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Two multiple imputation methods, the Sequential Regression Multivariate Imputation 

Algorithm and the Cox-Lannacchione Weighted Sequential Hotdeck, were examined and 

compared to impute highly missing categorical variables from the Family Life, Activity, 

Sun, Health and Eating (FLASHE) study. This paper describes the imputation approaches 

and results from the study. 
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Introduction 

The Family Life, Activity, Sun, Health and Eating (FLASHE) study, sponsored by 

the National Cancer Institute (NCI), examines psychosocial, generational (parent-

adolescent), and environmental correlates of cancer-preventive behaviors. The 

objective of this web-based survey was to examine cancer preventive lifestyle 

behaviors, mainly diet and physical activity, as well as sleep, sun-safety, and 

tobacco use. Data were collected in 2014 from dyads of caregivers and their 

adolescent children aged 12-17. After the data collection period ended, eight 

https://dx.doi.org/10.22237/jmasm/1536146540
https://dx.doi.org/10.22237/jmasm/1536146540
mailto:liub2@mail.nih.gov
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variables related to physical limitations to physical activity and life goals about 

teens were found to be missing data from approximately half of the sample for the 

parent physical activity survey because of a system programming error in the web-

based data collection tool. This missing scenario is rare but not unique. A 

considerable fraction of the accelerometer steps data from the 2003-2004 National 

Health and Nutrition Examination Survey (NHANES) were missing due to a device 

initialization error and had to be imputed (Liu, Yu, Graubard, Troiano, & Schenker, 

2016). 

When the missing data are not missing completely at random (MCAR), i.e., 

the missingness is not independent from the characteristics of the individuals 

surveyed, analyzing only the cases with non-missing data (called complete-case 

analyses) is known to produce biased estimates and also leads to reduced efficiency 

for many situations, especially when drawing inferences for subpopulations (Little 

& Rubin, 2002). Imputation is a flexible and commonly-used technique for 

handling missing-data problems. Both single imputation and multiple imputations 

have been commonly used in survey practice. Single imputation is used to fill in 

only one value for each missing value and then treat the imputed values as if they 

were true values in post-imputation analyses. Rubin (1987) described two attractive 

features of single imputation: First, standard complete-data methods of analysis can 

be used on the imputed data set. Second, in the context of public-use databases, the 

possibly substantial effort required to create sensible imputations needs to be 

carried out only once, by the data producer, and these imputations can incorporate 

the data collector’s knowledge. 

Rubin (1987) noted one major disadvantage of single imputation is that the 

single value being imputed does not reflect either the sampling variability about the 

actual value when one model for nonresponse is being considered, or additional 

uncertainty when more than one model is involved in the imputation procedure. 

Multiple imputation, however, repeats the same imputation mechanism multiple 

times and creates multiple sets of imputed values, say M sets. These multiple values 

are used to empirically estimate both the variability from the sampling and 

imputation model. 

Multiple imputation retains the virtues of single imputation and provides 

correct variance estimation. The superiority of multiple imputation over single 

imputation is magnified when the amount of missing data is large. With multiply 

imputed data, data users just need to analyze each completed data set one by one, 

and then combine the M analyses via simple formulas (Rubin, 1987). Many 

statistical packages contain routines for creating and/or analyzing multiply imputed 

data sets under selected models (Harel & Zhou, 2007). Given the high missing rate 
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(53%) for the eight variables, we chose to use multiple imputation to capture the 

additional variability due to imputation. 

The sequential regression multivariate imputation (SRMI) algorithm 

(Raghunathan, Lepkowski, Van Hoewyk, & Solenberger, 2001), also called 

multiple imputation by chained equations (MICE) or fully conditional specification, 

was widely used in the literature to impute missing continuous or categorical survey 

items (e.g., Schenker, Raghunathan, et al., 2006; Schenker, Borrud, et al., 2010; 

Stuart, Azur, Frangakis, & Leaf, 2009). The SRMI approach uses a sequence of 

regression models and a Gibbs sampling style iterative algorithm to impute all 

variables with missing values in a sequential order. The algorithm has been 

implemented in several statistical software programs including IVEware, SAS, R, 

and Stata. Zhu and Raghunathan (2015) provided a detailed review on the SRMI 

approach. 

The SRMI approach has two major practical advantages over other model-

based imputation methods including: 1) It enables handling of complex data 

structures by focusing a set of regression models with a univariate outcome; and 2) 

The flexible selection of regression models enables better prediction of the missing 

values based on other variables. A theoretical limitation of this approach is that the 

specifications of conditional distributions for a set of variables do not guarantee the 

existence of a joint distribution. Therefore, it is not clear whether the iterative 

algorithm will achieve any stability. The convergence results established for the 

standard Gibbs sampling algorithms or its variations may not be applicable. 

Another commonly used imputation approach for handling missing data is 

called hot deck imputation. Hot deck imputation replaces missing values of one or 

more variables for a nonrespondent (called the recipient) with observed values from 

a respondent (the donor) that is similar to the non-respondent with respect to 

characteristics observed for both cases (Little & Rubin, 2002; Andridge & Little, 

2010). Andridge and Little (2010) reviewed different forms of the hot deck and 

existing research on its statistical properties. Among those, the Cox-Lannaccione 

Weighted Sequential Hot Deck (WSHD) (Cox, 1980; Cox & Folsom, 1981) was 

motivated by two issues: the unweighted sequential hot deck is potentially biased 

if the weights are related to the imputed variable, and respondent values can be used 

several times as donors if the sorting of the file results in multiple non-respondents 

occurring in a row, leading to estimates with excessive variance. 

Implemented in SUDAAN version 10+, the WSHD provided another 

practical tool to multiply impute missing survey data. In the 2002 National Survey 

on Drug Use and Health (NSDUH) survey it was used sparingly. Grau, Frechtel, 

Odom, and Painter (2004) compared the WSHD approach with the Predictive Mean 
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Neighborhoods (PMN) procedure through a simple simulation and found 

significant but not substantial difference between the two methods. Through 

simulation Andridge and Little (2009) found the WSHD approach doesn’t correct 

for bias when the outcome is related to the sampling weight and the response 

propensity. This condition doesn’t apply to the FLASHE data. 

Therefore, the purpose of this study is to consider the WSHD approach as the 

alternative approach to SRMI. There are few published, empirical studies with 

comparisons of the performance of the two algorithms. 

Methodology 

The FLASHE Study Sample and Missing Data 

Parents with adolescent children between the ages of 12 and 17 years were recruited 

from the Ipsos Consumer Opinion Panel (Ipos) which includes over 700,000 active 

members. Balancing and quota sampling techniques were used (Lohr, 1999). The 

sample was intended to match the U.S. population on several key demographic 

characteristics as closely as possible. A screening instrument based on the FLASHE 

eligibility criteria was administered via the web to determine the panel member’s 

eligibility for FLASHE. A panel member was deemed eligible for FLASHE if they: 

were at least 18 years of age; lived with at least one child between the ages of 12 

and 17.5 for at least 50% of the time; and agreed to be contacted for participation 

in FLASHE. During the screening process, information on the eligible adolescents 

in the household was collected via a full household roster and one eligible 

adolescent was randomly selected until the quota for that age range was full. 

Ipsos intended to provide a balanced sample of 4,500 eligible parents using 

only their panel. However, the size of the Ipsos panel unexpectedly did not provide 

an adequate number of respondents for the male adults and African-American 

adults in the balancing process. Ipsos therefore subsequently requested additional 

samples from four other panel companies: Global Marketing Insite, Inc; ROI 

Rocket; Clearvoice Research; Toluna. After an initial delivery of 4,527 eligible 

dyads (denoted as the main dyad sample, including the recruitment goal of 4,500 

dyads plus additional dyads to allow for potential cases which might be unusable), 

an additional 500 eligible dyads with male parents were provided to improve the 

parent gender balance of the FLASHE sample, though the recruitment from the 

additional panels still did not meet the recruitment goal for African-American 

adults. 
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The main dyad sample and the additional male dyads were collected and 

delivered separately. FLASHE data collection materials and procedures were 

reviewed and approved by the U.S. Government’s Office of Management and 

Budget (OMB), NCI’s Special Studies Institutional Review Board (SSIRB), and 

Westat’s Institutional Review Board (IRB). Detailed information on the FLASHE 

study design and recruitment was given elsewhere (Oh et al., 2017; Westat, 2015). 

A total of 5,027 eligible dyads were invited to enroll into FLASHE in April 

of 2014. Among them, 1,945 dyads were fully enrolled (both parent and adolescent 

provided consent/assent, enrollment rate = 38.7%). Four surveys on physical 

activity-related behaviors and diet-related behaviors were administered to the dyads 

via the web with a cash incentive mailed to each participant upon completion: 

Parent Physical Activity Survey, Parent Diet Survey, Adolescent Physical Activity 

Survey, and Adolescent Diet Survey. The final response rates (RRs) out of the 

number of dyads invited to participate varied by survey. A participant was deemed 

a respondent to a specific survey if at least 80% of the questions were answered. 

Having an 80% threshold allowed for minor skips of questions. The final numbers 

of respondents were 1,802 (RR = 35.8%) for the Parent Physical Activity survey 

(which contained the eight items with a high percent of missing data), 1,754 for the 

Parent Diet Survey (RR = 34.9%), 1,670 for the Adolescent Physical Activity 

Survey (RR = 33.2%), and 1,667 for the Adolescent Diet Survey (RR = 33.2%). 

Participants received an incentive if they clicked “submit” on the survey, regardless 

of how many questions they skipped. 

Prior to enrollment, a random half of the main dyad sample were selected to 

receive the Diet survey first and the other half were selected to receive the Physical 

Activity Survey first. Specifically, a random number was generated from a uniform 

distribution with a range of 0 to 1 for each dyad. Then, the dyads with a value lower 

than 0.5 was assigned to one group and the other half of the dyads was assigned to 

the other group. In addition, a random subsample (n = 1,690) of the main dyad 

sample was also invited to participate in a Motion study during which adolescents 

wore an accelerometer to assess physical activity, and among those 693 dyads fully 

enrolled into the motion study. Given the late delivery of the sampling frames and 

the complicated scheduling due to the inclusion of the motion study component, 

the additional all-male (n = 500) sample was assigned to the Diet survey first group 

for simplicity. 
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Table 1. Variables to be imputed 
 

Variable name Survey question 

PPFEELLOVE 
When my teenager is an adult, he/she will feel that there are people who 

really love him/her 

PPOTHBETTER 
The things my teenager will do as an adult will make other people's lives 

better 
PPGETGDGRAD My teenager will get good grades in school 

PPATTRACTV 
People will often comment about how attractive my teenager looks as an 

adult 
PPJOBPAYWL When my teenager is an adult, he/she will have a job that pays well 

PPHCPALIMIT 
Has a doctor or other healthcare professional ever told you that teen has 

any condition that could limit his/her ability to exercise, such as obesity, 
asthma, diabetes, high blood pressure, etc.  

PPHCPASPORT 
Do medical, behavioral or other health conditions interfere with teen's ability 

to participate in sports, clubs or other organized physical activities 

PPHCPAOUT 
Do medical, behavioral or other health conditions interfere with teen's ability 
to go on things such as the park, library, zoo, shopping, church, restaurants 

or family gatherings 

 
 

Among the 1,802 final respondents in the parent physical activity survey, 951 

respondents (53%) had eight variables all missing due to a system error. This 

missingness occurred only in the group of parents that had received the physical 

activity survey second, after completing the diet survey (Westat, 2015). Some of 

those with missing data completed the physical activity survey on an earlier date 

than some of the respondents who were assigned the physical activity survey first, 

just based on how fast people responded to their sets of surveys. Even if the physical 

activity survey was “first” for a given participant, he or she might have waited some 

time to complete it. The identified system error did not enable those parents to 

access the eight questions. Twenty-five respondents had one or more, but not all, 

of the eight variables missing. The remaining 826 respondents did not have any 

missing data for the eight variables in question. The variable names and 

corresponding questions are listed in Table 1. 

A five-point Likert Scale was used for the first five variables in Table 1, which 

focused on parent-reported life goals for their adolescent child (PPFEELLOVE, 

PPOTHBETTER, PPGETGDGRAD, PPATTRACTV, PPJOBPAYWL): Not at all 

important to me (1), A little important to me (2), Somewhat important to me (3), 

Very important to me (4), Extremely important to me (5). Yes (1) or No (2) choices 

were used for the last three variables, which focused on physical limitations of the 

adolescent (PPHCPALIMIT, PPHCPASPORT, PPHCPAOUT). 
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Statistical Analysis 

To determine if the missing data were MCAR, a series of cross-tabs and chi-square 

tests of the missing-skip (missing or not for all of the eight variables) and 18 parent 

socio-demographics were conducted. The socio-demographics included parent age, 

gender, education, marital status, health status, consistency of health insurance 

coverage, race/ethnicity, nativity, home ownership, housing security, work status, 

household income, language usually spoken at home, language used for media, 

health literacy, number of kids in home, BMI, and adolescent health insurance 

coverage. Those variables are either binary or categorical. The definition of each 

variable and associated categories are given in Table A1 in the appendix. 

Because all eight variables with missing values were categorical or binary 

data, both SRMI and the WSHD multiple imputation approaches were considered 

to impute the missing data. The SRMI approach was implemented using IVEware 

(http://www.src.isr.umich.edu/software/). The specific imputation models are 

multiple linear regressions for continuous variables, logistic regressions for binary 

variables, and polynomial regressions for categorical variables. To create multiple 

imputations, it is recommended to include a large number of predictors in the 

imputation model, especially variables that will be used in subsequent analyses of 

the multiply imputed data, for congenial purpose. That is, to be accurate, the 

imputation model should be congenial with the analysis model. The two models 

don’t have to be identical, but they cannot have major inconsistencies (Meng, 1994). 

Hence, for the SRMI approach, all of the 18 parent socio-demographic variables 

shown in Table A1 were included as the predictors. The module IMPUTE in the 

software package IVEware was implemented to simultaneously impute any missing 

values in the eight target variables and in the predictor variables. All the variables 

involved in the imputation were specified as categorical variables so logistic 

regression models were automatically picked for imputing binary variables and 

polynomial regressions were automatically picked for imputing variables with 

more than two categories. 

The WSHD approach was implemented using PROC HOTDECK in 

SUDAAN. It requires defining a set of categorical variables that determine the 

imputation classes. It is advantageous to select classes of variables with a strong 

association with the imputation variables. Imputation is performed within each of 

the classes where both missing data and donor data are found. The objective was to 

find the best imputation model for each of the eight variables respectively. When 

too many predictors were included for the imputation model the software ran out 

of donors in one or more imputation cells, because each donor can only be used 

limited times depending on the sample weights. Thus, it failed to impute all the 

http://www.src.isr.umich.edu/software/
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missing values for a targeted variable. To overcome this, the following stepwise 

procedures were used: 

 

Step 1: Run chi-square tests of the eight variables and all the 18 parent 

socio-demographic characteristics and then pick the significant 

predictors (p-value < 0.05) to be included in the initial imputation 

model for each variable. 

Step 2: Run each imputation model. If the model couldn’t run properly due 

to too many predictors, remove the least significant predictor from 

the model and rerun the imputation. Repeat step 2 until each 

imputation model runs successfully. 

 

All the remaining socio-demographic variables with p-values < 0.1 from the 

chi-square tests in step 1 were included in the ICSORT statement to allow for 

greater control over the sort order of observations within imputation classes. With 

WSHD, the assignment of a selection probability to a potential donor, or item 

respondent, depends both on the donor’s weight and on the weights of nearby item 

nonrespondents. In other words, both the weights and the sort order of observations 

within an imputation class play a role in the selection of donors for imputation in 

the hot deck algorithm. Reordering item respondents and nonrespondents within an 

imputation class can yield different imputation results (Research Triangle Institute, 

2012). Provided in Table 2 are the predictors included in the final WSHD 

imputation model for each variable to be imputed. 

To further evaluate the two imputation methods and decide on the final 

imputation approach, a simulation study using the 826 respondents with observed 

data was conducted. Before imputation, there were 826 respondents with none of 

the eight variables missing, 951 respondents with all eight variables missing, and 

the remaining 25 respondents had one or more but not all of the eight variables 

missing. The 25 respondents were excluded from this evaluation study because the 

missingness was not caused by the system error. The missing rates for the eight 

variables by gender were calculated from the remaining sample containing the 826 

respondents without, and the 951 respondents with the eight variables missing 

(n = 1,777). Among males, 64.7% had the eight variables missing due to the system 

error. Among females, 48.3% had the eight variables missing due to the same 

system error. 
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Table 2. Predictors included in the final WSHD imputation model 
 

Variable name Predictors included 

PPFEELLOVE 
Parent gender; Adolescent health coverage; Consistency of parent health 

coverage 
PPOTHBETTER Number of kids living in home; Parent health status; Home ownership 

PPGETGDGRAD Parent race/ethnicity; Adolescent health coverage 
PPATTRACTV Parent race/ethnicity; Parent BMI; Parent language used for media 
PPJOBPAYWL Parent race/ethnicity; Home ownership 
PPHCPALIMIT Housing security; Parent BMI 

PPHCPASPORT Parent health literacy; Housing security; Parent BMI 
PPHCPAOUT Parent health literacy; Housing security 

 
 

The evaluation study sample was based on the 826 respondents (161 males 

and 665 females) with none of the eight variables missing. One hundred and four 

respondents were randomly chosen from the 161 males (64.7%) and 321 

respondents from the 665 females (48.3%) and then set their values for the eight 

variables to be missing, to mimic the same missing pattern as the original data. Thus, 

in the simulated data, 425 persons had the eight variables all missing and 401 

persons had none of the eight variables missing. 

This simulation experiment was repeated 100 times by randomly resampling 

104 males and 321 females from the 826 respondents and setting their values for 

the eight variables to missing. Each time different samples may be selected, thus 

the final 100 simulated data sets were different by simulation. The multiple 

imputation procedures in consideration were then applied to each of the 100 

datasets to impute the missing values. For a fairer comparison between SRMI and 

WSHD, in this evaluation study, an alternative SRMI model was added by 

including the same set of predictors as in the WSHD method for each variable to 

be imputed. The alternative SRMI approach was denoted as SRMI2. Relative biases 

of point estimates and coverage of confidence intervals for the target quantities of 

interest based on the imputed data were then obtained because the observed values 

for the 425 persons are known. 

Results 

MCAR Assumption Tests 

The chi-square tests of the missing-skip (missing or not for all of the eight 

variables) and the 18 parent socio-demographics (data not shown) showed that the 

missing-skip was independent (p > 0.05) from all the demographic variables except 

parent gender and work status, indicating that the missing scenario does not belong 
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to MCAR, but may depend on parent gender and work status. This finding about 

parent gender is likely supported by the fact that the additional male sample 

(n = 500 males) was assigned to take the Physical Activity survey second and 

therefore did not have the opportunity to respond to the eight questions due to the 

system error. 

The significant association between the missing-skip and parent work status 

may be due to its significant correlation with gender. To verify this, another chi-

square test was conducted between the missing-skip and parent work status 

stratified by gender, which confirmed the missing-skip and parent work status were 

significantly associated only for males, but not for females. 

Multiple Imputation Results for the Full FLASHE Sample (n = 1,802) 

Recent research (e.g., Graham, Olchowski, & Gilreath, 2007) suggested the use of 

greater than the traditional number of five or fewer sets of imputed data, especially 

if the fractions of missing information for various analyses are high. After doing 

some sensitivity analyses based on 10, 20, and 50 sets of multiply imputed data 

(results not shown), it was decided to create 20 sets of multiply imputed data using 

each of the two multiple imputation methods (SRMI and WSHD). 

Let θ denote the percentage of people that fall into one given category of a 

categorical variable (one of the eight variables, e.g., PPFEELLOVE = 4). Let θi and 

Ui denote the weighted percentage and associated variance computed from the ith 

multiply imputed data, i = 1,…, M. Then the point estimate for θ from the multiple 

imputations is the average of the M complete-data estimates: 

 

 
1

1 M

i

iM
 

=

=    (1) 

 

Let U̅ be the within imputation variance for the estimate, which is the average of 

the M complete-data estimates: 
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Then, the variance associated with   is the total variance: 

 

 
1

1T U B
M

 
= + + 

 
  (2) 

 

The standard error of   is T , and the 95% confidence interval bounds for   is 

 

 1.96 T     (3) 

 

With the same number of multiply imputed sets, to compare the performance 

of the two multiple imputation methods with the complete-case analyses, the 

averages of weighted percentage estimates along with their standard errors for each 

category of the eight variables computed using formulas (1) and (2), as well as the 

following standard measures for the multiple imputation methods are reported 

(Table 3). The number of missing respondents differed a little by variable due to 

the 25 respondents who had 1 to 7 variables missing at random and not because of 

the system error. 

 

• Relative increase in variance due to imputation: ( )11
M

RIV B U= +   

• Fraction of missing information: 
( )( )

2

3 1M

RIV

v RIV
FMI +

+ +
 , where vM is adjusted 

degrees of freedom in multiple imputation variance. 

• Relative efficiency of using finite M imputations: ( )
1

1 FMI
M

RE
−

= + . 

 

With 20 multiply imputed sets, the WSHD approach resulted in lower RIV 

and FMI, and higher RE than the SRMI approach did, meaning better performance 

for WSHD compared to SRMI with the same number of multiply imputed data. The 

post-imputation standard errors of the WSHD percentages are generally smaller 

than the complete-case standard errors indicating the achievement of efficiency 

using multiple imputations. Unexpectedly the post-imputation standard errors 

based on SRMI are larger than those of the complete-case results. The larger 

standard errors from the SRMI approach may indicate poor fitting of the sequential 

models or a joint distribution of the variables may not exist and thus stability was 

not achieved. To investigate this in the evaluation study, as we mentioned earlier, 

we added an alternative SRMI model by using the same set of variables as in the 

WSHD method which was denoted as SRMI2. 
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Table 3. Before and after imputation using two multiple imputation methods for the full 
data (n = 1,802)* 
 

 Original data SRMI† (multiple = 20) WSHD‡ (multiple = 20) 

Variable n Pct SE Pct SE RIV FMI RE Pct SE RIV FMI RE 

PPFEELLOVE miss = 953             

1, 2, 3 31 3.80 0.80 4.70 1.50 5.07 0.85 0.96 3.80 0.70 0.38 0.28 0.99 

4 188 23.20 1.80 24.60 2.00 1.47 0.61 0.97 23.60 1.40 0.22 0.19 0.99 

5 630 73.00 1.90 70.70 2.50 2.42 0.72 0.97 72.60 1.50 0.26 0.21 0.99 

PPOTHBETTER miss = 955             

1, 2, 3 127 14.00 1.40 15.00 1.70 1.76 0.65 0.97 14.00 1.10 0.17 0.15 0.99 

4 322 38.30 2.00 38.50 2.20 1.56 0.62 0.97 38.50 1.60 0.25 0.20 0.99 

5 398 47.70 2.10 46.60 2.30 1.58 0.63 0.97 47.50 1.60 0.21 0.18 0.99 

PPGETGDGRAD miss = 953             

1, 2, 3 101 11.50 1.30 12.70 1.90 2.81 0.75 0.96 11.80 0.90 0.10 0.09 1.00 

4 279 32.50 1.90 33.70 2.00 1.26 0.57 0.97 32.90 1.50 0.18 0.16 0.99 

5 469 56.00 2.10 53.60 2.10 1.19 0.56 0.97 55.30 1.50 0.13 0.12 0.99 

PPATTRACTV miss = 954             

1 125 12.80 1.20 12.70 1.10 0.50 0.34 0.98 12.90 0.90 0.11 0.10 0.99 

2 164 16.50 1.50 17.30 1.60 1.58 0.63 0.97 16.30 1.00 0.09 0.09 1.00 

3 271 32.80 1.90 32.10 2.00 1.30 0.58 0.97 32.70 1.50 0.18 0.15 0.99 

4 130 19.60 1.80 20.30 1.70 0.82 0.46 0.98 19.70 1.30 0.11 0.10 0.99 

5 158 18.30 1.60 17.50 2.10 2.71 0.74 0.96 18.40 1.20 0.06 0.06 1.00 

PPJOBPAYWL miss = 953             

1, 2 40 3.70 0.70 4.90 0.90 1.88 0.67 0.97 3.80 0.60 0.21 0.18 0.99 

3 176 20.60 1.70 21.30 1.90 1.45 0.61 0.97 21.10 1.30 0.17 0.15 0.99 

4 304 36.10 2.00 36.60 2.10 1.26 0.57 0.97 36.00 1.40 0.06 0.06 1.00 

5 329 39.70 2.10 37.20 2.50 2.18 0.70 0.97 39.00 1.50 0.15 0.13 0.99 

PPHCPALIMIT miss = 966             

1 88 9.70 1.10 11.60 2.00 3.65 0.80 0.96 9.60 0.90 0.30 0.23 0.99 

2 748 90.30 1.10 88.40 2.00 3.65 0.80 0.96 90.40 0.90 0.30 0.23 0.99 

PPHCPASPORT miss = 952             

1 102 12.40 1.40 12.90 1.90 2.58 0.74 0.96 11.70 1.00 0.19 0.16 0.99 

2 748 87.70 1.40 87.10 1.90 2.58 0.74 0.96 88.30 1.00 0.19 0.16 0.99 

PPHCPAOUT miss = 953             

1 67 8.70 1.20 9.50 1.70 2.36 0.72 0.97 8.50 0.90 0.13 0.12 0.99 

2 782 91.30 1.20 90.50 1.70 2.36 0.72 0.97 91.50 0.90 0.13 0.12 0.99 
 

Note: * SE: Standard error; RIV: Relative Increase in Variance due to imputation; FMI: Fraction of Missing 
information; and RE: Relative Efficiency. 
† The multiple imputation was run for all the eight variables together for the full data using all the 18 
parent socio-demographic variables as predictors through IVEware. 
‡ The multiple imputation was run for each of the eight variables separately for the full data using 
predictors specified in Table 2 through WSHD procedure in SUDAAN. 
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Evaluation Results Using Simulated Data 

For each of the 100 simulated samples, 20 multiply imputed data sets were created 

using each of the three multiple imputation approaches (SRMI, SRMI2, WSHD) to 

impute the missing data, respectively. Let θ denote the parameter for the outcome 

of interest, i.e. the percentage of people that fall into one given category of a 

categorical variable, and let imp  denote the estimate of θ based on multiply 

imputed data. Let 
imp

j  and θorig denote the estimate based on multiply imputed data 

sets from the jth (j = 1,…, K) simulation and the original data from the evaluation 

study sample, respectively. The relative bias of 
imp

j  (RELBIAS) was computed by 

averaging the relative differences between 
imp

j  and θorig, j = 1,…, K, across the K 

simulations, i.e. 

 

 
( )imp orig

orig
1

1
RELBIAS

K
j

jK

 

=

−
=    

 

where K = 100 for our case and 
imp

j  was computed using formula (1) for each j, 

j = 1,…, K. The corresponding standard Monte Carlo simulation error for the 

relative bias of 
imp

j  (SE_RELBIAS) was computed as 

 

 
( )

( )
2

imp orig

orig
1

1
SE_RELBIAS RELBIAS

1

K
j

jK K

 

=

 −
 = −

−   
   

 

The coverage rate was computed as the proportion of confidence intervals that 

covers the original estimate (the truth) among the K simulations. The confidence 

interval for 
imp

j  was computed using formula (3). The nominal coverage rate is 

0.95. 

Presented in Table 4 are the estimates of the percentage of people falling into 

each category of each outcome variable, relative bias, and standard Monto Carlo 

simulation errors of 
imp

j  based on the three imputation approaches. The coverage 

rates of the associated confidence intervals are also reported. The absolute values 

of the estimated relative bias of 
imp

j  based on WSHD approach varied from 0% 

(SE = 0.6%) to 7.2% (SE = 1.1%) across the 24 rows in Table 4, while the range is 

0.9% (SE = 0.7%) to 274.1% (SE = 18.6%) based on the SRMI approach. The 
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absolute values of 19 out of 24 of the estimated relative biases based on WSHD 

approach are less than 3%, while the absolute values of 20 out of 24 of the estimated 

relative biases based on SRMI are bigger than 3%. 
 
 
Table 4. Percent relative bias (and standard Monte Carlo simulation errors) and 
associated 95% confidence interval coverage rate of imputed data based on 100 sets of 
simulated data (n = 826), with 20 sets of multiply imputed data for each simulation 
 

 Original data Relative bias Converge rate 

Variable n Pct SRMI† SRMI2‡ WSHD SRMI† SRMI2‡ WSHD 

PPFEELLOVE         

3 29 3.70 185.9 (19.3) 15.3 (2.6) 1.9 (2.6) 0.77 0.99 0.95 

4 178 22.30 5.4 (1.2) 3.3 (1.0) 3.3 (0.9) 0.95 0.99 0.93 

5 619 74.00 -10.9 (1.0) -1.7 (0.3) -1.1 (0.3) 0.73 0.99 0.93 

PPOTHBETTER         

3 123 13.90 29.3 (2.9) 5.1 (1.2) 3.7 (1.2) 0.85 1.00 0.91 

4 311 37.80 -1.8 (0.7) -0.3 (0.6) -0.7 (0.6) 0.96 0.99 0.95 

5 392 48.30 -7.0 (0.8) -1.2 (0.5) -0.5 (0.4) 0.90 0.98 0.98 

PPGETGDGRAD         

3 97 11.50 39.1 (3.1) 4.1 (1.2) 0.5 (1.1) 0.85 0.99 0.97 

4 271 32.60 -0.9 (0.7) 2.0 (0.6) 0.0 (0.6) 0.99 1.00 0.98 

5 458 55.90 -7.6 (0.6) -2.0 (0.4) -0.1 (0.4) 0.85 0.98 0.98 

PPATTRACTV         

1 124 13.00 7.7 (1.2) 6.1 (1.2) 7.2 (1.1) 0.99 0.98 0.91 

2 159 16.20 4.3 (1.1) 1.9 (1.0) 2.8 (1.0) 0.99 0.99 0.93 

3 263 33.20 -6.6 (0.6) -3.1 (0.6) -0.5 (0.6) 0.95 0.99 0.96 

4 124 19.30 -3.8 (1.1) -3.0 (1.0) -7.1 (1.0) 0.96 0.96 0.82 

5 156 18.30 6.7 (1.1) 2.8 (1.1) 0.8 (1.1) 0.98 0.98 0.90 

PPJOBPAYWL         

2 39 3.70 274.1 (18.6) 10.1 (2.2) 5.3 (2.0) 0.53 1.00 0.96 

3 173 20.60 5.7 (1.9) 1.8 (0.9) 0.6 (0.9) 0.91 1.00 0.95 

4 290 35.50 -7.5 (1.2) 0.6 (0.6) -1.0 (0.6) 0.85 0.99 0.96 

5 324 40.20 -21.6 (1.1) -2.4 (0.6) 0.1 (0.6) 0.41 0.98 0.96 

PPHCPALIMIT         

1 87 9.80 16.9 (1.9) 6.4 (1.4) 2.1 (1.3) 0.97 1.00 0.96 

2 739 90.30 -1.8 (0.2) -0.7 (0.1) -0.2 (0.1) 0.97 1.00 0.96 

PPHCPASPORT         

1 98 12.00 15.6 (1.4) 6.4 (1.3) -0.6 (1.3) 0.96 1.00 0.93 

2 728 88.00 -2.1 (0.2) -0.9 (0.2) 0.1 (0.2) 0.96 1.00 0.93 

PPHCPAOUT         

1 64 8.30 49.6 (5.7) 7.7 (1.6) -0.9 (1.5) 0.82 1.00 0.95 

2 762 91.70 -4.5 (0.5) -0.7 (0.1) 0.1 (0.1) 0.82 1.00 0.95 
 

Note: † The multiple imputation was run for all the eight variables together for each simulated data using all 
the 18 parent socio-demographic variables as predictors through IVEware. 
‡ The multiple imputation was run for each of the eight variables separately for each simulated data 
using the same predictors as those used in WSHD (specified in Table 2) through IVEware. 
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Eight of the estimated relative biases based on SRMI are bigger than 15%. 

Among those, six are for categories with smaller sample sizes (n < 100). The range 

of the coverage rates based on the WSHD approach varied from 0.82 to 0.98 with 

many of the coverage rates being close to the 0.95 nominal value. The coverage 

rate range based on the SRMI approach varied from 0.41 to 0.99, with only a few 

coverage rates being close to the nominal value. With the SRMI2 approach, both 

the relative bias and coverage rates improved much compared to the SRMI model, 

but are still not as good as those from WSHD method. The range of the absolute 

values of the estimated bias becomes 0.3% (SE = 0.6%) to 15.3% (SE = 2.6%) and 

the number of absolute relative bias that are bigger than 3% reduces from 20 to 10. 

The coverage rates based on SRMI2 range from 0.96 to 1.00 which are too 

conservative. Those comparison results clearly show that WSHD is the winner 

among the three approaches/models compared in terms of relative bias and 

coverage rates. 

Conclusion 

Methods used to impute missing values were described for eight variables in the 

FLASHE Parent Physical Activity Survey due to a system error. Due to the large 

missing rates (around 53%), the focus was on multiple imputation methods and the 

results were compared between two commonly used approaches including SRMI 

and WSHD. An evaluation study through simulated data was conducted to fully 

evaluate the two different approaches. 

For WSHD, with the FLASHE data, it was found including too many 

predictors may cause the software to fail to impute all the missing values for the 

target variable due to insufficient donors within one or more imputation cells. The 

number of times a donor is used is limited, depending on the donor’s sample weight 

(Research Triangle Institute, 2012). Thus, predictors were carefully selected for 

each individual variable to be imputed. Even though SRMI can incorporate all the 

target variables to be imputed and all the potential predictors into one model 

specification, which is desirable for congeniality purpose (Meng, 1994), and run 

through the imputation smoothly, the different analyses and evaluations showed 

that, without carefully choosing the predictors, the performance of SRMI could be 

poor in terms of bias and coverage rate for estimation of population quantity (e.g., 

percentage). Even with the same set of carefully chosen predictors, WSHD still out-

performed SRMI in terms of estimation of percentages for categorical data. This 

evaluation focused on percentage estimation of those variables because that’s the 
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focus of potential analyses. Different conclusions maybe drawn if the parameters 

of interest are associations (e.g., correlation coefficients). 

Given that the respondents with the eight variables missing were all from the 

Diet survey first group, potential mode (group) effects on the responses to the eight 

items may impact the imputation of the FLASHE data. However, because 

respondents were randomly split into either receiving the Diet survey first or the 

Physical Activity Survey first groups, with the exception of the 500 all-male sample 

that was assigned to the Diet survey first group (due to late delivery of the sampling 

frame), it was expected that mode effect would be ignorable. To confirm this a 

mode effect analysis was performed on 22 variables appearing under the same 

section as those eight variables in the Parent Physical Activity Questionnaire 

(National Cancer Institute, 2015). The distributions of the 22 variables in the two 

groups were compared and logistic regressions were conducted using group 

indicator as the predictor. No significant model effect was detected for 21 out of 

the 22 variables being studied. For the one variable with mode effect being 

significant, the p-value was just 0.03. Therefore, we didn’t consider model effect 

in the imputation for this paper. 

Generally, imputing missing data has the potential to reduce bias that can 

occur with complete-case analysis and other methods by incorporating predictors 

observed for both complete and incomplete cases in the imputation model. Using 

multiple imputations instead of single imputation reflects the extra uncertainty in 

estimates that is due to imputation. Although there was not clear evidence of such 

bias in these analyses regardless of the unusual mechanism of missingness, there 

was greater efficiency from the imputation by utilizing data on the eight variables 

and other predictors in the imputation models when the WSHD approach was used. 

Even though this is a case study of missing data problem for a specific application, 

the methods applied in this study can extend to other applications as the methods 

have quite general applicability. 
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Appendix 

Table A1. Definition of the parent socio-demographics variables 
 

Socio-demographics variables Categories 

1. Parent age 1: 18-34; 2: 35-44; 3: 45-59; 4: 60+ 
2. Parent gender 1: male; 2: female 

3. Parent highest education level 
1: High school or less; 3: Some college; 4: 4-

year college degree or higher 
4. Parent marital status 1: Married; 2: Other 

5. Parent health status 
1: Excellent; 2: Very good; 3: Good; 4: 

Fair/Poor 

6. Consistency of parent health insurance 
coverage 

1: Currently uninsured or periods of no 
coverage during past 12 months; 2: 

Consistently insured during the past 12 
months 

7. Parent race/ethnicity 
1: Hispanic; 2: Black only; 3: White only; 4: 

Other 
8. Parent nativity 1: Born in the US; 2: Not born in the US 

9. Home ownership 
1: Currently own the home; 2; Not own the 

home 
10: Housing security (How often in the past 12 

months would you say you were worried or 
stressed about having enough money to pay 

for your rent or mortgage? 

1: Never; Almost; 3: Sometimes; 4: Fairly often 
5; Very often 

11: Parent work status 
1: Employed for wages; 2: Self-employed; 3: 

homemaker; 4: Out of 
work/student/retired/Other 

12. Household income 1: $0 to $99,999; 2: $100,000 or more 
13. Language usually spoken at home by 

parents 
1: English only; 2: Not English only 

14. Language used for media (In what 
languages are the TV shows, radio stations or 

newspapers that you usually watch, listen to or 
read?) 

1. Only English; 2: English and/or other 
languages 

15. Parent health literacy (How often do you 
need to have someone help you read written 

material from your doctor or pharmacy?) 
1: Never; 2: sometimes to very often 

16. Number of kids living in home 
1: 1 Kid in home; 2: 2 kids in home; 3: 3 or 

more kids in home 

17. Parent BMI 
1; Under or normal weight (BMI < 25); 2: Over 
weight (25 ≤ BMI < 30); 3: Obesity (BMI ≥ 30) 

18. Adolescent health insurance coverage 
(During the past 12 months, was there any 

time when teen had health care coverage?) 
1: Yes; 2: No 
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