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Abstract

Background: Comparable to commercial expensive high-fat diets, cholesterol-cholate-butterfat (CCB) diet has also
been used to induce hyperlipidemia in rats. Our objective was to explore its influence on multiple organs.
Consequence of fasting was also analysed.

Methods: Rats in groups 1 and 2 received normal diet (ND) whereas groups 3 and 4 received CCB-diet. Food was
withdrawn daily for two hours from groups 2 (ND-F) and 4 (CCB-F). Blood was collected at fourth and sixth week
for biochemical estimation; Morris water maze was done in the sixth week for learning ability and memory; after
which aortae were isolated for vascular reactivity.

Results: Apart from hyperlipidemia, CCB also induced hyperglycemia with marked increase in hepatic enzymes:
gamma-glutamyl transferase (GGT), alanine and aspartate aminotransferase (ALT and AST); and vascular biomarkers:
uric acid (UA), phosphorus and alkaline phosphatase (ALP). Isolated aortae, pre-contracted with phenylephrine, were
less responsive to acetylcholine indicating endothelial dysfunction – serum nitric oxide (NO) production was limited
with subsequent inhibition of endothelial NO synthase. CCB diet also compromised learning ability. CCB-coupled
fasting potentiated hyperlipidemia but prevented memory-loss.

Conclusion: We introduce CCB-diet for multi-organ dysfunction in rats, and propose its use for research on
cardiovascular diseases and associated manifestations involving immense interplay of integrated pathways.

Keywords: Fasting, Liver function, Vascular function, Memory

Background
Human diseases are complex – representing interplay of
synchronized abnormalities in multiple organs. Cardiovas-
cular diseases (CVDs) are the largest death burden globally
[1]. They involve not only heart and vessels, but liver [2],
kidneys [3] and even the nervous system [4]. As a result,
common co-morbidities of CVDs are non-alcoholic fatty
liver disease [5], chronic kidney disease [6] and Alzheimer’s
disease etc. [7,8]. Consequently, research on novel thera-
peutic interventions, also mandates a holistic approach,
such that safety and efficacy is assessed on multiple sys-
tems simultaneously.
Animal models are excellent tools for such research, and

aid in pathophysiological understanding of human ail-
ments [9]. Genetically manipulated animals – although

preferable for being precise [10,11] – may not truly repre-
sent disorders as complex as CVDs. Alternatively, there
are modified diets, inducing human-like pathologies in la-
boratory animals [12]. Food markedly impacts health. It
influences disease status of humans [13] and animals [14].
Ingredients like fats are known to increase CVD risk fac-
tors in species like rabbits [15], hamsters [16], rats [14]
and mice [17]. In laboratory animals, the alterations con-
vened by high-fat diets (HFDs) are fairly similar to human
[18]. Literature reports that commercial HFDs cause
hyperlipidemia [19], which consequence in lipids’ depos-
ition in tissues (both adipose and non-adipose). Eventually
lipid build-up leads to cellular dysfunction of heart, vessels
and liver [20].
Experimental manipulation of these pre-formed commer-

cial diets could be challenging. In contrast, a simple modifi-
able diet containing cholesterol, cholate and butterfat
(CCB) as fat sources, has also been used to induce hyperlip-
idemia [21]. We aim to inspect the possible influence of this
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CCB-diet on hepatic and vascular function along with
learning ability in rats. These aspects have not yet been ex-
plored for CCB-diet. In addition, since dietary restriction
is known to induce adaptive changes in intermediary me-
tabolism [22], we also inquired the consequence of daily
two-hour fasting.

Results
Lipid profile
CCB-diet caused pronounced hyperlipidemia at fourth
and sixth week. Serum concentrations of TG, TC and
LDL were drastically increased at fourth week, from
68 ± 5, 128 ± 12 and 51 ± 5 in ND to 117 ± 11, 430 ± 113
and 173 ± 29 mg/dl in CCB group (Figure 1A). Also at

sixth week, as shown in figure 1B, the serum concentra-
tions of TG, TC and LDL were markedly increase from
72 ± 4, 139 ± 19 and 78 ± 14 mg/dl in ND to 112 ± 10,
583 ± 119 and 327 ± 55 mg/dl in CCB respectively.
CCB coupled with fasting potentiated hyperlipidemia at

fourth and sixth week, as evident from Figure 1A and B
respectively. The resultant serum concentrations of TG,
TC and LDL were respectively 170.6 ± 26, 629 ± 129 and
311 ± 49 mg/dl at fourth week and 130 ± 10, 853 ± 104
and 518 ± 68 mg/dl at sixth week.
For the effect of fasting per se, normal diet-fed rats were

also fasted. Reduction in TC and LDL was observed at
fourth and sixth week; TG was reduced at sixth week. Re-
sultant concentrations of TC and LDL were respectively
59.7 ± 3.2 and 16.3 ± 1.3 mg/dl at fourth week and 83 ± 7.5
and 28 ± 9.8 mg/dl at sixth week; with TG concentration
of 27 ± 3.4 mg/dl at sixth week.

Lipid ratios
Results for the calculated lipid parameters show a no-
ticeable increase (p < 0.01) in LDL/HDL ratio at fourth
week, whereas, atherogenic index (AI) and TC/HDL ra-
tios were elevated (p < 0.01) after six weeks (Figure 2A and
B). Value of LDL/HDL was 1.06 ± 0.09 in ND and 2.78 ±
0.59 in CCB; atherogenic index and TC/HDL ratios at
sixth week were respectively 1.94 ± 0.18 and 2.94 ± 0.18 in
ND with 4.99 ± 0.88 and 5.99 ± 0.88 in CCB.
Fasting with CCB-diet potentiated the elevation of

these ratios. The resultant values of AI, TC/HDL and
LDL/HDL ratios were 7.4 ± 0.9, 8.4 ± 0.9 and 4.2 ± 0.4 at
fourth week, and 7.8 ± 0.9, 8.8 ± 0.9 and 5 ± 0.5 at sixth
week respectively (Figure 2A and B). In contrast, fasting
with normal diet reduced LDL/HDL ratio (at fourth and
sixth week) and AI and TC/HDL (at sixth week).

Glucose and GGT
Our data presented in Figure 3 show a prominent eleva-
tion (p < 0.001), by CCB-diet, in serum glucose (only at
fourth week) and GGT (at fourth and sixth week). Con-
sequent concentrations of glucose were 80 ± 5 mg/dl in
ND and 129 ± 3 mg/dl in CCB. Serum GGT concentra-
tions were 28 ± 0.7 u/l in ND and 41 ± 3 u/l in CCB (at
fourth week) and 25.8 ± 33 u/l in ND and 43 ± 58 in
CCB (at sixth week).
Glucose and GGT responded similarly when fasting

was coupled with CCB, but when coupled with normal
diet, fasting reduced serum glucose (to 69 ± 87 mg/dl),
at sixth week.

Hepatic function biomarkers
Other than GGT, indicators of hepatic function e.g. ami-
notransferases (AST and ALT) were also distinctly ele-
vated by CCB-diet at fourth and sixth week as presented
in Figure 4A and B respectively. At fourth week increase

Figure 1 CCB-diet alone and coupled with fasting, induced
hyperlipidemia in rats. A) Fourth week; B) Sixth week; TG:
triglyceride; TC: total cholesterol; LDL: low-density lipoprotein; ND:
normal diet; ND-F normal diet with two-hour fasting; CCB:
cholesterol-cholate-butterfat diet; CCB-F: cholesterol-cholate-
butterfat diet with two-hour fasting. All values are represented as
mean ± standard error of mean (SEM) (n = 7 per group). This figure
only shows the comparison of means using one-way ANOVA
followed by Tuckey’s post-test (**p < 0.01 and ***p < 0.001).
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in AST and ALT were respectively 1.55 and 1.8 folds
whereas at sixth week the concentrations were 2.56 and
1.7 folds higher in CCB compared to ND.
Two-hour fasting with CCB led to almost equivalent in-

crease in these aminotransferases (p > 0.05) as CCB alone
did, whereas fasting with normal diet decreased AST at
fourth week. The calculated AST/ALT ratio remained un-
changed in all groups throughout the experiment duration.

Vascular function
Vascular function was studied at three levels. Firstly, some
bio-molecules associated with endothelial dysfunction
(UA, phosphorus and ALP) were found to be elevated

profoundly (p < 0.001) by CCB-diet. Fasting coupled with
normal diet had no effect on these parameters (p > 0.05).
Serum concentrations of UA were 1.4 ± 0.1, 2.4 ± 0.1 and
2.37 ± 0.08 mg/dl in ND, CCB and CCB-fasting respect-
ively at fourth week and 1.7 ± 0.09, 3.29 ± 0.2 and 3.18 ±

Figure 3 CCB-diet alone or coupled with fasting, increased
serum glucose and GGT in rats. A) Fourth week; B) Sixth week;
Gluc: glucose (mg/dl); GGT: gamma-glutamyl transferase (u/l); ND:
normal diet; ND-F normal diet with two-hour fasting; CCB:
cholesterol-cholate-butterfat diet; CCB-F: cholesterol-cholate-butterfat
diet with two-hour fasting. All values are represented as mean ±
standard error of mean (SEM) (n = 7 per group). This figure only
shows the comparison of means using one-way ANOVA followed by
Tuckey’s post-test (*p < 0.05, **p < 0.01 and ***p < 0.001).

Figure 2 CCB-diet alone and coupled with fasting, increased
atherogenic index and lipid ratios. A) Fourth week; B) Sixth week;
AI: atherogenic index; ND: normal diet; ND-F normal diet with
two-hour fasting; CCB: cholesterol-cholate-butterfat diet; CCB-F:
cholesterol-cholate-butterfat diet with two-hour fasting. All values
are represented as mean ± standard error of mean (SEM) (n = 7 per
group). This figure only shows the comparison of means using
one-way ANOVA followed by Tuckey’s post-test (*p < 0.05 and
***p < 0.001).
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0.2 mg/dl respectively at sixth week (Figure 5A and B).
Phosphorus and ALP levels, at fourth week, were 2.9 ± 0.1,
6.8 ± 0.2 and 5.7 ± 0.3 mg/dl in ND, CCB and CCB-F, and
93 ± 4.7, 504 ± 76 and 437 ± 72 u/l respectively (Figure 5A).
Whereas at sixth week, phosphorus was 3 ± 0.1, 8 ± 0.6
and 6.5 ± 0.5 mg/dl and ALP were 116 ± 17, 650 ± 79 and
522 ± 87 u/l respectively (Figure 5B).
In the second step, vascular function of isolated thoracic

aortae was analysed on isolated tissue bath assembly.
Concentration-response curves of acetylcholine (ACh:
0.01 μM to 100 μM) were prepared after pre-contracting
the aortae with phenylephrine (1 × 10−6 mol/L). As shown
in figure 6A, acetylcholine (at concentration of 1 μM and
above) inhibited the phenylephrine-induced contrac-
tions of aortic rings from normal controls in a

concentration-dependent manner. However, in aortae
from CCB-fed rats, this response was inhibited (p <
0.001) at high concentrations of ACh (i.e. 3 μM and
above), indicating endothelial dysfunction. Fasting
coupled with CCB partly prevented this impairment,
evident in Figure 6A by the partial inhibition of PE-
induced contraction by ACh at high concentrations
(10 μM and above).
Thirdly, we explored the probable downstream events

contributing to endothelial dysfunction. Endothelial ni-
tric oxide synthase (eNOS) activity was assayed in aorta,
and total nitric oxide (NO) concentration was measured
in serum. As elaborated in Figure 6B, production of
serum NO was diminished perhaps due to inactivation
of eNOS by the CCB-diet. Enzyme activity (represented

Figure 4 CCB-diet alone or coupled with fasting, induced mild
hepatic injury raising serum biomarkers. A) Fourth week; B) Sixth
week; AST: aspartate aminotransferase (u/l); ALT: alanine aminotransferase
(u/l); ND: normal diet; ND-F normal diet with two-hour fasting; CCB:
cholesterol-cholate-butterfat diet; CCB-F: cholesterol-cholate-butterfat diet
with two-hour fasting. All values are represented as mean ± standard
error of mean (SEM) (n = 7 per group). This figure only shows the
comparison of means using one-way ANOVA followed by Tuckey’s
post-test (*p < 0.05, **p < 0.01 and ***p < 0.001).

Figure 5 CCB-diet alone and coupled with fasting, elevated
vascular biomarkers in rats. A) Fourth week; B) Sixth week; UA:
uric acid (mg/dl); Phosp: phosphorus (mg/dl); ALP: alkaline
phosphatase (u/l); ND: normal diet; ND-F normal diet with two-hour
fasting; CCB: cholesterol-cholate-butterfat diet; CCB-F: cholesterol-
cholate-butterfat diet with two-hour fasting. All values are
represented as mean ± standard error of mean (SEM) (n = 7 per
group). This figure only shows the comparison of means using
one-way ANOVA followed by Tuckey’s post-test (***p < 0.001).
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as % of control) and nitrate concentrations in ND were
72.5 ± 7.9% of control and 2.4 ± 0.17 uM respectively. In
CCB, eNOS and nitrate were 38.7 ± 3.7% of control and
1.5 ± 0.2 uM respectively (p < 0.01). In fasting with CCB,
the concentrations of eNOS and NO were 62 ± 5.9% of
control and 2 ± 0.9 uM respectively. Fasting almost
completely protected the CCB-induced endothelial dys-
function such that eNOS activity and NO concentration
were similar to normal controls (p > 0.05).

Learning/memory
The CCB-diet slowed the learning process and/or im-
paired memory. This was evident on day six and day
seven of Moris water maze (MWM), when CCB-fed rats
took longer time (p < 0.01) to find the hidden platform
(escape latency), compared to normal controls. On the
first five days of MWM trials, there was no significant
difference in the escape latency of rats from different
groups, as evident in Figure 7. Escape latency on day six
and seven were 2.05 and 2.24 times higher in CCB com-
pared to ND (Figure 7). Fasting had no significant effect
on normal controls, but almost completely prevented
CCB-induced memory loss, as response was similar to
normal controls.

Discussion
Our study presents CCB-diet model as a candidate for re-
search on cardiovascular diseases with associated compli-
cations, as this diet ensures the multi-organ dysfunction
induced in rats. In addition to serum lipid profile and glu-
cose, interestingly, this CCB-diet also elevated biomarkers
of hepatic and vascular function. CCB impaired the vascu-
lar reactivity of isolated aorta, by restraining eNOS activ-
ity, thereby limiting nitric oxide production. Besides, this
simple high-fat diet containing cholesterol, cholate and
butterfat, also affected the nervous system by lessening the
learning capabilities of experimental rats.
Comparable to other commercial HFDs [20], CCB-diet

increased triglyceride, cholesterol and LDL, with little ef-
fect on HDL. The lipid profile is considered as a good indi-
cator of cardiovascular health status. Nevertheless, it is
suitable mainly for extreme high and extreme low risk indi-
viduals and not the majority at medium risk [23]. Con-
versely, TC/HDL and LDL/HDL ratios have been shown to
be better markers than LDL and HDL levels per se [24-26].
TC/HDL is known to be a better predictor of ischemic
heart disease than LDL/HDL ratio [27] since it involves

Figure 6 CCB-diet impaired vascular reactivity of thoracic
aortae by amending nitric oxide pathway. A) Isolated aorta
experiment; PE: phenylephrine; Ach: acetyl choline, Two-way ANOVA
followed by Bonferroni’s post-test is applied. B) Nitric oxide pathway;
NO: nitric oxide (uM); eNOS: endothelial nitric oxide synthase; ND:
normal diet; ND-F normal diet with two-hour fasting; CCB:
cholesterol-cholate-butterfat diet; CCB-F: cholesterol-cholate-butterfat
diet with two-hour fasting. All values are represented as mean ±
standard error of mean (SEM) (n = 7 per group). This figure only
shows the comparison of means using one-way ANOVA followed
by Tuckey’s post-test (*p < 0.05, **p < 0.01 and ***p < 0.001).

Figure 7 CCB-diet impaired learning ability in rats. ND: normal
diet; ND-F normal diet with two-hour fasting; CCB: cholesterol-
cholate-butterfat diet; CCB-F: cholesterol-cholate-butterfat diet with
two-hour fasting. All values are represented as mean ± standard
error of mean (SEM) (n = 7 per group). This figure only shows the
comparison of means using one-way ANOVA followed by Tuckey’s
post-test (**p < 0.01).

Jamshed et al. Lipids in Health and Disease 2014, 13:194 Page 5 of 10
http://www.lipidworld.com/content/13/1/194



very-low-density-lipoprotein (VLDL) and intermediate-
density-lipoprotein, in addition to LDL and HDL. Al-
though the significance of LDL/HDL ratio is believed to
be compromised in hypertriglyceridemias (where major-
ity of the serum cholesterol resides in VLDL); yet it is
an excellent indicator of drug response [28] as it simul-
taneously represents atherogenic and anti-atherogenic
lipids. This is why we calculated and presented the re-
sults of these ratios.
The hypertriglyceridemia and LDL elevation we ob-

tained could be attributable to the cholesterol in CCB-
diet: it accelerates glycolysis in liver [29], producing fatty
acids which are esterified to triglycerides and cholesterol-
esters [30]. These esters integrate in LDL, and release in
blood [31], along with the excess triglycerides [32]. Dietary
cholesterol also blocks the receptor-mediated LDL uptake
sustaining increased plasma LDL [33]. While explaining
CCB-diet induced hypercholesterolemia, however, we do
realize that humans and rats resist dietary cholesterol-
induced hypercholesterolemia [34] in contrast to rabbits
and hamsters [35,36]. Whereby, cholesterol blocks the de-
novo synthesis by inhibiting HMG Co-A reductase [37], fa-
cilitates the catabolic conversion of cholesterol to bile acids
[38] and accelerates biliary cholesterol excretion [39]. This
prevents the rise in serum cholesterol, where bile overpro-
duction ensures that excess cholesterol is eliminated.
The butterfat in CCB-diet contains palmitic, oleic and

stearic acids. It counteracts by enhancing de-novo chol-
esterol synthesis via activation of HMG Co-A reductase
[40,41]. Our CCB-diet is also supplemented with cholate,
which ensures greater intestinal cholesterol absorption
[42] in addition to promoting cholesterol synthesis [43].
The probable synergism of butterfat and cholate could
justify hypercholesterolemia in the CCB-diet model.
Our results showed that two-hour fasting promoted

CCB-induced hyperlipidemia. Body adopt dietary amend-
ments by altering metabolism. In well-fed state, energy is
provided by carbohydrate and sugars, which steadily shifts
to fats in case of fasting [44]. The fat stores (in adipocytes)
disintegrate, supplying fatty acids to liver [45], increasing
the cholesterol content - which secretes in blood as LDL
after esterification [46]. Hepatic fatty acids should esterify
causing hypertriglyceridemia [47] but we observed similar
triglycerides in CCB and CCB-fasting (at sixth week). This
may be because, hepatic fatty acid mainly arises from adi-
pose stores with minor amounts synthesized from dietary
sources [48]. In case of a chronic fasting (six weeks), these
stores exhausted and were probably no longer accessible.
Prolonged fasting also inhibits fatty acid synthesis and
promotes its oxidation [49]. Fasting coupled with nor-
mal diet also reduced triglycerides. This might be be-
cause ND was not supplemented with additional fatty
acids. In absence of exogenous source, depletion of en-
dogenous stores and accelerated oxidation of fatty acids –

triglycerides decreased. Extended use of CCB-diet sup-
plemented with fatty acids (in butterfat), prevented the
fall in TG.
Al-Attar (2010) has reported the combined effects of

intermittent fasting and high-fat diet [22]. Where we
have used cholesterol, cholate and butterfat as the
source of high fat in diet, Al-Attar (2010) used 15%
mutton tallow (and the remaining diet composition was
not provided). This might underlie the contradicting re-
sults; they obtained similar hyperlipidemia by high-fat
diet (HFD) with and without fasting. The fasting dur-
ation also varied, from two hours daily in our investiga-
tion, to 10 hours/day for five days a week in the study
by Al-Attar (2010).
In addition to hyperlipidemia, we found elevation in

GGT, AST and ALT by the CCB-diet. Apart from the gen-
eral perception of GGT as an indicator of hepatic injury, it
is now also recognized as a predictor of cardiovascular
event [50]. GGT is basically a marker of oxidative stress
[51] and inflammation [52], and is linked with hypertension
[53,54] and hyperlipidemia [55]. Besides, it is associated
with CVD [56] and reported to be present in atheroscler-
otic plaques [57,58], where it is anticipated to be involved
in LDL oxidation [59]. Likewise, the aminotransferases
(both ALT and AST) are also accepted as markers of hep-
atic degeneration and dysfunction, but these are also associ-
ated with diabetes mellitus and metabolic syndrome [60].
ALT is also projected as an indicator of carotid atheroscler-
osis [61]. Therefore, we believe that an animal model offer-
ing abnormality in these biomarkers can serve as a worthy
tool for CVD research.
We found that throughout the course of six weeks, the

AST/ALT ratio remained unchanged and inferred the in-
dication of acute and mild hepatic damage. Localization
of AST is not confined to liver and may also be released
on injury to heart or skeletal muscles [60]. Within hepa-
tocytes, ALT is present in the cytoplasmic space and is
released even on minor hepatic damage. AST, on the
other hand, resides predominantly in mitochondria, and
is discharged when the destruction is severe [62]. There-
fore, an increase in the AST/ALT ratio would be ob-
served with persistent liver damage.
Among the biomarkers of vascular function, we tried

looking into uric acid (UA), phosphorus and ALP. We
found these to be profoundly elevated by CCB-diet. ALP
is considered as a potential diagnostic marker of CVD
[63]. Apart from being involved in lipid absorption [64],
ALP is also recognized to regulate vascular calcification
[65-67]. Both ALP and UA correlate with hypertension
[68,69] and dyslipidemia [70,71]. By facilitating smooth
muscle cell proliferation [72], UA induces dysfunction of
vascular endothelium [73], and hence acknowledged as a
risk factor for atherosclerotic diseases [74]. Phosphorus
impairs endothelial function [75] by prompting vascular
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calcification [76,77] analogous to ALP, and is therefore,
accredited as a amendable risk factor for atherosclerosis
[78]. The reason we fail to achieve hyperglycemia at
sixth week could be ascribed to phosphorus which en-
hances glucose utilization through glycolysis [79].
Noteworthy elevations in vascular biomarkers com-

pelled us to explore the reactivity in thoracic aortae. As
anticipated, aortae isolated from CCB-fed rats were evi-
dently less responsive to ACh, indicative of endothelial
dysfunction. We opted to further inquire, among the
countless possibilities, the underlying nitric oxide path-
way. Since the prior experiments deduced a probable
malfunctioning endothelium, we examined endothelial-
NOS enzyme activity, and found it to be compromised;
with a consequent reduction in nitric oxide concentra-
tion. Revealing one of the precise underlying mecha-
nisms, we aided future research by enabling scientists to
confidently select and pin-point the mechanism of novel
therapeutic interventions.
Apart from hepatic and vascular dysfunction, com-

mon CVD comorbidities also include memory impair-
ment. Different HFDs are reported to delay the learning
ability in experimental animals [80]. Therefore, we con-
sidered the likely consequence of this CCB-diet on rats’
memory and found consistent results, when CCB hin-
dered the learning ability. Likewise, the fasting-induced
prevention of memory-impairment that we acquired
both in ND and CCB groups was also in accordance
with the previous literature [81], where dietary restric-
tion benefits learning capabilities [82].

Conclusion
This study introduced the CCB-diet for multi-organ dys-
function in rats (a brief summary presented in Additional
file 1), and proposed its use for research on cardiovas-
cular diseases and associated manifestations. Like
other commercially available expensive high-fat diets,
this simple and robust CCB-diet induces hyperlipid-
emia in rats, which we showed, can be potentiated by
coupling with two-hour fasting (daily). Further, we
showed that this diet also offers elevation of biomarkers
indicative of hepatic damage. Vascular function was simul-
taneously impaired, which we demonstrated at three
levels; a) elevated vascular biomarkers, b) reduced endo-
thelial reactivity of aorta and c) inhibition of nitric oxide
pathway. Interestingly, CCB-diet also presented dimin-
ished memory/learning ability in rats. Hence, we sug-
gest that the multi-organ abnormalities obtainable by
this dietary model should be opted for research while
inspecting the holistic effects of pharmaceutical inter-
ventions, specifically in complex disorders like cardio-
vascular diseases, where there is an immense interplay
of integrated pathways.

Methods and study design
Animals and diets
Adult Sprague–Dawley rats (180 to 200 grams) of either
gender were housed at the animal house of The Aga
Khan University maintained at 23 to 25°C. These ani-
mals were kept in plastic cages with sawdust, and had
free access to food and water (except for the fasting
groups). The experiments conducted were in accord-
ance with the guidelines for care and use of laboratory
animals provided by The National Research Council
[83]. The study protocol was approved by the Ethical
Committee for Animal Care and Use, of The Aga Khan
University, Karachi, Pakistan. Four groups of seven rats
each were used. Group 1 (ND) and group 2 (ND-F) were
fed with normal rat diets, whereas group 3 (CCB) and
group 4 (CCB-F) were provided with cholesterol-cholate-
butterfat diet [84]. Contents of both theses diets are given
in Table 1. From group 2 (ND-F) and group 4 (CCB-F),
food was withdrawn daily for two hours, whereas group 1
(ND) and group 3 (CCB) had ad-libitum access to food.
At the end of the fourth week, blood was drawn from rats’
tail by cuff method [85]. However at the end of sixth week,
blood was drawn through cardiac puncture.

Learning ability or memory
In the sixth week rat’s learning ability or memory was
assessed through Morris Water Maze (MWM) following
the standard protocol [86] with slight modifications [87].
Briefly, in each trial, rats were allowed to swim in water and
the time required to escape to the hidden platform, called
escape latency, was recorded. This was continued for seven
days such that the rats went through two trials on the first
day and one trial per day for remaining six days.

Table 1 Contents of normal and cholesterol-cholate-
butterfat (CCB) diet

Ingredients Normal diet CCB diet

Wheat flour 33.3% 30.9%

Bran fiber (choaker) 33% 30.6%

Fish meal 15% 13.9%

Dry skimmed milk powder 13.3% 12.3%

Cooking oil (soya) 3.3% 3.1%

Potassium metabisulphate 0.1% 0.1%

Salt 0.5% 0.5%

Nutrivet powder (bromix F-A) 0.33% 0.3%

Molasses 1% 0.9%

Cholesterol – 2%

Cholic acid – 0.5%

Butter fat – 5%
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Biochemical estimations and enzyme assay
From the blood obtained on fourth and sixth week, serum
was separated by centrifuging at 4000 rpm and 4°C for
10 min. The concentrations of total cholesterol (TC), trigly-
ceride (TG), low-density lipoprotein (LDL), high-density
lipoprotein (HDL), glucose (Gluc), gamma-glutamyl trans-
ferase (GGT), aspartate amino-transferase (AST), alanine
amino-transferase (ALT), uric acid (UA), phosphorus
(phosp.) and alkaline phosphatase (ALP) were estimated on
Automated Analyzer (Roche Cobas c-111) using commer-
cially available kits. Atherogenic index (AI) was calculated
as the ratio of Non-HDL and HDL [21]. TC/HDL, LDL/
HDL and AST/ALT ratios were also calculated. Serum Ni-
tric oxide concentration was estimated by Griess method
[88]. At the end of experiment (sixth week), thoracic aortae
were isolated and endothelial nitric oxide synthase (eNOS)
enzyme activity was assayed using the Nitric Oxide Syn-
thase Assay Kit, Colorimetric (Calbiochem, Cat. No.
482702) following the manufacturer’s instructions.

Vascular reactivity
On the aortae isolated from the rats of each group, the
vascular reactivity was also assayed following the proto-
col of Furchgott and Zawadski [89] with certain modifica-
tions [90]. Briefly, aortic rings were mounted on the tissue
bath and after acclimatization, concentration-response
curves of acetylcholine (ACh: 0.01 μM to 100 μM) were
prepared after pre-contracting the aortae with phenyleph-
rine (PE: 1 × 10−6 mol/L).

Statistical analysis
The data are expressed as mean ± SEM (Standard Error of
Mean). For comparison between means of two groups, un-
paired student's t-test was used. One-way analysis of vari-
ance (one-way ANOVA) was also applied when comparing
the differences in means of four groups, followed by
Tukey’s multiple comparison test to determine the
significant differences. Two-way ANOVA followed by
Bonferroni’s post-test was applied in vascular reactivity
experiment to calculate the statistical significance. P-
value less than 0.05 (p < 0.05) was considered as signifi-
cant. Statistical analysis and plotting of graphs was done
using GraphPad Prism software (version 4.0).

Additional file

Additional file 1: Graphical Abstract showing cholesterol-cholate-
butterfat (CCB) diet-induced increase in triglyceride (TG); total
cholesterol (TC); low-density lipoprotein (LDL); atherogenic index
(AI); ratio of TC/HDL; Ratio of LDL/HDL; glucose (Gluc); gamma-
glutamul transferase (GGT); aspartate aminotransferase (AST);
alanine aminotransferase (ALT); Ratio of AST/ALT; uric acid (UA);
phosphorus (Phosp.) and alkaline phosphatase (ALP); loss of
vascular endothelial reactivity, inhibition of nitric oxide (NO)
production and endothelial nitric oxide synthase (eNOS) activity
and memory impairment.
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