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In this thesis, a new class of problem is studied where a mobile agent is con-

trolled to reach a target. Especially, the target is enclosed within a special area.

The presence of this area requires a controller to have two stages: the outer stage

steers the mobile agent to enter such area while the inner stage steers the mobile

agent towards the target.

We consider two types of the special area: a time-costly area and a GPS-denied

area. For the time-costly area, we formulate a two-stage optimal control problem

where time is explicitly specified in the cost function. We solve the problem by solv-

ing its subproblems. The key subproblem is a nonconvex quadratic programming

with two quadratic constraints (QC2QP). We study the QC2QP independently and

prove the necessary and sufficient conditions for strong duality in a general QC2QP.

Such conditions enable efficient solution methods for a QC2QP utilizing its dual and

semidefinite relaxation. For the GPS-denied area, we formulate another two-stage

optimal control problem where perturbation is considered. To deal with the pertur-



bation, we propose a robust controller using the variable horizon model predictive

control. The performance of the two-stage controller for each type of the special

area is demonstrated in simulations.

We construct and implement a two-stage controller that can steer a quadrotor

to reach a target enclosed within a denied area. Such controller utilizes the formu-

lation and solution methods in the theoretical study. We show experimental results

where the controller can run in real-time using off-the-shelf fast optimization solvers.

We also conduct a bat experiment to learn bat’s strategy for target reaching inside

a denied area.
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Chapter 1: Introduction

The advancement of technology in recent years has boosted the development

of mobile robots. Sensors with various modalities enable robots to perceive the

environment more precisely. Numerous types of actuators have been built to arm

the robot for different tasks. The recent breakthrough in artificial intelligence further

extends robot’s understanding of its surroundings and empower robots to interact

closely with people. And, last but not least, powerful computing resources are able

to process complicated algorithms that were inapplicable in the past due to limited

computing capability.

So far, controlling a mobile robot to reach a destination or a target is not a

difficult task: a mobile platform for motion, a camera or a lidar for environment

detection and localization, and a path planning algorithm for control will be enough,

in general. Though the path towards the target might be curvy and zigzag, the robot

can eventually reach there when the target resides in a homogeneous environment

as its surroundings. What has not been considered is when the target resides in a

special area. The special area may render the robot in critical conditions if staying

there for too long. Hence, the time spent from entering such area to arriving at the

target is limited. Or, the special area may forbid the robot to localize itself, which

1



essentially disables any feedback-based controllers to steer the robot as expected

since perturbations are imperceivable to the controller.

In this thesis, we consider two types of the special area where the target resides

in: a time-costly area and a denied area. The latter, within which no localization is

available, is a generalization of the GPS-denied area. We formulate the problem as

a two-stage optimal control problem and propose solution methods. We then apply

the theoretical results to construct a quadrotor controller and test it in experiments.

We also conduct a bat experiment to learn bat’s strategy for reaching a target that

resides in a denied area.

1.1 Motivation

Our motivation comes from real-life scenarios. One of the scenarios involves

a helicopter rescue, as shown in Figure 1.1(A). When a helicopter needs to land for

a rescue mission, all the other flying vehicles within certain distance to the landing

site have to either leave the area or pause their current tasks so that the helicopter

can land safely. We name such area by the time-costly area. The helicopter will

incur a cost associated with the elapsed time between its entry to the perimeter of

the landing site and its landing. Such cost comes from consumed fuels of the rescue

helicopter and the delayed tasks of other flying vehicles.

Another scenario is the following. A terrorist is in a known location in some

building, and we want to send a drone inside the building to eliminate the terrorist

target. The drone must be able to plan its maneuvers towards the terrorist inside
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the building, where GPS localization is denied, before its entry to the building. This

scenario is depicted in Figure 1.1(B).

A B

Figure 1.1: Scenarios where a target resides in the special area. (A) The
target (marked by the red circle) is enclosed by the area which is time-
costly (marked by the blue circle). (B) The target (terrorist) is inside
the building where GPS localization is denied.

1.2 Contributions

The contributions of this work are summarized as follows.

1. A new class of problem has been formulated where a mobile agent is steered

to reach a target that is enclosed within a special area. The presence of such

area requires the controller to have two stages, as such area places specific

requirements on the controller inside the area.

2. In the optimization problem with deterministic dynamics, we transform a

key subproblem to a quadratic programming with two quadratic constraints
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(QC2QP). We show the necessary and sufficient conditions for strong duality

in a general QC2QP. Such result is an extension to earlier results on a spe-

cial case of QC2QP, where one of the quadratic constraints is required to be

strictly convex.

3. We propose a robust controller that deals with the perturbation in the system

dynamics. Such controller handles stage switching and target reaching, sub-

ject to unknown perturbations, by solving a variable horizon model predictive

control problem.

4. We conduct two experiments associated with the denied area. One studies the

strategy taken by a bat to reach a target enclosed within a denied area. This

provides data and reference for the future study on bio-inspired control and

motion planning. Another applies the theoretical results reported in this thesis

to build a controller that can steer a quadrotor to reach a target enclosed within

a denied area. The simple formulation empowers the quadrotor controller to

run in real-time using off-the-shelf fast solvers.

1.3 Notation

Throughout the paper, we adopt the following notations. The set of real num-

bers and the set of nonnegative real numbers are denoted by R and R+, respectively.

The set of n-dimensional symmetric matrices is denoted by Sn. We use int(A) and

∂A to denote the interior and the boundary, respectively, of a set A. We use ⊕ to

denote the Minkowski sum between two sets and
⊕

to denote the Minkowski sum
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of multiple sets. We use the dot notation to denote the matrix inner product, i.e.,

A • B
def
= Tr(AB), for A,B ∈ Sn. We use cx, sx, and tx denote cos(x), sin(x), and

tan(x), respectively. The null space of a linear mapping L : V → W between two

vector spaces V and W is denoted by N (L). We use 0k×j to denote a matrix in Rk×j

with all entries being zero and Ik to denote a k-dimensional identity matrix. The

matrix W T is the transpose of W . We use notations W � 0 and V � 0 to denote

a symmetric positive definite matrix W and a symmetric positive semidefinite ma-

trix V , respectively. The D-square of a vector z ∈ Rn is represented by ‖z‖2
D, i.e.,

‖z‖2
D

def
= zTDz, with D ∈ Sn. A sequence of matrices {A1, . . . , An} is denoted by

A1:n. The convex hull of vectors v1:m is denoted by convh{v1, . . . , vm}. For a, b ∈ R,

we denote a approaches b from left by a → b− and from right by a → b+. The

optimal value of an optimization problem

minimize
x∈C

f(x)

subject to h(x) ≤ 0,

(P0)

is denoted by val(P0).

1.4 Outline

The thesis is structured in seven chapters, including this introduction. The

rest of the thesis is organized as follows.

Chapter 2 presents the experiment conducted on a bat which is required to

reach a target enclosed within a denied area. We introduce how an artificial denied

area is created and the procedure of the experiment. We also show the result and
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its relation to the later theoretical study.

Chapter 3 presents the necessary and sufficient conditions for strong duality for

a general QC2QP. This result benefits us in solving nonconvex QC2QPs in Chapter

4 and Chapter 6, by utilizing strong duality.

Chapter 4 presents a framework of controlling a mobile agent to reach a target

that is enclosed within a time-costly area. We define the time-costly area and

formulate the problem as a two-stage optimal control problem. A solution method is

provided by solving subproblems. We validate the optimal controller in a numerical

example.

Chapter 5 presents an extension to the results in Chapter 4. We consider a

more realistic case where perturbation appears in the dynamics and consider another

type of the special area, the denied area. We reformulate the two-stage optimal

control problem to deal with perturbations. And we propose a robust controller

based on the new formulation using the variable horizon model predictive control

and validate the controller in simulations.

Chapter 6 presents results of a quadrotor experiment where a quadrotor is

controlled to reach a target enclosed within a denied area. We first introduce two

quadrotor testbeds in the CPS and Cooperative Autonomy Laboratory and show the

design as well as the performance of an attitude controller and a position controller.

Then we show a formulation of the controller for target reaching inside a denied

area and demonstrate its performance in experiments.

Chapter 7 concludes the thesis and outlines future research directions.
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Chapter 2: Bat Experiment

The experiment in this chapter was conducted by Professor Cynthia F. Moss

and Dr. Angeles Salles in the Comparative Neural Systems and Behavior Lab at

Johns Hopkins University. We use the data obtained from the experiment to inter-

pret the results.

Bats (of certain species, e.g., Eptesicus fuscus) are known to use echolocation

to find and locate prey, even in darkness. A bat’s hunting of a target insect is

summarized into three phases [1]: search, approach, and capture. The three phases

are discriminated by the distance between the bat and the insect as well as the

pattern of the bat’s echolocation pulses, especially, the rate of pulse repetitions.

The search phase is when the bat is searching the environment for flying insects. In

this phase, the interval between pulses is quite long, often lasting several hundred

milliseconds [2]. The approach phase ensues when the bat first reacts to an insect,

either by turning towards it, by increasing the pulse repetition rate, or both [1]. In

this phase, the bat locates its prey more accurately. The rate of pulse repetitions

increases progressively though often irregularly. The capture phase follows when

the bat is fairly near the insect and emits a burst of pulses at a very high rate, the

buzz. The spectrogram of echolocation pulses in these three phases is displayed in

7



Figure 2.1. The buzz typically has a lower frequency range, compared to the pulses

in the first two stages. Previous research [3] has shown this adjustment increases

bat’s sonar field of view to avoid the target insect from escaping in the capture

phase.

Figure 2.1: Spectrogram of a sequence of echolocation pulses produced
by a European free-tailed bat in a target insect pursuit. Three phases,
search → approach → capture, are marked according to the rate of pulse
repetitions. Figure courtesy Dr. Melville J. Wohlgemuth.

The buzz brings limited information of the prey’s location to the bat because

the high frequency returning echoes overlap and interfere with each other. We define

a denied area where the bat cannot locate the target insect by echolocation (nor by

vision). Then a partially denied area forms near the target in the capture phase,

since the information is limited. But it is not a big trouble for the bat because the

area is relatively small. An interesting question is: how does the bat reach (and

capture) the target insect enclosed within a denied area? What if the denied area is

larger than the one in the capture phase? Will it learn to plan its future trajectory

before reaching the denied area? Will it just fly straight towards the direction of
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the insect in bat’s memory? To answer these questions, we need to conduct a bat

experiment using artificial denied area since such extreme scenario rarely exists in

nature. We will enclose a target insect by an artificial denied area and record the

bat’s trajectory for reaching this target. The idea of the experiment is shown in

Figure 2.2.

Figure 2.2: Illustration of the denied area to the bat. The target insect
resides in the denied area. The bat can locate the insect only when it is
outside the denied area. The exclamation mark and the question mark
indicate the bat can and cannot locate the target insect, respectively.

2.1 Creating a denied area

We refer to the nature of how the denied area can be implemented. Tiger

moths (Lepidoptera: arctiidae) can produce anti-bat sounds to respond hunting calls

of bats for survival. [4] provides a list of sensory mechanisms by which the anti-bat

sounds may function. This list includes startle, aversion, aposematism or warning,

mimicry, phantom echo, distraction, interference, masking, and jamming. Startle,

aversion, aposematism or warning, and mimicry are not suitable for creating the
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denied area because they drive the bat away. Phantom echo is not suitable either

because it misguides the bat somewhere else other than the insect. Interference

degrades distance discrimination [5, 6], which is not enough for the denied area.

Moreover, the interference signal needs to arrive within a time window in front of

an echo [6] over which we have no control. Hence, interference is not suitable due

to limited capability and practical difficulty. Jamming, though initially considered

appropriate for creating the denied area, was not selected for the following two

reasons. First, the mechanism of how jamming functions on bat’s echolocation has

not been fully studied [4]. Second, the jamming signal, e.g., sinusoidal frequency

modulated calls [7], is more difficult to reproduce than white noise. Therefore,

masking is adopted as a strategy to create the denied area. This is achieved by

broadcasting the white noise, which is triggered when the bat enters the denied

area.

2.2 Experiment setup and procedure

The experiment is conducted in a room which is 6 meters wide, 6 meters

long, and 2 meters tall. A mealworm (target insect) is tethered from the ceiling

at the center of the room and is 1 meter above the ground. We use a customized

electrostatic loudspeaker, powered by a wideband amplifier (model 7500; KrohnHite)

to broadcast the white noise signal. The speaker is placed on the ground, right

below the tethered mealworm. A motion capturing system containing 16 high-speed

cameras (MX T40; Vicon Motion Systems) is used to record the trajectory of the
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bat, at 200 frames per second. This setup is displayed in Figure 2.3.

Figure 2.3: Setup of the bat experiment.

We use a single bat (Eptesicus fuscus), which has been trained to catch a

tethered mealworm for 60 days before the experiment. In each experiment, the bat

is released at random locations in the room. We choose the denied area to be a three-

dimensional ball centered at the mealworm. The ball has radius 0.5 m, 0.75 m, and

1 m of which only one is selected for each experiment. A trigger will be activated

when the bat is detected to be within the denied area by Vicon Motion Systems.

Then this trigger decides randomly whether the speaker plays the white noise. If

the speaker plays, then a denied area occurs. So the corresponding bat trajectories

serve as the experiment group. The control group includes the bat trajectories when
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the trigger decides to keep the speaker silent.

During the bat’s flight, the investigator can choose to record the flying tra-

jectory for the past 2 seconds when she/he observes the bat catches or attempts a

capture of the mealworm.

2.3 Results and discussion

We record in total 47 trials. The trajectories are processed offline using MAT-

LAB (R2016b; MathWorks) where the data are smoothed using a moving average

filter with a ten-sample window. We define a successful trial in which the bat’s

distance to the mealworm is less than 0.1 meter, which is the body length of the

bat in the experiment. A summary of trials under different radii of the denied area

is displayed in Table 2.1. Due to the limited number of trials, we cannot draw any

statistical conclusion on the influence of the denied area on bat’s target reaching.

Table 2.1: Number of successful trials versus total trials under different radii of the
denied area

denied area radius successful/total successful/total
speaker plays white noise speaker remains silent

0.5 m 1/5 0/7
0.75 m 1/7 1/7

1 m 3/10 2/11

However, we can still observe curved trajectories inside the denied area. Such

curve may suggest that the bat is actively steering itself, instead of flying straight,

towards the target. Figure 2.4 shows the trajectories of the bat when denied area

has radius of 1 meter and 0.5 meter. Similar trajectories appear in the simulation
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results in Chapter 4 and Chapter 5.

A B

Figure 2.4: Successful target reaching under different size of the denied
area. The mealworm resides in the target area, which is the green ball
centered at the origin, with radius 0.1 m. The denied area is the larger
ball, also centered at the origin. The diamond mark and star mark are on
the boundary of the denied area and on the boundary of the target area,
respectively. We only display the projection of the three-dimensional
trajectories on the horizontal plane. (A) The radius of the denied area
is 0.5 meter. (B) The radius of the denied area is 1 meter.

13



Chapter 3: Strong Duality in General Quadratic Programming with

Two Quadratic Constraints

In this Chapter, we consider the following real-valued nonconvex quadratic

programming with two quadratic constraints (QC2QP), which is key to the results

in Chapter 4 and Chapter 6.

minimize
z∈Rn

q0(z) = zTQ0z + 2bT0 z

subject to q1(z) = zTQ1z + 2bT1 z + c1 ≤ 0,

q2(z) = zTQ2z + 2bT2 z + c2 ≤ 0,

(QP0)

where Qi ∈ Sn, bi ∈ Rn, i = 0, 1, 2, and c1, c2 ∈ R.

3.1 Related literature

Two directions have been researched to solve (QP0) for a global solution. The

first direction refers to either the semidefinite relaxation, or the Lagrange dual, or

both. As the semidefinite relaxation and Lagrange dual are convex and dual of each

other, (QP0) can be solved if either the relaxation is tight or the duality gap is zero.

The second direction seeks conditions that characterize the global solution using the

special problem structure of QC2QP.

Under the first direction, [8] shows strong duality holds if and only if the Hes-
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sian of the Lagrangian is positive semidefinite at the global optimal solution. In

general, this Hessian can have at most one negative eigenvalue at the global opti-

mal solution [9]. A special case of QC2QP is the extended trust region problem,

also known as the Celis-Dennis-Tapia (CDT) subproblem. The CDT subproblem

minimizes a nonconvex quadratic objective function over the intersection of two el-

lipsoids [10]. The necessary and sufficient conditions for strong duality in the CDT

subproblem has been provided in [8]. The result shows strong duality holds and the

primal optimal solution can be recovered through the semidefinite relaxation if and

only if the optimal solutions of the semidefinite relaxation and the dual violate cer-

tain conditions, called Property I. [11] further studies the CDT subproblems that has

a positive duality gap. The result shows that an additional second-order cone (SOC)

constraint can decrease the duality gap when certain conditions hold. Specifically,

a sufficient condition is provided under which the duality gap can be completely

eliminated with two additional SOC constraints for a class of CDT subproblems.

Another method of relaxation is to solve the QC2QP in the complex do-

main. [12] shows the necessary and sufficient conditions for strong duality, using

the classical extended S-Lemma of Fradkov and Yakubovich. By this result and

convexity of a quadratic mapping, the authors of [12] show a sufficient condition

for strong duality in the real-valued QC2QP. Another sufficient condition for strong

duality in the complex-valued problem is provided in [13]. The result is derived

using a matrix rank-one decomposition for complex Hermitian matrices.

Under the second direction, necessary conditions for global optimality in QC2QP

are proved in [9]. Specifically, the number of negative eigenvalues of the Hessian
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of the Lagrangian is characterized at the global optimal solution. For the CDT

subproblem, [14] proves necessary and sufficient conditions for global and local op-

timality using copositivity. Numerical experiments are conducted with randomly

generated instances of feasible problems. The result displays a distribution of pos-

itive semidefiniteness and copositivity conditions on the Hessian of the Lagrangian

at computed minimizers, where positive semidefinite condition holds for a majority

of all randomly generated instances.

3.2 Main results

We consider a more general case than the CDT subproblem considered in [8].

We assume Slater’s condition hold for (QP0) and its dual. This assumption is

weaker than the assumption in [8], which requires at least one of Q1 and Q2 to

be positive definite. We will add an extra condition to Property I and name the

combined conditions Property I+. We prove that strong duality holds if and only if

the solutions of the semidefinite relaxation and the dual violate Property I+.

We adopt the following notations to rewrite (QP0) in a homogeneous quadratic

form.

M(q0) =

 0 bT0

b0 Q0

 ,M(qi) =

ci bTi

bi Qi

 , i = 1, 2. (3.1)
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Then (QP0) is equivalently written as

minimize
z∈Rn,t∈R

M(q0) •

t
z


t
z


T

= zTQ0z + 2tbT0 z

subject to M(qi) •

t
z


t
z


T

= zTQiz + 2tbTi z + t2ci ≤ 0, i = 1, 2,

t2 = 1.

(QP)

The semidefinite relaxation of (QP) is the following:

minimize
X∈Sn+1

M(q0) •X

subject to M(qi) •X ≤ 0, i = 1, 2,

I00 •X = 1,

X � 0,

(SP)

where I00 =

 1 01×n

0n×1 0n×n

.

The dual problem of (SP) is the following:

maximize
yi∈R,i=0,1,2

y0

subject to Z = M(q0)− y0I00 + y1M(q1) + y2M(q2) � 0,

yi ≥ 0, i = 1, 2.

(SD)

Note that (SD) is also the dual of (QP).

Throughout this chapter, we assume that (QP0), and hence (QP), satisfies the

Slater’s condition, i.e., ∃z ∈ Rn such that

zTQiz + 2bTi z + ci < 0, i = 1, 2. (3.2)
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And assume (SD) satisfies the Slater’s condition, i.e., ∃y0 ∈ R, y1, y2 > 0 such that

M(q0)− y0I00 + y1M(q1) + y2M(q2) � 0, (3.3)

which is, by Schur complement, if and only if ∃y0 ∈ R, y1, y2 > 0 such that

Q0 + y1Q1 + y2Q2 � 0, (3.4a)

−y0 + y1c1 + y2c2 > bT (y1, y2)(Q0 + y1Q1 + y2Q2)−1b(y1, y2), (3.4b)

where b(y1, y2)
def
= b0 + y1b1 + y2b2.

The existence condition stated in (3.4) is not easy to check, though exceptions

exist. By Proposition 2.1 of [15], (SD) satisfies Slater’s condition if either the ob-

jective function is strictly convex, or at least one of the constraints is elliptical, i.e.,

if either Q0 � 0, or Qi � 0 and bTi Q
−1
i bi − ci > 0 for at least one of i = 1, 2.

Slater’s condition holds for (SP) when it holds for (QP). Then, (SP) and (SD)

both have attainable optimal solutions. We denote the optimal solutions of (QP),

(SP), and (SD), respectively, by x∗, X̂, and (Ẑ, ŷ0, ŷ1, ŷ2). Note that a primal-

dual feasible pair X and (Z, y0, y1, y2) are optimal if and only if they satisfy the

complementary conditions:

XZ = 0(n+1)×(n+1), yiM(qi) •X = 0, i = 1, 2. (3.5)

Property I, which we shall state in Definition 3.1, is the key to the necessary

and sufficient conditions for a duality gap between (QP) and (SD) when Q1 � 0.

Definition 3.1 (Definition 4.1 of [8]). For X̂ and (Ẑ, ŷ0, ŷ1, ŷ2), a given pair of

optimal solutions for (SP) and (SD), respectively, we say that this pair has Property

I if:
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1. ŷ1ŷ2 6= 0;

2. rank(Ẑ) = n− 1;

3. rank(X̂) = 2 and there is a rank-one decomposition of X̂, X̂ = x̂1x̂
T
1 + x̂2x̂

T
2

such that

M(q1) • x̂ix̂
T
i = 0, i = 1, 2, (3.6)

(M(q2) • x̂1x̂
T
1 )(M(q2) • x̂2x̂

T
2 ) < 0. (3.7)

Theorem 3.1 (Theorem 4.2 of [8]). Consider (QP) where Slater’s condition is

satisfied and Q1 � 0. Suppose that X̂ and (Ẑ, ŷ0, ŷ1, ŷ2) is a pair of optimal solutions

for the semidefinite relaxation (SP) and dual problem (SD), respectively. Then,

val(SP)<val(QP) holds if and only if the pair X̂ and (Ẑ, ŷ0, ŷ1, ŷ2) has Property I.

We add an extra condition to Property I and name the combined conditions

Property I+ as the following.

Definition 3.2. For X̂ and (Ẑ, ŷ0, ŷ1, ŷ2), a given pair of optimal solutions for (SP)

and (SD), respectively, we say that this pair has Property I+ if:

1. Property I holds;

2. M(q1) • x̂1x̂
T
2 6= 0.

As we shall see in the following Theorem, Property I+ is the key to the nec-

essary and sufficient conditions for a duality gap between (QP) and (SD) when the

positive definiteness of Q1 is not assumed.

19



Theorem 3.2. Consider (QP) where the Slater’s condition holds for the primal

(QP) and its dual (SD). Suppose that X̂ and (Ẑ, ŷ0, ŷ1, ŷ2) is a pair of optimal solu-

tions for the semidefinite relaxation (SP) and dual problem (SD), respectively. Then,

val(SP)<val(QP) holds if and only if the pair X̂ and (Ẑ, ŷ0, ŷ1, ŷ2) has Property I+.

In order to prove Theorem 3.2, we shall use the following result.

Lemma 3.1 (Theorem 2.4 of [16]). Let X = V V T be a solution of (SP), where

V ∈ Rn×r and r = rank(X). Define the linear mapping AV : Sr → R3 as

AV (∆)
def
=


(V TM(q1)V ) • ∆

(V TM(q2)V ) • ∆

(V T I00V ) • ∆

 . (3.8)

Then X is the unique solution of (SP) if and only if

1. X has the maximum rank among all solutions;

2. N (AV ) = {0r×r}.

Proof of Theorem 3.2. (⇐). We first show X̂ is the unique solution to (SP) using

Lemma 3.1. Then a positive duality gap is a trivial consequence.

Let X̃ denote an optimal solution of (SP). Then, by Sylvester’s Inequality

and the complementary condition (3.5), we have

rank(X̃) + rank(Ẑ)− (n+ 1) ≤ rank(X̃Ẑ) = 0⇒ rank(X̃) ≤ 2, (3.9)

i.e., the maximum rank of the optimal solution of (SP) is 2. Since rank(X̂) = 2

already, in order to show that X̂ is the unique solution of (SP), by Lemma 3.1, we
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only need to show N (AV ) = {02×2}, where V ∈ R(n+1)×2 is defined as X̂ = V V T .

This is equivalent to show that the solution ∆ ∈ S2 of the following equation,
(V TM(q1)V ) • ∆

(V TM(q2)V ) • ∆

(V T I00V ) • ∆

 = 03×1, (3.10)

is ∆ = 02×2 only. Consider the following partitions

V =

[
x̂1 x̂2

]
, x̂1 =

t1
z1

 , x̂2 =

t2
z2

 ,∆ =

∆1 ∆2

∆2 ∆3

 , (3.11)

where z1, z2 ∈ Rn and t1, t2,∆1,∆2,∆3 ∈ R. Since ŷ1ŷ2 6= 0, then the inequality

constraints in (SP) are all active at X̂. Especially,

M(q2) • X̂ = M(q2) • x̂1x̂
T
1 +M(q2) • x̂2x̂

T
2 = 0. (3.12)

W.L.O.G., let α > 0 be such that

α = M(q2) • x̂1x̂
T
1 = −M(q2) • x̂2x̂

T
2 . (3.13)

Then (3.10) is a linear equation of ∆1,∆2 and ∆3.


V TM(q1)V • ∆

V TM(q2)V • ∆

V T I00V • ∆

 = 0⇒

def
= Γ︷ ︸︸ ︷

0 2M(q1) • x̂1x̂
T
2 0

α 2M(q2) • x̂1x̂
T
2 −α

t21 2t1t2 t22




∆1

∆2

∆3

 = 03×1. (3.14)

Notice that I00 •X̂ = 0 implies t21 + t22 = 1, i.e., t1 and t2 can not be 0 simultaneously.

W.L.O.G., assume t1 6= 0. Then the row vectors in Γ are linearly independent

because M(q1) • x̂1x̂
T
2 6= 0, and hence, Γ has full rank. So the only solution to (3.10)

is ∆ = 02×2. This completes our proof that X̂ is the unique solution to (SP).
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Let z∗ denote the optimal solution of (QP0). Then, W.L.O.G.,

 1

z∗

 is an

optimal solution to (QP) and

 1

z∗


 1

z∗


T

is feasible to (SP). And the corresponding

optimal value of (QP) is

M(q0) •

 1

z∗


 1

z∗


T

= (z∗)TQ0z
∗ + 2bT0 z

∗ = val(QP). (3.15)

Since X̂ is the unique solution to (SP), we conclude that val(QP)>val(SP).

(⇒) We prove by contraposition. We will enumerate five exhaustive (but not

mutually exclusive) possibilities, denoted by Case i, with i = 1, 2, 3, 4, 5.

Case 1. ŷ1ŷ2 = 0.

The proof that the semidefinite relaxation is tight in this case can be found

in [15].

Case 2. ŷ1ŷ2 6= 0 and rank(X̂) 6= 2.

The condition ŷ1ŷ2 6= 0 implies that, by the complementary condition (3.5),

M(q1) • X̂ = M(q2) • X̂ = 0. (3.16)

Let r
def
= rank(X̂). Obviously, r > 0 because I00 • X̂ = 1. If r = 1, then the rank-one

decomposition of X̂ = x̂x̂T provides the optimal solution to (QP). And we do not

need to consider the case r ≥ 3 because (SD) satisfies Slater’s condition and hence

(SP) is solvable, and hence by Theorem 2.1 of [16], r ≤ 2.

Case 3. ŷ1ŷ2 6= 0, rank(X̂) = 2, and M(q1) • x̂ix̂
T
i = M(q2) • x̂ix̂

T
i = 0, i = 1, 2.

Clearly, x̂1x̂
T
1 and x̂2x̂

T
2 are both optimal solutions to (SP). We adopt the

22



partition of x̂1 and x̂2 in (3.11). Then I00 • X̂ = 1 implies that t21 + t22 = 1, i.e.,

at least one of t1 and t2 is nonzero. W.L.O.G., assume t1 6= 0. Then x̂1/t1 is a

homogenized solution to (QP) and z1/t1 is a solution to (QP0).

Case 4. ŷ1ŷ2 6= 0, rank(X̂) = 2, (M(q2) • x̂1x̂
T
1 )(M(q2) • x̂2x̂

T
2 ) < 0, and

rank(Ẑ) 6= n− 1.

Since rank(Ẑ) + rank(X̂) ≤ n + 1, rank(X̂) = 2, and rank(Ẑ) 6= n − 1, it

follows that rank(Ẑ) < n−1. Now X̂+ Ẑ is singular and both X̂ and Ẑ are positive

semidefinite. So there must be a nontrivial y ∈ Rn+1 in the intersection of the null

space of X̂ and Ẑ. Let

X
def
= X̂ + yyT = x̂1x̂

T
1 + x̂2x̂

T
2 + yyT . (3.17)

Obviously, rank(X) = 3 and ẐX = 0(n+1)×(n+1) because ẐX̂ = 0(n+1)×(n+1). By

Lemma 3.3 of [8], we know there exist an x ∈ Rn+1 such that X is rank-one decom-

posable1 at x and that

M(q1) • xxT = M(q2) • xxT = 0. (3.18)

Since x is in the range space of X, it must be in the null space of Ẑ. Then

Ẑ •xxT = 0 and the complementary condition (3.5) implies that xxT/t2 is an optimal

solution to (SP), where t is the first element of x. Hence x/t is an optimal solution

to (QP). Note that t 6= 0 for the following reason. Consider the following partition

1As a convention, a matrix X is rank-one decomposable at x1 if there exists other r− 1 vectors

x2, . . . , xr such that X = x1x
T
1 + x2x

T
2 + · · ·+ xrx

T
r , where r

def
= rank(X) [8].
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of x,

x =

t
z

 , (3.19)

where z ∈ Rn. By contradiction, assume t = 0. Then Ẑ • xxT = 0 implies

zT (Q0 + ŷ1Q1 + ŷ2Q2)z = 0. (3.20)

On the other hand, by (3.18), we have

zTQ1z = zTQ2z = 0. (3.21)

Combining (3.20) and (3.21), we know zTQ0z = 0. The only z that satisfies zTQiz =

0, for i = 0, 1, 2, is z = 0n×1 for the following reason. By contradiction, assume

z 6= 0n×1. Then, for arbitrary ȳ1, ȳ2 > 0, we have

zT (Q0 + ȳ1Q1 + ȳ2Q2)z = 0. (3.22)

This equality contradicts Slater’s condition (3.4a) of (SD) and hence z = 0n×1.

Then, x = 0(n+1)×1. This is a contradiction because x 6= 0(n+1)×1. So we have

proved t 6= 0.

Case 5. ŷ1ŷ2 6= 0, rank(Ẑ) = n − 1, rank(X̂) = 2, M(q1) • x̂ix̂
T
i = 0, i = 1, 2,

(M(q2) • x̂1x̂
T
1 )(M(q2) • x̂2x̂

T
2 ) < 0, and M(q1) • x̂1x̂

T
2 = 0.

We show that we can obtain another rank-one decomposition of X̂ = x̌1x̌
T
1 +

x̌2x̌
T
2 such that M(q1) • x̌ix̌

T
i = M(q2) • x̌ix̌

T
i = 0, i = 1, 2. This is achievable because

any rank-one decomposition of X̂ must be a linear combination of x̂1 and x̂2. And

M(q1) • x̂1x̂
T
2 = 0 together with M(q1) • x̂1x̂

T
1 = M(q1) • x̂2x̂

T
2 = 0 indicate that an

arbitrary linear combination x̃ of x̂1 and x̂2, i.e.,

x̃ = α1x̂1 + α2x̂2, (3.23)
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for α1, α2 ∈ R, satisfies M(q1) • x̃x̃T = 0. Hence, we only need to obtain x̌1 and

x̌2 as linear combinations of x̂1 and x̂2, where we only require M(q2) • x̌ix̌
T
i = 0 for

i = 1, 2. We adopt the following method from the proof of Lemma 2.2 of [15] to

obtain x̌1 and x̌2.

Consider a quadratic equation of β ∈ R,

0 = (βx̂1 + x̂2)TM(q2)(βx̂1 + x̂2) = β2x̂T1M(q2)x̂1 + 2βx̂T1M(q2)x̂2 + x̂T2M(q2)x̂2.

(3.24)

This equation must have two distinctive real roots with opposite signs since

(x̂T1M(q2)x̂1)(x̂T2M(q2)x̂2) < 0. (3.25)

Let β̄ be one of the roots and

x̌1 =
β̄√
β̄2 + 1

x̂1 +
1√
β̄2 + 1

x̂2, (3.26)

x̌2 = − 1√
β̄2 + 1

x̂1 +
β̄√
β̄2 + 1

x̂2. (3.27)

Then we have a new rank-one decomposition X̂ = x̌1x̌
T
1 + x̌2x̌

T
2 and M(q1) • x̌ix̌

T
i =

M(q2) • x̌ix̌
T
i = 0 for i = 1, 2. The rest of this case continues in Case 3.

Remark 3.1. Theorem 2.6 of [11] also proves the uniqueness of the solution of

(SP) in the CDT subproblem when Property I holds. The method uses a property of

boundary points of a SOC while we use a result on the uniqueness of a solution of a

semidefinite programming.
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3.3 Relation between Theorem 3.1 and Theorem 3.2

Theorem 3.2 is an extension to Theorem 3.1 in the following aspects. First,

Theorem 3.2 characterizes the necessary and sufficient conditions for a duality gap

under a weaker assumption than Theorem 3.1. Second, the necessary and sufficient

conditions in Theorem 3.2 involve an extra condition in Property I+ compared to

Property I, which is required by Theorem 3.1.

On the other hand, when Q1 � 0, Theorem 3.2 coincides with Theorem 3.1

because the extra condition in Property I+, M(q1) • x̂1x̂
T
2 6= 0, is redundant in

Property I. We show the redundancy in the following proposition.

Proposition 3.1. Consider (QP) where Slater’s condition holds and Q1 � 0. Let X̂

and (Ẑ, ŷ0, ŷ1, ŷ2) denote a pair of optimal solutions for (SP) and (SD), respectively.

Suppose rank(X̂) = 2, ŷ1ŷ2 6= 0, and there exists a rank-one decomposition X̂ =

x̂1x̂
T
1 + x̂2x̂

T
2 such that M(q1) • x̂ix̂

T
i = 0 for i = 1, 2. Then M(q1) • x̂1x̂

T
2 6= 0.

Proof. We apply a change of coordinates to make

M(q1) =

 −1 01×n

0n×1 In

 . (3.28)

The linear transformation in the change of coordinates is displayed at the end of

this proof.

By contradiction, assume M(q1) • x̂1x̂
T
2 = 0. Then, adopting the partition of
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x̂1 and x̂2 in (3.11), we have
M(q1) • x̂1x̂

T
1 = 0

M(q1) • x̂2x̂
T
2 = 0

M(q1) • x̂1x̂
T
2 = 0

⇒


zT1 z1 = t21

zT2 z2 = t22

zT1 z2 = t1t2

⇒ (zT1 z1)(zT2 z2) = (zT1 z2)2. (3.29)

By Cauchy-Schwarz inequality, the last equality implies z1 and z2 are linearly de-

pendent, and so are x̂1 and x̂2, which contradicts the fact that rank(X̂) = 2 and

X̂ = x̂1x̂
T
1 + x̂2x̂

T
2 .

Adopting the partition of x in (3.19), we apply the following linear transfor-

mation in the change of coordinates, t̃
z̃

 =


√
bT1Q

−1
1 b1 − c2

1 0n×1

Q
−1/2
1 b1 Q

1/2
1


t
z

 , (3.30)

where t̃, t ∈ R and z̃, z ∈ Rn. The vector

[
t̃ z̃T

]T
is a partition of the new variable

x̃ after the change of coordinates. Then,

q̃1(x̃) = x̃TM(q1)x̃

=

 t̃
z̃


T  −1 01×n

0n×1 In


 t̃
z̃



=

t
z


T 
√
bT1Q

−1
1 b1 − c2

1 bT1Q
−1/2
1

01×n Q
1/2
1


 −1 01×n

0n×1 In



√
bT1Q

−1
1 b1 − c2

1 0n×1

Q
−1/2
1 b1 Q

1/2
1


t
z


= zTQ1z + 2tbT1Q1z + t2c1 = q1(x). (3.31)
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Chapter 4: Two-stage Optimal Control for Target Reaching Inside a

Time-costly Area

In this chapter, we consider a problem whose goal is to steer a mobile agent to

reach a target. Especially, the target is enclosed within a special area that is time-

costly, while the mobile agent starts outside such area, as displayed in Figure 4.1.

We define the time-costly area such that the mobile agent begins to incur a cost

when it enters such area for the first time. And this cost increases as the elapsed

time, between its first entry to such area and its arrival on the target, goes on.

The goal of this problem is to find a control and a terminal time such that

the mobile agent can reach the target while incurring a minimum cost which will

be defined later. The presence of the time-costly area enables decomposition of this

problem into two stages. We refer to the stages before and after the mobile agent’s

first entry to the time-costly area as the outer stage and the inner stage, respectively.

Hence, we can formulate the problem as a two-stage optimal control problem, where

each stage becomes a subproblem. The key idea in solving the problem is to augment

the minimum cost of the inner stage subproblem as a terminal performance index

of the outer stage subproblem.
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Figure 4.1: Illustration of the problem

4.1 Related literature

The authors of [17] first considers the vehicle maneuvering problem in which

the terminal set was defined as the target region for the maneuver. Such set is not

necessarily invariant, which is a typical setting named invariant set in the Model

Predictive Control literature [18]. The two-stage optimal control problem is studied

in [19]. By Pontryagin’s maximum principle, the author proves necessary conditions

for optimality in a general two-stage problem with an adjustable intermediate time.

4.2 Problem formulation

To model the motion of the mobile agent in a two-dimensional1 (2D) plane,

we consider the following linear time-invariant dynamics

ẋ(t) = Ax(t) +Bu(t), x(0) = x0, (4.1)

1The results in this thesis can be easily extended to the motion of a mobile agent in a three-

dimensional (3D) space, by considering the state variable with a 3D position portion and a 3D

velocity portion and corresponding changes in problem setting. We adopt the 2D motion here to

make the figures and illustrations straightforward.
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where u(t) ∈ R2 is the control input and x(t) ∈ R4 is the state variable.

Definition 4.1. We define the subspace of the first two dimensions of the state

space as the position subspace, and the last two dimensions as the velocity subspace.

Then the projections of state variable x(t) onto the position subspace and

velocity subspace are denoted by xp(t) ∈ R2 and xv(t) ∈ R2, respectively, i.e.,

x(t) =

xp(t)
xv(t)

 . (4.2)

Matrices A ∈ R4×4 and B ∈ R4×2 are known. The initial state x0 is given. We

define the set of admissible controls by

U(t1, t2)
def
= {u : [t1, t2)→ R2, piecewisely continuous}. (4.3)

Assumption 4.1. (A,B) is a reachable pair.

The time-costly set and the target set are denoted by D1 and D2, where

Di
def
= {z ∈ R4 : ‖z‖2

D ≤ d2
i }, i = 1, 2, (4.4)

D =

 Dp 02×2

02×2 02×2

 , (4.5)

with Dp ∈ S2, Dp � 0 and d1 > d2. Values of Dp, d1 and d2 are known.

Note that the projections of D1 and D2 onto the position subspace are the

elliptical sets

Dp1
def
= {zp ∈ R2 : ‖zp‖2

Dp
≤ d2

1}, (4.6)

Dp2
def
= {zp ∈ R2 : ‖zp‖2

Dp
≤ d2

2}, (4.7)
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which correspond to the time-costly area and the target area, respectively, in the

illustration shown in Figure 4.1.

Definition 4.2. We use the name switching time and switching state for the time

and state of the mobile agent, respectively, when it enters the time-costly area for

the first time.

We use uo(t) and ui(t) to denote the control in the outer stage and in the inner

stage, respectively, i.e.,

u(t) =


uo(t), if t ∈ [0, t0),

ui(t), if t ∈ [t0, tf ),

(4.8)

where t0 denotes the switching time and tf denotes the terminal time. Let uo ∈

U(0, t0) and ui ∈ U(t0, tf ).

The outer stage control uo(t) is supposed to control the mobile agent to reach

the boundary of the time-costly area at t0, i.e.,

‖x(t0)‖2
D = d2

1. (4.9)

The inner stage control ui(t) is supposed to control the mobile agent to reach the

target area at tf , i.e.,

‖x(tf )‖2
D ≤ d2

2. (4.10)

The cost function for the outer stage is quadratic as the following,

1

2

∫ t0

0

‖uo(t)‖2
R + ‖x(t)‖2

Q dt, (4.11)

where R � 0, Q � 0 are of conformed dimensions and given. The cost function for
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the inner stage is the sum of control effort and an elapsed time cost, i.e.,

1

2

∫ tf

t0

‖ui(t)‖2
R dt+ φ(tf − t0), (4.12)

where φ : R+ → R is a continuously differentiable and strictly increasing function

which is known. We use φ(tf − t0) to stress the explicit time cost in the time-costly

area. The elapsed time of the outer stage is the switching time t0 which is fixed.

And the elapsed time of the inner stage tf − t0 is allowed to vary within the range

(0, T ], with T given.

Now the problem studied in this chapter is formulated as the following.

Problem: Find a control u and a terminal time tf such that the system (4.1)

is steered to the target with a minimum sum of the outer stage cost and the inner

stage cost, i.e.,

minimize
u∈U(0,tf ),tf∈R

1

2

∫ t0

0

‖uo(t)‖2
R + ‖x(t)‖2

Q dt+
1

2

∫ tf

t0

‖ui(t)‖2
R dt+ φ(tf − t0)

subject to ẋ(t) = Ax(t) +Bu(t), x(0) = x0,

u(t) =


uo(t), if t ∈ [0, t0),

ui(t), if t ∈ [t0, tf ),

‖x(t0)‖2
D = d2

1,

‖x(tf )‖2
D ≤ d2

2,

tf ∈ (t0, t0 + T ].

(P)

To tackle this problem, we propose the following subproblems.

Problem 1 (Inner stage problem): Find an inner stage control ui which steers

the system (4.1) to the target area from t0 to tf , with a minimum control effort, i.e.,
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minimize
ui∈U(t0,tf )

1

2

∫ tf

t0

‖ui(t)‖2
R dt

subject to ẋ(t) = Ax(t) +Bui(t), x(t0) given,

‖x(tf )‖2
D ≤ d2

2.

(P1)

Let J∗i : R+×R4 → R+ be such that J∗i (tf , x(t0)) = val(P1), which is the minimum

control effort of the inner stage with terminal time tf and a given initial state x(t0).

Problem 2 (Augmented outer stage problem): Find an outer stage control uo

which steers the system (4.1) to the boundary of the time-costly area from 0 to t0.

Such control must also minimize the outer stage cost plus a terminal performance

index, which is augmented from the minimum cost of the inner stage, i.e.,

minimize
uo∈U(0,t0)

1

2

∫ t0

0

‖uo(t)‖2
R + ‖x(t)‖2

Q dt+ J∗i (tf , x(t0))

subject to ẋ(t) = Ax(t) +Buo(t), x(0) = x0,

‖x(t0)‖2
D = d2

1.

(P2)

Then let J∗ : R+ → R+ be such that J∗(tf ) = val(P2).

Problem 3: Find a terminal time tf such that the following sum is minimized

minimize
tf∈(t0,t0+T ]

J∗(tf ) + φ(tf − t0). (P3)

Note that (P3) is equivalent to (P). The key to solving problem (P) is to find a

locally optimal terminal time t∗f of (P3). We plug t∗f in (P2) to find the optimal

control of the outer stage. Then the switching state under the outer stage optimal

control is plugged in (P1), together with t∗f , to solve for the optimal control of the

inner stage. We will suggest a method to determine t∗f in the next section.
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4.3 Main results

In this section, we solve problem (P) by first providing the solutions to (P1)

and (P2). The solutions and properties of (P1) and (P2) are obtained through the

equivalent problem of each. We propose an algorithm that can solve (P2) efficiently

using strong duality. And we suggest the bisection method to search for a solution

of (P3), using first-order necessary conditions. Once (P3) is solved, we show how to

obtain the solution to the original problem (P).

4.3.1 The inner stage problem

By the Linear-quadratic regulator (LQR) theory [20], problem (P1) is equiv-

alent to the following problem.

minimize
r(tf )∈R4

1

2
‖xf − r(tf )‖2

∆−1(tf )

subject to ‖r(tf )‖2
D ≤ d2

2,

(EP1)

where xf = Φ(tf , t0)x(t0) is the propagated state at tf , with Φ(t, τ) = eA(t−τ) being

the state-transition matrix. And ∆(tf ) =
∫ tf
t0
eA(tf−τ)BR−1BT eA

T (tf−τ) dτ is the

weighted reachability gramian. The vector r(tf ) is the desired terminal state, which

is an optimization variable here.

Problem (EP1) seeks a desired terminal state r(tf ) within the target area such

that the distance between r(tf ) and the propagated state is minimized, where the

distance is measured by the inverse of the weighted reachability gramian.

Note that ∆(tf ) is positive definite because (A,B), and hence (A,BR−
1
2 ), is a
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reachable pair. Since ∆(tf ) � 0 and D � 0, (EP1) is a convex quadratic constrained

quadratic programming (QCQP) which has a unique minimizer, denoted by r∗(tf ).

As the expression indicates, r∗(tf ) is a vector-valued function of tf . By [20], the

optimal control u∗i (t) of (P1) is given by

u∗i (t) = −R−1BT eA
T (tf−t)∆−1(tf )(xf − r∗(tf )), (4.13)

for t ∈ [t0, tf ). And val(EP1)= J∗i (tf , x(t0)).

The following Lemma states properties of the minimum control effort problem

of the inner stage.

Lemma 4.1. For tf ∈ (t0, t0 + T ),

1. The function J∗i (tf , x(t0)) is continuous w.r.t. tf .

2. The optimal terminal state r∗(tf ) is a vector-valued function that is continuous

w.r.t. tf .

3. The partial derivative of J∗i (tf , x(t0)) w.r.t. tf , denoted as J̇∗i (tf ), is

J̇∗i (tf ) =


‖r∗(tf )‖2

Θ1
, if xfp /∈ Dp2,

0, if xfp ∈ int(Dp2),

(4.14)

where Θ1 = −2(λ∗1)2DBR−1BTD + λ∗1(ATD + DA) and λ∗1 ∈ R+ is the La-

grange multiplier satisfying ∆−1(tf )(r
∗(tf ) − xf ) = −2λ∗1Dr

∗(tf ). We use

xfp ∈ R2 to denote the projection of xf onto the position subspace.

Proof. Assume t1, t2 ∈ (t0, t0 + T ). Let r∗1 and r∗2 denote the minimizers of (EP1)

with a given initial state x(t0) and terminal times t1 and t2, respectively. Let
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x1 = Φ(t1, t0)x(t0) and x2 = Φ(t2, t0)x(t0). To simplify the notation, we use W (t)

to denote ΦT (t, t0)∆−1(t).

1. We first show that J∗i (tf , x(t0)) is continuous w.r.t. tf :

lim
t2→t1

J∗i (t1, x(t0))− J∗i (t2, x(t0))

=
1

2
lim
t2→t1

‖r∗1 − x1‖2
∆−1(t1) − ‖r

∗
2 − x2‖2

∆−1(t2) (4.15)

≥1

2
lim
t2→t1

‖r∗1 − x1‖2
∆−1(t1) − ‖r

∗
1 − x2‖2

∆−1(t2) (4.16)

=
1

2
lim
t2→t1

{
‖x(t0)‖2

W (t1)Φ(t1,t0)−W (t2)Φ(t2,t0) − 2xT (t0)(W (t1)−W (t2))r∗1

+‖r∗1‖
2
∆−1(t1) − ‖r

∗
1‖

2
∆−1(t2)

}
= 0, (4.17)

where we use the fact that ∆−1(tf ) is entrywisely continuous w.r.t. to tf .

Similarly, replacing r∗1 by r∗2 in (4.16), we get

lim
t2→t1

J∗i (t1, x(t0))− J∗i (t2, x(t0)) ≤ 0. (4.18)

Hence,

lim
t2→t1

J∗i (t1, x(t0))− J∗i (t2, x(t0)) = 0. (4.19)

Because t1 is arbitrarily chosen, we conclude J∗i (tf , x(t0)) is continuous w.r.t. tf ∈

(t0, t0 + T ).

2. We prove the continuity of minimizer r∗(tf ) w.r.t. tf by contradiction.

Assume limt2→t1 r
∗
2 = r̄ 6= r∗1, where the limit is an elementwise limit. Then, by the

continuity of J∗i (tf , x(t0)), we have

1

2
‖r∗1−x1‖2

∆−1(t1) = J∗i (t1, x(t0)) =
1

2
lim
t2→t1
‖r∗2−x2‖2

∆−1(t2) =
1

2
‖r̄−x1‖2

∆−1(t1), (4.20)

which contradicts the uniqueness of the minimizer of (EP1) because ∆−1(t1) � 0.

As t1 is arbitrarily chosen, We conclude the continuity of r(tf ).
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3. Notice J∗i (tf , x(t0)) = 0 in the trivial case xf ∈ D2, because the minimizer

r∗(tf ) = xf . Hence the derivative

J̇∗i (tf , x(t0)) = 0, if xfp ∈ int(Dp2). (4.21)

We now assume xfp /∈ Dp2 and deduce a formula of the derivative of J∗i (tf , x(t0))

w.r.t. tf .

lim
t2→t−1

J∗i (t1, x(t0))− J∗i (t2, x(t0))

t1 − t2

≥ 1

2
lim
t2→t−1

‖r∗1 − x1‖2
∆−1(t1) − ‖r∗1 − x2‖2

∆−1(t2)

t1 − t2
(4.22)

=
1

2
lim
t2→t−1

{‖x(t0)‖2
W (t1)Φ(t1,t0)−W (t2)Φ(t2,t0)

t1 − t2
− 2xT (t0)(W (t1)−W (t2))r∗1

t1 − t2

+
‖r∗1‖

2
∆−1(t1)−∆−1(t2)

t1 − t2

}
(4.23)

=
1

2
‖x(t0)‖2

( d
dt
W (t)Φ(t,t0)|t=t1 ) − x

T (t0)(
d

dt
W (t)|t=t1)r∗1 +

1

2
‖r∗1‖

2
( d
dt

∆−1(t)|t=t1 ). (4.24)

On the other hand, replacing r∗1 by r∗2 in (4.22), we get the inequality in the

other direction

lim
t2→t−1

J∗i (t1, x(t0))− J∗i (t2, x(t0))

t1 − t2

≤ 1

2
‖x(t0)‖2

( d
dt
W (t)Φ(t,t0)|t=t1 ) − x

T (t0)(
d

dt
W (t)|t=t1)r∗1 +

1

2
‖r∗1‖

2
( d
dt

∆−1(t)|t=t1 ). (4.25)

We conclude equality from (4.24) and (4.25).

We can derive lim
t2→t+1

J∗i (t1,x(t0))−J∗i (t2,x(t0))

t1−t2 in the same way, which yields the same
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equality result. Hence we conclude

dJ∗i (tf , x(t0))

dtf

= lim
t→tf

J∗i (tf , x(t0))− J∗i (t, x(t0))

tf − t

=
1

2
‖x(t0)‖2

( d
dt
W (t)Φ(t,t0)|t=tf

) − x
T
0 (

d

dt
W (t)|t=tf )r∗(tf ) +

1

2
‖r∗(tf )‖2

( d
dt

∆−1(t)|t=tf
)

= −1

2
‖r∗(tf )− xf‖2

∆−1(tf )BR−1BT ∆−1(tf ) −
(
r∗(tf )

)T
AT∆−1(tf )(r

∗(tf )− xf )

= ‖r∗(tf )‖2
−2(λ∗1)2DBR−1BTD+λ∗1(ATD+DA), (4.26)

where the last step uses the Karush-Kuhn-Tucker (KKT) conditions of (EP1):

1

2
∆−1(tf )(r

∗(tf )− xf ) + λ∗1Dr
∗(tf ) = 0, (4.27)

with λ∗1 being the positive Lagrange multiplier associated with the global minimum.

Now we introduce an assumption on the dynamics of the mobile agent, which

is necessary for a geometric property of the optimal trajectory at the terminal time.

Assumption 4.2. BT =

[
02×2 BT

2

]
, with rank(B2) = 2.

Assumption 4.2 states that the control u can only directly steer the time

derivative of the velocity in the state x(t), which is the acceleration of the mobile

agent.

Partition matrix A and vector r∗(tf ) in the following way,

A =

A1 A2

A3 A4

 , r∗(tf ) =

r∗p(tf )
r∗v(tf )

 , (4.28)
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where Ai ∈ R2×2, i = 1, 2, 3, 4, and r∗p(tf ), r
∗
v(tf ) ∈ R2. The vectors r∗p(tf ) and r∗v(tf )

represent the projections of r∗(tf ) onto the position subspace and velocity subspace,

respectively.

With Assumption 4.2 and partitions in (4.5) and (4.28), we can simplify the

partial derivative in (4.14) to the following form:

J̇∗i (tf ) = 2λ∗1
(
r∗p(tf )

)T
Dp(A1r

∗
p(tf ) + A2r

∗
v(tf )). (4.29)

The next lemma relates the sign of the partial derivative in (4.29) to a geo-

metric property of the optimal trajectory at the terminal time.

Lemma 4.2. Let Assumption 4.2 hold and consider the nontrivial case xf /∈ D2.

Then at a fixed terminal time tf ∈ (t0, t0 +T ), the optimal trajectory of system (4.1)

under the optimal inner stage control (4.13) will enter the target area Dp2 if and

only if J̇∗i (tf ) < 0, will exit Dp2 if and only if J̇∗i (tf ) > 0 and will be tangent to the

boundary of Dp2 if and only if J̇∗i (tf ) = 0.

Proof. Since xf /∈ D2, by complementary slackness, λ∗1 > 0 and ‖r∗(tf )‖2
D =

‖r∗p(tf )‖
2
Dp

= d2
2, i.e., r∗p(tf ) is on the boundary of Dp2. Then Dpr

∗
p(tf ) is the outward

normal vector of Dp2 at r∗p(tf ).

On the other hand, writing dynamics (4.1) in the partitioned form,ẋ∗p(tf )
ẋ∗v(tf )

 =

A1 A2

A3 A4


x∗p(tf )
x∗v(tf )

+

02×2

B2

u∗i (tf ), (4.30)

the first row reads ẋ∗p(tf ) = A1x
∗
p(tf ) + A2x

∗
v(tf ) which is the velocity x∗v(tf ) of the

terminal state. Using the fact that the optimal trajectory yields x∗p(tf ) = r∗p(tf ) and

x∗v(tf ) = r∗v(tf ), we have x∗v(tf ) = A1r
∗
p(tf ) + A2r

∗
v(tf ).
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A B

Figure 4.2: Relation between J̇∗i (tf ) and the behavior of the optimal
trajectory at the terminal time. (A) The optimal trajectory enters the
target area at the terminal time when J̇∗i (tf ) < 0. (B) The optimal
trajectory exits the target area when J̇∗i (tf ) > 0.

So, J̇∗i (tf ) < 0 if and only if the included angle is obtuse between two vectors

Dpr
∗
p(tf ) and A1r

∗
p(tf ) + A2r

∗
v(tf ). Since Dpr

∗
p(tf ) always points outwards Dp2, we

conclude A1r
∗
p(tf ) + A2r

∗
v(tf ) points inward Dp2, which is equivalent to that the

optimal trajectory enters the target area at tf . The cases of the derivative being

nonnegative follow the same logic.

Figure 4.2 illustrates the relation between the sign of J̇∗i (tf ) and the behavior

of the optimal trajectory at the terminal time.

4.3.2 Augmented outer stage problem

By the LQR theory [20], for a fixed terminal state linear-quadratic problem,

the optimal control is a linear combination of the state and the terminal state. This

result and the linear dynamics imply that optimal cost is quadratic in the initial
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state and the terminal state. This observation allows us to transform (P2) into the

following equivalent problem.

minimize
r(t0)∈R4,r(tf )∈R4

‖r(t0)‖2
Ξ3

+ 2xT0 Ξ2r(t0) + ‖x0‖2
Ξ1

+
1

2
‖Φ(tf , t0)r(t0)− r(tf )‖2

∆−1(tf )

subject to ‖r(t0)‖2
D = d2

1,

‖r(tf )‖2
D ≤ d2

2,

(EP2)

where the first three terms in the cost function constitute the minimum outer stage

cost which is quadratic in x0 and r(t0). The vector r(t0) is the desired switching

state, which is an optimization variable here. The first constraint specifies that

the desired switching state must be on the boundary of the time-costly area. The

last term in the cost function and last constraint are adopted from (EP1). The

expressions of Ξ1,Ξ2, and Ξ3 are as follows

Ξ1 =
1

2

∫ t0

0

Φ̄T (t, 0)QΦ̄(t, 0) + H̄T (t)RH̄(t) dt, (4.31a)

Ξ2 =
1

2

∫ t0

0

−Φ̄T (t, 0)QL̄(t) + H̄T (t)R(H(t)L̄(t)− L(t)) dt, (4.31b)

Ξ3 =
1

2

∫ t0

0

L̄T (t)QL̄(t) + (H(t)L̄(t)− L(t))TR(H(t)L̄(t)− L(t)) dt, (4.31c)

with

H̄(t) = −H(t)Φ̄(t, 0), (4.32a)

L̄(t) =

∫ t

0

Φ̄(t, τ)BL(τ) dτ, (4.32b)
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and Φ̄(t, τ) being the state transition matrix associated with Ā(t) = A−BH(t) and

hence the unique solution of

d

dt
Φ̄(t, τ) = Ā(t)Φ̄(t, τ),∀t ≥ τ ≥ 0, (4.32a)

Φ̄(τ, τ) = I4,∀τ ≥ 0, (4.32b)

and H(t) as well as L(t) being obtained by solving the following set of equations

backwards in time,

−Ṡ(t) = ATS(t) + S(t)A− S(t)BR−1BTS(t) +Q, (4.33a)

K(t) = R−1BTS(t), (4.33b)

−V̇ (t) = (A−BK(t))TV (t), (4.33c)

Ṗ (t) = V T (t)BR−1BTV (t), (4.33d)

where t ≤ t0, with boundary conditions S(t0) = 04×4, V (t0) = I4, P (t0) = 04×4, and

H(t) = K(t)−R−1BTV (t)P−1(t)V T (t), (4.34a)

L(t) = R−1BTV (t)P−1(t). (4.34b)

Problem (EP2) seeks a switching state r(t0) on the boundary of the time-

costly area and a terminal state r(tf ) within the target area, such that the sum

of the quadratic cost of the outer stage and the control effort of the inner stage is

minimized. Note that val(EP2)= J∗(tf ).

Denote the solution of (EP2) by r∗(t0) and r∗(tf ). Then the optimal control

u∗o of (P2) is obtained by

u∗o(t) = −H(t)x∗(t)− L(t)r∗(t0), t ∈ [0, t0), (4.35)
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where x∗ denotes the optimal state under the optimal control u∗o.

We now show how to solve (EP2). First rewrite (EP2) in a concise form to

simplify notations. Let

Γ1 =

 D 04×4

04×4 04×4

 ,Γ2 =

04×4 04×4

04×4 D

 , (4.36a)

M =

M1 M2

MT
2 M3

 , y =

r(t0)

r(tf )

 , q =

Ξ2x0

04×1

 , (4.36b)

where

M1 = Ξ3 +
1

2
ΦT (tf , t0)∆−1(tf )Φ(tf , t0), (4.37a)

M2 = −1

2
ΦT (tf , t0)∆−1(tf ), (4.37b)

M3 =
1

2
∆−1(tf ). (4.37c)

Then (EP2) has the following form

minimize
y∈R8

‖y‖2
M + 2qTy

subject to ‖y‖2
Γ1

= d2
1,

‖y‖2
Γ2
≤ d2

2,

(P4)

where we drop the term ‖x0‖2
Ξ1

in the cost function because it is a constant when

x0 is given.

Since M � 0, the cost function of (P4) is strictly convex. Hence, (P4) can be
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solved by the following two relaxations,

minimize
y∈R8

‖y‖2
M + 2qTy

subject to ‖y‖2
Γ1
≤ d2

1,

‖y‖2
Γ2
≤ d2

2,

(P4-1)

minimize
y∈R8

‖y‖2
M + 2qTy

subject to ‖y‖2
Γ1
≥ d2

1,

‖y‖2
Γ2
≤ d2

2.

(P4-2)

Specifically, the optimal solution of (P4) is identical to the optimal solution

of (P4-i), i = 1, 2, if (P4-i)’s first constraint is active at its optimal solution. (P4-1)

is a convex QC2QP in which Slater’s condition holds. Hence, strong duality holds

for (P4-1) whose global optimal solution can be efficiently solved. Problem (P4-2)

is nonconvex for which we can use Theorem 3.2 to check if strong duality holds by

solving its Lagrange dual and semidefinite relaxation.

The Lagrange dual problem of (P4-2) is the following.

maximize
µ0,µ1,µ2∈R

µ0

subject to Z(µ0, µ1, µ2) � 0,

µi ≥ 0, i = 1, 2,

(P4-2D)

where

Z(µ0, µ1, µ2) =

−µ0 + µ1d
2
1 − µ2d

2
2 qT

q M − µ1Γ1 + µ2Γ2

 . (4.38)
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The semidefinite relaxation of (P4-2) is the following.

minimize
Y ∈S9

M(q0) • Y

subject to M(qi) • Y ≤ 0, i = 1, 2,

I00 • Y = 1,

Y � 0,

(P4-2R)

where

M(q0)
def
=

 0 qT

qT M

 ,M(q1)
def
=

d2
1 0

0 −Γ1

 ,M(q2)
def
=

−d2
2 0

0 Γ2

 , I00
def
=

1 0

0 0

 .
(4.39)

Let Ŷ and (Ẑ, µ̂0, µ̂1, µ̂2) denote a pair of optimal solutions for (P4-2R) and

(P4-2D). By Theorem 3.2, strong duality holds for (P4-2) if and only if the pair Ŷ

and (Ẑ, µ̂0, µ̂1, µ̂2) violates Property I+, which is restated as follows,

1. µ̂1µ̂2 6= 0;

2. rank(Ẑ) = 7;

3. rank(Ŷ ) = 2 and there is a rank-one decomposition of Ŷ , Ŷ = ŷ1ŷ
T
1 + ŷ2ŷ

T
2

such that

M(q1) • ŷiŷ
T
i = 0, i = 1, 2, (4.40)

(M(q2) • ŷ1ŷ
T
1 )(M(q2) • ŷ2ŷ

T
2 ) < 0. (4.41)

4. M(q1) • ŷ1ŷ
T
2 6= 0.

Now problem (EP2) can be solved in the following manner. First solve (P4)
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for y∗ using Algorithm 1. Then we can obtain the solution r∗(t0) and r∗(tf ) of (EP2)

by the partition of y in (4.36b).

Algorithm 1: Computing the optimal solution of (P4)

Input: M, q,Γ1,Γ2, d1, d2

Output: y∗

1 begin
2 y∗ ← solve (P4-1) by solving its dual ;
3 if y∗ is active at the first constraint of (P4-1) then
4 return y∗;
5 else

6 (Ẑ, µ̂0, µ̂1, µ̂2)← solve (P4-2D);

7 Ŷ ← solve (P4-2R);

8 if the pair (Ẑ, µ̂0, µ̂1, µ̂2) and Ŷ violates Property I+ then

9 y∗ ← conduct a rank-one decomposition of Ŷ
10 else
11 y∗ ← solve (P4-2) by a nonlinear solver (e.g. MATLAB

fmincon)
12 end
13 return y∗;

14 end

15 end

The optimal value J∗(tf ) of (P2) is

J∗(tf ) = val(EP2) = ‖r∗(t0)‖2
M1

+2(r∗(t0))TM2r
∗(tf )+‖r∗(tf )‖2

M3
+‖x0‖2

Ξ1
. (4.42)

And the following lemma states the properties of (EP2).

Lemma 4.3. For tf ∈ (t0, t0 + T ),

1. The function J∗(tf ) is continuous w.r.t. tf .

2. The optimal switching state r∗(t0) and the optimal terminal state r∗(tf ) are

vector-valued functions of tf and are continuous w.r.t. tf .
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3. The derivative of J∗(tf ) w.r.t. tf , denoted by J̇∗(tf ), is

J̇∗(tf ) =


‖r∗(tf )‖2

Θ2
, if rfp /∈ Dp2,

0, if rfp ∈ int(Dp2),

(4.43)

where Θ2 = −2(λ∗2)2DBR−1BTD + λ∗2(ATD +DA) and λ∗2 satisfies

∆−1(tf )(r
∗(tf )− Φ(tf , t0)r∗(t0)) = −2λ∗2Dr

∗(tf ), (4.44)

and rfp denotes to the projection of Φ(tf , t0)r∗(t0) onto the position subspace.

Proof. We provide a sketch of the proof as the following. The proof uses the identical

method applied in the proof of Lemma 4.1, i.e., using the optimality of minimizers at

different terminal times to deduce symmetric inequalities and hence equalities. The

derivation of λ∗2 (and hence Θ2) refers to the zero gradient condition ∆−1(tf )(r
∗(tf )−

Φ(tf , t0)r∗(t0)) + 2λ∗2Dr
∗(tf ) = 0 in the KKT conditions2 of (EP2), where λ∗2 ∈ R+

denotes the Lagrange multiplier associated with the second constraint.

The next lemma connects the geometric property of the optimal trajectory at

the terminal time with the sign of the derivative in (4.43).

Lemma 4.4. Let Assumption 4.2 hold and consider the nontrivial case rfp /∈ Dp2.

Then at a fixed terminal time tf ∈ (t0, t0 +T ), the optimal trajectory of system (4.1)

under the optimal controls (4.13) and (4.35) will enter the target area Dp2 if and

only if J̇∗(tf ) < 0, will exit Dp2 if and only if J̇∗(tf ) > 0 and will be tangent to the

boundary of Dp2 if and only if J̇∗(tf ) = 0.

2Linear independence constraint qualification (LICQ) holds for (EP2)
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Proof. A sketch of the proof is the following. We adopt the identical method used

in the proof of Lemma 4.2, except that xf and λ∗1 are replaced by Φ(tf , t0)r∗(t0) and

λ∗2, respectively.

4.3.3 Solution of the original problem (P)

To find a solution of (P), we shall find a locally optimal terminal time t∗f ∈

(t0, t0 +T ) of (P3). The first-order necessary condition states that a local minimizer

t∗f ∈ (t0, t0 + T ) of (P3) satisfies

J̇∗(t∗f ) + φ̇(t∗f − t0) = 0, (4.45)

where φ̇(t∗f − t0) = dφ(t)
dt

∣∣
t=t∗f−t0

. We suggest the bisection method because the

values of J∗(tf ) and J̇∗(tf ) cannot be evaluated until problem (EP2) is solved for

a specific value of tf . The initial left endpoint of bisection interval is t0 because

limtf→t+0
J∗(tf ) = ∞ and limtf→t+0

J̇∗(tf ) = −∞. The initial right endpoint tr is

determined heuristically by searching the minimum tr ∈ (t0, t0 + T ] such that the

derivative J̇∗(tr) turns positive. Once t∗f is found, the optimal controls u∗o(t) and

u∗i (t) are obtained by (4.35) and (4.13) using r∗(t∗f ) and r∗(t0), respectively, where

r∗(t∗f ) and r∗(t0) are solved in (EP2) with tf = t∗f .

Remark 4.1. Since φ(·) is a strictly increasing function with continuous derivative,

it must hold that J̇∗(t∗f ) < 0. By Lemma 4.4, this implies the optimal terminal time

trajectory must enter the target area at t∗f .
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4.4 Numerical example

In this section, we illustrate the procedure of finding an optimal terminal

time by the following numerical example. The results in this section are obtained

by CVX [21] (solving (P4-1)(P4-2D)(P4-2R)). The followings are the values and

functions applied in the simulation.

A =

02×2 I2

02×2 02×2

 , B =

02×2

I2

 , Q = I4, R = I2, Dp = I2, t0 = 3, T = 2,

ε = 10−4, d1 = 4, d2 = 1, x0 =

[
8 −3 0 2

]T
, φ(t) = 200t.

The bisection interval and minimum cost at each iteration are shown in Fig-

ure 4.3. The procedure stops at the 12th iteration because the tolerance ε has been

reached such that difference between values of J∗(tf ) +φ(tf − t0) in two consecutive

iterations is less than or equal to ε. A locally optimal terminal time t∗f = 3.417 has

been found with the optimal switching state

r∗(t0) =

[
3.963 −0.542 −5.673 0.803

]T
,

the optimal terminal state

r∗(t∗f ) =

[
0.968 −0.125 −7.851 1.086

]T
,

and the minimum cost being 187.486. The optimal values of (P3) is shown in

Figure 4.4, which indicates the t∗f we found attains a local minimum. Figure 4.5

shows the optimal trajectory. Notice that the optimal trajectory enters the target

area, as indicated by Remark 4.1.
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Figure 4.5: The optimal trajectory is the curve starting from the initial
position (marked by the small blue circle), crossing the boundary of
the time-costly area at the position marked by the blue square, and
entering the target area at the position marked by the red triangle. The
blue curve and red curve correspond to the trajectory by the outer stage
controller and inner stage controller, respectively. The dashed blue circle
and dotted red circle represent the boundaries of the time-costly area and
target area, respectively.
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Chapter 5: Two-stage Optimal Control for Target Reaching Inside a

Denied Area

In this Chapter, we consider another case of the special area: denied area. The

denied area, which generalizes the GPS-denied area commonly known in the robotics

research, is defined such that the mobile agent cannot receive measurements of its

position nor velocity once it enters the area. The difference between the time-costly

area and the denied area is that the former stresses the criticality of time while the

latter stresses the unavailability of measurements which are necessary for feedback

control. We also consider perturbation in this problem for which we propose a robust

controller.

5.1 Related literature

Research on operations of a mobile agent inside a denied area has a rich liter-

ature. From the perspective of localization and navigation, the main effort is placed

on maintaining a local estimation of the position and pose of the mobile agent when

the global estimation based on GPS is unavailable in the denied area. Such es-

timation typically uses onboard sensors to collect information of the surroundings

(e.g. by camera and lidar) and to measure the relative motion (e.g. by odometer
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and inertial measurement unit). Then the estimation is performed using a proba-

bilistic method (e.g. extended Kalman filter [22]), or using nonlinear optimization

techniques (e.g. factor graphs [23]). Since the lack of GPS measurement induces

nonobservability of the position and heading [24, 25], the estimation needs to refer

to a local reference frame for the full-state observability [26]. In this chapter, our

focus is on a control strategy that anticipates the future operations inside the denied

area, instead of estimating the state of the mobile agent there. Hence, we allow the

control inside the denied area to be open-loop, but pre-determined before its entry

to such area.

5.2 Discrete-time two-stage optimal control problem

We start by restating the two-stage optimal control problem in Chapter 4

under discrete-time dynamics. Consider the following linear discrete-time dynamics

of a mobile agent,

xk+1 = ADxk +BDuk, k = 0, 1, . . . , (5.1)

where xk ∈ R4 is the state variable, uk ∈ R2 is the control variable, and the system

matrices (AD, BD) are discretized from (4.2), with sampling time Ts and method

introduced in [27],AD BD

∗ I2

 = exp

( A B

02×4 02×2

Ts
)
, N =

t0
Ts
. (5.2)

The goal of this problem is to steer the mobile agent to the target that is en-

closed within the denied area. We stick to the decomposition introduced in Chapter
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4 such that the problem has an outer stage and an inner stage, where the time-costly

area is replaced by the denied area. The outer stage seeks a sequence of control

uo0:Ns−1 such that the mobile agent is steered to reach the boundary of the denied

area at the switching time Ns, with a minimum quadratic cost
Ns−1∑
k=0

‖uok‖
2
RD +‖xk‖2

QD ,

where RD = TsR andQD = TsQ. The inner stage seeks a sequence of control uiNs:N−1

such that the mobile agent is steered to reach the target area at the terminal time

N , with a minimum control effort
N−1∑
k=Ns

‖uik‖
2
RD . Notice that measurement of position

and velocity is unavailable upon the mobile agent’s arrival at the denied area. Hence

the inner stage only consider the cost containing a function of the control, not the

states which are unavailable for evaluation.

The two-stage problem has the following form

minimize
u0:N−1

1

2

Ns−1∑
k=0

‖uok‖
2
RD + ‖xk‖2

QD +
1

2

N−1∑
k=Ns

‖uik‖
2
RD

subject to xk+1 = ADxk +BDuk, k = 0, 1, . . . , N − 1,

uk =


uok, if k = 0, 1, . . . , Ns − 1,

uik, if k = Ns, Ns + 1, . . . , N − 1,

‖xNs‖
2
D = d2

1,

‖xN‖2
D ≤ d2

2.

(P5)
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By [20], this problem can be transformed to an equivalent form

minimize
rNs ,rN∈R4

‖x0‖2
ΞD
1

+ 2xT0 ΞD
2 rNs + ‖rNs‖

2
ΞD
3

+
1

2
‖(AD)N−NsrNs − rN‖

2
(∆D(Ns,N))−1

subject to ‖rNs‖
2
D = d2

1,

‖rN‖2
D ≤ d2

2.

(EP5)

where

ΞD
1 =

1

2

N−1∑
k=0

(Φ̄D(k, 0))TQDΦ̄D(k, 0) + (H̄D
k )TRDH̄D

k , (5.3a)

ΞD
2 =

1

2

N−1∑
k=0

−(Φ̄D(k, 0))TQDL̄D
k − (H̄D

k )TRD(HD
k L̄

D
k − LD

k ), (5.3b)

ΞD
3 =

1

2

N−1∑
k=0

(L̄D
k )TQDL̄D

k + (HD
k L̄

D
k − LD

k )TRD(HD
k L̄

D
k − LD

k ), (5.3c)

∆D(Ns, N) =
N−1∑
k=Ns

(AD)N−1−kBD(RD)−1(BD)T ((AD)T )N−1−k, (5.3d)
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with

Kk = ((BD)TSk+1B
D +RD)−1(BD)TSk+1A

D, (5.4a)

Sk = (AD)TSk+1(AD −BDKk) +QD, (5.4b)

Vk = (AD −BDKk)
TVk+1, (5.4c)

Pk = Pk+1 − V T
k+1B

D((BD)TSk+1B
D +RD)−1(BD)TVk+1, (5.4d)

Ku
k = ((BD)TSk+1B

D +RD)−1(BD)T , (5.4e)

HD
k = Kk −Ku

kVk+1P
−1
k V T

k , (5.4f)

LD
k = Ku

kVk+1P
−1
k , (5.4g)

Φ̄D(k, j) =


k−1∏
i=j

(AD −BDHD
i ) , if k > j,

I , if k = j,

(5.4h)

H̄D
k = HD

k Φ̄D(k, 0), (5.4i)

L̄D
k =

k−1∑
j=0

Φ̄D(k, j)BLD
j , (5.4j)

and boundary conditions SNo = 04×4, VNo = I and PNo = 04×4 and here No = Ns.

Problem (EP5) has an identical structure to (EP2). Hence we can recast (EP5)

in the form of (P4) and refer to Algorithm 1 for a solution. Denote the solution of

(EP5) as r̄Ns and r̄N . Then the optimal controls of (P5), denoted by ūok and ūik are

given by

ūok = −HD
k x̄k − LD

k r̄Ns , k = 0, 1, . . . , Ns − 1, (5.5a)

ūik = −(RD)−1(BD)T ((AD)T )N−k−1(∆D(Ns, N))−1((AD)N−Ns r̄Ns − r̄N), (5.5b)

for k = Ns, Ns + 1, . . . , N − 1, where x̄k denotes the state steered by control input

ūok−1.
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The advantage of casting (P5) into (EP5) is that the latter significantly de-

creases the size of the optimization problem: (EP5) only computes the optimal

switching state and the optimal terminal state online, using offline computable ma-

trix coefficients ΞD
1 ,Ξ

D
2 ,Ξ

D
3 and ∆D(Ns, N). And the optimal control sequence can

be recovered using (5.5a) and (5.5b) once the two optimal states are solved.

5.3 Problem formulation with perturbation

In this section, we illustrate how to modify the problem formulation to incor-

porate the perturbation. First, consider the dynamics of the mobile agent with an

additive perturbation, i.e.,

xk+1 = ADxk +BDuk + wk, k = 0, 1, . . . , (5.6)

where wk ∈ R4 is the perturbation. The perturbation is bounded within a convex

polytopeW ⊆ R4 with m vertices {v1, v2, . . . , vm}, but are otherwise unknown. The

polytope W has an equivalent H-representation by linear inequalities, i.e.,

W = {x ∈ R4|Gx ≤ g}, (5.7)

where G and g have conformed dimensions. We assume W contains the origin.

Perturbation can fail the controller (5.5), which is designed using deterministic

dynamics, as shown in Figure 5.1. The challenges brought by perturbations are

summarized into the following aspects.

1. Position of stage switching. The constraint that the switching state is on the

boundary of the denied area is hardly feasible because the boundary has a zero
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Figure 5.1: Illustration of the failure of controller (5.5) subject to pertur-
bations. The figure shows trajectories of the mobile agent, with dynamics
(5.6), controlled by (5.5) in 100 simulations. The blue trajectories are
steered by (5.5a) while the red ones are steered by (5.5b). (A) Enlarged
view of switching positions near the boundary of the denied area. Only
the ones on the right, which are outside the denied area, are proper
switching positions. (B) Enlarged view of terminal positions near the
target area. Only the ones on top left, which are inside the target area,
are proper terminal positions.

measure in R4. In Figure 5.1(A), there is no switching position that arrives

right on the boundary of the denied area.

2. Time of stage switching. Such time needs to be selected such that the switching

happens sufficiently close but outside the denied area. In Figure 5.1(A), almost

half of all trajectories have the switching positions inside the denied area,

which is improper.

3. Target reaching. The mobile agent needs to enter the target despite perturba-
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tions. In Figure 5.1(B), almost half of all trajectories do not reach the target

area, despite the fact that their switching positions might not be proper either.

The goal of the problem is to find a control sequence such that the mobile

agent with dynamics (5.6) can be steered to reach the target area enclosed within the

denied area, subject to the perturbation. As before, the problem can be decomposed

into two stages, but these two stages here differ with the stages defined under the

perturbation-free dynamics. The presence of the perturbation makes it impossible

to control the mobile agent to precisely arrive at the boundary of the denied area and

hence to switch stage. The time of stage switching must be carefully determined

at which the mobile agent is outside, but sufficiently close to, the denied area.

Therefore, under current settings, the switching time is a decision variable. Once

the mobile agent switches stage, it relies on the controller of the second stage to

reach the target area.

Because of the advantage of efficient online computation, we stick to the con-

trols uok and uik in the form of (5.5a) and (5.5b), i.e.,

uok = −HD
k xk − LD

k rNs , k = 0, 1, . . . , Ns − 1, (5.8a)

uik = −(RD)−1(BD)T ((AD)T )N−k−1(∆D(Ns, N))−1((AD)N−Nsxi0 − rN), (5.8b)

for k = Ns, Ns + 1, . . . , N , where xi0 denotes an arbitrary initial state of the inner

stage. The deterministic switching state rNs and the deterministic terminal state

rN are to be determined later to adapt to the perturbation, together with new

optimization variables introduced.

We can now make predictions of states by set propagation, given dynamics
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(5.6) and controls in (5.8). As the control sequence uo0:Ns−1 steers the mobile agent

to the deterministic switching state rNs , the switching state xoNs
under a realization

of perturbations w0:Ns−1 is

xoNs
= Φ̄D(Ns, 0)x0 −

Ns−1∑
k=0

Φ̄D(Ns, k)BDLD
k rNs +

Ns−1∑
k=0

Φ̄D(Ns, k)wk. (5.9)

Since wk ∈ W for all k, we can characterize the predicted set of switching states

(PSSS), denoted by X o
Ns

, as the following,

X o
Ns

= (Φ̄D(Ns, 0)x0 −
Ns−1∑
k=0

Φ̄D(Ns, k)BDLD
k rNs)⊕

Ns−1⊕
k=0

Φ̄D(Ns, k)W

= rNs ⊕Wo
Ns
, (5.10)

where Wo
Ns

is the propagated set of perturbation at Ns, i.e.,

Wo
Ns

=
Ns−1⊕
k=0

Φ̄D(Ns, k)W . (5.11)

As the control sequence uiNs:N−1 steers the mobile agent to a deterministic terminal

state rN , the terminal state under a realization of perturbations wNs:N−1 is

xiN =(AD)N−Nsxi0 −
N−1∑
k=Ns

(AD)N−1−kBD(RD)−1(BD)T ((AD)T )N−1−krN

+
N−1∑
k=Ns

(AD)N−1−kwk. (5.12)

Since wk ∈ W for all k, we can characterize the predicted set of terminal states

(PSTS), denoted by X i
N , as the following,

X i
N = ((AD)N−Nsxi0 −

N−1∑
k=Ns

(AD)N−1−kBD(RD)−1(BD)T ((AD)T )N−1−krN)

⊕
N−1⊕
k=Ns

(AD)N−1−kW (5.13)

= rN ⊕W i
N , (5.14)
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where W i
N is the propagated set of perturbation at N , i.e.,

W i
N =

N−1⊕
k=Ns

(AD)N−1−kW . (5.15)

Notice that the PSSS X o
Ns

and PSTS X i
N are the propagated set of perturbation

Wo
Ns

and W i
N shifted by the deterministic switching state rNs and the deterministic

terminal state rN , respectively.

The sets Wo
Ns

and W i
N are convex polytopes and are pre-computable once N

and Ns are given. We adopt both the V-representation and H-representation ofWo
Ns

and W i
N . Therefore,

Wo
Ns

= convh{vo1, vo2, . . . , vom(Ns)} = {x ∈ R4|Go
Ns
x ≤ goNs

}, (5.16)

W i
N = convh{vi1, vi2, . . . , vim(N)} = {x ∈ R4|Gi

Nx ≤ giN}, (5.17)

wherem(Ns) andm(N) denote the number of vertices ofWo
Ns

andW i
N ; Go

Ns
, goNs

, Gi
N ,

and giN are of conformed dimensions.

We evaluate the cost incurred in the outer stage by the sum of quadratic

functions of control actions uo0:Ns−1 and corresponding states xo0:Ns−1 under the de-

terministic dynamics (5.1). The cost has the following form,

1

2

Ns−1∑
k=0

‖uok‖
2
RD + ‖xk‖2

QD . (5.18)

Since control uok in (5.8a) is applied, then the quadratic cost equals

‖xo0‖
2
Ξ1

+ 2rTNs
Ξ2x

o
0 + ‖rNs‖

2
Ξ3
, (5.19)

where xo0 ∈ R4 is the initial state which is known.

We need to place X o
Ns

outside the denied area because this is where stage

switching happens. In this way, the switching state xNs will stay outside the denied
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area because xNs ∈ X o
Ns

. We can formulate this requirement in the following manner.

Find a vector rs ∈ R4 on the boundary of the denied area, such that the tangent

plane (which is also the supporting plane) of the denied area at rs separates the

denied area and X o
Ns

, i.e.,

(rNs + vok − rs)TDrs ≥ 0, k = 1, 2, . . . ,m(Ns), (5.20)

‖rs‖2
D = d2

1. (5.21)

The geometric illustration of the above two equations is shown in Figure 5.2.

BA

Figure 5.2: Geometric illustration of (5.20) and (5.21). (A) The vertices
{vo1, vo2, vo3, vo4, vo5} of Wo

Ns
are shown. (B) The set X o

Ns
is placed outside

the denied area if the included angle between the normal vector Drs and
rNs + vok − rs is acute for k = 1, 2, . . . , 5.

Then X o
Ns

is placed outside the denied area, due to the convexity of the denied

area and Wo
Ns

. Vectors rs and rNs are the optimization variables to be determined

since Wo
Ns

is fixed for a given Ns. The outer stage problem can be formulated in
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the following form,

minimize
rNs ,rs∈R4

‖xo0‖
2
Ξ1

+ 2rTNs
Ξ2x

o
0 + ‖rNs‖

2
Ξ3

subject to (rNs + vok − rs)TDrs ≥ 0, k = 1, 2, . . . ,m(Ns),

‖rs‖2
D = d2

1.

(P6)

We evaluate the cost incurred in the second stage by the control effort

1

2

N−1∑
k=Ns

‖uik‖
2
RD , (5.22)

and since uik in (5.8b) is applied, this cost equals

1

2
‖(AD)N−Nsxi0 − rN‖

2
(∆D(Ns,N))−1 , (5.23)

where xi0 ∈ R4 denotes an arbitrary initial state of the inner stage, which is known.

We will place X i
N inside the denied area so that the terminal state xN can

reach the target area because xN ∈ X i
N . As W i

N is fixed for a given N , we need to

find rN such that all the vertices of X i
N are inside the target area, i.e.,

‖rN + vik‖
2
D ≤ d2

2, k = 1, 2, . . . ,m(N), (5.24)

where rN is an optimization variable to be determined. Due to convexity of W i
N

and the target area, X i
N is placed inside the denied area. The geometric illustration

of (5.24) is shown in Figure 5.3.

The inner stage problem can be formulated as

minimize
rN∈R4

1

2
‖(AD)N−Nsxi0 − rN‖

2
(∆D(Ns,N))−1

subject to ‖rN + vik‖
2
D ≤ d2

2, k = 1, 2, . . . ,m(N).

(P7)
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BA

Figure 5.3: Geometric illustration of (5.24). (A) The vertices
{vi1, vi2, vi3, vi4, vi5} of W i

N are shown. (B) The set X i
N is placed inside

the target area if all vertices rN + vik, k = 1, 2, . . . , 5, of X i
N are inside

such area.

Now, we combine (P6) and (P7) to form a complete problem as follows.

minimize
rNs ,rs,r

i
0,rN∈R4

‖xo0‖
2
Ξ1

+ 2rTNs
Ξ2x

o
0 + ‖rNs‖

2
Ξ3

+
1

2
‖((AD)N−Nsri0 − rN‖

2
(∆D(Ns,N))−1

subject to (rNs + vok − rs)TDrs ≥ 0, k = 1, 2, . . . ,m(Ns),

‖rs‖2
D = d2

1,

Go
Ns

(ri0 − rNs) ≤ goNs
,

‖rN + vik‖
2
D ≤ d2

2, k = 1, 2, . . . ,m(N).

(P8)

The cost function is the sum of the ones in (P6) and (P7). Notice that the inner stage

initial state is denoted by ri0, which is an optimization variable. It is constrained to

stay within the PSSS X o
Ns

, as formulated in the third constraint. This constraint is

added to find a realization of the initial state for the inner stage (which is also the

switching state) which yields the minimum overall cost compared to other states

inside the PSSS. The first two constraints come from (P6).
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Problem (P8) seeks:

1. a deterministic switching state rNs such that X o
Ns

is placed outside the denied

area;

2. an initial state ri0 of the inner stage such that ri0 is a realization of the switching

state which resides in X o
Ns

;

3. a deterministic terminal state rN such that X i
N is placed inside the target area;

4. a lower bound of the overall cost among all realizations of the inner stage

initial states.

Problem (P8) is a nonconvex QCQP, which we may obtain a numerical solution

that yields a local minimum by a nonlinear solver. Let (r∗Ns
, r∗s , r

i∗
0 , r̄N) denote a local

minimizer of (P8). For implementation, we apply a control sequence uo∗0:Ns−1 to the

outer stage states, where

uo∗k = −HD
k x
∗
k − LD

k r
∗
Ns
, k = 0, 1, . . . , Ns − 1. (5.25)

The state is steered to x∗Ns
∈ X o∗

Ns

def
= r∗Ns

⊕ Wo
Ns

. Note that x∗Ns
is may not be

identical to r∗Ns
due to perturbations. Then we set x∗Ns

= xi0 as the initial state of

the inner stage and solve (P7) for an optimal deterministic terminal state, denoted

by r∗N . The inner stage optimal control sequence ui∗Ns:N−1 is applied to the mobile

agent, where

ui∗k = −(RD)−1(BD)T ((AD)T )N−k−1(∆D(Ns, N))−1((AD)N−Nsxi0 − r∗N), (5.26)

for k = Ns, Ns+1, . . . , N−1. And the mobile agent will be steered to x∗N ∈ r∗N⊕W i
N ,

which is inside the target area.

65



The control sequences uo∗0:Ns−1 and ui∗Ns:N−1 can carry the mobile agent to the

target and guarantee a proper stage switching outside the denied area when (P8) is

solvable. But the outer stage optimal control does not use feedback efficiently. It

only use the measurement at the initial time to plan for the future control actions

once and for all. Though uo∗k has the feedback form, i.e., it is linear function of

state x∗k at time k, it is only a control action that is optimal when planned at

the initial time. Ideally, we would like the measurements to aid the controller to

decide a current action such that the future controls are optimal based on current

measurements. We will propose a robust controller in the next section to stress this

issue.

5.4 Robust controller using variable horizon model predictive control

In this section, we introduce a robust controller using model predictive control

with a variable horizon. The controller only works in the outer stage. It plans the

mobile agent’s future trajectory at each step, seeking an optimal switching time and

a sequence of control actions such that a cost is minimized. And it will implement the

first control action in the optimal sequence to the actuator of the mobile agent. The

model predictive controller in the outer stage is switched to an inner stage controller

when the criterion for stage switching is met. Such criterion is determined by the

variable horizon scheme. The inner stage controller remains (5.26), which has been

introduced in the previous section.

Even though the switching time Ns is allowed to vary, we stick to the controls
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in the forms of (5.25) in the outer stage. Hence, we adopt (P8) with necessary

changes to accommodate the variable switching time.

We now introduce new notations under the variable switching time. We use

subscript k[Ns]|j to denote a variable at a future time k, which is originated from

the current time j, with switching time Ns. We will omit |j to indicate that such

variable is independent to a current time j. And we use Ns|j as a short for Ns[Ns]|j.

For example, (5.8a) is now written as

uok[Ns]|j = −HD
k[Ns]xk[Ns]|j − LD

k[Ns]rNs|j, k = j, j + 1, . . . , Ns − 1, (5.27)

where the initial value xj[Ns]|j = xj is the current state and rNs|j is the deterministic

switching state to be determined later. The matrices HD
k[Ns] and LD

k[Ns] are

HD
k[Ns] = HD

No−(Ns−k), (5.28a)

LD
k[Ns] = LD

No−(Ns−k), (5.28b)

for k = 0, 1, . . . , Ns − 1, where the terms on the right hand side of both equations

come from (5.4a)-(5.4g) with a sufficiently large boundary time No. The equalities

in (5.28) hold because (5.4a)-(5.4e) are solved backwards in time. Hence, if (5.4a)-

(5.4e) are solved for a sufficiently large No, then we can obtain the values of HD
k[Ns]

and LD
k[Ns] by referring to the last (Ns − k)th values in the sequences HD

0:No
and

LD
0:No

, i.e., HD
No−(Ns−k) and LD

No−(Ns−k), respectively. This is another advantage of

using the control in form of (5.8a) since equations (5.4a)-(5.4e) only need solving

once and offline with a sufficiently large No, instead of being solved each time when

Ns varies.
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Remark 5.1. HD
k[Ns−1] = HD

k+1[Ns] and LD
k[Ns−1] = LD

k+1[Ns].

With (5.28), we have a new formula for the PSSS X o
Ns

, which is now denoted

by X o
Ns|j, with switching time Ns,

X o
Ns|j = rNs|j ⊕Wo

Ns|j, (5.29)

Wo
Ns|j =

Ns−1⊕
i=j

Φ̄D
[Ns](Ns, i+ 1)W , (5.30)

where

Φ̄D
[Ns](n2, n1) =


n2−1∏
k=n1

(AD −BDHD
k[Ns]), if n1 < n2,

I4, if n1 = n2.

(5.31)

SinceWo
Ns|j is still a convex polytope, we denote its vertices by vok, k = 1, 2, . . . ,m(Ns|j),

i.e.,

Wo
Ns|j = convh{vo1, vo2, . . . , vom(Ns|j)}. (5.32)

Before we proceed to the new problem formulation, we first introduce proper-

ties of the propagated set of perturbation Wo
Ns|j. The criterion for stage switching

relies on these properties.

Lemma 5.1. For j = 0, 1, . . . Ns − 2, we have

1. Wo
Ns|j+1 ⊆ Wo

Ns|j

2. Wo
Ns|j+1 =Wo

Ns−1|j

3. Wo
Ns−1|j ⊆ Wo

Ns|j

Proof. 1. By definition (5.30)

Wo
Ns|j =Wo

Ns|j+1 ⊕ Φ̄D
[Ns](Ns, j + 1)W . (5.33)
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Because W contains the origin, we conclude that Wo
Ns|j+1 ⊆ Wo

Ns|j.

2. By definition,

Wo
Ns−1|j =

Ns−2⊕
i=j

Φ̄D
[Ns−1](Ns − 1, i+ 1)W (5.34)

= W ⊕
Ns−3⊕
i=j

Ns−2∏
k=i+1

(AD −BDHD
k[Ns−1])W . (5.35)

On the other hand,

Wo
Ns|j+1 =

Ns−1⊕
i=j+1

Φ̄D
[Ns](Ns, i+ 1)W (5.36)

= W ⊕
Ns−2⊕
i=j+1

Ns−1∏
k=i+1

(AD −BDHD
k[Ns])W (5.37)

= W ⊕
Ns−3⊕
ī=j

Ns−1∏
k=ī+2

(AD −BDHD
k[Ns])W (5.38)

= W ⊕
Ns−3⊕
ī=j

Ns−2∏
k̄=ī+1

(AD −BDHD
k̄+1[Ns])W (5.39)

= Wo
Ns−1|j, (5.40)

where we change variable ī = i − 1 on the third line and k̄ = k − 1 on the fourth

line. The last step uses the fact that HD
k̄[Ns−1]

= HD
k̄+1[Ns]

, as shown in Remark 5.1.

3. This is a direct consequence of 1 and 2.

Lemma 5.1 states that if current time j is fixed, then the propagated set of

perturbation WNs|j grows in size as Ns increases. The size of the propagated set of

perturbation represents the level of uncertainty of the predicted switching state.

Now, we introduce the new problem formulation. Recall that we need to place
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the PSSS X o
Ns|j outside the denied area to guarantee a proper stage switching, i.e.,

(rNs|j + vok − rs|j)TDrs|j ≥ 0, k = 1, 2, . . . ,m(Ns), (5.41)

‖rs|j‖2
D = d2

1, (5.42)

which rewrites (5.20) and (5.21) with new notations rNs|j and rs|j. But this is not

enough because the PSSS could be placed far away from, while remaining outside,

the denied area. It does not make sense to make the position of switching far away

from the denied area. Hence it is reasonable to restrict the distance between the

PSSS and the origin within a certain limit. This limit is selected as the Euclidean

distance in the position subspace between the current stage xj and the origin. Here,

we use notation ‖·‖p to denote the Euclidean distance in the position subspace, i.e.,

for x ∈ R4,

‖x‖2
p = xT

 I2 02×2

02×2 02×2

x. (5.43)

Now, we restrict the distance to the origin of all vectors in the PSSS to be less than

that of xj, i.e.,

‖xj‖2
p ≥ ‖rNs|j + vok‖

2
p, k = 1, 2, . . . ,m(Ns). (5.44)

This constraint requires the position of any realization of the switching state xNs ∈

X o
Ns

= rNs|j ⊕ convh{vo1, vo2, . . . , vom(Ns|j)}, subject to perturbations, is closer to the

origin than the position of the current state.

Constraint (5.44) together with the constraints (5.41)-(5.42) form an annular

region to place the PSSS X o
Ns

, as shown in Figure 5.4. However, the size of PSSS

grows over Ns because the size of PSSS is determined by the propagated set of
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Figure 5.4: Annular region to place the PSSS X o
Ns

is the shaded area
which is between the ball, whose radius is the distance from the origin
to xj in the position subspace, and the denied area.

perturbationWo
Ns

. So there ought to be an upper bound N̄s(j) on the switching time

so that we can always find rNs|j and rs|j satisfying (5.41)-(5.44) for some Ns ≤ N̄s(j).

Definition 5.1. Define the set of switching times Ns(j) as

Ns(j)
def
= {Ns = j + 1, . . . , Nmax

s |∃rNs|j, rs|j ∈ R4 satisfying (5.41)-(5.44)},

where Nmax
s is the maximum allowed switching time that is given.

If Ns(j) 6= ∅, then the upper bound N̄s(j) is defined as the maximum Ns in

Ns(j), or, equivalently,

N̄s(j)
def
= min{Ns ∈ {j+1, j+2 . . . , Nmax

s }|@rNs|j, rs|j ∈ R4 satisfying (5.41)-(5.44)}−1.

(5.45)

The effectiveness of N̄s(j) as an upper bound is shown by the following propo-

sition.
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Proposition 5.1. Suppose Ns(j) 6= ∅.

1. Let N̂s ∈ {j+1, j+2 . . . , Nmax
s } be such that @rN̂s|j, rŝ|j ∈ R4 satisfying (5.41)-

(5.44). Then ∀Ns > N̂s, @rNs|j, rs|j ∈ R4 satisfying (5.41)-(5.44).

2. ∀Ns ≤ N̄s(j), ∃rNs|j, rs|j ∈ R4 satisfying (5.41)-(5.44).

Proof. 1. We prove by contradiction. Let Ns ≥ N̂s + 1 and assume ∃rNs|j, rs|j ∈

R4 satisfying (5.41)-(5.44). Then ∀a1, a2, . . . , am(Ns) ≥ 0, such that

m(Ns)∑
k=1

ak = 1, (5.46)

we have

0 ≥
m(Ns)∑
k=1

ak‖rNs|j + vok‖
2
p − ak‖xj‖

2
p (5.47)

≥ ‖
m(Ns)∑
k=1

akrNs|j + akv
o
k‖

2
p − ‖xj‖

2
p (5.48)

⇒ ‖xj‖2
p ≥ ‖rNs|j +

m(Ns)∑
k=1

akv
o
k‖

2
p, (5.49)

i.e., for an arbitrary vector v =
m(Ns)∑
k=1

akv
o
k ∈ Wo

Ns|j,

‖xj‖2
p ≥ ‖rNs|j + v‖2

p. (5.50)

By Lemma 5.1, WN̂s|j ⊆ WNs|j, i.e., vo
k̂
∈ WNs|j,∀k̂ = 1, 2, . . . ,m(N̂s), where

vo
k̂
’s are the vertices of WN̂s|j, so we have

‖xj‖2
p ≥ ‖rNs|j + vo

k̂
‖2
p, k̂ = 1, 2, . . . ,m(N̂s). (5.51)

Then, by making rN̂s|j = rNs|j, we have (5.44) satisfied, i.e.,

‖xj‖2
p ≥ ‖rN̂s|j + vo

k̂
‖2
p, k̂ = 1, 2, . . . ,m(N̂s). (5.52)
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On the other hand, since Wo
N̂s|j
⊆ Wo

Ns|j, each vertex vo
k̂

of Wo
N̂s|j

can be

represented by a convex combination of vertices vok’s ofWo
Ns|j, i.e., for each vo

k̂
,

there exist b1, . . . , bm(Ns|j) ≥ 0,
m(Ns|j)∑
k=1

bk = 1 such that

vo
k̂

=

m(Ns|j)∑
k=1

bkv
o
k. (5.53)

Then by (5.41), for any k̂ ∈ {1, 2, . . . ,m(N̂s|j)},

(rNs|j + vok − rs|j)TDrs|j ≥ 0 (5.54)

⇒
m(Ns|j)∑
k=1

bk(rNs|j + vok − rs|j)TDrs|j ≥ 0 (5.55)

⇒ (rNs|j + vo
k̂
− rs|j)TDrs|j ≥ 0. (5.56)

By making rN̂s|j = rNs|j, rŝ|j = rs|j, we know (5.41)-(5.42) hold for N̂s, i.e.,

(rN̂s|j + vo
k̂
− rŝ|j)TDrŝ|j ≥ 0, k̂ = 1, 2, . . . ,m(N̂s), (5.57)

‖rŝ|j‖2
D = d2

1, (5.58)

which is a contradiction.

2. This is a direct consequence of 1. By contradiction, assume ∃N ′s ≤ N̄s(j)

such that @rN ′s|j, rs′|j ∈ R4 satisfying (5.41)-(5.44). Then, by 1, ∀Ns ≥ N ′s,

@rNs|j, rs|j ∈ R4 satisfying (5.41)-(5.44). This is a contradiction since N̄s(j) ≥

N ′s.

If Ns(j) = ∅, then either j = Nmax
s or there exists no rNs|j, rs|j ∈ R4 satisfying

(5.41)-(5.44) for Ns ∈ {j + 1, . . . , Nmax
s }. Intuitively, the former means that the
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current time j reaches the maximum allowed time for stage switching while the

latter means that there is no chance we can place the PSSS within the annular

region specified by (5.41)-(5.44). In both cases, the model predictive controller

terminates and the inner stage controller takes over.

Therefore, the emptiness of Ns(j) characterizes the criterion of stage switching,

which we summarize in the following definition.

Definition 5.2. The criterion for stage switching is when there is no feasible future

switching time, i.e., when Ns(j) = ∅. The outer stage shall terminate at the current

step j and switch to the inner stage.

Now we present modified outer stage problem.

minimize
rNs|j ,rs|j ,r

i
0|j ,rN|j∈R4,Ns∈R

‖xj‖2
Ξ1

+ 2rTNs|jΞ2xj + ‖rNs|j‖
2
Ξ3

+
1

2
‖(AD)N−Nsri0|j − rN |j‖

2
(∆D(Ns,N))−1

subject to (rNs|j + vok − rs|j)TDrs|j ≥ 0, k = 1, 2, . . . ,m(Ns|j),

‖rs|j‖2
D = d2

1,

‖xj‖2
p ≥ ‖rNs|j + vok‖

2
p, k = 1, 2, . . . ,m(Ns|j),

Go
Ns

(ri0|j − rNs|j) ≤ goNs
,

‖rN |j + vik‖
2
D ≤ d2

2, k = 1, 2, . . . ,m(N),

Ns ∈ {j + 1, . . . , Nmax
s }.

(P-MPC)

We do not explicitly require Ns ∈ Ns(j) because it holds automatically when

(P-MPC) is feasible.
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If (P-MPC) is feasible, with N∗s denoting the optimal switching time and r∗N∗s |j

denoting a solution of (P-MPC), we apply the first control action of sequence,

uo∗k[N∗s ]|j = −HD
k[N∗s ]|jx

∗
k[N∗s ]|j − LD

k[N∗s ]|jr
∗
N∗s |j, (5.59)

to the actuator of the mobile agent.

If (P-MPC) is infeasible for some j, then the criterion for stage switching is

met and the outer stage terminates. The inner stage starts with initial state being

xj and the optimal inner stage control is given by (5.26), with xi0 = xj and r∗N solved

in (P7).

Problem (P-MPC) is a mixed-integer programming because of the last con-

straint. We can solve (P-MPC) by solving at most Nmax
s − j subproblems, i.e.,

minimize
rNs|j ,rs|j ,r

i
0|j ,rN|j∈R4

‖xj‖2
Ξ1

+ 2rTNs|jΞ2xj + ‖rNs|j‖
2
Ξ3

+
1

2
‖(AD)N−Nsri0|j − rN |j‖

2
(∆D(Ns,N))−1

subject to (rNs|j + vok − rs|j)TDrs|j ≥ 0, k = 1, 2, . . . ,m(Ns|j),

‖rs|j‖2
D = d2

1,

‖xj‖2
p ≥ ‖rNs|j + vok‖

2
p, k = 1, 2, . . . ,m(Ns|j),

Go
Ns

(ri0|j − rNs|j) ≤ goNs
,

‖rN |j + vik‖
2
D ≤ d2

2, k = 1, 2, . . . ,m(N).

(P-MPC(Ns))

where Ns is fixed. We do not necessarily need to solve (P-MPC(Ns)) for all Ns ∈

{j + 1, . . . , Nmax
s }. Rather, we only need to solve (P-MPC(Ns)) in an ascending

order of Ns: j + 1 → j + 2 → · · · → Nmax
s . Following this order, if (P-MPC(Ns))
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is non-feasible for some Ns = Ñs, then, by Proposition 5.1, there is no need to

carry on computing the rest of the subproblems (P-MPC(Ns)) in which Ns ∈ {Ñs +

1, . . . , Nmax
s }. Let JMPC(Ns)

def
= val(P-MPC(Ns)). Then we can obtain the optimal

switching time N∗s such that

N∗s = arg min
Ns∈{j+1,...,Ñs−1}

JMPC(Ns). (5.60)

5.5 Simulation result

In this section, we show the simulation result of the variable horizon model

predictive controller in the previous section.

We use the following parameters for simulation.

A =



0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0


, B =



0 0

0 0

1 0

0 1


, D =



1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0


, (5.61a)

Q = I4, R = I2, d1 = 4, d2 = 2, x0 =

[
10 0 2 −5

]T
. (5.61b)

The set of perturbation W is characterized by the inequality

W = {x ∈ R4|Gx ≤ g}, (5.62)
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where

G =



1 0 0 0

−1 0 0 0

0 1 0 0

0 −1 0 0

0 0 1 0

0 0 −1 0

0 0 0 1

0 0 0 −1



, g =



0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1



, (5.63)

i.e., W is a 4-dimensional cube with side length 0.2.

We use a sample time Ts = 0.1 s. And the values of AD, BD follow (5.2) and

RD = TsR and QD = TsQ. And we set the maximum allowed time for switching

Nmax
s = 30, and the terminal time N = Ns + 5, i.e., the duration for the inner stage

is 5 sample times.

We solve (P-MPC(Ns)) by MATLAB fmincon using the YALMIP [28]. At

each step j, we solve (P-MPC(Ns)) for Ns ∈ {j + 1, . . . , Nmax
s } in an ascending

order, until (P-MPC(Ns)) is infeasible. Then we select the optimal switching time

N∗s using (5.60). Define a successful trial in which the mobile agent switches stage

at a position that is sufficiently close to outside the denied area, and reaches the

target eventually. Then the trajectory of a successful trial is shown in Figure 5.5.

The initial position and trajectories planned at each step are displayed in Figure 5.6.

The optimal switching time and optimal cost at each step are displayed in Figure 5.7.

A collection of 16 successful trials is shown in Figure 5.8. As can be seen, all
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Figure 5.5: Trajectory of a successful trial. The target area (marked by
the red circle) resides inside the denied area (marked by the big blue
circle). Each small blue circle corresponds to the position at each step
in the outer stage. The inner stage starts at the red asterisk and steers
the mobile agent to the target.

such trajectories switch stage outside the denied area and reach the target eventually.

However, some trials ended in undesirable trajectories due to solver incapa-

bilities. As the criteria for stage switching is the infeasibility of (P-MPC(Ns)), if

the solver claims the problem is infeasible, then the controller will switch, regard-

less of the actual feasibility of the problem. An example is shown in Figure 5.9 for

illustration. In this trial, the solver claims the problem is infeasible at j = 5 but an

examination on the data indicates the contrary.
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x (m)

y
(m

)

Figure 5.6: Collection of planned trajectories at all steps of a successful
trial. The target area (marked by the red circle) resides inside the denied
area (marked by the big blue circle). Each planned trajectory starts
with the measured state at each step (marked by small blue circles). At
the each step, the outer stage problem is solved where the PSSS X o

N∗s
(marked by the blue rectangle) is placed outside the denied area and the
PSTS X i

N (marked by the red rectangle) is placed inside the target area.
The blue and red curves correspond to the predicted trajectories under
closed-loop control (5.59) and openloop control (5.26), respectively. The
controller switches stage at the position marked by the red asterisk.
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Figure 5.8: Collection of 16 successful trials. All trials have switching
positions outside the denied area and have reached the target.
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Figure 5.9: Collection of planned trajectories at all steps of an unsuc-
cessful trial. The stage switching happens at the position marked by the
red asterisk, which is far from the denied area.
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Chapter 6: Quadrotor Experiment

6.1 Introduction

Quadrotor is a type of aerial vehicle that has four rotors providing thrusts

and torques for movement of 6 degree-of-freedom (DOF). The simple mechanical

structure of the quadrotor makes it an ideal testbed for control algorithms. Though

the quadrotor has nonlinear dynamics, a linear stabilizing controller can be built

based on the linearized model in hover state. Hence, various quadrotor platforms

and controllers have been designed and built for different tasks. Since a considerable

amount of research has been done on the control of the quadrotor, we only name a

few here. Early studies on mathematical modeling and aerodynamic effects can be

found in [29, 30], followed by research on trajectory generation and control [31–35].

And beyond the control of a single quadrotor, swarm control has been investigated

in [36,37].

In this chapter, we will introduce the quadrotor testbeds used in the CPS and

Cooperative Autonomy Laboratory: an AscTec Hummingbird and an Ar.Drone. We

establish the dynamical model and design controllers for each quadrotor. We also

show the theoretical study in Chapter 4 and Chapter 5 can be utilized to build a

controller that can steer a quadrotor to the target which is enclosed within a denied
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area.

6.2 AscTec Hummingbird

The AscTec Hummingbird is a small, lightweight, and agile quadrotor built by

Ascending Technologies. It consists of a carbon-fiber frame, four brushless motors,

a lithium polymer (LiPo) battery, two ARM7 processors, a GPS receiving module,

an RC receiver, a pair of XBee modules, and inertial sensors. The inertial sen-

sors include a 3-DOF accelerometer, a 3-DOF gyroscope, a pressure sensor, and a

compass.

The AscTec Hummingbird provides an onboard Autopilot, which is functioned

on a High Level processor (HLP) and a Low Level processor (LLP). The LLP handles

sensor data processing, data fusion as well as a built-in fast and stable attitude

control algorithm with an update rate of 1 kHz. The HLP is free for custom C

code which enables customized functions. More importantly, the HLP provides

protections while testing custom code as the pilot can always switch back to the

stable controller on LLP to recover from critical flight situations [38].

Ascending Technologies provides free software development kit (SDK) for users

to program the HLP. The SDK is a C code framework in an Eclipse environment

with cross-compiler and debugger [39]. It also includes the AscTec Communica-

tion Interface (ACI) for communications between the AscTec Hummingbird and a

local machine [40]. It enables users to request variables, send commands, and set

parameters easily, through a pair of XBee modules.
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The SDK also provides the AscTec Simulink Toolkit which works in combi-

nation with the SDK. It enables users to develop control systems in Simulink and

automatically generate C code which can be flashed to the HLP. The toolkit pro-

vides a model for communication, which sends live commands from ground PC and

monitor custom debug data from the Hummingbird [41].

6.2.1 Dynamics and mathematical model

The coordinate systems are shown in Figure 6.1. The world frame, W , is

defined by axes (xW , yW , zW) with zW pointing downward. The body frame, B, is

attached to the center of mass of the quadrotor where xB coincides with the desired

forward direction, yB is in the plane of motors and perpendicular to xB, and zB

follows the right-hand rule and is pointing vertically down during perfect hovering.

Figure 6.1: Coordinate systems and forces/torques acting on the AscTec
Hummingbird frame
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Newton-Euler formulation of the quadrotor model in this thesis follows [42].

The Newton equation in the world frame is

mr̈ =


0

0

mg

+ WRB


0

0

−
4∑
i=1

Fi

 , (6.1)

where rT =

[
x y z

]
is the vector of position of the quadrotor in W , m is the

quadrotor mass, g is the gravitational acceleration, Fi is the thrust generated by

rotor i along −zB axis, and WRB is the rotation matrix from B to W . The rotation

is derived from the X − Y − Z Euler angle formulation [43] as the following

WRB = Rz(ψ)Ry(φ)Rx(θ)

=


cψ −sψ 0

sψ cψ 0

0 0 1




cφ 0 sφ

0 1 0

−sφ 0 cφ




1 0 0

0 cθ −sθ

0 sθ cθ



=


cψcφ cψsφsθ − sψcθ cψsφcθ + sψsθ

sψcφ sψsφsθ + cψcθ sψsφcθ − cψsθ

−sφ cφsθ cφcθ

 . (6.2)

The Euler angles θ, φ, and ψ correspond to the roll, pitch, and yaw, respectively.

The Euler equation in the body frame is

Jω̇ = M −Mg − ω × Jω, (6.3)

where J is the inertial tensor of the quadrotor about (xB, yB, zB) axes, ω is the vector

of angular velocities (ωx, ωy, ωz) in B, M is the vector of torques produced by rotors,

Mg is the vector of gyroscopic torques.
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Neither (6.1) nor (6.3) considers the effects of blade flapping. By assuming

symmetry in weight distribution about xB and yB axes and low speed operation, we

ignore the gyroscopic torques and consider the simplified terms

J =


Jx

Jy

Jz

 ,M =


l(F3 − F4)

l(F1 − F2)

−M1 −M2 +M3 +M4

 , (6.4)

where Jx, Jy, and Jz are the quadrotor moments of inertia about (xB, yB, zB) axes,

Mi correspond to the torques produced by rotor i in the body frame, and l is the

distance from the center of the propeller to the center of mass of the quadrotor. The

thrust and moments produced by rotors are modeled by a quadratic function of the

rotor rotational speed, i.e.,

Fi = kFω
2
i ,Mi = kMω

2
i , i = 1, 2, 3, 4, (6.5)

where kF and kM are coefficients for thrust and torque, respectively, and wi is the

rotational speed of rotor i.

By [44], the angular velocity ω has the following relation to the derivative of

Euler angles 
θ̇

φ̇

ψ̇

 =


1 sθtφ cθtφ

0 cθ −sθ

0
sθ
cφ

cθ
cφ




ωx

ωy

ωz

 . (6.6)

Now, combining (6.1), (6.3), and (6.6), we arrive at the simplified nonlinear
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model

ẍ = −(cψsφcθ + sψsθ)(F1 + F2 + F3 + F4)
1

m
, (6.7a)

ÿ = −(sψsφcθ − cψsθ)(F1 + F2 + F3 + F4)
1

m
, (6.7b)

z̈ = g − cφcθ(F1 + F2 + F3 + F4)
1

m
, (6.7c)

ω̇x = (ωyωz(Jy − Jz) + l(F3 − F4))
1

Jx
, (6.7d)

ω̇y = (ωxωz(Jz − Jx) + l(F1 − F2))
1

Jy
, (6.7e)

ω̇z = (−M1 −M2 +M3 +M4)
1

Jz
, (6.7f)

θ̇ = ωx + sθtφωy + cθtφωz, (6.7g)

φ̇ = cθωy − sθωz, (6.7h)

ψ̇ =
sθ
cφ
ωy +

cθ
cφ
ωz. (6.7i)

6.2.2 Simulink model

We establish a simulink model described by (6.7a)-(6.7i) as shown in Fig-

ure 6.3, with parameter values from [42],

m = 0.668 kg,

Jx = Jy = 0.0039 kg ·m2,

Jz = 0.0049 kg ·m2,

kF = 6.11× 10−8 N · rpm2,

kM = 1.5× N ·m/rpm2.

The model has rotor speed ωi, i = 1, 2, 3, 4, as inputs and (x, y, z, θ, φ, ψ) as
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well as the time derivative of each as outputs. This Simulink model is a useful tool

for controller design and verification for future research.

6.2.3 Quadrotor controller

The quadrotor is controlled by nested feedback loops, similar to those in [32],

as shown in Figure 6.2.

Figure 6.2: The nested control loops for position and attitude control.

The attitude controller of the inner loop uses onboard accelerometer and gy-

roscope to control the roll, pitch, and yaw and runs approximately at 1kHz [38].

The position controller in the outer loop uses the position measurements (by the

Optitrack motion capture systems) and velocity estimation to control the quadrotor

to follow trajectories.
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Our controllers are derived by linearizing the dynamics (6.7) at an operating

point that corresponds to the nominal hover state, r = r0, θ ≈ 0, φ ≈ 0, ψ = ψ0, and

θ̇ = φ̇ = 0, where r0 and ψ0 are given and roll as well as pitch are small such that

cφ ≈ 1, sθ ≈ 1, sφ ≈ φ, sθ ≈ θ.

At the hover state, the nominal thrust from each propeller must satisfy

Fh =
mg

4
, (6.8)

which specifies the nominal rotor speed as

ωh =

√
mg

4kF
. (6.9)

6.2.3.1 Attitude control

The attitude controller aims to have the Euler angles (θ, φ, ψ) follow the desired

values (θdes, φdes, ψdes). This is achieved by controlling the speeds of each rotor

such that the collective torques produced about each axes rotate the quadrotor into

desired attitude.

Combining (6.7d)-(6.7f) with (6.5), we have the relation between rotor speeds

ωi’s and angular velocities ωx, ωy, and ωz,

ω̇x =
lkF (ω2

3 − ω2
4) + ωyωz(Jy − Jz)
Jx

, (6.10a)

ω̇y =
lkF (ω2

1 − ω2
2) + ωxωz(Jz − Jx)
Jy

, (6.10b)

ω̇z =
−kM(−ω2

1 − ω2
2 + ω2

3 + ω2
4) + ωxωy(Jx − Jy)

Jz
. (6.10c)

We assume Jx = Jy by symmetry and assume the angular velocity ωz is small, such

that the products involving ωz in (6.10) are small compared to other terms.
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The desired rotor speed, denoted by ωdes
i , i = 1, 2, 3, 4, has the following rela-

tion to the deviations from the hover state, denoted by ∆ωF ,∆ωθ,∆ωφ, and ∆ωψ,



ωdes
1

ωdes
2

ωdes
3

ωdes
4


=



1 1 0 −1

1 −1 0 −1

1 0 1 1

1 0 −1 1





ωh + ∆ωF

∆ωθ

∆ωφ

∆ωψ


, (6.11)

where the nominal rotor speed required for the hover state is ωh. The deviation ∆ωF

results from the net force along the zB axis, which will be introduced in the position

controller. The rest of the deviations, (∆ωθ,∆ωφ,∆ωψ), cause nonzero net torques

on the quadrotor frame, which further cause attitude changes in roll, pitch, and

yaw, respectively. We use a proportional-derivative (PD) control law to generate

the deviations, i.e.,

∆ωθ = kp,θ(θ
des − θ) + kd,θ(ω

des
y − ωy), (6.12a)

∆ωφ = kp,φ(φdes − φ) + kd,φ(ωdes
x − ωx), (6.12b)

∆ωψ = kp,ψ(ψdes − ψ) + kd,ψ(ωdes
z − ωz), (6.12c)

where we take ωdes
x = ωdes

y = ωdes
z = 0 for the hover state and use the approximation

θ̇ ≈ ωy, φ̇ ≈ ωx, and ψ̇ ≈ ωz.

Substitute (6.12) into (6.11) yields the desired rotor speeds.
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6.2.3.2 Position control

We use pitch and roll to control the horizontal position in xW and yW , ∆ωψ

to control yaw, and ∆ωF to control vertical position. Let rT (t) and ψT (t) denote

the trajectory and yaw, respectively, for the quadrotor to follow. Note ψT (t) = ψT

and rT (t) = rT for the hovering controller.

We linearize (6.1) about the hover state to get the relation between the desired

accelerations and desired roll, pitch, as well as deviation ∆ωF , i.e.,

ẍdes = −g(cψdesφdes + sψdesθdes), (6.13a)

ÿdes = −g(sψdesφdes − cψdesθdes), (6.13b)

z̈des = −8kFωh
m

∆ωF . (6.13c)

We can invert (6.13) and compute the desired roll θdes, desired pitch φdes, and

deviation ∆ωF for the attitude controller, from the desired accelerations ẍdes, ÿdes,

and z̈des,

θdes = −1

g
(ẍdessψdes − ÿdescψdes), (6.14a)

φdes = −1

g
(ÿdessψdes + ẍdescψdes), (6.14b)

∆ωF = − m

8kFωh
z̈des. (6.14c)

Now, the desired accelerations are computed through a PD controller

r̈i,T − r̈des
i + kd,i(ṙi,T − ṙi) + kp,i(ri,T − ri) = 0, i = 1, 2, 3, (6.15)

where for the hover controller, r̈i,T = ṙi,T = 0.
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6.2.3.3 Luenberger observer

The position measurement of the quadrotor is provided by the Optitrack mo-

tion capture systems at 100 Hz. Ideally, we can compute the difference between

consecutive position measurements to estimate the velocity of the quadrotor. But

due to packet loss in the communication between PC and Optitrack, such velocity

estimation contains frequent and unpredictable spikes. Hence, by (6.14) and (6.15),

the spikes pass through desired angles θdes and φdes and further to desired rotor speed

ωdes
i , which eventually cause observable shaking in the motion of the quadrotor.

We can build a Luenberger observer to estimate the velocity from other mea-

surable quantities, since the dynamics of the quadrotor is known and the linearized

model is valid near the hovering state. Consider the following linearized model near

the hover state,

ẍ = −gφ, (6.16a)

ÿ = gθ, (6.16b)

z̈ = −kF
m

(ω2
1 + ω2

2 + ω2
3 + ω2

4) + g, (6.16c)

θ̈ =
lkF
Jx

(ω2
3 − ω2

4), (6.16d)

φ̈ =
lkF
Jy

(ω2
1 − ω2

2), (6.16e)

ψ̈ =
kM
Jz

(−ω2
1 − ω2

2 + ω2
3 + ω2

4). (6.16f)

We can write (6.16) as a linear time-invariant state space model. The state

variable, denoted by s, contains the positions (x, y, z), Euler angles (θ, φ, ψ) and
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their derivatives, i.e.,

sT =

[
x y z θ φ ψ ẋ ẏ ż θ̇ φ̇ ψ̇

]
. (6.17)

The control variable, denoted by u, is a vector of the squares of rotor speeds, i.e.,

uT =

[
ω2

1 ω2
2 ω2

3 ω2
4

]
. The linearized dynamics (6.16) have the following form

ṡ(t) = As(t) +Bu(t) + ḡ, (6.18)

where

A =



0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −g 0 0 0

0 0 0 0 0 0 0 g 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0



, B =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

−kF
m
−kF

m
−kF

m
−kF

m

0 0 0 0

0 0 0 0

0 0 0 0

0 0 lkF
Jx

− lkF
Jx

lkF
Jy

− lkF
Jy

0 0

kM
Jz

kM
Jz

−kM
Jz
−kM

Jz



,

(6.19)

and

ḡT =

[
0 0 0 0 0 g 0 0 0 0 0 0

]
(6.20)

is the constant bias induced by gravitational acceleration.
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The output, denoted by q, contains the positions (x, y, z), and Euler angle

(θ, φ, ψ), i.e.,

q = Cs, (6.21)

where

C =



1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0



. (6.22)

Discretize (6.18) to obtain the discrete-time system matrices AD, BD and ḡD

with sampling time Ts, i.e.,AD BD

∗ I4

 = exp

( A B

04×12 04×4

Ts
)
,

∗ ḡD

∗ 1

 = exp

( A ḡ

01×12 0

Ts
)
, (6.23)

We now stick to the discrete-time state space model
sk+1 =ADsk +BDuk + ḡD

qk =Csk

, k = 0, 1, . . . . (6.24)

The Luenberger observer has the following form
ŝk+1 = ADŝk +BDuk + L(qk − Cŝk) + ḡD

q̂k = Cŝk

, k = 0, 1, . . . , (6.25)

where we design values of L to place eigenvalues of the (AD − LC) at the following

locations[
0.7 0.7 0.2 0.05 0.05 0.05 0.5 0.5 0.5 0.4 0.4 0.4

]
. (6.26)
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6.2.4 Software and integration

We implement the attitude controller in the Simulink model provided by the

AscTec SDK Simulink Toolkit, ’onboard matlab.mdl’. The model generates C code

which is then flashed into the HLP. We implement the position controller in another

Simulink model in the toolkit, ’UART communication.mdl’. The model contains a

’real-time clock’ which synchronizes Simulink time with real time. The sample time

of this model is set to 0.02 second. The Optitrack measurement is integrated in

this model by referring to the code produced by Or Hirshfeld [45], with necessary

changes accommodating the coordinate systems we use.

All the quadrotor experiments are conducted using a PC with a 64-bit Win-

dows 7 operating system, an Intel Core i7-2600K 3.7GHz processor, and 16 GB

RAM. All the simulink models are ran by MATLAB R2016b.

6.2.5 Controller performance

Packet loss in the communication between PC and quadrotor occurs frequently

and unpredictably during experiments. It renders the quadrotor in an uncon-

trolled state either when the packets containing attitude commands cannot reach

the quadrotor, or when the packets containing the rotor speed measurements, which

is necessary for the Luenberger observer, cannot reach PC. Figure 6.4 shows a 2-

second window when packet loss occurs intermittently and irregularly. Hence, for

safety considerations, we only test the position controller for hovering.

We show the performance of the hovering controller as the following. The
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Figure 6.4: Speed of rotor 1 received by PC when packet loss occurs. (A)
Simulink holds the previously received rotor speed value if the current
packet is lost. (B) Value 1 indicates packet loss occurs while value 0
indicates packet is transmitted successfully.

desired hovering point is at (x, y, z) = (0.1, 0,−0.3) m. The error is controlled

within ±0.05 m in the steady state, as shown in Figure 6.5 (A). The performance of

the attitude controller is shown in Figure 6.5 (B)(C), where the measured attitude

values follow the desired value closely. The Luenberger observer can reduce spikes

greatly, compared to estimation by difference, as can be seen from Figure 6.6. It is

worth noting that the Luenberger observer does not cause significant lags which is

a typical drawback of a moving average filter.
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6.3 Ar.Drone

Ar.Drone is a small quadrotor built by Parrot. It consists of a carbon-fiber

frame, four brushless motors, a LiPo battery, an ARM9 processor, sensors, and

removable hulls. The sensors include a 3-DOF accelerometer, 3-DOF gyroscope, 2

ultrasonic sensors, and two cameras. The ARM9 processor runs a Linux based real-

time operating system for onboard data fusion and motor control. More detailed

introduction to the Ar.Drone can be found in [46,47].

The Ar.Drone creates a WiFi network for communications between itself and

remote devices. Through this network, the Ar.Drone can receive flying commands

or modifying parameters from the remote device while the remote device can receive

the navigation data measured by the onboard sensors of Ar.Drone.

Parrot provides an SDK [39] for users to program their applications on the

remote device. Especially, users can send text strings following certain syntax, AT

commands, to control the pitch, roll, yaw rate, and ascent speed of the Ar.Drone,

which enables custom controllers on the Ar.Drone.

6.3.1 Dynamics and mathematical model

The dynamics of Ar.Drone is similar to the dynamics of AscTec Hummingbird

except that Ar.Drone adopts ’×’ configuration while AscTec Hummingbird adopts

’+’ configuration. The coordinate systems are shown in Figure 6.7. We adopt (6.7)

as the simplified dynamics of Ar.Drone with necessary modifications accommodating

changes in the ’+’ configuration.
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Figure 6.7: Coordinate systems and forces/torques acting on the Ar.Drone frame.

6.3.2 Quadrotor controller

We only need to build a position controller as in Section 6.2.3.2, since Ar.Drone

contains an onboard attitude controller. We adopt a PD controller in the same form

as in (6.15) to compute desired accelerations ẍdes and ÿdes and use (6.14a) as well as

(6.14b) to compute desired roll θdes and pitch φdes, respectively. The desired ascent

speed −żdes and desired yaw rate ψ̇des are computed by the following PD control

laws

−żdes = kp,z(zT − z) + kd,z(żT − ż), (6.27)

ψ̇des = kp,ψ(ψT − ψ) + kd,ψ(ψ̇T − ψ̇). (6.28)

The desired values (θdes, φdes,−żdes, ψdes) are then sent to the onboard controller.
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6.3.3 Software and integration

We implement the position controller in a Simulink model. We use the same

method to integrate Optitrack measurements as in Section 6.2.4. We adopt the

MATLAB codes [48] for navdata decoding and AT command generation from the

Advanced Control Systems Lab of the University of Oklahoma. The AT commands

are sent from PC to the Ar.Drone via a custom C coded program.

6.3.4 Controller performance

The performance of the hovering controller is as follows. The desired hovering

position is at (x, y, z) = (0, 0,−1) m and ψ = 0 deg. The error in the steady state

is controlled within ±0.1 m in x and y, within ±0.01 m in z, and within ±5 deg in

yaw, as shown in Figure 6.8.

The performance of the trajectory following controller is as follows. The de-

sired trajectory is x(t) = 0.5 cos(2πt/5) m, y(t) = sin(2πt/5) m, z(t) being a trian-

gular wave with peak-to-peak 1.25 m, bias -1.375 m, and period 50 s, and ψ(t) = 0

deg. As can be seen from Figure 6.9, the position controller is able to steer the

Ar.Drone to follow the trajectory closely.
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6.4 Denied area experiment

6.4.1 Problem formulation

In this section, we show the design and implementation of a controller that

steers the quadrotor to reach a target area which is enclosed within a denied area.

The denied area and target all reside in the horizontal plane. So we only steer the

quadrotor in the horizontal plane while the altitude and yaw remain fixed. And the

controllers are based on the linearized model of the quadrotor in the hovering state.

The denied area is defined as previously in Chapter 5. Namely, in such area,

the quadrotor will not be able to obtain its horizontal position which is necessary for

a closed-loop control. Such denied area can be implemented by discarding horizontal

position measurement once the quadrotor is detected to be within the denied area.

As the theoretical results in Chapter 4 and Chapter 5 indicate, the controller will

have two stages. The outer stage controller, which works in a closed-loop fashion,

steers the quadrotor near, but outside, the the denied area; then the inner stage

controller, which works in an openloop fashion, ensues to steer the quadrotor towards

the target.

The linearized model has a state space containing (x, y) and its derivative, i.e.,

the state variable is

sT =

[
x y ẋ ẏ

]
. (6.29)

The control u contains the desired pitch and the desired roll, i.e.,

uT =

[
φdes θdes.

]
(6.30)
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The state is directly observable, i.e., the output q = s. The state space model is the

following 
ṡ(t) =As(t) +Bu(t)

q(t) =s(t)

. (6.31)

The position is measured by the Optitrack motion capture systems. The velocity is

estimated by first computing the difference between consecutive position measure-

ments, and then passing the difference through a finite impulse response filter whose

discrete transfer function is the following

0.5 + 0.3z−1 + 0.15z−2 + 0.05z−3. (6.32)

6.4.2 Outer stage controller

We design the outer stage controller as a motion planner, where we solve

(EP5) for the optimal switching state r̄Ns and terminal state r̄N . We only keep the

switching state to generate the control ūok in (5.5b) and the corresponding desired

states s̄k for k = 0, 1, . . . , Ns − 1. Then the desired states s̄0:Ns−1 are sent to

the position controller as the desired positions and desired velocities to follow. The

outer stage controller terminates when time reaches Ns and the inner stage controller

takes over, if the quadrotor is outside the denied area. Otherwise the controller fails

because the inner stage controller requires the position and velocity measurement

when the outer stage terminates, which is forbidden inside the denied area.
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6.4.3 Inner stage controller

The inner stage controller computes desired angles θdes and φdes in an openloop

fashion and send them directly to the attitude controller. Since feedback cannot be

applied for perturbation rejection, the controller must integrate the information of

perturbation. Here, we adopt the problem formulation in (P7), which deals with

perturbation by set propagation. The controller solves (P7) and send control actions

in (5.25) to the onboard controller.

Following (P7), it remains to obtain the propagated set of perturbation W i
N ,

which originates from the set of perturbation W . We will introduce next how to

determine W experimentally.

Consider the perturbed dynamics in (5.6). We can feed in the recorded state

measurements and control actions to compute the perturbation, i.e., for an arbitrary

Nc > 0,

wk = sk+1 − (ADsk +BDuk), k = 0, 1, . . . , Nc, (6.33)

where AD and BD are discretized matrices of A and B, respectively. Then,

W = convh{w1, . . . , wNc}, (6.34)

and W i
N is computed by (5.15). Because we only need the position portion of

W i
N in the optimization, we adopt an approximation method in computation to

save time. We splitW into a position portion pW and a velocity portion vW , which

correspond to the projection ofW onto the position subspace and velocity subspace,

respectively.
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Then the approximate predicted set of perturbation pW̄N in position subspace

is computed by the following iterative procedure,
pW̄k+1 = AD

1
pW̄k ⊕ AD

2
vW̄k ⊕BD

1 uk

vW̄k+1 = AD
3
pW̄k ⊕ AD

4
vW̄k ⊕BD

2 uk

, pW̄Ns = pW , vW̄Ns = vW , (6.35)

for k = Ns, . . . , N − 1, where AD
i ∈ R2×2, i = 1, 2, 3, 4, and BD

j ∈ R2×2, j = 1, 2, are

partitions of AD and BD, respectively, i.e.,

AD =

AD
1 AD

2

AD
3 AD

4

 , B =

BD
1

BD
2

 . (6.36)

The projection of W i
N onto the position subspace is a subset of the approximation

set pW̄N . Let the V-representation of pW̄N be the following

pW̄N = convh{v1, . . . , vm}. (6.37)

We also approximate the target area by a polytope, which is an ellipse in the

original problem (P7). Denote H-representation of the polytopically approximated

target area by {r ∈ R2|Gtr ≤ gt} where Gt and gt have conformed dimensions.

Then, the problem to solve is

minimize
sN∈R4

1

2
‖(AD)N−NssNs − sN‖

2
(∆D(Ns,N))−1

subject to Gt(sN,p + vk) ≤ gt, k = 1, . . . ,m,

(P9)

where the projection of sN onto the position subspace is denoted by sN,p and the

inner stage initial state sNs is the state at the time of switching. Problem (P9) is

a quadratic programming. Denote the solution of (P9) by s∗N . Then the optimal

control is in the same form of (5.26),

u∗k = −(RD)−1(BD)T ((AD)T )N−k−1(∆D(Ns, N))−1((AD)N−NssNs − s∗N), (6.38)
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for k = Ns, Ns + 1, . . . , N − 1.

6.4.4 System identification

Since we keep the yaw angle fixed at around 0 deg, we can decouple the state s

and control u into two pairs: (x, ẋ, φdes) and (y, ẏ, θdes). Then we can rewrite (6.31)

into the following decoupled formẋ
ẍ

 = Ax

x
ẋ

+Bxφ
des, (6.39a)

ẏ
ÿ

 = Ay

y
ẏ

+Byθ
des. (6.39b)

We suppose the system matrices Ax, Ay, Bx, By have following forms:

Ax =

0 1

0 ax

 , Ay =

0 1

0 ay

 , Bx =

 0

bx

 , By =

 0

by

 . (6.40)

The top left and bottom left entries of Ax are 0 since the position will not directly

act on the velocity or position. The top right entry of Ax is 1 because of equality

ẋ = ẋ. The top element of Bx is 0 because the desired pitch will not directly act

on velocity. The desired pitch rather acts on acceleration, which makes the bottom

element by to be determined. The bottom right entry of Ax corresponds to delay or

velocity induced drag, which is to be determined. And the above argument applies

to structures of Ay and By.

Hence, we can represent (6.39) by transfer functions in the s-domain

ẋ(s)

φdes(s)
=

bx
s− ax

, (6.41a)
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ẏ(s)

θdes(s)
=

by
s− ay

. (6.41b)

We use the System Identification Toolbox of MATLAB to identify ax, ay, bx, by and

obtain the following results

ax = −0.35, ay − 0.34, bx = −4.87, by = 5.01. (6.42)

Plugging (6.42) back to (6.39), we complete the system identification of the linearized

dynamics of the Ar.Drone. From now on, we use (A,B) to denote the system

matrices in (6.31) with values obtained in (6.42).

6.4.5 Perturbation set determination

We use (6.33) to collect vectors in the perturbation set and determine the

perturbation set by (6.34). Then we adopt (6.35) to obtain the approximate propa-

gated set of perturbation at terminal time N . Figure 6.10 displays the approximate

propagated set of perturbation at various terminal times.

6.4.6 Optimization solver

We use Algorithm 1 to solve problem (EP5) for the outer stage problem, where

the solver for semidefinite programming is SeDuMi 1.3 [49]. As for problem (P9), we

use CVXGEN [50] to generate a C-coded QP solver. All the solvers are integrated

in the Simulink model introduced in Section 6.3.3.
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y (m)

x
(m

) pW̄25
pW̄50

pW̄75

pW̄100

pW̄1

Figure 6.10: Size of the approximate propagated set of perturbation
pW̄N . For the sake of simplicity, we take Ns = 0 in this figure.

6.4.7 Experiment results

The sample time is Ts = 0.02 s and we set the switching time to be 1.5

seconds and terminal time to be 2.5 seconds. The denied area and target area are

both centered at the origin with radius 1.5 meters and 0.6 meter, respectively. We

select pW̄25 as the propagated set of perturbation, which corresponds to an inner

stage window of 0.5 second. We do not use pW̄50 since the approximation method

makes it larger than the actual set pW50. We use the following values for Q and R,

Q =



1 0 0 0

0 1 0 0

0 0 10 0

0 0 0 10


, R = I2. (6.43)
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The quadrotor is maintained at 1 meter altitude and yaw is fixed at around 0 deg

as previously indicated.

The experiment is started manually by the operator through the Simulink

interface. The operator initiate the outer stage at random time when the quadrotor

is outside the denied area. Once the outer stage starts, problem (EP5) will be

solved and a trajectory is planned with desired position and velocity generated

for the following 1.5 seconds. In Simulink, the desired trajectory is fed to the

position controller and corresponding attitude commands are sent to the onboard

attitude controller for trajectory following. After 1.5 seconds, the inner stage starts

automatically and it solves problem (P9). Then a sequence of desired attitude

angles are generated and fed into the onboard attitude controller. In this stage, no

position measurement in the horizontal plane takes part in the computation of the

controller. The inner stage terminates in 1 second and return the control back to the

position controller which holds the quadrotor at its current location until following

commands arrive.

Figure 6.11 shows the trajectory of the quadrotor in the experiment. We can

see the quadrotor follows the trajectory in the outer stage, then switch to inner stage

near the optimal switching position and head towards the predicted set of terminal

states inside the target area. The openloop commands of the inner stage are shown

in Figure 6.12.

The average solver time of SeDuMi 1.3 is 65 ms (≈ 3 sample times) while

average solver time of CVXGEN is 7.1 ms (≈ 0.3 sample time). It is worth noting

that the solvers we use can solve the optimization problems fast without causing
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huge delays that threaten stability.

y (m)

x
(m

)

Figure 6.11: Trajectory of the Ar.Drone in an experiment. The big blue
circle and big red circle are the denied area and target area, respectively.
The Ar.Drone starts at the position marked by a blue pentagon. The
optimal switching position and terminal position are marked by the blue
circle and the red square, respectively. The optimal switching position is
used to generate the optimal trajectory which is the dashed blue curve.
The controller switches at the position marked by the red triangle. Then
the predicted set of terminal states (marked by the polytope) is optimally
placed in the target area and the Ar.Drone flies towards the predicted set.
The trajectory in the inner stage is the solid red curve. The Ar.Drone
arrives in the target area at the position marked by the red asterisk when
the inner stage terminates.

113



58
.3

58
.4

58
.5

58
.6

58
.7

58
.8

58
.9

59
59

.1
59

.2
-1

5

-1
0-50

de
s

58
.3

58
.4

58
.5

58
.6

58
.7

58
.8

58
.9

59
59

.1
59

.2
-2

5

-2
0

-1
5

-1
0-50

de
s

T
im

e
(s

)

A

Angle(deg)

B

Angle(deg)

F
ig

u
re

6.
12

:
A

tt
it

u
d
e

co
m

m
an

d
s

an
d

ac
tu

al
at

ti
tu

d
e

m
ea

su
re

m
en

ts
in

th
e

in
n
er

st
ag

e.
T

h
e

ou
te

r
st

ag
e

st
ar

ts
at

58
.2

8
s

an
d

en
d
s

at
59

.2
8

s

114



Chapter 7: Conclusion and Future Work

In this thesis, we study the two-stage optimal control problem in which a

mobile agent is steered to reach a target that is enclosed within a special area,

within which it is either localization denied or time-costly.

We first formulate a two-stage optimal control problem in which the special

area is time-costly. We consider deterministic dynamics of the mobile agent and

convert the optimization problem into an equivalent nonconvex QC2QP using the

LQR theory. The equivalent problem seeks the optimal switching state and the op-

timal terminal state, from which the optimal control can be obtained. We study the

general QC2QP independently and prove the necessary and sufficient condition for

strong duality. Then we propose solutions methods for the equivalent problem and

suggest searching for the optimal terminal time using bisection. We demonstrate the

trajectory of the mobile agent using the optimal controller in a numerical example.

Next, we formulate another two-stage optimal control problem in which the

special area denies localization of the mobile agent. And we consider perturbations

in the dynamics. The perturbation is handled by a robust controller where a variable

horizon model predictive control problem is solved. The formulation takes into

account a proper stage switching close to, but outside, the denied area as well as
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a proper target reaching subject to the perturbation. The variable horizon enables

the controller to decide the optimal switching time. And the controller is obtained

by placing the predicted set of switching states and predicted set of terminal states

at designated positions with the minimum cost. We demonstrate the performance of

the robust controller in a simulation and give analysis on the failure of some trials.

We construct a quadrotor controller using the theoretical results. Experimen-

tal results show this controller can steer the quadrotor to reach a target area that

is enclosed within a denied area. Moreover, this controller runs in real-time using

off-the-shelf fast solvers. We also display the modeling and controller design of two

quadrotor testbeds in the CPS and Cooperative Autonomy Laboratory.

We show experimental results of which a bat attempts to reach a target that

resides in a denied area. The artificial denied area is created by broadcasting white

noise when the bat enters such area. The trajectory and maneuver of the bat in the

successful trials can benefit future research from a biological perspective.

There remain many interesting future research directions in this problem. On

the one hand, more bat experiments can be conducted to statistically summarize the

influence of the denied area on bat’s target reaching. Meanwhile, the bat’s trajectory

and maneuvers may inspire new problem formulations and controller design based on

nonlinear dynamics. On the other hand, results obtained in this thesis can be further

investigated in various directions. One of those is to prove the robust controller in

Chapter 5 provides guarantees on proper stage switching and target reaching. Also,

one may explore efficient solvers or equivalent forms which can solve (P-MPC) for

the global minimum. Another direction is in quadrotor experiment. Due to the size
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of Ar.Drone, the controller proposed in Chapter 6 can only be tested for a denied

area whose size is not large enough compared to that of the Ar.Drone. We hope

future experiments can be conducted with smaller quadrotor platforms.
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