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The normal distribution comes as a first choice when fitting real data, but it may not be 

suitable if the assumed distribution deviates from normality. Flexible skewed 

distributions are capable of including skewness and taking into account multimodality. 

They may be applied to find appropriate distributions for describing the claim amounts in 

insurance. The objective is to model insurance claims using a set of flexible skewed and 

mixture probability distributions, and to test how well they fit the claims. Results indicate 

the skew-t distribution and alpha-skew Laplace distribution are able to describe unimodal 

claims accurately, whereas scale mixture of skew-normal and skew-t distributions are 

better alternatives to both unimodal and bimodal conventional distributions such as skew-

normal, alpha skew-normal, and mixture of normal distributions. The tail risk measures 

such as value at risk and tail value at risk are estimated as judgment criteria to assess the 

fitness of the models. 

 

Keywords: Flexible skewed distributions, skew-normal distribution, skew-t 

distribution, scale mixture of skew-normal distribution, value at risk, tail value at risk 

 

Introduction 

The normal distribution is widely used for a variety of applications in statistics 

and many other fields because of its simplicity. Insurance data often have non-

normal distributions because they are highly skewed and have heavy tails. They 

may also be bimodal. The skew-normal and skew-t distributions were discussed 

by Azzalini (1985) and can model the skewness and kurtosis of the data very well, 

but they lack the ability to fit bimodal data. Eling (2012) used two popular data 

https://doi.org/10.22237/jmasm/1525133100
https://doi.org/10.22237/jmasm/1525133100
mailto:azizm@uwec.edu
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sets in insurance and showed that the skew-normal and the skew-Student t 

distributions are reasonably competitive compared to some models when 

describing insurance data. Bolance et al. (2008) provided evidence that the skew-

normal and log-skew-normal distributions can be used to model bivariate claims 

illustrating data from the Spanish motor insurance industry. Ahn et al. (2012) used 

the log-phase-type distribution as a parametric alternative in fitting heavy tailed 

data. Kazemi and Noorizadeh (2015) used two popular data sets in insurance 

fields to compare the performance of skew-logistic and skew-normal distribution 

for fitting insurance claims. Extending the work of Eling (2012), the use of more 

flexible families of distributions is proposed in modeling insurance claims. 

Methodology 

A set of skewed and flexible skewed distributions were applied to fit unimodal 

and bimodal insurance claims. Several mixture models were considered for 

comparison. Model parameters were estimated using maximum likelihood 

estimation technique, and used AIC and BIC for model comparison. Data were 

simulated from the fitted distributions to calculate value at risk and tail value at 

risk, and assessed the performance of different models. All calculations were done 

using statistical software R. 

Unimodal Skewed Distributions 

The skew symmetric family of distributions—in particular, the skew normal and 

skew-t distributions—have received increasing attention in recent years. 

Skew-normal distribution 

A random variable is said to follow a skew-normal distribution if its probability 

density function is defined as 

 

 ( ) ( ) ( )2 ,f x x x x R =    (1) 

 

where φ represents the standard normal density function and Φ represents the 

distribution function of a standard normal density and α is a real number that 

regulates the shape of the distribution. 

To fit real data, work with an affine transformation Y = µ + αX with µ   R 

and σ > 0. The density of Y then becomes 
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Denote this density as Y ∼ SN (µ,σ,α) which reduces to standard skew-normal 

distribution in (1) where Y ∼ SN (0,1,α). If α is set to 0 both in (1) and (2), the 

distributions become the pdf of a standard normal distribution. The Skew-normal 

densities are plotted in Figure 1 for some selected values of alpha. 

Skew-t distribution 

The skew-t distribution is similar in nature to the skew-normal distribution. It is 

an appropriate model that allows us to regulate both skewness and kurtosis of a 

distribution. 

Let Z be a standard skew-normal random variable and W be a variable with 

χ
2
(ν) distribution. Then, if Z and W are independent, 

 

 

 

X =
z

w

v

  (3) 

 

the linear transformation Y = µ + σX has a skew-t distribution with parameters µ.σ 

and α and we introduce the notation ST (µ.σ,α) to denote the skew-t random 

variable Y. 
 
 

 
Figure 1. SN and ASN densities for some selected values of the shape parameter 
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Bimodal Skewed Distributions 

Skew normal and skew-t distributions are typically used to fit unimodal data.  

Recently some other models surfaced that are not only skewed but also capable of 

modelling multimodality of the data. 

Alpha-skew-normal distribution 

Elal-Olivero (2010) introduced a new class of skew-normal distributions called 

alpha-skew-normal distributions, which are skewed and can fit a bimodal data.  

A continuous random variable X has an alpha-skew-normal distribution with 

a probability density  

 

 ( )
( )

( )
2

2

1 1
,

2

x
f x x x R






− +
= 

+
 (4) 

 

where α represents the shape parameter.   

Denote this density as X ∼ ZSN (µ,σ,α). Adjusting the pdf to include 

location and scale parameters the density becomes  
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If α is set to 0 in 2.4 and 2.5, the standard normal distribution is obtained. The 

graph of the alpha-skew-normal distribution for some selected values of the 

skewness parameter α is shown in Figure 1. 

Alpha-Skew-Laplace Distribution 

Alpha-skew-Laplace distribution (ASLP) is introduced in Harandi & Alamatsaz 

(2013), which is an extension of Elal-Olivero’s alpha-skew distribution that uses 

Laplace distribution instead of normal distribution. This distribution can be both 

unimodal and bimodal with the suitable choices of the values of its parameters. 

A continuous random variable X is said to follow a Alpha-Skew-Laplace 

distribution if its pdf has the form 
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where α represents the shape parameter. Alpha-Skew-Laplace random variable is 

denoted by ASLP(α). 

Suppose X ∼ ASLP(α). Then, ASLP density of location and scale is defined 

as the distribution of Y = µ + σX for µ Î R and σ > 0. The corresponding density 

function is given by 
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where θ = (µ,σ,α). 

Mixture Models 

Consider several conventional mixture distributions and recently developed scale 

mixture of skew-normal and skew-t distributions. 

In the mixture model context the density of x is expressed as a mixture of P 

parametric densities such that 

 

 ( ) ( );
p

i ii
f y f x =  (8) 

 

where πi ≥ 0, i = 1, 2, …, p with Σ
p

i πi = 1, are called mixing weights of the pth 

component of the mixture, which is characterized by parameter θi and 

ψ = (π1, π2, …, π(p−1), θ1, θ2, …, θp) denotes the vector of parameters of the model.  

Two components Weibull Mixture 

The density function of mixture of a Weibull (WW) distribution is given by 
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where α is the shape parameter and σ is the scale parameter with Weibull density 
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Equation (9) can be modified to include the location parameter. 

Mixture Weibull and lognormal Distribution 

The probability density function of the mixture of Weibull and lognormal density 

(LNWL) is written as 

 

 
  
g x;s ,a ,q ,l,w( ) = w. f x;s ,a( )+ 1- w( ) f x;q ,l( )   (11) 

 

with Weibull density given in (10) and lognormal density given by 
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Finite Mixture of Scale Mixture of Skew Normal Distribution 

Suppose Z ~ SN(0,σ
2
,α) and U be a positive random variable, independent of Z, 

with distribution function H(u;v). Then the random variable Y = µ + U
−1

Z, where 

µ   R is a location parameter, is said to follow a scale mixture of skew normal 

(SMSN) distribution if its pdf is given by 
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In the definition H(.;v) is known as the mixing scale distribution, for each choice 

of this we get different members of the family like normal, skew-normal and 

student-t. A finite mixture of SMSN distributions [8,9] is a density defined as in 

(8) where the ith component of the mixture is a SMSN density with parameters μi, 

σ
2

i, αi, and vi. For simplicity we assume ν1 = ν2 = ··· = ν. 

Estimation Method 

Estimate the parameters of all models using Maximum likelihood estimation 

technique. For all of the models considered, in the first step the log likelihood 
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function is written using the probability density functions provided. In the second 

step, the GenSA function from R package ‘GenSA’ is used for optimization. 

Risk Measures 

A risk measure provides the information contained in the distribution function of 

a random variable in one single real number. Risk measures are useful to evaluate 

and monitor the risk exposures of investors. Most commonly used risk measures 

in the field of insurance and finance are the p-quantile risk measures, based on a 

percentile concept. Consider value at risk (VaR) and tail value at risk (TVaR) for 

illustration. For other risk measures refer to Dhaene et. al (2006). 

Value at risk  

The value at risk at level p, is the amount of capital required to ensure that the 

enterprise does not become technically insolvent. In probabilistic terms, the VaR 

at level p is defined as the 100p% quantile of the distribution of the terminal 

wealth. More precisely, for any p   (0,1), the p-quantile measure or VaR for a 

random variable X, denoted by Qp[X], is defined as 

 

 
  
Q

p
Xéë ùû = inf x ÎR | F

X
x( ) ³ p{ }  

Tail value at risk 

As with the VaR, the tail value at risk or TVaR is defined using some confidence 

level. The TVaR is intuitively defined as the expected value of the loss, given the 

loss is greater than the VaR.  TVAR is the arithmetic average of the VaR’s of the 

loss. TVAR at confidence level p, given the p-quantile risk measure Qp, is defined 

as 

 

 
  
TVaR

p
X( ) = E X | X > Q

p
x( )( ).  

Results 

New Hampshire Dental Claims 

The data, a subset of 4,849 claims, were obtained from New Hampshire 

Comprehensive Health Care Information Systems (NHCHIS) from 2013 

(NHCHIS, 2013). Both the original and log of the data are analyzed. The 
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histograms of claims and log of claims are shown in Figure 2. As observed from 

the histograms, the distribution of claims is clearly right skewed with at least one 

peak. The log of the data normalizes the set however; the second mode is 

magnified in the data, which may provide interesting results while modeling with 

flexible skewed distributions. The normal probability plots for original data and 

log data are shown in Figure 3. In addition to the normal plot, perform Shapiro-

Wilk normality test for the original and transformed data and in both cases small 

p-values (< 2.2e−16) reject the normality of the data.  
 
 

 
 
Figure 2. Histograms of claims and log(claims) 
 

 
 

 
 
Figure 3. Normal Q-Q plot of claims and log(claims) 
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Model Summary 

The model fitting criteria Akaike Information Criterion (AIC) and Bayesian 

Information criteria (BIC) are presented in Table 1, and the parameter estimates 

for different models are presented in Table 2. 
 
 
Table 1. Model Fitting Summary 
 

 
AIC BIC 

Flexible Distributions Claim Log(Claim) Claim Log(Claim) 

LN (µ,σ) 56,490.57 11,577.01 56,503.55 11,589.98 

SN (µ,σ,α) 63,975.42 11,495.62 63,986.39 11,506.59 

ST (µ,σ,α,ν) 55,628.93 11,319.93 55,637.91 11,328.90 

ASN (µ,σ,α) 67,790.68 11,522.68 67,801.65 11,533.65 

ASLP (µ,σ,α) 60,839.63 11,789.47 60,850.60 11,800.44 

 
 
Table 2. Estimated parameter values for Flexible models 
 

Model Parameters Claim Log(Claim) 

LN 
µ 4.57052140 1.50355520 

σ 0.84797760 0.17743440 

SN 

µ 14.40608000 3.61953500 

σ 352.31400000 1.27414300 

α 67.34349000 3.12904000 

ST 

µ 29.77575800 3.70813000 

σ 62.62235700 1.02769000 

α 9.88083700 2.60815900 

n 1.40193600 6.98577800 

ASN 

µ 443.16673600 5.47591400 

σ 286.24893900 0.91448270 

α 1.75006100 1.10426600 

ASLP 

µ 66.00000000 4.44265093 

σ 93.33526570 0.61567602 

α -0.32263370 -0.07233172 

 
 

From the model fitting criteria while considering original claim amount, we 

observe that skew-t distribution is dominating all other distributions having a very 

small AIC and BIC values followed by lognormal distribution. 

The observed and expected densities for different skewed distributions for 

original claim amount are presented in Figure 4. The figure depicts the same 

pattern as observed from the AIC and BIC values. In addition, ASLP model 

seems to fit the data quite well too which was the third best model in terms of the 

AIC and BIC values. When the transformed or log data are considered, skew-t 
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distribution is still the best model followed by skew-normal distribution and 

alpha-skew-normal distribution. 
 
 

 
 
Figure 4. Observed and expected densities for claims 
 

 
 

The observed and expected densities for different skewed distributions for 

log(claims) are shown in Figure 5. From the fitted densities in Figure 5, we 

observed that alpha-skew-normal distribution not only fits the data well it is also 

capable of taking into account the second mode of the distribution. For the 

mixture models AIC and BIC, values are presented in Table 3.  
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Figure 5. Observed and expected densities for transformed data 
 

 
 
Table 3. Model Fitting Summary for mixture distributions 
 

 
AIC BIC 

Mixture Distributions Claim Log(Claim) Claim Log(Claim) 

WW 56,265.65 11,528.59 56,268.65 11,531.56 

NN 58,096.27 11,338.31 58,128.70 11,370.74 

TT 57,206.87 11,329.87 57,239.30 11,362.30 

SMSN 55,994.35 11,356.33 56,039.76 11,401.73 

SMST 55,501.11 11,354.49 55,546.52 11,399.89 

LNWL 55,852.66 11,409.20 55,957.63 11,416.18 

 
 

From the model fitting criteria we observed that for the original claim amount 

scale mixture of skew-t (SMST) distributions best fit the data followed by SMSN. 

The lognormal and Weibull mixture (LNWL) is the third best model. 
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Figure 6(a). Observed and expected densities for mixture distributions using original and 
transformed data 
 

 
 

The observed and expected densities for different mixture models for claim 

and log(claims) are shown in Figure 6a and 6b. Most of the skewed distributions 

fit the original claim amount quite well. For the log(claims), besides skew-t and 

skew-normal, mixture of lognormal and Weibull distribution shows better fit. 

Unfortunately, none of the two-component fitted models was able to show the 

second model of the distribution. A modality test (Xu et al., 2014) was performed 

to find the actual number of modes for the transformed data. The modality test 

shows that there are at least three modes for the transformed data. Three and four 

components mixture models were then fitted to the data and the observed and 

expected densities for the models are plotted in Figure 7. 
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Figure 6(b). Observed and expected densities for mixture distributions using transformed 
data.  
 

 
 

From the two and three component mixtures we observe that either a three-

component skew t-mixture or four-component t-mixture model will fit the 

transform data quite well. 
 
 

 
 
Figure 7. Observed and expected densities for transformed data with 3 and 4 component 
mixtures respectively 
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Simulation and Estimation of risk measures 

A million observations were simulated from the assumed model using estimated 

parameters for both skewed and mixture models. Then, find estimators for VaR 

and TVaR for each of the model and compare them with the empirical values. 

Next, plot the risk measurement results for varying confidence levels (theoretical 

formulas for VaR and TVaR were not derived for the models considered). The 

VaR and TVaR for the skewed models for the transformed data are shown Figure 

8 and for the mixture models are presented in Figure 9.   
 
 

 
 
Figure 8. VaR and TVaR for the skewed models for the original data 
 

 

 

 
 
Figure 9. VaR and TVaR for the mixture models for the original data 
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From the figures, we observe that for original data both VaR and TVaR values are 

very close to the empirical values with the TVaR values very stable for almost all 

distributions. While mixture models are considered, all of the models provided 

very close estimates as that of the empirical ones except mixture of normal.   

Conclusion 

A comparison of skewed, flexible and mixture distributions for modelling 

insurance claims were compared using AIC, BIC and density estimation. 

Conventional distributions were examined, as well as constructed flexible skew 

distributions and their mixtures. Many insurance claims have a relative skewness 

to them, and in some cases there can be two modes to the data. The results 

indicated skew-t distribution seems consistently to be one of the top choices in 

modeling unimodal insurance data. However, this unimodal skewed distribution 

fails to account for the second mode of the data. In the case of the transformed 

dental claims, it is arguable that the alpha-skew distributions have advantages in 

modeling because it was able to show the second mode of the distribution. It is 

clear that the skew distributions will work well when modeling single mode with 

skewed data. These distributions were created in order to model this type of data, 

but in case of bimodal data, flexible distributions will have the advantage. The 

more bimodal a data set appears, the better the overall fit will be from flexible 

distributions compared to the others. 
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