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While much work has examined low-level sensorimotor planning, only limited efforts have studied 

high-level motor planning processes underlying the cognitive-motor performance of complex 

action sequences. Such sequences can generally be successfully executed in a flexible manner and 

typically involve few constraints. In particular, no past study has examined the concurrent changes 

of high-level motor plans along with those of mental workload and confidence during practice of 

a novel complex action sequence. To address this gap, first a computational approach providing 

markers capturing performance dynamics of action sequences during practice had to be developed 

since past relevant works only employed fairly rough metrics. Such an approach should provide 

concise performance markers (e.g., distances, scalar) while still capturing accurately the changes 

of structure of high-level motor plans during the acquisition of novel complex action sequences. 

Thus, by adapting the Levenshtein distance (LD) and its operators to the motor domain, a 

computational approach was first proposed to assess in detail action sequences during an imitation 

practice task executed by various performers (humans, a humanoid robot) and with flexible success 

criteria. The results revealed that this approach i) could support accurately comparing the high-

level plans generated between performers; ii) provides performance markers (LD, insertion 

operator) able to differentiate optimal (using a minimum of actions) from suboptimal (using more 

than a minimum of actions but still reaching the task goal) sequences; and iii) gives evidenced that 

the deletion operator is a marker of action sequence failure. This computational approach was then 

deployed to examine during practice the concurrent changes in high-level motor plans underlying 

action sequence execution with modulation of mental workload and an individual’s confidence in 

performing the task. The results revealed that as individuals practiced, performance improved 

(reduction of LD, insertion/substitution and movement time) while the level of mental workload 

and confidence decreased and increased, respectively. Also, by late practice the sequences were 

still suboptimal while being executed faster, possibly suggesting different dynamics between the 

generation of high-level motor plans and their execution. Overall, this work complements prior 

efforts to assess complex action sequences executed by humans and humanoid robots in the context 

of cognitive-motor practice, and it has the potential to inform not only human cognitive-motor 

mechanisms, but also human-robots interactions. 
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I. General Introduction 

I.a. Motor Control and Learning Processes in Simple and Complex Actions 

I.a.1. Hierarchical motor planning and action sequences. 

In the last two decades, a growing number of research has challenged the idea that motor 

planning is a uniform process, with intractable and inseparable elements that stood apart from other 

cognitive functions; instead, motor planning is a complex hierarchical mechanism (Sober & Sabes, 

2003; Sober & Sabes, 2005). Furthermore, research has identified the importance of delineating 

this hierarchy into categories of ascending complexity and organization to understand the graded 

nature of human motor control and planning. The initiation of each level of motor planning is 

related to the challenges associated with the physical space and the intricacy of the motor task. 

Such a planning process can be divided into first and higher (e.g., second, third or higher) order 

levels. 

The first level or first-order refers to motor planning (often called motion planning) which 

includes processes that adjust to immediate task demands and activities which require planning to 

reach a single target or object. For instance, within the context of object manipulation behavior, 

first-order motor plans process adjustments to immediate task demands such as changing grasp 

orientation based on the size of the target object or orientation or trajectory of the arm in 

preparation for a reaching task (Rosenbaum et al., 1993; Rosenbaum et al., 2012; Casartelli et al, 

2017). 

Higher order (at least second order) motor planning refers to higher-level planning 

components in which the current behavior is dependent upon tasks (and the goal state of the object) 

that need to be completed (Fabbri-Destro et al., 2009; Rosenbaum et al., 2012; Wilmut et al., 2013). 

The level of these higher-order motor planning increases (e.g., second, third, fourth, etc.) as the 
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changes made to a motor plan are the result of a task that is many steps removed from the current 

plan (Rosenbaum et al., 2012; Meyer, van der Wel, & Hunnius, 2013). During higher-order motor 

planning, external information can be encoded into the motor plan and thus reorient parameters in 

the upcoming motor plan (Casartelli et al., 2017). For instance, inversion of the hand when picking 

up a cup because the end state dictates the object is upside down reflects second-order planning 

and the prioritization of “end-state comfort” (Rosenbaum et al., 1990). Higher-order motor 

planning has been examined in both adult populations (Johnson-Frey et al., 2004; Ansuini, 2006) 

as well as, although modified, in children (Wilmut et al., 2013), toddlers (Chen et al., 2010), and 

infants (Claxton et al., 2003). This level of planning develops over time as the motor control of the 

young children develops and may be related to motor reorganization that occurs in children 

throughout childhood (Thibault & Toussaint, 2010). 

Although originally this theoretical framework was presented in a context of object 

manipulation, it can be extended to more complex skills whose individual actions, as a part of a 

complex sequence, are influenced by various rules enforced in the environment and whose goal 

state occurs at a higher level, requiring a number of intermediary steps. Thus, a higher-order motor 

plan entails reaching a goal state in the course of completing a complex, multi-step sequence of 

actions that are influenced by other behaviors prior to and following their current state. It must be 

noted that these complex action sequences include multiple actions which need to follow a certain 

order to be successfully executed while still providing the flexibility to reach the same goal using 

multiple strategies. In other words, these flexible movement strategies require a higher level of 

organization to successfully implement the solution (Naylor & Briggs, 1963). This does not 

necessarily refer to traditional finger tapping motor sequence tasks, since serial tapping tasks 

typically engage in sequential movements that are unrelated to each other (that is – they have a 
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lower organization of the component motor actions). More specifically, their motion pattern does 

not include movements that are dependent upon past and future decisions made to reach a goal 

state (e.g. Du, Valentini, Whitall, & Clark, 2017). This work will therefore not be addressed in this 

proposal. One example of a higher-order planning scheme beyond a serial tapping task would be 

an individual taking necessary steps to prepare and execute an action sequence that needs to be 

executed in order to solve a task (similarly to a puzzle) while abiding by a set of predetermined 

rules which limit the problem space (e.g., components that contribute to the process of finding a 

solution). In this context, an action sequence is an ordered list of motor actions that are executed 

one after another to achieve a preset goal state within a given environment. Depending upon the 

rules imposed on the problem space, there is an implicit expectation that a sequence contains 

necessary actions in an appropriate order. For example, to put together a piece of furniture, there 

are certain steps that must be completed in sequence to ensure structural stability as one progresses 

through the instructions. There are some steps that are critically important to complete in a given 

sequence (high level of organization), while other elements of the complex task can be flexibly 

maneuvered by the individual to accomplish the task (Naylor & Briggs, 1963). 

 

I.a.2. Examination of lower-order motor planning. 

In the field of motor control and learning, lower-order motor planning (also referred to as 

low-level planning or motion planning) of discrete single movement tasks has been largely 

investigated via both experimental (e.g., arm reaching movements to single target) and 

computational (e.g. optimal control; neural modeling) work (Gordon, Ghilardi, Cooper, & Ghez, 

2011; Morasso (1981); Soechting & Flanders, 1997, Ashe, 1997; Scott et al., 2001; Sergio & 

Kalaska, 2003, Gerardin et al., 2000; Hanakawa et al., 2003; Flash & Hogan, 1985, Uno, Kawato, 

& Suzuki, 1989, Kawato, 1999, Todorov, 2004, Bullock and Grossberg, 1988, Molina-Vilaplana 
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et al. 2006, Gentili et al., 2015a; Gentili et al. 2016). In particular, a large body of literature has 

examined the motion planning processes to understand the production and selection of effector 

trajectories with a strong emphasis on linear and angular kinematic analyses. Generally, this work 

is not done with a sequence of actions, but rather with one atomic action (e.g., center-out arm 

movement). Most of the previous research in the field of human motor control and learning have 

explored the cognitive-motor mechanisms, primarily during discrete, well-controlled motor tasks. 

Typical tasks include planar reaching tasks executed in two (and occasionally in three) dimensions, 

as well as center-out reaching tasks where individuals must adapt to dynamic and/or kinematic 

perturbations that distort the trajectory of the effector within the environment (e.g. Sober & Sabes, 

2003, 2005; Gentili et al., 2013; Rietschel et al., 2014; Gentili et al., 2015b). This experimental 

approach allows researchers to control for multiple degrees of freedom in a task, thus providing 

the opportunity to explore the sensorimotor control and learning mechanisms through detailed 

kinematic/dynamics analyses of simpler movement tasks. Although altogether behavioral and 

neuroimaging empirical work as well as computational work have largely examined the low-level 

sensorimotor planning processes, they only focused to a limited extent on higher-order motor plan. 

 

I.a.3. Examination of higher-order motor planning 

There is limited research that has examined higher-order motor planning in humans, and 

often this work does not involve complex goal-oriented tasks using sequences composed of more 

than five actions (Rosenbaum et al., 1990; Haggard, 1998). Typically these studies that examined 

high-level motor planning underlying complex action sequences employ tasks that challenge the 

performer to engage in high-level motor planning to perform complex action sequences. Tasks 

employed in these studies include, but not limited to, complex action sequences such as the classic 

Tower of Hanoi (ToH) puzzle which is the well-known mathematical logic task composed of three 
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pegs and rings stacked in descending diameter in a tower on one peg. The goal is to move the 

tower of rings from one peg to another while obeying a set of rules which limits the orientation of 

the rings and the number of moves that can be made at one time (Wunsch et al., 2016). Although 

the cognitive-motor mechanisms underlying the performance of complex action sequences in 

healthy individuals has been examined, most of this effort has focused on patients with notable 

deficits in neural structures that are known to contribute to motor planning and executive functions. 

Namely, prior work conducted in healthy individuals has examined the role of executive 

functions such as working memory and inhibitory control in high-level motor planning during the 

execution of a complex action sequence using the ToH task (Goldman-Rakic, 1987; Welsh, 1991). 

These early works revealed that, although inhibitory control and working memory had a limited 

role on improved performance, the motor planning regions that were engaged in the task recruited 

attentional resources from different brain areas that are traditionally taxed during working memory 

and inhibition tasks (Welsh, 1999). In addition, this line of work also suggested that complex action 

sequence performance is affected by the age of the individuals and that varied training conditions 

enhance the task representations of individuals to adaptive configurations (Borys et al., 1982; 

Welsh, 1991; Schiff & Vakil, 2015; Vakil & Heled, 2016). Thus, overall the examination of the 

cognitive-motor processes in complex action sequences in healthy individuals has primarily used 

them to examine the role of working memory, inhibitory control, and learning strategies.  

However, as mentioned earlier the vast majority of research that examines the 

neurocognitive processes underlying complex action sequences was conducted in clinical 

populations with known motor deficits. These studies have heavily focused on clinical populations 

including those with deficits in high-level motor planning in patients with neural impairments such 

as Parkinson’s disease, autism and attention deficit/hyperactivity disorder (e.g. Saint-Cyr et al., 
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1988; Paolo et al, 1995; Hughes, 1996; Chan et al., 2004; Goldenberg et al., 1986; Steenbergen & 

Gordon, 2006; Chan et al., 2010; Taig et al., 2012; Casartelli et al., 2017). These studies have 

investigated high-level motor planning processes. For instance, work with autistic children 

revealed that poor performance in high-level planning are linked to deficits in mental 

representations of states used in problem solving behaviors. This effort has informed the unique 

contributions of different brain regions to various complex motor activities in patients with 

neurophysiological disorders (Goldenberg, Wimmer, Auff, & Schnaberth, 1986; Goel & Grafman, 

1994; Rinehart et al., 2006). Deficit in high-level planning processes have also been examined in 

populations with damage to the temporal lobes or thalamic structures associated with declarative 

memory and procedural learning. Specifically, patients with Parkinson’s or Huntington’s disease, 

damage to the neostriatum and prefrontal cortex could not develop heuristic planning strategies 

necessary for procedural learning (Saint-Cyr et al., 1988). More recently, the role of cognitive 

functions such as working memory was evidenced during the execution of a complex action 

sequence in schizophrenic patients (Chan, Wang, Cao, & Chen, 2010). It must be noted that 

although such clinical work is critical, it is also possible that the cognitive-motor performance 

observed is biased since it can be confounded by other comorbidities present in these populations.  

 

I.b. Performance assessment during complex action sequences 

Beyond such empirical human work involving healthy and impaired human individuals, 

one important limitation of this human empirical work is that the metric employed were rough 

(e.g., movement times, number of moves) and thus were unable to provide detailed information of 

the structure of the high-level motor plan underlying the action sequence via qualitative (e.g., 

which action were inserted or deleted and where in the sequence) and quantitative (e.g., number 
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of inserted or omitted action) analysis and therefore provide only a limited assessment of the 

cognitive-motor performance during execution of such tasks (Hinz, Kostov, Kneiẞl, Sürer, & 

Danek, 2009; Vakil & Heled, 2016; Fireman, 1996; Palmer, 1996; Schiff & Vakil, 2015; Vakil & 

Heled, 2016; Tenorth et al 2013). Also, similarly to human-focused efforts, past robotic work has 

examined low-level sensorimotor plans whereas only a limited effort has examined high-level 

motor planning involving cognitive planning functions which determine and assess a motor action 

sequence for achieving a complex action. It must be noted that as far as we know these high-level 

motor planning studies did not examine how high-level motor plans can dynamically modified 

throughout practice. This may be due to the lack of a computational approach able to capture 

details in the structure of action sequences is available. Thus, there is a need to examine these 

action sequences to captures in detail differences between performers and/or throughout time 

beyond what previous work has done by proposing a novel computational approach. 

 

I.c. Neurocognitive and psychological processes in performance of complex action sequences 

Although motor control and learning literature has examined key aspects of cognitive and 

psychological mechanisms that contribute to motor performance the examination of mental 

workload during practice or learning is lacking in particular in a context of complex action 

sequences. Thus, there is a need to examine cognitive mechanisms such as attentional control, and 

working memory in connection with motor learning, practice and performance during complex 

motor tasks. Namely, while the assessment of mental workload, as reflected by the control of 

attentional resources, was examined during cognitive-motor performance (Wickens et al., 1983; 

Miller et al. 2011; Gentili et al., 2014) there is relatively limited research that such a notion exists 

during motor practice and learning (Bosse et al., 2015; Akizuki and Ohashi, 2015; Shuggi et al., 



8 

 

2017a, 2017b; Hu et al., 2015; Ruiz-Rabelo et al., 2015). In particular, previous effort did not 

examine changes in mental workload throughout practice during the execution of a complex action 

sequence. Similarly, while many studies have examined the effect of psychological factors such 

as confidence (self-efficacy; the belief one has in their abilities to complete a task) on human motor 

performance there is limited amount of work that has examined changes in confidence in a motor 

practice or learning context (Chiviacowsky et al., 2012, 2014; Cordova and Lepper, 1990; Ste-

Marie et al., 2013; Stevens, 2012; Trempe et al. 2012; Ong et al. 2015, 2017; Saemi et al. 2012; 

Bandura, 1982). In particular, as far as we know, no study has examined the changes in self-

confidence during practice of complex action sequences. 

Therefore, overall when considering the prior work that examined high-level motor 

planning, there is a critical need i) to propose a computational approach to examine in detail the 

structure of the high-level motor plan underlying the performance of complex action sequence as 

well as ii) to deploy such a computational approach to examine the concurrent changes in the 

structure of high-level motor plan underlying performance and the modulation of mental workload 

and self-confidence during the execution of complex action sequences. To examine these two 

problems, the proposed work presents two studies. In the first study, a novel computational 

approach is proposed to assess high-level motor plans during performance of complex action 

sequences. The results of this study provide a new perspective in the analysis of motor performance 

that extends beyond kinematic analysis of simple motor tasks. The second study deploys this 

computational approach within the context of a more constrained task environment to examine the 

concurrent changes in performance, mental workload and self-confidence during practice of 

complex action sequences. 
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II. Study 1: A novel computational approach for complex action sequence 

performance assessment1 

II.a. Introduction 

Although kinematic analyses are well-developed in the study of motion planning, there is 

a limited variety of metrics to study the high-order motor planning mechanisms which underlie the 

control and learning of complex action sequences. Most prior examination of human high-level 

motor planning has considered only well-constrained problems where individuals have to plan an 

action sequence while following specific rules (e.g., the well-known ToH or its variations). 

Behavioral assessment in these studies was largely based on basic metrics such as the response 

time to complete a task, the total number of moves, number of backwards or reversal moves, or 

the number of errors made (Goel & Grafman, 1995; Rinehart et al., 2006; Saint-Cyr et al., 1988; 

Steenbergen & Gordon, 2006). Such measures are often compared to a motor sequence serving as 

a reference, which often includes a minimal number of steps. This previous work generally does 

not provide detailed information about the motor action sequences such as which specific actions 

were added, removed or switched, at which specific positions, in the sequences, information that 

is critical to assessing the quality of performance and, in particular, its high-level planning 

component (Goel & Grafman, 1995; Rinehart et al., 2006; Noyes & Garland, 2003; Welsh & 

Huizinga, 2005; Anderson, Albert, & Fincham, 2005; Hinz, Kostov, Kneißl, Sürer, & Danek, 

2009). Such a restricted performance assessment not only provides limited information about the 

human neurocognitive processes but also the development and assessment of intelligent robotic 

controllers and human-robot interactions during the execution of complex tasks (e.g., equipment 

                                                 
1 This first main section has been submitted to publication as Hauge et al. to the International Journal of social 

robotics (see reference list). 
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maintenance (Katz, Huang, Gentili, & Reggia, 2016; Katz, Huang, Hauge, Gentili, & Reggia, 

2017); cleaning objects of various shapes, (Langsfeld, Kabir, Kaipa, & Gupta, 2016)).  

Interestingly, in a similar manner many robotic studies have assessed performance with 

relatively simple metrics such as questionnaire-based subjective measures (Koenig, Takayama, & 

Matarić, 2010; Nikolaidis, Ramakrishnan, Gu, & Shah, 2015; Nikolaidis, Hsu, & Srinivasa, 2017; 

Paxton, Jonathan, Hundt, Mutlu, & Hager, 2017; Steinfeld et al., 2006; Wang, Pynadath, & Hill, 

2015; Zhang, Narayanan, Chakraborti, & Kambhampati, 2015), objective time-based measures 

(Nikolaidis et al., 2015; 35, Steinfeld et al., 2006; 38, Levine & Williams, 2014; 41, Shah, Wiken, 

Williams, & Breazeal, 2011), and sometimes coarse-grained measures on sequences of discrete 

steps, such as total step count (Steinfeld et al., 2006; 38, Butchibabu, Sparano-Huiban, Sonenburg, 

& Shah, 2016; Freedman & Shlomo, 2017; Salter, Dautenhahn, & Boekhorst, 2006; Shah & 

Breazeal, 2010). Although interesting, overall these various metrics cannot inform a relatively 

fine-grained performance comparison between humans and humanoid robots. To our knowledge 

only one prior study has performed a more refined analysis of individual steps in a high-level 

motor plan that uses alignment algorithms to compare motor action sequences executed in 

humanoid robots (Tenorth, Ziegltrum, & Beetz, 2013). However, this effort did not examine the 

quality of human or humanoid performance in a context where both humans and the humanoid 

robot have to practice a complex action sequence. Such a detailed comparison of the human and 

robot performance is critical since it could inform one about whether high-level motor plans 

generated in both performers differ or not, in particular in unconstrained situations where flexible 

solutions can be identified for learning to complete the complex task.  

Given the above, there is a need to examine the quality of performance in both humans and 

humanoid robots, during complex multi-action motor sequences. Here we focus on action 
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sequences with few constraints and flexible success criteria (e.g., an action sequence can be 

executed with only a few rules and in versatile ways while still reaching its goal). Our primary 

interest is an improved characterization and a better understanding of the generation of high-level 

motor plans during performance of a real-world complex task with minimum task constraints and 

independently of the nature of the performer (i.e., humans or synthetic such as a humanoid robot). 

Indeed, in real-world settings it can often be observed that a particular task represented by an action 

sequence may not be completed due to some major mistakes, and may be completed in multiple 

ways while still reaching the same goal. There may also exist one (or more) way(s) to execute the 

task with a minimum number of actions (the latter often characterizing expert performers). A 

classic example is the case where a manual task is shown to a performer who has to imitate it. In 

this case, the imitation can be i) a perfect replica of the demonstrated action sequence, ii) different 

from the demonstration but still reaching the goal, or iii) a failed attempt to reach the goal.  

In this current work we take some first steps in examining in detail complex action 

sequence performance in both a humanoid robot and humans who have to practice a complex task 

from demonstration provided by a human individual with only few trials. We do this by 

considering situations where there exists only one unique minimal action sequence to reach the 

goal but an infinite number of action sequences can be generated and either perfectly imitate the 

minimal sequence or differ from it while still successfully reaching the goal.  

In examining the high-level structure of complex motor sequences, can we propose a 

computational approach which can determine the functional reasons which lead to: i) performance 

failure of complex action sequences (which action operations drove this failure) and ii) 

performance differences between successful action sequences that are minimal (i.e., having a 

minimum number of steps) and those that are not? Elements of answers to these questions can be 
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provided by detailed examinations of complex multi-action sequence tasks, something that is a 

challenging problem. Interestingly, other scientific fields, such as DNA sequence analysis in 

biology or phoneme sequence analysis in linguistics, encounter similar issues. Proposed solutions 

for sequence comparisons in these fields are generally based on the idea that the number of 

additions, deletions and substitutions of the bases needed to transform one sequence into another 

that serves as a reference are computed; a larger number of alterations suggesting that both 

sequences further differ (e.g., Ho, Oh, & Kim, 2017). 

Taking inspiration from these other fields, here we examine how adding, omitting or 

replacing actions in a motor sequence can affect the imitation learning task performance outcome 

in terms of failure as well as success where the demonstrated action sequence, having a minimal 

number of actions, serves as a reference. Such a quantitative analysis is also complemented with a 

more qualitative examination through graphical representations (e.g., sequence alignment display) 

to further illustrate any alterations of produced motor sequences by humans and the humanoid 

robot compared to the demonstration sequence serving as the sequence of reference. In particular, 

it may be possible that the addition of extraneous actions even between the critical elements of the 

sequence of reference increases the imitated action sequence length while likely preserving the 

order of those critical components (the task may still be correctly performed and its goal reached) 

which may not necessarily be a major determinant of failure to complete the action sequence. 

However, it is conceivable that omitting or replacing an action of the demonstrated sequence, 

unless compensated, may represent a greater risk to a successful completion of the action sequence 

when performing a complex task. If these assumptions are correct, we predict that the occurrence 

of action omission and/or replacement should be more prominent during failure and should be 

minimal or null when successfully executing (with a minimum of steps or not) complex action 
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sequences. The results should be consistently observed both through qualitative (e.g., sequence 

alignment display) and quantitative (e.g., frequency of action omission or addition) analyses. Such 

an approach should allow for direct comparison of the high-level motor plans generated between 

performers (humans, synthetic) and/or throughout time during execution of a complex task. 

 

II.b Material and Methods 

II.b.1. Participants. 

In this study twelve participants (five men and seven women; 18 - 35 years of age) free of 

any neurological conditions and with normal or corrected-to-normal vision were recruited from 

the School of Public Health at the University of Maryland, College Park as well as the greater 

College Park, Maryland area. The study followed the IRB guidelines from the University of 

Maryland, College Park for which all participants provided their written consent. 

 

II.b.2. Experimental set-up.  

The complex task that the human individuals and a humanoid robot (Baxter; Rethink 

Robotics™) had to perform involved a mock-up hard drive docking station. This station (Figure 

1A) was composed of a drawer that, when opened, allowed the participants to manipulate disks in 

four hard drive slots, each being associated with a LED indicator and a toggle switch, which had 

to be switched off before inserting or removing the corresponding drive. A red LED associated 

with each drive indicated a faulty disk that had to be replaced with a new one. If a red LED was 

initially on and its corresponding switch was pressed, then this LED turned off, indicating that this 

drive was now disengaged and thus could be replaced. When a disk is successfully replaced and 

its corresponding switch is pressed, then its green LED turns on indicating that the corresponding 
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disk is now engaged and functioning properly. The custom-made mock-up was controlled by an 

Arduino processor. 

 

Figure 1. A. Screenshot of SMILE visual software. B. Screenshot of Baxter (Rethink RoboticsTM 

performing the dock maintenance task. C. Image of human subject performing dock maintenance task. 

Bottom row display the insertion (D), deletion (E), and substitution (F) in a motor task. 

 

II.b.3. Imitation-learning task. 

The task considered here differs from more well-known and controlled complex tasks (e.g., 

Tower of Hanoi) in its inherent complexity, its flexible successful completion criteria, and the 

limited constraints for the performer to complete a real-world task in a very versatile manner. It 

was previously employed in cognitive robotic research to examine high-level plan generation in 

humanoid robots (Katz et al., 2016; Katz et al., 2017), and is well-suited for examining action 

sequences deployed by the various performers (humans and a humanoid robot) during action 
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sequence imitation. It uses a given demonstration as an action sequence of reference having a 

minimal number of actions. 

A humanoid robot (Baxter; Rethink Robotics™) and the human participants had to learn2 

to perform a complex task which consisted of operations on the hard disk drive docking station. 

Specifically, the participants had to learn to discard a faulty hard disk which was indicated by a 

red LED being on and replace it with a new one. A human individual demonstrated the action 

sequence to the performer (humans or robot) through an artificial environment (SMILE; (Huang,  

Katz, Langsfeld, Gentili, & Reggia, 2015; Huang, Katz, Langsfeld, Oh, Gentili, Reggia, 2015)) 

which shows the sequence of actions needed to perform the task but does not show any visible 

force or actor moving the objects. For consistency, this human demonstration was recorded via 

video and shown to all performers. A screenshot from SMILE is shown in Figure 1A.  By having 

a virtual/invisible demonstrator, a demonstration does not dictate specific arm selection or 

trajectories for individual actions, and (for the robot participants) greatly simplifies learning. After 

observing the demonstration, the performers (humans or robot) are required to imitate the task 

immediately while employing the physical mock-up hard drive station placed in front of them 

(Figure 1B and 1C ). The LED indicating which drive is faulty was constrained to be the same in 

both the video and the physical mock-up device. 

Specifically, via the SMILE virtual environment operated by a human-controlled interface, 

the video provides a demonstration of this complex action sequence composed of eight atomic 

actions executed in the following order: 1) the drawer had to be pulled to open the dock to make 

available the four hard drive slots, their corresponding toggle switches and LEDs (abbreviated dro, 

for drawer opened); 2) the faulty drive (here the first drive), which could be identified by its red 

                                                 
2 For consistency between humans and the humanoid robot, here the term learning is employed in a general manner 

and reflects performance during the practice throughout the trials [50]. 
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LED, had to be turned off by pressing the corresponding toggle switch (i.e., t1, first toggle); 3) the 

hard drive had to be picked up to be removed from its slot (ud1), and 4) discarded in a bin (db); 5) 

a new spare drive was picked up (usp) and then 6) inserted in the empty first slot (ds1); 7) the same 

toggle switch was pressed again (t1) which turned on the green LED and 8) the drawer was finally 

closed (drc). The atomic actions in this demonstration sequence are summarized in Table 1. For 

human-readability we have chosen strings like ‘dro’ or ‘t1’ that contain more than one letter, but 

each atomic action is thought of as a single symbol, and therefore the smallest unit of activity in 

this task. In the rest of this paper this particular demonstrated sequence is called the demonstrated 

sequence or reference sequence.  

 

 

 

 

 

 

 

 

 

 

While the human participants in this study practiced this task by watching a SMILE video, 

the humanoid robot learned it directly from the SMILE events record that was used to generate the 

video (Huang et al., 2015). The robot learns by inferring the intentions of the demonstrator rather 

than mimicking the demonstrator’s motor trajectories (which are not provided) based on the 
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algorithm employed in (Katz et al., 2017). After learning, the robot produces a motor sequence 

that successfully imitates the complex action sequence and that is stored for further analysis. 

The human participants practiced in performing the same imitation task. First, before 

watching any demonstration, an acclimation stage allowed the participants to become familiar with 

the physical disk drive dock station. A prompt was provided to present the instructions including 

the meaning of the red and green LEDs and, importantly, also indicating that the LED should be 

turned off when adding or removing the hard drives. This familiarization stage provided the 

participants the opportunity to manipulate the physical system before learning the imitation task 

to avoid any possible misunderstanding of the equipment as confounding factors. This was also 

done for consistency with Baxter™ which was already trained to manipulate the physical disk 

drive dock station. Once this familiarization phase was complete, the video was shown, 

demonstrating the action sequence to the human participants who had to learn to imitate it. Five 

trials were performed by each human participant, each having the following structure and using 

the same video. At the start of each trial, the instructions were provided on a computer monitor via 

the prompt (and also verbally). Once the demonstration was over, the participants had to imitate 

the action sequence previously observed. As the participants perform the task, a video recording 

using a digital camera was employed to collect the action sequences they performed, and these 

actions were subsequently manually transcribed into a symbolic sequence using the symbols in  
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Table 2. At the end of each trial, the hard drive dock station was reset to its initial state and the 

demonstration in the video ready to be played again in preparation for the next trial.  

 

Success in this task required both: i) the completion of the goal, which was to replace the 

faulty hard drive with a spare one placed on the top of the docking station, as well as ii) following 

the basic principle that the LED should be turned off when hard drives are added or removed. If 

these two criteria were not met, a motor sequence was classified as a failure. It is critical to note 

that the combination of providing only two success criteria combined with a minimum number of 

instructions was chosen to minimize the constraints on action performance. As a consequence, it 

was possible for the participants to successfully perform the demonstrated action sequence without 

having to exactly imitate the demonstrated motor sequence (which had the minimum number of 

eight atomic actions executed in the specific order < dro, t1, ud1, db, usp, ds1, t1, drc >; see Table 

2 for the complete set of abbreviations used) but also by performing the task in various manners 

while still reaching the goal (i.e., replacing the drive next to an initially red LED), and respecting 

the basic rule that LEDs should be switched off while inserting or removing drives. This approach 

was chosen to promote real-world flexibility in executing the action sequence to capture various 
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high-level plans (i.e., motor sequences) deployed by the humans and the humanoid robot to 

complete the proposed cognitive-motor task.  

 

II.b.4 Data modeling. 

II.b.4.i. The Levenshtein distance applied to complex motor actions. 

To assess the quality of performance between any two given action sequences, we adopted 

a computational approach based on the Levenshtein Distance (LD). LD assesses the similarity 

between two sequences of symbols (Ho et al., 2017; 47, Levenshtein, 1966; Guo et al., 2013; 

Navarro, 2001). It has previously been employed in a variety of linguistic analyses as well as for 

comparing molecular structure in biochemistry (Heeringa, 2004; Leusch, Ueffing, & Ney, 2003). 

In the field of natural language processing, the atomic symbols are typically letters or phonemes, 

words are formed by sequences of these atomic symbols, and the LD quantifies how much two 

words are different. Although several variations of the LD are conceivable, the basic idea is to 

compute a distance between two sequences by computing the number of changes that need to be 

applied to the elements of one given sequence to fully match another. 

 The LD can be applied to the domain of complex motor action sequences by appropriately 

defining the corresponding alphabet of symbols, sequences, and operations. Thus each atomic 

“symbol” is here defined as an elementary action that is part of an action sequence. To illustrate 

this idea, consider a simplified instance of placing three cubes having different colors into a box 

having three slots. Here, the placement/extraction of a colored cube in/from a specific slot of the 

box as well as opening/closing the box would be considered to be atomic actions. In this example, 

the alphabet which contains every possible atomic action could be defined as the set of ten symbols 

{Open_box, Close_box, Place_red_cube_slot1, Extract_red_cube_slot1, Place_blue_cube_slot1, 
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Extract_blue_cube_slot1, Place_green_cube_slot2, Extract_green_cube_slot2, 

Place_yellow_cube_slot3, Extract_yellow_cube_slot3}3. In general, the performance of a complex 

action sequence can be associated with an alphabet that can be defined as a finite set {A1, A2, …, 

Ai, An-1, An} where Aj is the jth atomic action j among all N possible actions (in the example above 

N = 10). A motor sequence would be defined as a finite, ordered list of zero or more actions from 

the alphabet, potentially with repeats. Using the same example, <Open_box, 

Place_red_cube_slot1, Close_box, Open_box, Place_green_cube_slot2, 

Place_yellow_cube_slot3, Close_box> or <Open_box, Place_yellow_cube_slot3, Close_box> are 

two possible action sequences. The second action sequence indicates that the task consists of three 

atomic actions: opening the box, as well as placing the yellow cube in the third slot, and closing 

the box. A sequence of actions in the cognitive-motor domain is analogous to a sequence of letters 

that form a word (e.g., < d, e, a, r, s >) in the natural language domain or a sequence of nucleotides 

in a DNA molecule. 

In a motor context, the computation of the LD can be associated with three possible 

operators: i) insertion of one action, ii) deletion of one action, and iii) substitution of one action 

for another one; the bottom row of Figure 1 provides examples of these operations. These three 

operations can be employed to transform any motor sequence into another one, by modifying only 

one action at a time. The insertion operator inserts a new action at any position in the action 

sequence, increasing the length of the motor sequence by one (Figure 1D). The deletion operator 

removes an action at any position in the action sequence, decreasing the length of the sequence by 

one (Figure 1E). The substitution operator replaces an existing action with a new action at the same 

                                                 
3 Rules for this task should also include preconditions on cube movements. For instance, a cube cannot be extracted 

from a given slot if there is no cube in that slot. For clarity in this simple example such rules are not introduced. For 

illustrative purpose this example was kept simple but a more complex alphabet could be generated. 
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position in the sequence, leaving thus the sequence length unchanged (Figure 1F)4. In a motor 

context, the LD measures the overall distance between two different motor sequences, which is 

defined as the minimum number of atomic operations required to transform one sequence into the 

other. The computation of the LD can be efficiently performed by well-established dynamic 

programming methods such as the Wagner-Fischer algorithm. 

 

II.b.4.ii. Modeling the alphabet of the executed action sequences. 

To capture the various ways of successfully completing the disk drive dock task, the set of 

all potential actions that can be executed (i.e., the alphabet) had to be defined (see Table 2). The 

hard drive docking station employed here has four hard drive slots, each with one toggle switch 

and LED. For a given drive there were four actions (one per slot) for picking up a disk, four for 

inserting a disk, and four for pressing the toggle switch (i.e., total of 12 actions). In addition, the 

opening and closing of the drawer as well as the pick up of the spare disk and the discard of the 

faulty drive in the bin represented four additional actions. We also included a possible action ltr 

(“left to right”) for transferring an object between hands because it was observed that the robot as 

well as certain individuals occasionally transferred an object from their left to their right hand, 

giving an alphabet consisting of 17 possible actions listed in Table 2.  

 

 

 

 

                                                 
4 For consistency with prior work the standard LD considering only these three operators was employed. For this 

particular study only a very few transpositions and movements were visually identified (Figure 3), so counting them 

as insertions/deletions had minimal impact on our results. 
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II.b.5. Action sequence performance analysis. 

For the human participants, the video recording resulted in 60 trials (12 participants x 5 

trials) which were each analyzed to identify their corresponding motor sequence. In addition, the 

sequence demonstrated through SMILE (i.e., the sequence of reference) as well as the sequence 

performed by the humanoid robot were also considered, resulting in a total of 62 action sequences 

which either led to success or failure based on the criteria defined above. These sequences were 

given arbitrary identifiers from 1 - 62, except sequence 61 was from the robot and 62 was the 

demonstration reference sequence. 

 

II.b.5.i. Graphical representation of complex action sequences. 

Action sequence alignments were generated to provide a combined visualization of the 

various imitated action sequences generated by human participants and the humanoid robot with 

respect to the demonstration sequence (i.e., from SMILE). The action sequence alignments were 

generated for both the failed and successful (perfect and imperfect) imitated action sequences. This 

representation allows one to identify where divergences between the motor sequences occur, by 

aligning all sequences side by side. The spacing between successive actions in each sequence is 

systematically varied so that the common sub-sequences across all sequences are aligned as well 

as possible. The alignment allows both a visualization of the generated action sequences at a global 

level as well as a focus on details in a particular sequence.  

 

II.b.5.ii. Levenshtein distance and operator occurrence analyses. 

In order to assess the performance between the performers (humans and humanoid robot), 

each action sequence imitated by the human or the robot was compared to the demonstration 
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sequence by computing both the corresponding LD as well as the number of occurrences of each 

of the three operators (i.e., insertions (I), deletions (D) and substitutions (S); where LD = I + D + 

S). Then, three types of action sequence performance were identified and considered for statistical 

analyses: i) failed action sequences where either the goal was not reached or it was reached by 

violating at least one of the execution rules, ii) successful but imperfect action sequences where 

the goal was successfully reached by employing a different sequence than that demonstrated, and 

iii) successful perfect action sequences that exactly matched the demonstrated sequence (i.e., those 

have a LD = 0).   

A first analysis was conducted to compare the human and robot action sequences to assess 

how the human motor plans differed from that employed by the humanoid robot and under which 

conditions (i.e., failed, successful imperfect/perfect outcome). To this end, the average (computed 

across trials and participants) LD and the occurrence of its four operators obtained between the 

action sequence generated by the humanoid robot and those successfully produced by the humans 

were compared via a series of t-tests or Wilcoxon signed rank tests depending on whether the 

assumption of normality was violated or not. In addition, to examine the extent to which insertions, 

deletions and substitutions are markers of performance success or failure, the average (computed 

across all trials and participants) LD and the occurrence of its three operators (insertion, deletion 

and substitution) for the failed action sequences were compared to i) all the successful sequences; 

ii) the successful imperfect sequences only and iii) the successful perfect sequences only using a 

reference value of zero (representing a perfect imitation having a zero LD with I = D = S = 0) by 

employing a series of t-tests or Wilcoxon signed rank tests depending on whether the assumption 

of normality was violated or not. Then, to further focus on the action sequences that were 

successfully imitated, the perfect and imperfect imitated action sequences were examined. To do 
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this, the average (computed across all trials and participants) LD and the occurrence of its three 

operators for the imperfect action sequences were compared to the value zero (representing a 

perfect imitation having a zero LD with I = D = S = 0) by employing a series of one sample t-tests 

or Wilcoxon signed rank tests depending on whether the data were normally distributed or not. 

Finally, to assess the contribution of the three operators (insertion, deletion, substitution) to the 

LD and to determine whether some were employed more frequently than others for all action 

sequences (failed, imperfect/perfect successful), the LD and its operator occurrences were 

subjected to a series of paired t-tests or Wilcoxon signed rank tests based on the normality of the 

data. These examinations were complemented with a correlational analysis that was conducted to 

assess the relationships between each of the four metrics and the success or failure of action 

sequence imitation.  

 A second analysis aimed to investigate the change in performance throughout the five trial 

practice.  The average values of each of the four metrics plus the number of failed sequences were 

computed across participants for each single trial and then subjected to a series of one way 

repeated-measure ANOVA or a Friedman test (with 5 repetitions for the factor trial) based on 

whether the data followed a normal distribution or not. 

A third analysis was applied for the successful and failed imitation action sequences to 

assess the ability of participants to recall more items correctly at the beginning (i.e., primacy) 

and/or at the end (i.e., recency) of the action sequences (Deese & Kaufman, 1957; Murdoch, 1962). 

To do this, the number of insertions, deletions, and substitutions required at each of the eight 

positions in the demonstrated sequence (SMILE) to transform it into any given human trial 

sequence were computed. Then, to compare if some operators were employed more frequently 

than others at the beginning (actions 1 and 2), middle (actions 4 and 5) or end (actions 7 and 8) of 
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the action sequence, the number of insertions, deletions and substitutions were compared for these 

three periods and each of the eight actions forming the demonstrated sequence by employing 

paired t-tests or Wilcoxon signed rank tests based on the normality of the data. This was done for 

both the failed and imperfect successful action sequences. For all the statistical analyses mentioned 

above, the false discovery rate (FDR; (Benjamini & Hochberg, 1995; Luck & Gaspelin, 2017)) 

was employed to control the family-wise error rate for the multiple statistical tests conducted on 

all the metrics that indexed the humans and humanoid robot performance. 

 

II.c. Results 

Analysis of the action sequences revealed that the 62 trials performed included a large 

variety of sequences among which it is noticeable that the successful sequences (Figure 2; SMILE 

is the left-most sequence labelled ‘T’) do not include any deletion or substitution operators 

contrary to the failed sequences (Figure 3; SMILE is the left-most sequence labeled ‘T’; compare 

also the occurrence of these operators in trials with and without red exclamation mark in Figure 

4). Based on the criteria established prior data analysis, 65.57% of the trials were successful (either 

completely matched the demonstration reference sequence or differed but were still successful) 

whereas 34.43% of them were not successful in completing the task (Figure 4, see pie chart). The 

humanoid robot was able to successfully perform the action sequence in one single trial while not 

strictly following the demonstration with a LD and a number of insertions equal to one and no 

deletions or substitutions (i.e., LD = I = 1; D = S = 0; see Figure 2 action sequence #12 and in 

Figure 4 right next to SMILE on the left). An analysis of the 60 human trials revealed that: i) 20 

trials (33.33%) were identical to the action reference sequence demonstrated by SMILE (i.e., LD 

= I = D = S = 0); ii) 19 trials (31.67%) were successful while performing other novel motor 



26 

 

sequences (LD = I = 4.053 ± 1.840; D = S = 0) and iii) 21 trials (35.00%) were not successful (LD 

= 3.190 ± 2.909; I = 2.238 ± 2.879; D = 0.619 ± 0.590; S = 0.333 ± 0.483). In addition, the number 

of insertions was significantly greater than the number of deletions and substitutions for the 

successful imperfect action sequences indicating that increased LD was mainly driven by 

insertions (I vs. D and I vs. S: z ≥ 28, p < 0.023). In contrast, for the failed action sequences the 

contributions to the LD were more distributed among the three operators while the number of 

insertions was significantly larger than the number of substitutions (I vs. D: z = 30, p = 0.150; I 

vs. S: z = 43, p < 0.023; D vs. S: z = 24, p = 0.150). 

 

Figure 2. Parallel structure of the various successful motor sequences occurring during human and 

humanoid robot trials. The leftmost sequence (1, T) is the reference sequence derived from SMILE. 
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Figure 3. Parallel motor sequence results indicating the presence of deletions (red markers), substitutions 

(red boxes), or insertions (red actions) in between the reference sequence (SMILE, far left). 

 

 

Figure 4. Levenshtein distance (LD) and operator breakdown by participant. Exclamation points indicate 

a failed trial performance.  
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III.c.1. Action sequence performance in human individuals and the humanoid robot.  

For the failed action sequences executed by human participants, statistical analysis 

revealed that the average LD and the number of deletions between the reference sequence and the 

human action sequence were significantly larger than those obtained between the reference 

sequence and the humanoid robot action sequence (LD: t(8) = 2.954, p < 0.041; I: t(8) = 4.438, p 

< 0.013; compare F and R in Figure 5A and 5C) while the same comparison revealed a similar 

number of insertions and substitutions (p > 0.109 for all comparisons) (see Figure 5B and 5D).  

 

Figure 5. Comparison of overall average LD (A), Insertions, (B), Deletions (C), and Substitutions (D) for 

failed trials (F), successful imperfect trials (SI), Successful perfect trials (SP), and the humanoid robot trials 

(R). 
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The same comparison for the imperfect successful action sequences revealed that the average LD 

and number of insertions between the reference sequence and the human action sequences was 

significantly different from that obtained between the reference sequence and the humanoid robot 

action sequence (t(6) = 3.316; p = 0.040 for both metrics; compare SI and R in both Figure 5A and 

5B). 

III.c.2. Failed and successful imitation of action sequences in humans 

Statistical analysis revealed that the LD and the number of insertions for the failed action 

sequences differ from those obtained with the perfect successful sequence (LD: t(8) = 4.206, p = 

0.012; I: t(8) = 3.079; p = 0.015; compare F and SP in Figure 5A and 5B). In addition, the same 

analysis revealed that the number of deletions was significantly greater for the failed action 

sequences compared to those obtained for the successful imperfect or perfect (t(8) = 4.448; p < 

0.015 for both comparisons; compare F and SI as well as F and SP in Figure 5C) action sequences. 

The same comparison did not reach the significance level for the number of substitutions5 (p > 

0.120 all comparisons considered; Figure 5D). Such prominence of deletions in the failed action 

sequences was confirmed by the correlational analysis that revealed that the number of deletions 

(r = 0.681, p < 0.001) was positively and significantly correlated to action sequence failure. This 

was also observed for the number of substitutions (r = 0.495, p < 0.001) but not for the number of 

insertions (r = 0.219, p = 0.090). The LD was also positively and significantly correlated with 

action sequence failure, likely due to the contribution of deletion and substitution (r = 0.519, p < 

0.001) (Figure 6A).  

                                                 
5 The number of deletions and substitutions combined are also significantly larger for the failed sequences compared 

to the successful imperfect or perfect actions (p < 0.008 for both comparisons). 
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Figure 6. Statistical comparison/correlation between LD and operators for failed (A), successful perfect 

(SP), and successful imperfect (SI) trials.  

 

III.c.3. Successful perfect and imperfect imitation of action sequences in humans 

Statistical analysis also revealed that the LD and the number of insertions (which was the 

sole contributor to the LD for imperfect sequences) were both greater for the imperfect compared 

to the perfect action sequences (t(6) = 3.085, p = 0.022; for both metrics; compare SI and SP in 

both Figure 5A and 5B). When considering the successful action sequences, about half of the 

participants generated sequences that had a comparable number of extraneous actions as indicated 

by similar LDs (i.e., participants #1, 3, 8, 9, 10 and 12).  

As expected, the four metrics (LD, number of insertions, deletions and substitutions) were 

all negatively correlated with the successful perfect action sequences. Significant correlations were 

obtained for the LD (r = -1.00, p < 0.001), the number of insertions (r = -0.809, p < 0.001), and the 

number of deletions (r = -0.354, p = 0.013), while only a tendency was detected for the 

substitutions (r = -0.257, p = 0.056) (Figure 6B). The same analysis conducted for the successful 

imperfect action sequences revealed that the LD (r = 0.481, p < 0.001) and the number of insertions 

(r = 0.595, p < 0.001) were positively and significantly correlated with performance outcome. 
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However, the number of deletions and substitutions were negatively correlated with successful 

imperfect action sequences, while significant correlations were obtained for the number of 

deletions (r = -0.340, p = 0.013) and only a tendency was detected for substitutions (r = -0.247, p 

= 0.062) (Figure 6C).  

 

III.c.4. Practice, primacy and recency effects. 

Statistical analysis conducted during the practice period revealed that the number of failed 

trials, the LD, and the occurrence of the three operators remained relatively unchanged throughout 

practice (p > 0.05; all metrics considered). Finally, analysis exploring any recency and primacy 

effects by examining whether the occurrence of the operators was more pronounced at the 

beginning, middle or end of the eight actions composing the reference sequence did not reveal any 

significant differences for the failed or imperfect successful action sequences (p > 0.05; all 

conditions considered). However, a visual examination of the results suggests that for the failed 

action sequences the deletions tend to occur more at the end and beginning of the sequence while 

the substitutions tend to rather occur in the middle of the sequence (Figure 7A). For the imperfect 

successful action sequences, the same visual examination suggested that the insertions tended to 

further occur at the beginning and end of the sequences (Figure 7B). 
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Figure 7. A. LD and operator breakdown for each action in the demonstration sequence for human 

performers. B. Primacy/recency analysis for the imperfect successful trials analyzing specifically the 

presence of insertions.  

 

II.d. Discussion 

Overall, when examining the humanoid robot and human performance of action sequences 

under flexible execution conditions like those employed here, the main finding was that, as 
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compared with the robot, human participants generated a wide variety of action sequences not only 

in terms of success versus failure, but also in terms of the different strategies used in imperfect but 

successful trials while producing more failed attempts before executing a successful action 

sequence. Additionally, it was found that LD and insertion counts provide reliable markers able to 

differentiate perfect and imperfect but successful attempts, whereas deletion was the most sensitive 

marker of failed action sequences, representing the main contributor to performance failure. 

 

II.d.1. Assessing complex action sequence performance in human and humanoid 

robots. 

 

By assessing the detailed structure of each action sequence produced by the humans and 

the humanoid robot it was possible to not only detect if the sequence was a perfect, imperfect (but 

still reaching the task goal) or a failed imitation of the demonstration, but also to determine 

specifically what actions were responsible for the performance outcome. Namely, the findings 

revealed that a third of the human action sequences were not correctly done due to the fact that 

participants either did not press the release switch to turn off the disk before changing it, or simply 

failed to reach the task goal (i.e., incorrect order and/or incomplete imitated sequence). As 

predicted, it appears that the primary operator that led to such failures was the deletion of actions 

in the sequence. This suggests that this operator primarily contributes to action sequence failure 

and thus may serve as a robust marker to detect it. A possible explanation is that one cannot recover 

from deletion of a critical operation of the reference sequence, without reinserting the missing 

action at the same or a nearby position. Similar considerations may apply to substitution, although 

to a lesser extent given the lack of statistical significance for that operator when considered alone.  

Although no statistically significant findings were identified regarding the distribution of 

a particular operator among the eight action positions that formed the demonstration sequence, a 
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visual inspection suggests that the number of deletions and substitutions tended to be found at the 

beginning/end and middle of the failed imitated sequences, respectively. This is somewhat 

surprising as it is the opposite of primacy and recency effects seen in working memory studies, 

since the actions placed at the beginning and end (see actions #2 and #7 in Figure 7A) are the most 

affected by errors. However, direct comparison with prior primacy/recency work is somewhat 

difficult since these notions were identified in pure task memorization and not complex motor 

tasks (Postman & Phillips, 1965; Talmi, Grady, Goshen-Gottstein, & Moscovitch, 2005; Morrison, 

Conway, & Chein, 2014).  

Our approach revealed that half of the human action sequences perfectly replicated the 

demonstrated sequence (i.e., demonstration-human LD = 0) while the other half did not (i.e., 

demonstration-human LD > 0). These successful but imperfect imitated sequences were of 

particular interest since they represent different ways to complete the task, something that is often 

observed in real-world settings. Interestingly, when examining the operators, our method revealed 

that the lack of perfect match of these successful sequences was exclusively due to the insertion of 

additional unnecessary actions during sequence imitation (i.e., no deletions or substitutions for the 

successful sequences were identified). For instance, instead of picking up the disk with the right 

hand and directly placing it in the available slot, the disk could be grasped with the left and then 

transferred to the right hand to be finally placed in the slot. Such change of hand was observed in 

humans and also in the humanoid robot. Adding such extraneous actions (which could be done 

multiple times) increases the length of the sequence without however compromising the success 

of the task completion. Thus, while the presence of insertions may prevent a perfect imitation, they 

may have a low probability to impede successful task completion, contrary to deletions and 

substitutions. Possibly, the insertion operator was less likely to prevent successful task completions 
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since inserting actions before/after each of the eight actions of the demonstrated sequence does not 

pose a problem as long as these actions are produced in the correct order while following the rules 

to complete the task such as that no hard drive could be extracted with the LED turned on.  

Since here there was only one optimal sequence which served as a reference (i.e., the 

demonstration), the action sequences with a zero LD6 were all identical to the demonstration and 

thus between themselves. However, those having the same, but non-zero, LD were not necessarily 

identical to each other since it is unknown to which actions the operators were applied. In 

particular, action sequences that have the same non-zero LD do not necessarily use the same high-

level motor plan since the action sequence could have the same length but include different actions. 

Therefore, here having the same LD was a necessary but not a sufficient condition to state that the 

high-level motor plan underlying two sequences was the same. To further investigate high-level 

motor plans deployed by the human and the humanoid robot for sequences with the same LD, the 

visual representation of actions sequences allows one to examine if an exact same path captured 

two or more sequences and which actions drove any discrepancies between those sequences. For 

instance the action sequence generated by the humanoid robot (see sequence #12 in Figure 1 and 

Table 3), and another one produced by a human participant (see sequence #10 in Figure 1 which 

corresponds to trial #5 for participant #3), both have a LD = 1 from the demonstration (only one 

                                                 
6 Here since only one optimal sequence (minimum number of step) of reference (i.e., demonstration) existed, if two or 

more sequences have a zero LD thus they are identical. This would be different if several optimal sequences existed 

since two trials might have non-zero LD with each other, but zero LD with the respective optimal sequences they 

match.  
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insertion, but a different action inserted at a different position). Without any visualization the same 

LD obtained for the two sequences would not reveal their different structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

II.d.2. Comparison to existing approaches to assess complex action sequences 

 The current results complement past work by extending prior findings from studies 

conducted in both human motor behavior and robotic domains that evaluated and compared human 

and/or robot performance during execution of complex tasks (e.g., Towers of Hanoi, equipment 

maintenance, material cleaning) with relatively basic task-specific metrics (e.g., number of moves, 

backwards/reversal moves, errors, task completion time). Namely, here we have deployed a 
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computational approach able to provide a relatively detailed examination of the structure of high-

level motor plans underlying action sequences via qualitative (visualization) and quantitative (LD 

and occurrence of specific operators) approaches while also being more generalizable to various 

complex tasks (Tenorth, Ziegltrum, & Beetz, 2013; 20, Goel & Grafman, 1995; Saint-Cyr et al., 

1988; Noyes & Garland, 2003; Welsh & Huizinga, 2005; Anderson et al., 2005; Hinz et al., 2009; 

Katz et al,. 2017; Langsfeld et al., 2016). More specifically, our current study complements past 

robotic work that has assessed complex motor tasks by employing relatively coarse-grained 

metrics (e.g., execution times, success rates (Paul & Shimon, 1979; Omote et al., 1999) or 

questionnaire-based subjective measures (e.g., trust, mental workload, situational awareness) to 

assess human-robot teaming (Nathan et al., 2010; Nikolaidis et al., 2015; Nikolaidis et al., 2017; 

Paxton et al., 2017; Steinfeld et al., 2006; Wang et al., 2015; Zhang et al., 2015). Our work also 

complements more refined metrics based on time-based measurements (e.g., human idle time, 

reaction times of the robot/human teammate (Nikolaidis et al., 2015; Steinfeld et al., 2006; Levine 

& Williams, 2014; Shah et al., 2011) or the segmentation of task execution into action sequences 

(e.g., number/cost of actions performed, communications exchanged per unit time (Nathan et al., 

2010; Steinfeld et al., 2006; Butchibabu et al., 2016; Freedman & Shlomo,  2017; Salter et al., 

2006; Shah et al., 2010)). Interestingly, by employing a clustering-based approach Nikolaidis and 

colleagues have also examined the sensorimotor performance but with a different distance metric 

and only for low-level motor behavior (Nikolaidis et al., 2015). In their work, action sequences 

were modeled as Markov processes, and distances were computed between the transition 

probability matrices. The task involved the robot maintaining its grasp on a single object, and the 

robotic actions available were to position the object at different locations and orientations. Our 

distance metric proposed here extends this clustering-based approach to higher-level cognitive 
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tasks, and since it does not rely on a Markov assumption, it can capture longer-term dependencies 

in action sequences. It must be noted that only a few prior studies employed LD in studying human 

or robot motor control, however the tasks considered were much simpler compared to that 

employed here, being more sensorimotor in nature and with a limited or no cognitive component 

(e.g., rhythmic motor primitive sequences; finger tapping sequences (Gorbenko & Popov, 2015; 

Holm, Karampela, Ullén, & Madison, 2017). 

 The application of the LD to the motor domain can account for both the level of abstraction 

and the physical constraints. Indeed, in the motor domain, the “alphabet” can include not only the 

action to be selected depending on the cognitive-motor stage using high-level abstract 

representations (e.g., opening the drawer), but also on sensorimotor coordination for action 

implementations (e.g., use of the left, right effectors or both) which rely on a lower level of 

abstraction. While adding performance constraints (e.g., requirements to exactly replicate the 

demonstration with the right arm only; extra execution rules) can mitigate or even solve this 

problem, the task becomes less realistic. Also, in the motor domain, humans and/or robots interact 

with physical systems that provide task constraints that are naturally enforced. For instance, in the 

hard-drive maintenance task presented here, the dock must be opened first before any manipulation 

of the disks, which is an implicit rule due to the physics of the system to be handled. Another 

example is the situation where an imitator and a demonstrator have different physical constraints 

(e.g., difference in the number of degrees of freedom). However, such specificities may not be 

encountered for motor tasks that are less complex and with more constraints, limiting the use of 

different effectors and implicit rules. For instance, the studies mentioned above that employed LD 

in humans or robots did not face these two problems due to the use of fairly simple tasks (Gorbenko 

& Popov, 2015; Holm, Karampela, Ullén, & Madison, 2017). As such, the proposed approach can 
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be employed to assess complex action sequences while still complementing the previous proposed 

simpler metrics to provide a comprehensive assessment of complex task performance by human 

and humanoid robots. 

 

II.d.3. Applications to human, humanoid robots and human-robot interactions. 

Our approach to analyzing human motor sequences could be employed to assess 

performance in both humans and humanoid robots. Specifically, by understanding the generation 

and adaptation of high-level motor plans in humans, results from our approach could inform the 

design of neurocognitive architectures for cognitive robots, enhancing their learning and 

performance capabilities. Importantly, our approach could also be employed to assess how human 

and humanoid robot high-level motor plans differ, allowing testing and prediction of the quality 

of human-robot team dynamics. Namely, it is possible that a humanoid robot learns to perform a 

complex maintenance task in a certain way whereas humans execute it in a manner which may be 

very different. Thus, the proposed approach could accurately quantify how much the humanoid 

robot and humans differ when completing the task. As such, we could predict that as the level of 

discrepancy between the humanoid robot and human increases, (e.g., elevation of LD and of 

insertions occurrences) the human-robot team dynamics would translate from an adaptive to a 

maladaptive state (Losey, McDonald, Battaglia, & O’Malley, 2018; Miller et al., 2013; Miller et 

al., 2014; Shuggi, Shewokis, Herrmann, & Gentili, 2018). Thus, such an approach focusing on 

high-level motor planning can complement the previous work that has examined shared control at 

lower sensorimotor levels for enhancing human-robot interactions (Ishiguro, 2007; Gentili, Oh, 

Kregling, & Reggia, 2016; Shuggi et al., 2018; Gillespie, 2001; Boehm, Ghasemi, O’Madhrain, 

Jayakumar, & Gillespie, 2016). Also, such an approach could reveal whether some specific 
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changes in the sequence (e.g., insertion of a specific action) may be the main drivers to promoting 

adaptive or maladaptive team environments. This could be done in a context of performance where 

the humanoid robot and humans have been trained separately or are being trained together. In 

particular, the fact that here the humanoid robot could perform consistently the task learned after 

one single demonstration whereas this was not observed for humans (likely needing more practice) 

suggests that the difference in robot and human learning capabilities would likely influence the 

human-robot collaborative learning dynamics. Also, although imitation learning in humanoid 

robots and humans was considered here, our approach could be employed in learning without any 

demonstration and exclusively with robots or humans. Regarding the latter, this work could serve 

to compare high-level motor plans in both healthy and impaired individuals (e.g., attention deficit 

hyperactivity disorder) informing thus the compromised underlying cognitive-motor processes. In 

particular, our approach could inform how the motor plan generation and more generally the 

human cognitive-motor processes are adapted during performance and learning of new complex 

tasks.  

 

II.e. Conclusion and future work  

This work is just a first step in examining qualitatively and quantitatively the cognitive-

motor performance in humans and robots during practice of complex action sequences. Our results 

provide different but complementary metrics to those already existing to assess complex task 

performance by quantifying the differences between action sequences. The LD in the cognitive-

motor domain can be used with varying levels of abstraction in the context of physical constraints 

inherent in real-world interactions. While the LD is informative, the occurrence of its specific 

operators may, to some degree, provide a more refined assessment of cognitive-motor 



41 

 

performance. In addition, although this work was conducted in a context of task imitation, it can 

also be applied to motor performance and learning outside such an imitation framework. However, 

a limitation of processing the insertions, deletions and substitutions separately is that, when 

considered independently, each operator count is no longer a formal distance metric, thus limiting 

the use of multidimensional scaling. Another limitation is the situation where a task includes many 

trials with many steps. In this case, the visual representation and in particular the action sequence 

alignment used here may not be able to represent clearly all the trials at once but only under specific 

configurations. Although interesting this work did not examine changes in performance along with 

modification of mental workload and confidence while using more standard and controlled, albeit 

less realistic, complex tasks such as the ToH. Therefore, in the second part of this work the 

proposed computational work was deployed to assess the performance along with the modulations 

related to mental workload and self-confidence during practice of action sequences to solve the 

ToH task. 
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III. Study 2: Concurrent examination of motor performance, mental 

workload and confidence during practice of complex action sequences 

 

III.a. Introduction  

Cognitive-motor performance depends upon how attentional resources are allocated for a 

given task and the resultant effects this allocation will have on an individual’s mental workload 

(Wickens et al., 1983; Miller et al. 2011; Gentili et al., 2014). As task difficulty increases, an 

individual must appropriate more attentional resources toward the task, which increases the mental 

workload experienced by the individuals. An excessively elevated cognitive workload can impact 

motor performance (Berka et al., 2007; Miller et al. 2011; Gentili et al., 2014). Despite the wealth 

of information related to mental workload in a motor performance context, there is relatively 

limited research that examined mental workload during motor practice and learning (Bosse et al., 

2015; Akizuki and Ohashi, 2015; Shuggi at al. 2017a, 2017b). For instance, one study measured 

mental workload and self-efficacy to assess how feedback influences performance, but no retention 

or transfer tests were considered that might have predicted the impact of this feedback on mental 

workload and future performance (Bosse et al., 2015). In another study, Akizuki and Ohashi (2015) 

considered the principles of the optimal challenge point framework to assess the relationship 

between a motor learning task and mental workload while manipulating the task difficulty. In the 

same vein, Shuggi and colleagues (2017a) examined the relationship between the mental workload 

and performance while practicing a motor task under various levels of task demand practice and 

revealed that increased task difficulty resulted in elevated demand which beyond a certain level 

can delay motor performance improvements.  

Another study revealed that during intensive surgery procedures, a simulated laparoscopic 

technique could reduce cognitive workload. However, self-efficacy and retention tests were 
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administered only immediately following the activity and did not include a delayed retention test 

and/or a transfer test to assess learning beyond practice (Hu et al., 2015; Magill & Anderson, 

2014). Similarly, a study by Ruíz-Rabelo and colleagues (2015) examined mental workload and 

fatigue during laparoscopic tasks. Although interesting, motor learning was not assessed because 

there were no retention or transfer tests administered after the practice condition (Ruíz-Rabelo et 

al., 2015). Importantly, these prior works did not examine changes in mental workload and 

performance dynamics throughout practice during the execution of a complex action sequence. 

Past work has examined the effect of psychological factors such as confidence of individuals in 

their abilities to complete the task (Trempe et al. 2012; Ong et al. 2015, 2017; Saemi et al. 2012; 

Bandura, 1982). While most of this work was conducted in a performance context there is a limited 

amount of work that has examined changes in confidence during motor practice and learning. For 

instance, a relationship between motor performance and perceived competence during completion 

of a motor task was observed (Chiviacowsky et al., 2012). Learning outcomes in a motor skill are 

influenced by confidence (Chiviacowsky et al., 2012; Chiviacowsky, 2014; Cordova and Lepper, 

1990; Ste-Marie et al., 2013), and the difficulty/performance of the task is strongly linked to the 

concept of confidence in performers (Stevens, 2012). However, as far as we know, no study has 

examined the changes in confidence during practice of complex action sequences. In addition, no 

study investigated the concurrent changes in motor performance, mental workload, and confidence 

during practice of complex action sequences. 

Therefore, the aim of this second study was to examine the concurrent changes in the 

structure of the high-level motor plans underlying performance along with modulation of mental 

workload and confidence during practice of complex action sequences. We predicted that as 

practice progress: i) the LD and number of insertions and substitutions should decrease. The 
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number of deletions should be positively related to the number of failed trial (i.e., should decrease 

if the number of failed trials also decrease during practice); ii) the level of mental workload and 

confidence should decreases and increase, respectfully. We also predict that i) by late practice the 

action sequence generated should be optimal or close to optimal (i.e., LD similar to zero) and ii) 

the deletion should decrease with the decrease of failed action sequences. In addition, an analysis 

to examine transfer on different level of task difficulty was conducted. Although this analysis was 

exploratory, the general prediction would be that as the task demand increases: i) the LD, number 

of insertions, deletions and substitutions should increase; ii) the level of mental workload and 

confidence should decreases and increase, respectively.  

 

III.b. Methods  

III.b.1. Participants 

In this study, twenty right-handed participants (male = 9, female = 12, ages 18-35 years) 

free of any neurological conditions and with normal or corrected-to-normal vision were recruited 

from the School of Public Health at the University of Maryland, College Park as well as the greater 

College Park, Maryland area. Exclusion criteria included any neurophysiological disorders or 

extended experience with mathematical logic and other disentanglement puzzles. The study 

followed the IRB guidelines from the University of Maryland, College Park for which all 

participants provided their written consent. 
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III.b.2. Experimental procedure 

III.b.2.i. Task: The Tower of Hanoi 

The Tower of Hanoi (ToH), invented by Frenchman Édouard Lucas in the 19th century, is 

a mathematical logic puzzle with a simple structure that belies the complexity of its problem space. 

It is composed of at least three disks stacked atop each other in descending order of diameter. 

These disks are stacked onto a peg, which has two other identical counterparts that are aligned 

linearly horizontal to the performer. The task is governed by three rules: 

a) Only one disk may be moved at a time; 

b) A disk may not be placed on the table or held in the hand while another disk is 

manipulated in space; and 

c) A larger disk may not be stacked on top of a smaller disk.  

A traditional problem for the ToH involves moving a complete tower from peg A to peg C, while 

obeying the rules established for the problem space.  

The ToH has a recursive solution based on the number of disks present. For hi = optimal 

move length to reach a goal state in which i = number of disks, hi = 2i – 1. (Palmer, 1996). It should 

be noted that this is true provided that the task begins in one tower and ends in another tower in 

the goal state; when the initial state is altered such that the disks do not form a complete tower, the 

number of moves required to reach the goal state is changed. If the initial state represents any 

transition state (ht) present in the sequence toward the goal state, the number of moves to the tower-

ending goal state ht < hi.  
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It should be noted that hi can be manipulated based on a number of constraints placed onto 

the task space, including but not limited to i) the number of disks; ii) the number of pegs; iii) 

changes to the initial state of the disks; iv) changes to the goal state; and v) adding in additional 

constraints such as interleaving towers of different towers (e.g. Egan & Greeno, 1974; Palmer, 

1996; Welsh, Satterlee-Cartmell, & Stine, 1999). In many instances, task difficulty is determined 

by the number of moves required to reach the goal state (Welsh et al., 1999). Due to the recursive 

nature of this problem, the increase in number of rings leads to a nearly exponential increase in 

time to complete the tower successfully and the difficulty to reach the goal state at peg C.  

There is only one optimal solution to each tower goal state in the ToH. Upon inspection 

of the four-disk ToH task, the optimal path length h is for one optimal path, provided that the 

puzzle problem presented is in its original form. That is, when the tower is stacked on peg A and 

the goal state is to move the tower to peg C, there is one way that the disks can be moved that 

will result in the optimal path h4 = 15. Any deviation from that optimal path is evident in h4 ≠ 15. 

Success is still attainable if the goal state is reached and the rules are not violated, however it 

would be classified as a suboptimal solution. 

Initial State Goal State 

Figure 8. An illustrative example of a conventional Tower of Hanoi problem space. Individuals must 

move the stack of rings from the leftmost peg to the rightmost peg while abiding by the three rules of 

play. Photo source: https://www.kirupa.com/html5/tower_of_hanoi_puzzle.htm 
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III.b.2.ii. Data collection 

First, participants completed survey questionnaires confirming their general health, 

neurological health, and handedness. Consent forms were read and completed by participants prior 

to introduction to the experimental task. Participants sat at a table where a physical Tower of Hanoi 

was placed (custom 3D printed, 42 x 12 x 11 cm). A written prompt explaining the task was read 

Initial State Goal State 

Figure 9. This is a step-by-step breakdown of the optimal solution path for a four-disk tower in the Tower 

of Hanoi. There is a total of 16 states, punctuated by 15 moves that must be completed in this order. Photo 

source: http://mathworld.wolfram.com/images/eps-gif/TowersofHanoiSolution_700.gif 
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and available for viewing before completing the trials. The prompt provided historical background 

of the task and included instructions to complete the task in the minimum number of moves as 

possible within the time limit. During the familiarization stage, participants manipulated the 

physical tower with 6 rings for three minutes, any questions about the rules of the problem space 

or the instructions on the prompt were answered. Further, the prompt was displayed for the entirety 

of the session as a reference for the participants. Participants were not informed of the recursive 

solution strategy during the written/spoken prompt portion of the exercise.  

 

 

 

 

 

 

 

 

 

Figure 10. Experimental setup for the ToH task space used in this study. The participant sat behind a 

cardboard screen prior to the beginning of each trial, and the trial was initiated after the barrier was removed. 

The goal state of the game is to the right of the participant, which is pink in this model. 

After the familiarization phase, the initial state of the task was obscured by a physical 

barrier. The researcher read additional instructions to the participants, specifying the number of 

disks on the tower, the time limit for each trial, and the goal state and conditions of the task. Then, 

the barrier was removed from in front of the 4-ring ToH setup.  A digital camera initiated recording 

for data collection of the trial, and the participant was told that they may initiate the task. The 

researcher started a timer to track the participant to reach the goal within the time limit.  
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Participants completed 5 blocks of trials, each consisting of 5 trials. During each trial, 

researchers observed participants for instances of rule violations and trial time termination. If the 

participant did not reach the goal state within the time limit, they were informed that all time had 

elapsed for the trial, and the physical barrier was replaced in front of the participant to reset the 

task for the next trial. Participants who violated a rule during a trial were informed when the trial 

was complete which rule they violated during their trial. For the practice blocks of four-ring ToH 

task, each trial at a time limit of 60 seconds. Completion of a trial occurred either if the time 

elapsed for the trial or the participant successfully moved the tower to peg C and dropped the final 

ring atop the stack. The NASA-TLX and confidence surveys were administered after each block 

of practice.   

Once all practice blocks were completed, the participants waited for 10-15 minutes as a 

rest interval and completed surveys to assess mental demand and task difficulty (NASA TLX) as 

well as how confident they were in their capability to perform the task (confidence surveys). In 

order to assess for the effect of transfer an immediate post-test following the practice period 

consisted of an immediate retention task which consisted of 1 block of 5 trials at the same level of 

task difficulty that was practiced (i.e., four disks), an easier (i.e., three disks) and a harder (five 

disks) level of task difficulty relative to practice task difficulty. Post-test conditions were 

counterbalanced when introduced to participants to minimize any task order effects. The mental 

demand and confidence were assessed by employing the same surveys previously mentioned after 

each block of the post-test.  
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Figure 11. An illustration of the experimental procedure employing the Tower of Hanoi task. 

The practice phase is broken into five blocks, and after each block surveys to assess mental 

workload and confidence were administered. 

 

Administered Surveys 
- Mini Mental State Examination 

(MMSE) 

- Behavioral Risk Factor Surveillance 

System (BRFSS) 

- Edinburgh Handedness Survey 

- IRB Consent Form 

Familiarization 
- Prompt 

- Physical manipulation of the system 

Rest Interval 
- NASA TLX 

- Confidence 

Post Test 
- 1 block of 4-disk 

- 1 block of 3-disk  

- 1 block of 5-disk 

Block 1 

Block 2 

Block 3 

Block 4 

Block 5 

Surveys 

NASA TLX 

Confidence 

Surveys 

NASA TLX 

Confidence 
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III.c. Data Analysis 

III.c.1 Action sequence modelling 

Each action sequence of every participant was recorded via digital camera and then coded 

into the various actions that composed those sequences. Data analysis of the sequences was 

conducted using the novel computational approach presented in the first part of this work (see 

study 1 presented earlier; Hauge et al., submitted to IJSR). This computational method automates 

the calculation of LD for each complex motor sequence and produces graphical representations 

corresponding to the relative differences and similarities between the sequences.  

Subaction Code Natural Language Translation 

‘1a’ Ring 1 to peg A 

‘1b’ Ring 1 to peg B 

‘1c’ Ring 1 to peg C 

‘2a’ Ring 2 to peg A 

‘2b’ Ring 2 to peg B 

‘2c’ Ring 2 to peg C 

‘3a’ Ring 3 to peg A 

‘3b’ Ring 3 to peg B 

‘3c’ Ring 3 to peg C 

‘4a’ Ring 4 to peg A 

‘4b’ Ring 4 to peg B 

‘4c’ Ring 4 to peg C 

‘5a’ Ring 5 to peg A 

‘5b’ Ring 5 to peg B 

‘5c’ Ring 5 to peg C 

 
Table 4. Table of complete motor alphabet for this task, A*. Contains all possible moves for Tower of 

Hanoi task, including posttest conditions with a 5-ring tower. 
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Status Code Natural Language Translation 

‘pass’ Successful trial, within time limit and no rule 

violations 

‘timeout’ Failed trial due to time limit lapse 

‘rulebreak’ Failed trial due to rule violation 

 
Table 5. Table of success/failure statuses used in MATLAB computational tool. These codes determine the 

initial categorization of the participant trials to be used in the program for generation of the various 

graphical analyses comparing subject performance. 

 

Prior to data analysis, success and failure criteria were established to inform the LD 

calculations of difference between different trials. Successful trials must i) end in the goal state, 

ii) be completed within the time limit established in the study for each trial, and iii) follow the 

three rules of the Tower of Hanoi task. Each trial was coded as successful/failure using criteria of 

a new identifier within the MATLAB program so that the tool could seamlessly categorize trials 

based on their status and then by the subtype of this identifier (see table 5 above). The sequences 

were processed by this computational algorithm for computing the LD, the occurrence of its 

operators (insertion, deletion and substitution). 

 

III.c.1.i. Statistical analysis   

To assess the changes in performance throughout practice the LD and its three operators 

(insertion, deletion and substitution) as well as the MT were subjected to a one-way repeated 

measures ANOVA with the repetition on the factor BLOCK. In addition, to assess the modulations 

in mental workload and confidence during practice, each dimension of the NASA TLX and 

confidence surveys were subjected to the same one-way repeated measures ANOVA analysis. The 

Greenhouse-Geisser correction was employed if the assumption of sphericity was violated in each 

of the repeated measures ANOVAs. When appropriate, post-hoc analysis was conducted by 
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employing Tukey’s HSD. Also, in order to compare the LD for the five practice blocks to that for 

the optimal sequence (i.e., LD = 0) t-tests or Wilcoxon signed rank tests were employed depending 

if the assumption of normality was met or not. The significance criterion α = 0.05 was employed 

for all tests. To assess the changes in performance while performing the ToH task under three 

levels of task difficulty during the post-test (i.e., transfer), the LD and its three operators (insertion, 

deletion and substitution) as well as the MT were subjected to a one-way repeated measures 

ANOVA with the repetition on the factor DIFFICULTY. Similarly, to assess the changes in level 

of mental workload and confidence when performing the task under different level of difficulty 

each dimension of the NASA TLX and confidence surveys were subjected to same one-way 

repeated measures ANOVA analysis. The Greenhouse-Geisser correction was employed if the 

assumption of sphericity was violated in each of the repeated measures ANOVAs. When 

appropriate, the Tukey’s HSD post-hoc were employed. The significance criterion α = 0.05 was 

employed for all tests. 

 

III.c.2. Results 

III.c.2.i. Changes in cognitive-motor performance throughout practice.  

Analysis of results indicate that across all trials of practice, 88.8% of the trials were 

considered successful based upon the study’s predetermined criteria of success. These successful 

trials included a variety of motor sequences that in some instances deviated from the most optimal 

solution path. More specifically, 56.3% of the successful trials employed suboptimal solution 

paths, while the remaining 43.7% of successful trials employed the optimal solution path. Practice 

trials that resulted in failures made up 11.2% of the trials, with 92.9% of failed trials a result of the 
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trial time lapsing and the remaining 7.1% of failed trials a result of actions which violated the rules 

of the task space.  

 

Levenshtein distance and its operators. 

There was a significant main effect of BLOCK on LD across practice (F(1.940,  36.862) = 

7.431, ηp
2 = 0.281, p = 0.002). Post-hoc analysis indicated a significant decrease of LD during 

practice between block 1 relative to block 3 (p = 0.033), block 4 (p = 0.001) and 5 (p < 0.001), as 

well as a significant reduction from block 2 to block 5 (p = 0.002). The same analysis revealed a 

significant main effect of BLOCK on substitutions (F(2.289, 43.488) = 7.741, ηp
2 = 0.289, p = 

0.001) and insertions (F(2.119, 40.263) = 5.489, ηp
2 = 0.224, p = 0.007) in the motor sequences 

performed across blocks of practice. Post-hoc analysis revealed a significant reduction of 

substitutions from practice block 1 to blocks 3 (p = 0.005), block 4 (p < 0.001), and block 5 (p < 

0.001), as well as a significant decrease between block 2 and block 5 (p = 0.006) of practice. There 

was also a significant reduction of the number of insertions from practice block 1 compared to 

blocks 4 (p = 0.014) and block 5 (p < 0.001), as well as a significant decrease between block 2 and 

block 5 (p = 0.007). In addition, the LD was significantly different from zero for all practice blocks, 

suggesting that the optimal sequence was not reached by the end of practice (p<0.001 for all 

comparisons). The changes in LD during practice were mainly due to modification of the number 

of substitution and insertion and changes in the number of deletions (Figure 12). 
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Figure 12. LD and its operators and MT across all five blocks of practice. From left to right, top to bottom: 

LD, Substitutions (S), Deletions (D), Insertions (I), Movement Time (MT). Significant p-values: *: p < 

0.05; **: p < 0.01; ***: p < 0.001. 
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Movement time. 

 There was a main effect of BLOCK for MT (F(2.528, 48.038) = 38.398, ηp
2 = 0.669, p < 

0.001). Post hoc analyses indicated that compared to block 1 the MT was significantly reduced in 

blocks 2 (p < 0.001), block 3 (p < 0.001), block 4 (p < 0.001), and block 5 (p < 0.001). A significant 

decrease from practice block 2 to blocks 3 (p = 0.022), block 4 (p < 0.001) and block 5 (p < 0.001), 

as well as from block 3 to block 5 (p < 0.001) was observed. 

 

NASA-TLX. 

There was a main effect of BLOCK for the mental demand dimension throughout practice 

(F(2.040, 38.754) = 6.839, ηp
2 = 0.265, p = 0.003). Post hoc analyses indicated a significant 

reduction between block 1 and blocks 4 (p = 0.002) and block 5 (p < 0.001) as well as between 

blocks 2 and 5 (p = 0.005). Furthermore, a main effect of BLOCK was identified for the temporal 

demand (F(2.314, 43.961) = 7.579, ηp
2 = 0.285, p = 0.001), performance (F(2.597, 56.191) = 

10.567, ηp
2 = 0.357, p < 0.001), effort (F(2.052, 38.990) = 7.694, ηp

2 = 0.288, p = 0.001), and 

frustration (F(4,76) = 6.839, ηp
2 = 0.265, p = 0.003) scale. There was no main effect of BLOCK 

for the physical demand dimension (F(1.882, 34.616) = 1.067, ηp
2 = 0.053, p = 0.350). 

Post hoc analyses for each dimension indicated a significant reduction of the temporal 

demand (block 1 vs blocks 4: p = 0.001; block 1 vs. block 5: p < 0.001), effort (block 1 vs blocks 

4: p < 0.001; block 1 vs. block 5: p < 0.001), and frustration (block 1 vs blocks 4: p < 0.001; block 

1 vs. block 5: p < 0.001) dimension during practice. Also, a significant decrease between blocks 2 

and block 5 in the temporal demand (p = 0.003), effort (p < 0.001) and frustration (p = 0.013) 

dimension was revealed. Finally, the effort (p = 0.022) and frustration (p = 0.006) subscales were 

significantly reduced in block 5 relative to block. Furthermore, post hoc analyses revealed an 
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improved sense of performance between block 1 and block 4 (p = 0.002); block 1 and 5 (p < 0.001) 

as well as between blocks 2 and block 5 (p = 0.003), and between block 3 and block 5 (p = 0.045) 

(Figure 13). 

 

Figure 13. NASA TLX questionnaire results for all participants across blocks of practice. Left to right, 

top to bottom: Mental demand (Q1), Physical demand (Q2), Temporal demand (Q3), Performance (Q4), 

Effort (Q5), Frustration (Q6). Significance =  *: p < 0.05; **: p < 0.01; ***: p < 0.001. 
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Confidence. 

A main effect of BLOCK for participants’ confidence to have performed the task well (Q4: 

F(2.735, 51.968) = 19.063, ηp
2 = 0.501, p < 0.001; Q4: F(2.129, 40.453) = 14.577, ηp

2 = 0.434, p 

< 0.001). Post hoc analyses indicate a significant increase in confidence to perform efficiently (Q3) 

the task i) in blocks 3, 4 and 5 compared to block 1 (p < 0.001 for all comparisons), ii) in block 4 

(p = 0.026) and block 5 (p < 0.001) relative to block 1; iii) in block 5 compared to block 3 (p = 

0.006). Finally, there was a significant increase in confidence to perform the task well (Q4) i) in 

blocks 3, 4 and 5 relative to block 1 (p < 0.003 for all comparisons); ii) in blocks 4 (p = 0.00312) 

and 5 (p < 0.001) compared to block 2 and iii) in block 5 relative to block 3 (p < 0.01) of practice. 

 

Figure 14. Assessment on how individuals confident that they performed the task as accurately and 

efficiently as possible (left panel; Q1) and as well as possible (right panel; Q2) for each practice blocks. *: 

p < 0.05; **: p < 0.01; ***: p < 0.001. 

 

Primacy/recency. 

The exploratory analysis of the primacy and recency effect across blocks of practice 

revealed an overall trend of primacy and recency occurring throughout practice (see Figure 15). 

Primacy-recency effects tended to be most prominent during early relative to middle practice. By 
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late practice a minimal number of LD operators is reached and all of which occur during the 5th 

step of the reference motor sequence.  

 

 

 

 

Figure 15. Primacy-recency of LD in early block of practice (A), middle (B), and late (C) blocks of practice. 

Primacy-recency of Levenshtein edit distance and the three operators across all blocks of practice (D). 

 

Early Late Middle B A C 

D 
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Figure 16. Average LD across all subjects throughout each trial of practice.  

 

III.c.2.ii. Post-Test. 

Analysis of performance during each post-test condition indicates that subject performance 

in the 3-ring and 4-ring conditions were overwhelmingly successful (3-ring: 98% successful; 4-

ring: 94% successful), and subject performance in the 5-ring post-test condition was also 

successful for a majority of the total trials (5-ring: 65% successful). Post-testing did not guarantee 

a reduction in LD as a result of the 4-ring practice session. In the 3-ring post-test condition, 89.8% 

of trials employed the optimal solution; 10.2% of the remaining successful trials used a suboptimal 

solution path. Interestingly, only 1 of the successful trials (1.1%) employed the optimal solution 

path in the 4-ring post-test condition compared to the other successful trials (98.9%). 

Comparatively, 9.2% of the successful trials in the 5-ring post-test condition used the optimal 

solution, while the remaining 90.8% of the successful trials used a suboptimal solution path. 
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 Failed trials in each of the post-test conditions varied in their variety of LD operators 

present as well as the criteria which invalidated the trial. The 3-ring condition contained only 2 

failed trials, both of which occurred because the trial time elapsed (average: LD= 12; S= 2.5; D= 

0.5; I = 9). The 4-ring post-test condition contained 6 failed trials: 3 trials contained rule violations 

(average: LD= 15; S= 5; D= 0; I= 10), and the other 3 trials timed out (average: LD=13.67; S=3.33; 

D=0.333; I=10). Last, the 5-ring post-test condition contained 35 total failed trails: 7 trials 

contained rule violations (average: LD= 23; S= 4.14; D= 1.57; I= 17.29), while the remaining 28 

trials timed out (average: LD= 30.32; S= 5.79; D= 1.25; I= 23.29). 

 

Levenshtein distance and its operators. 

There was a main effect of DIFFICULTY for the LD (F(1.159,  22.030) = 88.410, ηp
2 = 

0.823, p < 0.001). Post hoc analyses indicated a significant increase for the practiced and hard 

relative to the easy condition (p < 0.001, for all comparisons). There was also a main effect of 

DIFFICULTY for the substitutions (F(2,38) = 57.084, ηp
2 = 0.750, p < 0.001). Post hoc analyses 

indicated a significant increase of the number of substitutions with the practiced and hard 

compared to the easy condition (p < 0.001), whereas a significant decrease was observed for the 

hard compared the practiced condition (p = 0.007). A tendency was observed for DIFFICULTY 

for the number of deletions (F(1.033, 19.630) = 4.024, ηp
2 = 0.175, p = 0.058). Post hoc analyses 

indicated that the number of deletion tended to increase in the practiced and hard compared to the 

easy condition (p < 0.001). There was a main effect of DIFFICULTY for the number of insertions 

(F(1.358, 25.804) = 71.171, ηp
2 = 0.789, p < 0.001). Post hoc analyses indicated a significant 

increase of the number of insertion in the practiced (p = 0.018) and hard (p = 0.049) relative to the 

easy condition. 
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Movement time. 

There was a main effect of DIFFICULTY for the MT (F(1.373, 26.088) = 265.967, ηp2 = 0.933, p 

< 0.001). Post hoc analyses indicated a significant increase of MT from the easy to practiced and 

to hard condition (p < 0.001, for all comparisons). 
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Figure 17. Levenshtein distance operators and movement time for each post-test condition. The easy, 

practiced and hard condition required to solve the ToH task with 3, 4 and 5 disks, respectively.  *: p < 0.05; 

**: p < 0.01; ***: p < 0.001. 
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NASA-TLX. 

There was a main effect of DIFFICULTY for the mental (F(2, 38) = 43.176 , ηp
2 = 0.694, 

p < 0.001), physical (F(2, 38) = 4.503, ηp
2 = 0.192, p = 0.018) and temporal (F(2, 38) = 18.048, 

ηp
2 = 0.487, p < 0.001) demand as well as performance (F(2, 38) =21.207, ηp

2 = 0.527, p < 0.001), 

effort (F(2, 38) = 30.232, ηp
2 = 0.614, p < 0.001) and frustration (F(2, 38) = 17.008, ηp

2 = 0.472, p 

< 0.001) dimensions of the NASA TLX survey. Post hoc analyses indicated a significant increase 

of mental (p < 0.001), physical (p = 0.006) and temporal (p < 0.001) demands as well as 

performance (p < 0.001), effort (p < 0.001), and frustration (p < 0.001) scales. There was also a 

significant elevation of mental demand (p = 0.002) and effort (p = 0.005) for the practiced 

compared to the easy condition. There was also a significant elevation of mental, temporal, effort 

and frustration as well as a reduction of perceived performance in the hard compared to the 

practiced condition (p < 0.001, for all comparisons).  
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Figure 18. NASA-TLX survey results for each post-test condition. Left to right, top to bottom: Mental 

demand (Q1), Physical demand (Q2), Temporal demand (Q3), Performance (Q4), Effort (Q5), Frustration 

(Q6).  *: p < 0.05; **: p < 0.01; ***: p < 0.001. 
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Confidence. 

There was a main effect of DIFFICULTY for the confidence in performing the task 

efficiently (Q1: F(2,38) = 21.184, ηp
2 = 0.527, p < 0.001; Q2: F(2,38) = 25.315, ηp

2 = 0.571, p < 

0.001). Post hoc analyses indicate a significant reduction in confidence to perform well and 

efficiently the task in hard compared to the practiced and easy condition (p < 0.001, all 

comparisons considered for Q1 and Q2. 

 

Figure 19. Assessment on how individuals are confident that they have performed the task as accurately 

and efficiently as possible (left panel; Q1) and as well as possible (right panel; Q2) under the easy, practiced 

and hard level of challenge. *: p < 0.05; **: p < 0.01; ***: p < 0.001. 

 

 

 

 

 

 

 

 

  

 

 



67 

 

IV. Discussion 

IV.a. Performance dynamics 

IV.a.1. Motor performance, mental workload and confidence  

 As expected, as individuals practiced the action sequence: i) the motor performance was 

improved as indicated by a reduction of LD and of the number of insertion and substitutions (but 

not deletion) as well as MT; ii) an attenuation of the level of mental workload and iii) an elevation 

of the level of individual’s confidence in performing the task well. This confirms and extend 

previous effort to complex action sequence suggesting that as individuals become more proficient 

at performing the action sequence task, the performance becoming more automatic the mental 

demand is progressively reduced and the confidence is enhanced (Gentili et al. 2015, 2013; 

Rietschel et al. 2014; Ong et al. 2015, 2017; Trempe et al. 2012; Stevens et al 2012). However,  

closer inspection of the results suggest that the velocity at which these changes occur is different 

for the structure of the high-level plan, the time to perform the sequence, the mental demand, and 

the confidence.  

First, although the level of mental demand decreased throughout practice, this reduction 

occurred at a slower rate than that observed for the change of the structure of the high-level motor 

plan. This was indicated by the fact that while a significant reduction LD as well as the number of 

insertion and substitution was reached as early as block 3, a significant reduction of mental demand 

only occurred at the two last following blocks (blocks 4 and 5). This suggests that in block 3 while 

a better high-level motor plan was generated that was closer to the optimal solution (i.e., the one 

with a minimum of actions), a substantial amount of mental resources was still engaged. Such a 

difference in dynamics confirms and extends previous work that has examined motion planning 

during center-out reaching movements where the behavior improved faster than the refinement of 
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brain dynamics (Gentili et al., 2011, 2015). It must be noted that a similar lag was observed 

between the changes in mental demand and MT which was significantly improved as soon as the 

second practice block. In addition, although some additional assessment should be conducted it 

must be noted that the changes in LD (and its insertion and substitution operator) and those in MT 

revealed different patterns of improvement. Namely, MT starts to decrease as early as in the two 

first blocks and is still being reduced from middle to late practice (i.e., block 3 vs. block 5). 

However, the LD along with the number of insertions and substitutions is reduced (i.e., shows a 

convergence toward the optimal sequence) only during comparison of late and early practice 

blocks. This may suggest that at an early practice stage the execution time of the action sequence 

is reduced likely since individuals moves faster the disks without however necessarily improving 

their high-level motor plan in order to converge towards the optimal sequence.  

Similarly, the fact that the MT still decreases from middle to late practice whereas this is 

not the case neither for the LD nor for the number of insertions and substitutions may suggest that 

the high-level motor plan identified by the individuals during middle practice (block 3) is 

considered acceptable, and from then the overall performance improvement would be based on 

moving the disk faster with this specific motor plan. Another possibility would be that more trials 

are needed to further improve this high-level motor plan. Finally, although the mental demand 

dimension of the NASA TLX was of primary interest since the most related to mental effort 

(Bittner et al., 1989; Hendy et al., 1993; Hart, 2006; Van Gog and Paas, 2008; Kujala, 2012; Ayaz 

et al., 2013; Akizuki and Ohashi, 2015; Shaw et al. 2018) this result is also consistent with 

performance, effort and frustration dimensions of the NASA TLX. The temporal dimension is the 

only metric which already shows substantial improvement at block 3, although this is likely 

influenced with the rapid changes in MT. The pattern of changes in motor performance (reduction 
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of LD, number of insertions/substitutions and MT) and confidence were more similar as suggested 

by the modulation from middle to early practice stage. As such, both motor performance and 

confidence improved faster compared to the mental demand. Thus, it is possible that, upon 

reaching a consistent solution that the individuals are more confidence in their capability to execute 

efficiently the task by the third practice block which may promote performance improvement and 

in turn facilitate a reduction of mental demand in the next (fourth) practice block. 

  

IV.a.2 Levenshtein distance and its operators 

Contrary to the original hypothesis surrounding motor performance, subjects did not 

converge on the optimal action sequence (LD = 0) by the last practice block. Of the 441 successful 

trials of practice, more than half of the trials (56.01%) employed a suboptimal motor sequence. 

Thus, the fact that average LD for the last practice block was significantly different from zero 

combined with a consistent reduction in MT may suggest that individuals converged first to a local 

minimum of LD while still on reducing the time to completion for each trial. This may be explained 

by a practice strategy with two processes having different dynamics where the time requirements 

to complete the task. A low-level sensorimotor process leads to a fast decrease of movement time 

by moving the disks rapidly which is complemented by a slower process employed to build the 

structure of the high-level plan to perform the action sequence with a minimum of move. However, 

additional analyses should be conducted to further examine this hypothesis. 

Generally, the LD for successful trials was lower than rulebreak and timeout trials, 

consistent with the hypothesis that LD can be related to overall performance. In addition, the 

composition of LD in successful trials and both types of failed trials (‘rulebreak’ and ‘timeout’) 

differs proportionately. Namely, for successful trial, the LDSuc was mainly driven by the number 
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of substitution (25.63%) and insertion (73.7%) and almost not to deletion (0.66%). In addition, the 

composition of the LD for the timeout and successful trials were similar although an almost 6-fold 

increase of deletion (S = 23.26%; D = 3.78%; I = 72.96%). Importantly, compared to the two other 

conditions, the rulebreak condition revealed a composition of the LD having an increased 

proportion of deletions (28.125%) and decreased proportions of insertions (53.12%) and 

substitution (18.75%). This finding is consistent with previous work which suggested that deletion 

was a marker of performance failure in an action sequence (Hauge et al. submitted). It must be 

noted that the similar composition of the LD for the successful and timeout trials suggests that for 

these trials individual may have been able to successfully perform the task if no time limit was 

imposed. If that assumption is correct, then it is possible that a better assessment would be to 

consider the ‘rulebreak’ trials as the primary criteria of failure in task performance. 

Primacy and recency effects were present during practice of the complex motor sequence, 

confirming previous work surrounding completion of motor tasks and memory (Deese & 

Kaufman, 1957; Murdoch, 1962). What is interesting to note is that the overall LD occurring 

throughout the actions of the optimal solution path during practice show elements of the sequence 

with a very high LD followed immediately by elements of the sequence with a much lower LD 

(see Figure 15D). It is possible that the steps in which there is a higher LD are critical movements 

in the sequence which are frequently missed or reorganized and thus lead to deviation from the 

optimal solution path. By the late block of practice, there were no deletions present, and only one 

step of the optimal solution path revealed the presence of insertions and substitutions.  
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IV.b. Post-test 

IV.b.1. Motor performance, mental workload and confidence  

When comparing all three levels of challenge, as difficulty increased, the LD, MT, mental 

demand and sense of effort increased from the easy, practiced and hard condition. This suggests 

that as the task difficulty increased, the structure of the action sequence produced was further away 

from the optimal solution while its execution took more time and more mental effort. It must be 

noted that the same pattern was observed for the deletion, insertion, temporal demand, frustration 

and confidence, but this difference was only observed between the two extreme (easy and hard) 

conditions of transfer. This may suggest that the LD, MT and mental demand would be more 

sensitive to a gradual elevation of the level of task difficulty compared to the insertion and deletion 

operators. However, the transfer to the easy condition did not necessarily reduce the number of 

insertions and deletions, the sense of frustration, and enhance the confidence of being able to 

perform the task well. This pattern is consistent with that observed for the success rate for the easy 

(98%), practiced (94%) and hard condition (65%).  

 

IV.b.2 Levenshtein distance and its operators 

Although no clear pattern appeared between the conditions of transfer, the successful action 

sequence had a LD mainly driven by substitution and insertion and no deletion (S = 41%; D = 0; 

I = 58.97%). However, the proportion of deletion increased for failed trials in particular for the 

hard condition. Namely, while the LD composition in this condition for the successful (S= 17.76%; 

D= 0.53%; I= 81.58%), timeout (S= 19.08%; D= 4.12%; I= 76.8%) and rulebreak (S= 18.01%; 

D= 6.83%; I= 75.16%), trials was relatively similar he deletion operator tended to increase for the 
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action sequence failure. This is in agreement with previous work that the deletion may be a 

performance marker more sensitive to action sequence failure (Hauge et al. submitted). 

 

IV.c. Applications 

IV.c.i Clinical settings 

This present work has potential benefits to individuals within a clinical population having 

cognitive-motor deficiencies and in particular with high-level motor planning for performing 

complex action sequences. In particular, the use of LD and its operators can provide performance 

markers of complex motor sequences executed in the context of performance, practice or re-

learning over multiple training sessions. For instance, the LD and its operators could be employed 

to track performance across rehabilitative sessions and also identify any part of the action sequence 

upon which the rehabilitation should focus. This work can also contribute to develop diagnostic 

tools for patients by providing additional metrics for performance beyond completion time of the 

task. The nuances of the motor behavior can be more thoroughly tracked using this protocol and 

may be used to enhance therapies for these populations (Sanford, Moreland, Swanson, Stratford, 

& Gowland, 1993; Bosecker, Dipietro, Volpe, & Igo Krebs, 2010). 

 

IV.c.ii. Complex skill training 

This work can also be applied to training and proficiency assessment of real-world skills 

which involve complex action sequences for humans in high risk performance activities. For 

instance, several studies have identified the importance of monitoring the mental demand during 

activities of varying levels of difficulty, most notably in United States Armed Forces pilots and 

soldiers whose training and skill assessment are critical to occupational safety and efficiency 
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(Jacquess et al. 2017; Gentili et al. 2018; Berka et al. 2007; Hankins & Wilson, 1998; Kacer et al., 

2018). In particular, the proposed computational approach can identify insertion, deletion or 

substitution of actions during performance as well as throughout practice, thus informing whether 

the motor sequences generated by individuals are optimal or suboptimal. This, combined with the 

assessment of mental workload, can inform the efficiency at which an action sequence is executed 

by individuals. As such, in turn this can inform training techniques that can promote the 

performance of optimal action sequence while minimizing mental workload and thus promoting 

performance efficiency (Vink et al., 1995; Recarte & Nunes, 2003).  

 

IV.c.iii. Human-robot interaction 

 The flexibility and adaptability exhibited by human performance during practice can 

inform human-robot interaction studies. While sensorimotor systems have reached a certain level 

of sophistication in robotic systems, their lack of cognitive functioning does not allow them to 

generate high-level motor plans for the performance ability and flexibility necessary to navigate 

their environments freely and smoothly. Bridging the gap between repeatable and consistent 

performance and adaptation is a nuanced task, and it is possible that this work can contribute to 

provide the approach necessary to identify faulty actions and extraneous missteps that may 

compromise task performance. Evaluating human performance during high level complex motor 

tasks followed by subsequent coding of performance through this LD algorithm could inform 

robotic interactions with humans that would maximize performance outcomes and comfort within 

the environment for the human user (Scholtz, 2003; Scholtz, Young, Drury, & Yanco, 2004).  
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V.d. Limitations 

 The first limitation of note was the use of surveys to evaluate the changes of the level of 

mental workload during practice. Besides being subjective by design, the surveys could not be 

used on a single trial basis and instead were used with five 5-trial block periods which provide a 

limited refinement in the analysis of these mental workload changes. Future work could address 

this limitation by employing Electroencephalography (EEG) to assess the cortical dynamics. A 

second limitation may be the use of a 60 second time limit for each trial. Although a time limit for 

each trial was assumed to promote task engagement and speed to complete the motor sequence, 

the similarity in the composition of the LD in the successful and failed trials resulting from the 

time elapsing suggests that such a constraint could be modified either by removing this 60 second 

time limit or by extending this time limit for each trial completion which may isolate the failed 

trials due solely to the violation of task rules and thus provide a slightly more refined view of the 

results. Another limitation of this study is the sample size of the group of participant in this study 

and thus these results have to be considered in light of this limitation.  
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VI. General conclusion 

This work aimed to examine the concurrent dynamics of motor performance, mental 

workload and confidence and throughout practice of a complex motor sequence. To reach this aim, 

first a computational approach to provide metrics which had to be concise (e.g., distance, scalar) 

while still providing detailed information of the performed action sequence. Thus, the first study 

reported here proposed a LD-based computational approach able to assess the performance of 

action sequences in a versatile context where the task goal could be reached in a flexible manner 

by a human or robotic performer. The results revealed that this novel approach can provide 

different yet complementary metrics to those already existing to assess complex task performance 

by quantifying the differences between action sequences executed under various conditions (e.g., 

outcome; performed by humans or humanoid robots). Then, in a second study this novel 

computational approach was deployed to examine the concurrent changes in cognitive-motor 

performance along with the modulations of mental workload and confidence throughout practice 

of a complex motor sequence to solve the ToH task. The results revealed that during practice, the 

motor performance was enhanced (decrease of LD, insertion and substitution as well as movement 

time) whereas the level of mental workload and confidence decreases and increases, respectively. 

It must be noted that by late practice the high-level plans generated to perform the corresponding 

action sequences were not optimal although being executed more rapidly. This possibly suggests 

a different dynamic between the low-level sensorimotor control, which rapidly improves 

movement duration, and the formation of high-level motor plans. Future work could extend this 

current effort by considering concurrent brain dynamics using EEG and also include a longer 

practice period extended post-testing to assess long-term skill acquisition. Overall, this work 

complements prior work that have examined complex action sequence executed in humans and 
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humanoid robots during cognitive-motor performance and practice and can potentially inform not 

only human cognitive-motor mechanisms in healthy and clinical population but also human-robots 

interactions.  
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