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CHAPTER 1 “ROLE OF INFLAMMATION IN THE PATHOGENESIS OF 

DIABETIC RETINOPATHY” 

 

1.1 Diabetic Retinopathy 

Diabetic retinopathy (DR) is a visually debilitating eye disease that affects 

patients diagnosed with diabetes mellitus (DM). In brief, diabetes is a chronic, 

metabolic disease resulting in high blood glucose levels in the body. As of 2014, 

it was estimated that 387 million people are diabetic worldwide (Update 2014). 

This is expected to increase by 55% in the next 20 years, reaching epidemic 

levels by 2035 (Fig. 1). There are three major types of diabetes: type 1, type 2 

and gestational diabetes.  

Type 1 diabetic mellitus (T1DM) is an autoimmune disease, during which 

the host immune system mistakenly attacks pancreatic beta cells, thus 

rendering them incapable of producing insulin. T1DM is referred to as “insulin-

dependent” associated, in large part, with genetic risk factors. On the other 

hand, multifactorial causes drive type 2 diabetic mellitus (T2DM) which include 

obesity, unhealthy diet, age, and family history resulting in reduced sensitivity 

to insulin among patients. T2DM diabetes is considered “non-insulin-dependent” 

and affects roughly 90% of patients diagnosed with DM [1].  

Diabetic retinopathy is known to be the leading cause of irreversible 

blindness among people of working age in the United States with more than 

10,000 new cases annually [2]. This disease progresses through four stages, 

which feature a number of pathological events associated with the retina. Early 

stage DR is called background or non-proliferative diabetic retinopathy (NPDR);  
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Figure 1. Current and projected cases of diabetes worldwide from 2014 – 

2035. Source: International Diabetes Federation. 
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patients are typically asymptomatic, but retinal blood vessels become damaged 

and begin to leak fluid. NPDR features microaneurysms, retinal hemorrhages 

(flame, dot), hard exudates (cholesterol/fat deposits from vasculature), macular 

ischemia, and macular edema (the most common cause of vision loss in 

diabetes) (www.geteyesmart.org/eyesmart/diseases/diabetic-retinopathy) (Fig. 

2). These latter changes are considered moderate to severe NPDR. Most of the 

time, vision is still not affected with mild NPDR, except in cases where macular 

edema occurs because swelling of the macula interferes with clear vision 

processing. 

Proliferative diabetic retinopathy (PDR) mainly develops as a result of 

retinal ischemia. Once blood vessels begin to close and reduce blood flow, the 

retina tries to compensate through neovascularization. During the advanced 

stages of PDR, blood vessels expand and grow (Fig. 2). These new vessels are 

abnormal however; they are more fragile and can be associated with scar tissue. 

As a result, the new vessels are prone to bleeding into the vitreous and the scar 

tissue can cause the retina to wrinkle or detach. Both of these situations result 

in severe vision loss affecting both central and peripheral vision. In addition, 

neovascularization can result in secondary glaucoma (neovascular glaucoma) 

[3]. 

  Despite the high incidence of DR and its expected increase to epidemic 

levels in the next couple of decades, no existing treatments can significantly 

reverse either early or late stage DR. T1DM typically develop early diagnostic  

http://www.geteyesmart.org/eyesmart/diseases/diabetic-retinopathy
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Figure 2. Fundus images demonstrating the different grades of diabetic 

retinopathy. Abbreviations: PDR, proliferative diabetic retinopathy; NPDR, non-

proliferative diabetic retinopathy; PLM, previous laser marks. Source: El-Bab MF 

et al., Clin Ophthalmol (2012). 
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DR symptoms after roughly five years of onset, advancing into various degrees 

of retinopathy during the subsequent 20 years. In contrast, T2DM patients 

commonly present signs of early stage retinopathy concurrent with the initial 

diagnosis of diabetes, of which 60% will develop progressing degrees of 

retinopathy [4]. Strict control of blood sugar levels still remains the most 

effective approach to slow the onset of DR. As a result, mild or moderate NPDR 

is only monitored, while treatment is reserved for PDR. Current treatment 

options for the later stages include laser surgery and pan-retinal 

photocoagulation (PRP). Laser surgery is typically used to treat macular edema, 

PDR and neovascular glaucoma. PRP is aimed at shrinking new vessels and 

inhibiting further formation. This procedure also helps to reduce the chances for 

vitreous bleeding or retinal detachment. Vitrectomy is performed on patients 

who have had a vitreous hemorrhage; it removes both the blood and scar tissue 

in an effort to restore normal retinal function. The aforementioned procedures 

are invasive and have adverse side effects including reduced color vision, fovea 

damage, and Bruch’s membrane rupture. In light of the role of angiogenesis in 

the DR pathology, ophthalmologists are applying anti-angiogenic medications 

as well [5]. Particularly, anti-VEGF has revolutionized the treatment of diabetic 

macular edema. Ranibizumab currently has FDA approval, while bevacizumab 

is commonly used off-label and FDA approval is pending for afilbercept [6]. 

However, even anti-VEGF treatment has limited therapeutic outcomes as not 

all patients respond and it can cause many devastating complications, as well. 
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These intravitreal injections can result in increased incidence of 

endophthalmitis, intraocular inflammation, elevated intraocular pressure, ocular 

hemorrhage, tractional retinal detachment and age-related macular 

degeneration [7]. Therefore, the development of more effective treatment 

modalities for both early and late stages of DR is of major concern.  

1.2 Pathogenesis of DR 

As stated, patients rarely develop clinical symptoms during early stage DR 

[4]; while the more advanced and complicated progressive stages feature 

hallmarks such as stimulated release of VEGF, retinal edema, retinal 

microaneurysms, capillary nonperfusion and degeneration with 

neovascularization, and dysregulated neural function and structure [8-12]. In 

order to develop effective treatments, it is essential to go beyond the clinical 

manifestations of disease and understand the events associated with the 

development and progression of DR. In fact, it has been through better 

understanding of the biochemical events that take place that led to the 

development of anti-angiogenic treatments. To this end, the current project 

seeks to focus on the role of inflammation in driving the cellular and molecular 

events associated with DR to identify therapeutic points of intervention leading 

to improved disease outcome.  

Extensive research using animal models has allowed for the association of 

clinical symptoms with different pathological events known to occur during the 

development and progression of DR (Fig. 3). Firstly, oxygen metabolism is an  
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Figure 3. Diagrammatic representation of key factors known to be involved in 

DR pathogenesis. Source: Robinson R et al., Disease Models & Mechanisms 

(2012). 
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important component of cellular homeostasis. Under normal physiological 

conditions, low levels of reactive oxygen species (ROS) are produced by the 

mitochondrial electron transport chain – up to 5% of oxygen that enters into this 

reaction [13]. Cytochrome P450, NADPH oxidase and nitric oxide synthases 

also contribute to this normal cellular function. During diabetes however, the 

ROS scavenging system is impaired, resulting in unbalanced, excessive ROS 

levels termed “oxidative stress”. Kowluru and Chan have described possible 

causes such as auto-oxidation of glucose, shifted redox balance, reduced 

glutathione (GSH), and impaired superoxide dismutase (SOD), leading to 

further enhanced ROS production, vascular inflammation, protein/lipoprotein 

oxidation and overall impaired cellular homeostasis [13].  

Protein kinase C (PKC) comprises a family of serine/threonine kinases 

containing a Ca2+ and/or diacylglycerol (DAG) binding domain and takes part 

in various intracellular pathways when phosphorylated and translocated. Under 

a high glucose environment, DAG is up-regulated and then stimulates activation 

of the PKC pathway, which is associated with multiple cardiovascular 

abnormalities in diabetic mellitus. It has been reviewed by Das Evcimen and 

King that the DAG-PKC pathway affects the vascular system in multiple aspects, 

including endothelial permeability, cell growth, angiogenesis, cytokine 

metabolism and leukostasis [14].  

Advanced glycation end products (AGEs) is another pathogenic factor; 

these modified proteins/lipids are up-regulated and accumulated during DR. 
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AGEs contribute to the vasculopathy associated with DR. Regarding 

inflammation, the most important pathway is the receptor for advanced 

glycation end products (RAGE) pathway, in which AGE-modified proteins, such 

as Nε-carboxy-methyl-lysine (CML) interact with the vascular endothelium via 

the RAGE receptor, thus up-regulating NF-κB and its target genes, pro-

inflammatory cytokines such as VEGF and TNF-α [15]. This series of 

pathophysiological alterations will proceed to cross-linking and result in 

activation of cytokines, cellular dysfunction and apoptosis of vascular and 

neuronal cells, which will further destroy healthy retinal microvascular 

endothelial cells and compromise the blood-retinal barrier, ultimately leading to 

vascular permeability. It is important to note that all of the above-mentioned 

pathogenic pathways at least partially contribute to the development of local 

inflammation in the retina, which is the major interest in this series of studies.  

1.3 Inflammation  

Inflammation is, for the most part, a protective host response that includes 

chemotaxis of immune cells and activation of various molecular mediators, such 

as cytokines and chemokines. During this process, both infiltrated immune cells 

(macrophages and PMN) and local residential cells secretes inflammatory 

mediators: chemokines, interferons (IFN), interleukins (IL) and tumor necrosis 

factors (TNF) and further drives progress of inflammation. The activation of the 

endogenous pro-inflammatory cytokine network is counterbalanced by the 

subsequent generation of anti-inflammatory and pro-resolving agents. Despite 
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the beneficial role of pro-inflammatory factors in host defense, their sustained 

production can potentiate chronic inflammation leading to deleterious 

pathological conditions [16, 17]. As a result, inhibition of pro-inflammatory 

mediators by endogenous molecules such as anti-inflammatory molecules and 

specialized pro-resolving mediators (SPM) typically occurs during the normal 

progression of a healthy inflammatory response. If acute inflammation persists, 

sustains and remains unresolved, chronic inflammation will develop. In any 

case, a state of chronic inflammation results in disease pathogenesis. 

Inflammation has been found to be associated with DR as early as the 

1960’s when it was discovered that diabetic patients, who were administered 

salicylates for rheumatoid arthritis, demonstrated a lower incidence of 

retinopathy [18]. However, the immune response and pro-/anti-inflammatory 

mediators have only recently received considerably more attention. Leukostasis, 

which is the excessive influx of leukocytes into the retina leading to obstruction 

of blood vessels and increased blood viscosity, has been found to be classically 

associated with DR. Other evidence implicating the participation of an activated 

inflammatory response includes the upregulation of adhesion molecule ICAM-

1 and its ligand, CD18, located on retinal cells and neutrophils, respectively [19-

22]. In addition, studies have described the involvement of potent pro-

inflammatory markers in the pathology of DR, including NF-κB, iNOS, 

cyclooxygenases, VEGF, IL-1β, TNF-α, Fas, FasL, and complement factors 

[23-39] - all of which contribute to an environment that is characteristic of 
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chronic inflammation. However, roles of anti-inflammation and SPMs in DR 

pathogenesis are still largely unknown. The studies described herein will 

expand the traditional view of DR pathogenesis into the influence of type 1/type 

2 dominant inflammatory responses and SPMs that will be examined using in 

vivo and in vitro approaches, including C57BL/6J (B6) and BALB/cJ (BALB/c) 

mice, residential retinal cell types (retinal endothelial cells and Müller cells) and 

leukocytes (neutrophils/PMN) that are associated with DR pathogenesis.  

The type 1 and type 2 immune response paradigm describes the 

predominance of differentially programmed innate immune activities. Type 

1/type 2 refers to the cytokine and chemokine expression from different kind of 

cell types in local retinal inflammation instead of limiting to traditional polarized 

CD4+ T helper cells. BALB/c (type 2 dominant) and B6 (type 1 dominant) strains 

of mice have been demonstrated to be suitable models in experiments of 

investigating type 1/type 2 immunity [40]. In type 1 responders, inflammatory 

activity tends to be sustained and exacerbated, developing into chronic 

inflammation, if left untreated. While in type 2 responders, the local 

inflammation is less severe and resolves overtime [41]. Using a Pseudomonas 

aeruginosa-induced bacterial keratisis model, previous work in our lab has 

demonstrated benefits of type 2 dominant immune response in BALB/c mice in 

terms of local homeostasis and reconsitution after infection [42, 43]. It has been 

shown using a type 1 diabetic model that, type 1 cytokines are correlated with 

desturction of pancreatic islets, while type 2 cytokines are thought to provide 
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protection [44]. Hence, the current experiments will expand upon what is known 

regarding inflammation in diabetes, the potential influence of a type 1 versus a 

type 2 immune respsone and its featured cytokines in DR. It is expected that by 

studying the anti-inflammatory response and role of SPMs in the diabetic 

mouse model will reveal key intervention points for the treatment of early stage 

diabetic retinopathy.  

1.4 Retinal Endothelial Cells 

REC line retinal capillaries and are responsible for maintaining homeostasis 

of the blood-retinal barrier, with pericytes to structurally support them (Fig. 4). 

To maintain the active retina, the retinal endothelium ensures the nutrient 

requirements and oxygen supply. It also helps to isolate the retina from toxins, 

microorganisms and pro-inflammatory leukocytes [45]. Therefore, the retinal 

endothelium is one of the major components involved in retinal ischemic 

pathology and retinal inflammation associated with DR, as they are the first line 

of residential cells that directly interact with docked and infiltrating immune cells. 

Studies have revealed that retinal capillary cells undergo accelerated apoptosis 

before clinical signs of DR are apparent [46, 47]. During DR, the tight junctions 

among REC are interrupted by high glucose-induced pressure resulting in 

leaking retinal microvasculature [13]. In addition, REC play an essential role 

during neovascularization upon ischemic stimulation, with elevated levels of the 

angiogenic factor, VEGF, identified as a hallmark event [48]. In an experimental 

autoimmune uveitis model, scanning laser ophthalmoscopy has demonstrated  
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Figure 4. Diagram of longitudinal section (A) and cross-section (B) of a retinal 

blood vessel. Source: Mills et al., Cells, 2013. 
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that leukocytes migrate through the retinal microvasculature [49]. During 

inflammation, retinal endothelial cells respond to the extracellular molecules 

secreted by these immune cells. But more importantly, REC contribute to the 

inflammatory response by secreting cytokines themselves. The intraocular 

levels of TNF-α and IL-1β have been shown to be upregulated in patients with 

posterior ocular inflammation [50, 51]. Human REC produce TNF-α and IL-1β, 

as well as IL-6, in response to the presence of extracellular cytokines [52, 53]. 

It also has been demonstrated that human REC are capable of 

immunomodulation through IFNs and toll-like receptors (TLRs) [54]. In addition, 

REC possess enzyme synthesis activity, such as matrix metalloproteinases 

(MMPs) [52], of which MMP-2 and MMP-9 play important roles both in vivo and 

in vitro [55, 56]. In the current research plan, due to the aforementioned 

significance regarding pro-inflammatory, angiogenic and chemotactic roles of 

REC, they will be used as one of the major cell types to study type 1/type 2 

responses during the development of DR.  

1.5 Müller Cells 

Müller cells or Müller glia are one of three resident glial cell types in the 

retina. Müller cells serve as the supporting cells for the neuronal retina. Müller 

cells span the full retinal thickness with the somata located in the inner nuclear 

layer (INL) (Fig. 5). From the somata arise two major trunks; the inner trunk 

projects to other Müller cells and photoreceptors, while the outer trunk extends 

into the vitreous [57]. This close anatomical relationship allows for an intimate  
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Figure 5. Illustration representing the organization of the mature retina. Muller 

glial cell is shown in blue. Source: Belecky-Adams et al., Neural Stem Cells – New 

Perspectives, 2013. 
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physiological regulation among Müller cells, neurons and blood vessels in the 

retina [58, 59]. As a type of neural supporting cell in the retina, Müller cells 

produce signaling proteins for neural survival, growth and differentiation, such 

as brain derived neurotrophic factor (BDNF) [60, 61]. Clinical studies 

concerning fibrovascular membranes have demonstrated high expression 

levels of various pro-inflammatory cytokines by this cell type, including TNF-α, 

VEGF and IL-6 [62, 63]. Moreover, stimulation of β-adrenergic receptors on 

Müller cells leads to decreased levels of TNF-α, IL-1β, iNOS and pro-

inflammatory lipid mediator PGE2 [64]. As TNF-α, IL-1β, NO and PGE2 are all 

important inflammatory mediators upregulated under hyperglycemic conditions, 

these results suggest the involvement of Müller cells during the pathogenesis 

of DR. Müller cells are also associated with the mediation of extracellular matrix 

deposition by producing MMP-2 and MMP-9, regulated with TNF-α [65]. 

However, it remains unclear how Müller cells are influenced under type 1 and 

type 2 immune responses. In light of the aforementioned inflammatory and 

angiogenic effects and its supporting network with REC, this resident retinal cell 

type is another key player in the pathogenesis of DR. 

1.6 Leukostasis and PMN 

Neutrophils are the first leukocytes recruited to inflammatory sites and then 

neutralize invading pathogens by phagocytosis, degranulation and the release 

of neutrophil extracellular traps. [66] In terms of inflammation, PMN react to 

different cytokines, growth factors and bacterial stimulation [67, 68], further 
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expand their lifespan and drive resolution of inflammation by activating adaptive 

immune responses in normal physiological condition. Diabetes results in 

recruitment of inflammatory mediators into the retina. Studies have indicated 

that neutrophils are significantly increased in retinal (and choroidal) vessels 

from diabetic patients and other animal models. [69, 70] 

The notion that inflammation is involved in the pathogenesis of DR is largely 

supported by retinal leukostasis. Furthermore, the static infiltration of 

leukocytes into the retinal vasculature is thought to play a significant role during 

early DR and contributes to vascular leakage, increased permeability of the 

blood-retina barrier and then ischemia followed by angiogenesis. As mentioned, 

ICAM-1 and CD18 expressed by resident retinal cell types and infiltrating 

inflammatory cells, such as neutrophils, were found to be significantly 

upregulated in DR models, further supporting the leukostasis process during 

DR [19-22].  

1.7 Pro-Resolving Lipid Mediators 

Over the last decade, research regarding SPMs has introduced a new 

mechanism of inflammation that suppresses inflammation and promotes 

resolution. Resolution of inflammation is an active process where the class 

switch of pro-inflammatory prostaglandins to SPMs plays an important role in 

resolution of inflammation [71]. Resolvins are a family of protective, pro-

resolving compounds produced by docosahexaenoic acid (DHA) and 

eicosapentaenoic acid (EPA) biosynthetic pathways [72]. Resolvin D1 (RvD1) 
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is converted by 15-lipoxygenase (LOX) and 5-LOX from D-series -3 

polyunsaturated fatty acids and exert their function by binding to G protein-

coupled receptors ALX/formyl peptide receptor 2 (FPR2) and G protein-coupled 

receptor 32 (GPR32) [73]. Resolvin E1 (RvE1) has another G-protein coupled 

receptor ChemR23, and is generated by acetylated COX-2 and 5-LOX. DHA 

can also be converted into neuroprotectin/protectin D1 (NPD1/PD1) via 

lipoxygenase activity. These PUFA-derived lipid mediators exert their anti-

inflammatory function by driving resolution of inflammation, organ protection 

and anti-fibrotic activity, which contributes to their classification as “pro-

resolving” lipid mediators or SPMs. As described, SPMs can be biosynthesized 

by LOX enzymes, which comprise the main pathways for SPM biosynthesis. In 

particular, 15-LOX is largely protective and is a key enzyme for the generation 

of SPMs [74]. Detailed diagram of illustrated lipid mediator pathways are shown 

in Figure 6.  

It has been widely accepted that SPMs exert their anti-inflammatory and 

resolving effect by limiting infiltration of inflammatory cells; RvD1 reduces PMN 

infiltration and increases nonphlogistic phagocytosis of apoptotic PMN [75]. 

LXA4, first discovered to be pre-resolving, provides stop signals for PMN 

infiltration thus limiting the intensity of inflammation [76]. PGD2, along with the 

PGE2, can switch their pathway during acute inflammation and then generate 

enzymes essential for the production of lipoxins in PMN [77]. RvE1 is another 

important regulator of PMN chemotaxis and activation under inflammation in  
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Figure 6. Synthetic pathways of pro-resolving lipid mediators. Source: Serhan, 

C.N. et al., Discovery of specialized pro-resolving mediators marks the dawn of 

resolution physiology and pharmacology. Mol Aspects Med, 2017. 58: p. 1-11 
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vivo [78]. Endogenous PD1/NPD1 has been demonstrated to mediate PMN 

infiltration, while other D-series resolvins can downregulate TNF-α and IL-1β, 

limiting PMN transmigration and activation into inflammatory tissues [72, 79, 

80]. Regarding DR, DHA-rich diet in fish oil was shown to decrease 

complications in diabetic retinopathy by inhibiting retinal microvascular damage, 

downregulating expression of pro-inflammatory molecules IL-1β, IL-6 and 

ICAM-1 [81]. A protective effect of RvD1 against diabetic neovascularization 

has been demonstrated, in part through the suppression of the pro-

inflammatory cytokine TNF-α [82]. In addition, an intermediate metabolite of 

DHA synthesis pathway, 4-HDHA reduced retinal neovascularization [83]. In the 

current studies, we looked at the whether these pathways were involved in the 

pathogenesis of DR.   

1.8 NF-κB  

NF-κB is composed of a family of transcription factors that regulates 

transcription of broad range of genes to control physiological and 

pathophysiological activities, such as inflammation and immune activity, cell 

growth, apoptosis and cancer. It contains 5 subunits - p65 (RelA), RelB, p50, 

p52 and c-Rel, which dimerize before nuclear translocation and trigger 

transcription of target genes. Traditionally, the NF-κB pathway is activated by 

IL-1 receptor (IL-1R), TNF receptor (TNFR) and TLRs, known to be the 

canonical NF-κB pathway. Other relatively newly found activators include 

lymphotoxins, CD40 ligand and B-cell activating factor, which activate the non-
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canonical NF-κB pathway [84]. In the canonical NF-κB pathway, IKKα, IKKβ and 

IKKγ are activated, promoting phosphorylation, ubiquitination and degradation 

of IκBα, which binds to the p65-p50 dimer, isolates it and inhibits its activity in 

the cytosol. Upon release from IκBα, the p65-p50 dimer is phosphorylated and 

translocated into the nucleus, then after recruiting transcription factors such as 

p300/CBP and HDAC, binds to target genes and stimulates their transcription. 

The p65-p50 dimer is well studied and described as the major contributor of 

NF-κB activity [85]. On the other hand, IKKα itself was demonstrated to play 

important role in the non-canonical NF-κB pathway, followed by the activation 

and translocation of RelB-p52 dimer. For the interest in present studies, 

differential phosphorylation of NF-κB p65 in high glucose, pro- versus anti-

inflammatory cytokines and its regulation on pathogenic inflammatory genes 

are explored here.  

In diabetes, NF-κB starts to play an important role from very early stages of 

pathogenesis. In T1DM, NF-κB is activated by IL-1β and induces pancreatic 

beta cells dysfunction and death [86]; in T2DM, NF-κB is constitutively activated 

as a result of the low-grade, chronic inflammatory state [87]. NF-κB plays a 

pivotal role in DR pathogenesis by responding to hyperglycemia/hypoxia 

activated pathways and further activating more pathogenic cascades. First of 

all, ROS is produced by residential cells and inflammatory cells during DR, 

damage DNA and activates NF-κB [88]. AGEs, by activating RAGE receptors, 

interacting with PKC pathway, both activate NF-κB [89, 90]. Next, NF-κB 
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stimulates further transcription of inflammatory mediators that exacerbate DR 

pathogenesis in multiple aspects (Fig. 7): 1) pro-inflammatory cytokines and 

chemokines including IL-1β, TNF-α, interleukin-6 (IL-6), IL-8 and monocyte 

chemotactic protein-1 (MCP-1) [91-95]; 2) inducible nitric oxide synthase (iNOS) 

[96]; 3) cyclooxygenase-2 (COX-2) for the production of pro-inflammatory 

prostaglandins [97]; 4) adhesion molecules ICAM-1 and VCAM-1 [98]; 5) 

apoptotic molecules - Fas and Fas ligand (FasL) [99]. Additionally, NF-κB 

pathway has long been known to play central role in not only directing 

inflammation, but also in terms of reacting to metabolic pathogens [87]. For 

example, IKK kinase was used for treatment target in T2DM [100], which 

features low grade, chronic systemic inflammation. IKKβ activation is also 

implicated in diabetes by regulating insulin signaling and insulin sensitivity [101]. 

1.9 Ischemia/Reperfusion 

Ischemia/reperfusion (I/R) injury, also known as reperfusion injury, is a 

tissue damaging process that is caused by reperfusion of the blood supply into 

previously ischemic tissue. During this process, instead of recovering to normal 

physiological conditions, restoration of the blood supply induces oxidative 

stress, thus resulting in inflammation [102]. Cardiovascular system dysfunction, 

stroke and thrombotic damage can take place at the beginning stage of 

ischemia [103, 104], creating an aerobic local environment. The maximum time 

length each tissue could survive from ischemic damage varies and can result 

in necrosis [105], yet restoration of blood supply usually removes ischemic  
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Figure 7. Pivotal regulatory role of NF-κB in pathogenesis of DR. 
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damage and instead, promotes free radical-induced reperfusion damage [106]. 

It is hypothesized that absence of oxygen during the ischemic stage leads to 

production of various intermediates, which are converted to tissue-damaging 

free radicals during oxygen resupply [107, 108]. The oxygen radicals activate 

different pathogenic cascades that evoke the inflammatory response. 

Production of IL-8 and adhesion molecules promote docking and invasion of 

inflammatory cells, most importantly neutrophils and macrophages. As a result, 

local inflammation in I/R tissues is exacerbated, causing further 

pathophysiological responses and tissue damage.  

During DR, apoptosis of pericytes and REC, disruption of tight junctions, 

and breakdown of the blood-retinal barrier results in microvascular leakage, 

creating an ischemic condition [109]. This induces production of pathogenic 

molecules such as oxygen radicals [110], hypoxia inducible factor-1 (HIF-1) [111] 

and cytokines/chemokines. Earlier studies have demonstrated that retinal 

ischemia/reperfusion leads to microvascular damage that is similar to what is 

observed in DR and glaucoma [112]. Moreover, free radicals were also found 

to promote neurodegeneration in retinal I/R [113]. Thus, I/R surgery is suitable 

to mimic neurodegeneration, microvascular leakage and inflammation in DR, 

which have been demonstrated in different studies [112, 114]. To this end, I/R 

is used to mimic DR-like changes in a short time frame in order to investigate 

our type 1/type 2 immune response paradigm.  
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CHAPTER 2 “VIP PROTECTS PRIMARY HUMAN RETINAL 

MICROVASCULAR ENDOTHELIAL CELLS AGAINST 

HYPERGLYCEMIA-INDUCED INCREASES IN TNF-α AND 

ENHANCES PRO-RESOLVING RVD1” 

 

2.1 Abstract 

The purpose of our study was to evaluate the therapeutic effect of VIP on 

human retinal endothelial cells (HREC) under high glucose conditions. Diabetes 

affects almost 250 million people worldwide. Over 40% of diabetics are 

expected to develop diabetic retinopathy, which remains the leading cause of 

visual impairment/blindness. Currently, treatment is limited to late stages of 

retinopathy with no options available for early stages. To this end, the purpose 

of the current study is to evaluate the therapeutic effect of vasoactive intestinal 

peptide (VIP) on HREC under high glucose conditions. Primary HREC were 

cultured in normal (5mM) or high (25mM) glucose medium +/- VIP treatment. 

Protein levels of TNF-α, resolvin D1 (RvD1), formyl peptide receptor 2 (FPR2), 

G protein-coupled receptor 32 (GPR32), VEGF, and VIP receptors, VPAC1 and 

VPAC2 were measured. High glucose-induced changes in TNF-α and RvD1 

were restored to control levels with VIP treatment. RvD1 receptors, ALX/FPR2 

and GPR32, were partially rescued with VIP treatment. VPAC2 expression 

appeared to be the major receptor involved in VIP signaling in HREC, as 

VPAC1 receptor was not detected. In addition, VIP did not induce HREC 

secretion of VEGF under high glucose conditions. Our results demonstrate that 

VIP's therapeutic effect on HREC, occurs in part, through the balance between 

the pro-inflammatory cytokine, TNF-α, and the pro-resolving mediator, RvD1. 
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Although VPAC1 is considered the major VIP receptor, VPAC2 is 

predominantly expressed on HREC under both normal and high glucose 

conditions. 

2.2 Introduction 

Diabetic retinopathy (DR) continues as the leading cause of irreversible 

blindness in the United States resulting in over 10,000 new cases annually [2]. 

With both type 1 and type 2 diabetics at risk, over 40% of all adult diabetic 

patients are expected to develop this visually debilitating disease. Despite the 

fact that diabetes is projected to reach epidemic levels by 2030, there remains 

no available treatment for early stage DR, save for maintaining glycemic control. 

Hallmark features of DR are of both vascular and neural natures, including 

leukocyte adhesion to retinal vasculature, vascular occlusions, endothelial cell 

damage and pericyte and photoreceptor loss with underlying degenerative and 

inflammatory changes [115]. Inflammation has been linked to DR as early as 

the 1960’s when it was found that diabetic patients, who were administered 

salicylates for rheumatoid arthritis, demonstrated a lower incidence of 

retinopathy [116]. However, only more recently has the inflammatory response 

come to the forefront as a major contributing factor to the development and 

progression of DR. 

TNF-α is a well-characterized cytokine known to play a role in a wide 

spectrum of biological activities, predominately pro-inflammatory in nature. It 

has been reported that TNF-α levels are increased in retinas of both type 1 and 
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type 2 diabetic rodents, as well as during the development of DR [37]. It has 

been indicated as a major cytokine involved in driving leukocyte adhesion. 

Furthermore, it has been shown that this molecule induces endothelial and 

pericyte cell injury and apoptotic cell death [115]; key events in the progression 

of DR.  

In contrast, resolvins are a family of protective, pro-resolving compounds 

produced by docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) 

biosynthetic pathways [72]. RvD1 is derived from D-series -3 polyunsaturated 

fatty acids and binds to G protein-coupled receptors ALX/FPR2 and GPR32 [73], 

leading to reduced polymorphonuclear leukocytes (PMN) infiltration and 

increased nonphlogistic phagocytosis of apoptotic PMN [75]. A protective effect 

of RvD1 against diabetic neovascularization has been demonstrated, in part 

through the suppression of the pro-inflammatory cytokine TNF-α [82].  

VIP is an endogenous immunoregulatory neuropeptide synthesized by 

neurons throughout the central and peripheral nervous systems, in addition to 

immune cells [117]. Focusing on the retina, VIP immunoreactivity has been 

detected in amacrine cells and other interneurons of the inner nuclear layer (INL) 

and inner plexiform layer (IPL) [118, 119]. The immunoregulatory activities of 

VIP are mediated predominately by two G protein-coupled receptors, 

VPAC1/VIPR1 and VPAC2/VIPR2. VPAC1 is constitutively expressed in 

lymphocytes, macrophages, dendritic cells, microglia, monocytes and mast 

cells, whereas VPAC2 is thought to require activation [120]. VPAC1 serves as 
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the major immunoregulatory receptor for VIP in various immune cells, while 

VPAC2 is thought to play a role in immune homeostasis and tissue restoration 

[121, 122]. 

Recent studies have reported decreased expression of VIP and both 

VPAC1/VPAC2 receptors in the retina during early stage DR [121, 123]. 

Moreover, in diabetic macular edema, activation of the protective VIP/PACAP 

pathway has been shown to prevent the breakdown of the outer blood retinal 

barrier by mediating tight junction integrity [124]. However, the modulatory 

mechanism and potential therapeutic effect of VIP during the development of 

DR is largely unknown. The current study seeks to demonstrate a potential pro-

resolving role for VIP during DR by preliminarily investigating its interaction with 

TNF-α and RvD1 in HREC under high glucose conditions.  

2.3 Materials and Methods 

Retinal Endothelial Cell Culture 

Primary HREC were acquired from Cell System Corporation (CSC, Kirkland, 

WA). Cells were grown in M131 medium containing microvascular growth 

supplements (MVGS; Invitrogen, Carlsbad, CA), 10 mg/mL gentamycin, and 

0.25 mg/mL amphotericin B. All primary cells were used within six passages. 

Prior to experimentation, cells were transferred for three days to high (25 mM) 

or normal (5 mM) glucose medium (M131 medium supplemented with glucose) 

with MVGS and antibiotics, then quiesced by removing MVGS for 24h. Cells 

were exposed to VIP (10-9 M) for 4h [125-127], followed by rinsing with cold 
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PBS and collection into lysis buffer containing protease and phosphatase 

inhibitors. Cellular extracts were prepared by sonication, and total protein 

concentration was determined for analyses as described below.  

To evaluate whether VIP acts directly via VPAC2 and/or ALX/FPR2 

regarding TNF-α levels, cells were treated with the VIP receptor antagonist, [D-

p-Cl-Phe6,Leu17]-VIP (Leu) (VPAC antagonist; R&D Systems, Minneapolis, MN) 

or a selective antagonist of ALX/FPR2 signaling, WRW4 (Tocris, Pittsburg, PA). 

Cells cultured under normal and high glucose conditions were exposed to VIP 

(10-9 M) in the presence of each antagonist (VPAC antagonist at 2M or WRW4 

at 1M) for 4h, then processed for protein analyses as described above. 

Previously, high osmolar conditions have been included as an additional 

control to determine whether the observed in vitro effects were a result of high 

glucose treatment or increased osmolarity of the treatment media [128]. Since 

it has been established that no differences were observed between high 

osmolarity and normal glucose, this control was omitted from the current study. 

ELISA 

Protein levels for TNF-α and RvD1 were determined using ELISA kits 

(Thermo Fisher Scientific, Waltham, MA; Cayman Chemical, Ann Arbor, MI). 

Cells were collected and processed as described above. All samples were 

centrifuged at 5,000 × g for 5 min and an aliquot of each supernatant was 

assayed in duplicate or triplicate per the manufacturer’s instruction. Equal 

protein was loaded into all wells.  The reported sensitivities of these assays 
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are as follows: <2.0 pg/mL for TNF-α and 3.3 pg/mL for RvD1. 

Western Blotting 

Proteins were separated on 4–12% tris-glycine gels (Invitrogen, Carlsbad, 

CA) and transferred to nitrocellulose membranes. After blocking membranes in 

TBST (10 mM Tris-HCl buffer, pH 8.0, 150 mM NaCl, 0.1% Tween 20) and 5% 

(w/v) BSA at r.t. for 60 min, membranes were incubated overnight at 4⁰C with 

antigen-specific primary antibodies. The primary antibodies were used as 

follows: GPR32, ALX/FPR2 and VEGF (Abcam, San Francisco, CA); VPAC1 

and VPAC2 (Santa Cruz, Santa Cruz, CA). Blots were then incubated with 

species-specific HRP-conjugated secondary antibodies for 2 h at r.t. Proteins 

were visualized by incubation with a chemiluminescence substrate kit (Thermo 

Fisher Scientific, Waltham, MA). Western blot images were collected (Azure 

Biosystem C500, Dublin, CA) and target protein expression was quantified 

(Image Studio Lite software) after normalizing to β-actin. One representative 

blot is shown. Treatment groups were normalized to β-actin levels and then 

compared to normal glucose, which was normalized to 1.0. 

Statistical analysis 

All assays were carried out at least twice from two independent experiments 

and the data are presented as mean + SEM. Data were analyzed by the 

Kruskal-Wallis test, followed by Dunn’s testing. P < 0.05 was considered to be 

statistically significant. 

2.4 Results 
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VIP reduced levels of high glucose-induced TNF-α 

Changes in TNF-α protein levels were assessed under high glucose 

conditions and after VIP treatment, as shown in Figure 8. As expected, TNF-α 

protein levels were significantly increased by HREC under high glucose 

compared to normal glucose conditions (control). This effect was abrogated 

with VIP treatment, whereby TNF-α levels were similar to controls. No 

significant effect was observed with VIP treatment in cells cultured in normal 

glucose. 

Effect of VIP on pro-resolving mediators 

Our previous research has demonstrated VIP’s therapeutic effect to be both 

anti-inflammatory and pro-resolving [42, 127, 129, 130]. As such, we next 

addressed a potential mechanism by which VIP might mediate these pro-

resolving effects by looking at RvD1 and corresponding receptors, ALX/FPR2 

and GPR32. As illustrated in Figure 9A, RvD1 protein levels were significantly 

reduced in high glucose versus normal glucose conditions. However, levels 

were increased with VIP treatment in high glucose. No notable changes were 

observed in HREC after VIP treatment under normal conditions.  

In addition, RvD1 receptors ALX/FPR2 and GPR32 were significantly down-

regulated (approximately 50% and 40%, respectively) after high glucose 

exposure compared to normal glucose controls (Fig. 9B and 9C, respectively), 

which is consistent with the changes observed in their ligand, RvD1. Further, 

VIP treatment enhanced protein levels of both receptors, albeit only GPR32 
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was significantly increased (28%) over high glucose only. ALX/FPR2 and 

GPR32 levels after VIP treatment of normoglycemic cells remained comparable 

to controls.  

VIP receptor expression by HREC 

As the two predominant receptors of VIP, levels of VPAC1 and VPAC2 were 

evaluated in HREC. Although described as the major VIP receptor on most cell 

types [120], VPAC1 was not detected in HREC in either normal or high glucose. 

In contrast, VPAC2 was constitutively expressed under both high and normal 

glucose conditions (Fig. 10). However, VPAC2 protein levels were significantly 

reduced in high glucose versus normal glucose conditions, despite VIP 

treatment. 

VIP-induced effects are carried out by VPAC2 receptors  

Despite that VPAC2 was predominantly expressed on HREC, we next 

confirmed whether the VIP-induced changes in TNF-α levels were directly 

mediated by this receptor. To do so, HREC were cultured under high glucose 

conditions, then exposed to a receptor antagonist for either ALX/FPR2 (WRW4) 

or VPAC2 (Leu) prior to VIP treatment. As shown in Figure 11, results indicate 

that VIP-induced down-regulation of TNF-α was abrogated in the presence of 

the VPAC antagonist, but not the ALX/FPR2 antagonist. In fact, TNF-α levels 

from HREC cultured in HG+VIP+Leu were comparable to HG only and 

significantly higher than NG, NG+VIP and HG+VIP. While the ALX/FPR2 

antgonist, WRW4, did result in a slight increase in TNF-α levels compared to 
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HG+VIP, the difference was not significant.  

VEGF levels are not affected by VIP treatment 

Considerable clinical effort has been put forth to inhibit VEGF, as it is well 

known to cause retinal permeability and neovascularization in diabetes. As VIP 

was previously reported to enhance growth factor production [130], we 

investigated VEGF protein levels after VIP treatment under both normal and 

high glucose conditions to evaluate this potential side effect. As depicted in 

Figure 12, VIP treatment did not have any effect on VEGF levels under normal 

glucose conditions. Remarkably, high glucose-induced VEGF levels, however, 

were significantly reduced after VIP treatment.  

2.5 Discussion 

Studies have indicated TNF-α is an important mediator of the retinal 

pathology observed under hyperglycemic conditions, including leukocyte 

adherence in retinal blood vessels [131], retinal endothelial cell apoptosis [132], 

pericyte loss and capillary degeneration [133, 134] and vascular permeability 

and leukostasis [135]. It has been previously shown by Jiang et al. that TNF-α 

levels are increased in HREC cultured under hyperglycemic conditions [132]. 

Therefore, as an initial step towards characterizing the retino-protective effects 

of VIP during DR, we examined whether VIP can regulate levels of this potent 

pro-inflammatory cytokine. As expected, high glucose significantly induced 

TNF-α expression in HREC, suggesting its involvement in the diabetic 

inflammatory response. VIP abrogated this effect, thus returning TNF-α to 
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control levels. This anti-inflammatory effect of VIP has been reported in other 

diabetic systems; as VIP was shown to inhibit TNF-α induced apoptosis in 

acinar cells isolated from submandibular glands of non-obese diabetic mice 

with salivary dysfunction through functional VPAC1 receptors coupled to the 

protein kinase A signaling pathway [136]. The current study suggests that VIP, 

as an alternate treatment against DR, may effectively ameliorate the initial pro-

inflammatory cytokine release observed in vivo; however this effect appears to 

be VPAC1-independent and associated with the pro-resolving molecule, RvD1.  

The balance between TNF-α and RvD1 appears to be an important factor 

in disease pathogenesis. Previous research also indicates that TNF-α can 

suppress RvD1 expression [82]. Using a uveitis model, topical ocular 

application of RvD1 was shown to reduce levels of TNF-α resulting in 

improved disease outcome [137]. Likewise, in a diabetic mouse model, RvD1 

expression was enhanced with the reduction of TNF-α following entanercept 

treatment, leading to a reduction of pathological retinal angiogenesis [82]. This 

resolvin has been demonstrated to reduce angiogenesis and protect against 

retinopathy [82]. Therefore, we next sought RvD1 as a potential mechanism by 

which VIP might mediate its pro-resolving effects. To this end, the current study 

showed that high glucose conditions decreased RvD1 levels in HREC. More 

importantly, VIP treatment effectively up-regulated RvD1 production after high 

glucose exposure similar to observed normal glucose levels. In addition, high 

glucose-induced reduction of ALX/FPR2 and GPR32 was partially rescued after 
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VIP treatment. Both of these RvD1 receptors are important in carrying out the 

resolution of acute inflammation by mediating PMN recruitment [138], and 

promoting D1-miRNA circuits [138]. These data support the idea that VIP’s pro-

resolving effects are carried out, at least in part, via lipid mediator circuits. 

Further, the inverse relationship between TNF-α and RvD1 enhance the 

efficacy of VIP as a potential therapeutic.  

Although VPAC1 is broadly expressed on different cell types, most notably 

immune cells [120], and has received considerable attention for its anti-

inflammatory effects, it was not detected in HREC. VPAC1 has been detected 

in rat brain microvascular endothelial cells [139], as well as transformed murine 

endothelial cells derived from heart (H5V) [140], indicating that a lack of VPAC1 

detection could be unique to retinal endothelial cells. In contrast, VPAC2 

appeared to be constitutively expressed under normal glucose conditions, yet 

decreased after exposure to high glucose. We have previously shown in a 

bacterial keratitis model that VPAC2 is more strongly correlated with tissue 

homeostasis and disease resolution [129]. Regarding diabetes, Ma et al. have 

indicated that VPAC2 activation leads to improved glucose and lipid metabolism, 

while increasing insulin sensitivity in db/db mice [141]. In the current study, we 

demonstrate that VPAC2, not VPAC1, is expressed by HREC, thus suggesting 

a potential mechanism by which VIP treatment could ameliorate disease 

progression of DR. Although VIP treatment was not able to rescue high glucose-

induced down-regulation of VPAC2, it is possible that this receptor could be 
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associated with RvD1 expression/activation. In this regard, VIP-induced 

changes in TNF-α levels were abrogated by a VPAC antagonist. These findings 

support the notion that the observed VIP-mediated effects regarding this pro-

inflammatory mediator are carried out primarily both of this receptor pathway, 

which will be further explored in future in vivo studies.  

In light of our previous research highlighting VIP’s ability to enhance growth 

factor expression during corneal wound healing and reconstitution of the 

extracellular matrix [42], we next determined whether this neuropeptide 

increases VEGF levels. VEGF has been implicated as a major causative factor 

in diabetic macular edema, retinal neovascularization and related complications 

[142]. Remarkably, HREC expression of VEGF was significantly downregulated 

in high glucose with VIP treatment compared to high glucose only. Similar to 

the cornea, which must remain clear for accurate visual processing, VIP 

treatment does not appear to induce angiogenesis via VEGF expression. These 

findings are essential in moving forward with investigating VIP as an alternative 

therapy for DR. 

Overall, the current study reports the expression of VPAC2, but not VPAC1, 

on retinal endothelial cells. Additionally, it indicates a novel regulatory role for 

VIP over RvD1 levels. Taken together, these findings provide rationale to further 

explore the therapeutic potential of VIP in the development and progression of 

DR. This neuropeptide not only reduced anti-inflammatory mediators, but is tied 

to important lipid mediator circuits, as well. In addition, these data suggest that 
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VPAC2 (not VPAC1) and ALX/FPR2 are the major receptors involved in VIP 

signaling in HREC.  
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Figure 8. TNF-α protein levels as detected by ELISA. HREC were cultured under 

normal glucose (NG, 5 mM) and high glucose (HG, 25 mM) conditions +/- VIP 

treatment (10-9 M) for 4 hours. Data shown are representative of two independent 

experiments in duplicate and are expressed as mean + SEM. *P < 0.05 vs NG, #P 

< 0.05 vs HG. 
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Figure 9. Protein levels of RvD1 and its receptors in HREC treated with VIP. 

HREC were cultured under normal glucose (NG, 5 mM) and high glucose (HG, 25 

mM) conditions +/- VIP treatment (10-9 M) for 4 hours. Protein levels of RvD1 (A) 

were measured by ELISA and its receptors ALX/FPR2 (B) and GPR32 (C) were 

detected by Western blot. Data shown are representative of two independent 

experiments in duplicate and are expressed as mean + SEM. *P < 0.05 vs NG, #P 

< 0.05 vs HG. 
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Figure 10. VPAC2 receptor levels. HREC were cultured under normal glucose 

(NG, 5 mM) and high glucose (HG, 25 mM) conditions +/- VIP treatment (10-9 M) 

for 4 hours. Protein levels of VPAC2 were examined by Western blot. Data shown 

are representative of two independent experiments in duplicate and are expressed 

as mean + SEM. *P < 0.05 vs NG, #P < 0.05 vs HG. 
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Figure 11. TNF-α protein levels as detected by ELISA. HREC were cultured 

under normal glucose (NG, 5 mM) and high glucose (HG, 25 mM) conditions +/- 

ALX/FPR2 antagonist (WRW4) or VPAC antagonist (Leu) +/- VIP treatment (10-9 

M). Data shown are representative of two independent experiments in duplicate 

and are expressed as mean + SEM. *P < 0.05 vs NG, #P < 0.05 vs HG. 
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Figure 12. Protein levels of VEGF as detected by Western blot. HREC were 

cultured under normal glucose (NG, 5 mM) and high glucose (HG, 25 mM) 

conditions +/- VIP treatment (10-9 M) for 4 hours. Data shown are representative of 

two independent experiments in duplicate and are expressed as mean + SEM. *P 

< 0.05 vs NG, #P < 0.05 vs HG. 
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CHAPTER 3 “A REGULATORY ROLE FOR β-ADRENERGIC 

RECEPTORS REGARDING THE RESOLVIN D1 (RvD1) PATHWAY IN 

THE DIABETIC RETINA” 

 

3.1 Abstract 

Diabetic retinopathy is a visually debilitating disease with limited treatment 

options available. Compound 49b, a β-adrenergic receptor agonist, has been 

demonstrated to effectively reduce disease pathogenesis associated with 

diabetic retinopathy. While the exact mechanisms are not fully understood, 

previous studies have determined that it reduces the pro-inflammatory cytokine, 

TNF-α, and inhibits apoptosis of the retinal microvasculature. As inflammation 

becomes more recognized in driving disease pathogenesis, so does the 

regulation by pro-resolving pathways as therapeutic points of intervention. The 

current study sought to explore whether Compound 49b had any influence on 

pro-resolving pathways, thus contributing to improved disease outcome. Using 

in vivo (animal model of type 1 diabetes) and in vitro (retinal endothelial cells, 

Müller cells, neutrophils/PMN) techniques, it was determined that high glucose 

lowers pro-resolving lipid mediator, resolvin D1 (RvD1) levels and differentially 

alters required enzymes, 5-lipoxygenase (5-LOX), 15-LOX-1 and 15-LOX-2. 

RvD1 receptors formyl peptide receptor 2 (ALX/FPR2) and G-protein coupled 

receptor 32 (GPR32) were also downregulated in response to hyperglycemic 

conditions. Moreover, it was observed that β-adrenergic receptor activation 

restored high glucose-induced decreases in both enzyme activity and RvD1 

levels observed in vivo and in vitro. The current study is the first to describe a 
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regulatory role for β-adrenergic receptors on pro-resolving pathways. 

3.2 Introduction 

Roughly 10% of Americans were diagnosed with diabetes in 2012 (National 

Diabetes Statistics Report, 2014). Given that nearly 60% of diabetic patients 

will develop some complications related to diabetic retinopathy, generation of 

novel therapies is of paramount importance. While it is clear that the retinal 

response to high glucose is multifactorial, including oxidative stress, vascular 

endothelial cell growth factor (VEGF), protein kinase C, inflammatory mediators, 

endoplasmic reticulum stress, and epigenetic changes, therapies to prevent or 

delay progression of diabetic retinopathy continue to elude scientists. It has 

been previously reported that docosahexaenoic acid (DHA) is abundant in the 

retina [143]. This omega-3 fatty acid has recently been linked to the activation 

of a number of enzymes and proteins reported to be anti-inflammatory, as well 

as protective to tissues [144, 145]. Among them includes resolvin D1 (RvD1), a 

D-series resolvin [72, 146], which has been shown to display potent anti-

inflammatory activity and control the inflammation-resolution balance in host 

defense. Hypoxia was one of the early signals found to stimulate the production 

of pro-resolving mediators, such as RvD1 and RvE1, as demonstrated in 

hypoxic endothelial cells [72]. Work in the oxygen-induced retinopathy (OIR) 

model of proliferative retinopathy has suggested that RvD1 is protective within 

the retina, which was correlated with reduced TNF-α levels [82]. Furthermore, 

4-hydroxy-docosahexaenoic acid (4-HDHA), an intermediate metabolite of DHA 
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through 5-lipoxygenase (5-LOX) activity, also reduced retinal 

neovascularization [83]. This response was subsequently blocked when 5-LOX 

was eliminated [83].   

In order to generate RvD1, DHA is metabolized by both 5- and 15-LOX [72] 

[146], which selectively interacts with receptors ALX/FPR2 and GPR32 [147]. 

Using the streptozotocin model of type 1 diabetes, it was found that loss of 5-

LOX (a key lipid mediator enzyme) resulted in reduced vascular damage, 

oxidative stress, and leukostasis [148]. Work in db/db mice has revealed that 

local application of RvD1 accelerated wound closure and decreased apoptotic 

cell accumulation [149]. Further studies using db/db mice revealed that RvD1 

treatment was protective against development of type 2 diabetes [150]. 

Additionally, studies in HepG2 cells demonstrated that RvD1 attenuated 

endoplasmic reticulum stress-induced apoptosis in a model of non-alcoholic 

fatty liver disease [151]. Taken together, data from multiple tissues suggest that 

the pathological markers associated with diabetes lead to a significant reduction 

in resolvins, which may further contribute to exacerbated retinal damage.   

We have previously reported that Compound 49b, a -adrenergic receptor 

agonist, demonstrates both anti-apoptotic and anti-inflammatory properties in 

the diabetic retina and in retinal cells under hyperglycemic conditions [152]. For 

that reason, we questioned whether -adrenergic receptor signaling may 

regulate lipoxygenase enzyme expression and resultant RvD1 production, 

particularly in two resident retinal cell types, REC and Müller cells. 



- 46 - 
 

 
 

Polymorphonuclear leukocytes (PMN) were examined as well, in light of 

increased leukostasis and the mounting pathogenic role of inflammatory cells 

during the development of diabetic retinopathy. There is little on the role of -

adrenergic receptor regulation of lipid mediators in the eye. In vitro studies have 

demonstrated that protein kinase A (PKA) can phosphorylate 5-LOX in PMN 

[153]. In contrast, work in human airway endothelial cells suggests that 15-LOX-

1 can decrease 2-adrenergic receptor phosphorylation, leading to decreased 

cAMP levels [154]. Additionally, mouse models of Alzheimer’s disease have 

shown that norepinephrine induces expression of formyl peptide receptor 2 

(ALX/FPR2) [155], which is one of two known receptors for RvD1 [73, 156]. 

Thus, the potential regulatory role for -adrenergic receptor signaling on RvD1 

or lipoxygenase enzymes in a diabetic retinopathy model remains unknown.   

We have previously reported that Compound 49b can reduce TNF-, as 

well as SOCS3, under hyperglycemic conditions [152, 157]. Therefore, we 

hypothesized that diabetes or high glucose culturing conditions would decrease 

enzymatic levels of 15-LOX and downstream production of RvD1, which could 

be ameliorated by Compound 49b. Indeed, we found that high glucose and 

diabetic conditions significantly decreased 15-LOX, as well as RvD1 levels. In 

addition, lipoxygenase enzymes and RvD1 were increased following 

Compound 49b treatment. 

3.3 Experimental procedures 

Animals 
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All mouse experiments were approved by the Institutional Animal Care and Use 

Committee at Wayne State University (Protocol# 11-08-14). C57BL/6J wildtype 

mice were purchased from Charles River Laboratories. Mice were made 

diabetic by injections of 60 mg/kg of streptozotocin dissolved in citrate buffer for 

5 consecutive days. Control mice received citrate buffer only. Glucose 

measurements were done weekly, with glucose levels >250 mg/dL considered 

diabetic. At 2 months of diabetes, 10 control and 10 diabetic mice received 

Compound 49b (4μL containing 1 mM) (formulated by Dr. Duane Miller, 

University of Tennessee Health Science Center, Memphis TN, in collaboration 

with Dr. Jena Steinle) topically onto each eye for 14 days. After 14 days of 

Compound 49b treatment, all mice were sacrificed and analyzed as described 

below.   

Retinal endothelial cell culture 

Primary human retinal microvascular endothelial cells (REC) were acquired 

from Cell System Corporation (CSC, Kirkland, Washington). Cells were grown 

in M131 medium containing microvascular growth supplements (Invitrogen), 10  

g/mL gentamycin, and 0.25 g/mL amphotericin B. Prior to the experiment, 

cells were transferred to high (25 mM) or normal (5 mM) glucose medium (M131 

medium with added glucose), supplemented with MVGS and antibiotics for 3 

days. Only primary cells within passage 6 were used. Cells were quiesced by 

incubating in high or normal glucose medium without MVGS for 24 hr. 

Compound 49b treatment was then added at 50 nM for 24 hours, as done 
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previously [152]. 

Müller cell (rMC-1) culture 

Müller cells (rMC-1; kindly provided by Dr. Vijay Sarthy at Northwestern 

University) were thawed and cultured in DMEM medium under normal glucose 

(5mM) conditions. Medium was supplemented with 10% FBS and antibiotics. 

Once cells reached ~ 80% confluency, they were passed into dishes containing 

either high (25 mM) or normal glucose medium. Once ready for experimentation, 

cells were moved to the appropriate medium without FBS to induce serum 

starvation for 18-24 hours. Compound 49b was then applied at 50 nM for 24 

hours prior to cell collection.  

PMN isolation 

Peritoneal PMN from C57BL/6 mice were harvested as previously 

described [158]. In brief, mice received an intraperitoneal (IP) injection (1.0 mL) 

of a 9% casein solution (Difco, Detroit, MI) administered 27 hours prior to cell 

harvest, followed by a second injection 24 hours later. Cells were collected by 

peritoneal lavage 3 hours after the second injection, washed 3× (200 ×g, 10 

min), and then isolated using a Percoll gradient (100,000 ×g, 20 min). Cell 

viability (>95%) and purity (>90%) were determined. Cells were resuspended 

in media (RPMI 1640 supplemented with 3% FCS and antibiotics) containing 

either normal glucose (5 mM) or high glucose (25 mM) for 24 hours (37⁰C, 5% 

CO2). Cells were then exposed to Compound 49b treatment (50 nM) for an 

additional 24 hours, prior to harvest for protein analyses.  
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Cell treatment 

REC were selectively treated with either propranolol, a -adrenergic 

receptor antagonist, or PKA siRNA (Dharmacon, Lafayette, CO). For 

propranolol work, cells were cultured under normal and high glucose conditions, 

and treated with propranolol (50 nM) 30 minutes prior to 49b treatment.  To 

block the PKA pathway, cells were similarly cultured and transfected with PKA 

siRNA at a final concentration of 20 nM as previously described [64] using 

GenMute siRNA transfection kit (SignaGen, Rockville, MD) followed by 49b 

treatment. 

Western blotting 

After appropriate treatments and rinsing with cold phosphate-buffered 

saline, REC, rMC-1 and PMN were collected in lysis buffer containing protease 

and phosphatase inhibitors and scraped into tubes. Retinal extracts were 

prepared by sonication. Equal amounts of protein from the cell or tissue extracts 

were separated on pre-cast tris-glycine gels (Invitrogen, Carlsbad, CA), and 

then blotted onto nitrocellulose membranes. After blocking in TBST (10mM Tris-

HCl buffer, pH 8.0, 150 mM NaCl, 0.1% Tween 20) and 5% (w/v) BSA, 

membranes were treated with the following primary antibodies: 5-LOX, 15-LOX-

1, 15-LOX-2, ALX/FPR2, GPR32 (Abcam, San Francisco, CA) and -actin 

(Santa Cruz, Santa Cruz, CA), followed by incubation with appropriated 

secondary antibodies (Fisher Scientific, Pittsburgh, PA) labeled with 

horseradish peroxidase. Antigen-antibody complexes were detected using a 
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chemilluminescent reagent kit (Thermo Scientific, Pittsburgh, PA). Western blot 

images were collected on an Azure Biosystem C500 machine (Azure 

Biosystems, Dublin, CA) and densitometric analysis was performed. 

ELISA 

RvD1 ELISA kits (Cayman Chemical, Ann Arbor, MI) were used to measure 

RvD1 expression in REC, rMC-1, PMN and retinal lysates. Equal protein 

concentrations were added to all wells. Assay protocol was performed 

according to the manufacturer’s instructions. Cross reactivity of this assay for 

RvD2 and RvE1 is 0.05% and <0.01%, respectively. 

Statistics 

All experiments were repeated in triplicate and data are presented as the 

mean ± SEM. Non-parametric Kruskal-Wallis with Dunn’s post-hoc tests were 

used for the cell culture data. One-way ANOVA with a Student Newman Keul’s 

post-hoc test was done for animal studies using Prism 7.0 software. P<0.05 

was considered significant. Representative blots are shown for all Western blot 

analyses. 

3.4 Results 

Compound 49b significantly increases RvD1 levels and receptors 

ALX/FPR2 and GPR32 in the diabetic retina.  

Since DHA is highly abundant in the retina [143], we determined whether 

RvD1 levels and associated receptors, ALX/FPR2 and GPR32 [73, 156] were 

altered under diabetic conditions (Fig 13A-C). In 2-month diabetic mice, levels 
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of RvD1 (A), ALX/FPR2 (B) and GPR32 (C) were significantly decreased. In 

contrast, Compound 49b treatment significantly enhanced expression of all 

three proteins when compared to untreated diabetic mice. These results 

suggest that Compound 49b may be protective to the diabetic retina through 

key pro-resolving pathways.  

Compound 49b prevents high glucose-induced decrease in RvD1 and 

associated receptors in REC.  

To determine which cell types may contribute to the observed RvD1 profile 

in the diabetic retina, REC in normal and high glucose were treated with 

Compound 49b. Parallel to the diabetic retina, RvD1 levels were significantly 

decreased in REC exposed to high glucose conditions (Fig 14A). RvD1 

receptors ALX/FPR2 and GPR32 were similarly downregulated with high 

glucose (Fig 14B and 14C, respectively). After treatment with Compound 49b, 

RvD1, ALX/FPR2, and GPR32 levels were significantly upregulated in REC, 

despite hyperglycemic conditions, to levels similarly observed with normal 

glucose. 

Compound 49b results in differential expression of lipoxygenase enzymes 

in REC.  

5-LOX, 15-LOX-1 and 15-LOX-2 enzymes were significantly increased in 

REC cultured in high glucose (Fig 15A-C). When REC grown in high glucose 

were treated with Compound 49b, 5-LOX enzyme expression returned to levels 

observed in normal glucose (Fig 3A), with further enhanced expression of 15-
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LOX-1 and 15-LOX-2 (Fig 15B and 15C), suggesting that -adrenergic receptor 

signaling may differentially regulate key lipid mediator enzymes in REC. 

Compound 49b did not affect RvD1, ALX/FPR2 or GPR32 in Müller cells.  

Since Müller cells are the primary residential inflammatory cell type in the 

retina, we examined whether they respond likewise to high glucose via changes 

in the D-series resolvin pathway. As illustrated in Fig 16, neither high glucose 

nor Compound 49b altered RvD1 levels in Müller cells (A). Similar responses 

were displayed regarding ALX/FPR2 and GPR32 when compared to REC and 

whole retinal lysates – levels were decreased in Müller cells in response to high 

glucose (Fig 16B and 16C). However, Compound 49b had no apparent effect. 

Compound 49b exhibited limited effects on high glucose-induced changes 

in lipoxygenase enzymes in Müller cells.  

As shown in Fig 17, 5-LOX (A) was significantly upregulated, while 15-LOX-

1 enzyme (B) was downregulated in Müller cells grown in high glucose; no 

differences were observed with 15-LOX-2 (C). Compound 49b effectively 

reduced 5-LOX levels to those similar to control. However, unlike REC and the 

diabetic retina, Compound 49b treatment had no effect on either 15-LOX 

expression in Müller cells cultured in high glucose.  

High glucose conditions decreased RvD1, ALX/FPR2 and GPR32 levels in 

PMN.  

To investigate a systemic immune cell type that may respond to retinal 

damage, isolated murine PMN were exposed to normal and high glucose +/- 
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Compound 49b treatment. Protein levels of RvD1, ALX/FPR2 and GPR32 were 

detected in PMN (Fig 18A-C). Exposure to high glucose resulted in significant 

downregulation of all three molecules. Compound 49b did not appear to affect 

RvD1 or GPR32 – levels remained unchanged under both normal glucose and 

high glucose conditions. However, hyperglycemia-induced decreases in 

ALX/FPR2 were restored after Compound 49b treatment. 

Compound 49b had limited effect on lipoxygenase levels in PMN in high 

glucose.  

High glucose conditions significantly reduced 15-LOX-1 levels in PMN, with 

no effect observed with 5-LOX or 15-LOX-2 (Fig 19A-C). Following Compound 

49b treatment, levels for all three enzymes high glucose remained unchanged. 

These results suggest that systemic immune cells may respond differently to -

adrenergic receptor agents compared to residential retinal cells.   

Compound 49b effects on RvD1 in REC are dependent on -adrenergic 

receptor signaling.  

Compound 49b activity is carried out through -adrenergic receptor 

mediated increases in PKA activity [152]. To determine the specificity of 

Compound 49b’s observed influence on the pro-resolving RvD1 pathway, REC 

were exposed to propranolol, a non-specific -adrenergic receptor antagonist, 

or PKA siRNA in the presence of high glucose and/or Compound 49b. As shown 

in Fig 20A, propranolol abrogated the effects of Compound 49b and resulted in 

RvD1 levels similar to those observed with high glucose alone. Similar effects 
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were seen with PKA siRNA (Fig 20B), whereby RvD1 levels were significantly 

reduced comparable to high glucose alone despite Compound 49b treatment, 

thus further suggesting a -adrenergic receptor signaling pathway-dependent 

effect.  

3.5 Discussion 

Work in the OIR model has suggested that lipid mediators may reduce 

retinal neovascularization, with lipoxygenase enzymes expressed primarily by 

circulating cells [83]. Additionally, it has been demonstrated that RvD1 and 

RvE1, as well as neuroprotectin, are protective in the OIR model, potentially 

through reduced TNF- levels [82]. It is well established that early diabetic 

retinopathy following streptozotocin (STZ) injections leads to increased TNF-α 

levels [8, 115, 152]. Work in diabetic-induced 5-LOX knockout mice 

demonstrated that loss of this key enzyme resulted in reduced degenerate 

capillaries, leukostasis, and NF-κB levels, while reduced leukostasis only was 

observed in diabetic 12/15-LOX knockout mice [148]. Furthermore, work in 

humans has suggested that patients with diabetic retinopathy or diabetic 

macular edema have decreased levels of resolvins and protectins [159]. Thus, 

it appears that diabetes (both proliferative and non-proliferative) may alter 

lipoxygenase levels, as well as resolvin activity. However, the regulation and 

cellular source of these enzymes and resolving pathways is less clear. 

Regarding the former, there are limited and conflicting data regarding the 

potential regulatory role for β-adrenergic receptor signaling in relation to RvD1 
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or lipoxygenase enzymes [153-155]. Based upon these studies, it is likely that 

different cell types and/or systems could potentially activate different signal 

transduction pathways for resolvin production specific to each system. Hence, 

the current study sought to define potential regulatory pathways associated with 

RvD1 expression in the diabetic retina and begin to identify the cellular source(s) 

related to these pathways.  

Compound 49b is a -adrenergic receptor agonist based structurally on 

isoproterenol with chemical modifications to increase its ocular potency for use 

as a topical treatment [152]. It has been previously shown to significantly reduce 

cleaved caspase 3 in the diabetic retina and retinal endothelial cells [152, 160]. 

Moreover, we have demonstrated that hyperglycemia-induced increases in 

TNF-α in REC and Müller cells [157, 161] can be effectively reduced by 

Compound 49b [157, 161]. It has also been found that the protective effect of 

RvD1 against diabetic retinopathy occurs in part through the suppression of 

TNF-α [82]. Therefore, we determined whether Compound 49b could regulate 

lipoxygenase enzymes and resultant RvD1 expression, ultimately contributing 

to the reduction in TNF-α both in vitro (REC and Müller cell culture) and in vivo 

(STZ-induced diabetic retina). We also examined PMN to extend our findings 

to circulating inflammatory cells, given the role of leukostasis during 

development and progression of diabetic retinopathy. Overall, our data indicate 

that high glucose significantly reduces RvD1 and corresponding receptor levels 

in the diabetic retina. Our findings in the STZ-induced diabetic mouse retina are 
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in contrast to findings in the OIR model, where RvD1 levels were not altered 

[83]. The observed differences in RvD1 could be due to glucose-induced 

damage versus oxygen-induced damage. However, ALX/FPR2 and GPR32 

(RvD1 receptors) were also decreased in the diabetic retina. In addition, similar 

results were consistently observed for these same molecules tested in REC 

after exposure to high glucose conditions. Correspondingly, treatment with 

Compound 49b significantly increased RvD1 expression similar to normal 

glucose both in the diabetic retina and in vitro using REC accompanied by 

decreased 5-lipoxygenase and increased 15-lipoxygenase enzyme levels. 

Upon further examination of retinal Müller cells, a slightly different response 

was observed. While high glucose resulted in increased 5-LOX and decreased 

15-LOX, ALX/FPR2 and GPR32 levels, RvD1 remained unchanged. This 

suggests that Müller cells have a different profile in response to high glucose 

than the whole retina or REC, with no change in RvD1 levels, but 

downregulated receptor expression. Similar to REC and diabetic retina; 

however, Compound 49b significantly reduced 5-LOX enzyme levels in Müller 

cells cultured in high glucose, as well as increased ALX/FPR2 levels, 

suggesting a potential regulatory pathway in Müller cells, albeit much less 

responsive. Compound 49b did not affect GPR32 levels, indicating that RvD1 

would most likely signal through ALX/FPR2 in Müller cells and warrants further 

investigation. In the diabetic retina, REC and Müller cells, -adrenergic receptor 

signaling appears to be pro-resolving, at least in part, through actions carried 



- 57 - 
 

 
 

out by RvD1 and ALX/FPR2. However, this needs to be further confirmed using 

ALX/FPR2 antagonists and/or silencing of the PI3K/Akt signaling pathway to 

determine the extent of RvD1/ALX/FPR2 in mediating the protective effects of 

Compound 49b. Further, given the increased 5-LOX enzyme levels, it does not 

rule out the potential role Müller cells may have in producing 5-lipoxygenase-

driven pro-inflammatory lipid mediators, such as leukotrienes.    

When we expanded our work to circulating inflammatory cells (namely PMN) 

that are known to enter the retina during leukostasis, yet a different paradigm 

appeared. Effects of high glucose culturing conditions resulted in decreased 

RvD1, ALX/FPR2 and GPR32 levels; though were limited to decreased 15-

LOX-1 regarding lipoxygenase enzymes. Despite no response of 15-LOX-2 to 

high glucose exposure, these results are not surprising given that 15-LOX-1 is 

highly expressed by circulating leukocytes compared to 15-LOX-2, which is 

thought to be more restricted to tissue expression. And though 5-LOX (and 15-

LOX-2) remain unchanged under high glucose conditions, these results 

suggest that 15-LOX-1 may be the limiting enzyme in the production of RvD1 

within the PMN. Furthermore, while RvD1, 15-LOX-1, ALX/FPR2 and GPR32 

were significantly decreased in high glucose, only ALX/FPR2 was restored 

toward normal glucose levels after Compound 49b treatment. Albeit a limited 

receptor effect, it may have significant implications as RvD1 has been shown 

to potently regulate both human and mouse neutrophils [4] [146].  

These results suggest that although retinal cells appear to lose pro-
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resolving and lipoxygenase enzyme responses in high glucose, restoration 

through stimulation of -adrenergic receptor signaling pathways may occur. As 

such, we next confirmed that the observed effects of Compound 49b in RECs 

were carried out through activation of -adrenergic receptor signaling, as 

indicated using propranolol – a non-specific -adrenergic receptor antagonist. 

In addition, this specificity was further confirmed using PKA siRNA to silence 

the downstream -adrenergic receptor signaling pathway, as both approaches 

resulted in blunted RvD1 expression under high glucose conditions despite 

Compound 49b treatment. In contrast, while circulating PMN are partially 

responsive to high glucose, they did not appear to be influenced by the -

adrenergic receptor agonist. This raises two points as to why PMN alone are 

only partially responsive to high glucose compared to the response of retinal 

cells. One potential explanation for the limited response to high glucose may 

be related to the stimuli. PMN are designed to circulate throughout the body 

and respond to specific damage. The 25mM glucose used in this study may not 

be an appropriate damage stimulus for PMN. Likewise, it is possible that other 

pro-inflammatory signals released from retinal cells or cell-cell contact with REC 

may be required to elicit a more robust response from neutrophils. To this end, 

the microenvironment of the retinal vasculature may allow for interplay between 

REC and PMN that can be influenced by both high glucose conditions and 

Compound 49b treatment. 

Another key question arising from this study is why -adrenergic receptors 
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may regulate RvD1? In the retina, it is clear that maintenance of -adrenergic 

receptor signaling reduces inflammatory pathways [152, 162-164]. Although it 

has been reported in activated microglia that isoproterenol (from which 

Compound 49b is derived) increases (as opposed to decreases) levels of 

inflammatory cytokines [165] [166], studies were carried out in chronic stress 

and surgical trauma models – not models of high glucose or hyperglycemia. To 

this end, we have shown a different effect of 49b on REC and Müller cells. 

Compound 49b works through β1-adrenergic receptors in REC and β2-

adrenergic receptors. In both cases of these cell types, Compound 49b reduces 

TNF-α [152, 167]. Once we established the actions on TNF-α, we then moved 

to show its actions on TLR4. From these findings, we hypothesized it may work 

on pro-resolving pathways, as well. To date, little to no information exists on -

adrenergic receptors and RvD1. Our findings that Compound 49b can increase 

RvD1 in diabetic whole retina and REC grown in high glucose strongly indicate 

that this may occur through -adrenergic actions on cAMP. Work in rat brain 

astrocytes demonstrated that DHA release can be regulated by calcium-

independent phospholipase A2 (iPLA2) [168]. DHA release was amplified by 

PKA agonist application [168]. Since we have shown that Compound 49b 

significantly increases PKA [152], it is possible that our findings on lipoxygenase 

enzymes and RvD1 may relate to actions on PKA and iPLA2. These will be the 

focus of further study.   

Collectively, these data indicate for the first time a regulatory role for β-
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adrenergic receptors regarding pro-resolving pathways in the diabetic retina. 

Activation of β-adrenergic receptor signaling pathway via Compound 49b 

rescued hyperglycemic-induced decreases in RvD1, its key enzymes 5- and 

15-LOX, as well as receptors ALX/FPR2 and GPR32 in the diabetic retina and 

REC. Future insight into how β-adrenergic receptor signaling pathways 

influence pro-resolving mediators in the diabetic retina may contribute to the 

development of therapeutic modalities targeted at the resolution of inflammation, 

not simply anti-inflammatory in nature. 
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Figure 13. Compound 49b significantly increased RvD1 (A), ALX/FPR2 (B) 

and GPR32 (C) in the diabetic retina. Data from whole retinal lysates from 

C57BL/6 mice untreated (Ctrl+PBS), control mice treated with Compound 49b 

(Ctrl+49b), streptozotocin-induced diabetic mice (STZ+PBS), or diabetic mice 

treated with Compound 49b (STZ+49b). *P<0.05 vs. ctrl+PBS, #P<0.05 vs. 

STZ+PBS. N=5 mice in each group. 
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Figure 14. Compound 49b increased levels of RvD1 (A), ALX/FPR2 (B) and 

GPR32 (C) in REC exposed to high glucose. REC cells were grown in normal 

glucose (NG), normal glucose+Compound 49b (NG+49b), high glucose (HG) or 

high glucose treated with Compound 49b (HG+49b). *P<0.05 vs. NG, #P<0.05 vs. 

HG. N=4 for each treatment.   
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Figure 15. Lipoxygenase enzymes were differentially expressed in REC cells 

grown in high glucose and after Compound 49b treatment. 5-LOX (A), 15-LOX-

1 (B) and 15-LOX-2 (C) in REC cells grown in normal glucose (NG), normal 

glucose+Compound 49b (NG+49b), high glucose (HG) or high glucose treated with 

Compound 49b (HG+49b). *P<0.05 vs. NG, #P<0.05 vs. HG. N=4 for each 

treatment. 
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Figure 16. Müller cells grown in high glucose did not increase RvD1 levels 

after Compound 49b treatment. Müller cells were grown in in normal glucose 

(NG), normal glucose+Compound 49b (NG+49b), high glucose (HG) or high 

glucose treated with Compound 49b (HG+49b). Panel A shows RvD1 protein 

expression, panels B and C show Western blot results for ALX/FPR2, and GPR32 

levels in Müller cells. *P<0.05 vs. NG, #P<0.05 vs. HG. N=4 for each treatment. 
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Figure 17. Compound 49b displayed limited effects on 5-LOX in Müller cells 

in high glucose. Müller cells were grown in in normal glucose (NG), normal 

glucose+Compound 49b (NG+49b), high glucose (HG) or high glucose treated with 

Compound 49b (HG+49b). Panels A – C illustrate Western blots for 5-LOX, 15-LOX-

1 and 15-LOX-2, respectively. *P<0.05 vs. NG, #P<0.05 vs. HG. N=4 for each 

treatment. 



- 66 - 
 

 
 

  

Figure 18. Compound 49b significantly increased ALX/FPR2 levels, with no 

influence on RvD1 or GPR32 levels. RvD1 (A), ALX/FPR2 (B) and GPR32 (C) 

expression in PMN exposed to normal glucose (NG), normal glucose+Compound 

49b (NG+49b), high glucose (HG) or high glucose treated with Compound 49b 

(HG+49b). *P<0.05 vs. NG, #P<0.05 vs. HG. N=4 for each treatment. 
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Figure 19. Compound 49b had no effect on lipoxygenase levels in PMN 

exposed to high glucose. Mouse PMN cells were exposed to normal glucose 

(NG), normal glucose+Compound 49b (NG+49b), high glucose (HG) or high 

glucose treated with Compound 49b (HG+49b). Western blots results are shown 

for 5-LOX (A), 15-LOX-1 (B) and 15-LOX-2 (C) expression. *P<0.05 vs. NG, 
#P<0.05 vs. HG. N=4 for each treatment.   
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Figure 20. Increased RvD1 levels after Compound 49b treatment in REC were 

β-adrenergic receptor pathway specific. REC were exposed to normal glucose 

(NG), normal glucose+Compound 49b (NG+49b), normal glucose+Compound 

49b+propranolol or PKA siRNA(NG+49b+propranolol/siPKA), high glucose (HG), 

high glucose treated with Compound 49b (HG+49b) and high glucose+Compound 

49b+propranolol/PKA siRNA (HG+49b+propranolol/siPKA). ELISA results are 

shown for RvD1 levels after treatment with propranolol (A) and PKA siRNA (B). 

*P<0.05 vs. NG, #P<0.05 vs. HG. N=4 for each treatment. 
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CHAPTER 4 “CHARACTERIZATION OF SITE SPECIFIC 

PHOSPHORYLATION OF NF-κB P65 IN RETINAL CELLS IN 

RESPONSE TO HIGH GLUCOSE AND CYTOKINE POLARIZATION” 

 

4.1 Abstract 

Background 

Inflammation is an important contributor to the pathogenesis of DR, a 

severe blinding eye disease affecting nearly 60% of diabetic patients. NF-κB is 

a master transcriptional regulator for a wide spectrum of inflammatory genes. 

Although NF-κB is comprised of multiple subunits, p65 has received the most 

attention. However, the p65 subunit can be phosphorylated at numerous sites, 

for which the effects of DR-related conditions are not well characterized. Since 

dysregulation of NF-κB has been linked to chronic inflammation, the current 

study examines site specific p65 phosphorylation in retinal cells exposed to high 

glucose and investigates the effects of cytokine polarization in the regulation of 

the high glucose-induced inflammatory response.  

Methods 

Phosphorylation of NF-κB p65 was examined in human primary retinal 

endothelial cells (HREC) and MIO-M1 Müller cells after exposure to high 

glucose and pro- or anti-inflammatory cytokines. Cells were incubated in high 

(25 mM) or normal (5 mM) glucose, then treated with IL-1β, TNF-α or IL-4. Cells 

were then harvested at different time points to assess phosphorylation levels at 

multiple p65 sites, including Thr-254, Ser-276, Ser-281, Ser-311, Ser-468, Ser-

529, Ser-536 and Thr-435. Related downstream gene activation was selectively 
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measured by real-time RT-PCR, ELISA and/or Western blot.  

Results 

High glucose exposure resulted in differential phosphorylation of p65 

subunit sites between HREC and Müller cells. Pro-inflammatory cytokines 

further exacerbated the phosphorylation of these sites while influencing 

additional sites that were not altered in high glucose. In contrast, IL-4 exhibited 

a generally suppressive effect on the phosphorylation of p65 sites in both HREC 

and Müller cells, and promoted expression of IκBα. Downstream inflammatory 

mediators were more activated in response to pro-inflammatory cytokine 

treatment than high glucose exposure. Anti-inflammatory IL-4 inhibited 

expression of downstream NF-κB regulated inflammatory genes, while IL-10 

levels were significantly enhanced even in the presence of high glucose. 

Conclusion 

The current study is the first to characterize high glucose-induced NF-κB 

p65 phosphorylation after cytokine polarization. By understanding NF-κB 

phosphorylation and cytokine influence during hyperglycemic conditions, 

intervention points can be identified for early stage treatment of DR.  

Keywords: diabetic retinopathy, NF-κB, p65, phosphorylation, interleukin-4, 

inflammation 

4.2 Background 

Diabetes mellitus (DM) is a chronic, metabolic disease resulting in high 

blood glucose levels in the body. Diabetic retinopathy (DR) is a visually 
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debilitating eye complication of diabetes that is the leading cause of blindness 

among working age patients in the United States [2]. This disease exhibits 

several pathological events associated with the retina. The early stage of DR, 

with its featured complications of microaneurysms, hard exudates and 

progressing hemorrhages, continues to lack effective treatments [169]. 

Although intensive efforts have been put into understanding pathogenic 

mechanisms of DR, remarkable intervention points for treatment against non-

proliferative stages of DR have yet to be found. Current anti-vascular 

endothelial growth factor (VEGF) treatments risk deleterious side effects such 

as endophthalmitis, intraocular inflammation and elevated intraocular pressure 

[7], with compromised efficacy around 50% and requires repetitive 

administration [170].  

Inflammation was found to be associated with diabetes back in 1960s [18]; 

since then, leukostasis and associated local inflammatory activities have been 

demonstrated to be key contributors for retinal non-perfusion, retinal ischemia 

and resultant retinal vascular leakage during DR [19-22]. The retinal 

endothelium is part of the blood-retinal barrier which isolates the retina from 

toxins, microorganisms and pro-inflammatory leukocytes [45]. Retinal 

endothelial cells (REC) line the microvasculature with surrounding pericytes 

[171]. They are directly exposed to hyperglycemic conditions and interact with 

infiltrating leukocytes. During inflammation, RECs respond to extracellular 

molecules secreted by both residential retinal cells as well as immune cells. 
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While DR was traditionally characterized as a microvascular disease, it is now 

being viewed as a neural degenerative disease [116], as well. Müller cells are 

supporting glia in the retina and one of the earliest residential cellular 

responders during the pathogenesis of DR [172]. They actively react to 

inflammatory cytokines and secret various molecules to modulate the 

microenvironment during the development of DR, including RECs [173]. 

Additionally, it has been demonstrated that reactive oxygen species (ROS) 

toxicity in RECs was derived from retinal Müller cells and pigment epithelial 

cells through paracrine effects rather than a direct effect of high glucose [174], 

suggesting a role for this cell type during the development of this disease.  

NF-κB is a major transcription factor evoked by a number of stimuli, 

including pro-inflammatory cytokines. Activation of NF-κB further enhances the 

inflammatory response by inducing the transcription of wide spectrum of 

inflammatory mediators related to leukocyte recruitment and cytokine 

production [85]. Five NF-κB subunits have been well characterized and 

associated with its activity, including RelA (p65), RelB, p50, p52 and c-rel [175]. 

Under normal conditions, NF-κB is sequestered within the cytoplasm through 

the direct interaction with inhibitor proteins such as IκBα. Upon activation, the 

IKK complex phosphorylates IκBα. Further ubiquitination and degradation of 

IκBα releases the transcription activating subunits of NF-κB [175]. The classic 

pathway of NF-κB activation is triggered by IL-1 receptor (IL-1R), TNF receptor 

(TNFR) and pattern recognition receptors (PRRs), through downstream 
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activation of IKKβ, IκBα and release of p65-p50 [175]. In contrast, the non-

canonical NF-κB pathway is activated by CD40 ligand, lymphotoxin-β and 

depends on activation of IKK and release of p52-RelB [175]. When released, 

p65-p50 and RelB-p52 heterodimers translocate into the nucleus, recruiting 

transcription co-activators such as cAMP-response element binding protein 

(CREB) binding protein (CBP)/p300 and histone acetyltransferase (HATs), and 

activate transcription of downstream molecules by binding to target DNA 

elements [175].  

Site-specific phosphorylation of NF-κB p65 subunit leads to the selective 

transcription of downstream pro-inflammatory genes [176]. As the best 

characterized subunit of NF-κB, p65 and its phosphorylation is a pivotal point 

for canonical NF-κB activation. However, multiple phosphorylation sites have 

been mapped in both the N-terimal Rel homology domain and C-terminal 

transactivation domain of p65; Ser-205, Thr-254, Ser-276, Ser-281 and Ser-311 

are located in N-terminal Rel homology domain, while Thr-435, Ser-468, Thr-

505, Ser-529, Ser-535, Ser-536 and Ser-547 are found in C-terminal 

transactivation domain [176]. It has been shown that during inflammation, 

phosphorylation of Ser-276, Ser-281, Ser-311, Ser-468, Ser-529, Ser-536 and 

Thr-435 stimulate transcriptional activity, while Thr-254 is involved in 

stabilization and nuclear translocation [84]. Since the high glucose-induced 

influence on different NF-κB p65 phosphorylation sites is unknown, we first 

sought to characterize these sites in RECs and Müller cells under such 
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conditions. 

Inflammation is a protective immunomodulatory response, during which 

pro-inflammatory mediators are counterbalanced by anti-inflammatory agents. 

During DR, pro-inflammatory cytokines, mainly interleukin-1 beta (IL-1β) and 

tumor necrosis factor-alpha (TNF-α) are produced by residential retinal cells, 

neutrophils and macrophages and shape the inflammatory response that 

contributes to disease pathogenesis [23, 33]. Both of these inflammatory 

mediators are canonical NF-κB pathway activators. In type 1 diabetes, IL-1β 

activates NF-κB and induces pancreatic beta cell dysfunction and death [86], 

while in type 2 diabetes NF-κB is constitutively activated by a low-grade, chronic 

state of inflammation [87]. Regarding DR, NF-κB has been shown to be 

activated early and remain activated for up to 14 months in experimental animal 

models and cultured retinal cells [23]. In contrast, interleukin-4 (IL-4) is 

associated with anti-inflammatory immune responses and influences further 

differentiation of T cells into Th2 cells. It has potent anti-inflammatory effects on 

other leukocytes such as polymorphonuclear leukocytes (PMN) and monocytes 

[177]. It has been reported that IL-4 inhibits insulitis and diabetic mellitus by 

stimulating a Th2 response [178]. In terms of DR, clinical studies have indicated 

significantly elevated levels of IL-4 in both vitreous and aqueous humor in 

patients, together with other pro-inflammatory cytokines [179, 180]. However, 

little is known on the anti-inflammatory effect of IL-4 in DR. In addition, whether 

IL-4 has any regulatory effect on NF-κB phosphorylation has yet to be found. 
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As such, we sought to investigate the effects of cytokine polarization in human 

primary retinal endothelial cells (HREC) and Müller cells exposed to high 

glucose in regulating NF-κB p65 site specific differential phosphorylation and 

downstream inflammatory mediators.  

4.3 Methods 

Cell Culture & Cytokine Time Course Treatment 

Primary HRECs (Cell System Corporation; Kirkland, WA) were grown in 

HREC medium containing microvascular growth supplements (MVGS; 

Invitrogen, Carlsbad, CA), 10 mg/mL gentamycin, and 0.25 mg/mL 

amphotericin B. All cells were used within six passages. The MIO-M1 Müller 

cell line was obtained from the UCL Institute of Ophthalmology, London UK. 

MIO-M1 Müller cells were cultured in Dulbecco’s modified eagle medium 

(DMEM) with 10% fetal bovine serum (FBS; Invitrogen, Carlsbad, CA), 10 

mg/mL gentamycin, and 0.25 mg/mL amphotericin B. Prior to experimentation, 

cells were transferred for four days to high (25 mM) or normal (5 mM) glucose 

medium (HREC medium or DMEM medium supplemented with glucose) with 

MVGS or FBS and antibiotics. Cells were then quiesced by removing MVGS or 

FBS for 24h. Cells were treated with pro-inflammatory cytokines IL-1β (10 

ng/mL, R&D Systems, Minneapolis, MN) or TNF-α (10 ng/mL, R&D Systems, 

Minneapolis, MN) versus anti-inflammatory cytokine IL-4 (20 ng/mL, R&D 

Systems, Minneapolis, MN) for 10 min (MIO-M1 only), 30 min, 2 h, 24h, followed 

by rinsing with cold PBS. Since Müller cells are early responders in DR and 



- 76 - 
 

 
 

have similar characteristics with macrophages [181], an earlier time point of 10 

minutes was added for the analysis of these cells. Cell collection was carried 

out as detailed below.  

Western Blotting 

Cells were collected in lysis buffer containing protease and phosphatase 

inhibitors for protein isolation. Cellular extracts were then prepared by 

sonication, and total protein concentration was determined for Western blot 

analyses. Proteins were separated on 4–20% tris-glycine gels (Invitrogen, 

Carlsbad, CA) and transferred to nitrocellulose membranes. After blocking 

membranes in TBST (10 mM Tris-HCl buffer, pH 8.0, 150 mM NaCl, 0.1% 

Tween 20) and 5% (w/v) BSA at r.t. for 60 min, membranes were incubated 

overnight at 4°C with antigen-specific primary antibodies. The primary 

antibodies were used as follows: anti-NF-κB p65 (phospho Thr-254), anti-NF-

κB p65 (phospho Ser-276), anti-NF-κB p65 (phospho Ser-281), anti-NF-κB p65 

(phosphor Ser-311), anti-NF-κB p65 (phospho Ser-468), anti-NF-κB p65 

(phospho Ser-529), anti-NF-κB p65 (phospho Thr-435), anti-IκBα (Abcam, San 

Francisco, CA); Anti-NF-κB p65 (phospho Ser-536), anti-vascular cell adhesion 

protein 1 (VCAM-1) (Cell Signaling Technology, Danvers, MA); anti-COX-2, 

anti-β-actin (Santa Cruz, Santa Cruz, CA). Blots were then incubated with 

species-specific HRP-conjugated secondary antibodies for 2h at r.t. Proteins 

were visualized by incubation with a chemiluminescence substrate kit (Thermo 

Fisher Scientific, Waltham, MA). Western blot images were collected (Azure 
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Biosystem C500, Dublin, CA) and target protein expression was quantified 

(Image Studio Lite software) after normalizing to β-actin. One representative 

blot is shown. 

Real-time RT-PCR 

RNA was extracted by RNA STAT-60 (Tel-Test, Friendswood, TX, USA) per 

the manufacturer’s protocol and subjected to real-time RT-PCR analyses. Total 

RNA extracted for HREC and MIO-M1 was quantitated by spectrophotometric 

determination (260 nm). Total RNA (100 ng) was reverse transcribed and used 

to produce a cDNA template as previously described [182]. cDNA products 

were diluted 1:20 with DEPC-treated water, and 2 μL cDNA (10-μL total reaction 

volume) was used for semi-quantitative real-time RT-RT-PCR analysis (CFX 

Connect Real-Time RT-RT-PCR Detection System; BioRad, Hercules, CA, 

USA). All human primer pair sequences designed in the laboratory 

(PrimerQuest, Integrated DNA Technologies, Coralville, IA, USA) are listed in 

Table 1. RT-PCR amplification conditions were determined using routine 

methods [183]. Relative transcript levels were calculated using the relative 

standard curve method comparing the amount of target normalized to an 

endogenous reference, β-actin. Data are shown as the mean ± SD for relative 

transcript levels and represent at least two individual experiments.  

ELISA 

Intercellular adhesion molecule-1 (ICAM-1), interleukin-8 (IL-8), interleukin-

10 (IL-10) (R&D Systems, Minneapolis, MN), IL-1β and TNF-α(Thermo Fisher 
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Table 1. Primer sequences. 

Genes Definition Forward (5’ to 3’) Reverse (5’ to 3’) 

ICAM-1 Intercellular 

adhesion molecule 

1 

CTTCGTGTCCTGTATGGCCC CACATTGGAGTCTGCTGGGA 

VCAM-1 Vascular cell 

adhesion protein 1 

GTCAATGTTGCCCCCAGAGATA ACAGGATTTTCGGAGCAGGA 

IL-1β Interleukin 1 beta AGAAGTACCTGAGCTCGCCA CTGGAAGGAGCACTTCATCTGT 

IL-6 Interleukin 6 TACAGGGAGAGGGAGCGATA CTCAGACATCTCCAGTCCTCT 

IL-8 Interleukin 8 AGAGCCAGGAAGAAACCACC GGCAAAACTGCACCTTCACAC 

IL-10 Interleukin 10 AAGACCCAGACATCAAGGCG AATCGATGACAGCGCCGTAG 

TNF-α Tumor necrosis 

factor alpha 

AGGCGCTCCCCAAGAAGACA TCCTTGGCAAAACTGCACCT 

TNFR Tumor necrosis 

factor receptor 

CCAGTGCGTTGGACAGAAGG GAAGAATCTGAGCTCCCGGTG 

CXCL-11 C-X-C motif 

chemokine 11 

TTGTTCAAGGCTTCCCCATGT CCACTTTCACTGCTTTTACCCC 

CCL-23 C-C motif 

chemokine ligand 

23 

CTGGACATGCTCTGGAGGAGA GGAGTGAACACGGGATGCTT 

COX-2 Cyclooxygenase 2 GCTGTTCCCACCCATGTCAA AAATTCCGGTGTTGAGCAGT 

BAX Bcl-2-associated X 

protein 

CATGGGCTGGACATTGGACT GGCAGCCCCCAACCAC 

IFNγ Interferon gamma TGGAAAGAGGAGAGTGACAGA ACACTCTTTTGGATGCTCTGGT 

IL-17a Interleukin 17A CCTTGGAATCTCCACCGCAA GTGGTAGTCCACGTTCCCAT 

iNOS Inducible nitric 

oxide synthase 

GGACCCTGCAGACAGGC TTCTTCACTGTGGGGCAAGG 

cFLIP Cellular FLICE-

inhibitory protein 

CAGCAGGTCTGAGCTTGTCC AGTGGGGGAGTTGCCCG 
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Scientific, Waltham, MA) ELISAs were used to measure protein expression in 

HREC and Müller cells. Cells were collected and processed as described above. 

All samples were assayed in duplicate or triplicate per the manufacturer’s 

instruction. Equal protein was loaded into all wells. The reported sensitivities of 

these assays are 0.254 ng/mL for ICAM-1, 7.5 pg/mL for IL-8, 3.9 pg/mL for IL-

10, 1 pg/mL for IL-1β and 1.7 pg/mL for TNF-α.  

Statistical analysis 

All assays were carried out at least twice from three independent 

experiments and the data are presented as mean + SD. Data were analyzed 

by the Analysis of variance (ANOVA) test following by Fisher’s LSD test. P < 

0.05 was considered to be statistically significant. 

4.4 Results 

IκBα levels are reduced in response to IL-1β/TNF-α, yet restored with IL-4 

after HG exposure 

Levels of IκBα, a regulatory protein that inhibits NF-κB, were assessed in 

HREC and Müller cells after high glucose exposure and cytokine treatment over 

time (Fig. 1). Regarding HREC, there was no difference in IκBα levels between 

normal and high glucose. However, in the presence of pro-inflammatory 

cytokines, IL-1β and TNF-α, IκBα was significantly downregulated early (30 

minutes). These levels increased at 2h, but remained significantly reduced over 

NG and HG treatment groups at 24h. In contrast, IL-4 treatment maintained 

IκBα levels similar to controls. 
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In contrast to HREC, HG reduced IκBα levels in Müller cells. However, 

similar trends were observed after cytokine treatments, where pro-inflammatory 

IL-1β and TNF-α significantly reduced IκBα at early time points, which then 

appeared to peak at 2h and decrease at 24h (significant for TNF-α only). IL-4 

treatment restored HG-induced downregulation of IκBα, which was significantly 

higher than HG at 2h and both NG and HG at 24h. 

Differential phosphorylation of NF-κB p65 subunits when exposed to high 

glucose versus inflammatory cytokines in HREC and Müller cells 

Next, we characterized the phosphorylation of NF-κB p65 subunits in 

response to high glucose, pro-inflammatory NF-κB activators (TNF-α and IL-1β) 

and anti-inflammatory IL-4 in HREC. As shown in Figure 22, high glucose 

upregulated phosphorylation at five out of the eight tested p65 sites, including 

Thr-254 (A), Ser-276 (B), Ser-468 (E), Ser-529 (F) and Thr-435 (H). No 

differences were observed for sites Ser-281 (C), Ser-311 (D) or Ser-536 (G) 

after exposure to high glucose only. When HREC were exposed to high glucose 

in the presence of either IL-1β or TNF-α, all sites tested showed significantly 

increased phosphorylation compared to normal glucose controls. Moreover, 

both of these cytokines further enhanced NF-κB activation over high glucose-

induced effects at most of the time points tested. Additionally, IL-1β appears to 

be a more potent stimulator of Ser-311 compared to TNF-α at 30 min after 

treatment. On the contrary, anti-inflammatory cytokine IL-4 suppressed high 

glucose-induced phosphorylation of p65 subunits sites Thr-254, Ser-281, and 
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Thr-435. Although high glucose did not induce changes in Ser-281, Ser-311 or 

Ser-536, IL-4 treatment reduced activation of NF-κB at 30 minutes for Ser-281 

and at 2 and 24h for Ser-311 below basal levels observed with normal glucose. 

No effect was observed with Ser-536. There was no indication that IL-4 

treatment increased phosphorylation beyond the observed high glucose-

induced effects for sites Ser-276, Ser-468 and Ser-529.  

The human Müller cell line, MIO-M1, indicated similar trends as observed 

in HREC where not all sites resulted in increased phosphorylation with high 

glucose exposure. As shown in Figure 23, p65 subunit sites Thr-254 (A), Ser-

281 (C), Ser-311 (D), Ser-468 (E) and Thr-435 (H) were activated due to high 

glucose alone; while no differences in phosphorylation were observed for Ser-

276 (B), Ser-529 (F) and Ser-536 (G) compared to normal glucose controls. 

Although, both Ser-529 and Ser-536 sites did reveal significantly increased 

phosphorylation after treatment with IL-1β and TNF-α. Unlike HREC though, IL-

1β and TNF-α treatment did not appear to have as strong of an effect on Müller 

cells; enhanced phosphorylation beyond high glucose-induced effects was 

limited to Ser-468, Thr-254 (IL-1β only at 24h) and Ser-311 (TNF-α only at 10 

and 30 min). IL-4 treatment, however, significantly downregulated 

phosphorylation of NF-κB p65 at Thr-254, Ser-276, Ser-281, Ser-468 and Thr-

435 compared to high glucose. In addition, although phosphorylation levels of 

Ser-276 did not change in response to high glucose or pro-inflammatory 

cytokine treatment, IL-4 downregulated phosphorylation beyond normal 
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glucose controls. Results of phosphorylation on different sites with high glucose 

versus cytokines treatment are summarized in Table 2. 

Effects of high glucose and cytokine treatment on transcription of 

downstream genes associated with NF-κB activation in HREC and Müller cells 

Transcription of selected genes known to be regulated by NF-κB as well as 

pathogenic in DR was assessed after high glucose exposure and cytokine 

treatment in both HREC and Müller cells. Analysis of gene expression in HREC 

(Fig. 24) indicated that high glucose upregulated transcript levels of interleukin-

6 (IL-6) (D), IL-8 (E), IL-10 (F), TNF-α (G) and C-C motif chemokine ligand 23 

(CCL23) (I). High glucose had no effect on the expression of ICAM-1 (A), 

VCAM-1 (B), IL-1β (C), C-X-C motif chemokine 11 (CXCL11) (H), 

cyclooxygenase-2 (COX-2) (J), or bcl-2 associated X protein (BAX) (K). When 

high glucose exposure was combined with IL-1β treatment, transcription levels 

of ICAM-1, VCAM-1, IL-1β, IL-6 (vs normal glucose only), IL-8, TNF-α, CXCL11, 

CCL23 and COX-2 were significantly upregulated over both normal glucose and 

high glucose alone. mRNA levels of IL-10 were lower than high glucose alone 

at 30 min post-treatment with IL-1β, while BAX did not change from basal 

expression levels. Treatment with TNF-α revealed similar trends compared to 

IL-1β and resulted in upregulation of ICAM-1, VCAM-1, IL-1β, IL-6, IL-8, TNF-

α, CXCL11 and COX-2. Whereas, IL-10 expression was decreased compared 

to high glucose only at 30 min and no differences were detected regarding 

CCL23 or BAX compared to basal expression. Despite high glucose exposure,  
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Table 2. Summarization of NF-κB p65 phosphorylation sites. 

NF-κB p65 

phosphorylation 

sites 

Main functions 

HREC Müller cells 

HG 

HG +  

IL-1β or 

TNF-α 

HG + 

IL-4 
HG 

HG + 

IL-1β or 

TNF-α 

HG + 

IL-4 

Thr-254 

p65 

transactivation 

[184] 

↑ ↑↑↑ ↓ ↑↑↑ ↑↑↑ ↓↓ 

Ser-276 

CBP 

recruitment, 

system 

inflammation 

[185, 186]; 

Translocation 

of p65 [187] 

↑↑↑ ↑↑↑ None None None ↓↓↓ 

Ser-281 
Translocation 

of p65 [187] 
None ↑↑ ↓ ↑↑↑ ↑↑↑ ↓↓↓ 

Ser-311 

IL-6 

transcription 

and CBP 

recruitment 

[188] 

None ↑↑↑ ↓ ↑ ↑↑↑ None 

Ser-468 

ICAM-1, 

VCAM-1 

transcription 

[189] 

↑↑↑ ↑↑↑ None ↑ ↑↑↑ ↓ 

Ser-529 
Translocation 

of p65 [190] 
↑ ↑↑↑ None None ↑↑↑ None 

Ser-536 

ICAM-1, IL-8 

transcription 

[191]; CBP 

recruitment 

[192]; 

Translocation 

of p65 [193] 

None ↑↑↑ None None ↑↑↑ ↑ 

Thr-435 

p65 

transactivation 

[194] 

↑↑↑ ↑↑↑ ↓ ↑↑ ↑↑↑ ↓↓↓ 

↑/↓,↑↑/↓↓, ↑↑↑/↓↓↓ indicates P < 0.05, 0.01 and 0.0001, respectively, vs normal 

glucose/high glucose controls. None = indicates no changes were observed. Results 

were derived from the peak change observed among the different time points 

examined.  
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IL-4 treatment decreased mRNA levels for IL-6, IL-8 and TNF-α. No differences 

were observed in ICAM-1, VCAM-1, IL-1β or BAX when compared to normal 

glucose controls. In addition, IL-4 treatment upregulated IL-10 and CXCL11 at 

24h, and COX-2 at 2h time points compared to high glucose only. High glucose-

induced upregulation of CCL23 mRNA remained unchanged after IL-4 

treatment. 

In Müller cells, high glucose exposure resulted in upregulation of mRNA 

transcripts for a limited number of mediators (Fig. 25): TNF-α (F), interferon-

gamma (IFNγ) and inducible nitric oxide synthase (iNOS) (J). Addition of pro-

inflammatory IL-1β or TNF-α under high glucose conditions increased mRNA 

levels for IL-1β (A), IL-6 (B), IL-8 (C), interleukin-17A (IL-17A) (E), TNF-α (F), 

TNFR (TNF-α treatment only) (G), iNOS (J), COX-2 (K) and cellular FLICE 

inhibitory protein (cFLIP) (L). Similar to HREC, CXCL11 (I) was exclusively 

upregulated by TNF-α, not IL-1β, in Müller cells. IL-4 upregulated mRNA 

expression of IL-10 (D) and COX-2, yet decreased expression of TNF-α, IFNγ, 

CXCL11 and iNOS. No effect was observed regarding IL-6 or cFLIP expression 

after IL-4 treatment. 

Protein analysis of NF-κB regulated genes in HREC and Müller cells after 

high glucose exposure and cytokine treatment  

Based on mRNA expression, several genes were selected to further 

analyze protein levels after 26 h of high glucose exposure and pro-/anti-

inflammatory cytokine treatments (Fig. 25). Consistent with mRNA results, 
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protein levels of ICAM-1 (A), VCAM-1 (B), IL-1β (C), IL-8 (D), TNF-α (F) and 

COX-2 (G) were similar in high and normal glucose. IL-10 (E), which was 

downregulated, was the only molecule that did not show corresponding mRNA 

expression and protein levels after high glucose exposure. When HREC were 

exposed to high glucose and pro-inflammatory cytokine IL-1β or TNF-α, protein 

levels were significantly elevated over both normal and high glucose for all 

molecules (except IL-10) – including ICAM-1, VCAM-1, IL-1β, IL-8, TNF-α and 

COX-2. As mentioned, IL-10 was significantly reduced in the presence of either 

pro-inflammatory cytokine compared to normal glucose controls. On the other 

hand, IL-4 treatment abrogated high glucose-induced changes in IL-8, TNF-α 

and upregulated IL-10. Further, IL-4 treatment had no effect on ICAM-1, VCAM-

1 or IL-1β, which remained similar to basal levels observed in normal glucose. 

Similar to mRNA expression, COX-2 protein levels were significantly elevated 

with IL-4 treatment, but not as elevated after IL-1β or TNF-α treatments.  

Protein levels were also examined at 24h in Müller cells exposed to high 

glucose and cytokine treatments, as shown in Figure 27 for IL-1β (A), IL-8 (B), 

IL-10 (C), TNF-α (D) and COX-2 (E). Exposure to high glucose had no effect on 

IL-1β and COX-2 when compared to basal levels observed in normal glucose. 

However, IL-8, TNF-α, and surprisingly IL-10 were significantly increased with 

high glucose. As expected, treatment with IL-1β and TNF-α resulted in 

significant increases of IL-1β, IL-8, TNF-α and COX-2 over both normal and 

high glucose. IL-10, on the other hand, was significantly decreased compared 
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to high glucose. These effects were consistently reversed following IL-4 

treatment – reducing IL-8 and TNF-α to basal levels observed with normal 

glucose exposure. IL-10, however, was further enhanced after IL-4 treatment 

over high glucose. 

4.5 Discussion 

Phosphorylation is one of the prerequisite steps in NF-κB p65 activation. It 

has been found to be highly important for recruitment of transcription factors 

and subsequent binding of the p65 subunit with its target genes, as 

demonstrated by various NF-κB p65 site specific studies [185-193, 195-198]. 

Although it has been shown over a decade ago that high glucose activates NF-

κB in both pericytes [199] and vascular smooth muscle cells [200], more recent 

reports have indicated that NF-κB activation in RECs is rather due to paracrine 

influences from other retinal cells such as Müller cells and pigment epithelial 

cells [174]. As a result, we hypothesized that high glucose induces differential 

phosphorylation of NF-κB in retinal cells. Specifically, we expected NF-κB p65 

and downstream pathways associated with the pathogenesis of DR to be 

differentially induced in RECs and Müller cells after high glucose exposure. 

Beyond high glucose-induced activation of NF-κB, we also characterized the 

effects of two potent NF-κB activators, IL-1β and TNF-α, both of which are 

known to be produced early in the development of DR [115, 201, 202]. To this 

end, we found similar trends between HREC and Müller cells in the 

phosphorylation of 3 out of 8 sites of the p65 subunit – Thr-254, Thr-435 and 
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Ser-468. High glucose significantly increased the phosphorylation of these 

three sites compared to normal glucose. In addition, it appeared that high-

glucose induced phosphorylation of Ser-276 and Ser-529 was specific to HREC, 

while phosphorylation of Ser-281 and Ser-311 was restricted to Müller cells. 

Ser-536, on the other hand, was not affected by high glucose exposure in either 

cell type. Moreover, pro-inflammatory cytokines were shown to be potent 

activators of all p65 subunit sites, indicating an important role for Ser-536 in 

particular regarding the canonical NF-κB pathway. Thus, we demonstrated that 

selected NF-κB p65 sites were differentially influenced by high glucose in HREC 

and Müller cells, and that the presence of pro-inflammatory cytokines IL-1β and 

TNF-α exhibited a more widespread, robust effect on p65 phosphorylation sites.  

The influence of high glucose versus pro-inflammatory cytokines on NF-κB 

activity was further demonstrated by our studies of downstream target genes. 

The complex nature of DR pathogenesis includes a wide spectrum of mediators, 

such as advanced glycation end products (AGEs), ROS, protein kinase C (PKC) 

pathway, polyol pathway and inflammatory pathways [203]. NF-κB is an 

essential transcriptional regulator of numerous cytokines and is widely activated 

by the aforementioned pathways. ROS is produced by retinal and inflammatory 

cells during DR, which damages DNA and activates NF-κB [88]. AGEs, through 

RAGE receptor activation, interact with the PKC pathway and influences NF-κB 

activity [89, 90]. Upon activation by any of these pathogenic molecules related 

to DR, NF-κB is able to stimulate further transcription of various inflammatory 
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mediators that exacerbate the disease state in many aspects. This effect 

includes upregulation of pro-inflammatory cytokines/chemokines IL-1β, TNF-α, 

IL-6, IL-8 and monocyte chemotactic protein-1 (MCP-1) [91-95], iNOS [96]; 

COX-2 for the production of pro-inflammatory prostaglandins [97]; adhesion 

molecules ICAM-1 and VCAM-1 [98]; and apoptotic molecules, Fas and Fas 

ligand [99]. As such, based on an online NF-κB targeted gene list [204], NF-κB 

regulated genes known to contribute to the pathogenesis of DR were selected 

for further study. High glucose exposure led to the upregulation of pro-

inflammatory molecules IL-8, IL-6, IFNγ, iNOS, and TNF-α, indicating that 

hyperglycemia is capable of stimulating an inflammatory response in these cell 

types. The fact that TNF-α was upregulated by high glucose alone in both cell 

types underlines the detrimental effects of diabetes. As a major contributor to 

the pathogenesis of DR, TNF-α mediates inflammation [205], regulates the 

breakdown of the blood-retinal barrier [135], and directs apoptosis of retinal 

residential cells [115]. As evidenced from pro-inflammatory cytokine treatments, 

once TNF-α (or IL-1β) is present in the microenvironment, the cascade of 

inflammatory events are exacerbated, which potentiates a state of chronic 

inflammation within the retina. In fact, TNF-α and IL-1β exhibited a much more 

robust effect on downstream inflammatory mediators compared to high glucose 

alone. These findings agree with the trends observed from our NF-κB p65 

phosphorylation studies, further indicating the importance of pro-inflammatory 

cytokines in the early pathogenesis of DR, as high glucose appears to have a 
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markedly reduced effect, in comparison, on these same key inflammatory 

mediators.  

Phosphorylation of Ser-311 by ζPKC has been associated with IL-6 

transcription [188]. Both Ser-276 and Ser-311 phosphorylation has been found 

to promote interaction with CREB, enhancing the NF-κB response [188, 195]. 

Ser-536 phosphorylation defines separate pathways of NF-κB activation of 

canonical and non-canonical patterns, activating transcription of IL-8 and ICAM-

1, both of which are important for leukostasis activation [191]. Mutation of Ser-

536 prevents CBP recruitment [192]. Phosphorylation of Ser-529 and Ser-536 

has been shown to be associated with translocation of NF-κB subunits [190, 

193]. In the current study, we showed that Ser-311 and Ser-536 were not 

responsive to high glucose exposure in HREC. Similarly, Ser-529 and Ser-536 

remained unchanged in Müller cells. Yet these three sites were significantly 

activated by inflammatory cytokines. It is possible that phosphorylation of these 

sites are necessary for transcription of wide spectrum of NF-κB target genes. 

Therefore, inhibiting phosphorylation on Ser-536, Ser-311 and Ser-529 could 

potentially abrogate, in part, the translocation of NF-κB p65 into the nucleus 

and influence the transactivation of p65, ultimately leading to a reduction in 

transcriptional activity of target genes, as well.  

Regulation of NF-κB is limited to the level of phosphorylation. IκBα inhibits 

NF-κB by sequestering p65 in the cytoplasm. When phosphorylated, 

ubiquitinated and then degradated, IκBα releases NF-κB p65 so that it can 
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dimerize with p50, then translocate into the nucleus to trigger activation of the 

downstream canonical NF-κB pathway [206]. Beyond the traditional view of 

IκBα, recent reports have pointed out the existence of free IκBα in the cytoplasm 

as an intrinsic unstable molecule, which is important for activation of NF-κB 

itself and independent of IKK phosphorylation and ubiquitination [207]. This 

adds to the complexity of the NF-κB pathway and promotes the possibility of 

IκBα involvement in, not only the alternative NF-κB pathway, but also in an IKK 

kinase and p65-p50-independent manner. Degradation of IκBα releases NF-κB 

p65, which is a prerequisite for translocation of p65-p50. Although we showed 

that pro-inflammatory cytokines significantly upregulate IκBα degradation in 

both cell types, high glucose alone resulted in decreased IκBα levels in Müller 

cells. These results suggest that Müller cells may be a more active responder 

to high glucose conditions and perhaps have a larger role as a “decision maker” 

in regards to the resultant inflammatory response observed during DR.  

It was observed that IL-4 suppressed phosphorylation at Thr-254, Ser-276, 

Ser-281 and Thr-435 in HREC and at Thr-254, Ser-276, Ser-281, Ser-468 and 

Thr-435 in Müller cells. Although it has been reported that IL-4 induces NF-κB 

p52 production by a PI3K and IB kinase dependent pathway [208], to our 

knowledge, there is no established evidence regarding IL-4’s effect on 

regulating phosphorylation of NF-κB p65. The fact that IL-4 suppressed the 

phosphorylation of half of p65 sites in HREC and 5 out of 8 sites in Müller cells 

demonstrates its protective effect by directly suppressing NF-κB p65 activity in 
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high glucose. mRNA and protein results indicated that IL-4 effectively reduced 

IL-6, IL-8 and TNF-α in HREC and TNF-α, IFNγ, CXCL-11 and iNOS in Müller 

cells. Despite that this was somewhat expected since IL-4 significantly 

suppressed multiple NF-κB p65 phosphorylation sites, IL-4 treatment also 

upregulated IL-10 and COX-2. Whether this is a direct consequence of the 

inhibitory effect of IL-4 on p65 phosphorylation needs to be further tested, but it 

is thought that the regulatory effect of this anti-inflammatory cytokine on NF-κB 

works synergistically with its traditional PI3K and mitogenic signaling [209]. In 

Müller cells, IL-4 suppressed IL-8 protein levels, indicating that a translational 

effect as this was not reflected at the mRNA level. Previous results have 

indicated that IL-4 enhances IL-10 gene expression in the absence of TCR 

engagement [210]. In both types of cells, we demonstrated that IL-4 is capable 

of enhancing IL-10, possibly promoting an anti-inflammatory response in this 

situation. Since IL-10 has the ability to inhibit the expression of IL-8 [211] and 

regulates TNF-α signaling [212], it is possible that suppression of IL-8 and TNF-

α by IL-4 is partially carried out by regulation of IL-10 through an autocrine 

manner in both cell types. This could be greatly beneficial as TNF-α is one of 

the major pro-inflammatory mediators during the pathogenesis of DR. This is 

also very comparable to our previous research indicating an anti-inflammatory 

effect of vasoactive intestinal peptide in suppressing intracellular TNF-α levels 

[213]. It is also important to note that IL-4 enhanced IκBα levels in Müller cells, 

which could also contribute to inhibition of NF-κB p65 phosphorylation and 
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subsequent expression of NF-κB target genes. In addition, the fact that IL-4 

promoted expression of COX-2 in both cell types could be associated with COX-

2 derived prostanoids, which are important at low levels in the development of 

a “healthy” immune response.  

It is important to note that cytokine induced phosphorylation of NF-κB p65 

was not always sustained, but instead fluctuated over time; some changes 

occurred earlier, while others happened later. For example, the suppressive 

effect of IL-4 regarding phosphorylation of NF-κB p65 in HREC were mostly 

observed at later time points (2 and 24 hours), whereas in Müller cells, some 

changes were observed early and lasted through 24 hours. Again, this could be 

partially derived from IL-4 induced upregulation of IL-10, which has been  

demonstrated to suppress NF-κB activity through regulation of p50 [214]. 

Upregulation of IκBα in Müller cells by IL-4 could possibly inhibit 

phosphorylation of p65, as well. In contrast, as expected, traditional canonical 

NF-κB pathway activators IL-1β and TNF-α evoked phosphorylation activity 

mostly at earlier time points.  

The current study is the first one demonstrating the suppressive effect of 

IL-4 on the phosphorylation of NF-κB p65. Whether IL-4 is capable of inhibiting 

IL-1β and TNF-α evoked inflammatory response in high glucose cultured retinal 

residential cells warrants further investigation. Although the detailed regulatory 

chains between different NF-κB p65 sites and downstream genes and protein 

expression of related inflammatory mediators needs further study, the fact that 



- 93 - 
 

 
 

IL-4 not only suppressed NF-κB target inflammatory genes, but also inhibited 

phosphorylation of NF-κB at different sites in different cells provides us another 

avenue for treatment against the pathogenesis of DR. In addition, since NF-κB 

p65 phosphorylation is one of the most important events during high glucose 

induced pathogenic changes in the retina, in this study, it is important to 

understand how NF-κB p65 phosphorylation is promoted with high glucose 

versus cytokine exposure. Again, pro-inflammatory cytokines significantly 

exacerbated high glucose induced NF-κB activity, demonstrating their larger 

role in driving NF-κB phosphorylation and expression of target genes compared 

to high glucose conditions alone.  

4.6 Conclusions 

In summary, high glucose-induced site specific differential phosphorylation 

of NF-κB p65 in HREC and Müller cells were characterized and demonstrated 

the importance of pro-inflammatory cytokines in exacerbating the response. We 

also demonstrated that IL-4 effectively inhibited high glucose-induced NF-κB 

phosphorylation at multiple p65 sites in HREC and Müller cells. The current 

study is the first to characterize high glucose-induced NF-κB p65 

phosphorylation and reveal IL-4’s regulatory effect on this activity. As such, it 

underscores the importance of recognizing the differential influence of 

hyperglycemic conditions between multiple retinal cell types and that the 

observed effects go beyond a single phosphorylation site on NF-κB p65 subunit. 

These findings are important in understanding the pathologic events associated 
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with DR. NF-κB activation is a major event associated with high glucose-

induced changes in the retina; however, we can conclude from this study that 

understanding how NF-κB is activated in each cell type is important since cell 

types and phosphorylation sites are differentially responsive to both high 

glucose and inflammatory mediators. 
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Figure 21. Degradation of IκBα in HREC vs Müller cells when cultured in high 

glucose with cytokine treatments. HREC and Müller cells were cultured under 

normal glucose (NG, 5mM) and high glucose (HG, 25mM) conditions followed by 

TNF-α, IL-1β versus IL-4 treatment for 10 minutes (Müller cells only), 30 minutes, 2 

hours and 24 hours. Protein levels of IκBα in HREC (A) and IκBα in Müller cells (B) 

were detected by Western blot. Data shown are representative of 5 independent 

experiments in duplicate and are expressed as mean ± SD. *P < 0.05 vs NG, #P < 

0.05 vs HG. 
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Figure 22-1. Differential site-specific phosphorylation of NF-κB p65 after high 

glucose exposure and pro- versus anti-inflammatory cytokine stimulation in 

HREC. HREC were cultured under normal glucose (NG, 5mM) and high glucose 

(HG, 25mM) conditions followed by TNF-α, IL-1β versus IL-4 treatment for 30 

minutes, 2 hours and 24 hours. Protein levels of phosphorylated p65 Thr-254 (A), 

phosphorylated p65 Ser-276 (B), phosphorylated p65 Ser-281 (C) and 

phosphorylated p65 Ser-311 (D) were detected by Western blot. Data shown are 

representative of 5 independent experiments in duplicate and are expressed as 

mean ± SD. *P < 0.05 vs NG, #P < 0.05 vs HG. 
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Figure 22-2. Differential site-specific phosphorylation of NF-κB p65 after high 

glucose exposure and pro- versus anti-inflammatory cytokine stimulation in 

HREC. HREC were cultured under normal glucose (NG, 5mM) and high glucose 

(HG, 25mM) conditions followed by TNF-α, IL-1β versus IL-4 treatment for 30 

minutes, 2 hours and 24 hours. Protein levels of phosphorylated p65 

phosphorylated p65 Ser-468 (E) and phosphorylated p65 Ser-529 (F), 

phosphorylated p65 Ser-536 (G) and phosphorylated p65 Thr-435 (H) were 

detected by Western blot. Data shown are representative of 5 independent 

experiments in duplicate and are expressed as mean ± SD. *P < 0.05 vs NG, #P < 

0.05 vs HG. 
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Figure 23-1. Site-specific differential phosphorylation of NF-κB p65 in Müller 

cells after high glucose exposure and pro- versus anti-inflammatory cytokine 

stimulation. Müller cells were cultured under normal glucose (NG, 5mM) and high 

glucose (HG, 25mM) conditions followed by TNF-α, IL-1β versus IL-4 treatment for 

10 minutes, 30 minutes, 2 hours and 24 hours. Protein levels of phosphorylated p65 

Thr-254 (A), phosphorylated p65 Ser-276 (B), phosphorylated p65 Ser-281 (C) and 

phosphorylated p65 Ser-311 (D) were detected by Western blot. Data shown are 

representative of 5 independent experiments in duplicate and are expressed as 

mean ± SD. *P < 0.05 vs NG, #P < 0.05 vs HG. 
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Figure 23-2. Site-specific differential phosphorylation of NF-κB p65 in Müller 

cells after high glucose exposure and pro- versus anti-inflammatory cytokine 

stimulation. Müller cells were cultured under normal glucose (NG, 5mM) and high 

glucose (HG, 25mM) conditions followed by TNF-α, IL-1β versus IL-4 treatment for 

10 minutes, 30 minutes, 2 hours and 24 hours. Protein levels of phosphorylated p65 

Ser-468 (E), phosphorylated p65 Ser-529 (F), phosphorylated p65 Ser-536 (G) and 

phosphorylated p65 Thr-435 (H) were detected by Western blot. Data shown are 

representative of 5 independent experiments in duplicate and are expressed as 

mean ± SD. *P < 0.05 vs NG, #P < 0.05 vs HG. 
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Figure 24-1. mRNA expression levels of NF-κB regulated pathogenic genes 

after high glucose exposure and pro- versus anti-inflammatory cytokine 

treatment in HREC. HREC were cultured under normal glucose (NG, 5mM) and 

high glucose (HG, 25mM) conditions followed by TNF-α, IL-1β versus IL-4 treatment 

over time. mRNA levels of ICAM-1 (A), VCAM-1 (B), IL-1β (C), IL-6 (D), IL-8 (E) and 

IL-10 (F) were detected by real-time RT-PCR. Data shown are representative of 5 

independent experiments in duplicate and are expressed as mean ± SD. *P < 0.05 

vs NG, #P < 0.05 vs HG. 
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Figure 24-2. mRNA expression levels of NF-κB regulated pathogenic genes 

after high glucose exposure and pro- versus anti-inflammatory cytokine 

treatment in HREC. HREC were cultured under normal glucose (NG, 5mM) and 

high glucose (HG, 25mM) conditions followed by TNF-α, IL-1β versus IL-4 treatment 

over time. mRNA levels of TNF-α (G), CXCL-11 (H), CCL-23 (I), COX-2 (J) and BAX 

(K) were detected by real-time RT-PCR. Data shown are representative of 5 

independent experiments in duplicate and are expressed as mean ± SD. *P < 0.05 

vs NG, #P < 0.05 vs HG. 
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Figure 25-1. mRNA expression of NF-κB regulated pathogenic genes under 

high glucose conditions and cytokine polarization in Müller cells. Müller cells 

were cultured under normal glucose (NG, 5mM) and high glucose (HG, 25mM) 

conditions followed by TNF-α, IL-1β versus IL-4 treatment over time. mRNA levels 

of IL-1β (A), IL-6 (B), IL-8 (C), IL-10 (D), IL-17a (E) and TNF-α (F) were detected 

by real-time RT-PCR. Data shown are representative of 5 independent experiments 

in duplicate and are expressed as mean ± SD. *P < 0.05 vs NG, #P < 0.05 vs HG. 
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Figure 25-2. mRNA expression of NF-κB regulated pathogenic genes under 

high glucose conditions and cytokine polarization in Müller cells. Müller cells 

were cultured under normal glucose (NG, 5mM) and high glucose (HG, 25mM) 

conditions followed by TNF-α, IL-1β versus IL-4 treatment over time. mRNA levels 

of TNFR (G), IFNγ (H), CXCL-11 (I), iNOS (J), COX-2 (K) and cFLIP (L) were 

detected by real-time RT-PCR. Data shown are representative of 5 independent 

experiments in duplicate and are expressed as mean ± SD. *P < 0.05 vs NG, #P < 

0.05 vs HG. 
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Figure 26-1. Protein levels of select NF-κB regulated inflammatory mediators 

in HREC after high glucose exposure and pro- versus anti-inflammatory 

cytokine polarization. HREC were cultured under normal glucose (NG, 5mM) and 

high glucose (HG, 25mM) conditions followed by TNF-α, IL-1β versus IL-4 treatment 

for 24 hours. Protein levels of ICAM-1 (A), VCAM-1 (B), IL-1β (C), IL-8 (D), IL-10 

(E), TNF-α (F) and COX-2 (G) were detected by ELISA or Western-blot. Data shown 

are representative of 5 independent experiments in duplicate and are expressed as 

mean ± SD. *P < 0.05 vs NG, #P < 0.05 vs HG.. 
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Figure 26-2. Protein levels of select NF-κB regulated inflammatory mediators 

in HREC after high glucose exposure and pro- versus anti-inflammatory 

cytokine polarization. HREC were cultured under normal glucose (NG, 5mM) and 

high glucose (HG, 25mM) conditions followed by TNF-α, IL-1β versus IL-4 treatment 

for 24 hours. Protein levels of IL-10 (E), TNF-α (F) and COX-2 (G) were detected 

by ELISA or Western-blot. Data shown are representative of 5 independent 

experiments in duplicate and are expressed as mean ± SD. *P < 0.05 vs NG, #P < 

0.05 vs HG.. 
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Figure 27. Protein levels of select NF-κB regulated inflammatory mediators in 

Müller cells exposed to high glucose with cytokine treatment. Müller cells were 

cultured under normal glucose (NG, 5mM) and high glucose (HG, 25mM) conditions 

followed by TNF-α, IL-1β versus IL-4 treatment for 24 hours. Protein levels of IL-1β 

(A), IL-8 (B), IL-10 (C), TNF-α (D) and COX-2 (E) were detected by ELISA or 

Western-blot. Data shown are representative of 5 independent experiments in 

duplicate and are expressed as mean ± SD. *P < 0.05 vs NG, #P < 0.05 vs HG. 
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CHAPTER 5 “RETINAL ISCHEMIA-REPERFUSION INJURY MODEL: 

A CONTRAST IN PATHOGENIC RESPONSES BETWEEN C57BL/6J 

VERSUS BALB/cJ MICE” 

 

5.1 Abstract 

Retinal ischemia has been shown to contribute to the pathogenesis 

observed during diabetic retinopathy (DR). As a result, the retinal ischemia-

reperfusion (I/R) injury model has been useful in studying neuronal and 

vascular damage to the retina – damage that is similarly observed during the 

development of DR. Notably, murine models of both I/R and DR tend to be 

carried out in C57BL/6J (B6) mice, which have been classified as type 1-

dominant responders. In bacterial keratitis models, previous study has 

established that B6 mice are susceptible, while BALB/c mice (classified as type 

2-dominant) exhibit a resistant phenotype [215]. Although the cornea and retina 

are quite different, we questioned whether the type 1/type 2 inflammation 

paradigm could be extrapolated to events associated with the pathogenesis of 

I/R and related DR. I/R injury was induced in both B6 and BALB/c mice by 

cannulating the anterior chamber of one eye of anesthetized animals. The other 

eye served as control. Retinas were collected after 2 days and stained by 

hematoxylin and eosin (H/E) to examine neuronal differences. After 10 days, 

retinal microvasculature was isolated from whole retinas to quantitate 

differences in degenerated capillaries. Retinal lysates were also processed for 

protein analyses of key inflammatory mediators known to play a role in the 

development of DR. Overall, strain specific differences were observed between 



- 108 - 
 

 
 

B6 and BALB/c mice in response to I/R injury. Although both strains showed 

signs of retinal injury, more damage was observed in B6 mice as detected by 

reduced retinal thickness, increased microvascular degeneration and elevated 

inflammatory mediators. These data suggest that B6 and BALB/c mice respond 

to I/R injury differently, which has implications not just for retinal ischemia, but 

for the development of DR. Elucidating these differences both offers potential 

therapeutic points of intervention and impacts the current modeling system 

used to study retinal diseases, such as DR. 

5.2 Introduction 

Ischemia-reperfusion (I/R) injury induces the production of free radicals 

resulting in local inflammation and tissue damage. At the reperfusion stage, 

restoration of the blood supply leads to accumulation of oxygen radicals, further 

causing oxidative stress such as lipid peroxidation [107, 108], damaging 

residential cells and stimulating secretion of pro-inflammatory cytokines. 

Production of IL-8 and adhesion molecules chemoattracts neutrophils and 

macrophages into the injured tissue. Accumulation of inflammatory cells at the 

I/R site elicits further production of reactive oxygen species (ROS), cytokines 

and chemokines, exacerbates local inflammation in the damaged tissue.  

Regarding eyes, retinal I/R surgery, by increasing intra-ocular pressrure,  

was demonstrated to induce pathophysiological changes that are similarly 

observed in diabetic retinopathy (DR) and glaucoma [112]. The ROS 

scavenging system is severly impaired in DR, resulting in upregulated ROS 
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concentrations in the retina. This is comparable to the accumulation of ROS 

and its resultant upregulation of inflammation along with vascular damage after 

I/R. Earlier studies found that I/R promoted nitric oxide neurotoxicity, resulting 

in retinal neurodegeneration [113, 216]. This effect is also demonstrated by 

reduction of amplitude of a-wave and b-wave based on electroretinogram (ERG) 

[217]. In addition, studies in rodent models demonstrated vascular 

degeneration after retinal I/R surgery as detected by acellular retinal capilaries 

and inflammatory markers inducible nitric oxide synthase (iNOS) and 

cyclooxygenase-2 (COX-2) [114]. Retinal apoptosis, breakdown of the blood-

retinal barrier (BRB), and excerbated retinal microvascular leakage were also 

recorded following induced intraocular pressure and reperfusion [218]. Thus, 

the retinal I/R model is a reliable tool to mimic neurodegeneration, 

microvasuclar degeneration and inflammation associated with DR.  

 In DR pathogenesis, upregulation of inflammatory markers such as iNOS, 

COX-2, intracellular adhesion molecule-1 (ICAM-1), vascular endothelial 

growth factor (VEGF), NF-κB, interleukin-1 beta (IL-1β) not only emphasizes 

the important role of inflammation, but also implies its crossing-talking with 

other pathogenic pathways [8]. Similarly, increased leukocyte rolling and 

accumulation at retinal microvasculature was observed in a rat model of I/R 

[219]. There is significant upregulation of inflammatory markers following retinal 

I/R surgery as well since it induces similar microvascular ischemia to DR; tumor 
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necrosis factor-alpha (TNF-α), IL-1β, ICAM-1 and interleukin-6 (IL-6) were all 

found to be upregulated in rats after retinal I/R surgery [220].  

The type 1 versus type 2 inflammation paradigm emphasizes the cytokine 

function and denotes production by all cell types rather than CD4+ T Cells as 

the sole source of these mediators [221]. Type 1-dominance is usually 

characterized by strong pro-inflammatory activation, accompanied by elevated 

and sustained pro-inflammatory cytokine levels that exacerbate inflammation 

and can develop into chronic inflammation state, if left uncontrolled. In type 2 

inflammation, anti-inflammatory response dominates, limiting inflammation with 

subsequent inflammation resolution by pro-resolving pathway. In this regard, 

the current study is focusing on the general inflammatory acitivties in the retina, 

in which residential retinal cells and inflammatory cells both partipate in by 

secreting cytokines that drive inflammation further. Despite all the effort has 

been put into studies of inflammation in DR, little is known regarding the infleuce 

of the type 1/type 2 balance on DR. BALB/c (resistant, type 2 dominant) and 

C57BL/6J (B6) (susceptable, type 1 dominant) type mice have proven as very 

suitable tools in investigating type 1/type 2 inflammation [40, 43, 222]. In this 

study, we sought to investigate the difference in the pathogenic response 

related to type 1 versus type 2 inflammation using a model of retinal I/R. We 

expect these findings will define a role for inflammation in the retinal response 

to ischemic conditions, which is a characteristic event associated with the 

development of DR.  
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5.3 Methods 

Intraocular Ischemia-Reperfusion 

All mouse experiments were approved by the Institutional Animal Care and 

Use Committee at Wayne State University (Protocol# 11-08-14). I/R was carried 

out in 7 weeks old male B6 and BALB/c mice purchased from Jackson 

Laboratories. The anterior chamber of one eye was cannulated with a 30-gauge 

needle attached to a line infusing normal saline. Intraocular pressure (IOP) was 

measured by a handheld tonometer (TONO Pen; Medtronic Solan, Jacksonville, 

FL) in mouse eyes, and pressure in the eye regulated to 80-90 mm Hg with a 

pressure infuser (Infu-surg; Ethox Corp., Buffalo, NY). The other eye of the 

same animal servedas a control. After 90 min of ischemia, the needle was 

withdrawn, IOP was normalized, and reflow of the retinal circulation was 

documented visually [114]. Ocular tissue was harvested at 2 and 10 days post-

injury for analyses as described below. 

Neuronal analyses 

At 2 days post-I/R injury, whole eyes were removed, followed by a 30 min 

fixation in 4% paraformaldehyde. Ten-μm retinal sections were stained using 

for hematoxylin and eosin, then visualized by light microscopy for morphometry 

of retinal thickness. Photomicrographs were assessed for retinal thickness and 

the number of cells in the ganglion cell layer were quantitated. The thickness of 

the retina and the cell count was measured using Invitrogen EVOS FL Auto Cell 

Imaging System (Invitrogen, Carlsbad, CA). 
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Vascular analyses 

Eyes were enucleated at 10 days after I/R exposure suspended in 10% 

buffered formalin for 5 days, and the retina was dissected in 40U/mL elastase 

solution (Merck Millipore, Burlington, MA). The retinal vascular tree was dried 

onto a glass slide and stained with hematoxylin-periodic acid-Schiff. 

Degenerate  capillaries, identified as acellular capillary-sized tubes, were 

counted [223] in mid-retina in 5 fields. Degenerate capillaries were excluded if 

their average diameter was less than 20% of surrounding healthy capillaries 

[224]. 

ELISA 

IL-1β and TNF-α ELISA kits (R&D Systems, Minneapolis, MN) were used 

to measure protein expression in whole retinal lysates. Retinal extracts were 

prepared by sonication. All samples were assayed in duplicate or triplicate per 

the manufacturer’s instruction. Equal protein was loaded into all wells. The 

reported sensitivities of these assays are 4.8 pg/mL for IL-1β and 7.21 pg/mL 

for TNF-α. 

Western Blotting 

Retinal lysates were collected and processed as described above. Equal 

amount of total proteins were then separated on 4–20% tris-glycine gels 

(Invitrogen, Carlsbad, CA) and transferred to nitrocellulose membranes. After 

blocking membranes in TBST (10 mM Tris-HCl buffer, pH 8.0, 150 mM NaCl, 

0.1% Tween 20) and 5% (w/v) BSA at r.t. for 60 min, membranes were 
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incubated overnight at 4°C with antigen-specific primary antibodies. The 

primary antibodies were used as follows: anti-NF-κB p65 (phospho Ser-536), 

anti-ICAM-1 (Cell Signaling Technology, Danvers, MA); anti-VEGF (Abcam, 

Cambridge, United Kingdom); anti-COX-2, and anti-β-actin (Santa Cruz, Santa 

Cruz, CA). Blots were then incubated with species-specific HRP-conjugated 

secondary antibodies for 2h at r.t. Proteins were visualized by incubation with a 

chemiluminescence substrate kit (Thermo Fisher Scientific, Waltham, MA). 

Western blot images were collected (Azure Biosystem C500, Dublin, CA) and 

target protein expression was quantified (Image Studio Lite software) after 

normalizing to β-actin. One representative blot is shown. 

Statistical analysis 

All assays were carried out at least twice from five independent experiments 

and the data are presented as mean + SD. Data were analyzed by the Analysis 

of variance (ANOVA) test following by Fisher’s LSD test. P < 0.05 was 

considered to be statistically significant. 

5.4 Results 

Loss of retinal thickness and retinal ganglion cells as observed in BALB/c 

and B6 mice following I/R surgery 

To begin investigating whether BALB/c mice are more resistant than B6 to 

retinal damage, we first measured I/R induced retinal neurodegenreration. 

Figure 28 shows significant retinal thining of retina in both B6 (B) and BALB/c 

mice (D), compared to non-injured control mice (A &C, respectively). Retinal 
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thickness loss is significantly less in BALB/c I/R mice compared to B6 I/R mice. 

This is supported by more ganglion cells observed in BALB/c I/R mice. 

BALB/c mice exhibit reduced microvascular damage in response to I/R 

compared to B6 

Next, we sought to find out if I/R-induced retinal microvascular damage 

could also be limited in these type 2-dominant mice. As shown in Figure 29, 

significantly fewer degenerated acellular capillaries were observed in BALB/c 

mice when compared to B6 mice following retinal I/R surgery.  

Retinal I/R induced inflammatory activities are reduced in type 2 dominant 

BALB/c mice 

It is important to determine whether retinal I/R induced local inflammation 

is different in type 2 dominant BALB/c mice versus type 1 dominant B6 mice. 

As shown in Figure 30, IL-1β (A), TNF-α (B), ICAM-1 (C), VEGF (D), 

phosphorylated NF-κB p65 at Ser-536 (F) have similar trends: I/R-induced 

upregulation of these molecules is significantly lower in BALB/c mice compared 

to B6 mice. Control mice of BALB/c have higher expression of COX-2 than that 

of B6 mice. I/R upreuglated levels of COX-2 in B6 mice yet downregulated it in 

BALB/c mice (E). 

5.5 Discussion 

For the recent decade, inflammation been indentified as one of the 

important therapeutic target for DR [116, 225, 226]. In vitreous fluid of eyes of 

patients with progressive diabetic retinopathy (PDR), elevated levels of 
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various cytokines have been detected; several of them are potent 

inflammatory mediators, including IL-1β, TNF-α, IL-6, IL-8 and macrophage 

chemotatic protein-1 (MCP-1) [227, 228]. As key players in local inflammation 

and homeostasis, the relative balance between type 1 pro-inflammatory 

cytokines (IFN-γ, TNF-α, IL1β) and type 2 anti-inflammatory cytokines (IL-4, 

IL-10) is expected to be essential in DR pathogenesis. The major goal of this 

study is to determine whether a predominately anti-inflammatory environment 

in type 2 models would build a “resistant” force against inflammatory 

mediators of DR. Using a Pseudomonas aeruginosa-induced bacterial 

keratisis model, previous work in our lab has demonstrated the benefits of 

type 2 BALB/c mice in terms of local homeostasis and reconsitution after 

infection [42]. Thus, we expected BALB/c mice to be at least partially resistant 

to I/R-induced DR-like inflammation, as well.  

NF-κB is a pivotal regulator of general inflammation, and for the recent 

decade, was demonstrated to be a master transcription factor protein family to 

promote transcription of pathogenic molecules for DR as it could not only be 

upregulated by reactive oxygen species (ROS) [88] and advanced glycation 

endpucts (AGEs) [89, 90], but also further stimluates production of IL-1β, TNF-

α, IL-6, IL-8, MCP-1, iNOS, COX-2, ICAM-1, vascular adhesion molecule-1 

(VCAM-1), Fas and Fas ligand [91-99]. In type 2 dominant BALB/c mice, 

phosphorylation at NF-κB p65 ser-536 was significantly downregulated in 

comparison to B6 mice in current study. Since phosphorylation of NF-κB p65 is 
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prerequisite to its translocation and subsequent binding to target genes, and 

p65 is the most important activator in NF-κB family, this result implicates that, 

in type 2 dominant BALB/c mice, the ability of NF-κB to promote transcription 

of target genes is strongly compromised. This correlates with the observed 

changes in IL-1β, TNF-α and ICAM-1 protein levels since they are known to be 

regulated by NF-κB. Given IL-1β and TNF-α are hallmark inflammatory 

molecules in DR-induced inflammation and canonical activators of NF-κB, the 

fact that they were downregulated in I/R-induced type 2 dominant BALB/c mice 

indicates less extent of inflammatory activity. In a streptozotocin-induced DR 

model, inhibition of ICAM-1 decreased leukotasis and vascular leakage [22]. 

Thus, less expression of ICAM-1 in BALB/c mice compared to B6 mice 

suggests that these animals may have relatively fewer leukocyte docking and 

transmigration activities and reduced local inflammation in response to I/R injury. 

On the other hand, upregulation of COX-2 and its induced production of 

prostaglandins were reported in DR models [27, 229]. As the key enzyme for 

production of pro-inflammatory lipid mediators, COX-2 promotes pathogenesis 

of DR by producing prostaglandins. We observed a higher level of basal COX-

2 in BALB/c mice, yet this level goes down with retinal injury. It is possible that 

decreased COX-2 expression will lead to compromised production of 

prostaglandins in BALB/c mice, although this needs further study to confirm.  

The initial genesis of vision loss in DR has long-time been attributed to 

breakdown of blood-retinal barrier and increased retinal microvascular 
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permeability [230]. There are two major types of cells in the retinal 

microvascular endothelium: pericytes and endothelial cells. Based on animal 

study, pericytes begin to degenerate before the disappearance of endothelial 

cells in DR, leaving thin, acellular capillaries behind [231]. As a result, the 

ischemic retina starts to build more capillaries in an attempt to restore the blood 

supply, by secreting VEGF, which stimulates angiogenesis [232]. To this end, 

we observed fewer degenerated capillaries in the vascular analyses, indicating 

BALB/c mice are more resistant to microvascular degeneration. Additionally, 

BALB/c mice express lower levels of VEGF following I/R surgery, implying less 

pathogenesis of microvasculature [233]. While DR has been traditionally 

considered to be a microvascular eye complication, recently it is demonstrated 

to be more of a neurovascular event. Experts have concluded that 

neurodegeneration takes place very early during pathogenesis of DR, 

predicting and contributing to later microvascular changes [234]. As we 

observed much less neurodegeneration in BALB/c mice as well, it is concluded 

that BALB/c mice, with a type 2-dominant inflammatory response, are resistant 

to DR-like neurodegeneration and microvascular degeneration.  

Even though steroids and nonsteroidal anti-inflammatory drug (NSAID) 

have been applied to treat ocular inflammatory coditions [235], very limited 

effort has been put into investigating anti-inflammatory and pro-resolving 

mechanism in DR disease progression. Current anti-inflammatory treatments 

are also expected to deliver unwanted consequence and may require 
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combination usage. The low efficacy of anti-inflammatory treatments might be 

attributed to insuffient resolution of inflammation. This study, in an effort to 

unravel more myth behind pathogenesis of inflammation in DR, demonstrates 

Type 2 dominant immune activity is able to resist I/R induced DR like 

inflammatory stimulation and neurovascular degeneration. Whether 

neurovascular changes in BALB/c mice is direct consequece of robust anti-

inflammatory activities in Type 2 type immunity needs further study. However, 

the fact we observed significantly less expression of pro-inflammatory cytokines 

have provided another insight for the interventation point of treatments on DR.  
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Figure 28. Neuronal analysis of BALB/c and B6 retinas after I/R. Panels A and 

C show the contralateral eyes (ctrl) of B6 and BALB/c mice, respectively. Panels B 

and D show eyes 2 days after I/R surgery in B6 and BALB/c, respectively. Bar 

graphs below quantitative changes in retinal thickness (left) and cell numbers 

(right). Data shown are representative of 5 independent experiments and are 

expressed as mean ± SD. *P < 0.05 indicates statistical significance. 
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Figure 29. Vascular analysis of BALB/c and B6 mice after I/R. Panels A and C 

show the contralateral eyes (ctrl) of B6 and BALB/c mice, respectively. Panels B 

and D show eyes 10 days after I/R surgery in B6 and BALB/c, respectively. 

Quantification of acellular capillaries is presented in the bar graph. Data shown are 

representative of 5 independent experiments and are expressed as mean ± SD. *P 

< 0.05 indicates statistical significance.  
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Figure 30. Selected inflammatory markers as detected in retinas of BALB/c 

and B6 mice in response to I/R. Retinal lysates were processed after 10 days of 

I/R injury. Protein levels of IL-1β (A), TNF-α (B), ICAM-1 (C), VEGF (D), COX-2 (E) 

and phosphorylated NF-κB at ser-536 were detected by ELISA or Western-blot. 

Data shown are representative of 5 independent experiments and are expressed 

as mean ± SD. *P < 0.05 indicates statistical significance.  
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ABSTRACT 

INFLAMMATION IN THE PATHOGENESIS OF DIABETIC RETINOPATHY 

by 

HAOSHEN SHI 

May 2018 

Advisor: Dr. Elizabeth Berger 

Major:  Anatomy and Cell Biology 

Degree: Doctor of Philosophy 

The general purpose of these studies is to investigate inflammation in 

diabetic retinopathy in an effort to identify key intervention points to develop as 

treatments. Firstly, we showed that the neuropeptide VIP displayed protective 

immunoregulatory effects on retinal endothelial cells cultured under high 

glucose conditions. This effect was carried out, in part through the VPAC2 

receptor.  

Next, we studied the β-adrenergic receptor agonist, Compound 49b, and its 

effect on the pro-resolving RvD1 pathway. Compound 49b was previously 

shown to suppress both inflammatory and apoptotic responses in DR. We 

demonstrated that Compound 49b rescued the high glucose-induced decrese 

in RvD1 and its receptors in diabetic animals and retinal endothelial cell culture, 

by upregulating 15-LOX enzyme expression.  

We also studied the phosphorylation of NF-κB p65 in two retinal cell types 

exposed to high glucose. High glucose conditions stimulated phosphorylation 
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of NF-κB p65 at Thr-254, Ser-276, Ser-468, Ser-529, Thr-435 in retinal 

endothelial cells and Thr-254, Ser-281, Ser-311, Ser-468, Thr-435 in Müller 

cells. IL-4, an anti-inflammatory cytokine, suppressed phosphorylation at Thr-

254, Ser-311, Thr-435 in retinal endothelial cells and Thr-254, Ser-276, Ser-281, 

Thr-435 in Müller cells. Futhermore, IL-4 also reduced related downstream NF-

κB regulated molecules IL-8, TNF-α, and upregulated IL-10. 

The influence of type 1 vs type 2 immune backgrounds on DR-related 

damage using a model of retinal ischemia-reperfusion was studied in C57BL/6 

and BALB/c mice. Notably, both neuronal and vascular degeneration were 

significantly less in BALB/c compared to B6 mice. Furthermore, key 

inflammatory molecules IL-1β, TNF-α, NF-κB, ICAM-1 and VEGF were 

downregulated in BLAB/c mice, as well.  

Collectively, we have shown the extensive role that inflammation plays in 

diabetic retinopathy pathogenesis. More importantly, the innate type 1/type 2 

paradigm suggests that the potential of anti-inflammatory treamtents and pro-

resolving lipid mediators in suppressing pathogenesis of DR. We expect our 

findings in pathogenesis of inflammation to contibute to development of anti-

inflammatory and pro-resolving treatments for diabetic retinopathy.  
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