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A simulation study was conducted to examine parameter recovery in a cross-classified 

multiple membership multilevel model. No substantial relative bias was identified for the 

fixed effect or level-one variance component estimates. However, the level-two cross-

classification multiple membership factor variance components were substantially biased 

with relatively fewer groups. 

 

Keywords: Cross-classified multiple membership multilevel model, sample size 

 

Introduction 

Cross-classified multiple membership random effects modeling, which is an 

extension of traditional multilevel modeling, is used to handle the complexity of 

cross-classified multiple membership data structures (Goldstein, 2010). Traditional 

multilevel models or hierarchical linear models enable researchers to investigate 

not only the effect of lower-level units but also the effect of higher-level units and 

the impact of their characteristics on outcome measures (Goldstein, 2010; 

Raudenbush & Bryk, 2002). Although in practice, most theoretical and empirical 

studies that employ multilevel models address purely hierarchical data structures, 

multilevel data often cannot be adequately represented by such structures. A typical 

example of a more realistic non-pure hierarchy is the data structure that arises in 

large-scale longitudinal studies that track the same subjects over periods of time. 

https://dx.doi.org/10.22237/jmasm/1542209860
https://dx.doi.org/10.22237/jmasm/1542209860
mailto:hyewonchung7@gmail.com
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For example, Leckie (2009) conducted a study using cross-classified multiple 

membership multilevel data to investigate the effect of student mobility on 

academic achievement. The study used a dataset tracking students’ moving 

between secondary schools as well as between neighborhoods; some students 

transferred secondary schools and/or neighborhoods (i.e., were members of 

multiple secondary schools and/or neighborhoods). Consequently, it was necessary 

to consider two classifications at level two (i.e., secondary schools and 

neighborhoods) and the students were cross-classified by secondary school and 

neighborhood. Thus, the dataset had a cross-classified multiple membership data 

structure. The data employed in Leckie’s study revealed that 8% of the students 

transferred to at least one other secondary school and that 27 % of the students 

changed residence, with 23% of the students changing neighborhoods over the 

course of the study. Part of Leckie’s study was to compare modeling systems that 

do or do not account for cross-classification and/or multiple membership of 

secondary schools and neighborhoods. The model that ignored cross-classification 

of neighborhoods and multiple membership of secondary schools and 

neighborhoods (i.e. application of traditional multilevel modeling) resulted in 

smaller parameter and standard error estimates of the secondary school variance 

component as compared to the estimates in the model that accounted for cross-

classified multiple membership. 

Additional examples of cross-classified multiple membership data structures 

can be found in diverse fields (e.g., Browne, Goldstein, & Rasbash, 2001; Goldstein, 

Burgess, & McConnell, 2007). For example, in medical research, patients typically 

consult with doctors and nurses; this results in complex situations in which patients 

can be cross-classified by doctors and nurses. Multiple membership relations also 

occur when patients see different doctors and/or nurses on different occasions. 

Refer to the chapter by Beretvas (2011) for more detailed examples including a 

series of contingency tables for various pure hierarchical data, cross-classified data 

and cross-classified multiple membership data structures. In this paper, the 

parameterization of cross-classified multiple membership random effects models 

will be explained using the example introduced above of students (level-one) cross-

classified by schools (one level-two classification) and neighborhoods (another 

level-two classification), where some students transferred schools and/or 

neighborhoods during the period of study. 
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Two-Level Cross-Classified Multiple Membership Multilevel Model 

Unconditional Cross-Classified Multiple Membership Multilevel Model 

The unconditional cross-classified multiple membership multilevel model is 

expressed as follows: at level one 

 

 
        1 2 1 2 1 20i j j j j i j j

y e= +   (1) 

 

and, at level two, 

 

   
   

1 1 2 21 2

1 1 2 2

000 0 0 0 0 000 ih h i h hj j
h j h j
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= + +    (2) 

 

where 
  1 2i j j

y  is the outcome for level-one unit i (here, a student). This student is a 

member of one or more elements of a set {j1} of level-two units of the first type 

(schools) and of another set {j2} of units corresponding to the other level-two cross-

classification factor (neighborhoods). The sum of the weights for each type of level-

two unit to level-one unit i belongs is equal to one, i.e. 

 

 
   

1 2

1 1 2 2
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h j h j
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= =    

 

(Goldstein, 2010). 

Conditional Cross-Classified Multiple Membership Multilevel Model 

In the current example, particular characteristics of each student (X), school (S), 

and neighborhood (N) can be added to the model. The resulting conditional cross-

classified multiple membership multilevel model is expressed as follows: at level 

one 

 

 
              1 2 1 2 1 2 1 2 1 20 1i j j j j j j i j j i j j

Y X e = + +   (3) 

 

and, at level two, 
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where the multiple membership classification predictors (S and N) are weighted in 

the same way as the factor residuals  10 0j
U 
 

 and  200 j
U 
 

. In equation (4), the 

coefficient of the level-one predictor, X, is modeled as fixed, although additional 

predictors and/or random effects can be added to the model. 

In a traditional unconditional multilevel model, the level-one (σ2) and level-

two (τ00) residual variance components are typically used to provide a measure of 

the degree of dependence of the outcome measure. Specifically, the intra-class 

correlation coefficient, ρICC (Raudenbush & Bryk, 2002), is calculated as follows: 

 

 00
ICC 2

00

.



 

=
+

  (5) 

 

The higher the value of ρICC, the higher the proportion of the variability in the 

outcome measure that is related to level-two units. For an unconditional cross-

classified multiple membership multilevel model, a similar coefficient is used to 

represent the degree of variability in the outcome measure that is attributable to 

each level-two classification factor. This coefficient is called the intra-unit 

correlation coefficient (IUCC), ρIUCC (Raudenbush & Bryk, 2002), and is calculated 

as 
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for classification factor {j1} and as 
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for classification factor {j2}. As with ρICC, the larger the value of ρIUCC, the larger 

the proportion of the variability in the outcome measure that is attributable to the 

relevant classification. 

Sample Size 

The appropriateness of sample size has been widely studied in the multilevel 

modeling literature to determine the minimum desirable sample size. The impact of 

sample size is more complex in the case of multilevel models because multilevel 

models involve multiple sample sizes, and researchers need to determine a 

reasonable sample size for each level (Bell, Ferron, & Kromrey, 2008; Bell, 

Morgan, Kromrey, & Ferron, 2010). For two-level multilevel modeling analysis, 

Kreft (1996) recommended the ‘30/30’ rule, which prescribes a minimum of 30 

units at each level of the analysis to obtain unbiased estimates of all parameters and 

their associated standard errors. Hox (1998) recommended 50 groups with a 

minimum of 20 observations per group when modeling cross-level interactions. 

Previous researchers have emphasized that a large number of groups is more critical 

than a large number of observations per group for obtaining accurate estimates 

(Clarke & Wheaton, 2007; Newsom & Nishishiba, 2002). Although fixed effect 

estimates are less sensitive to the number of groups, variance component estimates 

are substantially influenced by the number of groups. Mok (1995) observed that 

five groups at level two yielded substantially biased variance estimates, whereas 

Clarke and Wheaton (2007) recommended at least 100 groups with a minimum of 

ten observations per group to obtain an unbiased estimate of the intercept variance. 

For cases in which the slope variance is to be estimated, they recommended at least 

200 groups with a minimum of 20 observations per group. 

Given the increasing frequency with which cross-classified data structures are 

being encountered in multilevel modeling (Browne et al., 2001; Goldstein et al., 

2007; Grady & Beretvas, 2010; Leckie, 2009), the minimum sample requirement 

for cross-classified multiple membership multilevel model estimation should be 

assessed. Therefore, this simulation study was conducted to assess the parameter 

recovery of the fixed effect and random variance components for cross-classified 

multiple membership data structures under a variety of manipulated conditions. 
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Methodology 

Simulation Study Design 

Five factors were manipulated in the simulation study, namely, the average group 

size (10, 20, and 40), the number of groups (20, 50, and 100), the multiple 

membership rate (10%, 20%, and 40%), the cross-classification rate (20%, 40%, 

and 100%), and the IUCC (10%, 20%, and 30%). A completely crossed design, in 

which three values were investigated for each of the five factors, was employed; 

thus, 243 (3 × 3 × 3 × 3 × 3) combinations of conditions were obtained. 

Average Group Size 

Previous simulation studies using multilevel modeling have typically employed 5 

as the minimum sample size at level one. In a previous simulation study by Meyers 

and Beretvas (2006), the group size values were manipulated from 20 to 40. Meyers 

and Beretvas employed a balanced cross-classified design, indicating that same 

number of students per school and neighborhood (i.e., equal cell size). To better 

approximate real-world situations, the current study selected the following three 

values for the average group size: 10 [5-15], 20 [15-25], and 40 [30-50]. For 

example, we randomly generated between 5 and 15 students per school and 

neighborhood for an average sample size of 10. 

Number of Groups 

For this study, a simple scenario was constructed in which the number of groups 

was equal for both level-two classification factors (here, school and neighborhood) 

in each condition. In previous methodological studies that have employed either 

cross-classified multilevel models or multiple membership multilevel models, the 

number of groups has ranged from 20 to 100 (Chung & Beretvas, 2012; Meyers & 

Beretvas, 2006). Thus, three values for the numbers of schools and neighborhoods 

were investigated: 20, 50, and 100. 

Multiple Membership Rate 

In the example considered here, the multiple membership rate can be interpreted as 

the likelihood of a student being mobile. Student mobility ranged from 12% to 

38.5% between 2005 and 2010 (Ihrke & Faber, 2012). Three multiple membership 

rates were examined in this study: 10%, 20%, and 40%. These mobility values were 

selected because they correspond closely to the values reported in applied research, 
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as summarized in a previous simulation study using multiple membership 

multilevel modeling (Chung & Beretvas, 2012; Ihrke & Faber, 2012). 

Cross-Classification Rate 

The cross-classification rate indicates the ratio of number of students who are cross-

classified by schools and neighborhood out of the total number of students. In the 

context of the current study, students (level one) are cross-classified by schools and 

neighborhood. Based on previous simulation studies using cross-classified 

multilevel modeling (e.g., Jeong & Kang, 2013; Meyers & Beretvas, 2006), cross-

classification rates of 20%, 40%, and 100% were investigated in this study. 

Intra-Unit Correlation Coefficient (IUCC) 

The values of the IUCC were manipulated based on values found from previous 

simulation studies employing cross-classified multilevel models (Hox, Moerbeek, 

& van de Schoot, 2002; Luo, Cappaert & Ning, 2015). Small, medium and large 

IUCC values of 10%, 20%, and 30%, respectively, were used. 

Data Generation 

All simulated datasets were generated using MLwiN 2.36 (Rasbash, Steele, Browne 

& Goldstein, 2016). MLwiN was used to generate 1,000 datasets per combination 

of conditions following previous methodological studies that have employed either 

cross-classified multilevel models or multiple membership multilevel models (e.g., 

Chung & Beretvas, 2012; Meyers & Beretvas, 2006). The data were generated in 

accordance with a two-level cross-classified multiple membership multilevel model 

with students at level one and a cross-classification of schools and neighborhoods 

at level two, along with a condition-dependent multiple membership rate of 

students attending multiple schools and/or neighborhoods. In addition, one 

predictor for each level-two classification factor and one level-one predictor were 

included in the model, matching the conditional model presented in equations (3) 

and (4). The single-equation formulation of the model is as follows: 

 

 

   ( )    ( )
   

   
   ( )

1 1 1 11 2 1 2

1 1 1 1

2 2 2 2 1 2

2 2 2 2

000 100 010 0 0, ,
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The generating values for the fixed effects (see equation (8)) were as follows: 

100 for γ000, 0.5 for γ100, 0.5 for γ010, and 0.5 for γ001. The values for the level-one 

predictor and the two level-two predictors (i.e., for X, S, and N) were generated 

from a standard normal distribution with a mean of 50 and a standard deviation of 

10. All generating values were selected based on previous methodological research 

in which either a cross-classified multilevel model or a multiple membership 

multilevel model was used (Chung & Beretvas, 2012; Meyers & Beretvas, 2006; 

Wolff Smith & Beretvas, 2014). 

Analyses 

Data Analyses 

MLwiN 2.36 (Rasbash et al., 2016) and Markov chain Monte Carlo (MCMC) 

estimation were used to estimate the cross-classified multiple membership 

multilevel model with default priors. The default non-informative prior was 

employed for each fixed effect; that is, the prior was proportional to 1, similar to a 

uniform distribution (Rasbash et al., 2016). Additionally, default inverse gamma 

distributions (.001, .001) were used as priors for the random effect variance 

components at both level one and level two. To determine the required number of 

iterations, the Raftery-Lewis diagnostic (Raftery & Lewis, 1992) was applied. As 

a pilot study, 50,000 iterations were run, with 10,000 iterations for burn-in of the 

first datasets generated across the 243 conditions. This process satisfied the 

minimum number of iterations for the Gibbs sampler as suggested by the Raftery-

Lewis diagnostic. 

The converged Gibbs sampling output for one simulated dataset of the 

condition with level-one sample size = 20, level-two sample size = 20, cc% = 20%, 

and mm% = 10% is presented in Figure 1. The posterior density plots (Figure 1, 

column a), autocorrelation plots (Figure 1, column b), and trace plots (Figure 1, 

column c) are presented for all parameters. Posterior density plots are a useful 

diagnostic for checking the Gibbs sampling convergence. Non-convergence 

typically manifests as multimodal distributions. The density plots in Figure 1, 

column a indicate unimodal distributions for all parameters. Meanwhile, the 

autocorrelation plots in Figure 1, column b indicate values near 0 after 20 or fewer 

lags. Thus, the values are approximately independent. Finally, the trace plots in 

Figure 1, column c randomly fluctuate around the mean after the 10,000 iterations 

of burn-in. This result indicates that convergence was achieved for each parameter 

after the initial burn-in. The plots for the other conditions in the simulation study 

are similar and will not be presented. 
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Figure 1. Posterior density, autocorrelation, and trace plots for parameters of one 
simulated dataset (condition 1) 
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Relative Parameter Bias 

The relative parameter bias was calculated for each fixed and random effect 

variance component estimate using the following formula: 

 

 ( )
ˆ

ˆRPB i i
i

i

 




−
=   (9) 

 

where θi is the generating (true) value of the ith parameter and ˆ
i  is the average of 

the estimates for the ith parameter across the 1,000 simulated datasets. For the 

estimation of each parameter, the relative parameter bias value was considered 

acceptable if its magnitude was less than .05 (Hoogland & Boomsma, 1998). In 

addition, analysis of variance (ANOVA) was used to explore the effects of the 

simulation conditions on the relative bias. Both main effects and 2-way interaction 

effects were analyzed, with the simulation conditions as the independent variables 

and the relative bias as the outcome variable. An alpha level of .01 was used as the 

cutoff for statistical significance. The partial eta squared value ( 2

p ) was used to 

estimate the size of a given effect of an independent predictor. The ANOVA results 

for the relative bias measures are presented for conditions in which the 2

p  effect 

sizes were found to be larger than .01. 

Coverage Rate of the 95% Credible Interval 

The coverage rates of the 95% credible interval [2.5%, 97.5%] were derived from 

the quantiles of the 50,000 parameter estimates. For each parameter, the coverage 

indicator was set to 1 if the true value was included within the credible interval and 

to 0 if the true value fell outside the credible interval. The coverage rates of the 

95% credible interval were computed as the average of the coverage indicators 

across 1,000 replications for each condition. Then, logistic regression was used to 

assess the potential impact of the simulated conditions as predictors, with the 

confidence interval coverage indicator, either zero or one, as the dependent variable.  

Root Mean Square Error 

The root mean square error (RMSE) was calculated using the equation below. 

 

 ( ) ( ) ( )( )
2

ˆ ˆ ˆRMSE MSE E .   = = −   (10) 
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Table 1. Summary of mean relative parameter biases, coverage rates of the 95% credible interval, and RMSEs for fixed estimates 
by condition 
 

Relative parameter bias  

Coverage rate of the 95% 
credible interval  RMSE 

Condition Inter Stu Sch Neigh  Inter Stu Sch Neigh   Inter Stu Sch Neigh 

Average group size               

10 <0.001 <0.001 <0.001 <0.001  0.948 0.953 0.947 0.941  0.668 0.004 0.009 0.009 

20 <0.001 <0.001 <0.001 <0.001  0.948 0.952 0.946 0.942  0.591 0.003 0.008 0.008 

40 <0.001 <0.001 0.001 <0.001   0.947 0.952 0.946 0.941   0.530 0.002 0.008 0.007 

Number of groups               

20 <0.001 <0.001 0.001 <0.001  0.947 0.953 0.943 0.935  0.884 0.004 0.013 0.011 

50 <0.001 <0.001 <0.001 <0.001  0.946 0.953 0.946 0.943  0.534 0.003 0.008 0.007 

100 <0.001 <0.001 <0.001 <0.001   0.949 0.952 0.950 0.945   0.371 0.002 0.005 0.005 

Multiple membership rate (%)               

10 <0.001 <0.001 0.001 <0.001  0.950 0.951 0.947 0.941  0.599 0.003 0.008 0.008 

20 <0.001 <0.001 <0.001 <0.001  0.946 0.950 0.944 0.943  0.592 0.003 0.009 0.007 

40 <0.001 <0.001 <0.001 <0.001   0.946 0.956 0.948 0.940   0.598 0.003 0.009 0.007 

Cross-classification rate (%)               

20 <0.001 <0.001 <0.001 <0.001  0.946 0.953 0.946 0.940  0.609 0.003 0.009 0.008 

40 <0.001 <0.001 <0.001 <0.001  0.947 0.953 0.947 0.942  0.583 0.003 0.008 0.007 

100 <0.001 <0.001 <0.001 <0.001   0.949 0.951 0.946 0.941   0.597 0.003 0.009 0.008 

IUCC (%)               

10 <0.001 <0.001 <0.001 <0.001  0.945 0.952 0.944 0.940  0.519 0.003 0.007 0.007 

20 <0.001 <0.001 <0.001 <0.001  0.948 0.954 0.948 0.941  0.610 0.003 0.009 0.008 

30 <0.001 <0.001 <0.001 <0.001   0.949 0.952 0.949 0.943   0.666 0.002 0.010 0.008 
              

Mean <0.001 <0.001 <0.001 <0.001   0.947 0.950 0.945 0.942   0.595 0.003 0.009 0.008 
 

Note: IUCC = Intra-unit correlation coefficient; RMSE = Root mean square error; Inter = Intercept; Stu = Student; Sch = School; Neigh = Neighborhood.  
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In the presence of parameter estimate bias, the RMSE is a combined measure of the 

bias and variability of each parameter estimate with respect to the true parameter 

value. 

Results 

Fixed Effect Estimates 

Relative Parameter Bias 

Based on the criterion of Hoogland and Boomsma (1998), no substantial RPB was 

found in the intercept estimates. Additionally, no substantial parameter estimation 

bias was detected for the predictor coefficients for the level-one factor (student) or 

either of the cross-classified multiple membership factors (school and 

neighborhood) across all conditions. Given the lack of substantial bias found for 

the fixed effect estimates, ANOVA was not conducted for these results. 

Coverage Rate of the 95% Credible Interval 

The coverage rates of the 95% credible interval were close to nominal coverage for 

the intercept, level-one predictor, and level-two predictor estimates across all 

conditions (see Table 1, coverage rate section). The logistic regression results 

indicated that the multiple membership rate was significantly related to the 

coverage rate of the 95% credible interval for the intercept estimates and student-

level predictor estimates (p < .001). The differences were trivial for the intercept 

estimates: .950 for 10%, .946 for 20%, and .946 for 40%. The differences were also 

very small for the student-level predictor estimates: .951 for 10%, .950 for 20%, 

and .956 for 40%. 

In addition, according to the logistic regression results, the number of groups 

and the IUCC were related to the coverage rates for the school-level predictor 

estimates (ps < 0.001). The differences for different numbers of groups were very 

small: .943 for 20 groups, .946 for 50 groups, and .950 for 100 groups. Similarly, 

the differences were very minimal for different IUCC values: .944 for 10%, .948 

for 20%, and .949 for 30%. 

Root Mean Square Error 

With a larger average group size and a larger number of groups, the RMSE 

decreased for the intercept, level-one predictor, and level-two predictor estimates. 
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There were no substantial differences in the RMSE results across multiple 

membership rates, cross-classification rates and IUCC values. 

Variance Component Estimates 

Relative Parameter Bias 

As seen in Table 2, none of the cross-classified multiple membership multilevel 

model estimates of the level-one (student) variance components was found to be 

substantially biased across any of the conditions (mean of 0.006, ranging 

from -0.0005 to 0.028). 

However, for one of the cross-classified multiple membership classification 

factors (school), the variance component estimates were substantially biased for a 

subset of conditions (mean of 0.059, ranging from –0.013 to 0.159). The ANOVA 

results revealed that the main overestimation bias for the school variance 

component was associated with the number of groups: F(2, 242949) = 1716.11, 

p < .001, 2

p  = .014. The average relative bias was 0.124 for 20 groups, 0.031 for 

50 groups, and 0.015 for 100 groups. Increasing the number of level-two groups 

from 20 to 100 substantially decreased the degree of positive relative bias. Slight 

overestimation was also noticed for some of the other simulated conditions, 

including the average group size, multiple membership rate, cross-classification 

rate, and IUCC (see Table 2, school column of the relative bias section). According 

to the ANOVA results, no other main effects were found to have a significant and 

practical impact on the relative parameter bias, and no two-way interaction effects 

were found to have a noticeable impact on the relative bias. 

For the other cross-classified multiple membership classification factor 

(neighborhood), the variance component estimates were also substantially biased 

for a subset of conditions (mean of 0.050, ranging from –0.020 to 0.142). The 

ANOVA results revealed that the main overestimation bias for the neighborhood 

variance component was again associated with the number of groups: 

F(2, 242949) = 691.09, p < .001, 2

p  = .006. The average relative bias was 0.091 

for 20 groups, 0.036 for 50 groups, and 0.017 for 100 groups. Similar to the results 

for the school variance component estimates, slight overestimation was also found 

for some of the other simulated conditions, including the average group size, 

multiple membership rate, cross-classification rate, and IUCC (see Table 2, 

neighborhood column of the relative bias section). No other main effects were 

found to have a significant impact on the relative parameter bias. 
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Table 2. Summary of mean relative parameter biases, coverage rates of the 95% credible interval and RMSEs for variance 
component estimates by condition 
 

Relative parameter bias  

Coverage rate of the 95% 
credible interval  RMSE 

Condition Student School Neigh   Student School Neigh   Student School Neigh 

Average group size            

10 0.013 0.048 0.037  0.949 0.939 0.936  0.047 0.081 0.083 

20 0.005 0.063 0.051  0.949 0.942 0.944  0.032 0.068 0.069 

40 0.001 0.060 0.057   0.952 0.944 0.946   0.021 0.061 0.061 

Number of groups            

20 0.012 0.124 0.091  0.950 0.936 0.938  0.048 0.108 0.108 

50 0.005 0.031 0.036  0.948 0.942 0.943  0.031 0.061 0.062 

100 0.002 0.015 0.017   0.951 0.947 0.945   0.021 0.041 0.043 

Multiple membership rate (%)            

10 0.006 0.056 0.050  0.952 0.940 0.939  0.033 0.069 0.070 

20 0.006 0.063 0.050  0.951 0.944 0.945  0.033 0.069 0.069 

40 0.007 0.053 0.046   0.948 0.941 0.942   0.034 0.071 0.074 

Cross-classification rate (%)            

20 0.006 0.059 0.050  0.949 0.941 0.942  0.033 0.073 0.075 

40 0.006 0.053 0.046  0.949 0.943 0.942  0.034 0.068 0.068 

100 0.006 0.058 0.048   0.951 0.941 0.942   0.033 0.069 0.070 

IUCC (%)            

10 0.008 0.049 0.036  0.950 0.936 0.938  0.044 0.047 0.048 

20 0.007 0.060 0.052  0.949 0.942 0.941  0.034 0.072 0.073 

30 0.005 0.063 0.059   0.951 0.947 0.946   0.022 0.093 0.093 
           

Mean 0.006 0.059 0.050   0.951 0.942 0.943   0.033 0.069 0.069 
 

Note: IUCC = Intra-unit correlation coefficient; RMSE = Root mean square error. Highlighted relative parameter bias values exceed the Hoogland and Boomsma 
(1998) criteria for substantial bias. 
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Considering the substantial relative biases associated with the cross-

classification multiple membership variance component estimates for a small 

number of groups, Figure 2 presents the relative biases for the cross-classified 

multiple membership variance component as a function of the number of groups 

for the different values of each of the other manipulated conditions. As seen in 

Figure 2, for conditions with at least 50 groups, no substantial relative biases were 

found. 
 
(a) Average group size 

 
 
(b) Multiple membership rate (%) 

 
 
Figure 2. Relative parameter biases of the cross-classified multiple membership variance 
component estimates for the different simulated conditions 
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(c) Cross-classification rate (%) 

 
 
(d) IUCC (%) 

 
 
Figure 2 (continued). 
 

Coverage Rate of the 95% Credible Interval 

As seen in Table 2, the coverage rates of the 95% credible interval were close to 

nominal coverage for the level-one (student) and level-two cross-classified multiple 

membership (school and neighborhood) random effect variance components for all 

conditions.  

The logistic regression results indicated that the average group size and 

multiple membership rate were significantly related to the coverage rate of the 95% 

credible interval for the student-level variance component estimates (ps < .001). 

The differences for different average group sizes were very small: .949 for a group 
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size of 10, .949 for a group size of 20, and .952 for a group size of 40. Similarly, 

the differences were very trivial for different multiple membership rates: .952 for 

10%, .951 for 20%, and .948 for 40%. 

For the school-level variance component estimates, the regression analysis 

indicated that the average group size, the number of groups, and the IUCC were 

significantly related to the coverage rate of the 95% credible interval (ps < .001). 

With a larger average group size, the coverage rate increased: .939 for a group size 

of 10, .942 for a group size of 20, and .944 for a group size of 40. The coverage rate 

also increased as the number of groups increased: .936 for 20 groups, .942 for 50 

groups, and .947 for 100 groups. The coverage rate increased with a higher 

IUCC: .936 for 10%, .942 for 20%, and .947 for 30%. 

For the neighborhood-level variance component estimates, the logistic 

regression results showed that the average group size and IUCC were significantly 

related to the coverage rate of the 95% credible interval (ps < .001). With a larger 

average group size, the coverage rate increased: .936 for a group size of 10, .944 

for a group size of 20, and .946 for a group size of 40. The coverage rate also 

increased with a higher IUCC: .938 for 10%, .941 for 20%, and .946 for 30%. 

Root Mean Square Error 

The RMSEs associated with the level-one (student) and level-two cross-classified 

multiple membership (school and neighborhood) random effect variance 

components were negatively related to the average group size and the number of 

groups, meaning that the RMSE decreased as the average group size and the 

number of groups increased. The RMSE also decreased as the IUCC increased for 

the level-one (student) random effect variance components. By contrast, the RMSE 

increased as the IUCC increased for the level-two cross-classified multiple 

membership (school and neighborhood) random effect variance components. There 

were no substantial differences in the RMSE results across different multiple 

membership rates and cross-classification rates. 

Conclusion 

Considering the increasing prevalence of cross-classification data structures in 

educational and social science research, the effect of sample size on parameter 

estimation in cross-classified multiple membership multilevel models requires 

empirical analysis. The current study was designed to address the lack of empirical 

research regarding the minimal sample requirement by exploring parameter 

estimates under a variety of conditions. For the conditions examined here, the cross-
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classified multiple membership multilevel model estimates for the fixed effects and 

the level-one variance components were not substantially biased. The cross-

classified multiple membership multilevel model estimates for the level-two cross-

classification multiple membership factor variance components were also unbiased 

across conditions with at least 50 groups. These results should encourage applied 

researchers to analyze sufficiently large datasets when using cross-classified 

multiple membership multilevel models to address cross-classified multiple 

membership data structures (i.e., at least 50 groups with an average group size of 

10). Ultimately, the results of the current study suggest that using a cross-classified 

multiple membership dataset with fewer groups may lead to inaccurate conclusions. 

In general, the RMSE diminished as the number of groups and the average 

group size increased. With an excessively small number of groups, the coverage 

rates of the 95% credible interval were slightly less than 5%. On average, however, 

the coverage rates of the 95% credible interval were close to 5% under the 

conditions investigated in the current study. 

Due to the complexity of cross-classified multiple membership data structures, 

MCMC estimation is strongly recommended for cross-classified multiple 

membership multilevel models (Rasbash et al., 2016). With the use of suitable 

priors, the MCMC estimation procedure can provide more robust and precise 

parameter estimates than those obtained through maximum likelihood estimation 

(Browne & Draper, 2006). Thus, future studies should assess the impact of prior 

distribution selection on the estimation of fixed and random effect variance 

components in cross-classified multiple membership multilevel models. The 

findings of this study may be affected by the selection of specific values for each 

simulated factor. The investigation of additional values will be helpful for 

generalizing the findings. 
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