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The use of piecewise exponential distributions was proposed by Rai et al. (2013) for 

analyzing cardiotoxicity data. Some parametric models are proposed, but the focus is on 

the Weibull distribution, which overcomes the limitation of piecewise exponential. 
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Introduction 

With significant advancements in cancer treatment an increasing number of cancer 

survivors are living many years following a successful treatment. About a decade 

ago it was estimated nearly 13 million Americans were cancer survivors and over 

379,000 were survivors of childhood and adolescent cancers (Mariotto et al., 2009). 

With this encouraging success comes the realization that survivors are at an 

increased risk of late adverse effects and of late mortality many years following 

cancer treatment. As described in Chow and Liu (2004), phase IV clinical trials are 

often used to document such long-term safety, toxicity, and mortality in cancer 

survivors. 

Armstrong et al. (2009) showed cardiovascular events are the leading non-

malignant cause of death among childhood cancer survivors with a 7-fold higher 
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risk of cardiovascular mortality compared to age-matched controls. Both 

chemotherapy and radiation therapy are known to be toxic to cardiomyocytes and 

contribute to early mortality. One such chemotherapy agent anthracycline is known 

to be cardiotoxic (Hudson et al., 2007), but because of its therapeutic benefits it 

remains one of the key components of the treatment plan. Often, in long-term 

follow-up studies the interest is not only on estimating the mortality but also on 

estimating the cumulative incidence of certain types of events, e.g. the onset of 

cardiotoxicity. With long-term follow-up studies it is common to see that the data 

from the survivor were not collected continuously in real time but at regular 

intervals (e.g., every six months or every year). The onset times for the events of 

interest are unknown, but the current status of each participant is known, such as 

whether the event of interest occurred in between the observation periods or not. 

This was characterized as case I interval censored data (Sun, 2006; Rai, 2008). 

Based on these data the prevalence of toxicity can be estimated, although the 

incidence rate is not straightforward. 

The use of nonparametric methods for interval-censored data was discussed, 

for example, by Sun (2006), but the development of a parametric approach has 

lagged behind. Within the framework of parametric modeling and using likelihood 

theory one can easily use any one of the parametric models such as Exponential, 

Weibull, Log-normal, Gamma, Generalized Gamma, Log-logistic, and Generalized 

F, proposed in Kalbfleisch and Prentice (2002). Several more parametric 

distributions, such as the hypertabastic distribution proposed by Tabatabai, Bursac, 

Williams, and Singh (2007) or the generalized log-logistic proposed by Singh and 

Bartolucci (1997), were proposed for modeling survival data. However, the 

intensity functions for many of these distributions are not available in a nice closed 

form and may involve incomplete gamma or normal integrals. 

J. K. Lindsey (1998) studied the parametric regression models to estimate the 

location and dispersion parameters, and compared the performance of nine different 

distributions. Most of the parametric models provided reasonably robust estimates, 

but the recommendation was against using exponential (unreasonable assumption 

of constant hazard over time), log-Student, and log-Cauchy distributions for their 

thick tails. J. C. Lindsey and Ryan (1998) proposed general approaches for interval 

censored data and concluded that parametric approaches can have satisfactory 

performance, especially if the Weibull or log-normal family was chosen, that allows 

for a reasonably wide range of distributional shape. They suggested a piecewise 

exponential distribution could be used to provide more flexibility in modeling as 

long as the number of intervals does not become too large. However, in utilizing a 

piecewise exponential distribution it remains necessary to either visualize the cut 
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points or adopt more rigorous approaches to first estimate the number of cut points 

and identify specific locations of the cut points. As an alternative, adopting the 

Weibull distribution provides reasonable flexibility in modeling monotone hazard 

shapes and performs quite well in comparison to other parametric models. 

Often, as seen with the cardiotoxicity data to be discussed below, with the 

long-term follow-up data the cumulative incidence of the event of interest 

(cardiotoxicity) occurs at a low rate and remains stable over a few years following 

the end of the treatment, and then increases with longer follow-up. The 

identification of the change point is based on human input and visual inspection of 

the data, rather than a rigorous statistical approach. Rai et al. (2013) used a 

piecewise exponential distribution to model cardiotoxicity data. However, this 

approach had three key limitations: (1) it required knowledge of the time point 

when the incidence rate changes, (2) it required knowledge of how many change 

points may be needed, and (3) the incidence rate was assumed to be constant within 

each piece. Therefore, in order to avoid those limitations, the purpose of this study 

is to propose the use of parametric models for modeling such data and, in particular, 

focus on comparing the performance of Weibull model to the approach based on 

piece wise exponential distribution discussed in Rai et al. 

Motivating Example 

A study to investigate cardiotoxic effects of anthracycline exposure during cancer 

treatment was described in Hudson et al. (2007). Specific diagnostic groups 

potentially at risk of cardiotoxicity were identified and recruited from a long-term 

follow-up clinic. The diagnostic group included survivors of childhood leukemia, 

lymphoma, sarcoma, and embryonal tumors who were all treated with 

anthracycline chemotherapy and/or radiation involving the heart, denoted by AR 

(at risk group). The control group comprised of survivors of acute lymphoblastic 

leukemia, Wilms tumor, and germ cell tumors who did not receive any cardiotoxic 

treatment, denoted by NR (not at risk group). The cardiotoxicity can be measured 

by several cardiac measures such as fractional shortening (FS), afterload (AF), QTc 

interval, and ejection fraction; see Hudson et al. (2007) and Krischer et al. (1997). 

Clinically, AF > 74 g/cm2 can be used to identify patients with abnormal AF (AAF). 

Of 278 patients who agreed to participate on the study 223 were designated 

as AR and 55 were designated as NR based on the treatment exposure. At the time 

of survey, data on each individual included demographics, the date of cancer 

diagnosis, time since treatment completion, disease-related variables (type, 

histology, and stage of cancer), treatment-related variables (chemotherapy drugs 
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and their doses, irradiation), and outcome-related cardiac measure (AF) and quality 

of life measures (general health, vitality, and physical health; see Cox et al., 2008). 

None of the patients had clinically defined cardiac dysfunction at the time of study 

evaluation. The AAF prevalence was 13.9%. Further details regarding the study 

can be found in Hudson et al. (2007). 

A common practice in estimation of the incidence rates and their confidence 

intervals is to assume the time of follow-up as the onset time and use the familiar 

and widely-used Kaplan-Meier approach (Pui, 2003; Kaplan & Meier, 1958). This 

approach is crude and provides biased estimates of cumulative incidence rates, as 

noted in Odell, Anderson, and D’Agostino (1992) and J. K. Lindsey (1998). In 

addition, there are several issues such as missingness among correlated measures 

of cardiotoxicity and accounting for competing risks (due to death or other 

toxicities) that make the analysis of such data more interesting and challenging. 

Furthermore, some patients who were potentially eligible to be enrolled on the 

study but died were not included in this study. Generalizing the results from the 

selected group of survivors leads to biased results, but alternative approaches such 

as those based on sampling weights could be adopted to obtain relatively unbiased 

estimates. Srivastava, Hudson, Robison, Wu, and Rai (2015) provided a relatively 

detailed account of the statistical issues involved with the design and analysis of 

cohort studies. Thus, the focus here will be on estimating the incidence rates of 

specific toxicities using a robust parametric approach. 

Likelihood-Estimation for General Model 

Hudson et al. (2007) did not include patients who died or had cardiac failure during 

the treatment or during the follow-up. However, this information was available 

from the medical records. Therefore, the general theory for cross-sectional data, 

with indicators of cardiac abnormality and death, and time since treatment to survey 

or death is presented here. 

Following Rai et al (2013), let T denote the observation time (death, cardiac 

failure, or survey) from the date of diagnosis and let U denote the time of cardiac 

abnormality (such as AAF) from the date of diagnosis, which is unknown. Note 

that T and U are measured from the date of cancer diagnosis and are not the current 

age of the patient. 
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Figure 1. An abnormal cardiac measure-death/cardiac failure model involving three 
states: State 1 – patients who are alive with no cardiac abnormality; State 2 – patients 
who are alive with abnormal cardiac measure; and State 3 – (an absorbing state) death 
or cardiac failure patients; the intensity λ1(u), λ2(t), and λ3(t | u) are the transition rates, 
where t is the observation time and u is the time of cardiac abnormality 
 

 

The survival and prevalence functions are defined as 
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The parameter of interest is 
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the cumulative hazard function, but we observe π(t). 

Let θ, the transition intensities, represent the full parametric vector. To 

construct the likelihood function, we summarize observations into 4 groups: 1) 

Death with No Cardiac Abnormality, 2) Alive with No Cardiac Abnormality, 3) 

Death/Cardiac Failure with Cardiac Abnormality, and 4) Alive with Cardiac 

Abnormality. Furthermore, let the corresponding contributions to the likelihood be 

L1(t)-L4(t) and each individual contributes to only one term in the likelihood, where 
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Note that the likelihood function depends on θ, in addition to the observation time 

and status, but θ is suppressed for notational convenience. 

For parametric modeling, a variety of distributions can be used and the 

intensity functions for a selection of commonly-used parametric distributions are 

provided in Table 1. For the parametric modeling, any of the various parametric 

forms of the intensities, e.g. those listed in Table 1, can be considered, and the 

inference based on likelihood approach can be carried out. However, in light of the 

flexibility provided by the Weibull distribution in modeling monotone intensity 
 
 
Table 1. Some parametric distributions and their corresponding intensity functions 
 

Distribution Density f(t) Intensity function λ(t) 

Exponential -ηt
ηe  η  

Weibull ( ) ( )
α α

ηα t ηt
-1

exp -  
α

ηαt
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Log-Normal ( ) ( )( )π t γ ηtγ
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γ γ
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Note: Ik(s) is the incomplete gamma integral 
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function and the ease of having a relatively simplified form of the likelihood 

function, details of the inference procedure under the Weibull distribution are 

provided. 

Inference under the Weibull Model 

For reporting the results of survival analysis to the practitioners, the focus is often 

on estimating the cumulative incidence at fixed time points, such as 5 or 10 years, 

along with their corresponding 95% confidence intervals. The data observed for 

each patient, at a particular time, consists of observation time T and two status 

indicators: δ (patient’s status) and γ (patient’s event status). Let (tj, δj, γj) be the 

triplet observation for the jth subject; δj = 1 represents if the jth subject had the event 

at time tj, while γj = 1 represents the jth subject’s abnormal value (cardiac 

abnormality) at time tj. 

The intensity functions defined by ( ) 1
λ i

i i it t
 −

=  for i = 1, 2, leads to 

( ) ( )Q exp i

i it t
= − , and ( ) ( ) ( )1 2

1 2Q exp expt t t
  = − − . The intensity function 

λ3(t | u) can be specified by ( ) 3 1SM

3 3 3λ |t u t
  −

=  under the assumption of a semi-

Markov process which leads to ( ) ( )( )3 3SM

3 3Q | expt u t u
 = − − , or as 

( ) ( ) 3 1M

3 3 3λ |t u t u


 
−

= −  under the assumption of a Markov process which leads 

to ( ) ( )( )3M

3 3Q | expt u t u


= − − ; see Kalbfleisch and Lawless (1985) and 

Harezlak, Gao, and Hui (2003). The components of the likelihood contribution are: 
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and 
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Then the log-likelihood function is presented as 

 

 

( )

( ) ( ) ( ) ( )

1 1 2 2 3 3

1 2 3 4

1

, , , , ,

log L log L log L log L
n

i i i i i i i i

i

l

a t b t c t d t

     

=

= + + +  
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where ai = δi(1 – γi), bi = (1 – δi)(1 – γi), ci = δiγi, and di = (1 – δi)γi are the 

indicators corresponding to observations of type 1 to 4 discussed above. The 

likelihood contributions for rest of the distributions, except exponential, listed in 

Table 1 are cumbersome. This may be another reason why the Weibull distribution 

has been extensively used in practice. 

The maximum likelihood estimates can be obtained by solving the non-linear 

equations obtained by taking the first order derivatives of the likelihood function in 

(3) with respect to the parameters and equating them to 0. The estimates are often 

obtained using the statistical software packages, such as R, that maximize the 

likelihood function in (3) directly or solve the non-linear set of equations, but it 

may be noted that the justification of the asymptotic normality of the estimates is 

for the solutions of the likelihood equations; see Rao (1973). 

Simulation Study 

A simulation study was undertaken to compare the results obtained using piecewise 

exponential and Weibull distributions. The simulations were conducted using 

continuous time scale; see Rai (2008). In the continuous scale model with 

maximum follow-up of 10 years the events can occur at any time between 0 and 10 

years. Two sample sizes (n = 100 and n = 400) were considered. Three different 

design settings were considered for the simulation study. For each scenario the 

estimates of the cumulative incidence (CI) and their standard errors (SEs) were 

obtained based on 5000 replications. 
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Setting I. In this setting, the data were generated from piecewise exponential 

distributions and the estimates of CI (at various time points) were obtained using 

piecewise exponential and Weibull distributions. Specifically, the data were 

generated using a piecewise exponential distribution with two pieces characterized 

by λ11 = λ11(t) and λ12 = λ12(t) of the parameter λ1 = λ1(t) described in Figure 1. The 

set of parameter values of (λ11, λ12) chosen was (0.15, 0.4) to closely resemble the 

simulation parameters considered by Rai et al. (2013). To mimic the situation of 

longer follow-up for the majority of patients, 20% of the patients were expected to 

have shorter follow-up with intensity function λ11 and 80% were expected to have 

longer follow-up with intensity function λ12. For the follow-up time of 10 years the 

change points considered were 2 and 5 years. Once the data was generated from 

piecewise exponential with λ11 = 0.15 and λ12 = 0.4, then the estimates of the CI at 

various time points were estimated using 2-piece exponential and Weibull 

distributions. The results of the comparison are summarized in Table 2. 
 
 
Table 2. Performance of Weibull model for the data generated from piecewise 
exponential distributions with λ11 = 0.15 and λ12 = 0.4 
 
 

Follow-up 
time/Change point 

  Piecewise Exponential  Weibull 

n Time True CI CI (SE)  CI (SE) 

100 10 years/ 1 0.14 0.14 (0.06)  0.14 (0.06) 
 2 year 2 0.26 0.25 (0.11)  0.32 (0.08) 
  3 0.50 0.51 (0.06)  0.50 (0.07) 
  4 0.67 0.68 (0.05)  0.65 (0.06) 
  5 0.78 0.78 (0.05)  0.76 (0.05) 
  6 0.85 0.85 (0.04)  0.85 (0.04) 
  7 0.90 0.90 (0.04)  0.90 (0.04) 
  8 0.93 0.93 (0.03)  0.94 (0.03) 
  9 0.95 0.95 (0.02)  0.96 (0.03) 
  10 0.97 0.97 (0.02)  0.98 (0.02) 
         

 10 years/ 1 0.14 0.14 (0.03)  0.10 (0.05) 
 5 year 2 0.26 0.26 (0.05)  0.24 (0.07) 
  3 0.36 0.36 (0.07)  0.37 (0.07) 
  4 0.45 0.45 (0.08)  0.50 (0.06) 
  5 0.53 0.52 (0.08)  0.61 (0.06) 
  6 0.68 0.69 (0.06)  0.70 (0.05) 
  7 0.79 0.79 (0.06)  0.78 (0.05) 
  8 0.86 0.86 (0.06)  0.84 (0.05) 
  9 0.90 0.90 (0.05)  0.88 (0.05) 
  10 0.94 0.93 (0.04)  0.91 (0.05) 
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Table 2 (continued). 
 
 Follow-up 

time/Change point 

  Piecewise Exponential  Weibull 

n Time True CI CI (SE)  CI (SE) 

400 10 years/ 1 0.14 0.14 (0.03)  0.14 (0.03) 
 2 year 2 0.26 0.26 (0.05)  0.32 (0.04) 
  3 0.50 0.51 (0.03)  0.50 (0.04) 
  4 0.67 0.67 (0.03)  0.65 (0.03) 
  5 0.78 0.78 (0.03)  0.76 (0.03) 
  6 0.85 0.85 (0.02)  0.84 (0.02) 
  7 0.90 0.90 (0.02)  0.90 (0.02) 
  8 0.93 0.93 (0.02)  0.94 (0.02) 
  9 0.95 0.95 (0.01)  0.96 (0.01) 
  10 0.97 0.97 (0.01)  0.98 (0.01) 
         

 10 years/ 1 0.14 0.14 (0.02)  0.10 (0.03) 
 5 year 2 0.26 0.26 (0.03)  0.24 (0.03) 
  3 0.36 0.36 (0.03)  0.38 (0.03) 
  4 0.45 0.45 (0.04)  0.50 (0.03) 
  5 0.53 0.53 (0.04)  0.61 (0.03) 
  6 0.68 0.69 (0.03)  0.70 (0.03) 
  7 0.79 0.79 (0.03)  0.78 (0.03) 
  8 0.86 0.86 (0.03)  0.83 (0.03) 
  9 0.90 0.90 (0.03)  0.88 (0.03) 
  10 0.94 0.93 (0.02)  0.91 (0.02) 

 
 

Setting II. In this setting, the data were generated from two different Weibull 

distributions corresponding to two different scenarios: (A) h(2) = 0.15, h(10) = 0.4 

(slow increasing hazard) and (B) h(2) = 0.15 and h(5) = 0.4 (rapidly increasing 

hazard), where h(t) represents the value taken by the Weibull hazard function at 

time t. For each generated data set the cumulative incidence estimates were 

obtained using Weibull and piecewise exponential distributions with change point 

assumed to be at (a) t – 1, (b) t, and (c) t + 1 years, where t is the time point at which 

h(t) = 0.15 with the follow-up period of 10 years. The results of the comparison are 

summarized in Table 3. 

 

Setting III. In this phase, the data was generated from piecewise exponential 

distributions as in Setting 1. However, since the change point is usually unknown, 

we assumed it to be at (a) t – 1, (b) t, and (c) t + 1 years for the data generated with 

true change points at t = 2 and t = 5 years, respectively. The results of the 

comparison are summarized in Table 4. 
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Table 3. Performance of piecewise exponential (PE) with three assumed change points 
(a), (b), and (c) for the data generated from Weibull distributions corresponding to cases 
A and B with 10 year follow-up 
 

    
Weibull 

 
PE (a) 

 
PE (b) 

 
PE (b) 

n Cases* Time True CI CI (SE)  CI (SE)  CI (SE)  CI (SE) 

100 A 1 0.06 0.06 (0.03)  0.03 (0.06)  0.06 (0.04)  0.09 (0.04) 
  2 0.17 0.17 (0.06)  0.22 (0.04)  0.12 (0.08)  0.17 (0.06) 
  3 0.30 0.30 (0.07)  0.37 (0.05)  0.32 (0.05)  0.24 (0.09) 
  4 0.43 0.43 (0.06)  0.50 (0.05)  0.48 (0.05)  0.44 (0.06) 
  5 0.56 0.56 (0.06)  0.59 (0.05)  0.59 (0.06)  0.58 (0.06) 
  6 0.66 0.67 (0.06)  0.67 (0.05)  0.69 (0.06)  0.69 (0.06) 
  7 0.75 0.76 (0.06)  0.74 (0.05)  0.76 (0.06)  0.76 (0.06) 
  8 0.82 0.83 (0.06)  0.79 (0.05)  0.81 (0.05)  0.82 (0.05) 
  9 0.88 0.88 (0.05)  0.83 (0.05)  0.85 (0.05)  0.86 (0.05) 
   10 0.92 0.92 (0.05)  0.86 (0.04)  0.88 (0.04)  0.90 (0.04) 
               
 B 1 0.03 0.04 (0.02)  0.10 (0.03)  0.04 (0.04)  0.14 (0.03) 
  2 0.13 0.13 (0.05)  0.18 (0.06)  0.07 (0.07)  0.26 (0.05) 
  3 0.28 0.28 (0.07)  0.26 (0.08)  0.35 (0.05)  0.36 (0.06) 
  4 0.46 0.45 (0.07)  0.33 (0.09)  0.55 (0.05)  0.45 (0.07) 
  5 0.62 0.62 (0.06)  0.62 (0.06)  0.68 (0.06)  0.52 (0.08) 
  6 0.76 0.76 (0.06)  0.78 (0.06)  0.78 (0.05)  0.59 (0.08) 
  7 0.86 0.86 (0.05)  0.87 (0.05)  0.84 (0.05)  0.84 (0.06) 
  8 0.92 0.93 (0.04)  0.92 (0.04)  0.89 (0.04)  0.93 (0.04) 
  9 0.96 0.96 (0.02)  0.95 (0.03)  0.92 (0.03)  0.96 (0.03) 
  10 0.98 0.98 (0.02)   0.98 (0.02)   0.94 (0.03)   0.98 (0.02) 
               

400 A 1 0.14 0.06 (0.02)  0.03 (0.03)  0.06 (0.02)  0.09 (0.02) 
  2 0.26 0.17 (0.03)  0.22 (0.02)  0.12 (0.04)  0.17 (0.03) 
  3 0.50 0.30 (0.03)  0.37 (0.02)  0.32 (0.03)  0.24 (0.05) 
  4 0.67 0.43 (0.03)  0.49 (0.03)  0.47 (0.03)  0.43 (0.03) 
  5 0.78 0.56 (0.03)  0.59 (0.03)  0.59 (0.03)  0.58 (0.03) 
  6 0.85 0.67 (0.03)  0.67 (0.03)  0.68 (0.03)  0.68 (0.03) 
  7 0.90 0.75 (0.03)  0.74 (0.03)  0.75 (0.03)  0.76 (0.03) 
  8 0.93 0.82 (0.03)  0.79 (0.03)  0.81 (0.03)  0.82 (0.03) 
  9 0.95 0.88 (0.03)  0.83 (0.02)  0.85 (0.02)  0.87 (0.03) 
  10 0.97 0.92 (0.02)  0.86 (0.02)  0.88 (0.02)  0.90 (0.02) 
               
 B 1 0.14 0.03 (0.01)  0.10 (0.02)  0.04 (0.02)  0.14 (0.01) 
  2 0.26 0.14 (0.03)  0.18 (0.03)  0.07 (0.03)  0.26 (0.02) 
  3 0.36 0.28 (0.04)  0.26 (0.04)  0.35 (0.02)  0.36 (0.03) 
  4 0.45 0.46 (0.04)  0.33 (0.05)  0.54 (0.03)  0.45 (0.04) 
  5 0.53 0.62 (0.03)  0.61 (0.03)  0.68 (0.03)  0.52 (0.04) 
  6 0.68 0.76 (0.03)  0.78 (0.03)  0.77 (0.03)  0.59 (0.04) 
  7 0.79 0.86 (0.02)  0.87 (0.02)  0.84 (0.02)  0.83 (0.03) 
  8 0.86 0.92 (0.02)  0.92 (0.02)  0.89 (0.02)  0.93 (0.02) 
  9 0.90 0.96 (0.01)  0.95 (0.01)  0.92 (0.02)  0.97 (0.01) 

    10 0.94 0.98 (0.01)   0.97 (0.01)   0.94 (0.01)   0.99 (0.01) 
 

Note: *For a description of Weibull distributions and other parameters see Setting II in Simulations Study 
section 
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Table 4. Performance of Weibull model and piecewise exponential PE) distribution for 
varying change points when the data is generated from piecewise exponential 
distributions with λ11 = 0.15 and λ12 = 0.4 
 
 

Follow-up time/ 
Change point 

  
Weibull 

 
PE (a) 

 
PE (b) 

 
PE (b) 

n Time True CI CI (SE)  CI (SE)  CI (SE)  CI (SE) 

100 10 years/ 1 0.06 0.14 (0.06)  0.09 (0.09)  0.14 (0.06)  0.17 (0.05) 
 2 year 2 0.17 0.32 (0.08)  0.36 (0.06)  0.25 (0.11)  0.31 (0.08) 
  3 0.30 0.50 (0.07)  0.55 (0.05)  0.52 (0.06)  0.43 (0.10) 
  4 0.43 0.65 (0.06)  0.68 (0.05)  0.68 (0.05)  0.65 (0.06) 
  5 0.56 0.76 (0.05)  0.78 (0.05)  0.78 (0.05)  0.78 (0.05) 
  6 0.66 0.85 (0.04)  0.84 (0.04)  0.85 (0.04)  0.86 (0.05) 
  7 0.75 0.90 (0.04)  0.89 (0.04)  0.90 (0.04)  0.91 (0.04) 
  8 0.82 0.94 (0.03)  0.92 (0.03)  0.93 (0.03)  0.94 (0.03) 
  9 0.88 0.96 (0.03)  0.94 (0.03)  0.95 (0.02)  0.96 (0.03) 
   10 0.92 0.98 (0.02)   0.96 (0.02)   0.97 (0.02)   0.97 (0.02) 
               

 10 years/ 1 0.03 0.10 (0.05)  0.13 (0.03)  0.14 (0.03)  0.15 (0.03) 
 5 year 2 0.13 0.24 (0.07)  0.25 (0.06)  0.26 (0.05)  0.27 (0.05) 
  3 0.28 0.37 (0.07)  0.34 (0.08)  0.36 (0.07)  0.38 (0.06) 
  4 0.46 0.50 (0.06)  0.43 (0.09)  0.45 (0.08)  0.47 (0.07) 
  5 0.62 0.61 (0.06)  0.60 (0.06)  0.52 (0.08)  0.55 (0.07) 
  6 0.76 0.70 (0.05)  0.71 (0.06)  0.69 (0.06)  0.61 (0.08) 
  7 0.86 0.78 (0.05)  0.79 (0.06)  0.79 (0.06)  0.77 (0.06) 
  8 0.92 0.84 (0.05)  0.85 (0.05)  0.86 (0.06)  0.86 (0.06) 
  9 0.96 0.88 (0.05)  0.89 (0.05)  0.90 (0.05)  0.91 (0.05) 
  10 0.98 0.91 (0.05)   0.92 (0.04)   0.93 (0.04)   0.94 (0.05) 
               

400 10 years/ 1 0.14 0.14 (0.03)  0.10 (0.04)  0.14 (0.03)  0.17 (0.03) 
 2 year 2 0.26 0.32 (0.04)  0.36 (0.03)  0.26 (0.05)  0.32 (0.04) 
  3 0.50 0.50 (0.04)  0.55 (0.03)  0.51 (0.03)  0.44 (0.05) 
  4 0.67 0.65 (0.03)  0.68 (0.03)  0.67 (0.03)  0.64 (0.03) 
  5 0.78 0.76 (0.03)  0.77 (0.02)  0.78 (0.03)  0.77 (0.03) 
  6 0.85 0.84 (0.02)  0.84 (0.02)  0.85 (0.02)  0.85 (0.02) 
  7 0.90 0.90 (0.02)  0.89 (0.02)  0.90 (0.02)  0.90 (0.02) 
  8 0.93 0.94 (0.02)  0.92 (0.02)  0.93 (0.02)  0.94 (0.02) 
  9 0.95 0.96 (0.01)  0.94 (0.01)  0.95 (0.01)  0.96 (0.01) 
  10 0.97 0.98 (0.01)   0.96 (0.01)   0.97 (0.01)   0.97 (0.01) 
               

 10 years/ 1 0.14 0.10 (0.03)  0.13 (0.02)  0.14 (0.02)  0.15 (0.01) 
 5 year 2 0.26 0.24 (0.03)  0.25 (0.03)  0.26 (0.03)  0.27 (0.02) 
  3 0.36 0.38 (0.03)  0.35 (0.04)  0.36 (0.03)  0.38 (0.03) 
  4 0.45 0.50 (0.03)  0.43 (0.04)  0.45 (0.04)  0.47 (0.03) 
  5 0.53 0.61 (0.03)  0.59 (0.03)  0.53 (0.04)  0.55 (0.04) 
  6 0.68 0.70 (0.03)  0.71 (0.03)  0.69 (0.03)  0.62 (0.04) 
  7 0.79 0.78 (0.03)  0.79 (0.03)  0.79 (0.03)  0.77 (0.03) 
  8 0.86 0.83 (0.03)  0.85 (0.03)  0.86 (0.03)  0.86 (0.03) 
  9 0.90 0.88 (0.03)  0.89 (0.02)  0.90 (0.03)  0.91 (0.03) 

    10 0.94 0.91 (0.02)   0.92 (0.02)   0.94 (0.02)   0.96 (0.02) 
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From Table 2, for Setting I, it is clear that when the data are generated from 

piecewise exponential distributions the estimates obtained using piecewise 

exponential are almost unbiased, whereas those based on a Weibull distribution are 

slightly biased with the most bias occurring at the change point. For example, when 

n = 100, the true value of the CI at 2 years is 0.26, whereas the estimates of CI 

corresponding to the piecewise exponential and Weibull distributions are 0.25 and 

0.32, respectively. Similarly, for n = 400, the true value of the CI at 8 years is 0.93 

and the estimates corresponding to piecewise exponential and Weibull are 0.93 and 

0.94, respectively. 

Table 3 summarizes the findings from the simulation experiment for Setting 

II corresponding to sample sizes 100 and 400. This is the situation where the data 

are generated from Weibull distributions and both Weibull and piecewise 

exponential distributions are used to obtain the estimates. For Case B, the rapidly 

rising hazard situation, when the sample size is 100, the true values of the CI 

corresponding to 2, 5, and 10 years are 0.13, 0.62, and 0.98, respectively. The 

corresponding estimates based on Weibull and piecewise exponential with cut point 

at 5 years are 0.13, 0.62, 0.98, and 0.07, 0.68, 0.94, respectively, suggesting that 

the estimates obtained using the exponential distribution are biased. Furthermore, 

if the cut point is not guessed correctly, then these estimates corresponding to cut 

point at 4 or 6 years are 0.18, 0.62, 0.98 and 0.26, 0.52, 0.98, respectively, 

suggesting that the bias could be more pronounced if the cut points are not 

appropriately chosen. The findings are similar for sample size 400. 

The simulation results corresponding to Setting III are summarized in Table 

4. This is the setting where the data are generated from piecewise exponential 

distributions with cut point at t = 2 or t = 5 years and the estimates are obtained 

using piecewise exponential distributions with cut points assumed to be at t – 1, t, 

and t + 1. It is seen that if the cut point is not appropriately chosen then the estimates 

can be significantly biased. For example, when n = 100 and change point is at t = 5, 

then the estimates of the CI at 2, 5, and 10 years from the piecewise exponential 

distribution are 0.25, 0.60, and 0.92 at 4 years, 0.26, 0.52, and 0.93 at 5 years, and 

0.27, 0.55, and 0.94 at 6 years, whereas the true values are 0.26, 0.53, and 0.94, 

respectively. 

Application to a Phase IV Cancer Trial 

The approach based on a semi-Markov assumption proposed above was applied to 

the motivating example and then compared with the non-parametric approach as in 

Sun (2006) and the piecewise exponential proposed by Rai et al. (2013). The study 
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cohort reported in Hudson et al. (2007) did not include the patients who died or had 

already experienced cardiac failure. Rai et al. adopted a piecewise exponential 

distribution of model Cardiac data reported in Hudson et al. and in a subjective 

manner chose the change point to be at 5 years, i.e. tc = 5, and assumed the hazard 

rates to be λ11 for t < tc and λ12 for t ≥ tc. In view of the data collected they obtained 

likelihood solutions for the special case λ2 – λ3. They also examined the usefulness 

of having more than one change point and modeled the data with three piecewise 

exponential distributions. However, the results from the data analysis suggested 

that the group effects were better detected with two piecewise exponential 

distributions compared to three piecewise exponential distributions and was used 

to interpret the findings. Here, the Weibull distribution was used for modeling 

current status data and applied it to Cardiac data. The maximum likelihood 

estimates for the special case of λ2 = λ3 = 0, ai = ci = 0 were obtained using the 

statistical software package R. 

Because Rai et al. (2013) concluded that the piecewise exponential 

distribution provided better results than the interval censored approach, as 

implemented in SAS procedure LIFEREG, the current results were not compared 

with the interval censored approach. Thus, four approaches to compute the 

incidence rates were used and compared. One is the nonparametric approach based 

on Sun (2006). Because there are very few events prior to 5 years, two types of  
 
 
Table 5. Cumulative incidence functions for AAF 
 

   Weibull  Exp-1  Exp-2 

Year Nonparametric CI  CI SE  CI SE  CI SE 

1 0.0000  0.0000 0.0000  0.0160 0.0030  0.0000 0.0000 

2 0.0000  0.0000 0.0000  0.0320 0.0050  0.0000 0.0000 

3 0.0000  0.0000 0.0000  0.0470 0.0080  0.0000 0.0000 

4 0.0000  0.0000 0.0000  0.0630 0.0100  0.0000 0.0000 

5 0.0000  0.0000 0.0000  0.0790 0.0130  0.0000 0.0000 

6 0.0000  0.0620 0.0250  0.0950 0.0160  0.0300 0.0050 

7 0.0590  0.0920 0.0280  0.1100 0.0180  0.0590 0.0100 

8 0.0590  0.1140 0.0320  0.1260 0.0210  0.0890 0.0150 

9 0.1250  0.1330 0.0370  0.1420 0.0230  0.1190 0.0200 

10 0.2000  0.1500 0.0430  0.1580 0.0260  0.1490 0.0250 

11 0.2000  0.1650 0.0480  0.1740 0.0290  0.1780 0.0300 

12 0.2000  0.1790 0.0540  0.1890 0.0310  0.2080 0.0350 

13 0.2000  0.1920 0.0600  0.2050 0.0340  0.2380 0.0400 

14 0.2000  0.2040 0.0660  0.2210 0.0370  0.2670 0.0450 

15 0.2000  0.2150 0.0720  0.2370 0.0390  0.2970 0.0500 

20 0.2500  0.2640 0.0980  0.3160 0.0520  0.4460 0.0750 
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Figure 2. Cumulative incidence function for the four models 
 

 

exponential models were considered: the first with a constant incidence rate 

(denoted by Exp-1), the second with two incidence rates (one up to 5 years as zero 

and the and second beyond 5 years as non-zero positive constant, i.e. piecewise 

exponential with two pieces denoted by Exp-2). The fourth approach is to obtain 

the incidence rates using the proposed Weibull distribution, denoted by Weibull. 

The cumulative incidence functions and their standard errors based on these 

approaches are presented in Table 5 and Figure 2 for AAF. 

The cumulative incidence estimates, along with their 95% confidence 

intervals at specific time points, are provided in Table 6. To avoid the possibility 

of the lower limits of the confidence intervals going below 0, we obtain the 

confidence limits on the log-scale using log-transformation in conjunction with the 

delta method, and then transformed the limits back to obtain the confidence limits 

in original scale, which are also reported in Table 6. 
 
 
Table 6. Cumulative incidence (CI) functions and 95% Confidence Intervals (CIs) at fixed 
time points for Weibull fit to AAF data 
 

Year CI 
Confidence intervals 

based on MLE 
Confidence intervals using 

log-transformation approach 

1 0.000 (0.000, 0.000) (0.000, 0.000) 

3 0.000 (0.000, 0.000) (0.000, 0.000) 

5 0.000 (0.000, 0.000) (0.000, 0.000) 

10 0.150 (0.066, 0.234) (0.086, 0.263) 

15 0.215 (0.074, 0.356) (0.112, 0.414) 

20 0.264 (0.072, 0.456) (0.128, 0.547) 
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The effect of anthracycline exposure on the cumulative incidence of cardiac 

abnormality was evaluated using likelihood ratio test by fitting the proposed models 

for the two groups (AR and NR) independently and then after combing them 

together. The p-values corresponding to piecewise exponential (Exp-2), Weibull, 

and logistic regression are 0.012, 0.044, and 0.065, respectively. The proposed 

approach supports the finding obtained by the piecewise exponential distribution 

but not by logistic regression that those at risk (AR group) have a higher CI of 

developing abnormal afterload (AAF). 

Acknowledgements 

Acknowledgements: The research work of Deokumar Srivastava and Melissa 

Hudson was in part supported by the Cancer Center Support (CORE) grant CA 

21765 and by the American Lebanese Syrian Associated Charities (ALSAC). Shesh 

Rai's research work was supported by Wendell Cherry Chair in Clinical Trial 

Research. The authors are thankful to the referees and the editor for their very 

helpful comments which led to a substantially improved manuscript. 

Conclusions 

The approach based on the Weibull model is better because it is able to capture the 

group effect appropriately without having to make any assumptions about the cut 

point and relaxing the restrictive and unrealistic assumption of constant hazard rates 

for the two pieces. In addition, it is seen that the CI estimates based on the Weibull 

model closely match the ones obtained using the nonparametric approach. Thus, 

the estimates and test based on the Weibull distribution may be capturing the 

underlying hazard pattern appropriately without making restrictive assumptions 

about change point or the hazards being constant within particular time period. 

There will always be situations for which the use of a piecewise exponential 

distribution might be more appropriate (e.g., assumptions underlying the use of 

piecewise exponential distribution would be valid and more appropriate), and in 

those situations more efficient estimates of the parameters and cumulative 

incidence rate can be obtained. However, even in such situations, based on the 

simulation results it is seen that the results obtained from the Weibull distribution 

are reasonable, with most discrepancies observed near the location of the change 

points. Thus, this approach is robust in terms of detecting the group effects, 

providing reasonable fixed term adverse-effect-incidence rates along with 
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confidence intervals. This can be implemented as a routine analysis for similar 

studies at ours and other cancer centers. 

Often, when designing similar studies, questions are asked about required 

sample size for comparing adverse event rates at fixed time-points. The fixed time-

point estimates and confidence intervals obtained using Weibull model along with 

design parameters can be used to justify the required sample size. Another 

extension of this work is to study other types of long term adverse effects such as 

kidney stones in long-term survivors of childhood acute lymphoblastic leukemia, 

Kaste et al, (2009). This can be modelled using a competing risk model or a 

bivariate model that we plan to study further. 
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