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An unbalanced ranked set sampling (RSS) procedure on the skewed survey variable is 

proposed to estimate the population mean of a response variable from the area of 

developmental programs which are generally implemented under different phases. It is 

based on the unbalanced RSS under linear impacts of the program and is compared with 

the estimators based on simple random sampling (SRS) and balanced RSS. It is shown that 

the relative precision of the proposed estimator is higher than those of the estimators based 

on SRS and balanced RSS for three chosen skewed distributions of survey variables. 

 

Keywords: Impact factor, gamma distribution, lognormal distribution, ranked set 

sampling, relative precision, response variable, skew distribution, survey variable, Weibull 

distribution 

 

Introduction 

Government and non-government organizations implement development programs 

such as education programs, women empowerment programs for enhancing gross 

enrollment ratio in school, or eradication of polio in children up to age five under 

different phases. These programs are usually implemented in successive phases, 

such as years, depending upon the volume and scope, as well as the geographical 

spread of the units on which the program has to be implemented. There are two 

variables associated with such programs. One variable is called the survey variable, 

S. The survey variable changes under the impact of the program over different 

phases and this changed variable is called the response variable, R. 

https://dx.doi.org/10.22237/jmasm/1543856083
https://dx.doi.org/10.22237/jmasm/1543856083
mailto:gchandra23@yahoo.com
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Baker (2000) discussed various case studies of different countries on 

developmental programs. In 1995, Argentina implemented a type of employment 

program under the support and supervision of the World Bank called TRABAJAR. 

TRABAJAR was introduced in three phases in the years 1996, 1997, and 1998, and 

these phases were called TRABAJAR I, TRABAJARI II, and TRABAJARI III, 

respectively, with the aim to reduce poverty by simultaneously generating 

employment opportunities for the poor and improving social infrastructure in poor 

communities. This program was meant for workers with relatively low wages or 

unemployed workers. Baker discussed the TRABAJAR evaluation process by 

using random selection from household survey data to assess the income gains to 

TRABAJAR participants. For achieving the goal, Baker considered the variable 

‘net income gains’ instead of conventional assessments of workfare programs, 

which typically measure participants’ income gains as simply their gross wages 

earned. 

The measurement of income or income gain from respondents is difficult in 

actual practice because the respondents generally hesitate to give exact income 

gains. Hence, the use of conventional sampling methods such as SRS is not 

appropriate to evaluate such programs. The income of the participants in a certain 

community before any phase of the program is implemented is called a survey 

variable, S. The net income gain of the participants after implementation of the 

program is referred to as the response variable, R. In this process we can also 

estimate the impact of the program for each phase of the program. Although the 

income is difficult to measure accurately we can rank it by using the impact of the 

program in each phase and then use the ranked set sampling (McIntyre, 1952) 

procedure to estimate the mean of the response variable. In the next section, we will 

introduce the linear impacts of the program under successive phases. 

In ranked set sampling (RSS), precise estimation of the mean of R also 

depends on the skewedness of the distribution of the survey variable S (Kaur, Patil, 

& Taillie, 1997). It is revealed in literature that the S pertaining to developmental 

programs follows highly-skewed distributions with heavy right tail, e.g. excellence 

(Simonton, 1999, 2003), gain in sports (Vaeyens, Lenoir, Williams, & Philippaerts, 

2008), or academic gain (Granger & Kane, 2004). 

In this paper, an attempt is made to estimate the mean of R by using the RSS 

procedure on the survey variable, S, when S follows a highly skewed distribution. 

For highly-skewed distributions, the procedure of unbalanced RSS in which 

allocation of the rank order statistics would be proportional to the standard 

deviation of the corresponding rank orders is more suitable than the balanced RSS; 

see Kaur et al. (1997). Accordingly, we propose a systematic allocation model for 
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the unbalanced RSS when S follows a skewed distribution. In the following sections 

of the paper, we (i) derived the relations between the means and variances of S and 

R by using SRS; (ii) reviewed the balanced and unbalanced RSS procedures in the 

context of the present problem; (iii) proposed a simple formula to determine the 

unequal replications; (iv) derived the formulae for relative precisions of our 

estimator with estimators based on SRS and balanced RSS procedures; (v) 

presented numerical computations of relative procedures for three highly skew 

distributions; and (vi) finally, the results of the paper with discussion is presented. 

Notations and Assumptions 

The impact of the ith phase of the k-phased developmental program follows an 

arithmetic progression. That is 

 

 
( ) ( ):

1
i k

I a i d= + −   (1) 

 

where a and d are positive real numbers. Impacts have a cumulative nature with 

respect to the successive phases and therefore will be in ascending order, with the 

lowest impact at first phase and the highest impact at the kth phase. 

The model for the relationship among R, S, and I was proposed by Stokes 

(1977) and Chen, Bai, and Sinha (2004): 

 

 = +R SI ε   (2) 

 

where R, S, and I represent the vectors of R, S, and I, respectively, for all successive 

phases of the program, and ε is a vector of random error with mean 0 and unknown 

variance 2 ε  which is independent of S. It is also known that the impact value for 

the first phase of R and S are same and equal to 1, which implies that a = 1. Further, 

the method of estimation of R through S and I under SRS is explained as follows: 

Consider (S1, S2,…, Sn), a simple random sample of size n on S with 

population mean μS and a finite population variance 2

S  irrespective of the phases. 

The standard unbiased estimator of μS is 

 

 
( ) ( )( )

2

srs srs
1

1
ˆ ˆwith Var

n
S

iS S
i

S
n n


 

=

= =   

 

Let μR denote the population mean of R. Then μR is written using (2) as 
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 R SC =   (3) 

 

where 
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2
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C
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=   

 

The unbiased estimator of μR in terms of the Si is given by 
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where 

 

 ( )
( )( )2 2

1 2 1
1

6

n n
D a n ad d

− −
= + − +   

Balanced and Unbalanced Ranked Set Sampling Methods 

RSS is a method for improving precision in estimation of the population mean using 

ranking of the units based on some concomitant variable. Ranking of the units is 

rather easy and inexpensive in comparison to the actual measurement of the units 

(McIntyre, 1952). For development programs, the impact variable, I, may be used 

for ranking the units of S. The RSS approach facilitates for the impact evaluation 

of R by considering the ranking of observations based on the realized impacts of 

the phases. 

The procedure to obtain a ranked set sample of size k for balanced RSS 

involves randomly drawing k subsets, each of size k, from the population. The units 

are then ranked within each subset by using the judgment, visual inspection, 

covariates, or any other method not requiring actual measurements. The unit with 

the lowest rank is measured from the first set, the unit with the second lowest rank 



MEAN ESTIMATION OF RESPONSE VARIABLE USING URSS 

6 

from the second set, and this procedure is continued until the unit with the highest 

rank is measured from the kth set. The k2 ordered observations in k samples can be 

displayed as 

 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

11 12 1

21 22 2

1 2

, , ,

, , ,

, , ,

k

k

k k kk

S S S

S S S

S S S

K

K

M

K

  

 

We measure only k (S(ii), i = 1, 2,…, k) observations and they constitute RSS. These 

k observations are independently but not identically distributed. The important 

feature of RSS is that it is more structured than SRS sample. Hence, it gives a better 

estimator of the population mean than the one based on SRS. In RSS, k is usually 

small and therefore, to increase sample size, the above procedure is repeated m ≥ 2 

times to get a sample of size n = mk. Takahasi and Wakimoto (1968) proved that 

the relative precision (RP) of balanced RSS with respect to SRS lies between 1 and 

(k + 1) / 2. Dell and Clutter (1972) also showed that the RSS estimator is more 

precise than the SRS estimator even in the presence of ranking errors. 

Let S(i:k)j (≡ S(ii)j) and R(i:k)j, i = 1(1)k, j = 1(1)m, denote the value of S and R, 

respectively, for the unit taken for measurement belonging to the jth cycle of the ith 

rank order (in our case the ith phase). Under the multiplicative model (2), we have: 

 

 
( ) ( ) ( ) ( ): : : :i k j i k j i k i k

R S I =  +   

 

where ε(i:k) is the random error term with mean 0 and unknown variance 2

  which 

is independent of S(i:k)j. 

For fixed i, (1) impact of all m units are same, and (2) realizations 

corresponding to the ith phase of both the variables R and S are independently and 

identically distributed with respective means μR(i:k), μS(i:k) and variances 
( )

2

:R i k
 , 

( )
2

:S i k
 , respectively. Under balanced RSS, the unbiased estimator of μR is given 

below, as proposed by Chandra et al. (2018): 

 

 ( ) ( )bal :
1 1

1
ˆ

k m

R i k j
i j

CS
mk


= =

=    
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where C is given by (3). Using the property of RSS that 

 

 
( )( ):

1 1

E
k m

Si k j
i j

S mk
= =

=   

 

we may verify that 
( )( )bal

ˆE RR
 = . The variance of the estimator is given by 

 

 
( )( ) ( )

2
2

bal :
ˆVar

R S k

C

mk
 =   

 

where 

 

 
( )

( )
2

:12

:

k

S i ki

S k
k


 =

=


  

 

is the average within rank order variances of S. 

The RP of the above estimator with SRS estimator ˆ
R  and sample size n = mk 

is 

 

 
( )( )
( )( ) ( )

2
srs

bal 2 2

:bal

ˆVar
RP

ˆVar

R
S

S kR

D

C

 



 
 = =
 
 

  

 

RSS is a cost-efficient method of sampling that gives better estimators of the 

population mean than SRS. The benefits of RSS can be improved by using 

appropriate allocation models, especially when the distributions under 

consideration are highly skewed. The Neyman criterion achieves a substantial gain 

in precision over the balanced RSS procedure; see Kaur et al. (1997). However, this 

method depends on unrealistic assumption that the population standard deviations 

of the order statistics are known. Bhoj (2001) proposed RSS with unequal samples 

to estimate the population mean. 

The RSS for the estimation of the mean of R may further be improved by 

taking appropriate allocation from each phase. Suppose mi (≠ 0) units are taken for 

measurement corresponding to the ith phase, i = 1(1)k. This gives total sample size 
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1

k

ii
n m

=
= . Using the approach of Takashi and Wakimoto (1968), the unbiased 

estimator of μR for unbalanced RSS is given by 

 

 
( )ubal

1

1
ˆ

k
i

R
i i

T

k m


=

=    

 

where 

 

 ( ):
1

im

i i k j
j

T CS
=

=   

 

The variance of this estimator is given by 

 

 ( )( ) ( )
22

:

ubal 2
1

ˆVar
k

S i k

R
i i

C

k m




=

=    (4) 

Proposed Allocation Model for Response Estimation 

The appropriate allocation for the unbalanced RSS with skewed distribution 

requires that the sample size corresponding to each phase is proportional to its 

standard deviation as demonstrated by Kaur et al. (1997). It is known that, for 

positively skewed distributions, the variances of the order statistics tend to increase 

with increasing the order, i.e. σS(1:k) ≤ σS(2:k) ≤…≤ σS(k:k). We also know from (1) 

that the impact also increases with successive phases. Hence it is appropriate and 

desirable to propose an alternative model by using the impact variable to determine 

the unequal allocation model in the RSS procedure. Hence, in this paper, we use 

 

 
( ) ( ):

1i i k
m I a i d= = + −   (5) 

 

The resulting sample size for the proposed allocation model will be 

 

 
( )( )

1

2 1

2

k

i

i

k a k d
n m

=

+ −
= =   

 

The variance under the proposed model (5) using (4) is 
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( )( ) ( )

( )( )

22
:

ap 2
1

ˆVar
1

k
S i k

R
i

C

k a i d




=

 
=  

+ −  
   

 

where “ap” stands for arithmetic progression. 
 
 
Table 1. Relative precisions of the estimators of μR for LN(0, 1) distribution 
 

Set 
size (k) 

d = 0.50  d = 1.00  d = 1.50  d = 2.00 

RPbal RPap  RPbal RPap   RPbal RPap   RPbal RPap 

2 1.256 1.457  1.385 1.729  1.490 1.931  1.558 2.056 

3 1.492 1.899  1.658 2.302  1.741 2.514  1.780 2.619 

4 1.706 2.314  1.872 2.767  1.934 2.965  1.960 3.055 

5 1.899 2.698   2.053 3.164   2.100 3.344   2.118 3.424 

 
 
Table 2. Relative precisions of the estimators of μR for G(1) distribution 
 

Set 
size (k) 

d = 0.50  d = 1.00  d = 1.50  d = 2.00 

RPbal RPap  RPbal RPap   RPbal RPap   RPbal RPap 

2 1.410 1.562  1.556 1.778  1.674 1.913  1.750 1.969 

3 1.823 2.158  2.026 2.492  2.127 2.618  2.175 2.639 

4 2.227 2.763  2.444 3.150  2.525 3.259  2.558 3.261 

5 2.617 3.363   2.828 3.770   2.894 3.862   2.919 3.855 

 
 
Table 3. Relative precisions of the estimators of μR for Weibull(0.50) distribution 
 

Set 
size (k) 

d = 0.50  d = 1.00  d = 1.50  d = 2.00 

RPbal RPap  RPbal RPap   RPbal RPap   RPbal RPap 

2 1.192 1.406  1.315 1.693  1.414 1.919  1.479 2.072 

3 1.377 1.793  1.530 2.210  1.607 2.450  1.643 2.587 

4 1.548 2.153  1.698 2.616  1.755 2.839  1.778 2.959 

5 1.703 2.484   1.841 2.955   1.883 3.160   1.899 3.267 
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Figure 1. Effect of d on relative precisions for three skewed distributions with a = 1, k =5 
 



CHANDRA ET AL 

11 

The RP with respect to SRS (RPap) with the same sample size 

k(2a + (k – 1)d / 2 is 

 

 

( )( ) ( )

( )( )

2

ap 2 2

:

1

2
RP

2 1
1

S

k S i k

i

kD

C
a k d

a i d





=

=
 

+ −  
 + −
 


  

 

The numerical values of the RP for three highly skewed distributions of S for 

k = 2(1)5, a = 1 and four different values of d, 0.50, 1.00, 1.50, and 2.00, are 

presented. The three distributions are: Lognormal(0, 1) (LN(0, 1)), Weibull(0.5) 

and standard Gamma(1) (G(1)). The values of variances of order statistics for these 

distributions are readily available in Harter and Balakrishnan (1996). It is clear from 

these computations that the relative precisions of our estimator are higher as 

compared to the estimators based on the SRS and balanced RSS procedures for all 

values of k and d. The gains in relative precision increase as the set size increases. 

For a given k, as d increases the relative precisions increase for both estimators 

based on the balanced and unbalanced RSS procedures up to a certain value of d, 

and then decrease as d increases. This phenomenon is clear from Figure 1, which 

plots relative precisions for the three distributions for various values of d when 

k = 5 and a = 1. 

Conclusions 

Relevant personnel in organizations implement developmental programs in a 

phased manner across geographical regions or a particular region or community 

and are interested to know the impact of the program in the form of a mean of the 

response variable. The measurement of the survey variable under interest is very 

difficult or tedious and therefore the estimation of the mean of the response variable 

of the developmental programs, if assessed using SRS, will provide imprecise 

estimates. In such situations, RSS, a cost-effective and precise method of sample 

selection, provides a better estimate of the characteristics under study. RSS contains 

information across phases of the program. It is known that the survey variable under 

study pertaining to the developmental programs follows a skewed distribution. 

The unbalanced RSS procedure was proposed for use on the survey variable 

to estimate the mean of the response variable using the theory of RSS for skewed 

distributions. The program is implemented in successive phases, which indicates 

that the impact of the program increases as the phases increase. The assumption of 
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the constant increase of impact suggests the linear trend of the impact with the 

phases. The linear impacts of the programs were used under successive phases to 

determine the unequal replications for each phase. The proposed unbiased estimator 

of the mean of the response variable is then compared with their competitors using 

SRS and balanced RSS methods. As is expected, the relative precisions of the 

proposed estimator are higher than those of the estimators based on SRS and 

balanced RSS procedures. The numerical gains were computed in terms of relative 

precisions of the estimator for three highly skewed distributions. The gains in 

relative precision of our estimator are high compared with the other two estimators 

for all values of a and d. The relative precision increases with the number of phases 

for a given value of the impact. 

The optimum unbalanced RSS is based on the unrealistic assumption that the 

population standard deviations of the order statistics are known; see Kaur et al. 

(1997). A simple and practical approach was proposed to determine unequal 

replications by using impacts of the program. It works quite well when the survey 

variable follows positively skewed distributions, assuming the impacts follow the 

pattern of arithmetic progression. 
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