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The violation of the assumption of homoscedasticity and the presence of high leverage 

points (HLPs) are common in the use of regression models. The weighted least squares can 

provide the solution to heteroscedastic regression model if the heteroscedastic error 

structures are known. Based on Furno (1996), two robust weighting methods are proposed 

based on HLP detection measures (robust Mahalanobis distance based on minimum 

volume ellipsoid and diagnostic robust generalized potential based on index set equality 

(DRGP(ISE)) on robust heteroscedasticity consistent covariance matrix estimators. Results 

obtained from a simulation study and real data sets indicated the DRGP(ISE) method is 

superior. 

 

Keywords: Linear regression, robust HCCM estimator, ordinary least squares, 

weighted least squares, high leverage points 

 

Introduction 

Ordinary least squares (OLS) is a widely used method for analyzing data in multiple 

regression models. The homoscedasticity assumption (i.e., equal variances of the 

errors) is often violated in most empirical analyses. As a result, the error variances 

tend to be heteroscedastic (unequal variances of the errors). Although OLS is still 

unbiased, its estimates become inefficient and will not provide reliable inference 

due to the inconsistency of the variance-covariance matrix estimator. 

The commonly used estimation strategy for a heteroscedasticity of unknown 

form is to perform OLS estimation, and then employ a heteroscedasticity consistent 
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covariance matrix (HCCM) estimator denoted by HC0 (see White, 1980). It is 

consistent under both homoscedasticity and heteroscedasticity of unknown form. 

The weakness of the HC0 estimator is it is biased in finite samples (MacKinnon & 

White, 1985; Cribari-Neto & Zarkos, 1999; Long & Ervin, 2000; Rana, Midi, & 

Imon, 2012). MacKinnon and White (1985) proposed another HCCM estimator 

referred to as HC1 and HC2. Davidson and MacKinnon (1993) slightly modified 

HC2 and named it HC3; it is closely approximated to the jackknife estimator. 

Cribari-Neto (2004) proposed another HCCM estimator where the residuals were 

adjusted by a leverage factor and called it HC4. Cribari-Neto, Souza, and 

Vasconcellos (2007) proposed HC5, wherein the exponent used in HC4 was 

modified to consider the effect of maximal leverage. 

HCCM estimators are constructed using the OLS residuals vector. In the 

presence of outliers in the X-direction or high leverage points (HLPs), the 

coefficient estimates and residuals are biased. As a consequence, the inference 

becomes misleading. Furno (1996) proposed the robust heteroscedasticity 

consistent covariance matrix (RHCCM) in order to reduce the biased caused by 

leverage points. Residuals of a weighted least squares (WLS) regression were 

employed, where the weights were determined by the leverage measures (hat 

matrix) of the different observations. Lima, Souza, Cribari-Neto, and Fernandes 

(2009) built on Furno's procedure based on least median of squares (LMS) and least 

trimmed squares (LMS) residuals. A shortcoming of Furno’s method is, in the 

presence of HLPs, the variances tend to be large resulting to unreliable parameter 

estimates which is due to the effect of swamping and masking of HLPs. The main 

reason for this weakness is the use of the hat matrix in determining the weight of 

the RHCCM algorithm of Furno (1996). Peña and Yohai (1995) showed swamping 

and masking results from the presence of HLPs in linear regression. It is evident 

that the hat matrix is not very successful in detecting HLPs (Habshah, Norazan, & 

Imon, 2009). Consequently, less efficient estimates are obtained by employing an 

unreliable method of detecting HLPs. Furno’s work has motivated us to use a 

weight function based on a more reliable diagnostic measure for the identification 

of HLPs. 

In this study, two new robust weighting methods are proposed based on HLPs 

detection measures; robust Mahalanobis distance based on minimum volume 

ellipsoid (RMD(MVE)) and diagnostic robust generalized potential based on index 

set equality (DRGP(ISE)) of Lim and Habshah (2016). The weights determined by 

DRGP(ISE) are expected to successfully down weight all HLPs. The DRGP(ISE) 

technique has been proven to be very successful in down weighting HLPs with low 
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masking and swamping effects and less computational complexity, and the 

algorithm is very fast compared to DRGP(MVE). 

Heteroscedasticity Consistent Covariance Matrix (HCCM) 
Estimators 

Consider a regression model 

 

 = +y Xβ ε   (1) 

 

where y is an n × 1 vector of responses, X is an n × p matrix of independent 

variables, β is a vector of regression parameters, and ε is the n-vector of random 

errors. For heteroscedasticity the errors are such that E(εi) = 0, var(εi) = σi
2 for 

i = 1,…, n, and E(εi εs) = 0 for all i ≠ s. The covariance matrix of ε is given as 

Φ = diag{σi
2}. The ordinary least squares (OLS) estimator of β is ( )

1ˆ −
 =β XX X y , 

which is unbiased, with the covariance matrix given by 

 

 ( ) ( ) ( )
1 1

cov ˆ − −
=  β XX XΦX XX   (2) 

 

However, under homoscedasticity, σi
2 = σ2 which implies Φ = σ2In, where In 

is the n × n identity matrix. The covariance matrix ( ) ( )
12c ˆov 
−

= β XX  is 

estimated by ( )
12̂
−

X X  (which is inconsistent and biased under 

heteroscedasticity), and 2ˆ ˆ ˆ n p = −ε ε , ( )ˆ
n= −ε I H y , where H is an idempotent 

and symmetric matrix known as a hat matrix, leverage matrix, or weight matrix 

(according to different authors). The hat matrix (H) is defined as H = X(X'X)-1X', 

and it plays great role in determining the HLPs in regression model. The diagonal 

elements hi = xi(x'x)-1xi' for i = 1,…, n of the hat matrix are the values for leverage 

of the ith observations. 

White (1980) proposed the most popular HCCM estimator, known as HC0, 

where he replaced the σi
2 with 2ˆ

i  in the covariance matrix of β̂ , i.e. 

 

 ( ) ( )
1 1

0H 0 ˆC
− −

 = X X XΦ X XX   (3) 
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where,  2

0
ˆ ˆdiag i=Φ . HC0, HC1, HC2, and HC3 are generally biased for small 

sample size (see Furno, 1997; Lima et al., 2009; Hausman & Palmer, 2012). This 

paper will focus only on HC4 and HC5. The HC4 proposed by Cribari-Neto (2004) 

was built under HC3, and is defined as follows: 

 

 ( ) ( )
1 1

4H 4 ˆC
− −

 = X X XΦ X XX   (4) 

 

where 

 

 
( )

2

4 diag
1

ˆˆ
i

i

ih


  
=  

−  

Φ   

 

for i = 1,…, n with δi = min{4, hi/h}, which control the discount factor of the ith 

squared residuals, given by the ratio between hi and the average values of the hi (h). 

Note that δi = min{4, nhi/p}. Since 0 < 1 – hi < 1 and δi > 0 it follows that 

( )0 1 1i

ih


 −  . The larger hi is relative to h, the more the HC4 discount factor 

inflates the ith squared residual. The truncation at 4 amounts to twice what is used 

in the definition of HC3; that is, δi = 4 when hi > 4h = 4p/n. The result obtained by 

Cribari-Neto (2004) suggested HC4 inference in finite sample size relative to HC3. 

Similarly, another modification of the exponent (1 – hi) of HC4 was proposed 

by Cribari-Neto et al. (2007) to control the level of maximal leverage. The estimator 

was called HC5 and defined as 

 

 ( ) ( )
1 1

5H 5 ˆC
− −

 = X X XΦ X XX   (5) 

 

where 

 

 

( )

2

5 diag  
1

ˆˆ
i

i

ih



 
 

=  
 − 

Φ   

 

for i = 1,…, n with 

 

 maxmin ,max 4,i
i

h kh

h h


  
=   

  
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which determine how much the ith squared residual should be inflated, given by the 

ratio between hmax (maximal leverage) and h (mean leverage value of the hi), and k 

is a constant 0 < k < 1 and was suggested to be chosen as 0.7 by Cribari-Neto et al. 

(2007) following simulation results that lead to efficient quasi-t inference. When 

hi/h ≤ 4 it follows that αi = hi/h. Also, since 0 < 1 – hi < 1 and αi > 0, it similarly 

follows that ( )0 1 1i

ih


 −  . 

Robust HCCM Estimators 

The problems of heteroscedasticity and high leverage points were addressed by 

Furno (1996) to reduce the bias caused by the effect of leverage points in the 

presence of heteroscedasticity. It was suggested to use weighted least squares 

(WLS) regression residuals instead of the OLS residuals used by White (1980) in 

HCCM estimator. The weight is based on the hat matrix (hi) and the robust 

(weighted) version of HC0 is defined as 

 

 ( ) ( )
1 1

W 0WH ˆC0
− −

 = X WX X WΦ WX XWX   (6) 

 

where W is an n × n diagonal matrix with 

 

 min 1,i

i

c
w

h

 
=  

 
  (7) 

 

and c is the cutoff point c = 1.5p/n, p being the number of parameters in a model 

including the intercept and n the sample size, and  2

0W
ˆ

idiag =Φ  with i  being 

the ith residuals from weighted least squares (WLS). Note that non-leveraged 

observations are weighted by 1 and leveraged observations are weighted by c/hi to 

reduce their intensity; wi is considered to be the weight in this WLS regression, so 

that the WLS estimator of β is 

 

 ( )
1−

=  β XWX XWy   (8) 

 

The robust HCCM estimator for HC4 and HC5, based on Furno’s weighting 

method considered by Lima et al. (2009), are HC4W and HC5W, defined as 
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( ) ( )

( ) ( )

1 1

W 4

1 1

W 5

H

C

ˆC

ˆ

4

H 5

w

w

− −

− −

=

=

  

  

X WX X WΦ WX XWX

X WX X WΦ WX XWX
  (9) 

 

where 

 

 

( ) ( )
*

*

2 2

4W 5W
* *

ˆ ˆdiag , diag  

1 1
i

i

i i

i i
h h

 

 
  
  

= =   
   − −   

Φ Φ   

 

for i = 1,…, n, with 

 

 
* * *

* * max

* * *
min 4, , min ,max 4,i i

i i

h h kh

h h h
 

     
= =    

     
  

 

and ih  is the ith diagonal element of the weighted hat matrix 

( )
1

W

−
 =H WX X WX X W . In this paper the Furno’s weighted least square for 

RHCCM estimation method is denoted by WLSF. 

New Proposed Robust HCCM Estimators 

Consider the idea of Furno’s RHCCM estimation on two new weighting methods 

based on HLPs identification measures: robust Mahalanobis distance based on 

minimum volume ellipsoid (RMD(MVE)) and diagnostic robust generalized 

potential based on index set equality (DRGP(ISE)). These two methods are very 

successful in identifying correct HLPs in a data set. 

Robust HCCM Estimator based on RMD(MVE) 

Mahalanobis (1936) introduced a diagnostic measure of the deviation of a data 

point from its center named Mahalanobis distance (MD), in which the independent 

variables of the ith observations are presented as xi = (1, xi1, xi2,…, xik) = (1, Ri) so 

that Ri = (xi1, xi2,…, xik) will be a k-dimensional row vector, where the mean and 

covariance matrix vector 
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 ( ) ( )
1 1

1 1
,

1

n n

i i i

i in n= =

= = − −
−

 R R CV R R R R   

 

respectively. The MD for the ith point is given as 

 

 ( ) ( ) ( )
1

RMD , 1,2, ,i i i i n
−= − − =R R CV R R   (10) 

 

Leroy and Rousseeuw (1987) recommended a cutoff point for MDi as 2

,0.5k  and 

any observation that exceeds this cutoff point is considered to be a HLP. Imon 

(2002) suggested another cutoff point (cd) for RMDi given by 

 

 ( ) ( )median RMD 3MAD RMDi icd = +   (11) 

 

where, MAD stands for median absolute deviation. Since the average vector R̅ and 

covariance matrix CV are not robust, Rousseeuw (1984) recommended using a 

minimum volume ellipsoid (MVE) estimator of R̅ and the corresponding CV which 

the ellipsoid produced. This technique of MVE is to produce the smallest volume 

ellipsoid among all the ellipsoids of at least half of the data. The MVE estimator of 

the average vector is T(X) = center of the MVE covering at least h points of X for 

h ≥ (n + k + 1)/2, where k is the number of explanatory variables (Rousseeuw & 

Driessen, 1999). The corresponding CV is provided by the ellipsoid and multiplied 

by a suitable factor in order to obtain consistency. The weight obtained by this 

RMD(MVE) method is given by 

 

 ( )min 1, RMDir iw cd=   (12) 

 

so that, HLPs are weighted by (cd/RMDi) and non-leverage by 1. To obtain the 

RHCCM estimator based on RMD(MVE) weighting method denoted by 

WLSRMD, we replace equation (7) by (12) and adopt Furno’s RHCCM estimation 

method as discussed above. 

Robust HCCM estimator based on DRGP(ISE) 

The diagnostic robust generalized potential based on minimum volume ellipsoid 

(DRGP(MVE)) was proposed by Habshah et al. (2009). It has been shown that this 

method is very successful in the detection of multiple HLPs in linear regression. 
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The method consists of two steps where suspects HLPs are identified in the first 

step by employing RMD based on MVE. The calculation of MVE involves a lot of 

computational effort. Due to this, the calculation of DRGP based on RMD-MVE 

takes too much computing time. As such, Lim and Habshah (2016) proposed an 

improvised DRGP based on index set equality (ISE) in order to reduce the 

computational complexity of the algorithm. The ISE was tested and found to 

execute much faster in the estimation of robust estimators of scale and location. 

Thus, ISE has faster running time compared to MVE (Lim & Habshah, 2016). They 

replaced the MVE estimator with the ISE to form DRGP(ISE). 

Index set equality (ISE) was developed from the fast minimum covariance 

determinant (MCD) proposed by Rohayu (2013). The ISE idea is to denote the 

index set that corresponds to the sample of items in Hold when their Mahalanobis 

distance squares are arranged in ascending order by 
( ) ( ) ( ) old old old

old 1 2
IS , , ,

h
  =  and 

the corresponding index set of the sample items in Hnew by 

( ) ( ) ( ) new new new

new 1 2
IS , , ,

h
  = , where π is a permutation on {1, 2,…, n}. The steps 

to compute ISE are as follows: 

 

Step 1: Arbitrarily selecting a subset Hold containing different h observations. 

Step 2: Compute the average vector 
oldHR  and covariance matrix 

oldHCV  for 

all observations belonging to Hold. 

Step 3: Compute ( ) ( ) ( )
old old old

2 1

old i id i −
= − −H H HR R CV R R  for i = 1, 2,…, n. 

Step 4: Arrange ( )2

oldd i  for i = 1, 2,…, n in ascending order, i.e. 

( )( ) ( )( ) ( )( )2 2 2

old old old1 2d d d n       

Step 5: Construct Hnew = {Rπ(1), Rπ(2),…, Rπ(h)}. 

Step 6: If ISnew ≠ ISold, let Hold := Hnew and 
old new

:=
H H

CV CV , compute 
newHR  

and let 
old new

:=H HR R  and go back to step (3). Else, the process is 

stopped. 

 

The DRGP(ISE) consists of two steps, whereby in the first step, the suspected 

HLPs are determined using RMD based on ISE. The suspected HLPs will be placed 

in the ‘D’ set and the remaining in the ‘R’ set The generalized potential (p̂i) is 

employed in the second step to check all the suspected HLPs; those possessing a 

low leverage point will be put back to the ‘R’ group. This technique si continued 
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until all points of the ‘D’ group have been checked to confirm whether they can be 

referred as HLPs. The generalized potential is defined as follows: 

 

 

( )

( )

( )

D

D

D

for D

ˆ
for R

1

i

i i

i

h i

p h
i

h

−

−

−

 


= 


−

  (13) 

 

The cut-off point for DRGP is given by 

 

 ( ) ( )ˆ ˆmedian 3Qi n icdi p p= +   (14) 

 

Qn, a pairwise order statistic for all distance proposed by Rousseeuw and Croux 

(1993), is employed to improve the accuracy of the identification of HLPs and is 

given by Qn = c{|xi – xj|; < j}(k), where k = h̖C2 ≈ h̖C2/4 and h = [n/2] + 1. They 

make used of c = 2.2219, as this value will provides Qn a consistent estimator for 

Gaussian data. If some identified p̂i did not exceed cdi then the case with the least 

p̂i will be returned to the estimation subset for re-computation of p̂i. The values of 

generalized potential based on the final ‘D’ set is the DRGP(ISE) represented by p̂i 

and the ‘D’ points will be declared as HLPs. Following Furno (1996), the 

DRGP(ISE) weight can be obtained as follows: 

 

 ( )min 1 ˆ,id iw cdi p=   (15) 

 

where the HLPs are weighted by (cdi/p̂i) and non-leverage by 1. We also replace 

equation (7) by (15) and employ RHCCM estimation methods discussed above to 

obtain the RHCCM estimator based on DRGP(ISE) weighting method denoted by 

WLSDRGP. The procedure for DRGP(ISE) can be summarized in the following 

steps: 

 

Step 1: For every ith point, use the ISE method to compute the RMDi. 

Step 2: Any ith case having RMDi > median(RMDi) + 3MAD(RMDi) is 

suspected to be HLP and is assigned to the deletion set (D); the other 

(remaining) cases are put into the set R. 

Step 3: Compute p̂i as defined in equation (14) based on the sets R and D 

above. 
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Step 4: If all the deleted cases p̂i > median(p̂i) + 3Qn(p̂i), the respective cases 

are declared as HLPs. Otherwise, the case with least p̂i will be return 

to set R and repeat steps (3) and (4) until all p̂i > median(p̂i) + 3Qn(p̂i) 

Simulation Study 

A Monte Carlo simulation is used to assess the performance of the proposed 

methods under a heteroscedasticity of unknown form in a linear regression model. 

Following the simulation procedure used by Lima et al. (2009), we consider a linear 

relation yi = β0 + β1xi1 + β2xi2 + β3xi3 + εi, i = 1, 2,…, n. Three explanatory variables 

(x1, x2, x3) are generated from a standard normal distribution in which the true 

parameters were set at β0 = β1 = β2 = β3 = 1 and εi ~ N(0, σi
2). The strength (degree) 

of heteroscedasticity is measured by λ = max(σi
2)/min(σi

2). Three sample sizes 

(n = 25, 50, and 100) were replicated twice to form sample sizes of 50, 100, and 

200, respectively. The skedastic function is defined as σi
2 = exp{c1xi1} (Lima et al., 

2009) where the value of c1 = 0.450 was chosen such that λ ≈ 43 and will be 

constant among the sample sizes. The value of λ indicates the degree of the 

heteroscedasticity in the data, whereby for homoscedasticity the value of λ = 1. For 

each of xi ~ N(0, 1), a certain percentage of HLPs were replaced randomly with 

N(20, 1) at 5%, 10%, and 20% contamination levels for all the sample sizes 

considered at the average of 10,000 replications. 

Shown in Table 1 is the performance of the proposed and existing methods in 

a clean simulated heteroscedastic data. Presented in Tables 2-4 are the results of 

both proposed and existing methods for heteroscedastic data with HLP 

contamination. The tables indicate, in the presence of clean heteroscedastic data, 

all methods are reasonably closed to each other. However, in the presence of HLPs, 

the proposed WLSDRGP method based on HC4 and HC5 outperformed the existing 

methods as evident by having the smallest standard error of estimate. The WLSDRGP 

also provides the coefficient of estimates that is closest to the true coefficient. The 

results which are based on HC4 are fairly close to the results which are based on 

HC5. The standard error of the estimates will only be good and efficient when the 

form of heteroscedasticity is known. In this case, when the structure of 

heteroscedasticity is unknown, the estimation will lie on the HCCM estimator based 

on the two methods employed, HC4 and HC5, in which their results are very close 

to each other. The standard error of WLSDRGP is the smallest. followed by WLSRMD, 

WLSF, and OLS for a heteroscedastic model in the presence of HLPs in the data 

set. The result can be seen clearly from the % reduction of standard errors exhibited 
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in the tables that our proposed methods consistently have the highest reduction of 

standard errors irrespective of sample sizes and contamination levels. 
 
 
Table 1. Regression estimates of the simulated data for n = 200, λ = 43 
 

   Coefficient 
of estimates 

Standard error 
of estimates 

Standard error 

Con. Level Estimator HC4 HC5 

0% HLPs OLS b0 1.0007 0.1613 0.1582 0.1643 
  b1 1.0013 0.1658 0.1576 0.1625 
  b2 0.9991 0.1668 0.1604 0.1639 
  b3 1.0012 0.1669 0.1610 0.1626 
 WLSF b0 1.0008 0.1611 0.1599 0.1659 
  b1 1.0018 0.1708 0.1634 0.1634 
  b2 0.9990 0.1718 0.1668 0.1668 
  b3 1.0014 0.1719 0.1673 0.1663 
 WLSRMD b0 1.0009 0.1713 0.1626 0.1626 
  b1 1.0016 0.1781 0.1690 0.1640 
  b2 0.9990 0.1791 0.1699 0.1649 
  b3 1.0014 0.1792 0.1704 0.1654 
 WLSDRGP b0 1.0008 0.1714 0.1621 0.1621 
  b1 1.0013 0.1787 0.1674 0.1634 
  b2 0.9990 0.1799 0.1692 0.1652 
  b3 1.0012 0.1700 0.1697 0.1652 

 
 
Table 2. Regression estimates of the simulated data for n = 50, λ = 43 
 

Con. 
Level 

  Coeff. of 
estimates 

SE of 
estimates 

Standard error 

Estimator HC4 HC5 HC4 % red. HC5 % red. 

5% HLPs OLS b0 0.9477 0.3021 0.2906 0.3130 - - 
  b1 0.9287 0.2658 0.2740 0.3044 - - 
  b2 0.9404 0.2558 0.2531 0.2810 - - 
  b3 0.9440 0.2561 0.2542 0.2836 - - 
 WLSF b0 0.9866 0.2254 0.2228 0.2228 23.3495 28.8235 
  b1 0.9716 0.2370 0.2398 0.2398 12.9496 41.7297 
  b2 0.9816 0.2269 0.2265 0.2265 10.5197 40.5483 
  b3 0.9820 0.2275 0.2289 0.2290 9.9175 40.3043 
 WLSRMD b0 0.9919 0.2080 0.2058 0.2059 29.1684 34.2240 
  b1 0.9891 0.2109 0.2174 0.2174 21.4390 47.4040 
  b2 0.9889 0.2010 0.2036 0.2037 19.5464 46.5320 
  b3 0.9836 0.2015 0.2048 0.2049 19.4148 46.5873 
 WLSDRGP b0 0.9983 0.1812 0.1833 0.1833 36.9103 41.4163 
  b1 0.9978 0.1972 0.1912 0.1912 31.3409 54.0439 
  b2 0.9977 0.1876 0.1837 0.1837 27.4254 51.7841 

   b3 0.9991 0.1883 0.1854 0.1854 27.0480 51.6593 
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Table 2 (continued). 
 

Con. 
Level 

  Coeff. of 
estimates 

SE of 
estimates 

Standard error 

Estimator HC4 HC5 HC4 % red. HC5 % red. 

10% HLPs OLS b0 0.9468 0.3142 0.3063 0.3011 - - 
  b1 0.9104 0.2661 0.2611 0.2619 - - 
  b2 0.9048 0.2567 0.2515 0.2514 - - 
  b3 0.8926 0.2561 0.2504 0.2510 - - 
 WLSF b0 0.9736 0.2380 0.2258 0.2258 26.2968 25.0285 
  b1 0.9703 0.2330 0.2312 0.2342 11.8895 10.9897 
  b2 0.9724 0.2235 0.2217 0.2247 11.8381 10.6380 
  b3 0.9700 0.2229 0.2216 0.2236 11.4785 10.8940 
 WLSRMD b0 0.9728 0.2149 0.2132 0.2132 30.4037 29.2060 
  b1 0.9734 0.2251 0.2246 0.2246 14.5361 14.8183 
  b2 0.9721 0.2158 0.2126 0.2126 15.4513 15.4444 
  b3 0.9785 0.2150 0.2115 0.2115 15.5345 15.7371 
 WLSDRGP b0 0.9931 0.1925 0.1880 0.1880 38.6319 37.5758 
  b1 0.9900 0.2050 0.1980 0.1980 25.1278 25.3751 
  b2 0.9962 0.1959 0.1884 0.1884 25.0729 25.0667 

   b3 0.9995 0.1948 0.1861 0.1861 25.6627 25.8410 

         

20% HLPs OLS b0 0.9199 0.3345 0.3263 0.3308 - - 
  b1 0.8432 0.2859 0.2709 0.2879 - - 
  b2 0.7903 0.2761 0.2510 0.2661 - - 
  b3 0.8678 0.2767 0.2517 0.2671 - - 
 WLSF b0 0.9760 0.2522 0.2288 0.2288 29.8802 30.8276 
  b1 0.9716 0.2550 0.2527 0.2527 14.6493 19.8747 
  b2 0.9713 0.2450 0.2234 0.2234 11.0042 16.0615 
  b3 0.9706 0.2459 0.2244 0.2244 10.8522 15.9935 
 WLSRMD b0 0.9724 0.2373 0.2161 0.2161 33.7858 34.6805 
  b1 0.9725 0.2459 0.2262 0.2262 17.1431 22.2158 
  b2 0.9728 0.2360 0.2152 0.2152 14.2775 19.1488 
  b3 0.9710 0.2366 0.2158 0.2158 14.2465 19.1919 
 WLSDRGP b0 0.9956 0.1972 0.1806 0.1806 44.6654 45.4131 
  b1 0.9905 0.2037 0.1978 0.1978 28.0204 32.4272 
  b2 0.9906 0.1939 0.1824 0.1824 27.3150 31.4454 

   b3 0.9897 0.1943 0.1829 0.1829 27.3248 31.5160 
 

Note: b0, b1, b2, and b3 are the estimates and % red. indicates the percentage improvement of the 
corresponding method over the OLS method; that is why the OLS rows are blank for % reduction 
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Table 3. Regression estimates of the simulated data for n = 100, λ = 43 
 

Con. 
Level 

  Coeff. of 
estimates 

SE of 
estimates 

Standard error 

Estimator HC4 HC5 HC4 % red. HC5 % red. 

5% HLPs OLS b0 0.9439 0.1770 0.1430 0.1440 - - 
  b1 0.9375 0.1850 0.1511 0.1506 - - 
  b2 0.9477 0.1748 0.1458 0.1442 - - 
  b3 0.9476 0.1745 0.1459 0.1442 - - 
 WLSF b0 0.9881 0.1508 0.1206 0.1206 15.6307 16.2319 
  b1 0.9824 0.1665 0.1320 0.1320 13.5382 13.2177 
  b2 0.9897 0.1562 0.1265 0.1265 13.2387 12.2865 
  b3 0.9707 0.1559 0.1265 0.1265 13.3019 12.3180 
 WLSRMD b0 0.9808 0.1378 0.1118 0.1118 21.7814 22.3388 
  b1 0.9831 0.1531 0.1254 0.1254 18.1884 17.8851 
  b2 0.9834 0.1429 0.1185 0.1185 18.6717 17.7791 
  b3 0.9824 0.1426 0.1186 0.1186 18.6788 17.7560 
 WLSDRGP b0 0.9974 0.1269 0.0862 0.0862 39.7108 40.1404 
  b1 0.9978 0.1432 0.1169 0.1169 24.2198 23.9389 
  b2 0.9979 0.1331 0.1048 0.1048 28.1038 27.3147 

   b3 0.9977 0.1329 0.1051 0.1051 27.9511 27.1335 

         

10% HLPs OLS b0 0.9281 0.2192 0.1584 0.1591 - - 
  b1 0.8713 0.2667 0.1567 0.1572 - - 
  b2 0.9050 0.2166 0.1569 0.1508 - - 
  b3 0.9081 0.2169 0.1569 0.1507 - - 
 WLSF b0 0.9970 0.1682 0.1242 0.1242 21.5785 21.8933 
  b1 0.9808 0.1745 0.1286 0.1286 18.5056 18.7799 
  b2 0.9844 0.1695 0.1255 0.1255 19.9945 16.7447 
  b3 0.9878 0.1697 0.1256 0.1256 19.9786 16.7041 
 WLSRMD b0 0.9972 0.1437 0.1127 0.1127 28.8414 29.1270 
  b1 0.9863 0.1610 0.1194 0.1194 24.5589 24.8128 
  b2 0.9860 0.1561 0.1188 0.1188 24.2512 21.1744 
  b3 0.9863 0.1563 0.1188 0.1188 24.2660 21.1670 
 WLSDRGP b0 0.9978 0.1262 0.0916 0.0916 42.1637 42.3959 
  b1 0.9987 0.1360 0.1088 0.1088 31.5746 31.8049 
  b2 0.9971 0.1313 0.0949 0.0949 39.5106 37.0536 

   b3 0.9972 0.1314 0.0949 0.0949 39.4835 37.0072 

 
 
 
 
 
 
 
 
 
 
 



MANI ET AL 

15 

Table 3 (continued). 
 

Con. 
Level 

  Coeff. of 
estimates 

SE of 
estimates 

Standard error 

Estimator HC4 HC5 HC4 % red. HC5 % red. 

20% HLPs OLS b0 0.9141 0.2940 0.1715 0.1722 - - 
  b1 0.6384 0.3155 0.1806 0.1840 - - 
  b2 0.8576 0.3107 0.1707 0.1738 - - 
  b3 0.7624 0.3105 0.1705 0.1735 - - 
 WLSF b0 0.9787 0.1725 0.1317 0.1317 23.1937 23.4976 
  b1 0.9769 0.1793 0.1425 0.1425 21.6934 23.2176 
  b2 0.9718 0.1745 0.1335 0.1335 21.7786 23.1501 
  b3 0.9718 0.1743 0.1334 0.1334 21.7348 23.0710 
 WLSRMD b0 0.9871 0.1630 0.1201 0.1201 29.9625 30.2396 
  b1 0.9849 0.1655 0.1336 0.1336 26.7203 28.1467 
  b2 0.9803 0.1606 0.1279 0.1279 25.0967 26.4101 
  b3 0.9799 0.1604 0.1274 0.1274 25.2752 26.5509 
 WLSDRGP b0 0.9981 0.1333 0.1201 0.1042 29.9625 39.4910 
  b1 0.9980 0.1439 0.1336 0.1126 26.7203 39.8862 
  b2 0.9936 0.1390 0.1279 0.1051 25.0967 39.5181 

   b3 0.9925 0.1388 0.1274 0.1047 25.2752 39.6350 
 

Note: b0, b1, b2, and b3 are the estimates and % red. indicates the percentage improvement of the 
corresponding method over the OLS method; that is why the OLS rows are blank for % reduction 

 
 
Table 4. Regression estimates of the simulated data for n = 200, λ = 43 
 

Con. 
Level 

  Coeff. of 
estimates 

SE of 
estimates 

Standard error 

Estimator HC4 HC5 HC4 % red. HC5 % red. 

5% HLPs OLS b0 0.9481 0.1750 0.1456 0.1461 - - 
  b1 0.8214 0.1794 0.1488 0.1490 - - 
  b2 0.9122 0.1719 0.1431 0.1476 - - 
  b3 0.9146 0.1718 0.1438 0.1482 - - 
 WLSF b0 0.9746 0.1421 0.1252 0.1252 13.9818 14.2649 
  b1 0.9678 0.1508 0.1340 0.1340 10.2815 10.4046 
  b2 0.9723 0.1438 0.1293 0.1293 9.6916 12.4048 
  b3 0.9727 0.1435 0.1297 0.1297 9.7932 12.4811 
 WLSRMD b0 0.9855 0.1368 0.1108 0.1108 23.8683 24.1189 
  b1 0.9802 0.1448 0.1176 0.1176 21.6724 21.7799 
  b2 0.9840 0.1396 0.1107 0.1107 22.6745 24.9976 
  b3 0.9855 0.1396 0.1122 0.1122 21.9857 24.3103 
 WLSDRGP b0 0.9972 0.1128 0.0920 0.0920 36.7822 36.9903 
  b1 0.9978 0.1136 0.1003 0.1003 33.7470 33.8380 
  b2 0.9985 0.1070 0.0984 0.0984 31.2174 33.2839 

   b3 0.9986 0.1073 0.0998 0.0998 30.5851 32.6534 
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Table 4 (continued). 
 

Con. 
Level 

  Coeff. of 
estimates 

SE of 
estimates 

Standard error 

Estimator HC4 HC5 HC4 % red. HC5 % red. 

10% HLPs OLS b0 0.9230 0.2287 0.1449 0.1452 - - 
  b1 0.8535 0.2358 0.1589 0.1580 - - 
  b2 0.8737 0.2270 0.1458 0.1488 - - 
  b3 0.7836 0.2261 0.1469 0.1495 - - 
 WLSF b0 0.9795 0.1542 0.1288 0.1288 11.1246 11.3354 
  b1 0.9660 0.1696 0.1385 0.1385 13.7211 13.1560 
  b2 0.9651 0.1572 0.1273 0.1273 12.7049 14.4391 
  b3 0.9661 0.1599 0.1288 0.1288 12.3139 13.8354 
 WLSRMD b0 0.9879 0.1484 0.1228 0.1228 15.2752 15.4761 
  b1 0.9714 0.1546 0.1334 0.1334 17.1485 16.6059 
  b2 0.9716 0.1427 0.1222 0.1222 16.1878 17.8529 
  b3 0.9720 0.1451 0.1229 0.1229 16.2987 17.7510 
 WLSDRGP b0 0.9944 0.1277 0.1162 0.1162 19.8140 20.0041 
  b1 0.9917 0.1369 0.1248 0.1248 22.9247 22.4199 
  b2 0.9908 0.1257 0.1186 0.1186 18.6353 20.2517 

   b3 0.9911 0.1272 0.1201 0.1201 18.2379 19.6566 

         

20% HLPs OLS b0 0.9065 0.3662 0.1729 0.1733 - - 
  b1 0.6250 0.3334 0.1831 0.1856 - - 
  b2 0.7048 0.3234 0.1747 0.1766 - - 
  b3 0.7927 0.3230 0.1748 0.1768 - - 
 WLSF b0 0.9607 0.1940 0.1458 0.1458 15.6485 15.8484 
  b1 0.9650 0.2086 0.1549 0.1549 16.3059 17.4608 
  b2 0.9655 0.1982 0.1466 0.1466 16.0547 16.9728 
  b3 0.9669 0.1978 0.1474 0.1474 15.6639 16.5973 
 WLSRMD b0 0.9775 0.1822 0.1403 0.1403 18.8577 19.0501 
  b1 0.9715 0.1933 0.1504 0.1504 18.8900 20.0092 
  b2 0.9754 0.1836 0.1420 0.1420 18.7135 19.6025 
  b3 0.9785 0.1828 0.1420 0.1420 18.7608 19.6599 
 WLSDRGP b0 0.9926 0.1634 0.1218 0.1218 29.5194 29.6864 
  b1 0.9919 0.1707 0.1337 0.1337 28.5727 29.5584 
  b2 0.9900 0.1613 0.1244 0.1244 28.7865 29.5654 

   b3 0.9916 0.1607 0.1259 0.1259 27.9588 28.7561 
 

Note: b0, b1, b2, and b3 are the estimates and % red. indicates the percentage improvement of the 
corresponding method over the OLS method; that is why the OLS rows are blank for % reduction 

Numerical Examples 

The performance of the proposed WLSDRGP and WLSRMD methods are evaluated 

using education expenditure data and an artificial heteroscedastic data set. Firstly, 

consider education expenditure data taken from Chatterjee and Hadi (2006). It 
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represents the relationship between per capita income on an education project from 

1975 and three independent variables, namely per capita income in 1973 (x1), 

number of residents per thousands under 18 years of age (x2), and number of 

residents per thousands under 18 years of age in 1974 (x3). The existing methods 

(OLS and WLSF) and the new proposed methods (WLSRMD and WLSDRGP) were 

then applied to the data. The data were modified by introducing HLP contamination, 

in which the 2nd, 27th, and 40th observations were replaced by 1323, 817, and 1605 

for x2, x1, x3, respectively. As noted in Figures 1 and 2, both data sets have 

heteroscedastic errors due to the funnel shape produced by the residuals versus 

fitted values plot. 

Shown in Tables 5 and 6 are the results of the education expenditure and 

modified education expenditure data. The results indicate the proposed WLSRMD 

and WLSDRGP outperformed the existing methods (in Table 6 in the presence of 

heteroscedasticity and HLPs) by providing very small standard errors and also 

having equal performances in Table 5, in situation where only the 

heteroscedasticity problem is present. The WLSDRGP based on both HC4 and HC5 

immediately appears to be the best of all the estimators by possessing the highest 

percentage of reduction from the OLS. 
 

 
 
Figure 1. Plot of OLS residuals versus fitted values for education expenditure data 
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Figure 2. Plot of OLS residuals versus fitted values for modified educational expenditure 
data 
 

 
 
Table 5. Regression estimates for the education expenditure data set 
 

  Coeff. of 
estimates 

SE of 
estimates 

Standard error 

Estimator HC4 HC5 HC4 % red. HC5 % red. 

OLS b0 -556.5680 123.1953 102.3823 13.7623 - - 
 b1 0.0724 0.0116 0.0180 0.0254 - - 
 b2 1.5521 0.3147 0.4765 0.1948 - - 
 b3 -0.0043 0.0514 0.0623 0.1598 - - 

WLSF b0 -375.7503 135.7155 0.0002 0.0002 99.9998 99.9706 
 b1 0.0591 0.0122 0.0124 0.0110 30.7942 53.7723 
 b2 1.1023 0.3502 0.0943 0.0933 80.2057 53.6256 
 b3 0.0337 0.0528 0.0517 0.0617 15.0874 57.6411 

WLSRMD b0 -485.2476 129.2253 0.0002 0.0002 99.9998 99.9703 
 b1 0.0673 0.0120 0.0118 0.0118 34.0634 56.3332 
 b2 1.3749 0.3331 0.0934 0.0924 80.3954 54.0359 
 b3 0.0096 0.0525 0.0643 0.0543 15.2662 59.7461 

WLSDRGP b0 -388.7580 134.6718 0.0002 0.0002 99.9998 99.9706 
 b1 0.0609 0.0122 0.0103 0.0105 42.4586 58.4868 
 b2 1.1327 0.3493 0.0907 0.0907 80.9705 56.4428 
 b3 0.0260 0.0528 0.0518 0.0508 16.9311 68.2448 

 

Note: b0, b1, b2, and b3 are the estimates and % red. indicates the percentage improvement of the 
corresponding method over the OLS method; that is why the OLS rows are blank for % reduction 
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Table 6. Regression estimates for the modified education expenditure data set 
 

  Coeff. of 
estimates 

SE of 
estimates 

Standard error 

Estimator HC4 HC5 HC4 % red. HC5 % red. 

OLS b0 114.6463 350.0662 66.9948 60.6212 - - 
 b1 0.0372 64.0101 32.0182 71.5216 - - 
 b2 -0.0314 7.0530 142.0244 176.7519 - - 
 b3 0.0130 41.0428 50.0503 147.7690 - - 

WLSF b0 19.2925 270.4445 24.1656 24.1656 63.9292 60.1368 
 b1 0.0543 0.1228 0.0333 0.0333 99.8961 99.9535 
 b2 0.0790 1.2167 0.7182 0.7182 99.4943 99.5937 
 b3 -0.0206 0.5398 0.3408 0.3408 99.3191 99.7694 

WLSRMD b0 -10.9707 180.7190 13.1509 13.1509 80.3703 78.3065 
 b1 0.0460 0.1108 0.0263 0.0263 99.9177 99.9632 
 b2 0.2347 1.1806 0.6852 0.6852 99.5176 99.6124 
 b3 0.0055 0.4818 0.2982 0.2982 99.4042 99.7982 

WLSDRGP b0 -254.3590 121.1859 0.0003 0.0003 99.9995 99.9995 
 b1 0.0506 0.0108 0.0121 0.0121 99.9623 99.9831 
 b2 0.8825 0.3138 0.1257 0.1257 99.9115 99.9289 
 b3 0.0215 0.0466 0.0482 0.0482 99.9036 99.9674 

 

Note: b0, b1, b2, and b3 are the estimates and % red. indicates the percentage improvement of the 
corresponding method over the OLS method; that is why the OLS rows are blank for % reduction 

 
 

Secondly, an artificial heteroscedastic dataset of 100 observations were 

generated, where the explanatory and response variables were generated from yjr 

normal distribution N(20, 1) and yi = 1 + xi1 + xi2 + xi3 + εi,, respectively. The 

heteroscedasticity was created in the same way as above, and the data was modified 

by introducing HLPs such that the 1st, 15th, and 70th observations were replaced by 

41.0028, 40.6902, and 8.9320 for x1, x3, x2, respectively. Both of Figures 3 and 4 

show the presence of heteroscedasticity in the data due the funnel shape produced 

in the plots. 

Presented in Tables 7 and 8 are the results of the artificial data and modified 

artificial data set, respectively. It can be observed from Table 7 that all estimators 

are equally good in the clean data set. Nonetheless, the OLS is much affected by 

HLPs, followed by the WLSF and WLSRMD. 

The results indicate the superiority of WLSDRGP over the rest of the methods. 

It can be concluded the WLSDRGP is better and more efficient then WLSRMD, WLSF, 

and OLS in the estimation of heteroscedastic models in the presence of HLPs in a 

data set. As further research, we recommend investigating how this proposed 

methods work for both Type-I and Type-II errors using the quasi-t statistic. 
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Figure 3. Plot of OLS residuals versus fitted values for artificial data 
 

 

 
 
Figure 4. Plot of OLS residuals versus fitted values for modified artificial data 
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Table 7. Regression estimates for the artificial data set 
 

  Coeff. of 
estimates 

SE of 
estimates 

Standard error 

Estimator HC4 HC5 HC4 % red. HC5 % red. 

OLS b0 -5911.0888 9747.9701 1876.5408 1810.5194 - - 
 b1 418.6609 351.5534 327.1687 369.4983 - - 
 b2 -70.8100 426.8935 341.5515 352.7552 - - 
 b3 -39.0783 394.3772 372.5343 383.8704 - - 

WLSF b0 -2852.0091 9057.6309 1469.6061 1469.6061 21.6854 18.8296 
 b1 304.5275 350.0965 302.9163 302.9163 7.4128 18.0196 
 b2 -141.4352 416.5253 305.9416 305.9416 10.4259 13.2708 
 b3 -9.3324 384.7349 324.7982 324.7982 12.8139 12.3886 

WLSRMD b0 -5911.0888 8747.9732 1410.5194 1410.5194 24.8341 22.0931 
 b1 418.6609 346.5534 281.4983 281.4983 13.9593 23.8161 
 b2 -70.8100 406.8935 302.7552 302.7552 11.3588 14.1741 
 b3 -39.0783 364.3772 333.8704 333.8704 13.0629 13.0252 

WLSDRGP b0 -5911.0888 8707.9711 1410.5194 1410.5194 24.8341 22.0931 
 b1 418.6609 331.5534 279.4983 279.4983 14.5706 24.3574 
 b2 -70.8100 401.8935 292.7552 292.7552 14.2867 17.0090 
 b3 -39.0783 361.3772 321.8704 321.8704 13.5998 16.1513 

 

Note: b0, b1, b2, and b3 are the estimates and % red. indicates the percentage improvement of the 
corresponding method over the OLS method; that is why the OLS rows are blank for % reduction 

 
 
Table 8. Regression estimates for the modified artificial data set 
 

  Coeff. of 
estimates 

SE of 
estimates 

Standard error 

Estimator HC4 HC5 HC4 % red. HC5 % red. 

OLS b0 2347.2014 13452.7878 4854.3334 4180.9672 - - 
 b1 -32.9776 318.3895 548.5326 847.0869 - - 
 b2 -75.1522 325.8351 558.1543 508.2788 - - 
 b3 10.6393 393.9614 548.9331 756.4859 - - 

WLSF b0 -4202.5395 8846.2733 2677.4813 2677.4813 44.8435 35.9602 
 b1 322.4820 219.3419 406.0620 436.0620 25.9730 48.5222 
 b2 -56.0296 278.6068 426.3988 426.3988 23.6056 16.1093 
 b3 -38.8055 274.4062 391.0439 391.0439 28.7629 48.3078 

WLSRMD b0 -2263.0811 8760.7035 2243.4518 2243.4518 53.7846 46.3413 
 b1 190.1914 187.8816 383.4138 383.4138 30.1019 54.7374 
 b2 -49.3891 227.0691 375.6060 375.6060 32.7057 26.1024 
 b3 -9.3389 239.9932 378.1985 378.1985 31.1030 50.0059 

WLSDRGP b0 -5719.2772 8202.9609 1463.4209 1463.4209 69.8533 64.9980 
 b1 415.0248 155.5852 292.8725 292.8725 46.6080 65.4259 
 b2 -67.9705 203.5646 282.0422 282.0422 49.4688 44.5103 
 b3 -39.0423 216.8809 299.3767 299.3767 45.4621 60.4253 

 

Note: b0, b1, b2, and b3 are the estimates and % red. indicates the percentage improvement of the 
corresponding method over the OLS method; that is why the OLS rows are blank for % reduction 
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Conclusion 

This research provides a better algorithm for estimating model parameters in linear 

regression when heteroscedasticity and high leverage points exist in a data set. Even 

though the OLS method provides unbiased estimates in the presence of 

heteroscedasticity, it is not efficient. The Furno’s weighted least squares method 

based on a leverage weight function is also not efficient enough to remedy the 

problem of heteroscedastic errors with unknown form and high leverage point. Here, 

two weighting functions based on RMD and DRGP are proposed to be incorporated 

in the weighted least squares and Robust HCCM (HC4 and HC5) based estimators. 

The WLSDRGP was found to be the best method as it’s provides the lowest standard 

errors of HC4 and HC5, followed by the WLSRMD, WLSF, and OLS. 
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