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PART I: STRUCTURAL INSIGHTS INTO THE BILOBAL REGULATION OF SMYD 

PROTEINS 

GENERAL INTRODUCTION 

Post-Translational Modifications 

Post-translational modifications (PTM) are covalent modifications made to a protein after 

its translation by the ribosome. PTMs serve as central components in cell signaling, epigenetic 

regulation, proteasomal degradation, and protein structure. These small modifications may seem 

minor in comparison to a full size protein, but PTMs operate as vital mechanisms for organisms to 

expand and dynamically control a protein’s function. Indeed, impaired post-translational 

machinery are linked to several human diseases. Understanding how PTMs are directed in human 

health are of strong interest among the research community. 

PTMs can be divided into two categories: reversible and irreversible. Reversible 

modifications are usually small functional groups, such as phosphate, methyl and acetyl groups, 

attached to specific amino acid residues of a given protein, and these small chemical attachments 

can influence the protein’s fold and function. Irreversible post-translational modifications include 

peptide bond cleavage and cofactor attachments. These type of modifications are also necessary 

for the protein maturation and function. While nature has many types of PTMs, my doctoral studies 

focus on the structure and function lysine methyltransferases, ubiquitin-specific proteases and 

disulfide-linked PDZ-domains.  

SMYD proteins 

SMYD (SET and MYND domain-containing proteins) proteins are histone and non-histone 

lysine methyltransferases which contribute various cellular roles including cell cycle control, 

chromatin remodeling, signal transduction and transcription [1-5]. Early reports demonstrated high 

SMYD expression in cardiac and skeletal muscles and suggested SMYD functioned in myogenesis 
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and cardiomyocyte differentiation [1, 6-12]; however, later reports found SMYD proteins to also 

be involved in immunity and inflammation [13-15]. SMYD proteins are of therapeutic interest due 

to a growing list of cancers associated with their overexpression and methylation activity, 

particularly SMYD2 and SMYD3 [4, 5, 16-22]. The lysine methyltransferase of interest for my 

project is SMYD2. 

SMYD2 is overexpressed in many different cancers including but not limited to 

esophageal, gastric, breast, leukemia and pancreatic cancers [16-19, 23]. The growing number of 

reported cancers associated with SMYD2 expression and function highlight the importance of 

studying the molecular mechanism of SMYD2. Crystal structures of SMYD2 have shed some light 

into the mechanism of substrate and cofactor binding [24]; however, the mechanism at which 

substrates are channeled through the substrate channel remains unclear. Chapters 1, 2, 3 and 4 will 

explore the structure and function of SMYD proteins and examine how the TPR-like domain 

influences the accessibility of the substrate channel in SMYD proteins.  

Ubiquitin-specific proteases 

Ubiquitin-specific proteases (USPs) are a large family of deubiquitinases consisting of 56 

different members in humans. Each USP is responsible for recognizing a specific protein substrate 

and ubiquitin branch type [25]. After deubiquitination, the protein of interest is recycled and 

protected against proteasomal degradation. Since proteasomal inhibitors were approved by the 

FDA for treating hematological malignancies, interest surrounding USPs as viable targets for 

treating cancers, autoimmune and neurodegenerative diseases is growing [26]. Since USPs are 

diverse class of enzymes upstream in the ubiquitin proteasome pathway, USPs serve as more 

selective targets potentially offering fewer side effects [27]. 
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USP10 is one member of the USP family found to maintain p53 homeostasis, DNA repair 

and androgen receptor-dependent transcription. While USP10 appears to function multiple 

pathways, USP10’s role in cancer is well established. In mutant p53 renal cancers, USP10 

stabilizes oncogenic p53 promoting cellular growth [28]. Another study found USP10 creates a 

positive feedback loop in promoting androgen receptor transcription and G3BP2 expression 

resulting in repressed p53 function in prostate cancers [29]. More recently, USP10 was found to 

specifically deubiquitinate oncogenic FLT3-ITD, an oncogene commonly found in acute myeloid 

leukemias [30]. Altogether, USP10 appears to be an attractive therapeutic target for specific cancer 

treatments. Unfortunately, biochemical and structural studies of USP10 are currently lacking. In 

Chapter 5, I designed a soluble protein construct that incorporates the catalytic domain of USP10 

(USP10-CA). This protein construct was used to study the binding and biochemistry of USP10-

CA on reported inhibitors. Ultimately, our goal was to study the structure and function of USP10-

CA in order to profile the mechanism of deubiquitination and inhibition. 

PDZ-domains 

PDZ domains are small, protein-protein interacting modules that anchor protein complex 

assembly. Humans possess roughly 260 proteins which possess either one or more PDZ domains 

into the open reading frame [31]. Each PDZ domain is capable of recognizing four amino acid 

motif, found at the carboxyl-end of target proteins. Disruption of PDZ-ligand interactions have 

been well-documented in impair cellular signaling [32]. For example, C-X-C chemokine receptor 

type 2 (CXCR2) is a membrane receptor capable of driving chemotaxis in neutrophils. Deleting 

the PDZ-binding motif in CXCR2 disrupted the PDZ-mediated complex with Na+/H+ exchanger 

regulatory factor-1 (NHERF1). Obstructing this complex attenuated CXCR2-dependent calcium 

mobilization and chemotaxis migration in murine neutrophils [33]. 
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PDZ-domains are not necessarily noted for post-translational modifications; however, in 

chapter 6, our study was initially aimed to understand the binding promiscuity of the CXCR2 PDZ-

interacting motif and PDZ-RhoGEF, but we identified a new disulfide bond link that appears to 

covalently scaffold two PDZ-RhoGEF molecules. Disulfide bonds are commonly used in nature  

to stabilize native and protein complex structures. In the case for PDZ-RhoGEF, disulfide bond 

formation creates an anti-parallel structure capable of recognizing two CXCR2 peptides. 

Interestingly, a separate study found disulfide bond formation of PDZ-RhoGEF and LARG, a 

conserved relative of PDZ-RhoGEF, were important for promoting ligand binding [34]. Here, we 

describe the structure and potential functional outcomes for this newly appreciated disulfide bond. 
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CHAPTER 1 STRUCTURE AND FUNCTION OF SET AND MYND DOMAIN-

CONTAINING PROTEINS 

*Published in Int J Mol Sci. 2015 Jan 8;16(1):1406-28. doi: 10.3390/ijms16011406. All authors 
agreed with including their work in this dissertation. 

Introduction 

SET and MYND domain-containing proteins (SMYD) are a special class of protein lysine 

methyltransferases involved in methylation of histones and non-histone targets [1-5]. To date, 

there are five members from the SMYD family, SMYD1–5 (Figure 1A) [6]. Each member contains 

a conserved SET (Suppressor of variegation, Enhancer of Zeste, Trithorax) domain that is “split” 

by a Myeloid-Nervy-DEAF1 (MYND) domain [35]. The SET domain is a conserved catalytic unit 

for lysine methylation found in nearly all histone methyltransferases (HMT) [36]. The MYND 

domain is a zinc finger motif that primarily functions as a protein–protein interaction module [37, 

38]. Another feature is the C-terminal domain (CTD) found in SMYD1–4 but absent in SMYD5. 

Despite the lack of sequence similarity, this domain is structurally similar to tetratricopeptide 

repeats (TPR), which is a motif important for the binding of cochaperones with heat shock protein-

90 (Hsp90) [24, 35, 39, 40]. 

SMYD proteins may regulate chromatin remodeling and gene accessibility by methylating 

histone targets and interacting with transcription mediators. SMYD1–3 methylate H3K4, which is 

a methylation site promoting active transcription [1, 4, 35, 41, 42]. However, SMYD does not have 

an effect on global H3K4 methylation but appears to impact selective promoter regions [43, 44]. 

SMYD1 binds directly to class I and class II histone deacetylases (HDAC) and represses 

transcription from an SV40-luciferase reporter [1]. SMYD2 was also found to dimethylate H3K36 

in vitro and repress transcription through interaction with the Sin3A histone deacetylase complex 

[2]. However, it remains to be determined whether in vivo recruitment of Sin3A requires both 
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H3K36 methylation and the presence of SMYD2. SMYD3 plays an important role in 

transcriptional regulation as a member of an RNA polymerase complex [4]. SMYD3 interacts with 

RNA polymerase II and RNA helicase HELZ suggesting that it might regulate target gene 

expression by facilitating transcriptional elongation. In HEK293 cells, overexpression of SMYD3 

was found to up-regulate a number of genes corresponding to oncogenes, homeobox genes, and 

genes of the cell cycle [4]. These genes are highly expressed in colorectal and hepatocellular 

carcinomas [45, 46]. SMYD4 was identified as a potential tumor suppressor involved in breast 

cancer [47]. Expression of SMYD4 partially inhibits the expression of PDGFα and the lack of 

SMYD4 promotes PDGFα production [47]. The Drosophila melanogaster homolog of SMYD4 

was found to recruit the HDAC co-repressor complex and thereby aid in fly development [48]. Eri 

is another component of the HDAC co-repressor complex, which interacts with SMYD4 [48]. 

SMYD5 is known to associate with the NCoR co-repressor complex and regulate pro-

inflammation genes through trimethylation of H4K20 [15]. In macrophages, the SMYD5–NCoR 

co-repressor complex was found to repress the expression of toll-like receptor 4 (TLR4) genes 

[15].  

SMYD proteins methylate several non-histone targets. In the cell cycle, SMYD2 

methylates p53 and retinoblastoma tumor suppressor (RB) [3, 49, 50]. p53 methylation by SMYD2 

reduces the transactivation activity of p53 [3]. In esophageal squamous cell carcinoma (ESCC), 

p53 methylation and inactivation were associated with aberrant oncogenic expression of SMYD2 

[16]. Additionally, SMYD2 has an anti-apoptotic effect when it methylates p53 in cardioblasts 

[51]. RB methylation at Lys860 is regulated during cell cycle progression and cellular 

differentiation [49, 50]. It has been shown that RB methylation binds to the transcriptional 

repressor L3MBTL1 causing repression of E2F target genes [49]. In response to DNA damage, 
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SMYD2 was also found to methylate PARP1 at lysine 528, and this methylation regulates the 

PARP1’s poly(ADP-ribosyl)ation activity in HeLa cells [52]. In intracellular signaling, SMYD3 

targets two important kinases for methylation: MAP3K2 and vascular endothelial growth factor 

receptor-1 (VEGFR1). Methylation of MAP3K2 prevents PP2A phosphatase, a key negative 

regulator of the MAP kinase pathway, from binding to MAP3K2 [5]. Methylated MAP3K2 links 

SMYD3 to Ras-driven cancer promoting cell proliferation and tumorigenesis [5]. VEGFR1 

methylation by SMYD3 augments VEGRF1 kinase activity, which is thought to enhance 

carcinogenesis [53]. Since SMYD3 is primarily found in the cytoplasm during G0–G1 arrest, it is 

thought that SMYD3 enhances VEGFR1 signaling when cells are at the resting state [53].  

Current data have shown that SMYD proteins methylate a variety of histone and non-

histone targets which contribute to their various roles in cell regulation including chromatin 

remodeling, transcription, signal transduction, and cell cycle control. In order to better understand 

how SMYD proteins interact with such an extensive yet specific range of targets, structural 

examination of the SMYD family has provided significant insight to the diversity of SMYD 

binding and function. This review will provide a thorough description of SMYD structure and 

function and serve to inform rational drug design process targeting this cancer-related protein 

family.  

SMYD Structure and Function 

2.1. Overall SMYD Structure  

Crystal structures of SMYD1, SMYD2, and SMYD3 with cofactors are currently 

available[24, 35, 39, 54-56]. Additionally, SMYD2 structures were solved with the estrogen 

receptor α (ERα) and p53 peptides enabling us to investigate the different interactions made 

between the two different substrates [54, 57, 58]. In all of the available SMYD structures, SMYD 
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proteins share a homologous bilobal structure separated by a non-conserved primary sequence of 

variable length (Figure 1B). The N-terminal lobe is divided into four domains: SET, MYND, SET-

I, and post-SET. The catalytic SET domain is located in the middle of the N-terminal lobe in 

proximity to the C-terminal lobe. The C-terminal lobe is organized into helices that were found to 

be orientated in open or closed conformations [24, 35, 39]. SMYD1 has the most open structure 

and SMYD3 has the most closed one. SMYD2 is a conformational intermediate between SMYD1 

and SMYD3 (Figure 1C). The difference in the relative positions of the N- and C-terminal lobes 

creates different shapes for substrate binding. The structure of SMYD1 resembles an open-ended 

“wrench” with two lobes separated by gap. Unlike SMYD1, SMYD2 and SMYD3 form a 

clamshell like structure due to the absence of the C-terminal protruding helix.  

Currently, there are no structural data for SMYD4 and SMYD5. While SMYD1–3 share 

well aligned domains, SMYD4 and SMYD5 are vastly different in their primary sequence (Figure 

1A). SMYD4 contains an additional TPR domain before the N-terminal lobe, and the CTD is far 

extended. SMYD5 completely lacks the CTD, yet the molecular size of SMYD5 is close to 

SMYD2 and SMYD3. Functional implications of the differences in SMYD4 and SMYD5 are 

unknown, but structural data of SMYD4 and SMYD5 are of interest to address these questions.  

2.2. SET, the Evolutionary Conserved Methyltransferase Domain  

The SET domain is split by the MYND domain into two sections: the S-sequence and the 

core SET domain (Figure 1A). The S-sequence is a small region that may aid in cofactor binding 

or protein–protein interaction along with its adjacent domain, MYND [7, 35]. The topology of the 

catalytic SET domain is well conserved between SMYD1–3, which is essentially similar to other 

traditional SET proteins despite the split in the primary sequence by the MYND domain [35]. SET 

domain often co-exists with post-SET, SET-I, and pre-SET, and together they contribute to  
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Figure 1. Overall structure of SET and MYND domain-containing proteins (SMYD) 

(A) Domain diagram of SMYD protein family. S, S-sequence; MYND (Myeloid, Nervy, DEAF1); 

SET-I, insertion SET (Su(Var)3-9, Enhancer-of-zeste, Trithorax) domain; (S)ET, core SET 

domain; Post-SET, SET C-terminal flanking domain; CTD, C-terminal domain; (B) Ribbon 

diagram of SMYD1 (PDB code: 3N71), SMYD2 (PDB code: 3QWV and 3QWW), and SMYD3 

(PDB code: 3PDN). The S-sequence, MYND, SET-I, core SET, post-SET, and CTD are depicted 

in light green, blue, pink, green, cyan, and red. Secondary structures, α-helices and β-strands are 

labeled and numbered according to their position in the sequence. Cofactors, sinefungin (SFG) and 

S-adenosyl-L-homocysteine (SAH), are depicted in balls and sticks; and (C) Structural 

superposition of SMYD proteins: SMYD1 (magenta), SMYD2 (SFG, cyan; SAH, green), and 

SMYD3 (yellow). The superposition is based on the N-terminal lobe.  

cofactor binding, substrate binding, or the structural stability of the protein [59-61]. In SMYD 

proteins, the post-SET domain is made up of three α-helices bundled around a zinc atom 

coordinated by four cysteine residues. The SET-I domain along with MYND is an insertion region 

between the SET domain strands β5 and β8. Compared to other SET proteins like SET7 and Dim-
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5, this insertion region is 6–10 times larger in size in SMYD proteins [35]. The pre-SET domain 

is often found in other SET containing proteins, but the pre-SET region is absent in SMYD1–3 

proteins. Normally, this pre-SET region packs against an equivalent β-sheet made up of β4, β10, 

and β11, but in SMYD proteins, this β-sheet interacts with residues from the CTD in the αM–αN 

loop (Figure 1B). Interestingly, SMYD4 contains TPR repeats flanking the N-terminus of the N-

terminal lobe (Figure 1A). This new region may introduce a pre-SET domain or add a third lobe 

to the overall structure.  

2.3. MYND, the Zinc Finger Motif  

MYND domain is a zinc finger motif identified to bind to proline-rich regions serving as a 

protein–protein interaction module [37, 38, 62]. In SMYD proteins, the MYND domain is part of 

the N-terminal lobe that interacts with the catalytic SET domain, but it does not participate in 

substrate or cofactor binding (Figure 1B) [35]. Consistently, deletion of the MYND domain does 

not affect the methyltransferase activity of SMYD2 in vitro, suggesting that the MYND domain is 

dispensable in methylation [41]. Despite the high sequence similarity to LIM (Lin11-Isl1-Mec3) 

domains, the MYND domain exhibits a different type of fold. The secondary structure of the 

MYND domain adopts a β–β–α topology, which is structurally similar to some PHD (Plant Homeo 

Domain) and RING motifs (Figure 2A). Although the MYND domains from AML1/ETO and 

SMYD proteins are only 30% identical in the primary sequence, the backbone and chelating zinc 

centers of the MYND are well superimposed (Figure 2A). The two structures share two anti-

parallel β-strands (β6 and β7) and a small kinked α-helix (αA) that organize around two zinc atoms. 

Seven cysteine residues and one histidine are centered around the two zinc ions in a C4C2HC 

arrangement.  
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Figure 2. Structure of MYND domains 

(A) Structural superposition of the MYND domains of SMYD and AML1/ETO (PDB code: 

2ODD). MYND is represented by ribbon and colored in magenta (SMYD1), cyan (SMYD2), 

yellow (SMYD3), and blue (AML1/ETO). Proline-rich peptide bound to AML1/ETO is depicted 

by ribbon; (B) Superposition of the peptide binding pockets. Putative peptide interacting residues 

are colored according to the scheme in (A). The proline-rich peptide bound to AML1/ETO is 

depicted by balls-and-sticks; and (C) Surface representation of the MYND domains. Coloring is 

according to the electrostatic potential: red, white, and blue correspond to negative, neutral, and 

positive potential, respectively. The vacuum electrostatics/protein contact potential was generated 

by PyMOL. The proline-rich peptide, represented by balls-and-sticks, is modeled by superposition 

of the MYND domain of SMYD and AML1/ETO.  

The MYND domain from AML1/ETO is known to bind to a PPPLI motif, and in SMYD1 

and SMYD2, the MYND domain can interact with proteins with a similar proline-rich sequence 

[7, 37, 63]. SMYD1 binds to the muscle-specific transcription factor skNAC via a PPLIP motif 

[7]. In a previous yeast two-hybrid study, SMYD2 was found to interact with five different proteins 

possessing a PXLXP motif [63]. To date, a MYND-binding partner for SMYD3 has not been 
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identified, but the MYND structural similarities certainly suggest a proline-rich peptide-binding 

site for SMYD3. Three conserved and highly superimposed residues in SMYD3 (Trp80, Gln76, 

Tyr70) and in SMYD1–2 (Trp83, Gln79, Tyr73) may contribute to the binding of the proline-rich 

peptide (PXLXP) (Figure 2B). The tryptophan residue may pack against the first proline (P1), and 

the remaining glutamine and tyrosine residues may form a hydrophobic pocket for leucine (P3) to 

bind. The S-sequence in SMYD1 is also involved in binding to the skNAC proline-rich peptide 

[7], suggesting that regions other than the MYND domain may also play a role in determining 

binding specificity.  

Electrostatic surface analysis shows the MYND domain is highly positively charged in 

SMYD1–3 (Figure 2C). This positively charged surface likely contributes to a protein–DNA 

interaction. SMYD binding to DNA was first identified in SMYD3, and binding to a specific DNA 

motif, 5'-CCCTCC-3', was found to regulate transcription of SMYD3 target genes such as Nkx2.8 

[4]. Mutation of Arg66 within the MYND domain disrupted DNA binding of SMYD3 and 

abolished a DNA-induced increase in SMYD3 methyltransferase activity [64]. Interestingly, 

Arg66 appears to superimpose with similar conserved Lys69 in both SMYD1 and SMYD2, and 

the positively charged surface across the MYND domain is well observed across SMYD1–3 

(Figure 2C). This certainly suggests that SMYD1 and SMYD2 are also involved in DNA binding. 

A recent study shows that SMYD2 binds to the promoter region of TACC2 and regulates TACC2 

expression at a site different from the binding site for SMYD3 [41].  

The exact nature of DNA binding in SMYD proteins is unknown, and how DNA binding 

affects the activity of SMYD proteins is yet to be identified. Structural studies of SMYD–DNA 

complexes are of interest to address these questions. Additionally, the overlap of the positively 

charged surface and proline-rich peptide-binding site in the MYND domain (Figure 2C) raises 
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intriguing questions regarding whether the peptide and DNA binding are mutually exclusive and 

what are the functional roles of such a scenario in the context of transcriptional regulation. In many 

cases, binding of SMYD3 to the promoter region of its target genes is associated with both H3K4 

trimethylation and gene activation [44, 65-67]. Surprisingly, SMYD3 shows virtually no activity 

towards H3K4 in vitro compared to other targets such as H4K5 or MAP3K2 [5, 68]. This 

inconsistency suggests that DNA binding may induce a conformational change in SMYD3 that 

may subsequently affect substrate binding and specificity. Such a model remains to be determined, 

but the ability of SMYD2 to undergo a conformational change that alters the shape of the substrate-

binding site provides a rationalization for this possibility [24].  

2.4. Cofactor Binding Pocket  

The SET-I, SET, and post-SET domains create a deep surface pocket allowing the L-

shaped cofactors, S-adenosyl-L-homocysteine (SAH) and sinefungin (SFG) to bind (Figure 3A). 

Several cofactor and pocket interactions are shared among the SMYD family (Figure 3B). The 

adenine moiety of SAH or SFG is sandwiched between a conserved benzyl phenylalanine and 

aliphatic lysine or arginine side chain. The purine atoms N6 and N7 form a hydrogen bond to the 

carboxyl and amide groups of a conserved histidine residue, but the ribose hydroxyl groups form 

hydrogen bonds with somewhat similar neighboring residues among the SMYD family. At the 

positively charged amino group, a similar triangular array of hydrogen bonds is formed with the 

carbonyl oxygens from arginine and lysine (asparagine in SMYD3) and the amide Oδ from a 

separate asparagine. In the middle of cofactors, two backbone carbonyls and the side chain oxygens 

from conserved tyrosine and asparagine surround the Sδ atom in SAH or the C–NH2 amine group 

in sinefungin. The C–NH2 amine group of sinefungin corresponds to the S–CH3 sulfonium group 

in S-adenosyl-L-methionine (SAM). Some of the aforementioned surrounding oxygens are  
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Figure 3. Cofactor binding pocket 

(A) Surface representation of the cofactor-binding pocket of SMYD1–3, SET7 (PDB code: 1O9S), 

and Dim-5 (PDB code: 1PEG). The surface of SMYD proteins is colored according to domains. 

Bound SAH or SFG is depicted by sticks with the carbon atoms colored in white; (B) Superposition 

of the cofactor binding sites. SMYD residues are represented by sticks with the carbon atoms 

colored according to the scheme in Figure 1C. Cofactor is depicted by balls-and-sticks overlaid 

with translucent molecular surface.  

responsible for hydrogen bonding with the C–NH2 amine group in sinefungin, and the same 

interaction is thought to contribute to destabilizing the active methyl group during enzymatic 

methylation [35, 58].  
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Large differences were observed at the carboxylate moiety of cofactors. In SMYD1–2, the 

carboxylate moiety is stabilized by a salt-bridge interaction with an arginine guanido group, but in  

SMYD3, this electrostatic interaction is substituted by a hydrogen bond to a tyrosine residue from 

a non-equivalent location (Figure 3B). This hydrogen bonding in SMYD3 represents an unusual 

variation, as the replaced electrostatic interaction is present in most SET containing proteins [24, 

35, 69, 70]. As a result, the cofactor binding sites of SMYD1 and SMYD2 are more similar to one 

another than they are to the SMYD3 structure. However, all SMYD proteins have a nearly buried 

cofactor-binding site compared to SET7 and Dim-5. The bound cofactors share similar interactions 

in these proteins, but the large SET-I domain of SMYD proteins creates a nearly buried cofactor 

conformation (Figure 3A). This buried cofactor conformation, however, does not affect the 

enzymatic activity of SMYD1. Mutation of the SET-I residues responsible for the buried 

conformation only had modest effects on H3K4 methylation activity [35]. However, mutation of 

the S-sequence residues responsible for the adenine moiety binding completely abolished the 

enzymatic activity [35]. This suggests that the split S-sequence is an integral part of the SET 

domain contributing to cofactor binding.  

2.5. Substrate Peptide Binding Site  

To date, there are two SMYD–substrate complex structures available, SMYD2–ERα and 

SMYD2–p53 [54, 57, 58]. These structures have provided significant insight into the substrate 

binding and broad substrate specificity of the SMYD family. The ERα and p53 peptides bind to 

SMYD2 in a U-shape conformation (Figure 4A). The peptides are clamped between the N- and C-

terminal lobes with the target lysine inserted into the lysine access channel. Residues contributing 

to peptide binding mainly come from the β8–β9 hairpin and a loop preceding the post-SET domain. 

The structure and residues at the turn of the β-hairpin vary significantly among the SMYD family,  
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Figure 4. Substrate binding site 

 (A) Surface representation of SMYD2 substrate binding site. The surface is colored according to 

domains. ERα and p53 peptides are depicted by ribbons and colored in yellow and blue 

respectively; (B) Superposition of the substrate binding clefts. SMYD residues are represented by 

ribbons and colored according to the scheme in Figure 1C. ERα peptide is shown in balls-and-

sticks colored in green; (C) Surface representation of the substrate-binding site of SMYD1 and 

SMYD3. The ERα peptide, represented by sticks, is modeled by superposition with the N-terminal 

lobe of SMYD2; and (D) Superposition of the SMYD2-bound ERα (yellow; PDB code: 4O6F) 

and p53 peptides (light blue; PDB code: 3TG5). Position 0 refers to the target lysine. Detailed 

structural and binding differences at position +3 and +5 are shown in callout boxes. Peptide-

interacting SMYD2 residues are colored according to domains.  

but in SMYD2 this region is important for substrate recognition (Figure 4B). This suggests that 

the structural features of the β8–β9 hairpin may contribute to the different substrate specificity of 

SMYD proteins. Additionally, the C-terminal domain of SMYD2 is directly involved in ERα and 

p53 binding, but the different CTD conformation in SMYD1 and SMYD3 implies a substantially 
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different substrate-binding mode in order to adapt to different substrate binding pockets (Figure 

4C). The CTD conformation in SMYD proteins correlates with the size of the substrate-binding 

pocket, which may thereby provide another level of substrate specificity. Interestingly, SMYD3 

appears to prefer smaller sized substrates and its methyltransferase activity is significantly higher 

for H4K5 and MAP3K2 than H4K5 [5, 68]. This is likely due to the small glycine residues 

neighboring the target lysine in H4K5 and MAP3K2. The smallest and most flexible amino acid, 

glycine, may facilitate substrate access to the closed active site of SMYD3 (Figure 4C).  

Comparison of the SMYD2–ERα and SMYD2–p53 structures has provided insight into the 

broad substrate specificity of SMYD2 [57]. SMYD2 is able to methylate several targets and the 

structural basis of this broad substrate specificity lies in the presence of multiple substrate-binding 

sites in SMYD2 structure [54, 57, 58]. The structural comparison shows that the liganded SMYD2 

structures are well superimposed with an RMSD value of 0.6 Å out of 430 Cα atoms [57]. The 

ERα and p53 peptides have a similar U-shape conformation and are well superimposed at positions 

−1, 0, +1, and +2 (position 0 referring to the target lysine) (Figure 4D). Large deviations are found 

in the peptides extending out of the U-base. For example, different interactions are seen at positions 

+3 and +5 between the ERα and p53 peptides (Figure, 4D). Arg+3 and Arg+5 in the ERα peptide 

binds to the β8–β9 region in the SET domain. In the p53 peptide, Lys+3 interacts with Tyr370, 

Tyr374, and Asp242, and the Gln+5 chain is inserted into a pocket formed by His341, Tyr344, 

Gln345, Tyr370, Leu244, and Tyr245. The two different peptide conformations and the broad 

substrate binding space inside SMYD2 present plausible explanations for the multiple 

accommodations for SMYD2 and substrate binding. Structural study of additional SMYD2–

substrate complexes may be necessary to corroborate this model. Because of the sequence diversity  
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Figure 5. Target lysine access channel 

(A) Surface representation of overall SMYD2–ERα structure. ERα peptide, SAH, and target lysine 

are indicated; (B) Superposition of the lysine access channels. SMYD residues are represented by 

sticks with the carbon atoms colored according to the scheme in Figure 1C. Target lysine is colored 

in white; and (C) Surface representation of the lysine access channel of SMYD1–3, SET7, and 

Dim-5. SAH or SFG is depicted by sticks with the carbon atoms colored in white.  

of SMYD2 substrates [57], the new SMYD2–substrate complex structures could potentially lead 

to the identification of novel substrate binding modes.  

2.6. Target Lysine Access Channel  

In SET domain-containing enzymes, the lysine targeted for methylation fits into a 

hydrophobic pocket called the target lysine access channel (Figure 5A). The lysine access channel 

in SMYD proteins has a well-superimposed backbone and consists of a hydrophobic core 

surrounding the hydrophobic portion of the targeted lysine (Figure 5B). A highly conserved 

tyrosine residue preceding the post-SET domain is found in all SET classes including SMYD1 
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(Tyr252), SMYD2 (Tyr240), and SMYD3 (Tyr239). The tyrosine side chain appears to orient the 

target lysine into the channel, and substitution of this residue to phenylalanine completely 

abolished the enzymatic activity of SMYD2 and SMYD3 [2, 55, 71]. Seven residues are important 

for creating the lysine crevice, and of the seven, only three are aromatic residues. Two tyrosines 

and one phenylalanine are well conserved among SMYD1–3 with the exception of the orientation 

of phenylalanine in SMYD1. The aromatic ring is rotated about 110° around the Cα–Cβ bond axis 

which is pointed away from the lysine access channel; therefore, SMYD2 and SMYD3 have a 

well-defined and tighter channel than SMYD1 (Figure 5C). The other three small and non-

aromatic residues are fairly conserved and responsible for creating a more open channel in 

comparison to SET7 and Dim-5 [35].  

A more open channel may accommodate a larger substrate or is susceptible to ligand-

induced conformational changes. It may also contribute to the broad and weak substrate binding 

especially for H3K4 methylation. This weak binding appears to be largely contributed to the 

substitution of large aromatic residues to smaller hydrophobic side chains such as valine, leucine, 

and isoleucine [35]. For example, substitution of Val214 to tyrosine in SMYD1 created a tighter 

access pocket, and thereby the binding of SMYD1 and H3 peptide significantly increased 

presumably due to a more compact channel and the additional hydrogen bond between the tyrosine 

hydroxyl group and an ε-amino from the neighboring lysine side chain [35]. This gain-of-function 

mutation indicates that a well-defined channel is important for securing the target lysine in the 

active site. A ligand-induced conformational change in the lysine access channel may be required 

for SMYD1 to efficiently methylate a substrate. In order to address these questions, it is of interest 

to determine a SMYD1 structure in complex with a substrate.  
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2.7. TPR-Like C-Terminal Domain  

The CTD domain of SMYD proteins contains a series of antiparallel α-helices that display 

a similar structure to TPR domains despite the lack of sequence identity (Figure 1B). TPR domains 

are important for binding of cochaperones to Hsp90. For example, the Hop1 TPR domain binds to 

the very C-terminal end of Hsp90 mediating Hsp90 chaperone activity (Figure 6A) [72, 73]. The 

CTD structure is also well conserved in the SMYD family, and the only chief difference is the 

extended and protruded αN helix that resembles the “handle” of the wrench-shaped SMYD1 

(Figure 6A). This feature is unique to SMYD1, as SMYD2–3 with the shorter αN helix resemble 

the shape of a clam-like shell. The unique portion of the αN helix in SMYD1 is well conserved 

from fish to human (data not shown). This region contains a patch of hydrophobic residues that 

mediate the crystal packing in SMYD1 crystals (Figure 6B). Interestingly, the CTD structure of 

SMYD1 is similar to the TPR structure of FKBP52 (Figure 6C). In FKBP52, the TPR domain also 

has a protruding C-terminal helix that contains a putative binding site for calmodulin [74, 75]. The 

function of the unique SMYD1 C-terminal helical tail is unknown, but the conserved sequence and 

involvement in the crystal packing suggests that it may serve as a site for protein–protein 

interaction.  

The structural orientation of the CTD varies significantly among the SMYD family (Figure 

1C). SMYD1 has an open CTD conformation with the substrate-binding cleft completely exposed 

in the protein. In SMYD3, the CTD conformation is closed as the significant contact between the 

N- and C-terminal lobes creates a narrower opening to the substrate-binding pocket [39]. SMYD2 

is like a conformational intermediate between SMYD1 and SMYD3. Additionally, the CTD 

domain of SMYD2 is flexible and can undergo a conformational change when different cofactors 

bind [24]. The CTD conformational change results in two SMYD2 structures with a slight  
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Figure 6. TPR-like C-terminal domain (CTD) 

(A) Structural superposition of the CTD domains of SMYD and TPR domain of Hop1 (PDB code: 

1ELR). SMYD proteins are represented by ribbons and colored according to the scheme in Figure 

1C. The Hop1 TPR domain is shown in blue. Hsp90 peptide bound to Hop1 is depicted by balls-

and-sticks; (B) Crystal lattice of SMYD1 shows the involvement of the protruding C-terminal α-

helix in the crystal packing; and (C) Structural superposition of the CTD domain of SMYD1 and 

TPR domain of FKBP52 (PDB code: 1QZ2). SMYD1 is colored in purple and FKBP52 in white.  

difference in the size and shape of the substrate-binding pocket [24]. Therefore, the orientation of 

the CTD domain may affect substrate specificity, and different pocket shapes and sizes may be 

involved in modulating the substrate preference of SMYD proteins. In addition, the CTD flexibility 

of SMYD2 suggests that SMYD2 may have the ability to adapt to substrates with different sizes, 

implying broad substrate specificity. Interestingly, SMYD2 so far has the broadest substrate 

specificity among SMYD proteins [57].  

The CTD domain appears to play dual roles in substrate binding. Deletion of the CTD from 

SMYD1 results in increased binding and methylation on histone H3 suggesting that the CTD may 

have steric effects controlling substrate access to the active site [35]. In SMYD2, the CTD plays 

an important role in substrate recognition and binding, but the actual effect of the CTD appears to 
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be substrate-dependent. The CTD deletion has no effect on methylation of p53 peptide and histone 

H3 protein, but it results in a significant increase in H3K4 peptide methylation and significant 

decrease in p53 protein methylation [58]. Although these results seem paradoxical, the differential 

CTD effects have proved its complex roles in substrate recognition and binding. In addition, the 

TPR-like structure of the CTD suggests a potential role for the CTD in modulating protein–protein 

interaction. The predicted peptide-binding site in the CTD is located at the inner surface of the 

CTD in close proximity to the substrate-binding pocket (Figure 6A) [24, 57]. Binding to this 

location could therefore affect the substrate binding and enzymatic activity. Interestingly, the 

activity of SMYD proteins can be significantly increased in the presence of Hsp90 [4, 41, 42]. In 

the case of SMYD2, Hsp90 not only enhances the activity but also changes the substrate preference 

from H3K36 to H3K4 [41]. The questions remain whether Hsp90 regulates SMYD function via 

binding to the CTD domain and whether such binding has a reciprocal effect on Hsp90 chaperone 

activity. Nonetheless, the close proximity to the active site and flexibility and multi-orientations 

of the CTD suggest that it is a bona fide regulatory motif in SMYD proteins.  

2.8. Additional Substrate Binding Site?  

The polyethylene glycol (PEG)-binding site found in the SMYD2–ERα structure has 

suggested additional and extended substrate-binding pockets (Figure 7A) [57]. PEG binding was 

also found in other protein structures, and in most cases, PEG binding has important functional 

implications mimicking ligand binding in proteins [76-78]. In SMYD2, the PEG molecule 

primarily binds to the CTD domain with an omega-turn conformation with one end found near the 

surface groove shaped by αH, αI, and αJ and the other end extended between αK and αL helices 

(Figure 7B). The residues responsible for contributing PEG binding include Lys309, Tyr344,  
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Figure 7. Additional substrate binding site 

(A) Surface representation of the PEG binding site in SMYD2. PEG is depicted by sticks with the 

carbon atoms colored in purple. ERα peptide is displayed as ribbon and colored yellow; (B) 

Putative PEG interacting residues. SMYD2 residues are colored according to domains. ERα 

residues are shown in yellow. PEG is represented in the same way as in (A); and (C) Comparison 

of the binding sites of ERα (yellow), p53 (blue), PEG (purple), Hsp90 (light blue), and a ribosomal 

peptide (orange). The ribosomal peptide is overlaid with 2Fo−Fc omit map calculated at 2.8 Å and 

contoured at 1.5σ. The Hsp90 peptide is modeled by superposition of the SMYD2 CTD and Hop1 

TPR.  

Gln345, Gly348, Leu351, Tyr352, Trp356, and Lys387 from the CTD and Glu190 from the SET 

domain. The ERα peptide may also interact and stabilize PEG binding due to its close proximity 

to Arg+3. Note that all of the residues participating in PEG binding (except for Lys309) are not 

conserved in the SMYD family, which indicates a possible SMYD2-specific binding site.  

The PEG binding site overlaps the predicted Hsp90 binding site (Figure 7C), suggesting 

that the PEG binding site might possess the peptide or substrate binding potential. This notion is 

supported by the SMYD2 structure binding to a ribosomal peptide (unpublished data). Instead of  

forming a U-shape formed by the ERα and p53 peptides, the ribosomal peptide density creates a 

partial U-shape at the ERα or p53-binding pocket, but the N-terminal end extends out through the 

αH/αI/αJ-binding groove of the PEG molecule (Figure 7C). This new mode of binding is vastly 

different to the ERα and p53 peptides and the orientations of the peptides are completely reversed. 
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This demonstrates the exceptional substrate adaptability of SMYD2, and the multiple binding sites 

and that some of these binding sites may be substrate-specific have provided explanations for its 

broad substrate specificity. It is of interest to reveal whether the αK/αL-binding groove of the PEG 

molecule in SMYD2 also indicate an additional substrate-binding pocket. Further investigation 

into different peptide binding and conformations are necessary to better characterize the diversity 

of SMYD structure and function.  

Drug Design Perspective  

SMYD proteins provide a new avenue for cancer and cardiovascular treatment. 

Overexpression of several of SMYD proteins is associated with nearly all cancer types[5, 16, 17, 

50, 65]. Overexpression of SMYD1 represses transcription of genes necessary to produce ion 

channels in the heart, and repression of ion channel expression causes heart failure [79]. SMYD1 

overexpression was also found in hypoplastic left heart syndrome (HLHS), a disorder 

characterized by the severely underdeveloped left ventricle [80]. SMYD2 is overexpressed in 

ESCC or p53-related cancers, and knockdown of SMYD2 inhibits tumor cell proliferation [16-18, 

50]. SMYD3 is overexpressed in more than 14 types of cancers such as breast cancer, colon cancer, 

prostate cancer, lung cancer, and pancreatic cancer [4, 20, 21, 65, 81-88]. SMYD3 overexpression 

often correlates with poor prognosis, and knockdown of SMYD3 proved to inhibit tumor growth 

[4, 84-89]. Therefore, drug intervention of any of SMYD proteins may be beneficial to the fields 

of cardiovascular disease and cancer.  

Efforts to create SMYD inhibitors are currently underway. AZ505 is a potent SMYD2 

competitive inhibitor recently identified from a high throughput chemical screening [54]. In the 

crystal structure, AZ505 bound to the lysine access channel, and ITC analysis indicated inhibitor 

binding is primarily driven by hydrophobic interactions providing a low KD ~0.5 μM (Figure  
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Figure 8. AZ505-bound SMYD2 structure 

(A) Interactions between AZ505 and SMYD2. AZ505 is depicted by balls-and-sticks with the 

carbon atoms colored in white. SMYD2 residues are depicted by sticks colored according to 

domains; (B) Comparison of the binding sites of ERα, p53, and AZ505. The ERα and p53 peptides 

are depicted by sticks and colored in yellow and blue. AZ505 is represented in the same way as in 

(A); and (C) Surface representation of SMYD2–ERα structure illustrates potential drug targeting 

sites: ERα (yellow), p53 (blue), PEG (purple), Hsp90 (light blue), the ribosomal peptide (orange), 

and proline-rich peptide (hot pink). SAH and AZ505 are depicted by sticks.  

8A)[54]. The three moieties of AZ505 have similar interactions found in the p53 and ERα peptides. 

The benzooxazinone group is packaged into the lysine channel where several hydrophobic and 

electrostatic interactions are made (Figure 8A). The cyclohexyl and dichlorophenethyl groups 

adopt the same −1 and −2 position, but they appear more compact to the surface than the p53 and 

ERα peptides (Figure 8B). In addition, the Gly183 carbonyl oxygen forms a similar hydrogen bond 

to the amide linker between the benzooxazinone and cyclohexyl groups. Therefore, the potency of 

AZ505 appears to be due to a complete blockage of the core region of the SMYD2 active site and 

preventing it from binding to the target lysine.  

Therapeutic drug intervention of SMYD proteins may not be limited to inhibiting the lysine 

access channel. SMYD2 is necessary for methylating many targets and is involved in various 
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functionally independent cellular processes [57]. Complete knockdown of SMYD2 may not be a 

viable option since unselective SMYD2 inhibition may cause undesirable and perhaps lethal side 

effects. In order to selectively design a therapeutic drug to inhibit SMYD2 function in the context 

of cancer, one may consider targeting alternative binding sites for inhibition that will interfere with 

only a subset population of SMYD2. For example, designing a drug that will mimic the binding 

properties of the p53 peptide may provide specificity to oncogenic SMYD2 function in p53-related 

cancers. Targeting the binding properties of the ERα peptide may be beneficial to aggressive ERα-

negative breast tumors by specifically restoring functional ERα expression [71]. The PEG or 

ribosomal binding site may also provide a genuine substrate-specific targeting option without the 

fear of interference with binding of the p53 and ERα peptides. Targeting MYND-mediated protein 

interactions may be another viable approach in cancer therapy as binding of the MYND to the 

proline-rich sequences of the tumor suppressor EBP41L3 links SMYD2 to meningiomas and lung 

cancer [41, 90, 91]. Finally, the CTD orientations related to the sizes and shapes of the SMYD 

substrate-binding pockets raise a possibility for selective drug design for different members of the 

SMYD family. Challenges remain because of the potential conformational flexibility of the CTD 

domain of SMYD proteins. Selective and potent drug design will require the consideration of 

conformational changes in SMYD proteins and understanding of the functional role of each 

conformational state. Further investigation into the structural differences between SMYD proteins 

will be necessary to distinguish specificity and efficacy into the drug design process.  

Concluding Remarks  

SMYD proteins are an exciting field of study as they are linked to many types of cancer-related 

pathways. Cardiac and skeletal muscle development and function also depend on SMYD proteins 

opening a possible avenue for cardiac-related treatment. The purpose of this review is to gather 
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current structural data to support the versatile roles of SMYD proteins. We provide a summary of 

the structures of the SMYD family focusing on their structural differences. The structures of the 

individual domains in SMYD1–3 are similar but the orientations of the CTD are substantially 

different resulting in open or closed conformations. Different CTD conformations suggest that 

SMYD proteins could undergo a conformational change that offers dynamics for regulation of 

substrate specificity [24, 35, 39]. SMYD2 conformations are sensitive to cofactor binding which 

alters the size of the substrate-binding pocket [24]. It is conceivable that the methyltransferase 

activity of SMYD proteins may be regulated by controlling lobe conformation and dynamics like 

some kinases [92, 93]. SMYD structures have a potential for efficacious drug intervention, but 

efforts to design a drug should not be limited to the target lysine access channel. Analysis of SMYD 

structures revealed many other binding sites with drug targeting potential, such as the broad 

substrate-binding pocket, PEG and ribosomal binding site, proline-rich peptide binding site, and a 

yet-unidentified DNA binding groove (Figure 8C). With the different binding sites and 

conformations, it is possible to effectively knockdown cancerous function of SMYD proteins such 

as SMYD2 and SMYD3 without disrupting the entire functional population of SMYD proteins. 

Additionally, analysis of current structures raised many new questions. The unique protruding C-

terminal helix of SMYD1 may be involved in protein–protein interaction. The CTD orientation 

may determine substrate specificity. How DNA binding alters SMYD3 structure and function 

remains to be determined. Whether the possible binding of Hsp90 to the CTD provides a 

mechanism for SMYD activity enhancement and the potential role of this coplay in cancer and 

heart development are also unclear. In summary, SMYD proteins are of functional and therapeutic 

importance, and continued elucidation of their structural differences and substrate specificity will 

lead to additional functional implications.  
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CHAPTER 2 NEW OPEN CONFORMATION OF SMYD3 IMPLICATES 

CONFORMATIONAL SELECTION AND ALLOSTERY 

*Published in AIMS Biophys. 2017;4(1):1-18. doi: 10.3934/biophy.2017.1.1. Epub 2016 Dec 20. 
All authors agreed with including their work in this dissertation. 

Introduction 

SMYD3 belongs to a special class of protein lysine methyltransferases containing SET and 

MYND domains [94]. The SET is a catalytic motif responsible for lysine methylation. The MYND 

is a protein-protein interaction module involved in transcriptional cofactor recruitment. SMYD3 

is overexpressed in more than 15 types of cancers such as breast cancer, colon cancer, prostate 

cancer, lung cancer and pancreatic cancer [4, 5, 94, 95]. Overexpression of SMYD3 often 

correlates with poor prognosis and its knockdown inhibits tumor growth [4, 5, 95]. Therefore, drug 

intervention of SMYD3 may be beneficial to the fields of cancer. SMYD3 is involved in 

tumorigenesis through methylation of histone and non- histone proteins. Histone methylation 

regulates gene expression and methylation of non- histone proteins can impact biochemical and 

cellular functions of the targets [5, 94, 95]. SMYD3 may directly or indirectly methylate histone 

H3K4, H4K20 and H4K5 [4, 68, 96]. Through these methylations, SMYD3 is involved in tumor 

cell viability, adhesion, migration and invasion. SMYD3 upregulates multiple cancer genes 

through H3K4 trimethylation. These include the telomerase reverse transcriptase (TERT), 

oncogenic c-Met, matrix metalloproteinase 9 (MMP-9), androgen receptor, myosin regulatory 

light chain 9 (MYL9) and retinoblastoma protein-interacting zinc finger gene 1 (RIZ1)[12, 44, 53, 

65, 94, 97]. SMYD3 targets Cyclin D2 through H4K20 trimethylation and contributes to a more 

aggressive phenotype of prostate cancer [96]. H4K5 methylation by SMYD3 provides a potential 

new link between chromatin dynamics and neoplastic disease [68]. SMYD3 methylates three non-

histone proteins: MAP3K2, vascular endothelial growth factor receptor-1 (VEGFR1) and AKT1. 
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Methylation of MAP3K2 prevents PP2A phosphatase, a key negative regulator of the MAP kinase 

pathway, from binding to MAP3K2 [5]. Methylated MAP3K2 links SMYD3 to Ras- driven cancer 

promoting cell proliferation and tumorigenesis [5]. VEGFR1 methylation by SMYD3 augments 

VEGRF1 kinase activity, which is thought to enhance carcinogenesis [53]. Methylation of AKT1 

at lysine 14 is essential for AKT1 activation [98]. In addition, SMYD3 was found to promote 

formation of inducible regulatory T cells and may be involved in reducing autoimmunity [13, 99].  

SMYD3 in vitro methyltransferase activity is not fully consistent with its cellular activity. SMYD3 

only weakly methylates H3K4 in vitro but its cellular methyltransferase activity has been 

associated with H3K4 trimethylation at many genes [4, 5]. This functional inconsistency has 

hindered further understanding of the role of SMYD3 in epigenetic gene regulation [68, 100]. 

However, poor in vitro activity can be partly explained by the crystal structures [39]. SMYD3 has 

a closed conformation and a direct lobe-lobe interaction forms a cap over the substrate-binding 

site. Though this cap structure does not prevent substrate binding, the resulting narrow opening to 

the active site cavity could potentially affect the substrate binding competence of SMYD3 and 

thereby the catalytic activity [101]. SMYD3 in vitro activity can be enhanced by Hsp90 and DNA 

binding [4, 64]. The Hsp90 binding site has been mapped to a TPR-like C-terminal domain (CTD) 

[102]. Due to the closed conformation, the predicted Hsp90 binding site is half-buried and 

therefore the question remains how Hsp90 binds to SMYD3 and enhances its activity. The DNA 

binding site was predicted to be located within the zinc-finger MYND domain [64]. However, this 

domain is indispensable for SMYD enzymatic activities and how SMYD3 activity is regulated by 

DNA binding remains a puzzle [94]. Here we present an open SMYD3 conformation and both 

theoretical and experimental evidence that the conformational selection mechanism and allostery 

may be involved in SMYD3 functional control.  
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Materials and Methods 

2.1 Molecular Dynamics Simulation 

Molecular dynamics simulation was performed using NAMD [103]. Initial structure for 

simulation was the crystal structure of human SMYD3–sinefungin complex (PDB code: 3PDN). 

Prior to the simulation, this structure was modified by substituting the cofactor analog sinefungin 

with cofactor S-adenosyl methionine (SAM or AdoMet). The substitution was based on the 

structural comparison with the SMYD3–SAM complex (PDB code: 5CCL) and the two SMYD3 

structures are very similar with a root-mean-squared-deviation (RMSD) of 0.6 Å. The resulting 

system including the cofactor SAM was parameterized using CHARMM force field (version 36). 

The net charge of the Zn ions in the structure was set to +2 and the chelating cysteine and histidine 

residues were deprotonated. The system was solvated inside an orthorhombic box of water 

molecules with a 13 Å padding in each direction. The system was then neutralized with NaCl at a 

concentration of 0.15 M. The final system contained 69,749 atoms. Simulation was performed 

with a 1 fs time step. Particle Mesh Ewald was used to treat long-range electrostatic interactions 

and a cutoff of 12 Å was used for non-bonded interactions. Periodic Boundary Conditions were 

applied during the simulation. The simulation was started with 2,000 steps of energy minimization. 

The first half of the minimization had harmonic restraints on the protein and the second half 

unrestrained minimization. The minimized structure was then slow heated from 0 to 300 K over 

300 ps. At each integration step velocities were reassigned and the temperature was incremented 

by 0.001 K. The heated structure was then equilibrated for 300 ps and velocities were rescaled to 

300 K at every integration step. The system was further equilibrated using Langevin dynamics for 

300 ps at constant temperature (300 K) and pressure (1 bar). The production run was performed in 
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the NVE (microcanonical) ensemble at 300 K. The total simulation time was 50 ns and coordinates 

were recorded every 1 ps.  

2.2 Principle Component Analysis 

Principal component (PC) analysis was performed using Bio3D [104]. The entire 50 ns 

trajectory of 50,000 frames was used in the analysis. The overall translational and rotational 

motions in the trajectory were eliminated by least squares fitting to the first frame. A 3 N × 3 N 

covariance matrix was generated using Cartesian coordinates of Cα atoms. Diagonalization of the 

covariance matrix generated 3 N eigenvectors, each having a corresponding eigenvalue. The 

trajectory was projected onto a particular eigenvector to reveal concerted motions. Clustering of 

the trajectory in the PC space was performed using k-means algorithm. k-means partitions the 

observations into k clusters by minimizing the mean squared distance from each observation to its 

nearest cluster center. The number of clusters was chosen based on the “elbow criteria”. At a 

cluster count of two the BSS/TSS (Between-group Sum of Squares/Total Sum of Squares) ratio is 

79.8%. The PC analysis- based free energy landscapes were produced by Carma [105]. The domain 

motions along the PC axes were analyzed using the VMD plugin Hingefind [106].  

2.3 Temporal analysis of structural attributes 

Temporal changes of structural attributes including hydrogen bonds, salt-bridges, solvent 

accessible surface area (SASA), Phi and Psi were analyzed using the VMD plugin Timeline [107]. 

Hydrogen bonds were calculated with a distance cutoff of 3.2 Å and angle cutoff of 20°. Salt-

bridges were calculated with a distance cutoff of 3.5 Å. SASA was calculated using a radius 

extension of 1.4 Å. The calculations were performed every 25 ps.  

2.4 Running cross correlation 
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Residue-pair-wise cross-correlation coefficients were calculated with Bio3D. Running 

cross correlation (RCC) was calculated using an in-house code. The first element of RCC was 

obtained by taking the CC of the initial fixed subset of the trajectory. Then the subset was modified 

by shifting forward: excluding the first frame of the original subset and including the next frame 

following this subset in the trajectory. This created a new subset of frames, which was used to 

calculate the next CC. This process was repeated over the entire trajectory. RCC was a plot of the 

CC against the middle point of the CC time window. Inter- residue RCC deviation map was a heat-

map of the standard deviation (σ) of residue-pair- wise RCC. σ was calculated for each RCC; the 

heat-map represents the magnitude of σ.  

2.5 Dynamic network analysis 

Dynamical network analysis was done in VMD according to previous protocols[107, 108]. 

Each amino acid in the network was represented by one node and SAM by three nodes. Amino 

acid nodes were centered on Cα atoms and SAM nodes were located at atoms Cα, C4’ and N9. 

The edges between nodes were drawn if the residues were within a cutoff distance of 4.5 Å for at 

least 75% of the trajectory. The edge distances were derived from pairwise correlations which 

define the probability of information transfer across the edge. Correlations were calculated from 

the trajectory by the program Carma [105]. The community substructure of the network was 

obtained using the Girvan-Newman algorithm. Nodes in a community have more and stronger 

connections within that community than the nodes in other communities.  

2.6 Targeted molecular dynamics 

Targeted molecular dynamics (TMD) simulation was performed with NAMD. The initial 

and target structures used for simulation were the most dissimilar structures along the PC1 axis in 

the full-trajectory PCA (see above). During simulation, all heavy atoms in the CTD were guided 
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towards the final target structure by steering forces. The force on each atom was given by the 

gradient of the potential: UTMD = 1⁄2 * k * (RMS(t)−RMS0(t))2, where RMS(t) was the 

instantaneous best-fit RMS distance of the current coordinates from the target coordinates, 

RMS0(t) was the preset RMSD value for the current time step and the force constant k was 200 

kcal·mol−1·Å−2. Other simulation parameters were the same as those used in the above 

conventional molecular dynamics simulation.  

2.7 Protein Expression and purification 

Human SMYD3 was essentially expressed and purified as previously described[39, 109]. In brief, 

SMYD3 was cloned with a His6-SUMO tag in a pCDF-SUMO vector. Clones were inoculated in 

LB media and grew until an OD600 reached 0.4–0.6. Cells were induced with 0.1 mM 

isopropylthio-β-D-galactoside (IPTG) and grown overnight at 15 °C. Cells were harvested and 

lysed using a French Press. Lysate was spun down and the supernatant was collected for 

purification. The His6-SUMO-SMYD3 was captured with a Ni2+-affinity column and the His6-

SUMO tag was removed by yeast SUMO protease 1. Native protein was separated after running 

through a second Ni2+ column. Finally, SMYD3 was further purified by a size exclusion column 

in 20 mM Tris pH 8.0, 150 mM NaCl, 3% glycerol and 2 mM Tris(2-carboxyethyl) phosphine 

(TCEP).  

2.8 Small angle X-ray scattering 

Small angle X-ray scattering (SAXS) data were collected at BioCAT beamline at Argonne 

National Laboratory. Solution conditions were 20 mM Tris pH 8.0, 150 mM NaCl, 3% glycerol 

and 2 mM TCEP. All measurements were made at 25 °C using a 100 μL capillary flow-cell. 

Scattering data were collected at two SMYD3 concentrations: 1.2 and 7.7 mg/mL. Five frames 

with a 1s exposure were taken and data were averaged and subtracted from averaged buffer frames. 
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Low and high concentration data were merged based on an aligned middle q region to generate a 

single scattering curve with a q range of 0.0042–0.39 Å−1. Radius of gyration (Rg) values were 

calculated using the Guinier approximation [110]. The distribution function of interatomic 

distances within SMYD3, P(r), was estimated from the scattering data using the GNOM algorithm 

[110]. Ab initio dummy atom models were generated using DAMMIN [111]. Normal mode 

analysis was carried out by SREFLEX [112]. Theoretical scattering curves of SMYD3 structures 

were calculated with CRYSOL [110].  

2.9 Statistical Analysis 

Significance of mean differences for continuous data was evaluated by two-tailed t-test and 

circular data (Phi and Psi) by Watson-Williams high concentration F test. Association between 

continuous data was measured with Pearson correlation coefficient (r). Association of hydrogen 

bonds and salt-bridges with conformational states were evaluated by PHI coefficient and 

association of backbone angels or solvent accessible surface area by point- biserial correlation 

coefficient. For backbone angles, sine values of angles were used in correlation analysis.  

Results 

3.1 Conformational transition from the closed to open states  

Molecular dynamics (MD) simulation reveals a striking conformational transition of 

SMYD3 from the closed to open states. The closed state is a crystal structure-like state 

characterized by a direct lobe-lobe interaction at top of the substrate-binding site (Figure 1A). The 

open state represents a previously-unidentified new conformational state which lacks the 

equivalent interaction between the two lobes (Figure 1B). In the closed state, the lobe-lobe 

interaction involves residues W300 from the C-lobe and S44, V47, V48, Q191 and V193 from the 

N-lobe (Figure S1A). The interaction includes a hydrogen bond from W300 to S44 and  
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Figure 9. New open conformation of SMYD3 

(A) A closed-state and (B) open-state structure. SMYD3 is colored according to domain. 

Secondary structures are labeled and numbered according to their position in the sequence. (C) 

Principle component analysis (PCA) of full 50-ns trajectory. Left three, projection of the trajectory 

onto the planes formed by the first three principle components. Conformers are colored according 

to the k-means clustering. Rightmost, scree plot showing the proportion of variance against its 

eigenvalue rank. (D) Visualization of the motions along PC1. Color scale from blue, green, to red 

depicts low to high atomic displacements. (E) Superimposition of the open and closed states with 

an SMYD3 bound peptide (MAP3K2, yellow) and inhibitor (EPZ031686, purple).  

hydrophobic interaction of the W300 side chain with a pocket formed by the aforementioned N-

lobe residues. The open state is characterized by the break of the direct lobe–lobe interaction. The 

W300–S44 hydrogen bond breaks and the side chain of W300 flips out from the small hydrophobic 

pocket. The substrate-binding site is widened and there is a clear gap between the N- and C-lobes. 

As a result, the open state shows larger structural difference from the crystal structure (Figure 

S1B).  
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The conformational transition can be illustrated by the change in W300–S44 distance. In 

the closed state W300–S44 maintains a hydrogen bonding distance for most of the time (Figure 

S2A). In the open state the hydrogen bond breaks and their distance fluctuates between 4.9 Å and 

21.2 Å. The distance shows a steep rise during the transition phase and the transition happens in  

less than 0.3 ns. Therefore, the change in W300–S44 distance can clearly separate the two 

conformational states. Covariance-based principal component analysis (PCA) further 

demonstrates the presence of structure-distinct conformational states. The first PC axis alone is 

sufficient to define two major clusters, one corresponding to the closed state and the other the open 

state (Figure 1C). The two clusters are well separated along the PC1 axis and the boundary between 

them is marked by low population of conformers (Figure S2B). This statistically indicates a free-

energy barrier for conformational transition. PC1 accounts for more than 50% of overall variance 

and the motion described by PC1 is a clamshell-like motion between the N- and C-lobes (Figure 

1D and S2C). The rotation axis of this motion passes between the two lobes lying at the bottom of 

the gap between the two lobes. Therefore, this motion essentially depicts an open–closed dynamics 

and the conformational transition between the closed and open states.  

3.2 New open ligand-binding-capable conformational state  

The new open state may represent a conformational state that facilitates substrate or 

effector binding to SMYD3. The open state shows an enlarged opening to the substrate binding 

site which may make it more accessible to a substrate than the closed state (Figure 1E). There is 

over 35% increase in the accessible volume of the substrate binding cavity in the open state. The 

first α helix of the CTD (αH) is responsible for the widening and increased accessibility. This helix 

is involved in the direct lobe–lobe interaction and undergoes a large movement during the 
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transition from the closed to open states (Figure 1D). Because of this movement, the substrate-

binding site is widened and more solvent-exposed in the open state.  

The predicted Hsp90-binding site also becomes more solvent-exposed in the open state. 

The C-terminal MEEVD motif of Hsp90 was predicted to bind between αJ and αL at the inner 

surface of the CTD (Figure S2D) [94, 113]. This binding site is structurally similar to the putative 

TPR peptide-binding site[94]. However, in the closed state the Hsp90-binding site is half-buried 

due to the direct interaction between αH and the N-lobe. The binding site is further buried due to 

the lobe-bridging β8–β9 hairpin sitting in front of the binding site. In the open state the distance 

between the β8–β9 hairpin and Hsp90-binding site becomes significantly larger (Figure S2E) and 

the volume of the binding site cavity is three times more than that in the closed state. Therefore, 

the more exposed binding site in the open state may facilitate Hsp90 binding to SMYD3 and 

provide a mechanistic basis for Hsp90-induced activity enhancement.  

3.3 Distinct structural characteristics of the closed and open states  

The closed and open states show distinct structural characteristics. They are different in 

hydrogen bonding, salt-bridge, backbone angles and solvent accessible surface area. Hydrogen 

bonding is different in pattern but not total number (Figure 2A). The closed state has an average 

of 143.0 hydrogen bonds and open state 142.8. Their difference is not statistically significant (p = 

0.498). However, there are 18 hydrogen bonds whose time- course pattern shows a significant 

correlation with the conformational states (r > 0.5). Six of them are strongly correlated with the 

open state and 12 with the closed state including the W300–S44 hydrogen bond. Residue D272 is 

involved in two conformational state-specific hydrogen bonds. One hydrogen bond (S246–D272) 

shows the strongest correlation with the closed state and the other (R249–D272) with the open 

state. D272 is located at the junction between the post-SET and CTD (Figure S3A). In the open 
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state, D272 moves slightly towards the substrate-binding site. The movement breaks its hydrogen 

bond to S246 and leads to the formation of the hydrogen bond with R249. This indicates that the 

hydrogen bonds S246–D272 and R249–D272 may be mutually exclusive. The time-course 

patterns of these two hydrogen bonds show a strong negative correlation (r = −0.548).  

The numbers of salt-bridges in the closed and open states are significantly different (p < 

2.2 × 10−16). The closed state has 50.4 salt-bridges and open state 54.9. Nine salt-bridges show a 

significant correlation with the closed state and 16 with the open state (r > 0.5) (Figure 2A). The 

salt-bridge D332–K375 has the strongest correlation with the closed state (r = 0.907). This salt-

bridge stabilizes the closed state by pulling together the helices αJ and αL of the CTD (Figure 

S3B). This also contributes to the buried state of the Hsp90-binding site. The salt-bridge D272–

R249 shows the strongest correlation with the open state (r = 0.838). This correlation is consistent 

with the open-state-correlated hydrogen bonding between these two residues. The D272–R249 

salt-bridge pulls αG towards the substrate-binding site and the pulling squeezes the bottom lobe–

lobe interface. The salt-bridge D209–K271 also shows a significant correlation to the open state (r 

= 0.795). However, the direction of the force exerted by this salt-bridge is different from that by 

the D272–R249 salt-bridge. The D272– R249 exerts the force along the axis of the rotation 

describing the open-closed lobe–lobe motion. The D209–K271 exerts the force perpendicular to 

this axis at the opposite surface of the substrate-binding site. The D209–K271 stabilizes the open 

state by pulling the two lobes outwards.  

Many residues show significant differences in the backbone torsion angles. Fifty-five 

percent of residues are significantly different in Psi and 51% in Phi (p < 0.001). Twelve and seven 

residues show more than 30° differences in Psi and Phi respectively (Table S1). There are 21  
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Figure 10. Distinct structural characteristics 

(A) Conformational state-correlated hydrogen bonds (top) and salt-bridges (bottom). Red and blue 

lines indicate the presence of interactions and green lines absence. (B) Torsion angles of F362 as 

a function of time. (C) Ramachandran plot of F362 trajectory.  

residues whose Psi changes show a significant correlation with the conformational states and 12 

residues for Phi (r > 0.5). Both Psi and Phi of residue F362 show strong correlation with the 

conformational states (rpsi = 0.983, rphi = 0.839) (Figure 2B). There are clearly two populations 

in its Ramachandran plot, one corresponding to the closed state and the other open state (Figure 

2C). The neighboring residues of F362 also show large changes in the backbone angles and 

significant correlation with the conformational states (residues 363– 366) (Table S1). These 

residues are located in a short loop connecting the fourth and fifth helices of the CTD. The changes 

in their backbone angles are correlated with a twisting motion between those two helices during 

the conformational transition (see below). Their backbone-angle changes are also correlated with 

a significant change in F362 interacting network. In the closed state, F362 forms a π-π stacking 

interaction with Y358 (Figure S3C). In the open state, this interaction is replaced by the stacking  

interaction with H366. As a result, F362 prevents M242 from interacting with H366. The loss of 

this interaction may weaken the interaction between the N- and C-lobes near the axis of the rotation 

describing the open-closed motion.  
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The SASA of the closed and open states are significantly different (p < 2.2 × 10−16). 

Unexpectedly, the closed state is more solvent exposed. The average SASA of the closed state is 

116,339.3 Å2 and open state 116,250.9 Å2. Sixty-eight percent of residues show a significant 

difference in SASA (p < 0.001). Fifty-six percent of these residues are more exposed in the closed 

state than open state. There are 24 residues whose SASA changes show a significant correlation 

with the conformational states (r > 0.5) (Figure S3D). Seventeen of them are located within the 

CTD. These include three residues (M335, L344 and Q372) lining the Hsp90-binding site, which 

are more exposed in the open state; and three residues (C309, A334 and C338) at the interface 

between the second and third helices of the CTD, which become more buried in the open state. 

The CTD is a key structural determinant of the closed and open states. The enrichment of residues 

with the conformational state-specific SASA values reflects the characteristic structural changes 

in the CTD defining the conformational states.  

3.4 Different dynamical characteristics 

The closed and open states have different dynamical characteristics. They are different in 

flexibility, cross correlation, interatomic distance fluctuation and dynamical network. The closed 

state is significantly less dynamical than open state (p < 2.2 × 10−16). The average atomic 

displacement of the closed state is 0.81 Å and open state 1.24 Å (Figure S4A). The flexibility of 

the CTD increases to a larger extent than the N-lobe in the open state. The average ratio of root-

mean-square fluctuation (RMSF) of the open to closed states is 1.36 for the N-lobe and 1.83 for 

CTD. However, the overall fluctuation pattern is not significantly different and the correlation  
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Figure 11. Different dynamical characteristics 

(A) Cross-correlation map of the trajectory. Left, the closed state; right, open state. Blue and red 

indicate negative and positive correlation respectively. (B) Running cross correlation (RCC) of the 

residue pairs W300–S44 and D272–D209. (C) Dynamical network analysis of the closed (left) and 

open (right) states. Networks are colored according to communities. Points in the network are 

nodes and lines between the nodes represent edges. Thicker lines depict the stronger edges or 

stronger correlations.  

between the two states is 0.753. Most of the residues in both states have a below 1 Å atomic 

displacement. The least dynamical region is the SET domain in both states. The SET is the catalytic 

domain responsible for cofactor and substrate binding. Several regions show a notable difference 

in flexibility. In the closed state the regions around residues W300 and S44 are less dynamical than 

those in the open state. The two regions interact with each other in the closed state and such 

interaction appears to restrain their flexibility.  

Dynamic cross-correlation patterns of the closed and open states are different. The closed 

state shows a significantly lower level of correlated motions (p < 2.2 × 10−16). The average 

correlation coefficients of the closed state and open state are 0.147 and 0.243 respectively. In both 

states, the SET-I and the first three helices of the CTD show strong negative correlated dynamics 

and the MYND motion is negatively correlated with the CTD motion (Figure 3A). Such negative  
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correlated dynamics is consistent with the open-closed motion between the N- and C-lobes. The 

open state shows many additional correlated motions. Among the most notable ones are those 

between the last three helices of the CTD and many regions across all domains. To quantitatively 

characterize the dynamical change in correlated motion, we developed the running cross 

correlation (RCC) method (see Methods). RCC shows a time- course change in cross correlation. 

It should smooth out short-term fluctuations and highlight longer-term trends or changes. RCC 

analysis shows that the cross-correlation profile of the residue pair W300–S44 evolves and changes 

during the simulation (Figure 3B). The motions of W300 and S44 are positively correlated in the 

closed state when they interact, but change to a negative correlated dynamics after the 

conformation is transited to the open state. Inter-residue RCC deviation analysis shows that W300–

S44 is among the residues pairs with the largest RCC variations (σ = 0.353) (Figure S4B). The 

largest variation is found between the residue pair D272–D209 (σ = 0.384). These two residues 

are not in the close proximity but both involved in conformational state-specific hydrogen bonding 

and salt-bridges (Figure 2A).  

The patterns of interatomic distance fluctuation are different between the closed and open 

states. The closed state shows a significantly lower level of fluctuation (p < 2.2 × 10−16). The 

average fluctuation of the closed state and open state are 0.598 Å and 0.880 Å respectively. Both 

states show large distance variations between the lobes and the variations within the lobes are 

significantly lower (Figure S4C). The average level of the between-lobe variations of the open 

state is two times above that of the closed state. This indicates greater distance variability between 

the N- and C-lobes in the open state. All components of the N- lobe in the open state show 

significant distance variations with respect to the C-lobe, but only the MYND and SET-I shows 

large variations in the closed state. The W300–S44 distance deviates about 0.519 Å and 2.075 Å 
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in the closed and open states respectively. This difference is in agreement with the direct 

interaction of the two residues in the closed state and the break of this interaction in the open state.  

Dynamical network and communities are different between the closed and open states. There are 

ten communities in the closed state and 11 in open state (Figure 3C). The community assignment 

in both states is roughly correlated with the sequence- and structure- based domain assignment 

[94]. However, there are significant differences in the ways of partitioning the domains into 

communities. The most significant difference is found at the CTD. The CTD is split into three 

major communities in the closed state, whereas in the open state it is split into two. In both states 

the last three helices of the CTD form a separate community, but its first four helices form a single 

community in the open state and are split in half along the middle of the helices in the closed state.  

This indicates that the residues in the first four helices of the CTD have stronger 

connections in the open state than they do in the closed state. Of note, the predicted Hsp90-binding 

site is located between the two open- state-CTD communities. Another notable difference in the 

dynamical networks is found at top of the substrate-binding site. Because of the direct lobe–lobe 

interaction, there are inter- lobe edges at this location in the closed state; but without the equivalent 

interaction, the open state has no edge. This indicates that the closed state may possess additional 

paths for dynamical inter-lobe communication.  

3.5 Substrates 

The conformers in the closed and open states can be further clustered into substates. PC 

analysis shows that both states consist of two major substates but the motions relating the substates 

are different (Figure S5A). For the closed state, PC1 accounts for nearly one fifth of the overall 

variance. The major motion along PC1 is a twisting motion of the N-lobe with respect to the C-

lobe (Figure S5B). The axis of the twisting passes through the MYND, β8– β9-containing β sheet 
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and middle of the cofactor-binding site. For the open state, PC1 accounts for 38.4% of the overall 

variance. The major motions along PC1 include a clamshell-like motion between the N-lobe and 

first four helices of the CTD; and a twisting motion of the last three helices of the CTD with respect 

to the N-lobe (Figure S5C). The axis of the former rotation aligns with the axis of the motion 

depicting the conformational transition between the closed and open states (Figure 1B). In the 

closed state, the PC1- described twisting motion affects the funnel-shape substrate-binding site. 

The twisting pulls the β8–β9 hairpin and β12–αD loop together and apart. This alters the 

dimensions of the substrate-binding site. The funnel-shape substrate-binding site has been 

proposed to contribute to SMYD2 substrate recognition [113]. In the open state, the PC1-described 

motions affect the dimensions of the inter-lobe gap and the distance between the CTD and β8–β9 

hairpin (Figure S5C). As a result, both substrate-binding site and Hsp90-binding site are exposed 

to different extents in the substrates.  

3.6. Pathway of the conformational transition  

Targeted molecular dynamics (TMD) simulation reveals the conformational transition 

pathway between the closed and open states (Figure S5D). The forward and reverse transitions 

follow similar structural conversion processes. The two conformational states are interconverted 

by a reversible CTD rotation. The axis of the rotation passes through the fifth helix (αL) of the 

CTD parallel to the helical axis. αL is relatively static during the conformational transition. The 

average RMSF of this helix is 1.7 Å compared to 4.2 Å for the first four helices of the CTD and 

2.2 Å for the last two helices. The differences in these RMSFs are significant (p < 9.0 × 10−6). αL 

is involved in direct interaction with the β8–β9 hairpin (Figure S5C). This interaction secures αL 

in position, appears to assist in rotating the CTD around this axis and thereby may contribute to a 

proper conformational transition between the closed and open states. In agreement with the 
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conventional molecular dynamics (Figure 1E and S2D), TMD also shows that the conformational 

transition regulates the degrees of exposure of the substrate-binding site and Hsp90-binding site.  

3.7. Small angle X-ray scattering  

To provide experimental support for the MD-sampled open state, the solution structure of 

SMYD3 was characterized using small angel X-ray scattering (SAXS) (Figure 4A). SAXS analysis 

shows that the radius of gyration (Rg) of SMYD3 is 24.5 Å in solution and Dmax (maximum 

particle dimension) 78.0 Å. These values are similar to the Rg (23.2 Å) and Dmax (77.8 Å) 

calculated from the crystal structure. The ab initio shape modeling shows that the dummy atom 

model visually matches the crystal structure (Figure 4B). The last three helices of the CTD fits 

into a slightly protruding envelope and there is a miniature groove between the N- and C-lobe- 

corresponded regions. However, this dummy model can also be fitted equally well with an open 

state structure (Figure 4B). This indicates that the low resolution of SAXS model is unable to 

distinguish between the closed and open states.  

The theoretical scattering curve calculated from the crystal structure does not completely 

fit with the experimental data. The fitted χ2 is about 2.68. At the low q regions, the fitted curve is 

in a good agreement with the experimental data, but the high-q regions beyond 0.15 Å−1 are not 

being well explained by the fitting (Figure 4A). This suggests that the crystal structure is somewhat 

different from the solution structure; more strictly, it is different from the average structure of the 

SMYD3 conformational space. However, the fitting statistics can be improved by normal mode 

analysis (NMA). NMA probes the large-scale motions in SMYD3 and estimates the structural 

flexibility to improve agreement with the SAXS data. The best model from the NMA has an  
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Figure 12. Small-angle X-ray scattering 

(A) Experimental scattering curve (red) overlaid with theoretical scattering curves calculated from 

a closed (green) and open (blue) SMYD3 structure. The q range used for model fitting is indicated 

by arrows. (B) Ab initio dummy atom model (red) superimposed with a closed (green) and open 

(blue) structure. (C) An open structure derived from normal mode analysis.  

improved χ2 of 1.72. The CTD in this model undergoes large conformational changes including a 

twisting motion of the first two helices and an outward-bending motion of its second half (Figure 

4C). The lobe–lobe bridging interactions at the W300–S44 interface in this model break. Such a 

conformation resembles the open state structures sampled in the above MD analysis.  

To correlate the MD simulation with the SAXS experiment, the entire MD trajectory was 

fitted to the experimental data. The average χ2 of the trajectory is 3.37 (Figure S6A). The closed 

state shows significantly lower χ2 than the open state (p < 2.2 × 10−16). The average χ2 of the 

closed state is 2.71 and open state 3.90. This would indicate that the closed state fits better to the 

SAXS data than the open state. However, the best fitting conformer adopts an open structure. 32% 

of the open state has a χ2 less than the average value of the closed state. This is consistent with 

normal mode analysis where the open CTD structures show the best agreement with the 

experimental data (Figure 4C). This also indicates that the combination of all motions in a 
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conformational state determines the results of the experimental data fitting, rather than the open–

closed motion alone (Figure 1D and S5). In the open state, the χ2 is widely spread with a σ value 

of 1.63 compared to 0.22 for the closed state (Figure S6A). This is consistent with highly 

dynamical nature of the open state (Figure S4A). The Rg of the trajectory shows a mixed 

negative/positive correlation with the χ2 (Figure S6B). The open state has larger Rg values than 

the close state (p < 2.2 × 10−16). The average Rg for the closed state and open state are 23.2 Å 

and 23.6 Å respectively. This indicates that the closed-state structures are more compact than the 

open-state structures. The Rg is strongly negative correlated with the χ2 when it is less than 23.4 

Å (r = 0.612) and changes to a positive correlation at the higher values (r = 0.874) (Figure S6B). 

The negative correlated region samples both closed and open conformers and the population of the 

closed state in this region is 2.5 times more than that of the open state. However, 75% of the top 

1% best fitted conformers adopt an open conformation. This further indicates that some of the 

open state structures are closer to the average structure of the SMYD3 conformational space.  

Conclusion  

SMYD proteins are an exciting field of study as they are linked to many types of cancer- 

related pathways [4]. Cardiac and skeletal muscle development and function also depend on 

SMYD proteins opening a possible avenue for cardiac-related treatment [94]. Among SMYD 

proteins, SMYD3 has received the most attention because of its involvement in epigenetic and 

non-epigenetic regulation of numerous cancerous genes [4, 5, 94, 95]. Due to its tumor-growth- 

inducing role and association with poor prognosis SMYD3 has emerged as a key target for anti-

cancer therapies [114]. However, the biochemical mechanism of SMYD3-mediated methylation 

remains elusive. The “closed” substrate-binding site and poor in vitro H3K4 methyltransferase 

activity have led to arguments that SMYD3 is not a histone lysine methyltransferase and the in 



 

 

 

48

vivo-associated H3K4 tri-methylation might be catalyzed by other methyltransferases [5, 68]. Such 

arguments have obscured our understanding of the role of SMYD3 in epigenetic gene regulation, 

where a completely different interpretation of SMYD3 function could result from the arguments: 

SMYD3 functions as a histone code “writer” defining chromatin states, or only serves to anchor 

other chromatin-associated proteins through its sequence-specific DNA binding. Here we provide 

theoretical and experimental evidence that SMYD3 can adopt an open conformation. This new 

open conformational state is substantially different from the crystal structure-like closed state. The 

two states are related by a striking clamshell-like motion of the C-lobe with respect to the N- lobe 

and SMYD3 is transited by this large motion from a ligand binding-incapable state to a binding-

capable state. A recent MD study revealed that the CTD can undergo a similar hinge-like motion 

resulting in expanded substrate binding crevice [115]. In the absence of the cofactor, the CTD 

samples more open configurations than it does in the presence of the cofactor [115]. It was 

postulated that the cofactor acts like a key and locks SMYD3 in a closed conformation [115]. 

However, the present MD study shows that SMYD3 can undergo a spontaneous conformational 

transition from the closed to open states in the presence of the cofactor. The conformational 

transition leads to the enlarged opening to the substrate binding site in the open state which could 

increase histone tail accessibility to the active site cavity and target lysine access channel. This 

would then provide the mechanism for SMYD3 activity on both H3K4 methylation and H3K4me3 

binding. A recent study showed that SMYD3 interacts with H3K4me3 modified histone tails, 

which facilitates its recruitment to the core promoter regions of most active genes [95].  

The conformational transition pathway involves a reversible twisting motion of the CTD 

and the transition from the closed to open states breaks the top lobe–lobe interface resulting in a 

more accessible substrate-binding site and Hsp90-binding site. Many structural and dynamical 
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changes are associated with this conformational transition and these changes may either contribute 

to the transitional process or stabilize the particular conformational states. While the exact portion 

of each conformational state in solution is unknown, the closed state statistically better fits the 

experimental data than the open state, but the best fitting conformers adopt an open structure. 

Nevertheless, the presence of both closed and open states in the conformational ensemble suggests 

two possible, mutually non-exclusive models for SMYD3 functional regulation. First, a 

conformational selection mechanism may regulate SMYD3’s ligand binding. In the 

conformational selection model, the intrinsic dynamics of the protein lead it to spontaneously 

transition between a stable unbound and a less stable bound conformation. The apo-protein visits 

the bound state with significant probability and the ligand can bind directly to this conformation 

shifting the distribution of conformers towards the bound population [116]. Therefore, the open 

state with the exposed ligand- binding sites suggests that the ligand binding of SMYD3 may be 

regulated by the conformational selection mechanism. In addition, the highly correlated inter-lobe 

dynamics in the open state may facilitate SMYD3 promiscuity through the conformational 

selection mechanism, allowing the structural adaptation to different substrates. The conformational 

selection mechanism has been shown to be involved in promiscuous ligand binding and this 

assumes that the protein needs to visit multiple binding conformers capable of binding different 

ligands [116]. In SMYD3, the inter-lobe dynamics will alter the size of the substrate- binding site. 

The coupling of the two lobes by the correlated motion might thus offer the specificity and 

promiscuity for substrate recognition.  

Second, our results provide a model for possible allosteric regulation and a population shift 

between the two conformational states may underlie the functional control of SMYD3. Recent data 

suggest that allostery can be mediated by transmitted changes in protein dynamics [117]. The 



 

 

 

50

binding of an allosteric effector can result in the redistribution of protein conformational ensembles 

and cause changes in catalytic or ligand binding competence [117]. DNA binding to the N-lobe 

has been shown to enhance SMYD3 methyltransferase activity [64]. The interaction of SMYD3 

with BRD4 mediates the recruitment of transcriptional cofactors at the myostatin gene and 

regulates skeletal muscle atrophy [12]. SMYD3 interacts with PC4 in tumor cells and such 

interaction stimulates oncogenic gene expression through deposition of H3K4 tri-methylation [97]. 

All these interactions are mediated via the MYND domain of SMYD3, but the structural and 

dynamical consequences of the interaction remain unknown. One possibility is that the interaction 

may affect the domain dynamics and inter- lobe dynamical correlation. Such an effect could be 

transduced to other parts of the protein through the edges bridging the dynamical communities and 

this might in turn cause a population shift between the existing conformational states, thereby 

modulating active site or binding site geometries. In summary, a detailed study of SMYD3 

structure and dynamics is of functional and therapeutic importance. The identification of the open 

conformational state provides the basis for the conformational selection mechanism and allosteric 

regulation.  
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CHAPTER 3 MOLECULAR DYNAMICS SIMULATION REVEALS CORRELATED 

INTER-LOBE MOTION IN PROTEIN LYSINE METHYLTRANSFERASE SMYD2 

*Published in PLoS One. 2015 Dec 30;10(12):e0145758. doi: 10.1371/journal.pone.0145758. 
All authors agreed with including their work in this dissertation. 

Introduction 

SMYD is a special class of protein lysine methyltransferases involved in heart and muscle 

development[1, 94]. SMYD linked to tumorigenesis opens a possible avenue for cancer treatment 

[4, 94]. SMYD proteins contain five members, SMYD1–5 [24, 35, 39, 57, 94]. Each member 

contains a conserved SET domain that is “split” by a zinc-finger MYND domain [94]. The SET 

domain is a catalytic unit responsible for protein lysine methylation [36]. The MYND domain is a 

protein–protein interaction module and has also been shown to have a DNA binding ability in 

SMYD proteins[4, 37, 38]. Among SMYD proteins, SMYD2 has the broadest substrate specificity. 

In addition to histone proteins, SMYD2 is able to methylate p53, retinoblastoma tumor suppressor 

(RB), estrogen receptor α (ERα), poly(ADP-ribose) polymerase 1 (PARP1), and heat shock 

protein-90 (Hsp90)[3, 49, 50, 94]. Through these methylations, SMYD2 is involved in several 

cellular processes including cell cycle progression, apoptosis, cellular differentiation, DNA 

damage response, and epigenetic gene regulation [94].  

The crystal structures revealed that SMYD proteins have a bilobal structure[24, 35, 39, 57, 

94]. The N- lobe contains the SET, MYND, SET-I, and post-SET domains, and the C-lobe is made 

up of the CTD domain. The cofactor-binding site is located in a surface pocket in the N-lobe. The 

substrate-binding site is located between the N-lobe and CTD and situates at the bottom of a deep 

cleft. The orientation of the CTD is different among the SMYD family. This difference is reflected 

by the relative positions of the N- and C-lobes resulting in open and closed structures [39]. In 

SMYD2 the CTD is flexible and can undergo a conformational change upon binding to different 
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cofactors [24]. Such a conformational change results in two SMYD2 structures with a slight 

difference in the size and shape of the substrate-binding pocket. The functional significance of the 

SMYD2 conformational change is still unknown. One possible consequence is that the 

conformational change may affect substrate access to the active site, thereby regulate substrate 

binding [57]. Another possibility is that the conformational change may be important for SMYD2 

promiscuity allowing the structural adaptation to different substrates [57]. Finally, the 

conformational change may provide an allosteric mechanism for the effector-induced activity 

enhancement and change in substrate specificity [24].  

Current understanding of the SMYD conformational change is limited to the structural 

differences observed in the crystal structures. The dynamical nature of the SMYD proteins is still 

poorly understood. It remains unknown of the structure of dynamical networks and the pattern of 

correlated domain motions, both of which are fundamental in mediating substrate recognition and 

allostery [118, 119]. Using the molecular dynamics (MD) simulation, this study reveals that 

SMYD2 exhibits a negative correlated inter-lobe dynamics. Dynamical network analysis suggests 

optimal and suboptimal paths for such a correlation. This study provides insight into SMYD2 

dynamics and could prove valuable in understanding SMYD2 substrate specificity.  

Materials and Methods 

Molecular Dynamics Simulation 

Molecular dynamics simulation was performed using NAMD [103]. CHARMM force field 

was used to parameterize the simulation. Initial structure for simulation is the crystal structure of 

the SMYD2–SAH complex (PDB code: 3QWV; SAH: S-adenosyl-L-homocysteine or AdoHcy). 

The missing residues of the structure including two N-terminal residues and one C-terminal residue 

were filled using SWISS-MODEL [120]. The system was solvated inside an orthorhombic box of 
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water molecules with a 13 Å padding in each direction. The system was then neutralized with NaCl 

at a concentration of 0.15 M. The final system contained 78,008 atoms. Simulation was performed 

with a 1 fs time step. Particle Mesh Ewald was used to treat long- range electrostatic interactions 

and a cutoff of 12 Å was used for non-bonded interactions. Periodic Boundary Conditions were 

applied during the simulation. The simulation started with 2,000 steps of energy minimization. 

The first half of the minimization had harmonic restraints on the protein, and the second half 

unrestrained minimization. The minimized structure was then slow heated from 0 to 300 K over 

300 ps. At each integration step velocities were reassigned and the temperature was incremented 

by 0.001 K. The heated structure was then equilibrated for 300 ps and velocities were rescaled to 

300 K at every integration step. The production run was performed in the NVE (microcanonical) 

ensemble at 300 K. The total simulation time was 2 ns and coordinates were recorded every 1 ps.  

Principal Component Analysis ad Clustering 

Principal component (PC) analysis was performed using Bio3D [104]. The entire 2 ns 

trajectory of 2000 frames was used in the analysis. The overall translational and rotational motions 

in the trajectory were eliminated by least squares fitting to the first frame. A 3 N × 3 N covariance 

matrix were generated using Cartesian coordinates of Cα atoms. Diagonalization of the covariance 

matrix generated 3 N eigenvectors, each having a corresponding eigenvalue. The trajectory was 

projected onto a particular eigenvector to reveal concerted motions. Clustering of the trajectory in 

the PC space was performed using k-means and hierarchical clustering algorithms. k-means 

partitions the observations into k clusters by minimizing the mean squared distance from each 

observation to its nearest cluster center. Hierarchical clustering builds a hierarchy of clusters based 

on the distance between the observations.  

Dynamical Network Analysis 
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Dynamical network analysis was done in VMD according to previous protocols [107, 108]. 

Each amino acid in the network was represented by one node and SAH by three nodes. Amino 

acid nodes were centered on Cα atoms and SAH nodes were located at atoms Cα, C4’, and N9. 

The edges between nodes were drawn if the residues were within a cutoff distance of 4.5 Å for at 

least 75% of the trajectory. The edge distances were derived from pairwise correlations which 

define the probability of information transfer across the edge. Correlations were calculated from 

the trajectory by the program Carma [105]. The community substructure of the network was 

obtained using the Girvan-Newman algorithm. Nodes in a community have more and stronger 

connections within that community than the nodes in other communities. Critical nodes were 

defined based on the betweenness, which measures the importance of a node to the entire network. 

Critical nodes connect communities and lie at the interface between pairs of communities. Optimal 

and suboptimal paths were generated from the initial dynamical net- work matrix. The optimal 

path is the shortest path between two given nodes. Suboptimal paths are paths that are slightly 

longer than the optimal path.  

Results 

1. Dynamical Details of SMYD2-SAH Complex Structure 

The simulation was performed using NAMD [103]. The starting structure is the crystal 

structure of SMYD2–SAH complex. The simulation was done in the NVE ensemble. The system 

was slow heated and equilibrated before 2 ns production simulation. The stability of the system 

during the production stage was evident by stable kinetic energy, potential energy, temperature, 

and RMSD (root mean square deviation) (data in S1 Fig and Fig 1A). The protein structure does  
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Figure 13. SMYD2 dynamics 

(A) Backbone RMSD during the simulation. RMSD was calculated relative to the crystal structure. 

(B) Root mean square fluctuation (RMSF) of Cα atoms during the simulation (black line). Red 

line depicts the RMSF values converted from crystallographic B-factors. The inset depicts the 

distribution of the simulation RMSF. (C) Ribbon diagram of SMYD2 structure at 2 ns. The 

structure is colored according to the simulation RMSF. Color scale from blue to red depicts low to 

high atomic fluctuations. Secondary structures, α-helices and β-strands are labeled and numbered 

according to their position in the sequence. SAH is represented by sticks and zinc ions by purple 

spheres. (D) Cross-correlation map of the trajectory. Blue indicates a negative correlation between 

residue fluctuations, and red depicts a positive correlation. Lobe and domain structures of SMYD2 

are indicated on the top of the map. (E) Visualization of residue–residue cross-correlations. 

SMYD2 is depicted by green coils. Blue and red lines indicate negative and positive correlated 

motions. (F) Inter-residue distance deviation map. Color scale from blue to magenta depicts small 

to large distance deviations. (G) Distance fluctuation of Y311–G46 during the simulation. Color 

bars depict the conformer clustering results obtained in Fig 2.  
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not significantly deviate from the crystal structure. The backbone RMSD fluctuates between 1.4 

Å and 2.5 Å with an average value of 2.0 Å.  

SMYD2 dynamics revealed by the MD is similar to that from the crystallographic B factor- 

based analysis (Fig 1B and 1C). Most of the residues have a below 1 Å atomic displacement. The 

least dynamical region is the SET domain. The SET is the catalytic domain responsible for cofactor 

binding and substrate binding. The post-SET which is tethered to the SET by a zinc ion also shows 

a less dynamical structure. The most dynamical region in SMYD2 is found in the N-termini. In the 

crystal structure the first two N-terminal residues were not observed. The second largest 

displacement is found at the linker region between the post-SET and CTD. This non-conserved 

region has a variable length in SMYD proteins. This region has been proposed to act as a hinge 

for inter-domain movement [24, 39]. Large motion is also observed for parts of the MYND and 

CTD. In CTD, the most dynamical regions are the linker regions between the pairs of up-down 

helices. In MYND, the variable regions are the N- and C-terminus of the kinked helix αA and a 

loop between β5 and β6. In SET-I, the most dynamical regions are the end of the first helix (αB) 

and the beginning and end of the second helix (αC), and the loop forming the cofactor-binding site 

is relatively static.  

2. Correlated Inner-Lobe Motion 

The CTD and N-lobe show strong negative correlated dynamics (Fig 1D). The regions in 

the CTD involved in such a correlation include residues 300–315, 337–360, and 390–400. These 

regions are among the most dynamical regions in the structure (Fig 1B) and located at the inner 

surface of the C-lobe (Fig 1E). The correlated regions in the N-lobe are divided into seven zones 

spanning from residues 40–200. The zones include the following regions: (I) residues 41–53; (II) 

68–73; (III) 85–95; (IV) 100–115; (V) 150–160; (VI) 183–185; (VII) 195–200. These zones spread 
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across the MYND, SET-I and part of the SET domain but are clustered at the inner face of the N-

lobe. As a result, the two correlated sets of residues are facing each other across the gap of the N- 

and C-lobes (Fig 1E). The residues in each set show positive correlated intra-lobe dynamics, 

whereas the two sets are related by the negative correlated inter- lobe dynamics (Fig 1D and 1E). 

During the simulation the contact distances between the residue-pairs of the two sets vary 

significantly (Fig 1F). The level of variation is two times above the average variation. This 

indicates a relatively large distance variability between the N- and C-lobes. This together with the 

negative correlated inter-lobe dynamics suggests a possible clamshell-like motion or open–closed 

motion between the lobes. The distances of the two representative residues, Y311 in the C-lobe 

and G46 in the N-lobe, range from 8.7 to 16.0 Å during the simulation. The fluctuated pattern of 

the distance indicates a slightly open and closed con- formation (Fig 1G).  

3. Principal Component Analysis 

To further understand SMYD2 correlated dynamics, principal component (PC) analysis 

was performed using Cα position covariance (Fig 2A). The first PC accounts for more than one 

fourth of the overall variance. The second PC accounts for 10%. The first three components 

together account for 45%. The individual component contributions afterward drop below 6%. The 

first PC describes a twisting motion of the CTD with respect to the N-lobe and a spring- bending 

motion within the MYND (Fig 2B). The second PC is dominated by a clamshell-like motion 

between the N- and C-lobes. It is therefore that the variance in the PC1–PC2 plane essentially 

dictates the negative correlated inter-lobe dynamics. Based on these variances, the conformers 

throughout the simulation were grouped into four clusters using k-means algorithm (Fig 2C). The 

number of clusters was chosen based on the “elbow criteria”. At a cluster count of four the 

BSS/TSS (Between-group Sum of Squares/Total Sum of Squares) ratio is 82.8%. Similar  
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Figure 14. Principle component analysis 

(A) Scree plot showing the proportion of variance against its eigenvalue rank. (B) Visualization of 

the motions along PC1 (left) and PC2 (right). The most dissimilar structures along a given PC are 

depicted by thicker coils. The interpolated structures produced by Bio3D [104] are shown by 

thinner coils. Color scale from blue, green, to red depicts low to high atomic displacements. (C) 

Projection of the trajectory onto the planes formed by the first three principle components. 

Conformers are colored according to the k-means clustering: cluster 1, black; 2, red; 3, blue; 4, 

green.  

clustering was obtained using hierarchical clustering algorithm (data in S2 Fig). Cluster 1 

populates in the first 0.25 ns and between 0.7 and 0.9 ns. Cluster 2 is intertwined with Cluster 1  

 (0.25–0.7 ns and 0.9–1.0 ns). Cluster 3 is sampled in a time window of 1.0–1.5 ns. Cluster 4 lasts 

for the remainder of the simulation. This PC1–PC2 plane-based clustering appears to correlate 

with the pattern of distance fluctuation between Y311 and G46 (Fig 1G). The Y311–G46 distance 

represents the distance between the N- and C-lobes or the open/closed state of the structure. Cluster 

1 and 4 correspond to the closed state, while cluster 2 and 3 sample the open one.  

4. Dynamical Network Analysis 

Dynamical network analysis was performed to define the allosteric paths for SMYD2 

correlated inter-lobe dynamics. This analysis revealed nine communities in the dynamical 

structural net- work (Fig 3A). The community assignment is roughly correlated with the sequence-  
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Figure 15. Dynamical network analysis 

(A) SMYD2 dynamical network. The network is colored according to communities. Points in the 

network are nodes, and lines between the nodes represent edges. The thicker lines depict the 

stronger edges or stronger correlations. Critical nodes are colored in purple. (B) Optimal and 

suboptimal paths between Y311 and G46. The optimal path is colored in red and suboptimal paths 

in blue. The edge thickness is weighted by the number of suboptimal paths crossing the edge. 

Residues along the optimal path are labeled.  

and structure-based domain assignment [35, 39]. The SET is split into two communities largely 

corresponding to the S-sequence and core SET. The cofactor product SAH is associated with the  

S-sequence community. This indicates a stronger correlated motion between SAH and the N-

terminal S-sequence. The S-sequence has been shown to be involved in cofactor binding [24, 35, 

39]. Mutation of two Gly residues in this sequence abolished SMYD1 enzymatic activity [35]. The 

SET-I, which is also involved in cofactor binding, forms a separate community. The MYND, a 

protein–protein interaction module, forms another community. There is a separate community 

formed at the interface of SET, MYND, and SET-I. This community contributes the residue 

Phe184 to the target lysine access channel. However, other two aromatic residues (Y240 and 

Y258) in this channel belong to the S-sequence-containing community. Most of residues in the 

post-SET belong to one community. This community also contains the residue H207 from the 

conserved active site motif NHS. H207 chelates the zinc atom of the post-SET, which may result 

in such an association. Other two residues (N206 and S208) in the NHS motif belong to the S-

sequence-containing community. In CTD there are three communities formed by the first helix 
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(αH), αI–αJ–αK, and αL–αM–αN. The predicted Hsp90 binding site is located between the second 

and third communities, which is also the extended ribosomal binding site[24, 57, 94].  

The communication between network communities is mediated through critical nodes 

[108]. Such nodes are important for allosteric signal transduction and dynamical correlation 

between the communities[108, 121]. Of note, the β8–β9 hairpin contains four critical nodes 

(residues 190–193). These nodes form a bridge connecting the N- and C-lobes (Fig 3A). Two of 

these nodes (residues 190 and 191) have direct interaction with the CTD. Disrupting this 

interaction has been found to reduce SMYD2 methyltransferase activity [58]. This suggests that 

the β8–β9 hairpin may represent an optimal path for dynamical inter-lobe communication. The 

optimal and suboptimal paths were generated between Y311 and G46. As mentioned earlier, these 

pair of residues move in concert toward the opposite direction. Their dynamical relationship can 

represent the open and closed state of the structure and correlated inter-lobe dynamics. The optimal 

path between the two residues passes through the β8–β9 hairpin (Fig 3B). All suboptimal paths 

also pass through the hairpin. The β8–β9 hairpin occurring in the highest number of suboptimal 

pathways may thus be necessary to guarantee an effective pathway for inter-lobe communication.  

Discussion 

The crystal structures revealed that SMYD proteins adopt different CTD 

conformations[24, 35, 39, 57, 94]. SMYD1 has an open CTD structure with the substrate-binding 

cleft completely exposed. SMYD3 has the narrowest substrate-binding cleft due to the direct 

CTD–N-lobe interaction [39]. SMYD2 is like a conformational intermediate, and when different 

cofactors bound, the CTD exhibits different conformations [24]. These data have suggested the 

dynamical nature of the CTD and a possible open–closed motion of the two lobes [94]. Our MD 

simulation of SMYD2 structure supports an open–closed motion. The simulation reveals that 
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SMYD2 exhibits a negative correlated inter-lobe dynamics, and this correlated dynamics is 

described by a twisting motion of the CTD with respect to the N-lobe and a clamshell-like motion 

between the lobes. Correlated inter-domain motions may mediate fundamental protein functions 

such as substrate recognition [119]. In SMYD2 the substrates bind to the protein in a U-shaped 

conformation[57, 58]. Both the N- and C-lobe contribute to the binding. The inter-lobe dynamics 

will alter the size of the substrate-binding site. The coupling of the two lobes by the correlated 

motion might offer the specificity and promiscuity for substrate recognition. Correlated inter- 

domain motions are also important for allostery [118]. In SMYD2 the cofactors exhibit allosteric 

effects. Binding of sinefungin and SAH to the cofactor-binding site in the N-lobe caused a 

structural difference in the CTD [24]. Such a long-range structural effect could not be explained 

by the crystallographic studies [24], but the correlated inter-lobe dynamics might provide a signal 

transduction pathway enabling a long-range domain–domain communication.  

A complex mechanism regulates SMYD biochemical function. Binding of Hsp90 to the 

CTD significantly enhances the activity of SMYD proteins[4, 41, 42]. For SMYD2, Hsp90 binding 

not only increases the activity but also changes the substrate specificity [41]. Both SMYD2 and 

SMYD3 interact with DNA[4, 63]. DNA binding to the MYND has been shown to enhance 

SMYD3 enzymatic activity [64]. The mechanism of such an activity enhancement is unknown, 

but one possible mechanism is that the binding may affect the domain dynamics and inter-lobe 

dynamical correlation. Such an effect could be transduced to other parts of the protein through the 

critical nodes bridging the communities, which in turn might impact substrate binding and cofactor 

binding.  

Studying SMYD2 conformational dynamics is of therapeutic interest. Dynamical 

information of SMYD2 structure would facilitate receptor-flexibility-enabled drug design. The 
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conformational states sampled by the MD simulation can be used in ensemble docking. In addition, 

the identification of the critical nodes and optimal path mediating the dynamical network 

communication could offer new strategies to manipulate SMYD2 function. Disrupting a specific 

network communication could represent a rational approach for the design of drugs with improved 

potency and selectivity. In summary, the MD simulation of SMYD2 structure has revealed that 

SMYD2 exhibits a negative correlated inter-lobe dynamics and provided additional insight into 

the structure of this multifunctional protein lysine methyltransferase.  
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PART II. ALTERNATIVE STRATEGIES TO INHIBIT POST-TRANSLATIONAL 

MODIFICATIONS 

CHAPTER 4 CRYSTAL STRUCTURE OF SMYD2 – PARP1 COMPLEX, A NOVEL 

BINDING SITE IDENTIFIED. 

Introduction 

Poly (ADP-ribose) polymerase 1 (PARP1) is a mammalian, multifunctional enzyme 

involved in DNA repair, genome stabilization and chromatin restructuring [122-125]. Upon DNA 

damage, PARP1 serves as a first responder to recognize single and double stranded breaks (SSB 

and DSB), and recruits proteins necessary for repair and signaling the DNA damage response 

(DDR) pathway. Protein recruitment towards damaged DNA sites is made possible by the ADP-

ribosyl transferase activity of PARP1, which serves to transfer linear or branched moieties of ADP-

ribose upon itself and target nuclear proteins [126-129]. PARP’s basal enzymatic activity is low, 

but activity can be enhanced through DNA binding, protein binding partners and post-translational 

modifications [127, 130-133]. Recently, a study found PARP1 is methylated at K528 by SMYD2, 

and methylation of K528 stimulated ADP-ribosyl activity and the DNA damage response [52]. 

SMYD2 (SET and MYND domain-containing protein 2) is a protein lysine 

methyltransferase reported to be involved in cardiomyocyte function, macrophage activation and 

cancer progression [14, 16-18, 51, 134]. The molecular mechanism of SMYD2 in relation to these 

responses have been fairly documented. One of the earliest studies found SMYD2 to methylate 

p53 at lysine 370 impairing p53’s function to promote p21 and MDM2 expression [3]; however, 

SMYD2’s anti-apoptotic role is not solely dependent on methylating p53 [16, 19]. Indeed, later 

studies found SMYD2 to methylate a library of protein substrates including Hsp90, estrogen 

receptor α (ERα), retinoblastoma (RB1), MAPKAPK3, all of which yield unique functional ends 
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[2, 19, 50, 52, 71]. Understanding how SMYD2 recognizes these reported substrates at the 

molecular level remains a challenge. 

In order elucidate the mechanism of SMYD2 methylation and regulation, several efforts 

were made to understand the structure and biochemistry of SMYD2. Biochemical studies reported 

weak methyltransferase activity [61]. A possible explanation for low activity could be explained 

by the accessibility of the substrate channel. Crystal structures of SMYD2 demonstrate the TPR-

like domain (C-lobe) appears to shade over the substrate channel and limit the space for peptide or 

protein entry . At the moment, two SMYD2-peptides (p53 and ERa) structures have been reported. 

Both peptides offer similar yet unique structures within the substrate channel offering insight into 

the multiple configurations a substrate can be recognized by SMYD2 [54, 57, 58]. 

In this study, we solved the crystal structure of SMYD2 in complex with PARP1 peptide. 

Unexpectedly, we were able to map only four amino acids in the primary site, including the target 

lysine and P-1 leucine. Since most of the residues in the peptide were unstructured, this may 

provide supporting evidence that the target lysine and P-1 leucine are necessarily and significant 

for SMYD2 substrate recognition and methylation [135]. However, we identified a second peptide 

bound in a separate site that appears to wedge between the N- and C-lobe of SMYD2. The function 

of this unexplored site may have implications in trafficking SMYD2 substrates into the substrate 

channel. 

Materials and Methods 

Protein Expression and Purification 

The open reading frame of human SMYD2 was cloned into pCDF-SUMO vector and 

transformed into BL21 (DE3) cells for recombinant protein expression. Cells grew to an optical 

density of 0.4 – 0.6 and protein expression was induced with 0.1 mM IPTG. Growth continued 
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overnight at 15°C. Harvested cells were suspended in binding buffer (20 mM sodium phosphate, 

500 mM NaCl, 5% glycerol, 20 mM imidazole, 5 mM BME) and lysed using a French Press, and 

the supernatant was collected for purification. His6-SUMO-SMYD2 was captured on a HisTrap 

column (GE Healthcare) and eluted out by applying an elution buffer (20 mM sodium phosphate, 

500 mM NaCl, 5% glycerol, 500 mM imidazole, 5 mM BME) gradient. Fractions containing His6-

SUMO-SMYD2 were pooled and dialyzed in binding buffer. Ulp1 was added to cleave off the 

His6-SUMO tag. The native SMYD2 protein was collected by passing the protein pool through the 

HisTrap column. Finally, SMYD2 was further purified through a Superdex 200 column (GE 

Healthcare) into gel filtration buffer (20 mM Tris pH 7.5, 150 mM NaCl, 5% glycerol, 5 mM 

BME). Fractions containing pure SMYD2 were pooled, concentrated to 20 mg/mL and stored in 

the -80°C. 

Crystallization, Data Collection and Structure Determination 

All crystals were prepared using the hanging drop method at 20°C. Crystal seeds were 

prepared by incubating 10 mg/mL SMYD2, 1 mM PARP1 peptide (RMKLTLKGGAAVD), and 

600 µM SAH in buffer (20 mM HEPES 7.5, 50 mM NaCl) for 2 hours at 4°C and crystallized in 

a 1:1 volume of protein and crystallization solution (20% PEG 3350, 0.1 M Tris pH 7.5 and 5% 

ethanol). Seeds were crushed and crystallized again by supplementing 1.5 mg/mL SMYD2 and 1 

mM PARP1 peptide into the crystallizing drop. Crystals typically achieved full size after one week. 

SMYD2-PARP1 crystals were harvested and flash-frozen in liquid nitrogen. X-ray diffraction data 

was collected at Advance Photon Source (beamline 21-ID-G) and images were processed using 

XDS and AIMLESS [136, 137]. Crystals were indexed to C121 space group containing 2 

molecules per asymmetric unit. Phases were obtained through molecular replacement using human 



 

 

 

66

SMYD2 structure (PDB ID: 5KJK) as a search model. Several rounds of model building and 

refinement were carried out in Coot and PHASER, respectively [138, 139].  

Isothermal Titration Calorimetry 

ITC titrations were carried out on a NanoITC SV calorimeter (TA Instruments) at 27°C 

whilst stirring at 375 rpm. All experiments were performed with 16 (15 µL) injections spaced 200 

seconds apart. The first (3 µL) injection was excluded from modeling. Protein samples were 

dialyzed in the same buffer (25 mM Tris pH 7.5, 50 mM NaCl) and PARP1 and p53 peptides were 

dissolved in the buffer dialysate. The sample cell was loaded with approximately 1.2 mL of 40 µM 

SMYD2 solution, and the injection syringe was loaded with approximately 250 µL of 631 µM 

PARP1 peptide (RMKLTLKGGAAVD) solution. Protein and peptide concentrations were 

quantified using a Direct Detect (Millipore Sigma). Data was processed and fitted in NanoAnalyze 

(TA Instruments). 

Results 

Overall structure of the SMYD2-PARP1 complex 

The SMYD2 structure in complex with PARP1 and s-adenosylhomocysteine (SAH) was 

solved at 2.1Å using molecular replacement. The overall fold of SMYD2 possesses a bilobal 

structure with a deep crevice separating the two lobes. The N-lobe (residues 5 – 278) is divided 

into four domains: SET, MYND, SET-I and post-SET. The SET, SET-I and post-SET domains 

associate to form an evolutionary conserved fold that make up the core SET domain structure. The 

MYND domain possesses a zinc-finger fold that sits outside of the SET domain. This domain 

doesn’t contribute to substrate or cofactor binding but has been reported to contribute binding 

towards EBP41L3 through a PXLXP motif [41]. The cofactor, SAH sits inside a deep pocket  
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Figure 16 Overall structure of SMYD2-PARP1 complex 

(A) Ribbon and (B) surface representation of SMYD2-PARP1 complex. The S-sequence, MYND, 

SET-I, core SET, post-SET, and CTD are colored in lime green, blue, pink, green, cyan, and red, 

respectively. Secondary structures are labeled based on their position in the sequence. PARP1 

peptides inside substrate and secondary binding site are colored in magenta and sky blue, 

respectively. 

formed the by SET (β1-β2) , SET-I  (310-1–310-2) and post-SET domains (αE-αF) and essentially 

binds as previously described from another report [57]. The C-lobe or C-terminal domain (CTD)  

(residues 279-433) folds similarly to tetratricopeptide repeat (TPR) domains [35, 140]. The 

purpose of the CTD in SMYD proteins is unknown, but reports suggest the CTD contribute 

towards substrate and Hsp90 binding [54, 57, 58, 102]. Previous reports observed a significant 

increase in histone methylation from SMYD1, SMYD2 and SMYD3 in the presence of Hsp90; 

therefore, the CTD may play a role in modulating SMYD methylation [4, 41, 42]. Two binding 

sites of the PARP1 peptide were identified, one peptide bound in the active site and a second 

peptide bound between the N-lobe and the C-lobe. We named this area, “secondary binding site,” 

(SBS) since we found a second version of the PARP1 peptide.  
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Figure 17. Substrate binding site. 

A) 2Fo-Fc map of the PARP1 peptide in the substrate binding site was calculated at 2.1 Å and 

contoured at 1.0 s.  PARP1 peptide is shown as ball and sticks. (B) Surface-stick representation of 

SMYD2-PARP1 complex. SMYD2 domains are colored according to Figure 16B. (C) Ribbon 

alignment of previously structured peptides. PARP1, p53 and ERα peptides are colored in 

magenta, blue and yellow respectively. K0 refers to the target lysine. L-1, G+1, and G+2 refer to 

the amino acid positions flanking the target lysine.  

Structure of the PARP1 peptides in the substrate and secondary binding sites 

The PARP1 peptide in the substrate binding site has a similar structure as previously 

reported p53 and ERα peptides [54, 57, 58]. The target lysine side chain sits inside the lysine 

access channel which is created by F184, Y240 and Y258, and the carbonyl oxygen of target lysine 

forms a hydrogen bond with T185 amide nitrogen. Leu-1 fits into a concave pocket formed by 

V179, T185 and the main chain loop between αD helix and β8 strand. Gly+1 and Gly+2 mimic 

the p53 and ERα peptide main chains. There is no electron density beyond Gly+2 and Leu-1 due 

to the lack of an electron density map. This may suggest residues beyond these positions do not 

significantly contribute towards binding to SMYD2; therefore, these resides were disordered in 

the crystal. This explanation can be highlighted by a previous report that SMYD2 substrate 

recognition is dependent on the P-1 and P+1 positions where P-1 must be leucine  
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Figure 18. A second peptide identified in the C-terminal domain. 

(A) Refined 2Fo-Fc map of the PARP1 peptide in the secondary binding site was calculated at 2.1 

Å and contoured at 1.0 s. (B) Surface-stick representation of PARP1 (sky blue)and SMYD2 (red) 

interaction in the secondary binding site. Amino acid positions Thr-2 through Arg-6 refer to the 

positions flanking the target lysine in the PARP1 peptide (C) ITC of SMYD2 WT (red) and 

SMYD2 L351A/W356 mutant (green). Top panel displays corrected heat injections data. Bottom 

panel displays isotherm plot.  

and the P+1 must be a small amino acid. Residues beyond these limits may aid in SMYD2 binding 

but are not necessary as hinted by the lack of an electron density map (Figure 17A). 

The PARP1 peptide in the secondary binding site is nested into a small fissure in the CTD 

created by αJ, αK and αL. This interaction is hydrophobically driven by two residues in PARP1, 

Leu-3 and Met-5. Leu-3 packs against residues W356, L391 and G394. Met-5 fits into a 

hydrophobic crevice created by L351, K387, R390, and L391. An electron density map couldn’t 

be mapped for the Lys-4 side chain which suggests Lys-4 adopts multiple orientations and doesn’t 

significantly contribute towards SMYD2 binding (Figure 18A and B). 

Two binding sites confirmed by Isothermal Titration Calorimetry. 

In order to confirm two binding sites, ITC was performed to measure the stoichiometry 

with high accuracy. Titration of the PARP peptide (RMKLTLKGGAAVD) into full length human 

SMYD2 generated exothermic injections. Data was fit into an independent model with n = 2.21 ± 

SMYD2 WT –PARP1

n = 2.2

ΔH  =  -0.65 kcal/mol

-T ΔS =  -5.8 kcal/mol

SMYD2 L351A/W356A–PARP1

no interaction
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0.28. Measured enthalpy and dissociation constant were -0.65 kcal/mol and 28 µM, respectively. 

Calculated Gibb’s energy and entropy (-T∆S) were -6.4 kcal/mol and-5.8 kcal/mol, respectively. 

The high entropic term, nearly nine fold higher than the enthalpic term, suggest peptide binding 

between SMYD2 and PARP1 is hydrophobically driven. This observation is consistent with the 

complex structure of SMYD2 and PARP1 peptides since both sides appear to be primarily driven 

by hydrophobic contacts (Figure 2B and 3B). 

To confirm the PARP1 peptide was specifically binding in the secondary binding site, we 

mutated L351A and W356A in SMYD2 and purified it similarly as the wild type with no 

observable complications in mutant solubility. The same ITC experiment was performed on 

SMYD2 mutant (L351A and W356A.) Unexpectedly, no heat change was observed suggesting 

PARP1 didn’t bind to the secondary binding site and substrate channel. This observation would 

suggest peptide binding to the substrate binding site requires a peptide bound to the secondary 

binding site. It’s unclear whether peptide binding is sequential where the peptide from the 

secondary binding site is channeled to the active site or peptide binding in both sites are 

independent. Sequential binding is conceivable as this could influence the TRP-like domain to 

open the structure and tunnel the substrate towards the active site. Further work will be required 

to evaluate possible links between the substrate and the secondary binding sites.  

Discussion 

Crystal structures of SMYD proteins demonstrate the N- and C-lobe can potentially change 

[24, 35, 39]; however, the mechanism at which these lobes undergo bilobal conformational 

changes remains elusive. Additionally, the mechanism at which SMYD2 methylation clients are 

guided into the buried substrate channel is unclear. In this study, we found a peptide substrate 

predominantly bound to an new and unexplored area of the CTD in our SMYD2-PARP2 complex 
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crystal structure. Our ITC results demonstrate SMYD2 can bind to two PARP1 peptides; therefore, 

the second peptide bound to the secondary binding site doesn’t appear to be a non-specific artifact. 

Interestingly, titration of the PARP1 peptide into SMYD2 L351A/W356A mutant didn’t generate 

heat suggesting the PARP1 peptide binding into the substrate channel may be sequential, requiring 

PARP1 to bind to the secondary binding site first before PARP1 is guided into the substrate 

channel.  

To our knowledge, this study presents the first SMYD structure that binds a second peptide 

outside of the substrate channel. We imagine this new peptide binding site may recognize a 

hydrophobic motif (MXL or ΦXΦ) within a substrate protein or perhaps protein chaperone that 

isn’t a SMYD2 methylation client. Hydrophobic motifs binding to the secondary binding site could 

potentially change the dynamics of the C-lobe in SMYD2; thereby, allowing the substrate channel 

to become more accessible for methylation targets to enter. Since purified human SMYD2 

methyltransferase activity is low [61], we predict the secondary binding site as an allosteric 

modulator that drives the C-lobe to open for substrate binding. To test this hypothesis, further work 

will require measuring the activity of SMYD2 L351A/W356A mutant to understand how the 

secondary binding site influences methylation of PARP1. At the moment, this study opens a new 

avenue for understanding how SMYD2 methylation clients are recognized and tunneled for lysine 

methylation. 
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Table 1. Crystallographic data and refinement statistics 

Data  

Space group C121 
Cell parameters  

a, b, c (Å) 142.8, 52.2, 144.9 
Wavelength (Å) 0.97856 
Resolution (Å) 133.2-2.10 (2.21-2.1)a 
Rmerge

b 0.105 (0.812) 
CC1/2 0.995 (0.772) 
Redundancy 7.3 (7.4) 
Unique reflections 51097 
Completeness (%) 88.5 (96.7) 
〈I/σ〉 13.7 (2.5) 
Refinement  
Resolution (Å) 66.6-2.10 (2.14-2.10) 
Molecules/AU 2 
Rwork

c 0.199 (0.246) 
Rfree

d 0.234 (0.293) 
Ramachandran plot  
Residues in favored 97.8% 
Residues in allowed 2.2% 
RMSD  
Bond lengths (Å) 0.003 
Bond angels (°) 0.69 
No. of atoms  
Protein 7290 
Peptide 132 
Water 154 
B-factor (Å2)   
Protein 43.8 
Peptide 73.0 
Water 33.9 

aNumbers in parentheses refer to the highest resolution 

shell. 

bRmerge= Σ|I-〈I〉| / ΣI, where I is the observed intensity 

and 〈I〉 is the averaged intensity of multiple 

observations of symmetry-related reflections. 

cRwork= Σ|Fo-Fc| / Σ|Fo|, where Fo is the observed 

structure factor, Fc is the calculated structure factor. 

dRfree was calculated using a subset (5%) of the 

reflection not used in the refinement. 
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CHAPTER 5 EXPRESSION, PURIFICATION AND ACTIVITY STUDIES OF THE 

CATALYTIC DOMAIN OF USP10 

Introduction 

Ubiquitin-specific protease 10 (USP10) is an widely expressed deubiquitinase that plays a 

central role in maintaining p53 homeostasis, DNA repair and apoptosis [28, 141, 142]. USP10 was 

first identified in associate with G3BP which served to inhibit the deubiquitinase function of 

USP10. Later studies expanded USP10’s role as a specific deubiquitinase for p53, histone variant 

H2A.Z, CFTR, AMPKα and FLT3 in various cellular pathways [28, 30, 142-145]. While the 

biological mechanism of USP10 appears to be diverse, one pathway of interest is USP10’s 

involvement in maintaining p53 homeostasis. One study found that USP10 serves dual roles as a 

oncogene and tumor suppressor, depending on the oncogenic nature of p53. Under normal 

physiological conditions, USP10 serves as a tumor suppressor by preserving p53 homeostasis and 

counteracting p53 ubiquitination by Mdm2; however, in a p53 mutant environment, the role of 

USP10 reverses to an oncogene by stabilizing oncogenic p53 [28]. Inhibition of USP10 through 

RNA knockdown experiments greatly reduced cellular growth in mutant p53 renal cancer cells 

[28, 30].  

Alternatively, USP10 was also found to inhibit p53 function though a positive feedback 

loop promoting androgen receptor-mediated transcription and G3BP expression. Since G3BP 

serves as an inhibitor of USP10 function, this resulted in repressing p53 function and promoting 

proliferation in G3BP2-overexpressed prostate cancer cells. Recently, USP10 was found to play a 

key role in stabilizing mutant FLT3 in acute myeloid leukemia (AML) cells. Mutagenesis of 

USP10’s catalytic activity (C424S) resulted in reduced stabilization of mutant FLT3 in MOLM14 

cells [30]. Therefore, designing small molecule inhibitors that specifically target USP10 may prove 
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to be a novel strategy for treating patients with mutant p53 cancers, mutant FTL AMLs and 

androgen receptor-dependent prostate cancers. 

Alas, the atomic structure of USP10 and selective inhibitors for USP10 are currently 

lacking. One group identified two small molecule inhibitors that target USP10 activity in vitro; 

however, these compounds also target a related p53 deubiquitinase, USP7 [146, 147]. Another 

group identified spautin-1 as a selective inhibitor against USP10 and USP13 deubiquitinating 

function [148]. Recently, a mutant ubiquitin variant was reported to specifically inhibit USP10 in 

vitro which serves as an excellent aid to study USP10 for cellular and biochemical studies [149]. 

All of the USP10 inhibitors were reported by separate groups, and a collective study of these 

inhibitors is needed. 

In this study, we explore the biochemistry of the catalytic domain of human USP10 and 

examine the potency of reported inhibitors: UbV10, spautin-1 and P22077. Our goal was to solve 

the crystal structure of the catalytic domain of USP10 which would serve as a template for virtual 

screening. In addition, comparing the inhibitory activity of reported inhibitors against USP10 can 

aid in the development of a fragment-based screen to improve more potent and soluble inhibitors. 

A selective inhibitor against USP10 would serve as a valuable tool to study USP10 overexpression 

in oncogenic p53 cancers and oncogenic FLT3 acute myeloid leukemias. 

Materials and Methods 

Protein Expression and Purification 

The core deubiquitinase catalytic domain of USP10 (S374 – L798) was cloned into pCDF-

SUMO vector and UbV10 construct was synthesized into pET151 vector (Invitrogen). Vectors 

were transformed into BL21 (DE3) cells for recombinant protein expression. Cells grew to an 
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optical density of 0.4 – 0.6 and protein expression was induced with 0.1 mM IPTG. Growth 

continued overnight at 15°C. Harvested cells were suspended in binding buffer (20 mM sodium 

phosphate, 500 mM NaCl, 5% glycerol, 20 mM imidazole, 5 mM BME) and lysed using a French 

Press, and the supernatant was collected for purification. His6-SUMO-USP10(374-798) was 

captured on a HisTrap column (GE Healthcare) and eluted out by applying a gradient of elution 

buffer (20 mM sodium phosphate, 500 mM NaCl, 5% glycerol, 500 mM imidazole, 5 mM BME). 

Fractions containing His6-SUMO-USP10-CA were pooled and dialyzed in binding buffer. Ulp1 

was added to cleave off the His6-SUMO-USP10-CA tag. The native USP10-CA protein was 

collected by passing the protein pool through the HisTrap column. Finally, USP10-CA was further 

purified through a Superdex 200 column (GE Healthcare) into gel filtration buffer (20 mM Tris 

pH 7.5, 150 mM NaCl, 5% glycerol, 5 mM BME). Fractions containing pure USP10-CA were 

pooled, concentrated to 20 mg/mL and stored in the -80°C. UbV10 was purified similarly, except 

the N-terminal His6 tag was removed by TEV protease. 

Isothermal Titration Calorimetry 

ITC titrations were carried out on a NanoITC SV calorimeter (TA Instruments) at 28°C 

whilst stirring at 300 rpm. Experiments were performed with 23 (10 µL) injections spaced 300 

seconds apart. The first (2 µL) injection was excluded from the data. USP10-CA and UbV10 were 

dialyzed in the same buffer (20 mM HEPES pH 7.5, 150 mM NaCl) overnight. The sample cell 

was loaded with approximately 1.2 mL of 25.5 µM USP10-CA, and the injection syringe was 

loaded with approximately 230 µL of 283 µM UbV10. Protein concentrations were verified using 

a Direct Detect (Millipore Sigma). Data was processed and fitted in NanoAnalyze (TA 

Instruments). 
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In vitro Deubiquitinase Activity Assay 

Fluorescent activity assays were carried out on 384-well plates (Corning black flat/bottom) 

using a SpectraMax M5 (Molecular Devices). Ubiquitin-Rhodamine 110 (Ub-Rho) was used as a 

fluorescent substrate to monitor USP10-CA hydrolysis and liberation of Rhodamine 110. The final 

reaction buffer was 50 mM HEPES 7.5, 0.5 mM EDTA and 5 mM DTT. A typical experiment 

setup contained 200 nM USP10 and serial concentrations of Ub-Rho (0 – 30 µM) and UbV10 (0 

– 10 µM) in a final volume of 25 (kinetic studies) or 30 µL (inhibitory IC50/Ki studies). USP10-

CA, UbV10, P22077 and Ub-Rho were diluted in reaction buffer and incubated at 30°C for at least 

10 minutes. Fluorescence readings were recorded for 2 hours. Initial velocity was measured for 

the first 5 minutes. Data was fit in GraphPad. 

Results 

Cloning and Purification of the catalytic domain of USP10. 

The full length USP10 protein was previously expressed and purified in E.Coli with no 

success [143]. Since we are specifically interested in the inhibition of USP10 deubiquitinase 

function, we sought to localize and purify the catalytic core of USP10 using E.Coli as a production 

host. In order to correctly define and clone USP10-CA, a sequence alignment was made across 

select, structured USP homologs and USP10 orthologs using COBALT and ESPript (Figure 19A 

and 19B) [150, 151].  

In addition, a homology model of USP10-CA was made using SWISS-MODEL using 

USP8 (PDB ID: 5N3K) as a template with a sequence identity of 26% [120]. The overall structure 

and catalytic mechanism of USP10 should be expected to be similar to other USPs due to the 

homogenous spread of conserved residues within the model (Figure 19C). USP10 is highly 

conserved among orthologs; therefore, we designed the USP10-CA construct from S374-L798 that  
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Figure 19. Sequence alignment of USP homologs and USP10 orthologs 

(A) Sequence alignment of select USP homologs and (B) Sequence alignment of USP10 orthologs. 

Identical residues are highlighted in red in white font. Positive residues are boxed in red font. (C) 

SWISS model of USP10 using USP8 as a model base. Unstructured loops were excluded from the 

model. Conserved residues among select USP homologs are colored in magenta. Outlined box: 

Proposed mechanism for USP10 hydrolysis. (D) Open reading frame of human USP10.  

incorporated most of the conserved regions within the active catalytic domain. After we 

successfully cloned and purified our catalytic domain construct, a separate group also reported 

purifying a similar USP10-CA construct, K376 – L798. [30]. 

The catalytic domain was expressed and purified using His6-SUMO fusion tag adjacent to 

the N-terminal end of USP10. After capturing His6-SUMO USP10-CA from Ni2+ column, the 

fusion tag was successfully removed from USP10-CA using Ulp1 protease. Several additional  

purification steps were needed to prepare the protein pool for a second round pass through the Ni2+ 

column, and we were able to separate the His6-SUMO tag from USP10-CA (Figure 20A). USP10-

CA was injected into a size exclusion column and eluted out homogeneously as a ~50 kDa 

monomer (Figure 20B) Altogether, soluble USP10-CA was obtained with high purity (Figure 

20C). 
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Figure 20 USP10 catalytic domain purification 

(A) SDS-PAGE of SUMO-tag purification. 1: Pooled eluted fractions from containing His6-

SUMO-USP10-CA. 2: Supplementing Ulp1 protease cleaved into USP10-CA and His6-SUMO. 3| 

Sample after concentrating protein pool. 4: Sample after filtration. 5: Sample after dialysis to 

binding buffer. 6|:Pooled flowthrough and wash fractions after injecting the protein pool into a 

second HisTrap pass. (B) HiLoad 16/60 chromatogram of USP10-CA. USP10-CA elutes out as a 

homogenous monomer. (C) SDS-PAGE of the final purification product of USP10-CA. 

In order to structure USP10-CA, we sought to crystallize USP10-CA, but our efforts to 

obtain well-ordered crystals were unsuccessful. Possible crystallization complications could arise 

due to large and distorted loop insertions (Figure 19A). To our knowledge, only four USP catalytic 

domains have been crystallized in the apo form, solved and deposited in the PDB. Most of the USP 

proteins are crystallized and structured as a complex with ubiquitin or a ubiquitin-derivative. This 

observation suggests the catalytic domains of USPs are challenging to crystallize. One possible 

explanation could be due to the conformational fluidity between active and inactive states  

as observed from the apo structures of USP7, USP8 and USP14 [152-154]. When USPs are bound 

to ubiquitin, this could limit the USP’s conformational state and aid in protein crystallization. We 

sought to crystallize USP10-CA in complex with ubiquitin molecule in order to stabilize USP10 

into a single conformation and promote our chances for USP10-CA crystallization.  
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Figure 21. UbV10 complexes with USP10 catalytic domain 

(A) GST-Ubiquitin pulldown of USP10-CA. (B) His-UbV10 pulldown of USP10-CA. (C) Gel 

filtration chromatogram of USP10-CA and UbV10. (D) SDS-PAGE of fractions under the 

chromatogram from C. 

USP10-CA forms a complex with ubiquitin variant 10, not ubiquitin 

Another challenge is complexing USP to ubiquitin since most USPs don’t bind strongly to 

wild type ubiquitin. In order to structure USP and ubiquitin complexes, several groups covalently 

link the USP of interest with a covalent linker, attached to the carboxyl end of ubiquitin as a tactic 

to irreversibly link ubiquitin to the catalytic cysteine in USPs [152, 153, 155, 156]. An alternative 

strategy are the use of ubiquitin variants which are generated through phase-display libraries of 

mutated ubiquitin proteins [157]. The same group reported a mutated ubiquitin variant that 

specially binds and inhibits full length USP10 [149]. We obtained the reported protein sequence 

for UbV10, and purified UbV10 similarly as USP10 (data not shown). Consistently, we show 

USP10-CA binds strongly to UbV10 but not ubiquitin (Figure 21A and B). This suggests the 
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mutants created by phage display are important and necessary for USP10 binding. (Figure 21A 

and 21B). In addition USP10-CA and UbV10 appear to stability complex under gel filtration 

separation (Figure 21C and Figure 21D).  

USP10 and UbV10 binding is strongly enthalpically driven 

We next sought to measure the magnitude of binding (KD) as well as additional 

thermodynamic information between USP10 and UbV10 by employing ITC. Measured enthalpy 

and dissociation constant were -13.4 kcal/mol and 984 nM, respectively. Calculated Gibb’s free 

energy (∆G) and entropy (-T∆S) were -8.3 kcal/mol and 5.1 kcal/mol, respectively. Overall, the 

binding between USP10 and UbV10 is a favorable process as indicated by enthalpy and Gibb’s 

free energy; however, the interaction between USP10 and UbV10 is not entropically favorable. 

The high enthalpy and low entropic value suggest the interaction between USP10 and UbV10 are 

favorably driven by forming hydrogen bonds and resisted by unfavorable structuring of USP10 

and UbV10.  

USP10-CA activity is low, and Spautin-1 doesn’t inhibit USP10-CA 

To measure USP10-CA activity and inhibitory potency of UbV10, a fluorescence-based 

activity assay using Ubiquitin-Rhodamine 110 (Ub-Rho) as a substrate was employed. USP10 

hydrolysis activity is weak compared to other DUBs [149] since we were unable to reach velocity 

saturation in our Michaelis-Menten curve. This is likely due to the high Michaelis constant (KM) 

~14.3 µM for substrate, which suggests USP10 doesn’t bind strongly to the Ub-Rho. A separate 

group reported low activity for full length USP10 using Ub-Rho as a substrate (KM  >4 µM) [149]. 

Supplementation of UbV10 (1:20 molar protein:inhibitor) greatly diminished USP10-CA activity 

and greatly enhanced the modeled KM. The modeled Vmax between USP10-CA and USP10-CA-

UbV10 were measured to 1.1 RFU/sec and 0.885 RFU/sec, respectively. The modeled Vmax and  
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Figure 22. USP10-UbV10 binding is enthalpically driven and UbV10 competitively inhibits 

USP10. 

(A) ITC data of USP10-CA and UbV10. Top panel displays corrected heat injections. Bottom 

panel displays isotherm plot. (B) Michaelis-Menten graph of USP10 activity. (C) Log-scale 

inhibition curve of UbV10 and spautin-1 against USP10-CA activity. 

KM parameters between USP10-CA alone and USP10-CA-UbV10 suggest UbV10 acts as a 

competitive inhibitor against USP10-CA. Additionally, we sought to compare how and how well 

UbV10 and spautin-1 inhibit USP10-CA. Our results indicate that spautin-1 doesn’t directly inhibit 

USP10-CA. This finding is in conflict with another study which proposed spautin-1 selectively 

inhibits USP10 activity [148]. Further investigation will require either testing spautin-1 against 

full length USP10 or identifying an optimally active form of USP10. We were unable to detect 

P22077 inhibitory activity against USP10-CA (data not shown) since the compound was insoluble 

in our reaction buffer. Experiment will need to be repeated to accommodate the compound’s poor 

solubility. 
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Discussion 

In this study, we supply biochemical and structural studies for the catalytic domain of 

USP10 to pave the way for future drug development studies. We successfully purified the catalytic 

domain of USP10 using E.Coli as a production host eliminating the need to use other expensive 

expression systems; however, our E.Coli purified USP10-CA construct has low hydrolysis activity 

in vitro. Previous studies also report low deubiquitination activity for full length USP10 [149]. 

Therefore, USP10 hydrolysis activity is likely dependent on post-translational modifications and 

other protein chaperones like Beclin-1 [148]. Interestingly, USP10 is a phosphorylation target for 

ATM kinase signaling, AMPKα and CKII kinase [28, 145, 158]. Indeed, two separate studies 

found phosphorylation of USP10 S76 by AMPKα and USP10’s association with Beclin-1 

promoted deubiquitinase activity [145, 148]. Future studies may benefit exploring how 

phosphorylation and other protein chaperones influence USP10’s deubiquitination activity. 

We also provide supporting evidence that UbV10 is an effective competitive inhibitor 

against USP10-CA. The measured dissociation constant from our ITC results and inhibitory 

constant from our activity data are in fair agreement, 984 nM and 766 nM respectively. The 

thermodynamic binding profile of USP10-UbV10 appears to be similar to the thermodynamic 

profile reported for USP7 and Ub25 [159]. Despite the favorable enthalpic yield of USP10 and 

UbV10 binding, this complex outputs a disruptive entropic cost, which suggests the structuring of 

USP10 and UbV10 as a complex is an unfavorable process.  

In summary, our study presents a soluble catalytic domain construct for human USP10 

which is viable for further biochemical studies. Our data supports UbV10 as an active inhibitor 

against USP10-CA and may prove to be a useful as a tool to stabilize and potentially crystallize 

USP10. Unexpectedly, we did not observe significant inhibitory activity for spautin-1 which 
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suggests spautin-1 doesn’t target the active site of USP10. Further studies towards developing 

small and selective molecule inhibitors for USP10-CA will require robust target-based chemical 

screening and understanding how USP10 achieves optimal biochemical activity. Attaining a high 

resolution structures of USP10 would also be of value since USP10 appears to be a fairly unique 

structure based on the lack of sequence conservation from other deposited USP structures. We 

look forward to future reports that dissect the structure and function USP10. 
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CHAPTER 6 STRUCTURAL BASIS OF PDZ-MEDIATED CHEMOKINE RECEPTOR 

CXCR2 SCAFFOLDING BY GUANINE NUCLEOTIDE EXCHANGE FACTOR PDZ-

RHOGEF 

*Published in Biochem Biophys Res Commun. 2017 Apr 1;485(2):529-534. doi:10.1016/ 
j.bbrc.2017.02.010. All authors agreed with including their work in this dissertation. 

Introduction 

CXCR2 is a G protein coupled receptor important for cellular mobility and chemotaxis 

through activation of calcium mobilization and actin polymerization [33]. CXCR2 is central to 

neutrophil migration to sites of inflammation and involved in wound healing and angiogenesis 

[33]. It has been shown that disrupting CXCR2 function plays a central role in multiple 

inflammatory diseases including rheumatoid arthritis, acute respiratory distress syndrome, septic 

shock, and chronic obstructive pulmonary dis- ease, likely due to the result of excessive release of 

neutrophils from the bone marrow [160]. CXCR2 also plays a critical role in many cancers such 

as lung cancer and pancreatic cancer by promoting tumor invasion and metastasis via autocrine 

and paracrine effects [161]. Elevated expression of CXCR2 enhances cancer cell proliferation and 

survival and often correlates with aggressive stages of cancer and poor overall prognosis [161].  

CXCR2 directing cell trafficking depends on its ability to bind to ELR-positive CXC 

chemokines [162]. When binding to a chemokine, CXCR2 is capable of initiating G protein 

dissociation and inducing downstream signaling cascades that drive cell movement along 

chemokine concentration gradients. However, swift signaling requires direct and indirect 

interaction of CXCR2 with other membrane receptors, channels, intracellular scaffold proteins, 

effectors, and cytoskeletal elements, among which PDZ domain- containing proteins play a central 

role in efficient signaling by scaffolding the formation of macromolecular complexes at the plasma 

membrane and functionally coupling chemokine signaling to downstream signaling events [33]. 

In general, PDZ domains mediate protein interaction by recognizing the C-terminal sequence of 
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target proteins and binding to the targets through a canonically and structurally conserved PDZ 

peptide-binding pocket [163]. The specificity of the interaction is determined mainly by the 

residues at positions 0 and 2 of the peptides (position 0 referring to the C-terminal residue), 

whereas other residues do not significantly contribute to the interaction. As a result, PDZ domains 

are highly promiscuous capable of binding to multiple ligands; single peptides are capable of 

binding to distinct PDZ domains. Because of this promiscuity, PDZ-mediated interaction can 

generate complex and interconnected signaling networks that ensure precise and efficient signal 

transduction via protein-protein interaction.  

However, the canonical ligand-binding of PDZ by itself has a limited capacity to scaffold 

multiprotein arrays within membrane microdomains, as PDZ domains can only bind to their 

ligands one at a time. Recent data suggest that PDZ dimerization plays an important role in 

increasing the scaffolding capacity [164]. PDZ dimerization with the same or different PDZ-

containing proteins has been shown to amplify the complexity of interacting proteins in signal 

transduction networks and provide a mechanism to expand the scaffolding capacity in the assembly 

of multiprotein complexes. Of note, many PDZ domains can dimerize and 30% out of 150 PDZ 

domains in the mouse genome has been shown to participate in protein-protein interaction [165]. 

This suggests PDZ domains have evolved as a dual binding module in facilitating complex 

formation. Therefore, there has been a considerable interest in elucidating the structural basis of 

PDZ specificity, promiscuity and dimerization and how they can set up a specific interaction 

network for proper signaling, the nature of which still remains obscure.  

Recently, we showed that the PDZ domains of NHERF1 play a pivotal role in CXCR2 

signaling during the formation of macromolecular signaling complexes[33, 161]. NHERF1 

scaffolds the interaction between CXCR2 and PLCβ2/3 by simultaneously binding to the C- 
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terminal tail of CXCR2 and PLCβ2/3 and physically connecting them through linked PDZ 

domains or PDZ dimerization. This resulted in a macromolecular complex essential for coupling 

CXCR2 activation to PLCβ2/3 signaling cascades in neutrophils and pancreatic cancer cells. 

Disruption of the interaction effectively abolished chemotaxis and transepithelial migration 

suggesting a functional importance of PDZ-mediated scaffolding. However, NHERF1 is the only 

PDZ domain-containing protein identified to date to interact with CXCR2. As a result, there is a 

limited understanding regarding the molecular mechanism of CXCR2 PDZ-binding promiscuity 

and how binding to different PDZ domains may interconnect different signaling pathways in 

CXCR2 signaling.  

In this study, we sought to identify additional PDZ domains that could interact with the 

PDZ motif of CXCR2 and to better under- stand PDZ binding promiscuity and specificity. We 

identified several novel CXCR2 binding proteins using a PDZ binding array, among which PDZ-

RhoGEF is of particular interest because it is also involved in signaling and cellular mobility. PDZ-

RhoGEF is a PDZ and RGS-containing protein and belongs to the guanine nucleotide exchange 

factors family. It is a protein ubiquitously expressed in humans and involved in initiating the Rho 

signaling pathway for actin organization and cellular mobility [166]. To understand the molecular 

mechanism of CXCR2 PDZ motif binding to the PDZ domain of PDZ-RhoGEF, we solved the 

crystal structure of PDZ- RhoGEF PDZ domain in complex with the CXCR2 C-terminal PDZ 

binding motif. The structure reveals that the CXCR2 peptide binds to PDZ in an extended 

conformation with the last four residues making specific side chain contacts. Sequence alignment 

and structural comparison analyses suggest the sequence- and position-specific interactions 

determine CXCR2 PDZ-binding promiscuity and specificity. Unexpectedly, we identified a 

disulfide bond-linked PDZ dimer which enables parallel binding of CXCR2 peptides to the well-
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separated ligand-binding pockets. This new mode of PDZ dimerization demonstrates structural 

diversity in PDZ-PDZ interaction and could prove valuable for understanding the complex-

scaffolding function of PDZ-RhoGEF in CXCR2 signaling.  

Materials and Methods 

2.1 PDZ domain array screen 

CXCR2-binding PDZ domains were screened using TranSignal PDZ Domain Array IV 

(Panomics) according to the manufacture's instruction. His-tagged C-terminal fragment of human 

CXCR2 (residues 316-360) was used in the assay screen, which was generated by PCR cloning 

into pET30 and purified using cobalt resins [33]. The purified CXCR2 was incubated with the 

PDZ Domain Arrays in blocking buffer for 1 h at room temperature, and washed thrice with wash 

buffer for 5 min. They were then incubated with Anti-histidine horseradish peroxidase (HRP) 

conjugate for 1 h at room temperature. Antibody complexes were detected by enhanced 

chemiluminescence and imaged using BioSpectrum 500 (UVP). The array was repeated twice and 

similar results were observed.  

2.2 PDZ protein expression and purification  

The cDNA fragment of human PDZ-RhoGEF PDZ (residues 41-123) was cloned into a 

pSUMO vector containing an N-terminal His6-SUMO tag. The C-terminal extension TSTTL that 

corresponds to residues 356-360 of human CXCR2 was included in the reverse primer to create a 

chimeric clone. The clone was transformed into Escherichia coli BL21 Condon Plus (DE3) cells 

for protein expression. The transformants were grown to an OD600 of 0.4 at 37°C in LB medium, 

and then induced with 0.1 mM isopropylthio-β-D-galactoside at 15°C overnight. The cells were 

harvested and lysed by French Press. The soluble fraction was then subjected to Ni2+ affinity 

chromatography purification, followed by cleavage the His6-SUMO tag with yeast SUMO 
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Protease 1. PDZ proteins were separated from the cleaved tag by a second Ni2+ affinity 

chromatography and further purified by size-exclusion chromatography. Finally, the proteins were 

concentrated to 10 mg/ml in a buffer containing 0.1 M sodium acetate pH 4.8., 150 mM NaCl, 5 

mM b- mercaptoethanol (BME), and 5% glycerol.  

2.3. Crystallization, data collection and structure determination  

Crystals were grown by the hanging-drop vapor-diffusion method by mixing the protein 

(~10 mg/ml) with an equal volume of a reservoir solution containing 0.1 M sodium acetate pH 4.6, 

0.1 M sodium citrate, 25% PEG8000 at 20°C. Crystals were cryoprotected in a solution containing 

20% glycerol. Crystal data were collected at 100 K at the Advanced Photon Source (Argonne, IL) 

at beamline 21- ID-D and processed and scaled using XDS [136]. Crystals belong to the space 

group C2221 with four molecules in the asymmetric unit (Supplementary data). The structure was 

solved by molecular replacement using PDZ-RhoGEF PDZ-PlexinB2 structure (PDB code: 5E6P) 

as a search model. Structure modeling was carried out in COOT [138] and refinement was 

performed with PHENIX [139]. The final model was analyzed and validated with Molprobity 

[139]. All figures of PDZ-CXCR2 structure were made with PyMOL.  

2.4 Protein data bank accession number 

Coordinates and structure factors have been deposited in the Protein Data Bank with 

accession number 5TYT.  

Results 

3.1 CXCR2 C-terminus binds directly to PDZ-RhoGEF PDZ domain  

Using a PDZ Array screen (Panomics), the CXCR2 C-terminus was identified to directly 

bind to the PDZ domains of PDZ-RhoGEF, leukemia associated RhoGEF (LARG), disks large 

homolog 3 (DLG3-D2), alpha-1-syntrophin (SNA1) and SH3/multiple ankyrin repeat domains 
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protein 1 (SHANK1) (SHK1) (Fig. 1A). DLG3-D2 is the second PDZ domain in synapse-

associated protein 102 which serves as a post-synaptic scaffold for glutamate receptor signaling in 

developing cortical neurons. SNA1 is the only PDZ domain in alpha-1-syntrophin which serves as 

a scaffold for dystrophin protein complexes in Rac1 signaling in skeletal muscles. SHK1 is the 

first PDZ domain in SHANK1, a scaffolding protein that clusters neurotransmitter receptors 

necessary for synapse changes and development. PDZ-RhoGEF and LARG were of interest due 

to their imperative roles in cellular signaling and mobility [166], an analogous function of CXCR2. 

PDZ-RhoGEF and LARG possess one PDZ domain and were known to bind to PlexinB1/2, 

LPA1/2, and insulin-like growth factor-1 receptor in addition to CXCR2 [166]. These together 

raise an interesting question regarding the mechanism of how CXCR2 is recognized by different 

PDZ domains and how PDZ-RhoGEF PDZ binds to different substrates.  

3.2 Binding specificity of the PDZ-CXCR2 interaction  

To understand the interaction between PDZ-RhoGEF and CXCR2, we solved the crystal 

structure of PDZ-RhoGEF PDZ in complex with the C-terminal sequence (TTSTL) of CXCR2. 

The overall structure of PDZ-RhoGEF PDZ is similar to other PDZ domains [163], consisting of 

six β strands (β1-β6) and two α-helices (αA and αB) (Fig. 1B). The CXCR2 peptide binds in the 

cleft between β2 and βB, burying a total solvent-accessible surface area of 507.4 Å2. The binding 

specificity of the PDZ-CXCR2 interaction is achieved through networks of hydrogen bonds and 

hydrophobic interactions (Fig. 1C). At the ligand position 0, the side chain of Leu0 is nestled in a 

deep hydrophobic pocket formed by conserved residues Phe57, Phe59 and Val61 from β2 and 

Val106 and Ile109 from αB (Fig. 1D). In the pocket, the position of Leu0 is further secured by 

both a hydrogen bond from its amide nitrogen to the Phe59 carbonyl oxygen and bifurcated  
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Figure 23. Structure of PDZ-RhoGEF PDZ (rPDZ) in complex with the CXCR2 C-

terminal sequence TSTTL. 

(A) PDZ Array screen of CXCR2-binding PDZ domains. Kv1.4 serves as a positive control for 

PDZ-peptide binding, and GST alone a negative control. (B) Ribbon diagram of rPDZ-CXCR2 

structure. The PDZ is shown in blue and CXCR2 in magenta. Secondary structures are numbered 

and labeled based on their sequence position. (C) Detailed view of the PDZ ligand-binding site. 

2Fo-Fc omit map of CXCR2 peptide was calculated at 2.4 Å and contoured at 1.0 s. Hydrogen 

bonds are illustrated as yellow broken lines. (D) Sequence alignment of CXCR2-binding PDZ 

domains. Identical residues are represented as white on black and similar residues are colored in 

cyan. Residues important for binding to CXCR2 are indicated by asterisks. The secondary structure 

elements are labeled according to 1B.  

hydrogen bonding between the Leu0 carboxylate and the amides of Phe57 and Gly58. Similar 

interactions have been observed in several other PDZ-mediated complexes which represent the 

most-conserved binding mode for terminal leucine recognition [163]. Residues at other peptide 

positions also contribute to the PDZ-CXCR2 complex formation. At position 1, the side chain 

hydroxyl of Thr-1 forms a hydrogen bond with the Og1 atom of the Thr60 side chain. At position 

2, Thr-2 makes one hydrogen bond to the His102 imidazole group and two hydrogen bonds to the 

highly conserved residue Val61. At the ligand position 3, the interactions with Ser-3 include one 

hydrogen bond from its side chain hydroxyl to the Oε1 atom of Gln70, and a VDW interaction 

with the side chain of Ser62. Finally, the peptide residue Thr-4 engages in a main-chain contact 
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with Gly63, but does not participate in any specific side-chain interactions. These observations 

indicate that the last four residues of CXCR2 contribute to the binding specificity in the PDZ-

CXCR2 complex formation.  

3.3 CXCR2 and PDZ binding promiscuity  

To gain insight into promiscuous CXCR2 binding by different PDZ domains, we compared 

the structures of all available PDZ domains in complex with CXCR2, including NHERF1 PDZ1, 

NHERF1 PDZ2 and current PDZ-RhoGEF PDZ (rPDZ)[163, 167]. We also compared the rPDZ-

CXCR2 structure to the structure of rPDZ in complex with a PlexinB2 peptide in order to 

understand PDZ binding promiscuity. These liganded PDZ structures are very similar with 

pairwise root-mean-square differences (RMSDs) ranging from 0.47 to 0.87 Å for entire C atoms 

(Fig. 2A). The main chains of the bound peptides superimpose well, as do their relative spatial 

positions to the conserved PDZ motifs. Additionally, the ligand recognition modes at the peptide 

positions 0 and 2 are virtually indistinguishable, characterized by structurally similar binding sites 

composed with highly conserved residues (Fig. 2B). This observation is consistent with previous 

evidence that the 0 and 2 residues of the ligand are critical for determining the binding specificity 

and affinity of PDZ-peptide interaction [163].  

Large differences were found in ligand recognition at the peptide positions 1 and 3. In 

CXCR2-binding PDZ domains, residues that recognize these two positions are not conserved; in 

fact, the residues that recognize the 3 position are not even structurally equivalent (Figs. 1D and 

2B). At position 1, the binding conformation of Thr-1 is nearly identical in different PDZ 

structures. The side chain of Thr-1 is oriented towards the same direction facing a residue 

equivalent to rPDZ Thr60. As a result, Thr-1 is recognized by different residues from the 

equivalent position. In NHERF1 PDZ1, the side chain hydroxyl of Thr-1 is stacked by the  
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Figure 24. Structural comparison between PDZ-ligand complexes. 

(A) Superposition of rPDZ-CXCR2 (blue), rPDZ-PlexinB2 (green), NHERF1 PDZ1-CXCR2 

(pink) and NHERF1 PDZ2-CXCR2 (orange). PDZ domains are represented by ribbon, and 

ligand residues are displayed as sticks. (B) Superposition of PDZ ligand-binding sites. Colors are 

identical from 2A. (C) Sequence alignment of last five residues of known rPDZ binding targets. 

imidazole ring of a histidine residue. In NHERF1 PDZ2, the side chain hydroxyl of Thr-1 forms a 

hydrogen bond with the side chain nitrogen of an asparagine. In current rPDZ structure, the 

equivalent hydroxyl group forms a hydrogen bond to the side chain of Thr60. In SHK1 and DLG3-

D2, Thr-1 may interact with a valine and serine respectively (Fig. 1D). This demonstrates Thr-1 

can be recognized by different residues via different interactions without the need for significant 

structural changes. This is also consistent with previous data that 1 residue in the peptide ligands 

is less stringently specified by individual PDZ domains than the residues at the 0 and 2 positions, 

thereby allowing binding promiscuity [163].  

At position 3, the peptide binding is more PDZ specific, facilitated by the rotameric 

flexibility of Ser-3 (Fig. 2B). In the binding, Ser-3 adopts different rotamers and each rotamer is 

able to bind to a unique position in PDZ domains. In NHERF1 PDZ1, the side chain hydroxyl of 

Ser-3 points to the N-terminus of the peptide forming a hydrogen bond to a histidine residue at the 

receptor position 1. In NHERF1 PDZ2, the side chain hydroxyl of Ser-3 points towards the C-

terminus forming a hydrogen bond to an asparagine at the receptor position 2. In current rPDZ, the 

pointing direction of the Ser- 3 side chain is perpendicular to the peptide direction which enables 
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hydrogen bonding with a glutamine residue at the receptor position 3. Of note, all these receptor 

positions have been suggested to contribute to a high degree of selectivity in PDZ ligand 

recognition and the ability for the PDZ domain family to bind to different sequences [168]. The 

present study is extending the role of these receptor positions in determining binding diversity, and 

the fact that one of such positions can be specifically selected for interacting with 3 residue makes 

it possible for different PDZ domains to recognize the ligand residues of same sequence, providing 

an explanation for promiscuous CXCR2 binding.  

The structural comparison between rPDZ-CXCR2 and rPDZ-PlexinB2 provides some 

insight into PDZ binding promiscuity. The residues at the ligand positions 1 and 3 are highly 

variable across rPDZ binding targets (Fig. 2C) indicating an ability of rPDZ to bind to ligands with 

different 1 and 3 side chains. At position 1, Thr-1 of CXCR2 forms a hydrogen bond with Thr60, 

whereas most of the side chain atoms of Asp-1 in PlexinB2 are disordered suggesting no stable 

interaction between Asp-1 and rPDZ; and the 1 position of PlexinB2 may not significantly 

contribute to the binding specificity (Fig. 2B). At position 3, Val-3 of PlexinB2 forms less 

discriminative VDW interactions with Gln70 and Ser62, differing from Ser-3 of CXCR2 which 

forms a specific hydrogen bond with Gln70. This difference indicates that rPDZ is able to form 

different types of interactions with 3 residues, which may underlie its flexibility to accommodate 

ligands with different 3 side chains.  

3.4. Disulfide bond linked PDZ dimer  

The most intriguing finding in current rPDZ structure is an asymmetric disulfide bond-

linked PDZ dimer found in the asymmetric unit of the crystal (Fig. 3A). PDZ dimerization has 

been well appreciated as an important mechanism for improving PDZ scaffolding capacity during  
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Figure 25. Disulfide bond linked PDZ dimer. 

(A) Overall view of PDZ dimer (side view, left; top view, right). (B) Close-up view of the dimer 

interface. 2Fo-Fc omit map of the disulfide bond was calculated at 2.4 Å and contoured at 1.0 s. 

(C) SDS-PAGE of 5 µg of rPDZ-CXCR2 fusion protein with/without BME.  

the formation of multiprotein complexes [165]. The dimerization is usually formed by non-

covalent PDZ-PDZ interactions that put two canonical binding sites in a close proximity to 

facilitate a parallel or antiparallel nucleation of interacting proteins. However, the nature and 

significance of the less common disulfide bond-linked dimers remain largely elusive, though a few 

studies have suggested that the formation of disulfide bonds between proteins can be triggered by 

reactive oxygen species during cellular signaling [169]. In current rPDZ structure, two Cys47 on 

the outer surface of the b1 strand form an intermolecular disulfide bond responsible for PDZ 

dimerization (Fig. 3A). The dimer is an asymmetric dimer with the upper side having a pseudo 2-

fold symmetry generated by parallel stacking of two copies of strands b1 and b6, and the lower 

side being asymmetric generated by the interaction between αA and β4 from different monomers. 

The buried surface area at the dimer interface is 777.6 Å2.  

In addition to the disulfide bond, the dimer interface is further stabilized by several 

hydrogen bonds and hydrophobic interactions (Fig. 3B). At the upper side of the interface, there 
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is a continuous hydrophobic core formed by pairs of residues Ile49, Tyr114 and Ala116, which is 

located above the disulfide bond bridge. At the lower side of the interface, two asymmetric 

hydrogen bonds are formed: Lys91 from the β4-β5 loop in monomer A forms a hydrogen bond 

with Ala81 carbonyl oxygen from the αA helix in monomer B; Lys80 from the αA helix from 

monomer B forms a hydrogen bond with Asn93 carbonyl oxygen from the β4-β5 loop in monomer 

A. Of note, all these residues including the disulfide bond forming residue Cys47 are highly 

conserved in the PDZ and RGS-containing GEF protein family suggesting a conserved function 

of this disulfide bond-linked dimer (Fig. 1D). Reducing SDS-PAGE indicates that the disulfide 

bonds contribute to the formation of a dimer in solution (Fig. 3C). Previous studies have also 

demonstrated that rPDZ dimerization linked by Cys47 disulfide bond regulates the canonical 

ligand binding and enhances in vitro binding to a bivalent PlexinB2 PDZ motif [34].  

Discussion 

In this study, we identified several CXCR2 interacting PDZ domains including PDZ-

RhoGEF PDZ. We solved the crystal structure of PDZ-RhoGEF PDZ in complex with the CXCR2 

C-terminal tail that provides the molecular basis of the interaction. The crystal structure also 

reveals an unexpected asymmetric disulfide bond-linked PDZ dimer that allows simultaneous 

parallel binding of CXCR2 to two PDZ domains. While the functional link between CXCR2 and 

PDZ-RhoGEF in signaling and cellular mobility requires future investigation, the identification of 

new CXCR2-binding PDZ domains is enforcing the view that PDZ domains play important roles 

in CXCR2 signaling processes capable of scaffolding complex interaction networks and coupling 

CXCR2 signaling to specific signaling pathways, potentially Rho signaling and Rac1 signaling 

through interacting with PDZ-RhoGEF and SNA1 respectively [166]. The identified interactions 

also provide additional models that enable further understanding of PDZ and CXCR2 binding 



 

 

 

96

promiscuity and specificity. The structural comparison is able to reveal the residues at the ligand 

positions 1 and 3 conferring PDZ- and ligand-specific recognition that may underlie the ability of 

CXCR2 to be bound by different PDZ domains and PDZ-RhoGEF PDZ to bind to different 

ligands. Additionally, the finding of the unexpected disulfide bond-linked PDZ dimer further 

demonstrates the structural diversity of PDZ dimerization. Diverse PDZ-PDZ interactions have 

been optimized as a mechanism in scaffolding the formation of distinct multiprotein complexes 

[165]. This non-canonical binding mode has been suggested to contribute more to defining the 

precise composition of protein complexes than does the canonical binding mode due to the 

structural diversity [165]. Therefore, there has been a continuous interest in revealing the specific 

nature of PDZ-PDZ interactions and their selectivity in precise scaffolding of temporal and spatial 

signaling networks. The current study provides an additional example of how PDZ domains may 

dimerize, and the asymmetric interface and rare disulfide bond linkage effectively define a new 

mode of PDZ dimerization, which is different from any reported structures [163]. Together with 

PDZ binding promiscuity, the new mode of dimerization could provide a reactive oxygen species-

sensitive molecular scaffold for assembly of distinct CXCR2 signaling networks in actin 

polymerization and cell mobility.  
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Table 2. Crystallographic data and refinement statistics 

Data  

Space group C2221 
Cell parameters  

a, b, c (Å) 61.7, 66.6, 168.4 
Wavelength (Å) 1.07822 
Resolution (Å) 84.2-2.40 (2.44-2.40)a 
Rmerge

b 0.094 (0.738) 
Redundancy 6.5 (6.1) 
Unique reflections 13997 
Completeness (%) 99.9 (99.2) 
〈I/σ〉 11.2 (2.2) 
Refinement  
Resolution (Å) 43.7-2.40 (2.44-2.40) 
Molecules/AU 4 
Rwork

c 0.206 (0.303) 
Rfree

d 0.243 (0.356) 
Ramachandran plot  
Residues in favored 98.0% 
Residues in allowed 2.0% 
RMSD  
Bond lengths (Å) 0.009 
Bond angels (°) 1.19 
No. of atoms  
Protein 2619 
Peptide 144 
Water 13 
B-factor (Å2)   
Protein 64.6 
Peptide 70.7 
Water 51.5 

aNumbers in parentheses refer to the highest resolution 

shell. 

bRmerge= Σ|I-〈I〉| / ΣI, where I is the observed intensity 

and 〈I〉 is the averaged intensity of multiple 

observations of symmetry-related reflections. 

cRwork= Σ|Fo-Fc| / Σ|Fo|, where Fo is the observed 

structure factor, Fc is the calculated structure factor. 

dRfree was calculated using a subset (5%) of the 

reflection not used in the refinement. 
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X-ray crystallography is the gold standard method for imagining macromolecules to atomic 

resolution. Three dimensional data is central to understanding the molecular mechanism how 

DNA, RNA and proteins function in biological events.  Structural insights into these events 

provide a molecular window to visualize how biological molecules influence human health. 

Visualizing the architecture of these molecules set the stage for rational and selective drug design. 

The following dissertation utilizes biochemical and biophysical tools, including X-ray 

crystallography, to shed light on poorly understood mechanisms related to SMYD2 activity and 

regulation, USP10 architecture and function, and PDZ-RhoGEF dimerization. 

SMYD2 is one member of the SET and MYND domain-containing protein (SMYD) family 

known to play key roles in cardiac function and development, innate immunity and tumorigenesis. 

While the molecular pathways involved in these events have been fairly described, the molecular 

mechanism of substrate recognition and bilobal changes have not. In this dissertation, I review the 

structure and function of SMYD protein family. In addition, I demonstrate SMYD2 and SMYD3 

can exist in open and closed conformations based on X-ray crystallography, small angle X-ray 
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scattering, and molecular dynamic simulations data. Lastly, I revealed a novel binding site in 

SMYD2 that appears to be the first recognition site for SMYD methylation clients. 

USP10 is one member of the ubiquitin-specific protease family important for DNA repair 

and apoptosis by recycling cytosolic p53. However, in the mutant p53 environment, USP10 serves 

as an oncogene; thereby promoting mutant p53-dependent cancer cell growth. Additional studies 

found related USP10 oncogene roles in other cancers. Unfortunately the biochemistry and structure 

of USP10 hasn’t been thoroughly explored. My dissertation aims to understand the biochemistry 

and architecture of the catalytic domain of USP10 along with reported USP10 inhibitors which 

would be valuable for future studies to probe USP10 function and inhibition. 

PDZ-RhoGEF is one member of the Rho guanine exchange factors (RhoGEF) family 

important for modulating Rho activity and actin-based cytoskeleton remodeling. PDZ-RhoGEF 

possesses a PDZ domain known for complexing with the cytoplasmic tail of Plexin B serving as  

modulator for downstream signaling factors. In our study, we found PDZ-RhoGEF complexes with 

the Interleukin-8 chemokine receptor, CXCR2. This novel interaction hasn’t been reported before, 

and in my dissertation, I solved the crystal structure of PDZ-RhoGEF in complex with the PDZ 

motif of CXCR2. Unexpectedly, we identified a disulfide bond linking two PDZ-RhoGEF 

molecules. This disulfide bond was previously reported to be important for promoting PDZ-ligand 

binding between PDZ-RhoGEF and Plexin B2 peptides. Here, I describe the architecture of the 

disulfide-linked PDZ domain of PDZ-RhoGEF in complex with two CXCR2 PDZ-motifs. 
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