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Abstract

Background:

Intracranial pressure (ICP) monitoring is important in many neurosurgical and neurological patients.
The gold standard for monitoring ICP, however, is via an invasive procedure resulting in the placement
of an intraventricular catheter, which is associated with many risks. Several noninvasive ICP
monitoring techniques have been examined with the hope to replace the invasive techniques. The goal
of this paper is to provide an overview of all modalities that have been used for noninvasive ICP
monitoring to date.

Methods:

A thorough literature search was conducted on PubMed, selected articles were reviewed in completion,
and pertinent data was included in the review.

Results:

A total of 94 publications were reviewed, and we found that over the past few decades clinicians have
attempted to use a number of modalities to monitor ICP noninvasively.

Conclusion:

Although the intraventricular catheter remains the gold standard for monitoring ICP, several
noninvasive modalities that can be used in settings when invasive monitoring is not possible are also
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available. In our opinion, measurement of optic nerve sheath diameter and pupillometry are the two
modalities which may prove to be valid options for centers not performing invasive ICP monitoring.

Keywords: Intracranial pressure, intracranial pressure monitoring, noninvasive

INTRODUCTION

Intracranial pressure (ICP) is defined as the pressure inside the skull, and therefore, the pressure inside
the brain tissue and the cerebrospinal fluid (CSF). The relationship between CSF and intracranial blood
volumes is described by the Monroe Kellie doctrine; because the brain is incompressible, when the
skull is intact, the sum of the volumes of brain, CSF, and intracranial blood is constant.[57,64] Normal
ICP is usually considered to be 5–15 mmHg in a healthy supine adult, 3–7 mmHg in children, and 1.5–
6 mmHg in infants.[34,35,64] ICP >20 mmHg is considered to be elevated, and this is considered an
important cause of secondary injury leading to irreversible brain injury and death.[49,64] ICP
monitoring is used in a number of conditions; traumatic brain injury, intracerebral hemorrhage,
subarachnoid hemorrhage, hydrocephalus, malignant infarction, cerebral edema, CNS infections,
hepatic encephalopathy, to name a few, and in all of these conditions ICP monitoring in the light of
other parameters can influence management for better outcomes.[49,64,76]

There are several conditions where it is important to monitor ICP, as even minor fluctuations may
require a change in management. The gold standard for monitoring ICP is an intraventricular catheter
connected to an external pressure transducer; the catheter is placed into one of the ventricles through a
burr hole.[49,64,76] The catheter can also be used for therapeutic CSF drainage and for administration
of drugs.[49] Even though it remains an accurate and cost-effective method of ICP monitoring, it is
associated with a number of complications. These include risk of infection, hemorrhage, obstruction,
difficulty in placement, malposition, etc.[49,64] Other invasive modalities for ICP monitoring, all of
which entail the same complications as intraventricular catheter insertion, include intraparenchymal
monitors, subdural, and epidural devices, as well as lumbar puncture measurements.[49]

Due to the number of complications associated with invasive ICP monitoring, researchers and
clinicians have been trying to develop a reliable noninvasive modality for ICP monitoring. From the
use of the Fontogram in the 1970s, to the ongoing experiments on acoustoelasticity effects on ICP,
there is still no noninvasive ICP monitoring modality available to replace the invasive techniques.

The aim of this review is to combine a thorough search of all the available noninvasive modalities that
have been used to monitor ICP, and to evaluate the feasibility and usefulness of these modalities based
on existing literature.

MATERIALS AND METHODS

A comprehensive literature search for this review was conducted on PubMed. The search was
conducted from November 2014 through to February 2015, and there were no limitations on date, type,
or language of the publication. The first search was conducted using the term “non invasive intracranial
pressure monitoring,” followed by combination of terms (“intracranial pressure”/”ICP” OR
“intracranial pressure monitoring”/”ICP monitoring”) AND (“non-invasive” OR “noninvasive”). These
searches provided us with a total of 216 titles. The titles and abstracts were reviewed and 91
publications were selected, based on relevance to our research title, to be reviewed in detail. After
reviewing these articles, a list of the noninvasive modalities available to monitor ICP was made, as
shown in Table 1, which also includes the final number of articles reviewed for each modality.

Table 1

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5402331/table/T1/
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List of modalities and the number of articles reviewed for each

Open in a separate window

The search was then modified to include combinations of “ICP monitoring” or “noninvasive ICP
monitoring” AND “anterior fontanelle pressure,” “CT,” “CT scan,” “MRI,” “optic nerve sheath
diameter,” “venous ophthalmodynamometry,” “skull elasticity,” “tissue resonance analysis,” “distortion
product otoacoustic emissions,” “DPOAE,” “otoacoustic emissions,” “EEG,”
“electroencephalography,” “optic disc evaluation,” “ophthalmoscopy,” “papilledema,” “fundoscopy,”
“pupillometry,” “neurological pupil index,” and “near infrared spectroscopy.”

The total number of titles and abstracts reviewed after these searches was 5104, not accounting for
overlap present in the searches. A total of 196 publications were selected and thoroughly reviewed and
read in completion. Our article included relevant data from a total of 94 publications. The length of this
paper prevented us from including the role of CT and MRI in monitoring ICP. Figure 1 shows the
methodology of selection.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5402331/table/T1/?report=objectonly
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5402331/figure/F1/
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Anterior fontanelle pressure monitoring

Figure 1

Process of selection of final articles

Noninvasive intracranial pressure monitoring modalities

The anterior fontanelle of the human infant is open, making it
an available site to measure ICP in an infant. Many studies were conducted in the 1970s and 1980s to
investigate the correlation between pressure application on the anterior fontanelle and the ICP.
[14,41,73,84] In all of these studies, however, fixation of the device was a major issue. The methods
used to fix or stabilize the device could cause deviations in the measured ICP, and interuser application
force also caused variations in ICP measurements.[60] In light of these problems, the use of a device
known as the Rotterdam teletransducer proved to be a suitable alternative.[20]

On the same lines, Salmon et al.[73] studied the use of an applanation transducer (called the
fontogram). Laboratory and clinical studies were carried out, and it was found that the pressures
recorded by the fontogram corresponded to direct measurements of ICP through an invasive catheter;
the correlation coefficient was 0.98 and P value <0.001, indicating a very good correlation. It was
concluded that it was accurate to use fontanelle pressure and ICP interchangeably.

Vidyasagar et al.[84] investigated the value of measuring the anterior fontanelle pressure (AFP) in
assessing ICP using the Ladd Intracranial Pressure Monitoring Device (Model 1700). The device had
three components: (a) a transducer with a pressure sensitive membrane with a mirror on its surface, (b)
a light transmitting ICP monitor, and (c) a pen recorder.[84] It worked on the principle that, when there
is pressure on the transducer, the mirror tilts and light is reflected unevenly to the ICP monitor; the
monitor then works to equalize the pressure to bring the mirror back to its original position.[84] Using
this principle, Vidyasagar et al.[84] placed the transducer over the anterior fontanelle to assess ICP
changes. They stated that there is a significant correlation of CSF pressure with AFP (correlation
coefficient = 0.95, P < 0.01), indicating that the AFP was representative of ICP.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5402331/figure/F1/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5402331/figure/F1/
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Skull elasticity

Horbar et al.[41] also studied the effect of Ladd sensor application force on ICP measurements in
infants. The Ladd M1000 ICP monitor was placed over the infant's fontanelle and then investigated by
placing a device that applied a known force to the sensor. The monitor readings were shown to vary
with the application force for each subject, and it was concluded that readings obtained depended on
the force with which the sensor is applied to the anterior fontanelle, indicating that there could be
interuser variability.

Later, Bunegin et al.[14] developed a pneumoelectronic switch to also measure the ICP through the
anterior fontanelle. Studies were conducted using a newly developed infant cranial model, and
subsequently healthy infants, using the Bunegin-Ablin pneumoelectronic switch as the pressure sensor.
External pressure application would cause the switch to close, activating the pneumatic system,
creating internal pressurization until internal and external pressures are balanced, and the balance
pressure was displayed on a monitor. ICP was also measured using an indwelling ventricular catheter.
The investigations concluded that the new AFP monitor was able to achieve a highly significant
correlation (r = 0.962, confidence level >95%) between AFP and ICP.

A more popular method to measure AFP was via the Rotterdam teletransducer (RTT). The RTT is an
implantable telemetric device that was introduced by De Jong et al. in 1979 to measure epidural
pressure.[19] It was proposed that, in infants, because the anterior fontanelle is open, the skin above the
fontanelle was the main difference between measuring epidural pressure and measuring AFP, and thus,
the RTT could be used as a noninvasive device.[20,60] A special lightweight perspex skull adapter was
designed for a controlled depth setting to account for any surface tension.[62] The transducer was fitted
in the adapter, and a soft silicon fixation frame was used to place the device on the child's head. Once
the device was fixed, the child could move around freely without affecting the AFP measurements.[62]
Pressure depth curves (PDC) were produced and the ICP levels were determined from the plateaus; an
average of at least three PDC plateaus was needed to determine the ICP level and to eliminate any
interobserver variations.[60] From November 1982 till March 1988, Overweg-Plandsoen et al.[60]
performed AFP measurements using the RTT in 141 patients. AFP measurements via the RTT were
compared to ICP values obtained via lumbar puncture in 13 of these patients.[60] They found that the
difference was less than 1 mmHg, and stated that the difference is not significant as 1 mmHg is an
acceptable measurement error.[60] They concluded that reliable, continuous, noninvasive ICP
monitoring in infants was possible with the RTT placed in the adapter.

We could neither find any current use of the RTT in monitoring ICP in infants nor any of the other
devices for AFP measurements. Moreover, in 2007, Wiegand et al.[91] reviewed current methods of
measuring ICP in infants and stated that it could not be measured by noninvasive modalities.

Attempts have been made to derive ICP from the mechanical properties of the skull
bones. This is based on the hypothesis that, because the skull is not completely rigid, changes in ICP
result in a small, but measurable, expansion of the skull.

In 1985, Pitlyk et al.[61] devised a noninvasive instrument for measuring skull diameter changes with
changes in ICP and tested it on cadavers and dogs. Their study concluded in sufficiently high
instrument sensitivity, suggesting that the device should be used in studies for clinical evaluation.
However, we could not find any studies that were conducted to assess the use of the device for clinical
evaluation.

In 2009, Yue and Wang[93] studied the deformation of the skull bones as a result of changing ICP by
placing strain foils on the parietal surface. The ICP variations were then recorded via the strain foils.
Their results showed that the human skulls were deformed by changes in the ICP, and that the strains of
the skull coincided with ICP variation. Even though these studies show a positive correlation between
skull elasticity and ICP, no methods of monitoring ICP through studying the elasticity of the skull, to
our knowledge, have been verified so far.
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Optic nerve sheath diameter

Venous ophthalmodynamometry

The optic nerve sheath, which is continuous with the dura matter of the
brain, is surrounded by the subarachnoid space containing CSF.[42] Therefore, when there is an
increase in the pressure of the CSF, the sheath can expand.[31] In 1964, Hayreh et al.[39] showed that,
due to the communication of the subarachnoid space with the intracranial cavity, changes in CSF
pressure could be transmitted along the optic nerve. The optic nerve sheath diameter (ONSD)
expansion can be compared to papilledema (edema of the optic disc), but unlike papilledema, ONSD
expansion occurs within seconds of an acute rise of ICP.[31]

On this basis, ocular sonography has been used to measure the changes in ONSD to detect raised ICP,
and it has been clinically shown that millimetric increases in the sonographic ONSD corresponds to
increased ICP.[31] Several studies have been conducted to demonstrate the relationship between ONSD
and increased ICP. Most studies encouraged the clinical use of sonography for ONSD in the detection
of steady changes in ICP, and for screening purposes, but do not consider it as a replacement for
invasive ICP monitoring.[31,43,44,48,49,64]

Recent studies have shown that an increase of the ONSD in an estimated range between 4.5 and 5.5
mm is associated with an increased ICP (>20 mmHg).[4,31,32,44,48,49,56,68,77,78,81] The largest of
these studies to date was conducted by Rajajee et al.[67] Their study included 65 patients on whom a
total of 536 ONSD measurements were performed. They concluded that an ONSD of >4.8 mm
corresponded to an ICP >20 mmHg with a sensitivity of 96% and a specificity of 94%.[67] Another
study, however, concluded that sonographic ONSD measurements were not reliable to monitor ICP due
to poor accuracy and correlation on the basis of 36% sensitivity and 38% specificity.[80]

Sonographic ONSD measurement is a quick, efficient, and easy to learn modality for the monitoring
increased ICP. However, it is important to mention the limitations associated with the measurement of
the ONSD as well. Several conditions, including tumors, inflammation, sarcoidosis, and Grave's
disease can possibly affect the ONSD, and it is impossible to measure ONSD in those patients with
lesions of the orbit or of the optic nerve.[64] In conclusion, even though ONSD measurement cannot
replace invasive ICP monitoring, it can differentiate between normal and raised ICP. Therefore, it can
potentially be used for screening purposes when invasive modalities are unavailable.[64]

The central retinal vein (CRV) passes through the optic nerve, which
as described before is surrounded by CSF, resulting in both the optic nerve and the CRV to be affected
by changes in ICP. Therefore, the pressure within the CRV must be as high or higher than the ICP.[26]

In 1925, Baurmann[5] was the first to suggest that the pressure of the CRV was dependent on the ICP,
and variations could be monitored by the pulsations of the CRV. When the CRV collapses, it indicates
that IOP >CRV pressure, when it pulsates IOP ≈ CRV pressure, and when it is clearly visible and there
are no pulsations CRV pressure >IOP.[27]

Baurmann[5] suggested recording the CRV pressure to monitor ICP. In 2000, Firshing et al.[27] stated
that his idea had not as yet been verified, and they performed a study to examine the use of venous
ophthalmodynamometry in monitoring ICP noninvasively. In their study, CRV pressure of 22 patients
was correlated with their ICP (which was invasively monitored). They found a high correlation (r =
0.983, P < 0.001), and concluded that ophthalmodynamometry could be used for momentary
assessment of ICP but not for continuous assessment.

Querfurth et al.[63] using a novel digital and portable ophthalmometer measured the venous outflow
pressure (VOP) of the CRV in 6 intensive care patients and correlated it with invasive ICP readings.
They found that as the ICP increased so did the VOP, the relationship was linear (r = 0.83, P < 0.001).
[63]

In 2011 Firsching et al.[26] recorded the CRV pressure in 102 patients who also had simultaneous
invasive ICP monitoring. They used an “ODM Saugnapf Dynamometer” to increase ocular pressure in
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Tympanic membrane displacement

Tissue resonance analysis

a stepwise manner until the CRV collapsed. The use of a conversion chart helped determine the actual
pressure at which the vein collapsed, this pressure was considered equal to the CRV pressure (VOP).
These pressure values were then correlated with ICP values. A significant association was found
between ICP and VOP (P < 0.001 and r = 0.69). VOP >30 mmHg indicated ICP >15 mmHg with a
probability of 84.2%, and VOP ≤30 mmHg indicated ICP ≤15 mmHg with a probability of 92.8%. The
study had a sensitivity of 72.7% and specificity of 96.2%. The author's concluded that venous
ophthalmodynamometry is a valuable method to assess ICP noninvasively, however, it would not
replace invasive procedures as it is not helpful for continuous ICP monitoring.[26]

Like other ophthalmological techniques of monitoring ICP, venous ophthalmodynamometry is a
valuable technique to use for screening patients suspected to have increased ICP before carrying out an
invasive technique. The method cannot replace invasive techniques, although may be used as a follow-
up investigation in some patients.[26,27]

Tympanic membrane displacement (TMD) was the first audiologic
method studied to monitor ICP noninvasively.[49] The TMD is measured in response to sound
stimulation (acoustic reflex).[53] The stimulation results in the contraction of the stapedius muscle,
resulting in the movement of the stapes. Due to the close relationship between the stapes and the oval
window, cochlear fluid pressures, and therefore ICP, determine the position of the stapes. Thus,
pressure changes result in movement of the stapes and the displacement of the tympanic membrane. In
1990, Reid et al.[69] compared TMD values with invasive ICP values. They investigated the effect of
changes in ICP with TMD in 58 patients, and found differences in the TMD between patients with
raised and normal ICP. They concluded that although an absolute ICP value could not be obtained by
this method, TMD is useful in assessing raised or normal ICP.

Samuel et al.[74] prospectively studied the accuracy and repeatability of the TMD test in evaluating the
ICP in 8 children with shunted hydrocephalus. They found that the TMD test had a sensitivity of 83%
and specificity of 100%, a positive predictive value of 100%, and a negative predictive value of 29%.
Their results led them to the conclusion that the TMD test could be used as an investigative tool
regularly in the assessment of such patients, thereby reducing the need for invasive monitoring of the
ICP.[74]

Stettin et al.[79] investigated whether measuring infrasonic emissions from the tympanic membrane
could monitor ICP in 31 individuals (17 patients, 14 healthy). Invasive ICP monitoring was indicated
in all patients and was done so with implanted pressure sensors. An increase in ICP was stimulated by
postural changes using a tilting table.[79] The infrasonic emissions were measured by recording the
TMD using a probe placed in the external auditory meatus in an airtight manner.[30] It was observed
that the stimulated changes in ICP were detected in waveforms both noninvasively and invasively.
Absolute values of the ICP, however, could not be established. Stettin et al.,[79] therefore, concluded
that infrasonic emissions could be suitable both as a screening tool and for continuous ICP monitoring.
They also suggested that a possible approach for establishing absolute ICP values could be done by
creating a computer software that could evaluate the waveforms and peaks.[79]

A recent review article[49] suggested that, if a baseline ICP has been established, then repeated TMD
measurements could be used to find a change in the ICP. There are, however, certain limitations to the
TMD test. Three essential criteria are required to perform a TMD test; patent cochlear aqueduct,
normal middle ear pressure, and intact stapedial reflex.[74]

In 2002, Michaeli et al.[55] studied the use of tissue resonance analysis
(TRA) on noninvasive intracranial pressure. Their study was done on the basis of mechanical tissue
vibration, which allowed them to get several resonance peaks. With each heartbeat, the vibratory and
mechanical resonance of each organ and tissue vary.[55] It was found that ICP was dependent on the
value of a dominant secondary resonance level of the brain tissue. The third ventricle was used as an
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Tonometry

Acoustoelasticity

Distortion-product otoacoustic emissions

echo chamber, and the ultrasound signals were digitally processed to obtain a digital high-resolution
echopulsogram.[55] The echopulsogram represented ICP waves obtained invasively. Michaeli et al.
[55] compared the TRA derived ICP with invasive ICP measurements in 40 patients and a high
correlation (r = 0.99) was seen. They concluded that TRA allowed for accurate noninvasive ICP
monitoring.[55]

Based on Michaeli et al’s[55] conclusions, TRA seemed promising for the monitoring of ICP
noninvasively, however, we have been unable to find any other study that can support their findings.

A tonometer is a device used to measure the intraocular pressure (IOP). Several studies have
been carried out to test the correlation between IOP and ICP.[50,71,75] Sajjadi et al.[71] tested the
hypothesis of a positive correlation between the two values in 50 patients. The Schiotz tonometer was
used to measure IOP and a lumbar puncture was performed for ICP. They reached the conclusion that
there was in fact a positive correlation between IOP and ICP (P < 0.001, r = 0.955).[71] They also
stated that the correlation was independent of factors such as BMI, age, and type of disease.[71]

Czarnik et al.[18] also conducted a similar study using the Schiotz tonometer for IOP and an
intraparenchymal sensor for the ICP. Their study was conducted on 22 patients, and they found that a
positive correlation between IOP and ICP was seen in only 2 patients. Therefore, they concluded that
tonometry would not be a reliable method to assess ICP.

Most recent studies[36,52,83] have similar conclusions as Czarnik et al.[18] Golan et al.[36] concluded
that the tonometer was not an effective device for screening ICP due to its poor specificity and
sensitivity. Li et al.[52] verified the positive correlation between ICP and IOP (r = 0.32, P < 0.001) but
advised caution against using the tonometer for ICP assessment as they did not find significant
correlations in the past studies that they quoted in their paper. Most recently, Tian et al.[83] found a
significant positive correlation between ICP and IOP in patients with meningiomas (46.7% of patients
had a very significant correlation, P < 0.01, 13.3% had a significant correlation, P < 0.05) but stated
that changes in IOP could not always monitor the dynamic changes in ICP.

The acoustoelastic effect describes the effect of a steady stress state on the sound
velocities of an elastic material. In 2013, Wu et al.[92] proposed a novel experimental model based on
the acoustoelasticity of ultrasound for the long-term, online, real-time, noninvasive monitoring of ICP.
Their model was designed on the basis of consistent stress being present on the brain, such as in a
closed container. Transducers were placed on the left and right and via conversion of electrical to
mechanical energy and back to electrical energy, values of ICP were recorded.[92] A phase locked loop
module was another component of the design; it was used to measure phase differences between
signals, which were necessary for an embedded computer to evaluate the ICP values. Polymethyl
methacrylate was used to simulate the skull, and hydrogel was used to simulate the brain tissue in their
experimental model.[92] A numerical solution for the acoustoelasticity theory was derived using a
calculation based on a finite-element method. Calculated and experimental values were compared, and
showed a maximum error of 5%; the effectiveness of their model was verified, and the method was
suggested for use in animal experimentation and clinical research.[92] A thorough literature search
failed to identify any further studies conducted to evaluate this modality further.

The CSF is continuous with the perilymphatic space, and
therefore, changes in ICP can be transmitted to the middle ear.[22,85] Increased ICP causes an
increased stiffness of the annular ligament, and hence, increased pressure on the stapes, which in turn
affects sound transmission.[8,12,13,22,85] Otoacoustic emissions (OAE) are generated via oscillations
of the endo and perilymph, and have been shown to be sensitive to ICP changes.[9,13,23,29,37,59,72]
Distortion product otoacoustic emission (DPOAE) is a type of otoacoustic emission that is often used
for the assessment of middle ear function,[8,22] and has been tested for noninvasive ICP monitoring.
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Transcranial Doppler

In 2006, Voss et al.[86] summarized prior work on the relationship between DPOAE and ICP changes;
individuals who were in circumstances that would alter ICP also showed alterations in OAE magnitude
and phase angles that were most pronounced at low frequencies (<2000 Hz), none of the reports
however found how the two relate.[12,13,29] Voss et al.[86] worked on the hypothesis that postural
changes affect ICP, and compared postural changes and ICP, to DPOAE measurements in healthy
normal-hearing individuals on a tilting-table. Their results showed that the predicted difference in
DPOAE magnitudes, for frequencies < 1500 Hz, between upright and −45° were highly significant (P
< 0.01), and were also highly significant for frequencies up to 1000 Hz between 90° and −30° (P <
0.01). They concluded that DPOAE magnitudes, for frequencies between 750 Hz and 1500 Hz,
changed with posture systematically, and that this method could be assessed further for its use in
monitoring ICP. In another study, Voss et al.[85] studied the effect of postural changes, and once again
ICP, on DPOAE magnitude, angle, and power reflectance. All three measurements were made at two
postural positions (upright and −45° to the horizontal). They found that the DPOAE magnitude changes
were significant (median P < 0.01) at frequencies between 600 and 1500 Hz, the DPOAE angle
changes were significant (median P < 0.01) for frequencies between 600 and 3000 Hz, and the power
of reflectance changes were significant (P < 0.01) for frequencies below about 1000 Hz. They used the
repeated measures regression model, which predicted significant changes (P < 0.001) for all three
measurements up to 2016 Hz. They concluded that DPOAE magnitudes, angles, and power of
reflectance all change with posture, and hence with ICP.

In 2012, Sakka et al.[72] measured DPOAE phase recordings in patients undergoing infusion tests for
diagnosing chronic hydrocephalus. During the tests, 6 patients underwent continuous CSF pressure
monitoring via an external transducer connected to a lumbar catheter. They confirmed a linear
correlation between DPOAE phase shift and ICP variation in these patients; approximately 10°
DPOAE phase shift to 5 cm H O ICP change. However, their study did not compare actual ICP values
to DPOAE measurements and each patient required calibration to relate the initial DPOAE to ICP.
Bershad et al.[8] just recently published their results from comparing ICP to DPOAEs on the basis of
the hypothesis that DPOAE magnitudes increase, and phase angles decrease, with decrease in ICP.
They measured opening and closing pressures during lumbar punctures, and simultaneously measured
DPOAE magnitudes and phase angles. The measured ICP changes were grouped as small (<4 mmHg),
medium (5–11 mmHg), and large (≥15 mmHg). They found a significant (95% confidence interval, did
not include 0) difference in DPOAE magnitude and angle, at 2000 Hz, but only for the group that
exhibited large ICP changes. They concluded that decreases in ICP of at least 15 mmHg result in
systematic changes in DPOAE magnitudes and angles, and their results were consistent with previous
studies relating postural changes, ICP, and DPOAE measurements. Despite its limitations, it was the
first study to prove that DPOAEs are directly affected by ICP variations. In conclusion, DPOAE
measurements can possibly be an effective tool in noninvasive monitoring of ICP. However, more
studies such as the one by Bershad et al.[8] need to be conducted on a much larger scale to determine
the relationship more definitively.

In 1982, Aaslid et al.[1] introduced transcranial Doppler (TCD) for monitoring
cerebral hemodynamics. The use of TCD has been associated in several scenarios, such as the detection
of vasospasm and cerebral embolization, cerebrovascular autoregulation, detection of cerebral
circulatory arrest, traumatic brain injury, circulatory arrest, and monitoring of ICP.[49,70] Klingelhofer
et al.[46,47] were the first to describe a relationship between ICP and TCD-derived flow velocities.
They correlated an increasing ICP with decreasing TCD-derived flow velocities and an increase in
Pourcelot index or resistance index (RI), where RI = (systolic flow velocity – diastolic flow
velocity)/(systolic flow velocity).[49] At present, however, the Gosling pulsatility index (PI), PI =
(systolic flow velocity – diastolic flow velocity)/(mean flow velocity),[24] is the most commonly used
formula.[49,64]

2



9/18/2018 Noninvasive monitoring intracranial pressure – A review of available modalities

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5402331/ 10/19
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The middle cerebral artery (MCA) is most commonly used for TCD measurements. Both the MCAs are
insonated, after which the blood flow is directed towards the probe.[11] The Doppler instrument
operates at 2 MHz[11,49] and the angle and position of the exposure area can be adjusted to enable the
highest quality signal. Bilateral tracings of flow velocity are recorded, and necessary calculations are
made to obtain the PI.[11] The main advantage of PI is that, since it is a ratio, it is not affected by the
angle of insonation.[11,49]

In a recent review on the role of the TCD,[11] it was highlighted that the correlation between PI and
ICP is still controversial. The strength of the correlation has also showed variations in many studies.
[6,7,10,21,89,94] Riva et al.[21] even questioned the usefulness of the TCD technique. In 2014
Wakerley et al.[90] studied TCD as a modality to monitor ICP noninvasively. They conducted their
study on 78 patients, obtaining the TCD spectra from either MCA using a 2 MHz transducer and then
after 5 minutes measuring cerebrospinal fluid pressures invasively via a lumbar puncture (LP).[90]
They found that PI ≥ 1.26 reliably predicted CSF-p ≥20 cmH O with sensitivity = 81.1%, specificity =
96.3%, positive predictive value = 88.1%, and negative predictive value = 90.1%.[90] They concluded
that the TCD-derived PI could play an important role as a monitoring device. Other studies showed that
TCD could be used to estimate ICP, but had doubts regarding its use in clinical scenarios due to its
reliability.[6,7,21,25,38,40,58,66,87]

In 2004, Bellner et al.[7] conducted a prospective study to evaluate the relationship between ICP and
TCD-derived PI. TCD recordings were taken daily and the ICP was monitored using an intraventricular
catheter. They found a significant correlation between the values (P < 0.0001, r = 0.938 for the formula
ICP = 10.93 × PI – 1.28), and concluded that independent of the type of pathology the two values had a
strong correlation.[7] Since then, however, no other group has made a statistical prediction; in their
review article, Kristiansson et al.[49] also mentioned that the use of PI in clinical practice depends on
evidence of how well PI-derived ICP reflects the actual ICP.

In 2009, Figaji et al.[25] investigated the association of TCD-derived PI and ICP in children with
severe traumatic brain injury (TBI). In their study, 275 TCD studies were conducted on 34 children, all
of whom had invasive ICP monitors placed beforehand. They found a weak relationship between the
mean values of ICP and PI (P = 0.04, r = 0.36), and PI threshold of 1 for examining an ICP threshold
of 20 mmHg had a sensitivity of 25% and specificity of 88%.[25] They, therefore, concluded that the
absolute value of PI was not reliable as an indicator for ICP in children with severe TBI.[25]

Raguskas et al.[65] evaluated the accuracy and precision of a two-depth high resolution TCD device
for measuring ICP. The intracranial and extracranial segments of the ophthalmic artery were used. The
intracranial segment represented ICP and the extracranial segment represented pressure applied to the
orbit. It was found that when the pressures balanced, the blood flow parameters were the same. The
ICP was also measured invasively to compare the recordings. Seventy-two simultaneously paired
recordings were analyzed which showed good accuracy (mean systematic error = 0.12 mmHg,
confidence level = 0.98) and high precision (standard deviation = 2.19 mmHg, confidence level = 0.98)
for the two-depth TCD.

As mentioned by Kristiansson et al.,[49] it is important to derive an equation that reliably describes the
relationship between ICP and TCD findings. To date, the PI has not shown absolute ICP values but
only reveals changes in ICP There are also no standardized cut-off values for PI between studies.[49]
Therefore, TCD seems to be a promising modality for the non-invasive monitoring of ICP, however, it
cannot replace invasive ICP monitoring.

Initially studies were conducted to assess the role of continuous
electroencephalogram (EEG) monitoring for the prognosis of TBI.[2,3,51] Lescot et al.[51] studied the
relationship between Lundberg waves (repetitive ICP changes at a frequency of 0.5–2 waves per
minute) and EEG fluctuations in 6 brain injured patients. They concluded that changes in cerebral
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Pupillometry

electrical activity could be attributed to increasing cerebral metabolic rate of oxygen, which increases
cerebral blood flow, therefore leading to an increase in ICP due to a change in blood volume. However,
there was no assessment of the role of EEG for monitoring ICP directly. In 2012, Amantini et al.[2]
discussed the role of neurophysiological monitoring in the intensive care unit (ICU). One of their
favoring points for the use of EEG in the ICU was that it could be used to interpret and manage ICP
trends, as neurophysiologic alterations were found to precede ICP increases. They did not, however,
state any correlation between EEG findings and ICP values.

Chen et al.[15] investigated the possibility of using EEG power spectrum analysis to monitor ICP
noninvasively on 62 patients with CNS disorders. EEGs were recorded and a self-designed software
was used to automatically calculate the pressure index (PI), while lumbar punctures were obtained to
measure the ICP. A significant negative correlation was found between PI and ICP (r = −0.849, P <
0.01), and the authors concluded that specific parameters from the EEG power spectrum might reflect
the ICP. Further studies may be warranted to assess the use of EEG power spectrum in ICP monitoring.

Near-infrared spectroscopy (NIRS) has also been indicated to monitor TBI
patients. It can detect changes in cerebral blood volume (CBV), brain tissue oxygenation, and cerebral
blood flow (CBF).[33] At the near infrared spectrum of light there is low absorptivity that allows deep
tissue penetration. The variability of the absorptivity helps quantify the detected changes in the
concentrations of deoxyhemoglobin and oxyhemoglobin.

In 1995, Kirkpatrick et al.[45] investigated the potential use of NIRS in 14 patients with closed head
injuries. The purpose of their study was to compare the ability of NIRS and jugular venous saturation
(SjO ) monitors in detecting cerebral deoxygenation changes. They monitored ICP, cerebral perfusion
pressure (CPP), peripheral oxygenation saturation, jugular venous saturation, and NIRS derived
changes in oxy- and deoxyhemoglobin. They reviewed 886 hours of continuous monitoring, of which
376 hours were analyzed. They found that NIRS detected changes in 97% of the hemodynamic
changes, whereas SjO  monitor detected 53%. Every NIRS detected change was accompanied by
changes in ICP, CPP, and relative CBF changes. They concluded that, even though the technique of
NIRS use in the adult brain was not completely understood, there were clear signal changes associated
with variations in ICP, CPP, and CBF. Their study, however, did not correlate NIRS findings with
actual ICP readings.

Wagner et al.[88] used NIRS to monitor the changes in cerebral hemoglobin saturation and content in
six children in coma due to severe encephalopathy. Because CBV is an important determinant of ICP, it
was stated that acute changes in CBV due to vessel diameter should induce acute changes in ICP.[88]
They tested cerebrovascular detection by NIRS by investigating whether ICP changes would correlate
with changes in NIRS signals. ICP was monitored using an epidural or an intraparenchymal device. A
significant correlation between cerebral hemoglobin saturation and changes in ICP was found, with a
correlation coefficient of 0.82 (P <.0001). A weaker correlation was also found between cerebral
hemoglobin content and changes in ICP, with a correlation coefficient of 0.58 (P = 0.0006).[88]
However, similarly to the previous study, their study was not conducted to evaluate the correlation
between quantitative ICP readings and NIRS findings.

A recent review article[49] also discussed the potential use of NIRS for the noninvasive monitoring of
ICP and concluded that NIRS shows to have promise for the assessment of patients with traumatic
brain injury, however, it cannot currently be used to estimate absolute ICP readings.

In 1983, Marshall et al.[54] observed the pupillary changes of patients requiring
continuous ICP monitoring. They recorded the ICP when shape of the pupil became oval, and then
tracked the pupillary and ICP changes in response to intracranial hypertension therapy to find an
association between pupillary shape and changes in ICP.[54] Over a 2-year period, 14 instances of an
oval pupil in patients with raised ICP were observed. Almost every instance showed a return to normal
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pupil size when ICP returned to normal values.[54] They concluded that the oval pupil represented a
stage between the normal pupil and the fixed unreactive pupil of high ICP, and therefore, suggested that
any patient with an oval pupil should receive immediate management.[54] Their study, however, did
not indicate any specific ICP values to pupillary shape changes. The author's also discussed the
possibility of detecting elevated ICP before it occurs by measurements of pupillary sphincter function.
[54,82] Since then, many studies have been conducted to assess pupillary changes in severely ill
patients to assess their outcome.[82]

In 2003, Taylor et al.[82] investigated the use of a new hand-held point-and-shoot pupillometer
(ForSite; NeurOptics) to quantitatively assess pupillary function. A total of 404 volunteers were
enrolled, of which 26 had head injuries and their ICP was continuously monitored. The purpose of their
study was to conclude whether the device could reliably provide accurate assessment of patterns of
pupillary responsiveness, not to find an association between pupillary changes and ICP.[82] They did,
however, establish that pupillary changes could reveal subtle changes in ICP;[28,82] it was found that
pupillary constriction velocity was quite sensitive to raised ICP, and a reduction in pupillary size by
10% was always associated with an ICP >20 mmHg.[82] It is important to note that there was no
correlation of specific pupillary size to actual ICP values, however, they concluded that there was a
strong relationship between mass effect, ICP >20 mmHg, and a reduction in constriction velocity.
[28,82]

More recently, Chen et al.[16] introduced the neurological pupillary index (NPi) and studied pupillary
reactivity as an early indicator of increased ICP. A total of 134 patients were enrolled, the NeurOptic's
pupillometer was used for pupillary examination, and the ICP was continuously monitored. The
pupillometer can accurately grade a pupil's response to light, using an algorithm incorporating pupillary
light reflex variables.[17] These scores are called NPi and are set on a scale from 0 to 5, scores falling
below. Their results showed that normal pupil reactivity had an average ICP of 19.6 mmHg, abnormal
pupillary reactivity had an average ICP peak of 30.5 mmHg, and nonreactive pupils had the highest
ICP peaks (mean = 33.8 mmHg, P = 0.0046).[16] They also found that pupil abnormalities occurred,
on average, 15.9 hours before an increase in ICP. They concluded that an inverse trend between
decreasing pupillary response and increasing ICP was identified, and quantitative measurement of NPi
may be useful for early management of increased ICP.[16] However, there still is no direct correlation
between NPi and actual values of ICP, and it cannot be used to continuously monitor ICP.

In conclusion, pupillometry is a useful tool for screening patients with possibly increased ICP,
however, because conclusive ICP values cannot be detected by this modality, it cannot be suggested for
continuous ICP monitoring.

DISCUSSION

Intracranial pressure is elevated in several clinical settings, especially TBI and stroke. The cumulative
incidence of these two conditions is approximately 0.6% in developed countries, and their cumulative
mortality rate is 30–50%, both of which indicate a major burden of disease.[23] Elevated ICP is
primarily responsible for secondary brain ischemia after either condition, and therefore, is responsible
for the functional disability many of these patients suffer. In such instances, it has been suggested that
controlling the intracranial hypertension is the standard of care in the management these patients.
Therefore, monitoring ICP through a reliable, invasive technique is used to evaluate the progress in
patient management, help formulate treatment strategies, and in cases of intraventricular catheters, may
also help in relieving the intracranial hypertension through CSF drainage. For routine use, however, we
feel that noninvasive ICP monitoring if developed to be sensitive enough, is the future of
neurointensive monitoring. The ideal ICP monitoring modality in our opinion should be safe, reliable,
cost effective, easily available, non-operator dependent, and noninvasive.



9/18/2018 Noninvasive monitoring intracranial pressure – A review of available modalities

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5402331/ 13/19

Go to:

Go to:

Go to:

We feel that, even though at the moment there is no modality of noninvasive ICP monitoring that can
replace invasive ICP monitoring, noninvasive monitoring may still be useful in centers where invasive
modalities are not available, such as in developing countries, or even in developed countries as a
screening tool to decide, which patients will require invasive monitoring. Invasive ICP monitoring is
expensive and requires the availability of a neurosurgeon, both of which are very difficult to acquire in
an under resourced regions and also at many trauma centers.[23]

Of all the different modalities for noninvasive monitoring that we have studied, the authors are of the
opinion that two stand out. These are measuring the ONSD and pupillometry. Both modalities are
reliable, efficient, affordable, and most importantly, easy to learn. Several studies are ongoing to
evaluate their utility in greater depth. Pupillometry, we feel will gain widespread popularity, especially
after the introduction of a commercially available, easy to use, nonoperator dependent, electronic
pupillometer. Radiology, specifically repeat CT scans for monitoring elevated ICP, has always been,
and continues to be an important tool for clinicians, although it was beyond the scope of this paper.

CONCLUSION

Invasive ICP monitoring via a ventricular catheter remains the gold standard, however, there are many
areas around the world and several situations where this modality, or other means of invasive ICP
monitoring cannot be utilized. Noninvasive modalities provide a useful alternative under such
circumstances. Several modalities are available, and even though the ideal modality is yet to be
introduced, a number of techniques can be employed. Of these, ONSD and pupillometry may be two
modalities to look out for in the future.
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