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CHAPTER 1. INTRODUCTION 

1.1 Background and Motivation 

Reliability assessment and failure prediction of materials/assets are receiving increasing 

attention in modern industries such as the automotive industry, steel industry, and aircraft 

industry. General purposes of reliability analysis include field life prediction [1], 

residual/remaining life assessment [2], accelerated life testing [3], maintenance planning [4, 5], 

etc. Effective reliability analysis not only remarkably improves assets’ reliability performance 

estimation and failure prediction but also contributes to making more efficient maintenance 

policies which can significantly lower the assets’ operational cost. As a result, more and more 

investment has been devoted to pursue a high degree of reliability evaluation accuracy in recent 

years. 

In materials science, it has been shown that material physical properties significantly 

impact materials reliability and failure. For example, steels with higher strength and toughness 

oftentimes demonstrate longer service lifetimes when they are subject to mechanical force 

loadings. Rocks with a larger volume fraction of porosity usually are more prone to crack 

failures. Composite materials with fibers that have a larger Young’s modulus may exhibit a 

higher overall strength and thus are less susceptible to failure. In this dissertation research, we 

shall focus on studying three steel physical properties of various scales that significantly impact 

steel reliability. That is, 1) a macro-scale property called overload retardation; 2) a local-scale 

property called dynamic local deformation; and 3) a micro-scale property called microstructure 

effect. More specifically, property 1) takes effect under a context of crack propagation subject 

to fatigue loading. When loads are not exactly cyclic either due to environmental randomness 
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or artificial designs, those with amplitudes higher than a threshold limit are referred to as 

overloads. Researchers have revealed that for some materials overloads decelerate rather than 

accelerate the crack propagation process. Such counterintuitive effect is called overload 

retardation. Property 2) regards a dynamic deformation process of a material when it is subject 

to force loadings, and local deformation is defined as the displacements of various local points 

of the material. Local deformation contains richer information compared to global deformation 

(such as overall elongation) and more fundamentally determines material failures. In property 

3), material microstructure refers to a small scale structure of a material, defined as the structure 

of a prepared material surface as revealed by a microscope using a magnification no less than 

25×. Material microstructure has been shown to strongly influence material macroscopic 

properties such as strength, hardness, toughness, and wear resistance, which in turn affect 

material service lifetime. As a result, reliability analysis of steels could be significantly biased 

if we ignore properties 1) - 3). 

As physical properties 1) - 3) have strong impacts on steel reliability, in this dissertation we 

aim at developing systematic and effective methodologies to incorporate them into steel 

reliability analysis. 

1.2 Literature Work 

In reliability engineering, most existing analyses have been conducted based on two types 

of data, termed time-to-failure/lifetime data [6] and degradation data [7]. Examples of lifetime 

based reliability analysis (possibly subject to time censoring) can be found in [3, 8-11]. When 

covariates such as environmental variables and stress/loading conditions are available, 

covariate adjusted lifetime analyses are developed in various application fields, e.g., see Hong 
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and Meeker [6], Zhao and Elsayed [3], and Si and Yang [12]. Compared to time-to-failure data, 

degradation data often provide more useful information in assessing asset reliability as they 

present detailed deterioration paths to failure rather than report the final failure times. Common 

examples of degradation data (over time) include the crack growth on a plate, the deformation 

of a material, the fatigue damage of a mechanical structure, the light output from an LED array, 

and the power capacity of a battery. Statistical methods for degradation data analysis mainly 

include the general path model [7] and stochastic process models such as Wiener process [13], 

gamma process [14], and Inverse Gaussian (IG) process [15]. In addition to degradation 

measurements, some other useful data may also be simultaneously recorded, e.g., 

environmental conditions (temperature, voltage, humidity, etc.), loading conditions (loading 

force, loading frequency, etc.) and material property information (strength, toughness, hardness, 

etc.). These data are termed as covariates and contain valuable information in assessing asset 

degradation. Incorporating covariates into degradation analysis has been shown to result in 

more accurate reliability estimation and more efficient maintenance planning, e.g., see Liao 

and Tian [16] and Chen, et al. [17]. Although a large amount of model-based and data-driven 

methods have been proposed for product reliability evaluation, none of the existing studies 

quantitatively incorporates properties 1) - 3) into material reliability modeling. 

In materials science, properties 1) - 3) have been widely studied with focuses on their 

mechanism explanations/interpretations, mechanical effects, experimental designs, and 

impacts on material failures. Often physical models and finite element methods (FEM) are 

utilized to model the aforementioned properties. For examples of investigations on overload 

retardation, one can refer to Lankford and Davidson [18], Daneshpour, et al. [19], and 
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Dominguez, et al. [20]. For the material local deformation, some literature works can be found 

in Hashimoto, et al. [21], Kolednik [22], and Springmann and Kuna [23]. For material 

microstructure analysis, examples of studies include Modi, et al. [24], Sarwar and Priestner 

[25], and Carpinteri [26]. However, most existing studies do not quantitatively link properties 

1) - 3) to material time-to-failure/lifetime, and they often do not consider failure uncertainties 

of materials that widely exist in real applications. Moreover, many aforementioned studies also 

ignore measurement errors in their modeling.  

As properties 1) - 3) strongly impact material failures, material reliability analysis without 

considering them could result in significant bias, and material lifetime inference may also be 

strongly distorted in some situations. The major challenges of incorporating properties 1) - 3) 

into material reliability estimation are three-fold. First, there is no existing quantitative physical 

equations/models to directly link material lifetime with the three physical properties. Second, 

the quantitative modeling of the three properties themselves is difficult. Third, it is challenging 

to incorporate the failure uncertainties and measurement errors into reliability modeling.  

1.3 Dissertation Objective 

In this dissertation, the objective is to develop systematic and quantitative methodologies 

for steel reliability analysis by incorporating physical properties 1) - 3). Failure uncertainties 

and measurement errors are considered in the proposed modeling. More specifically, the key 

points of the objective are listed as follows: 

a) Develop efficient statistical/physical-statistical methods to characterize or extract features 

from material properties 1) - 3);  

b) By applying results of (b), build statistical models to establish quantitative relationships 
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between material properties 1) - 3) (or the extracted features) and material reliability/failure; 

c) Investigate theoretical properties of the proposed methodologies through statistical 

inferences as well as simulation studies; 

d) Design and conduct appropriate physical experiments, and then apply the proposed 

methodologies to demonstrate their real application performances. 

1.4 Dissertation Organization 

This dissertation consists of three major chapters, preceded by the current introduction 

chapter (i.e., CHAPTER 1) and followed by a conclusion (i.e., CHAPTER 5). Specifically, in 

CHAPTER 2 a novel physical-statistical model is proposed for steel reliability estimation by 

incorporating the macro-scale overload retardation property. In CHAPTER 3, a novel 

multivariate general path model is proposed for reliability analysis by considering the local-

scale steel dynamic deformation property. In CHAPTER 4, a novel distribution-based 

functional linear model is proposed for reliability analysis by utilizing steel microstructure 

image information.  
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CHAPTER 2. RELIABILITY ANALYSIS BY CONSIDERING STEEL MACRO- 

SCALE OVERLOAD RETARDATION PROPERTY 

2.1 Overview    

Crack propagation subjected to fatigue loading has been widely studied under the 

assumption that loads are ideally cyclic with a constant amplitude. In the real world, often loads 

are not exactly cyclic either due to environmental randomness or artificial designs. Loads with 

amplitudes higher than a threshold limit are referred to as overloads. Researchers have revealed 

that for some materials overloads decelerate rather than accelerate the crack propagation 

process. This effect is called overload retardation. Ignoring overload retardation in reliability 

analysis can result in a biased estimation of product life. In the literature, however, research on 

overload retardation mainly focuses on studying its mechanical properties without modeling 

the effect quantitatively and therefore cannot be incorporated into reliability analysis of fatigue 

failures. In this chapter, we propose a physical-statistical model to quantitatively describe 

overload retardation considering random errors. A maximum likelihood estimation approach is 

developed to estimate the model parameters. In addition, a likelihood ratio test is developed to 

determine whether a tested material has an overload retardation or overload acceleration effect. 

The proposed model is further applied to reliability estimation of crack failures when a material 

has the overload retardation effect. Specifically, two algorithms are developed to calculate the 

cumulative distribution function of time-to-failure and the corresponding pointwise confidence 

intervals. Finally, designed experiments using 304 stainless steel are conducted to verify and 

illustrate the developed methods along with simulation studies. 

2.2 Introduction 

Fatigue failure has been widely studied in the literature as approximately 90% of 
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mechanical failures are due to the presence of material fatigue [27]. Examples of fatigue 

failures in history include the Silver Bridge collapse [28], the German ICE train accident [29], 

the Liberty ship fracture [30], etc. Crack propagation induced by fatigue loads, which results 

in fatigue failure, has been investigated in both mechanical and statistical fields. In the 

mechanical field, most of the existing research focuses on studying the mechanical properties 

of fatigue crack propagation. Ritchie [31] reviewed various types of mechanisms and theories 

of fatigue crack propagation proposed by researchers. Based on these mechanical theories, 

numerical simulation models [32] and finite element models [33] were also developed to 

delineate fatigue crack propagation. In the statistical field, stochastic processes such as the 

Markov process [34], Semi-Markov Process [35], and gamma process [36] were used to 

describe the fatigue crack propagation. Furthermore, statistical degradation models [37] were 

also applied to characterize the crack propagation as a crack propagation (over time) path can 

be treated as a degradation path.  

Most of the existing research on fatigue crack propagation assumes that fatigue loads are 

ideally cyclic with a constant amplitude. In this situation, the crack propagation can be modeled 

by the Paris law [38] as follows. 

( )
mda

c K
dN

= ∆                              (1) 

where N  is the cumulative number of fatigue loading cycles; a  is the crack length; da dN  

represents the crack growth rate; c  and m  are material parameters; and K∆  is the range 

of stress intensity factor, a physical descriptor of the stress intensity fluctuation at the crack tip 

during a loading cycle.  

In the real world, however, either due to environmental randomness or as a result of 
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artificial designs, fatigue loads may not be ideally cyclic. Loads with amplitudes exceeding a 

threshold limit are referred to as overloads. In the literature, it has been found that for some 

materials overloads decelerate rather than accelerate crack propagation [39]. This counter-

intuitive effect is called overload retardation.  

Figure 2.1 depicts three possible types of crack propagation paths when an overload occurs 

at cycle 
0

N : curve 1 shows an accelerated crack propagation process when the material has an 

overload acceleration effect, curve 2 presents a decelerated crack propagation process when 

the material has an overload retardation effect, and curve 3 illustrates a crack propagation 

process following the conventional Paris law when the material has neither overload retardation 

nor overload acceleration effect. The material effect represented by curve 3 is called overload 

stationary in this chapter.  

a         1     3     2 

 

 

 

      
0N                          N  

Figure 2.1: Crack length – cumulative number of loading cycles curves 

The overload retardation effect has been widely observed in the real world for various 

materials, including structural steels, aluminum alloys, and titanium alloys [40-42], under 

various combinations of loading parameters, product geometries, and environmental conditions 

[43, 44]. As overload retardation significantly affects crack propagation, ignoring this effect 

can result in a biased estimation of product life in the life design stage [45]. In many situations 

C
ra

ck
 l

en
g

th
 

Cumulative number of loading cycles 
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of product life design, overloads are added to regular fatigue loads during fatigue tests to 

accelerate the life testing procedure. If the added overloads are expected to accelerate the crack 

propagation, the designed product life is set longer than the product life obtained in the testing 

stage. However, if the tested material has an overload retardation effect, the added overloads 

actually decelerate rather than accelerate the crack propagation; thus, the real product life 

should be shorter than the tested life. As a result, the original design ignoring overload 

retardation leads to an overestimation of product life in the design stage. This is one of the 

causes of the Comet airplane crash [46]. 

In the literature, most of the research on overload retardation focuses on studying the 

physical explanation and its mechanical properties. Lankford and Davidson [18] proposed a 

theory of mechanics to explain the overload retardation effect by attributing the effect to a 

formation of a special plasticity area at the crack tip when an overload occurs, and they claimed 

that this plasticity area retarded crack propagation. Based on the aforementioned theory, 

mechanical properties of overload retardation, such as the crack tip blunting, strain hardening, 

crack closure and compressive residual stresses ahead of crack tip, have been widely studied 

in the literature [19]. Although these studies discussed retardation effect, they did not model it 

quantitatively. Moreover, based on the mechanical theories and studies of overload retardation, 

some simulation models have also been developed to study the time of fatigue failure 

considering overloads. Dominguez et al. [20] developed a simulation model to estimate the 

failure time when random overloads were added in fatigue loads. Although their simulated 

failure times are close to those obtained in physical experiments, the analysis is based on time-

to-failure data rather than degradation paths that can capture more precise failure information. 
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Another simulation model was developed by Kim and Shim [47] to describe the crack 

propagation subjected to a single overload. However, the research does not provide a systematic 

method to estimate model parameters considering random errors. In addition, the study is based 

on a restricted assumption that the occurring time of the overload is fixed and predetermined 

though the assumption may not be feasible in real world applications.  

In the area of statistical reliability engineering, reliability studies are primarily based on 

analyses of time-to-failure data [8, 9] or degradation path data [48] obtained in normal or 

accelerated life tests [49, 50], through parametric, nonparametric modeling methods [51] or 

Monte Carlo simulation method [52], aiming at time-to-failure estimation, remaining life 

prediction, etc. [53, 54]. Besides system lifetime analysis, some other applications of reliability 

studies include maintenance optimization [5] and fault diagnosis [55, 56]. For our problem, 

conventional reliability methods based on analyses of degradation paths [48, 57] cannot be 

directly applied to analyzing crack propagation paths when the material has an overload 

retardation effect. Although crack propagation paths in the time domain can be directly 

described by applying curve fitting methods (e.g., polynomial approximation, B-spline), such 

direct application may violate the physical mechanism of overload retardation. For example, 

before an overload arrives, the physical domain curve should be a straight line. Nonetheless, in 

the time domain, the directly fitted curve is inevitably contaminated with random errors, and 

the contaminated time domain curve uniquely determines a physical domain curve which could 

not be a straight line, therefore violating the Paris law. Furthermore, the multiple samples of 

crack propagation paths with overloads being applied at different time points cannot be 

assumed coming from the same degradation population, which is usually the presumption of 
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existing degradation models.  

In this chapter, we propose a physical – statistical model to quantitatively model the 

overload retardation as well as the overload acceleration effect. A maximum likelihood 

estimation method is developed to estimate the model parameters. Given an observed crack 

propagation path, a likelihood ratio test is developed to determine whether the tested material 

has an overload retardation or overload acceleration effect. The proposed model is further 

applied to reliability estimation of crack failures.  

The layout of this chapter is as follows: Section 2.3 presents the proposed physical-

statistical model; Section 2.4 develops the maximum likelihood estimation for model 

parameters; Section 2.5 develops the likelihood ratio test to determine whether a material has 

an overload retardation or acceleration effect; Section 2.6 applies the developed physical – 

statistical model to reliability estimation; Section 2.7 verifies the proposed model by using a 

designed physical experiment, along with a simulation study; and Section 2.8 concludes the 

chapter and discusses future work.  

2.3 Physical – Statistical Model 

A physical – statistical model is proposed for overload retardation in crack propagation in 

which both physical mechanisms and random errors are considered. With minor changes this 

model can also describe overload acceleration. In this research, we focus on modeling the effect 

of a single overload that is added into regular fatigue loads.  

In the proposed physical – statistical model, the crack propagation paths are characterized 

in two domains. The first domain is the crack growth rate – range of stress intensity factor 

( da dN K− ∆ ) domain (later called physical domain in this chapter), and the domain is most 
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popularly employed in mechanical property analysis of crack propagations as it reveals the 

physical inner rules [58]. For example, the conventional Paris law depicted by (1) is 

established in this domain. Specifically, K∆  in (1) is a physical descriptor that characterizes 

the stress intensity fluctuation at a crack tip; the stress intensity fluctuation in nature causes a 

crack to open and close, and in turn drives the crack propagation. Figure 2.2 (a) below 

illustrates a crack propagation process in the physical domain, where x denotes ( )log K∆ , y  

denotes ( )log da dN , and line DE represents a crack propagation process following the Paris 

law. The path D-A-B-C-E in Figure 2.2 (a) illustrates a crack propagation with overload 

retardation when an overload occurs at point A; after point A the crack growth rate plummets 

and then returns back to the Paris law that is represented by line DE. The second domain is the 

observed crack length – cumulative loading cycles (
o

a N− ) domain (later called time domain 

in this chapter), where 
oa  is the observed crack length. The time domain is mostly adopted in 

statistical models to describe degradation paths. The solid curve in Figure 2.2 (b) illustrates the 

crack propagation process with the same overload retardation effect as illustrated in Figure 2.2 

(a), where the overload is applied at cycle 
0N , and the observed data is denoted by symbol “X”. 

           y                E                  
o

a  

                     C          

            D    A    

                     B              x                  
0N                N   

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	  

 

 

Figure 2.2: Crack growth modeling in physical and time domains 

To quantitatively model overload retardation, we use piecewise linear segments DA-AB-
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BC-CE as illustrated in Figure 2.2 (a) to delineate the logarithm of crack growth rate in the 

physical domain. The random errors are further captured and modeled in the time domain. The 

piecewise linear assumption in the physical domain is consistent with research results in the 

literature [59], as well as the crack propagation paths observed in our experiments. Under this 

assumption, the physical domain modeling is given as follows. 

( )

( ] ( )

( ]

( ]

1 1

0 2 2

3 3

; , ,

; ,

; ,

A C

A B

B C

k x b x x x

g x k x b x x x

k x b x x x

+ ∈ −∞ ∪ +∞


= + ∈


+ ∈

                  (2) 

where ,i ik b
 

( i =1,2,3) are the slopes and intercepts of segment DE, AB, and BC, respectively, 

and ( )logj jx K= ∆  is the abscissa of point  ( , , )j j A B C= .   

 Considering the overload retardation behavior, Equation (2) is subject to two constraints: 

2,1
0k∆ <  and 3,1

0k∆ > , where 2,1 2 1
k k k∆ = −  and 3,1 3 1

k k k∆ = −  as illustrated by the crack 

path D-A-B-C-E in Figure 2.2. Specifically, the first constraint 2,1
0k∆ <  is used to depict the 

decrement of crack growth rate compared to the straight line DE following the Paris law, and 

the second constraint 3,1
0k∆ >  is to ensure that the crack growth rate is able to return back to 

the Paris law after some time. 
 

 
Although model (2) is straightforward in describing the overload retardation in the 

physical domain, not all the parameters in (2) have physical interpretations. A physically 

interpretable parameter set { }1 1 2,1 3,1 1, ,  , , ,k k k b l d= ∆ ∆θ   is thus introduced. Specifically, the 

parameters 
2b  and 

3b  in (2) are replaced by the following equations.  

 

2 2,1 1

3,1 2,1

3 3,1 1

1 2,1

= +

b k l b

k k
b k l b d

k k

= −∆ × +


∆ − ∆
− ∆ × + × + ∆

                     (3) 

 In 
1θ , the slope 

1k  determines the varying rate of crack growth speed before an overload; 
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2,1
k∆  and 3,1

k∆
 

capture the varying rate changes caused by the overload compared to 1k ; 1b  

corresponds to the material constant c  in the Paris law with relationship ( )1
logb c= ; and l  

and d , respectively, denotes the occurring time of the overload in the physical domain and the 

maximum decreasing amount of crack growth rate which captures the degree of overload 

retardation, as shown in Figure 2.3.  

In the time domain, let ( )oa N   denote the observed crack length at cycle N   and let 

( )a N   denote the crack propagation associated with the piecewise model in the physical 

domain represented by Equation (2). The relationship of ( )oa N   and ( )a N   is modeled as 

follows.  

( ) ( ) ( )oa N a N Nε= +                              (4) 

where ( )Nε   is the random error at cycle N  , which is assumed to be independently, 

identically, and normally distributed with mean zero and variance 2σ . 

With minor changes, the developed physical - statistical model can be used to describe the 

overload acceleration effect by changing the constraints of (2) to 2,1
0k∆ >  and 3,1

0k∆ < .  

The corresponding path of the crack growth rate of overload acceleration in the physical 

domain is illustrated by path D-A-B*-C-E in Figure 2.3.     

                          y  

 
                      

  
                        E                

                                  A       C         

                             D    

                                   l   B               
   

x            

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	  

Figure 2.3: Crack growth rate vs. range of stress intensity factor (log-scale) in physical domain
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2.4 Model Parameter Estimation 

The parameters in the proposed physical – statistical model include 
1θ  for the physical 

domain modeling and σ   for the time domain modeling, i.e., { }1 ,σ=θ θ  . We develop a 

Maximum Likelihood Estimation (MLE) method to estimate θ   given an observed crack 

propagation curve in the time domain. In Section 2.4.1, the likelihood function is derived. The 

likelihood function is piecewise with unknown breakpoints, and thus makes the MLE difficult 

to implement. To overcome this difficulty, we propose an approximation of the physical 

Equation (2) in Section 2.4.2. The approximation makes the likelihood function a single piece 

of function that is continuously differentiable with respect to θ . Next, θ  is estimated along 

with its corresponding standard errors in Section 2.4.3.    

2.4.1 Likelihood Function 

Before deriving the likelihood function, the model constraints are eliminated by a variable 

transformation technique. Considering the overload retardation case, we introduce two 

parameters 
*

2,1k∆   and *

3,1
k∆   to replace 

2,1k∆   and 
3,1k∆   by using two equations 

( )*

2,1 2,1expk k∆ = − ∆  and ( )*

3,1 3,1expk k∆ = ∆  so that the two constraints 
2,1 0k∆ <  and 

3,1 0k∆ >  

are eliminated. The transformed model parameters are denoted by 

{ }* * *

1 2,1 3,1 1, ,  , , , ,k k k b l d σ= ∆ ∆θ .  

With respect to *θ  , the likelihood function is derived based on the observed crack 

propagation path, denoted by ( )( ){ }, , 1,2,...,k o kN a N k nX= = , where 
kN  and ( )o ka N  are 

the 
thk  cumulative number of loading cycles and the corresponding observed crack length at 

cycle kN ; n  is the total number of observations. Based on (4), the likelihood function is 

constructed as follows.  
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( )
( ) ( )

2

2* 2

1

1
|

2

o k ka N a N
n

k

L e

−  −

=

= Πθ X σ

σ π
                    (5) 

where ( )k
a N

 
is the model crack length at cycle 

kN .  

In particular, ( )k
a N  is calculated by solving Equation (2), noticing that in (2) x denotes 

( )log K∆ , and ( )0g x  denotes ( )log da dN  at location x. The item K∆  is determined by the 

real time crack length, loading parameters, and specimen geometry. For specimens that have 

regular shapes such as cuboids, K∆  can be calculated with explicit approximate equations. 

However, when specimens have complicated shapes, direct calculation of K∆  is arduous. In 

this case, mechanical models of the specimens, based on which finite element methods can be 

applied to calculate K∆  [60], need to be established.  

2.4.2 Model Approximation in the Physical Domain   

In the likelihood function (5), ( )ka N  is piecewise because ( )0
g x  in (2) is piecewise. 

As a result, the likelihood function will also be piecewise with unknown breakpoints. This 

makes the implementation of MLE difficult. To overcome this challenge, we approximate 

( )0
g x  with a single piece of function that is continuously differentiable with respect to θ . 

Furthermore, we will show that the proposed approximate function converges to ( )0g x  as the 

approximation parameters go to infinity. 

To approximate the function ( )0
g x   in (2), we start by rewriting it as the following 

function ( )1g x .   

( ) { }{ }1 2 2 3 3 1 1min max , , ,  g x k x b k x b k x b x= + + + ∈ℝ              (6) 

where { }
,  if 

max ,
,   

m m n
m n

n else

≥
= 


 and { }
,  if 

min ,
,   

n m n
m n

m else

≥
= 


 

.   

As shown in Figure 2.4 (left), the term { }2 2 3 3
max ,k x b k x b+ +  in ( )1

g x  corresponds to the 
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two half lines BA and BC, and ( )1g x  describes the path D-A-B-C-E for x ∈ ℝ . Thus, ( )1g x  

is equivalent to ( )0
g x . 

           y
                                      

y
        

 

 
                      

  
       E                

                A       C        

            D         B    

                                    
   

x                                        x                  

 
               

Figure 2.4: Illustration of physical domain modeling (left) and its approximation (right) 

Next, we approximate ( )1g x
 

by a single function that is continuously differentiable. In 

the literature, Hardy et al. [61] developed a method to approximate { }1 2max ,m m , where 
1m  

and 
2m   are two given positive numbers. In this research, we extend Hardy’s method to 

approximate the function ( )1g x  that contains mixed operators of max and min acting on three 

functions. The following Proposition 1 is derived to approximate ( )1g x . The detailed proof of 

Proposition 1 is listed in Appendix 1. 

Proposition 1. The following function ( )2 ; ,g x p q   satisfies ( ) ( ), 2 1lim ; ,p q g x p q g x→+∞ =  , 

and thus approximates ( )1g x  when p and q are selected as finite values. 

( ) ( )
( ) ( )

( )
( ) ( )

( )
( )

1

1 1

2 ; ,

p p p
B x U x B x k x b

g x p q x B x
x x

    − − + 
= − + +    

     

ω
ω ω

        (7) 

where x ∈ ℝ  ; ( ) ( )
( )

( )
( )

1

3

2

;

q q

i i

i

M x k x b
U x x M x

x
δ

δ=

  + + 
= −   

   
∑   ( )M x   and ( )B x   are 

positive functions selected to keep functions ( ) i i
M x k x b+ +   ( )2,3i =

  
and ( ) ( )i i

B x k x b− +  

C
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c
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( )1,2,3i =   positive. In this research, we select ( ) ( )
3

1

1
i i

i

M x B x k x b
=

= = + +∑  . In addition, 

( )xδ  and ( )xω  are chosen to avoid the overload flow problem when large values of p and 

q
 
are selected. Specifically, ( ) ( )

3

2

i i

i

x k x b M xδ
=

= + +∑   is to ensure 
( )

( )
0 1

i i
M x k x b

xδ

+ +
≤ ≤

 

for 2,3i =  ; and ( ) ( )
3

1

1
i i

i

x B x k x bω
=

= + + +∑   is to ensure 

( ) { }
( )
2 2 3 3max ,

0 1
B x k x b k x b

xω

− + +
≤ ≤  and 

( ) ( )
( )

1 1
0 1

B x k x b

xω

− +
≤ ≤ .  

 In Proposition 1, the function ( )2
; ,g x p q   is continuously differentiable with respect to 

both the dependent variable x  and model parameters. When p and q go to infinity, ( )2
; ,g x p q  

converges to ( )1
g x . Thus, ( )2

; ,g x p q  can approximate ( )1
g x  when finite values of p and q 

are selected. To assess the accuracy of approximation, the error bounds are derived in 

Proposition 2. The detailed proof of Proposition 2 is listed in Appendix 2. 

Proposition 2. The approximation error ( )xξ   in Proposition 1, defined as 

( ) ( ) ( )2 1= ; ,x g x p q g xξ − , is bounded as follows. 

( )
( )

( ) ( )2 1 2c x c x c x
x

q p q
− ≤ ≤ −ξ                         (8) 

where for any fixed x ∈ ℝ  , ( )1c x   and ( )2c x   are constants defined as 

( ) ( ) { }( )*

1 2 2 3 3
2log 2 max ,c x M x k x b k x b= × + + +    and 

( ) ( ) { }{ }( )*

2 2 2 3 3 1 12log 2 max max , ,c x B x k x b k x b k x b= × + − + + − − . 

Based on (8), as p and q increase, the approximation errors can be uniformly small. The 

error bounds also provide a guideline for selecting p and q. As illustrated in Figure 2.4 (right), 

the dash curve is the approximate crack propagation path in the physical domain. 

 The approximation of Equation (2) for the overload acceleration effect is similar to that 
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for the overload retardation effect. To handle this approximation, the following ( )1g x  needs 

to be applied to replace ( )1g x  in (6).  

( ) { }{ }1 2 2 3 3 1 1
max min , , ,  g x k x b k x b k x b x= + + + ∈ℝ

               

(9) 

Similar to function ( )2 ; ,g x p q   in (7), the following function ( )2 ; ,g x p q   approximates  

( )1g x . 

( ) ( )
( ) ( )

( )
( ) ( )

( )
( )

1

*

1 1

2 ; ,

p p p
B x U x B x k x b

g x p q x B x
x x

    + + + 
= + −    

     

ω
ω ω

         (10) 

where x ∈ ℝ  ; ( ) ( )
( ) ( )

( )
( )

1

3
*

2

;

q q

i i

i

M x k x b
U x x M x

x
δ

δ=

  − + 
= − +   

   
∑  and ( )xδ  , ( )M x  , 

( )B x  and ( )xω  are defined in (7).

 

For the overload stationary case, the conventional Paris 

law equation is a single piece of continuously differentiable function that does not need to be 

further approximated.

 
2.4.3 Estimation of θ and Its Standard Errors 

By maximizing the likelihood function ( )* |L θ X   in (5) with the model crack length 

( )k
a N  being calculated by numerically solving the approximate Equation (7), the parameters 

*θ  are estimated as follows.  

� ( )
*

* *argmax  |L=
θ

θ θ X                            (11) 

Based on the maximum likelihood estimation theory, 
�*
θ  is asymptotically normal under 

the large sample assumption [62]. Hence, the asymptotic covariance matrix � �*θΣ  for �*θ  can 

be calculated from the observed Fisher information matrix 
�( )*

I θ . Specifically, � �
�( )*

1 *−=θΣ I θ  

and the observed Fisher information matrix can be calculated as  
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�( ) ( )( )
�* *

2 *

*

* *

log |

T

L

=

∂
= −

∂ ∂
θ θ

θ X
I θ

θ θ
[62].  

The estimate of model parameters θ  , denoted by ɵθ  , can be computed based on �*θ  

obtained in (11). Specifically, the estimates of �2,1k∆   and �3,1k∆   in ɵθ   are computed as 

� �( )*

2,1 2,1expk k∆ = − ∆   and �
�( )*

3,1 3,1expk k∆ = ∆  , where 
�*

2,1
k∆   and 

�*

3,1
k∆   are given in �*θ  . The 

asymptotic covariance matrix � ɵθΣ  for ɵθ  can be calculated by applying the delta method [63] 

as follows.    

� ɵ � �

ɵ

*

*

* *

T

=

∂ ∂   
=    

∂ ∂   
θ θ

θ θ

θ θ
Σ Σ

θ θ
                         (12) 

The estimates of the standard errors of θ  are square roots of the diagonal elements in � ɵθΣ .   

It needs to be noted that the likelihood function (5) is calculated based on a single crack 

propagation path. The developed MLE method can be easily extended to handle multiple crack 

propagation paths. An example of such an extension to handle multiple crack propagation paths 

with different occurring times of overloads is given in Section 2.6.
 

2.5 Testing of Material Overload Property Subject to an Overload 

Materials can have overload retardation, overload stationary, or overload acceleration 

effects. Given an observed crack propagation curve of a tested material that is subject to an 

overload, it is important to determine whether the overload retardation/acceleration takes effect. 

Thus, we develop the following likelihood ratio hypothesis test.   

0H , the tested material does not have an overload retardation nor overload acceleration effect 

vs. 
1H , the tested material has either an overload retardation or overload acceleration effect. 

        (13) 

Based on the aforementioned hypothesis, the test statistic D  is developed as: 
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( ){ }
( ){ }

0

0 1

sup ,
2 log

sup ,

L H
D

L H H

θ X

θ X
=−

∪
                          (14) 

where “ su p  ” is the supremum operator; ( )0,L Hθ X   and ( )0 1,L H Hθ X ∪   are the 

likelihood functions under the null hypothesis and the full model, respectively. Specifically, 

( ){ }0 2sup ,L H Lθ X =  and ( ){ } { }0 1 1 2 3sup , sup , ,L H H L L Lθ X ∪ = , where 
1L , 

2L  and 
3L  

are the maximum likelihood values for the overload retardation model, the overload stationary 

model, and the overload acceleration model, respectively. In particular, 1L  , 2L   and 3L  are 

computed with the model crack length ( )k
a N  being calculated following the approximate 

function ( )2
; ,g x p q

  
in (7), the conventional Paris law equation, and the approximate 

function ( )2
; ,g x p q  in (10), respectively.  

The test statistic D , under the large sample assumption, can be approximated by a chi-

square distribution with degrees of freedom 
2 1df df− , where 

1df  and 
2df  are the number of 

free parameters in the null hypothesis and the full model, respectively. The null hypothesis 
0H  

is rejected if 
2 1

2 ( )  
df df

D χ α−>  , where α   is the specified test significance level and 

2 1

2 ( )df dfχ α−  is the upper α  quantile of the chi-square distribution with degrees of freedom 

2 1df df− . In our problem, 
1 3df =  and 

2 7df = . 

2.6 Application to Reliability Estimation 

Overload retardation can remarkably influence product reliability. However, little of the 

existing reliability estimation research takes the overload retardation effect into consideration. 

In this research, we develop a reliability estimation method that considers such effect as an 

application of the proposed physical – statistical model.  

For consistence with the research in literature, the crack failure is defined to occur when 

the crack length reaches a pre-specified threshold limit 
ca , and the failure time T  is the first 
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crossing time calculated as follows. 

( ){ }min :
c

T N a N a= ≥                            (15) 

In this research, we focus on the case of a single overload added to the regular fatigue loads for 

each sample unit, while the occurring times of overloads for different sample units are different 

and can be treated as being randomly distributed. The exponential distribution is chosen as the 

distribution of overload occurring times although other types of distributions can be applied in 

a similar way.  

The developed reliability estimation method consists of two stages. In Stage 1, by applying 

the proposed physical – statistical model, the model parameters that characterize material 

overload retardation properties can be estimated given a set of observed crack propagation 

paths, obtained either from historical data or through designed experiments. The model 

parameters are estimated using the developed parameter estimation method in Section 2.4. 

Whether the tested material has an overload retardation or overload acceleration effect can be 

further tested using the methods developed in Section 2.5. In Stage 2, the estimated model 

parameters are further used to estimate the Cumulative Distribution Function (CDF) of failure 

times of the product units, each subject to a single overload at a different occurring time. Denote 

the CDF of time-to-failure as ( ) ( ); Pr , 0F t T t tθ = < ≥ . The analytical form of ( );F t θ  is 

difficult to obtain due to the complexity of the physical – statistical model. Hence, we calculate 

the empirical CDF through a simulation method as listed in the following Algorithm 2.1. 

Algorithm 2.1: The calculation of CDF of time-to-failure. 

1. Denote the m observed crack propagation paths with different overload occurring 
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times by 
1,..., mX X  . Assume that 

1,..., mX X   share the same model parameters 

{ }1 2,1 3,1 1, , , , ,
p

k k k b dθ σ= ∆ ∆ , and the occurring time points of the overloads in the 

physical domain, denoted as { }1 2, , ...,
l m

l l lθ = , are different. The model parameters 

{ },
M p l

θ θ θ=   can be estimated by maximizing the likelihood function, i.e.,  

� ( )1arg max | ,...,
M

M M mL=
θ

θ θ X X , where ( )1| , ...,
M m

L θ X X  is defined as 

( ) ( )1
1

| ,...,  
m

M m i i i
i

L L
=

= Πθ X X θ X                   (16) 

In (16), { },
i p i

l=θ θ  ; ( )i i i
L θ X   is the likelihood function for the 

thi   observed 

path and can be calculated by methods developed in Section 2.4. 

2. Simulate an occurring time 0t  of the overload in the time domain from a specified 

random distribution. In this research, the exponential distribution is chosen. 

3. Transform the overload occurring time 
0t  in the time domain to the logarithm of 

the range of stress intensity factor in the physical domain, denoted as 
0l , based on 

the conventional Paris law as overload retardation does not take effect before 
0l .  

4. Based on the estimated model parameters �pθ  and the overload occurring time 0l , 

obtain the complete physical domain curve and calculate the corresponding 

degradation path in the time domain by numerically solving Equation (2).  

5. Based on the calculated degradation path, compute the failure time T  using (15). 

6. Repeat steps 2 to 5 for 
1M  times to obtain the failure times 

iT , 
11,2,...,i M= , 

where 1M   is chosen large enough to provide sufficient precision. The empirical 

estimate of ( );F t θ  can then be obtained as ( ) 11

1 ,1
; ,

M

i Ni
F t M Iθ

−

=
= ∑ɵ  where 

i,NI
 

equals 1 if 
iT t≤  and 0 otherwise. 

 

We also compute the 95% pointwise confidence intervals of the empirical CDF. Thus, for 
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any time *
t , the probability that the confidence interval at *

t  covers the true value ( )*;F t θ  

is 0.95. There are two major challenges for the interval estimation. First, the theoretical 

distribution of our model parameter estimators is unknown and difficult to derive. Second, 

under most situations the sample size of the crack propagation paths is insufficient for 

straightforward statistical inference as conducting experiments is generally expensive and time 

consuming. To overcome these challenges, we develop the following Algorithm 2.2 by 

applying a bootstrap method. 

Algorithm 2.2: The bootstrap method for interval estimation of model parameters. 

1. Generate 2M  iterations of bootstrap samples [64] from the sample that consists of m 

observed crack propagation paths. 

2. For each bootstrap sample, calculate an empirical CDF of time-to-failure denoted as 

( );jF t θɵ  for 
21,2,...,j M= , following Algorithm 2.1.  

3. Based on the aforementioned M2 CDFs, the 95% pointwise confidence intervals can be 

obtained as their 95% pointwise quantiles. Specifically, denote 

( ) ( ) ( ) ( )( )
21 2; ; , ; , ..., ;

T

Mt F t F t F tF θ θ θ θ=ɵ ɵ ɵ ɵ . The upper bound ( )0.975 ;F t θɵ  and lower bound 

( )0.025
;F t θɵ  are calculated as the 0.975 and 0.025 quantiles of ( );tF θɵ , respectively.  

2.7 Case Study 

We designed and conducted an experiment to verify and illustrate the proposed methods. 

In the experiment, crack propagation paths were obtained by testing specimens that are 

subjected to compact tension (CT) fatigue loads [65] mixed with a single overload. The testing 

machine is the Instron 8801 fatigue testing system as illustrated in Figure 2.5 (left). All the 
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tested specimens were made according to the American Society for Testing and Materials 

(ASTM) E399 standard as illustrated in Figure 2.5 (right). As the tested specimens have regular 

shapes, the range of stress intensity factor, i.e., K∆  in (7), was calculated by the following 

polynomial equation [65]. 

2 3 4

3/2

(2 )
(0.886 4.64 13.32 14.72 5.6 )

(1 )

P
K

H W

∆ +
∆ = + − + −

−

ζ
ζ ζ ζ ζ

ζ
        (17) 

where P∆  is the amplitude of the applied cyclic loading; W  is the specimen width; ζ  is 

the real time ratio of the crack length and the specimen width (i.e., /a W ); and H is the 

specimen thickness.  

               

Figure 2.5: Instron 8801 testing system (left) and the compact tension specimen (right) 

In the experiment, five specimens made of 304 stainless steel were tested. A video was 

recorded to monitor the crack propagation process for each tested specimen. By analyzing the 

recorded videos, five crack propagation paths were obtained.  

2.7.1 Parameter Estimation  

The model parameters were estimated based on the five observed crack propagation paths 
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by maximizing the likelihood function (11). The standard errors of the estimated parameters 

were computed following (12). Table 2.1 below lists the estimated model parameters and the 

corresponding standard errors.  

Table 2.1: Estimated model parameters and standard errors in case study  

Parameters �� ∆��,� ∆��,� b1 d σ 

Estimated value 1.921 -20.982 8.539 -15.085 1.013 0.028 

Standard error 0.0016 2.043 0.431 0.007 0.023 0.004 

Parameters l1 l2 l3 l4 l5 - 

Estimated value 3.496 3.391 3.462 3.447 3.516 - 

Standard error 0.003 0.004 0.002 0.003 0.003 - 

The crack propagation process in the time domain can be calculated by substituting the 

estimated parameters ɵMθ  into (2) and then numerically solving (2). We randomly selected a 

calculated model crack propagation path presented by the solid curve in Figure 2.6	to compare 

with the corresponding experimental path. From Figure 2.6, it can be seen that the crack 

propagation curve fits the experimental path well. 

 

 

Figure 2.6: The observed crack propagation path vs. the model crack propagation path 	
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2.7.2 Overload Property Testing 

We applied the developed likelihood ratio test to determine whether the overload 

retardation/acceleration takes effect for the tested material. The test static D  was calculated 

as 407.28 by using (14). As D  follows a chi-square distribution with degrees of freedom 

equaling 4, the corresponding p-value is calculated and satisfies p << 0.01. Thus, the null 

hypothesis H0 is rejected at a selected test significance level 0.05α=  . As a result, we 

conclude that for the 304 stainless steel, the crack propagation does not follow the conventional 

Paris law. Moreover, considering that �
2,1= -20.98 0k∆ < , the steel has an overload retardation 

effect. The test result is summarized in Table 2.2. 

Table 2.2: Result of overload retardation property testing  

Parameter D ∆��,� p value 

Estimated value 407.28 -20.98 << 0.01 

Conclusion H0 is rejected: there is an overload retardation effect 

2.7.3 Reliability Estimation 

To apply the developed reliability estimation approach, the threshold limit of crack failure 

was specified as 18 mmca = . We assumed that the occurring time of an overload follows an 

exponential distribution with probability density function ( ) e ,( 0)t

T
f t tλλ −= > , where λ  is 

a distribution parameter and indicates the arrival rate of the overload. Based on the five 

experimentally collected crack propagation paths, Algorithm 2.1 was implemented to estimate 

the time-to-failure CDF, and Algorithm 2.2 was applied to estimate the 95% pointwise 

confidence intervals (PCIs) of the CDF. 

 Two overload arrival rates were selected, i.e., 4

1
0.5 10λ −= ×  and 4

2
2 10λ −= × . For each 
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arrival rate, the number of iterations for Algorithm 2.1 was set as 1 10000M =  and the number 

of bootstrap iterations for Algorithm 2.2 was set as 
2 10000M = . The simulation results are 

illustrated in Figure 2.7, in which the solid curves illustrate the estimated time-to-failure CDF, 

and the dash curves illustrate the 95% PCIs. 
 

  

 

Figure 2.7: The estimated failure time CDF and the 95% pointwise confidence intervals  

From Figure 2.7, it can be seen that
 
the mean life corresponding to 

1λ  is shorter than that 

corresponding to 2λ . This result can be explained as follows. For a smaller overload arrival 

rate 
1λ , the corresponding specimen is expected to experience a longer time period (in which 

the crack growth rate increases following the conventional Paris law) before the overload 

occurs so that the crack growth rate can reach a higher value. When the overload occurs, it 

causes a formation of a special plasticity zone at the crack tip which retards the crack 

propagation process. A higher crack growth rate makes the crack propagation take less time to 

penetrate the special plasticity area, after which the overload retardation effect disappears. 

Hence, the expected lifetime due to the overload retardation effect is shorter and thus it results 

in a shorter mean life. 
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2.8 Summary  

 Overload retardation has a significant impact on crack propagation process and in turn 

affects reliability estimation of products with crack-caused failure modes. In this chapter, we 

propose a physical – statistical model to quantitatively model the overload retardation effect. In 

the physical domain, we build up a modified Paris law model to characterize the physical 

mechanism of overload retardation. In the time domain, we model the random errors. The 

developed physical – statistical model can also describe the overload acceleration and the 

overload stationary effects with minor changes. Based on the proposed model, a maximum 

likelihood method is developed to estimate the model parameters. In addition, a likelihood ratio 

test is developed to determine whether a tested material has an overload retardation or overload 

acceleration effect. As an application example, the proposed model is applied to reliability 

estimation of products with a single overload arriving in a random time point. The developed 

methods are illustrated and verified through designed experiments.  

In this chapter, we focus on modeling the material retardation effect of a single overload. 

The proposed model can serve as a foundation for future research to model the complex 

interaction effects of multiple overloads. Moreover, in this chapter we set the overload ratio 

(the amplitude ratio of the overload to the cyclic loading) as a constant. In the future, it will be 

interesting to study how the overload retardation/acceleration effect changes over different 

overload ratios. More research will be conducted to study the overload effect for different types 

of materials under various experimental conditions. In addition, the proposed model can be 

further enhanced by considering sample to sample variations, which is another interesting 

future research topic.  
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The methodologies proposed in this chapter has been published in journal article [66]. 
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CHAPTER 3.  RELIABILITY ANALYSIS BY CONSIDERING STEEL LOCAL-

SCALE DYNAMIC DEFORMATION 

3.1 Overview 

Material deformation is one of the major causes of material failures. In a dynamic 

deformation process, local deformation, defined as the displacement of various local points on 

a material, essentially determines the failure. Most existing studies on material reliability are 

conducted based on either the failure time or the degradation data. They do not consider the 

dynamic local deformation of materials and often are not efficient to model the failure 

mechanism. In this chapter, we develop reliability analysis by utilizing information contained 

in the dynamic local deformation of advanced high strength steel in a tensile process. 

Specifically, a new multivariate general path model is proposed to describe the deformation 

process. A two-stage method is developed to estimate the model parameters and overcome the 

computational complexity. Based on the proposed model, reliability analyses are conducted for 

various cases of material deformation paths. A simulation study is implemented to verify and 

validate the developed methods. Physical experiments using advanced high strength steel are 

designed and conducted to demonstrate the proposed model. 

3.2 Introduction 

Most material failures, such as crack failure, fatigue failure and fracture failure, are 

originally caused by material deformation which often is a dynamic process, e.g., see Song and 

Sih [67], Mughrabi, et al. [68] and Clayton [69]. During the deformation process, the local 

points on the material often dynamically move to new locations. For example, consider a plate 

subject to horizontal tension as illustrated in Figure 3.1, in which the arrows indicate the 

direction of loading force. From time T1 through T2 to T3, the plate is elongated until a crack 
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failure occurs, and three local points A, B, and C, respectively, move through locations A′, B′ 

and C′ to locations A′′, B′′ and C′′. The deformation (e.g., the displacement) of these local points 

is referred to as local deformation in this chapter. In contrast, we also define another term, 

global deformation, for later use as the overall material deformation such as the overall 

elongation of the plate, which is a resultant and average effect of the local deformation. 

  Figure 3.1: Plate deformation over time 

Local deformation can reveal the failure mechanism/characteristic of a material. For 

example, consider the plate in Figure 3.1. As points A, B, and C have experienced different 

magnitudes of force, their absolute local deformation levels (e.g., absolute displacements) are 

different. An important failure characteristic of the plate is that the relative deformation of the 

local points, rather than the absolute deformation, is the determinant of the crack failure. It can 

be seen that when the relative displacement between points A and C reaches some threshold 

level, a crack forms between these two points. In contrast, if the absolute deformations of points 

A and C are large while their relative deformation is zero (such as in a plate translation process), 

the plate would not fail. Such failure characteristic cannot be revealed by the global material 

deformation, while it can be captured if the local deformation is considered. As a result, it is 

necessary to incorporate the dynamic local deformation information into material reliability 

evaluation. 
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 In the materials science literature, local material deformation has been widely studied with 

specific focuses on its physical behaviors, mechanical properties and experimental designs. For 

example, Hashimoto, et al. [21] studied the impact of impulsive pressure 

on the local deformation and buckling of cylindrical tubes. Kolednik and Unterweger [70] 

studied the effect of the ductility of metal matrix composites on material local deformation 

behavior and damage evolution. Kolednik [22] discussed experimental procedures to study 

local material deformation and fracture properties. However, these studies do not quantitatively 

model the local material deformation and failure; thus, they cannot be directly applied to 

material reliability analysis. Furthermore, some other researchers developed simulation-based 

methods to study the local deformation. For instance, Springmann and Kuna [23] developed 

numerical methods to simulate material ductile damage considering its local deformation. 

Müller, et al. [71] and Kim [72] developed finite element methods to simulate material local 

deformation behaviors. However, all the aforementioned studies focus on analyzing the local 

deformation and failure using deterministic models, while in most real situations the 

deformation behaviors are stochastic, and material failures also exhibit randomness and 

uncertainty. Therefore, the aforementioned studies are not efficient enough to be directly 

applied to material reliability analysis. 

 In the reliability engineering literature, material failures have been widely studied based 

on collected lifetime or degradation information. For the lifetime based models, researchers 

utilize the lifetime data collected in designed experiments or from real-world systems to study 

material/product failures. For example, Zhao and Elsayed [3] developed a lifetime prediction 

method utilizing lifetime data in accelerated life testing. Hong, et al. [2] developed a remaining 
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life prediction method using lifetime data that are left truncated and right censored. Hong and 

Meeker [6] utilized lifetime data along with dynamic covariate information for field-failure 

predictions. Yang, et al. [73] conducted reliability analysis using lifetime data collected from 

repairable systems. Recently, Si, et al. [74] developed failure predictions of advanced high 

strength steel by jointly using the lifetime and microstructure image data of the steel. For more 

lifetime based reliability analysis, one can refer to Si and Yang [10], Zhang and Yang [5], Si 

and Yang [12], and Si, et al. [75], etc. In terms of the degradation based reliability analysis, 

rather than using the final failure time data, researchers utilize the degradation level vs. the 

time data that often provide richer reliability information. For example, Lu and Meeker [7] 

estimated time-to-failure distributions using a general path model to fit the degradation data. 

Pan and Balakrishnan [14] conducted reliability analysis using a gamma process to model the 

degradation data. Hong, et al. [76] predicted failures by utilizing degradation data with 

dynamic covariate information based on a linear random effects model. Xu, et al. [77] further 

developed a nonlinear random effects model for failure predictions by using degradation data 

with dynamic covariates. For more degradation based reliability analysis, see Kharoufeh and 

Cox [78], Lawless and Crowder [36], Si, et al. [66], Wang [79], etc. However, none of the 

existing studies incorporates the material local deformation into reliability analysis.  

In this chapter, we conduct reliability analysis by utilizing dynamic material local 

deformation data in a tensile process. Specifically, we designed physical experiments using 

advanced high strength steel to monitor the complex spatio-temporal deformation processes of 

multiple material samples. For each sample, an image stream (consisting of around 1000 

images) was obtained, recording the deformation level over time across a dense grid of points 
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on the plate surface. As a result, the data volume is large. Moreover, the image streams for 

every steel plate were collected with a high speed/rate in a real-time manner. In every second, 

around 30 high-resolution images of deformation were obtained and stored. Thus, the problem 

we study falls into the “big data” context. For some “big data” related reliability analyses, one 

can refer to Meeker and Hong [80]. In our experiment, one limitation of the current Digital 

Image Correlation (DIC) software is that it cannot automatically output the deformation levels 

at all the grid of points on the images. In this chapter, we manually collected the deformation 

paths corresponding to a set of selected points for each material sample from the image stream. 

Although limited deformation data is used in this chapter, the proposed multivariate general 

path model is general and can handle situations when more points are considered and when a 

higher image acquisition rate is used.  

Figure 3.2 illustrates three typical deformation paths (1-3) that respectively correspond to 

local points A – C in Figure 3.1. To describe the collected multiple deformation paths, we 

propose a new multivariate general path model. The model generalizes the univariate general 

path model [7] that focuses on studying a single path. We further develop a two-stage method 

to estimate the model parameters. Moreover, as the relative deformation rather than the absolute 

deformation of the local points is the determinant of the material failure, the traditional failure 

criterion that assumes a failure occurs when the material degradation level (e.g., the absolute 

deformation level) reaches a specified threshold value cannot be directly used. To capture the 

failure mechanism/characteristic, a new variance-based failure criterion is applied. Next, by 

applying the new failure criterion, reliability analyses are developed for various types of 

deformation paths.  
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Figure 3.2: Deformation over time paths of one plate sample 

The remainder of this chapter is organized as follows. In Section 3.3, the multivariate 

general path model and a two-stage model parameter estimation method are proposed. In 

Section 3.4, the variance-based failure criterion is presented. In Section 3.5, reliability analyses 

for different types of deformation paths are developed. In Section 3.6, a simulation study is 

implemented to verify the developed methods. In Section 3.7, physical experiments are 

conducted to demonstrate the proposed model. In Section 3.8, the chapter is concluded, and 

future work is discussed.  

3.3 Statistical Model  

In general, a local deformation process involves two stages. In Stage 1, the deformation is 

elastic for a short period of time. In Stage 2, the deformation process becomes nonlinear, plastic 

and complex [81]. Accurate deterministic/analytical physics equations are not available to 

uniquely determine the spatio-temporal deformation process. To overcome the difficulty, we 

propose a statistical model called multivariate general path model for the dynamic material 

local deformation in Section 3.3.1. Following the model, we develop a two-stage model 

parameter estimation method in Section 3.3.2.  
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3.3.1 Multivariate General Path Model 

Consider N material samples that are subject to deformation loading. For each sample, p 

deformation level vs. the time paths that correspond to p local points on the sample are collected. 

Denote the deformation level of the jth path for the ith sample at time tk by ijk
y . We propose the 

following multivariate (p-variate) general path model to describe the collected deformation 

paths: 

( )

( ) ( )

( )

T
T T T

1 2

2

; ,

, ,..., ~ ,

~ 0,  

ijk ijk ijk k ij ijk

i i i ip

ijk

y x t

N

N

ε η ε

ε σ

 = + = +



=



Φ Φ

ψ φ

Φ φ φ φ µ Σ                   (18) 

where ijk
x  denotes the true deformation level for i = 1, 2,…, N,  j = 1, 2, …, p and k = 1, 

2, …, mij; mij denotes the number of observations in the jth deformation path of the ith sample; 

( ); , ijtη ψ φ  is a path function that depends on a fixed-effect parameter vector ψ  shared by 

all the material samples and a random-effect parameter vector 
ij

φ  for the jth deformation path 

of the ith sample; and ijk
ε  is the random normal error with a mean of zero and a variance of 

2σ .  

In model (18), iΦ   is assumed to be multivariate normal to capture the statistical 

dependency among the p deformation paths in a material sample. An alternative way to model 

the statistical dependency is to assume that some transformation of iΦ , denoted as ( )i
T Φ , 

follows a multivariate normal distribution if some prior or physical knowledge is available. In 

this chapter, we focus on the case when iΦ  is multivariate normal, the basis on which some 

closed-form reliability functions can be obtained, which is discussed in Section 3.5. 

The proposed multivariate general path model is a generalization of the univariate general 

path model developed by Lu and Meeker [7], which handles cases when a single degradation 
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path (e.g., the deformation path) per sample is observed. In our problem, multiple deformation 

paths for each sample are observed, among which statistical dependencies can exist. Therefore, 

the univariate general path model cannot be applied to the individual paths separately, and a 

multivariate general path model is required for modeling those multiple deformation paths 

while considering their statistical dependencies. 

3.3.2 Two-stage Model Parameter Estimation 

In the proposed multivariate general path model (18), the set of model parameters is 

{ }, , ,σΘ =
Φ Φ

µ Σ ψ  . We develop a two-stage method to estimate Θ   given the deformation 

path observations. 

The proposed model involves both fixed-effect parameters and random-effect parameters. 

One popular parameter estimation method for such type of models is based on the use of 

expectation maximization (EM) algorithm, which is a type of MLE method. However, directly 

applying the EM algorithm for the proposed model is subject to two challenges. First, Θ  in 

practice can be high dimensional when the number of deformation paths observed from a 

material sample, i.e., p, is large. Applying the EM approach involves maximizing the likelihood 

function, which is a high-dimensional integration with respect to the random-effect parameters 

and is difficult to calculate. Second, the deformation path in model (18) can be nonlinear and 

complex when the deformation mechanism is complex. Thus, directly applying the EM 

algorithm to estimate the model parameters is computationally intensive and algebraically 

intractable [7, 82]. To overcome these challenges, we develop a two-stage parameter estimation 

method that can significantly simplify the parameter estimation for the multivariate general 

path model. The simulation studies in Section 3.6 show that this two-stage method performs 
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well in terms of parameter estimation accuracy. 

The two-stage method consists of two stages. In Stage 1, the deformation paths of each 

sample are fitted to a specified path function using the method of least squares, and the 

parameters are estimated as � �, iiψ Φ , and �
2

iσ  for i = 1, 2, …, N. The least squares method is 

applied because it has the asymptotic properties listed in Appendix 3, although other curve 

fitting methods such as the MLE method could also be used. In Stage 2, we construct the model 

parameter estimators, denoted by �ψ , �Φµ , �ΦΣ  and �
2

σ , based on the results from Stage 1. 

The details of the method are summarized in Algorithm 3.1 as follows. 

Algorithm 3.1: The two-stage parameter estimation method. 

Stage 1. For each sample, fit a path function using the method of least squares: 

             for i in 1:N, 

� �( ) ( ){ }
2

,
1 1

, arg min ; ,
ij

i

mp

ii ijk k ij

j k

y tη
= =

= −∑∑
ψ Φ

ψ Φ ψ φ                 (19) 

� � ɵ( ){ } ( )
22

1 1

; ,
ijmp

i ijk k i ij i

j k

y t m dσ η
= =

  
= − − 
  
∑∑ ψ φ                  (20) 

            where 
1

p

i ij

j

m m
=

=∑  ; and d is the dimension of ( ), iψ Φ . 

Stage 2. Estimate the model parameters using Equations (21) - (23): 

  � � ɵ �

1 1

1 1
;  

N N

ii

i iN N= =

= =∑ ∑Φψ ψ µ Φ                        (21) 

� � ɵ( ) � ɵ( ) �( )
T

1 1

1 1
var

1

N N

i i i

i iN N
ε

= =

= − − −
−
∑ ∑Φ Φ Φ

Σ Φ µ Φ µ Φ            (22) 

        where �( )var iε Φ  denotes the covariance matrix of � iΦ  caused by the random   

        errors and is calculated as the p p×Φ Φ  lower-right submatrix of  
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η t ψ Φ η t ψ Φɺ ɺ  , where pΦ  denotes the dimension of Φ ;  

             ( ) ( ) ( ) ( )( )
T
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i

Nσ σ
=

 
=  
 
∑                           (23) 

Notice that in Equation (22) of computing the covariance matrix �ΦΣ , we observe that the 

variation caused by the measurement errors in Stage 1 has been subtracted/eliminated. The 

detailed derivation of Equation (22) is listed in Appendix 3. Moreover, in Algorithm 3.1 the 

fixed-effect parameter vector ψ   in some situations can be represented in the form of 

( )
T

T T T

1 2, ,..., p=ψ Λ Λ Λ , where 
jΛ  denotes the fixed-effect parameter vector for the jth path in 

a sample, and 
1 2
, , ...,

p
Λ Λ Λ  are independent. Two examples are the multivariate power-law 

path and multivariate exponential path situations, which will later be shown in Section 3.5.2. 

In these cases, Equation (19) in Stage 1 can be further simplified. Specifically, for sample i let 

( )
T

T T T

1 2, ,...,i i i ip=ψ Λ Λ Λ  , then parameters 
ijΛ   and 

ijφ   can be obtained by fitting each 

observed deformation path individually to a specified path function using the method of least 

squares, i.e., 
�( ) ( ){ }

2

,
1

, arg min ; ,
ij

ij ij

m

ij ij ijk k ij ij

k

y t
Λ φ

Λ φ Λ φη
=

= −∑ɵ
 for j = 1, 2, …, p. Some 

asymptotic properties of the two-stage method are listed in Appendix 3, which are similar to 

the results in Lu and Meeker [7].  

Algorithm 3.1 provides a method for the point estimation of Θ  . We further develop a 

parametric bootstrap method to obtain the interval estimation of Θ   in the following 

Algorithm 3.2. 
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Algorithm 3.2: The interval estimation of model parameters using parametric bootstrap. 

Step 1. Simulate M iterations of deformation data set based on the estimated parameters �Θ . 

Step 2. For i in 1:M, 

      estimate the model parameters based on the ith data set using Algorithm 3.1,  

      denoted as � iΘ ; 

Step 3. The ( )100 1 %α−  confidence interval of ϑ (ϑ ∈ Θ ) is estimated as ɵ ɵ( )/2 1 /2,α αϑ ϑ −  , 

      where ɵνϑ  is the ν  quantile of ɵ ɵ ɵ{ }1 2, ..., Mϑ ϑ ϑ , and α  is the significance level. 

3.4 Variance-based Failure Criterion 

An important failure characteristic associated with the deformation process illustrated in 

Figures 3.1 and 3.2 is that the relative deformation rather than the absolute deformation of the 

local points, is the determinant of the material failure. Therefore, assuming that the failure 

occurs when the material degradation level reaches a specified threshold value, a failure 

criterion [83] widely used in the reliability engineering field, cannot be directly applied to our 

problem as it cannot capture the failure mechanism/characteristic. In this chapter, to account 

for the failure mechanism we use the variance of local points’ deformation levels as a measure 

of the “relative deformation.” That is, we assume the material fails when the variance of local 

points’ deformation levels rather than the absolute deformation level reaches a threshold value. 

This criterion is justified by a real world deformation data set that we collected by using a 

designed experiment as illustrated in Figure 3.3. Figure 3.3 (left) represents the Instron 8801 

testing machine that we used to conduct a steel deformation experiment, and Figure 3.3 (right) 

illustrates 40 deformation paths collected from one steel sample. It is observed that as the time 

increases, the variance among the deformation paths increases until the sample fails. The 
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detailed description of the experiment is discussed in Section 3.7. 

                                                              

Figure 3.3: Instron 8801 testing system (left) and deformation paths of a sample 

The sample variance among p deformation paths at time t can be calculated as 

( ) ( ) ( )
T

1t t t t tS p= − − −X υ X υ                     (24) 

where ( )
T

1 2, ,...,t t t ptX X X=X  is the vector of true deformation levels of p local points for a 

sample at time t; tυ   is a p-dimensional column vector with all elements equaling 

1

1
t

p

it

i

X
p

υ
=

= ∑ . 

Thus, the failure occurs when the real-time variance tS   among the deformation paths 

reaches a threshold value ths . By choosing the variance as a measure of “relative deformation”, 

the closed-form reliability functions for several typical deformation paths can be obtained as 

illustrated in Section 3.5. 

3.5 Reliability Analysis 

Reliability analyses are conducted based on the multivariate general path model. In 

Sections 3.5.1 and 3.5.2, we consider the linear and two typical nonlinear deformation path 

cases, whose closed-form reliability functions are derived. In Section 3.5.3, we develop a 

simulation method to compute the reliability function when the deformation paths are general.  
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3.5.1 Multivariate Linear Path Model 

In some special situations, deformation paths of materials can exhibit linearity or 

approximate linearity under appropriate loading conditions, e.g., when materials undergo the 

elastic deformation stage [84]. In some other situations, by applying transformations of the 

deformation data such as the logarithmic transformation, the transformed deformation paths 

can also be approximately linear. When deformation paths or transformed deformation paths 

are (approximately) linear, consider a p-variate linear path model as a special case of model 

(18): 

( ) 2

~ ,

~ , ; ~

t t t t

t p p

t

N

N σ ×

 = + = + +


     
      
      



a a ab

b ba b

ε ε

Y X ε a b ε

µ Σ Σa

µ Σ Σb

ε 0 Σ Σ I

                      (25) 

where tY   and tX   denote the observed and true deformation level vector at time t, 

respectively; ( )
T

1 2, ..., pa a a=a  is the slope vector; ( )
T

1 2, ..., pb b b=b  is the intercept vector; 

( )
T

1 2, ,...,a a apµ µ µ=aµ   and ( )
T

1 2, ,...,b b bpµ µ µ=bµ   are the mean vectors for a   and b  , 

respectively; aΣ   and bΣ   are the covariance matrices for a   and b  , respectively; 

T=
ab ba

Σ Σ  is the cross-covariance matrix between a  and b ; ( )
T

1 2, ,...,t t t ptε ε ε=ε  is the 

vector of random measurement errors at time t, and 
p p×I  is the p p×  dimensional identity 

matrix.  

Based on the multivariate linear path model (25), the real-time variance tS  as defined in 

(24) conditional on time t is a random variable as itX  for i = 1, 2, …, p, are all random 

variables. We show that tS  can be represented as a linear combination of independent and 

noncentral chi-squared random variables in Proposition 3. The detailed proof of Proposition 3 
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is listed in Appendix 4. 

Proposition 3. The real-time variance tS   can be represented as a linear combination of 

independent and noncentral chi-squared random variables, each with one degree of freedom 

(DOF), i.e., 

( )2 2

1

1

1
;  ~

1

p

t it it it it

i

S c
p

λ χ
=

= Ω Ω
−
∑                     (26) 

where 1 2
...

t t pt
λ λ λ≥ ≥ ≥   are the eigenvalues of ( )2 T

t
t t = + + + a b ab ba

Σ L Σ Σ Σ Σ L  ; 

p p p p
p× ×= −L I 1 ; itΩ  is a non-central chi-squared random variable with DOF = 1 and a non-

centrality parameter of 2

it
c  ; ( )

T
T 1/2

1 ,...,
t t pt t t

c c −= =c Q Σ µ  ; Q   is an orthogonal matrix such 

that ( )T

1 2
diag , ,...,

t t t pt
λ λ λ=Q Σ Q  ; ( )t

t= +a bµ L µ µ  ; and p p×1   is a p p×   dimensional 

matrix with all entries equaling 1. 

Based on the real-time variance representation in Proposition 3, the reliability function can 

be derived given a failure threshold value of variance. The exact reliability function is not 

achievable due to the model complexity. We derive an approximate reliability function in 

Proposition 4. The detailed proof of Proposition 4 is listed in Appendix 5. 

Proposition 4. When the threshold variance of failure is specified as 
ths  , the reliability 

function can be approximated by 
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∑ ; M is the number of items used for the approximation; 

0µ  and β  are ancillary parameters that satisfy 
00 / 2qµ< <   and 0β > . For more details 

on the effect of 0µ  and β , one can refer to the article by Martínez and Blázquez [85]. 

Proposition 4 provides an approximation for the reliability function. To quantify the 

approximation accuracy, we derive the error bound in Proposition 5. The detailed proof of 

Proposition 5 is listed in Appendix 6. 

Proposition 5. The approximation error ( ) ( ) � ( ); , ; , ; ,
th th th

e t s R t s R t sΘ = Θ − Θ  , where 

� ( ); ,thR t s Θ  denotes the true reliability function evaluated at time t under failure threshold 
ths , 

can be bounded as  
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    (28) 

where 1 1

qk

k

k

p k
b

k p
ε

  
= + +   

   
 ; ( )1 2max ,ε ξ ξ=  ; 

( )
0

1

0
2 1p

µ
ξ

µ
=

+ −
 ; 

( ) ( )( )2

0

1
max

1 2 1 1

i

i
i p

α β
ξ

α β µ

 − 
=  

+ + −  
  ; and ( )1

i it
pα λ= −  . For 

0 / 2qµ <  , Equation 

(28) is absolutely convergent since ( )0,1ε ∈ . 

Propositions 3 – 5 summarize the reliability analysis when the deformation paths are 

statistically dependent. In some special situations, the deformation dependency among the local 
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points can be ignored, e.g., when the relative distances among the local points are large. This 

is due to the fact that the deformation dependency often decreases as the relative distances 

among those local points increase. When the relative distances are large enough, the 

deformation dependency is small and ignorable, i.e., the p deformation paths can be treated as 

being statistically independent. In these situations, the representation of the real-time variance 

tS  in Proposition 3 can be simplified and is summarized in Corollary 1. The detailed proof of 

Corollary 1 is listed in the Appendix 7. 

Corollary 1. When the p deformation paths are statistically independent, by assuming 

( ) ( )( )T T
, ~ , ,

i i a b
a b N µ µ Σ   and 

11 12

21 22

Σ Σ 
=  Σ Σ 

Σ  , the real-time variance 
*

t
S   can be 

represented as the product of a time-dependent factor and a non-central chi-squared random 

variable with p degrees of freedom as follows: 

( )
2

* * * 2 2 2;  ~
1

t
t t t p t t

S p
p

σ
χ µ σ= Ω Ω

−
                    (29) 

where ( )2
1

t
pσ −  is a time-dependent factor; 

2 2

11 22 12
2

t
t tσ = Σ + Σ + Σ ; 

*

t
Ω  is a non-central 

chi-squared random variable with DOF = p and a non-centrality parameter of 
2 2

t t
p µ σ=Ż ; 

and t a btµ µ µ= + . 

Furthermore, when the p deformation paths are statistically independent as assumed in 

Corollary 1, the exact and closed-form reliability function is achievable and derived in 

Corollary 2. The detailed proof of Corollary 2 is listed in Appendix 8. 

Corollary 2. When the p deformation paths are statistically independent, the exact and closed-

form reliability function is 

( ) ( )( )*

/2; , 1 , 1
th p t t th t

R t s Q p p sµ σ σΘ = − −                (30) 
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where ( ) ( )( ) ( ) ( )2 2

1

, exp 2
k

m k

k m

Q a b a b a b I ab
+∞

= −

= − + ∑   is the Marcum Q-function; and 

( ) ( ) ( )( )2 1

0

2 ! 1
m

m

I x x m mα α
+∞

+

=

= Γ + +∑  is the modified Bessel function. 

3.5.2 Special Nonlinear Multivariate Path Models 

Under many situations, the deformation paths are nonlinear due to nonlinear material 

deformation properties and complex loading conditions, e.g., see Ogi and Takeda [86] and Wu, 

et al. [87]. To account for the nonlinear deformation, we consider two typical cases of nonlinear 

deformation paths, i.e., the multivariate power law path and the multivariate exponential path. 

Closed-form reliability functions for these two nonlinear cases are derived. Notice that the 

power law and exponential paths can be transformed to linear paths so that Section 3.5.1 can 

apply. In this chapter, we consider them separately because both the power law and exponential 

models are widely used in various applications, e.g., see Wang and Chu [88] and Alam and 

Mahapatra [89]. 

3.5.2.1 Multivariate Power Law Path Model 

When the p deformation paths follow the power law, the deformation model can be 

represented as follows: 

( )1 2

 

diag , ,..., p

t t t t t

t t t t
ρρ ρ

= + = + +


=

Y X ε Η a b ε

Η
                      (31) 

where 1 2
, ,...,

p
ρ ρ ρ  are fixed-effect power parameters that capture the nonlinear trend of the 

deformation paths, which are included in the fixed-effect parameter vector ψ . The modeling 

of coefficient vector ( )
T

T T,a b  and random error vector 
tε  is kept the same with that in the 

multivariate linear path model (25). The model parameters can be estimated using Algorithm 

3.1 given the deformation observations. 
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In model (31), we show that the levels of true deformation paths at time t, i.e., tX , can be 

written as a linear transformation of ( )
T

T T,a b . As ( )
T

T T,a b  is assumed to be multivariate 

normal, 
tX  also follows a multivariate normal distribution. That is, 

( )

( ) ( )
T

~ ,

t t t p p

t

t p p t p p

p p

N

×

× ×

×

 
= + =  

 

     
            

a a ab

b ba b

a
X Η a b Η I

b

µ Σ Σ Η
Η I Η I

µ Σ Σ I

          (32) 

Based on (32), we further obtain ( )* *~ ,t t t t t tN= − =Z X υ LX µ Σ , where 

 

( )

( )

*

T

* T

t t p p

t

t t p p

p p

×

×

×

  
=  

 


   =       

a

b

a ab

ba b

µ
µ L Η I

µ

Σ Σ Η
Σ L Η I L

Σ Σ I

             (33) 

Using *

t
µ   and *

t
Σ   in Equation (33) to replace 

tµ   and 
tΣ   in Equation (26), 

respectively, all the results in Propositions 3 – 5 and Corollaries 1 - 2 hold for the multivariate 

power law path case. That is, the representation of real-time variance under the variance 

definition (24), the approximate reliability function under the specified failure threshold 
ths , 

and the corresponding approximation error bound are calculated. When the deformation paths 

are statistically independent, the real-time variance representation and the closed-form 

reliability function are obtained.  

3.5.2.2 Multivariate Exponential Path Model 

Another typical nonlinear deformation path model we consider is the multivariate 

exponential path model. For this model, we only need to replace 
tΗ  in model (31) by the 

following *

t
Η : 

( )1 2* diag , ,..., ptt t

t
e e e

ηη η=Η                       (34)  
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where 1 2
, ,...,

p
η η η   are the fixed-effect coefficients of the exponential paths, which are 

included in the fixed-effect parameter vector ψ . Algorithm 3.1 can then be applied to estimate 

the model parameters.                

Similar results regarding reliability analyses using this multivariate exponential path model 

compared to those of the multivariate power law path model can be obtained, while only a 

slight change needs to be made, i.e., replace 
tΗ  in Equation (33) with *

t
Η  in (34). 

3.5.3 Multivariate General Path Model 

In some other situations, the deformation paths can be more complex than those following 

a linear law, a power law or an exponential law, e.g., when the material property and 

deformation mechanism are complicated. When the deformation paths are general, under most 

situations the analytical or closed-form reliability function is not available. To handle these 

situations, we develop a simulation procedure to compute the reliability function ( ); ,
th

R t s Θ  

as summarized in Algorithm 3.3. 

Algorithm 3.3: Calculation of reliability function for the multivariate general path model. 

Step 1. Estimate the model parameters as ɵ � �, ,ΦΦµ Σ ψ   and �
2

σ  using the two-stage      

      parameter estimation method (see Section 3.3.2); 

Step 2. Generate N random realizations of random-effect parameters 
iΦ  from  

      ɵ �( ),N ΦΦ
µ Σ , and thereafter simulate N p×  deformation paths; 

Step 3. For sample i in 1: N, compute the real-time variance among the deformation paths; 

Step 4. Based on the specified variance threshold 
ths  of failure, compute the corresponding 

      failure time ti for i in 1: N; 
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Step 5: Estimate the reliability function as the proportion of survived samples by time t,  

      i.e., �( ) ( ); , number of 
th i

R t s t t NΘ = > . 

 

In addition to the point estimation of ( ); ,
th

R t s Θ  , we further develop a parametric 

bootstrap method to obtain the interval estimation of ( ); ,
th

R t s Θ  in Algorithm 3.4. 

Algorithm 3.4: The interval estimation of ( ); ,
th

R t s Θ . 

Step 1. Simulate M iterations of deformation data set based on the estimated parameters �Θ . 

Step 2. For i in 1:M, 

       Step 2.1: estimate the model parameters based on the ith data set using Algorithm  

               3.1, denoted as � iΘ ; 

       Step 2.2: estimate the reliability function based on � iΘ  using Algorithm 3.3,    

               denoted as �( ); , ith
R t s Θ . 

Step 3. The ( )100 1 %α−  pointwise confidence interval of ( ); ,
th

R t s Θ  is estimated  

       as �( ) �( )( )/2 1 /2; , , ; ,th thR t s R t sα α−Θ Θ  , where �( ); ,
th

R t sν Θ  is the ν  quantile of  

      �( ) �( ) �( ){ }1 2; , , ; , ..., ; , Mth th th
R t s R t s R t sΘ Θ Θ . 

3.6 Simulation Study 

To verify the developed two-stage model parameter estimation method, a simulation study 

is implemented. Specifically, we first simulate a deformation path data set based on specified 

model parameters. Next, we re-estimate the model parameters by using the two-stage parameter 

estimation method, whose values are compared to the specified parameters to assess the 

performance of the developed method.  

We first consider a single iteration of data simulation. The multivariate power-law path 
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model (31) is chosen, while other models can be selected using a similar procedure. For 

simplicity purposes, the dimension of the deformation paths is chosen as p = 3. For each 

deformation path, the time points for the deformation level observation are set as 20kt k=  

for k = 1, …, 20. The sample size is chosen as N = 500. The model parameters are set as follows: 

( ) ( )

( ) ( )

T TT T

2

1 2 3

, 10,20,30,3,5,7

, , 1.0,1.5,2.0 ;  =0.2 

2 0.5 0.5 0.5 0.5 0.5

4 0.5 0.5 0.5 0.5

6 0.5 0.5 0.5

0.6 0.5 0.5

1.0 0.5

1.4

SYM

ρ ρ ρ σ

 = =

 =

  
  
  
  
 =  
  
  
  
  



a b

θ

θ µ µ

Σ

    

where “ SY M ” indicates that θΣ  is symmetric.  

Based on the specified model parameters, deformation paths for all the samples are 

simulated. Figure 3.4 illustrates the simulated paths of ten randomly chosen samples in one 

realization of simulation. The variates 1 – 3 represent the three dimensions of the deformation 

paths for each sample. 
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   Time 

Figure 3.4: Simulated deformation paths of ten samples 

The two-stage parameter estimation method, i.e., Algorithm 3.1, is then applied to the 

simulated deformation paths to estimate the model parameters. The estimated parameters are: 

ɵ ( )

� � �( ) ( ) �

�

T

2

1 2 3

9.91,20.02,29.94,2.93,4.99,6.94

, , 1.005,1.506,2.003 ;  =0.202  

1.92 0.56 0.44 0.53 0.51 0.50

3.96 0.48 0.54 0.45 0.49

6.24 0.46 0.44 0.40

0.66 0.54 0.49

1.05 0.46

1.38

SYM

ρ ρ ρ σ

 =

 =

  
  
  
  
 =  
  
  
  
  



θ

θ

Σ

 

It is observed that the estimated parameters are close to the true parameters, indicating that the 

two-stage parameter estimation method performs well. Furthermore, based on Algorithm 3.2 

the 95% confidence intervals (CIs) for the model parameters are computed by setting the 

number of iterations as M=1000. The lower and upper bounds (denoted as LBs and UBs, 

respectively) are listed as follows: 
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ɵ ( )

ɵ ( ) �

�

T

0.025

2

0.0250.025

,0.025

9.84,19.85,29.74,2.80,4.89,6.83

0.997,1.497,1.998 ;  =0.198 

1.86 0.31 0.13 0.23 0.36 0.34

3.58 0.03 0.37 0.19 0.29
LBs: 

5.60 0.24 0.21 0.10

0.58 0.45 0.38

0.91 0.33

1.26

SYM

σ

 =

=

 
 
 

  
=  
 
 
 
 

θ

θ

ρ

Σ
















 

ɵ ( )

ɵ ( ) �

�

T

0.975

2

0.9750.975

,0.975

10.09,20.20,30.17,3.04,5.07,7.04

1.019,1.513,2.008 ;  =0.209 

2.39 0.83 0.74 0.57 0.66 0.66

4.58 0.94 0.70 0.58 0.71
UBs:  

7.15 0.66 0.65 0.62

1.02 0.65 0.61

1.28 0.57

1.64

SYM

σ

=

=

 
 
 
 

=  
 
 
 
 

θ

θ

ρ

Σ

















 

Next, to quantitatively assess the accuracy of parameter estimation, we repeat the 

aforementioned simulation process for K=1000 times and compute the Root Mean Square 

Errors (RMSEs) of the estimators. That is, for ϑ ∈ Θ , ɵ( ) ɵ( )
2

1

RMSE
K

k

k

Kϑ ϑ ϑ
=

= −∑ , where 

ɵ
kϑ  is the estimated value of ϑ  in the kth iteration, and ϑ  is the true value. The results are 

summarized in the following 3.1, where ( )
T

1 2 3, ,µ µ µ=aµ   and ( )
T

4 5 6, ,µ µ µ=bµ  . It is 

observed that the RMSEs are generally small under the current sample size. 

Table 3.1: RMSEs of parameter estimators  

Parameter �� 	
� 	
� 	
� �
� �̂� �̂� �̂� 

RMSE(��) 0.006 0.003 0.003 0.002 0.078 0.093 0.110 

Parameter �� �̂� �̂� �̂� Ʃ��� Ʃ��� Ʃ��� Ʃ��� 

RMSE(��) 0.058 0.048 0.055 0.225 0.136 0.161 0.194 
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Parameter �� Ʃ��� Ʃ��� Ʃ��� Ʃ��� Ʃ��� Ʃ��� Ʃ��� 

RMSE(��) 0.073 0.082 0.267 0.225 0.087 0.117 0.115 

Parameter �� Ʃ��� Ʃ��� Ʃ��� Ʃ��� Ʃ��� Ʃ��� Ʃ��� 

RMSE(��) 0.395 0.101 0.113 0.139 0.251 0.048 0.054 

Parameter �� Ʃ��� Ʃ��� Ʃ��� - - - - 

RMSE(��) 0.114 0.061 0.108 - - - - 

 

Moreover, to assess the accuracy of reliability function estimate �( ); ,thR t s Θ  , the Root 

Mean Integrated Squared Error (RMISE) of �( ); ,thR t s Θ   is calculated using 

�( )( ) �( ) ( )( )
2

1 0
RMISE ; , ; , ; ,

K

ith th thi
R t s R t s R t s dt K

∞

=
Θ = Θ − Θ∑ ∫ . We set K=1000 and choose 

two failure threshold values as 15 and 30. The corresponding RMISEs are calculated as 0.0091 

and 0.0074, respectively, which are small numbers and indicate that the performance of 

reliability function estimation is satisfactory.  

3.7 Case Study 

The proposed model is applied to studying the failure of dual phase (DP) advanced high 

strength steel, which has been receiving increasing application in the automotive industry, due 

to their excellent properties such as the extremely high strength and the good formability [90, 

91]. 

In the case study, we conducted physical experiments on four as-received DP 980 steel 

specimens with a thickness of 1mm. The specimens were all made according to the tensile 

testing standard of metallic materials [92]. For each specimen, a standard tensile test 

experiment was conducted by using the Instron 8801 testing system as illustrated in Figure 3.3 

(left). Specifically, each specimen was firmly clamped at its two ends and then stretched 

uniaxially with a constant speed until it fractured, using the same loading condition. The 

dynamic failure process of each sample was monitored by a DIC device, which is based on a 
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two-camera system. The DIC device can dynamically track the motion/deformation of a grid 

of points/pixels on the specimen surface [93]. The resolution of DIC device in our experiment 

is around 40×40 pixels/mm2. At each fixed time point, an image of the deformation distribution 

on the specimen surface can be obtained. As the measurement was dynamic, approximately 

1000 deformation distribution images in a time sequence were obtained for each specimen. 

From the image stream, 40 deformation paths corresponding to 40 randomly chosen local 

points around the crack area on the specimen surface were collected. Figure 3.3 (right) 

illustrates the deformation paths collected from a randomly selected steel specimen. It can be 

clearly observed that as the time increases, the variance among deformation paths increases 

until the specimen fails, which is consistent with the developed variance-based failure criterion.       

The proposed model is applied to analyzing the collected experimental data. Specifically, 

as the deformation level in Figure 3.3 (right) increases nonlinearly over time, we choose the 

multivariate power law path model to study the deformation paths. Moreover, considering that 

the local points from which the deformation paths are collected are randomly chosen and are 

relatively far from each other on the steel specimen, we assume that the statistical dependency 

among the deformation paths can be ignored. Specifically, it is assumed in model (31) that 

( ) ( )
T

, , ~ ,i i ia b Nρ µ Σ . Next, the model parameters of the experimental deformation paths are 

estimated based on Algorithm 3.1, and the results are summarized as 

ɵ ( ) �

�

T
47.76,1.18,2.08 ;   0.200

467.20 7.27 6.71

7.27 0.13 0.10

6.71 0.10 0.11

σ= =

 
 =  
 
 

µ

Σ
  

Notice the unit of degradation is percentage, i.e., 1%. The Mean Squared Error (MSE) of using 

the power-law model for fitting the deformation paths is computed as 0.04. This small number 
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indicates that the power-law model fits each individual deformation path satisfactorily. 

Furthermore, the 95% CIs for the model parameters are computed using Algorithm 3.2 and 

listed as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( )
( ) ( ) ( )

( ) ( )
( )

( ) ( ) ( )
( ) ( )

( )

11 12 13

22 23

33

CI CI ,CI ,CI 42.86,55.16 , 1.09,1.31 , 2.00,2.19

CI 0.197,0.201

CI CI CI 262.3,606.7 3.92,9.71 3.71,8.95

CI CI CI 0.077,0.18 0.057,0.15

CI 0.062,0.15

a b

SYM SYM

ρ

σ

 = =      


=

    
    

= =    
    

   



µ

Σ Σ Σ

Σ Σ Σ

Σ



 

Based on the estimated parameters, given the threshold variance of failure the reliability 

function of the DP steel can be computed. Specifically, two threshold variances are chosen as 

1 5ths =   and 
2 15ths =  . The corresponding two reliability functions are computed based on 

Algorithm 3.3 and are illustrated in Figure 3.5 (a) and (b), respectively. It can be seen that a 

higher failure threshold value generally results in a higher reliability value. Furthermore, the 

95% point-wise confidence intervals (PCIs) for the two reliability functions are calculated 

utilizing Algorithm 3.4 and illustrated by the dash curves in Figure 3.5.  

          

 

 

Figure 3.5: Reliability functions for two failure thresholds and the corresponding 95% PCIs 
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3.8 Summary 

Material failure is strongly affected by the local deformation, which often is a dynamic 

process. Traditional reliability analyses have ignored the local deformation information and 

thus are not efficient to model material failure mechanisms. In this chapter, we conduct 

reliability analysis by utilizing the dynamic local deformation information of steel in a tensile 

process. Specifically, as multiple deformation paths for each sample are observed over time, 

we propose a new multivariate general path model that generalizes the existing univariate 

general path model to describe these deformation paths. To estimate the model parameters, a 

two-stage method that can overcome the computational complexity is developed. The proposed 

model not only is flexible to model the deformation data but also can be applied to many other 

degradation problems, in which multiple degradation curves for each sample are collected. For 

example, simultaneous propagation of multiple cracks can happen for some materials under a 

tension condition [94], based on which multiple crack growth paths for each material sample 

can be obtained. Another example is that multiple performance characteristics of a smart 

electricity meter can be recorded over time [95], which can be treated as multiple degradation 

paths. 

To account for the failure mechanism in material local deformation, we use a new variance-

based failure criterion. Reliability analyses are conducted by applying the failure criterion on 

the developed multivariate general path model. In particular, we derive closed-form reliability 

functions for the multivariate linear path, the multivariate power law path, and the multivariate 

exponential path situations. When the deformation paths are general, we develop a simulation-

based algorithm to compute the reliability function. The developed methods are verified and 
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illustrated by simulation studies and a designed case study. 

In this chapter, deformation paths of several local points on material samples are utilized 

to conduct material reliability analysis due to the limitation of the current experimental 

technique. In the future, an interesting research topic would be to improve the experimental 

technique and obtain the dynamic deformation information of all the grid of points on those 

material samples. In that case, the complex structure of spatio-temporal correlation among the 

points may not be ignorable, and more sophisticated methods need to be developed for the 

modeling. Furthermore, the variance-based failure criterion is used to capture the material 

failure mechanism in this chapter. In the future, another interesting research topic would be to 

refine the criterion to capture the failure mechanism more precisely, e.g., we may consider the 

variation of failure threshold values among different material samples. 

The methodologies proposed in this chapter has been published in journal article [96]. 
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CHAPTER 4.  RELIABILITY ANALYSIS BY CONSIDERING STEEL  

MICROSTRUCTURE INFORMATION 

4.1 Overview 

Material microstructure has been well known to strongly influence material macroscopic 

properties such as strength, hardness, toughness, and wear resistance, which in turn affect 

material service lifetime. In the reliability literature, most existing research conducts reliability 

analysis either based on lifetime data or degradation data. None of these studies takes material 

microstructure image information into consideration. In this chapter, considering material 

microstructure’s strong effect on material reliability, we conduct reliability analysis of 

advanced high strength steel by utilizing material microstructure image information. 

Specifically, the material lifetime distribution, which is assumed to belong to a log-location-

scale family, is predicted by utilizing material microstructure images. For the prediction, we 

propose a novel statistical model named distribution-based functional linear model, in which 

the microstructure effect on both the location and scale parameters of lifetime distribution is 

formulated. The proposed model generalizes the existing functional linear regression model. A 

maximum penalized likelihood method is developed to estimate model parameters. A 

simulation study is conducted to illustrate the developed methods. Physical experiments on 

advanced high strength steel are also designed and conducted to demonstrate the proposed 

model. The results show that the proposed model predicts material lifetime much more 

precisely than existing models that ignore material microstructure image information. 

4.2 Introduction 

Material microstructure refers to a small scale structure of a material, defined as the 

structure of a prepared material surface as revealed by a microscope using a magnification no 
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less than 25× [97]. Figure 4.1 (left) illustrates a type of dual-phase (DP) advanced high strength 

steel that has been recently applied in automotive industry. Figure 4.1 (right) shows a 

microstructure image of the DP steel with a real size of 100×100 um, in which the black and 

white areas represent two different phases, termed as the martensite phase and the ferrite phase, 

respectively. 

 

                   

Figure 4.1: High strength dual-phase steel (left) and its microstructure image (right) 

In the materials science field, material microstructure is well known to strongly influence 

material macroscopic properties such as strength, ductility, hardness, toughness, and wear 

resistance [24, 25]. These macroscopic properties, in turn, strongly influence material service 

lifetime: often a material with higher strength has a longer service lifetime [98].  

In the reliability engineering field, material reliability analysis such as material life/failure 

prediction has received increasing attention as it quantifies the quality and reliability of a 

material (or a product made of that material). In literature, lifetime data based models and 

degradation data based models have been widely developed to study and predict material 

reliability/failure. For the lifetime data based models, parametric distributions such as the 

Weibull, Lognormal, and Gamma are usually used to model collected failure time data. For 

example, Mukhopadhyay [99] conducted reliability analysis based on masked series system 
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lifetime data by choosing the Lognormal as the  lifetime distribution. Hong, et al. [2] 

developed a remaining life prediction based on left truncated and right censored lifetime data 

by choosing the Weibull and Lognormal as lifetime distributions. For more studies on lifetime 

data based reliability analysis, one can refer to Lawless [11]. In terms of degradation data based 

reliability models, general path models and stochastic process models have been developed to 

describe the degradation data. For example, Lu and Meeker [7] developed a general path based 

reliability model, in which the model parameters are assumed to follow a multivariate normal 

distribution. Lawless and Crowder [36] conducted reliability analysis by formulating the 

degradation data using a gamma process model. Ye, et al. [13] conducted reliability analysis 

by formulating the degradation data using a Wiener process model. For more research on 

degradation data based reliability analysis, refer to a review paper by Gorjian, et al. [50]. 

Although significant progress has been made in the reliability research, none of the existing 

studies takes material microstructure image information into consideration.  

As material microstructure strongly impacts material service lifetime, incorporating the 

microstructure image information into reliability analysis will improve the performance of 

failure prediction, compared to failure predictions using conventional reliability models that 

ignore the microstructure information. This will be illustrated by a real world case study (see 

section 4.6). To incorporate material microstructure image information into reliability analysis, 

one challenge is that the microstructure topology is very complex and highly dimensional, 

which makes it difficult to quantitatively describe the microstructure. Moreover, no quantitative 

physical knowledge/equation is available to formulate the relationship between the material 

reliability/failure and material microstructure.  
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In this chapter, we propose a novel statistical model named distribution-based functional 

linear model (DFLM) for reliability analysis by utilizing material microstructure image 

information. The proposed DFLM is a generalization of an existing functional linear regression 

model [100]. Based on the DFLM, the material lifetime distribution that is assumed to belong 

to a log-location-scale family is predicted given material microstructure images. Specifically, 

provided with a microstructure image, we first compute its two-point correlation function that 

can preserve statistical properties of the image to a certain level. Next, based on the DFLM 

using the two-point correlation function as model input, the corresponding material lifetime 

distribution is calculated. 

The remainder of this chapter is organized as follows. In Section 4.3, the DFLM is 

proposed. In Section 4.4, a maximum penalized likelihood estimation method is developed for 

model parameter estimation. In Section 4.5, a simulation study is implemented to assess the 

performance of the developed methods. In Section 4.6, physical experiments are designed and 

conducted to demonstrate the proposed model. Finally, in Section 4.7 the chapter is concluded, 

and areas of future work are discussed.  

4.3 Statistical Model 

We predict material lifetime distribution by utilizing material microstructure images using 

a two-step framework, as illustrated in Figure 4.2. In Step 1, as the microstructure image 

illustrated in Figure 4.2 (a) involves high dimension and complex topology which make 

quantitative analyses of the microstructure image difficult, we compute its two-point 

correlation function [101] that preserves statistical properties of the microstructure up to the 

second order, denoted as X(r) as illustrated in Figure 4.2 (b). In Step 2, based on the computed 
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X(r), a DFLM is proposed to predict material lifetime distribution as illustrated in Figure 4.2 

(c). In the following Section 4.3.1 we introduce the two-point correlation function, and in 

Section 4.3.2 we present the DFLM. 

 

Figure 4.2: The framework of lifetime prediction using material microstructure image 

4.3.1 The Two-point Correlation Function 

The two-point correlation function has been shown as an efficient statistical tool to 

characterize statistical properties of a dual-phase random medium (such as the DP steel 

microstructure, which is assumed to be stationary and homogeneous across a steel sample), and 

has been widely applied in materials science [102, 103]. It characterizes the spatial statistics of 

random media up to the second order. Specifically, the first and second order spatial statistics 

refer to volume fraction and distribution auto-covariance of the phases, respectively.  

To define the two-point correlation function, consider a square microstructure image of a 

dual-phase material, which is discretized into d d×   pixels. Let 
ijS   ( { }1, 2

ij
S ∈  ) denote the 

value of the pixel at coordinate ( ),i j  on the image, where 1 and 2 represent the black and 

white phases, respectively, and { }, 1, ...,i j d∈  . 
ijS   is determined through a preliminary 

process that converts the original grayscale microstructure images to binary microstructure 

images following the research in the literature (e.g., see Wong and Sahoo [104] and Russ and 

Step1 

X(r) 

(a) A microstructure image (b) Two-point correlation function (c) Lifetime distribution 

r 

f(t) 

t 

Step 2 
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Woods [105]). During the process, a threshold value of gray level can be set. For the pixel at 

coordinate (i, j), if its gray level (0-255) is less than the threshold value, Sij  is set to 1 (black 

phase), otherwise Sij is set to 2 (white phase). The two-point correlation function of phase p

( { }1, 2p ∈ ) for isotropic materials, is defined to be the probability that two randomly selected 

pixels of relative distance r are both in phase p  as follows [101]: 

( ) ( ) ( )
1 1 2 2

,Pr
i

p

j i j
X p Sr S p= ==                       (35)   

where ( )1 1,i j  and ( )2 2,i j   are the coordinates of two points on an image with a relative 

distance r, i.e., ( ) ( )
2 2

1 2 1 2i i j j r− + − = .  

Equation (35) defines the two-point correlation function for phase p. For dual-phase 

materials, the two-point correlation function of either phase can be derived from that of the 

other phase [101]. Specifically, given 
( ) ( )1

X r   for phase 1, 
( ) ( )2

X r   for phase 2 can be 

uniquely determined as 

( ) ( ) ( ) ( )2 1

12 1X r X r φ= − +                         (36) 

where 
1φ  is the volume fraction of phase 1.  

It can be seen from Equation (36) that using either 
( ) ( )1

X r  or 
( ) ( )2

X r  is sufficient to 

describe the material microstructure. In this research, for illustration purposes 
( ) ( )1

X r  is used. 

We suppress the superscript in the notation of 
( ) ( )1

X r  and simply refer to it as ( )X r , which   

is calculated as [101]: 

( )
( )( )

( ), 1 1

2

d d

ij i m j n

m n P i j

S S

X r
ld

+ +
∈ = =

 
 
 =

∑ ∑∑
                       (37) 

where ( ) [ ]{ }2 2 2, , 2P m n m n r r d= + ≤ ≤  and l is the number of elements in set P. 
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4.3.2 A Novel Distribution-based Functional Linear Model  

We propose a DFLM to predict material lifetime distribution, with the two-point correlation 

function X(r) being the model input.  

The type of material lifetime distribution needs to be specified. A widely used family of 

lifetime distributions is the log-location-scale family [3, 106], which has the following form of 

CDF [107]: 

( ) ( ); , PrY

y
F y Y y

µ
µ σ

σ

− 
= ≤ = Φ 

 
                   (38) 

where ( )logY T= ; T denotes the lifetime; µ−∞ < < +∞  is a location parameter; 0σ >  is a 

scale parameter; and Φ   is the CDF of Y when 0µ =   and 1σ =  . Specifically, in this 

research we focus on using the log-normal distribution to model lifetime T, as widely assumed 

in the literature [3, 106], i.e., ( ) ( )21 2 exp 2
z

z dπ ω ω
−∞

Φ = × −∫  . Another reason for 

choosing the log-normal distribution is that under such an assumption, the modeling object Y 

follows a normal distribution which has tremendous other real world applications. 

The material lifetime distribution depends on the material microstructure. To formulate the 

dependency, we assume that in Equation (38) both the location and scale parameters are 

adjusted by the material two-point correlation function ( )X r  as follows: 

       
( ) ( ) ( )( )
( ) ( ) ( )( )

1 1 1

2 2 2

b

b

g g X r

g g X r

µ µ ψ

σ σ ψ

 = +


= +

                          (39) 

where ( )j
g x  for j = 1 and 2 are monotonic link functions. Specifically, ( )1g x x=  as an 

identity link function is chosen for simplicity purposes, which is widely used for normal 

response data in the literature [108]; ( ) ( )2
logg x x=   is chosen to ensure that the scale 

parameter σ  is nonnegative; 
bµ  and 

bσ  are the baseline location and scale parameters 



66 
 

 

for all the material samples, respectively; and ( )1ψ i   and ( )2
ψ i   formulate the effect of 

material microstructure on material lifetime distribution, which in turn accounts for the sample 

to sample variation of lifetime as microstructures are different for different material samples.  

In this chapter, to model the microstructure effect, we specify ( )1ψ i  and ( )2
ψ i  using a 

functional linear regression (FLR) [100], i.e.,  

              
( )( ) ( ) ( )( ) ( )

( ) ( )

1

0

1

0
; 1, 2

j j

c j

X r X r E X r r dr

X r r dr j

ψ β

β

= −   

= =

∫

∫
                 (40) 

where the ( )j
rβ  for  j = 1 and 2 are two unknown functional coefficients; the support of 

( )X r   is normalized into a unit interval [ ]0,1   without loss of generality; and ( )X r   is 

centered as ( ) ( ) ( )c
X r X r E X r= −    , which is to ensure the identifiability of parameters 

bµ  

and bσ  in Equation (39).  

The proposed DFLM (as represented by Equations (5) and (6)) incorporates microstructure 

effects on both the location and scale parameters of the lifetime distribution. Specifically, when 

we let ( )2 0rβ =  for [ ]0,1r ∈ , the proposed DFLM degenerates into the FLR model [100]. In 

most FLR literature, a regression between a functional predictor (such as the two-point 

correlation function X(r) in our case) and a scalar response is studied, e.g., see Cai and Hall 

[109], Yuan and Cai [110], and Wu, et al. [111]. However, all these existing studies only 

consider the relationship between the location parameter of the response variable and the 

functional predictor, while the scale parameter is assumed to be constant. In the real world, the 

scale parameter can also depend on the functional predictor so that the FLR may not be efficient 

to model the microstructure effect on material lifetime. Furthermore, when both ( )1
0rβ =  

and ( )2
0rβ =  for [ ]0,1r ∈ , the proposed DFLM degenerates into a conventional reliability 
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model that ignores the microstructure image information, i.e, a model that fits the failure time 

data with two distribution parameters, 
bµ  and 

bσ . 

In Equation (40), both ( )c
X r  and ( )j

rβ  for  j = 1 and 2 are functions with infinite 

dimensions. To represent them more efficiently, a set of orthogonal basis functions ( )i
b r  is 

chosen for i = 1, 2, … that satisfy ( ) ( )
1

0
m n mn

b t b t dt δ=∫  , where 1mnδ =   if m n=  , and 

0mnδ =  if m n≠ . Based on the selected basis functions, ( )c
X r  and ( )j

rβ  are represented 

as the weighted sum of ( )i
b r  as follows: 

( ) ( )

( ) ( )

1

1

;  1, 2
j ij i

i

c i i

i

r b r j

X r b r

β η

ρ

+∞

=

+∞

=


= =



 =


∑

∑
                       (41) 

where 
ijη   and 

iρ   are coefficients and can be calculated as ( ) ( )
1

0
ij j i

r b r dr= ∫η β   and 

( ) ( )
1

0
i c i

X r b r drρ = ∫ , respectively; 
2

1

ij

i

η
+∞

=

< +∞∑  for j = 1, 2; and 
2

1

ij

i

η
+∞

=

< +∞∑ . Notice that 

the same basis functions are chosen to decompose ( )j
rβ   and ( )c

X r   for simplicity of 

exposition although this is not a necessary condition.  

Based on Equation (41), the microstructure effect ( )( )j
X rψ  in Equation (40) can be 

further derived as 

( )( ) ( ) ( )
1

0
1

; 1,2
j c j ij i

i

X r X r r dr jψ β η ρ
+∞

=

= = =∑∫                  (42) 

In Equation (42), the number of summation items is infinite and thus makes the model 

complicated. To overcome this challenge, we use a truncated version of Equation (42) by 

choosing its first q items. That is,  

( )( )
1

; 1,2
q

j ij i

i

X r jψ η ρ
=

= =∑                        (43) 
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The truncation in Equation (43) will result in a truncation of lifetime parameters µ  and 

σ   in Equation (39). Specifically, µ   and σ   will be truncated as 

( )1

1 1 1

1

q

b i i

i

g gµ µ η ρ−

=

 
= + 

 
∑  and ( )1

2 2 2

1

q

b i i

i

g gσ σ η ρ−

=

 
= + 

 
∑ . We show that the truncation 

errors can be bounded in the following Theorem 1. The detailed proof of Theorem 1 is listed 

in Appendix 9. 

Theorem 1: The truncation errors for the lifetime parameters can be bounded as  

( )( )

( )( )

2
* * 2 2

1 1

1 1

2
* * 2 2

2 2

1 1

4

4

i i

i q i q

i i

i q i q

L c

U c

µ µ η δ

σ σ η δ

+∞ +∞

= + = +

+∞ +∞

= + = +

  − ≤   


  − ≤
   

∑ ∑

∑ ∑

E E

E E

                  (44) 

where ( )* 1

1 1 1

1

b i i

i

g gµ µ η ρ
+∞

−

=

 
= + 

 
∑   and ( )* 1

2 2 2

1

b i i

i

g gσ σ η ρ
+∞

−

=

 
= + 

 
∑   denote the true 

location and scale parameters without truncation, respectively; ( )1 1

1

q

b i i

i

L g µ η ρ
=

= +∑   and 

( )2 2

1

q

b i i

i

U g σ η ρ
=

= +∑   are the truncation effects; ci for i = 1 and 2 are bounds that satisfy 

( )
2

i i
h c′ ≤i ; ( ) ( )1

i i
h g

−=i i ; and 
2 2

i i
Eδ ρ =   , which satisfies ( )

1
2 2

0
1

1
i c

i

E X t dtδ
+∞

=

 = ≤ ∑ ∫ . In 

Theorem 1, the truncation errors will vanish asymptotically as q → +∞ , which is a commonly 

used assumption in statistical literature [112].  

4.4 Model Parameter Estimation 

Based on Equations (39) and (43), the model parameters are ( )
T

T T

1 2, , ,b bµ σ=θ η η , where 

( )
T

T

1 2, ,...,j j j qjη η η=η  for j = 1 and 2. We develop a maximum penalized likelihood estimation 

(MPLE) method to estimate θ .  

Suppose the failure times and microstructure images of N material samples are collected. 
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For the ith sample, denote the failure time as ti and the corresponding two-point correlation 

function computed based on the microstructure image as ( ) [ ]; 0,1
i

X r r ∈  for i = 1, 2, …, N. 

Let ( )
T

1 2, ,..., Nt t t=t  and ( ) ( )
T

1 2, ,..., logNy y y= =y t . The log-likelihood function given y
 

is as follows: 

( ) ( )
1

log ; ,
N

Y i i i

i

l f y µ σ
=

=   ∑θ y                       (45) 

where ( )( ) ( )( )1

1 1 1i i b
g X r gµ ψ µ−= +  ; ( )( ) ( )( )1

2 2 2i i b
g X r gσ ψ σ−= +  ; ( )1

jg x
−   denotes 

the inverse function of ( )j
g x  for j = 1, 2; and ( )( )j i

X rψ  is calculated through Equation 

(40), in which ( ) ( )
1

1 N

i

i

E X r X r
N =

=   ∑ . 

In Equation (45), as the log-normal distribution is chosen to model the lifetime T, 

( )logY T=   follows a normal distribution with the following Probability Density Function 

(PDF) conditioning on the ith material microstructure image: 

( )
( )

2

2

1
; , exp

22

i

Y i i

ii

y
f y

µ
µ σ

σσ π

 −
= − 

 
 

                 (46) 

where 
iµ  and 

iσ  denote the mean and standard deviation of Y for the ith sample, respectively. 

By inserting Equation (46) into Equation (45),  the log-likelihood function can be further 

derived as follows: 

( ) ( )

( ) ( )
( )

1

2

2
1 1

log ; ,

log 2 log
2 2

N

Y i i i

i

N N
i i

i

i i i

l f y

yN

µ σ

µ
π σ

σ

=

= =

=   

−
= − − −

∑

∑ ∑

θ y

                   (47) 

To estimate the model parameters θ , the MLE method aims at maximizing ( )l θ y  with 

respect to θ . However, as the number of parameters can be large when T

1η  and T

2η  are 

high dimensional (i.e., when the number of selected basis functions is large if a high accuracy 
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is required), directly applying the MLE method is intractable and can cause an overfitting 

problem [113]. To overcome the challenge, we develop an MPLE approach [114]. Specifically, 

rather than maximizing the log-likelihood function ( )l θ y  , we maximize a penalized log-

likelihood function ( )p
l θ y  defined as follows: 

( ) ( ) ( )
2 1 2

0
1

p j j

j

l l r drλ β
=

′′= −∑ ∫θ y θ y                       (48) 

where ( )
2 1 2

0
1

j j

j

r drλ β
=

′′∑ ∫  is a penalty term.  

In Equation (48), the penalty term measures the wiggliness of model component functions 

(i.e., the ( )j rβ   in the DFLM), serving to penalize models with overly complicated 

component functions [113]. The smoothing parameters j sλ ′  control the tradeoff between the 

“faithfulness” (or the fitting) to the data, as represented by the log-likelihood function ( )l θ y , 

and the “smoothness” of the solution, as represented by the penalty term [113, 115]. 

Specifically, when 
jλ  is large, the penalty term is dominant and the model parameter estimate 

will be smoother but less accurate; when 
jλ  is small, the main contribution to ( )p

l θ y  is the 

log-likelihood ( )l θ y and the model parameter estimate will track the data more closely (i.e., 

more accurate) but will be more irregular. In this chapter, we select the penalty term as the 

squared norm of the second derivative of smooth functions, which has been widely used in the 

literature [100, 116-118].  

Equation (48) involves a selection of smoothing parameters { }1 2,λ λΛ = . In this chapter, 

a criterion called Validation Generalized Deviance (VGD)[119] is applied to choose Λ  . 

Specifically, the data set is first randomly separated into two sets, i.e., a training set 

( )( ){ }, ;
T i i T

D X r t i S= ∈   and a validation set ( )( ){ }, ;V i i VD X r t i S= ∈  , where 
TS   and 

VS  
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are two disjoint sets that satisfy { }1, 2,...,
T V

S S N∪ = . Next, Λ  are chosen by minimizing 

the VGD as follows:  

� ( ){ } ɵ ( )( ){ }
2 2

arg min ; arg min 2 ,
V T T V

VGD D D l D D
Λ∈ Λ∈

Λ = Λ = − Λθ
ℝ ℝ

           (49) 

where ɵ ( ),TD Λθ  is the estimated model parameters using the training set 
TD  conditional on 

Λ   by maximizing Equation (48); and ɵ ( )( ),
T V

l D DΛθ   is the log-likelihood value for the 

validation set VD  based on ɵ ( ),TD Λθ . 

Based on the estimated �Λ , by maximizing the penalized log-likelihood function ( )p
l θ y  

in Equation (48) with respect to θ , the model parameters can be estimated as  

ɵ ( )arg max
p

l
∈

=
θ

θ θ y
ℝ

                         (50) 

For the maximization in (50), the following Theorem 2 is derived to obtain the parameter 

estimates. The detailed proof of Theorem 2 is listed in Appendix 10. 

Theorem 2: the model parameters 
T

T T

1 2, , ,b bµ σ =  θ η η   can be obtained from 

T
* T T *

1 2, , ,b bµ σ =  θ η η  in which ( )*
logb bσ σ= , and 

*θ  solves the following equation: 

( ) ( )( ) ( ) ( )( ) ( )

2
T * T * T * T * *

1 1 2 2 1 2 2 2 1
exp 2 exp 2 2

q+ ×
   − − + − − − − =   C y C θ C θ C y C θ C θ 1 Ωθ 0





 
 


(51) 

where “
” is the Hadamard operator [120]. Specifically, the Hadamard product =W U V
  

is defined as: 
ij ij ijw u v= × , where ,  ij ijw u  and ij

v  are the  entries of W, U, and 

V, respectively. The Hadmard power is defined as: 
kU 


 has the  entry of 
k

iju , and 

m U

  has the   entry of iju

m  , where k and m are two real numbers. Moreover, in 

Equation (51), 1 2  , ,...,
j j j N j
 =  C c c c  for j = 1 and 2;

T T T

1 1,1, ,0
i i q×

 =  c ρ 0 ; 
T T T

2 1,0, ,1
i q i×

 =  c 0 ρ ; 

( ),
th

i j

( ),
th

i j

( ),
th

i j
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( )
T

1 2, ,...,i i i iqρ ρ ρ=ρ  is the coefficient vector for sample i ; 

1 1 1

1 1 1 1 1 1

1 2 1

1 1 1 1 1 1

q q q q

q q

q q q q

q q

λ

λ

× × ×

× × × ×

× × ×

× × × ×

 
 
 =
 
 
 

ω 0 0 0

0 0 0 0
Ω

0 0 ω 0

0 0 0 0

 

is a ( ) ( )2 2 2 2q q+ × +  dimensional matrix; and 
i j×0 is a i j×  dimensional zero matrix. 

Furthermore, we develop a pair-wise bootstrap method to compute the standard errors of 

the model parameter estimate ɵ � � � �( )
TT T

1 2, , ,
b b

µ σ=θ η η  and smoothing parameter estimate 

� � �{ }1 2,λ λΛ = . The detailed steps of the pair-wise bootstrap method are listed in Algorithm 4.1. 

Algorithm 4.1: Standard error calculation of model parameters. 

1. Denote set ( ) ( ) ( ){ }1 2, ,...,
r N

X X r X r X r=  as the sample of N two-point 

correlation functions. Based on rX  and the failure time vector y, estimate the model 

parameters as ɵ � � � �( )
TT T

1 2, , ,
b b

µ σ=θ η η and the smoothing parameters as � � �{ }1 2,λ λΛ = . 

2. For i in 1:M, where M is the number of bootstrap samples, 

Step 2.1: based on
rX  and ɵθ , simulate the ith failure time vector      

         ( )
T

1 2, ,...,i i i iNy y y=y  (log-scale), where 
ijy  is sampled from a normal  

         distribution with the mean and standard deviation being calculated using  

        Equations (39) and (43). 

      Step 2.2: based on { },r iX y , estimate the model parameters and smoothing  

              parameters for the ith bootstrap sample, denoted as 
�

i
θ  and   

              � � �{ }1 2,i i iλ λΛ =  , respectively. 

3. Estimate the standard errors: 

The standard errors of the model parameter estimates are calculated as the square 
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roots of �( )diag Σ , where � �( ) �( )
T

1

1

1

M

i i

iM =

= − −
−
∑Σ θ θ θ θ  and �

1

1 M

i

iM =

= ∑θ θ . The 

standard errors of 
�

1λ  and 
�

2λ  are calculated as the standard errors of  

� � �{ }11 12 1
, ,...,

M
λ λ λ  and � � �{ }21 22 2

, ,...,
M

λ λ λ , respectively. 

4.5 Simulation Study 

A simulation study is implemented to verify the developed MPLE method, and errors of 

the model parameter estimates are investigated. 

We first simulate a set of material microstructure images and lifetimes based on specified 

model parameters. Specifically, the sample size is chosen as 200N =  . The material 

microstructure images are generated following methods by Jiao, et al. [121] given material 

two-point correlation functions. For details on the microstructure simulation, see Jiao, et al. 

[121]. Subsequently, to simulate failure times based on the simulated microstructure images, 

the baseline parameters bµ  and bσ  are specified as 0 and 1, respectively. The two functional 

coefficients are specified as ( ) ( ) ( ) ( )( )1 5 sin 2 cos 4 cos 6r r r rβ = + +   and 

( ) ( ) ( ) ( )( )2 2 sin 3 cos 5 cos 7r r r rβ = + + . The support [ ]0,1  of distance r is discretized using 

100 points with equal spaces, i.e., 
1 2 1000 ,..., 1r r r= < < = . The simulated ( )1 rβ  and ( )2 rβ  

are illustrated in Figure 4.3.  
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           Distance (r) 

       Figure 4.3: Estimated vs. true functional coefficients 

Based on the simulated data set, the developed MPLE method is applied to estimating the 

model parameters, whose values are further compared to the true parameters to assess the 

performance of the MPLE. Specifically, we choose the orthogonal cubic spline functions as 

basis functions, and the number of basis functions is set as 5q=  while a larger q can increase 

the accuracy if necessary. Based on the MPLE method, the model parameters are estimated by 

solving Equation (51). Specifically, we repeated the process for M = 5000 times, the average 

smoothing parameter estimates are calculated as �
4

1 7.42 10λ −= ×  and ɵ
6

2 3.76 10λ −= ×  based 

on Equation (49). The average baseline location and scale parameter estimates are 

� 0.0006
b

µ =  and � 0.972
b

σ = , respectively, which are close to the true values. The average 

estimates of the basis function coefficients are 
� ( )

T

1 4.33,0.87, 1.94,1.39,1.43= −η   and 

� ( )
T

2 1.68,0.078, 0.46,1.19,0.52= −η  . Based on �1η   and �2η  , the functional coefficient 

estimates calculated as � ( ) ( )�T

1 1r rβ = b η  and � ( ) ( )�T

2 2r rβ = b η , are illustrated in Figure 4.3. 
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It can be seen that the estimated functional coefficients are also close to the true functional 

coefficients. We also computed the standard errors of the parameter estimates based on 

Algorithm 4.1 as �( ) 0.028,
b

sd µ =   �( ) 0.031,
b

sd σ =   �( ) ( )
T

1
0.75,0.34,0.25,0.27,0.79 ,sd =η  

and �( ) ( )
T

2 3.72,1.71,1.23,1.37,3.92 .sd =η  Moreover, the standard errors of the smoothing 

parameter estimates are �( ) 3

1 2.7 10sd λ −= ×   and �( ) 4

2 3.3 10sd λ −= ×  . A summary of the 

model parameter estimates and the corresponding standard error estimates is listed in Table 4.1.  

Table 4.1: Estimated model parameters and standard errors for a simulated data set 

Model parameters �� ��� ��� ��� ��� ��� 

Estimated value 0.0006 4.33 0.87 -1.94 1.39 1.43 

Standard error 0.028 0.75 0.34 0.25 0.27 0.79 

Model parameters �� ��� ��� ��� ��� ��� 

Estimated value 0.972 1.68 0.078 -0.46 1.19 0.52 

Standard error 0.031 3.72 1.71 1.23 1.37 3.92 

To quantitatively assess the errors of the parameter estimation, we define the estimation 

errors as follows. For the baseline location and scale parameters, the error is defined as the 

Absolute Error (AE) between the true values and the mean estimates (denoted as �b
µ  and 

�
b

σ ), i.e., �( ) �
b b b

AE µ µ µ= −  and �( ) �
b b b

AE σ σ σ= − . For the two functional coefficients, 

the error is defined as the Integrated Absolute Error (IAE) between the true coefficients and the 

mean estimates ( denoted as � ( )1 rβ  and � ( )2 rβ ), i.e.,  

� ( )( ) ( ) � ( )
1

0
IAE  ; 1,2i i ir r r dr iβ β β= − =∫                    (52) 

Based on the developed MPLE method, the parameter estimation errors, respectively denoted 

as �( )bAE µ  , �( )bAE σ  , � ( )( )1IAE rβ   and � ( )( )2IAE rβ  , for different sample sizes are 

computed and illustrated in Figure 4.4. It can be seen that the errors decrease to small levels as 

the sample size increases. 
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Figure 4.4: Error of parameter estimates vs. sample size 

Furthermore, we investigate the effect of number of basis functions, i.e., q, on lifetime 

prediction. Specifically, we plot the relationship between the predicted lifetime distribution 

parameters (mean and standard deviation) and parameter q for a randomly chosen sample, as 

illustrated in Figure 4.5. It can be seen that as q increases from 5 to 10, the predicted mean and 

standard deviation of the lifetime almost do not vary and are very close to the true mean and 

standard deviation, respectively. This indicates that in our case choosing q = 5 is sufficient in 

lifetime prediction. A reason is that the true functional coefficients as specified is relatively 

smooth and can be well represented with 5 basis functions. 
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Figure 4.5: Lifetime parameter estimates vs. number of basis functions 

4.6 Case Study 

The proposed model is applied to studying the lifetime distribution of DP high strength 

steels based on their microstructure images. This family of steels is one type of advanced high 

strength steel developed in recent years that contains a hard martensitic phase and a ductile 

ferritic phase. They have been increasingly used in the automotive industry due to their 

excellent properties such as extremely high strength and good formability. 

In the case study, we designed and conducted physical experiments on 26 material samples 

made from four different types of DP steels, termed as DP 780, DP 980, DP 980-GI and DP 

980-CR. Each steel sample (a squared sheet of size 100 mm ×100 mm at an as-received sheet 

thickness of 1mm) was firmly clamped by a set of dies, and the center area of the sample was 

stretched axi-symmetrically by a hemispherical punch of 20 mm in diameter until the fracture 

occurs. Figure 4.6 shows the mechanical testing system (Instron 8801) and a failed sample of 

DP 980 steel that cracked, along with a microstructure image of as-received DP 980 steel. The 

failure process of the sample was recorded by a DIC system, which is capable of tracing surface 
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displacement and strain field over time. The material’s fracture strain can be obtained as the 

DIC-measured maximum strain before failure and is used to develop material’s failure criterion. 

Some earlier works of this technique can be seen in [122] and [123]. In this study, we treat the 

“maximum strain” as the “lifetime” of the materials. Next, in the image acquisition experiment 

the microstructure images of the steel samples were obtained by using a microscope with a 

1000 × magnification after the steel samples had been prepared through sample sectioning, 

grinding, polishing and chemical etching. An obtained microstructure image is illustrated in 

Figure 4.6 (right). Based on the designed experiment, 26 lifetimes of the DP steel samples and 

the corresponding 26 microstructure images were collected. 

               

Figure 4.6: Instron 8801 testing machine (left), a failed DP steel sample (middle) and a 

microstructure image (right) 

Before applying the proposed model, a one-sample Kolmogorov-Smirnov test is performed 

to test the lognormal assumption of the collected lifetimes. Specifically, the null hypothesis in 

the test is: the 26 lifetimes are drawn from the reference distribution, i.e., the fitted log-normal 

with location and scale parameters being -0.874 and 0.173, respectively. The p-value of the 

Kolmogorov-Smirnov test is 0.353, which is greater than 0.05. Therefore, there is no sufficient 

evidence to reject the null hypothesis at a significance level of 0.05, and in this case study the 

log-normal is used as the lifetime distribution of the dual-phase advanced high strength steel. 
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Next, we apply the proposed model to analyze the experimental data set. Based on the 

MPLE method, the smoothing parameters are estimated as ɵ 6
1 1.04 10λ −= ×   and 

ɵ 6
2 2.10 10λ −= ×   using Equation (49). By solving Equation (51) the baseline location and 

scale parameters are, respectively, estimated as � 0.87
b

µ = −   and � 0.12
b

σ =  . The basis 

function coefficients are estimated as � ( )
T

1 2.49, 10.31,0.52,11.23,7.41= −η   and 

� ( )
T

2 8.77,3.42,5.01,4.30,6.52= −η  . Based on �1η   and �2η  , the estimated functional 

coefficients � ( ) ( ) ɵT

1 1r rβ = b η   and � ( ) ( ) ɵT

2 2r rβ = b η   are calculated and illustrated in 

Figure 4.7. Furthermore, the standard errors of the parameter estimates are calculated based on 

Algorithm 4.1 as �( ) 4

1 3.9 10sd λ −= ×  , �( ) 5

2 5.4 10sd λ −= ×  , �( ) 0.06bsd µ =  , �( ) 0.02bsd σ =  , 

�( ) ( )
T

1
0.73,3.21,0.21,2.20,2.61sd =η  , �( ) ( )

T

2
3.54,1.28,1.87,1.76,2.52sd =η  . A summary 

of the model parameter estimates and the corresponding standard error estimates is listed in 

Table 4.2.  

Table 4.2: Estimated model parameters and standard errors for the experimental data set 

Model parameters �� ��� ��� ��� ��� ��� 

Estimated value -0.87 2.49 -10.31 0.52 11.23 7.41 

Standard error 0.06 0.73 3.21 0.21 2.20 2.61 

Model parameters �� ��� ��� ��� ��� ��� 

Estimated value 0.12 -8.77 3.42 5.01 4.30 6.52 

Standard error 0.02 3.54 1.28 1.87 1.76 2.52 
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Figure 4.7: Estimated functional coefficients 

Based on the estimated � b
µ  , � bσ  , � ( )1 rβ   and � ( )2 rβ  , the material lifetime distribution 

can be predicted given material microstructure images following Equations (39) and (40). For 

example, given the microstructure image of a DP steel sample shown in Figure 4.6 (right) the 

predicted lifetime distribution using the proposed model is computed and illustrated by the 

solid curve in Figure 4.8, which is a log-normal distribution with location and scale parameters 

of -1.097 and 0.102, respectively.  

For comparison purposes, we also predict the lifetime distribution of the DP steel sample 

using a classic model that ignores the microstructure image information. The dash curve in 

Figure 4.8 illustrates the predicted lifetime distribution of the classic model that fits a lognormal 

distribution to the failure time data. The location and scale parameters are -0.874 and 0.173, 

respectively. The vertical line illustrates the true failure time of the steel sample, which is 0.326. 

It can be seen that the predicted lifetime distribution is tighter and more accurate than that of 

the classical model, and thus performs better in failure prediction. 

0.0 0.2 0.4 0.6 0.8 1.0

-6
0

-4
0

-2
0

0
2

0
4

0
6

0
8

0

estimat beta 1
estimat beta2
estimat beta 1
estimat beta2

estimated β1(r) 

estimated β2(r) 

 

fu
n

c
ti

o
n

al
 c

o
ef

fi
ci

e
n

ts
 

distance (r)  



81 
 

 

     

 

Figure 4.8: Lifetime distribution prediction for a DP steel sample 

4.7 Summary 

Material microstructures strongly affect material failure and reliability. In the literature, 

little research quantitatively conducts reliability analysis by utilizing the material 

microstructure image information. In this chapter, we propose a novel distribution-based 

functional linear model to conduct reliability analysis of dual-phase steel by utilizing its 

microstructure images. Specifically, the steel’s lifetime distribution is predicted based on its 

microstructure images, in which both the location and scale parameters of the distribution are 

adjusted by the steel’s two-point correlation function that captures the statistical properties of 

the microstructure.  

The proposed model is a generalization of the conventional functional linear regression 

model that treats the scale parameter as a constant. In the proposed model, both the location 

and scale parameters of a scalar response are adjusted by a functional predictor. Thus, the 

conventional parameter estimation method for functional linear regression such as the 
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penalized least squares method cannot be directly applied. To overcome the challenge, we 

develop a maximum penalized likelihood estimation method. A simulation study is 

implemented to verify the developed methods. Physical experiments are designed and 

conducted to illustrate the proposed model. 

In this chapter, we directly link the microstructure image information to the lifetime of 

dual-phase steel. In the future, it would be interesting to link the microstructure information to 

material macroscopic properties, which often affect the failure of materials. Moreover, the 

functional linear regression is applied to modeling the dependency structure between the two-

point correlation function and the lifetime distribution parameters. In the future, to apply 

functional nonlinear regression is an interesting research topic. Moreover, another appealing 

research topic would be to incorporate the three-dimensional material microstructure 

information into reliability analysis rather than using the two-dimensional microstructure 

images. 

The methodologies proposed in this chapter has been published in journal article [74]. 
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CHAPTER 5.  GENERAL CONCLUSIONS 

Material physical properties strongly affect material degradation behavior and failure. 

Without considering those properties, material reliability analysis utilizing existing 

methodologies may be inaccurate and is sometimes significantly biased. In this dissertation, 

we focus on incorporating three material properties of various scales into steel reliability 

analysis, i.e., a macro-scale steel overload retardation property, a local-scale steel dynamic 

deformation property and a micro-scale steel microstructure property. Although steel is utilized 

as the type of material in this dissertation, the proposed methodologies may also be applicable 

to other materials.  

In CHAPTER 2, we propose reliability analysis by incorporating the macro-scale overload 

retardation property. Specifically, a physical – statistical model is developed to quantitatively 

describe the overload retardation effect. The model is build up based on a modification of the 

existing Paris law used in the physical domain to delineate the physical mechanism of overload 

retardation. Random measurement errors are considered in the time domain. Based on the 

proposed model, reliability analysis is developed by defining a criterion that failure occurs 

when the crack length reaches a certain threshold level. A maximum likelihood method is 

developed to estimate the model parameters given observed crack propagation paths. A 

likelihood ratio hypothesis test is developed to determine whether a material has an overload 

retardation effect. The developed methodologies are verified and demonstrated through 

designed physical experiments. The methods are also applicable to overload acceleration and 

overload stationary situations, while only minor changes need to be made.  

In CHAPTER 3, we conduct reliability analysis by utilizing the local-scale dynamic 
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material deformation information in a tensile process. Specifically, a new multivariate general 

path model is proposed to quantitatively describe the multiple deformation paths collected 

across a grid of local points on each material sample. The model generalizes the existing 

univariate general path model that considers a single path per sample. A two-stage method is 

developed to estimate the model parameters while overcoming the computational complexities. 

A new variance-based failure criterion is used to account for the failure mechanism. Based on 

the proposed model and the new failure criterion, reliability analyses are developed for various 

types of deformation paths. In particular, closed-form reliability functions are derived when the 

multiple deformation paths follow a multivariate linear law, a multivariate power law, or a 

multivariate exponential law. When the deformation paths are more general, a simulation-based 

algorithm to compute the reliability function is developed. The aforementioned methods are 

illustrated using both simulation studies and designed physical experiments on advanced high 

strength steel. 

In CHAPTER 4, we develop reliability analysis by considering material microstructure 

image information using a two-stage framework. In Stage 1, the two-point correlation functions 

of material microstructure images are calculated to extract statistical information of the images 

up to the second order. In Stage 2, a novel distribution-based functional linear model is 

proposed to predict the lifetime distribution of materials based on the two-point correlation 

functions. In the model, both the location and scale parameters of the lifetime distribution are 

adjusted by the two-point correlation functions. The proposed distribution-based functional 

linear model is a generalization of the conventional functional linear regression model that 

treats the scale parameter as a constant. A maximum penalized likelihood estimation method is 
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developed to estimate the model parameters, which can overcome the overfitting issue. A 

simulation study is implemented to verify the developed methods. Physical experiments on 

advanced high strength steel are designed and conducted to demonstrate the proposed model. 

Results reveal that a significant improvement is achieved on the accuracy of lifetime prediction 

by utilizing steel microstructure image information. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



86 
 

 

APPENDIX 1. Proof of Proposition 1 

 For any 
0x ∈ℝ , let 

1 2 0 2m k x b= +  and 
2 3 0 3m k x b= + . For 

1 2,  m m ∈ℝ , the following 

identity holds [124]. 

{ }

1

* *
* *1 2

1 2 * *
max , lim

p p p

p

M m M m
m m M→∞

    + + 
= + −    

     
δ

δ δ
          (53) 

where ( )*

0M M x=   is a large positive number and keeps *

iM m+   positive for 1, 2i =  ; 

( )*

0
xδ δ= . 

A similar identity of (53) with respect to { }1 2min ,m m  can be constructed based on the 

following relationship. 

{ } { }1 2 1 2min , max ,m m m m=− − −                        (54) 

Let 
1

3 1 0 1m k x b= + ∈ℝ . Based on (53) and (54), we obtain the following identity. 

{ }{ }
{ }

1

* *
* *1 2 3

1 2 3 * *

max ,
min max , , lim

q q q

q

B m m B m
m m m B→∞

  −  − 
= − + +    

    

ω
ω ω

      (55)

 

where { }1 2max ,m m
  

is shown in (53); ( )*

0B B x=   keeps *

iB m−   positive for 1, 2, 3i =  ; 

and ( )*

0xω ω=  is used to ensure 
{ }*

1 2

*

max ,
0 1

B m m

ω

−
≤ ≤  and 

*

3

*
0 1

B m

ω

−
≤ ≤ . 

Equation (55) is equivalent to ( ) ( )1 0 , 2 0
lim ; ,

p q
g x g x p q→+∞=  . So, we conclude that for 

x ∈ ℝ  the following identity holds.  

( ) ( )1 , 2lim ; ,p qg x g x p q→+∞=                       (56) 

Proposition 1 is proved. 

 

 

 



87 
 

 

APPENDIX 2. Proof of Proposition 2 

When finite values of p and q are selected (p>1 and q>1) for applying Proposition 1, based 

on Equations (53) and (55) the point-wise approximation error is as follows. 

{ }{ }

1

* *
* *3

1 2 3* *
min max , ,

q q q
B B m

B m m m
    − − 

= − + + −    
     

Ż
ξ ω

ω ω
        (57)

 

where 

1

* *
* *1 2

* *
,

p p p
M m M m

Mδ
δ δ

    + + 
= + −    

     

Ż
  

and Ż   satisfies the following 

inequalites.
 

1

*
* *1

1*

1

*
* *2

2*

0

0

p p

p

p p

p

M m
M m

M m
M m


  +  

> + − =  
   


   +  > + − =      

Ż

Ż

δ
δ

δ
δ

                 (58)
 

To derive the bounds for ξ , we first define two variables denoted as 
1ξ  and 

2ξ . Then, 

the bounds of 1ξ  and 2ξ  are calculated in Lemma 1 and Lemma 2. Finally, the bounds for 

ξ  are derived based on the bounds of 
1ξ  and 

2ξ . 

Lemma 1. Define { }1 1 2= - max ,m mξ Ż , the upper and lower bounds of 1ξ  are 

1
10

c

p
< ≤ξ

                              

  (59) 

where { }( )*

1 1 22log2 max ,c M m m= × +  is a positive constant. 

Proof of Lemma 1. From equation (58), it can be seen that { }1 2
max ,m m>Ż . Hence, 

1 0ξ > . 

Furthermore, 
1ξ  can be written as: 

1

* * * *
* *1 2 1 2

1 * * * *
max ,

p p p
M m M m M m M m      + + + + 

= + −      
      

ξ δ δ
δ δ δ δ

         (60) 
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To derive the bounds for 1ξ , we start with defining a function ( ) ( )log , .x x xϕ += ∈ ℝ  

( )xϕ  satisfies the following inequality. 

( ) ( )
( )

2 1

2 1

2

x x
x x

x

−
− <

′

ϕ ϕ

ϕ
                         (61) 

where x1 and x2 are two real numbers satisfying 
1 20 x x< <  . In (61), let 

* *
* 1 2

1 * *
max ,

M m M m
x δ

δ δ

 + +
=  

 
  and 

1

* *
* 1 2

2 * *

p p p
M m M m

x δ
δ δ

    + + 
= = +    

     

Ż  , the 

following inequality is obtained. 

* * * *

1 2 1 2
1 2 * * * *

* *

1 2

* *

2 2

* *

1 2

* *

1
log log max ,

log log 2.

max ,

p p

p p

p

M m M m M m M m
x

p

M m M m

x x

p pM m M m

ξ
δ δ δ δ

δ δ

δ δ

         + + + +    
< + −        

            

   + +
+   

   < ≤
  + +
  

  

   (62) 

where 2x  satisfies 
{ }

{ }( )

1

1*

1 2* *

2 1 2*

max ,
2 2 max ,

p p

p
M m m

x M m mδ
δ

  + 
≤ × = +  

   

.  

Considering p>1, we have 

1

2 2p < , and thus we get { }( )*

2 1 22 max ,x M m m< + . By inserting 

this inequality into (62), we obtain the upper and lower bounds of 1ξ  in (59). 

Lemma 2. Define 

{ }

1

* *
* *3

2 3* *
min ,

q q q
B B m

B m
    − − 

= − + + −    
     

Ż
Żξ ω

ω ω
            (63) 

The upper and lower bounds of 
2ξ  are  

     
2

2 0
c

q
− ≤ <ξ                             (64) 
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Proof of Lemma 2. In (63), considering  

{ } { }
**

* *3
3 3 * *

min , max , max ,
B mB

m m Bω
ω ω

 −−
= − − − = − + 

 

Ż
Ż Ż  , 2ξ   can be further 

written as: 

1

* * * *
* *3 3

2 * * * *
max ,

q q q
B B m B B m

 
      − − − −  

= − + −       
       

 

Ż Ż
ξ ω ω

ω ω ω ω
          (65) 

The bounds for 2ξ  can be obtained due to the symmetry between Equations (65) and 

(60), i.e., 
*

2
2 0

c

q
ξ− ≤ <  , where { }( )* *

2 32log2 max ,c B m= × + − −Ż  . Considering 

{ }1 2max ,m m>Ż  , we get ( ){ }( )* *

2 1 2 3 22log 2 max max , ,c B m m m c≤ × + − − =  , and 2c  

is a positive constant. Therefore, the bounds for 
2ξ  is obatained in (64).  

Based on Lemma 1 and Lemma 2, the bounds for ξ  is derived as follows.  

Considering 
1 0ξ > , the following inequality holds. 

{ }{ } { }{ } { }{ }1 2 3 1 2 1 3 1 2 1 3 1
min max , , min max , + , min max , + , + .m m m m m m m m mξ ξ ξ≤ ≤                                           

Based on the aformationed inequality, it can be seen that:  

{ }{ } { }{ }
{ }{ } { }{ }

1 2 1 3 1 2 3

1 2 1 3 1 1 2 3 1

min max , + , - min max , ,

min max , + , + - min max , , =

m m m m m m

m m m m m m≤

ξ

ξ ξ ξ
            (66) 

By substituting { }1 2 1max , + =m m ξ Ż  into (66), the following inequality is obtained. 

{ } { }{ }3 1 2 3 1
0 min , -min max , ,m m m m≤ ≤Ż ξ

                

   (67)

 

Then, by inserting (63) into (67) we obtain: 

{ }{ }

1

* *
* *3

2 1 2 3 1* *
0 - - min max , ,

q q q
B B m

B m m m
    − − 

≤ − + + ≤    
     

Ż
ω ξ ξ

ω ω
       

Considering the definition of ξ  in (57), the aforementioned inequality is equivalent to 
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2 1 2+ .ξ ξ ξ ξ≤ ≤  Next, based on (59) and (64) the upper and lower bounds for ξ  is 

obtained as follows. 

2 1 2c c c

q p q
− ≤ ≤ −ξ

                               

(68)

 

Finally, considering the definition of variabes * * * *

1 2 3, , , , , ,m m m M Bδ ω in Proposition 1, 

the upper and lower bounds of approximation error for any given x ∈ ℝ  are as follows. 

( )
( )

( ) ( )2 1 2c x c x c x
x

q p q
− ≤ ≤ −ξ

                       

(69)

 

where ( ) ( ) { }( )*

1 2 2 3 32log2 max ,c x M x k x b k x b= × + + +  and  

( ) ( ) { }{ }( )*

2 2 2 3 3 1 12log 2 max max , ,c x B x k x b k x b k x b= × + − + + − − .   

Proposition 2 is proved. 
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APPENDIX 3. Asymptotic Analysis of the Two-stage Parameter Estimation Method 

Statistical and asymptotic properties of the two-stage procedure in Algorithm 3.1 are 

provided, which are similar to the results in Lu and Meeker [7]. Specifically, under mild 

conditions [7, 125] �
i

ψ  , � iΦ   and �
iσ   are consistent, and � �( ), iiψ Φ   and �

iσ   are 

asymptotically independent. For large 
im , the following asymptotic result holds conditional on 

*

i i=Φ Φ : 

�

�
( ) ( )

1
2 T * *

*
~ , ; , ; ,

i

i i i i

ii

MVN σ
−    

             

ψψ
η t ψ Φ η t ψ Φ

ΦΦ
ɺ ɺ            (70) 

Based on (70), the unconditional asymptotic expectation and covariance matrix of � iΦ  are 

�( ) �( ) [ ]i i i iE E E Eε
 = = =  Φ Φ Φ ΦΦ Φ Φ Φ µ                       (71) 

and  

�( ) �( ) �( )
[ ] �( ) �

Var Var Var

Var Var

i i ii i

ii i

E E

E

ε ε

ε

   = +      

 = + = +  

Φ Φ Φ

Φ Φ Φ Φ

Φ Φ Φ Φ Φ

Φ Φ Φ Σ Σ

                (72) 

where �
�( )Var i iE ε

 =   ΦΦ
Σ Φ Φ  is the asymptotic variability due to measurement errors on 

deformation paths of the ith sample. 

Moreover, for the fixed-effect parameter estimator �
i

ψ , the following asymptotic result 

holds:  

 �( ) �( ) [ ]i i iE E E Eε
 = = =  Φ Φ Φψ ψ Φ ψ ψ                    (73) 

Based on (71) − (73), we have the following asymptotic result for large : 

� ɵ( ) � ɵ( ) �

T

1

1

1

N

i i

i

E
N =

 
= − − − − 

∑Φ Φ Φ Φ Φ
Σ Φ µ Φ µ Σ                 (74) 

As 
�Φ

Σ  in Equation (74) can be estimated as � � �( )
1

1
var

N

i

iN
ε

=

= ∑ΦΣ Φ , the result in Equation 

(22) is obtained. 

im
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APPENDIX 4. Proof of Proposition 3 

Define 
t t t= −Z X υ  . 

tυ   can be written as 
t p p t

p×=υ 1 X  , where 
p p×1   is a p p×  

dimensional matrix with all entries equaling 1. Therefore, 
tZ  can be shown to be multivariate 

normal as follows.  

( ) ( )~ ,
t t t p p p p t t t t

p N× ×= − = − =Z X υ I 1 X LX µ Σ            (75) 

where 
p p p p

p× ×= −L I 1   and ( )t
t= +a bµ L µ µ  . In (75), as 

( ) ( )2 ,
t

Cov t t= + + +a b ab baX Σ Σ Σ Σ   we can obtain  

( ) ( )T 2 T

t t
Cov t t = = + + + a b ab ba

Σ L X L L Σ Σ Σ Σ L . 

Based on (75), define ( )1/2

t t t t

−= −W Σ Z µ   by assuming that 
tΣ   is invertible. 

tW  

follows a standard multivariate normal distribution, i.e., ( )t p
E =W 0  and ( )t p p

Cov ×=W I , 

where 
p

0  is a p-dimensional zero vector, and 
p p×I  is a p p×  dimensional identity matrix.  

Based on the definition of 
tZ  and

tW , the real-time variance defined in Equation (24) 

can be written as ( )T 1
t t t

S p= −Z Z . Furthermore, by replacing tZ  with tW , tS  can be 

derived as 

( )( ) ( )

( ) ( )

( ) ( )

T
1/2 1/2 1/2 1/2

T
1/2 1/2 1/2 1/2

T
1/2 1/2

1

1
1

1
1

1

t t t t t t t t t

t t t t t t t t

t t t t t t t

S
p

p

p

− −

− −

− −

= + +
−

= + +
−

= + +
−

Σ W Σ µ Σ W Σ µ

W Σ µ Σ Σ W Σ µ

W Σ µ Σ W Σ µ

            (76) 

Equation (76) involves the covariance matrix tΣ . Based on the spectral decomposition 

theorem [126], there exists an orthogonal matrix ( )1 2
, ,...,

p
=Q q q q   such that for the 

symmetric 
tΣ  the following result holds: 

( )T

1 2diag , ,...,
t t t t pt

λ λ λ= =Q Σ Q Λ                     (77) 
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where Q  is p p×   dimensional and satisfies T T

p p×= =Q Q QQ I  ; 
1 2 ...t t ptλ λ λ≥ ≥ ≥   are 

the eigenvalues of tΣ ; and iq  is the eigenvector corresponding to eigenvalue itλ . 

Based on (77), 
tΣ  can be decomposed as 

( ) ( ) ( )
1 1

T T 1 T 1 T

t t t t

− −− −= = =Σ Q Q Σ Q Q Q Λ Q QΛ Q             (78) 

By inserting Equation (78) into Equation (76), 
tS  can be derived as 

( ) ( )

( ) ( )

( ) ( )

( )

T
1/2 T 1/2

T
T T 1/2 T T 1/2

T

2

1

1

1

1

1

1

1

1

1

1

1

1

t t t t t t t t

t t t t t t t

t t t t t

p

it it it

i

p

it it

i

S
p

p

p

D c
p

p

λ

λ

− −

− −

=

=

= + +
−

= + +
−

= + +
−

= +
−

= Ω
−

∑

∑

W Σ µ QΛ Q W Σ µ

Q W Q Σ µ Λ Q W Q Σ µ

D c Λ D c         (79) 

where ( )
2

it it itD cΩ = +   is a non-central chi-squared random variable with one degree of 

freedom, i.e., ( )2 2

1~it itcχΩ  ; 2

itc   is the non-centrality parameter;  

( )
T

T

1 2, ,...,t t t t ptD D D= =D Q W   satisfies ( )tE =D 0   and 

( ) ( )T T

t t p p
Cov Cov ×= = =D Q W Q Q Q I ; and ( )

T
T 1/2

1 2, ,...,t t t t t ptc c c
−= =c Q Σ µ .  

Proposition 3 is proved. 
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APPENDIX 5. Proof of Proposition 4 

When the threshold variance is specified as 
ths , the reliability function is  

( ) ( ) ( ); , Pr ; ;
tth t th S th

R t s S s F sΘ = ≤ Θ = Θ                  (80) 

Martínez and Blázquez [85] derived the CDF of 
1

,  
n

i i

i

Y Xα
=

=∑ where ( )2~
ii v i

X χ δ  and 
iα  

for i = 1, 2, …, n are coefficients, as follows: 

( )
( ) ( ) ( )

( ) ( )/2 2
/2

/2 1

0 0

2!

/ 2 1 42 / 2 1

y

v
vi

Y iv

i i

v yy e i m
F y L

vv

β

βµβ

−
+∞

+
=

+ 
= ×  

+Γ +  
∑           (81) 

where 
1

n

i

i

v v
=

=∑  ; 
( ) ( )i

L x
α

  is defined in Equation (27);

( )
( )

( )( )
/2 1 /2 1

/20

0 0 0

1 10 0 0

1
2 1 exp

2 2

i

v vn n
vi i

i

i ii

qv
m q

q q

δ α µ β
βµ α µ

βµ α µ µ

+ +
−

= =

 −  
= + − × + −  

+ − −    
∑ ∏  ; 

1

0

1
, 1

k

k j k j

j

m m d k
k

−

−
=

= ≥∑  ; / 2 1q v= +  ; 
0 0µ >  ; 0β >  ; and 

( )
( )

( )
( )

1

1 00 0

1 10 0 0 0 0 02 2

j jj
n n

j ii
j i i i

i ii i

j q v
d

q q q

µ β αβ µ µ
δ α β α

µ βµ α µ µ βµ α µ

+

−

= =

   − −
= − − + +    

+ − − + −    
∑ ∑  

for 1j ≥ . 

Based on Equation (80), by truncating Equation (81) using its first M items and inserting 

tY S=  , ( )1
i it

pα λ= −  , n p=  , 1iv =   , 
1

p

i

i

v v p
=

= =∑  , 
thx s=   and 2

i itcδ =   into 

Equation (81), the approximate reliability function in Equation (27) is obtained. 

Proposition 4 is proved. 
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APPENDIX 6. Proof of Proposition 5 

In Proposition 4, by truncating Equation (81) using its first M items, Martínez and 

Blázquez [85] derived the bound of the truncation error ( )yξ  as   

( )
( )

( )

( ) ( )
( ) ( )

( )

/2/2 2

0
0

1 0

/2

0

1 10 0 0

1 / 1 exp
/ 2 1 2

/ / 1 21
exp exp

4 1 / / 1 2 8

               

i

y
vv n

i

i

v
n

i i

k

i k Mi

y e q
y q

v q q

q v yq
b

q

β α µ δ
ξ µ

β µ ε

δ α β µ

α β µ βµ βµ

− −

=

+∞

= = +

 
≤ + − × × × Γ + −  

 − +    
− ×     

+ −      

∏

∑ ∑      (82)    

where 

/2 1
2 2 2 2

2 2

k v

k

k

k v k v
b

k v
ε

+
+ + + +   

=    
+   

 ; ( )1 2max ,ε ξ ξ=  ; 
( )

0
1

02 1v

µ
ξ

µ
=

+ −
 ; and

( ) ( )( )2

0

1
max

1 2 1 1

i

i
i

v

α β
ξ

α β µ

 − 
=  

+ + −  

 . 

In our problem, the truncation error for the reliability function in Proposition 4 can be 

written as  

( ) ( ) � ( ) ( ); , ; , ; ,
th th th th

e t s R t s R t s sξΘ = Θ − Θ =               (83) 

Further, by inserting
tY S= , ( )1i it pα λ= − , n p= , 1iv =  , 

1

p

i

i

v v p
=

= =∑ , 
thx s=  and 

2

i itcδ =  into Equation (83), the truncation error bound in Proposition 5 is obtained. 

Proposition 5 is proved. 
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APPENDIX 7. Proof of Corollary 1 

When the p degradation paths are statistically independent, it is assumed that 

( ) ( )( )T T
, ~ , ,

i i a b
a b N µ µ Σ  and ( )2~ 0,

it
Nε σ  for i = 1, 2, …, p, where 11 12

21 22

Σ Σ 
=  Σ Σ 

Σ . In 

Proposition 3, the orthogonal matrix Q degenerates to 
p p×I , and 2

1 2 ...
t t pt t

λ λ λ σ= = = = , 

where 2 2

11 22 122t t tσ = Σ + Σ + Σ  . Furthermore, in Proposition 3 ( )
1/2

2

it t t t tc σ µ µ σ
−

= × =  , 

where t a btµ µ µ= +  . By inserting the ,

it sλ   and  ,

itc s   into Proposition 3, the real-time 

variance is obtained as 

( )
2 2

2* *

11 1

p

t t
t it t t t

i

S D
p p

σ σ
µ σ

=

= + = Ω
− −
∑                     (84) 

where ( ) ( )2* 2 2 2

1

~
p

t it t t p t t

i

D pµ σ χ µ σ
=

Ω = +∑ .  

Corollary 1 is proved. 
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APPENDIX 8. Proof of Corollary 2 

In Corollary 1, let ( ) ( )
2* 2

1

~
p

it t t p

i

Z D µ σ χ
=

= +∑ Ż  , where 2 2

t t
pµ σ=Ż  . The CDF of  

*
Z  is as follows [127]: 

( ) ( )*

* *

/21 ,pZ
F z Q z= − Ż                        (85) 

where ( ),
M

Q a b  is the Marcum Q-function defined in Equation (30). 

Based on Equations (29) and (85), the CDF of *

tS  can be derived as follows: 

( ) ( )

( )( )

*

*

2
* * * * * * *

2

* *

/22

1
Pr Pr Pr

1

1
1 , 1

t

t
t t t t tS

t

t p t tZ
t

p
F s S s Z s Z s

p

p
F s Q p s

σ

σ

σ
σ

   −
= < = < = <  

−   

 −
= = − − 

 
Ż

        (86) 

Based on Equation (86), the reliability function can be derived as 

( ) ( ) ( )

( )( )
*

* *

/2

; , Pr ;

1 , 1

t
th t th thS

p th t

R t s S s F s

Q p s σ

Θ = ≤ Θ =

= − −Ż

                 (87) 

Corollary 2 is proved. 
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APPENDIX 9. Proof of Theorem 1  

We first derive the truncation error bound for the location parameter µ  , while the 

truncation error bound for the scale parameter σ  can be derived in a similar way.  

Define ( ) ( )1

i i
h g

−=i i  as the inverse function of ( )i
g i , and let ( )1 1

1

q

b i i

i

L g µ η ρ
=

= +∑  

and 1

1

i i

i q

R η ρ
+∞

= +

= ∑ . Then, the location parameter of the lifetime distribution can be written as 

( ) ( )1 1 1 1

1

b i i

i

h g h L Rµ µ η ρ
+∞

=

 
= + = + 

 
∑ . 

Assume that the conditional distribution of R on L is 
R L

F  . Conditional on the first q 

components, we have  

( ) ( ) ( )1 1 R L
L h L R L h L dFµ ω ω = + = +     ∫E E             (88) 

The truncation error can be written as 

 ( )( ) ( ) ( )( ) ( )
2 2

* *

1 1 R L
L h L R h L d Fµ µ ω ω   − = + − +    ∫E E E   (89) 

In Equation (89), we have  

( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( )

2 2 2

1 1 1

2 2

12

R L R L

R L

h L R h L dF h R dF

c R dF

ω ω ω ω

ω ω

′ + − + ≤ − 

≤ +

∫ ∫

∫

Ż

       (90) 

where ic   for i =1, 2 are bounds that satisfy ( )
2

i i
h c′ ≤i  , in which ( ) ( )1

i i
h g −=i i   is the 

inverse function of ( )i
g i . 

By inserting (90) into (89), the truncation error for *µ  can be bounded as 

( )( )

( )

2
* * 2 2

1

2 2 2

1 1 1

1 1

2

4 4 i i

i q i q

L c R R L

c R c

µ µ

η δ
+∞ +∞

= + = +

    − ≤ +      

= ≤ ∑ ∑

E E E E

E

                    (91) 
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where ( )2 2

i i
Eδ ρ= . 

Following procedures similar to those in Equations (88) - (91), the truncation error for 

*σ  can be bounded as 

( )( )
2

* * 2 2

2 2

1 1

4 i i

i q i q

U cσ σ η δ
+∞ +∞

= + = +

 − ≤
  

∑ ∑E E                        (92) 

Summarizing Equations (91) and (92), Theorem 1 is proved. 
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APPENDIX 10. Proof of Theorem 2 

Let 
T

* T T *

1 2, , ,b bµ σ =  θ η η , where ( )* log
b b

σ σ= . The penalized log-likelihood function in 

Equation (48) depends on 
iµ , 

iσ , and a penalty term. Before maximizing the penalized log-

likelihood function with respect to 
*θ , we derive expressions of 

iµ , 
iσ , and the penalty in 

terms of 
*θ . The results are summarized in the following Lemma 1 and Lemma 2. 

Lemma 1: 
( )

T *

1

T *

2exp

i i

i i

µ

σ

 =


=

c θ

c θ
, where 

T
T T

1 1,1, ,0i i q×
 =  c ρ 0  and 

T
T T

2 1,0, ,1i q i×
 =  c 0 ρ . 

Proof of Lemma 1: 

Based on Equation (39), 

( )( ) ( )( ) ( )( ) ( )

( )( ) ( )( ) ( )( )( )

1

1 1 1 1 1

1 *

2 2 2 2exp

i i b i b

i i b i b

g X r g X r g

g X r g X r

µ ψ µ ψ µ

σ ψ σ ψ σ

−

−

 = + = +


= + = +

               (93) 

In Equation (93),  

( )( ) ( )( ) ( )

( ) ( )( )

1 T
T T

0

1
T T T T

i i i
0

j i i j

j q j j

X r r r dr

r r dr I

ψ =

= = =

∫

∫

b ρ b η

ρ b b η ρ η ρ η
              (94) 

where ( ) ( ) ( ) ( )( )
T

1 2, ,..., qr b r b r b r=b   and satisfies ( ) ( )
1

T

0
q

t t I=∫ b b  ; 
qI   is a q q×  

dimensional identity matrix; ( )
T

1 , 2 ,...,j j j qjη η η=η   ; and ( )
T

1 2, ,...,i i i iqρ ρ ρ=ρ   is the 

coefficient vector for sample i and satisfies ( ) ( )T

ic i
X r r= b ρ , where ( )ic

X r  denotes the 

ith censored two-point correlation function. 

By inserting Equation (94) into Equation (93),  Lemma 1 is proved as follows: 

( ) ( ) ( )

T1T T T T T T * T *

1 1 1 2 1

T
* T T T T T * T *

2 1 1 2 2

,1 ,1, , 0 , , ,

exp exp , 0, ,1 , , , exp

i b i i i q b b i

b

i b i q i b b i

µ µ µ σ
µ

σ σ µ σ

×

×

  
     = + = = =       

 
    = + = =   

η
ρ η ρ ρ 0 η η c θ

ρ η 0 ρ η η c θ

      (95) 

Lemma 2: The penalty term 
2

T *T *

1

j j j

j

λ
=

=∑ η ωη θ Ωθ , where Ω  is a matrix defined in Equation 
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(51). 

Proof of Lemma 2: 

Let ( )i i
β=β r   be the vector of the evaluations of function ( )i

rβ   at the values 

( )1 2, , . . . ,
m

r r r=r . Let B  be an m × q matrix containing as its columns the m-vectors of the 

evaluations of functions ( )i
b r   for i=1, 2, …, q at r. Then 

jβ   can be expressed as 

j j=β B η . Let ω  be the q × q matrix of inner products of the second derivatives of the spline 

basis functions, with its (u,v)th entry given by 

( ) ( )
1

0
uv u vb r b r dr′′ ′′= ∫ω                             (96) 

Based on (96),  Lemma 2 is proved as follows: 

( )
2 2

T2 T T T * T T * *T *

1 2 1 2
0

1 1

, , , , , ,j j j j j b b b b

j j

r drλ β λ µ σ µ σ
+∞

= =

′′    = = =   ∑ ∑∫ η ωη η η Ω η η θ Ωθ    (97) 

where Ω  is defined in Equation (51). 

Based on Lemma 1 and Lemma 2, 
*θ  can be estimated by solving: 

( ) ( ) ( ) ( )
* * * * *T * *

2 2 1p q
l l

+ ×
∂ ∂ = ∂ ∂ − ∂ ∂ =θ y θ θ y θ θ Ωθ θ 0             (98) 

where and 
i j×0 is a i j×  dimensional matrix with all elements equaling 0. 

Equation (98) can be further derived as  

( ) ( ) ( )
( )

* * *

*

2 2 1* * *
1

2
N

p
i i

q

i i i

l l lµ σ

µ σ + ×
=

 ∂ ∂ ∂∂ ∂
 = × + × − =

∂ ∂ ∂ ∂ ∂ 
 

∑
θ y θ y θ y

Ωθ 0
θ θ θ

          (99) 

Next, by inserting the results from Lemma 1 and Lemma 2 into Equation (99), we obtain 

( )
( )

( ) ( )

2
T *T *
1 *1

1 2 2 2 1T * T *
1 12 2

1 2
exp 2 exp 2

N N
i ii i

i i q

i ii i

yy
+ ×

= =

    −−   × + − + × − =   
        

∑ ∑
c θc θ

c c Ωθ 0
c θ c θ

    (100) 

Further, we derive Equation (100) into a matrix form. Specifically, the first item in Equation 

(100) can be written as 
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( )
[ ][ ]

( ) ( )

T *
T1

1 11 21 1 1 2 1T *
1 2

T * T *

1 1 2

, ,..., , ,...,
exp 2

exp 2

N

i i
i N N

i i

y
k k k

=

 −
× = = 

  

= − −

∑
c θ

c c c c C k
c θ

C y C θ C θ


        (101)           

where [ ]1 2, ,...,i i i Ni=C c c c  ; ( ) ( )T * T *

1 2exp 2
i i i i

k y= − −c θ c θ  ; ( ) ( )T * T *

1 2exp 2= − −k y C θ C θ
  ; and 

“○” is the Hadamard operator [120] defined in Equation (51).Similarly, the second item in 

Equation (100) can be written as 

( )
( )

[ ]

( ) ( )( )

2
T *

T1 * * * *

2 12 22 2 1 2 2T *
1 2

2
T * T *

2 1 2

1 , ,..., , ,...,
exp 2

exp 2

N
i i

i N N

i i

y
k k k

=

  −    − + × = =       

 = − − − 

∑
c θ

c c c c C k
c θ

C y C θ C θ 1




 


     (102)                 

where ( ) ( )
2

* T * T *

1 2exp 2 = − − − k y C θ C θ 1




 
 , and 1 is an N-dimensional unit column vector. 

By inserting Equations (101) and (102) into Equation (100), Theorem 2 is proved.  
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Most customers today are pursuing engineering materials (e.g., steel) that not only can 

achieve their expected functions but also are highly reliable. As a result, reliability analysis of 

materials has been receiving increasing attention over the past few decades. Most existing 

studies in the reliability engineering field focus on developing model-based and data-driven 

approaches to analyze material reliability based on material failure data such as lifetime data 

and degradation data, without considering effects of material physical properties. Ignoring such 

effects may result in a biased estimation of material reliability, which in turn could incur higher 

operation or maintenance costs.  

Recently, with the advancement of sensor technology more information/data concerning 

various physical properties of materials are accessible to reliability researchers. In this 

dissertation, considering the significant impacts of steel physical properties on steel failures, 

we propose systematic methodologies for steel reliability analysis by integrating a set of steel 

physical properties. Specifically, three steel properties of various scales are considered: 1) a 
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macro-scale property called overload retardation; 2) a local-scale property called dynamic local 

deformation; and 3) a micro-scale property called microstructure effect. For incorporating 

property 1), a novel physical-statistical model is proposed based on a modification of the 

current Paris law. To incorporate property 2), a novel statistical model named multivariate 

general path model is proposed, which is a generalization of an existing univariate general path 

model. For the integration of property 3), a novel statistical model named distribution-based 

functional linear model is proposed, which is a generalization of an existing functional linear 

model. Theoretical property analyses and statistical inferences of these three models are 

intensively developed.  

Various simulation studies are implemented to verify and illustrate the proposed 

methodologies. Multiple physical experiments are designed and conducted to demonstrate the 

proposed models. The results show that, through the integration of the aforementioned three 

steel physical properties, a significant improvement of steel reliability assessment is achieved 

in terms of failure prediction accuracy compared to traditional reliability studies. 
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