by i∗. Thus,

Pφ,i∗{XT+r ∈ B and α(T + r) = i∗}

≥Pφ,i∗{XT+r ∈ B and α(t) = i∗, ‖Xt‖ < R + 1 ∀ t ∈ [0, T + r]}

≥Eφ,i∗
[
1{YT+r∈B,‖Yt‖<R ∀ t∈[0,T+r]} exp

(
−
∫ T+r

0

qi∗(Yt)dt

)]
≥ exp(−MR,i(T + r))ν(B).

The proof is complete.
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APPENDIX C: SUPPLEMENTS FOR CHAPTER

Proof of Lemma 4.5. Since V (0) = 0 and V (x) is continuous on D, we can find h∗ > 0 such

that Bh∗ ⊂ D and V (x) ≤ 1 for any x ∈ Bh∗ . Because τh1 ≤ τh2 if h1 ≤ h2, it suffices to

prove the Lemma for any h ≤ h∗.

Since g is continuously differentiable and g(0) = 0, there is Kg > 0 such that g(z) ≤ Kg|z|

for |z| ≤ 1. Thus, we have

LiV (x) ≤ Kg sup
i∈Z+

{|ci|}V (x), (x, i) ∈ Bh∗ × Z+

Letting K̃ = Kg supi∈Z+
{|ci|}, by Itô’s formula,

Ex,iV (X(t ∧ τh)) ≤V (x) + K̃Ex,i
∫ t∧τh

0

V (X(s))ds

≤V (x) + K̃Ex,i
∫ t

0

Ex,iV (X(s ∧ τh))ds.

By the Grownwall inequality, we can easily obtain

Ex,iV (X(T ∧ τh)) ≤ V (x)eKT .

Let vh = inf{V (x) : |x| = h} > 0. An application of Markov’s inequality yields that

Px,i{τh ≤ T} ≤ V (x)eKT

vh
.

Since V (0) = 0 and V is continuous on D, there is a h̃ > 0 such that

Px,i{τh ≤ T} ≤ V (x)eKT

vh
≤ ε

for any x ∈ Bh̃ as desired.
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Proof of Lemma 4.6. It is easy to show that there exists some K2 > 0 such that

|y|k exp(θy) ≤ K2(exp(θ0y) + exp(−θ0y)), k = 1, 2.

for θ ∈
[
0, θ0

2

]
, y ∈ R. For any y ∈ R, let ξ(y) be a number lying between y and 0 such that

exp(ξ(y)) =
ey − 1

y
. Pick θ ∈

[
0, θ0

2

]
and let h ∈ R such that 0 ≤ θ + h ≤ θ0

2
. Then

lim
h→0

exp((θ + h)Y )− exp(θY )

h
= Y exp(θY ) a.s.,

where Y is as defined in Lemma 4.6, and∣∣∣∣exp((θ + h)Y )− exp(θY )

h

∣∣∣∣ = |Y | exp(θY + ξ(hY )) ≤ 2K3[exp(θ0Y ) + exp(−θ0Y )].

By the Lebesgue dominated convergence theorem,

dE exp(θY )

dθ
= lim

h→0
E

exp((θ + h)Y )− exp(θY )

h
= EY exp(θY ).

Similarly,

d2E exp(θY )

dθ2
= EY 2 exp(θY ).

As a result, we obtain

dφ

dθ
=

EY exp(θY )

E exp(θY )

which implies

dφ

dθ
(0) = EY

and

d2φ

dθ2
=

EY 2 exp(θY )E exp(θY )− [EY exp(θY )]2

[E exp(θY )]2
.
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By Hölder’s inequality we have EY 2 exp(θY )E exp(θY ) ≥ [EY exp(θY )]2 and therefore

d2φ

dθ2
≥ 0 ,∀ θ ∈

[
0,
θ0

2

]
.

Moreover,

d2φ

dθ2
≤EY 2 exp(θY )

E exp(θY )

≤K3(E exp(θ0Y ) + E exp(−θ0Y ))

exp(θEY )

≤K3(E exp(θ0Y ) + E exp(−θ0Y ))

exp(−θ0|EY |)
:= K2,

which concludes the proof.

Proof of Lemma 4.7. Let τn be the n−th jump moment of α(t). Let T > 0, In view of [32,

Lemma 4.3.2], we have

Px,i{X(t) = 0 for some t ∈ [0, T ∧ τ 1]} = 0 for any x 6= 0, i ∈ Z+.

Since X(T ∧ τ 1) 6= 0 a.s., applying [32, Lemma 4.3.2] again yields

Px,i{X(t) = 0 for some t ∈ [T ∧ τ 1, T ∧ τ 2]} = 0 for any x 6= 0, i ∈ Z+.

Continuing this way, we have

Px,i{X(t) = 0 for some t ∈ [0, T ∧ τn]} = 0 for any x 6= 0, i ∈ Z+, n ∈ Z+. (C.1)

In [34, Theorems 3.1 & 3.3], we have that limn→∞ τn =∞. This and (C.1) imply

Px,i{X(t) = 0 for some t ∈ [0, T ]} = 0 for any x 6= 0, i ∈ Z+, n ∈ Z+.

Since T is taken arbitrarily, we obtain the desired result.
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Lemma C.1. If the Markov chain α̂(t) is strongly exponentially ergodic with generator Q̂ and

invariant probability measure ν = (ν1, ν2, . . . )
>, then if b = (b1, b2, . . . )

> is bounded satisfying∑
νibi = 0, then, there exists a bounded vector c = (c1, c2, . . . )

> such that bi =
∑
q̂jicj.

Proof. Let P̂ (t) = p̂ij(t), where p̂ij(t) = P{α̂(t) = j|α(0) = i}, the transition matrix of α̂(t).

Let c = (c1, c2, . . . )
> where ci =

∫∞
0

[νjbj − P̂ij(t)bi]dt. In view of (4.7), it is easy to see that

c is bounded. Let 1 = (1, 1, . . . ). We have

Q̂c =

∫ ∞
0

[
Q̂ν1b− Q̂P̂ (t)b

]
dt

=−
∫ ∞

0

Q̂P̂ (t)bdt

=−
∫ ∞

0

P̂ (t)bdt = −P̂ (t)b
∣∣∣∞
0

=− 1νb + b = b.

Lemma C.2. Suppose that Assumption 4.3 and (4.8) hold. Then for any T > 0 and a

bounded function f : Z+ 7→ R, we have

lim
x→0

sup
i∈Z+,t∈[0,T ]

{|Ex,if(α(t))− Eif(α̂(t)|} = 0. (C.2)

Proof. By the basic coupling method, we can consider the joint process (X(t), α(t), α̂(t)) as

a switching diffusion where the diffusion X(t) ∈ Rn satisfies satisfying

dX(t) = b(X(t), α(t))dt+ σ(X(t), α(t))dw(t) (C.3)

and the switching part (α(t), α̂(t)) ∈ Z+ × Z+ has the generator Q̃(X(t)) which is defined
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by

Q̃(x)f̃(k, l) =
∑
j,i∈Z+

q̃(k,l)(j,i)(x)
(
f̃(j, i)− f̃(k, l)

)
=
∑
j∈Z+

[qkj(x)− qlj(0)]+(f̃(j, l)− f̃(k, l))

+
∑
j∈Z+

[qlj(0)− qkj(x)]+(f̃(k, j)− f̃(k, l))

+
∑
j∈Z+

[qkj(x) ∧ qlj(0)](f̃(j, j)− f̃(k, l)).

(C.4)

In what follows, we use the notation Ex,i,j and Px,i,j to denote the corresponding condi-

tional expectation and probability for the coupled process (X(t), α(t), α̂(t)) conditioned on

(X(0), α(0), α̂(0)) = (x, i, j). Let ϑ = inf{t ≥ 0 : α(t) 6= α̂(t)}. Define g̃ : Z × Z 7→ R by

g̃(k, l) = 1{k=l}. By the definition of the function g̃, we have

Q̃(x)g̃(k, k) =
∑

j∈Z+,j 6=k

[qkj(x)− qkj(0)]+ +
∑

j∈Z+,j 6=k

[qkj(0)− qkj(x)]+

=
∑

j∈Z+,j 6=k

|qkj(x)− qkj(0)| =: Ξ(x, k).

(C.5)

For any ε > 0, let h > 0 such that Bh ∈ D and sup(x,k)∈Bh×Z+
Ξ(x, k) < ε

2T
. Applying Itô’s

formula and noting that α(t) = α̂(t), t ≤ ϑ,

we obtain that

Px,i,i{ϑ ≤ T ∧ τh} =Ex,i,ig̃ (α(ϑ ∧ T ∧ τh), α̂(ϑ ∧ T ∧ τh))

=Ex,i,i
∫ ϑ∧T∧τh

0

Q̃(X(t))g̃(α(t), α̂(t))dt

=Ex,i,i
∫ ϑ∧T∧τh

0

Ξ(X(t), α(t))dt

≤T sup
(x,i)∈Bh×Z+

Ξ(x, k) ≤ ε

2
.

(C.6)
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Thus In view of Lemma 4.5, there is δ > 0 such that Px,i,i{τh ≤ T} ≤ ε

2
. This and (C.6)

derive

Px,i,i{ϑ ∧ τh ≤ T} ≤ Px,i,i{ϑ ≤ T ∧ τh}+ Px,i,i{τh ≤ T} ≤ ε.

We have that

|Ex,if(α(t))− E0,if(α(t))| = |Ex,i,i [f(α(t))− f(α̂(t))]|

=
∣∣Ex,i,i1{ϑ∧τh≤t} [f(α(t))− f(α̂(t))]

∣∣
≤2MfPx,i,i{ϑ ∧ τh ≤ t} ≤ 2Mfε, for t ∈ [0, T ].

where Mf = supi∈Z+
|f(i)|. The lemma is proved.
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Emerging and existing applications in wireless communications, queueing networks, bio-

logical models, financial engineering, and social networks demand the mathematical model-

ing and analysis of hybrid models in which continuous dynamics and discrete events coexist.

Assuming that the systems are in continuous times, stemming from stochastic-differential-

equation-based models and random discrete events, switching diffusions come into being. In

such systems, continuous states and discrete events (discrete states) coexist and interact.

A switching diffusion is a two-component process (X(t), α(t)), a continuous component

and a discrete component taking values in a discrete set (a set consisting of isolated points).

When the discrete component takes a value i (i.e., α(t) = i), the continuous component X(t)

evolves according to the diffusion process whose drift and diffusion coefficients depend on i.

Until very recently, in most of the literature α(t) was assumed to be a process taking values

in a finite set, and that the switching rates of α(t) are either independent or depend only on
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the current state of X(t). To be able to treat more realistic models and to broaden the ap-

plicability, this dissertation undertakes the task of investigating the dynamics of (X(t), α(t))

in a much more general setting in which α(t) has a countable state space and its switching

intensities depend on the history of the continuous component X(t). We systematically es-

tablished important properties of this system: well-posedness, the Markov Feller property,

and the recurrence and ergodicity of the associated function-valued process. We have also

studied several types of stability for the system.
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