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PREFACE 

This dissertation presents the outcome of five years of research work carried out to pursue 

a Ph.D. degree at the department of Physics and Astronomy, Wayne State University. The main 

goal of this study is to understand the biophysics of cell membranes. In particular, understand the 

nanoscale changes in membrane structure for various cellular processes and the dynamics of 

biomolecules. All experiments were carried out by me and performed at Wayne State University. 

The work presented here mainly demonstrate the enhanced ability of detecting nanoscale 

membrane curvature by Polarized Localization Microscopy (PLM), and the discovery of cholera 

toxin effect on the membrane. PLM is a novel microscopy technique developed by our lab to 

overcome current experimental limitations in studying nanoscale membrane curvature. The 

microscopy setup, theory, experimental methods, data analysis, and the interpretation of the results 

in comparison to simulations, use the broad knowledge of physics to understand biological 

systems.  

This dissertation starts with a brief introduction regarding cell membrane components and 

lipids behavior discussed in Chapter 1. Chapter 2 discusses the available microscopy techniques 

and their limitations in detecting nanoscale membrane curvature, driving the need for a novel 

technique that enables the detection of nanoscale membrane deformation, given by PLM in 

Chapter 3. The enhanced resolution, and membrane orientation information, provided by PLM 

allowed the discovery and the first direct report of visualizing nanoscale membrane budding 

induced by Cholera Toxin Subunit B. This is mainly discussed in Chapter 4. The importance of 

crosslinking, valency, and their effects on membrane structure are described in Chapters 5 and 6. 

Finally, a collective summary of the dissertation subjects is discussed in Chapter 7. 
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CHAPTER 1 INTRODUCTION  

1.1 Cell membrane 

The cell is a complex machine and a fundamental building block of life. This highly 

organized submicron structure possesses various components, subcellular structures, and 

organelles. The attributes of this unit of life are countless including growth, energy transformation, 

and replication. The plasma membrane encloses the cell, define its boundaries, maintains its 

components, organizes the transport of molecules, and performs various biological functions such 

as endocytosis/exocytosis and trans-membrane signaling. The unique structure and composition 

of the membrane facilitates its complex functional role. The supramolecular assemblies and 

composition of proteins, lipids, and cholesterol is critical for the membrane specific function. 

Biological membranes consist mainly of a thin lipid bilayer film that serves as an impermeable 

barrier to most water-soluble molecules and proteins. The lipid bilayer maintains its structure via 

hydrophobic interactions which is critical for the assembly of the lipids and the permeability 

properties of the membrane. Further, the biological structure of the membrane is conserved via 

weak forces such as covalent hydrogen bonds, ionic bonds, hydrophobic interactions, Van der 

Waal forces, and attractive forces between molecules. These week chemical forces ensure the 

structural stability of the membrane at physiological conditions. Membrane continuous thermal 

fluctuations impart stability across the bilayer by allowing molecules to explore more space, and 

to exist in close proximity with neighboring molecules allowing some bonds to form or break with 

time.   

1.2 Lipids  

            The amphiphilic nature of lipids make them a suitable component of the plasma membrane 

representing ~70% of its mass1. Lipid molecules have a polar hydrophilic head group “water-
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loving” and a hydrophobic nonpolar “water-fearing” tail. The tails of the lipids may vary in length 

and shape. For example, the presence of an unsaturated double bond results in a kink in the lipid 

tail and resistance to order molecular packing (Fig. 1). The saturation level of the tails determine 

the lipid transition temperature. The specific properties of each lipid reflects its fitness to serve in 

a specific membrane mechanism such as membrane bending during viral infection. If dispersed in 

aqueous solution it is energetically favorable for the amphiphilic lipids to aggregate and form a 

micellar structure where the hydrophobic tails are enclosed between the hydrophilic head groups. 

Multi unilamellar vesicles (MLVs) also assemble spontaneously upon exposing lipids to aqueous 

environment. Lipid bilayers can me created artificially, as discussed later, or extracted from cells 

(Giant Plasma Vesicles (GPV)). One of the most important aspect of the two dimensional lipid 

bilayer is fluidity; lipids and other membrane-incorporated molecules laterally diffuse within the 

membrane.  

 

 
 

Figure 1. Lipid structure with varying tail saturation level. (A) POPC lipid and (B) DPPC lipid. 

The difference in the lipid tail saturation results in differing phase preferences and Tm for these 

lipid molecules where Tm is -2 ºC and 41 ºC for (A) and (B), respectively. 

 

To mimic the complex composition of the cell membrane and understand its structural and 

functional role, a wide variety of natural or synthetic lipids can be used. Some of the lipids major 

classes are: phospholipids, sphingolipids, and sterols. Phospholipids possess two long hydrocarbon 

chains with a hydrophilic phosphorylated head group with a glycerol backbone, while the 

sphingolipids have sphingosine head group instead.  Cholesterol belongs to the sterol class with a 

rigid ring structure and a small head group. Most lipids can also be bio-synthesized or purchased 
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for a bilayer assembly in vitro.  Utilizing a binary or a ternary mixture of phospholipids, 

sphingolipid, and cholesterol results in phase separation with co-existing domains of liquid-

ordered, liquid-disordered, or gel phases at specific temperatures. Lipid packing in 

ordered/disordered/ or gel compartments strongly depend on the lipids tail saturation and transition 

temperature. For lipids with low transition temperature i.e. they are in the fluid state at room 

temperature with unsaturated tails tend to partition in liquid disordered phase. While lipids with 

high transition temperature and high level of saturation of the tails preferentially partition in liquid 

ordered phase.  

1.3 Lipid phases 

Liquid ordered phase (Lo) is a crystalline fluid phase of the lipid bilayer strongly dependent 

on cholesterol and saturated lipids. The nanoscale area enriched with highly ordered, closed packed 

lipids, is generally attributed and associated with lipid rafts. The unique intrinsic properties of the 

small rigid cholesterol molecules is suitable for them to fill in the voids between the tails of the 

lipids within this Lo region.  Cellular membrane components assemble into specialized domains 

known as lipid rafts that is composed of a heterogeneous sterol- and sphingolipid-enriched domain 

(Fig. 2), which facilitate molecular sorting in vitro2. Lipid rafts have been implicated in a variety 

of fundamental cellular mechanisms such as transmembrane signaling3. Some membrane-bound 

proteins are bound to lipid rafts which serve as a platform for membrane signaling. Lateral 

segregation by rafts is mediated by cholesterol molecules that favors interactions with saturated 

lipid tails forcing lipids to segregate and form domains. Despite extensive experimental data, there 

exist no clear confirmation of the existence of such region over a long range of time. However, it 

is hypothesized that such rafts form and dissipate within a short period of time, while a membrane 

signaling or internalization event occur.  
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Figure 2. Lipid raft platform. Lipid rafts are made up of GPI-anchored protein, transmembrane 

proteins and cholesterol2.  

 

The gel phase is a higher order packing version of the liquid ordered phase, also sometimes 

referred as “the solid phase”. Lipids in this phase have long extended saturated carbon tails, are 

less fluid, highly ordered, closely packed, periodic, locked in position, and restricted in their 

orientation. The liquid disordered phase (Ld), on the other hand, is a cholesterol deficit, unsaturated 

lipid rich fluid bilayer phase. The lipid tails are randomly oriented, loosely packed, allowed to 

explore more space, and undergo free non- restricted diffusion.  

Each phase possess unique properties of diffusion, packing, composition, thickness, 

bending rigidity and shape4. Generally, lipids undergo free diffusion in the Ld phase, while they 

experience restricted diffusion in the Lo and gel phases. Closed packed, long saturated carbon tail 

lipids tend to be enriched in the in Lo and gel phase increasing the stiffness of the bilayer. Thus the 

length of the existing lipids in each phase affect the bilayer core thickness,  resulting in a substantial 

thickness mismatch between the Lo and gel thick phases in comparison to the Ld phase5. Further, 

the boundary shape of the different phases is affected by the rigidity of each. Circular fluid Lo 

compartments in an Ld background, and vice versa, have been visualized on giant unilamellar 

vesicles (GUVs)6. However, gel phase tend to have a more rigid structure, less diffusing, sharper 

shape boundary than the other fluid phases7. Temperature, lipids composition, and cholesterol 

concentration, and line tension are critical factors in determining the phase state of the bilayer and 

the possibility of phase co-existence. It is critical to understand the lipid tail length and degree of 
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unsaturation and it’s relation with phases as it’s associated with its impact on the membrane 

structure, function, and behavior.  

1.4 Model membranes 

Model membranes are frequently used to probe the fundamental properties of the cell 

membrane structure and the particular effects of membrane proteins, sterols, and sphingolipids.  

Model membranes can be fabricated by several methods, in a variety of vesicle sizes, or as a planar 

supported lipid bilayer (SLB). Free floating bilayers are more biologically relevant due to the 

decreased interaction between the bilayer and the substrate, however, there are also some 

disadvantages associated with such systems in regards to limitations in imaging.  Substrate-free 

synthetic bilayers include: giant unilamellar vesicles (GUVs) and black lipid membranes (BLM). 

GUVs are giant liposomes (~<100 µm in diameter) created by electro formation where a dried 

lipid film of desired composition is placed on an ITO plate, and exposed to an alternating electric 

field. Blistering of the liposomes away from the flat film is observed over the course of incubation. 

Whereas, BLM is created over an aperture of hundreds of microns in size by spontaneous assembly 

of the dispersed lipids as the aperture is dropped into the aqueous solution. The disadvantage of 

such a system is the presence of defects and oils within the membrane. Planar bilayers are a 

powerful system, widely used for the convenience of imaging a two dimension hundreds of 

microns size area, while testing biological phenomena with the desired controlled molecular 

components. The creation of a SLBs on glass is performed by the fusion of vesicles (small or large 

vesicles) on a plasma cleaned glass dish forming a continuous bilayer. Small unilamellar vesicles 

(SUVs) are vesicles of diameter that ranges from 30 to 50 nm. Preparation of SUVs incorporates 

mixing of non-fluorescent phospholipids (e.g. POPC, DOPC, etc..) and fluorescent lipids for 

molecule tracking and bilayer visualization by fluorescence microscopy (e.g., DPPE-Rhodamine). 
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Adding an aqueous solution to the dried lipid mixture initiate the formation of MLVs, while when 

followed by rigorous sonication these MLVs will break down into smaller nanometer unilamellar 

structures (SUVs). The desired size of the resulting unilamellar vesicles is determined by the 

preparation technique. For instance, to obtain large unilamellar vesicles (LUVs) with diameter of 

100-300 nm, extrusion is required. Basically, passing the MLVs repeatedly through a 

polycarbonate membrane filter of a specific pore size results in a more consistent size distribution 

of the created LUVs.  

1.5 Membrane substrate interaction 

In order to decrease the membrane substrate interactions, several membrane cushions have 

been utilized to eliminate the contact between the created bilayer and the underlying glass. Some 

widely implemented substrates include agarose thin films8,9, polymers such as 

Polydimethylsiloxane (PDMS) films, Poly (methyl methacrylate) (PMMA), Poly-l-lysine (PLL), 

and tethered bilayers by DNA or polyethylene glycol (PEG) lipids. These systems are highly 

desirable for their high efficiencies, unique properties of providing minimal background 

fluorescence, and having minimal interactions with the membrane. It is critical to utilize membrane 

cushions in the case of studies that incorporates transmembrane proteins, helix inserting proteins, 

membrane structure change, and lipid phase micro domain segregation.  

1.6 Membrane Curvature 

Membrane bending is an active membrane activity that is dynamically fostered by changes 

in lipid composition10, line tension11, protein helix insertion12, creation of lipid rafts, leaflet 

mismatch13, and the sorting of phospholipids and membrane proteins14. For instance, the amino-

terminal homology of Epsin 1 (ENTH) binds to phosphatidylinositol-4,5-bisphosphate 

(PtdIns(4,5)P2) lipids and insert an amphipathic helix (helix0) into the membrane15. ENTH 
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influence the membrane shape by increasing the membrane outer leaflet area, thus causing a 

convex curvature. Similarly, proteins with BAR (bin, Amphiphysin, Rvs) domains tend to force 

the membrane to bend upon binding to accommodate the physical structure of the protein.  

Moreover, it has been demonstrated that the lateral pressure generated by the repulsion between 

closely packed bound proteins drives membrane bending, thus protein densities on the membrane 

surface induces curvature and tubulation.   

The 2D fluid membrane can take on a 3D shape in space, which is mainly described by the 

concept of principal curvatures. At each point in space, there exist two principal curvatures that 

characterizes the shape of the membrane at each location. The two principal curvatures denoted 

by c1 and c2 are inversely proportional to the principal radii R1 and R2, and their product is defined 

as the Gaussian curvature. Determination of the principle curvatures is an indicator of the cellular 

processes. For instance, in clathrin-dependent endocytosis the membrane is curved into a sphere 

with a smooth connecting neck between the spherical vesicle and the surrounding bilayer. Such 

structure would possess a positive Gaussian curvature at the top of the sphere with a negative 

Gaussian curvature at its neck. Other biological mechanisms include vesiculation or tubulation. 

The principal curvatures indicates the shape of the membrane curvature such as a positive or 

negative Gaussian surface, a saddle point, a plane, or a cylinder.  

The energy required to bend the membrane at any point is described by Helfrich free energy model 

such that:  

                                  𝐸𝐵𝑒𝑛𝑑 = ∫(𝜅(𝐻 − 𝐻0)2 + 𝜅̅𝐾)𝑑𝐴 .      (Eq. 1) 

This integral incorporates the membrane bending rigidity (κ), membrane Gaussian 

curvature modulus (𝜅̅), the mean local membrane curvature (H), the local Gaussian curvature (K), 

and the intrinsic membrane curvature (H0 ≈ 0) and the area of the desired membrane structure (A).  
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The interplay between cellular membrane deformation and the diverse biological processes 

makes membrane curvature a prime player in membrane trafficking. Formation of membrane 

domains is associated with the redistribution of membrane-bound proteins and phospholipids. 

Investigations of the mechanisms of curvature-sensing and curvature-generating proteins such as 

Epsin16 has been driven to study bacterial localization and internalization process into the cell. 

Bacterial toxins, including cholera toxin and Shiga toxin, have been reported to partition on 

negative curvature regions and segregate from positive ones17. Further, Studies have showed that 

membrane bending is invoked by chemical organization. Membrane geometry is altered due to 

phase separation of phospholipids, a consequence of the bending rigidity difference between the 

two regions18. Some lipids possess an intrinsic curvature or a curvature preference. For instance, 

lipids with smaller head group such as dioleyl phosphatidylethanolamine (DOPE) are represented 

by an inverted cone shape which preferentially partition in negative curvature regions allowing the 

small head groups to be closely packed with a larger volume for the tails to explore. However, 

lipids with larger polar head group and shorter acyl chain are represented by a cone, and tend to 

partition at positive curvature regions allowing the head group to explore more area while 

possessing a crowded hydrophobic core.   

  The shape of the membrane and its curving mechanism is important in countless cellular 

processes, in particular, the size of the curvature region is also important. Nanoscale Membrane 

curvature is a critical component in many biological processes such as presynaptic vesicle fusion19, 

endocytosis/exocytosis, trans-membrane signaling, lipid phase dynamics18, antimicrobial peptides, 

infection and egress of envelope viruses such as via HIV-1 Gag20 ,SNARE proteins 21, and 

interferon-inducible transmembrane proteins22. Thus detecting and resolving nanoscale membrane 

https://en.wikipedia.org/w/index.php?title=Dioleyl_phosphatidylethanolamine&action=edit&redlink=1
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curvature is a critical component in understanding basic functions of trans-membrane molecules, 

viruses, membrane bound proteins and lipids. 

The change in membrane structure affects the biophysics of its constituents. The lateral 

sorting of membrane lipids and proteins coupled with membrane curvature in an interdependent 

manner. The initiation and regulation of complex cellular processes are induced by membrane 

curvature such as membrane bending by curvature sensing proteins.  For example, endocytosis, 

exocytosis, transmembrane signaling, and membrane-binding toxins are all hypothesized to be 

largely regulated by these fundamental biophysical properties of the membrane. Further, many 

physiological processes depend on both the nanoscale membrane curvature and lipid phase23. For 

instance, the interplay of membrane phase and curvature have been demonstrated with envelope 

viruses that 40-100 nm diameter 24, dynamin-regulated vesicles that are 60-80 nm diameter25, and 

vesicle fusion events requiring local membrane radii of curvature as small as 20 nm 26. Therefore, 

exploring the effects of membrane heterogeneity and curvature with various proteins is critical to 

understand cellular processes and the mechanisms they are governed by.    
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CHAPTER 2 IMAGING TECHNIQUES  

2.1 TIRF Microscopy 

Several fluorescence-based imaging techniques have been implemented to observe the cell 

membrane and study its dynamics through observing fluorescent membrane probes within. 

Fluorescence occurs when an electron in the excited singlet state is paired to an electron in the 

ground state with opposite spins. The electron is initially excited by the absorption of light by the 

fluorophore. As the electron decays from the excited singlet state to the ground state, it emits a 

photon. The emission photon is of longer wavelength than the excitation photon due to vibration 

relaxation. The emission is chromatically filtered to reveal the location of the fluorophore. More 

sophisticated microscopy techniques are utilized depending on the desired sample such as total 

internal reflection fluorescence microscopy (TIRFM).  

TIRFM is an optical imaging technique that utilizes the evanescent wave generated at the 

glass-oil interface in the high numerical oil emergent objective. TIRF is achievable when the 

excitation light beam is off centered from the back focal plane of the objective, it passes through 

the objective lens, the immersion oil, before it reaches the sample placed on the glass coverslip. 

The propagating laser beam encounters the glass-sample interface, where the index of refraction 

of the sample (e.g. aqueous buffer 𝑛𝑠 ~ 1.38) is less than the index of refraction of the glass 

coverslip (𝑛𝑔 = 1.5), the incident light beam will undergo refraction. Further, if the incident angle 

was greater than the critical angle given by Snell’s law: 

                       sin (Ɵ𝑐) =  𝑛𝑠/𝑛𝑔                                                       (Eq. 2) 

the propagating beam will be totally internally reflected back to the first medium with a generated 

electromagnetic field that propagates parallel to the interface. The generated evanescent wave 

travels in x-y direction with an exponentially decaying z component. The decaying nature of the 
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evanescent electromagnetic field allows the selective illumination and excitation of samples within 

close proximity to the glass substrate. The selective excitation of the fluorophores within the 

sample is enabled by the TIRF range, in which the probability of exciting a fluorophore at a 

distance d from the coverslip decays exponentially.  The TIRF range, the depth of the evanescent 

field denoted by “d”, depends on the excitation light wavelength, critical angle, and the two 

refractive indices of the media at the interface according to the following equation27,28:  

                   𝑑 =  
𝜆𝑒𝑥𝑐

4𝜋 √𝑛𝑠
2∗sinƟ2  − 𝑛𝑔

2
                                                        (Eq. 3) 

where 𝜆𝑒𝑥𝑐 is the excitation wavelength, and Ɵ is the incident excitation light propagation angle. 

In particular, decreasing the background fluorescence of thick samples such as cells prohibiting 

the observation of any fluorescence molecules that exist on a z greater than 50-100 nm. This lead 

to an increase in the signal to noise ratio of the detected fluorescence signal as well as enabling the 

detection of faint molecules. TIRFM is commonly used to investigate the plasma membrane of 

cells and the interaction of molecules at the cellular surface providing visualization of key events 

occurring at the sample surface. TIRFM has been used to detect and characterize the dynamics and 

stages of granules fusion29–31. Although TIRF microscopy provides better images with less 

background noise than the typical fluorescent microscopy, but it fails to detect nanoscale curvature 

regions and distinguish between regions of positive and negative membrane curvature at the cell 

membrane.  

2.2 Polarized TIRFM 

Polarized TIRF microscopy is usually applied to probe and detect membrane bending 

regions. Light is an electromagnetic wave that exhibits polarization. The evanescent electric field 

wave vector's direction is parallel to the coverslip and linear polarization enables s- and p-polarized 

excitation light. Polarization parallel to the plane of incidence is p-polarized, while the component 
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perpendicular to the plane of incidence is s-polarized. pTIRF microscopy is based on the principle 

of selectively exciting fluorophores in the membrane with p- or s- polarized light independently. 

Illuminating the sample with polarized excitation light will excite the fluorophores whose dipole 

moments are aligned with the electric vectors of the polarized light.  S-polarized light will excite 

the fluorophores with dipole moments that are parallel to the coverslip. On the other hand, p-

polarized light will only excite the fluorophores with dipole moments perpendicular to the 

coverslip. Membrane bending regions are highlighted by a combination of emission from p- and 

s-polarized excitation, mainly detected in p-polarized excitation. The combination of both 

polarizations demonstrates the total local fluorophore concentrations independent of fluorophore 

orientation. pTIRFM provides a high temporal resolution in the observations of membrane 

processes that involves membrane topology change, a sequence of images acquired in p- and s-

polarized excitation demonstrates the local membrane deformation as it occurs with time. Sub 

micrometer membrane change can be visualized and rapid variation in membrane structure can be 

reported as observed for granule vesicles fusion32.  

One key component to pTIRFM is utilizing a membrane probe sensitive to excitation light 

polarization. For instance, indocarbocyanine dyes (e.g. 1,1'-Dioctadecyl-3,3,3',3'-

Tetramethylindocarbocyanine Perchlorate (DiIC18)) are lipophilic membrane stains with a unique 

molecular structure.  The lipid probe structure mainly consists of two indoline rings at each 

terminal of the head group connected with a conjugated 3-carbon bridge and two methyl group, 

and two alkyl hydrocarbon tails. A wide variety of this tracer is available with varying saturation 

level of the hydrocarbon tails denoting the lipid phase preference of the label. Other analogs of the 

dye with varying bridge length and atoms in the terminal rings exhibit different spectral properties. 

DiI molecular structure and head group configuration prohibit the molecule from exploring all 
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orientations in space within the membrane33, providing an effective transition dipole moment 

parallel to its head group.  Selective excitation of parts of the membrane is possible upon 

incorporating this tracer allowing it to diffuse, stain the membrane, and maintain its transition 

dipole moment within the plane of the membrane. Therefore, DiI that is in curved membranes 

perpendicular to the coverslip will preferentially be excited by p-polarized incident light. While, 

s-polarized light will excite DiI that is in the membrane parallel to the coverslip twice as brightly 

as DiI in membrane that is perpendicular to the coverslip. Measuring the overlap between DiI’s 

dipole moment and the linearly polarized excitation light, enables the detection of membranes of 

varying orientations 34. pTIRF microscopy has been used recently to study the details of 

presynaptic vesicle fusion35, endocytosis/exocytosis34,interactions of peptides with model 

membranes36, the rotation of motor proteins37, peptide binding to membrane-associated 

receptors38, and the effects of hydration on membrane structure39. The ratio of the emission from 

p-polarized excitation (P) divided by that from s-polarized excitation (S) reveals the membrane 

perpendicular to the coverslip while the intensity P+2S reveals the total fluorophore density40. 

However, all current uses of pTIRF microscopy utilize diffraction limited resolution, which 

prohibits the resolution of vesicle size below 200 nm. Biological structures range in size from few 

nanometers to several microns, current microscopy techniques such as pTIRFM proved to be 

powerful in detecting local membrane deformations however limited to sizes >200nm. This limit 

is dictated by the Abbe diffraction limit for microscopes, in particular, a single nanometer spot will 

appear as a blur Airy disk image of few hundred nanometers in radius (named point spread function 

(PSF)) due to the optics of the microscope. The radius of the PSF depends on the objectives’ 

numerical aperture (NA) and the excitation light wavelength41 according to 𝑟 =  
𝜆𝑒𝑥𝑐

2𝑁𝐴
 . To achieve 
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sub diffraction resolution, Localization microscopy is implemented by determining the center of 

the point spread function (PSF) of fluorescent molecules.  

2.3 Super resolution microscopy 

Fluorescence microscopy is an optical imaging technique commonly used in molecular 

biology to obtain resolved imaging of bimolecular dynamics. The conventional limitation in the 

resolution of this technique is set by the diffraction limit of light (~200 nm). The resolution of sub-

diffraction-limited features requires the implementation of other microscopy techniques such as 

multi-photon fluorescence42, stimulated emission depletion (STED)43, and saturated structured-

illumination microscopy (SSIM)44. Even though these techniques have achieved lateral resolution 

of tens of nanometer, but they also have their own limitations.  

Localization microscopy is a high resolution optical technique based on the reconstruction 

of the image with high accuracy localization of each excited photo-switchable fluorescent 

molecule. Stochastic optical reconstruction microscopy (STORM) and photoactivated localization 

microscopy (PALM) are two types of localization microscopy. In both STORM and PALM, a 

series of images are collected in which an optically resolvable subset of the fluorophores are 

excited and turned on, imaged, then turned off. In a subsequent image, a different subset of the 

fluorophore molecules are excited, imaged, and deactivated. The series of images are the 

computationally analyzed to locate each fluorophore in each image and a sub-diffraction-limited 

image can be reconstructed with a resolution of 20 nm45.  The limitations of this technique relies 

primarily in the number of photons collected from each excited fluorophore.  

STORM and PALM differ in the photochemical mechanisms by which the individual 

fluorophores are made to blink. In PALM, photoswitching of fluorophores between fluorescent 

and dark state is controlled, reversible, and may not alter the chemical composition of 
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molecules46,47. It has been reported that commonly used dyes such as rhodamine48 and cyanine 

dye, Cy5, can be induced to blink by exposing the dye to light of different wavelengths, mainly 

photoactivation of molecules is performed utilizing a secondary “photoactivating laser” of a 

different excitation wavelength. For instance, DiI can be excited and allowed to blink by a laser of 

𝜆𝑒𝑥𝑐 = 561 nm, while another laser of 𝜆𝑒𝑥𝑐 = 405 nm can be utilized to photoactivate the DiI in the 

membrane allowing them to photoswitch from the transient dark state back to the fluorescent state. 

Further, Red Laser light excite Cy5 dye from fluorescent state to a dark state, while green laser 

converts Cy5 back to the fluorescent state49,50. Alternatively for STORM, reversible blinking of 

fluorescent dyes can be achieved by adding thiols in the imaging buffer that will transition the 

fluorophores to a stable and reversible off state also known as long non-fluorescent state51,52.  To 

achieve STORM, fluorophores are surrounded by buffers are consisted of a thiol, glucose, glucose 

oxidase, and catalase, leading to an increase in the acidity and scavenging the oxygen from the 

buffer solution53, influencing the photophysical properties of dyes54, and increasing the probability 

of photoswitching back to the fluorescent state from a transient dark state.  Glucose oxidase and 

catalase target and remove oxygen from the buffer, which is the main source of photobleaching. 

By limiting the oxygen within the buffer, the fluorophore is more likely to undergo a controlled 

reversible switching between on and off states. Additional chemicals such as mercaptoethanol and 

methyl viologen are reducing agents that are added to the buffer although they are highly toxic55. 

Complex STORM buffer with various chemicals induce reversible blinking of dyes, thus enabling 

STORM imaging. 

Localization microscopy depends on the determination of the true fluorophore location 

relative to the point spread function (PSF). A radiative point source is imaged as an extended blurry 

point of a finite area in the image plane upon observing it through a diffraction-limited optical 
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system. A fitting of image of a single fluorophore to a Gaussian function (Eq. 4) enables the 

determination of the center of the PSF thus localizing the point source56. 

        𝐺(𝑥, 𝑦) = 𝑏 + ℎ 𝑒𝑥𝑝(−2 
(𝑥−𝑥0)2

𝑤𝑥
2 − 2

(𝑦−𝑦0)2

𝑤𝑦
2 )                         (Eq.4) 

where h is the peak height, b is the background, x0 and y0 are the center of the peak, and wx and wy 

are the widths of the PSF in the x and y directions respectively. 

 The precision of localization (i.e., the error in the PSF center determination) depends on 

the quality of the image of the PSF, as shown in Eq. 5.   

                           < (𝛥𝑥)2 > =  
𝑠2+

𝑎2

12

𝑁
 +  

√𝜋∗4∗𝑠3∗𝑏2

𝑎∗𝑁2                            (Eq.5) 

Where Δx is the error in localization, s is the standard deviation of the PSF, N is the number of 

photons collected, a is the pixel size, and b is the background noise. The localization accuracy is 

inversely proportional to the square root of the number of collected photons in the spot in case of 

a negligible background noise56. 

Another subtle but equally important factor is the density of photoactivable molecules 

present in the sample.  As stated by Nyquist-Shannon sampling theorem57, the desired resolution 

must be around twice the sampling interval, which represents the mean distance between adjacent 

localized molecules, otherwise the fluorophores will be unresolved.  

Localization microscopy surpasses the diffraction limit enabling the detection of 

previously unresolvable phenomena, however, it is still limited in detecting membrane bending or 

3D nanoscale structures. Recent achievements include optimizing the localization microscopy 

procedure to enable 3D super resolution data acquisition.  For a 3D localization microscopy data 

acquisition, a cylindrical lens is added to the optical setup to additionally enable the axial 

fluorophores location via astigmatic modification to the PSF58. The shape of the PSF reveals 
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information concerning the particle axial position while minimally compromising the lateral 

positioning information. The cylindrical lens create a focus offset between x and y direction, 

reshaping the PSF into an elliptical shape that reveals the lateral and vertical position of the 

individual fluorophore. A circular PSF is achieved approximately half way between the x and y 

focal planes. Ellipticity of the image with its major axis is along the x direction, for example, may 

signify that the fluorophore is above the average focal plane hence the image is more focused in y 

than in the x direction. Conversely, when the fluorophore is below the focal plane the ellipsoidal 

major axis may be along the y axis revealing a more focused image in x than in y direction.  

A bright nanoparticles sample is usually needed to create a stack of tiff images to record 

the locations and width of the nanoparticles PSF in x and y direction as the distance from the focal 

plane is controllably varied. The acquired data is then plotted and saved as a calibration metric for 

(x,y,z) locations of detected fluorophores. A cross-correlation between the recorded 3D PSF of the 

gold particles and the PSF of the excited fluorophores in the sample reveal the 3D localization of 

the molecules. Extensive data analysis is required in 3D STORM including: the creation of a 

calibration stack from the 3D PSF of the gold beads; detecting the molecular fluorophore in each 

image and fitting its PSF; localizing the molecule under study by referring to the calibration stack; 

correcting for stage drift; and reconstructing a super resolution  image from the localization data58. 

 3D localization microscopy has been performed through a variety of methods such as: the 

insertion of a cylindrical lens into the emission light path 59; single-fluorophore interference in a 

4π configuration 60, biplane imaging 61, and emission phase manipulations19.  In these methods, 

single fluorophore z location is obtained through manipulation of the PSF or the emission path. 

The vertical location of fluorophores is determined at the expense of the localization precision or 

modification of the optical system such as including a multi-camera interferometric in the detection 
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path. The localization precision in z is greater than that of the xy plane (σz ~ 2σxy , where σxy = 20 

nm and σz  = 40 nm). Other advanced implemented techniques overcome the disadvantages of an 

enlarged multi-lobed single-fluorophore images and reduced positional localization accuracy, and 

measure the single fluorophore orientation within the membrane. Precise information regarding 

fluorophore location is obtained by a combination of image defocusing, emission phase 

modulations, steerable filters, birefringent wedges, and advanced fitting routines 62–71. However, 

such techniques include complex optical setups and extensive computational analysis that are 

particularly challenging when applied to dual multi-color super resolution imaging.  
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CHAPTER 3 POLARIZED LOCALIZATION MICROSCOPY   

3.1 Background 

Nanoscale membrane curvature is a critical component in various cellular processes. 

Fundamental biological questions and disease-related processes are yet to be addressed. A growing 

interest is emerging in probing the nanoscale organization of biomolecules, dynamics, and the 

membrane topology simultaneously. Limitations in current imaging techniques inflict a pressing 

need for a novel optical microscopy technique that enables the understanding of nanoscale 

membrane behavior, measuring, and controlling nanoscale membrane orientations with 20 nm 

resolution in living systems.  

Nanoscale curvature is essential for many biological functions 72, including the regulation of 

lipid rafts 2, exocytosis/endocytosis 73, viral fusion/egress 74, nano-therapeutics 75, membrane 

remodeling 76, and the shedding of circulating microvesicles 77. Membrane curvature can be 

induced by the line tension between coexisting liquid lipid phases, the aggregation of curvature 

preferring molecules, the steric pressure between crowded proteins, and the molecular shape of 

either lipids or proteins 78–80. However, quantifying the relative contributions of these curvature-

generating mechanisms at physiological length scales remains elusive due to limited experimental 

capabilities for detecting nanoscale bending. 

3.1 PLM advantages  

Polarized Localization Microscopy (PLM), overcome the inabilities and limitations of 

other techniques, require no manipulation of the emission path, minimal alteration to the excitation 

optics, image samples in aqueous conditions, enable simultaneous dual multi-color imaging of 

sample, and reveal single fluorophore location and orientation with 20 nm resolution. PLM is 
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capable of addressing important questions in nanoscale membrane behavior, dynamic curvature 

generation, and curvature induced variation in biomolecules dynamics.  

Basically, PLM combines the advantages of fluorescence localization microscopy (FLM) 

with polarized TIRFM to reveal single molecule location and orientation. The advanced techniques 

of localization microscopy such as PALM39, Fluorescent PALM36 (FPALM), STORM20, and 

direct STORM (dSTORM)81, and polarized total internal reflection fluorescence (pTIRF)  

microscopy are progressing the understanding of topics such as lipid phase dynamics, 

transmembrane signaling, and endocytosis/exocytosis. Yet, individually, these techniques are 

severely limited. Localization microscopy and diffraction limited pTIRF microscopy separately 

are not sufficient to resolve and measure membrane orientation below ~200 nm.  The combined 

techniques of localization microscopy and pTIRF microscopy yields an order-of-magnitude 

improvements in the resolution of membrane curvature. The differential excitation of the 

membrane-confined probe (such as DiI) by polarized excitation light provides information 

regarding fluorophore orientation, while fitting each fluorophore PSF provides sub nanometer 

resolution.  PLM is an elegant optical imaging technique that will expand experimental capabilities 

and provide an insight to fundamental membrane characteristics such as lipid phase, membrane 

curvature, and lipid packing. PLM has been developed to address and test hypotheses concerning 

nanoscale membrane curvature and its relation to molecular organization and dynamics. PLM can 

be performed on a conventional TIRF microscope by adding a single optical component that 

controls the polarization of the excitation light.  

3.3 Theory of PLM   

PLM is sensitive to various membrane orientations, in particular, PLM depends on the 

relative orientation between the membrane probe (DiI) and the direction of polarized excitation 
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light.  The coordinate system is set such that the glass-water interface is the xy-plane, and the 

optical axis of the microscope represents the z axis. The evanescent wave propagates along the xy 

plane with an exponential decaying z component. The local membrane orientation is represented 

by the polar angle (Ɵ), which represents the tilt angle between the membrane and the z-axis, and 

the azimuthal angle (φ), which represent the rotation angle of the membrane within the xy-plane. 

As the membrane is represented by its normal vector n, then Ɵ is the angle between n and z-axis, 

while φ is the angle between the projection of n onto the xy-plane and the x-axis. The incorporated 

DiI molecules in the membrane also experience an additional tilt, undergo azimuthal rotation, and 

considered to be distributed with azimuthal symmetry. The orientation of DiI within the membrane 

is defined by two components relative to the membrane normal, the polar tilt (β) and the azimuthal 

rotation angle (ψ) (Fig. 3).  

 

 
Figure 3. PLM combines the techniques of polarized TIRFM and SMLM. By controlling the linear 

polarization of incident excitation light, the electric field (green arrows) of the evanescent wave 

for fluorescence excitation can be either (A) vertical with p-polarized light or (B) horizontal with 

s-polarized light. This results in differential fluorophore excitation depending on membrane 

orientation. (C) Imaging and localizing individual blinking fluorophores in separate frames enable 

the reconstruction of super-resolution images with embedded information on membrane 

orientations. 

 

If β = 0 then DiI would be parallel to the membrane. Therefore, the Cartesian components 

of the fluorescent label dipole moment μ are given by 82:  

     𝜇𝑥 = cos 𝜃 cos 𝜙 sin 𝛽 cos 𝜓 − sin 𝜙 sin 𝛽 sin 𝜓 + sin 𝜃 cos 𝜙 cos 𝛽, 

   𝜇𝑦 = cos 𝜃 sin 𝜙 sin β cos 𝜓 + cos 𝜙 sin β sin 𝜓 + sin 𝜃 sin 𝜙 cos 𝛽, 

𝜇𝑧 = cos 𝜃 cos 𝛽 − sin 𝜃 sin 𝛽 cos 𝜓                          (Eq. 6) 
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The probability of exciting a fluorophore with a certain orientation is proportional to the 

average over 𝜓 of the square of the dipole component along the polarized excitation light. For 

instance, that number in s-polarization in proportional to < 𝜇𝑥
2 > . Averaging over 𝜓 and the 

squaring step reveal the strong dependence of s-polarization on 𝜃 and 𝜙, whereas p-polarization is 

only dependent on 𝜃 regardless of the membrane 𝜙. This is clearly manifested theoretically in 

figure 4 and experimentally when imaging spherical structures such as GUVs (fig. 5). Given the 

probability of exciting a single fluorophore of a certain orientation with s-pol (xy-plane) or p-pol 

(z-axis) polarization, the emission is also defined into two components in the corresponding planes. 

 
Figure 4. Probability of exciting a single fluorophore with a certain orientation. The probability of 

is proportional to the plotted dipole moment components squared estimated theoretically.  

 

 
Figure 5. S-polarization exhibit a phi-dependence of the excited fluorophores. Polarized 

Localization Microscopy detects the vertical edge of a GUVs adhered to an SLB, as shown 

schematically in Fig. 5B. (A) Diffraction-limited pTIRFM image of the supported lipid bilayer and 

the GUVs shows increase in brightness corresponding to the vertical edge of the GUV. Black 

region is glass surrounding the labeled lipid membrane. (B) The uniform fluorescence in the 
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diffraction-limited sTIRFM image indicates the presence of membrane without specificity to 

membranes of varying orientation. (C) Histograms of localizations from pPLM demonstrate the 

increased density of localizations from vertical membranes. The vertical membrane perpendicular 

to the glass is clearly observed within the super resolution image, in addition to the membrane 

between the two adjacent GUVs. (D) Histograms of localization in sPLM demonstrate a more 

uniform distribution of localizations. Scale bars represent 1µm.  

 

  The collection efficiency by the microscope objective of the emitted light is proportional 

to the square of each emission component, this have been reported to be proportional to (cos 𝜃)2 

and (sin 𝜃)2 for p-pol and s-pol excitation polarization. An effective collection bias of the 

objective for emission light from a dipole oriented parallel or perpendicular to the coverslip is 

dependent on the NA of a certain objective and on the dipole relative distance to the coverslip. 

This bias is prominent for low NA TIRF objectives (e.g. NA = 1) and larger distances from the 

coverslip (z >100nm). In the current PLM setup, the NA of the TIRF objective utilized is equal to 

1.49 with images samples of few nanometer thickness and zmax ~ 120 nm. Therefore, the effective 

collection efficiency of both polarization emission are consistent and fall within 10% variation for 

all given fluorophore orientation. The high numerical objective and the small separation distance 

between the fluorophores and the coverslip result in minor collection bias, the collection 

efficiencies will be set to unity in the probability estimation of detecting a single fluorophore with 

a certain orientation.   

The dipole tilt 𝛽 is set to be 69° to match experimental results of DiI in planar membranes 

in HEK cells performed previously32. Applied variation in 𝛽 by 5° has a less than 5% effect on the 

theoretical results 83. Further, the dipole moment experience rotational motion around n. The 

azimuthal rotation of the dipole passes through a series of azimuthal angles 𝜓 from the instance 

the azimuthal location upon excitation to the azimuthal location upon emission. This time interval 

was shown to be ~ 0.2 ns82. Within the camera exposure time of 18 ms, hundreds of excitation 

events occur, where the rotational diffusion of the dipole results in an averaging over all their 𝜓s. 
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For PLM experimental setup, the p-polarized excitation light possess an evanescent electric 

field (Ep) which is elliptically polarized in the xz-plane with mainly a z-component and a slight 

polarization in the x-direction. The z- and x- components are out of phase by π/2. The s-polarized 

light exhibits an evanescent electric field (Es) which is linearly polarized in the y-direction with a 

simply y-component. The corresponding components of the evanescent wave electric field is 

calculated according to84:  

𝐸𝑥 =  [
2 cos Ɵ𝑖  √(𝑠𝑖𝑛Ɵ𝑖  )2 −  (𝑛)2

√(𝑛2𝑐𝑜𝑠Ɵ𝑖 )2+ (𝑠𝑖𝑛Ɵ𝑖  )2 −  (𝑛)2
] 𝐴𝑝  

𝐸𝑧 =  [
2 cos Ɵ𝑖  sin Ɵ𝑖    

√(𝑛2𝑐𝑜𝑠Ɵ𝑖  )2+ (𝑠𝑖𝑛Ɵ𝑖  )2 −  (𝑛)2
] 𝐴𝑝  

                                              𝐸𝑦 =  [
2 𝑐𝑜𝑠Ɵ𝑖 

√1− (𝑛)2
] 𝐴𝑠 ,                                         (Eq. 7) 

 

where n = 𝑛𝑔/𝑛𝑠, Ɵ𝑖  represent the excitation incident angle, and 𝐴𝑝 and 𝐴𝑠 represent the amplitude 

of incident electric field in p-pol and s-pol, respectively. Taking into consideration the utilized 

excitation light wavelength (λex = 561 nm) and the indices of refraction of the sample and glass 

(1.33 and 1.52, respectively), the electric field components were evaluated as82:  

𝑬𝑝 =  𝐸𝑝
0 (0.5𝒙 + 1.9𝑖𝒛). exp (

−𝑧

2𝑑
), 

                       𝑬𝑠 =  𝐸𝑠
0 (1.7𝒚). exp (

−𝑧

2𝑑
),                           (Eq. 8) 

where d is the evanescent wave characteristic penetration depth and 𝐸𝑝
𝑜 and 𝐸𝑠

𝑜 are the magnitudes 

of the p- and s-polarized incident electric field, respectively. For simplicity,  𝐸𝑝 was approximated 

to be linearly polarized in z. The elimination of the x-component induces a 7% error in the intensity 

measurement for excited DiI molecules.  The detected intensity by pTIRM for an excited single 
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fluorophore in p-pol and s-pol excitations are proportional to the fluorophore dipole moment 

multiplied by the electric field squared as Ip = (𝜇𝑧 ∙ 𝑬𝑝)
2

 and Is = (𝜇𝑦 ∙ 𝑬𝑠)
2
.  

The localization portion of PLM depends on the probability of exciting a single fluorophore 

and detecting it. This probability incorporates the intensity of an excited DiI molecule by either 

light polarization. The brightness distribution of localized individual fluorophores exhibit an 

exponential behavior with average fluorophore brightness proportional to the intensity of 

fluorophores. A brightness threshold (𝐵𝑜) is generally set to allow only the detection of 

fluorophores that are brighter than 𝐵𝑜 and discard dim fluorophores. This procedure enhances the 

signal to noise ratio of reported data, increases the localization precision which is dependent on 

the brightness of detected fluorophores, increases PLM sensitivity to membrane orientation, and 

in case of high 𝐵𝑜 value specific information regarding 𝜃 can be extracted. The value of  𝐵𝑜 was 

set theoretically to match the experimental cut-off values used.  

Thereby, the probability of detecting a DiI molecule with a certain membrane orientation 

(𝜃, φ), DiI orientation (β, ψ), distance from the focal plane (z), and averaged over all ψ within a 

single-frame exposure time for p-polarized and s-polarized excitation is approximated as:  

𝑷𝑝 =  exp (
−𝐵0

3.6 < µ𝑧
2 > exp(−

𝑧
𝑑

)
), 

                    𝑷𝑠 =  exp (
−𝐵0

2.9 < µ𝑦
2 > exp(−

𝑧
𝑑

)
),        (Eq. 9) 

 

As the fluorophore exists in distances farther away from the objective focal plane, the 

single fluorophore will exhibit a wider PSF as it become out of focus. Typically, the detection 

probability depends on the distance of single fluorophores from the focal plane. In the current PLM 

setup, the objective focal plane is ~ 200nm which is much larger than the membrane heights within 



26 
 

 
 

   

the presented study. Thus no change in the probability of detecting a single fluorophore as function 

of its distance from the focal plane was included in this analysis. Membrane curvature detection 

depends on both excitation polarization in PLM, where p-polarized excitation localization 

microscopy (pPLM) reveal membrane tilt (𝜃), and s-polarized excitation localization microscopy 

(sPLM) reveal information regarding 𝜃 and 𝜙.  

3.4 Modeled membrane topography and diffusion 

In order to demonstrate the powerful capabilities of PLM and its increased sensitivity over 

current imaging methodology in detecting and resolving nanoscale membrane curvature, 

simulations of various membrane topographies with the corresponding detection probabilities were 

performed. The membrane topography was simulated by smoothly connecting the spherical NP 

coating to a planar sheet with no less than 20 nm radii of curvature. With custom MATLAB 

routines, a random distribution of points on these simulated topographies mimicked the possible 

3D locations of localized fluorescent lipids. These points were used to reconstruct simulated PLM 

images and lipid trajectories by incorporating the localization probabilities and localizations 

impressions and inaccuracies.   

The membrane topography was simulated starting with creating a random distribution of 

points over the simulated membrane topography (Fig. 6C) with an average density of 1 point/nm2. 

A simulated single lipid was allowed to randomly step between points. Single simulations steps 

were equivalent to 3.1 µs and 2.6 nm and the simulated lipid positions that were separated by 6400 

simulation steps were compared to mimic a 50 Hz camera frame rate to match the experimental 

data. Whereas the experimental data incorporated camera blur and texp of 0.018 s, simulated 

positions had an equivalent texp = 0 and no camera blur. 7,800 steps were simulated and considered 

in the diffusion analysis over the curved membrane. 
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Figure 6. Radial density line scans for localizations from membrane topography.Radial density 

line scans for localizations from membrane topography observed in (C) over rNP = 24, 51, and 70 

nm via (A) pPLM and (B) sPLM. Data points show the experimental results while the simulation 

results are plotted as solid lines. A single B0 value and out-of-focus magnitude for anisotropic 

inaccuracy were fit all six data sets. 

 

For a typical electron multiplying device, the sensor area gets exposed to the emitted light 

captured by the objective. The captured image, depicted as incident photons on the camera sensor, 

is then multiplied, for signal amplification before it’s transferred to storage. The storage area is 

usually made up of aluminum, and acts as a shutter between capturing the image and storing it. 

The charge multiplication process and the electronic shutter occur in MHz rate to ensure high 

speed readout mode. The readout time typically is set by the user as exposure time, but the frame 

transfer requires an additional couple ms to transfer the image to storage. Upon setting the camera 

exposure time, one have to keep in mind the “dead time”, which is the time required for amplifying 

the signal and transferring it for storage, which also contributes to the final reported camera frame 

rate (~50Hz). The fraction of the exposure time (texp) to the time between frames (Δt) is critical for 

the diffusion analysis.  

To mimic the local change in membrane viscosity due to curvature exhibited as an apparent 

slowing in the lipid diffusion, the effective time per simulation step was modified. Single 

simulations steps on the flat membrane were kept equivalent to 3.1 µs and 2.6 nm, while these 
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values changed to (3.1* 𝐷𝑟𝑎𝑡𝑖𝑜) μs for each 2.6 nm when the simulated lipid was on the curved 

membrane. This enabled simulation the slowing of lipids by 𝐷𝑟𝑎𝑡𝑖𝑜 on the curved membrane 

compared to the flat bilayer. In the absence of simulated error, the step lengths (v) were calculated 

as  

𝑣(𝑡𝑆) = √(𝑥(𝑡𝑠) − 𝑥(𝑡𝑠 + 6400))2 + (𝑦(𝑡𝑠) − 𝑦(𝑡𝑠 + 6400))2,          (Eq. 10) 

and the distribution of 𝑣(𝑡𝑆) was used to fit Eq. 16. 

3.5 Comparison between SMLM methods  

Comparison between pPLM, sPLM, TIRFM, epifluorescence microscopy, and 3D TIRF 

localization microscopy were performed on a budding event of 50 nm radius surrounded by a 

planar bilayer. The number of localizations obtained at the site of budding is expected to increase 

regardless of the imaging technique simulated. This is due to the local increase in membrane area 

per pixel proportional to (1/cos𝜃). Illumination modes were compared based on the expected 

number of localizations detected for the vesicle budding event. The number of localizations 

obtained in p-polarization excitation is expected to show a higher increase, from flat bilayer, than 

other excitation modes since the bud membrane have larger  𝜃 which p-polarization is specifically 

sensitive to.  

Detected number of localization estimation was performed based on the probabilities 𝑃𝑠 

and 𝑃𝑝 of detecting a fluorophore in sPLM and pPLM, respectively. On the other hand, the 

detection probability for an unpolarized TIRFM illumination does not depend on membrane 

orientation. In concept, unpolarized TIRFM is a combination of all polarizations with equal 

probability of exciting all fluorophores independent of their orientation though it is dependent on 

the fluorophore distance from the coverslip (z). For an unpolarized TIRF illumination, it is not 

required to include a polarization sensitive dye in the membrane such as DiI. Other membrane 
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probes can be incorporated, such as DPPE-Rhodamine, which binds to the membrane by a long 

flexible linker allowing the fluorescent part of the dye to have random orientations. Thus the 

probability of detecting a fluorophore in unpolarized TIRF was estimated as:  

                                   𝑃𝑢𝑇𝐼𝑅 =  exp (
−𝐵0

1.7 exp(−
𝑧

𝑑
)
),                 (Eq. 11) 

As for epifluorescence illumination, the probability of localizing a fluorophore depends 

only on the intensity of the illumination light and the detection threshold, which are assumed to be 

the same for all other illumination modes. Therefore, 𝑃𝑒𝑝𝑖 is set to be a constant in the simulations.  

In a TIRF setup with a fixed angle of approach to the coverslip, as used in the following 

experiments, the evanescent wave is traveling in the x-direction and the light may be polarized in 

the y- or z-directions. If the TIRF illumination were spun in a circle around the back aperture of 

the objective, then the evanescent wave would travel in x and y directions allowing all polarizations 

to be accessible. However, since the fluorophore is presumed to be tumbling randomly for these 

unpolarized analyses, the increased number of accessible polarizations has no effect on the results. 

The key components that affect the probability of localizing a randomly tumbling fluorophore is 

the illumination intensity and the localization threshold (B0). Thus in the cases of unpolarized 

TIRF and unpolarized epifluorescence illumination, there is assumed to be no dependency on the 

light polarization, as if the fluorophore is randomly tumbling while attached by a long, flexible 

linker. This would be analogous to using DPPE-Rhodamine rather than DiI; we see no polarization 

or membrane-orientation dependence in the density of localizations from DPPE-Rhodamine. 

3.6 Membrane bud identification  

The presence of the simulated membrane bud affects the local localization density, as the 

bud increases in size, the area of membrane per pixel is expected to increase, resulting in a 

significant increase of expected detected localizations. The expected localizations from a planar 
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membrane obey a Poisson distribution. Quantitatively, the presence of a membrane bud is detected 

with statistical significance of a p-value (p) when the number of localizations at the bud region 

(Nbud) is greater than the mean number of localizations from the planar membrane (Nplane) 

according to 
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The value of Nbud that satisfies Eq 12 (𝑁𝑏𝑢𝑑
0 ) mainly depends on the fluorophore 

incorporated within the membrane. The number of detected localizations at the membrane bud 

depends on the sensitivity of the fluorophore to the illumination excitation light. For polarized 

TIRF, DiI is incorporated into the membrane and reveal up to a 20x more localizations on the bud 

than on the flat planar membrane.  

Direct determination of the z location of a single fluorophore within the membrane is 

possible with 3D localization microscopy. However, that comes on the expense of an increased 

localization uncertainty in z, where the uncertainty in z is double that in the x and y (σz ≈ 2 σx  ≈ 2 

σy  ≈ 40 nm). Obtaining information in the third dimension enables detecting change in membrane 

topology by monitoring the change in the z location of fluorophores instead of membrane 

orientation. As it might seem appealing to use direct fluorophore location to determine membrane 

bending regions, but there are some limitations to this technique. The present uncertainty in the 

fluorophore height requires the averaging of multiple fluorophores to obtain a better measurement 

of average membrane height within a given area. Due to this uncertainty, 3D localization 

microscopy requires the acquisition of a higher number of localizations than pPLM to detect 

membrane curvature. Statistically significant determination of bud presence in 3D localization 

microscopy incorporated the average z location of the localizations at the membrane bud along 
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with the associated uncertainty in z. Bud detection dictates that the standard error of the mean of 

the average z location of fluorophores to be small such that the bud is clearly distinguished from 

the planar membrane according to  
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,    (Eq. 13) 

where erfc represents the complementary error function. A planar membrane was simulated 

with generation of a membrane bud of 50 nm radius was simulated.  The various stages of the 

budding event initiating from a planar membrane to a detached vesicle mimics the stages of 

endocytosis. The expected increase in the number of localizations due to the presence of the 

membrane bud was evaluated and plotted for all illumination modes under study.  Further, 

comparison between 𝑁𝑏𝑢𝑑
0  with a p value of 0.0001 was plotted for the different budding stages 

and imaging techniques. These plots demonstrate the sensitivity of each single technique in 

detecting nanoscale membrane deformation, and determine their increased sensitivity over other 

techniques.  

3.7 PLM sensitivity   

During the budding event, when the top of the membrane bud was 40 nm above the 

surrounding bilayer, the number of localizations at the location of the bud was 9x greater than that 

of the planar bilayer when imaged by pPLM. While epifluorescence, TIRFM, and sPLM had only 

double the localizations of that of a flat bilayer. The 4-fold increase in the ratio of localizations of 

bud to plane in pPLM versus other techniques reveal the pPLM increased sensitivity to detecting 

nanoscale membrane buds. Further, when the top of the bud was 120 nm away from the bilayer, 

with a detached vesicle configuration, pPLM is expected to exhibit a 22x increase in the 
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localizations on the bud versus the planar bilayer. Similarly, only 5x, 4x, and 3x more localizations 

are expected from epifluorescence, TIRFM, and sPLM respectively (Fig 7).  

 
 Figure 7. Sensitivity of PLM compared to other optical methods. Estimation for observed 

localizations of a budding membrane reveals the sensitivity of PLM compared to other optical 

methods. (A) Membranes containing buds of 50 nm radii of curvature were analyzed at varying 

protrusion distances from the surrounding connected planar membrane. The fractional increase in 

localizations due to the bud are plotted. (B) The increased number of localizations expected due 

to non-planar membrane shape relative to the number of localizations expected from a planar 

membrane demonstrated a 22.5x increase in localization density with pPLM, which is over 4x 

larger than expected for sPLM, unpolarized epifluorescence SMLM, and unpolarized total internal 

reflection (TIR) illumination SMLM. (C) The required number of localizations to identify a 

membrane bud from the surrounding SLB ( ) with p = 0.0001 are plotted for pPLM, sPLM, 

unpolarized TIR, unpolarized epifluorescence SMLM, and 3D SMLM. 

 

 Further, pPLM requires less number of localizations for the detection of membrane 

curvature over epifluorescence, TIRFM, sPLM, and 3D localization microscopy for all bud heights 

less than 110 nm. In particular, for p = 0.0001, pPLM requires 10% of the total number of 

localizations required for 3D localization microscopy at bud height of 40 nm. This means that 

pPLM is capable of detecting nanoscale membrane bending earlier than 3D localization 

microscopy and with less total number of localizations. Keeping in mind that 3D localization 

microscopy requires averaging of fluorophore locations with incorporated localization uncertainty 
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while pPLM depends directly on the collected localization density within a given area for 

identification of local membrane bending sites. In this simulation, pPLM proves to be a more 

sensitive technique with faster curvature identification than epifluorescence, TIRFM, and sPLM. 

For instance, pPLM requires 11%, 10.5%, and 2% of the total localizations expected for TIRFM, 

epifluorescence, and sPLM respectively. Experimental comparison between pPLM and sPLM are 

discussed later.  

sPLM represent an internal control for the possible membrane structures. Direct 

comparison between localization densities obtained in sPLM and pPLM reveal information 

regarding membrane orientation. sPLM represent areas of flat membrane with direct control to its 

quality. For certain membrane structures, pPLM is expected to convey a higher localization density 

while sPLM convey a nearly uniform distribution with minor fluctuations. This is especially the 

case of a membrane hemisphere, while a membrane vesicle bound to the top of a planar bilayer is 

expected to induce an increase in local localizations in both PLM polarizations due to the present 

membrane orientations and the presence of more membrane per pixel.  

3.8 MATERIALS AND METHODS 

 Sample dish preparation 

Glass bottom dishes (MatTek Corp.) were cleaned by immersion in 7x detergent overnight, 

rinsed with diH2O (18.2 MΩ-cm, EMD Millipor Corp.), bath sonicated for 30 min, dried with 

nitrogen gas, and cleaned by air plasma (Harrick Plasma Inc.). NPs were diluted in diH2O, 

sonicated for 15 min, and deposited on a glass coverslip. NP sedimentation occurred for 10 min to 

achieve a density of 0.02 NPs/µm2. Separate polystyrene NPs were used for both engineering 

membrane curvature and tracking stage drift. The index of refraction of polystyrene is 1.59. NPs 

for creating membrane curvature were either 26 nm radius, λex = 647 nm (FluoSpheres, Life 
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Technologies); 51 nm radius, λex = 405 nm (FluoSpheres, Life Technologies); or 70 nm radius, λex 

=488 nm (Fluoro-Max, Fisher Scientific). NPs for detecting stage drift (100 nm diameter, 

Tetraspecs, Life Technologies) were fluorescent in all color channels. Dishes were placed on a 55 

°C hot plate for 5 min to ensure their stability on the coverslip. NP shape after exposure to the 

hotplate was confirmed by scanning electron microscopy (Fig. 8). 

 
Figure 8. SEM images of NPs. To confirm the fidelity of the nanoparticles shape, structure, and 

size after exposure to the hotplate, scanning electron microscope (SEM) images were then acquired 

using a field emission scanning electron microscopy (JSM-7600F from Jeol USA, Inc.) in the 

Wayne State University Electron Microscopy Laboratory. These 51 nm diameter polystyrene 

nanoparticles were carbon coated and imaged at an angle of 55° with a secondary electron detector 

to reveal the heights of the nanoparticles from the coverslip. 

 

Supported lipid bilayer formation 

Giant unilamellar vesicles (GUVs) of primarily 1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphocholine (POPC, Avanti Polar Lipids, Inc.) labeled with 0.3 mol% 1,1'-didodecyl-3,3,3',3'-

tetramethylindocarbocyanine perchlorate (DiI, Life Technologies) were prepared by electro-

formation, as described previously 85. This fluorophore density yielded 110 nm2 of bilayer per DiI 

molecule. In brief, GUVs were formed by mixing lipids in chloroform and spreading them 

uniformly on a conducting indium tin oxide (ITO)-coated slide (Sigma-Aldrich) via spin coating. 

The resulting lipid film was dried under vacuum for >20 min. A second ITO-coated slide and 

silicon spacer enclosed the dried lipids into an incubation chamber. A hydration buffer of 200 mM 

sucrose was added to the dried lipid films and the ITO slides were connected to a sine wave 
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function generator. The growth of the GUVs occurred over 3 hours at 55 °C with alternating 

voltage of 10 Hz and 2 Vrms. GUVs were stored at 55 °C and discarded after 3 days. GUVs were 

created varying in diameter from <200 nm through 100 μm.  

The GUVs were placed up the glass bottom dishes and the NPs for up to 1 hour at room 

temperature. The interaction between the GUVs with the plasma cleaned glass coverslip resulted 

in bursting of the GUVs and the formation of patches of SLB over the glass and NPs. This method 

of SLB creation proved to create more uniform SLBs over the NPs than SLBs formed by the fusion 

of large unilamellar vesicles (LUVs).  

Large unilamellar vesicles (LUVs) preparation 

POPC, DiI and occasionally DPPE-Biotin in chloroform were mixing in a glass vial. DiI 

was added to 0.3 mol% of all lipids, DPPE-Biotin was occasionally added to 1 mol% of all lipids, 

and POPC was the remaining >98.7 mol%. The mixture was dried under nitrogen gas and placed 

under vacuum >20 min. The lipid films were hydrated in 1X phosphate buffer saline (PBS) buffer 

of pH =7 to a concentration of 1g/L. The sample was vortexed, pre-extruded once through a 

polycarbonate membrane filter of 400 nm pore size, and extruded 20 times through a membrane 

filter of 100 nm pore size. 5 µL of 10 mM CaCl2 and 120 μL of 1 g/L LUVs were added to a 

cleaned MatTek dish and incubated for 30 min. Excess LUVs were washed away with PBS buffer. 

When DPPE-Biotin was included, 20 μL of 50 μg/mL of streptavidin solution was added to 

immobilize the remaining unfused LUVs to the underlying SLB.  

Optical setup  

PLM was performed with an inverted IX83 microscope with Zero-Drift Correction and a 

100x, 1.49NA objective (Olympus Corp.) on a vibration-isolated optical table. Four continuous 

wave diode lasers were incorporated at wavelengths 405, 488, 561, and 647 nm, each with at least 
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120 mW max power for fluorescence excitation, with the appropriate beam expanders to control 

the size of the laser spot. The laser beams are then directed to dichroic mirrors that will combine 

the different wavelength laser beams into a single beam. The lasers then pass through a linear 

polarizer and liquid crystal wave plate.  

The excitation polarization was rotated with computer-controlled liquid crystal wave plate 

(Thorlabs Inc, LCC1111-A). The intensity of the p- and s-polarized light were separately measured 

versus applied voltage to the liquid crystal wave plate (LCWP). The 561 nm laser was passed 

through the liquid crystal wave plate and through the TIRF microscope objective with an existing 

angle of 65°, as would be the case for PLM. After the objective, the laser passed through a linear 

polarizer (LPVISE100-A, Extinction ratio: 18000:1, Thorlabs, Inc.) in either a vertical or 

horizontal orientation prior to being incident on a power meter (PM100D, Thorlabs, Inc.). After 

transmitting through the LCWP, the microscope objective, and the linear polarizer, the laser power 

was measured while sweeping through voltages to the LCWP with a custom-made LabVIEW 

program. The power ratios of the P/S and S/P are plotted in Fig. 9 . At the optimal voltages of 

1.924 and 1.245 V, the power ratio of P/S and S/P are 207:1 and 54:1, respectively. These ratios 

were approximated as infinite for the theoretical analysis. 

 
Figure 9. Uncompromised polarization of light after passing through the LC. The extinction ratio 

of p-polarized and s-polarized excitation light after passing 
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through the liquid crystal and the TIRF objective demonstrates the uncompromised polarization of 

light after passing through the two optical components. The chosen voltages to perform PLM for 

the two polarizations show the high extinction ratio for P/S and S/P for p-polarized and s-polarized 

light, respectively. The ratio of output powers at a range of voltages after passing through (A) the 

liquid crystal wave plate, and (B) the TIRF objective are plotted. The ratios of the eventual p-

polarization to s-polarization after passing through the liquid crystal are: P/S = 68:1 and S/P = 

135:1. The ratios of the p-polarization to s-polarization after passing through the TIRF objective 

are: P/S = 207:1 and S/P = 54:1 when the appropriate voltages were applied to the liquid crystal. 

 

The beam direction is steered by a rotating dichroic mirror onto a quad-band mirror 

(ZT405/488/561/647rpc, Chroma Technology Corp.) designed to reflect the laser wavelengths of 

405, 488, 561, and 647 nm while reflecting the intermediate fluorophore emission wavelengths, 

before reaching the back of the objective (100x, 1.49 NA, Olympus Corp.) and ultimately exciting 

the fluorophores in the sample. This mirror provide control over incident excitation angle, which 

enables the switching between TIRF and epifluorescence excitation. The different emission 

wavelengths are individually selected with a filter wheel (LB10-W32-Y73, Sutter Instrument Co.) 

capable of 40 ms changes between filters specific for the emission ranges between the lasers 

wavelengths. Image acquisition was performed with an iXon-897 Ultra EMCCD camera (Andor 

Technology) proceeded by emission filters (BrightLine single-band bandpass filters, Semrock, 

Inc.), a 4-band notch filter (ZET405/488/561/640m, Chroma Corp.), and a 2.5x magnification lens 

(Olympus Corp). This setup provided high laser power (>80 mW) at each polarization and 

integrated computer control of all equipment via custom LabVIEW routines (National Instruments 

Corp.). 

Data Acquisition  

A key event in collecting raw data for post-acquisition analysis is the synchronization of 

all pieces of hardware within a single graphical user interface computer controlled program. A 

graphical software based on LabVIEW was developed (fig. 10) . This LabVIEW program 

synchronizes electronic hardware used for pTIRF localization microscopy, acquires data from the 
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EMCCD, and saves it for later processing. It connects the inputs and outputs of 10 different pieces 

of computer-controlled equipment: (1) four Coherent lasers with wavelengths of 405 nm, 488 nm, 

561 nm, and 647 nm; (2) three shutters that open and close allowing the passage of the laser beam 

with 8 ms open/close durations; (3) neutral density (ND) filter wheels for laser light attenuation; 

(4) a high-speed emission filter wheel; (5) liquid crystal wave plate for the polarization of light 

and (6) and the electron multiplying charge coupled device camera for single-fluorophore 

observations. This program achieved optimum performance of the hardware, including the 

optimization of the camera acquisition parameters and macros for commonly performed 

experimental protocols. Help features, instructions within the software, a feedback note that 

constantly updates and display the status, and an error indicator to prevent new users from 

damaging sensitive equipment are also a part of this program.  

 
Figure 10. LabView program that controls hardware and enables data acquisition. 

Imaging buffer 

PLM was performed on samples present in an oxygen-scavenging buffer (150 mM NaCl, 

50 mM TRIS, 0.5 mg/mL glucose oxidase, 20 mg/mL glucose, and 40 µg/mL catalase at pH 8). 

Buffer proteins were purchased from Sigma-Aldrich and salts were purchased from Fisher 

Scientific. These conditions maintain a low free oxygen concentration in the buffer to minimize 
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non-reversible fluorophore bleaching and encourage transient fluorophore blinking, as is necessary 

for SMLM.  

Imaging procedure  

Exposure of the sample to >80 mW of excitation light with λex = 561 nm for 3 s resulted in 

converting most of the DiI from the fluorescent state ‘on’ to the transient non-fluorescent, dark 

state ‘off’ to provide steady state fluorophore blinking. The 'on' fluorophores were imaged at a 

density of <1 fluorophore/μm2. Sequential movies were acquired with alternating p-polarized 

TIRF (pTIRF) excitation at λex = 561 nm for pPLM and s-polarized TIRF (sTIRF) excitation at λex 

= 561 nm for sPLM. Between 10,000 and 30,000 frames were acquired for each polarization at a 

frame rate of 50 Hz on a region of interest with 18 ms acquisition per frame.  

Single-fluorophore localizations 

The analysis of the raw, diffraction-limited images included low-pass Gaussian filtering, 

median background subtraction, lateral stage drift correction, and the fitting of each isolated 

fluorophore images via the ImageJ plug-in ThunderSTORM 86. ThunderSTORM provided the 

single fluorophore positions, localization uncertainty, and photon per fluorophores for further 

analysis. A threshold value 100 photons per fluorophores was used to keep only the bright 

localizations for further analysis. Single-molecule DiI localizations had 13 ± 5 nm precision (Fig 

11). The localizations from s- and pTIRF excitation were analyzed separately to reconstruct 

separate super-resolution images for polarization. 
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 Figure 11. Histogram plots of brightness and uncertainty of localizations in PLM. The distribution 

of the number of photons per fluorophore obtained from pPLM data of the whole membrane in 

comparison to the detections from the curvature region and the corresponding localization 

uncertainty for membrane over 24 (A,D), 51 (B,E), and 70 (C,F) nm radius nanoparticles. 

 

Single-particle tracking (SPT)  

Single particle tracking is a technique that utilized the tracking fluorescent molecules over 

sequential frames and identifying their trajectory to reveal their dynamics. This technique is 

commonly employed to investigate the diffusion rates of molecules in various environments. 

Standard SPT procedure requires the localization of fluorescent molecules in each frame (up to 25 

nm accuracy)87,  then processing the locations in a tracking program (written In MatLab). When 

the center of the Gaussian functions are present within a user-defined distance for consecutive 

frames, the centers are identified to belong to the same trajectory for a single fluorophore. For 

diffusing molecules, a cutoff is chosen for a given time lag based on the probability that a molecule 

with diffusion coefficient D has diffused a distance L in a time Δt set by the user.  

                                                                     𝑃 = 1 − 𝑒
−𝐿2

4𝐷𝛥𝑡                         (Eq. 14) 

 

Trajectories are analyzed to obtain the diffusion coefficients by calculating the mean 

squared displacements (MSD) for all trajectories for different step sizes, and then performing a 
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linear fit of the MSD graph as function of time. The resulting MSD vs Δt curve for Brownian 

diffusion should follow  

                                                                     ˂r2˃ = 4DΔt                         (Eq. 15) 

 

Where r is the step sizes, D is the diffusion coefficient, and Δt is the time step. High-

throughput single particle tracking88 enables the observation of the distribution of single particle 

trajectories, and correlate the molecular diffusion rates with membrane properties such as 

membrane phase, curvature, and electrostatics within a noisy background. 

The sequential localizations of single fluorophores were analyzed to reveal the diffusion 

rate of individual molecules versus membrane topography. The individual fluorophore trajectories 

projected onto the imaging plane were identified with custom MATLAB code. Single-fluorophore 

localizations were linked as a trajectory if they were in sequential frames, within 500 nm of each 

other, and there was no alternative localization for linking within 1 μm. The single-molecule step 

lengths (v) were grouped based on their distance from the NP center, and their normalized 

distribution was fit to a 2D Maxwell-Boltzmann distribution (Eq. 16) as would be expected for 2D 

Brownian diffusion, to find the fit diffusion coefficient (Dfit).  

                                                        𝑃(𝑣) =
𝑣

2𝐷𝑓𝑖𝑡Δ𝑡
𝑒

−
𝑣2

4𝐷𝑓𝑖𝑡Δ𝑡                       (Eq. 16)  

The projection of the lipid trajectories onto the imaging plane yielded a decrease in their 

apparent step lengths depending on the membrane tilt (θ); this effect is considered in the 

simulations of single molecule trajectories described below. The localization imprecision (σr = 13 

± 5 nm) increased the apparent step lengths. A camera blur was caused by the single-frame 

exposure time (texp) being a significant fraction of the time between frames (Δt) 89,90. The diffusion 

coefficient (D) was calculated from Dfit according to  

                                                     𝐷 = (𝐷𝑓𝑖𝑡 −
𝜎𝑟

2

2Δ𝑡
)/(1 −

𝑡𝑒𝑥𝑝

3Δ𝑡
).                     (Eq. 17) 
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With σr  = 15 nm, Δt = 20 ms, and texp = 18 ms, if Dfit = 0.5 µm2/s then D = 0.7 µm2/s or if 

Dfit = 0.1 µm2/s then D = 0.13 µm2/s. Since the microscopy methods used here reveal only the z-

projection of the diffusion, D calculated from Eq. 17 is reported as Dxy to emphasize that only the 

diffusion through the xy-plane has been measured.  

With the 50 Hz frame rate and a D = 0.2 μm2/s, the fluorophores are expected to move an 

average distance of sqrt(4DΔt) = 130 nm between adjacent frames, which is a large fraction of the 

size of the bud. However, by averaging many single-molecule steps, we have found that lipids near 

the curvature on average moved less distance than expected if the local effective membrane 

viscosity was dependent on membrane curvature. The distance moved by the lipids within the time 

between adjacent frames is a large source of blurring of the data. This blurring would be 

significantly prominent if a MSD analysis was performed for a trajectory of n steps. MSD analyses 

incorporate an effective spatial blurring over the whole trajectory, which traverses sqrt(n) farther 

than a single step.  

Diffusion coefficients from SPT are typically extracted by fitting the mean squared 

displacement versus Δt. However, fitting a whole trajectory to a single diffusion coefficient blurs 

the effects of nanoscale curvature with the lipid trajectory sampling both curved and flat 

membranes 90. Therefore, in the current study, a single step analysis approach was adopted to study 

the dynamics of lipids diffusing between curved and flat membrane. 

Fluorescence recovery after photobleaching (FRAP)  

FRAP is an optical imaging method utilized to study the kinetics of a diffusing label 

through a biological sample such as a membrane bilayer. In brief, the intensity profile of a sample 

is monitored, a brief exposure of a circular small spot on the sample (~2 µm in diameter) to high 

power laser pulse, ensures the conversion of the bright fluorescent molecules to a dark state. The 
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intensity within the bleached area is then recorded, a gradual increase in the fluorescence 

brightness within the observed area is detected. The unbleached fluorophores diffuse into the 

bleached region and allowed to exchange with the bleached labels within. Eventually, a uniform 

intensity is observed, however at a lower value than the initial pre-bleaching intensity. The fraction 

of the new uniform intensity to the pre-bleached steady-state intensity presents the recovered 

fraction of the dye. The recorded intensity profile is then fitted to91:  

                   I(𝑡) =  𝐴 (1 − 𝑒
𝑡

𝜏𝐷)                                  (Eq. 18) 

where A represents the initial uniform steady-state magnitude of the intensity, which is an indicator 

of the fluorophore density and laser power, while τD represents the characteristic recovery time. 

The lateral diffusion is then quantified based on the radius of the bleached spot (w) and the 

characteristic recovery time (τD) given by: 

                        𝐷𝑥𝑦 =  
𝑤2

4∗ 𝜏𝐷
.                                           (Eq. 19) 

3.9 Results 

3.9.1 Resolution and sensitivity of PLM experimentally 

PLM was used to detect engineered nanoscale membrane curvature and correlate curvature 

to single-molecule trajectories. PLM provided visualization of nanoscale curvature in agreement 

with theoretical predictions. PLM was demonstrated to provide order-of-magnitude improvements 

in detection and resolution of membrane curvature. Curvature in model membranes was created 

by draping supported lipid bilayers (SLBs) over nanoparticles (NPs) of known sizes, ranging in 

radius (rNP) from 24 to 70 nm. The resulting membrane curvature and curvature-influenced 

diffusion of individual lipids were resolved. In sum, these studies demonstrate the capabilities of 

PLM to advance optical imaging capacities while providing order-of-magnitude improvements in 

spatial and temporal resolution than comparable single molecule localization microscopy (SMLM) 

techniques. 
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Figure 12. Engineered membrane curvature by draping a SLB over NPs. (A) The 70 nm radius 

fluorescent NPs on glass were imaged with λex = 488 nm. (B-C) Diffraction-limited p-polarized 

and s-polarized TIRFM image, respectively. (D-E) Reconstructed images of the membrane over 

the NPs presented as 2D histograms of the localizations in pPLM and sPLM, respectively. (B-D) 

The membrane was imaged with λex = 561 nm and the differences between the polarizations 

provide internal controls for chromatic bleed through. (F-J) Magnified images from (A-E), as 

indicated by the dashed boxes. The detected membrane curvature over the 70 nm NPs is indicated 

by white arrows. A multi-colored fiduciary mark is indicated by red arrows. Scale bars represent 

(A-E) 5µm, and (F-J) 400 nm.  

 
Figure 13. Membrane curvature detection over 24 nm radius NPs. (A, C) Diffraction-limited sTIRF 

and pTIRF, respectively. (B, D) Super-resolution reconstructed images of sPLM and pPLM, 

respectively. Average radial line scans (E) for TIRM and average radial density line scan (F) for 

PLM are for membrane over 10 NPs events of rNP of 24 nm. (E) The diffraction-limited PSF 

limits the ability to identify the size of each event. Error bars represent fitting uncertainty to 95% 

confidence bounds. (F) PLM provides improved resolution in detecting and sensitivity in detecting 

curvature. Error bars represent standard error of the mean. Scale bar in (A, C) represents 200 nm. 

Scale bar in (B, D) represents 100 nm. 

 

 
Figure 14. Membrane curvature detection over 51 nm radius NPs. (A, C) Diffraction-limited sTIRF 

and pTIRF, respectively. (B, D) Super-resolution reconstructed images of sPLM and pPLM, 
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respectively. Average radial line scans (E) for TIRM and average radial density line scan (F) for 

PLM are for membrane over 10 NPs events of rNP of 51 nm. (E) The diffraction-limited PSF 

limits the ability to identify the size of each event. Error bars represent fitting uncertainty to 95% 

confidence bounds. (F) PLM provides improved resolution in detecting and sensitivity in detecting 

curvature.(F) Error bars represent standard error of the mean. Scale bar in (A, C) represents 200 

nm. Scale bar in (B, D) represents 100 nm. 

 
Figure 15. Membrane curvature detection of LUVs on an SLB. (A-C, E, G, I) Diffractionlimited 

polarized TIRFM images and (D, F, H, J) PLM images of a POPC/Biotin/DiI membrane 

with unfused LUVs where the excitation light was s-polarized in (A, C-F) or p-polarized in (B, 

G-J). (C-F) and (G-J) are magnified images for regions within the white and yellow box, 

respectively. Scale bars represent (A, B) 5µm, (C-J) 200 nm. 

 

To demonstrate the ability of PLM to detect membrane curvature, we created membrane 

bending by three different methods: SLBs draped over NPs (Figs. 12, 13, and 14); LUVs above an 

SLB (Fig. 15); and unfused GUVs adhered to the glass coverslip (Fig. 16). The best control and 

consistency of the engineered membrane curvature came from the SLBs draped over the NPs. 

SLBs composed of 99.7 mol% POPC and 0.3 mol% DiI were draped over NPs to create the desired 

membrane topography. Continuity of the SLB over the NP was verified with fluorescence recovery 

after photobleaching (FRAP) (Fig. 17). This procedure was reproduced for 37, 29, and 175 NPs of 

rNP = 24, 51, and 70 nm, respectively. pPLM provided an increased density of localizations at the 

site of membrane curvature and the size of the nanoscale membrane bud was measured (Figs. 18 

and 19). For example, the density of localizations at the curved membrane over the 70 nm NP in 

pPLM was (2.2 ± 1) x10-6 localizations/nm2/frame, a 27x increase over (8.2 ± 3) x10-8 for flat SLB 

(Fig. 6). As an important internal control, no significant increase in the number of sPLM 
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localizations was observed with nanoparticle-induce membrane curvature (Fig. 12J), which 

provides a second verification that chromatic bleed through from the NP was not present (Fig. 20). 

 
Figure 16. LUV imaging challenges. Diffusion on the SLB proved to be problematic when 

resolving the LUV size via PLM. A ‘tail’ of localizations is detected as the LUV diffused across 

the SLB. (A, E) Diffraction-limited pTIRFM image of the membrane, the white box labels the 

LUV location with an increase in brightness in the pTIRFM image indicating the presence of 

curved membrane. Black region is glass. (B, F) Diffraction-limited sTIRFM image, the uniform 

brightness within the white box indicates the presence of membrane. (C, G) Histograms of 

localizations in pPLM, the increased density of localizations indicate the presence of membrane 

curvature. The region to the right of the central bright pixels shows a lower density of localizations 

as the LUV diffused through this area. (D, H) Histograms of localization in sPLM demonstrate a 

more uniform distribution of localizations and the presence of membrane. (E-H) are zoomed in 

regions for marked white boxes in (A-D) respectively. Scale bars represent (A-D) 3µm, and (E-H) 

300 nm. 

 

 
Figure 17. FRAP for SLB over NPs. Membrane draped over the nanoparticle is intact and uniform, 

upon performing FRAP lipids were observed to diffuse and exchange with unbleached lipids from 

the surrounding membrane directly on the coverslip. (A) Fluorescence image of the 24 nm radius 

nanoparticle with λexc = 647 nm. (B-D) Fluorescence image of POPC:DiI membrane with λex = 

561 nm (B) before, (C) immediately after, and (D) 40 s after bleaching. (E) FRAP result of a 100 
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μm2 of membrane overlaying sporadic nanoparticles demonstrates the bulk 0.3 ± 0.1 μm2/s 

diffusion coefficient. 

 
Figure 18. Probability distribution and histogram of sizes of curvature over NPs. (A-C) Radial 

probability distribution of localizations versus distance from the center of the curved membrane 

(r) over NPs for rNP = 24, 51, and 70 nm, respectively. Grey lines represent individual events and 

the colored lines represent the average. Error bars are the standard error of the mean at a given r. 

(D-F) Histograms of the radius for each curvature event (<r>) over NPs of rNP = 24, 51, and 70 

nm, respectively. Black lines represent the Gaussian fits to guide the eye. The mean of the events 

radii was 32 ± 4, 50 ± 14, 60 ± 13 nm for rNP = 24, 51, and 70 nm, respectively. 

 
Figure 19. The number of localization obtained per curvature event induced by NPs. The higher 

the number of localizations/event, the more confidence in <r> is obtained. (A-C) Calculated <r> 

versus the number of localizations/event for rNP = 24, 51, and 70 nm, respectively. 
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Figure 20. No fluorescent nanoparticles bleed through to membrane channel. As a control 

experiment, fluorescent nanoparticles on glass in the absence of a DiI were imaged and analysed 

with the same experimental conditions as typically done for PLM for 24 nm (A-F, S), 51 nm (G-

L, T), and 70 nm (M-R, U) radius nanoparticles with primary excitation/emission wavelengths 

(λexc/λem) of 647nm/680nm, 488nm/508nm, and 405nm/515nm, respectively. No significant 

localizations were collected at the site of the nanoparticles in the absence of DiI. (A,G,M) 

Diffraction-limited fluorescence images of the nanoparticles.(B,H,N) Diffraction-limited pTIRFM 

with λexc/λem = 561nm/600nm. (C, I, O) Diffraction-limited sTIRFM with λexc/λem = 

561nm/600nm. (D,J,P) pPLM with λexc/λem = 561nm/600nm. (E, K, Q) sPLM with λexc/λem = 

561nm/600nm. (F,L,R) Merge nanoparticles (green), sPLM(blue), pPLM(red). Scale bars 

represent 200 nm. 

 

Comparisons between the diffraction-limited images of the fluorescent polystyrene NP, the 

diffraction-limited polarized TIRFM images, and the reconstructed PLM images of the membrane 

reveals the increased resolution and detection sensitivity provided by PLM over polarized TIRF 

images (Fig. 12). The diffraction-limited images demonstrated the PSF of the microscope more so 

than the physical size of the nanoparticle or membrane curvature. The center of the curvature as 

determined by fitting the high localization density region in pPLM by a 2D Gaussian function 

according to  

𝐺(𝑥, 𝑦) = 𝐴 ∗ exp [ 
−(𝑥 − 𝑥0)2 

2 𝜎𝑥
2

+  
−(𝑦 − 𝑦0)2 

2 𝜎𝑦
2

 ] + 𝑐        (𝐸𝑞. 20) 



49 
 

 
 

   

where A is the amplitude, (𝑥0, 𝑦0) represent the coordinates of center of the Gaussian function, 𝜎𝑥 

and 𝜎𝑦 are the corresponding with in x and y direction, and c is the background count. The central 

peak of the Gaussian function revealed the center of the membrane curvature. The radius of each 

membrane bud (〈𝑟〉) was calculated from pPLM images by averaging the distance between each 

localization and the center of the bud (r). The size of each membrane bud (<r>) was set equal to 

the mean distance from the bud center of all extra localizations due to the bud. This was calculated 

by taking into consideration the background from flat SLB localizations of uniform density (ρ), 

the distance of each localization from the bud center (ri), and a threshold distance that was 

significantly greater than <r> (R). Typically, R = 400 nm but the following calculation is 

independent of the particular R chosen. The number of extra localizations due to the presence of 

the bud (Nbud) is equal to the total number of localizations (Nall) within ri < R subtracted from the 

number of localizations expected within R if no bud was present (NSLB); NSLB = πR2ρ = Nall - Nbud.. 

The mean ri expected for the flat SLB within R is 2R/3. By analyzing all collected localizations 

within R and subtracting the expected localizations from the flat SLB, <r> is calculated according 

to 

                                                    < 𝑟 > =  
∑ 𝑟𝑖 

𝑁𝑏𝑢𝑑
−  

2𝜋𝜌𝑅3

3𝑁𝑏𝑢𝑑
                                    (Eq. 21) .   

   

This calculation yielded <r> of 32 ± 4, 50 ± 14, and 60 ± 13 nm for membrane draped over 

NPs of 24, 51, and 70 nm radii, respectively (Fig. 18). Greater consistency in <r> calculations was 

provided when more localizations per area were detected (Fig. 19). 

The sensitivity of PLM for detecting membrane curvature was especially apparent for the 

SLBs draped over NPs of 24 nm radii. The faint signal from the membrane curvature in diffraction-

limited pTIRFM images could have gone undetected, whereas the increased density of 

localizations pPLM is readily apparent (Figs. 6 and 13). The increased sensitivity of PLM over 
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pTIRFM is especially highlighted by the evaluation of signal to noise ratios. Signal-to-noise 

calculations of diffraction-limited images were performed by taking the ratio of the mean intensity 

difference at the membrane bud divided by the standard deviation of the intensity of the 

surrounding planar SLB. Whereas, the signal-to-noise ratio (SNR) for the super-resolution 

reconstructed images was evaluated through dividing the mean signal, calculated from the number 

of localizations at the curvature location, by the standard deviation of the number of localizations 

of the flat bilayer. pPLM provided a 6x increase in the SNR over diffraction-limited p-polarized 

TIRFM with SNR of 11 ± 9 and 1.9 ± 0.7, respectively, where these uncertainties represent the 

standard deviation between events.  

LUVs of with 0.3 mol% DiI were imaged with PLM. From diffraction-limited images of 

polarized TIFM excitation, flat SLBs were (1.8 ± 0.3)x brighter with sTIRFM than pTIRFM with 

the primary variability coming from laser alignment and SLB quality. Unfused LUVs above an 

SLB yielded (1.8 ± 0.7) more signal from pTIRFM than sTIRFM with the variability coming 

primarily from the LUV size. The combination of these factors yielded a 3.2 ± 0.8 fold increase in 

signal for LUV detection via diffraction-limited pTIRFM versus sTIRFM. pPLM yielded a 7.6x 

increase in localization rate when an LUV was present over an SLB with a (50 ± 20) versus (6.6 ± 

0.8) x10-7 localizations/nm2/frame in pPLM versus sPLM. The mean and standard deviation of the 

LUV radii was <r> = 54 ± 29 and 57 ± 21 nm as measured by pPLM and sPLM, respectively. As 

a demonstration of the increased sensitivity provided by PLM, 81% of the 122 LUVs that were 

detected in both sPLM and pPLM were not apparent with diffraction-limited pTIRFM or sTIRFM 

(Fig. 21). The LUVs only detected by PLM had radii shifted to smaller values of <r> of 62 ± 20 

nm while LUVs detected in PLM and TIRF possessed <r> of 72 ± 10 nm.  
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Figure 21. Probability of detecting LUVs in PLM versus TIRF for each LUV size. The increased 

probability of detecting LUVs in PLM versus TIRF for each LUV size. PLM not only detects and 

resolves the sizes of LUVs observed in TIRF, it also detects LUVs unseen in TIRF. A histogram 

of LUV sizes (<r>) for LUVs detected only in sPLM and pPLM but not in TIRF shown in black 

the mean size is 62 ± 20 nm. The red histogram represents a subset of the LUVs detected in PLM 

but also observed in p-polarized and s-polarized TIRF, the mean size is shifted to larger values of 

<r> = 72 ± 10 nm. 

 

3.9.2 PLM temporal resolution 

To reveal PLM temporal resolution, an autocorrelation analysis was performed on the PLM 

data. Correlation analysis measures the correlation between random localizations or variables92. A 

quantitative analysis that outputs the spatial or temporal connection between input variables. Auto 

correlation analysis measures the correlation within a single sample, for instance, an 

autocorrelation of a super resolution image reveal the local distance between clusters as well as 

the size of those clusters. A measurement of significant clustering and partitioning. The auto 

correlation function, G(r), quantifies the distribution of localizations within a single static image. 

It provides a probability measurement of finding a localization at a distance (r) from a given 

localization location. The width of the function reports the average cluster size, whereas the 

magnitude of the function represents the increased probability of clustering compared to a 

background of random distribution.  For a distribution of localizations in two dimensions, each 

localization is assumed to exist at a position (r), with a surface defined density function ρ(r), where 
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the average density is given by <ρ(r)> = ρ. The autocorrelation function for such a system averaged 

over all positions R  is defined by93:  

                                           𝐺(𝒓) =  
<ρ(𝑹) ρ(𝑹−𝒓)>

ρ2
                                           (Eq. 22) 

 

For a random distribution G(r) = 1. The correlation function is calculated using a Fast 

Fourier Transforms and averaged over all angles as it’s considered to be rotationally symmetric. 

For a given reconstructed image, the image is first padded with zeros to a larger distance than the 

size of the image, the correlation functions are then calculated, converted to polar coordinates, 

binned by radius, and then plotted as a function of r. In Matlab the autocorrelation function is 

evaluated as follow:  

                            𝐺(𝒓) =  
𝐹𝐹𝑇−1(|𝐹𝐹𝑇(𝐼𝑚𝑎𝑔𝑒)2|)

𝜌2∗𝐹𝐹𝑇−1 (|𝐹𝐹𝑇(𝐼𝑚𝑎𝑔𝑒=1)2|)
                              (Eq. 23)  

 

Where the first term (G(r=0)) represents the magnitude of the inverse of the density. This 

is due to the convolution of the correlation function to a delta function at r = 0 position.   

The cross correlation function quantifies the distribution of localization between two 

localization sets. For two reconstructed images I1 and I2 respectively, the cross correlation reveal 

the spatial consistency of two sets of data to match each other according to:  

 

                                𝐺(𝒓) =  
𝐹𝐹𝑇−1(𝐹𝐹𝑇(𝐼1)∗𝑐𝑜𝑛𝑗|𝐹𝐹𝑇(𝐼2)|)

𝜌1∗ 𝜌2∗𝐹𝐹𝑇−1 (|𝐹𝐹𝑇(𝐼𝑚𝑎𝑔𝑒=1)2|)
               (Eq. 24) 

 

Autocorrelation analysis was performed on both sPLM and pPLM images with increasing 

acquisition time interval to find PLM temporal resolution for detecting membrane bending. The 

increased correlation signal indicates the acquisition time required to detect a significant clustering 

identified as membrane curvature compared to the surrounding flat bilayer. Data sectioning into 

various acquisition time intervals is required to reveal PLM temporal resolution in detecting 

membrane bending. The number of combined movies for reconstructing a super resolution image 
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for further analysis via autocorrelation function was determined by the acquisition time interval 

and the camera frame rate. Acquisition intervals of 0.5, 1, 3, 10, and 30 seconds were considered 

for super resolution image reconstruction in sPLM and pPLM. The magnitude of G(r) at r = 0 

represent the local density of localizations which also reflects the consistent increase in the density 

of localizations at the curvature location in pPLM.  

Results reveal the increased correlation between localizations due to the curvature 

detection in pPLM in comparison to the more uniform localization distributions from sPLM. 

Localization density rate of (1.2 ± 0.1) x 10-6 localizations/nm2/frame, enabled early detection of 

local membrane bending over the 70 nm NPs within 1 sec in pPLM with p-value of 0.0239; for a 

3 sec acquisition interval, the curvature region is detected in pPLM with a p-value of 0.0002 (Fig. 

22). 

 
Figure 22. Autocorrelation analysis for sPLM (black) and pPLM (red). (A) Data was normalized 

to the first G(r) value to show the detection of curvature in pPLM with smaller error bars as time 

interval increases in comparison to sPLM. (B) Auto-correlation G(r) value at r = 0. The sPLM 

analysis provides the internal control to show the uniform bilayer analysis. An acquisition time of 

1 sec is sufficient to indicate the presence of curvature in pPLM. 

 

3.9.3 Membrane bending affects lipid mobility 

The same raw data from PLM that reveals nanoscale membrane bending through image 

reconstruction also can be interpreted to provide single-lipid trajectories relative to the membrane 

bending. High-throughput SPT was performed on the raw PLM data by tracking of individual 
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fluorophores that were localized in sequential frames. Single-molecule DiI diffusion was observed 

with pPLM and sPLM to reveal the apparent diffusion coefficient in the xy-plane (Dxy). DiI that 

were detected in more than one frame were detected in 3.8 sequential frames on average. 

Analyzing Dxy as a function of location on the sample revealed the effects of membrane topology 

to lipid dynamics. In particular, Dxy versus distance from the center of the nanoparticle (r) revealed 

the curvature-induced slowing of the single lipid diffusion (Fig. 23). SPT of DiI yielded Dxy = 0.55 

± 0.1 μm2/s far from the 70nm radius NP; however, within 50 nm of the center of the NP, Dxy = 

0.03 ± 0.01 μm2/s when detected with either p- or s-polarized excitation. 

 
Figure 23. SPT of DiI molecules reveals slowed diffusion at the site of curvature. Slowed DiI 

diffusion was detected at the site of nanoscale membrane curvature equally while imaged with p- 

or s-polarized excitation. SLBs were draped over 70 nm radius NPs. Particle locations were 

projected on the xy-plane and the apparent fluorophore diffusion was affected by both the 3D 

membrane topology and the influences of membrane curvature on DiI mobility. Few models were 

used to reproduce the experimental decrease in D at the site of the membrane curvature. The fit of 

the distribution of step lengths yielded the apparent diffusion coefficient and the 95% confidence 

range, as indicated by the error bars. Neither a locally Brownian diffusion nor a simulated barrier 

to free diffusion surrounding the bud reproduced the experimental results. However, upon 

simulating a decreased local D for curved SLB to 13% of the planar SLB value, the resulting 

simulated Dxy well matched experimentally observed Dxy. 

 

The geometrical effects of diffusing on a non-planar membrane can cause the observed 

diffusion rate through the xy-plane to be significantly different from the true, local diffusion rate. 
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For example, a simple tilt of the membrane can decrease the apparent Dxy by up to 50%. With 

localization imprecision, long imaging frame rates, sample averaging, and increased membrane 

area per imaging pixel, even greater ratios of D to Dxy are possible. By simulating the diffusion of 

individual DiI on the estimated membrane topography (Fig. 6C) with a constant in-membrane 

diffusion rate, the simulated non-planar membrane topography was unable to reproduce the 

experimental results while assuming a locally Brownian diffusion. In order to reproduce our 

experimental data, an addition mechanism for slowing the lipids at the sites of membrane curvature 

was needed.  

One tested hypothesis was that a barrier to diffusion was preventing the lipids from 

transitioning between the planar SLB and the membrane bud. However, the incorporation of a 

diffusion barrier into our simulations that prevented single-lipid trajectories from crossing between 

the curved membrane bud and surrounding SLB was insufficient to reproduce the experimental 

data. With a 50 Hz frame rate, a local, a local Dxy of 0.55 µm2/s, and a rNP = 70 nm, a simulated 

diffusion barrier yielded only a half of the observed decrease in the observed Dxy at the membrane 

bud. Further, the FRAP results demonstrate the continuity of the membrane between the bud and 

the SLB (Fig. 17).  

Alternatively, the hypothesis was tested that the membrane curvature induced a local 

change in the effective membrane viscosity. This could be caused by variations in the curvature-

induced changes to the lipid packing and/or the lateral membrane tensions. This hypothesis was 

tested via simulations with a lipid diffusion coefficient that was slower in curved membranes than 

planar membranes. Simulations of lipids diffusing on a planar membrane (25 ± 5)x faster than their 

local diffusion on the curved membrane, well reproduced our experimental data from both sPLM 

and pPLM SPT (Fig. 23). 
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3.10 Discussion  

3.10.1 Engineered membrane curvature 

The method of creating SLBs primarily used in these studies incorporated the draping burst 

GUVs over the glass coverslip and polystyrene NPs. Draping a bilayer over NPs of known radii 

provided a model of physiologically similar dimensions to clathrin- and caveolin-mediated 

endocytosis. SLBs created by bursting GUVs were more intact and contained fewer pores than 

creating a bilayer via LUV fusion. However, such holes within the SLB were still feasible with 

this GUV-fusion method, especially when GUVs were more violently ruptured via application of 

GUVs to freshly plasma cleaned glass coverslips or dilution with hypotonic solutions. The 

continuity of the membrane between the SLB and the curvature over the NP was confirmed FRAP 

and long single-lipid trajectories. Both FRAP and long trajectories demonstrated that the lipids 

coating the NP can exchange with the lipids directly on the coverslip (Fig. 17), similar as also 

shown previously 94. Examination of the continuity of the bilayer over NPs was performed by 

assessing the pPLM data where 94% of 290 NPs surrounded by an SLB had curved membrane 

draping over the NP. NPs without membrane curvature could be due to the NP being on top of the 

bilayer rather than under it, or the formation of a hole in the SLB directly surrounding the NP. The 

rare occasions in which membrane curvature did not appear at a nanoparticle gives confidence that 

the data we interpret as membrane curvature was not an artifact caused inherently by the presence 

of the nanoparticle (i.e., chromatic bleed through). 

An alternative membrane topography examined is that of the LUVs bound to an underlying 

SLB, which resembles vesicle docking in endocytosis and the later stage of exocytosis that 

precedes vesicle fission in cells. The variation of LUV sizes obtained by extrusion was 

demonstrated by PLM (Fig. 20). Other studies of vesicle sizes produced by extrusion through 100 
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nm pores have found the average diameter of extruded LUVs to be 65 ± 30 nm 95 indicating that 

the extrusion process produces a variation of LUV sizes with an upper diameter limit comparable 

to the extruder filter pore size. Taking advantage of PLM sensitivity and resolution, our reported 

values are in agreement with previous reports of LUVs size distributions imaged via SEM 95. 

3.10.2 Membrane topography over NPs 

The demonstration of PLM performed here measured nanoscale hemispherical membrane 

curvature of an SLB draped over NPs ranging in radii from 24 to 70 nm. Prior methods of inducing 

nanoscale curvature utilized nanoengineered wavy glass substrates 96, microfabricated structures 

97,98, membrane tubule pulled from GUVs 17, and SLBs on deformable substrates 99,100. However, 

wavy glass substrates, thick polymer structures, and lipid tubules are not compatible with TIRF 

excitation. The method of draping a membrane over fluorescent NPs of known size, as done here 

and previously 94,101,102, was effective for engineering nanoscale membrane curvature, testing the 

capabilities of PLM, and revealing the effects of curvature on lipid mobility.  

A comparison between sPLM and pPLM results provided confirmation of numerous 

aspects of our results. At the location of the NP-induced membrane curvature, a near uniform 

density of localizations in sPLM was detected whereas >5x increase of localizations in pPLM was 

observed (Figs. 12 and 6A). This confirms that there was no significant chromatic bleed through 

from the fluorescence emission of the NP, that the refraction of the excitation light by the NP did 

not catastrophically alter the excitation light polarization, and that there was no significant Förster 

resonance energy transfer between DiI and the NP disrupting the polarization dependence of the 

signal. However, refraction by the NP may have influenced the direction of the DiI emission.  

Nanoparticle-induced lensing has the potential to cause a systematic shift in the perceived 

location of a fluorophore from its actual position, similar to the anisotropic emission effects. 
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Lensing effects were coarsely estimated by considering the ray trajectories leaving a point source 

in water that was 5 nm away from the polystyrene nanoparticle and imaged by a thin lens. The 

changes in index of refraction from the water, the polystyrene, and the coverslip yielded a slight 

shifting of point spread function such that the nanoparticle lensing shifted the single-fluorophore 

images towards the center of the nanoparticle on the imaging plane. However, this effect was of 

lower magnitude than the anisotropic emission, and incorporating of the high index of refraction 

of the polystyrene nanoparticle in the simulations was not necessary for theoretical reproduction 

of our experimental results. 

Further, the polystyrene nature of the NP and its high index of refraction (1.59) had no 

effects on the acquired data and curvature detection. Several control experiments have been carried 

out to confirm that the nature of the NP did not interfere with the presented results. First, a natural 

control would be to compare the super resolution images collected in sPLM and pPLM. The 

membrane is expected to exhibit uniform localization density in sPLM and a high localization 

density at the site of the NP-induced curvature in pPLM. Experimental observations fall in 

agreement with expected distribution of localizations, and the lack of similarities between sPLM 

and pPLM confirms that the nanoparticle itself had no effect on the collected data. For instance, 

for a membrane artifact such as a hole or a tetraspec, the localization density distribution would 

appear to be similar for both sPLM and pPLM images. Second, curvature generation without the 

use of NP, such as LUVs, GUVS, and Cholera toin subunit B (CTxB)-induced budding yielded 

the expected membrane-orientation dependence of PLM localization densities. Third, no 

chromatic bleed though was detected from the nanoparticles. NPs on glass, with no DiI labelled 

membrane, exhibited no additional localizations in PLM. Finally, modeled theoretical simulations 

without the incorporation of the index of refraction of the NP reproduced the presented data. This 
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indicates that the index of refraction of the NP did not affect the results and is not required to match 

experimental data. However, if a larger polystyrene nanoparticle was used (radius > 400 nm) the 

TIRF illumination would have been compromised and the reported results would change.  

The membrane topology over the NPs depended on the adhesion between the lipids and 

the polystyrene NP, the adhesion between the lipids and the glass coverslip, the size of the NP, the 

membrane bending rigidity, the lateral membrane tension and pressure, and the packing properties 

of lipids 102,103. POPC, the dominate lipid in these experiments, has no intrinsic curvature and 

forcing a POPC bilayer to bend would cause an unfavorable packing of the lipids. For a positive 

membrane curvature, the lipid tails are crowded while the head groups are stretched over more 

area. For a negative membrane curvature, the lipid head groups are crowded while the lipid tails 

are given more volume to occupy. Both of these configurations are unfavorable for POPC and 

apparently result in slowing the diffusion of a fluorescent lipid through the crowded environments. 

We modeled the shape of the membrane over the NPs to be primarily spherical in shape 

with a smooth 20 nm radii of curvature bend to connect to the planar SLB (Fig. 6C). This consistent 

radius of curvature for the connection of the SLB on the NP to the SLB on the coverslip resulted 

in a tent-like transition from the top of the small NPs to the glass substrate and a neck-like feature 

at the transition from the large NPs to the coverslip. The tent-like membrane structure would have 

a bigger size than the small NPs; the neck-like membrane structure would have a smaller size than 

the large NPs (Figs. 18 and 6C) 102. The tent-like model may represent the initial stages of 

membrane bending upon the initiation of endocytosis or conclusion of exocytosis; the neck-like 

model represents the later stage of endocytosis or early stage of exocytosis. The agreement 

between the experimentally measured and theoretically predicted radial density profiles suggest 
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the accuracy of both the membrane model and the theoretical analysis of localization probabilities 

(Fig. 6 and Eq. 9).  

3.10.3 Limitations to resolution 

The distribution of localizations around the nanoparticle-induced membrane buds was 

influenced by multiple effects that limit the experimental determination of the membrane 

topography, including (1) localization imprecision of the individual fluorophores, (2) anisotropic 

emission from the membrane-confined DiI, (3) finite localization rates, (4) NP-induced emission 

lensing, (5) the fitting of multiple ‘on’ fluorophores as if they were a single fluorophore, and (6) 

membrane curvature motion within the sample (i.e., NP or LUV drift) (Fig. 19). Each of these 

contributions has been theoretically tested in attempts to match theoretical predictions to the 

experimental observations.  

Localization imprecision 

The localization imprecision was limited primarily by the number of photons collected 

from each fluorophore in each frame. The localization software, ThunderSTORM, accounted for 

the camera quantum efficiency and imaging noise to estimate the number of photons and the 

localization precision for each detected fluorophore. 1200 ± 800 photons/fluorophore/frame were 

acquired yielding a localization precision of 13 ± 5 nm. For the simulated membrane topography, 

the experimental localization imprecision of σr
2 = 2σxy

2    was incorporated, and the distribution of 

random numbers with a standard deviation of σxy (Σ) was used. The simulated step lengths were 

then calculated as  

𝑣(𝑡𝑆) = √(𝑥(𝑡𝑠) − 𝑥(𝑡𝑠 + 6400) + 2Σ)2 + (𝑦(𝑡𝑠) − 𝑦(𝑡𝑠 + 6400) + 2Σ)2     (Eq. 25) 

 

Further information regarding the acquired number of photons/fluorophore and the 

uncertainty for the different NPs sizes are show in the corresponding figures and table. (Figs. 8, 
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9). Incorporating the localization imprecision in the simulations, a standard deviation of σxy (Σ) 

was added to each (x,y) location of the simulated diffusing lipid, affecting its simulated step 

lengths as shown in Eq 25.  

Anisotropic emission from the membrane-confined DiI 

The restriction of DiI within the plane of the membrane provide its unique polarization 

sensitive characteristic; however, the non-free-tumbling nature of this membrane label give rise to 

a collected anisotropic emission pattern and a systematic inaccuracies of DiI localization. The 

emission patter of the fluorophore strictly depends upon its distance from the glass-sample 

interface, and its orientation (ɸ) within the membrane. This induces a systematic shift in the 

apparent location of the DiI molecule within the membrane. The anisotropic emission contributed 

to the single lipids being localized at a location distinct from their true location dependent on the 

orientation and height of the membrane. The effects of rotationally confined fluorophores can yield 

lateral localization inaccuracies up to 100 nm upon defocusing by 200 nm 104. While the DiI is not 

rigid in one location and can explore all ψ values in addition to a tilt of ß = 69°, some orientation 

averaging occurs for each single DiI image. Even still, the anisotropic emission results in a 

systematic shift up to 100 nm of the single fluorophore localizations towards the center of the NP.  

Numerical integration yielded the magnitude and direction of the shift in localization 

position due to the single fluorophore orientation and height above the focal plane following the 

framework of Agrawal et al. 105. The expected PSF and lateral shift were estimated as a function 

of membrane orientation (θ and φ) after considering the expected fluorophore orientations within 

the membrane (ψ and β). Accordingly, the expected lateral shifts as a function of membrane 

orientation and height were calculated. This systematic shift was incorporated into our simulated 

image reconstruction and SPT results, proving to be critical for matching the experimental data. 
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Since the magnitude of the anisotropic emission effects vary greatly with distance between the 

single fluorophore in the membrane and the focal plane, and since this distance was difficult to 

experimentally assess, the magnitude of defocusing and lateral shifting was fit to match 

experimental and theoretical results. From this, we modified the simulations to include an 

anisotropic emission effect. In brief, a perceived location was calculated for each lipid actual 

location at each simulated time.  

Finite localization rates  

The finite localization rates result in a finite number of localizations per membrane budding 

event. With greater localizations, greater precision could be gained in detecting the center of the 

membrane bud, the local membrane orientation, the radial density of localizations, and the spatial 

mapping of the lipid diffusion rate. The upper limit on localization rates in all SMLM methods is 

based on the camera frame rate and the length scale of diffraction-limited imaging. Localization 

rates could be increased above those reported here by increasing density of DiI in the sample, or 

optimizing the DiI on-and off-rates with further buffer or incident light optimization. Further, the 

limited final number of localizations yields uncertainty in analyzing the precise local membrane 

orientation and the center of the membrane bud. 

NP-induced emission lensing  

The nanoparticle-induced lensing effect descried previously mainly alter the evanescent 

field and convert it into a propagating light in all directions independent of polarization.  

False fitting 

When performing SMLM, such as PLM, a key component of data analysis is the fitting of 

single-fluorophores that are sufficiently separated for computational fitting (>200 nm apart); 

however, if multiple fluorophores were in close proximity to each other (<100 nm) and falsely 
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interpreted as a single fluorophore. When two fluorophores are ‘on’ and treated as a single 

fluorophore’s image, errors will result in the data analysis and interpretation. Typically, this error 

is predictable by assuming a uniform time-averaged fluorophore density, estimating the mean 

separation distance between fluorophores, and calculating the probability of multiple fluorophores 

being within the diffraction-limited range from each other. However, for pPLM, the assumption 

of a uniform time-averaged fluorophore density may not be appropriate. 

With pPLM, the fluorophores on the membrane that are parallel to the coverslip, which is 

most of the membrane, are less likely to be excited and less likely to be turned ‘off’ than with s-

polarized illumination. Accordingly, it would be expected to have a higher concentration of ‘on’ 

fluorophores during pPLM than sPLM. This higher concentration of ‘on’ fluorophores coupled 

with the increased probability of detecting fluorophores when they are on the sub-diffraction-

limited membrane bud, would increase the probability that raw pPLM images would be more likely 

to yield multiple ‘on’ fluorophores simultaneously on the membrane bud than raw sPLM images. 

If multiple ‘on’ fluorophores were averaged simultaneously, and fitted as a single fluorophore, the 

resulting fit center would be biased towards the center of the membrane bud.  

This effect was simulated by considering a Poissonian distribution of fluorophores 

simultaneously ‘on’ on the bud. As expected, by increasing the number of simultaneously ‘on’ 

fluorophores, the distribution of localizations became higher near the bud center. However, this 

effect proved to be unnecessary to reproduce the experimental data. If mistakenly fitting multiple 

fluorophores as a single fluorophore lead to a significant shift in the localizations, deviating them 

toward the center of the bud, and eliminating the possibility of observing a ring-like structure of 

localizations in pPLM, then confirming fitting a single fluorophore would retrieve the ring-like 

structure. Toward this aim, further experiments utilizing lower DiI concentrations in the membrane 
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(0.001%), aimed to have lower localization rate, and thus lower ‘on’ fluorophores per frame. Even 

with these experimental conditions, no ring-like distribution of localizations was obtained. 

Membrane curvature motion within the sample 

Error in localizing the center of the membrane bud (σb) result in error determining the lipid 

behaviors versus distance from the bud center (r). In the simulations, r for a single lipid step was 

calculated according to  

 

𝑟(𝑡) =
1

2
√(𝑥(𝑡𝑠) + 𝑥(𝑡𝑠 + 6400) + 𝜎𝑏)2 + (𝑦(𝑡𝑠) + 𝑦(𝑡𝑠 + 6400))

2
  (Eq. 26)  

 

Experimentally, 200 ± 100 localizations per membrane bud were collected, each with a 

radius of 30 to 60 nm, which resulted in an uncertainty in identifying the bud center by 3 ± 1 nm, 

by standard error of the mean analysis. Thus σb was found equal to 3 ± 1 nm, and this value was 

put into the simulations of Dxy versus r. In some experimental conditions, the membrane bud was 

observed moving over time and this could be incorporated into the simulation by allowing σb to 

have a time dependence and/or fluctuation in the analysis of the simulation results. 

It was found that the single-fluorophore localization imprecision, anisotropic emission 

effects, and bud center identification proved to be the only error sources needed to theoretically 

reproduce the experimental data. Matching the experimental data with theoretical estimates 

required no NP-induced emission lensing nor multiple ‘on’ fluorophore misassessements.  

3.10.4 Curvature affected lipid diffusion 

Analyzing Dxy versus distance from the NP center demonstrated how the lipid diffusion 

slowed at the membrane buds equivalent to as if the membrane bending caused an increase in 

effective viscosity (r). With greater experimental sampling densities, rates, and precision, a more 

sophisticated simulation and analysis routine would be warranted 90. The sequential frame linking 
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and analysis performed here resulted in the average single-lipid step sampling a distance between 

60 and 200 nm, depending on the local diffusion coefficient, which is comparable to the size of 

the NPs. However, the curvature-dependent single-lipid step length observed here is dramatic and 

was able to be modeled computationally by incorporating the experimental data conditions, such 

as frame rate, localization precision, anisotropic inaccuracies, and membrane topography. 

The diffusion of DiI apparently slowed when the membrane was curved over the NP. The 

change in membrane topography from flat to the curved membrane over the NP alters DiI diffusion 

observed in both s- and p-polarization, resulting in a decrease in the observed diffusion coefficient 

within the membrane (Fig. 23). Since the diffusion analysis from the sPLM and pPLM data yielded 

indistinguishable effects of membrane curvature on lipid mobility, the illumination polarization 

did not apparently affect the observed diffusion coefficients. When a membrane is tilted (θ > 0), a 

2D Brownian diffuser apparently moves slower as imaged in the xy-plane; however, this 

geometrical effect alone was not sufficient to reproduce diffusion rates extracted from 

experimental data. Further, a diffusion barrier between the membrane bud and the surrounding 

planar SLB was not sufficient in matching the modeled and experimental data. However, 

combining both the geometrical effects of the tilted membrane and a curvature-dependent effective 

membrane viscosity yielded a strong agreement between the modeled and experimental SPT 

results. This analysis supports the hypothesis that DiI diffuses slower on more curved membranes 

due to change in membrane properties such as effective membrane viscosity or lipid packing, as 

suggested previously 94. 

Neither the experimental data nor the simulated theoretical reproduced data for Dxy 

distinguishes between the two leaflets of the lipid bilayer. The SLBs were symmetrically labeled 

through the addition of DiI to the lipid mixture before GUV electroformation, and both bilayer 
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leaflets contributed to the observed DiI diffusion rates. DiI in the outer leaflet would have minimal 

direct substrate interaction, whereas DiI in the inner leaflet would be in close proximity to the 

supporting polystyrene NP or glass coverslip. However, our control experiments have failed to 

find a substrate-induced slowing of the single-lipid diffusion. We have created stacked SLB 

structure with between 1 and 5 bilayers layered over the coverslip and we have not detected any 

difference in the distribution of single-lipid step lengths versus number of bilayers present; the 

cushioning of a SLB by additional SLBs did not apparently affect the single-lipid diffusion. 

Accordingly, this suggests that the substrate differences between the glass coverslip and the 

polystyrene nanoparticle are unlikely to affect the single-lipid step lengths reported here. Further, 

single-lipid diffusion has been observed to be slower when nanoscale membrane buds are formed 

by cholera toxin subunit B (CTxB) rather than a nanoparticle 106. 

Diffusion rates measured by SPT, FRAP, and fluorescence correlation spectroscopy (FCS) 

show systematic variations in the measured diffusion coefficients depending on the analysis 

method. Comparisons between these techniques requires accounting for their difference in 

sensitivity to detecting mobile versus immobile diffusers, length and time scale dependent 

processes, and subpopulations of diffusers 89,90. The SPT results presented here are consistent with 

prior SPT results and, as expected, report a slower diffusion rate than FRAP or FCS measurements 

101,107. 

3.11 Future improvements to PLM 

 PLM is able to provide super-resolution detail on membrane orientation with improved 

sensitivity and resolution from comparable methods. Since PLM requires no manipulation of the 

fluorescence emission path or the PSF, the incorporation of PLM with SMLM in additional 

complementary color channels is straightforward. For example, the simultaneous super-resolution 
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membrane orientation detection via PLM with the curvature-sorting and curvature-induction 

effects of CTxB is the focus of the next chapter 106.  

It is feasible that the local membrane orientation could be evaluated by the direct mapping of 

acquired localizations per pixel to the PLM theory. In order to perform such analysis, a minimal 

localization density of 0.05 localizations/nm2 would be required. PLM has the advantage of 

observing lipids that diffuse into the region of view from the surrounding membrane to effectively 

achieve unlimited labeling densities, similar to as has been previously utilized in point 

accumulation for imaging in nanoscale topography (PAINT) 108. Analogous to FRAP, if all the 

fluorescent lipids diffused at a rate of 0.5 μm2/sec and were all permanently bleached within a 4 

μm diameter observation area, then the half time for lipid exchange would be 0.9 seconds, which 

is significantly shorter than the typical movie acquisition time and membrane curvature dynamics.  

Greater sampling statistics would enable finer details of membrane topology to be extracted 

with more statistically significant comparisons between pPLM and sPLM localization densities. 

However, detection of the presence and size of membrane curvature, as done here, is sufficient for 

determining the spontaneous curvature formation by membrane-bound proteins and the curvature-

affected molecular diffusion. 

3.12 Conclusions  

Polarized localization microscopy (PLM) is capable of detecting and resolving nanoscale 

membrane curvature with super-resolution and correlating this curvature to the single-molecule 

diffusion and molecular sorting. PLM provides fluorophore orientation with conventional 

detection optics, minimal adjustment of the excitation optics, and the use of commercial 

fluorophores. PLM requires no alteration of the emission path from traditional single-molecule 

fluorescence microscopes and incorporates no inherent sacrifice in the signal or localization 
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precision for observing the membrane orientation. PLM depends on the use of rotationally 

confined fluorophores that maintain an orientation relative to the membrane normal 33 and photo 

switch between fluorescent bright and transient dark states 109,110, such as the 

indocarbocyanine dye DiI. 

  Distinct identification between membrane topology of LUVs, GUVs, and curved SLBs 

over NPs were observed. The nanoparticle-patterned substrate provided a means to engineering 

nanoscale membrane curvature of physiologically relevant dimensions. Local membrane bending 

regions with radii of curvature ≥24 nm were detected. PLM detected membrane curvature and 

resolved membrane topography with 1 sec of acquisition time at (1.2 ± 0.1) x 10-6 

localizations/nm2/frame.  

Radial line scans of pPLM localizations reveal radii of curvature of 32 ± 4, 50 ± 14, 60 ± 

13 nm for membranes over the nanoparticles radii of 24, 51, and 70 nm, respectively. Further, a 

6x increase in the SNR is obtained by PLM over traditional TIRFM. The theoretically estimated 

localization probabilities versus membrane orientation well reproduced experimental data. The 

unique spatiotemporal resolution of PLM is suited to monitor membrane structure variation with 

lipid and protein dynamics. We envision that this microscopy technique will provide new 

information for previously untestable nanoscale processes coupled with a change in membrane 

topography. This was demonstrated by the observation of time-dependent membrane budding 

initiation and growth induced by cholera toxin subunit B in quasi-one component lipid bilayers, 

revealing a possible mechanism of cholera immobilization and cellular internalization described 

further in the next chapter106. Fundamental questions regarding nanoscale cellular processes such 

as clathrin-independent endocytosis, viral infections, endocytosis/exocytosis, and immunological 

responses are soon to be addressed with PLM. The feasibility of performing PLM on model 
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membranes or live cells on time scales suitable for observing cellular processes permits this 

technique to be adopted and broadly used to probe cellular dynamics. 
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CHAPTER 4: CHOLERA TOXIN SUBUNIT B INDUCES CURVATURE  

4.1 Introduction 

Membrane function is governed by the molecular organization, clustering, and interaction 

of its constituents. In particular, curvature-dependent reorganization has captured a growing 

interest as a mechanism for creating locally distinct membrane environments 96,111,112. In this 

chapter, we focus on the membrane bending effects of cholera toxin subunit B (CTxB) in a quasi-

one component model membrane. Cholera toxin is a member of the AB5 toxin family that 

multivalently binds to GM1 and is most frequently used as the lipid raft marker in biophysical 

studies 113. CTxB-GM1 partitions with order-preferring lipids 114,115, induces lipid phase 

segregation 115–117, and sorts to high curvature regions 96,112. GM1 plays a vital role in numerous 

biological functions including endocytosis 118, viral egress 119, Alzheimer disease 120,121, vesicular 

trafficking 122, and immunological signaling 123.  

CTxB and GM1 assumes a sequence of macromolecular complexes from its initial 

membrane binding, local clustering, and subsequent cellular internalization. Accordingly, 

numerous observations of multi-modal diffusion and nanoscale confinement of CTxB on living 

cells 124 and on synthetic bilayers 125,126 have been reported. Even in the absence of coexisting lipid 

phases, CTxB exhibits multiple populations of diffusion rates and transient confinement in regions 

as small as 20 nm in radii 125,126. On living cells, CTxB diffusion is independent of the diffusion 

of caveolin, clathrin, or glycosylphosphatidylinositol-linked proteins, which suggests the 

internalization of CTxB is initialized distinctly from conventional endocytotic processes 127–129. 

Inward membrane vesiculation and tubulation has been observed in cells and synthetic 

vesicles upon exposure to Cholera toxin 119,130,131. CTxB has been observed to sort to membranes 

of negative curvature for supported lipid bilayers (SLBs) on wavy glass 96, micron-scale 
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nanoparticles 97, and membrane tethers 112. The capability of CTxB to bind to membranes in which 

both of the local principle curvatures are negative (i.e., with a positive Gaussian curvature) is well 

established with CTxB-induced inward pits in giant unilamellar vesicles (GUVs) 132. This is 

supported by molecular dynamics simulations of the structurally similar Shiga toxin 132. However, 

the nanoscale details of CTxB intrinsically inducing membrane curvature, as necessary for 

endocytosis, and the capability of CTxB to bind to membranes with differing signs of principle 

curvatures remains uncertain. 

4.2 PLM detects nanoscale membrane curvature  

We hypothesize that CTxB aggregates and internalizes as a result of its inherent physical 

effects on the membrane topography. Testing this hypothesis requires the use of an examination 

method that is able to resolve the colocalization of nanoscale membrane bending with CTxB. 

Polarized localization microscopy (PLM) combines single-molecule localization microscopy 

(SMLM) with polarized total internal reflection fluorescence microscopy (TIRFM) to detect 

nanoscale membrane orientation with super-resolution 133. This technique distinguishes between 

membranes of varying orientation due to the differential excitation of membrane-confined 

fluorophores depending on the linear polarization of the incident excitation light. In particular, 

indocarbocyanine dyes (e.g., DiI) are photo-switchable probes 134 that maintain their fluorescence 

dipole moment in the plane of the membrane 135,19,40, such that membranes parallel to the coverslip 

are preferentially excited by incident s-polarized light, and membranes vertical to the coverslip are 

preferentially excited by incident p-polarized light. The robust identification of nanoscale 

membrane bending provided by PLM enables the correlation of membrane topography and 

molecular sorting on physiologically relevant length scales (<50 nm) with numerous technical 

advantages over other super-resolution techniques 133.  
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The microscopy setup for PLM permits simultaneous multicolor SMLM and single-particle 

tracking (SPT) of lipids and proteins. For example, Alexa Fluor dyes are commonly conjugated to 

proteins with flexible linkers such that the fluorescence excitation of dyes as no observed 

dependence on the illumination polarization. Such dyes are common probes for imaging via direct 

stochastic optical reconstruction microscopy (dSTORM) 81. As demonstrated here, the multi-color, 

simultaneous combination of PLM and dSTORM enables the determination of membrane 

organization, molecular sorting, and single-molecule diffusion relative to membrane bending.  

In this study, we report the nanoscale organization and dynamics of CTxB relative to 

membrane bending events on a supported lipid bilayer (SLB) with 99.4% 1-palmitoyl-2-oleoyl-

sn-glycero-3-phosphocholine (POPC), 0.3% DiI, and 0.3% GM1. Using PLM, we found that the 

SLBs initially exhibit a flat uniform topology before the addition of CTxB. Nanoscale membrane 

bending and bud formation occurred within 30 sec upon the addition of CTxB. The subset of CTxB 

coincident with membrane budding became clustered and slowed to (19 ± 9)% of the initial CTxB 

diffusion rate. Similarly, only the DiI coincident with the membrane budding demonstrated 

diffusion that was slowed to (18 ± 4)% of the diffusion rate of DiI in a planar SLB. At later times 

after CTxB addition (>20 min), freely diffusing CTxB on planar bilayers, small accumulations of 

CTxB on nanoscale membrane buds, and rings of CTxB at larger membrane protrusions were 

simultaneously observed (Fig. 24). Both single event analysis and spatially averaged correlation 

analysis demonstrated the strong interdependence of membrane structure, single-molecule 

dynamics, and CTxB accumulation. In sum, these studies represent, to the best of our knowledge, 

the previously undetected phenomena of nanoscale membrane budding and tubulation by CTxB 

on SLBs without the apparent need of lipid phase separation. PLM has enabled observing the 
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effects of CTxB on spontaneous molecular sorting, immobilization, curvature, and tubule 

formation processes.  

 
Figure 24. The inherent capability of CTxB to induce membrane curvature. Colocalization of 

CTxB accumulations and membrane bending on supported lipid bilayers demonstrate the inherent 

capability of CTxB to induce membrane curvature. (A) The 2D histogram of DiI localizations with 

p-polarized excitation highlights where the membrane is more perpendicular to the coverslip. This 

is overlaid with the single-molecule localizations of CTxB that are displayed with red points. The 

membrane is bending where CTxB is concentrated. Larger membrane buds, as indicated by a white 

arrow, shows the high concentration of CTxB preferentially at the neck of the bud, where the 

membrane has a negative Gaussian curvature, as shown schematically in (B). Smaller membrane 

buds, as indicated by black arrows, display a local accumulation of CTxB, although identification 

of where on the small buds CTxB is most concentrated is not feasible at this resolution. 

 

4.3 MATERIALS and METHODS  

SLB formation 

Giant unilamellar vesicles (GUVs) of primarily POPC (Avanti Polar Lipids, Inc.) with 0.3 

mol% 1,1'-didodecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI, Life Technologies) 

and 0.3 mol% GM1 Ganglioside (Avanti Polar Lipids, Inc.) were prepared by electro-formation, 

as described previously 136. Experiments were also repeated by using diphytanol 

phosphatidylcholine (DPhyPC, Avanti Polar Lipids, Inc.) instead of POPC and DiO or DiD instead 
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of DiI with indistinguishable results. This composition yielded 110 nm2 of bilayer per DiI or GM1 

molecule. In brief, GUVs were formed by mixing lipids in chloroform and spreading them 

uniformly on a conducting indium tin oxide (ITO)-coated slide (Sigma-Aldrich) via spin coating. 

The resulting lipid films were dried under vacuum for one hour. A second ITO-coated slide and 

silicon spacer enclosed the dried lipids into an incubation chamber. A hydration buffer of 200 mM 

sucrose was added to the dried lipid films and the ITO slides were connected to either side of a 

sine wave function generator. The growth of the GUVs occurred over 3 hours at 55 °C with an 

alternating field at 10 Hz and 2 Vrms. GUVs were stored at 55°C until use or discarded after 2 days. 

The interaction between the GUVs and plasma cleaned glass coverslips resulted in bursting of the 

GUVs and the formation of a continuous SLB over the glass.  

CTxB addition 

CTxB was labeled with Alexa Fluor 647 or Alexa Fluor 488 prior to purchase (Thermo 

Fisher Scientific, Inc.). CTxB was added to the SLB for a final concentration of 0.25 μg/mL above 

the SLB to saturate all available GM1. After 0.5 min of incubation, the unbound CTxB was rinsed 

away. The time (t) is said to equal zero before CTxB was added, and otherwise, t reports the time 

since the unbound CTxB was rinsed away. CTxB-Alexa Fluor 647 was used for all data shown 

below and indistinguishable results were obtained with CTxB-Alexa Fluor 488. 

Engineered membrane curvature 

For select experiments, membrane curvature was engineered prior to the addition of CTxB, 

as done previously 133. 70 nm radius polystyrene nanoparticles (rNP) of λex =488 nm (Fluoro-Max, 

Fisher Scientific) were exposed to a plasma cleaned coverslip of a glass bottom dish for 10 min to 

achieve a density of 0.02 NPs/µm2. Glass bottom dishes were placed on a 55 °C hot plate for 5 

min to ensure their stability on the coverslips. GUVs were draped over the nanoparticles and 
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coverslip to create the engineered membrane curvature for greater consistency in membrane bud 

size when needed. The index of refraction of polystyrene is 1.59 and may have resulted in a 

nanoscale shifting of the localization of single fluorophores, as discussed below.   

Imaging optics  

PLM was performed with an inverted IX83 microscope with Zero-Drift Correction and a 

100x, 1.49NA objective (Olympus Corp.) on a vibration-isolated optical table. The various optical 

components such as lasers, dichroic mirrors, liquid crystal wave plate, shutters, and filter wheel 

are the same for PLM setup described in the previous chapter. Image acquisition was performed 

with an iXon-897 Ultra EMCCD camera (Andor Technology) proceeded by an OptoSplit IILS 

(Cairn Research) with emission filters (BrightLine, Semrock, Inc.), a 4-band notch filter 

(ZET405/488/561/640m, Chroma Corp.), and a 2x magnification lens.  

Imaging procedure  

The sample was exposed to >80 mW of excitation light with λex = 561 (DiI) and λex = 647 

nm (CTxB-AF647) simultaneously. Exposing the sample to high lasers powers for 3 s resulted in 

converting most of the fluorophores from their fluorescent state ‘on’ to the transient non-

fluorescent, dark state ‘off’ to provide a steady state of well-separated fluorophore blinking. The 

‘on’ fluorophores were imaged at a density of less than one ‘on’ fluorophore/μm2/frame. Data was 

acquired simultaneously for p-polarized total internal reflection (TIR) excitation at λex = 561 nm 

for pPLM, and epifluorescence excitation at λex = 647 nm for dSTORM. Between 10,000 and 

30,000 frames were acquired for each time point at a frame rate of 50 Hz on a region of interest 

with 18 ms acquisition per frame (texp). Reproduced experiments utilized DiO (λex = 488 nm) with 

CTxB-AF647 (λex = 647 nm), and DiD (λex = 647 nm) with CTxB-AF488 (λex = 488 nm) in order 

to spatially separate the different color channels and minimize any possible bleed through. Further, 
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this presented an internal control to confirm that the CTxB label Alexa fluorophore or its possible 

aggregation was not the driving reason for the observed membrane curvature.  

Imaging buffer 

PLM was performed on samples present in an oxygen-scavenging buffer (150 mM NaCl, 

50 mM TRIS, 0.5 mg/mL glucose oxidase, 20 mg/mL glucose, 40 µg/mL catalase, and 1% β-

mercaptoethanol (BME) at pH 8). To obtain the optimal number of photons/fluorophore and 

increase our localization precision for DiI and CTxB-AF647, we explored a range of pH starting 

from a pH of 7.4 137 up to a pH of 8 134.  Using pH of 8 in our system for the localization buffer 

allowed us to collect a 1200 ± 800 photons/fluorophore/frame yielding a localization precision of 

13 ± 5 nm for DiI, and 770 ± 300 photons/fluorophore/frame yielding a localization precision of 

15 ± 4 nm for CTxB-AF647. 

Buffer proteins were purchased from Sigma-Aldrich and salts were purchased from Fisher 

Scientific. These conditions maintain a low free oxygen concentration in the buffer to minimize 

non-reversible fluorophore bleaching and encourage transient fluorophore blinking, as is necessary 

for SMLM.  

Single-molecule localization 

The analysis of the raw, diffraction-limited images included low-pass Gaussian filtering, 

multi-emitter fitting routines, median background subtraction, lateral stage drift correction, and 

the fitting of each isolated fluorophore images via the ImageJ plug-in ThunderSTORM86. 

ThunderSTORM provided the single fluorophore positions, localization uncertainty, and photon 

per fluorophores for further analysis. A threshold value 100 photons per fluorophores was used to 

keep only the bright localizations for further analysis. The separate channel images were overlaid 

via custom-made MATLAB routine via the alignment of Tetraspec nanoparticles (100 nm 
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diameter, Life Technologies) that were visible in all channels and maximizing the cross correlation 

analysis between the two channels.  

Bud identification, size evaluation, and single particle tracking 

The detection of buds in each color channel was performed via custom-made MATLAB 

program that applies a mask and detects regions with > 3x the density of the average flat 

surrounding background bilayer. Each bud was fitted with a 2D Gaussian function for center 

estimation. The size of each bud (rbud) was set equal to the mean distance of all bud-associated 

localizations from the bud center as described previously according to Eq 21.  

Single particle tracking was performed in each channel based on the criteria described 

previously in chapter 3, Eq 15. In brief, the analyzed single step diffusion rates were then radially 

averaged as a function of distance from induced membrane bud in each time point. For the 30 

seconds time point, where the buds were not yet detected in pPLM, the diffusion rates were radially 

averaged from the expected location of the buds. In particular, based on the following time points, 

the expected locations of the membrane buds were mapped out and identified.  

4.4 Results   

4.4.1 CTxB induces membrane budding in SLBs 

The reconstructed time-lapse dSTORM and pPLM images of CTxB and DiI revealed the 

initial protein accumulation and membrane budding processes, respectively. Within the first 

minute of CTxB addition to the membrane, some CTxB exhibited confinement on the flat bilayer, 

as demonstrated by a detectable accumulation of CTxB localizations without a significant increase 

in the local density of DiI localizations from pPLM (Fig. 25). After 1 min, the clusters of CTxB 

became co-localized with higher densities of DiI localizations as detected with pPLM. A local 

increase in DiI localizations obtained by pPLM represents areas in which the membrane would be 
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more perpendicular to the microscopy coverslip, as would be expected for membrane bud. 

Membrane buds formed at the locations that CTxB accumulated, demonstrating the capability of 

CTxB to initiate and induce nanoscale membrane bending. PLM of DiI revealed both a continued 

growth in the size of the buds and the formation of new buds with continued CTxB exposure. 

 
Figure 25. CTxB-induced membrane bending. Simultaneous observation of (A-E) membrane 

bending detected via pPLM and (F-J) CTxB clustering on the SLB detected via dSTORM reveals 

the CTxB-induced membrane bending. Before CTxB is added, (A) the DiI localizations by pPLM 

are uniform and (F) no CTxB localizations were found. Within the first 30 sec of CTxB on the 

SLB, (B) slight variations in the DiI localizations were present and (G) CTxB clusters formed. At 

later times, (C-E) the membrane buds become increasingly apparent and (H-J) CTxB became 

increasingly concentrated at the buds.(K-O) Color merge for the membrane (A-E) in green with 

CTxB (F-J) in red. Scale bar represents 200 nm. 

 

PLM allowed earlier visualization of membrane bending initiated by CTxB than was 

detectable by epifluorescence microscopy. Epifluorescence microscopy revealed a laterally 

uniform brightness of the DiI and CTxB on the SLB for the first 20 min of CTxB incubation. The 

formation of CTxB accumulations and lateral DiI variations became evident with epifluorescence 

microscopy after 20 min in some regions of the sample. Our interpretation of the lateral variations 

across SLBs and variations between SLBs created by differing methods is discussed below. 
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Figure 26. PLM and dSTORM reveal membrane bud size (rbud).The super-resolution capabilities 

of PLM and dSTORM reveal membrane bud size (rbud) versus CTxB incubation time. As some 

buds grow to a larger diameter or into tubules (Fig. 4), new small buds (rbud < 50 nm) continue to 

form and the distribution of rbud widens over time. (A) The number and size of the induced buds 

increase as the CTxB incubation time with the membrane increases. (B) Whisker plot for the sizes 

of the nanoscale buds detected in PLM and dSTORM for the membrane and CTxB, respectively. 

(C,D) Autocorrelation analysis of DiI and CTxB as a function of incubation time, respectively. (E) 

Cross-correlation analysis of DiI and CTxB as a function of time. 

 

Regions of clustered localizations, observed in both DiI and CTxB channels, with 

localization density >3x that of the flat membrane were identified as membrane buds. Histograms 

of bud sizes versus time from the pPLM of DiI and dSTORM of CTxB show buds increasing in 

number and size over time (Fig. 26 A, B). Additionally, this analysis further shows that CTxB 

accumulations precede membrane bending since the CTxB accumulations are larger and more 

numerous than the DiI accumulations, as is qualitatively shown in Fig. 25. There was no clear 

separation of the buds into distinct stages of growth into larger structures (i.e., buds vs. tubules). 

Some buds formed and maintained their structure, however, grew in size. While other buds quickly 

grew into longer membrane tubules as shown in Fig 27 (D).  



80 
 

 
 

   

 
Figure 27. The simulated normalized density of localizations.  The simulated normalized density 

of localizations versus distance from bud center 

for (A-C) vesiculation or (D-F) tubulation with varying heights given a bud or tubule diameter of 

50 nm. Here, a uniform density of polarization-insensitive membrane-bound probes was 

simulated across the membrane (i.e., CTxB). The radial densities of localizations with (B, E) 

epifluorescence illumination or (C, F) TIRF illumination show the illumination conditions and 

bud height at which the ring-like structure would be observed. (C, F) The observation probability 

included a characteristic exponential decay length of 124 nm in TIRF illumination which 

increased the probability of observing a ring in the resulting reconstructed images. A ring-like 

density of localizations would be observed for vesiculation only when fission is near. A tubule 

structure would provide a ring-like structure when the bud top is >60 nm above the coverslip. 

Note, this simulation includes localization uncertainty (σ = 15 nm), but does not incorporate 

anisotropic emission, as would be the case for polarization-sensitive fluorophores (i.e., DiI). 

 

To test whether the bud formed within a certain consistent distance from each other, auto 

correlation analysis was performed on the reconstructed images in each time point. The locations 

of the buds were extracted and a new reconstructed image of ones and zeros was created depicting 

only the locations of the buds centers. Auto correlation analysis was performed on such a mask 

with varying results. Distances between growing buds seemed to be random and there existed no 

apparent characteristic separation distances between the buds or tubules. Even though the 

separation distances varied, but the majority of the evaluated distances between buds are less than 

the diffraction limit (<200 nm), which also explains why such nanoscale structures haven’t been 

detected previously. Autocorrelation analysis of bud clusters in the membrane channel and CTxB 

channel were plotted separately. The increased autocorrelation between membrane buds with time 
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is clearly shown in Fig. 26C, where membrane buds are increasing in number with time. While, in 

the CTxB channel a high autocorrelation between CTxB localizations exists at earlier times (t = 

0.5 min), indicating the presence of CTxB clusters before the formation of membrane buds (Fig. 

26D). Mapping between clustered localizations observed in CTxB and membrane channel was 

examined with cross correlation analysis. The increasing cross correlation analysis as function of 

incubation time indicates the tight mapping between clusters observed in both channels. This 

indicated the strong relation between buds observed in pPLM and CTxB accumulations at bud 

locations observed via dSTORM (Fig. 26E). 

4.4.2 Some membrane buds grew into tubules 

A wide distribution of bud sizes was observed with increasing bud sizes present after longer 

CTxB incubation times (Fig. 26 A, B). The smallest buds displayed an apparently uniform 

distribution of CTxB across the bud where the specific distribution of CTxB on the bud was limited 

by the resolution of dSTORM (i.e., Fig. 24A, black arrows). Intermediate size buds were observed 

in which the DiI localizations suggest a hemispherical membrane shape greater than 100 nm radius 

and CTxB preferentially localized at the bud neck (Fig. 24A, white arrow). These large 

hemispherical buds showed a radially decreasing density of DiI localizations rather than a ring of 

DiI localizations. This effect is due to the anisotropic emission of the orientationally confined DiI 

within the membrane which shifts DiI apparent location toward the center of the feature 104,133. The 

largest membrane bending events observed were membrane tubules with the membrane protruding 

away from the glass coverslip by >3 µm (Fig.28). In these membrane tubules, the ring of DiI 

localizations and the ring of CTxB localizations were both apparent. Such flexible CTxB rich 

tubules, were also apparent in epifluorescent and diffraction limited TIRF imaging.  
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Figure 28. Some membrane buds grow into tubules. These tubules extended away from the glass 

coverslip. These features start with (B) a membrane bud and (G) small clusters of CTxB (rbud < 

100 nm). Over time, (C) a ring of DiI localizations forms as the bud top extends farther from the 

coverslip and (D, E) the ring widens with an increasing tubule diameter. This membrane bending 

is driven by (H-J) the colocalization of CTxB at the base of the tubule where the negative Gaussian 

membrane curvature is present. 

 

4.4.3 Buds vanish upon CTxB depletion 

CTxB concentration is a key factor in this membrane budding and tubule formation. 

Typically, the concentration of CTxB on the SLB was determined by saturating the 0.3% GM1 

within the membrane, and the CTxB concentration was apparently constant within 2 min of CTxB 

addition. However, in select experiments, the glass coverslip surrounding the patch of SLB was 

prepared as to encourage CTxB binding directly to the glass. In the first minutes following CTxB 

addition to the flat SLB, nanoscale membrane clusters were detected, as seen in all other 

experiments. However, the CTxB concentration was not constant over long times in this 

experiment. As CTxB laterally diffused on the membrane, it eventually came into close proximity 

with the perimeter of the SLB and the surrounding glass. Only in this experiment was CTxB 

observed to stick and accumulate on the glass surface (Fig. 29). This binding of CTxB to the glass 

caused a 93% decrease in CTxB concentration from 0.029 to 0.0018 localizations/nm2 on the SLB. 

In contrast, the rate of DiI localizations showed no significant change over time. Meanwhile, the 

localization density of CTxB on the glass increased to 0.014 localizations/nm2 at t = 120 min, an 

8.5x increase from the density of 0.0017 localizations/nm2 at early times (t = 10 min). As a result 
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of the decreasing CTxB concentration on the SLB, the number and size of the nanoscale buds 

decreased, as shown in both CTxB and DiI localizations (Fig. 29A, B). The buds and tubules 

disappeared from the membrane and the SLB returned to its original flat topography upon 

decreasing CTxB concentration. This phenomenon demonstrated the reversibility and the CTxB 

dependence of the induced membrane curvature. 

  
Figure 29. Budding is reversible and dependent on [CTxB]. CTxB depletion from the membrane 

showed that the budding process is dependent on CTxB and reversible. In this experiment, the 

surrounding glass coverslip was prepared as to encourage CTxB absorption and removal from the 

SLB. (A) The pPLM images show the membrane buds decreasing in height and diameter.  (B) The 

dSTORM images of CTxB show a decrease of CTxB on the SLB and a uniform concentration 

across where the bud had been. (C) represents the time-lapse of the membrane edge surrounded by 

the treated glass. With time, the bilayer showed no change except for bud disappearance. (D) 

However, [CTxB] on the bilayer dramatically decreases at t = 15 min, while [CTxB] on glass 

increases. This is due to the sticking of the diffusing CTxB to the glass after close proximity. Scale 

bars in (A,B) represents 100 nm and in (C,D) 1 µm.  

 

4.4.4 Single-molecule mobility varies with budding 

SPT was performed on both the DiI and CTxB as a function of location within the 

membrane buds. Single-fluorophores that stayed ‘on’ for sequential frames in the raw data 

collection were individually localized and linked to reveal the single-molecule mobility. The 

diffusive rate of DiI and CTxB on the planar SLB were measured to be (0.55 ± 0.05) µm2/s and 
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(0.14 ± 0.03) µm2/s, respectively, with correcting for localization uncertainty in this single-step 

length analysis and camera blur, as described above. These diffusion rates did not vary with the 

duration of CTxB incubation. However, the diffusion rate did vary with distance from the center 

of the membrane bud (Fig. 30). Both the diffusion of DiI and CTxB demonstrated slowed diffusion 

rates through the xy-plane by (82 ± 4)% and (81 ± 9)% at the center of the membrane bud relative 

to the surrounding planar SLB. While a significant component of this perceived slowing of the 

single-molecule diffusion could be attributed to the membrane tilt, localization uncertainty (σ = 20 

nm), and frame rate (50 Hz) limit, these conditions affect at most a 60% slowing on nanoscale 

buds, as discussed below and in the previous chapter 133. The diffusion coefficients of DiI and 

CTxB were independent of the presence of buds for distances greater than 200 nm from buds 

centers where the membrane is flat.  

 
Figure 30. SPT reveal DiI and CTxB diffusion as function of distance from bud. SPT was 

performed on both (A) DiI and (B) CTxB as a function of position within a membrane bud. Before 

the CTxB is added (t = 0 min), no CTxB was located on the SLB, no membrane buds were present, 

and random locations were chosen for the pPLM analysis to confirm our analysis routines 

demonstrated no significant variation in Dfit versus distance away from the randomly chosen 

locations. At all later times, a significant slowing of both the DiI and CTxB diffusion is observed 

within 50 nm of the bud center. The error bars represent at a 95% confidence interval of the fitting 
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to the histograms of step lengths that were binned based on the distance from the bud center of the 

mean of the two linked localizations. 

 

4.4.5 Budding occurs with varying lipid types 

All budding experiments were repeated with DPhyPC replacing POPC as the primary 

membrane component to confirm that the particular lipids used here were not dominating this 

budding observation. DPhyPC and POPC are both liquid crystalline at room temperature, yet with 

a highly different molecular structure of their acyl chains. Indistinguishable curvature induction 

by CTxB was observed on SLBs formed with 99.4% DPhyPC, 0.3% DiI, and 0.3% GM1 as with 

99.4% POPC, 0.3% DiI and 0.3% GM1. Further, experiments were also performed with varying 

membrane labels to ensure that probable lipid degradation or traces of imperfections were not the 

cause for such an observation. Membranes of 99.4% POPC, 0.3% GM1 and 0.3% DiO, DiI, or 

DiD were created and CTxB-AF647 or CTxB-AF488 was added to the bilayers. CTxB induced 

similar membrane budding in all cases of varying lipids, lipid dyes and CTxB labels.  

4.4.6 Quantifying CTxB sorting  

The buds formed by CTxB addition to planar SLBs were of sizes that varied from each 

other and varied with time (Fig. 26 A, B). To measure the partition coefficient of CTxB versus 

membrane curvature, a relatively static membrane curvature was engineered and the local CTxB 

concentration was observed. Only in this experiment, membrane buds were engineered by draping 

SLBs over nanoparticles of known sizes prior to the addition of CTxB. The ability to measure the 

CTxB distribution on multiple engineered buds of roughly similar known sizes, enabled averaging 

between buds. This data averaging provided lower noise in the experimental data and the fitting of 

the CTxB distribution to a predicted model of the membrane topography (Figs. 31 and 32) 133. The 

radial density of CTxB observed on 25 separate nanoparticle-created membrane buds provides the 

experimental data (Fig. 31A). A modeled CTxB distribution on a simulated membrane topography 
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was z-projected onto the xy-plane, the projection was used to fit the partition coefficients for CTxB 

versus membrane curvature (Fig. 31B). Fitting the model to the experimental results required 

incorporating the single-fluorophore localization imprecision, nanoparticle-induced inaccuracy, 

imprecision in identifying the center of the nanoparticle, and the curvature-dependent CTxB 

concentration. The curvature-dependent CTxB sorting was simplified to consider just three 

concentrations: on the SLB ([CTxB]SLB), over the top of the nanoparticle of rNP = 70 nm 

([CTxB]Top), and on the membrane neck with one principal radius of curvature of 20 nm 

([CTxB]Neck). Many combinations of these fitting parameters yielded similar quality fit to the 

experimental data. The mean and standard deviation of adequate fits to the experimental data 

yielded [CTxB]Top/[CTxB]SLB = (12 ± 4) and [CTxB]Neck/[CTxB]SLB = (26 ± 11) (Fig. 31C). 

 

 
Figure 31. CTxB sorting to negative curved membrane over 70 nm. (A) Many combinations of the 

fitting parameters yielded quality fitting to the experimental data. (B) The membrane topography 

over the nanoparticle could be approximated to connect the concentration of CTxB per membrane 

area to the acquired z-projected data. The distribution of  adequate model fits to the experimental 

data yielded a mean and standard deviation of CTxB concentration on the membrane top and neck 

relative to the planar SLB was (12 ± 4) and (26 ± 11), respectively, with the median, quartiles, and 

range of CTxB concentrations are shown in (C). 
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Figure 32. Images for CTxB sorting to negative curved membrane over 70 nm NPs. CTxB 

preferentially partitions at negative curvature located at the membrane collar 

over a 70 nm nanoparticle in radius. Diffraction-limited images of the (A) 70 nm radius 

nanoparticle imaged with λex = 488 nm, (B) pTIRF microscopy image of the membrane, the 

increase in brightness indicates the presence of curved membrane, and (C) CTxB-AF647 imaged 

with λex = 647 nm showing an increase in brightness at the curved membrane location. (D) 2D 

histogram plot of localizations from pPLM present increased density of localizations at 

membrane curvature. (E) 2D histogram plot of localizations obtained from dSTORM results for 

CTxB demonstrate a clustered localizations around the neck of the curved membrane with a 

ringlike structure. Scale bars represent (A-C) 0.5 µm and (D,E) 250 nm. 

 

4.4.7 Membrane curvature is generated in unsupported bilayers 

CTxB-induced budding was reproduced on unfused GUVs. CTxB was introduced to 

POPC/GM1/DiI GUVs placed on a 0.75% agarose film spin coated on a glass coverslip to prevent 

their rupture. Within 2 min of CTxB addition, the suspended membranes bent and formed inward 

tubules and vesicles. Most commonly, small vesicular invaginations coated with CTxB were 

observed, similar to features reported previously 119,130. Bending away from the leaflet exposed to 

CTxB was observed when possible; however, bending in this analogous direction were not 

possible for SLBs due to the close proximity (~2 nm) of the bilayer to the glass. When unable to 

bend away from the CTxB, the membrane buds and tubules grew outward, toward the CTxB, 

demonstrating a preference for CTxB to bind to curved membranes more than planar membranes. 

4.5 Discussion 

PLM is a novel microscopy technique that enables imaging membrane dynamics, 

organization, and topography simultaneously 133. Since PLM requires no modification to the 

fluorescence emission path, it is trivially coupled to other super-resolution techniques, such as 
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multi-color STORM and PALM. Membrane buds were detected by PLM with higher signal-to-

noise than any other comparable diffraction-limited or super-resolution optical technique 133.  

In this manuscript, PLM was used to reveal nanoscale membrane curvature induced by 

membrane-bound CTxB. PLM provided direct, super-resolution time-lapse imaging of bud 

initiation and growth. Each step in the progression from (1) binding of CTxB to the GM1 in a 

planar, quasi-one component SLB, (2) clustering of CTxB in the planar membrane, (3) inducing 

nanoscale membrane buds, and (4) the formation nanoscale membrane tubules protruding away 

from the coverslip were each detected. PLM has enabled this detection of nanoscale bud formation 

and the inherent membrane bending capability of CTxB that has previously gone unnoticed.  

Super-resolution images of the smallest CTxB-induced membrane buds (<100 nm 

diameter) reveal Gaussian-like distributions of CTxB in the imaging xy-plane. These small 

membrane buds of radius (rbud) equal 50 ± 9 nm displayed CTxB apparently bound upon the whole 

curved membrane of the bud, although the distribution of CTxB on the small bud was limited by 

the resolution of dSTORM. As the size of the buds increased, CTxB became most concentrated at 

the neck of the bud and yielded a “ring-like” structure of CTxB localizations when rbud > 100 nm 

(Figs. 24, 31, and 32).  

4.5.1 PLM distinguishes between buds and tubules 

Reconstructed pPLM images were able to distinguish between membrane buds and 

membrane tubules by the distribution of the DiI localizations; a heterogeneous population of bud 

sizes was calculated at each time point (Fig. 26 A, B). The confinement of the DiI within the lipid 

bilayers prevents free tumbling of the fluorophore, which is critical for PLM polarization 

sensitivity. However, it also yields an anisotropic emission from the DiI, a systematic shift of the 

single-fluorophore image that is dependent on the membrane orientation and height 104. In 
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particular, when the membrane is tilted 45° relative to the coverslip and 100 nm out of focus, the 

single-fluorophore image can be shifted by up to 50 nm. On membrane buds, the anisotropic 

emission effects on single DiI images systematically shifts the localizations towards the center of 

the bud, and reduces any ring-like distribution of DiI localizations (Figs. 24 and 25) 133.  

A membrane that is tilted 0° or 90° relative to the coverslip results in no anisotropic 

emission effects of the DiI, i.e. no contribution to a systematic shift of the localizations of DiI. 

These are the dominant membrane orientations for a membrane tubule topology. Accordingly, the 

pPLM images of membrane tubules displayed a clear ring-like distribution (Fig. 28). Similarly, 

the expected localizations of CTxB bound to the outer leaflet of a tubule, should exhibit no detected 

localizations in the center of the tubule since CTxB cannot penetrate the membrane. Scarce 

localizations in the center of the tubule were presumably due to the undulating motion of the 

tubule, which resulted in the z-projection of DiI molecules within it, yielding localizations across 

the xy-plane (Fig. 33).  

 
Figure 33. CTxB induces budding and tubulation on SLBs of 

(POPC/GM1/DiI). (A) Bilayer imaged with epifluorescence after 24 hours of incubation with 

CTxB. Small membrane buds indicated by regions of spots of increased brightness and long 

tubules indicated by red arrows appear in the membrane and (B) the CTxB channel. Some 

tubules extend in length to micron size as observed in (C-F). (C-F) Z-stack image of the 
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membrane tubule protruding from the flat supported bilayer at z = 0, 0.2, 1, and 2 µm, 

respectively. Scale bars represent 5µm. 

 

Further, the probability of exciting a fluorophore with TIR illumination decreases 

exponentially with distance from the coverslip, which enhances the ring-like structure of acquired 

localizations. Brief calculations were performed to demonstrate when a ring-like structure would 

be observed due to the effects of an increase in membrane area and TIR illumination. The 

simulation incorporated these effects for both cases of membrane buds and membrane tubules of 

varying heights (Fig. 34). However, the dominant component in DiI localization densities is the 

coupling between the orientation of the fluorophore within the membrane, and the polarization of 

the electric field, as demonstrated previously 133.  

 
Figure 34. Diffraction-limited images of the membrane and bound CTxB. (A, C) a POPC/GM1/DiI 

membrane with nanoscale membrane budding sites imaged in epifluorescence and p-polarized 

TIRF, respectively. The buds are detected as a variation of brightness across the bilayer, however 

more prominent in p-polarized TIRF. (B, D) CTxB-AF647 imaged in epifluorescence for the 

membranes shown in (A) and (C), respectively. Scale bars represent 5µm. 

 

4.5.2 Membrane tension affects bud formation 

CTxB-induced membrane buds initially formed at the central part of the SLB patches (Fig. 

35). With increasing CTxB incubation time, more buds formed at increasing distances from the 
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SLB patch center. The bud-forming region of the SLB typically extended >10 µm away from the 

center of the SLB batch, and the perimeter of the patch without bud formation was commonly 5 ± 

4 μm wide. We hypothesize this observation stems from varying membrane tension across the SLB 

patch imparted by the GUV fusion process.  

 
Figure 35. CTxB induces vesiculation and inward tubulation in GUVs. (A) Giant unilamellar 

vesicle of 99.6% POPC,0.3% GM1, and 0.3% DiI imaged with 

λex = 561 nm. (B) CTxB channel imaged with λex = 647 nm. Red arrows indicate regions of 

induced curvature and inward invaginations by CTxB. 

 

At the location of GUV fusion to the coverslip and near the center of the SLB patch, there 

was initially a high concentration of excess membrane from a portion of the GUV or nested GUVs 

that did not fully fuse to the glass coverslip. These unfused vesicles were removed with vigorous 

washing to yield an apparently uniform SLB. Membrane buds were most likely to form in the 

center of the SLB patch, close where the unfused vesicles were, rather than close to the edge of 

the SLB and the exposed glass coverslip (Fig. 5).  

Variations in SLB tension could occur during two distinct stages of SLB creation by GUV 

fusion. The first stage would consist of the initial GUV-glass contact, before or immediately after 

the GUV has ruptured. The rupture of the GUV may have exposed a loose or floppy bilayer to the 

glass coverslip, and initiated a membrane-glass contact that trapped nanoscale undulations and 

decreased lateral tension in the SLB. Over time, the bilayer would spread across the glass with 

Marangoni flow, as encouraged by the membrane-glass adhesion, and yielded higher lateral 
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membrane tension, similar to as seen previously 138. Accordingly, the center of each SLB patch 

would have a lower membrane tension and encourage bud and tubule formation, as compared to 

the perimeter of the patch, consistent with our observations. 

The rate of GUV fusion was controlled by the duration of the plasma cleaning and the 

occasional presence of a coverslip cushion. When no GUV fusion was wanted, a thin film of 

agarose was used to minimize the membrane-substrate adhesion (Fig. 35). In the absence of 

membrane cushion, and under long exposures of plasma cleaning (>2 min), the membrane-

substrate adhesion was too strong for the creation of a continuous SLB patch. In this scenario, the 

GUVs rupture was too vigorous. Diffraction-limited holes in the SLB were observed, and a slower 

fluorescence recovery times were measured via fluorescence recovery after photobleaching 

(FRAP). In these cases, when the membrane-substrate adhesion was too strong, no curvature 

induction by CTxB was observed.  

4.5.3 Utilizing a supported lipid bilayer to visualize membrane budding events 

Conventional biologically relevant and mimicking systems are giant plasma membrane 

vesicle (GPMV) directly extracted from cells, or synthetic giant unilamellar vesicles (GUVs). We 

have demonstrated the inward budding observed on GUVs similar to previously reported 

phenomena detected on cells. Membrane bending usually occurs toward the direction of the 

medium with lower CTxB concentration. As also observed for suspended membranes independent 

of the substrate139. However, the choice of using a supported lipid bilayer rather than such 

substrate-independent systems emerges from the challenges posed by the free-floating bilayer 

systems. First, it would be challenging to image the suspended membranes in TIRF due to their 

existence beyond the TIRF range. This might be overcome by utilizing multiple bilayer system, 

where the membrane cushion is basically a non-fluorescent bilayer where the bilayer of interest 
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exists within the TIRF range (few or tens of nanometers from the glass coverslip). On the other 

hand, a symmetric toxin binding to the membrane might occur. The toxin will be able to leak under 

the free standing bilayer and bind to both leaflets, losing the asymmetric binding state of CTxB on 

SLBs, and reducing the possibility of inducing membrane curvature. Further, suspended bilayers 

provide faster dynamics of large membrane structures. The absent membrane substrate interaction 

may cause the bud structures, if formed, to diffuse freely, reducing their visibility with PLM or 

any SMLM techniques. Dynamic curvature in unsupported bilayer present an imaging challenge 

in PLM and super resolution studies.  

Although the limitations posed by SLBs are considerable, their widespread use for diverse 

biophysical experiments is a testament to their value (e.g., see Ref. 140 and the >1700 papers that 

cite it). Synthetic SLBs in this case enabled testing the effects of CTxB on the membrane without 

the complexity of the cell. While the interaction between CTxB and SLBs is different than the 

interaction between CTxB and cell membranes in some key ways, the CTxB -SLB interaction is 

important in several aspects. The studies CTxB-SLB interaction is important for the understanding 

of diverse biophysical applications of SLBs. Further, this interaction demonstrate the inherent 

membrane bending effects of CTxB that contribute to its physiological behavior, in yet-to-be-

revealed ways. For example, curvature induction by CTxB on SLB may explain the previously 

reported phenomena of molecular-scale pinning sites, confined diffusion, lipid-phase sorting, and 

clustering of CTxB on SLBs 141–145. In complex cells membranes, CTxB is a traditional marker of 

ordered, cholesterol and sphingomyelin-rich membrane regions, often without consideration of the 

inherent membrane bending capabilities of CTxB  146–149. In both synthetic and living systems, it 

is necessary to consider the capabilities of CTxB to cause membrane curvature, as shown in this 

study, without lipid phase separation and independent of caveolin for accurate data interpretation.  
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4.5.4 Membrane budding slows CTxB and DiI diffusion 

The diffusion of CTxB on membranes has been reported with widely varying rates, 

including rates that range from 0.04 to 2.44 μm2/s within a single cell, and spatially confined in 

regions that are 100 to 1800 nm diameter 150,151. Even in the absence of coexisting lipid phases 

such as > 99% DOPC model membranes, CTxB exhibited multiple diffusion populations, with one 

population of D = (0.18 ± 0.04) μm2/s and the second population of D = (0.06 ± 0.02) μm2/s with 

transient confinement in regions as small as 20 nm radii 125,126. These prior measurements had no 

means of detecting changes to membrane topography or correlating topography with mobility, 

which is the focus of this study. The diffusion measurements reported here are consistent with both 

the previously reported diffusion rates and confinement sizes. In this study, the diffusion rates are 

presented while demonstrating local membrane curvature as a mechanism for varying CTxB 

behavior in a single membrane. This curvature-dependent analysis of CTxB diffusion and 

accumulation has the potential to explain prior measurements of both distinct populations of CTxB 

diffusion rates (Fig. 30) and the inter-membrane molecular sorting that is independent of lipid 

phase.  

The mechanisms by which membrane bending slows CTxB and DiI diffusion are most 

likely to be the result of molecular crowding, local phase separation, and/or a curvature-dependent 

membrane viscosity. If CTxB becomes dense enough in a local region of the bilayer, it would be 

expected that this crowding would slow the diffusion of CTxB and/or lipids (i.e., DiI) within the 

membrane. Additionally, it is feasible that the local concentration of GM1 was increased 

sufficiently as to drive the local lipid environment into a more ordered state, and cause an increase 

in the effective membrane viscosity, as would be expected for more ordered lipid environment 152–

154. It is not likely that the 99.4 mol% POPC bilayer would have significant phase separation, but 
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CTxB-encouraged GM1 accumulations are possible. Further, a change in the lipid head groups 

dynamics and orientation in the vicinity of the toxin may also contribute to changes of the lipids 

diffusion rates 155.   

Finally, it is feasible that the membrane bending itself affects the local effective lipid 

viscosity and the free diffusion of lipids and proteins through the membrane buds. This effect was 

observed when membrane curvature was engineered by draping SLBs over nanoparticles and the 

lipid diffusion was measured with SPT 101,133 but not when measured with FRAP 156, as expected 

90. If the effective membrane viscosity changes upon membrane bending, then the diffusion of the 

DiI molecules in both leaflets could be affected, regardless of the supporting substrate or local 

CTxB concentrations. 

4.5.5 Bud formation didn’t require lipid phase separation 

SLBs of >99% POPC or DPhyPC were used for these studies due to their strongly 

disordered acyl tails and the minimal possibility of phase separation with 0.3% GM1 and 0.3% DiI 

included. The liquid-to-gel transition temperatures for POPC and DPhyPC are -2°C and <-120°C, 

respectively. To minimize the possibility of a spontaneous GM1 clustering in the bilayers, a low 

GM1 concentration was used here (0.3 mol%); however, GM1-rich gel phases has been observed 

in otherwise fluid bilayers157. For a binary system of POPC and GM1, a GM1 rich gel phase is 

expected to form at low temperatures and high GM1 concentrations (> 1% GM1). Prior studies 

that reported sorting of CTxB to the neck of membrane buds required a ternary mixture of 

cholesterol, sphingomyelin, and POPC to observe CTxB sorting97. CTxB sorting in that case might 

have been driven by nanoscale lipid phase separation, or by the pre-existing membrane curvature. 

However, curvature in these prior studies was of a significantly larger radius of curvature (μm 

scale) such that the curvature-dependent sorting was presumably weaker than that observed here 
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(nm scale). Even though lipid phase separation is not likely in these experiments, it is feasible that 

nanodomains of GM1 were formed and were stabilized by the multivalent CTxB binding, as 

further discussed below. 

4.5.6 Bud formation is energetically feasible 

The spontaneous bud nucleation and tubulation are controlled by the membrane bending 

rigidity, density of CTxB, and the adhesion of the SLB with the substrate. For bud formation to be 

spontaneous, the energy released by CTxB-GM1 binding must be greater than the energy put into 

bending the membrane and separating the membrane from the glass. The total energetic cost of 

bending the membrane (EBend) was estimated via Helfrich energy model158 for at 50 nm top radius 

of curvature hemispherical bud with a 20 nm radius of curvature collar smoothly connecting the 

bud to the surrounding planar SLB (Fig. 24B), such that 

                             𝐸𝐵𝑒𝑛𝑑 = ∫(𝜅(𝐻 − 𝐻0)2 + 𝜅̅𝐾)𝑑𝐴                                  (Eq. 27) 

This incorporates the membrane bending rigidity (κ), membrane Gaussian curvature 

modulus (𝜅̅), the mean local membrane curvature (H), the local Gaussian curvature (K), the 

intrinsic membrane curvature (H0 ≈ 0), and the area of the bud (A). The bending rigidity of a POPC 

membrane in TRIS buffer at T = 22°C is κ = (12.9 ± 0.4) x 10-20 J ≈ 𝜅̅ 159,160. The energy required 

to bend the membrane into the presumed configuration was calculated analytically EBend = (5 ± 1) 

x10-18 J.  

The adhesion energy of the bilayer to the glass substrate is given by w = 10-8 J/m2 161. A 

bottom radius of 67 nm yields 1.4 x 104 nm2
 of the SLB to be separated from the substrate, the 

energy cost of lifting the membrane off the substrate (EAdhesion) equals (1.4 ± 1) x 10-22 J, which 

happens to be smaller than kBT = 4 x 10-21 J. 



97 
 

 
 

   

The intrinsic free energy released per CTxB binding to the GM1 in the SLB is equal to -67 

± 2 kJ/mol 162. The area of the CTxB pentamer is equal to 106 nm2 and there would be space for 

120 CTxB to bind to just the neck region of this membrane bud 119,132. Accordingly, the energy 

change upon CTxB accumulating around the neck of this nanoscale bud (EBind) is (-1.3 ± 0.5) x 10-

17 J. 

In comparing these three energetic components, we found | EBind | > | EBend + EAdhesion |. In 

conclusion, there is ample energy from CTxB binding to drive nanoscale bud formation 

spontaneously. However, further discussion is warranted to consider how much of this energy of 

CTxB binding is expected to drive membrane bending and the preferred radius of curvature for a 

membrane under CTxB. 

4.5.7 The forces that drive budding 

A complex interplay of factors could contribute to the budding process such as CTxB steric 

crowding 80; CTxB insertion into the membrane 163; CTxB-GM1 cross-linking; the positive 

intrinsic curvature of GM1 164; GM1 clustering via lipid phase separation 165; the extended long 

acyl chain of GM1 causing wedging in the opposing bilayer leaflet 125, and the asymmetric GM1 

concentrations in the bilayer leaflets. The steric pressure between the crowded CTxB within a 

nanoscale area could inherently encourage membrane bending if there was an attractive force 

between the GM1 to counter the steric repulsion between CTxB and provide a local membrane 

torque 80. An attraction between GM1 is plausible considering the strong liquid-ordered phase 

preference of GM1 in ternary lipid mixtures, the affinity of GM1 to self-cluster 157,163,165,  and the 

possibility of GM1 unbound to CTxB further accumulating around the clusters of CTxB-GM1. A 

leaflet asymmetry in GM1-GM1 clustering and CTxB binding could encourage a mismatch of 

composition between the leaflets and encourage curvature.  
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Further, the molecular shape of CTxB itself is likely to encourage a negative membrane 

curvature. The molecular shape of CTxB and Shiga toxin both have glycolipid binding pockets 

that are elevated above from the bottom of the folded protein, the toxin-lipid binding encourages 

a penetration of the protein into the bilayer and/or a local wrapping of the membrane around the 

protein, as has been most explicitly shown for Shiga toxin 163. Thus, as the membrane is pulled to 

wrap around the toxin, a bending force is created by the toxin with its peripheral GM1 binding 

pockets. A wrapping of the membrane around the toxin would encourage a negative membrane 

curvature. In a suspended membrane or a plasma membrane, this typically manifests as the 

formation of a membrane invagination, where CTxB is located on the inner leaflet with both 

principal planes being negative curved. On a SLB, where vesiculation of the CTxB is inhibited by 

the substrate, the local wrapping of the membrane around the toxin was sufficiently preferable to 

drive the membrane to bud away from the coverslip. In this case, CTxB primarily partitioned on 

the bud neck with one principal plane of negative curvature. While this budding towards the CTxB 

is not observed on plasma membranes, these experiments demonstrate the nanoscale effects of 

CTxB on SLBs, and the curvature induction capabilities of CTxB, broadly. The importance of the 

spontaneous curvature generation by CTxB is likely essential for its trafficking through the cell. 

Similarly, the complex curvature-dependent sorting profile of CTxB is likely impactful in complex 

organelle membrane topographies. 

Finally, the multivalent binding of CTxB may be critical for the preference of CTxB to 

bind to negatively curved membranes, such as regions of negative Gaussian curvature over planar 

membranes. CTxB is typically saturated by binding to five GM1 molecules simultaneously; 

however, the number of bound GM1 molecules directly affects the orientation of CTxB on the 

membrane 155,166; CTxB is parallel to the membrane when bound to five GM1 but tilted when 
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bound to only 3 GM1 155. The rotational asymmetry of the occupied GM1 binding pockets on the 

CTxB may result in a shifted CTxB preference to bind to one dimension of negative curvature and 

have a minimal preference for the membrane curvature in the other principal curvature dimension. 

Accordingly, if introduced upon a negatively curved membrane (i.e., inside of a vesicle), a CTxB 

bound to 3 GM1 would be stable at any rotation.  However, if introduced upon a negative Gaussian 

curvature membrane (i.e., bud neck), the CTxB bound to 3 GM1s would require it to be rotated. 

This rotation allows the GM1s to be spaced along the dimension of negative curvature, limiting 

the degrees of freedom for CTxB orientation while maintaining membrane wrapping around toxin 

153,155,166. The number of GM1 bound to the CTxB might not only affect its curvature preference, 

but also its diffusion rate. This might be the reason for the observed variation in the diffusion rates 

reported here on the flat membrane, and the importance of valency in lipid phase separation 167. 

Unfortunately, these explanations for the curvature induction mechanisms by CTxB are highly 

speculative at this time. Further experimentation to clarify the mechanisms of CTxB-induced 

membrane curvature and CTxB valency are warranted. 

4.5.8 Membrane curvature induced CTxB sorting  

Studies regarding CTxB location at certain membrane curvature gradients have shown that 

CTxB preferentially localizes at negatively curved membrane regions96 and at the neck of micron-

scale engineered membrane buds97. Here, CTxB were observed to initially cluster and 

spontaneously form small membrane buds (Fig. 24A, black arrows). As the buds grew in size, the 

accumulation of CTxB around the perimeter of larger membrane protrusions became increasingly 

apparent (Fig. 24A, white arrow). CTxB also localized at similar membrane geometry on bilayer 

draped over a 70 nm radius nanoparticle (Figs. 31 and 32). Thus, the ring-like shape of 

localizations obtained for CTxB demonstrates the preferential location of CTxB at the neck of the 
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curvature. This observation falls in agreement with previous reports that observed the 

accumulation of CTxB at the neck of lithographically patterned spherical membrane protrusions 

with 25 µm diameter that was dependent on coexisting liquid lipid phases97. By observing 20x 

smaller curvatures here, the curvature-based sorting forces were presumably larger and not 

requiring assistance by lipid phase separation for CTxB sorting to occur. 

In some cases CTxB induced membrane ridges in which CTxB preferentially localize at 

the negative curvature regions (Fig. 36). 

 
Figure 36. CTxB induces membrane ridges. CTxB preferentially partitioned at these nanoscale 

membrane structures. (A-C) Diffraction-limited images of the membrane in sTIRFM, pTIRFM, 

and the bound CTxB in CTxB channel, respectively. (D, E) Super-resolution reconstructed 

images plotted as 2D histograms of localizations of the membrane obtained in sPLM, and pPLM, 

respectively. (F) dSTORM reconstructed image of CTxB-AF647 shows high localization density 

of CTxB at the induced membrane ridge. The nanoscale size of such membrane structures 

prohibited their observations in diffracted limited imaging; however, clearly detected in super 

resolution. Further, CTxB preferentially partitioned to one dimension negative curvature regions 

observed in these ridges and on wavy glass substrates (11). Only ~4% of 48 samples exhibited 

nanoscale ridges-induced by CTxB in addition to nanoscale membrane budding. Scale bars in (A-

C), and (D-E) represent 4 and 2 µm, respectively. 

 

4.6 Conclusions 

PLM has enabled the direct observation of CTxB and membrane dynamics to reveal CTxB-

induced membrane budding on SLBs. In this manuscript, PLM was used to reveal simultaneous 
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multicolor super-resolution images of CTxB and the induced bud growth on a supported, quasi-

one component lipid bilayers. Our data provide context to prior studies with CTxB that observed 

time-dependent diffusion rates and diverse internalization mechanisms. We demonstrated that the 

molecular mobility of CTxB and DiI are affected by the nanoscale membrane structures induced 

by CTxB. On planar SLBs, the diffusion rates of DiI and CTxB are in agreement with previous 

reports on cells and synthetic membranes. However, the diffusion coefficients at the center of the 

induced buds are (82 ± 4)% and (81 ± 9)% less than that on the planar membranes for DiI and 

CTxB, respectively. DiI and CTxB underwent transient confinement in regions that later appeared 

to be nanoscale protrusions as small as 30 nm radius. Our studies demonstrated the budding process 

was reversible and dependent on CTxB concentration. PLM will aid in providing new information 

for previously untestable nanoscale processes coupled with changes in membrane topography. We 

propose a mechanism of CTxB trafficking in cells dependent on the spontaneous membrane 

curvature-induction and curvature-based sorting by CTxB. In this case, CTxB prefer negative 

Gaussian curvature over planar membranes. We will explore the effects of changing the GM1 

structure and membrane composition on the budding process, as well as using mutant, monovalent 

CTxB that binds to one GM1167. Biological functions of the cell are dictated by the sorting, 

mobility, and organization of its constituents that affect the structure of the cell membrane facilitate 

diverse essential membrane processes. 

  



102 
 

 
 

   

CHAPTER 5 CROSS LINKING EFFECTS ON MEMBRANE GEOMETRY  

5.1 Introduction 

Certain cell functions and biological components are affected by cross-linking of its 

constituents. For instance, crosslinking collagen based films affects the modes of interaction with 

the residing myoblasts168. In this case crosslinking affects the physical and surface propertied of 

the material and eventually cell function. In other cases, crosslinking is required to determine the 

modes of function of a certain toxin167. As previously mentioned, CTxB binds to five GM1 

molecules, the crosslinking of CTxB with its membrane anchor determines the phase preference 

of the complex and subsequently affects the internalization process of the toxin. In addition, large 

micron scale stabilization of lipid phases is aided by crosslinking which also affects the miscibility 

temperature of the membrane. Lipid phase separation can be induced by temperature change or 

even by membrane components crosslinking116. Crosslinking is an indispensable mechanism 

adopted in various cellular processes168–170. Clustering of membrane components or 

oligomerization also drive changes in membrane topology as demonstrated in chapter 3 in which 

CTxB clustering induced nanoscale membrane budding106,171.  In other cases, clustering is required 

for an immunological response172,173 or allergic reaction93. A nanoscale crosslinking or clustering 

could lead to a micron scale reorganization of lipids, lipid phases, or modification in membrane 

structure such as budding and tubulation. For instance, crosslinking and oligomerization of 

calcium−phosphatidylinositol phosphate 2 (PIP2) initiate signaling, and leads to a cascade of 

events for cell response174. Yet, the relation between membrane components crosslinking and the 

membrane structural alteration and organization is an ongoing investigation. Aided with PLM and 

the ability to detect nanoscale membrane curvature, we investigated the effects of crosslinking 

biotinylated lipids with streptavidin and study its effects on the membrane topology.  
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5.2 Biotin-Streptavidin binding effects on SLBs  

To test whether inducing nanoscale membrane curvature is dependent on CTxB structure 

and valency, we substituted CTxB-GM1 system by a streptavidin-biotinylated lipids system which 

will be the focus of this chapter.  The effects of crosslinking five biotinylated lipids with 

streptavidin on the membrane was then imaged with PLM. Streptavidin is a pentameric molecule 

that binds to five biotinylated lipids in the membrane. The high dissociation constant of the 

streptavidin-biotin complex KD of 10-13-10-15 M represent the low probability of detachment once 

bound together175. Nanoscale crosslinking induces changes in membrane structure and/or phase 

separation which also depends on the number of crosslinked lipids. Toward this aim, we 

simultaneously measured changes in membrane topology with the addition of fluorescently labeled 

streptavidin via super resolution microscopy. We report the observation of membrane phase 

induction in the studied bilayers with fluorescently labelled streptavidin. The detected micron scale 

induced lipid phase excluded DiI dye which is a Ld marker while being enriched with streptavidin. 

However, no structural reorganization was detected in the case of non-fluorescent streptavidin.  In 

sum, these studies represent a key component for nanoscale membrane curvature induction. 

Crosslinking might not be the only factor that drove membrane bending in the case of CTxB-

induced membrane budding due to the absence of induced curvature in the case of biotin-

streptavidin binding. In that case, budding also occurred due to the inherent shape of CTxB which 

possess an intrinsic curvature within its structure.  

5.3 Materials and Methods 

Chemicals utilized 

Giant unilamellar vesicles (GUVs) of primarily POPC with 0.3 mol%  1,2-dioleoyl-sn-

glycero-3-phosphoethanolamine-N-(cap biotinyl) (sodium salt) (Avanti Polar Lipids, Inc.), and 0.3 
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mol% 1,1'-didodecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI, Life Technologies). 

Streptavidin, Alexa Fluor™ 647 conjugate (Invitrogen).  

Sample preparation and imaging procedure 

Imaging optics, imaging procedure, imaging buffer, and single molecule localization are 

similar to the ones listed in chapter 2.  

5.4 Results 

5.4.1 Fluorescently labelled streptavidin induced phase separation 

The acquired time-lapse images of streptavidin-AF647 and DiI revealed the initial 

streptavidin clustering and phase induction process, respectively. Within the first 5 minutes, 

streptavidin accumulation on the membrane was observed as increased signal brightness within 

nanoscale regions that quickly grew into micron scale regions. Shortly after the streptavidin 

clustering, micron sized islands of DiI depletion appeared as regions of lower DiI brightness that 

coincide in location and size with streptavidin clusters (Fig. 37).  

 
Figure 37. Time lapse of phase induction on a POPC/DiI/biotin-DPPE SLB. Enrichment of 

streptavidin-AF647 (A) onto a region on the membrane occur prior to DiI depletion. (B-D) time 

lapse of the membrane showing region of decreasing DiI brightness at the same location of 

streptavidin enrichment. (E,F,G) Brightness histogram of pixels within the yellow lines indicated 

in (A,B,D). Scale bar represents 4 µm. 
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Figure 38. Phase coexistence induced by streptavidin-AF647 addition. Regions of co-existing 

phases indicated by variation of DiI brightness in pTIRF image of the membrane observed in (A). 

(B) streptavidin-AF647 imaged in 647 nm channel. ( C) Normalized histograms of brightnesses of 

the same region in the membrane (green line) and streptavidin (red) channel.  

 

5.4.2 Biotin-streptavidin binding did not affect membrane structure 

Repeating the experiments while utilizing a non-fluorescent streptavidin resulted in a 

uniform distribution of DiI localizations and no phase induction. The brightness of the DiI labelled 

bilayer before the addition of streptavidin was similar in uniformity as after addition up to an hour 

of observation time. Similar results were observed with biotin concentrations of 0.3, 0.6, 1, 3, and 

10% (Fig. 39).  

 
Figure 39. Addition of non-fluorescent streptavidin didn’t induce curvature. Even with increasing 

biotin concentration to 3%, no membrane topology change was detected.  Super resolution pPLM 

images of a POPC/DiI membrane with varying biotin concentration of (A) 0.3, (B) 1, and (C) 3% 

acquired after 90 minutes of streptavidin addition of 0.25 ug/mL.The uniform localization density 

indicated flat membrane structure with no induced curvature.  
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5.5 Discussion 

5.5.1 Crosslinking effects on phase dynamics  

DiI depletion from streptavidin rich regions occurred only in the case of a fluorescently 

labelled streptavidin, while in the case of a non-fluorescent streptavidin no such phase induction 

was observed. Previous reports have detected biotin-streptavidin complex preferential partitioning 

and sorting onto Lo phase in a phase separated GUV with a ternary mixture of lipids176–178. Further, 

nanoscale compositional change induced by crosslinking could trigger large scale phase 

separation116,179. Previous reports have also showed that biotin-streptavidin complexes induce 

perturbation and drove lipid phase separation upon crosslinking180. This might explain the shift in 

the phase dynamics observed here where biotin-streptavidin binding have induced local phase 

separation (Lo and Ld phases), where regions with DiI depletion (which is a Ld marker) exhibit 

enrichment with streptavidin. Further, in the reported study we have utilized quasi-single 

component bilayers (> 99% POPC lipid) which decreases the possibility of detecting lipid phases. 

However, it has been shown that traces of membrane additives might induce subtle perturbations 

and aid in phase separation processes181. Presented experiments have also been reproduced by 

replacing POPC with DOPC or DPhyPC, and replacing DiI with DiO to confirm that the detected 

observation is independent on the lipid or dye used.  

Variation of DiI brightness was recorded where some regions demonstrated curved phases 

in pTIRFM while darker regions demonstrated no curvature.  Only Lo regions were curved while 

the gel phase regions showed no increased brightness at the rim in pTIRFM (Fig. 40). 
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Figure 40. Curved coexisting phases induced by streptavidin-AF647 addition. Regions of co-

existing phases of Ld (light grey), Lo (dark grey), and gel (darkest grey) phases observed in sPLM 

imaging of the membrane (A,E). The increased brightness around the induced Lo phase, detected 

by pTIRF in (B, F) indicates curvature. (C, G) Regions of enrichment of streptavidin-AF647. (D, 

H) Color merge of the membrane (green) and streptavidin-AF647 (red).  

 

5.5.2 Fluorophore clusters effect on the membrane 

The detected phenomena of phase induction might be strictly dependent on the fluorescent 

label. Alexa fluorophores are knows to aggregate and cluster together, which modifies its 

interaction with the membrane182,183. Several techniques such as bath sonication are often used to 

break down aggregates; however, this might also lead to a misleading analysis. Fluorescent signal 

detected might indicate the location of the streptavidin labelled molecule, or it might indicate the 

location of the water soluble Alexa fluorophore unbound to streptavidin. Further, Alexa 

fluorophore tendency to aggregate might lead to the formation of a larger cluster of multiple bound 

streptavidin molecules, which covers a larger area upon interacting with the membrane and binds 

to more biotin molecules. This large scale crosslinking cluster might drive lipid phase separation 

and alter the effect of streptavidin-biotin binding on the membrane. The size and number of 
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crosslinked molecules are critical for certain processes. As mentioned previously, for instance, 

mutant monovalent CTxB have a different phase partitioning than a pentamer CTxB167.  

5.5.3 Streptavidin crystals alter lipid phase lying underneath 

Moreover, streptavidin is known to self-associate and form 2D crystals on GUV surfaces 

and Langmuir films177,178,184. The clustering and crystallization of streptavidin might create a larger 

cluster that, upon binding to the biotin within the membrane, alters the membrane dynamics and 

phase behavior. In such cases, recovery after photobleaching was not observed for labelled 

streptavidin. Further, such crystallization might dictate the lipid phase underneath, induce surface 

crowding, and inhibit mobility and domain coalescence within the membrane.  

  Three populations of DiI brightness have been detected on the membrane shortly after the 

addition of streptavidin (~10 minutes after streptavidin addition). In such cases the portioning 

coefficient of DiI varied within three regions. A uniform bright DiI rich region (Ld phase), a grey 

scale brightness (Lo phase), and a black DiI depleted region (gel phase). The Lo and Ld phases 

exhibited DiI and streptavidin recovery after photobleaching, whereas the gel phase exhibited no 

streptavidin recovery which falls in agreement of having streptavidin crystals bound to the surface 

of the bilayer. As incubation time of streptavidin with the membrane increases, streptavidin 

crystallization rate increases, and the Lo phases transitioned to gel phases where only two distinct 

areas of brightness of DiI were observed.   

The membrane structure varied with the lipid phase present. Areas of Lo phase within a Ld 

background exhibit curvature when images by pTIRFM. Bulging of the Lo phase was detected as 

an increased brightness at its boundary in pTIRFM, decreasing the line tension between the co-

existing phases185. In this case, biotin-streptavidin crosslinking altered the phase dynamics, 

induced domains formation, which lead to membrane structure change. The budding of the Lo 
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phase retracted back to a flat membrane topology when the Lo phase transitioned to a gel phase as 

incubation time increased (Fig. 40).  

Circular and irregular Lo phase boundaries were observed within the time window before 

they transitioned to gel phases. The shape of the boundary depends on the lipid phases 

present6,186,187, the physical state of the streptavidin (e.g. crystal)184, and the interaction with the 

substrate. On free-floating bilayers (i.e. GUVs) circular co-existing Lo and Ld phases are observed 

upon streptavidin binding6,180. However, in our system, the lipid bilayer has formed directly on 

glass which have not only influenced the shape of the phase boundaries observed, but have also 

restricted the diffusion of the micron scale phases.  

5.5.4 Symmetric binding inhibited phase separation 

In order to decrease the membrane-substrate interaction, we have created multi-bilayer 

systems where a bilayer act as a cushion to separate the top bilayer under study from the glass 

substrate. The experiments with labelled and unlabeled streptavidin were then carried out, and the 

fluorescent signals of DiI and streptavidin were recorded in TIRFM.  Regions of DiI depletion and 

streptavidin enrichment, depicted as phase separated regions, were observed only on the bilayer 

adherent to the glass substrate, while the free-floating bilayer patches exhibited uniform DiI and 

streptavidin brightness’s. The labelled streptavidin was able to leak under the free-floating bilayer 

and bind to its bottom leaflet as well as to the top leaflet. This symmetric streptavidin binding 

inhibited the formation of phase separated regions as observed in the case of asymmetric binding. 

Leaflet binding mismatch and streptavidin crowding are critical for domain formation (Fig. 41). 
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Figure 41. Symmetric addition of streptavidin-AF647 inhibited phase induction. (A) TIRF image 

of a POPC/DiI/Biotin membrane with two bilayers represented by brighter regions of DiI. (B) 

Streptavidin-AF647 enrichment on the membrane with 3x more streptavidin is observed on the 2 

bilayers than the single flat bilayer region. (C,D) Histogram plot of brightness of the yellow line 

shown in (A,B) for the membrane and streptavidin channel, respectively.   

  

5.5.5 Membrane curvature induction factors 

In this study, we investigated the effects of clustering on membrane behavior and structural 

change. A consistency in the results was observed with varying biotinylated lipid concentrations 

within the membrane. No membrane structure or composition alteration was detected in the case 

of unlabeled streptavidin binding in contrast to the case of CTxB addition to the membrane 

reported in chapter 4. Membrane curvature detected in the case of the addition of fluorescently 

labelled streptavidin occurred as a result of the line tension between co-existing micron scale lipid 

phases. No direct nanoscale curvature induction by labelled streptavidin was detected as observed 

in CTxB-induced budding.  CTxB crosslinking with five GM1 resulted in nanoscale membrane 

buds which was not observed in the case of streptavidin crosslinking to five biotinylated lipid. The 

variation in the results indicates another key factor in inducing membrane structure change: protein 

shape. Streptavidin is often referred to as a flat molecule with five biotin binding pockets, while 

CTxB molecular structure possess an intrinsic curvature where the five GM1 binding pockets 

reside at the edge of the molecule and slightly elevated from its center163,188. This allows the 
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membrane to wrap around CTxB upon binding. The difference in the molecular shape between 

CTxB and streptavidin is critical for the ability of these molecules to drive membrane bending.  

5.6 Conclusions 

Crosslinking membrane components is critical for certain cell response mechanisms. 

Crosslinking CTxB with its GM1 ganglioside on a quasi-one component bilayer has induced 

nanoscale membrane budding. In this study, crosslinking fluorescently labelled streptavidin with 

its lipid anchor biotin have induced lipid phase separation upon asymmetric binding to the bilayer. 

Lo/Ld and gel phases were observed to exist simultaneously shortly after the addition of 

streptavidin-AF647 to the membrane. The number and properties of the phases present depend on 

the streptavidin-AF647 incubation time. Surface crowding and line tension between the co-

existing Lo/Ld phases drove membrane structure deformation and distinctly bulged out the Lo phase 

releasing the membrane from the glass substrate. After 40 minutes of streptavidin-AF647 addition, 

only two distinct phases are observed estimated to be Ld and gel phases depending on the DiI 

partitioning coefficient within each phase. Nanoscale budding is a unique property of CTxB due 

to its intrinsic molecular structure, a behavior that was not recorded in the case of biotin-

streptavidin binding. Future studies might focus on the effects of varying the biotin-tagged lipids 

and exploring the effects of utilizing monovalent streptavidin upon crosslinking.  
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CHAPTER 6 CTXB VALENCY DRIVE MEMBRANE BENDING 

6.1 Background 

Membrane structure alteration by CTxB is critical for toxin internalization and cell toxicity. 

In order to understand the driving factors and the mechanism of membrane budding by CTxB, 

experiments have been carried out to determine if membrane curvature induction was due to CTxB 

structure and its valency or due to a local nanoscale membrane phase. To achieve this, we 

investigated the effects of varying [CTxB], GM1 concentration within the membrane, GM1 

ceramide tail, and membrane composition14,111,185. Manipulating [CTxB] or [GM1] affects the 

number of crosslinked GM1 per CTxB molecule, while altering the GM1 ceramide tails or the 

membrane composition affects the nanoscale membrane phases if present. Further, replacing the 

pentamer CTxB by its mutant with a single functional GM1 binding site enabled investigating the 

effects of crosslinking on membrane structure manipulation167.  

Biological mechanisms at the cell surface is mainly affected by the kinetics properties and 

thermodynamics of ligand-receptor binding. Some reactions require a tetrameric binding such as 

the allergic reaction triggered by the high affinity binding of FcεRI to its immunoglobulin (IgE) 

receptor189, others require a covalent binding such as peptide binding. The binding constant, 

association/dissociation constants, the number of available binding sites, and the number of 

crosslinked receptors dictate the mechanism of such an interaction and eventually affects the cell 

response. A multivalent ligand undergo a multi-step binding to its receptor within the membrane, 

such process affects the cellular response as detected in the case of immunological responses and 

cancer cells targeting by nanoparticles190. The interaction between a ligand and its receptor 

depends on several factors such as the: 1) diffusion-limited transport of the ligand to the surface 

hosting the receptor; 2) the number of binding sites; 3) concentrations of the ligand and the 
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receptor; 4) binding constant; 5) and the dissociation rate. High rate constants, such as that for 

biotin-streptavidin binding  k = 7x107 M-1 sec-1 191, indicate the mechanism of interaction between 

a single biotin and streptavidin molecules. For instance, the rate-limiting factor of this binding 

interaction is due to the diffusion of biotin to the streptavidin binding site.  

For the case of cholera toxin binding to a membrane hosting GM1 molecules, the binding 

rate is 1.7x105 M-1 sec-1  given by flow cytometry192. The kinetic measurement took into account 

the transport of CTxB to the membrane, the high binding affinity of CTxB to GM1, the cooperative 

binding of GM1 to CTxB193, the different binding configurations, and the concentrations of CTxB 

and GM1 in solution and in the membrane. Investigating the effects of changing CTxB 

concentrations onto a bilayer hosting GM1 molecules is the main focus of this section. The number 

of crosslinked GM1 molecules by CTxB is important in dictating the toxin behavior, for instance 

mutant monovalent CTxB bound to a single GM1 molecule altered the toxin phase behavior as 

reported previously167. We have demonstrated that with a CTxB concentration of 0.25μg/mL and 

0.3% GM1, nanoscale membrane budding and tubules were induced by the CTxB-GM1 binding. 

We hypothesize that this membrane structure alteration is dependent on both concentrations of 

CTxB and GM1. In this chapter, we present the effects of changing CTxB and GM1 concentrations 

on a POPC/GM1/DiI membrane imaged with PLM.  

6.2 Materials and Methods 

Mutant CTxB (mCTxB) was generously provided from Dr. Anne Kenworthy lab. The 

synthetic lipids (GM1 C16:1 and GM1 C18:0) were provided by Dr. Wayne Lencer. 

6.3 Changing [CTxB] affects bud sizes 

CTxB binds to the membrane in a multi-step process192,193, which results in a variation of 

CTxB-GM1 configurations on the membrane155, and number of bound GM1s166. Initially CTxB in 
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solution undergo 3D diffusion transport to the membrane, once it’s in close proximity to a 

carbohydrate moiety of a GM1 molecule, CTxB binds to the GM1 with an effective association 

rate constant (~ 10-9M). The probability of dissociation or binding to another GM1 molecule 

depends on the concentration and diffusion rate of GM1 within the membrane. For instance, in a 

highly concentrated GM1 hosting membrane, once a CTxB is bound to a single GM1, and a 

secondary GM1 molecule falls within close proximity of that CTxB molecule, theoretically 

binding will occur with equal binding rate as the initial encounter; however, the probability of 

association is higher 2-4x the initial binding rate due to the cooperative interaction and intrinsic 

attraction of neighboring GM1s157,165,193. This increased probability of binding to more than a 

single GM1 molecule depends on the relative concentrations of membrane bound CTxB to GM1 

molecules. Receptor crosslinking occurs at a slow rate, therefore to increase the probability of 

binding to another GM1 before dissociation from the first bound GM1 occurs, the ratio of CTxB 

concentration to GM1 concentration must be very low. In this case, by keeping the GM1 

concentration fixed and changing CTxB concentrations exposed to the membrane, we can control 

the number of crosslinked GM1 to a CTxB molecule, and predict the dominant population 

configuration of CTxB-GM1 structures.  

The area of the CTxB pentamer is equal to 106 nm2, for a 0.3% GM1 concentration within 

the membrane, 110 nm2 of bilayer exists per GM1 molecule, thus a threshold CTxB concentration 

of 0.25 μg/mL would be sufficient to saturate all the CTxB binding sites. We explored a range of 

CTxB concentrations of 0.01, 0.1, 0.25, and 0.5 μg/mL to observe the effects of varying binding 

kinetics on membrane dynamics and structure.  

Supported lipid bilayers were prepared, as described previously in chapter 2, with a 99.6% 

POPC, 0.3% GM1 and 0.3% DiI concentrations. CTxB was then introduced to the membranes. 
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Dual channel super resolution imaging was performed via an Optosplit where the membrane was 

images in PLM with λexc of 561 nm and dSTORM was performed for the CTxB-AF647 with a λexc 

of 647 nm. Time lapses were acquired up to 90 min of incubation time of CTxB with the membrane 

for all CTxB concentrations.  

Upon the reconstruction of the super resolution images for both channels, we have detected 

varying behavior for the different CTxB concentrations. Nanoscale membrane deformation was 

detected for [CTxB] = 0.01, 0.1 and 0.25 µg/mL presented as areas of increased localization 

densities and ring-like structures detected by pPLM and dSTORM. However, uniform distribution 

of localizations was detected in pPLM indicating no change to membrane structure or dynamics 

for the case of high CTxB concentration (Fig. 42).  

 
Figure 42. Nanoscale buds vary in size and density as function of [CTxB]. (A-D) pPLM 

reconstructed super resolution images of the membrane imaged in (lambda exc = 488), (E-H) 

reconstructed STORM images of CTxB localizations, and (I-L) color merge of the super resolution 

images of the membrane (green) and CTxB (red) at [CTxB] of 0.01,0.1,0.25, and 0.5 µg/ml for 

(A,E,I),(B,F,J),(C,G,K), and (D,H,L) respectively.  
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The density of buds within a given area increased with increasing CTxB concentration 

while the sizes of the detected buds decreased. 0.72, 1.41, and 7.5 buds/μm2 were detected in pPLM 

for [CTxB] of 0.01, 0.1, and 0.25 μg/mL, respectively. The density of CTxB clusters also increased 

with increasing [CTxB] as expected.  4, 4.3, and 10.8 cluster/μm2 was detected in dSTORM of 

CTxB-AF647 for [CTxB] = 0.01, 0.1 and 0.25 µg/mL, respectively. The detected buds were fewer 

but larger in the case of lower concentrations of CTxB, bud sizes detected in pPLM were 285 ± 

66, 107 ± 41, and 54 ± 21 nm for [CTxB] of 0.01, 0.1 and 0.25 mg/mL, respectively (Fig. 43). 

 
Figure 43 . Whisker plot for the sizes of the induced buds with varying [CTxB]. PLM and 

dSTORM size measurement for membrane buds (grey) and CTxB (red) at varying CTxB 

concentrations within the membrane, respectively. 

 

6.4 CTxB binding kinetics 

The change in number and size of induced membrane budding is solely dependent on the 

number crosslinked GM1 by CTxB. For varying CTxB or GM1 concentrations, the shape of the 

membrane around the toxin varied depending on the number of crosslinked GM1, and the extent 

of wrapping the membrane up around the toxin close to the GM1 binding pockets.  In the case of 

low CTxB concentration ([CTxB] = 0.01 μg/mL) or high GM concentration (e.g. 1%), we expect 



117 
 

 
 

   

crosslinking of more than 1 GM1 bound per CTxB. This is due to the low relative concentration 

of CTxB to GM1 molecules; this is the case of an abundant GM1 molecules within the membrane, 

where a CTxB molecule is more likely to bind to a secondary and ternary GM1 as it diffuses within 

the membrane. A pentavalent binding might occur with a high binding affinity and low probability 

of dissociation. This cluster or unit of crosslinked GM1s by the CTxB exhibit a decreased mobility, 

and induced a local membrane bending upon crowding with other CTxB-GM1 units. The number 

of induced buds depends on the number of CTxB-GM1 units present to crowd and induce budding, 

while the size of the bud depends on the size and orientation of the units. For instance, a CTxB 

molecule bound to 3 GM1 molecules within the membrane exhibit a tilt with respect to the 

membrane plane155,166. This tilt allows the cluster to explore certain membrane orientations and 

preferentially partition at specific curvature regions (such as ridges). The limited number of present 

CTxB and GM1 clusters resulted in a lower density of induced buds but with a larger size where 

the CTxB preferentially partitioned at the bud necks.  

  As the concentration of CTxB increases on the membrane or as the GM1 concentration 

decreases within the membrane, the number of available secondary GM1s and the probability of 

binding to it decreases. An interplay between the diffusion-limited and concentration-dependent 

time for CTxB to reach the membrane, and the concentration-dependent time for a secondary GM1 

to bind to a membrane-bound CTxB, determines the number of bound GM1s per CTxB molecule. 

In this case, the lateral diffusion coefficient of GM1 in a POPC membrane DGM1 is considered to 

be similar to the diffusion of membrane lipids DGM1 ~ 10-8 cm2/sec, as given in chapter 2. The rate 

constant of crosslinking to a secondary GM1 depends on GM1 concentration and diffusion within 

the membrane. In this case, k2 is calculated according to192  

                                          𝑘2 =  
− 8 𝜋 𝐷𝐺𝑀1

ln (4𝐴+0.46)
                                              (Eq. 28) 
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Where A is the fraction of GM1 within the membrane. Thus the diffusion-limited 

concertation-dependent crosslinking rate is evaluated to k2 = 6.3x10-8 cm2/sec. For a 0.3% GM1 

i.e. ~ 9x1011 GM1 molecules/cm2 bilayer area, the rate of crosslinking between a membrane bound 

CTxB to a secondary GM1 and crosslink is smaller than the rate of an unbound diffusing CTxB to 

bind to the membrane.  

The brightness of CTxB-AF647 on the membrane was recorded during the addition of 

CTxB keeping constant experimental conditions while only varying [CTxB] added. The 

corresponding intensity profiles were plotted and the time constants were calculated by fitting the 

graph with a functional form of 

                           𝐼(𝑡) = 𝐴 (1 − exp (−
𝑡

𝜏
)) + 𝑐𝑡                           (Eq. 29) 

Where A represents the maximum intensity, τ is the time constant, and the term (𝑐𝑡) is 

added to account for signal bleaching. Steeper graphs are recorded for higher [CTxB]s indicating 

faster saturation of CTxB on the membrane.  The recorded time constants decreased from 9.6 ± 

0.06 to 1.3 ± 0.01 for [CTxB] of 0.01 and 0.5 μg/mL, respectively. This reflects the multivalent 

binding property of CTxB, where in lower concentrations CTxB molecules were more likely to 

bind to multiple GM1 as they diffuse on the membrane where the crosslinking rate is relatively 

slow. While in the case of high CTxB concentration, the transport of CTxB to the membrane was 

relatively faster than the crosslinking rate, resulting in a popular monovalent binding where the 

available GM1 receptors were saturated 8x faster.   

6.5 Nanoscale membrane buds depend on [GM1] within the membrane 

Similar results were observed upon varying the GM1 concentration within the membrane. 

Membranes of 99.6, 99.4, 98.7 % POPC and 0.1, 0.3, and 1% GM1, respectively, were created. 

The selection of GM1 concentrations was based on conserving the ratios of CTxB to GM1 on the 
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membrane similar to the cases of changing the [CTxB]. 0.25 µg/mL of CTxB was added to the 

membranes of varying GM1 concentrations. Membranes were imaged for 90 min via PLM while 

STORM imaging revealed CTxB distribution on the membrane. The density and sizes of induced 

curvature regions varied with GM1 concentrations. Nanoscale buds were detected in membranes 

with [GM1] > 0.3%, while no curvature regions were detected for lower [GM1] (Fig. 44).   

 

Figure 44. Nanoscale buds vary in size depending on [GM1] within the membrane. (A,B,C) pPLM 

images of the membrane, (D,E,F) STORM reconstructed images of CTxB-AF647, and (G,H,I) 

color merge for varying GM1 concentration of (A,D,G) 0.1, (B,E,H) 0.3, and (C,E,I) 1%, 

respectively. 

 

The bud sizes increased from 54 ± 21 to 119 ± 50 nm and from 50 ± 14 to 132 ± 70 nm in 

the membrane and CTxB channels, as GM1 concentration within the membrane increased from 

0.3 to 1%. On the other hand, the number of buds decreases from 0.69 ± 0.03 to 1.62 ± 0.1 

buds/µm2 as [GM1] increases from 0.3 to 1%. (Fig. 45) 
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Figure 45. Whisker plot for the sizes of the induced buds with varying [GM1]. Size estimation of 

buds from PLM and dSTORM  data for the induced membrane buds (grey) and CTxB (red) at 

varying GM1 concentrations within the membrane, respectively.  

 

6.6 mCTxB inhibits nanoscale membrane bending 

To determine whether the induced nanoscale membrane curvature depends on the 

multivalency of CTxB, and to confirm that binding to a single GM1 prohibit the toxin from altering 

the membrane structure as in the case of high [CTxB] and low [GM1], mutant CTxB was used. 

Fluorescently labelled mCTxB with a single active binding site was added to a 99.4% POPC/0.3% 

GM1/0.3% DiI at varying concentrations of 0.1, 0.25 and 0.5 µg/mL. Membranes were imaged via 

PLM for 90 min after mCTxB addition, and uniform density of DiI localizations was obtained in 

all [mCTxB] cases. This indicates that no change in membrane topology was recorded in all cases. 

Further, these results were confirmed after 24 hours of mCTxB addition. On the other hand, 

STORM data of mCTxB revealed uniform localization density across the membrane with areas of 

increased density. However, clustering of mCTxB did not correspond to regions of curvature in 

the membrane channel (Fig. 46). This was further confirmed by adding mCTxB to free floating 

bilayers where no invaginations were detected (Fig. 47).  
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Figure 46. No membrane budding was detected in the case of mCTxB. Varying mCTxB 

concentration 0.1 (A,C,E) and 0.5 (B,D,F) µg/ml did not induce membrane budding. (A,B) pPLM 

reconstructed images of the membrane show no curvature, (C,D) reconstructed STORM images 

of mCTxB, and (E,F) color merge of the membrane (green) and CTxB (red). 

 
Figure 47. No inward budding was detected in the case of mCTxB added to GUVs. mCTxB was 

added to GUVs imaged in (lambda exc = 561 nm) (A,B), (C,D) uniform brightness of mCTxB 

distribution on the membrane, and (E,F) color merge of the membrane (green) and mCTxB (red).  
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Crosslinking the mCTxB with a primary anti-CTxB antibody created clusters of the 

mCTxB and its bound GM1s. Initially, 0.5 µg/mL mCTxB was added to a 99.4% POPC/ 

0.3%GM1/ 0.3%DiI membrane and imaged for 90 minutes. No curvature induction was recorded. 

Then, antibodies were added to the membrane every 90 minutes at concentrations of 1:10,000, 

1:1000, 1:500, and 1:100 .pPLM images of the membrane show uniform density of DiI 

localizations indicating a flat membrane surface with no induced curvature regions (Ffig. 48). 

Further, STORM results demonstrate an increased density of mCTxB clusters of localizations. 

However, these clusters did not correspond to similar regions in the membrane channel indicating 

an assembly of mCTxB by antibodies that did not induce an alteration on membrane structure. 

 
Figure 48. No curvature induction was recorded for mCTxB even upon clustering. Anti-CTxB 

addition to crosslink the monomer CTxB did not induce membrane topology change. (A-E) 

STORM images of the mCTxB-AF647, (F-J) pPLM images of the DiI membrane for the cases of 

increasing antibodies of 1:10,000, 1:1000, 1:500, and 1:100, respectively. Scale bar represents 

2µm. 

 

High throughput single particle tracking was performed on the DiI and mCTxB 

localizations to understand the corresponding lipid and protein dynamics as function of antibody 

concentration. The effect of crosslinking of mCTxB by antibodies was exhibited as change in toxin 

dynamics and diffusion rates. Remarkable decrease in the mCTxB diffusion was recorded as D 

decreased from 1.07 ± 0.15 to 0.35 ± 0.033 µm2/sec as the antibody concentration on the membrane 

increased from 0 to 1:500, respectively (Fig. 49, 50). However, a smaller shift in lipid dynamics 
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was recorded. Lipid diffusion did not show major variation in its diffusion rate where D = 1.057 ± 

0.1 and 0.640 ± 0.15 µm2/sec for the antibody concentration cases of 0 to 1:500 (Fig. 49, 51). 

Single step analysis revealed subpopulations of diffusers representing the clusters of crosslinked 

mCTxB by the antibodies and the varying numbers of mCTxB within. Two populations of 

diffusers was detected for mCTxB for all antibody concentrations, however, a detectable increase 

in the slow diffusers populations was observed as the concentration of anti-CTxB antibodies 

increased. 

 
Figure 49. Histogram plot of single step of mCTxB (A) and DiI (B). Upon varying anti-CTxB 

antibody concentrations, single step mCTxB and DiI are shifted to lower values indicating smaller 

diffusion rates. 

 
Figure 50. Bar plot of mCTxB diffusion rates and normalized amplitudes. At varying anti-CTxB 

antibody concentrations of 0, 1:10,000, 1:1000, 1:500, and 1:100, slower mCTxB diffusion is 

detected. 
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Figure 51. Bar plot of DiI diffusion rates and normalized amplitudes. At varying anti-CTxB 

antibody concentrations of 0, 1:10,000, 1:1000, 1:500, and 1:100, slower DiI diffusion is 

detected. 

 

The agreement between the diffusion rate of mCTxB and WT CTxB in the case of high 

concentration indicates similar conformation of GM1 binding. In the case of high WT CTxB 

concentration (0.5 µg/mL), most CTxB molecules possess a single bound GM1, similar to the case 

of mCTxB where a single GM1 active binding site is present.  The dynamics of both systems on 

the membrane is in agreement with a single diffuser population of D = 1.07 ± 0.15 and D = 0.87 ± 

0.11 µm2/sec for mCTxB and WT CTxB, respectively (Fig. 52,53).  

 

 
Figure 52. Histogram plot of single step of CTxB for varying [CTxB] and [GM1]. CTxB single 

step analysis in case of varying concentration (A) and [GM1] (B) reflects slower CTxB 

diffusion.  
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Figure 53. Bar plot of CTxB diffusion rates and amplitudes at varying [CTxB].  

 

To ensure that the obtained results solely depended on the crosslinked mCTxB by the 

antibodies and that the observation is not due to a nonspecific binding of the antibody to the 

membrane, anti-CTxB antibodies were added to a 99.4% POPC/0.3%GM1/0.3%DiI without prior 

addition of CTxB to the membrane. No change in membrane structure or dynamic was recorded.  

6.7 SPT reveals subpopulations of CTxB diffusers 

Single particle tracking analysis was performed on localizations obtained in the CTxB 

channel to determine the dynamics of CTxB as function of membrane curvature. Single molecule 

CTxB diffusion was obtained for the different cases of varying [CTxB] concentrations. 

Subpopulations of diffusers were determined by fitting the histograms of CTxB single steps with 

Maxwell Boltzmann equations. Such analysis enables obtaining further information regarding 

CTxB dynamics on the membrane which might be blurred out upon analyzing full CTxB 

trajectories194.  

Three populations of diffusers exist for the case of WT CTxB where the slow diffuser 

population decreases as the [CTxB] increases indicating a faster CTxB dynamic on the membrane 

which agrees with having less bound GM1s.  
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6.8 Utilizing synthetic GM1s to test budding dependence on lipid structure  

The protein-dependent nanoscale curvature induction have been examined. Its results 

implicate a major dependence of membrane structure alteration on the ratio of CTxB to GM1 

within the membrane. To elucidate how nanoscale lipid phases and the membrane composition 

plays a role in curvature generation, GM1s with varying length and saturation level of their 

ceramide tails have been employed and incorporated into the membrane. Previous reports have 

demonstrated lipid sorting dependence on the ceramide structure of GM1 for CTxB trafficking in 

cells118. In this study, we have utilized synthesized non-fluorescent GM1 species with similar 

oligosaccharide head groups but with varying ceramide domains. GM1s of C16:1, C18:0, and 

C18:1 were incorporated into the lipid mixture before GUVs were created. The difference in the 

ceramide tails translate into a difference in the lipid phase and curvature preference of the 

molecule. GM1 species with kinked unsaturated ceramide chains preferentially partition into 

curved membrane regions and liquid disordered phase, while species with long straight saturated 

chains preferentially partition onto flat membrane areas and liquid ordered phase regions. The 

different sorting of GM1s enables testing the hypothesis of whether curvature generation depends 

on the lipid structure.  

Fluorescently labeled WT CTxB was added to membranes of 99.4% POPC/ 0.3%DiI and 

0.3%GM1 C16:1, GM1 C18:1, GM1 C18:0 independently. Membranes were images with PLM 

prior to CTxB addition and the uniform density of localizations obtained indicated the surface 

topology of the membrane. No curvature existed prior to the addition of CTxB to the membrane. 

Reconstructed super resolution images of the membranes exhibited regions with increased DiI 

localizations indicating nanoscale membrane curvature regions coinciding with increased density 



127 
 

 
 

   

of CTxB localizations for all cases of GM1 ceramide tails. This indicates that varying the GM1 

tail structure did not prevent curvature generation (Fig. 54) 

 
Figure 54. Nanoscale buds detected with varying membrane lipid composition. (A-D) pPLM 

images of DiI, (E-H) reconstructed images of CTxB, and (I-L) color merge of the membrane 

(green) and CTxB (red) channels. Nanoscale buds appeared in the case of GM1 C16:1, GM1 

C18:1, GM1 C18:0, and cholesterol for (A,E,I), (B,F,J), (C,G,K), and (D,H,L) respectively.  

 

However, variation in size and density of induced curvature was detected (Fig. 55, 56). 

Higher number of buds was observed in the case of GM1 18:0 with smaller radii where rbud is 

reported to be 105 ± 45 and 95 ± 40 nm in CTxB and pPLM channels, respectively. Larger buds 

were observed in the cases of GM1 C18:1 and GM1 C 16:1 with rbud in CTxB was 144 ± 37 and 

118 ± 57 nm, and in pPLM 147 ± 42 and 115 ± 39 nm, respectively. This indicates that the 

saturation level of the GM1 tail affects the bud formation process and initiate the intracellular 

signaling pathway through budding of the toxin rich membrane118. 



128 
 

 
 

   

 
Figure 55. <r> and density plot of buds detected in pPLM for varying GM1 tail.  

  
Figure 56. Whisker plot for the sizes of the buds for varying GM1 tails. Bud sizes vary with 

GM1 tail variation as shown in PLM (red) and dSTORM (gray) data.  

    

6.8.1 BSA affect super resolution data  

Stock samples of GM1s (C16:1 and C18:0) were synthesized with 1mg/mL BSA. The 

presence of BSA within the stock presented a challenge to super resolution imaging and DiI 

diffusion into and out of the curvature regions. To confirm that BSA have prohibited PLM from 

detecting curved regions observed in pTIRF microscopy, membranes of 99.4% POPC/ 0.3%DiI 
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and 0.3% GM1 C18:1 with and without added BSA was created and imaged for 90 minutes after 

CTxB addition. Decreased correlation between structure in the membrane channel and CTxB 

channel was obtained, confirming the hypothesis that BSA affects the quality of super resolution 

images. BSA restricted the DiI diffusion limiting the ability to detect some curvature regions in 

super resolution. Decreasing the laser power and acquiring super resolution movies of blinking 

fluorophores with 30 seconds intervals overcame the challenge, enabled the detection of the 

curvature regions, and facilitated the reconstruction of super resolution images with high 

correlation between the membrane and CTxB channels.  

6.9 Cholesterol addition did not prevent membrane buds formation 

We then examined whether changing membrane composition, mainly adding cholesterol 

to the membrane to dissociate any nanoscale liquid ordered phases or GM1 rich phase, affects the 

CTxB ability to induce curvature. Membranes of 69.4% POPC/ 30% Cholesterol/ 0.3% GM1 and 

0.3% DiI were prepared. No curvature existed prior to CTxB addition. However, imaging the 

membrane for a length of 90 minutes after CTxB addition displayed a coincided increased density 

of localizations in DiI and CTxB channels. This indicated nanoscale curvature formation in the 

membrane channel enriched with CTxB. (Fig 54) The addition of cholesterol to the membranes 

did not prohibit the process of nanoscale budding driven by CTxB.  

6.10 Conclusions  

The mechanism of curvature induction by CTxB was examined to determine whether 

curvature generation depend upon the valency of CTxB or the membrane lipid composition. First, 

to test the hypothesis that curvature generation depends on the valency of CTxB; i.e. the number 

of crosslinked GM1s per CTxB molecule; different measure were taken including varying [CTxB], 

[GM1], and utilizing mCTxB. The interaction between the pentamer CTxB and its ganglioside 
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GM1 was studied, and a kinetics based multi-step binding of CTxB to GM1 was investigated on 

planar quasi-one component bilayers via PLM. In sum, crosslinking induced nanoscale membrane 

bending depicted as clustering of localizations obtained in the membrane and CTxB channels by 

pPLM and dSTORM, respectively. Ring-like structures were observed in both channels for lower 

CTxB or high GM1 concentrations, in which CTxB preferentially partitioned at the neck region, 

was bound to more than a single GM1 molecule, and induced nanoscale vesiculation that grew in 

size > 200 nm. We demonstrated that the number of crosslinked GM1 decreases as the 

concentration of CTxB on the membrane increases, altering the toxin’s effect on the membrane. 

Membrane buds decreased in size while increasing in number as the CTxB concentration 

increased. Beyond a critical CTxB concentration of 0.25 μg/mL and lower than GM1 concentration 

of 0.3%, no membrane deformation was detected. Subpopulations of diffusers was recorded for 

the different cases of varying the [CTxB] and [GM1]. Mainly, slower diffusion of CTxB was 

recorded upon decreasing the [CTxB] added or upon increasing the [GM1]. The diffuser 

subpopulations corresponds to the CTxB molecules with different number of crosslinked GM1s 

per molecule. In sum, these studies uncover the modes of interactions of CTxB with GM1, and its 

effect on the membrane structure. Further, manipulating the membrane composition via the 

addition of Cholesterol and the alteration of the lipid structure with synthetic GM1s of varying 

ceramide tails, did not prevent the formation of membrane buds, but it did affect the sizes and 

density of induced buds.   

Understanding the mechanisms of multivalent binding and its effect on the membrane is 

crucial to apprehend the chain of events that occur during a viral infection, immunological 

response, allergic reaction, and further cellular functions. This will enable the engineering of a 

more thoughtful, selective sophisticated routines and drugs in multivalent ligand studies.  
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CHAPTER 7 SUMMARY AND OUTLOOK  

The curvature of biological membranes at the nanometer scale is critically important for 

vesicle trafficking, organelle morphology, and disease propagation. The initiation of membrane 

bending occurs at a length scale that is irresolvable by most super-resolution optical microscopy 

methods. This study reports the development of polarized localization microscopy (PLM), a 

pointillist optical imaging technique for the detection of nanoscale membrane curvature in 

correlation with single-molecule dynamics and molecular sorting. PLM combines polarized total 

internal reflection fluorescence microscopy (TIRFM) and single-molecule localization microscopy 

to reveal membrane orientation with sub-diffraction-limited resolution without reducing 

localization precision by point spread function (PSF) manipulation. Membrane curvature detection 

with PLM requires fewer localization events to detect curvature than 3D single-molecule 

localization microscopy (e.g., PALM or STORM), which enables curvature detection 10x faster 

via PLM. With rotationally confined lipophilic fluorophores and the polarized incident 

fluorescence excitation, membrane-bending events are revealed with super-resolution. Engineered 

hemispherical membrane curvature with a radii ≥ 24 nm was detected with PLM and individual 

fluorophore localization precision was 13 ± 5 nm. PLM detected membrane curvature and resolved 

membrane topography with 1 sec of acquisition time at (1.2 ± 0.1) x 10-6 localizations/nm2/frame. 

 Further, deciphering molecular mobility as a function of membrane topology was enabled. 

The diffusion coefficient of individual DiI molecules was faster in planar supported lipid bilayers 

than within nanoscale membrane curvature. The change in the lipid diffusion coefficient at the 

curvature locations did not solely depend on the geometry of the membrane. It also reflected the 

change in the membrane viscosity as the lipid packing mechanism varies between flat and curved 

membrane.  
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Radial line scans of pPLM localizations reveal radii of curvature of 32 ± 4, 50 ± 14, 60 ± 

13 nm for membranes over the nanoparticles radii of 24, 51, and 70 nm, respectively. Further, a 

6x increase in the SNR is obtained by PLM over traditional TIRFM. The theoretically estimated 

localization probabilities versus membrane orientation well reproduced experimental data. The 

unique spatiotemporal resolution of PLM is suited to monitor membrane structure variation with 

lipid and protein dynamics. Through the theoretical foundation and experimental demonstration 

provided here, PLM is poised to become a powerful technique for revealing the underlying 

biophysical mechanisms of membrane bending at physiological length scales. 

PLM enabled deciphering the molecular mechanisms of toxin-membrane interactions that 

has been limited by available experimental techniques. Multi-colored fluorescence co-localization 

of lipids and proteins to the membrane curvature was performed. Membrane buds were first 

detected with <50 nm radius, grew to >200 nm radius, and extended into longer tubules with 

dependence on the membrane tension and CTxB concentration. Compared to the concentration of 

the planar supported lipid bilayers, CTxB was (12 ± 4)x more concentrated on the positive 

curvature top and (26 ± 11)x more concentrated on the negative Gaussian curvature neck of the 

nanoscale membrane buds. CTxB is frequently used as a marker for liquid-ordered lipid phases; 

however, the coupling between CTxB and membrane bending provides an alternate understanding 

of CTxB-induced membrane reorganization. These findings allow for the reinterpretation of prior 

observations by correlating CTxB clustering and diffusion to CTxB-induced membrane bending. 

Single-particle tracking was performed on single-lipids and CTxB to reveal the correlations 

between single-molecule diffusion, CTxB accumulation, and membrane topography. Slowed lipid 

and CTxB diffusion was observed at the nanoscale buds locations, suggesting a local increase in 

the effective membrane viscosity or molecular crowding upon membrane bending. These results 
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suggest inherent CTxB-induced membrane bending as a mechanism for initiating CTxB 

internalization in cells that could be independent of clathrin, caveolin, actin, and lipid phase 

separation.  

Crosslinking of membrane associated lipid and proteins is essential for various cellular 

functions.  In this study we recorded the changes in membrane structure and composition due to 

two systems: biotin-streptavidin, and CTxB-GM1 binding. Upon clustering on a quasi-one 

component bilayer, micron scale regions enriched with streptavidin were detected followed by a 

rapid depletion of DiI within those regions. The variation of DiI partition coefficients within those 

regions indicated the presence of distinct lipid phases. Curved Lo phases were observed to bulge 

out of the Ld lipid phase background bilayer. Alteration to membrane composition and structure 

was driven by biotin-streptavidin complex, and mainly dependent on streptavidin state. 

Streptavidin crystallization affected the lipid phase it’s bound to resulting in a phase transition 

from a Lo phase to a gel phase. This was further verified by the lack of DiI and streptavidin signal 

recovery after photobleaching. The molecular structure of streptavidin dictated its effect on the 

membrane, lacking an intrinsic curvature within its structure as CTxB, streptavidin binding did not 

induce nanoscale membrane curvature.  

On the other hand, in theCTxB-GM1 binding system, induced membrane structure 

alteration was observed. Nanoscale membrane buds were detected upon crosslinking CTxB with 

its ganglioside receptor GM1. We proposed two hypothesis to determine the mechanism that 

governs curvature generation by CTxB: Valency or lipid structure. The crosslinking ability and 

multivalency of CTxB was tested by varying [CTxB], [GM1], and introducing mCTxB to artificial 

supported lipid bilayer. Moreover, changing the membrane composition by the addition of 

cholesterol and utilizing synthetic GM1s of varying ceramide tails aimed to examine whether lipid 
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structure and composition played a role in driving curvature generation. We reported a change in 

membrane bud size and density upon changing the number of bound GM1s per CTxB molecule 

and GM1 tail structure. Adjusting the lipid composition and GM1 structure had no effect and did 

not prevent curvature induction as expected. Based on our findings we determine that crosslinking 

receptors is the mechanism of toxin internalization, and we propose that molecules adopt this 

mechanism in clathrin-independent endocytosis events. Crosslinking membrane receptors triggers 

a cascade of events for cell signaling or initiate a cell response each dependent on the crosslinked 

molecules. 

  



135 
 

 
 

   

APPENDIX A  POROSOMES PREFERENTIAL PARTITIONING 

 

Porosomes are lipoprotein structures that reside at the cell membrane and play an important 

role in secretion195. Partial vesicle docking, fusion, and content release occurs at the porosomes 

sites that represent a portal for regulating cargo transfer. This protein complex measures 180 nm 

in pancreatic insulin secreting cells, and composed of 30 to 40 core proteins196. In previous studies, 

SEM imaging and TIRF microscopy have been utilized to determine the properties of porosomes 

and the function of its proteins. In the current study, super resolution imaging is employed to 

determine the curvature preference of this complex.  

Isolated fluorescently labelled porosomes from insulin secreting Min6 cells were 

incorporated into artificial lipid bilayers draped upon 140 nm and 500 nm nanoparticles. TIRF 

imaging was then performed to determine the distribution of porosomes as function of curvature. 

Super resolution imaging provided nanoscale information regarding preferential portioning of the 

complex as function of membrane curvature.  

Porosomes partition onto curvature regions 

Distinct imaging channels were required as the bilayer (99.7% POPC and 0.3% DiI) was 

excited at 𝜆𝑒𝑥𝑐 = 561 nm, nanoparticles (140 nm) excited at 𝜆𝑒𝑥𝑐 = 488 nm, and the porosomes 

excited at 𝜆𝑒𝑥𝑐 = 647 nm. TIRF images revealed increased porosomes brightness at sites of curved 

membrane at the nanoparticle sites (Fig. 57). To confirm the integrity of the bilayer and the 

porosomes reconstitution into the artificial bilayer, control experiments were carried. To confirm 

that the complex was fully incorporated into the bilayer, and that the increased porosomes 

partitioning is due to membrane curvature rather than sticking to the nanoparticle itself, porosomes 

were added to nanoparticles on glass without a lipid bilayer. No increased porosomes brightness 

was detected on the nanoparticles in comparison to the surrounding glass, this indicates that the 



136 
 

 
 

   

porosomes did not stick to the nanoparticles and they preferentially partitioned on the curved 

membrane above the nanoparticle. Next, porosomes brightness on the flat membrane was 

compared to brightness on sites of membrane curvature. 20x more porosomes existed on sites of 

membrane curvature in comparison to flat regions.  

 
Figure 57. Porosome complex preferentially partition at regions of curvature. (A) 500 nm non-

fluorescent polystyrene nanoparticles are images in bright field. (B) STORM reconstructed image 

of the POPC/DiI membrane in (lambda exc = 561 nm) draped upon the nanoparticles. The 

increased density of localizations indicated regions of membrane curvature corresponding to the 

membrane created on top of the nanoparticles. (C) Reconstructed STORM images of fluorescently 

labelled porosomes by (lambda exc = 647 nm). The ring-like shape of the localizations indicates 

the location of the porosomes around the neck of the created curvature. (D) Color merge of the 

membrane (green) and the porosome complex (red).  

 

Super resolution STORM imaging was then performed to obtain nanoscale information 

regarding porosomes location and dynamic. An increased density of localizations was detected in 

the porosomes and the membrane channel at the 500 nm nanoparticle locations (Fig. 57).  

 
Figure 58. Porosomes dynamics on curved membrane over 500 nm NP. (A) 2D histogram plot of 

porosomes localizations. (B) Linked trajectories of porosomes localizations. (C) Extracted 

diffusion rates of SPT data.  

 

The high density of localizations in the membrane channel corresponds to the increased 

membrane per pixel at the curved membrane locations.  0.1 ± 0.01 porosomes/ µ𝑚2 were detected 
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at flat bilayer regions while 4.6 ± 0.1 porosomes/ µ𝑚2 were detected on curved membrane, a 40x 

increase in density indicating the preferential partitioning of porosomes at curvature regions. 

Further, SPT revealed decreased porosomes diffusion on curved membrane D = 0.052 ± 0.01 

µ𝑚2/𝑠𝑒𝑐 in comparison to flat membrane regions where D = 0.16 ± 0.1 µ𝑚2/𝑠𝑒𝑐. (Fig. 58) 

Radial line scans of the localizations of DiI reveals decreased DiI density at the neck region 

of the curvature created by the 500 nm NPs beneath the lipid bilayer. Further experiments were 

carried out to examine the DiI distribution on curved membranes in the absence of porosomes. 

This study revealed increased DiI localizations at the curved membrane, in particular at r = 250 

nm, in contrast to the case of DiI distribution in the presence of porosomes. The decreased 

localization density of DiI at the neck region of the curvature reveals important information 

regarding the distribution of porosomes and its effects on the membrane lipids. The protein 

complex preferentially partitioned at the curvature region leading to lipid reorganization perceived 

as DiI depletion (Fig. 59). 

 
Figure 59. DiI distribution varies in the presence of porosomes. STORM reconstructed images of 

DiI localizations in a 99.7% POPC/0.3% DiI over 500 nm NPs (A) with and (B) without porosomes 

addition. (C) Radial line scan of DiI localizations over 500 nm NPs with (red line) and without 

(blue line) porosomes. The shift in the peak of the line scan from r = 170 nm for the blue line to r 

= 50 nm for the red line indicates a decrease of DiI localizations at the neck of the curvature. This 

shift corresponds to DiI depletion from the neck region for porosome incorporation and 

preferential partitioning at the curvature. This shows the variation in DiI distribution in the 

presence of porosomes incorporated within the membrane.  
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Phase preference of the protein complex 

To determine the distribution of porosomes as function of membrane lipid phase. Synthetic 

supported lipid bilayers were prepared of 1:1:1 DOPC/DPPC/Cholesterol with 0.3% DiI and 0.3% 

DiO. This composition enabled the observation of two distinct liquid phases at 30 C. However, 

upon the addition and incorporation of porosomes into the membrane, membrane structure 

alteration was detected. Ridges and curvature was created and extended out of the membrane 

spanning a range of hundreds of nanometers, such regions were enriched with porosomes and 

liquid disordered phase. These structures were not created in bilayers of POPC/DiI and did not 

occur in ternary bilayers prior to porosomes addition. (Fig. 60, 61). The intrinsic cup-shape curved 

structure of the porosome along with possessing Syntaxin and SNARE proteins which 

preferentially partition onto Ld phase might explain the porosome lipid phase preference197.  

 
Figure 60. Membrane structure alteration after addition of porosomes. TIRF images of the (A) 

membrane in 488 nm, (B) 561 nm, (C) the porosomes in the 647 channel, and (D) their color 

merge. Scale bar represents 5 µm. 
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Figure 61. Super resolution images of the induced membrane structure. TIRF images of (A) DiI in 

561 nm, and (B) the porosomes in the 647 channel. (C, D) Super resolution STORM images of (A, 

B), respectively. Scale bar represents 5 µm. 

 

Conclusions 

To better understand the structure, function, and location of the protein complex, TIRF and 

super resolution imaging were employed to detect its distribution as function of nanoengineered 

curvature on synthetic bilayers. Porosomes preferentially partitioned at curvature locations created 

by draping a bilayer on 500 nm nanoparticles. 40x more localizations were detected in the 

porosomes channel on curved regions in comparison to flat membrane areas. Further, slowed 

porosomes diffusion was recorded on curved regions. The protein complex preferentially 

partitioned at the Ld phase regions driving membrane structure alteration in ternary mixture of 

lipids.  
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APPENDIX B ANALYSIS PROCEDURE 

Super resolution images were reconstructed from thousands of movies of blinking 

fluorophores using the ImageJ plugin: ThunderSTORM. Macros were recorded and used in batch 

processing analysis. To find the location of single blinking fluorophores through ThunderSTORM, 

we first applied a wavelet filter (B-spline) with scale and order of 3. Then, each fluorophore point 

spread function was fitted with a Gaussian function of radius of 3 and sigma of 1.6 as input 

parameters within the plugin. Super resolution reconstructed images were then plotted as 2D 

histogram of localizations. Further, tetraspecs locations were cropped, fitted, and corrected for 

drift. The drift correction file was then saved and applied to the full data set. Further analysis such 

as locating membrane buds, evaluating their sizes, plotting radial and density line scans; were 

conducted via routines and codes written in MATLAB.  

Bud Identification Routine 

Nanoscale membrane buds induced by CTxB was detected in the membrane channel as 

increased clustering of localizations accompanied with an increased density of localizations in the 

CTxB channel. Such regions were identified via home written MATLAB code that locate regions 

of high localization density based on a user input threshold. Locations with > 3x density of the 

background flat membrane was detected and saved as buds locations. Moreover, only locations 

with increased localization density detected in both channels were considered nanoscale buds.  

Single-molecule dynamics analysis 

A written MATLAB code that utilized utrack , a tracking algorithm, was used for linking 

trajectories of single fluorophores within 500 nm in subsequent frames for single step size and 

diffusion analyses. For subpopulations analysis, a histogram of fluorophores single step sizes was 

plotted then fitted with a Maxwell-Boltzmann distribution to extract the diffusion rates.  
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To determine the average diffusion coefficient of a single trajectory, average MSDs as 

function of the time interval (Δt) were plotted and fitted linearly to extract the diffusion rate 

through the fourth time point. 

Dual-channel imaging and alignment 

Merging and overlapping the different imaging color channels required a transform code 

that allowed shifting and rotating the super resolution data to map both channels to same location 

and overcome any physical imperfections in the optosplit alignment. Tform, 

transformPointsForward, and transformPointsInverse are matlab functions utilized to transform 

the channels for perfect overlay.  
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        ABSTRACT 

POLARIZED LOCALIZATION MICROSCOPY (PLM) DETECTS NANOSCALE 

MEMBRANE CURVATURE AND INDUCED BUDDING BY CHOLERA TOXIN 

SUBUNIT B (CTxB) 
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The curvature of biological membranes at the nanometer scale is critically important for 

vesicle trafficking, organelle morphology, and disease propagation. Many proteins and lipids 

interact with diverse curvature sensing and curvature generating mechanisms. Deciphering the 

molecular mechanisms of toxin-membrane interactions has been limited by the resolution and 

drawbacks of conventional experimental techniques. This study reveals the inherent membrane 

bending capability of cholera toxin subunit B (CTxB) through the development and 

implementation of Polarized Localization Microscopy (PLM). PLM is a pointillist optical imaging 

technique for the detection of nanoscale membrane curvature in correlation with single-molecule 

dynamics and molecular sorting.  

PLM combines polarized total internal reflection fluorescence microscopy and 

fluorescence localization microscopy to reveal membrane orientation without reducing 

localization precision by point spread function manipulation. Further, membrane curvature 

detection with PLM requires ≤19% of the localization density required with 3D fluorescence 

localization microscopy (e.g., PALM or STORM). Engineered hemispherical membrane curvature 
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with varying radii of 24, 51, and 70 nm were detected with PLM while surrounded by planar 

supported lipid bilayers. Nanoscale membrane bud growth was spontaneously induced by CTxB 

on otherwise planar, quasi-one component lipid bilayers, revealing a mechanism of cholera 

immobilization and cellular internalization. The single lipid and single protein trajectories further 

quantified the effects of nanoscale membrane curvature and protein-lipid interactions. CTxB 

sorting to high membrane curvatures was detected and quantified.  

Nanoscale membrane budding and tubulation was mainly driven by CTxB valency and 

structure. We demonstrated that varying either GM1 or CTxB concentrations on the membrane 

affects the budding structures. The number of crosslinked GM1s to a single CTxB affected the 

toxin behavior and mechanism on the membrane. Changing the lipid structure altered the bending 

mechanism and the eventual size and density of induced buds. Through future incorporation of 

single-particle tracking and live cells, PLM is poised to image the diverse molecular mechanisms 

that regulate nanoscale membrane bending. 
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