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Abstract The objective of this study is to provide deeper knowledge of the maternal 

genetic structure and demographic history of the human population of the dynamic 

Sahel/Savannah belt, the extensive region lying between the Sahara and tropical rainforests, 

spanning from the Atlantic Ocean to the Red Sea coast. The study aims to confirm or 

disconfirm archaeological and linguistic data indicating that the region’s populations 

underwent diversification as a result of the spread of agropastoral food-producing subsistence 

lifestyles, over time dividing the region into separate areas of nomadic pastoralism on the one 

hand, and sedentary farming on the other. In order to perform both descriptive and 

coalescence analyses from the Sahel/Savannah belt’s entire region, including western and 

eastern rather than just central populations studied previously, we generated a new mtDNA 

dataset not only having almost 2,000 samples (875 of which were newly collected); but also 

encompassing whole mtDNA D-loop segment rather than only the previously studied HVS-1. 

While comparing our analyses with previous results from the Lake Chad Basin (central 

Sahel/Savannah Belt) we revealed similar intra-population diversity measures (i.e., lower 

values of measures in pastoralists than farmers). However, the new dataset pointed to 

significant differences in mating strategies between western as compared to the eastern 

pastoralists: our results suggest higher gene flow between the Arabic pastoralists and 

neighboring farmers in the eastern than between the Fulani pastoralists and their sedentary 

neighbors in the western part of the Sahel/Savannah Belt. The findings are discussed in the 

light of archaeological and linguistic data, allowing us to postulate that the genetic 

differentiation of Fulani pastoralists from the common western African agropastoral gene 

pool occurred at around the same time as the arrival of the Arabic pastoralists to eastern 

Africa. However, it seems that while the process of divergence of the Fulani pastoralists in 

the west was accompanied by a loss of Fulani females to other populations, the Arab 
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pastoralists’ immigration to the Sahel/Savannah belt conversely resulted in some gain of local 

females into this Arab population. 
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The African Sahel/Savannah belt (further referred to as the SSB) is a unique biome lying 

between the Sahara in the north and tropical rainforests to the south, and stretching from the 

Atlantic Ocean to the Red Sea coast. Populations living in the region can be classified into 

groups according to geography, language and subsistence lifestyle, including two distinct 

sympatric food-producing populations that cohabit across the whole length of the SSB: 

nomadic pastoralists and sedentary farmers. Lying in the middle of the SSB is the Lake Chad 

Basin, an area of remarkable natural and cultural diversity geographically dividing the whole 

region into western and eastern parts. While the pastoralists constitute rather large groups 

such as the Fulani in the western part, and Arabs in the east, there is also a large number of 

small geographically dispersed sedentary farmers with only a few more numerous groups 

such as the Kanembu, Kanuri, Hausa, and Mandinka, whose history is linked with great 

African empires (Connah 2001; Newman 1995). Last but not least, SSB populations can be 

classified according to linguistic affiliations as belonging to one of the Niger-Congo, Nilo-

Saharan, or Afro-Asiatic language families (Blench 2006; Ehret 2002; Heine and Nurse 

2000). 

Important information on the population history of the region can also be gained from 

archaeology. Relicts of harpoons fashioned of bone and other items such as decorated wavy 

line or dotted wavy line ceramics and later-dated fish hooks made from shells or bones have 

been found in the area ranging from the middle Nile and the East African lakes to the western 

part of the Sahara. Such findings have led to the formulation of the theory of the Aquatic 

Civilization (Sutton 1974). According to this view, a common culture was spread by 

ancestors of today’s Nilo-Saharans some 10,000 years ago, when the last African Humid 

Period caused the creation of the so-called “Green Sahara”, which included water formations 

such as rivers, inland deltas, and large lakes such as Mega-Chad (Bouchette et al. 2017; 

Kuper and Kröpelin 2006; Skonieczny et al. 2015). Today, Nilo-Saharan populations extend 
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from the eastern to the central SSB; its westernmost population is found around the Inner 

Niger Delta and speaks Songhai.  

After these humid conditions in the area began to dry up some 5,000 years ago, it is 

likely that the transformation to an agropastoral lifestyle was led by Afro-Asiatic peoples 

(Blench 1999; Blench 2006). They caused fragmentation of the regions’ original continuum 

of Nilo-Saharan hunter-gatherers as some of their groups gradually also adopted the Afro-

Asiatic example of food production strategies. Although associating archaeologically-

evidenced ancient cultures with contemporary languages is a controversial, it is hard to 

overlook that Nilo-Saharan speakers still tend to systematically live near bodies of water, 

including the ancient northern shores of the Mega-Chad paleo-lake, and in locations where 

bone harpoons have been found (Drake et al. 2011). Further evidence shows that the original 

agropastoral subsistence pattern began gradually diverging some 4,000 year ago into two 

different but perhaps mutually dependent lifestyles: nomadic pastoralism based on the 

continuous movement (transhumance) of peoples and their domesticated animals for one, and 

sedentary farming for the other (Linseele 2013; MacIntosh 2005).  

In western Africa, these cultural developments were accompanied by further 

diversification of the Niger-Congo languages that had already started to expand millennia 

earlier, at least some 8,000 years ago (Blench 2006). Today, pastoralism is practiced in the 

western part of the SSB by the Fulani, who speak a language belonging to this Niger-Congo 

family - this branch of languages expanded to West Africa in the Early Holocene, however, a 

long time before the diversification of the above-mentioned food producing lifestyles (Blench 

2006). Archaeologically, the origin of the Fulani is believed to be the central Sahara area 

(Dupuy 1999). Some scholars have even suggested that certain central Saharan prehistoric 

paintings might have been created by Fulani ancestors (Ba and Dieterlen 1966); this last 

speculation, however, has been, highly criticized (Le Quellec 2004). Historical accounts 
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indicate that the Fulani expansion started around the 11th century CE in Fouta Djallon, 

Guinea, continuing eastward to the Lake Chad Basin, where it was impeded by Arabian 

pastoralists who had spread to the eastern part of the SSB only shortly earlier (Owens 1994). 

Today, only few Fulani groups can be found as far east as the Blue Nile area in Sudan 

(Delmet 2000). It should also be emphasized that many Fulani groups adopted farming 

practices in various parts of western Africa, while others (called M’Bororo or Woɗaaɓe) 

remained faithful to the nomadic lifestyle of their ancestors (Botte et al. 1999) 

Pastoralism in the eastern part of the SSB is kept up today mainly by Arab groups of 

various names including the Shuwa, Baggara, and Abbala. It is believed that their ancestors 

started to expand from Arabia to Africa in the 7th century CE in what is known as the 

Islamization of Africa (Insoll 2003; MacMichael 1922), arriving to the Lake Chad Basin 

approximately five hundred years later (Levy and Holl 2002; Zeltner 2002) - hence, as 

mentioned above, slightly earlier than the Fulani. In addition, migrations of various tribes 

from the Arabian Peninsula to Africa continued until recently, a case in point being the 

Rashaayda Bedouins, whose ancestors reached the Red Sea coast in Sudan in the 1860s 

(Young 1996).  

To-date, studies examining human SSB population genetics have collected samples 

mainly in its central part of the SSB (in other words, the Lake Chad Basin area). Based on 

uniparental (mitochondrial and the Y chromosome loci, henceforth referred to as mtDNA and 

NRY, respectively) and some biparental genetic systems, such research seems to indicate that 

the SSB constituted a “crossroads” of migrations to the region from both eastern and western 

Africa, and that contacts occurred predominantly among pastoralists (Cerezo et al. 2011; 

Černý et al. 2007; Triska et al. 2015). Analysis of uniparental genetic systems also showed 

that the majority of the Fulani lineages belong to the western African gene pool; a few of 

them, however, pointed to a northern African or even western Eurasian origin (Bučková et al. 
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2013; Černý et al. 2006; Kulichová et al. 2017). Strikingly, genetic similarities among Fulani 

sub-populations sampled thousands of km apart demonstrated a common origin and/or 

homogenizing effect of the gene flow among their local demes (Černý et al. 2011; Čížková et 

al. 2017).  

These studies also show that although some earlier gene flows from Arabia to Africa 

(and vice-versa) can be inferred by phylogeographic (Fernandes et al. 2015; Musilová et al. 

2011) and population-based (Černý et al. 2016) studies, the bulk of the genetic input to the 

SSB occurred as a result of Arab immigration from the 7th century CE onwards. It seems that 

admixture during this time was relatively common; as far as the maternal gene pool is 

concerned, the highest admixture rate for an Arab group with sub-Saharan Africans appears 

to be in the Shuwa Arabs from north-eastern Nigeria and northern Cameroon (Černý et al. 

2007). Further analyses of African Arabs such as the Aballa, Baggara, and Rashaayda yielded 

a negative correlation between the frequency of the “Arabian” lactase persistence –13,915*G 

allele and the frequency of sub-Saharan mtDNA, a phenomenon that can be explained by the 

progressive introduction of sub-Saharan females into the Arabian gene pool (Priehodová et 

al. 2017).  

To expand on these previous results, in this study we further explore the genetic 

structure of the SSB by separately analyzing population differentiations and gene flows 

between nomadic pastoralists and sedentary farmers in western and eastern parts of the 

region. The main questions are whether the demographic reconstructions suggested by the 

archaeological and linguistic data summarized above are indeed reflected in the genetic 

make-up of contemporary populations, and whether the observations previously made in the 

central SSB can be reproduced in the western and eastern areas. Thus, we generated an 

extensive mtDNA D-loop dataset covering not only the Fulani pastoralists and sedentary 

farmers in the Lake Chad basin (as analyzed previously, Černý et al. 2011), but extending 
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across a much larger geographic area. Generally speaking, we discovered a low genetic 

structure, a finding suggesting a high migration rate and/or common genetic origin of the 

populations across the entire region. Moreover, our data provides the first evidence of 

differential mating strategies in the Fulani as compared to the Arabic pastoralists. In both 

cases, however, pastoralism can be considered a leading factor in population differentiation 

and/or admixture, remarkably shaping the genetic structure of the whole SSB area’s 

population.  

 

Material and Methods 

Subjects and Laboratory Methods. In this study, we analyzed large mtDNA datasets 

containing 1,994 D-loop mtDNA sequences of nomadic pastoralists and sedentary farmers 

belonging to three linguistic groups across the SSB and Northeast Africa. Nomadic 

pastoralists in the dataset are represented by 10 populations, and sedentary farmers by 26 

populations. Pastoralists in the western part of the SSB are represented both by Fulani groups 

still actively practicing the nomadic lifestyle (Ferlo and Ziniare), and others that have a 

pastoral history but have recently settled down and are now sedentary (Fouta Djallon and 

Halpularen). Pastoralists from the eastern part of the SSB are represented by both groups of 

indigenous African peoples such as the Daza, Beja, and Datog on one hand, and Arabs whose 

historically-documented origin can be traced to Arabian Peninsula on the other. Complete 

information about the populations used in this study is provided in Supplementary Table 1, 

with their geographic locations graphically visualized in Figure 1.  

Sampling authorizations were secured from the respective state institutions of the 

countries involved, appropriate informed consent was procured before sample collection from 

all participants, and ethical approval for the project was obtained from the Charles University 

in Prague (no 2016/07). Samples were collected using the Oragene DNA Collection kit, and 

file:///G:/Martina/Verze%202/tables_figures/Supplementary%20Tables.xlsx
file:///G:/Martina/Verze%202/tables_figures/Figure%201.png
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DNA was extracted according to the protocol provided by the supplier (DNA Genotek). All 

newly sequenced samples (n = 875) of this dataset were sequenced using primer pairs P23 

and P24 (as in Gonder et al. 2007). The mtDNA D-loop sequences were submitted to 

GenBank (accession numbers MH122955–MH123829). Total length is 1,227 bp (nps 15888–

579). All obtained sequences were compared to the revised Cambridge Reference Sequence 

(rCRS) (Andrews et al. 1999), and mutations were scored.  

For comparative purposes, we also included published datasets of 17 Sahelian 

populations (1,119 sequences) for which the whole D-loop region was available (see 

Supplementary Table 1). However, due to differences in the lengths of the sequences 

published in those studies compared to the ones generated in this study, their analyses were 

restricted to the segment 1,087 bp (nps 16030–579).  

Data Analyses. To evaluate genetic diversity at the population level, we computed both 

the standard and molecular diversity indices, namely gene/haplotype (h) and nucleotide 

diversity (π). We estimated demographic events using Tajima’s D and Fu’s Fs tests of 

selective neutrality (Fu 1997; Tajima 1989), and we also tested goodness-of-fit indices, 

namely the sum of squared deviations (SSD) and Harpending’s raggedness index (RI) 

comparing observed and expected mismatch distribution by applying both models of 

population expansion (demographic and spatial) and using a parametric bootstrap approach of 

500 replicates (Excoffier et al. 2005; Excoffier and Schneider 1999; Harpending et al. 1993; 

Ray et al. 2003).  

For inter-population comparisons, pairwise Reynolds genetic distances based on 

haplotype frequencies (Reynolds et al. 1983; Slatkin 1995) were calculated, and their 

significance was tested with the permutation procedure implemented in Arlequin software 

using 10,000 iterations (Excoffier and Lischer 2010). Reynolds genetic distances of mtDNA 

sequences were weighted using evolutionary distance between haplotypes (ΦST indices) 

file:///G:/Martina/Verze%202/tables_figures/Supplementary%20Tables.xlsx
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(Excoffier et al. 1992) and the Kimura-2P model with a Gamma correction of 0.4, a 

transition/transversion ratio of 10/1, while leaving indels out of consideration, as 

recommended in a similar study (Poloni et al. 2009).  

The levels of genetic differentiation between or among different groups of populations 

(divided according to subsistence lifestyle, geographical location, and language) were 

assessed through analyses of molecular variance (AMOVA). We used a hierarchical 

framework and significance of the fixation indices was tested by 10,000 iterations of the 

permutation procedure implemented in Arlequin ver. 3.5.2.2 (Excoffier et al. 2005). We 

calculated also shared haplotypes between defined groups (based either on lifestyle and/or 

language). The coancestry coefficients of the values of Reynolds genetic distances were used 

to perform MDS (Multidimensional Scaling Analysis) in RStudio (Team 2016).  

We also performed the Mantel test implemented in GenAlEx (Peakall and Smouse 

2012; Peakall and Smouse 2006) with a setting of 10,000 permutations to investigate the 

significance of correlation coefficients between geographic and genetic distances. We further 

focused more deeply on relationships between genetic and geographic aspects, and conducted 

Spatial Analysis of Molecular Variance (SAMOVA), using SAMOVA 2.0 software, a 

program that defines the genetic structure of populations by a simulated annealing approach 

(Dupanloup et al. 2002).  

Last but not least, estimation of population parameters was carried out by Migrate-n 

ver. 3.6.11 using a Bayesian MCMC (Markov chain Monte Carlo) inference model (Beerli 

2009). The estimated parameters were Θ (which is Nfμ, where Nf = effective female 

population size, f and μ = mtDNA mutation rate ) and the migration rate M (which is m/μ, 

where m is the chance for a lineage to immigrate per generation, and μ is the mutation rate 

per site per generation; an M of 1 means that it is as likely for the sequence to migrate as it is 
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for a site on the sequence to mutate) with settings of 1,000,000 genealogies with every 5,000 

recorded, and a burn-in of 10,000.  

 

Results 

Of the 1,994 D-loop sequences in our dataset of various African populations living across the 

SSB, we defined 1,352 (67.8%) unique haplotypes. Relatively high gene/haplotype diversity 

(h) values were observed in all populations (mean value = 0.988) with the exception of in two 

pastoralist groups – the Beja in Sudan (0.725) followed by the Fulani from Ferlo in Senegal 

(0.840). Both these populations also rank among the lowest values in nucleotide diversity (π) 

(Beja = 0.0099; Fulani Ferlo = 0.0095), as do several western sedentary populations (Gurunsi 

= 0.0096; South Samo = 0.0099; North Samo = 0.0094; Bisa = 0.0097). The complete results 

of intra-population diversity measures are presented in Supplementary Table 2. Plots of gene 

and nucleotide diversity can be seen in Supplementary Figure 1, clearly demonstrating that 

lower mean values (with higher confidence intervals/higher variance) of these indices are 

observed in the nomadic pastoralists. However, differences in average haplotype and 

nucleotide diversities among geographically specified subsistence modes were tested with 

pairwise Wilcoxon rank sum test and the only significant difference was found between 

nucleotide diversities of western sedentary and eastern nomadic people (Supplementary Table 

3).  

To search for a signal of demographic expansion, the data was analyzed using 

Tajima’s D and Fu’s Fs tests of selective neutrality. Although the Tajima’s D test applied in 

our dataset yielded negative values that would indicate an excess of low frequency 

polymorphisms (or an excess of recent variants) – and thus an increase in population size 

and/or a selective sweep (Bamshad and Wooding 2003) – the vast majority of values was not 

significantly different from zero, meaning the null hypothesis cannot be rejected. Of the 39 

file:///E:/Martina/tables_figures/Table%203.xlsx
file:///E:/Martina%20rukopis/Verze%203/D-loop_Sahel/tables_figures_2/plot_He.docx
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groups studied, the analysis detected significant values in just two sedentary populations: the 

Somali and the Sandawe. When carrying out the more sensitive Fu’s Fs test, on the other 

hand, all but one sedentary group show significant negative values (i.e., excepting the Nuba 

Koalib), while only half of the pastoral populations do so; this result is consistent with 

demographic expansion or genetic hitchhiking (Fu 1997).  

Changes in population size were also examined by means of pairwise distribution 

analyses. We calculated the Harpending’s raggedness index (RI) and the sum of squared 

deviation (SSD) between the observed and expected mismatch for each of the populations 

using a spatial and demographic expansion model (Excoffier and Schneider 1999; 

Harpending et al. 1993). Results were not statistically significant, thus also pointing to both a 

spatial and demographic expansion model in all but two pastoralist groups having the highest 

overall (and significant) demographic indices, namely the Beja and Rashaayda. The results 

are listed in Supplementary Table 4. 

Although the pairwise distribution analyses results do not seem to distinguish between 

populations of different subsistence strategies very well on first sight, the spatial expansion 

model also provided us an M parameter, which is a joint estimation of the effective 

population size (Ne) and migration rate (m). The first impression of the M parameter results is 

that M is higher on average in nomadic than in sedentary populations. On closer examination, 

we observed low M values not only in pastoralists, but also farmers such as the Daza (M = 

17.18), Rashaayda (M = 11.06), Sandawe (M = 16.64), and Luhya (M = 12.32); it is 

important to note that extremely low values occurred only in the pastoralists such as the Beja 

(M = 1.54), Fulani from Ferlo (M = 3.18) and Fulani from Ziniare (M = 3.56) suggesting 

their genetic isolation and/or low Ne. From the inverse perspective, it seems that the Bisa is 

an outlier among western SSB sedentary populations. One clearly apparent distinction can be 

seen between contemporary and past pastoralists in the western part of the SSB, where the 

file:///G:/Martina/Verze%202/tables_figures/Table%205.xlsx
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past nomads show higher values of this measure. However, when testing the overall 

difference with Wilcoxon rank sum test, none of the average differences in lifestyles were 

significant. Complete results are shown in Supplementary Table 3 and 4.  

Reynolds genetic distances did not reveal any essential population structure. 

Nonetheless, at first sight the plot displays the eastern pastoralists such as the Beja and 

Rashaayda as the most striking outliers, and indicates that eastern and western pastoralists are 

separated by a cluster of sedentary populations that communicate with eastern Africans via 

Arabian groups. Complete Reynolds genetic distance values along with the corresponding p-

values are reported in Supplementary Table 5. A categorized and color-coded MDS plot with 

stress value 0.169 was also created in accordance with each population’s lifestyle, language 

and region affiliations (Figure 2a-c). The result suggests that there seems to be a better 

correspondence between a population’s region and its position in the genetic plots than with 

the other two criteria (language and lifestyle).  

Levels of genetic differentiation among the studied populations were also assessed by 

an AMOVA within all groups, as well as using a hierarchical framework, based on regional 

grouping (western vs. eastern), language classification (Afro-Asiatic vs. Nilo-Saharan vs. 

Niger-Congo), subsistence pattern (nomadic vs. sedentary) and combinations thereof (see 

Table 1). Results show that in general, given the non-significant ΦCT values, it can be stated 

that there is no significant differentiation between nomadic and sedentary populations. 

Results show, however, that the variance among nomadic populations (ΦST = 0.133 and 

0.163) is almost twice higher than that among sedentary ones (ΦST = 0.073 and 0.085), which 

could indicate a higher level of drift or isolation among pastoralists. This overall difference 

between subsistence lifestyles was also confirmed when testing variance among subsistence 

groups regionally in the east, but examining the data showed negative and non-significant 

ΦCT values indicating insignificant variation in genetic structure in the western SSB. 

file:///G:/Martina/Verze%202/tables_figures/Table%205.xlsx
file:///E:/Martina/tables_figures/Supplementary%20Table%20S4.xlsx
file:///E:/Martina/tables_figures/Figure%206.png
file:///G:/Martina/Verze%202/tables_figures/Table%206.xlsx
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Moreover, the variance between eastern nomads and farmers is higher than that within either 

group, indicating strong differentiation by subsistence lifestyle in the eastern SSB. Besides 

lifestyle, we subjected the dataset to grouping by the language. We found the highest variance 

(ΦSC = 0.109) among populations within groups and no genetic structure between groups 

defined by these criteria jointly. Graphical representation of all the groupings and indices is 

provided in Figure 3. 

Sequence and haplotype sharing between or among groups defined by subsistence 

strategy, linguistic classification and geographic region was also investigated (Table 2), 

resulting in opposite conclusions drawn based on sequence analyses: the data suggested 

higher gene flow in eastern populations. Results show that pastoralists and farmers share only 

40 haplotypes, which comprises a higher percentage of sequences (individuals) in pastoralists 

than farmers (28% vs. 10%, respectively.) These 40 haplotypes are seen mainly in eastern 

pastoralists and farmers, but in some Fulani as well. We also examined the haplogroup 

classification of the shared haplotypes, and found a much higher contribution of non-sub-

Saharan lineages among populations of eastern part of the SSB (e.g. R0a, M1, H2a1a, HV1, 

and T2) than in the west. The overview of all the haplotypes, haplogroups and their 

frequencies can be seen in Supplementary Table 6. Interesting evidence emerges when 

language groupings were considered in addition to region – although the Niger-Congo family 

contains the highest number of samples, it shares the lowest percentage of sequences with the 

other two groups. The highest percentage is shared between the Nilo-Saharan and Afro-

Asiatic group (17%). As far as geographic distribution of populations is concerned, the 

groups (eastern and western) share fewer haplotypes (29) between each other than groups 

specified by subsistence strategy. Results of shared haplotypes are visualized in 

Supplementary Figure 2. 

file:///G:/Martina/Verze%202/tables_figures/Table%204.xlsx
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To explore the relationships between genetic and geographic distances we conducted 

a Mantel test and a SAMOVA analysis. The Mantel test (Figure 4) did not indicate any 

correlation in either group of pastoralists, but was positive and significant for farmers in both 

western (R2 = 0.321, p < 0.05) and eastern (R2 = 0.070, p > 0.05) regions, a finding which is 

compatible with a pattern of isolation by distance. The spatial analysis of molecular variance 

(SAMOVA) allowed us to define only one main group of populations and several single 

differentiated ones, which is in agreement with the MDS analysis similarly indicating the 

Rashaayda as representing the group most highly differentiated from the rest of the gene 

pool. After increasing the number of comparative groups (k) gradually from two to ten, 

results showed that after the Rashaayda, the most highly differentiated are the Beja, Sandawe, 

Burunge, Datog, Turu, Fulani from Ziniare, Fulani Halpularen and Somali (Table 3), 

revealing that the highest outliers are found in the eastern part of the SSB, and that of those 

outliers that were observed among western groups, all belong among the Fulani pastoralists.  

Next, to estimate the extent and direction of gene flows among the groups of 

populations, we ran Migrate-n software coalescence analyses. Based on a Bayesian model 

with an expected variable migration rate (M) and constant index theta Θ, we found that the 

highest number of migrants has been exchanged between eastern farmers and pastoralists. 

These results, which highlight that the ratio of migrants in the western SSB is much lower 

than that in the east, go hand in hand with the notion of a higher differentiation of the 

pastoralists in the western SSB and/or higher pastoralist integration (mainly of Arabs) in its 

eastern part. The sedentary farmers’ twice higher effective population size values, along with 

their present IBD model (Mantel test) population structure, are also consistent with the results 

of the selective neutrality tests indicating population expansion. A signal of migration 

between eastern and western pastoralists supports our results from haplotype sharing, but 

show higher gene flow from east to west than vice-versa. See Table 4 for complete results. 

file:///G:/Martina/Verze%202/tables_figures/Figure%206a%20and%206b.docx
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Discussion 

The aim of this study is to estimate the maternal genetic structure of the SSB, and try to 

understand it in light of archaeological and linguistic data. For this reason we based our 

results on a large mtDNA dataset providing higher molecular resolution than has been 

provided by similar studies to-date: instead of a short sequence of HVS-1 (currently about 

350 bp), we generated a new dataset and gathered whole available D-loop segment 

encompassing 1,087 bp (nps 16030–579) in a sample size of almost 2,000 individuals 

representing 36 human populations distributed in two geographic regions across a large 

expanse of the SSB area (western and eastern), belonging to either of two lifestyles (nomadic 

pastoralist and sedentary farmer) and one of three linguistic groups (Nilo-Saharan, Afro-

Asiatic, and Niger-Congo).  

We provide a comprehensive comparison of diversity measures and distribution of 

genetic variation for several newly sampled populations from the perspective of two 

statistical approaches. The first, the frequency-based approach, either accepts or rejects the 

null hypothesis using permutations; the other, Bayesian analysis, involves probabilistic 

modeling based rather on prior assumptions and taking the maximum likelihood for granted. 

Due to fundamental differences in these methods, we observed an apparent contradiction in 

our results. All in all, we can confirm the previously observed contrast in the population 

dynamics between the two overall SSB subsistence strategies (Černý et al. 2006; Černý et al. 

2007), with the generally lower values in nomadic pastoralists suggesting their genetic 

isolation. We have found that this observation is valid especially for the Beja and Rashaayda 

in the eastern part of the SSB, as well as for contemporary (but not really for now sedentary 

but historically active) Fulani pastoralists in the west. Therefore, in this regard, we can 

support the conclusions previously reached by Černý et al. (2011) using in the of 



Pre-print version. Visit http://digitalcommons.wayne.edu/humbiol/ after publication to acquire the final version. 

geographically (Lake Chad Basin) and ethnically (Fulani) restricted dataset suggesting a 

recent population bottleneck and a progressive loss of mtDNA diversity in pastoral 

populations due to genetic drift and asymmetric gene flow. Nevertheless, this finding has to 

be considered geographically specific to the SSB, as it has not been observed when studying 

pastoralists and farmers in other places such as Central Asia (Chaix et al. 2007.) 

This contrasting pattern in the distribution of maternally inherited genetic variation 

between nomadic pastoralists and sedentary farmers can be observed in almost all the results. 

We can state that the Rashaayda and Beja are the two most diverging groups, which in terms 

of haplotype frequencies show (practically) no mutual sharing, nor sharing with the sedentary 

farmers inhabiting the eastern SSB; it is probable that this finding is a result of these two 

groups’ relatively recent penetration to the region. On the other hand, other local pastoralists 

such as the Fulani, Daza, and Arabs do share some haplotypes with sedentary farmers, 

suggesting a relatively more frequent exchange of females. While it is true that the sharing of 

one or more haplotypes does not point directly to gene flow between groups, it can be 

assumed that very few non-sub-Saharan lineages were present before Arab immigration to 

Africa began in the 7th century, and that the newly incoming Arabs carried mostly Eurasian 

lineages. Therefore, the very occurrence of shared lineages between eastern pastoralists 

(mainly the Arabs) and farmers (considered indigenous peoples) implies that gene flow is the 

most likely cause. We found it noteworthy that the single most divergent group in our dataset, 

the Beja pastoralists, were mentioned by the Middle Age historian al-Maqrizi (Khutat) as 

having mixed with an Arabic tribe called Rabia during their migration to east Sudan; it is 

interesting that we did not, however, observe any non-sub-Saharan haplotype sharing 

between our Arab and Beja datasets: the only lineages they shared were sub-Saharan ones, 

suggesting gene flow into the Arabic population. After applying the migration model we 

discovered a very strong asymmetry in the gene flows between nomads and farmers in both 
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of the eastern and western SSB; while our analysis shows the asymmetry to be in the same 

direction from farmers to nomads in both regions, it is much more pronounced in the east, 

which again is consistent with previous results.  

It can be objected that higher haplotype sharing seen in the eastern part of the SSB 

occurs for the non-sub-Saharan lineages, which have lower diversity and have been 

introduced to the area more recently. However, even if the Fulani’s differentiation from the 

western SSB gene pool had occurred at a similar point in time as the Arab immigration, the 

main sub-Saharan lineages were already more diverse, making it more difficult to statistically 

discover sharing among them. Thus, it is possible that gene flow between populations of 

different subsistence systems occurs in both regions, with the flow in the eastern part of the 

SSB simply being more evident. It is obvious that gene flow is more common among Fulani 

sub-populations than between Fulani and sedentary groups, leading to prevalence of typical 

sub-Saharan lineages in this population. It is interesting to note that Eurasian haplogroup 

H1cb, previously interpreted as a sign of the Fulani’s mid-Holocene contact with a population 

of Mediterranean origin (Kulichová et al. 2017) was also detected in six individuals in our 

dataset (Supplementary Table 6).  

We suggest this pattern of genetic variation is the result of the long-term mating 

strategies maintained between these two subsistence groups co-habiting the SSB region for at 

least 4,000 years, maybe longer in its eastern part (Kuper and Riemer 2015). It has been 

shown that from the ecological point of view, pastoralism and farming are (at least in the 

northern Sahel, where droughts are currently recurrent) mutually exclusive livelihood 

alternatives – a combination of these practices are logistically and organizationally very 

demanding (Pedersen and Benjaminsen 2008). Indeed, the loss of genetic diversity and lower 

population dynamics in pastoralists is striking considering the fact that pastoralists are mostly 
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better nourished and suffer fewer infections in comparison with their neighboring farmers 

(Boström et al. 2012; Sheik-Mohamed and Velema 1999).  

Our study suggests that pastoralism has had a different population history in the 

western compared to the eastern part of SSB. In the west, several lines of evidence point to 

separate cultural identity (Bonfiglioli 1988; Botte et al. 1999; Dupire 1970) and genetic 

diversification (Kulichová et al. 2017; Tishkoff et al. 2009; Triska et al. 2015) of the Fulani 

nomads relative to their sedentary neighbors. It has also been shown that a relatively high 

number of marriages within the patrilineal and patrilocal Fulani society is consanguineous 

(Hampshire and Smith 2001). Inter-ethnic marriages have not been studied so far across the 

SSB, and are considered rather as a rare or a recent phenomenon limited to urban areas 

(Blanc et al. 1990; Maiga et al. 2014). It can be suggested that the reasons for close intra-

ethnic marriages are social and religious, and that their frequency in the past was probably 

not too different from what it is now.  

The situation in the eastern part of the SSB is completely different; the African Arabs, 

unlike the Fulani, have not been differentiated from the common sub-Saharan gene pool, but 

arrived to Africa as new immigrants from the Arabian Peninsula some 1,300 years ago; this 

migration was described in several historical accounts (Zeltner 1980; Zeltner 2002). Contacts 

between the Arabic newcomers, whose population was probably not very numerous, and 

local peoples can also be attested to by linguistic evidence such as the several varieties of 

pidgin and creole tongues spoken in the eastern part of the SSB today, and by certain 

structural features of Kordofanian Baggara Arabic that are common to western Sudanic 

dialects (Manfredi 2012; Owens 1997). In fact, for the Baggara Arabs (unlike in the Fulani), 

inter-ethnic marriages with indigenous sub-Saharan populations is considered permissible, 

and appears to be increasing with time, as is suggested by genetic data (Bayoumi et al. 1985; 

Hassan et al. 2008; Priehodová et al. 2017). 
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Table 1. Analyses of the Molecular Variance (AMOVA) 

   Hierarchical AMOVA  
      Proportion of variation (Fixation indices)  

Grouping 
N° of 

Groups 

N° 

of 

Pop 

Among 

Groups 

(ΦCT) 

Among 

Populations 

Within 

Group 

(ΦSC) 

Among 

Populations 

(ΦST) 

 
                   

ALL 1 36     0.08881*  
nomadic 1 10     0.13298*  
sedentary 1 26     0.07340*  
western 1 19       0.03549*  
eastern 1 17       0.08437*  
Nilo-Saharan 1 4       0.06998*  
Afro-Asiatic 1 7       0.09561*  
Niger-Congo 1 23       0.05607*  
subsistence (nomadic vs. sedentary) 2 36 0.00253 n.s. 0.08791* 0.09023*  

geography (western vs. eastern) 2 36 0.05265* 0.06260* 0.11196* 
 

language (Nilo-Saharan vs. Afro-

Asiatic vs. Niger-Congo) 
3 34 0.03633* 0.06632* 0.10024* 

 
nomadic (western vs. eastern) 2 10 0.07557** 0.09444* 0.16287*  
sedentary (western vs. eastern) 2 26 0.02475** 0.06164* 0.08487*  
western (nomadic vs. sedentary) 2 19 0.00000 n.s. 0.08440* 0.08433*  
eastern (nomadic vs. sedentary) 2 17 0.03697* 0.02219* 0.05834*  
subsistence + language 6 34 0.00000 n.s. 0.10936* 0.09980*  
 

Population in groups: subsistence - groupings to see in Supplementary Table 1; geography (Western: 

FZR, BED, FFE, GRS, GUR, MOS, SSR, FFD, HAL, SSA, NSA, NUN, MAR, LYE, BIS, GAM, 

MEN, YOR, ESA; Eastern: ARA, BEJ, NUB, ABG, RAS, SOM, KEN, BUR, DAT, SAN, TUR, 

KAW, ABA, DAZ, DNG, MAB, LUH) ; same division in groups "nomadic (western vs. eastern)", 

"sedentary (western vs. eastern)", "western (nomadic vs. sedentary)" and "eastern (nomadic vs. 

sedentary)" but just within subsistence and geographic groups (to see in Supplemetary Table S1.); 

language (Afro-Asiatic: ABA, ARA, BEJ, DNG, ABG, RAS, SOM; Nilo-Saharan: DAZ, MAB, NUB, 

DAT; Niger-Congo: BED, FFE, FFD, FZR, HAL, GRS, GUR, MOS, SSR, KAW, SSA, NSA, NUN, 

MAR, LYE, BIS, BUR, TUR, YOR, ESA, GAM, MEN, LUH); subsistence + language division is 

made into 6 groups according to lifestyle and language group 

*  P-value < 0,001                  
**  P-value < 0,05                  
n.s. = non-significant                  
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Table 2. Haplotype and mtDNA Sequences Sharing of Groupings Based on Subsistence Strategy, Linguistic 

Affiliation and Geographic Region 

    
SEQUENCE AND HAPLOTYPE SHARING  

Subsistence Sequencesa Haplotypes  
sedentary 1502 1096  
nomadic 492 299  

sedentary-nomadic 
147-138 (10%-

28%) 
40 

 
   

 
Language Sequencesa Haplotypes  

Afro-Asiatic (AA) 448 324  
Nilo-Saharan (NS) 175 140  
Niger-Congo (NC) 1371 939  

AA-NS 59-30 (13%-17%) 20  
NS-NC 22-63 (13%-5%) 14  
AA-NC 31-85 (7%-6%) 21  

       
Geography Sequencesa Haplotypes  

eastern 1014 713  
western 980 674  

eastern-western 91-112 (9%-11%) 29  
 

a Number before dash is the number of sequences shared between subsistence 

strategy or language on the first place and second place, after the dash is the opposite 

(shared haplotypes between the second one and the first one). Classification into 

linguistic groups to see in Supplementary Table 1 
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Table 3. Spatial Analysis of Molecular Variance (SAMOVA) of Sahelian Populations 

N° of groups Populations FCT FSC 

2 RAS 

ABA, ARA, BED, BEJ, DAZ, DNG, FFE, GRS, GUR, MAB, MOS, NUB, SSR, ABG, FFD, 

FZR, KAW, HAL, SSA, NSA, NUN, MAR, LYE, BIS, SOM, KEN, BUR, DAT, SAN, TUR, 

YOR, ESA, GAM, MEN, LUH 

0.11521 0.08256 

3 RAS SAN 

ABA, ARA, BED, BEJ, DAZ, DNG, FFE, GRS, GUR, MAB, MOS, NUB, SSR, 

ABG, FFD, FZR, KAW, HAL, SSA, NSA, NUN, MAR, LYE, BIS, SOM, KEN, 

BUR, DAT, TUR, YOR, ESA, GAM, MEN, LUH 

0.10804 0.07422 

4 RAS SAN BEJ 

ABA, ARA, BED, DAZ, DNG, FFE, GRS, GUR, MAB, MOS, NUB, SSR, 

ABG, FFD, FZR, KAW, HAL, SSA, NSA, NUN, MAR, LYE, BIS, SOM, 

KEN, BUR, DAT, TUR, YOR, ESA, GAM, MEN, LUH 

0.10420 0.07000 

5 RAS SAN BEJ BUR 

ABA, ARA, BED, DAZ, DNG, FFE, GRS, GUR, MAB, MOS, NUB, 

SSR, ABG, FFD, FZR, KAW, HAL, SSA, NSA, NUN, MAR, LYE, 

BIS, SOM, KEN, DAT, TUR, YOR, ESA, GAM, MEN, LUH 

0.10277 0.06662 

6 RAS SAN BEJ BUR DAT 

ABA, ARA, BED, DAZ, DNG, FFE, GRS, GUR, MAB, MOS, 

NUB, SSR, ABG, FFD, FZR, KAW, HAL, SSA, NSA, NUN, 

MAR, LYE, BIS, SOM, KEN, TUR, YOR, ESA, GAM, MEN, 

LUH 

0.10316 0.06283 

7 RAS SAN BEJ BUR DAT TUR 

ABA, ARA, BED, DAZ, DNG, FFE, GRS, GUR, MAB, 

MOS, NUB, SSR, ABG, FFD, FZR, KAW, HAL, SSA, 

NSA, NUN, MAR, LYE, BIS, SOM, KEN, YOR, ESA, 

GAM, MEN, LUH 

0.10027 0.06102 

8 RAS SAN BEJ BUR DAT TUR FZR 

ABA, ARA, BED, DAZ, DNG, FFE, GRS, GUR, 

MAB, MOS, NUB, SSR, ABG, FFD, KAW, 

HAL, SSA, NSA, NUN, MAR, LYE, BIS, SOM, 

KEN, YOR, ESA, GAM, MEN, LUH 

0.09726 0.05729 

9 RAS SAN BEJ BUR DAT TUR FZR HAL 

ABA, ARA, BED, DAZ, DNG, FFE, 

GRS, GUR, MAB, MOS, NUB, SSR, 

ABG, FFD, KAW, HAL, SSA, NSA, 

NUN, MAR, LYE, BIS, SOM, KEN, 

YOR, ESA, GAM, MEN, LUH 

0.09510 0.05431 
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10 RAS SAN BEJ BUR DAT TUR FZR HAL SOM 

ABA, ARA, BED, DAZ, DNG, 

FFE, GRS, GUR, MAB, MOS, 

NUB, SSR, ABG, FFD, KAW, 

HAL, SSA, NSA, NUN, MAR, 

LYE, BIS, SOM, KEN, YOR, 

ESA, GAM, MEN, LUH 

0.09377 0.04425 
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Table 4. Values of Scaled Effective Population Size and Immigration Rate Based on 

Bayesian Coalescence 

Groups 
Θ  M 

Direction 

(from-to) 

Number of 

migrants 

(Θ*M) Within region 

east nomadic (n) 0,01111 771,9 n-s 9 

  sedentary (s) 0,02362 860,0 s-n 20 

west nomadic (n) 0,00507 883,2 n-s 4 

  sedentary (s) 0,01692 906,0 s-n 15 

            

Within subsistence strategy         

nomadic east (e) 0,01111 303,0 e-w 3 

  west (w) 0,00507 544,1 w-e 3 

sedentary east (e) 0,02362 864,9 e-w 20 

  west (w) 0,01692 807,0 w-e 14 

 

M = mutation-scaled effective immigration rate; Θ = mutation-scaled effective population size 

(in mtDNA it is Ne*mutation rate per site per generation) 
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Supplementary Figure S1. 
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Supplementary Figure S2. 
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Figure captions 

Figure 1. Geographic distribution of the samples included in this study.  

Figure 2. MDS plot of pairwise Reynolds genetic distances between 36 populations of the 

SSB dataset, reproduced three times, color-coded according to (A) lifestyle, (B) linguistic 

affiliation and (C) geographical region. The stress value is 0.169.  

Figure 3. AMOVA fixation indices for defined groups of populations as specified in Table 1.  

Figure 4. Plots of Mantel test results comparing fixation indices and geographical distances 

of both subsistence strategies in both regions. 

Supplementary Figure S1. Boxplots of gene and nucleotide diversity. 

Supplementary Figure S2. Haplotype sharing between populations of different subsistence 

strategies (A), linguistic affiliations (B) and geographic region (C). 
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