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A new generalization of the transmuted additive Weibull distribution is proposed by using 

the quadratic rank transmutation map, the so-called transmuted exponentiated additive 

Weibull distribution. It retains the characteristics of a good model. It is more flexible, being 

able to analyze more complex data; it includes twenty-seven sub-models as special cases 

and it is interpretable. Several mathematical properties of the new distribution as closed 

forms for ordinary and incomplete moments, quantiles, and moment generating function 

are presented, as well as the MLEs. The usefulness of the model is illustrated by using two 

real data sets. 

 

Keywords: Exponentiated additive Weibull distribution, transmutation map, moments, 

reliability analysis 

 

Introduction 

Focusing on the most popular positive probability distribution, the Weibull 

distribution, a new generalization is introduced, which is the transmuted 

exponentiated additive Weibull (TEAW). The Weibull model was proposed in 

1951, being widely used in reliability analyses and in several different fields with 

different applications, see for example Lai, Xie, and Murthy (2003). Although it is 

widely used, a negative point of the distribution is the limited shape of its hazard 

function that can only be monotonically increase, decrease, or remain constant. 

Generally, practical problems require a wider range of possibilities in the medium 
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risk for example, when the lifetime data present a bathtub shaped hazard function, 

such as human mortality and machine life cycles. 

Aiming at a more flexible Weibull distribution, researchers developed various 

extensions and modified forms of the Weibull distribution with different numbers 

of parameters (e.g., Lai, Xie, & Murthy, 2001; Nadarajah, 2009). Xie and Lai 

(1995) proposed a four-parameter additive Weibull (AW) distribution as a 

competitive model. In this paper we introduce the TEAW distribution which 

extends recent developments on the additive Weibull such as the transmuted 

additive Weibull introduced by Elbatal and Aryal (2013), transmuted exponentiated 

modified Weibull introduced by Eltehiwy and Ashour (2013), transmuted modified 

Weibull introduced by Khan & King (2013), modified Weibull introduced by 

Sarhan and Zaindin (2009), Marshall-Olkin additive Weibull proposed by Afify, 

Cordeiro, Yousof, Saboor, and Ortega (in press), and additive Weibull introduced 

by Xie and Lai (1995), among others. 

Let X be a random variable distributed as an AW distribution; then its 

cumulative distribution function (cdf) is given by 

 

 ( )F ; , , , 1 e , 0x xx x
      − −= −    (1) 

 

where α, β, γ, θ > 0 with 0 < θ < β (or 0 < β < θ); θ and β are shape parameters and 

α and γ are scale parameters. The corresponding probability density function (pdf) 

of (1) is 

 

 ( ) ( )1 1f ; , , , e x xx x x
         − − − −= +   (2) 

 

The four-parameter AW distribution is embedded in a larger family obtained by 

introducing two additional parameters. As a result, two extensions defined below 

will be applied. The first, the Fα distributions (or exponentiated distributions), have 

been shown to have a wide domain of applicability, in particular in modeling and 

analysis of lifetime data. 

 

Definition 1. Let F be an absolutely continuous cdf with support on (a, b), where 

the interval may be unbounded, and let α be a positive real number. The random 

variable X has an Fα distribution if its cdf, denoted by G(x), is given by 

 

 ( ) ( ) ( )G F F , 0, 0x x x x
  = =      (3) 



TRANSMUTED EXPONENTIATED ADDITIVE WEIBULL DISTRIBUTION 

4 

which is the αth power of the base line distribution function F(x), and the 

corresponding pdf of X is given by 

 

 ( ) ( ) ( )
1

g f Fx x x



−

 =     (4) 

 

The second extension, a procedure which is regarded as a convenient way of 

constructing new distributions, is the so-called transmutation maps. According to 

Shaw and Buckley (2007), transmutation maps comprise the functional 

composition of the cumulative distribution function of one distribution with the 

inverse cumulative distribution (quantile) function of another. 

Motivated by the need for parametric families of rich and yet tractable 

distributions in financial mathematics, the cited authors used a transmutation map. 

After that, several studies involving quadratic rank transmutation maps can be seen 

in other application areas such as survival analysis and reliability. For instance, 

Aryal and Tsokos (2009, 2011) who proposed a generalization of the extreme value 

and transmuted Weibull distribution; Granzotto and Louzada (2015); Louzada and 

Granzotto (2016), which proposed the transmuted log-logistic distribution and its 

regression approach; Afify, Nofal, and Butt (2014) and Afify, Hamedani, Ghosh, 

and Mead (2015), which proposed the transmuted complementary Weibull 

geometric and transmuted Marshall-Olkin Fréchet distributions, respectively. 

 

Definition 2. A random variable X is said to have a transmuted distribution if its 

cdf is given by 

 

 ( ) ( ) ( ) ( )2F 1 G G , 1x x x  = + −    (5) 

 

where G(x) is the cdf of the base distribution, which on differentiation is 

 

 ( ) ( ) ( )f g 1 2 G , 1x x x   = + −     (6) 

 

where f(x) and g(x) are the corresponding pdfs associated with cdfs F(x) and G(x), 

respectively. More information about the quadratic rank transmutation map is given 

in Shaw and Buckley (2007). Observe that, at λ = 0, we have the base distribution. 

Applying the first definition to the additive Weibull we obtain the 

exponentiated additive Weibull (EAW) distribution with cdf and pdf given by 
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 ( ) ( )G ; , , , , 1 e x xx


        − −= −   (7) 

 

and 

 

 ( ) ( ) ( )
1

1 1g ; , , , , e 1 ex x x xx x x
    

            
−

− − − − − −= + −   (8) 

The TEAW Distribution 

Proposition 1.  Let X be a non-negative random variable and 

υ = (α, β, γ, θ, δ, λ) the vector of parameters. If X has TEAW distribution then the 

cdf is defined as 

 

 ( ) ( ) ( )F ; 1 e 1 1 ex x x xx
    

    − − − − 
= − + − −

  
υ   (9) 

 

where α and γ are scale parameters representing the characteristic life, θ, β, and δ 

are shape parameters representing the different patterns of the TEAW, and λ is the 

transmuted parameter. 

 

Proof.  The proof is direct by applying the Definition 2 to the cdf and pdf 

presented in equations (7) and (8) which correspond, respectively, to G(x) and g(x) 

in the equation (6) of this definition. Then, as a result, the corresponding pdf of the 

TEAW is given by 

 

 

( ) ( ) ( )

( )

1
1 1f ; e 1 e

1 2 1 e

x x x x

x x

x x x
   

 


     


 

  

 

−
− − − − − −

− −

= + −

 
+ − −

  

υ

  (10) 

 

The proposed TEAW model is a very flexible model that approaches to different 

distributions. It includes as special cases twenty-seven sub-models when its 

parameters vary. The flexibility of TEAW is explained in Table 1 and some 

examples of the pdf can be visualized in Figure 4 in Appendix A. 
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Table 1. Sub-models of the TEAW(α, β, γ, θ, δ, λ) 
 

No. Distribution α β γ θ δ λ Author 

1 TAW α β γ θ 1 λ Elbatal & Aryal (2013) 

2 TEMW α β γ 1 δ λ Eltehiwy & Ashour (2013) 

3 TELF α 2 γ 1 δ λ New model 

4 TEME α 1 γ 1 δ λ New model 

5 TMW α β γ 1 1 λ Khan & King (2013) 

6 TLFR α 2 γ 1 1 λ New model 

7 TME α 1 γ 1 1 λ Elbatal & Aryal (2013) 

8 EAW α β γ θ δ 0 New model 

9 EMW α β γ 1 δ 0 Elbatal (2011) 

10 ELFR α 2 γ 1 δ 0 New model 

11 EME α 1 γ 1 δ 0 New model 

12 AW α β γ θ 1 0 Xie & Lai (1995) 

13 MW α β γ 1 1 0 Sarhan & Zaindin (2009) 

14 LFR α 2 γ 1 1 0 New model 

15 ME α 1 γ 1 1 0 Elbatal & Aryal (2013) 

16 TEW 0 β γ θ δ λ Eltehiwy & Ashour (2013) 

17 TER 0 2 γ θ δ λ New model 

18 TEE 0 1 γ θ δ λ Merovci (2013a) 

19 TW 0 β γ θ 1 λ Aryal & Tsokos (2011) 

20 TR 0 2 γ θ 1 λ Merovci (2013b) 

21 TE 0 1 γ θ 1 λ New model 

22 EW 0 β γ θ δ 0 Mudholkar & Srivastava (1993) 

23 ER 0 2 γ θ δ 0 Kundu & Raqab (2005) 

24 EE 0 1 γ θ δ 0 Gupta & Kundu (2001) 

25 W 0 β γ θ 1 0 Weibull (1951) 

26 R 0 2 γ θ 1 0 Lord Rayleigh (1880) 

27 E 0 1 γ θ 1 0 – 

 
 

Note the procedure of adding one or two shape parameters to a baseline 

distribution by using an adequate generator, in this particular case two extra shape 

parameters, will add more flexibility to the generated TEAW distribution since it 

can provide a large range for the skewness and great variability for the tail weights. 

The main motivation of the TEAW model is illustrated by considering a device 

made of δ parallel components for which the lifetime of each component is an AW 

random variable with cdf (1). The device fails if all δ components fail and, to 

improve the reliability of this device, we have to duplicate each component in 

parallel form, in which case the life of the device is governed by the cdf (9) at λ = -1. 

Furthermore, consider a system consisting of δ independent components that 

are connected in parallel with each component consisting of two units. If the two 
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units are connected in series, then the overall system will have the TEAW model 

with λ = 1, whereas if the two units are connected in parallel then λ = -1. 

Another physical motivation for the TEAW model follows by taking two 

independent and identically distributed random variables, say Z1 and Z2, with cdf 

G(x) = (1 – e-αxθ-γxβ)δ. Let Z1:2 = min(Z1, Z2) and Z2:2 = max(Z1, Z2). Next, consider 

the random variable X defined by 

 

 
1:2

2:2

1
with probability 

2

1
with probabilit  

,

y
2

,

Z

X

Z





+


= 
−



  

 

Finally, the cdf of X is given by (9). 

Mixture Representation for the TEAW pdf 

Expansions for equation (10) can be derived using the series expansion 

 

 ( )
( ) ( )

( )0

1 1
1 , 1, 0

! 1

j

k j

j

k
z z z k

j k j



=

−  +
− =  

 − +
   (11) 

 

where Γ(∙) is the Gamma function. The pdf (10) can be rewritten as 

 

 

( ) ( )
( ) ( ) ( )

( )
( ) ( ) ( )

1
1 1

1

A

B

1 1

f ; 1 e 1 e

2 1 e 1 e

x x x x

x x x x

x x x

x x

   

   


    


    

   

   

−
− + − +− −

−
− + − +− −

 = + + −
  

 − + + −
  

υ

  (12) 

 

By expanding the quantities A and B in series expansion and, after some algebra, 

we have 
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( )
( ) ( ) ( )

( )
( )

( )( )

( ) ( )

( )
( )

( )( )

11 1

0

1

11 1

0

1 1 1
f ; e

!

1 2 2
e

! 2

j

j x x

j

j

j x x

j

x x x
j j

x x
j j

 

 

  

  

 
 



 
 




− + +− −

=

+


− + +− −

=

− +  +
= +

 −

− 
+ +

 −





υ

  (13) 

 

Then the pdf of the TEAW in equation (10) can be expressed in the mixture form 

 

 ( ) ( ) ( )1 1

0 0

f ; j j j j

j j

x a g x b g x
 

+ +

= =

= + υ   (14) 

 

where 

 

 
( ) ( ) ( )

( )

( ) ( )

( )

1

0 0

1 1 1 1 2 2
, 

! ! 2

j j

j j

j j

a b
j j j j

   

 

+
 

= =

− +  + − 
= =

 −  −
    

 

and 

 

 ( )( )
( )( )11 1

1 1 e
j x x

jg j x x
    

− − +− −

+ = + +   

 

is the pdf of the random variable Zj+1 ~ AW(α(j + 1), β, γ(j + 1), θ). Let pj = aj + bj. 

Then the equation (14) can be expressed as 

 

 ( ) ( )1

0

f ; j j

j

x p g x


+

=

=υ   (15) 

 

Equation (15) reveals that the TEAW density function can be expressed as a 

mixture of AW densities with different scale parameters. Thus, some of its 

mathematical properties can be obtained directly from the properties of the AW 

distribution. 

Some Statistical Properties 

Established algebraic expansions to determine some structural properties of the 

TEAW distribution can be more efficient than computing those directly by 
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numerical integration of its density function. The statistical properties of the TEAW 

distribution including quantile function (qf) and ordinary and incomplete moments 

are discussed in this section. 

Quantile Function and Moments 

The qf of X, where X ~ TEAW(α, β, γ, θ, δ, λ), is obtained by inverting (9) as 

 

 
( ) ( )

2
1 1 4

ln 1 0
2

q q

q
x x  

  
 



 
+ − + − 

+ + − = 
 
 

  (16) 

 

Since the above equation has no closed form solution in xq, we have to use 

numerical methods to obtain the quantiles. 

Also, the rth moment of X, denoted by 0

r , is given by the following theorem: 

 

Theorem 1. If X is a continuous random variable with TEAW(α, β, γ, θ, δ, λ), 

then the qth non-central moment of X is given by 

 

 ( ) ( ) ( )1, 1,

0

E 1q

q j q j q j

j

X j p I I   


+ − + −

=

 = = + +   (17) 

 

where I is determined by the following integral: 

 

 ( ) ( )( )
( )( )1

,

0

; 1 , , 1 , e
j x xk n

k jI I k j j x dx
     


− + ++= + + =    (18) 

 

Proof.  We can determine q  from equation (17) by expanding 
( )1  

e
x j− +

 in 

power series; the above equation reduces to 

 

 

( ) ( ) ( )

( )

( ) ( )

1

,

0 0

1
0

1 1
e  

!

1 11 1

!

nn

j xk n

k j

n

nn

k
n

a j
I x dx

n

a j k n

n



 



 


− ++

=



+
=

 − + =

 − +   + +
=     

    

 



  (19) 
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Consider the complex parameter Wright generalized hypergeometric function with 

p numerator and q denominator parameters defined by 

 

 
( ) ( )

( ) ( )

( )

( )

1 1 1

0
1 1 1

, , , , ,
;  

, !, , , ,

p n

p p j jj

p q q
n j jp p j

A A A n z
z

B n nB B

 





 


=

=
=

  
  =
  
 





Ψ   (20) 

 

Then equation (19) can be expressed in a simple form, provided that β > 1, using 

the Wright generalized hypergeometric function. This yields 

 

 
( )

( )
, 1 01

1
, 11

;k j k

k
a j

I
 



 


+

  +
+  

= −  
 − 

Ψ   (21) 

 

Applying (21) to equation (17) gives (for q ≥ 1) 

 

 ( ) ( )1, 1, 

0

1q j q j q j

j

j p I I   


+ − + −

=

 = + +   (22) 

 

The moment generating function (mgf) of X, MX(t), is given by 

 

 ( ) ( ) ( )1, 1, 

, 0

M 1
!

q

X j q j q j

q j

t
t j p I I

q
  



+ − + −

=

= + +   (23) 

 

The nth central moment of X, ( )1E
n

n X = −  (for n ≥ 1), is given by 

 

 ( )( ) ( )1 1, 1, 

, 0

1
!

qn

n j q j q j

q j

n t
j p I I

k q
    + − + −

=

 
= − + + 

 
   (24) 

 

The variance, skewness, kurtosis, and higher-order cumulants of X can be 

determined from the central moments using well-known relationships. 

Incomplete Moments 

The main application of the first incomplete moment refers to the Bonferroni and 

Lorenz curves. These curves are very useful in economics, reliability, demography, 
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insurance, and medicine. Another application of the first incomplete moment is 

related to the mean residual life and the mean waiting time (also known as mean 

inactivity time) given by m1(t; υ) = (1 – φ1(t)) / (1 – F(t; υ)) – t and 

M1(t; υ) = t – φ1(t) / F(t; υ), respectively. 

The sth incomplete moment of X is 

 

 ( ) ( )
0

φ f

t

s

s t x x dx=    

 

Henceforth, let 

 

 ( ) ( )1

0

P ; , e

t
j xst s j x dx

− +
=    

 

We obtain from equation (15) 

 

 ( ) ( )
( )( )11 1

0

φ e

t
j x xs

s t x x x dx
    

− + +− −= +   (25) 

 

By expanding 
( )( )1

e
j x x  − + +

, we have 

 

 
( )

( )

( )
( )

( )

, 0

1
φ P ; 1,

1 !

P ; 1,

qj

s q
j q

p a j
t t s q j

q

t s q j

  

  



=

 +  = + + −
−

+ + + − 


  (26) 

 

where 

 

 ( ) ( )
( )11 1

P ; , 1 γ ,
s s

t s j j t


 


+−  +
 = +   

 
  

 

and 
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 ( ) 1

0

γ , e

t

ya t y dy− −=    

 

is the lower incomplete gamma function. 

The amount of scatter in a population is evidently measured to some extent 

by the totality of deviations from the mean and median. The mean deviations about 

the mean μ ( ) ( )( )0

1δ EX X = −  and the median M ( ) ( )( )δ EM X X M= −  of 

X can be, used as measures of spread in a population, expressed by 

 

 ( ) ( ) ( ) ( )0 0 0 0

1 1 1 1 1

0

δ f 2 F 2φX X x dx    


= − = −   (27) 

 

and 

 

 ( ) ( ) ( )0

1 1

0

δ f 2 2φM X X M x dx M


= − = −   (28) 

 

respectively, where ( )0

1 E X =  comes from equation (17), ( )0

1F   is simply 

calculated from equation (9), and ( )0

1 1φ   is the first incomplete moment. 

The application of mean deviations refers to the Lorenz and Bonferroni curves 

defined by ( ) ( ) 0

1 1L φp q =  and ( ) ( ) 0

1 1B φp q p= , respectively, where 

q = F-1(p) can be computed for a given probability p by inverting equation (9) 

numerically (Pescim, Cordeiro, Nararajah, Demetrio, & Ortega, 2014). 

Reliability Analysis 

The characteristics in reliability analysis which are the reliability function (rf), 

hazard rate function (hrf), cumulative hazard rate function (chrf), moments of the 

residual life, and moments of the reversed residual life for the TEAW distribution 

are introduced in this section. 

Reliability, Hazard Rate, and Cumulative Hazard Rate Functions 

The rf is the probability of an item not failing prior to some time t. The rf of X is 

given by 
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 ( ) ( ) ( )R ; 1 1 e 1 1 ex x x xx
    

    − − − − 
= − − + − −

  
υ   (29) 

 

The hrf is important in a number of applications and is known by a variety of names. 

It is used by actuaries under the name force of mortality to compute mortality tables. 

In statistics, its reciprocal for the normal distribution is known as Mills’ ratio. It 

plays an important role in determining the form of extreme value distributions, and 

in extreme value theory is called the intensity function. The hrf of X is an important 

quantity characterizing life phenomenon and it is defined by 

 

 

( ) ( )( )

( )
( )

( )

1
1 1h ; e 1 e

1 2 1 e
1 1 e

1 1 e

x x x x

x x

x x

x x

x x x
   

 

 

 


     


 


 


 

  

 

 

−
− − − − − −

− −

− −

− −

= + −

+ − −
 
− −

   + −



−

υ

  (30) 

 

Some examples of the hazard curves can be found in Appendix A, Figure 5. It is 

important to note that the units for h(x; υ) are the probability of failure per unit of 

time, distance, or cycles. These failure rates are defined with different choices of 

parameters. 

The chrf of X is defined by 

 

 ( ) ( ) ( )H ; ln 1 1 e 1 1x x x xx e
    

    − − − −  
= − − − + − −    

υ   (31) 

 

It is important to note that the units for H(x; υ) are the cumulative probability of 

failure or death per unit of time, distance, or cycles. 

Moments of the Residual Life 

Several functions are defined related to the residual life: the failure rate function, 

mean residual life function, and the left-censored mean function, also called vitality 

function. These three functions uniquely determine F(x) (see, e.g., Gupta, 1975; 

Kotz & Shanbhag, 1980; Zoroa, Ruiz, & Marin, 1990). 

 



TRANSMUTED EXPONENTIATED ADDITIVE WEIBULL DISTRIBUTION 

14 

Definition 3. Let X be a random variable, usually representing the life length for 

a certain unit at age t (where this unit can have multiple interpretations); then the 

random variable Xt = X – t ∣ X > t represents the remaining lifetime beyond that age. 

Moreover, the nth moments of residual life, denoted by 

 mn(t) = E((X – t)n ∣ X > t), n = 1, 2, 3,…, uniquely determine F(x) (see Navarro, 

Franco, & Ruiz, 1998). The nth moments of the residual life of a random variable 

are given by 

 

 ( )
( )

( ) ( )
1
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n
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t

t x t d x
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= −
−    (32) 

 

Therefore, the nth moments of the residual life of X are given by 
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  (33) 

 

Another interesting function is the mean residual life function (MRL), or the life 

expectancy at age x, defined by m1(t) = E((X – t) ∣ X > t), which represents the 

expected additional life length for a unit which is alive at age x. The MRL of the 

distribution can be obtained by setting n = 1 in (33). 

Guess and Proschan (1988) provided an extensive coverage of possible 

applications of the mean residual life. The MRL has many applications in survival 

analysis in biomedical sciences, life insurance, maintenance and product quality 

control, economics and social studies, demography, and product technology (see, 

e.g., Lai & Xie, 2006). 

Moments of the Reversed Residual Life 

The nth moments of the reversed residual life, denoted by  Mn(t) = E((t – X)n ∣ X ≤ t), 

t > 0, n = 1, 2, 3,…, uniquely determine F(x). The nth moments of the reversed 

residual life random variable are given by 

 

 ( )
( )

( ) ( )
0

1
M F

F

t
n

n t t x d x
t

= −   (34) 
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Therefore, the nth moments of the reversed residual life of X can be expressed, in a 

similar manner, as 
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  (35) 

 

The mean inactivity time (MIT), also called mean reversed residual life function, 

defined by M1(t) = E((t – X) ∣ X ≤ t), represents the waiting time elapsed since the 

failure of an item on condition that this failure had occurred in (0, t). The MIT of 

the TEAW distribution can be obtained by setting n = 1 in equation (35). The 

properties of the mean inactivity time have been considered by many authors (see, 

e.g., Kayid & Ahmad, 2004; Ahmad, Kayid, & Pellerey, 2005). 

Order Statistics 

The order statistics and their moments have great importance in many statistical 

problems and have many applications in reliability analysis and life testing. The 

order statistics arise in the study of reliability of a system. The order statistics can 

represent the lifetimes of units or components of a reliability system. Let X1, X2,…, 

Xn be a random sample of size n from the TEAW distribution with cdf and pdf as 

in (9) and (10), respectively. Let X(1), X(2),…, X(n) be the corresponding order 

statistics. Then the pdf of ith order statistic, say Xi:n, 1 ≤ i ≤ n, denoted by fi:n(x), is 

given by 
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  (36) 

 

The pdf of Xi:n can also be written as 
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where B(∙) is the Beta function. After some simplification, we can write 
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Equation (38) can be expressed as 
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where tm = dm + sm. 

By inserting (39) in equation (37), we obtain 

 

 ( )
( )

( )
( ): 1

0

1

f g
B , 1

j

i n m m

m

n i

j
x t x

i n i



+

=

− 
−  

 =
− +

   (40) 

 

where gm+1(x) is the AW density function with parameters α(m + 1), β, γ(m + 1), 

and θ. 

Equation (40) reveals that the pdf of the TEAW order statistics is a mixture 

of AW densities. Some of their mathematical properties can also be obtained from 

those of the AW distribution. For example, the qth moment of Xi:n can be expressed 

as 
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Based upon the moments (41), derive explicit expressions for the L-moments of X 

as infinite weighted linear combinations of the means of suitable AW distributions. 

They are linear functions of expected order statistics defined by 
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   (42) 

 

The first four L-moments are given by 
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One simply can obtain the λs for X from equation (39) with q = 1. 

Maximum Likelihood Estimation 

The maximum likelihood estimators (MLEs) for the parameters of the TEAW 

distribution are discussed in this section. Let X = (X1, X2,…, Xn) be a random 

sample of this distribution with unknown parameter vector υ = (α, β, γ, θ, δ, λ)T. 

The likelihood function for υ is 
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where zi = αθxθ-1 + γβxβ-1, si = αxθ + γxβ, and ( )1 2 1 e is

ik


  −
= + − − . 

Then the log-likelihood function ℓ = ln L(υ) is given by 
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The components of the score vector 
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and 
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Find the estimates of the unknown parameters by setting the score to zero, i.e., by 

solving the nonlinear system of equations: ( )ˆU 0=υ . These solutions will yield the 

maximum likelihood estimators ˆ ˆ ˆˆ ˆ, , , , ,      and ̂ . For the four-parameters 

TEAW distribution pdf, all of the second-order derivatives exist. Thus, the inverse 

dispersion matrix is given by 

 

 ~ ,

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

N

 

 

 

 





    
    
    
    
    
    
    
           

  

Simulation Study 

A simulation study was performed in SAS by using the bootstrap approach. It was 

based on nicotine measurements made on several brands of cigarettes in 1998 and 

collected by the Federal Trade Commission, an independent agency of the United 

States government whose main mission is the promotion of consumer protection. 
 
 
Table 2. Converge probabilities 
 

 Coverage probability 

Sample size α β γ θ δ λ 

50 0.786 0.735 0.685 0.835 0.754 0.857 

80 0.874 0.789 0.784 0.893 0.821 0.935 

100 0.915 0.815 0.819 0.917 0.867 0.952 

150 0.965 0.836 0.875 0.959 0.926 0.976 

200 0.976 0.834 0.896 0.973 0.939 0.984 
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Figure 1. Estimates of parameters for different sample sizes (dashed lines are the 
estimated values presented in the numerical example for the same dataset) 
 

 
 
Table 3. MLEs and MSE 
 

Sample 
size 

Estimate 
 

MSE 

α β γ θ δ λ   α β γ θ δ λ 

50 1.107 3.040 1.292 0.798 3.256 -0.486  2.672 5.451 1.577 1.892 15.362 0.978 

80 1.143 2.635 1.393 0.683 3.536 -0.531  2.397 2.091 1.366 1.514 13.781 0.753 

100 1.199 2.541 1.442 0.607 3.864 -0.536  2.050 1.622 1.068 1.153 12.540 0.696 

150 1.266 2.390 1.515 0.498 4.246 -0.559  1.702 0.833 0.780 0.768 10.528 0.572 

200 1.285 2.349 1.532 0.470 4.318 -0.575   1.491 0.630 0.651 0.620 9.504 0.486 
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Presented in Table 3 are the mean of the MLEs and the mean square error 

(MSE). When the sample size increases, the MSE becomes smaller and the mean 

of the MLEs are close to the observed value in the second example. The example 

was performed by using the same dataset (nicotine data, Table 6, and the dashed 

lines presented in Figure 1). Shown in Table 2 are the coverage probabilities of the 

95% two-sided confidence intervals for the model TEAW parameters. Although the 

convergence to the nominal value for the parameters β and γ is slow (there is a 

tendency for the nominal value as the sample size increases), for the parameters α, 

θ, δ, and λ, by considering sample size 200, the observed values are close to the 

nominal one, 95%. 

Numerical Experiments 

Two applications to real data to show the importance and usefulness of the TEAW 

model. 

Application to Carbon Fibers Data 

The data set that corresponds to an uncensored study on the breaking stress of 

carbon fibres (in Gba), from Nichols and Padgett (2006), was used. This data set 

was also used by Afify, Yousof, Cordeiro, Ortega, and Nofal (2016) to fit the 

Weibull Fréchet distribution. TTT Plot of times can be seen in Figure 2, upper left 

panel, which indicates a possible increase hazard. 

Shown in Table 4 are the MLEs to seven nested distributions: TEAW 

(transmuted exponential additive Weibull), TAW (transmuted additive Weibull), 

AW (additive Weibull), TEMW (transmuted exponential modified Weibull), EMW 

(exponential modified Weibull), W (Weibull), and EW (exponential Weibull). Also 

presented for all models, in Table 5, are two different statistics of fit that were used 

as selection criteria: -2 × log-likelihood (-2log) and the likelihood ratio (LR) test. 

The calculated values of these statistics (the smaller the better) show us that 

the adjustments of all models are close. Also, the p-values are presented for the 

likelihood ratio test comparing the sub-models to the TEAW model. Figure 2 shows 

the P-P Plot which indicates a good adjustment to the TEAW model. This quality 

of fit can be analyzed by the survival and density curves showed in the lower panels 

of Figure 2. 
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Table 4. MLEs of the parameters of some TEAWs nested models 
 

    CI (95%) 

Model Parameter  Estimate  Standard error  Lower Upper 

TEAW α 0.098 0.254 -0.406 0.602 
 β 0.538 1.771 -2.975 4.051 
 γ 1.110 4.672 -8.160 10.380 
 θ 2.286 1.220 -0.135 4.707 
 δ 7.962 5.965 -8.231 9.156 
 λ -0.291 0.885 -2.048 1.465 

      

TAW α 0.074 2.322 -4.532 4.681 
 β 2.133 1.945 -1.726 5.993 
 γ 0.079 2.322 -4.528 4.686 
 θ 2.133 2.063 -1.959 6.225 
 λ -0.825 0.344 -1.506 -0.143 

      

AW α 0.004 2.065 -4.093 4.101 
 β 2.793 0.297 2.204 3.382 
 γ 0.045 2.065 -4.052 4.142 
 θ 2.793 2.317 -1.804 7.390 

      

TEMW α 0.455 0.892 -1.315 2.226 
 β 2.437 1.456 -0.452 5.326 
 γ 0.066 0.210 -0.351 0.483 
 δ 3.122 3.101 -3.029 9.273 
 λ -0.314 0.815 -1.932 1.303 

      

EMW α 0.370 0.645 -0.909 1.650 
 β 2.541 1.184 0.192 4.890 
 γ 0.058 0.143 -0.226 0.342 
 δ 3.009 2.764 -2.475 8.492 

      

W β 2.793 0.214 2.368 3.218 
 γ 0.049 0.014 0.022 0.077 

      

EW β 2.409 0.606 1.207 3.612 
 γ 0.093 0.092 -0.090 0.275 
 δ 1.317 0.597 0.132 2.502 
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Figure 2. Upper panels: TTTPlot and P-P Plot; Lower panels: Survival and pdf estimated 
by TEAW model 
 

 
 
Table 5. Measure of selection criteria 
 

 Criterias 

Model -2log LR p-value 

TEAW 282.4 − 

TAW 282.7 0.4161 

AW 283.1 0.2953 

TEMW 282.5 0.2482 

EMW 282.6 0.0952 

W 283.1 0.0487 

EW 282.7 0.0400 
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Table 6. MLEs of the parameters of some nested models and selection criteria 
 

    Selection Criteria 

Model Parameter  Estimate  Standard error -2log AIC AICC BIC 

TEAW α 1.528 1.048 214.7 226.7 227.0 249.8 
 β 2.229 0.292 -- -- -- -- 
 γ 1.613 0.349 -- -- -- -- 
 θ 0.345 0.244 -- -- -- -- 
 δ 5.663 6.551 -- -- -- -- 
 λ -0.592 0.336 -- -- -- -- 

        

TAW α 0.388 0.354 218.1 228.1 228.3 247.4 
 β 2.664 0.314 -- -- -- -- 
 γ 1.172 0.347 -- -- -- -- 
 θ 1.216 0.517 -- -- -- -- 
 λ -0.708 0.213 -- -- -- -- 

        

AW α 0.426 0.167 217.6 225.6 225.8 241.0 
 β 2.652 0.235 -- -- -- -- 
 γ 1.245 0.187 -- -- -- -- 
 θ 0.700 0.221 -- -- -- -- 

        

TEMW α 0.722 0.501 217.1 227.1 227.2 246.3 
 β 2.599 0.272 -- -- -- -- 
 γ 1.177 0.265 -- -- -- -- 
 δ -0.629 0.230 -- -- -- -- 
 λ 1.525 0.494 -- -- -- -- 

        

EMW α 0.453 0.305 218.9 226.9 227.0 242.3 
 β 2.841 0.216 -- -- -- -- 
 γ 1.068 0.133 -- -- -- -- 
 δ 1.626 0.424 -- -- -- -- 

        

W β 2.719 0.114 227.6 231.6 231.6 239.2 
 γ 1.047 0.022 -- -- -- -- 

        

EW β 3.063 0.354 226.3 232.3 232.4 243.9 
 γ 0.947 0.173 -- -- -- -- 
 δ 0.812 0.152 -- -- -- -- 

Application to Nicotine Data 

The second data set pertains to nicotine measurements made on several brands of 

cigarettes, collected by the Federal Trade Commission. Tar, nicotine, and carbon 

monoxide of the smoke of 1206 varieties of domestic cigarettes for the year of 1998 

are recorded, along with some information about the source of the data; smokers’ 
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behavior; and smokers’ beliefs about nicotine, tar, and carbon monoxide contents 

in cigarettes. The free form data set can be found at 

http://www.econdataus.com/smoke.html. The TTT Plot of the times can be seen in 

Figure 2, upper left panel. 

Compiled in Table 6 are the MLEs of seven nested distributions: TEAW 

(transmuted exponential additive Weibull), TAW (transmuted additive Weibull), 

AW(additive Weibull), TEMW (transmuted exponential modified Weibull), EMW 

(exponential modified Weibull), W (Weibull), and EW (exponential Weibull); four 

different statistics of fit were used as selection criteria: -2log, Akaike’s information 

criterion (AIC), corrected Akaike’s information criterion (AICC), and Schwarz 

Bayesian information criterion (BIC), that are given by: 
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2 1
AICC 2log 2

1

BIC 2log f logn
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p p
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n p

x p n

= − +

+
= − + +

− −

= − +

  

 

where n is the sample size and p is the number of parameters. 

The calculated values of these statistics (the smaller the better) show us that 

the TEAW model is better fitted than the others. Also, the quality of fit can be 

analyzed by the survival and density curves showed in Figure 3. 

By considering four different criteria of selection, the TEAW model is the 

most appropriate to fit the data, which can be checked in Figure 2. In order to 

examine the global adjust of the model, a residual analysis was conducted, as in the 

examples by McCullagh and Nelder (1989), Barlow and Prentice (1988), and 

Therneau, Grambsch, and Fleming (1990). The first, the error used in Martingale-

type residual, was introduced Therneau et al. and was used in a counting process. 

They are skewed and have a maximum value at +1 and a minimum value at -∞. 

The error of TEAW can be written as 

 

 ( ) ( ) log 1 ζ 1 ζi i ir t t
 

  = − − + −
 

  (51) 

where ( )
( )

ζ 1 e
x x

it
  − +

= − , i = 1,…, n 

Figure 3, lower right panel, shows the plot of log ri versus where the global 

adjustment of the model is seen to be appropriate. 
 
 

http://www.econdataus.com/smoke.html
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Figure 3. Upper panels: TTTPlot and Survival curves; Lower panels: pdf estimated by 
TEAW model and residual analysis 
 

Conclusion 

A new model, called the transmuted exponentiated additive Weibull (TEAW) 

distribution, was proposed which extends the TAW distribution introduced by 

Elbatal and Aryal (2013). An obvious reason for generalizing a standard 

distribution is that it provides more flexibility to analyze real-life data. The TEAW 

distribution is motivated by the wide use of the Weibull distribution in practice, and 

also for the fact that the generalization provides more flexibility to analyze real data. 

The TEAW density function can be expressed as a mixture of AW densities. 

Explicit expressions were derived for the ordinary and incomplete moments and 

generating function, moments of residual, and reversed residual life. The density 

function of the order statistics and their moments were obtained, and the inference 
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section presents the maximum likelihood estimation procedure. Two applications 

illustrate that the new model provides consistently good fit. The TEAW model has 

several sub-models, and works as a comprehensive model which is a unique 

algorithm to fit a large number of models. It is shown, from the plots of the pdf and 

hazard function of the TEAW model, this distribution is very flexible, 

accommodating a large number of shapes for the hazard function. 
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Appendix A – Complementary Figures 

Some plots of the TEAW pdf and hrf are provided that show the flexibility of the 

TEAW model. Moreover, the TEAW model due to its flexibility in accommodating 

all forms of the hazard rate as follows. 
 
 

 

 
 
Figure 4. Examples of the TEAW pdf curves for different combinations of the parameters 
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Figure 5. Examples of the TEAW hazard function behavior for different combinations of 
the parameters 
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