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CHAPTER 1 INTRODUCTION

Understanding emotion status has always been an interesting yet challenging research

topic in the past decades [62]. More recently, with the development of more human-

centered services, such as targeted advertisement, trending analysis and self-emotion tracking,

automatic emotion detection has become increasingly important. Various types of data

sources, e.g., images of facial expressions, speech, electroencephalogram (EEG), electro-

cardiogram (ECG), can be utilized to analyze the emotions [31]. However, speech, EEG

and ECG do not always present in daily routine occasions. Thus, using only images or

videos for emotion detection is the most feasible and reliable way in many cases. Ad-

ditionally, it has been proven that the most effective and natural means for classifying

emotions are based upon the facial expressions [25, 3]. Therefore, there is growing inte-

rest in technologies of extracting the underlying information of facial images to analyze

emotional states [73]. Information visualization of this type of visual data is also becoming

more important lately.

Many research efforts have been made to explore the facial information through 2D

facial images, including face recognition [70], age detection [26] and facial expression re-

cognition [5]. Facial feature extraction from 2D images has been intensively studied and is

proven effective. 2D-based methods such as Active Appearance Model (AAM) [51], Active

Shape Model (ASM) [3] and Constrained Local Model (CLM) [21] are successfully applied

to face tracking and face recognition applications. More recently, Convolutional Neural

Network (CNN) became more popular in the field of computer vision, and was actively

applied to object detection and recognition tasks [42]. However, 2D-based methods suf-
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fer from their fundamental challenges: illumination and orientation variance may result

in very different images for the same individual, which make the classification inaccurate

and unstable.

To solve the problems existing in 2D-based methods, a potential solution is to extract

features from 3D space directly. Therefore, reconstructing high quality 3D face model in

a reliable and easy way is essential for solving this problem. With the advancement in vi-

sual sensing and acquisition technology, the ability to accurately capture 3D human faces

has been significantly improved in recent years. The popular methods include laser scan-

ning [4], structured light scanning [60], RGBD camera [37, 81] or multiview stereo [64].

Capture and reconstruction of 3D face models enable many applications such as modeling

[74], animation [15], gaming [48], security [11] and 3D printing [13]. The current so-

lutions often require expensive equipments and a significant level of expertise to achieve

high-quality captures and reconstructions. They are far beyond the capability of gene-

ral end users and therefore limit the potential applications of the technologies. Ichim et

al. [30] presented a solution for creating 3D avatar using hand-held video input. However,

the method mainly focuses on texture synthesis using the input video clip. The geometry

of the reconstructed face mainly relies on a Structure-from-Motion (SFM) method to build

a point set surface. It requires extensive smoothing and denoising with a morphable sur-

face, which will generate a face model not very similar to the original human subject. Cao

et al. [15] proposed a system to animate an avatar face using a single camera. Their work

focused on tracking a user’s facial expressions and then synthesizing the corresponding

expression geometry in an avatar rather than reconstructing high-fidelity 3D face models.

The goal of our work is to provide a viable solution for allowing a general end user to
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robustly and accurately model and reconstruct the user’s 3D face using a single smartphone

camera and support the analytics of emotion states. With a single smartphone camera, the

user can capture his/her face by himself or herself. Using the captured images as an in-

put, the solution needs to robustly reconstruct a high-quality 3D face. The straightforward

idea based on this input data would be relying on Structure-from- Motion or multiview

reconstruction methods [64]. Unfortunately, these methods fail upon this low-resolution,

blurred, noisy and often incomplete data. Robust surface reconstruction of a high-quality

face model from the blurred, noisy and incomplete data is a very challenging task. Also, for

the end users to record an entire head scan video of him/herself is a time-consuming and

uneasy work. To overcome these challenges, we develop a part-based 3D face representa-

tion, learned from a 3D face database using Non-negative Matrix Factorization (NMF) as

prior knowledge, to facilitate robust global and adaptive detail data fitting alternatively to

reconstruct an accurate and complete 3D face model. Only two selfie images from the front

and side will be used as the input to a later iterative reconstruction process. Our iterative

3D face fitting method permits fully automatic alignment of the NMF part-based 3D face

representation to the input facial images and the detailed 2D/3D features to reconstruct a

high-quality 3D face model. Our method provides the users a simple and robust 3D face

models with difference expressions.

We utilize our 3D face fitting method to construct a 3D face from an input image, which

generates a dense correspondence to a reference 3D face. Using a fitted 3D face will not

only provide a well registered 3D mesh surface, but also can decompose it into an uniform

basis space to obtain normalized features. The generated 3D face can be represented

by the weighted sum of the basis functions and the weight vectors can be used as one
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of the features to classify the expressions, which can be further translated to emotional

status. Our system allows the users to analyze emotions continuously by quantifying and

visualizing the detected emotion in Valence-Arousal space.

The 3D information can also be provided to the 3D deep learning methods. Sinha et

al. [65] presented a 3D model surface learning method based on CNN by creating geometry

image from the input 3D shapes. Su et al. [66] rendered 3D models to several 2D images

using multi-view method and used them to train a Multi-View CNN for shape learning.

In a nutshell, these methods still transfer 3D shapes into 2D images as the input of the

CNN framework. Instead of performing 2D operations in CNN, Wu et al. [76] used 3D

voxel filters to process the voxelized depth data. Their model significantly outperformed

existing approaches for shape recognition tasks.

To take advantage of the high performance CNN and richer information in 3D-based

methods, we propose a 3D Mesh Convolutional Neural Network which performs general

operations directly on the surface of the 3D mesh. In the facial expression recognition

task case, these operations can be performed on the surface of the reconstructed 3D face

model. To obtain a consistent sampling grid across the 3D faces, 3D face models are

reconstructed by fitting a deformable face model to the scanned surfaces, in which a dense

vertex correspondence can be roughly obtained. This property ensures that the processing

operations including convolution and pooling are performed uniformly on the 3D surface.

More importantly, we propose a visual analytics approach to the learned features and

networks, which is important for modification and optimization towards better perfor-

mance of the network. Through an interactive visualization of the learned features and

high activation feature areas, our system can demonstrate clustered nodes based on their
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activation behaviors, which provides users an intuitive visual analytics on the trained net-

works, and allows them to interactively modify the networks. Based on the visualization

result and through the interactions, the users can better understand expected and discover

unexpected features, network node performance, etc., hence better fine tune the trained

network and optimize its performance as well as reduce the over-fitting problems.

In order to solve those research problems, we propose the expression and emotion

analysis approach by employing the morphable 3D face model. There are three major

contributions presented in this work of 3D face reconstruction and emotion analysis.

• We present a deformable NMF part-based 3D face representation from a 3D face da-

tabase which facilitates robust global and adaptive detail data fitting alternatively

through the variations of weights. The bases have the property of local support. Our

deformable part-based 3D face model serves as a better morphable model for data

fitting and reconstruction under geometry and illumination constraints. We present

a fully automated iterative 3D face reconstruction method which automatically re-

gisters the deformable part-based 3D face representation to the acquired face images

and the detailed geometric features as well as illumination constraints to reconstruct

a high-fidelity 3D face model. It provides general end users with a novel 3D face

capture and reconstruction solution that robustly and accurately acquires 3D face

models from a single smartphone camera.

• Our emotion analysis method is based on 3D morphable face model, which can ex-

tract more sensitive and reliable features from reconstructed 3D face to classify dif-

ferent emotions. It presents a fully automated 3D face reconstruction technique for

3D facial expression decomposition and feature extraction. We provide a robust VA
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value computation and visualization method to measure the emotion changes con-

tinuously in VA space. Our system enables users to monitor and analyze emotions

robustly and intuitively from a single camera.

• We present a 3D Mesh Convolutional Neural Network for learning facial expressions

on 3D face models. Our method convolves 3D signatures directly over irregular

sampled surface based on the geodesic distance. We also present a visual analytics

framework for deeper understanding of the automatic feature selection and node

activation procedure, and provide interactive node selection and removal operations

for network modification and optimization. Our method is robust on the rotation

of the face and environmental illumination variance since it focuses on the surface

geometry descriptors as learning features instead of the intensities of the regular

images.

The rest of the paper is organized as follows:

• Chapter 2: Introduces the essential background knowledge and techniques which

are employed in this work.

• Chapter 3: Introduces 3D face reconstruction method based on Non-negative Matrix

Factorization. This section presents the process of database decomposition and the

process of the 3D reconstruction from 2D images.

• Chapter 4: Shows emotion analytics using the reconstructed 3D face models. By

estimating the regression between the features of the reconstructed 3D faces and the

emotion, the input faces are mapped to a Valence-Arousal (VA) space for emotion

visualization. In the VA space, the emotions are intuitively visualized for emotion

analysis.
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• Chapter 5: Presents a 3D Mesh Convolutional Neural Network to learn the expressi-

ons from the 3D faces.

• Chapter 6: Gives a summary of the thesis.
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CHAPTER 2 BACKGROUND

In this work, facial expressions and emotions are analyzed using 3D face model. The-

refore, 3D face reconstruction is one essential step to achieve our goal. To generate the 3D

face models with expressions, we use a method that reconstructs 3D face models from 2D

images. In this method, a pre-scanned 3D face database is used as prior knowledge in the

reconstruction process. The database is decomposed into a number of basis faces, which

are used to generate an arbitrary 3D face. The following will introduce basic concepts for

3D face reconstruction, deep learning framework and emotion analytics. Typical geometry

features are also explained, which are used for training 3D mesh neural networks.

2.1 Feature-based Methods

Generally, 3D descriptors includes principal curvatures, mean curvatures, Gaussian cur-

vatures, conformal factors [29] and heat kernels [67], which can be used to describe the

3D shapes. As Hua et al. [29] indicated that a 3D shape can be uniquely defined if the

mean curvatures and the conformal factors are given. These 3D descriptors are used for

the feature-based 3D model analysis, including 3D face models.

2.1.1 Mean Curvature

In differential geometry, mean curvature is an extrinsic measure of the curvature at a

given location of a surface S, and it is also equal to the average of the principal curvatures.

On a discrete triangular mesh, we compute the mean curvature at point p by

H(p) =
1

4A
‖

∑
q∈N(p)

(cotα + cotβ) ~pq‖2, (2.1)
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where α and β are two opposite angles of the shared edge ~pq in two triangles, and N(p) is

the set of 1-ring neighbor vertices of vertex p. A is the Voronoi area of the vertex p, which

can be computed by

A(p) =
1

8

∑
q∈N(p)

(cotα + cotβ)‖ ~pq‖2, (2.2)

if the triangles in the 1-ring neighborhood are non-obtuse. Meyer et al. [52] presented the

solution for the obtuse case. Fig 1 illustrates the angles and the area of the vertex p.

p

q
α 

β 

Figure 1: α and β are the opposite angles to the edge ~pq. Yellow area shows the Voronoi
area associated to the vertex p.

2.1.2 Conformal Factor

In the theorem of differential geometry, a diffeomorphism f : M → N is conformal

if and only if, for any surface patch σm on M , the first fundamental forms of σm and

σn = f ◦ σm are proportional. Mathematically, this means that f ◦ ds2m = λds2n, where λ

is called the conformal factor, ds2m andds2n are the first fundamental form on M and N .

Given a surface patch M , its conformal image Ic can be created using conformal mapping.

Conformal maps preserve both angles and the shapes of infinitesimally small figures, but

not necessarily their size or curvature. There is one-to-one correspondence between the
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vertices in M and the vertices in Ic.

Conformal factor λ measures the vertex area change of the deformed shape. The dis-

crete conformal factor at point p can be defined as

λ(p) =
Ae(p)

An(p)
, (2.3)

where the Ae(p) and An(p) are the averaging areas of the vertex p on surface ~e and ~n.

The conformal factor function λ(u, v), and the mean curvature functionH(u, v), defined

on D, satisfy the Gauss and Codazzi equation, as a conformal surface S(u, v) is paramete-

rized on a domain D. Therefore, if λ(u, v) and H(u, v) are given with boundary conditions,

the surface S(u, v) can be reconstructed uniquely. The mean curvature and the conformal

factor are two important signatures which carry fundamental information of a surface.

2.1.3 Heat Kernel Signature

A heat kernel signature (HKS) is a feature descriptor of spectral property of a 3D shape

and is widely used in deformable shape analysis [67]. HKS defines a local and global

geometric properties of each vertex in the shape by a feature vector, which is used for

segmentation, classification, structure discovery, shape matching and shape retrieval. The

HKS k is a function of time t, which can be solved by the differential equation
δh

δt
= −∆h.

The HKS at a point p is the amount of remaining heat after time T , which is

k(p) =
∞∑
i=0

e−TλiΦ2
i (p), (2.4)

where λi and Φi are the ith eigenvalue and eigenfunction of the Laplacian-Beltrami
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operator. The HKS is an intrinsic property of a given mesh, thus it is stable to noises and

articular transformations or even some topological changes. The HKS is also a multi-scale

signature of the shape, which means changing the time parameter T can control the scale

of the signature. For example, a larger T represents a more global feature and smaller T

represents a more local feature of the shape.

2.2 Model-based Methods

Model-based methods try to compose a new face based on a number of basis faces.

These basis faces are usually obtained by decomposing a set of scanned face database.

Changing the weights of the basis faces can generate different 3D faces. Following methods

are typical model-based methods.

2.2.1 PCA based Morphable Face Model

Blanz et al. [10] presented a 3D morphable face model in 1999. The morphable model

includes two major steps: database decomposition step and reconstruction step. To build

a morphable 3D face model, a dataset of 3D faces needs to be scanned and all the scan-

ned 3D faces need to be fully registered. First, 3D faces are scanned using laser scanners

or RGBD cameras. Then, to find a uniform dense correspondence among all the unre-

gistered faces, an optical flow algorithm is employed. The algorithm computes a flow

filed (δh(h, φ), δφ(h, φ)) that minimizes the difference ‖I1(h, φ)− I2(h, φ)‖ between two 3D

scans. By finding the flow fields from a reference face model Sref , Tref to each 3D face

samples in the database, the dense correspondences are established.

Once the database is fully registered, the database is decomposed using Principal

Component Analysis (PCA). The 3D face models are represented with a shape-vector
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S = (X1, Y1, Z1, X2, ......, Yn, Zn)T ∈ R3n, that contains the X, Y, Z coordinates of its n

vertices. Similarly, the texture of the shape is represented with a texture-vector T =

(R1, G1, B1, R2, ......, Gn, Bn)TR3n, that contains the R,G,B colors of the n corresponding

vertices. A morphable face model is then build from a dataset of m exemplar faces, each

represented by its shape-vector Si and texture-vector Ti. Any new shape Snew and new

texture Tnew can be reconstructed by a linear combination of the shapes and textures of

the m exemplar faces:

Snew =
m∑
i=1

αiSi, Tnew =
m∑
i=1

βiTi,
m∑
i=1

αi =
m∑
i=1

βi = 1. (2.5)

The morphable model is then defined as the set of faces (Smod(~a), Tmod(~bb)), parame-

terized by the coefficients ~α = (α1, α2, ...αm)T and ~β = (β1, β2, ...βm)T . Thus, new faces

can be reconstructed by finding the optimal parameters α and β that control shape and

texture. To make the reconstructed 3D model a plausible human face, the coefficients need

to be restricted in a certain range. Therefore, based on the coefficients of the exemplar

faces, the probability distributions of the coefficients α and β are computed. Using the

distributions as prior, the likelihood of the coefficients can be regulated to prevent extreme

cases.

The m exemplar face models are arranged in a m × n matrix form, where n is the

length of each shape vector. Then using PCA, the matrix is decomposed to an orthogonal

coordinate system, which is formed by the eigenvectors and covariance matrix:

Smodel = S̄ +
m∑
i=1

aisi, Tmodel = ~T +
m∑
i=1

biti, (2.6)
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where si and ti are the covariance matrices of geometry and texture datasets. The proba-

bility for coefficients ~a is given as follows:

p(~a) ∼ exp[−1

2

m∑
i=1

(ai/σi)
2], (2.7)

where σi is the eigenvalues of the shape covariance matrix. The computation of the pro-

bability for coefficient ~b is similar.

Once the morphable face model is built, an arbitrary 3D face model can be recon-

structed from a 2D input image by optimizing the shape coefficient α and texture coeffi-

cient β. The optimization is done by minimizing the energy function

E =
m∑
k=1

‖Iinput(~px,k, ~py,k)− Imodel,k‖2, (2.8)

where k is the index of the vertices, (~px,k, ~py,k) is the projected image locations of the

model. The energy is minimized by taking the partial derivatives with respect to ~α and ~β.

2.2.2 Blendshapes

Blendshapes are widely used in the facial expression animation purpose. A set of fa-

cial expression meshes can be generated for each person. Using the facial rigging al-

gorithm proposed by Li et al. [46], a user specific expression space is generated. By

computing a linear combination of the expressions, we can interpolate the intermediate

expressions. Following the Ekman’s Facial Action Coding System [23], 46 base expressi-

ons B = B0, B1, ...B46 are captured for each person, and any new expression H is then
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computed by

H = B0 +
46∑
i=1

αi(Bi −B0), (2.9)

where α is the weight coefficients for each expression. Employing the rigging algorithm,

the blendshape system is optimized to a more general model A = A0, A1, ...A46, which

improves the optimization performance.

2.2.3 Bilinear Face Model

Extended from Morphable face model, the bilinear face model decomposes a dataset

with 3 dimensions: vertices, identity, expression. The bilinear facial mesh dataset contains

n subjects with the same 47 facial expressions (1 neutral and 46 others). These face mes-

hes are obtained by deforming a reference face model to the scanned raw depth image,

therefore, all these meshes have a one-to-one correspondence by nature. The dataset is as-

sembled into a 3-mode tensor T , which represents vertices × identities × expressions. The

data tensor is arranged in an obvious fashion, so that each slice with varying second factor

and fixed third factor contains face vectors with the same expression (for different iden-

tities), and each slice with varying third factor and fixed second factor contains the same

identity but with different expressions. The tensor dataset is decomposed by N-mode sin-

gular value decomposition (SVD). The vertex dimension is excluded in the decomposition,

since the entire face is required in most of the facial reconstruction applications.

The N-mode SVD process is represented as

T ×2 U
T
id ×3 U

T
exp = C, (2.10)
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where T is the data tensor and C is the decomposed core tensor. Uid and Uexp are ort-

honormal transform matrices, which contain the left singular vectors of the 2nd mode

(identity) space and 3rd mode (expression) space respectively. Similar to PCA, N-mode

SVD sort the variance of C in decreasing order for each mode. This enables data compres-

sion by removing the insignificant components of C. Therefore, an approximation of the

original tensor can be recovered by

T ' Ĉ ×2 Ûid ×3 Ûexp, (2.11)

where Ĉ is the simplified core tensor obtained by keeping the significant columns of the

original core tensor in mode 2 and 3. Ûid and Ûexp are the simplified matrices from Ûid and

Ûexp.

With Ĉ, any facial expression of any person can be approximated by the tensor con-

traction

S = Ĉ ×2 w
T
id ×3 w

T
exp, (2.12)

where wid and wexp weight vectors for identity and expression respectively.

2.3 Deep Learning-based Method

Recent achievements in deep learning enabled many applications in machine learning.

Deep learning commonly rely on complicated neural networks and Convolutional Neural

Network (CNN) is one particular class of neural network which focuses on image data.

Recently, CNN is also modified to learn 3D datasets and achieved great performance in

shape classification tasks [65, 66, 76]. We explains basic knowledge of CNN in following
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section.

2.3.1 Convolutional Neural Networks

CNN is usually built with convolution layer (C), pooling layer (P) rectified linear units

(LeRu) layer, fully connected layer (FC) and followed by loss layer. Different layers serve

for different purposes and a proper arrangement of these layer components can maximize

the performance of the learning.

Convolutional layer The convolutional layer is the core component in a CNN framework.

Convolution preserves the spatial relationship between pixels by learning image features

using small squares of input data. This layer consists of a number of filters, and each filter

is a matrix with different weights in its elements. During the convolution procedure, the

filters slide over the input image to compute element-wise weighted summation, producing

a 2 dimensional feature map of the filter. As a result, the network learns filters that activate

when it detects some specific type of feature at some spatial position in the input.

All the feature maps generated by different filters forms a output volume of the con-

volution layer. Therefore, every entry in the output volume can also be interpreted as an

output of a neuron that looks at a small region in the input and shares parameters with

neurons in the same activation map. Convolutional layer often followed by ReLU layer and

pooling layer, which is discussed as follows.

Pooling layer Pooling is another important concept in CNN, which is a form of non-

linear down-sampling. There are several pooling methods, such as max pooling, average

pooling, median pooling and etc. In case of Max Pooling, the image is partitioned into a

set of non-overlapping areas i.e. a 2 × 2 window, and in each area the largest element is
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preserved. In practice, Max Pooling has been shown to work better.

Pooling makes the input representations (feature dimension) smaller and more mana-

geable, therefore, it reduces the number of parameters and computations in the network

and prevents overfitting. Pooling also makes the network invariant to small transformati-

ons, distortions and translations in the input image. It is common to periodically insert a

pooling layer between successive convolutional layers in a CNN architecture.

ReLU layer Non-linear activation functions are often applied immediately after convolu-

tion layer to introduce nonlinearity to the convolved outputs. It increases the nonlinear

properties of the decision function and of the overall network without affecting the recep-

tive fields of the convolution layer.

In the past, functions such as the saturating hyperbolic tangent f(x) = tanh(x) and

the sigmoid function f(x) = (1 + e−x)−1 were often used. However, Rectified Linear Units

(ReLU) function becomes more popular since it improves the computational performance

several times faster without significantly losing the accuracy. This layer applies the non-

linear activation function f(x) = max(0, x) to all of the values in the input volume. In

basic terms, this layer changes all the negative activations to 0.

Fully connected layer Fully connected layer usually follows several convolutional layers

and pooling layers to learn the high-level knowledge. Just as a normal neural network,

neurons in a fully connected layer connect to all activations in the previous layer. The-

refore, their activations can be computed with a matrix multiplication followed by a bias

offset.
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Loss layer A loss function (error, cost, objective function) is an important concept in

general machine learning framework, which drives the learning process toward the better

result. The loss function measures how good the current parameters describes the training

data. It converts the input multi-variant data to a scaler value and compares it with the

true target value. Hence, the learning result is evaluated by the loss function and the goal

of learning is to minimize the loss function.

In CNN framework, three types of loss function are often used. Softmax layer is used

for predicting a single class from several mutually exclusive classes. Sigmoid cross-entropy

loss is used for predicting the independent probability values in [0, 1]. Euclidean loss is

used for regressing to real-valued labels (−∞,∞).
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CHAPTER 3 3D FACE RECONSTRUCTION

3.1 Introduction

In this section, we introduce a novel 3D face modeling and reconstruction solution that

robustly and accurately acquire 3D face models from a couple of images captured by a

single smartphone camera. Two selfie photos of a subject taken from the front and side

are first used to guide our Non-Negative Matrix Factorization (NMF) induced part-based

face model to iteratively reconstruct an initial 3D face of the subject. Then, an iterative

detail updating method is applied to the initial generated 3D face to reconstruct facial

details through optimizing lighting parameters and local depths. Our iterative 3D face

reconstruction method permits fully automatic registration of a part-based face represen-

tation to the acquired face data and the detailed 2D/3D features to build a high-quality

3D face model. The NMF part-based face representation learned from a 3D face database

facilitates effective global and adaptive local detail data fitting alternatively. Our system is

flexible and it allows users to conduct the capture in any uncontrolled environment. We

demonstrate the capability of our method by allowing users to capture and reconstruct

their 3D faces by themselves.

3.2 Related Work

Capturing and reconstructing 3D surfaces of objects is one of major research topics in

geometric modeling, computer graphics and computer vision. Human face reconstruction

and modeling is one of the most active ones among general surface reconstructions. Vari-

ous methods on face modeling [39] have been extensively studied.

Thanks to the rapid development of capturing devices, the modeling of faces has be-
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come more accurate and automated. From scanning directly by professional laser scan-

ners, to using multiple high-resolution cameras to capture 3D face based on multi-view

geometry [53], researchers have achieved significant successes recently. Commercial la-

ser scanners, such as Cyberware and NextEngine, can now provide us high-quality face

modeling. Also, stereo-based face modeling techniques [6, 7, 2], relying on multiple high-

resolution cameras, can also achieve high-quality face modeling. For example, Beeler et al.

[6] used five high resolution digital single-lens reflex (SLR) cameras to capture accurate

3D geometry of a face from a synchronized shot. However, the costs of these systems are

still very high and they require a complicated calibration process before actual operation,

which limits the uses of these systems in non-studio environments or by general end users.

On the contrary, to using expensive high performance scanners or stereo capturing sy-

stems, Blanz and Vetter [9] presented a morphable face model for reconstructing 3D face

from a single image and Lei et al. [45] presented a face shape recovery method using a

single reference 3D face model. In order to recover the missing depth information from

2D image, prior knowledge of face is needed. Learning through a face database is an

effective approach for tackling this problem. Therefore, statistical face models based on

Principal Component Analysis (PCA) are proposed and constructed [9], and then used as

prior for estimating depth information. Similar face fitting methods, such as piecewise

PCA sub-models [69], were proposed as well. Approaches based on 2D images achieved

plausible 3D face reconstruction results [9], however, they need to carefully tune the para-

meters for pose and illumination, which requires a lot of empirical knowledge and makes

it impractical for general end users. Also, the detailed geometry reconstruction is the main

limitation of these methods due to the global property of PCA methods. As the extension
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of their work, Blanz et al. applied the morphable 3D face reconstruction method to facial

recognition problem [10].

More recently, modeling based on RGBD camera such as Kinect [81, 56], has become

another active research topic. Chen et al. [18] proposed a system that captures a high-

quality a face model and its performances using a single Kinect device. They provided a

markerless motion capture approach that increases the subjects’ flexibilities and improves

the resolution of facial geometry. Newcombe et al. [56] presented a Kinect based 3D

reconstruction method for non-rigid objects such as human face. Without using a RGBD

device, Cao et al. [15] proposed a system to animate an avatar face using a single camera.

Other than capturing and reconstructing the entire face, they only detected a set of feature

points for computing shape regression to animate the target avatar face. As the extension

work, they proposed displaced dynamic expression regression method to further improve

the performance of the system [14]. Their work focused on tracking and synthesizing

facial expression geometry rather than reconstructing high-fidelity 3D face models.

Another direction of work is 3D face reconstruction from photometric stereo-based met-

hod. Suwajanakorn et al. [68] presented an impressive 3D face reconstruction technique

from a collection of images or a clip of videos of the person. They first learned an average

3D face of the subject from the input images as the base shape, which was then used to fit

the individual images with different expressions. A shape-from-shading method was used

to optimize the fine details of the shape. However, since this method is reconstructing the

shape by optimizing pixel depth of the image, the side of the 3D face such as cheeks and

ears are not fully reconstructed. By this means, this method is a 2.5D reconstruction of the

face.
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SFM-based shape reconstruction has also been researched extensively [75, 32]. Howe-

ver, it is difficult to reconstruct a fine detailed 3D face model due to the high noise-to-signal

ratio. Smoothing and denoising to the point cloud data will significantly reduce the high

frequency details of the model. Ichim et al. [30] presented a dynamic 3D avatar creation

approach from mobile devices. The approach uses a noisy point cloud built from SFM as

the constraint to deform the template 3D head. As the purpose is for entertainment appli-

cations on mobile devices, the details are added by refining the albedo texture and normal

map instead of actually adjusting the local geometry details. In order to create a realistic

detailed 3D avatar head, many off-line edits are still needed, which is a difficult task for

the general end users who have little or no 3D modeling knowledge.

Our work mainly focuses on capturing and reconstructing face geometry robustly and

automatically by general end users. Therefore, in this paper, we assume the input two

images for our 3D face reconstruction are self-acquired from a single camera of a mobile

device. Extending from learning-based approach, we instead establish a deformable part-

based 3D face representation based on non-negative matrix factorization of a 3D scanned

face database prior to the reconstruction stage. Compared to the previous methods, our

deformable NMF-based 3D face model serves as a better and more robust morphable mo-

del for data fitting and reconstruction as the NMF bases are corresponding to localized

features that correlate better with the parts of 3D faces under geometry and illumination

constraints. During the reconstruction stage, our method can produce a high-quality 3D

face model from the input images and recover details of the subject’s face through surface

reconstruction from shading constraints. Figure 2 illustrates the entire process, which is

fully automated without users’ intervention.
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Figure 2: The pipeline of our iterative 3D face reconstruction based on deformable NMF
part-based 3D face model.

3.3 Face Reconstruction through Part-based 3D Face Model

In this section, we present in detail the 3D face reconstruction technique using our

deformable NMF part-based 3D face model. In Section 3.3.1, we first explain Constrained

Local Models [21] for the initial feature point detection and pose estimation based on

the input images. Then, in Section 3.3.2, we explain the process to build our deformable

part-based 3D face representation based on non-negative matrix factorization of a 3D face

database. In Section 3.3.3, we show how the part-based 3D face model can be used as

a deformable model to reconstruct a high-quality face from a frontal and a side facial

images. In Section 3.3.4, we present the detail fitting process based on the illumination

constraints. Briefly, our approach reconstructs a final 3D face iteratively by alternating two

steps: global fitting and detail fitting.

3.3.1 Initial Pose Estimation and Template Face Alignment

An accurate initial alignment of the template 3D face to the input images is important

for the fitting process since a good initial state may significantly reduce the optimization
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Figure 3: Feature point detection and initial alignment. (a) is detected features points and
the estimated pose according to the input image; (b) is affine transformed template face
based on the estimated parameters according to (a); (c) is aligned template face to the
input face.

iterations and improve the reconstruction quality. We employ the Constrained Local Mo-

dels (CLM) [21] to estimate the feature points Pn (n is the number of points), which are

used by a feature-based head pose estimator to obtain the initial template translation (T ),

rotation (R) and scale (S) automatically. Figure 3 shows the detected feature points Pn

on the input facial image and the posing direction of the face. Pn is a vector of 2D pixel

coordinates of the feature points on the image.

Prior work [20, 55] has studied how to estimate head poses from monocular image.

In this paper we propose a method similar to [20]. The ground-truth poses and their

depth maps are acquired via a Kinect device along with the images to build a training

database. Then, we train a view-based appearance model to estimate the head poses. For

each key frame i, we obtain a training set Fi = {Pni, Ωi}, where Pnk are the feature points

detected by the CLM and Ωi = T,R, S are the affine transformation parameters. Note

that, the translation T and scaling S can be estimated straightforwardly using the shape
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of the feature points. Therefore, we focus on solving the rotation R with the training set

Pni, R. Particularly, the rotation term R consists of three angles θx, θy, θz around x, y, z axis,

respectively. Therefore, the training set can be noted as {Pni, θ}, where θ represents θx, θy,

or θz. The shape of the feature points can be represented as

P = P̄ +Q~β, (3.1)

where P̄ is the average shape of feature points among all the faces in the training database,

Q is the variation matrix of the training data, which can be obtained using the PCA method,

and ~β is the coefficient which controls the shape of feature points. The prediction model

can be established via the following regression model:

~β = ~a+~bcos(θ) + ~csin(θ), (3.2)

where ~a,~b,~c are the parameters to be trained from the training set F . Eq. 3.2 can be solved

by (cos(θ), sin(θ))′ = R−1(~β − ~a), where R−1 is pseudo inverse of (~b|~c), i.e., R−1(~b|~c) = I2.

Thus, given a detected feature point set, P , we first compute the representing coefficient

~β using Eq. 3.1, then, we can obtain θ based on the trained predictive model, i.e., Eq. 3.2.

Once the template face is transformed to the same pose as the input image, the same

number of feature points are detected on the rendered template face (i.e., 2D projected

image of the 3D template face), which are traced back to 3D space to obtain the nearest

corresponding vertices Vn. Vn, corresponding with Pn, is a 3D vertex coordinate vector of

the feature points on the 3D template face model. We denote this operation as F and the
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details will be described in Section 3.3.3.

3.3.2 Deformable Part-based 3D Face Model for Data Fitting

PCA and vector quantization(VQ) are two common approaches to decompose a data

and PCA is also widely used in 3D face data. PCA learns the face data globally and de-

compose it to ’eigenfaces’, which are basis vectors in the face space. Different from PCA

and VQ, NMF decomposes a shape in localized features [43]. In this paper, we construct

a deformable 3D face representation by parts based on non-negative matrix factorization,

which will significantly improve the reconstruction of details of the 3D face. Any face can

be represented as a linear combination of basis parts. The part-based 3D face model per-

mits better local control, therefore leading to more accurate and robust morphable fitting

to the target.

To generate better performing NMF bases, the scanned 3D face data samples need to be

carefully aligned and registered first. There exist many methods facilitating this task [47].

Given a 3D face database with M examples, we first employ multi-scale expectation-

maximization iterative closest point method to accurately register all the 3D face examples

and then resample all the examples into the same number of vertices to establish a dense

mapping and indexing [27]. The 3D face database can then constructed as a N×M matrix

S, where N is the number of vertices in a 3D face and M is the number of face examples

in the database. Each column represents the geometry of the face with a data vector of 3D

coordinates, si = {x1, y1, z1, x2, y2, z2, . . . , xn, yn, zn}T ∈ R3n. Note that, the quality of the

dense correspondence will significantly affect the result of factorization.

Next, non-negative factorization of matrix S is constructed as S ≈ BW , where B is the
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basis matrix and W is the weight, or it can be represented as

Sij ≈ (BW )ij =
r∑

a=1

BiaWaj, (3.3)

where r is the rank of factorized basis. Then each face in the database can be restored

from

sk = B~wk, (3.4)

where ~wk = (w1, w2, ...wa)
T is corresponding column vector in weight matrix W . New

faces can be generated by manipulating the weight vector ~wk and compute the linear

combination of the bases.

To find a factorization, we need to solve the following optimization problem,

(B,W ) = argmin
B≥0,W≥0

‖S −BW‖2. (3.5)

According to the theorem in [44], the Euclidean distance ‖S −BW‖ does not increase

under the following update rules:

Waj ← Waj
(BTS)aj

(BTBW )ia
, Bia ← Bia

(SW T )ia
(BWW T )ia

. (3.6)

In practice, B and W are initialized as random dense matrix [8] and a simple additive

update rule for weight W is used as in [44],

Waj ← Waj + ηaj[(B
TS)aj − (BTBW )aj], (3.7)
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where

ηaj =
Waj

(BTBW )aj
. (3.8)

Once NMF basis matrix B is computed, arbitrary new face can be decomposed based on

the bases and represented by the corresponding weight vector. In other words, varying the

weights over the NMF basis matrix B constitutes a deformable part-based 3D face model

that can be used to fit in a nonrigid means to any given 2D/3D face data input. Therefore,

we name s = B~w as a deformable part-based 3D face representation which carries the

prior knowledge of faces for nonrigid fitting.

We used 120 scanned face data for training deformable part-based 3D face model. In

this paper, the data was normalized and registered based on the multi-scale expectation-

maximization iterative closest point method [27]. Every face data has 60000 vertices,

which are represented as vector ~xi = {r1, h1, θ1, r2, h2, θ2, . . . , rn, hn, θn} ∈ R3n. Since

NMF requires non-negative elements in the matrix, face data samples were transformed

into cylindrical coordinate system so that all the values in the vector are positive. Data

vectors of 120 subjects formed a 3n × 120 matrix for NMF decomposition. We chose 120

columns for basis matrix as the factorization basis, therefore, the weight vector ~w has 120

elements. Figure 4 shows some samples of our 3D face database used in this paper and

Figure 5 shows the local support of the part bases on an average face model. Note that, all

the faces used in training the deformable part-based 3D face model are not employed for

testing the performance of our system.
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Figure 4: The sample 3D faces in our database.
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Figure 5: The randomly selected 36 computed NMF basis projected onto an average face
to display the local support of the basis.
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3.3.3 Iterative Global Reconstruction with Part-based 3D Face Representation

The reconstruction process is divided into two major parts: global fitting and detail

fitting. In this section we explain the global shape reconstruction via feature point fitting

by updating the deformable part-based 3D face model iteratively .

In a global fitting step, the deformable part-based 3D face model B~w will optimize its

weights, ~w, based on the previously estimated rotation, scaling and translation factors (in

Section 3.3.1) to fit the feature points Pn in input images I. In order to find the best fitted

result, we minimize the Euclidean distance as follows,

~w = argmin
~w

m∑
k=1

‖P k
n − Pk(F(RkB~w + T k))‖2, (3.9)

where m is the number of images used for global fitting, B is the basis of the part-based 3D

face representation, R is a rotation and scaling matrix, T is a translation matrix, F is feature

point extraction operation and P is the projection operation. We followed the approach

in Zhang et al. [80] to estimate the camera intrinsic parameters, which can be further

used to compute the projection matrix. In practice, we use two images taken from the

front and the side as the input, thus, the number of images m = 2. However, the number

of input images can be unrestricted in our deformable fitting model. In general, using

more images may produce a better quality reconstruction, but the computational cost will

also increase and the user-experience can be adversely affected. To our experience, two

images can already provide a rather high-quality reconstruction while keeping an excellent

performance in terms of computational time. Figure 2 shows the feature points detected

in both the frontal and side images.
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We solve the Eq. 3.9 via gradient descent method. We compute the partial derivative

of the energy term in Eq. 3.9 with respect to the weight vector ~w as follows,

5 E(~w) =
∂E

∂ ~w
= −2

m∑
k=1

(P k
n − Pk(F(RkB~w + T k)))

∂Pk(F(RkB~w + T k))

∂ ~w
, (3.10)

where

∂Pk(F(RkB~w + T k))

∂ ~w
= ~ck (3.11)

is a constant vector ~ck for each image. Thus, the gradient in each iteration is only deter-

mined by the distance between the projected feature vertices in the current stage and the

target feature points in the input image. In each iteration i, the weight vector ~w is updated

by

~w ← ~w −∇E(~wi). (3.12)

The Algorithm 1 iteratively updates the weight vector and obtains the optimized ~w.

This process continues until the weight vector converges, which usually takes around 5∼7

iterations. This step recovers the global features in the data, such as face size, and approx-

imates the shape of different parts of the face. Since we can obtain the correspondence

between the reconstructed model and the input image sequence, we can project the regis-

tered images to the result shape to obtain a texture, reconstructed 3D face model, (B~w, ρ),

where ρ is the texture over B~w. This will be used for the next NMF based detail fitting

process.
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Algorithm 1 Iterative Global Reconstruction
1: procedure ITERATIVE 3D FACE RECONSTRUCTION

2: ~w, T,R,P,F, threshold← initialization
3: Compute the gradient ∇E(~wi) using Eq. 3.10
4: while ∇E(~wi) > threshold do
5: ~w ← ~w −∇E(~wi)
6: Re-compute ∇E(~wi) using Eq. 3.10
7: S = B~w

3.3.4 Shading Based Detail Reconstruction

Although our part-based fitting can reconstruct a quite plausible 3D face with well fitted

global features, the details (such as the major wrinkles and folds around mouth and nose)

are still akin to the template shape. Thus, we perform a detailed refinement process based

on the result of global fitting.

In the NMF detail fitting step, we perform data fitting to the images in order to fine tune

the model by minimizing the Euclidean distance from the rendered 3D face to input ima-

ges. Since the global fitting recovered the rough shape of the face and the transformation

matrix, the current face model can be automatically projected to the corresponding images

using the information obtained from previous feature point alignment process. We denote

the rendered image of the 3D face model as Î = R(B~w, ρ). That is to say, we project and

render each vertex of the face model on the image plane to form Î, and the comparison

between the rendered image and the original image is based on the projected locations of

the 3D vertices. Therefore, the main goal of the optimization problem is to minimize the

sum of distances as follows,

~w = argmin
~w∈W

(
m∑
i=1

‖Ii(Pi(V ))− Îi‖2 + η‖~w − ~wg‖2), (3.13)
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where m is the number of images used for detail fitting, ρ is the albedo texture, R is the

rendering operation, Ii(Pi(V )) is the re-sample of the input image I based on the projected

locations of the 3D vertices V on the 2D image domain, η is the regularization coefficient

and ~wg is the weight vector of the local parts derived from global fitting. The second term

is the regularization term which constrains the final shape is close to the result of previous

global fitting stage. In practice, we only use the frontal image for detail refinement, i.e.,

m = 1, since most of the details are captured in the frontal view of the image. Since

the rendering operation Ri and the corresponding image Ii is known, the only variable

that needs to be updated is weight vector ~w. Based on the same idea to the global shape

reconstruction step, we compute the derivative of the error function with respect to ~w to

find the maximum decent direction, which is used for updating the weight vector.

In order to compute the partial derivative of the energy term with respect to ~w, the

shading model of the rendering operation needs to be defined. Inspired by Suwajanakorn

et al. [68], we transform the optimization problem in Eq. 3.13 to an optimization problem

for the photometric normals as follow:

N = argmin
N
‖I(P(V ))− Î‖2. (3.14)

For shading computation, we use the Phong reflectance model in our method. In this

paper, the rendered image Î of the 3D face is computed by

Î = R(B~w, ~ρ) = (ka + kd(N~l) + ks(V ∗~r)) ◦ ~ρ, (3.15)
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where ka, kd and ks are constant weights of ambient light, diffuse light and specular light,

respectively. ~l is the light directions. N are the normals at the vertices and ~ρ are the albedo

vector containing the texture information at each vertex. ~r are the reflection vectors and V

are vectors from each vertex to the view point. The ∗ represents a row-wise inner product

and the ◦ represents the element-wise product. Since we assume a weak specular reflection

in the model, we ignore the specular term in Eq. 3.15 when optimizing vertex normals.

We compute the final vertex normals by minimizing the following equation:

{N,~l, ka, kd} = argmin
N,~l,ka,kd

‖I(P(V ))− (ka + kd(N~l)) ◦ ~ρ‖2. (3.16)

Lighting Optimization: To optimize the shading through changing the vertex normals

by Eq. 3.16, we first estimate the lighting parameters ~l, ka, kd by solving the optimization

problem,

{~l, ka, kd} = argmin
~l,ka,kd

‖I(P(V ))− (ka + kdN~l) ◦ ~ρ‖2, (3.17)

where the vertex normals N and the albedo ρ are considered as constants at this stage. To

simplify the optimization problem, we let the albedo is equal to the input image I, so the

problem becomes

{~l, ka, kd} = argmin
~l,ka,kd

e∑
i=1

‖1− (ka + kd~l · ~ni)‖2, (3.18)

where e is the number of vertices and ~ni is the normal vector of each vertex. In practice,

we solve can the linear equation in a linear time by randomly selecting 40 vertices on

the shape. Since it is a over determined linear system, it can be easily solved by QR

factorization. Figure 6 shows the result of lighting optimization.



36

Figure 6: Lighting optimization result: (a) is the initial random lighting; (b) is optimized
lighting; (c) is the original image.

Normal Optimization: After we estimate the optimal lighting parameters, we compute

the partial derivative of normal vector ~N with respect to the weight vector ~w, and then the

Eq. 3.13 can be solved by chain rule. We define the normal of each vertex as follow:

~ni =
~u× ~v
‖~u× ~v‖

, (3.19)

where ~u is the vector from Vi to its adjacent vertex in positive x direction and ~v is the vector

from Vi to its adjacent vertex in positive y direction. Since the vertices are in 3D domain,

we pre-compute the vertex location adjacency in cylinder coordinate system. Here, we

only update the depth value of each vertex to modify the vertex normal. Therefore, we

compute the partial derivative on z element of the normal, which is ∂~niz

~w
. Therefore, the

Jacobian of the normal vector ~Nz is

J =
∂ ~Nz

∂ ~w
= [

~n1z

~w
,
~n2z

~w
, ...,

~nkz
~w

] = [~δ1, ~δ2, ..., ~δk]. (3.20)
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Algorithm 2 Iterative Detail Refinement
1: procedure ITERATIVE DETAIL REFINENMENT

2: ~w, α, I, threshold← initialization
3: Compute normal vector ~N on mesh S = B~w
4: Î ← Render current mesh with Eq. 3.15
5: d = ‖I − Î‖2
6: while d > threshold do
7: for each visible vertex vi on the rendered image Î do
8: Compute ~δi = ∂~niz with respect to ~w

9: Computer ∇E(~w) using Eq. 3.21
10: Update ~w = ~w − α∇E(~w);
11: Update shape normals ~N
12: Update d

Thus, the gradient of Eq. 3.13 can be computed as

∇E(~w) =
∂E

∂ ~w
= 2(

M∑
j=1

dIj(kd~lz~δjρj) + η ~w), (3.21)

where M is the number of vertices, dIj is the pixel difference in gray scale and ~lz is the z

element of the lighting direction.

We optimize Eq. 3.13 with respect to the weight vector ~w iteratively using Algorithm 2.

3.4 Experiments

In our experiments, the testing users’ faces are new to our system. Their face models

are not used in prior training process. In a data acquisition and initialization stage, a

user takes two selfie photos from front and side using an iPhone 5. In order to align

the template face to the input images, 68 feature points [82] are first detected and the

shape of them is decomposed to estimate the head pose using the method described in

Section 3.3.1. The template 3D face is then transformed based on the detected head pose

and aligned to the image. The same number of feature points are detected and back
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projected to the 3D space to obtain the feature vertices on the 3D template face. Then

iterative reconstruction as illustrated in Alorithm 1 is conducted to find the optimal weight

vector ~w for reconstructing the global shape of the 3D face model. Once the global fitting

process converged, the system automatically continues the lighting parameter estimation

process before the detail fitting process. Based on the estimated lighting parameters, the

detail refinement process is done iteratively by Algorithm 2. Figure 7 shows the number

of iterations against the total fitting energy of 4 subjects. The energy is computed by

normalizing the error between the rendered image and the input image in terms of the

total number of pixels. Figure 8 visualizes the intermediate result of detail fitting process

after 10, 20, 30 and 40 iterations for subject 1.

Figure 7: Energy decrease of detail fitting process.
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Figure 8: Detail fitting results after 10, 20, 30, 40 iterations respectively.

The textures is finally mapped to the 3D face after the details are refined. We per-

form our experiment on a regular PC with 3.0GHz Core2 CPU, 8 GB memory and GeForce

9800GT graphics card. The global fitting process takes around 5 iterations which takes

about 3 seconds. Lighting parameters estimation takes approximately 300ms and the de-

tailed refinement process takes about 10 seconds.

We compared our NMF based method with PCA based method, and the result is shown

in Figure 9. Figure 9 shows the reconstructed result by PCA and NMF respectively wit-

hout detail fitting process. The more bases used in a reconstruction process, the better

reconstruction quality can be obtained for both methods. In practice, both methods used

the most significant 105 bases to fit the input image. We found the improvement of the

reconstruction is very limited beyond these bases as compared to the increase of compu-

tational cost. The result shows our NMF based method can effectively reconstruct major

wrinkles on the face while PCA based method fails. NMF decomposes the database by

parts whereas PCA decomposes globally, which means NMF is more effective on local de-

tail reconstruction than PCA.
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Figure 9: Comparison of the model reconstructed by PCA [9] and by our method. (a)
shows the input frontal image; (b) is the reconstructed result by PCA bases (without
detail reconstruction); (c) is the reconstructed result by NMF bases (without detail re-
construction); (d) shows local details of the result from PCA method (e) shows the local
details of the result from our method.

Figure 10: Comparison of the fringe pattern scanned model with the results reconstructed
usingKinect and our method. (a) shows a groud-truth scan using a fringe pattern scanner;
(b) and (c) are the Kinect scanned surface generated by DynamicFusion [56] and its
Hausdorff distance map (error map) to the ground truth scan; (d) is the reconstructed
result using our method and (e) is the color map of Hausdorff distance to the same ground
truth scan.

In order to further show the quality of the reconstructed result, we used a high-

resolution fringe pattern scanner to generate a faithful 3D model of the testing subject

as shown in Figure 10(a). The comparison among DynamicFusion [56] result and our

result to the ground truth point clouds is shown in Figure 10. Our reconstruction result

recovers more details than DynamicFusion and reaches a higher accuracy in terms of 3D

face modeling and reconstruction.
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To further evaluate the effectiveness of our method, we reconstructed 3D face models

from synthetic facial images using PCA based method [9] and our method. High resolution

3D models were rendered to generate the synthetic facial images (Figure 11 (a)), which

were used as the input to the reconstruction algorithms. Figure 11 (b) and (c) shows

the reconstructed results and the error maps using PCA based method and our method

respectively. We computed the error maps for both results using the scanned 3D model as

the ground truth, which show our method has smaller error compared to the PCA based

method. From Figure 11 (d), we can confirm our method is more powerful in recon-

structing local details. Table 1 shows the quantitative comparison between two methods.

Our proposed method achieves smaller Mean Square Error and Standard Deviation than

the PCA based method while keeping similar runtime performance.
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Figure 11: Comparison of the model reconstructed by PCA and by our method. (a) shows
the scanned 3D face models and the rendered image of them; (b) is the reconstructed
result by PCA bases (without detail fitting) and its error map; (c) is the reconstructed
result by NMF bases (without detail fitting) and its error map; (d) left column shows local
details of the result from PCA method and (d) right column shows the local details of the
result from our method.
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PCA NMF
Subject MSE (×10−1) σe runtime MSE (×10−1) σe runtime

1 4.89 0.72 3.2s 2.15 0.41 3.3s
2 4.45 0.68 3.5s 1.68 0.38 3.4s
3 5.95 0.85 3.0s 3.14 0.51 2.9s
4 5.21 0.76 3.3s 1.89 0.45 3.5s

Table 1: Quantitative comparison between PCA based method and our method of the
results in Figure 11. Table shows of the Mean Square Error (MSE), the Standard Deviation
(σe) and runtime of the two methods.

Figure 12: Some reconstructed 3D faces from input frontal and side photos using our
method.
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Some more results of our method are shown in Figure 12. Figure 13 shows another

example, where the two input images are downloaded from Internet. The reconstructed

results are shown with and without texture map respectively.

Figure 13: A reconstructed 3D face from two photos downloaded from Internet.
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CHAPTER 4 EMOTION INFORMATION VISUALIZATION

4.1 Introduction

In this section, we present a novel approach to analyze the facial expressions from

images through learning of a 3D morphable face model and a quantitative information

visualization scheme for exploring this type of visual data. More specifically, a 3D face

database with various facial expressions is employed to build a NMF part-based morpha-

ble 3D face model. From an input image, a 3D face with expression can be reconstructed

iteratively by using the NMF morphable 3D face model as a priori knowledge, from which

basis parameters and a displacement map are extracted as features for facial emotion ana-

lysis and visualization. Based upon the features, two Support Vector Regressions (SVRs)

are trained to determine the fuzzy Valence-Arousal (VA) values to quantify the emotions.

The continuously changing emotion status can be intuitively analyzed by visualizing the

VA values in VA-space. Our emotion analysis and visualization system, based on 3D NMF

morphable face model, detects expressions robustly from various head poses, face sizes

and lighting conditions, and is fully automatic to compute the VA values from images or

a sequence of video with various facial expressions. To evaluate our novel method, we

test our system on publicly available databases and evaluate the emotion analysis and

visualization results. We also apply our method to quantifying emotion changes during

motivational interviews. These experiments and applications demonstrate the effective-

ness and accuracy of our method. Fig.14 illustrates our interactive 3D emotion query and

visualization system.
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Figure 14: Interactive 3D emotion query and visualization in Valence-Arousal (VA) space.
The images are the input frames from videos with extracted feature landmarks (as shown
in white points). The corresponding 3D faces are reconstructed 3D models.

4.2 Related Work

Facial expression is the most direct reflection of emotion and shares common meanings

across different races and cultures. According to Ekman and Friesen’s (1975) study of

human facial expressions, there are so called ‘universal facial expressions’ which represent

those common emotions of people: happiness, anger, sadness, fear, surprise and disgust.

This study justified the emotion recognition through facial expressions. Ekman and Frien-

sen proposed a Facial Action Coding System (FACS) to describe facial expressions in a

standard measurement, which is widely used in image-based emotion classification met-

hods [22].

Extracting 2D features, such as displacement of feature points and intensity change

from images, for emotions estimation is the most popular method. For example, Kwang-

Eun Ko et al. [40] used Active Shape Model (ASM) to extract facial geometry features to

classify emotions. Kobayashi et al. [41] and Valstar et al. [72] used the 20 feature points
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on the face for emotion classification. Some work also used intensities around the feature

points to enhance the features for predicting emotions. For example, Kapoor et al. [36]

used pixel intensity difference to classify the emotions of human subjects. However, this

method is heavily dependent on the image quality. There are also some hybrid methods

that combine the geometry features and the pixel intensity features to estimate the emo-

tions. Developed from ASM, Active Appearance Model (AAM) [19] fits the facial image

with not only geometric feature points, but also the pixel intensities. Lucey et al. [51] sho-

wed the capability of AAM-based emotion detection method using Cohn-Kanade Dataset.

Although 2D features are easy to extract from the images directly, they are unstable under

the change of illumination or face pose as shown in Sandbach et al. [59]. Therefore, 3D

features like curvature, volume and displacement are used in many 3D-based approaches.

These 3D features are more stable and robust than 2D features since they are pose and

illumination invariant in nature. Huang et al. [63] extracted the Bézier volume change as

the features of the emotions, and Fanelli et al. [24] used the depth information of pixels

to classify emotions.

More recently, 3D face modeling from images has made a significant progress, which

provides new ideas for emotion analysis [9, 6, 7]. Lei et al. [45] presented a face shape re-

covery method using a single reference 3D face model. Prior knowledge of face is required

for these methods to recover the missing depth information from a 2D image. Learning

through a face database is another effective approach for tackling this problem. Along

this direction, statistical face models based on Principal Component Analysis (PCA) were

proposed and constructed [9]. Similar face fitting methods, such as piecewise PCA sub-

models [69], were proposed later. Since these approaches based on 2D images achieved
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Figure 15: The pipeline of our emotion analysis and visualization framework with learning
of 3D Morphable Face Model. Based on a 3D face database, a 3D part-based morphable
face model is built. Using the 3D morphable face model as prior, the 3D face is recon-
structed for each input video frame and the coefficient vectors and the displacement maps
are obtained as features. The features are used to train a Support Vector Regression (SVR)
in the emotion training phase. Based on the trained SVR and the 3D morphable model,
the emotion VA values are estimated and visualized in the online emotion analysis phase.

plausible 3D face reconstruction results, Blanz et al. applied the 3D face reconstruction

method to facial recognition problem [10]. However, these methods are still limited to

neutral expression and produce poor reconstruction results on faces with expressions.

Therefore, many studies have been devoted to represent 3D faces with arbitrary ex-

pressions. Based on a collection of images or a clip of videos of a person, Suwajanakorn

et al. [68] presented novel 3D face reconstruction technique. A base shape was learned

using a template 3D face for the subject, which was then used to fit the images of the same
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subject with various expressions. They used a shape-from-shading method to fine tune

the details of the shape. The high computational cost is the main drawback, which makes

this method not realistic for emotion tracking and analysis. Another popular approach

for generating 3D face with an expression at high speed and low cost is Blendshape [34],

which has been proposed for fast and robust 3D facial performance animation in industry-

level applications. Cao et al. [15] proposed a system to animate an avatar face using a

single camera and blendshape. Their work focused on tracking a user’s facial expressi-

ons with a 2D camera and then synthesizing the corresponding expression geometry in an

avatar [14, 17]. But reconstructing 3D models from images for emotion analysis is rarely

studied and its capability in capturing discriminative features are under-explored.

On the other hand, emotion is rarely visualized in an intuitive way. Visualizing emotion

information and status is another interesting topic in emotion analysis. The most general

measurement of emotion is in Valence-Arousal space (VA space) [57]. Generally, valence

value indicates the pleasantness in emotions from negative to positive, while arousal value

evaluates the intensity of the emotions: from calm, peaceful to alert and exciting. The

universal expressions can be translated into this two dimensional plotting system, which

is clear and intuitive to users perception.

In this section, we present a novel robust approach that measures and visualizes the

emotion status continuously in VA space. We use a 3D facial expression database to build

a 3D part-based morphable face model which can be used to reconstruct 3D faces from in-

put facial images. Then, we decompose the reconstructed 3D face to obtain its coefficient

vector as well as displacement map for emotion quantification. Finally, we demonstrate

the continuous emotion change by visualizing the emotion measurement in VA space. Fi-
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gure 15 illustrates the entire process, which is fully automated without users’ interventions.

This section is organized as follows: In Section 4.4, we present the training process

of expression classification with Support Vector Regression (SVR), and show the details of

testing new images for emotion analysis using our method. In Section 4.5, we explain our

visualization method for the continuous emotion measurement. Finally, wo demonstrate

our experimental results and an example application in Section 4.6.

4.3 Feature Extraction From 3D NMF Face Model

After we reconstruct the 3D face model from the input monocular image, we are ready

to extract the 3D features from it. As our reconstructed 3D face model Sn is represented by

Bwn, where the corresponding weight vector wn carries the essential information of the

shape, it can be used as a part of the feature vector. Since we use part-based decomposi-

tion method to model the 3D face, the weight vector wn contains localized feature coding

information. Another advantage of using the weight vector is that the 3D model decom-

position shares the same basis B, thus, all fitted models are naturally normalized, which

makes the features robust for classification. In this paper, we take the first 200 dimension

of the basis to represent the 3D face, which means the dimension of weight vector wn is

200. Along with the weight vector, we also combine the displacement of vertices to the

feature vector. Note that, as we use the NMF part-based model to keep reconstructing

all the frames, the reconstructed model has point-to-point correspondence. For each sub-

ject we compute the spacial displacement as δn = Vn − V0, where Vn is the reconstructed

shape and V0 is the neutral expression of the same subject which is manually selected as

reference. We down sample δn to 300 dimension to reduce the feature dimension in our
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experiment. We combine the weight vector wn and the displacement vector δn as the final

feature vector fn.

Joy Face Displacement Map

δ joy

wjoy 

Neutral Face Feature Vector

fjoy= [ wjoy ,δ joy]

Figure 16: Illustration of feature vector construction for a joy face: the spacial displace-
ment δjoy is computed between the joy face and neutral face, so the feature vector fjoy is
composed by shape coefficient wjoy and displacement map δjoy .

Figure 16 shows an example for constructing the feature vector fjoy for the joy ex-

pression of a subject, which is composed by the weight vector wjoy and the displacement

map δjoy. For the visualization purpose, we only show the absolute distance in the color

map for the displacement map. Note that, in our algorithm, the displacement is a three

dimensional vector containing x, y, z components and stored in a vector form. We use the

constructed feature vectors of each video frame to train the support vector regression as

described in the next section.
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4.4 Emotion Analysis using SVR

We adopt a standard support vector regression as proposed by Valstar et al. [71] to

establish our 3D NMF morphable model-based emotion analysis method. Our emotion

analysis method includes a training step for Valence value regression and Arousal value

regression, and then a runtime quantification step for estimating emotion VA values.

Training Data Preparation: Our training algorithm uses the feature vectors con-

structed from the generated 3D shapes, which is reconstructed from the video frames of the

public database. For each video frame I, we obtain a feature vector fi = [wi, δi] along the

manually labeled valence/arousal values Vi and Ai to form a training tuple (fi, Vi, Ai). We

use these training tuples to train two SV Rs for valence and arousal respectively, namely

SV RV , SV RA.

To improve the training robustness, we generate some randomness (±5%) to the 3D

face reconstruction process to obtain more training datasets: (1) Add a random rotation

∆R to the initial face alignment. (2) Add a random translation ∆T to the initial face

alignment. (3) Add a random scaling ∆S to the initial face alignment. Since the 3D

reconstruction is sensitive to the initial alignment, by adding these random noise we can

obtain more training datasets. In this work, we prepare approximately 100 frames for

each dataset by sampling the video at 1fps. Then, we generate one random variation

for each case at each video frame, so we have four reconstruction results for each frame

and approximately 400 3D models for each dataset. We use 10 datasets with 4000 3D

models in each one for SVR training. Feature vectors are extracted from the 3D models

using our feature extraction method, as described in Section 4.3, and the training matrix
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Mtraining = {f1,f2...fn}T is constructed.

Emotion Quantification: The online testing process takes the video frames as the input

to our algorithm. We first employ the OpenCV implementation of face detection method

with Local Binary Pattern (LBP) [1] to detect the Region of Interest (ROI) for the human

face. Within the ROI, the 68 facial landmarks are detected by CLM and the head pose is

estimated using the method presented in Section 3.3.1. Then, we reconstruct the 3D face

using our NMF part-based morphable 3D face model, from which we extract the feature

vector f = [w, δ]. Feeding the feature vector f to SV RV and SV RA, we can obtain the

estimated VA values. Finally, the VA values are visualized in the VA space for user analysis.

4.5 Interactive Emotion Visualization

Many emotion detection methods quantify emotions by giving probability scores for the

six fundamental expressions. Recent psychological studies shows that quadrants of emo-

tion wheel [28] is more accurate and intuitive than using the six fundamental expressions.

Figure 17 shows an example of the emotion wheel, which represents the VA space. All the

common emotions including the fundamental ones, can be plotted in the VA space with

certain translation rules [31]. As shown in Fig. 17, the first quadrant represents the po-

sitive emotions, such as joy and surprise while the third quadrant represents the negative

emotions like sadness and disgust.

Our visualization is based on the VA space plotting to reveal the high-level information

of the emotion status of the testing subjects from images or videos. We design two types of

VA space plotting methods: Emotion Distribution Plotting (EDP) and Emotion Trajectory

Plotting (ETP). EDP emphasizes the emotion distributions for the subject during the testing
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session, while ETP emphasizes the individual VA value. Figure 19 shows the EDP and

Figure 20 shows the ETP for 4 testing subjects. The density of each coordinate, dxy, on the

EDP is computed as follows,

dxy =
Ωr(pxy)

N
, (4.1)

where Ωr(pxy) is the number of VA data points within the distance r from coordinate pxy,

and N is the total number of VA data points. In this paper, we sample the VA space from

-0.5 to 0.5 with a step size of 0.01 and interpolate the intermediate coordinates. Instead of

computing the density at every coordinate in the VA space, ETP only compute the density

VALENCE

AROUSAL

Surprise

Joy

Fear

Anger

Disgust

Sadness
Calm

Figure 17: Illustration of the VA space
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at each data point. We compute the density at data point pi by

di =
Ωr(pi)

Ωr(p)max
, (4.2)

where Ωr(pi) is the total number of data points within the vicinity of pi with radius r and

Ωr(p)max is the largest number of data points across all such pi’s vicinities with the same

radius. The density is converted to color map for final visualization.

To facilitate interactive visual information visualization of emotion data, our EDP and

ETP visualization platform supports interactive user query. Details related to a VA value,

including the original video frames I, reconstructed 3D faces S, weights w and the corre-

sponding displacement maps δ, can be provided to user by clicking the data point in the

plotting. Our system also supports data point comparison which allows users to compare

two data points from the plotting by selecting the source and target points. Our system

can also provides frames, 3D faces, weights and the displacement map between the two

shapes.

4.6 Experiments

We have conducted extensive experiments using public datasets to evaluate the accu-

racy and effectiveness of our method for emotion analysis and visualization. We also

demonstrate some examplar applications using our system. Our experiments have been

performed on a regular PC with 3.0 GHz 8 Core CPU, 8 GB memory and GeForce 980

graphics card. The computation time of our method is mainly spent on the 3D face re-

construction process. The reconstruction time is approximately 3 seconds for each frame.

We have implemented SVR for regression training and used the trained coefficients in our
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C++ implemented system. It takes about 5 seconds to generate the EDP and 3 for ETP

with 5000 data points. The query for a data point costs about 3 seconds since we recom-

pute the 3D face model to reduce the memory cost.

4.6.1 Evaluation of the Emotion Analysis and Visualization Method

The Audio/Visual Emotion Challenge Database (AVEC) [62] is a multi-modal dataset

for continuous emotion detection using audio and video sequences. In this paper, we have

only used the videos in the latest AVEC 2015 dataset for the experiments. Each set of data

in the database includes a 5 minutes 1280×720 resolution video with the frame rate of 24

fps, and the Valence and Arousal values are manually annotated for each frame. There are

9 datasets for training, 9 datasets for test and 9 datasets for development use. We have

used the AVEC 2015 data for training and evaluated our emotion recognition algorithm

on the test data as well as on our in-house recorded data. We have randomly selected 10

datasets including 5 training dataset and 5 development dataset for training purpose and

tested on 4 subjects.

To evaluate our emotion analysis method, we first compare it with the expression recog-

nition method using 2D features only. For a fair comparison, both methods use the same

SVR. Figure 18 shows the comparison of our 3D model-based method and 2D landmark-

based method proposed in [62]. To compare with the ground-truth, we compute the Mean

Square Error of the estimated VA values as follows,

MSE =
1

n

n∑
i=1

((Vi − V̂i)2 + (Ai − Âi)2), (4.3)

where Vi, Ai are the estimated VA values and V̂i, Âi are the ground truth VA values. Our
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3D face model based method achieves lower MSE than 2D landmark-based method [62].
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Figure 18: Mean square errors of detected VA values compared with the ground-truth:
1. our 3D feature-based method (NMF), 2. bilinear face model method and 3. the 2D
landmark-based method [62].
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Figure 19: Emotion Distribution Plot (EDP) of VA values for 4 subjects. The top row shows
the video frames for subjects 1 to 4 (from left to right). The middle row shows the EDP of
the ground-truth VA values, and the bottom row shows the EDP of the estimated VA values
using our method.
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Figure 20: Emotion Trajectory Plot (ETP) of VA values for 4 subjects. The top row shows
the ETP of the ground-truth VA values for subjects 1 to 4 (from left to right), and the
bottom row shows the ETP of the estimated VA values using our method.
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4.6.2 VA Space Analysis and Visualization

Based on the estimated VA values, we use our EDP and ETP for visualization. Figure 19

shows the EDP for 4 subjects from the development datasets in AVEC. The colormap shows

the data density in certain location in VA space: red indicates high density while blue

indicates low density. The upper row shows the ground-truth VA values plotted in EDP,

and the lower row is the estimated VA values using our method. As shown in the result,

our method can achieve very similar distribution heatmap to the ground-truth. From the

EDP, users can understand the global trending of the subjects’ emotions. For instance,

the emotion data points of subject 1 are mostly located near the center and the region of

‘calm’, which means the user is neutral in most of the time during the session. For subject

4, the data is scattered in the positive region, which shows the subject is joyful throughout

the session.

For the same datasets, we show the EDP in Figure 20, where the upper row is the

ground-truth trajectory and the lower row is the emotion trajectory estimated using our

method. The ETP focuses more on the trajectory of emotion changing, so that users can

understand the details of the emotion change. For example, for subject 1, there is a clear

emotion path from neutral to joy, and then back to neutral, whereas for subject 3, there

is an emotion change from neutral to sadness. In order to understand these details in

emotion status change, we utilize the emotion status query system which allows users to

visualize the underlying information on the data points. By querying the specific data

points in the trajectory, the users may understand when the change happens and the sub-

ject’s condition. For subject 3, we execute two queries for illustration. We first execute
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one query to check the status of an upper right data point as shown in Figure 21. The

query returns the detected facial feature points, reconstructed 3D face, weight vector and

the displacement map for a joy emotion. Since the data point is far from the neutral state,

the displacement map shows high intensity around mouth and eyes. We are also provi-

ded with a frame ID, with which we could locate the video and see what is the actual

situation causing this emotion. Query 2 (Figure 22) illustrates the emotion comparison of

two data points by showing both frames side by side. We select two data points (in red

and orange respectively) to see the emotion differences. The red data point shows a near

neutral emotion while the orange data point shows a negative emotion. The orange frame

has a very different head pose compared to the red frame, which is difficult to compare the

two images directly. Using our 3D morphable face model, we reconstruct two 3D faces by

deforming the template face, which gives us a dense correspondence among the 3D faces.

Using the dense correspondence of the two 3D face, we can compute the shape difference

between two frames. As the two frames are very close in VA space, the displacement map

shows small values. Figure 23 shows a query on a large rotation of the head. Our method

can handle different poses effectively since our method is invariant to the head poses. Also,

based on the query information, it is possible to correct the misclassified data manually by

relabeling or re-extracting the 3D features to improve the accuracy.

4.6.3 Application to Motivational Interview

We have also applied our method to quantifying the effectiveness of motivational in-

terviews. We have used the videos of patients who were interviewed by professional coun-

selors. The beginning phase of the interview is compared with the final phase in order to
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quantitatively measure and visualize the effectiveness of this interview process. Figure 24

shows that the emotion of a subject mostly concentrates on calm and neutral status at

the beginning phase (Figure 24(a)) while exhibiting joyful status at the final phase (Fi-

gure 24(b)), which indicates an effective therapy. The outcome can be quantitatively

computed as the average VA value improvement. Figure 25 shows another case, where the

emotion of the subject mostly stays in calm and neutral at the beginning (Figure 25(a))

and is improved a little bit at the end (Figure 25(b)). The outcome is not as good as

the case in Figure 24. Our method provides a viable tool for the doctors to quantitatively

evaluate the patients’ emotion status.
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Data Query 1

Frame ID: 2850

Query 1

Figure 21: Querying and visualizing a data point in VA space. The query shows the ori-
ginal frame with detected face landmarks, reconstructed 3D shape, weight vector and the
displacement map of the data point. The displacement map shows a high intensity for a
smiling face.

Frame ID: 695

Frame ID: 2100

Data Query 2

Query 2

Figure 22: Selection of two data points. The red data point shows a near neutral emotion
and the orange data point shows a positive emotion. The displacement map shows a small
intensity as the two data points are close to each other despite of the rotation of the head
in orange frame.
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Data Query 3

Frame ID: 7085

Query 3

Figure 23: A query example on a large head rotation data point. Our method provides
correct emotion estimation with the extreme head rotation.
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Figure 24: EDP visualization of a subject’s emotions during a motivational interview. (a):
beginning phase; (b): final phase.

Figure 25: EDP visualization of another subject’s emotions during a motivational interview.
(a): beginning phase; (b): final phase.
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CHAPTER 5 VISUAL ANALYTICS OF FACIAL EXPRESSIONS

5.1 Introduction

The previous sections provide a method to reconstruct 3D face models from images and

a method to analyze the emotion status from the reconstructed 3D faces. In this section,

we present a novel facial expression recognition approach with 3D Mesh Convolutional

Neural Network (3DMCNN) and a visual analytics guided 3DMCNN design and optimiza-

tion scheme. Our method has achieved a good result for facial expression classification

tasks.

From a RGBD camera, we first reconstruct a 3D face model of a subject with facial

expressions, and then compute the geometric properties of the surface. Instead of using

regular Convolutional Neural Network (CNN) to learn intensities of the facial images, we

convolve the geometric properties on the surface of the 3D model using 3DMCNN. We

design a geodesic distance-based convolution method to overcome the difficulties raised

from the irregular sampling of the face surface mesh. We further present an interactive

visual analytics for the purpose of designing and modifying the networks to analyze the

learned features and cluster similar nodes in 3DMCNN. By modifying low activity nodes in

the network, the performance of the network is greatly improved. We compare our method

with the regular CNN-based method by interactively visualizing each layer of the networks

and analyze the effectiveness of our method by studying representative cases. Testing

on public datasets, our method achieves a higher recognition accuracy than traditional

image-based CNN and other 3D CNNs. The proposed framework, including 3DMCNN and

interactive visual analytics of the CNN, can be extended to other applications.
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5.2 Related Work

With the recent development of high performance deep learning techniques, such as

Convolutional Neural Network (CNNs), image recognition accuracy has been greatly im-

proved [42, 61]. Applying CNNs to facial expression recognition problem, Kim et al. [38]

employed multiple CNNs to obtain a group of diverse models with various properties.

Mollahosseini et al. [54] trained a single CNN based on multiple naturalistic datasets to

obtain a high performance model across datasets. Zhang et al. [79] presented a method

for inferring social relation from face images using CNNs. They presented a pairwise-

face reasoning for relation prediction based on the subjects’ age, gender, expression and

head pose. Lopes et al. [50] proposed a method which combines CNNs and pre-processing

techniques to reduce the data required for CNN training.

As we discussed in previous sections, the 3D features are pose and illumination in-

variant, therefore, they are more stable and consistent than the 2D features in different

circumstances. To extend the high performance CNN framework to the 3D model classifica-

tion task, Sinha et al. [65] proposed a 3D shape learning method using geometric images.

Su et al. [66] used multi-view rendering method to render a 3D shape to a number of

rendered image series from different angles and Wu et al. [76] worked on the volumetric

shapes for deep learning. To simplify the deep learning framework, these methods trans-

fers 3D shape to uniform square domain or cubic domain instead of computing directly on

the shape surface. This is a straitforward solution for 3D shape classification with CNNs,

especially learning various different shapes. However, the 3D shapes in the facial expres-

sion recognition task are all 3D facial models, which provide the possibility of normalizing
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them to a standard facial area domain. Utilizing this property, we propose a 3D Mesh

Convolutional Neural Network for facial expressions on the 3D facial surfaces.

To better understand the learned features of the network, Zeiler et al. [78] proposed a

CNN visualization method for diagnostic purpose and Liu et al. [49] presented a directed

acyclic graph-based CNN visualization method to obtain the overview of the CNNs. More

recently, Pezzotti et al. [58] presented a progressive visual analytics approach for designing

CNNs and successfully optimized the public large scale CNNs using the insights obtained

from their system. Kahng et al. [35] presented a method to visually explore industry-scale

Deep Neural Networks.

In this section, we present a robust approach for facial expression recognition based

on 3DMCNN that learns 3D features of the reconstructed face models. We use a 3D facial

expression database to fit the scanned depth image of the face to generate a high quality

3D face models with expressions. Then, we compute the geometry signatures, i.e., mean

curvature, conformal, factor and heat kernel signature as the features for learning. We

perform the learning processes, such as convolution, pooling, rectified linear unit (ReLU)

and etc., directly on the 3D surface domain for training the 3DMCNN. Through visual

analytics, we can modify and optimize the networks for better performance. Finally, we

compare the performance of our method with conventional image-based CNN methods

and analyze the advantages of our method by using interactive visualization techniques.

Fig. 26 illustrates the entire process.

The rest of the chapter is organized as follows: Section 5.3 introduces the method for

reconstructing the 3D face with expression using RGBD camera and deformable face mo-

del. In Section 5.4, we explain our 3DMCNN and its geodesic distance-based convolution
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Figure 26: The pipeline of our 3D face model based facial expression recognition frame-
work with 3D Mesh Convlutional Neural Network. Based on the captured depth image and
facial landmarks on the color image, a 3D facial expression model is generated by fitting
a morphable face model. The geometric signatures of the 3D facial model are computed
and used for training a 3DMCNN for classify the facial expression.

and pooling framework. Then, the employed geometric descriptors of the 3D face is descri-

bed. In Section 5.5 introduces the learned feature maps and the clusters of different nodes

in our 3DMCNN, which facilitates further editing of the networks based on an interactive

visual analytics approach. In Section 5.6, we first show the public database for the expe-

riment and then explain the training and testing details. Finally, we show the results of

the our method and compare it to stat-of-the-art 2D image-based CNN methods and other

CNN methods for 3D shapes.

5.3 3D Face Reconstruction from RGBD Sensor

We employ a Kinect v2 system which captures 1920x1080 2D images and 512x424

depth maps at 30 frames per second. A raw depth image of the subject’s face along with

RGB color information is acquired. To improve the quality of the raw 3D facial data and
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normalize it to a uniform face data space, we use a multi-dimensional 3D face database,

Facewarehouse, as a refinement template. Cao et al. [16] presented a 3D facial expres-

sion database, which includes 150 subjects with 47 different expressions. The database is

decomposed in a bilinear face model and each face model can be computed by

S = C ×2 w
T
i ×3 w

T
e , (5.1)

where C is the decomposed core tensor, wi is the identity weight vector and we is the

expression weight vector, respectively. Then, the identity weight wi and the expression

weight we can be obtained by minimizing the surface distance between the scanned raw

face Ŝ and the reconstructed bilinear model S as follows:

wi, we = argmin ‖Ŝ − (R(S) + T )‖2, (5.2)

where R is the rotation matrix and T is the translation matrix. In practice, we first esti-

mate the rotation angle and translation using the method [33], then we optimize identity

weight wi, followed by optimizing expression weight we. To fine tune the expression of the

generated 3D face model, we utilize the RGB color image that is captured simultaneously

with the depth map. We use Constrained Local Model (CLM) [21] to find 74 landmarks

on the color image. These points include the face contour, eye contour, eyebrow, nose and

mouth contour, which are used for the following two purposes. One is that these landmark

points can be used for locating the face position in the image and estimating the head ro-

tations. Estimating head rotation is important to initialize the template face model to start
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the fitting process. The second is that the points can be used fo fine tune the reconstructed

expressions to improve the reconstruction accuracy of certain extreme expressions. Fig. 26

left block illustrates the reconstruction process.

There are two advantages of using the face decomposition approach to reconstruct the

3D faces. First, it provides an easy and low-cost solution to obtain higher resolution 3D

face models for expression analysis. Traditional high resolution 3D scanners is expensive

and the scanning usually takes a long time. Therefore, capturing a facial expression is a

difficult task for these equipments. Meanwhile, although the commercial depth camera can

provide a cheap and fast way to scan faces, the reconstructed 3D meshes often have low

resolution for computing meaningful geometric features for learning facial expressions.

The face decomposition approach can use a pre-scanned database as a prior-knowledge to

generate high resolution facial expression 3D models from a low resolution depth scans.

Second, it provides a consistent sampling domain across the generated 3D faces. Since the

optimized 3D face model is obtained by computing the weight vectors, it is actually a linear

combination of the decomposed basis faces. The generated 3D face always has one-to-one

correspondence in terms of vertex to the average 3D face of the database S̄. Therefore, the

sampling points on the 3D faces across the subject and the expressions are consistent. We

use the consistent sampling points as the grids to perform CNN computations, which will

be explained in detail in Section 5.4.

5.4 3D Mesh Convolutional Neural Network

In this section, we present a 3D Mesh Convolutional Neural Network (3DMCNN) for

facial expression recognition by learning facial geometric features. Our method conducts
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operations including convolution and pooling by utilizing the mesh grid on a template

face model as shown in Fig. 27 (a). The red points are the sampling grid for computation,

equivalent to the pixels in 2D CNN. Instead of using regular uniform grid in 2D image

CNN, we have denser grids around high activity and curvature regions including eyes,

mouth and wrinkles near mouth for higher sampling rate.

5.4.1 Geodesic Distance-based Convolution and Pooling

Convolution: Traditional CNN uses uniform grid for convolution and pooling, which

is efficient for processing images. Instead of transforming 3D surfaces to 2D planes for

learning, our method directly learns the geometric features on the 3D surface. Since the

reconstructed 3D face is a linear combination of the decomposed basis faces, there is one-

to-one correspondence in terms of vertices across the face models by nature. These vertices

serve as the consistent sampling points on the face domain for CNN computation, which

is shown in Fig. 27 (a). The red points are sampling points on the face surface and we

compute the convolution on each point.

Similar to the convolution on an image, we use a weighted filters to convolve the ge-

ometric signature values. Convolution on images is done by sliding a square filter over

the images, however, defining a square filter on 3D surface is difficult. To solve this pro-

blem, we propose a geodesic distance-based convolution, where the weights are defined

by the geodesic distances. In a continuous form of geodesic distance-based convolution,

the weight values are continuous functions to the geodesic distance from the center point.

To reduce the computational cost on the discrete meshes, we define limited directions for

convolution. On each vertex, we search eight directions, which are East, North East, North,
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North West, West, South West, South and South East as shown in Fig. 27 (b). Together

with the center point, we denote these directions as D, which is illustrated in Fig. 27 (c).

To search for the East direction, we start from the center point and searches over the sur-

face until it reaches the defined geodesic distance. The normal vector of the center vertex

is needed to compute the tangent plane and the initial searching directions are defined

on the tangent plane. Similarly, we search for other seven directions, and compute the

weighted sum around the center point as follows:

gn+1 =
∑
d∈D

(w(d, l)g(d, l)n), (5.3)

where w(d, l) is the weights defined by the distance l and direction d, g(d, l)n is the geome-

tric signature value at the destination location and n indicates the layer of the network. As

the geometric signature values are only defined at the sampling points, it is not guaranteed

that we can find a value at the destination location. By using the barycentric interpolation

of the nearby triangle, we can compute the value g(g, l)n at any location of the surface.
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Figure 27: (a) illustrates the sampling points on the face surface. (b) illustrates the conti-
nuous geodesic distance rings around the center points. (c) is the discrete 8 directions for
geodesic distance-based convolution. (d) shows the normal vector of the sample point for
tangent plane computation and the defined directions.



75

The geodesic distance-based convolution has the advantages of preserving and identi-

fying true features as well as preventing dislocated false features in the convolution space

when taking the actual geodesic distance as a-priori information. Fig. 28 shows an il-

lustrative one-dimensional example, where the curve is the shape and the line segment

indicates the pixels of the 1D “image” of the curve shape. The sampling vertices V1, V2, V3

and V4 on the curve are rendered to the pixels P1, P3 and P4 on the 1D “image”. As shown

in figure, although V2 has a high curvature value on the curve, it is not rendered on the

“image” due to the sampling interval. When the convolution is done on the image plane

without considering the geodesic distance, a low curvature value at V3 will be used for

convolution instead of V2’s curvature value. Therefore, the important geometric feature of

vertex P2 will be lost in the image convolution framework, which is not desired. On the

other hand, image convolution framework will result in an uneven convolution on the 3D

surface domain. For example, the surface patches which are perpendicular to the image

plane will be coarsely sampled and the parallel surface will be densely sampled. So using

geodesic distance for convolution avoids these problems caused by simply applying image

convolution framework to the 3D surfaces and provides more uniform convolution results.

This is also evidenced by our later experiments in Section. 5.6.

Pooling: Similar to the convolution, we also perform pooling operation based on geo-

desic distance. Based on the selected geodesic distance, we compute the mean (or max)

value of the feature values over a region within a certain geodesic distance around the

sampling point. Since the sampling points become sparse after each pooling operation,

we re-triangulate the remaining sampling points to reconstruct new mesh surface and

double the geodesic unit for next layer computation. Once the 3DMCNN architecture is
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Figure 28: Illustration of the difference of pixel based convolution and the geodesic
distance-based convolution. Color shows two rendered pixels P1 and P2 from mesh pa-
tch around vertex V1 and V3. V2 is not rendered individually due to the resolution.

established, the resampling the 3D faces can be pre-computed before training process. We

generate a cascaded face series with the reference face and map to each individual models.

The geodesic unit is determined by the average geodesic distance between two sampling

points on the shape surface. As we mentioned above, we increase the geodesic unit based

on the stride of the pooling operation.

5.4.2 Architecture of 3D Mesh Convolutional Neural Network

The layers of the 3DMCNN is determined by the complexity of the 3D models and the

size of the database. Our 3D face model approximately consists of 5000 vertices, and has

about 60 × 80 sampling points on the surface. For each expression, there are 800 models

with different identities. Therefore, we only need a relatively shallow architecture for the

networks. Our CNN model has three convolution (C1, C2, C3) and pooling layers (P1,

P2, P3) and two fully connected layers (FC1, FC2). Specifically, C1 is a convolutional layer
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with feature maps connected to a neighboring area within the 2 geodesic units in the input.

The values in C1 are initialized by a uniform distribution with the range depending on

the incoming nodes. P1 is a pooling layer with feature maps connected to corresponding

feature maps in C1. In our case, we use the max pooling to amplify the most responsive

vertex in the feature maps. C3 uses partial connection scheme for keeping the number of

connections within proper bounds and breaking symmetry in the network. In this way, we

can expect the kernels to update diversely to generate different feature maps.

5.4.3 3D Descriptors for Deep Learning

In this section we discuss the 3D descriptors that are used for the Mesh CNN training.

Generally, 3D properties including principal curvatures, mean curvatures, Gaussian curva-

tures, conformal factors [29] and heat kernels [67], can be used to describe the 3D shapes.

As Hua et al. [29] indicated that a 3D shape can be uniquely defined if the mean curvatu-

res and the conformal factors are given, in this paper, we use mean curvature, conformal

factor and heat kernel as the geometric descriptors of the 3D face model.

Mean Curvature Mean curvature is an extrinsic measure of the curvature at a given

location of a surface S. Fig 29 shows the mean curvature on 3D meshes of three examples:

an Armadillo, a human brain and a scanned human face. The mean curvature values

are normalized to the range from 0 to 1 and mapped to RGB colors for visualization.

Regions such as finger tips, brain sulci, eye contour and mouth show red, which have high

curvatures. Mean curvature provides the face mesh deformation information for learning

the expressions. Mean curvature is a local property which can be computed at each vertex

in discrete mesh forms, therefore, the computation can be easily parallelized using GPU.
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Figure 29: Illustration of mean curvature on three different shapes. The mean curvature
values are normalized to [0, 1], and the color map is shown on the right.

Conformal Factor Conformal factor measures the vertex area change of the deformed

shape. Fig. 30 shows an example of the conformal factors on the 3D facial model. Fig. 30

(a) is a non-neutral expression. Fig. 30 (b) is the neutral expression face, which is re-

constructed once the identity vector Wi is estimated. Based on the computed Voronoi

area using Eq. 2.2, the conformal factor λ(p) is computed based on least square conformal

mapping. The conformal factors are normalized and visualized with color map as shown

in Fig. 30 (c). The highlighted areas in Fig. 30 (c) show the significant changes around the

mouth, where the main deformations occurred.

Heat Kernel Signature A heat kernel signature (HKS) is a feature descriptor of spectral

property of a 3D shape. Fig. 31 illustrates the heat kernel signatures of two expressions.

The time variable T increases from left to right, showing the continues change of HKS

on the face surfaces. Since HKS is a global feature of the shapes, it is widely used for

shape analysis and shape retrieval tasks due to its significant differences between different

shapes [12]. Although the HKS is relatively stable on the human face models, we found it
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Figure 30: Illustration of the conformal factor on a facial expression model. (a) is a non-
neutral facial expression model. (b) is the estimated neutral expression model after the
identity vector Wi is obtained. (c) is the conformal factor map. The two highlighted areas
show the area change of the surface.

also changes with the different expressions, especially with the smaller time parameters.

To use more significant local differences as the feature while keeping a certain level of

the global feature, we experimentally select a small T = 10 in our method. Therefore,

HKS performs as a supportive feature to the more sensitive mean curvature and conformal

factor in the 3DMCNN frame work.

5.5 Visual Analytics of Networks for Modification and Optimization

In this section, we present an interactive visual analytics method of the 3DMCNN for

the purpose of network performance. First, to better understand the 3DMCNN, visuali-

zing the learned features of neurons is an effective approach. Liu et al. [49] presented

a directed acyclic graph-based CNN visualization method, which explores features and

network structures by clustering similar neurons and visualizing them in a properly orde-

red layout. Their method focuses on visualization of the deep CNNs without interactive
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T = 10 T = 20 T = 30 T = 40

Figure 31: Heat Kernel Signature on two different facial expression models. Left to right
shows T = 10, 20, 30 ,40. Upper row shows a sample face with surprise expression and
the lower row shows a sample face with neutral expression.

modification of the network.

Inspired by their method, we present an interactive neuron visualization and modifica-

tion framework, which provides an intuitive and detailed information for understanding

and optimizing the network. Our visualization framework enables three abilities: first,

find salient features of geometric signatures that affect the expression recognition result;

second, find expression-specific features for each expression; third, modify the networks

by removing unnecessary neurons with low activation values for network simplification.

As we cannot accurately know how much neurons and layers are needed for training the
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3DMCNN at the beginning, we usually provide sufficient number of neurons and layers

as an initial setup. Then, the neurons with high activations for a certain expressions are

clustered and the layouts of the network are rearranged accordingly. By analyzing these

different clusters of neurons, we can understand important features and the neurons which

are sensitive to them. Selecting the significant features and high activation neurons as the

initial state of the retraining, the network structure can be simplified and the performance

can be optimized.

Fig. 32 shows an example for visual analytics interface of the trained 3DMCNN. The

network shows the first two layers, and each layer is composed by a convolution layer,

a Rectified Linear Unit (ReLU) layer and a pooling layer. A three channel input data is

passed to the 3DMCNN, and we visualize the first two group of layers. One of the neurons

in the second layer is selected and the corresponding feature map is shown as well as the

connected neurons in the first layer are highlighted. For the connections between neurons,

the associated filters are displayed as well. The interactive inspection approach enables us

to find and analyze the important features.

Clustering similar neurons into several functioning groups provides a clear overview

of the learned network. In our visual analytics framework, the neurons are clustered in

three types of groups: (1) High activation positive nodes, whose associated weights are

large positive values. These nodes contribute positive features to the output nodes in the

next layer. (2) High activation negative nodes, whose weights are large negative values.

(3) Low activation nodes, whose associated weights are approximately zero. These nodes

provides almost no features to the output layers, so they have no potentials and can be

removed to reduce the network complexity and improve the performance of the network.
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As illustrated in Fig. 33, a set of smiling 3D face data is passed to the trained 3DMCNN.

The nodes in each layers are clustered and visualized, and the associated spectrum colors

represent the different activation values. High activation positive nodes are labeled in red,

low activation nodes are labeled in green and high negative activation nodes are labeled

in blue. We cluster a node as a low activation node if the total contribution to the final

output is less than 5%. The connectivities are also grouped for simplified visualization of

the network. In Fig. 33, we trace back the classification result, for example “happiness”, to

explore the learned feature patches. We consecutively select the high activation positive

nodes to see the lower level neurons connected to them. Shallow layers of the CNN de-

tect detailed features such as contours and color patches, while deeper layers detect more

global features such as detecting the parts of the objects. As we learned by visualizing the

feature maps in each layer, our 3DMCNN also learns the expressions in a similar manner:

detects feature patches , and then detects larger areas of the face and their combinati-

ons. Since we start training the network with a sufficient number of neurons, there exists

many redundant neurons. Visualizing and interactively removing these redundant neurons

improve the network efficiency, simplify the network and reduce the over-fitting problems.

5.6 Experiment

We have applied our algorithm on public 3D face expression databases and Kinect

scanned face models. The surface geometric features are experimented on first, followed

by the training setups for the 3D MCNN. We compare our method with 2D CNN based

method and geometry image based method for facial expression recognition. Then, we

analyze cases in which our method performs better than other methods. Our experiments



83

have been performed on a Linux PC with 3.0 GHz 8 Core CPU, 8 GB memory and GeForce

980 graphics card with the NVIDIA CUDA Framework 6.5. The computation time of our

method is mainly spent on the 3D Mesh CNN training process. The reconstruction and

feature computation time for 3D face is approximately 3 seconds for each image.

5.6.1 Datasets

To evaluate our method, we employ two public 3D expression databases for training

and testing. FaceWarehouse is used for training and 3D face generation in testing phase.

BU-3DFE is used for testing and comparison among different learning methods.

FaceWarehouse [16]: FaceWarehouse is a database of 3D facial expressions for visual

computing applications. It includes 3D face scans of 150 individuals aged between 7 to 80,

from various ethnic backgrounds. There are 20 expressions including neutral expression

for each person. For each expression, both 3D model and the 2D image with landmarks are

provided. The landmarks include important facial feature points, which can be used for

fine tune the reconstructed 3D faces. The 3D face models with expressions are obtained

by deforming a template facial mesh to match the scanned depth image, These meshes

with consistent topology are assembled as a rank-3 tensor to build a bilinear face model

with identity and expression. In our experiment, the expressions are manually labeled for

6 prototypic expressions (happiness, disgust, fear, angry, surprise and sadness).

BU-3DFE (Binghamton University 3D Facial Expression) Database [77]: BU-3DFE

database includes 100 subjects (56% female, 44% male), aged from 18 to 70, with a variety

of ethnic backgrounds, including White, Black, East-Asian, Middle-east Asian, Indian, and

Hispanic Latino. There are 7 expressions for each subject including neutral expression and

the six prototypic expressions. For each non-neutral expression, there are four 3D shapes
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with four levels of intensity. Therefore, there are 25 instances of 3D expression models for

each subject, resulting in a total of 2,500 3D facial expression models in the database. A

color facial image is associated with each expression shape model.

5.6.2 Visual Analytics Guided CNN Design and Optimization

We train the 3DMCNN with the FaceWarehouse dataset and test with the BU-3DFE

dataset. Since there are symmetric and similar expressions, the data is manually labeled in

5 non-neutral classes and 1 neutral class. To improve the training robustness, we generate

some randomness (±5%) to the 3D face reconstruction process to obtain more training

datasets: (1) Add a random variance to the identity coefficient wi to generate a new

identity. (2) Add a random variance to the expression coefficient we. Including the original

150 faces of the subjects and 450 synthetic data, we prepare 600 faces for each expression.

We compute the 3 types of signatures on the 3D faces. Fig. 35 illustrates the computed

geometry signatures, (a) mean curvature, (b) conformal factor and (c) heat kernel. The

geometry features show similarity within the same expression across different subjects

while vary between different expressions.
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C1/R1/P1 C2/R1/P23 channel data

Figure 32: Illustration of the network visualization approach. The selected neuron in layer
2 is highlighted in yellow and its feature map is shown. The connection with the neurons
in layer 1 is shown and the associated filters are displayed accordingly.
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C1/R1/P1 C2/R1/P2data C2/R1/P2 FC1 FC2 SoftMax
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High Activation
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Low Activation
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Figure 33: Illustration of the feature visualization process. Red cluster contains high acti-
vation positive nodes, green cluster contains low activation nodes and blue cluster contains
high activation negative nodes. Gray nodes are unconnected node to the selected node.
Sample feature maps are displayed beside each cluster.

Figure 34: Evaluation of the interactive network simplification. Graphs shows the training
time, accuracy, node number and maximum iteration with respect to the modification
sessions.
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Expression 1 Expression 2 Expression 3

Subject a

Subject b

Subject c

(a) (b) (c) (a) (b) (c) (a) (b) (c)

Figure 35: The geometry signatures on the 3D face. Each row shows different expressions
of the same subject. Expression 1, 2, 3 shows three expressions: Happiness, Anger and
Surprise. In each expression, column (a) shows the mean curvature, column (b) shows
conformal factor and column (c) shows the heat kernel signature.
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We start with 3 layers of convolution layer, ReLU layer and Pooling layer followed by

two fully connected layers and a SoftMax classification layer. We set the number of nodes

to 192 for convolution layer 1, 256 for convolution layer 2 and 3, respectively, which we

consider as sufficient numbers for neurons. We set the weight update ratio to 0.0005

and run for 20000 iterations. Once we obtain initial classification network, we use our

node clustering and visualization method to selectively remove low activation neurons

and retrain the network with the selected high activation neurons as the initial status.

An example of the optimization process is discussed in the following section. Fig. 34

shows the evaluation results of the network simplification sessions. After 20 sessions of

modification of the network based on our visual analytics approach, the training time, the

number of nodes and the number of maximum iterations are reduced while keeping a

similar prediction accuracy. The final nodes is set to 128 for convolution layer 1, 192 for

layer 2 and 256 for layer 3. Using the final network, we test on the public database and

the results are discussed in Section 5.7.

5.6.3 Case Study

In this section, we provide further details on the analysis performed with our visual

analytics approach. As we discussed in Section 5.6.2, we optimize the network by reducing

the redundancy. Since we start with a sufficient number of neurons, it usually generates

many low activation neurons, which increases the computational cost without contribution

to the classification result. These neurons often have low connectivity to the subsequent

layers as well. Our goal is to reduce the number of neurons with low activation values and

low connectivity. We use the histogram plots to observe the distributions of the activation
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values. Fig. 36 shows the activation histograms of the convolutional layers. Activation

values were scaled to a range between -1 and 1, and 21 bins were selected to generate

the histograms. Typical feature maps of the clusters are displayed accordingly on the

histograms. The detailed lists of the neurons can be shown by selecting the histogram

bins. The upper row of Fig. 36 shows the initial stage before the network tuning, and the

lower row shows the final stage after optimization. Initially, there is a large number of low

activation nodes in the convolution layer 1 as shown in the histogram. We further inspect

the learned features via the filter list. Fig. 37 shows the list of the selected cluster of the

neurons in an increasing order of the activation value. The connectivity (out) shows how

many neurons in the subsequent layer are connected and the connectivity (in) shows how

many preceding neurons are connected. The list can be rearranged by selecting different

orders. We remove those neurons with low activation and connectivity, and then, re-train

the network by keeping the rest of the feature maps. The neuron selection and removal can

be reversed if the result shows unexpected changes. The bottom row of Fig. 36 shows the

activation histograms in the final stage, where the number of the low activation neurons

were greatly reduced compared to other neurons. Based on the modification using our

visual analytics approach, we optimize the network by reducing the first convolutional

layer from 192 to 128 filters, and the second convolutional layer from 256 to 192. The

optimized result provides a compact network with reduced training time and the similar

prediction accuracy.
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Figure 36: The activation histograms of the convolution layers. The upper row shows the
histograms of the initial stage and the lower row shows histograms of the final optimized
stage. Some sample filters are displayed on the histograms.

5.7 Comparisons and Evaluation

We evaluate our 3DMCNN framework by selecting different geometric signatures se-

parately and as well as their combinations to train a 3DMCNN. To fairly compare their

performance in terms of providing sufficient features for training, we use the same 3DM-

CNN architecture and the same number of training data. Table 2 shows the test accuracy

for each expression and as well as the average. Mean curvature achieves the highest accu-

racy for 3DMCNN using the single feature only, followed by the conformal factor while

heat kernel achieves lowest accuracy. This is because mean curvature and conformal fac-

tor carry more detailed information than heat kernel in local areas. Combining the three
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Conv	1

Filters Activation Connectivity (out) Connectivity (in)

-0.0021 4 N/A

0.0022 3 N/A

-0.0032 3 N/A

0.0032 5 N/A

-0.0033 6 N/A

-0.0035 10 N/A

0.0039 12 N/A

0.0045 9 N/A

-0.0055 20 N/A

0.0 1.0-1.0

Figure 37: The detailed inspection on the selected group of neurons. The table shows the
list of the filters with low activations.

Features Neutral(%) Happiness(%) Sadness(%) Angry(%) Surprise(%) Fear(%) Average (%)
Mean Curvature 85.2 83.5 82.3 85.6 83.1 83.3 83.8
Conformal Factor 80.1 82.6 80.2 75.1 77.5 78.5 79.0
Heat Kernel Signature 60.1 56.2 62.1 66.7 51.6 53.6 58.4
Combined 92.3 90.1 89.5 88.1 90.2 89.6 89.8

Table 2: Training accuracy based on single geometry signature and their combination for
each expression.

signatures as three channels of the input significantly improved the classification accuracy.

We also compare our method with several existing methods: (1) Traditional image ba-

sed CNN [50], which uses image to train the CNN. (2) Geometry image CNN [65], which

maps the 3D shape to 2D image and generates synthetic geometric images for training

regular CNN. (3) Volumetric CNN [76], which extended 2D image CNN to 3D cubic CNN.

These methods are proposed for general 3D shape recognition purpose, and we employ

them to our face expression recognition application for comparisons. We also implement
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extra two types of methods derived from our method. (4) The 3D faces with their geome-

tric signatures are rendered to projection images with virtual cameras and take the images

for training and testing. We denote this method as projection image based method: (5)

Since we capture the RGB information with the depth value simultaneously, we are actu-

ally able to obtain 3D faces with RGB textures. We combine these color information with

geometric signatures to train a 6 channel 3DMCNN, denoted as 3D Mesh&Image CNN.

We compare these method under the same configuration of the network architecture, i.e.,

same number of layers and neurons. Fig. 38 summarizes the results. Our 3DMCNN and

3D Mesh&Image CNN achieved the highest accuracy. Geometric image CNN [65] also

achieves a high classification accuracy (85%), since it also focuses on the geometric featu-

res. However, the 2D authelic mapping used in the method does not guarantee a distance

preserving mapping, since the convolution on the 3D surface domain is non-uniform. Pro-

jection image based method achieves slightly higher accuracy than the RGB image-based

method, but lower than our mesh based method. This is because they both learn other face

related features, such as face contour, color patch and so on. Volumetric CNN achieves the

lowest accuracy, since it needs extra depth of the network to reach its best performance.

As a result, our method achieves the best accuracy (90%) under a shallow and compact

network configuration.

5.7.1 Knowledge from Visual Analytics of CNN

Our visualization system provides an interactive way of neuron cluster selection for vi-

sualizing the learned features. By selecting the highest activation cluster, the features are

deconvolved back to the input 3D face space and the areas are highlighted. These areas
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Figure 38: The comparison result between our method and other CNN-based methods.
Our method achieves highest recognition accuracy.

are important since they lead to the strongest responses in the CNN. Fig. 39 shows the high

activation areas for two different expressions. The top nine high activation areas are se-

lected for demonstration in each expression. Fig. 39 (a) shows the features of “happiness”

class and (b) shows features of “anger” class. High activation areas for happiness are mos-

tly located around mouth corners as shown in the result. Furthermore, these features have

strong reaction on mean curvature and only one feature area reacts on the conformal fac-

tor (lower left of (a)). On the other hand, high activation areas for “anger” are distributed

around eyes and forehead. Contrast to “happiness” class, four areas reacts to conformal

factor for “anger” class. From the visualization result, we know different geometric signa-

tures carry different information for certain expressions. Fig. 40 shows the high activation

areas for “happiness” and “anger” for comparison. We map these areas to the template face

domain for consistent visualization purpose. Features are located around mouth and eyes

for “happiness”. Since features round eyes are also considered as important as mouth cor-
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ner, 2D image based method may not work well for some ambiguous expressions. Fig. 41

shows three examples where image based method fails to correctly classify the expressi-

ons, however, we successfully classify it using our method. Fig. 41 (a) shows the subject

unintentionally closed her eyes while smiling, which leads to misclassification in 2D image

based method. (b) shows the case is classified to “anger” using image-based method un-

der extreme illumination, whereas was classified to “happiness” using our method. (c)

shows the failed case for image-based method under large rotation. Our method provides

a robust and stable classification outcome to some ambiguous expressions and also under

some uncontrolled environment conditions and extreme head poses.

(a) (b)

Figure 39: High activation feature areas on 3D face surface of two expression classes: (a)
is happiness and (b) is anger. All the feature areas are mapped to the template face for
consistent visualization.
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(a) (b)

Figure 40: High activation feature areas on 2D images of two expression classes: (a) is
happiness and (b) is anger.

5.7.2 Limitations

Although the 3D Mesh CNN can achieve a high performance on facial expression recog-

nitions, there are two main limitations. One is that our method needs a uniform sampling

standard across the 3D shapes. This is because, similar to the image-based CNN, the com-

putations of convolution and pooling need to be performed consistently on the 3D surface

under a uniformly defined structure. Further studies need to be done to apply the 3DM-

CNN to general classification task. The second limitation is that the 3D deformable face

model contains limited high frequency details. Fine local details such as wrinkles are not

properly modeled, therefore, result in the fitted model did not contain these information

either. This disadvantage would affect the potential peak performance of the 3DMCNN to
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(a) (b) (c)

Figure 41: Successful classification cases of using our method while 2D image based met-
hod misclassified.

learn deeper features using smaller size of convolution filters.
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CHAPTER 6 CONCLUSION

3D face reconstruction and facial expression analytics using 3D faces are important

topics in computer graphics and computer vision, which enables many useful applications.

Inspired by the recent research, we applied a NMF-based decomposition approach to the

3D face database to create a part-based 3D face model, which improved the reconstructed

details of the 3D faces. We extract features directly from the reconstructed 3D face models

to train regressors to estimate the emotion states. We also propose to use the most state-of-

art CNN framework to improve the estimation accuracy. The main contributions include:

• We have presented a novel 3D face capture and reconstruction solution that can ro-

bustly and accurately acquire 3D face models using a single smartphone camera. In

this solution, a deformable NMF part-based 3D face model, learned from a 3D face

database, is developed to facilitate robust global and adaptive detail data fitting al-

ternatively through the variations of weights. The part-based 3D face representation

serves as a better morphable model for data fitting and reconstruction under geo-

metry and illumination constraints, as the NMF bases are corresponding to localized

features that correlate better with the parts of 3D faces. In our system, self-portrait

frontal and side photographs are used as the input to the fully automated iterative

reconstruction process. It permits fully automatic registration of the deformable part-

based 3D face model to the input images and the detailed geometric features as well

as illumination constraints to reconstruct a high-fidelity 3D face model. The system

is flexible as it allows users themselves to conduct the captures in any uncontrol-

led environment. The capability of our method is demonstrated by several users to

capture and reconstruct their 3D faces using a smart phone camera.
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• We have presented a 3D morphable face model-based approach for emotion ana-

lysis and information visualization in VA space. We have built a NMF part-based

morphable 3D face model for reconstructing. Based on the input image, a 3D face

with expression is reconstructed iteratively using the morphable 3D face model, from

which basis parameters and a displacement map are extracted as features for emo-

tion analysis. We have trained two Support Vector Regressions for the fuzzy Valence

and Arousal values, respectively, using the composed feature vectors. The states of

the continuous emotions can be effectively visualized by plotting them in the VA

space. Our method is fully automatic to compute the VA values from images or a se-

quence of video with various expressions. And our visualization system also provides

the expression details such as the image frames and generated 3D faces interactively

by interacting with the VA-plot. The experiment results have shown that our met-

hod has achieved a remarkable emotion estimation accuracy and our visualization

method can provide a clear understanding of continuous emotion data. We use a

standard SVR as our emotion regression model and there is a potential improvement

by applying other regressions such as fuzzy neural network. The current 3D face

reconstruction step in our system normally takes about 3 seconds, which does not

allow our system to process real-time streaming data on the fly.

• We have presented a 3D Mesh Convolutional Neural Network for facial expression re-

cognition and an interactive visual analytics method for the purpose of designing and

modifying the networks. Based on the depth surface scanning via a RGBD camera,

we have reconstructed a 3D face model by fitting a deformable face model to the

raw surface. We have adopted three types of geometric signatures, including mean
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curvature, conformal factor and heat kernel, as feature values of the shape surface.

These signatures can comprehensively describe the shape surface both locally and

globally. Using the geometric signatures the 3DMCNN is trained. To uniformly con-

volve the sampling points on the face surface, we proposed a geodesic distance-based

convolution scheme. This geodesic distance-based convolution and pooling method

can prevent dislocated false features and preserve actual local features. We have

trained and tested the 3DMCNN using two public 3D face expression databases and

analyzed the effectiveness of our method by interactively visualizing the learned fea-

tures on the neurons. Through the visualization results, we have demonstrated some

high activation features that affect the recognition result most. We have compared

our method with the traditional image-based CNN and our method achieves higher

recognition accuracy. The visual analytics of the learned features shows that the geo-

metric signatures are more sensitive and effective in learning facial expressions than

image features.
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1. Hai Jin, Xun Wang, Yuanfeng Lian, Jing Hua, “Emotion Information Visualization

through Learning of 3D Morphable Face Model.” The Visual Computer, 2018.

2. Hai Jin, Yuanfeng Lian, Jing Hua, “Visualizing and Learning Facial Expression with

3D Mesh Convolutional Neural Networks.” ACM Transactions on Intelligent Systems

and Technology, 2018.

3. Hai Jin, Xun Wang, Zichun Zhong and Jing Hua, “Robust 3D Face Modeling and

Reconstruction from Frontal and Side Images,” Computer-Aided Geometric Design,

2017.
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“Toward individually tunable compound eyes with transparent graphene electrode”
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hua Wang, Hai Jin, Jing Hua, and Hongwei Zhang, “Enabling Campus Edge Compu-
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sium on Edge Computing, 2016.

2. Hai Jin, Zichun Zhong and Jing Hua, “Robust 3D Face Modeling and Reconstruction

from Frontal and Side Images.” International Conference on Geometric Modeling and

Processing, 2016.
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1. Jing Hua, Shaofeng Shu, Hai Jin, Hongwei Zhang, “Real-Time Wireless-Networked

3D Vision for Public Safety,” In the Smart Cities Connect Conference and Expo (Demo),

2017.

2. Hongwei Zhang, Jing Hua, Shaofeng Shu, Hai Jin, Chuan Li, and Yu Chen, “Predicta-

ble Wireless Networking and Collaborative 3D Vision for Real-Time Cyber-Physical-

Human (CPH) Systems,” In the US-Ignite Conference (Poster), 2017.

Book Chapter

1. Hongwei Zhang, Le Yi Wang, George Yin, Shengbo Eben Li, Keqiang Li, Jing Hua,

Yeuhua Wang, Chuan Li, Hai Jin, “Trustworthy Foundation for CAVs in an Uncer-

tain World: From Wireless Networking, Sensing, and Control to Software-Defined

Infrastructure,” Road Vehicle Automation, Springer, 2016.
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ABSTRACT
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WITH PART-BASED MORPHABLE MODELS
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HAI JIN

May 2018

Advisor: Dr. Jing Hua

Major: Computer Science

Degree: Doctor of Philosophy

3D face reconstruction and facial expression analytics using 3D facial data are new

and hot research topics in computer graphics and computer vision. In this paper, we first

review the background knowledge for emotion analytics using 3D morphable face mo-

del, including geometry feature-based methods, statistic model-based methods and more

advanced deep learning-bade methods. Then, we introduce a novel 3D face modeling

and reconstruction solution that robustly and accurately acquires 3D face models from a

couple of images captured by a single smartphone camera. Two selfie photos of a subject

taken from the front and side are first used to guide our Non-Negative Matrix Factorization

(NMF) induced part-based face model to iteratively reconstruct an initial 3D face of the

subject. Then, an iterative detail updating method is applied to the initial generated 3D

face to reconstruct facial details through optimizing lighting parameters and local depths.

Our iterative 3D face reconstruction method permits fully automatic registration of a part-

based face representation to the acquired face data and the detailed 2D/3D features to

build a high-quality 3D face model. The NMF part-based face representation learned from

a 3D face database facilitates effective global and adaptive local detail data fitting alterna-

tively. Our system is flexible and it allows users to conduct the capture in any uncontrolled

environment. We demonstrate the capability of our method by allowing users to capture

and reconstruct their 3D faces by themselves.

Based on the 3D face model reconstruction, we can analyze the facial expression and

the related emotion in 3D space. We present a novel approach to analyze the facial expres-

sions from images and a quantitative information visualization scheme for exploring this
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type of visual data. From the reconstructed result using NMF part-based morphable 3D

face model, basis parameters and a displacement map are extracted as features for facial

emotion analysis and visualization. Based upon the features, two Support Vector Regres-

sions (SVRs) are trained to determine the fuzzy Valence-Arousal (VA) values to quantify

the emotions. The continuously changing emotion status can be intuitively analyzed by

visualizing the VA values in VA-space. Our emotion analysis and visualization system, ba-

sed on 3D NMF morphable face model, detects expressions robustly from various head

poses, face sizes and lighting conditions, and is fully automatic to compute the VA values

from images or a sequence of video with various facial expressions. To evaluate our no-

vel method, we test our system on publicly available databases and evaluate the emotion

analysis and visualization results. We also apply our method to quantifying emotion chan-

ges during motivational interviews. These experiments and applications demonstrate the

effectiveness and accuracy of our method.

In order to improve the expression recognition accuracy, we present a facial expression

recognition approach with 3D Mesh Convolutional Neural Network (3DMCNN) and a vi-

sual analytics guided 3DMCNN design and optimization scheme. The geometric properties

of the surface is computed using the 3D face model of a subject with facial expressions.

Instead of using regular Convolutional Neural Network (CNN) to learn intensities of the

facial images, we convolve the geometric properties on the surface of the 3D model using

3DMCNN. We design a geodesic distance-based convolution method to overcome the dif-

ficulties raised from the irregular sampling of the face surface mesh. We further present

an interactive visual analytics for the purpose of designing and modifying the networks

to analyze the learned features and cluster similar nodes in 3DMCNN. By removing low

activity nodes in the network, the performance of the network is greatly improved. We

compare our method with the regular CNN-based method by interactively visualizing each

layer of the networks and analyze the effectiveness of our method by studying representa-

tive cases. Testing on public datasets, our method achieves a higher recognition accuracy

than traditional image-based CNN and other 3D CNNs. The presented framework, in-

cluding 3DMCNN and interactive visual analytics of the CNN, can be extended to other

applications.
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