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Economic variables such as stock market indices, interest rates, and national output 

measures contain cyclical components. Forecasting methods excluding these cyclical 

components yield inaccurate out-of-sample forecasts. Accordingly, a three-stage procedure 

is developed to estimate a vector autoregression (VAR) with cyclical components. A Monte 

Carlo simulation shows the procedure estimates the parameters accurately. Subsequently, 

a VAR with cyclical components improves the root-mean-square error of out-of-sample 

forecasts by 50% for a stock market model with macroeconomic variables. 

 

Keywords: Forecasting, Fourier regression, Fourier series, harmonic regression, error 

correction model, S&P 500 

 

Introduction 

Vector autoregression (VAR) is used to forecast stationary multivariate time series 

(Lack, 2006). Several time series include growth rates, interest rates, inflation, and 

stock market returns. For non-stationary time series, researchers use error 

correction models (ECMs), which include short-term and long-term relationships 

and, in theory, provide better forecasts than a comparable VAR. ECMs utilize the 

cointegrating vectors to define long-term relationships (Christoffersen & Diebold, 

1998; Hoffman & Rasche, 1996), and can forecast stock market indices, gross 

domestic product, and growing time series. However, the empirical evidence 

suggests many macroeconomic variables possess cyclical components. In this paper, 

these cyclical components are incorporated into VARs to strengthen forecasts. 

A Fourier regression in (1) fits cyclical components with yt as the dependent 

variable and the xt,j as the explanatory variables. The βj are the parameters while εt 

https://dx.doi.org/10.22237/jmasm/1539003896
https://dx.doi.org/10.22237/jmasm/1539003896
mailto:ken@ken-szulczyk.com


SZULCZYK & SADIQUE 

3 

represents the white noise process, assumed to be εt ~ iid(0, σ2). The t indexes time 

and begins at t = 1. 
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The regression includes N cosine terms that induce cycles into yt. Each cosine 

term has an amplitude, a phase shift, and a cycle period (or frequency). The 

amplitude, αi, defines the maximum horizontal distance from the wave’s center to 

the peak. The phase shift, δi, moves the wave forward or backward horizontally 

from a fixed reference point. Finally, the cycle period, τi, defines the vertical length 

from one peak to the next peak. The frequency, ω, is related inversely to the cycle 

period through ω = 2π⁄τ. The frequency indicates the number of oscillations 

occurring within a time period. Both terms are used interchangeably in this paper. 

Trigonometric identities simplify (1) and make the equation more linear in 

parameters as shown in (2) by removing the phase shift. 
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Researchers refer to Ai and Bi as Fourier coefficients. A linear regression can 

fit Ai and Bi as parameters for fixed and known cycle periods because the cosine 

and sine terms become the explanatory variables (Fuller, 1996). Then ordinary least 

squares (OLS) estimates the parameters as (2) reduces to a standard linear 

regression. 

Fourier regressions are used in three ways, which are not mutually exclusive. 

The first method employs a Fourier series to fit any function, even non-cyclical 

functions (Enders & Holt, 2012). For example, the Fourier flexible form uses a 

Fourier series to fit a consumers’ expenditure function that lacks cyclical 

components (Gallant, 1981). Many researchers use the Fourier flexible form to 

estimate unknown functions because it possesses well-behaved partial derivatives 

and uses few parameters. Furthermore, the parameters are easily estimated from 

sparse data (Fisher & Fleissig, 1994; Fisher, Fleissig, & Serletis, 2001; Fleissig & 

Rossana, 2003; McMillen, 2001; McMillen & Dombrow, 2001). 
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The second method uses a Fourier series to fit a seasonal cycle during the year. 

The seasonal cycle is the easiest to estimate (Kedem & Fokianos, 2005; Meyer, 

2000; Rayco-Solon, Fulford, & Prentice, 2005; Simmons, 1990). Researchers add 

the explanatory variables Ai cos(2πKit ⁄ τ) and Bi sin(2πKit ⁄ τ) to a regression. All 

the terms inside the sine and cosine functions are known. The Fourier coefficients, 

Ai and Bi, become the parameters in a linear regression model. Every term includes 

a harmonic, Ki, i.e. an integer of the base frequency. For example, if monthly data 

exhibit annual fluctuations, then the Fourier series with τ = 12 and K1 = 1 fits this 

oscillation. If monthly data contain two cycles per year, then the Fourier 

coefficients with τ = 12 and K2 = 2 accounts for this cycle, while the parameters 

τ = 12 and K3 = 3 incorporate quarterly fluctuations in the data. In many instances, 

researchers do not know the data’s frequencies, but they use trial and error to fit a 

variety of Fourier regression equations with different harmonics. Then they retain 

harmonics with at least one statistically significant Fourier coefficient. 

The third method is similar to using a Fourier series to capture seasonal 

oscillations. The researchers set the cycle period τi equal to the number of 

observations in the dataset. Then they use trial and error to fit a variety of Fourier 

regression equations with different harmonics (Bahmani-Oskooee, Chang, & Wu, 

2014; Enders & Holt, 2012; Jiang, Bahmani-Oskooee, & Chang, 2015; Ludlow & 

Enders, 2000). This approach works well if data exhibit a cycle that roughly equals 

the time span of the dataset or lies close to a significant harmonic. Many economic 

variables, as shown by Granger (1966), exhibit long cycle periods that roughly 

equal the time span of datasets. Incidentally, Fourier regression would fit these data 

well. 

The way the cycle period is chosen causes several deficiencies. The cycle 

period, τ, is set to equal to the number of observations in the dataset. Data are 

collected in known cycles, but this approach may be inappropriate for economic 

data because it is not known when oscillations begin and end in a variable, except 

for seasonal oscillations. Thus, researchers should treat the cycle periods τi as 

endogenous. 

The second problem involves using harmonics to estimate the cyclical periods. 

For example, the United States experienced recessions in 1981, 1991, 2001, and 

2007, about a 10-year cycle. For sample data between 1980 and 2014, a Fourier 

series would miss the recession cycle. The first harmonic has a 35-year cycle while 

the second harmonic equals 17.5 years. The third harmonic is 11.7 years, and the 

fourth equals 8.75. Thus, the harmonic misses the ten-year cycle in the data. The 

Fourier regression would most likely fit the data poorly, even though the time series 

oscillates. 
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The third deficiency is that economic variables may have multiple cosine and 

sine terms that reflect two or more frequencies with unrelated harmonics. For 

example, one frequency in an economic time series may reflect the Juglar business 

cycle while a second frequency reflects a Kondratiev wave. A Juglar business cycle 

originates from the recurring business booms and recessions that every economy 

experiences and lasts between 7 and 11 years. On the other hand, a Kondratiev wave 

stretches 50 years or longer and could reflect political, cultural, or generational 

change for a country (Korotayev & Tsirel, 2010), or the country’s adoption of a 

significant new technology, such as railroads, highways, airlines, computers, and 

the internet (Šmihula, 2009). A Juglar cycle differs from a Kondratiev wave and, 

thus, they are unrelated via harmonics. 

Methodology 

The three-stage procedure can estimate the parameters of a Fourier VAR and allow 

the investigation of the sampling properties. The procedure is similar to the 

procedure Omekara, Ekpenyong, and Ekerete (2013) used in their paper. The three-

stage procedure begins with a Fourier VAR in (3) with two frequencies, ω1 and ω2. 

The series yt (zt) excludes lagged variables of yt (zt) because the Fourier series 

replaces the lagged variables. At last, the Fourier VAR can include more 

frequencies and variables. 

 

 
( ) ( )

( ) ( )

0 1 1 1 1 1 2 1 3 2 1,

0 1 2 2 2 2 2 1 3 2 2,

cos sin

cos sin

t t t t

t t t t

y t A t B t z z

z t A t B t y y

      

      

− −

− −

= + + + + + +

= + + + + + +
  (3) 

 

The first stage fits the VAR in (4) without the Fourier series. The residuals, γ1,t and 

γ2,t, contain the random noises and sinusoidal waveforms (Ludlow & Enders, 2000). 

The trend variable removes any positive or negative growth over time, so the 

residuals oscillate along the time axis. 
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The second stage calculates a periodogram in (5), also known as discrete 

Fourier transform (Poměnková & Kapounek, 2010). The periodogram converts 

data from the time domain to the frequency domain and displays the frequencies 

present in a time series (Bloomfield, 2004; Kedem & Fokianos, 2005; Strasek & 
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Jagric, 2002). Many researchers compute the periodogram from the autocovariance 

functions (Bátorová, 2012) while, in this paper, the procedure uses the residuals ,î t  

from (4) to calculate the periodogram. The time series in (5) have T observations, 

and t ranges from 1 to T. 
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The periodogram forms an indicator function of two frequencies. The term 

exp(–iωt) creates a sinusoidal wave with a frequency ω with real and complex 

numbers. A loop starts at frequency –ω and takes the dot product between exp(-iωt) 

and the residuals ,î t . When the frequencies of exp(–iωt) and ,î t  match, the 

periodogram spikes at that frequency. When both frequencies differ, the dot product 

equals zero. At last, the loop stops at frequency ω. 

The VAR suffers from an omitted-variable bias. The biased parameter 

estimates from (4) could bias the frequencies in the periodogram. Consequently, 

the spikes on the periodogram indicate approximate frequencies in the residuals 

while the spike’s relative height reflects the amplitude. 

The last stage uses the dominant frequencies of the periodogram as starting 

values in a nonlinear least squares algorithm. Unfortunately, nonlinear least squares 

algorithms may experience two troubles in converging. First, if two frequencies lie 

too close together, then the algorithm could fail from multicollinearity. Second, the 

algorithm imposes no constraints on the frequency space. Consequently, two or 

more frequencies may converge to the same frequency, causing perfect 

multicollinearity. However, nonlinear least squares that have converged yields the 

parameter estimates in (3). 

Results 

A Monte Carlo simulation shows a three-stage procedure can accurately estimate a 

vector autoregression with cyclical components. The three-stage procedure is 

applied to a stock market model with an interest rate and national production 

measure to yield out-of-sample forecasts. 

The Monte Carlo simulation begins with a known Fourier VAR in (6). The 

Fourier series in the yt has a frequency of 0.25 or a wavelength of 25.1, while the 

Fourier series in zt has a frequency of 0.1 or a wavelength of 62.8. Both frequencies 

differ from each other and are not related by harmonics. Although each regression 
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in a Fourier VAR specifies one frequency, the lagged variable from the other series 

induces the second frequency. Finally, the εi,t represents the identically and 

independently, normally distributed white noise process with a zero mean and unit 

variance. 
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A random number generator creates the normally distributed white noise 

processes for ε1,t, and ε2,t,. Then a data-generating procedure in (3) calculates yt and 

zt. The algorithm creates 202 observations and discards the first 100. In addition, 

the estimation of the Fourier VAR further reduces the observations by two by 

lagging two variables twice.  

Figure 1 displays one simulation experiment. The time-series data appear 

typical because both variables display a positive trend over time while the data 

displays irregular oscillations. The low frequency in zt shows more prominently 

than the high frequency. 
 
 

 
 
Figure 1. Data generated for the Fourier VAR 
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Figure 2. Residuals from the Fourier VAR without the Fourier series 
 

 
 

 
 
Figure 3. Periodogram of the residuals from (6) 
 

 

The first stage estimates the Fourier VAR without the sine and cosine terms 

in (6) to obtain the residuals. Figure 2 displays the residuals from one experiment. 
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Both time series display four peaks, indicating the higher frequency. However, the 

lower frequency remains hidden and not discernible. 

The second stage estimates the periodogram of the residuals, which is shown 

in Figure 3. The residuals for yt exhibit one prominent frequency at 0.25 while the 

residuals for zt show two frequencies at 0.115 and 0.25. Ironically, the higher 

frequency has a greater magnitude than the lower frequency. The periodogram 

estimates the high frequency accurately while the lower frequency is inaccurate, 

which could result from the omitted variable bias. Moreover, the periodogram 

displays weak frequencies lying adjacent to the primary two frequencies, which 

may indicate leakages. A leakage causes one frequency to artificially elevate the 

magnitude of other frequencies (Granger, 1966). 

The last stage uses the dominant frequencies of the periodogram as starting 

values in a nonlinear least squares algorithm. The yt series uses a 0.25 frequency 

while the zt series utilizes 0.11 as starting values. Because the data in the VAR 

behaves well, the algorithm converges with no trouble. 

Table 1 shows the statistical properties of the Monte Carlo simulation. The 

simulation generates 300 samples. Each sample creates a new set of identically and 

independently, normally distributed random numbers to calculate yt and zt using (3). 

Furthermore, the simulation program creates 202 observations and discards the first 

100. Table 1 shows the mean, population standard deviation (PSD), and coefficient 

of variation (CV) for the parameter estimates along with the actual parameter values. 
 
 
Table 1. The Monte Carlo simulation of the Fourier VAR 
 

    Statistics 

 Parameter True Value   Mean PSD CV (%) 

yt Intercept 10.0000  9.9378 0.5728 5.7638 

 Trend 0.2500  0.2500 0.0062 2.4641 

 Cos 10.0000  10.0062 0.4521 4.5184 

 Sin 7.0000  6.9555 0.6233 8.9611 

 Frequency 0.2500  0.2500 0.0004 0.1571 

 zt–1 0.1000  0.0992 0.0412 41.5134 

 zt–2 0.7500   0.7515 0.0408 5.4309 

       

zt Intercept 15.0000  15.0461 0.5986 3.9788 

 Trend 1.0000  1.0011 0.0133 1.3254 

 Cos 15.0000  15.0472 0.6777 4.5038 

 Sin –20.0000  –19.9774 0.4826 –2.4155 

 Frequency 0.1000  0.1000 0.0002 0.1997 

 yt–1 –0.7500  –0.7477 0.0406 –5.4239 

 yt–2 0.2500   0.2461 0.0410 16.6523 
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Figure 4. The ACF and PACF plots of y and z residuals from the Fourier VAR 
 

 

The means of the parameter estimates lie close to their actual parameter values 

in Table 1. The frequencies exhibit the lowest coefficient of variation while the 

lagged values have the highest. The first lagged value, zt–1, has a coefficient of 

variation of 41.5% while the second, yt–2, exhibits 16%. The lagged values are 

stochastic and display a wider variance than the other parameters. The coefficients 

of variation for the other parameters are low, and the repeated sampling of the 

algorithm appears quite robust. 

The study of Fourier VARs uncovers two phenomena: For example, suppose 

a researcher treats oscillating data as an autoregressive-moving average (ARMA) 

process. Figure 4 displays the autocorrelation function (ACF) and partial 

autocorrelation function (PACF) with the dashed lines for the 95% confidence 

interval. The top ACF and PACF plots are for the yt series while the bottom plots 

are for the zt. Both ACF plots display an oscillating wave. Furthermore, the PACF 

plots for both yt and zt have several statistically significant lags. If both the ACF 

and PACF tail off to zero, a linear regression is estimated with an ARMA(1, 1) 

structure imposed on the residuals. The autoregressive (AR) parameter estimate 

equals 0.9278 (0.9337) for yt (zt) residuals while the moving average (MA) 

parameter estimate equals 0.3169 (0.0763). (The results are available upon request.) 

Thus, a prominent feature of oscillating variables is the AR(1) parameter estimate 

always lies close to one, which is referred to as a unit root. Intuitively, any two 
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adjacent points on a sine or cosine wave share almost the same magnitude. Finally, 

the Augmented Dickey-Fuller (ADF), Phillips-Perron (PP) (Phillips & Perron, 

1988), and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) (Kwiatkowski, Phillips, 

Schmidt, & Shin, 1992) unit root tests indicate mix results. The unit root tests are 

not reported but available on request. 

For the second phenomenon, the cyclical components are not exactly shaped 

as sine and cosine waves. For example, (7) creates a triangular wave with a 

frequency of 0.1257 (or cycle period of 50), a zero phase shift, and an amplitude of 

15.7. The number of observations equals 100. A random number generator creates 

the independently, identically, and normally distributed white noise process. 

 

 ( )( ) ( )110sin cos 0.1257 ~ iid N 0,1andt t ty t  −= +   (7) 

 

One such experiment is shown in Figure 5 using (7) to generate the data, yt, 

with its fitted cosine wave. The three-stage procedure yields the regression as 

ŷt = 12.8386 cos(0.1193t) – 0.4548 sin(0.1193t) with parameter estimates in Table 

2. The Fourier series fits the data well with an R2 of 0.97. Unfortunately, the fitted 

cosine wave underestimates the triangular waveform at the peaks around 

observations 0, 25, 50, 75, and 100. The residuals spike around these observations 

and induce autocorrelation into the residuals. 

Shown in Figure 6 are the ACF and PACF plots for the residuals from fitting 

the triangular wave. Both plots oscillate and tail off to zero indicating ARMA(1, 1). 

Unfortunately, adding another cosine term to the regression may not reduce 

autocorrelation. The triangular waves diverge from the shape of sine and cosine 

waves and, thus, adding more sine and cosine waves may not eliminate the problem. 

Finally, the Fourier regression has a high R2 as Table 2 indicates. Adding more 

Fourier terms may not necessarily improve the fit. 
 
 
Table 2. Using a Fourier series to fit a triangular wave 
 

Variables Triangular Wave 

Cos 12.8386* 
 (0.0000) 

Sin -0.4548 
 (0.2840) 

Frequency 0.1193* 
 (0.0000) 

R2 0.9729 
 

Note: * denotes the 0.1% significance level with the p-values in the parentheses 
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Figure 5. The triangular wave and its fitted Fourier regression 
 

 

 
 
Figure 6. The ACF and PACF plots for the triangular wave’s residuals 
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The Stock Market Model 

The stock market is viewed as a health gauge of the economy because it correlates 

with macroeconomic variables such as interest rates (INT) and nominal gross 

domestic product (NGDP). For example, savings are transferred from bank 

accounts to the stock market to earn a higher return as interest rates fall. Moreover, 

a growing economy experiences more inflation and produces more goods and 

services. Thus, nominal GDP rises. Meanwhile, greater income may be earned, and 

subsequently invested into the stock market, raising stock prices. 

GDP data, interest rates, and other data are averaged to match the nominal 

GDP quarterly data. The sample starts in 1994 Q3 and ends at 2007 Q4. 

Observations between 2008 Q1 and 2014 Q4 comprise the out-of-sample forecasts. 

Although data before 1994 exists, the characteristics of the waves may change over 

time from structural changes in the economy such as financial deregulation (Hughes 

Hallett & Richter, 2004). 

Time series analysis always begins with unit root tests. The absence of a unit 

root indicates a stationary time series. Reported in panel A of Table 3 are the 

Phillips-Perron (PP) (Phillips & Perron, 1988) and Kwiatkowski-Phillips-Schmidt-

Shin (KPSS) (Kwiatkowski et al., 1992) tests on the levels and first difference of 

the sample with p-values in the parenthesis. A formula selects the number of lags  
 
 
Table 3. Unit root and cointegration tests 
 

Panel A: Unit root tests 

 Levels  First difference 

  PP KPSS  PP KPSS 

S&P500 –6.4442 1.3899**  –53.8010** 0.1546 
 (0.7391) (0.0100)  (0.0100) (0.1000) 

Interest rate –9.4548 1.8212**  –38.9680** 0.0835 
 (0.5608) (0.0100)  (0.0100) (0.1000) 

Nominal GDP –7.3490 2.8132**  –47.5760** 0.0971 
 (0.6855) (0.0100)  (0.0100) (0.1000) 

      
Panel B: Number of cointegration vectors 

 Trace test  Eigenvalue test 

H0 5% critical value Statistic  5% critical value Statistic 

r = 0 34.9100 53.0400***  22.0000 43.0600*** 

r ≤ 1 19.9600 9.9800  15.6700 6.6100 

r ≤ 2 9.2400 3.3700  9.2400 3.3700 
 

Note: *** indicates the 0.05 significance level; R cannot extrapolate p-values that fall below 0.01 or exceed 0.1 
for the unit root tests 

 



FOURIER VECTOR AUTOREGRESSION 

14 

Table 4. Unrestricted error correction model (ECM) 
 

Variables Δ S&Pt Δ Interestt Δ NGDPt 

Constant 942.9174 -6.1469 781.1175 
 (0.1943) (0.0811) (0.2180) 

Seasonal D1 –43.6319 –0.1148 –19.5345 
 (0.0587) (0.2934) (0.3248) 

Seasonal D2 14.2335 –0.0609 –6.7931 
 (0.5438) (0.5887) (0.7397) 

Seasonal D3 –11.1913 –0.2788*** –21.3117 
 (0.6242) (0.0144) (0.2882) 

Δ S&Pt–1 0.0762 0.0029* 0.3104*** 
 (0.6426) (0.0007) (0.0351) 

Δ INTt–1 32.9585 0.3683*** 47.8854 
 (0.2755) (0.0140) (0.0733) 

Δ NGDPt–1 0.1394 0.0007 –0.1890 
 (0.5436) (0.5161) (0.3474) 

S&Pt–2 –0.1699* 0.0006 –0.0218 
 (0.0246) (0.0816) (0.7337) 

INTt–2 29.5453 –0.2281*** 4.2782 
 (0.1087) (0.0119) (0.7871) 

NGDPt–2 –0.1420 0.0010 –0.0990 
 (0.2088) (0.0724) (0.3143) 

Trendt–2 22.6009 –0.1532 15.9013 
 (0.1898) (0.0673) (0.2892) 

2
R  0.2197 0.5920 0.8910 

RMSE 52.6071 0.2650 44.9239 
 

Note: *** indicates the 5% significance level, ** indicates 1%, and ** signifies 0.1%; p-values are in parenthesis 

 
 

for both tests. The PP uses three lags while the KPSS utilizes two. The PP null 

hypothesis is the time series has a unit root while rejecting the null for KPSS 

indicates a unit root. Consequently, all time series possess unit roots at the levels, 

but the unit roots disappear after taking the first difference. In this case, a first 

difference transforms the time series into a stationary process. 

The second step of time series analysis is comprised of cointegration tests. 

Three variables, in this case, are cointegrated if a linear combination of the variable 

creates a stationary process. Panel B of Table 3 shows the Johansen (1991) 

cointegration tests on the time series using both the trace and maximum eigenvalue. 

Both tests indicate the sample has one cointegration vector. Low frequencies in 

time series constitute the long-run linear relationship between variables. 

Consequently, the cointegration vector restricts low frequencies in the time series 
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(Christoffersen & Diebold, 1998). Shown in Table 4 is the estimation of a long-

term error correction model (ECM) with seasonal dummies for the sample between 

1994 Q3 and 2007 Q4 and with one cointegration vector. Many settings are tried to 

obtain the best forecast from an ECM, which is compared to the forecast of the 

Fourier VAR. 

The first stage of the Fourier VAR estimates (8) without the sine and cosine 

terms. A linear trend detrends the residuals, so that they oscillate along the time 

axis. 
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Figure 7. Periodograms of the residuals from the OLS and Fourier VAR 
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The second stage plots the periodogram of the residuals of (8) in Figure 7. 

The VAR could suffer from an omitted-variable bias, which provides the 

approximate frequencies of the system. The S&P500 Index shows three prominent 

frequencies around 0.2, 0.31, and 0.5 while the interest rate has frequencies roughly 

0.21 and 0.5. Finally, the nominal GDP displays frequencies of 0.13, 0.33, and 0.5. 

The last stage involves selecting the frequencies to include in the model. The 

frequencies represent different cycles in the economy. The Fourier VAR in (9) 

utilizes one dominant frequency for each time series. The analysis uses many 

different starting frequencies to locate frequencies that yield the lowest residual 

standard error (RSE) and fits the data well. 
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Figure 8. The Fourier and ECM fits 
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Table 5. The Fourier VAR 
 

Variables S&Pt INTt NGDPt 

Constant 3713.4460* –30.7417* 6481.5978* 
 (0.0000) (0.0000) (0.0000) 

Trend 70.3599* –0.7813* 128.8040* 
 (0.0001) (0.0000) (0.0000) 

Cos –130.7524* –0.6024*** 299.7558* 
 (0.0000) (0.0222) (0.0000) 

Sin –228.6712* –0.1841 –124.7799*** 
 (0.0000) (0.6593) (0.0238) 

Frequency 0.2085* 0.1978* 0.1190* 
 (0.0000) (0.0000) (0.0000) 

S&Pt–1 -- 0.0008 0.4657* 
  (0.5756) (0.0000) 

S&Pt–2 -- 0.0009 0.1816 
  (0.4652) (0.0892) 

INTt–1 –5.0824 -- 60.6532** 
 (0.8915)  (0.0032) 

INTt–2 40.0972 -- –13.5746 
 (0.2172)  (0.3956) 

NGDPt–1 0.3998 0.0051* -- 
 (0.1293) (0.0007)  

NGDPt–2 –0.8454* 0.0000 -- 
 (0.0008) (0.9915)  

RMSE 62.4233 0.4015 36.9256 
 

Note: *** indicates the 5% significance level, ** indicates 1%, and * signifies 0.1%; p-values are in parenthesis 
and are adjusted using Newey-West with AR(1) 

 
 

Shown in Table 5 are the parameter estimates for the Fourier VAR. The p-

values are corrected by using Newey and West (1987) that reduce the problems of 

autocorrelation and heteroscedasticity. Both the S&P 500 and interest rate have a 

frequency of 0.206 or 7.6 years, corresponding to a Juglar business cycle. On the 

other hand, the nominal GDP has a frequency of 0.1184 or a 13.3-year cycle, which 

does not correspond to a Juglar or Kuznets infrastructure investment cycle. Lagged 

values of the nominal GDP influence both the S&P 500 and interest rate while 

lagged values of the S&P 500 and interest rates act on the nominal GDP. 

Figure 7 also includes the periodogram of the residuals from the Fourier VAR. 

Nominal GDP and interest rate account for the 0.21 frequency. However, the S&P 

still displays a prominent frequency oscillating around 0.4. 
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Table 6. Forecasting test 
 

Panel A: ECM    

 S&P INT NGDP 

RMSE 339.6479 4.7773 1394.5103 

Campbell-Thompson 
2

OS
R  0.4025 (0.5695) 0.9264 

Clark-West Statistic 4.5514* –7.3834 12.8323* 
 (0.0000) (1.0000) (0.0000) 

Diebold-Mariano Test 1.2702 –7.0184 12.2940* 
 (0.1074) (1.0000) (0.0000) 
    

Panel B: Fourier VAR    

 S&P INT NGDP 

RMSE 163.8864 2.6915 309.8847 

Campbell-Thompson 
2

OS
R  0.8609 0.5018 0.9964 

Clark-West Statistic 3.7703* 9.6969* 13.9088* 
 (0.0001) (0.0000) (0.0000) 

Diebold-Mariano Test 3.0375* 5.5999* 12.5230* 
 (0.0026) (0.0000) (0.0000) 

 

Note: * denotes the 0.1% significance level, with the p-values in parenthesis 

 
 

The fits of the Fourier VAR and ECM are compared with the data in Figure 

8. (Tables 4 and 5 also include the root-mean-square error (RMSE).) The ECM fits 

the S&P500 and CD interest rate better than the Fourier VAR while the Fourier 

VAR fits the nominal GDP better. 

Several tests evaluate the out-of-sample forecast performance. For instance, 

the root-mean-square error can determine which forecast predicts the time series 

better (Hassani, Soofi, & Zhigljavsky, 2013; Hassani, Webster, Silva, & Heravi, 

2015). Table 6 shows both the Fourier VAR and ECM forecasts for 28 quarters 

between 2008 and 2014. The table includes the root-mean-square error (RMSE) 

and the Campbell-Thompson, Clark-West, and Diebold-Mariano statistics. 

Furthermore, the Campbell-Thompson statistic (Campbell & Thompson, 2007) 

calculates an out-of-sample (OS) 2

OSR , which is comparable to the R2 in linear 

regression. The 2

OSR  compares the out-of-sample forecast to the historical, in-

sample mean because Welch and Goyal (2008) found many economic variables fail 

to surpass the historical mean as a forecast. The 2

OSR  lies between (–∞, 1], and a 

positive 2

OSR  outperforms the mean. All forecasts for both the ECM and Fourier 

VAR outperform the historical mean except for the ECM interest rate forecast. The 
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Clark-West statistic (Clark & West, 2007) tests whether a positive 2

OSR  is 

statistically significant. All 2

OSR  for both the ECM and Fourier VAR is statistically 

significant except the ECM interest rate forecast. Finally, the Diebold and Mariano 

test (Diebold & Mariano, 1995) determines whether the forecast surpasses the 

historical average using a one-tail test. All Fourier VAR forecasts are statistically 

significant while only the ECM nominal GDP is statistically significant. Thus, the 

Fourier VAR yields half the RMSE of the ECM and outperforms the ECM in 

forecasting the stock market with macroeconomic variables. 

The time series have significant cyclical components that improve forecasts 

which Figure 9 reflects. The Fourier VAR of the S&P500 captures the drop during 

the 2008 Global Financial Crisis, but the standard ECM misses it. The Fourier 

VARs predicts the nominal GDP and interest rate well while the ECM barely dips 

at all. Furthermore, the Fourier VAR forecast shows the interest rate dips below 

zero. Negative interest rates could be set to zero, which further improves the 

forecasts for all-time series. At last, a comparable VAR provides a better forecast 

than the ECM and supports Christoffersen and Diebold (1998) that cointegration 

may not improve forecasts. However, the Fourier VAR still forecasts better than 

the standard VAR. The standard VAR estimation is available on request. 
 
 

 
 
Figure 9. The Fourier and ECM out-of-sample forecasts 
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Conclusion 

The stock market index, interest rate, and national production measure contain 

cyclical components. A three-stage procedure identifies the frequencies of the 

cyclical components and allows a parsimonious estimation of a Fourier VAR. A 

Monte Carlo simulation shows the three-stage procedure calculates the parameter 

estimates of a Fourier VAR, and a stock model with an interest rate and national 

production measure improves the out-of-sample forecast with half of the RMSE. 

For policy implications, investors in a stock market can use a Fourier VAR forecast 

to determine the market’s trough and buy bargain stocks when stock prices are low. 

In addition, economists and politicians can utilize a Fourier VAR forecast to 

determine the duration and severity of downturns in the economy as measured by a 

national production measure. 
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