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Technological advances for unmanned aerial vehicles, commonly referred to as

drones, have opened the door to a number of new and interesting applications in

areas including military, healthcare, communications, cinematography, emergency

response, and logistics. However, limitations due to battery capacity, maximum

take-off weight, finite range of wireless communications, and legal regulations have

restricted the effective operational range of drones in many practical applications.

Several hybrid operational models involving one or more drones launching

from a larger vehicle, which may be a ship, truck, or airplane, have emerged to help

mitigate these range limitations. In particular, the drones utilize the larger vehicle

as both a mobile depot and a recharging or refueling platform. In this dissertation,

we describe routing models that leverage the tandem of one or more drones with

a larger vehicle. In these models, there is generally a set of targets that should be

visited in an efficient (usually time-minimizing) manner. By using multiple vehicles,

these targets may be visited in parallel thereby reducing the total time to visit all

targets.



The vehicle routing problem with drones (VRPD) and traveling salesman prob-

lem with a drone (TSP-D) consider hybrid truck-and-drone models of delivery, where

the goal is to minimize the time required to deliver a set of packages to their re-

spective customers and return the truck(s) and drone(s) to the origin depot. In

both problems, the drone can carry one homogeneous package at a time. Theoreti-

cal analysis, exact solution methods, heuristic solution methods, and computational

results are presented. In the mothership and drone routing problem (MDRP), we

consider the case where the larger launch vehicle is free to move in Euclidean space

(the open seas) and launch a drone to visit one target location at a time, before

returning to the ship to pick up new cargo or refuel. The mothership and high

capacity drone routing problem (MDRP-HC) is a generalization of the mothership

and drone routing problem, which allows the drone to visit multiple targets con-

secutively before returning to the ship. MDRP and MDRP-HC contain elements

of both combinatorial optimization and continuous optimization. In the multi-visit

drone routing problem (MVDRP), a drone can visit multiple targets consecutively

before returning to the truck, subject to energy constraints that take into account

the weight of packages carried by the drone.
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Chapter 1: Introduction

1.1 Background on Drones

Unmanned aerial vehicles (UAVs), commonly referred to as drones, come in

a variety of shapes and sizes to fit a myriad of applications. Drones gained public

notoriety for their use in military contexts, particularly by the United States in

Afghanistan and later in Iraq, Libya, Yemen, and Somalia [3, 64].

In recent years, the suggested and actual uses of drones in non-military con-

texts have rapidly expanded. A study conducted by the Association of Unmanned

Vehicle Systems International estimated that drones and related systems will have

an economic impact in the United States totaling $82.1 billion from 2015 until

2025 [33]. Business Insider’s Intelligence Unit projects the sales of drones to surpass

$12 billion in year 2021 alone [45].

A number of companies have capitalized on the cinematographic capabilities

of drones. These companies market their drones both to professional filmmakers and

hobbyists. DJI, a company based in Shenzhen, China, is the largest consumer drone

manufacturer in the world. In 2017, DJI projected sales of $2.7 billion, with 80%

of its profits attributable to consumer drone sales [16]. In March 2018, PCMag.com

rated the top consumer drones of 2018, where DJI took eight of the top 10 spots,

1



Figure 1.1: The DJI Phantom 4 is pictured above. The Phantom 4’s user man-
ual states the drone is capable of flying up to 28 minutes, using GPS
or GLONASS satellite systems, filming at 4K ultra high definition res-
olution, taking still frame images up to 12 megapixels, traveling at a
maximum speed of 20 meters per second, and fixing its focus on a par-
ticular target via the use of a gimbal. The total weight of the drone
is 1.38kg. Image was retrieved from https://store.dji.com/product/
phantom-4-beginner-kit in June 2018.

with best seller DJI Phantom 4 taking the top spot [29]. In Figure 1.1, the DJI

Phantom 4 is pictured.

The photographic and video capabilities of drones have applications in other

areas as well. In agriculture, drones are used to quickly conduct aerial surveillance

of crops. The collected imagery may then undergo a spectral analysis to gauge the

development, moisture content, and health of crops, which allows for more precise

decision making by farmers, including when to water, fertilize, and harvest crops.

Additionally, drones such as the MG-1S, pictured in Figure 1.2, may be used to
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Figure 1.2: The MG-1S drone is seen spraying liquid into crop fields. Image
retrieved as screen capture from https://www.youtube.com/watch?v=
P2YPG8PO9JU in June 2018.

spread pesticides in fields. In forestry, drones may be used to monitor the growth

of flora. They have also been used to spot illegal deforestation activities [52].

Numerous applications for drones exist in security and public safety [8]. In

the state of Arkansas, the Fayetteville City Police Department has trained several

officers to fly unarmed drones, to aid in searches for missing people, to track suspects

fleeing police, to assist in swift water rescue, and potentially to conduct supply drops

during natural disasters [17]. Security at the Coachella Music Festival will be using

drones to monitor crowd movements, but also to reduce the risk of a Las Vegas

style massacre, as occurred at the Route 91 Harvest Music Festival [28]. The US

Customs and Border Patrol is exploring increasing the size of its drone fleet to assist

in monitoring the borders of the United States [14].

Facebook has tested solar powered drones over the Arizona desert, with the

3
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goal of eventually launching Internet-providing drones across the world to facilitate

internet access for over one billion people [46].

There are applications for drones in the healthcare sector. In the country of

Rwanda, the road infrastructure is limited outside of major cities. The company

Zipline delivers blood bags from a centralized refrigerated blood bank to remote hos-

pitals and transfusion centers. A delivery that once took two hours by car may now

only take 20 minutes [38]. Zipline has plans to expand service to Tanzania, making

up to 2,000 drone flights per day to more than 1,000 healthcare facilities across the

country, and is in talks with hospitals in other countries [38,39]. In Switzerland, hos-

pitals have used the services of the company Matternet to deliver medical supplies

between hospitals rapidly. Matternet’s drones are capable of carrying four pounds

of goods up to 12 miles [39].

The use of drones has been documented post-disaster scenarios. Following the

April 2015 earthquake in Nepal that killed more than 7,500 people, drones were

deployed to survey damage in remote mountain villages, which aided in prioritizing

relief efforts [27]. In North Carolina [25] and Texas [26], drones have been used to

help identify people affected by flash floods and direct emergency response to them.

Adams and Friedland [1] provide a survey of imagery collection via drone in disaster

scenarios.

Google’s Project Wing [66], the Amazon Prime Air program [6], DHL [22],

DPD [23], UPS [61], the Finnish Postal Service [55], and the Russian Postal Service

[57] have all considered using drones for parcel delivery. Amazon’s efforts have

received special attention in the academic literature, following a 2013 television
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interview of Amazon’s CEO Jeff Bezos. During this interview, he stated that half-

hour delivery was possible via drone for packages up to five pounds, which represents

86% percent of the company’s deliveries [12]. Moreover, the market for rapid delivery

of online orders is growing. In a press release, Amazon stated that over five billion

items were shipped in 2017 via Amazon Prime, a premium service that offers free

two-day shipping on more than 100 million items in the US [5].

The potential applications of drones are vast. Although the benefits of using

drones vary depending on the operational context, there are a number of advantages

that are frequently seen in drone use cases. In virtually all examples of commercial

drone use that we have found, at least some subset of the following advantages apply.

1. Unique line-of-sight capabilities from the sky.

2. Motion not constrained by street networks or street traffic.

3. Cheaper to manufacture relative to traditional ground-based transport.

4. Higher maximum speeds.

5. Energy efficient relative to alternatives.

6. Quieter than combustion engines.

7. Reduces traffic congestion on streets.

8. Operator not required for autonomous drones.

9. Avoids other ground-based dangers or disruptions.
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Despite all of these potential advantages, drones present a new array of safety,

regulatory, and operational challenges.

In the United States, drone operators must maintain a visual line-of-sight with

the unmanned aerial vehicle [40]. Even if visual line-of-sight regulations were lifted,

the range of a drone (as constrained by battery life) is finite. A video posted on

Amazon’s official YouTube channel claims an effective drone range of 15 miles [7].

The FAQ page for Amazon’s Prime Air program continues to point to drones capable

of delivering packages up to five pounds [6]. However, certain locations may be full

of landing obstructions and may not be suited for drone delivery. These limitations

on drone use must be considered in most practical operational models.

1.2 Academic Literature Review

1.2.1 Drone Routing

There is a significant body of literature related to micro-level autonomous deci-

sion making by drones with respect to optimal control, collision avoidance, obstacle

detection, and path finding. Albaker and Rahim [4] survey collision avoidance tech-

niques. Goerzen et al. [34] provide an excellent survey of path finding algorithms.

Mori and Scherer [48] and Gageik et al. [30] discuss image processing aspects of ob-

stacle detection by a drone. Though an interesting field, the focus of this dissertation

is not on micro-level decision making.

There is an emerging operations research literature related to the use of drones,

which considers higher level objectives. These objectives may seek to optimize the
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number of drones to use, the order of visiting some set of targets, choosing a set of

customers to be delivered by drone, etc. Otto et al. [51] provide a detailed survey

of papers that consider optimization questions for non-military drone operations.

They document consistent growth of the research field, with nearly eight times as

many academic manuscripts published in this area in 2017 than 2012.

Several papers, including Avellar et al. [9], Barrientos et al. [10], and Nedjati

et al. [50] consider area coverage problems. In area coverage problems, the drone

has a sensor (e.g., a camera) with a finite effective range. The drone must travel a

path such that the sensor is able to collect a signal from all requisite areas. These

problems frequently seek to minimize either energy expenditure, drone flight time, or

the number of drones required, and have application to security patrols, agriculture,

mapping, and post-disaster assessment.

Another common task for drones is related to search operations. In papers by

Raap et al. [56] and Lin and Goodrich [41], the authors seek to either minimize the

expected amount of time required for the drone to detect the search object or max-

imize the probability of detection, given fixed drone flight time. The search object

may be stationary or dynamic. If stationary, there may exist a prior probability

distribution of the location of the search object.

Several papers consider a fixed set of targets that must be visited in some order

by a vehicle or fleet of vehicles in a cost- or time-minimizing manner and may take

into account special physical constraints. The work of Dubins [24] from 1957 has

given rise to the Dubins Traveling Salesman Problem, where the path of a vehicle

is constrained by a minimum turn radius. More recently, a number of papers have
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considered similar constraints with respect to drones. Manyam et al. [44] use certain

motion constraints, including a minimum turn radius, and consider a multi-drone,

multi-depot optimization problem. Babel [11] considers a traveling salesman variant

with curvature constraints and obstacles. If we do not account for special physi-

cal constraints of the drone, then standard vehicle routing and traveling salesman

solution techniques may be used. The edited volumes by Golden, Raghavan, and

Wasil [35] and Toth and Vigo [60] explore these techniques extensively.

1.2.2 Hybrid Truck-and-Drone Models

The finite battery life of drones along with the ability to lift only relatively

small payloads has led to the development of hybrid truck-and-drone models of

delivery. The broad idea is that trucks may bring drones close enough to target

locations, where range concerns of the drone are alleviated. The drone can launch,

visit some set of targets, and return to the truck for recharging or a battery swap.

The truck may carry packages that the drone is not actively delivering to targets.

Thus, the trucks may be viewed as mobile depots and recharging platforms. These

problems inherently involve some form of synchronization constraints between trucks

and drones.

The first paper published in the literature concerning hybrid truck-and-drone

models of delivery was the Flying Sidekick Traveling Salesman Problem (FSTSP)

by Murray and Chu [49]. In the FSTSP, there is one truck, one drone, and a set of

customers C. Each customer c ∈ C has a demand of one homogeneous package. The
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package may be delivered by a driver-operated truck or by a drone. Some packages

may be unsuitable for drone delivery (e.g. they may be too heavy), and thus must be

delivered by the truck. The drone is assumed to have a battery that lasts for a fixed

duration. The drone may be launched only at the depot or at customer delivery

locations and may only carry one package at a time. While the drone is airborne,

the truck may visit multiple customers. The objective is to deliver all packages and

return the truck and drone to the origin depot in the minimum amount of time.

Murray and Chu formulated a mixed integer linear program for the FSTSP, but it

could not solve instances with even ten customer package locations in a reasonable

amount of time. This motivated a fast heuristic method. The authors developed a

heuristic that generates a truck-only delivery path by solving a standard traveling

salesman problem (TSP). Then individual packages are reassigned in an iterative,

greedy fashion that maximizes time savings. By reassigned, we mean a package may

be swapped from truck delivery to drone delivery or vice versa, or the package may

be delivered to a new customer location in the route’s delivery sequence.

Agatz et al. [2] study the traveling salesman problem with a drone (TSP-D).

They formulate the TSP-D as a mixed integer linear program and then develop a

family of heuristics, which may be described as “route first, partition second”. First,

a truck-only TSP solution is formed, either via exact methods or using a minimum

spanning tree heuristic. The route is partitioned into customer locations that are

delivered by truck and customer locations that are delivered by drone. The route

is partitioned using a heuristic method and an exact method based on dynamic

programming. Additional details of the work by Agatz et al. will be presented in
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Chapter 3.

Campbell et al. [19] use continuous approximation of the transportation net-

work to estimate expected delivery costs for various customer densities and relative

operating costs of trucks and drones. A key insight is that maximal savings for a

truck-and-drone model of delivery may be found in areas of intermediate customer

density, consistent with suburban areas.

Ha et al. [37] study a problem they termed the traveling salesman problem

with a drone (TSP-D) with a different objective function than [2]. In their problem,

the objective is to minimize the sum of transportation costs and waiting costs for the

truck and drone. The authors use the greedy randomized adaptive search procedure

(GRASP) to generate solutions.

1.3 Main Contributions

This dissertation seeks to explore emerging operational models dealing with

the synchronization of drones with other vehicles, including trucks and ships.

In Chapter 2, we introduce the Vehicle Routing Problem with Drones (VRPD).

This model considers a hybrid routing model with multiple trucks and multiple

drones per truck. Chapter 2 focuses on theoretical analysis and establishes maximum

speed-up ratios by using this model relative to traditional truck-only delivery. It

also establishes a relationship between the VRPD and two established problems in

the literature: the close-enough vehicle routing problem and the min-max vehicle

routing problem.
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In Chapter 3, we consider computational approaches to the TSP-D model. In

particular, we use a branch-and-bound based approach and were able to find optimal

solutions to all 30 instances of Agatz et al. [2]. Heuristic approaches to generate

solutions for large instances are also described and implemented.

Chapters 4 and 5 focus on a family of problems that we have name the Moth-

ership and Drone Routing Problems. Unlike other papers in the literature, the

launch vehicle in these problems (which may be a naval ship, airplane, or airship) is

assumed to move in continuous (Euclidean) space, rather than along a (street) net-

work. We find that second order cone programming is a helpful embedded procedure

for determining optimal launch and landing locations for the drone.

Chapter 6 considers a truck-and-drone model where the drone is free to visit

multiple customer locations consecutively. The battery life of the drone depends on

the collective weight of packages being carried by the drone at a given time. We

also decouple the set of feasible launch/landing locations from the set of customer

locations. This new model, which we call the multi-visit drone routing problem,

provides additional flexibility compared to the TSP-D model.
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Chapter 2: The Vehicle Routing Problem with Drones

2.1 Problem Definition

The V RPD model assumes the following:

• m is the number of homogeneous trucks in the fleet.

• k is the number of drones on each truck.

• α is the ratio of drone speed to truck speed. (Without loss of generality, in

this paper, we assume drone speed is α and truck speed is 1.)

• The recharge (or battery swap) of a drone’s battery is instantaneous.

• We assume (until explicitly noted otherwise) that drones may only launch

from or land on the truck, when the truck is located at a customer delivery

location or the depot.

• A drone must land on the same truck from which it launched.

In [15], we proved a number of worst-case results comparing the optimal com-

pletion time using a fleet of trucks equipped with drones to the optimal completion

time using a traditional fleet of only trucks. The results are summarized in Table

2.1. We refer readers who are interested in the proofs to [15]. Denote, by Pt, the
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Table 2.1: Some of the problems studied

Pt Ptd sup{Z(Pt)/Z(Ptd)}

1 TSP V RPD1,α,k αk + 1
2 TSP V RPDm,α,k m(αk + 1)
3 V RP ∗ V RPDm,α,k αk + 1
4 V RPDm,α,k V RPDm,β,k β/α

routing problem with the fleet of trucks only, and, by Ptd, the problem with the

fleet of trucks and drones. Z(Pt) and Z(Ptd) are optimal solutions, i.e., the comple-

tion times, to Pt and Ptd, respectively. We found tight upper bounds on the ratios

Z(Pt)/Z(Ptd), which indicated the maximum benefit obtained from incorporating

drones into the fleet.

In row 1 of Table 2.1, we compare the TSP to V RPD1,α,k, i.e., we have a fleet

of only one truck carrying k drones. The worst-case ratio is αk + 1. The maximum

benefit from using drones depends on the number of drones and the drone speed.

If the truck carries 2 drones and the drones travel 50% times faster than the truck,

the completion may be reduced by 75%, in the best case.

In row 2, we compare the TSP to V RPDm,α,k, i.e., we have a fleet of m trucks

each carrying k drones. The maximum amount saved depends on the number of

trucks, the number of drones, and the speed of the drones.

In row 3, we compare the V RP ∗ with a fleet of m trucks to V RPDm,α,k. Both

the V RP ∗ and V RPDm,α,k have m trucks in the fleet and the worst-case ratio is

αk + 1, the same as the ratio when we compared the TSP to V RPD1,α,k.

An interesting observation is that the speed of drones, α, and the number of

drones per truck, k, play the same role in the worst-case bound. If we have more
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resources, do we invest in faster drones or in carrying more drones on a truck? In

terms of the maximum benefit, doubling the drone speed and doubling the number

of drones per truck can produce the same effect, but in a typical case, the problem

is not straightforward. A larger number of drones has the advantage of serving

more customers in parallel; greater drone speed has the advantage of serving more

customers in serial. In our toy examples, we found that if there are times when not all

drones are in service (service not fully parallelized), greater drone speed dominates.

On the other hand, if drone range or capacity is severely limited, a larger number

of drones may dominate. It would be interesting to explore the phenomenon in a

simulation study given a computational procedure for the V RPD .

It is easy to design instances where a single fast drone is more beneficial than

two slow drones. In a trivial case, we can have a single depot and a single package

to be delivered to a location d units of distance from the depot. Assume the truck

and drone are operating on the same metric. We have the choice of two drones with

speed α1 = 2 or one drone with speed α2 = 4. In both cases, the optimal solution

is a trivial out-and-back route, launching a single drone directly from the depot.

However, in the first case the optimal route duration is (d+ d)/α1 = d, whereas the

second case has an optimal route duration of (d+ d)/α2 = 1
2
d.

In Figure 2.1, we show an example where two slow drones are more efficient

than one fast drone. There are eleven customers. The distances between two nodes

(customer or depot) are labeled on the arcs connecting them in Figure 2.1(a). If

there is no arc between the two nodes, the distance is the length of the (undirected)

shortest path between them. For example, the distance between C1 and C6 is the
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sum of distances between C1 & C2 and C2 & C6, and thus equals 1 + 2 = 3. In

Figure 2.1(a), we show the optimal solution with slower drones. The fleet has one

truck with speed 1 and two drones with speed 2. The solid black line represents the

truck path and the red and blue lines represent the two drone paths, respectively.

The drones are dispatched at the depot to serve customers C6 and C7, respectively,

while the truck is dispatched to serve customer C1, and then C2. The three vehicles

arrive at C2 at the same time. Then the two drones are sent immediately to serve

customers C8 and C9. The truck continues to serve C3, and then C4. The truck and

drones resynchronize at C4. The drones redeploy to C10 and C11, while the truck

delivers to C5. All vehicles regather at the depot. The objective function value of

the solution is 6.

In Figure 2.1(b), we show the best solution over the same network with a

single faster drone. The fleet has one truck carrying one drone with speed 4 whose

path is in red. The drone is dispatched from the depot to serve customer C6, while

the truck is dispatched to serve customer C1. The truck waits at C1 for 0.25 time

units to pick up the drone, which is immediately sent to serve customer C7. The

truck continues to serve C2, where it waits for another 0.25 time units to pick up

the drone, and so on. The pattern continues, where the truck will eventually serve

C3, C4, and C5, waiting at each of those stops for 0.25 time units for the drone to

pick up its next package. It can be calculated that the objective function value of

the solution is 7.5, which is worse than 6.

In this example, two slower drones are more efficient than one drone that is

twice as fast. The limited carrying capacity of a single drone (i.e., one package)
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Figure 2.1: A larger number of slower drones is better for this network.

forces the single fast drone to resynchronize with the truck on six different occasions

(namely C1, C2, C3, C4, C5, and the depot), whereas two slower drones only require

three resynchronization points at C2, C4, and finally back at the depot.

In row 4, we compare two V RPDs: V RPDm,α,k and V RPDm,β,k. The two

problems have the same number of trucks each carrying the same number of drones,

but the speeds of the drones are different. If we assume α < β, the the worst-case

ratio indicates the maximum savings if a new generation of faster drones is used.

2.2 Extensions: Cost Issues, Other Metrics, and Limited Battery

Life

In the previous paper, we ignored cost, assumed that the truck and the drone

follow the same distance metric, and ignored the limited battery life of a drone. In

this section, we begin to relax these simplifications and provide some initial results
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for others to build upon.

2.2.1 Limited Battery and Maximum Savings

The following theorem takes into account explicitly the limited battery life

(in time units), U , of a drone, which we did not consider in detail in the previous

paper. A lower bound on Z(V RPD1,α,k) is given by Theorem 1.

Theorem 1. If the triangle inequality is valid, then

Z(V RPD1,α,k) ≥ Z(TSP )− nUα, (2.1)

where n is the number of customers served by drones in the optimal V RPD1,α,k

solution and U is the battery life of a drone.

Proof of Theorem 1. We construct a feasible TSP solution from the optimal V RPD1,α,k

solution. We insert the customers served by drones one by one onto the truck route

whose duration was initially equal to Z(V RPD1,α,k). Denote the distance between

customers i and j by Lij. If a drone is launched at node i to service customer k and

is then picked up at node j, the distance covered by the drone is Lik + Lkj ≤ αU .

(We assume the truck speed is 1 and the drone speed is α.) If Lik ≤ Lkj, we insert k

just after node i on the truck route. If Lik > Lkj, we insert k just after node j on the

truck route. The increase in the distance of the truck route is no more than αU , if

the triangle inequality is valid. After all n customers served by the drone are added,

the increase in distance (and duration) of the truck route is no more than nαU , i.e.,

the duration of the feasible TSP solution Zf (TSP ) ≤ Z(V RPD1,α,k) +nαU . Since
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Z(TSP ) ≤ Zf (TSP ), we have

Z(V RPD1,α,k) ≥ Z(TSP )− nUα

after rearranging the terms.

The result in Theorem 1 is in a different style from those in Table 2.1. In Table

2.1, we consider the ratios of optimal objective function values, that is, the maximum

relative benefit from using drones. But in Theorem 1, we consider the difference in

objective function values, which indicates the maximum absolute benefit from using

drones.

The maximum amount we can save by adding drones to trucks, i.e., nUα, is

directly proportional to drone battery life and the number of drone deployments.

In other words, long range drones and high utilization rates both could help reduce

costs. If the operating range in distance (Uα) is small due to battery constraints

and the number of drone deployments n is also small (perhaps due to practical

constraints like a small number of available batteries or customer locations that are

very spread out), this lower bound may be more restrictive.

The inequality Z(V RPD1,α,k) ≥ Z(TSP )
αk+1

from Theorem 4 in [15] is still valid if

the drones have limited battery life. Considering both theorems, we have Z(V RPD1,α,k) ≥

max{Z(TSP )
αk+1

, Z(TSP )− nUα}.
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2.2.2 Truck and Drones Utilizing Different Metrics

In [15], the drones and the trucks follow the same distance metric. In practice,

we expect the drones to more or less follow the crow-fly distance and the trucks

to be restricted to the street network. Therefore, the worst-case ratios in [15] are

conservative in practice. Of course, this dichotomy ignores the reality of high-rise

buildings and other aerial obstructions.

We show what happens to the worst-case result if the drone and the truck

follow different distance metrics in the following theorem. The distance matrices

followed by a truck and a drone are denoted by Qt and Qd, respectively. The (i, j)th

entry of Qt (or Qd), denoted by Qt(i, j) (or Qd(i, j)), is the distance traveled by

the truck (or drone) from node i to node j. We denote the duration of the optimal

TSP solution by Z(TSP,Qt), and we denote the optimal V RPDm,α,k solution by

Z(V RPDm,α,k, Qt, Qd). We also make the additional assumption that Qd(i, j) ≤

Qt(i, j), ∀i, j. This implies drones will never travel further between two nodes than

a truck.

Theorem 2.

Z(TSP,Qt)

Z(V RPDm,α,k, Qt, Qd)
≤ Z(TSP,Qt)

Z(TSP,Qd)
m(αk + 1).

Proof of Theorem 2. In our previous paper, we have shown that

Z(TSP,Qd)

Z(V RPDm,α,k, Qd, Qd)
≤ m(αk + 1).
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Divide by Z(TSP,Qd) to get

1

Z(V RPDm,α,k, Qd, Qd)
≤ 1

Z(TSP,Qd)
m(αk + 1).

Next, multiply both sides by Z(TSP,Qt) to obtain

Z(TSP,Qt)

Z(V RPDm,α,k, Qd, Qd)
≤ Z(TSP,Qt)

Z(TSP,Qd)
m(αk + 1). (2.2)

Since Qd(i, j) ≤ Qt(i, j), it follows that

Z(V RPDm,α,k, Qd, Qd) ≤ Z(V RPDm,α,k, Qt, Qd) ≤ Z(V RPDm,α,k, Qt, Qt) (2.3)

because in the worst case, when a vehicle utilizes the Qd metric, it is possible to

use the same set of routes, but inject artificial waiting periods to simulate the Qt

metric. Theorem 2 follows directly from equations (2.2) and (2.3) above.

This is similar to our bound from the previous paper:

Z(TSP,Qt)

Z(V RPDm,α,k, Qt, Qt)
≤ m(αk + 1).

In Theorem 2, we have an additional factor B = Z(TSP,Qt)
Z(TSP,Qd)

which compensates for

the different metrics. If drones travel as the crow flies, we know that B ≥ 1.
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Theorem 3.

Z(V RP ∗, Qt)

Z(V RPDm,α,k, Qt, Qd)
≤ Z(V RP ∗, Qt)

Z(V RP ∗, Qd)
(αk + 1).

Proof. We know from Theorem 6 of the previous paper that

Z(V RP ∗, Qd)

Z(V RPDm,α,k, Qd, Qd)
≤ αk + 1.

If we divide both sides by Z(V RP ∗, Qd), we obtain

1

Z(V RPDm,α,k, Qd, Qd)
≤ 1

Z(V RP ∗, Qd)
(αk + 1).

Next, multiply both sides by Z(V RP ∗, Qt) and we get

Z(V RP ∗, Qt)

Z(V RPDm,α,k, Qd, Qd)
≤ Z(V RP ∗, Qt)

Z(V RP ∗, Qd)
(αk + 1).

As with the previous Theorem, we note equation (2.3). Theorem 3 follows directly.

The implication of the above theorem is that with the V RPD model, it is

not only possible to take advantage of parallelization (with a speed-up factor of

up to αk + 1 relative to V RP ∗), but the use of the crow-fly metric allows for an

additional speed-up (up to a factor of Z(V RP ∗,Qt)
Z(V RP ∗,Qd)

). In Appendix C we display a

simple geometric example where the V RPD speed-up ratio actually exceeds αk+ 1

due to the ability to use the crow-fly metric.
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2.2.3 Economic Savings

While minimizing the completion time is the primary objective, a company

will want to consider costs, as well. In the next theorem, we combine the completion

time and the variable costs of using the truck and drone to form a new objective

function, denoted by Y . Therefore, the new objective function for a TSP solution

is given by Y (TSP ) = Z(TSP ) + θX(TSP ), where X(TSP ) denotes the variable

cost of truck usage and θ allows us to attach weights to the two components of the

objective function. When θ = 0, we are minimizing the completion time. When θ

is very large, we are minimizing the sum of the variable costs. The new objective

function value of the optimal V RPD1,α,k solution is calculated by Y (V RPD1,α,k) =

Z(V RPD1,α,k)+θX(V RPD1,α,k), where X(V RPD1,α,k) = Xt+Xd, the sum of truck

and drone usage costs. We assume the cost per unit time of the drone is a times

the cost per unit time of the truck. We expect a to be much less than 1 because

we assume that drones will fly autonomously once they leave the truck. The drone

usage cost is incurred only when the drone is airborne. We ignore the fixed costs

for now.

Theorem 4. If the triangle inequality is valid, then

Y (V RPD1,α,k) ≥ Y (TSP )−
[α
a

+
(α
a
− 1
)
θ
]
Xd,

where Xd is the variable cost of k drones in the optimal V RPD1,α,k solution.

The coefficient
[
α
a

+
(
α
a
− 1
)
θ
]

is positive if α > a. The potential savings from
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using a drone is large if α, θ, and Xd are large while a is small. We also point out

the similar structure of the inequalities in Theorems 1 and 4.

Proof of Theorem 4. As noted earlier, we assume the truck speed is 1 and the drone

speed is α. We further assume that the truck usage cost is 1 per unit time and the

drone usage cost is a per unit time, so that X(TSP ) = 1×Z(TSP ). If not, we can

modify the parameter θ to normalize the usage costs of the vehicles. Note also that

Y (TSP ) = Z(TSP )+θX(TSP ) = (1+θ)Z(TSP ). Therefore, a TSP solution that

minimizes duration also minimizes the total cost Y .

We want to find a lower bound on Y (V RPD1,α,k) in terms of Y (TSP ). This

is similar to what we did in Theorem 1. From Table 2.1,

Z(TSP ) ≤ (αk + 1)Z(V RPD1,α,k). (2.4)

Since the truck usage cost is 1 per unit time, we have Xt = Z(V RPD1,α,k), where

Xt is the truck usage cost in the optimal V RPD1,α,k solution. Then,

Z(TSP ) ≤ (αk + 1)Xt = Xt + αkXt. (2.5)

Using the same construction process described in the proof of Theorem 1, we

can show that an upper bound on the truck usage cost is given by

X(TSP ) ≤ Xt +
Xd

a
α. (2.6)
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We construct a feasible TSP solution from the optimal V RPD1,α,k solution. We

insert the drone customers one by one onto the truck route whose variable cost was

initially equal to Xt. The additional cost due to the drone customers is Xd

a
α. The

factor Xd

a
gives the sum of usage time of the k drones. Multiplying it by the drone

speed α gives the maximum total distance covered by the k drones. Since the truck

has unit speed and unit usage cost, the term Xd

a
α also gives the additional usage

cost when we convert the optimal V RPD1,α,k to a feasible TSP solution.

The left-hand sides of inequalities (2.5) and (2.6) are equal, i.e., Z(TSP ) =

X(TSP ) because we assume that truck usage cost is 1 per unit time. The two

inequalities give two upper bounds on Z(TSP ). The tighter upper bound is Xt+
Xd

a
α

given by (2.6), because Xd

ak
≤ Xt

1
, as the average usage time per drone is never greater

than the usage time of the truck.

Now,

Y (TSP ) = (1 + θ)Z(TSP )

≤ (1 + θ)
(
Xt +

α

a
Xd

)
= Xt + θ(Xt +Xd) +

[α
a

+
(α
a
− 1
)
θ
]
Xd

= Y (V RPD1,α,k) +
[α
a

+
(α
a
− 1
)
θ
]
Xd,

which yields the desired result.
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2.3 Extension to CEV RP ∗

Suppose there exists the following node locations along a street network P =

{P1, P2, ..., P|P |}, each requiring a package to be delivered to them from depot D. In

the traditional traveling salesman problem (TSP ), one may insist that a truck stop

at all of these locations, then finally return to D. The min-max close-enough travel-

ing salesman problem (CETSP ∗) has the same objective as the ordinary traveling

salesman problem (i.e., minimize the time required to visit all node locations and

return to the depot). However, in the min-max CETSP , we assume we need not

necessarily visit location Pi itself. We only need to come within distance Ri ≥ 0

of Pi [8]. Coming within distance Ri of a node Pi is “close enough” for some im-

portant applications. For example, utility companies use automated meter reading

with RFID to read meters from a distance for billing purposes. Military applications

involve surveillance from a distance.

In the min-max vehicle routing problem (V RP ∗), we wish for at least one truck

out of a set of m homogeneous trucks to visit each customer location Pi ∈ P , then

return to the depot. The objective is to minimize the time until all sites are visited

and all trucks have returned to the depot. Analogously, we define the min-max

close-enough vehicle routing problem (CEV RP ∗) to be the problem of minimizing

the time required for at least one in a set of m trucks to come within some distance

Ri of each customer location Pi ∈ P before returning to the depot.

In this section, we will show that there exists a strong relationship between

V RP ∗, V RPD, and CEV RP ∗. In future work, we hope to show how this rela-
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tionship enlightens computational heuristics for finding solutions to the V RPD.

Moreover, if we have reliable V RP ∗ and CEV RP ∗ solvers, this relationship will

indicate whether our computational solutions are near-optimal.

2.3.1 VRPD: An Intermediate Problem

Let us define two problems. Firstly, let V RPDur be the unrestricted V RPD.

This problem has the same characteristics as the V RPD , except that drone launch

and retrieval locations are not restricted to nodes. This is more consistent with

CEV RP ∗, which does not mandate a covering point of Pi to be a nodal point.

Secondly, let CEV RP ∗nodes represent a problem similar to CEV RP ∗. However,

CEV RP ∗nodes is stricter. CEV RP ∗nodes requires that for each customer Pi, there ex-

ists a nodal location on some truck route within distance Ri of customer Pi. This is

consistent with the V RPD model where launch and retrieval points occur only at

node locations.

Theorem 5.

Z(CEV RP ∗) ≤ Z(V RPDur) ≤ Z(V RP ∗);

Z(CEV RP ∗nodes) ≤ Z(V RPD) ≤ Z(V RP ∗).

These claims are constructed from four inequalities which are proved formally

in Appendix B. In less formal terms, we note that the truck routes from the optimal

V RP ∗ solution act as feasible V RPD and V RPDur routes (that simply do not
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utilize any drone delivery capabilities). Thus V RPD and V RPDur can always do

at least as well as V RP ∗. However, V RPD and V RPDur may be able to do better

by making some drone deliveries.

Similarly, the truck routes from the optimal V RPD (or V RPDur) are feasible

solutions to the CEV RP ∗nodes (or CEV RP ∗) problems. Thus, the optimal solution

to CEV RP ∗nodes (or CEV RP ∗) is no worse than the optimal solution to V RPD (or

V RPDur).

2.3.2 V RPD in the Limit

In this section, we will consider the limit cases of drone speed, namely when

α approaches 0 and when α approaches ∞.

Theorem 6.

limα→∞Z(V RPD,α) = Z(CEV RP ∗nodes).

Proof. We establish in Appendix B that every CEV RP ∗nodes solution can be con-

verted into a V RPD solution. This is done by starting with the truck route of the

CEV RP ∗nodes solution. However, the truck waits at the drone release point until the

drone delivers its package and returns to the truck. This trivial feasible solution

to V RPD is called V RPDf . Let Wj be the sum of all such wait times on the jth

truck’s V RPD route. Let W = maxj(Wj). By this construction, it is clear that

Z(CEV RP ∗nodes) +W ≥ Z(V RPDf ) ≥ Z(V RPD).
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The upper bound distance on any drone flight, again, is 2R = V . Thus 2R/α is

the maximum duration that a truck would wait for any drone to deliver a package.

Let M be the maximum number of customers on any route. So 0 ≤ W ≤ 2MR/α.

Given a finite number of customers,

limα→∞W = 0.

Furthermore, as α→∞

Z(CEV RP ∗nodes) = Z(V RPDf ) ≥ Z(V RPD).

However, we established in a previous theorem that Z(CEV RP ∗nodes) ≤ Z(V RPD).

Therefore, as α→∞

Z(CEV RP ∗nodes) = Z(V RPDf ) = Z(V RPD).

Theorem 7 (Fast Drone Theorem).

limα→∞Z(V RPDur, α) = Z(CEV RP ∗).

Proof. The proof is identical in structure to Theorem 6 with one minor exception.

Namely, we now may designate any point within distance R of a customer as a

launch/retrieval point, rather than being restricted to nodal locations. We then
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force trucks to wait at these launch points until the drone(s) returns. The total

required waiting time of all trucks (again) converges to 0 as α→∞.

The two theorems above show that as drone speed goes to∞, the V RPD is an

equivalent problem to CEV RP ∗. However, it also hints that perhaps a CEV RP ∗

solution would be a good approximation to the V RPD solution whenever the ratio of

drone speed to truck speed is high. In environments with highly congested roadways,

but a relatively unobstructed sky, or perhaps when utilizing very high speed drones,

it may be worth starting with a CEV RP ∗ solution, and adapting it into a V RPD

solution.

Theorem 8 (Slow Drone Theorem).

limα→0Z(V RPD,α) = Z(V RP ∗)

and

limα→0Z(V RPDur, α) = Z(V RP ∗).

Proof. If our optimal V RPD or V RPDur solution has no drone launches, then the

solution is the same as the optimal V RP ∗ solution. In this case, the above equality

holds.

Now suppose our V RPD or V RPDur solution has some drone flight of non-

zero length (out and back). Let L be the longest of such routes. Then as α→ 0, the

time required for such a route is L/α→∞. This implies that as drone speed goes to
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0, any V RPD or V RPDur solution containing a drone launch (e.g., V RPDf ) is such

that limα→0Z(V RPDf , α) = ∞. Supposing our truck speed is non-zero, a V RP ∗

solution would require a finite amount of time. This proves that as α→ 0, V RPD

and V RPDur solutions should not contain drone launches to remain optimal.

In Section 4.1, we showed V RPD’s objective value was bounded below by the

objective value of CEV RP ∗ and bounded above by the objective value of V RP ∗.

Now in Section 4.2, we have shown that V RPD and CEV RP ∗ are equivalent prob-

lems for an arbitrarily fast drone; V RPD and V RP ∗ are equivalent problems for an

arbitrarily slow drone.

Other than the bounds on optimal objective values, we do not yet know the

relationship between V RPD optimal solutions and optimal solutions to CEV RP ∗

and V RP ∗ for intermediate values of α (i.e., 0 < α < ∞). Furthermore, we do

not know how this relationship is affected by our choice of α, the underlying street

network, or the drone network.

2.4 Conclusions and Future Work

This paper extends and strengthens previous results in [15]. V RPD is one

model that attempts to complement the carrying capacity and range of a truck with

the ability of a drone to help “parallelize” delivery and take advantage of crow-fly

distances. This paper has shown the theoretical maximum benefit of this model

under ideal circumstances.

A connection between the CEV RP ∗, V RPD, and V RP ∗ has been made in the
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form of objective value bounds and asymptotic results. We believe that a number of

computational heuristics and benchmark instances could now be developed to find

V RPD solutions as close to optimal as possible for practical values of α. Using

solution methods for CEV RP ∗ (such as in [3,5,11]), modifying them to maintain

V RPD feasibility, and then applying some local optimization procedures is one new

idea for obtaining computational solutions to V RPD. An alternative idea is starting

with a V RP ∗ solution and inserting drone deliveries in a smart way. In addition,

one may compare computed objective values for V RPD with CEV RP ∗ and V RP ∗,

assessing the tightness of these theoretical bounds in practice for varying values of

α.

Expanding the model to include limitations on drone package weight (while

still allowing trucks to carry heavier packages) could add to the practical worth of

this model. The study of other variations, such as allowing a drone to launch on

one truck and land on another truck or allowing a drone to carry more than one

package at a time, may also be considered.
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Chapter 3: Exact and Heuristic Methods for the Traveling Salesman

Problem with a Drone

3.1 Introduction

Several technological improvements including better battery life, improved

communications systems, advances in stability, and reduction of manufacturing costs

have increased the viability of using drones to make deliveries. Drones have been

used in healthcare and disaster response contexts particularly in remote regions [9].

Amazon, FedEx, and UPS have explored the use of drones for parcel deliv-

ery [61]. In September 2015, the Finnish postal service (Posti Group) experimented

with drone delivery of packages to an island near Helsinki [55]. Dynamic Parcel

Distribution is the first company to have launched (with all regulatory approvals) a

regular route service with a drone in the Provence region of France [23].

In February 2017, UPS released a video of a test of a truck and drone hy-

brid delivery [62] where the drone road atop the truck. The truck stopped near a

customer location and launched the drone with a package to a different customer
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location to make a delivery. While the drone was in the air, the truck made a de-

livery and then rendezvoused with the drone. This hybrid model of delivery is the

focus of this paper.

3.2 Literature Review

Murray and Chu [49] were the first to introduce a hybrid truck and drone

model under the name The Flying Sidekick. In preliminary testing of a mixed

integer linear programming model, the authors indicated that routes with up to 10

packages “may require several hours to solve” to optimality. The long solution times

motivated a heuristic method, such as the one below:

1. Solve a standard TSP and use this as an initial truck route.

2. In a greedy way, select a package currently on the truck route to be delivered

by a drone. This greedy selection preserves feasibility.

Ha et al. [37] solved a mixed integer program that optimized the selection of

drone operations according to various objective functions. A drone operation with

triplet (i, j, k) launches the drone from the truck at package location i, delivers a

package via drone to package location j, and returns the drone to the top of the

truck at package location k. A modified TSP routing was then performed based on

the selection of drone operations from the mixed integer program.

Wang et al. [65] considered theoretical bounds for the maximum speedup ra-

tio of using a hybrid truck with drone model relative to a truck only model. The
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authors described optimization problems that arose when using several trucks with

one or more drones. Poikonen et al. [54] generalized the bounds of Wang et al. [65]

to the case where trucks and drones operated on different metrics. The authors also

showed that the close-enough vehicle routing problem may serve as a lower bound

to the vehicle routing problem with drones.

Agatz et al. [2] considered a problem similar to Murray and Chu [49] that

they named the Traveling Salesman Problem with a Drone (TSP-D). They con-

structed a family of heuristics and an integer program and found that the best

performing heuristic without applying iterative, local improvement procedures was

TSP-ep, where ep denotes exact partitioning. First, a standard traveling sales-

man problem was solved. The goal was then to exactly partition this solution into

truck-delivered nodes and drone-delivered nodes. Without loss of generality, the

authors relabeled the nodes with indices 0, 1, 2, ..., N such that if node a appeared

before node b in the standard TSP solution, then a < b. Node 0 is the origin de-

pot and node N is the destination depot which may be the same as the origin depot.

Agatz et al. [2] continue by considering the case when i < k < j and that

the truck and drone are located together at node i. The drone launches from the

truck to node k to deliver a package. While the drone is airborne, the truck delivers

to every node l 6= k such that i < l < j, and then both the truck and drone ren-

dezvous at node j. Agatz et al. [2] defined T (i, j, k) as the amount of time between

the drone launch at node i and the rendezvous at node j. T (i, j, k) = ∞ when
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a triplet is infeasible. They defined T (i, j) = mink(T (i, j, k)). It is beneficial to

choose the package location k that minimizes the time until the rendezvous at j.

Let k = −1 indicate that truck delivery to all nodes l such that i < l < j produces a

faster arrival to node j than launching a drone. TSP-ep used the following recursive

formula (a special case of the Bellman-Ford Equation [13]):

V (0) = 0

For i=1 to N:

V (i) = mink(V (k) + T (k, i))

Prev(i) = argmink(V (k) + T (k, i))

V (N) is the best TSP-D objective value under the restriction that both the

truck delivery order and the drone delivery order are subsequences of the standard

TSP solution. Though optimal under this restriction, in general, TSP-ep does not

provide the globally optimal solution to the TSP-D. One may retrace the optimal

path by iteratively backtracking from node N to Prev(N), then to Prev(Prev(N)),

then to Prev(Prev(Prev(N))), etc. until reaching the depot where the truck and

drone departed. The cost of exactly partitioning a TSP sequence into a TSP-D

solution is O(N3).

Agatz et al. [2] embedded their exact partitioning procedure in several iterative
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improvement procedures with the following structure.

1. Find the the optimal TSP solution, called BestTour.

2. Construct a neighborhood of similar tours aroundBestTour. Call itNeighbors.

3. For each tour in Neighbors

(a) Apply the exact partitioning method.

(b) Compute the associated TSP-D objective value of the partitioned route,

called Obj(tour).

(c) If Obj(tour) < Obj(BestTour), set NewBestTour = tour.

4. If BestTour 6= NewBestTour, go to step 2.

Agatz et al. [2] tested heuristics including TSP-ep and TSP-ep-all, where all

refers to a neighborhood of routes that can be constructed using any local swaps

described in their paper. TSP-ep-all considers O(N2) neighboring TSP routes in

each iteration, so it has a total computational complexity of O(IN5), where I is the

number of iterations.

Coutihno et al. [20] considered the Close-Enough Traveling Salesman Prob-

lem (CETSP) which is a generalization of the TSP where a city is considered visited

if the tour comes within a specified radius of the city. The key feature of Coutihno

et al. [20] is their branch-and-bound solution methodology where each node of the

branch-and-bound tree is associated with some sequence of visit locations, S. At

each node of the tree, a second-order cone program (SOCP) was solved that obeys
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the visit order dictated by S. Though the visit order is fixed, the SOCP is free

to choose the optimal representative point for each visit location (a representative

point is within the specified radius of a given city) for each visit location. To put

it another way, the branch-and-bound structure served as a mechanism to globally

search potential visit sequences. The SOCP that was solved at each node optimized

the CETSP solution relative to this sequence. The solution method produced exact

solutions to the CETSP.

Our solution method (described in detail in Section 4) borrows certain ele-

ments from Coutihno et al. [20] and Agatz et al. [2]. Specifically, the branch-and-

bound structure in our solution method is derived from Coutinho et al. [20] and

allows us to search various visit sequences. Rather than optimizing an SOCP at

each node, we optimally partition the sequence at each node into truck-delivered

and drone-delivered nodes. We slightly modify the partitioning procedure from [2]

such that the truck may remain stationary while the drone makes a delivery.

3.3 Defining the TSP-D and Notation

3.3.1 TSP-D: Problem Definition

We define the Traveling Salesman Problem with a Drone (TSP-D) as follows.

There is one truck and one drone that may ride atop the truck. Let ct and cd be

matrices of travel times. ct(i, j) is the value of row i and column j of ct, and it is set

as the time a truck takes to traverse from node i to node j. cd(i, j) is the value of
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row i and column j of cd, and it is set as the time a drone takes to traverse from node

i to node j. For all i, j, ct(i, j), cd(i, j) ≥ 0, and the triangle inequality holds for ct

and cd. Frequently, in our computational experiments, both the truck and the drone

operate on the Euclidean metric. In these cases, we define α = ct(i, j)/cd(i, j),∀i, j,

which is a measure of the relative speed of the drone to the truck. In general, ct and

cd need not be scalar multiples of one another, in which case α is not defined.

There are N nodes, one depot, and N − 1 packages to be delivered, and a

set of locations (P ) for the packages and the depot. Pt ⊆ P is the set of locations

such that the package at that location must be delivered by a truck. Some packages

may not be suitable for drone delivery due to complications such as excessive weight

or an obstructed landing area. Let Pd = P \ Pt be the set of package locations

eligible for drone delivery. Each package P1, P2, ..., PN−1 must be delivered either

by truck or by drone. P0 is the origin depot location, PN is the destination depot

location, and P0 and PN may be the same location.

The drone has a battery life of R time units. The drone may launch from

atop the truck, carry a single package to a package delivery location, and then must

rendezvous with the truck within R time units. The truck may deliver packages

while the drone is airborne. Launch and rendezvous points must occur at package

locations or the depot. The truck and drone do not need to arrive simultaneously;

they can wait for each other to arrive, as long as the rendezvous happens within R

time units of the drone’s launch. In addition, a drone may be launched and retrieved
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at the same package location. We assume that after a drone lands on the truck, its

battery may be swapped for a fully charged battery instantaneously.

For simplicity, we do not consider drone service times, drone launch over-

head times, drone retrieval overhead times, or battery swap times, and we assume

each time is negligible. However, it is possible to modify cd and the computation of

T (i, j, k) in a small way to account for all of these times. In Part A of the Online

Supplement, we describe how this can be done.

We must construct a simple tour (i.e., a tour that cannot depart a node and

revisit that same node) beginning at depot P0 and ending at depot PN . If P0 = PN ,

the tour is closed. The departure time of the truck from the P0 is t0 = 0, all packages

P1, ..., PN−1 have been delivered and the truck and drone have returned to PN at

time tf . The objective is to minimize tf .

3.4 Branch-and-bound Approach

We now describe our branch-and-bound approach (BAB) to the TSP-D. The

pseudocode describing BAB is given in Part B of the Online Supplement.

3.4.1 Nodal Structure and Branching Procedure

Each node in our branch-and-bound decision tree is associated with some se-

quence of package locations, similar to Coutihno et al. [20] If ct and cd are symmetric
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and P0 = PN , then we assign our root node an arbitrary 3-cycle including the de-

pot which can be done without loss of generality. Suppose we assign the sequence

[0, 1, 2, N ] to the root node. This corresponds with a route that visits P0, P1, P2,

and returns to PN in that order. If ct and cd are symmetric and P0 = PN , then the

routes corresponding to [0, 1, 2, N ] and [0, 2, 1, N ] have the same objective value. In

the case that ct and cd are not symmetric or P0 6= PN , we assign the root node the

sequence [0, 1, N ]. Although it is possible to assign a symmetric instance [0, 1, 0]

as the root node, we choose [0, 1, 2, 0] as the root. We take advantage of known

symmetry and avoid the formation of two branches with [0, 1, 2, 0] and [0, 2, 1, 0],

which unnecessarily doubles the computation time. For simplicity of notation, as-

sume P0 = PN unless specified otherwise.

Our tree begins with only the root node. We then create children of the

root node. Find the package location Pi that is farthest (in Euclidean distance)

from any package location in the parent’s sequence. Suppose that the farthest pack-

age location from package locations P0, P1, and P2 is package location P3. Then

the children of the root node [0, 1, 2, 0] are [0, 3, 1, 2, 0], [0, 1, 3, 2, 0], and [0, 1, 2, 3, 0].

Our branching procedure inserts the farthest package into various positions of the

parent node’s sequence. In Figure 3.2, package delivery location P3 is the farthest

from P0, P1, and P2, and package delivery location P6 is the farthest from P0, P1,

P2, and P3.

We represent a sequence by S = [0, s1, ..., sn, 0], where n is the number of
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package locations visited in the sequence, and si is the package location in position

i of the visit sequence.

3.4.2 Lower Bound Evaluation for a Node

Suppose TSPSeq is the optimal TSP sequence. Let aep(TSPSeq) be the ob-

jective value of TSP-ep from Agatz et al. [2] when we apply the exact partitioning

function (aep) of Agatz et al. [2] to the input sequence denoted by TSPSeq. Let

aep(S) denote the objective value produced by applying the exact partitioning pro-

cedure to an input sequence of package locations, S.

In the aep function, drone operations (i, j, k) are considered only if i < k < j

(although, elsewhere in [2], this restriction is relaxed). Therefore, launching and

retrieving a drone at the same customer node with the truck remaining stationary is

impossible in any solution produced by aep, even though this may be characteristic

of the optimal solution. Let ep denote an exact partitioning function that incorpo-

rates the possibility of the truck remaining stationary throughout the drone’s flight

into aep. The technical details of ep are given in Part C of the Online Supplement.

Suppose some node has an associated sequence S = [0, s1, s2, ..., sn, 0]. At

this node, we seek to find a partition of S into an ordered set of packages deliv-

ered by the truck (St) and an ordered set of packages delivered by the drone (Sd).

However, rather than requiring St and Sd to be subsequences of a specified TSP
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solution, we require that St and Sd be subsequences of S. Thus, if a node has as-

sociated sequence S, it has an associated objective value ep(S). The result is the

optimal TSP-D objective value for delivering packages s1, s2, ..., sn subject to the

constraint that St and Sd are subsequences of S. For a node with sequence S, we

say that is has an assumed lower bound of ALB(S) = ep(S).

Suppose some parent node has a sequence S. Suppose its child has a se-

quence S+, which is necessarily a supersequence of S. Our algorithm works under

the assumption that the insertion of additional package stop locations onto a TSP-

D route generally increases the objective value, that is, we assume that ep(S+) ≥

ep(S) = ALB(S). Thus, for a parent node with sequence S = [0, s1, s2, ..., sn, 0], we

assume that the objective value of any child node is at least ALB(S). Transitively,

any direct descendant node is assumed to have a larger objective value than its

ancestor.

The insertion of additional package locations onto the TSP-D route can ac-

tually decrease the objective value (unlike TSP routes, where package insertions

can never decrease the objective value), i.e., occasionally ep(S+) < ep(S). This

is directly related to the finite range of the drone. Including additional stops in

the route introduces new locations where a drone could potentially launch or land.

Thus, a package that would have been delivered by a truck (due to the lack of any

launch or landing locations suitable for the range of the drone) could potentially be

delivered by the drone, after a new stop location is added to the route. In Figure
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3.1, we provide an example where inserting an additional package location onto the

route decreases the objective value. In this example R = 10, blue edges represent

truck movement, red edges represent drone flight, and the number next to each edge

is the time required to traverse the edge. Numbers next to blue edges are driving

times in minutes; numbers next to red-dashed edges are flying times in minutes. In

Figure 3.1(a), the truck drives to package location 1, because the drone only has

10 minutes of battery life. The drone does not have enough battery life to fly to

package location 1, make a delivery, and return to the truck. The completion time

is 20 + 10 + 4 = 34 minutes. In Figure 3.1(b), the insertion of package location

3 gives the drone a feasible launching point to deliver to package location 1. The

drone launches from package location 3, makes a delivery to package location 1, and

lands on the truck at package location 2 with a completion time of 8 + 9 + 4 = 21

minutes.

Although the insertion of a new package location onto a TSP-D route oc-

casionally decreases the objective value, in testing, we found that it is more likely

that inserting additional package locations increases the objective values.

3.4.3 Exploration, Upper Bounds, and Terminating the Algorithm

If a parent node with sequence [0, s1, s2, ..., sn, 0] has been evaluated and its

children have not yet been evaluated, then the lower bound of the parent node is

ALB([0, s1, s2, ..., sn, 0]). If all children of a parent have been evaluated, then the
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(a)

(b)

Figure 3.1: Example where the insertion of an additional package location decreases
the objective value.

lower bound of the parent node is equal to the smallest lower bound of the children.

Among all nodes whose children have not yet been evaluated (leaf nodes),

we iteratively choose to evaluate the children of the node with the smallest lower

bound. If a sequence contains all N package locations, then it is marked as a feasible

solution to the overall problem. The assumed lower bound for that node is also an

upper bound.

Let LB be the smallest lower bound among nodes that still have unexplored
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children, and let UB denote the best objective value found for any complete fea-

sible solution (this solution contains all package locations). If no complete feasible

solution has yet been found, then UB = ∞. We terminate the branch-and-bound

algorithm once LB/UB ≥ TER, where TER ≥ 1 is our tree exploration ratio. If

our assumed lower bound was always a valid lower bound, then setting TER = 1

would yield the globally optimal solution. Since our assumed lower bound is some-

times too high, we may compensate for this by setting TER > 1.

For example, suppose we set TER = 1.15 and find a complete feasible solu-

tion with objective value of 100. If we did not find a new complete feasible solution

with objective value less than 100, then our algorithm would terminate when all

nodes with lower bounds less than 115 had been explored. Thus, our solution is

globally optimal, if we did not overestimate the lower bound of any node by more

than 0.15(UB).

An alternate, but logically equivalent, interpretation is that the assumed

lower bound of a node with the associated sequence [0, s1, s2, ..., sn, 0] is given by

ALB([0, s1, s2, ..., sn, 0])/TER and we terminate the algorithm when LB ≥ UB.

After we explore a feasible solution, we set its lower bound to INF . We define

INF as any value greater than N × maxEdge, where maxEdge = maxi,jct(i, j).

The value N × maxEdge serves as an upper bound to the objective value of any

feasible sequence partitioned by ep. If TER = ∞, BAB terminates when the root
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Figure 3.2: Initial exploration of a branch-and-bound tree with associated sequences
and objective values in parentheses.

node’s lower bound is equal to INF , which occurs only when all feasible solutions

have been explored.

3.4.4 Example of the Branch-and-Bound Approach

In Figure 3.2, we begin with evaluating the root node which produces an ob-

jective value of 80. We then evaluate all of its children and the child with sequence

[0,1,2,3,0] has the lowest objective value of 85, so we then evaluate its children.

Among all leaf nodes of the tree, the one with sequence [0,3,1,2,0] has the lowest

objective value of 96 and we would explore its children next.

In Figure 3.3, we display an example with four package locations in addi-

tion to the depot. The full exploration of the BAB tree when TER = 1.00 is shown.

If TER = 1.15, then we evaluate the children of the red node with objective value

of 112, because it has an objective value less than 1.15× 100 = 115.
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Figure 3.3: Full exploration tree for BAB when TER = 1.00. Associated se-
quences are in brackets, objective values are in parantheses, and an
asterisk indicates a feasible solution that visits all package locations. As
shown, LB = 112 and UB = 100, so the heuristic terminates, because
LB/UB = 1.12 > 1.00. The red node with objective value 112 has
unevaluated children.

3.4.5 Reduction to O(Cn2)

When computing T (i, j, k) for each i < k < j, we have an O(n3) computation.

Since this computation occurs for each node visited in the branch-and-bound tree,

this computation becomes very costly. Therefore, before starting the branch-and-

bound approach, we compute a constant C associated with ct, the truck network

metric. C is the largest integer such that a truck may visit C distinct nodes on the

street network within R time units.

Now, we need only compute T (i, j, k) for each i < k < j ≤ i+C. We need not

compute any potential drone deliveries for j ≥ i + C + 1. Suppose j ≥ i + C + 1.

There are at least C + 2 nodes between i and j, inclusive of the endpoints. If some

node k is serviced by the drone, then at least C + 1 nodes must be visited by the
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truck within time R before the drone battery loses its charge. However, C is the

maximum number of nodes visited by the truck in time R. Computing T (i, j, k) is

unnecessary whenever j ≥ i+C + 1 due to infeasibility associated with the battery

life of the drone.

Therefore, we have reduced the computational complexity of each nodal eval-

uation from O(n3) to O(Cn2) at the cost of computing C once before starting the

BAB procedure. C may be computed exactly by solving the integer program given

in Part D of the Online Supplement. In areas of low density and little clustering

of delivery locations, we expect C to be small. Alternatively, we could compute

an upper bound on C, denoted C+, by summing the smallest elements of ct until

the sum exceeds R. The number of distinct elements that may be summed before

exceeding R is C+. Then we only compute T (i, j, k) for each i < k < j ≤ i+ C+.

3.5 Additional Heuristics for the TSP-D

3.5.1 Boosted Lower Bound Heuristic

In practice, the computation time required to perform the branch-and-bound

algorithm is heavily dependent on the ability to prune large portions of the decision

tree. BAB was built on the assumption that as more package locations are inserted

into a sequence, the objective values associated with that sequence strictly increase.

Thus, among two sequences with the same associated objective value, we prefer the

longer sequence, because it has fewer packages that need to be inserted to form a
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feasible solution.

Consider the sequence [0, s1, s2, ..., sn, 0] that does not visit N − 1−n package

locations that are required for a full global solution. We define our heuristic lower

bound (HLB) as

HLB([0, s1, s2, ..., sn, 0]) = ALB([0, s1, s2, ..., sn, 0]) + f(N − 1− n)

where f is an increasing function and f(0) = 0.

Our boosted lower bound heuristic uses the original branch-and-bound struc-

ture and branching process. However, we replace the objective value of each node

and, thus, the lower bound on all descendant nodes ALB with HLB. When we find

a feasible solution at some node, N − 1 = n, f(N − 1 − n) = f(0) = 0. Thus, for

any feasible sequence S with all package locations, HLB = ALB.

3.5.1.1 Linear Boost Heuristic

Let f(N − 1 − n) = γ(N − 1 − n), where γ > 0 is a specified constant. Our

linear boost heuristic assumes that, for any sequence, the insertion of additional

packages into that sequence will cost at least an additional γ time units per package

on average.

Consider the example in Figure 3.2. The next step in BAB evaluates the
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children of the node with sequence [0,3,1,2,0] and objective value 96. Suppose

that N = 11. The linear boost heuristic (denoted by BAB+L for the branch-

and-bound method plus an additional linear term) with γ = 2 has a lower bound

of 96 + 2(7) = 110 for the sequence [0,3,1,2,0], because there are seven package lo-

cations that have not yet been inserted into the sequence. The node with sequence

[0,1,2,3,6,0] has a lower bound of 97 + 2(6) = 109, because there are six remaining

package locations to be inserted into the sequence. BAB+L would evaluate the

children of the node with sequence [0,1,2,3,6,0] next.

3.5.1.2 Quadratic Boost Heuristic

Our branching procedure is similar to farthest insertion. Those package loca-

tions farthest away are inserted before those package locations that are nearest to

the existing subtour. The second variant of our heuristic assumes that the marginal

cost per package insertion is larger for short sequences. As the subtour grows and

iteratively inserts the package that is farthest away, the marginal insertion cost is

assumed to decrease.

Rather than using f(N − n) = (N − n)γ, which is linear in the number

of package locations not yet inserted (i.e., constant marginal insertion cost of γ), we

use f(N − n) = (N − n)2γ which is consistent with decreasing marginal insertion

costs as n increases. We denote this method by BAB+Q.
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3.5.2 Divide-and-Conquer Heuristic

For BAB, BAB+L, and BAL+Q, computation times increase superlinearly

(see Section 6). For large problem sizes, we consider a different heuristic method

that we call the divide-and-conquer heuristic (denoted by DCH).

Let CT (N) be the average computation time for BAB for instances of size

N . Since CT (N) increases superlinearly, mCT (N/m) < CT (N). Thus, we expect

the computation time of solving m problems of size N/m to be less than the com-

putation time of solving a single larger problem of size N .

DCH begins by solving the standard TSP on the truck metric. We relabel

nodes according to their order of appearance in the standard TSP solution. The

first node visited in the standard TSP solution is relabeled node 1; the second node

visited in the standard TSP solution is relabeled node 2; generally, the ith node

visited in the standard TSP solution is relabeled node i. Node 0 and node N may

be identical and serve as the origin and destination depots.

Next, we split the relabeled nodes from the TSP solution into m groups. The

first group has nodes 0, 1, 2, ..., bN/mc. The second group has nodes bN/mc, bN/mc+

1, ..., b2N/mc. Generally, group i has nodes b(i−1)N/mc, b(i−1)N/mc+1, ..., biN/mc.

Thus, the node set is divided into m groups where each group has a size of bN/mc

or bN/mc+ 1.
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For each of the m groups, we solve a subproblem. In particular, we solve

a TSP-D on the set of nodes in each group with a condition. For group i, we set

the root node sequence to [b(i− 1)N/mc, biN/mc]. Node b(i− 1)N/mc acts as the

origin depot for this subproblem; node biN/mc acts as the destination depot for

this subproblem. Then each subproblem is solved using BAB. Any node j such that

b(i−1)N/mc < j < biN/mc is inserted between the origin and depot nodes on sub-

problem i. The full problem solution is the union of the solutions of all subproblems

in order.

In Figure 3.4, we give an example with N = 30 nodes and m = 3. A standard

TSP route has already been specified and nodes have been relabeled accordingly.

Subproblem 1 requires that the truck and drone start at node 0 and service nodes

1 through 9 in some order. After servicing nodes 1 through 9, the truck and drone

must rendezvous at node 10. Subproblem 2 requires that the truck and drone start

at node 10, service nodes 11 through 19 in some order, then rendezvous at node 20.

Subproblem 3 requires that the truck and drone start at node 20, service nodes 21

through 29 in some order, then rendezvous at node 30. Combining the solution to

all subproblems produces a solution to the full problem with N = 30.

The intuition behind DCH is that the truck route in a good TSP-D solution

may have a similar broad shape to the optimal TSP solution. By solving each sub-

problem, we optimize the local structure. In Figure 3.4, we have the flexibility to
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Figure 3.4: Divide and conquer heuristic with N = 30 and m = 3.

rearrange the order of nodes 1 through 9, 11 through 19, and 21 through 29. By

solving m subproblems, we reduce computation times significantly.

3.6 Computational Results

All instances were created by randomly generating N locations on a 50 by 50

grid where the coordinates were distributed uniformly in each of the two dimensions.

One of the N locations was randomly designated as the depot. All computations

were performed on a computer with an i7-6700 processor operating at 3.4 GHz, 16

GB of RAM, and no parallelization. All computation times are reported in seconds.

For DCH and the TSP-ep [2] method, an optimal standard (truck-only) TSP solution

was used as input. Computation times for DCH and the TSP-ep method do not in-
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clude the time required to compute the solution to the standard TSP. Instance data

may be found online at http://stefan-poikonen.net/tspd instance data.zip.

In Tables 3.1 and 3.2, we see the apparent convergence of objective values

when we increase TER. In Table 3.3, we compare BAB to TSP-ep and TSP-ep-all

on the benchmark instances of Agatz et al. [2]. In Table 4.1, the objective values

and computation times of five solution methods are reported. In Tables 3.5 and

3.6, we vary γ in the BAB+L and BAB+Q heuristics. In Table 3.7, we display a

tradeoff of computation time vs. solution quality for DCH by changing the number

of subproblems. In Table 3.8, we study the effect of changing R and α. In Table

3.9, we consider the choice of alternative truck and drone metrics.

3.6.1 Branch-and-Bound Results for Different Tree Exploration Ra-

tio Values

In Table 3.1, we generated 100 random instances with N = 10, and solved

each instance with BAB using various values of TER. By setting TER = ∞, we

enumerate the entire branch-and-bound tree and obtain the optimal solution to each

instance. In the column Obj, the average objective value over the 100 instances for

a specified value of TER is given. The column Gap (Opt) is (Obj-Opt)/Opt where

Opt is the average objective value of the 100 optimal solutions. The column Time

gives the computation time (in seconds) required on average for a specified value

of TER. In the column Optimal, we show the number of instances where the value
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of TER produced the optimal solution. The number of instances where TSP-ep

produced a better objective value than BAB for a specified value of TER is shown

in the column TSP-ep Better. In the bottom two rows, we show the average objec-

tive value, average gap from the optimal TSP-D solution, and average computation

times for TSP-ep and the standard TSP. As the value of TER increases, the ob-

jective value of BAB converges. When TER reaches a value of 1.250, the objective

value of BAB is less than or equal to the objective value of TSP-ep in all 100 in-

stances. In eight of the 100 instances, TSP-ep produced the optimal solution.

In Table 3.2, we randomly generated 50 instances with N = 15. Compu-

tation times were intractably large for TER = ∞ (i.e., not a single instance was

solved after several hours of testing). In the column Best Solution, we show the

number of instances where the value of TER produced the lowest objective value

among all solution methods that were tested. Since we do not know the optimal

solution, the column Gap (Best) shows the average value of (Obj-Best)/Best where

Best is the the lowest objective produced by any method tested. BAB had an

objective value less than or equal to the objective value of TSP-ep in all instances

with TER > 1.025. The objective values appear to be converging as TER increases.

In Figure 3.5, we show an example where TSP-ep fails to find the optimal

solution and BAB finds the optimal solution. In this example, α = 2 and distances

between package locations are 10, except along the diagonals where the distance

is 10
√

2. The TSP-ep solution begins by launching a drone to package location 1,
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while the truck drives to package location 2. By the time the truck arrives at pack-

age location 2, the drone has already delivered a package at location 1 and is ready

to land on the truck. The drone is launched again to package location 3, while the

truck returns to package location 0. The drone will rendezvous with the truck at

package location 0. The BAB solution initially launches a drone to package location

2 and sends the truck to package location 1. The truck waits for (10 + 10
√

2)/2−10

time units at package location 1 for the drone to arrive. The drone is then launched

to package location 3 to make a delivery and will eventually rendezvous with the

truck at package location 0. The solution produced by BAB could not occur with

TSP-ep, because the statement 0 < 2 < 1 is not valid. In TSP-ep, only drone oper-

ations for triplets (i, j, k) where i < k < j are considered. Thus, a drone operation

beginning at package location 0 and ending at package location 1 could not launch

a drone to package location 2.

In Table 3.3, we report the results for BAB, TSP-ep, and TSP-ep-all on the

instances with N = 10 and α = 2 that were solved in Agatz et al. [2]. There were 10

random instances of three types: uniform, 1-center, and 2-center. Uniform instances

distributed package locations uniformly over a square grid. In 1-center instances,

the distance of a package location from the center was distributed normally with

standard deviation 50 and the angle relative to the grid was distributed uniformly

over [0, 2π]. The 2-center instances were generated in the same way as 1-center

instances, except that package locations were shifted horizontally by 200 with prob-

ability 0.5. In the columns labeled Opt, we report the number of instances (out of
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Table 3.1: Computational results for BAB with N = 10.

BAB
TER Obj Gap (Opt) Optimal TSP-ep Better Time (s)
1.000 153.243 0.032 36 11 0.031
1.025 152.400 0.027 44 9 0.041
1.050 151.254 0.019 55 6 0.064
1.075 151.048 0.017 58 5 0.104
1.100 150.614 0.014 64 5 0.164
1.125 150.067 0.011 75 3 0.239
1.150 149.757 0.009 81 3 0.331
1.175 149.335 0.006 87 2 0.449
1.200 148.914 0.003 90 1 0.594
1.225 148.823 0.002 93 1 0.794
1.250 148.673 0.001 94 0 1.013
1.275 148.661 0.001 95 0 1.281
1.300 148.518 0.000 97 0 1.568
1.325 148.517 0.000 98 0 1.989
1.350 148.517 0.000 98 0 2.443
∞ 148.462 0.000 100 0 77.835

TSP-ep 159.21 0.103 0.003
TSP 186.24 0.210 0.001

10) that were solved optimally. In the columns labeled Gap, we report how much

the objective value exceeded the optimal solution on average. We found that BAB

performed best on 1-center instances and worst on uniform instances. One possible

reason for relatively bad performance on uniform instances may be related to the

fact that these are the least-clustered instances. For a specific delivery location,

the set of potential launch points for the drone may be especially limited in these

instances. The insertion of additional stop locations into a sequence may more

frequently decrease the objective value, relative to 1-center or 2-center instances.

We note that, in Section 4.2, we described how an objective value can decrease by

adding stop locations.
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Table 3.2: Computational results for BAB with N = 15.

BAB
TER Obj Gap (Best) Best Solution TSP-ep Better Time (s)
1.000 164.446 0.055 8 1 0.300
1.025 163.820 0.051 9 1 0.468
1.050 161.708 0.038 11 0 1.096
1.075 160.486 0.030 15 0 2.904
1.100 159.987 0.027 19 0 6.057
1.125 159.319 0.023 23 0 12.294
1.150 158.375 0.017 31 0 23.024
1.175 157.258 0.009 37 0 36.851
1.200 156.284 0.003 44 0 62.069
1.225 156.115 0.002 47 0 107.165
1.250 155.804 0.000 50 0 175.542

TSP-ep 183.821 0.180 0.003
TSP 214.309 0.376 0.001

Figure 3.5: In (a), the TSP solution has an objective value of 40. In (b), the TSP-
ep solution has an objective value of 20

√
2 ≈ 28.28. In (c), the BAB

solution has an objective value of 10 + 10
√

2 ≈ 24.14.

(a) TSP Solution (b) TSP-ep Solution (c) BAB Solution
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BAB
Uniform Instances 1-Center Instances 2-Center Instances

TER Opt Gap Opt Gap Opt Gap
1.000 2 0.055 3 0.009 5 0.013
1.025 3 0.037 5 0.007 6 0.009
1.050 5 0.024 6 0.002 7 0.006
1.075 6 0.021 9 0.001 9 0.002
1.100 6 0.016 9 0.001 9 0.002
1.125 7 0.013 10 0.000 9 0.002
1.150 8 0.010 10 0.000 9 0.002
1.175 9 0.009 10 0.000 9 0.002
1.200 9 0.003 10 0.000 9 0.002
1.225 9 0.003 10 0.000 10 0.000
1.250 9 0.003 10 0.000 10 0.000
1.275 10 0.000 10 0.000 10 0.000
1.300 10 0.000 10 0.000 10 0.000
∞ 10 0.000 10 0.000 10 0.000

TSP-ep 0 0.160 0 0.152 0 0.127
TSP-ep-all 6 0.004 5 0.011 5 0.013

Table 3.3: Computational results on instances with N = 10 and α = 2 from [2].

3.6.2 Solution Quality and Computation Time Results for Five TSP-

D Solution Methods

In Table 4.1, we give the results for five methods and the optimal TSP solution

with R = 20, α = 2, and N = 10, 20, ..., 90, 100, 200. The truck follows the taxicab

metric while the drone follows the Euclidean distance metric and travels at a speed

twice as fast as the truck. Each method used the same set of 25 instances for each

value of N . TER is set at 1.05 for BAB, BAB+L, BAB+Q, and all subproblems in

DCH. Each row gives the average results for 25 randomly generated instances for a

value of N . Obj gives the average objective value and Time (s) gives the average

solution time in seconds.
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BAB BAB+L BAB+Q DCH TSP-ep TSP
N Obj Time (s) Obj Time (s) Obj Time (s) Obj Time (s) Obj Time (s) Obj
10 149.532 0.066 154.287 0.022 152.340 0.036 149.532 0.068 159.760 0.002 176.662
20 171.642 58.726 185.495 2.145 180.675 11.969 182.230 0.180 197.785 0.003 237.681
30 - - 209.112 8.095 - - 200.945 0.308 215.904 0.005 277.929
40 - - 239.345 28.906 - - 226.153 0.908 250.627 0.007 319.502
50 - - - - - - 241.360 1.818 276.284 0.011 352.407
60 - - - - - - 267.539 2.973 301.867 0.018 382.892
70 - - - - - - 283.304 3.080 316.564 0.026 407.699
80 - - - - - - 299.092 3.685 339.768 0.036 438.725
90 - - - - - - 322.370 5.269 362.058 0.050 464.001
100 - - - - - - 337.906 5.797 377.677 0.066 486.096
200 - - - - - - 465.627 14.000 523.734 0.486 666.792

Table 3.4: Computation time and objective value averages for five methods and the
objective value for the optimal TSP solution. A dash (-) indicates that
the 25 instances could not be solved within five hours.

In BAB+L and BAB+Q, we set the parameter γ = 5.0 and γ = 5.0/N ,

respectively. In DCH, the number of subproblems is defined by m = N/10, so that

the subproblem size remains constant at 10 regardless of N . BAB, BAB+L,

and BAB+Q have computation times that grow quickly. In DCH, by keeping sub-

problem size constant at 10, computation time grows linearly with N . TSP-ep is

an O(N3) method. BAB produced the best objective values, but it was the slowest

method. DCH had objective values that, on average, were smaller than TSP-ep for

every value of N . TSP-ep was the fastest method for every instance.

3.6.3 Linear and Quadratic Boost Heuristics Tradeoff

BAB+L and BAB+Q use the input parameter γ. In Tables 3.5 and 3.6, we

show a tradeoff between objective value and computation time. We generated 25

random instances with size N = 20 and constant parameter values R = 20, α = 2,

and TER = 1.00. The objective values and computation times were averaged over
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γ Obj Gap Time (s)
0 173.56 0.000 9.493
2 177.80 0.024 1.590
4 181.60 0.046 0.571
6 184.81 0.065 0.399
8 186.74 0.076 0.271

Table 3.5: Tradeoff between solution quality and computation time for BAB+L for
N = 20.

Nγ Obj Gap Time (s)
0 173.56 0.000 9.493
2 176.67 0.017 4.770
4 178.19 0.027 3.023
6 178.74 0.030 1.426
8 179.55 0.035 0.986

Table 3.6: Tradeoff between solution quality and computation time for BAB+Q for
N = 20.

all 25 instances. In Tables 3.5 and 3.6, larger values of γ had smaller computation

times and produced worse objective values, on average. We point out that, when

γ = 0 and Nγ = 0, we have the same results as BAB. The column Gap in Tables

3.5 and 3.6 is computed by (Obj-BAB)/BAB, where BAB represents the objective

value found by setting γ = 0.

3.6.4 Divide-and-Conquer Heuristic Tradeoff

When m = 1, DCH is equivalent to BAB and when m = N , DCH produces

the truck-only TSP solution. In Table 3.7, an intermediate number of subproblems

is considered where N = 48. We set R = 20, α = 2, and TER = 1.00, and average

the results from 25 instances. In Table 3.7, m is the number of subproblems, N/m

is the average size of each subproblem, Obj is the average objective, and Time is

the average computation time in seconds. There is a clear tradeoff — solving many
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N/m m Obj Time (s)
4 12 280.85 0.011
6 8 261.94 0.039
8 6 250.49 0.132
12 4 245.74 2.031
16 3 240.15 45.366
24 2 237.28 512.213

Table 3.7: Tradeoff between solution quality and computation time for DCH where
N = 48.

small subproblems is computationally faster, but objective values are worse. Large

values of m create a more constrained problem that is anchored at m+ 1 points of

the initial TSP solution. Anchor points are package locations that occur as either

the first node or last node visited in one of the subproblems. In Figure 3.4, package

locations 0, 10, 20, and 30 are anchor points. Furthermore, all nodes of group i

must be visited before any nodes of group i+ 1. In Figure 3.4, this means package

locations 1 through 9 are serviced before package locations 11 through 19; package

locations 11 through 19 are serviced before package locations 21 through 29. Small

values of m provide more solution flexibility but suffer from slower computation

times.

3.6.5 Effect of Drone Battery Duration and Speed on the TSP-D

Solutions

We consider the effects of drone battery life and drone speed on the solution to

the TSP-D. In Table 3.8, 25 instances were generated with N = 48. Each instance

was solved by DCH with R = 10, 20, 30, α = 0.5, 1.0, 2.0, 3.0, TER = 1.00, and

m = N/10. The average TSP objective value over the 25 instances is 348.06.
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Larger values of drone range and faster speeds produced smaller objective

values for the TSP-D. By adding a very low performance drone, the improvement

in objective value is typically very small. For example when R = 10 and α = 0.5,

the performance improvement was only 0.02% compared to the TSP solution. In

contrast, a high performance drone (R = 30 and α = 3) produced TSP-D solutions

with objective values 36.89% lower than the TSP solution.

Rα is the range of the drone in units of distance. If we compare two sets

of parameters with equal values of Rα, such as R = 30 and α = 1.0 versus R = 10

and α = 3.0, the set of parameters with a larger value of α produced a smaller

objective value in each case. This indicates that for two drones with equal range

(in distance units), the drone with larger speed is usually more valuable than the

drone that is capable of hovering for a long period of time to preserve feasibility of

certain operations.

3.6.6 The Effect of Distance Metrics on the TSP-D Solutions

In Table 3.9, we consider the effect of different distance metrics on objective

values. For each size N , 25 instances were generated and the average objective val-

ues over the 25 instances are reported.
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R α Obj
10 0.5 347.99
10 1.0 333.57
10 2.0 286.22
10 3.0 256.84
20 0.5 345.33
20 1.0 295.69
20 2.0 240.90
20 3.0 224.51
30 0.5 337.82
30 1.0 279.44
30 2.0 232.33
30 3.0 219.67

TSP 348.06

Table 3.8: Drone battery and speed vs. TSP-D objective value for N = 48.

In the column TSP-D Taxi/Euc, we give the TSP-D objective value with

ct defined by the taxicab distance and cd defined by the Euclidean distance divided

by two. In the column TSP-D Euc/Euc, we give the TSP-D objective value with ct

defined by the Euclidean distance and cd defined by the Euclidean distance divided

by two (i.e., α = 2). TSP Taxi gives the optimal objective value of the standard

TSP using the taxicab distance. DCH was used for TSP-D Taxi/Euc and TSP-D

Euc/Euc with m = N/12 and R = 20. Improve gives the average reduction in ob-

jective value in relative terms compared to TSP Taxi. We see that, for all instance

sizes except N = 12, TSP-D Taxi/Euc has an average objective value that is more

than 30% less than TSP Taxi. If the truck is free to move in Euclidean space, the

average completion time reduction exceeds 40% except when N = 12.
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N TSP-D Taxi/Euc TSP-D Euc/Euc TSP Taxi
Obj Improve Obj Improve Obj

12 165.02 -0.216 132.60 -0.370 210.38
24 198.76 -0.304 161.36 -0.435 285.47
36 232.93 -0.310 190.87 -0.434 337.51
48 263.17 -0.312 218.64 -0.428 382.30
60 290.71 -0.316 241.23 -0.432 425.30

Table 3.9: Comparison of TSP and TSP-D results for three different metrics.

3.7 Conclusions and Future Work

In this paper, we presented four heuristics for the TSP-D based on the branch-

and-bound algorithm. For smaller instances, we showed that increasing the value

of TER with BAB leads to the convergence of objective values. This suggests that

BAB may generate solutions that are very close to the optimal solution when TER

is sufficiently large. For larger instances, DCH produced objective values that com-

pared favorably to TSP-ep. Although TSP-ep produced the smallest computation

time in all instances, DCH had an average completion time of less than 15 seconds

for the largest instances (N = 200). Because DCH can be solved in a reasonable

amount of time on problems of practical size, DCH might be useful to drone de-

livery services. Additional computational experiments analyzed the effect of input

parameters. We showed that when the truck was constrained to the taxicab metric,

a single drone with battery life of 20 minutes and double the speed of the truck

produced very significant savings, often in excess of 30%.

In future work, we hope to consider variants of the TSP-D including allowing

more than one drone per truck and allowing drones to launch or land along an edge
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in addition to package stop locations. We want to model the overhead time required

for each drone launch or landing and want to add an extra cost factor to the ob-

jective for each drone launch. We also want to consider embedding the TSP-D in a

vehicle routing problem with multiple trucks. Since TSP-D produced objective val-

ues nearer to optimal on 1-center instances than on uniformly distributed instances,

we want to consider the impact of customer distribution on the TSP-D and related

solution methods.
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Chapter 4: The Mothership and Drone Routing Problem

4.1 Introduction

The use of one or more unmanned aerial vehicles (“UAVs”) in coordination

with other types of vehicles has applications in private industry, military, and other

government domains. [51] Amazon, Google, UPS, and DHL [5, 22, 61, 66] have all

invested in programs to research the operational capabilities of drones for use in the

private sector, which may include delivery of online purchases to customers. Military

uses of drones range from kinetic strikes, surveillance, signal collection, transport

of goods, and disaster relief. Use of drones by other government agencies may be

applied to tracking criminals, monitoring traffic, emergency search-and-rescue, and

monitoring wild fires.

While several previous papers have focused on truck-and-drone tandems for

routing, including [2, 37, 49], this paper considers coordination of a different pair.

The mothership and drone routing problem involves two vehicles:

1. The mothership is a large vehicle (a large ship or airplane), which is capable

of moving in Euclidean space.

2. The drone is a smaller vehicle which is carried by the mothership, launched to

67



some location, then returns to the mothership for refueling or to pick-up new

cargo before being launched again. The drone may be a small boat or UAV.

We will generically refer to movement of the drone as flying/flight.

This mothership and drone model is fundamentally distinct from others in

the literature, as the mothership operates in continuous, Euclidean space with the

ability to launch or retrieve the drone at any location, rather than only at certain

nodes in a graph. Potential applications of this specific model range from delivery of

goods to island locations, oceanic search-and-rescue, signals collections, and military

operations.

In Section 2, we present a literature review. In Section 3, we formally define

the mothership and drone routing problem. In Section 4, we describe our exact

solution method to the problem. In Section 5, we present computational heuristics.

Section 6 contains computational results for the MDRP. Section 7 describes a model

where a drone is allowed to visit multiple targets consecutively without returning

to the mothership, called MDRP-HC, and associated solution methods. Section 8

provides computational results for MDRP-HC. Section 9 discusses the flexibility of

our solution methods, future research, and conclusions.

4.2 Literature Review

In 2015, Murray and Chu [49] introduced the Flying Sidekick Traveling Sales-

man Problem (FSTSP). In FSTSP, a single drone is capable of launching from the

truck with a single package, making a delivery, and returning to the truck at a
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rendezvous location. The truck is still capable of making deliveries while the drone

is airborne, however, truck and drone must rendezvous within a fixed time limit,

before the battery of the drone is depleted.

Agatz et al. [2] consider a similar problem titled the Traveling Salesman Prob-

lem with a Drone (TSP-D). A mixed integer programming formulation is given, in

addition to a family of heuristics. These heuristics begin by forming a delivery se-

quence (either via heuristic or by solving a TSP over the customer locations), then

partitioning the route into locations delivered by the truck and locations delivered

by the drone. Poikonen et al. [53] adapt the partitioning procedure of Agatz et

al. [2], and use it as an embedded procedure within each node of a branch-and-

bound tree to produce optimal solutions. In [53], a divide-and-conquer technique is

applied to break a larger master problem into a sequence of smaller subproblems to

increase computational speed. Campbell et al. [19] use continuous approximation to

help compute expected delivery costs. Ha et al. [37] introduce a greedy randomized

adaptive search procedure (GRASP) to generate solutions to TSP-D.

In Wang et al. [65] and Poikonen et al. [54], a multi-truck, multi-drone problem

titled VRPD is considered. In particular, bounds are given for the maximum possible

speed-up ratio of a truck-and-drone versus truck-only model.

In Coutinho et al. [20], a different problem is considered, the close-enough

traveling salesman problem (CETSP). The CETSP is a generalization of the TSP,

where it is not necessary to exactly visit each customer location. Rather, it is suf-

ficient to come “close-enough” (i.e., within a predefined radius) for each customer

location. The use of second order cone programming to grade prospective sequences
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of visit orders is an idea we borrow from [20]. For the curious reader, the work of

Lobo et al. [43] provides a brief introduction to second order cone programming, a

primal-dual interior point solution method, and a list of applications where second

order cone programming may be used. The authors of [43] note that second order

cone programs can be solved particularly efficiently, even more efficiently than the

more general class of semidefinite programs. A formal proof related to the polyno-

mial convergence rate of primal-dual interior point methods for second order cone

programs is found in the work of Monteiro and Tsuchiya [47]. The key takeaway

from [43] and [47], for our paper, is that it is possible to solve many moderately

large second order cone programs in a tractable amount of time.

In a paper by Savuran and Karakaya [58], a ship-and-drone routing problem is

considered. In particular, an aircraft carrier is used as a mobile depot. A drone with

range constraints is tasked with visiting as many targets as possible before returning

to the carrier. Unlike in our work, in [58], the route of the carrier is already fixed

and there is the option to not visit some targets. The primary solution method used

was a genetic algorithm.

4.3 Defining the Problem

In the mothership and drone routing problem (MDRP), there exists one moth-

ership and one drone. Both vehicles are capable of moving freely in the Euclidean

plane, R2. We assume that there exist no obstructions to prevent mothership and

drone travel from moving in straight line segments.
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The mothership and the drone begin at a starting location, denoted orig.

There exists a set of target locations T . For each ti ∈ T , we require that the

drone launch from the mothership, fly to ti, then return to the mothership. After

all targets have been visited, the mothership and drone return to a final location,

denoted dest. In this problem, we will assume orig and dest are the same location.

However, all results in this paper are easily extendable to the case that orig and

dest are different locations.

The drone may not be separated from the mothership for more than R con-

secutive time units. The mothership has unit maximum speed; the drone has a

maximum speed of α > 1. The drone may not visit multiple targets consecutively;

it must return to the mothership after visiting a target.

The goal is to find a path of minimum duration that begins at orig, ends at

dest, and where every ti ∈ T is visited by the drone. The MDRP is a generalization

of the Euclidean Traveling Salesman Problem. In Figure 4.1, we display an example

solution path for the MDRP with four targets. We point out the following result.

Theorem 9. Let T be a set of target locations and {orig} be the starting and

terminal location. Let obj(TSP ) and obj(MDRP ) denote the optimal objective

value for the TSP and MDRP, respectively, for the set of locations T ∪ {orig}.

Then, obj(TSP )/α ≤ obj(MDRP ) ≤ obj(TSP ).

The lower bound of Theorem 9 can be shown by noting that the drone, at

minimum, must travel the distance of the Euclidean TSP among the locations T ∪

{orig} at maximum speed α. The upper bound of Theorem 9 is valid, because, at
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Figure 4.1: An example solution path for the MDRP with R = 20 and α = 2. Black
line segments trace the path of the mothership. Red line segments trace
the flight path of the drone. Blue circles are target locations. Red circles
are locations where the drone launches from or returns to the ship.
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worst, the ship may travel to each target location T ∪ {orig} and launch the drone

at negligible distance from the target.

4.4 Exact Solution Method

We may view MDRP as simultaneously answering the following two questions.

1. What is the optimal order to visit each ti ∈ T?

2. For each ti ∈ T , what is the optimal location to launch the drone and what is

the optimal location to retrieve the drone?

Notably, the first question concerns discrete optimization, whereas, the second ques-

tion concerns continuous optimization.

4.4.1 Second Order Cone Program for a Fixed Sequence

Suppose we have a fixed sequence of locations S = [orig, s1, s2, ..., sn, dest] with

s1, s2, ..., sn ∈ T . We wish to solve a subproblem that seeks to find the minimum

duration closed tour, under the restrictions that: (1) the tour begins and ends at

orig = dest, (2) each of s1, s2, .., sn is visited by the drone, (3) that if i < j, si

is visited by the drone before sj, (4) that the maximum speeds (1 and α) of the

vehicles are not surpassed, and (5) that drone and mothership are not separated for

more than R time units. Our formulation of this subproblem is labeled LENSEQ(S).
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LENSEQ(S):

minimize(
n+1∑
k=0

(cT ime(k) + sT ime(k)) (L0)

Subject to:

For k=0 to n:

‖lPoint(k + 1)− rPoint(k)‖ ≤ cT ime(k) (L1)

‖lPoint(k)− rPoint(k)‖ ≤ sT ime(k) (L2)

‖sk − lPoint(k)‖ ≤ outF lightDist(k) (L3)

‖sk − rPoint(k)‖ ≤ inF lightDist(k) (L4)

(outF lightDist(k) + inF lightDist(k))/α ≤ sT ime(k) (L5)

sT ime(k) ≤ R (L6)

End For

lPoint(0) = orig (L7)

rPoint(0) = orig (L8)

lPoint(n+ 1) = dest (L9)

rPoint(n+ 1) = dest (L10)

In LENSEQ(S), for integer i such that 1 ≤ i ≤ n, we use lPoint(i) to represent

the location at which the drone launches from the mothership before visiting target
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location si. Similarly, we use rPoint(i) to represent the location where the drone

is retrieved, after flying to si. We use cT ime(i) to represent the duration of time

the drone rides on the mothership after returning from si, but before launching to

si+1. We use sT ime(i) to represent the time elapsed starting from the launch of the

drone to si, until the drone is retrieved by the mothership after returning from si.

Objective (L0) sets the duration of the tour as the sum of the times during

which the mothership and drone are combined (cT ime) and separated (sT ime).

Constraint (L1) ensures that cT ime(k) is at least as large as the mothership travel

time from rPoint(k) to lPoint(k + 1). Constraint (L2) ensures that sT ime(k) is

at least as large as the travel time of the mothership from lPoint(k) to rPoint(k).

Together, constraints (L3), (L4), and (L5) ensure that sT ime(k) is at least as large

as the sum of the drone’s flight duration from lPoint(k) to sk and the drone’s flight

duration from sk to rPoint(k). Constraint (L6) ensures the drone is retrieved before

its maximum flight time has elapsed. Constraints (L7) through (L10) set the origin

and destination of the path.

The above second order cone program may quickly solve for the optimal set of

launch and landing points, relative to a fixed sequence S. We will use lenSeq(S) to

denote the objective value that results from applying LENSEQ to an input sequence

S. If we consider Figure 4.1 as an example, LENSEQ does not choose which order the

blue targets are visited; that is already fixed. However, LENSEQ does find optimal

locations for the red circles (i.e., the launch and landing locations for the drone)

and returns the objective value associated with this optimal choice of launch and

landing locations.
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We return to the question of finding the best sequence S.

4.4.2 Branch-and-Bound: Finding the Best Sequence

Our solution method is predicated upon the following theorem.

Theorem 10. If S1 is a subsequence of S2, then lenSeq(S1) ≤ lenSeq(S2).

Theorem 10 can be shown by observing that any feasible solution to LENSEQ(S2)

must also be a feasible solution to LENSEQ(S1), thus lenSeq(S1) is at most lenSeq(S2).

Näıvely, we could enumerate every sequence S that begins at orig, visits each

ti ∈ T (in various permutations), then returns to dest, and then apply the lenSeq

procedure to each sequence. Yet, this scales factorially and applying the lenSeq

procedure to each is intractable for all but the smallest of problems.

Instead, we will leverage Theorem 10. If S1 is a subsequence of S2, and if

subsequence S1 is not promising (i.e. lenSeq(S1) is large), then S2 should not be

highly prioritized in our search, because we know lenSeq(S2) is at least as large as

lenSeq(S1).

In ALGBAB, we display the pseudocode for an algorithm (BAB) that searches

the space of all potential visit orders to visit subsets of T with the drone. In this

algorithm, we construct a branch-and bound tree, where each node is assigned a

subsequence of targets and a second order cone program is solved at each node with

respect to that subsequence.

In (L1) to (L7) of ALGBAB, we begin at the root node and associate it with a se-

quence [orig, t1, dest]. We then set the lower bound of the root node to lenSeq([orig, t1, dest])
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and the upper bound of the root node to ∞. While the lower bound of the root

node is less than the upper bound of the root node (L8), we iterate the following

steps.

1. Find the leaf node of the branch-and-bound tree that has the smallest lower

bound and call it currNode (L9).

2. Select the target location ti ∈ T that is furthest from any target that is in

the sequence associated with currNode, i.e., currNode.sequence, and call it

newTarget (L10).

3. Construct children nodes of currNode. The sequences associated with the

children are constructed by taking the sequence of currNode and inserting

newTarget into various positions (L12). For example, if currNode.sequence

is [orig, t7, t1, t6, dest] and newTarget = t4, then the sequences for the children

of currNode are [orig, t4, t7, t1, t6, dest], [orig, t7, t4, t1, t6, dest], [orig, t7, t1, t4, t6, dest],

and [orig, t7, t1, t6, t4, dest].

4. For each child node child with associated sequence child.sequence, set

child.lowerBound = lenSeq(child.sequence) (L13).

5. For each child node child with associated sequence child.sequence, if each

ti ∈ T is contained within child.sequence (i.e. the sequence visits all tar-

gets), then set child.upperBound = child.lowerBound (L14,L15), because

this represents a feasible solution to the overall problem that visits each ti ∈ T .

Otherwise, set child.upperBound =∞ (L16, L17), because there exists some
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target ti ∈ T that is not visited.

6. Properly update the tree with the newly constructed children nodes and their

relationship with currNode (L18, L19, L20, L21).

7. Mark currNode as no longer being a leaf node and update upper bounds and

lower bounds for the ancestors of currNode in the tree (L22, L23, L24, L25,

L26, L27, L28).

Corollary 1. The algorithm BAB produces an optimal solution to MDRP.

This branch-and-bound approach (BAB) is an exact approach, because The-

orem 10 implies that each lower bound constructed in the branch-and-bound tree

is valid and the search space of the branch-and-bound tree contains all valid visit

sequences.

In Figure 4.2, we display the branch-and-bound tree for a small instance with

three targets. Next to each node in Figure 4.2 is its associated sequence. The lower

bound of a node with associated sequence S is initially computed as lenTour(S).
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Figure 4.2: A branch-and-bound tree that explores all sequences for visiting targets
t1, t2, and t3.
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ALGBAB:

tree = ∅ (L1)

rootNode.sequence← [orig, t1, dest] (L2)

rootNode.lowerBound← lenSeq(rootNode.sequence) (L3)

rootNode.upperBound←∞ (L4)

rootNode.parent← none (L5)

rootNode.isLeaf← true (L6)

tree.add(rootNode) (L7)

while(rootNode.upperBound > rootNode.lowerBound): (L8)

currNode← minnode∈tree|node.isLeaf=true(node.lowerBound) (L9)

newTarget← maxt∈T (mins∈currNode.sequence(distance(s, t)) (L10)

For position from 1 to length(currNode.sequence): (L11)

newNode.sequence← insert(currNode.sequence,newTarget,position) (L12)

newNode.lowerBound← lenSeq(newNode.sequence) (L13)

If(∀t ∈ T, t ∈ newNode.sequence): (L14)

newNode.upperBound← newNode.lowerBound (L15)

Else: (L16)

newNode.upperBound←∞ (L17)

newNode.isLeaf← true (L18)

newNode.parent← currNode (L19)

currNode.children.add(newNode) (L20)

tree.add(newNode) (L21)

currNode.isLeaf← false (L22)

currNode.lowerBound← minchild∈currNode.children(child.lowerBound) (L23)

currNode.upperBound← minchild∈currNode.children(child.upperBound) (L24)

while(currNode.parent 6= none) : (L25)

currNode← currNode.parent (L26)

currNode.lowerBound← minchild∈currNode.children(child.lowerBound) (L27)

currNode.upperBound← minchild∈currNode.children(child.upperBound) (L28)
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4.5 Heuristics for MDRP

Although BAB is an exact solution method, for larger instances it may be

intractably slow. (The computational experiments of Section 6 will confirm this.)

We, therefore, propose a number of heuristic methods that are significantly faster.

4.5.1 Greedy Sequence

In the Greedy Sequence (GS) heuristic, we begin by solving the Euclidean

traveling salesman problem (TSP) on the set of locations {orig}∪T . We denote the

optimal TSP path TSPSeq = [orig, s1, s2, ..., sn, dest]. We then apply the LENSEQ

second order cone program to input TSPSeq. The corresponding objective value is

lenSeq(TSPSeq).

4.5.2 Greedy Sequence with Local Search

In the Greedy Sequence with Local Search (GSLS) heuristic, we begin by

finding TSPSeq in the same way as in Greedy Sequence heuristic. Let us de-

note the neighborhood of an arbitrary sequence S = [orig, s1, s2, .., sn, dest] as

neighborhood(S). neighborhood(S) consists of the following sequences.

1. Any sequence formed by swapping si and sj, with i 6= j. This is called a

2-point swap.

2. Any sequence formed by selecting si and moving it elsewhere in the sequence

(though not before orig or after dest). This is called a 1-point swap.
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3. Any sequence that results from removing a consecutive string within the se-

quence, si, si+1, ..., sj with i < j, and reinserting the string in reverse order.

This is a 2-opt.

We then perform an iterative downhill local search. Pseudocode for this local

search algorithm is labeled ALGGSLS.
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ALGGSLS:

currSeq← BestTSPSeq (L1)

contLocalSearch← true (L2)

While(contLocalSearch=true) (L3)

contLocalSearch← false (L4)

bestObjVal← lenSeq(currSeq) (L5)

For each neighbor in neighborhood(currSeq): (L6)

objVal← lenSeq(neighbor) (L7)

If(objVal<bestObjVal): (L8)

bestObjVal← objVal (L9)

bestSeq← neighbor (L10)

If(bestSeq 6= currSeq): (L11)

currSeq← bestSeq (L12)

contLocalSearch← true (L13)

The size of a neighborhood when |T | = n is O(n2) sequences. If I is the number

of downhill steps in ALGGSLS, then the computational cost is O(I∗n2)∗cost(LENSEQ),

where cost(LENSEQ) is the computational effort required to solve LENSEQ for a single
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input sequence.

4.5.3 Partial Solve with Greedy Insert

In the Partial Solve with Greedy Insert (PSGI) heuristic, we let Tp ⊂ T be a

smaller subset of target locations. In Phase 1 of PSGI, we apply a slightly modified

version of ALGBAB, where any references to T are replaced by Tp. We are effectively

solving MDRP using BAB, but only on the subset Tp instead of T . The solution

path from Phase 1 is then labeled bestPartialSeq.

In Phase 2, we begin with bestPartialSeq and then greedily apply a form of

cheapest insertion. The pseudocode for the cheapest insertion of Phase 2 is labeled
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ALGPSGIPHASE2.

ALGPSGIPHASE2:

currSeq← bestPartialSeq (L1)

For each ti ∈ T \ Tp : (L2)

bestObjVal←∞ (L3)

For each position = 2 to |bestPartialSeq|-1: (L4)

trialSeq← insert(currSeq, ti, position) (L5)

objVal← lenSeq(trialSeq) (L6)

If objval < bestObjVal: (L7)

bestObjVal← objVal (L8)

nextSeq← trialSeq (L9)

currSeq← nextSeq (L10)

4.6 MDRP Computational Results

Code, instances, and solution data can be found at http://stefan-poikonen.net/

projects/MDRP/index.html. All computational results were performed on a com-

puter with an Intel i7-6700 CPU operating at 3.40GHz with 16GB of available RAM.

Code was executed in Python 2.7 and Gurobi 7.5.1 was called as a solver for any

second order cone programs or traveling salesman problem formulations. Any com-

putation times reported are measured in seconds.
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In the Greedy Sequence and Greedy Sequence with Local Search heuristics, finding

a TSP solution is required at the beginning of the algorithm. To do so, we used a

lazy constraint integer program formulation derived from [31], where violated sub-

tour constraints were added as needed.

In the Partial Solve with Greedy Insert heuristic, we set |Tp| = b0.5 ∗ |T |c. That

is, we initially apply ALGBAB on half of the targets Tp, and we greedily insert the

remaining half of the targets.

4.6.1 Comparing Solution Methods for MDRP

In Table 4.1 and Table 4.2, each row displays results for the mean objective

values (Obj) and computational time (Time) of 25 randomly generated instances

using various solution methods. The drone flight time is fixed as R = 20. The ratio

of drone speed to mothership speed is α = 2.

In Table 4.1, we use a uniform distribution over a 100 by 100 grid to randomly

generate the location of orig and each ti ∈ T . We refer to the instances from Table

4.1 as the uniform instances. In Table 4.2, we generate instances where orig = (0, 0),

and target locations are restricted to two clusters: the circle centered at (25, 75) with

radius 20 and the circle centered at (75, 25) with radius 20. Within these two circles,

the location probability density is uniform. We refer to the instances of Table 4.2
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as the clustered instances.

The column |T | indicates the number of targets used in each of 25 random instances

for the row. For each method used to solve MPD, the column Save is calculated

by (TSPObj-Obj)/TSPObj, where TSPObj is the objective value of the Euclidean

TSP on T ∪ orig.

The column under TSP corresponds to the objective value of the Euclidean TSP

on the set orig ∪ T . The columns under BAB report results for the exact solu-

tion method from Section 4; the columns under GS report results for the Greedy

Sequence heuristic of Section 5.1; the columns under GSLS report results for the

Greedy Sequence with Local Search heuristic of Section 5.2; the columns under PSGI

report results for the Partial Solve with Greedy Insert heuristic of Section 5.3.

For BAB, we report (in column Nodes) the average number of nodes constructed in

the branch-and-bound tree for each set of 25 instances.

Each dash (-) indicates that for the given instance size and solution method, the

average solve time among 25 instances exceeded the timeout limit of 900 seconds.
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TSP BAB GS GSLS PSGI
|T | Obj Obj Time Nodes Save Obj Time Save Obj Time Save Obj Time Save
10 289.129 213.744 1.543 266.520 0.261 214.538 0.009 0.258 214.403 2.152 0.258 215.143 0.303 0.256
15 346.392 240.736 18.802 2246.520 0.305 245.200 0.014 0.292 243.603 6.813 0.297 248.744 1.017 0.282
20 377.677 252.232 700.220 61 640.280 0.332 260.784 0.024 0.310 258.523 17.280 0.315 263.646 3.330 0.302
30 455.334 - - - - 302.818 0.048 0.335 301.279 55.342 0.338 299.914 35.999 0.341
50 567.317 - - - - 371.101 0.157 0.346 369.223 293.981 0.349 - - -

100 779.824 - - - - 511.596 1.331 0.344 - - - - - -
200 1072.641 - - - - 698.989 16.798 0.348 - - - - - -

Table 4.1: Computational results for the MDRP on uniformly distributed instances.

TSP BAB GS GSLS PSGI
|T | Obj Obj Time Nodes Save Obj Time Save Obj Time Save Obj Time Save
10 278.753 242.106 12.585 1906.080 0.131 245.518 0.026 0.119 244.982 2.335 0.121 243.187 0.365 0.127
15 295.646 252.732 559.557 63 334.320 0.145 258.422 0.037 0.126 257.782 7.115 0.128 254.932 1.530 0.137
20 308.035 - - - - 265.013 0.065 0.139 264.707 16.690 0.140 264.356 14.495 0.141
30 328.606 - - - - 277.630 0.163 0.155 301.279 55.342 0.157 - - -
50 369.201 - - - - 298.854 0.341 0.190 298.142 229.996 0.192 - - -

100 779.824 - - - - 511.596 1.331 0.344 - - - - - -
200 436.448 - - - - 342.172 4.061 0.216 - - - - - -

Table 4.2: Computational results for the MDRP on clustered instances.
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4.6.2 Analysis of MDRP Computational Results

In Table 4.1 and Table 4.2, the computational time of BAB rapidly increases

with instance size. This correlates strongly with the average number of nodes ex-

plored in the branch-and-bound tree. Moreover, the clustered instances of Table

4.2 were computationally more costly than the uniform instances of Table 4.1. In

the clustered instances, swapping the order of two targets within the same cluster

usually produces similar objective values. This symmetry causes slower convergence

of the branch-and-bound algorithm.

The GS heuristic is the fastest heuristic tested. For instances where the optimal

MDRP solutions were found, the worst performance was on the uniform instances

of size |T | = 20. In this row of instances, GS cut 31.0% percent from the optimal

TSP solution, whereas the optimal MDRP solution cut 33.2% from the optimal TSP

solution. The vast majority of computation time for GS on moderate and large size

instances was spent solving for an optimal TSP. Using a faster TSP procedure (for

example the Lin-Kernighan Heuristic [42]) could reduce this significantly. In a ran-

domly generated set of 25 uniform instances of size |T | = 200, we found that the

computation time of the GS algorithm, aside from computing the TSP, averaged

only 0.360 seconds. For |T | = 20, we found that the computation time of the GS

algorithm, aside from computing the optimal TSP, averaged only 0.020 seconds.

The GSLS heuristic showed marginal impact in reducing the objective value com-
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pared to the GS heuristic. In the best case (uniform instances of size |T | = 20),

GSLS reduced the objective value (relative to the GS algorithm) only by 0.9%.

The Euclidean distances used by both mothership and drone may imply that local

searches are unlikely to produce significant improvements.

For all sets of clustered instances, PSGI was the best performing heuristic. How-

ever, for uniform instances, PSGI was sometimes outperformed by GS and GSLS.

The computation time of PSGI quickly grows as |Tp| grows. This is similar to the

computation time growth of BAB as |T | increases.

4.7 The Mothership and High Capacity Drone Routing Problem

A fundamental assumption of the mothership and drone routing problem is

that the drone must return to the mothership following each target visit. However,

in some applications, it may be possible for the drone to launch from the mothership,

visit one or more targets consecutively, then return to the mothership. We define

the mothership and high capacity drone routing problem (MDRP-HC) in the same

way as MDRP, except we now allow the drone to visit multiple targets consecutively

before returning to the mothership. We continue to require that the drone must not

be separated from the mothership for more than R consecutive time units.

Theorem 11. If R = ∞, the solution of the MDRP-HC will have the drone visit
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all targets consecutively before returning to the mothership at dest. Moreover, the

solution is equivalent to the Euclidean TSP, where the speed of travel is α.

4.7.1 Concepts: Drone Subtours and Compositions

We define a drone subtour, STi = (sti1 , sti2 , ..., stiz), as an ordered set of tar-

get locations, with sti1 , sti2 , ..., stiz ∈ T , that are visited consecutively by the drone

without the drone returning to the mothership in between. If j < k, then stij is

visited by the drone before stik .

In Figure 4.3, we display an example solution for the MDRP-HC, which contains

three drones subtours. The subtours contain two, three, and two targets and are

indicated by red line segments.

Let S = [orig, s1, s2, ..., sn, dest] be a potential order for visiting targets s1, s2, .., sn ∈

T . Let compositions(S) be the set of ways that we can group [s1, s2, ..., sn] into

separate drone subtours, while preserving the feature that if i < j, then si is vis-

ited by drone before s2. For example, suppose S = [orig, t4, t2, t3, t1, dest]. Then

compositions(S) =

{[orig, (t4, t2, t3, t1), dest], [orig, (t4, t2, t3), (t1), dest], [orig, (t4, t2), (t3, t1), dest],

[orig, (t4), (t2, t3, t1), dest], [orig, (t4, t2), (t3), (t1), dest], [orig, (t4), (t2, t3), (t1), dest],

[orig, (t4), (t2), (t3, t1), dest], [orig, (t4), (t2), (t3), (t1), dest]}.
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Figure 4.3: An example solution path for the MDRP-HC with R = 20 and α = 2.
Black line segments trace the path of the mothership. Red line segments
trace the flight path of the drone. The black square is location orig =
dest. Blue circles are target locations. Red circles are locations where
the drone launches from or returns to the ship. By applying the LENCOMP
function, we are optimally choosing locations for the red circles.
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The first composition contains (t4, t2, t3, t1). This means that the drone would launch

from the mothership, visit t4, t2, t3, t1 consecutively, then return to the mothership.

In the second composition, the drone would launch to visit t4, t2, t3 consecutively

before returning to the mothership. Afterwards, the drone launches to visit t1, as a

second separate subtour.

4.7.2 Second Order Cone Program for a Fixed Composition

Suppose a composition C = [orig, ST1, ST2, ..., STm, dest] is fixed, where m is

the number of distinct drone subtours within the composition.

If STi = (sti1 , sti2 , ..., stiz), then define len(STi) =
∑z−1

j=1 ‖stij+1
− stij‖, which rep-

resents the flight distance of the drone within the drone subtour. In Figure 4.3, for

example, len(ST2) is the sum of the distance from the third target location to the

fourth target location and the distance from the fourth target location target to the

fifth target location.

Let launch(STi) denote the location where the drone launches from the mothership

immediately prior to visiting the first target of STi. Likewise, let land(STi) denote

the location where the drone will land on the mothership, after visiting the last tar-

get of STi. These are represented by red circles in Figure 4.3. Let first(STi) = sti1

denote the first target location within STi. Let last(STi) = stiz denote the last

target location within STi.
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For composition C with drone subtours ST1, ST2, ..., STm, we would like to opti-

mally choose launch(STi) and land(STi) for i = 1, 2, ...m to minimize completion

time. To do so, we apply the pseudocode labeled LENCOMP. To call LENCOMP for a

composition C, we denote this lenComp(C).
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LENCOMP(C):

Set len(ST0) = 0, first(ST0) = depot, last(ST0) = depot

For k=1 to m:

Precompute constant len(STk) =
z−1∑
j=1

‖stkj+1
− stkj‖

minimize(
n+1∑
k=0

(cT ime(k) + sT ime(k)) (L0)

Subject to:

For k=0 to m:

‖lPoint(k + 1)− rPoint(k)‖ ≤ cT ime(k) (L1)

‖lPoint(k)− rPoint(k)‖ ≤ sT ime(k) (L2)

‖first(STk)− lPoint(k)‖ ≤ outF lightDist(k) (L3)

‖last(STk)− rPoint(k)‖ ≤ inF lightDist(k) (L4)

len(STk) ≤ intraF lightDist(k) (L5)

(outF lightDist(k) + intraF lightDist(k)+

inF lightDist(k))/α ≤ sT ime(k) (L6)

sT ime(k) ≤ R (L7)

End For

lPoint(0) = orig (L8)

rPoint(0) = orig (L9)
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lPoint(m+ 1) = dest (L10)

rPoint(m+ 1) = dest (L11)

We note that if len(STi) > Rα for any i = 1, 2, ...,m, then the composition C is

infeasible, as it is impossible to satisfy constraints (L5), (L6), and (L7) simultane-

ously. This aligns with the constraint that the drone must return to the mothership

within R time units. We also note that the number of decision variables in LENCOMP

is no more than the number of decision variables in LENSEQ, because m ≤ n (i.e.,

the number of drone subtours is no more than the number of targets).

4.7.3 Finding the Best Composition

Section 7.2 describes describes how to optimize MDRP-HC for a fixed compo-

sition C. However, we must address the question: “Which composition C is best?”

We propose a number of methods to select high quality compositions.

To find a high quality composition, there are two steps. First, determine a sequence

that describes which order the targets will be visited. Second, find a composition

that efficiently groups consecutive targets of the sequence into drone subtours.
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4.7.3.1 Branch-and-bound: An Exact Approach

We may use a branch-and-bound scheme that has a broad structure similar to

the BAB method for MDRP in Section 4.2. This method, denoted BAB-C, uses a

tree similar to Figure 4.2 to search the space of potential sequences. Each node of

this branch-and-bound tree corresponds with some sequence S.

The difference compared to BAB, however, is that for a node associated with the

sequence S, the lower bound of the node is not set to lenSeq(S). Instead, the lower

bound of a node associated with sequence S is minC∈compositions(S)(lenComp(C)).

Brute forcing all compositions C of a sequence S is costly: O(2n−1), where n is

the number of targets visited in sequence S. Therefore, we describe a more efficient

procedure in Appendix A for finding the best composition C with respect to a se-

quence S.

We then apply branch-and-bound until convergence of the upper bound lower bound

of the root node. We then return the best composition of the leaf node with the

lowest lower bound as our solution.

4.7.3.2 Greedy Sequence Exact Composition Heuristic

In the Greedy Sequence Exact Composition heuristic (GSEC), we choose a

sequence, S, as the solution of the Euclidean TSP on {orig} ∪ T . This sequence S
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determines which order we will visit each of the targets.

The next questions is, what is the best composition of S? We find the best compo-

sition C of the sequence S, using the method described in Appendix A.

We call this method Greedy Sequence, Exact Composition because the sequence

S is not necessarily the best visit order. However, the composition C is the best

composition with respect to delivery order S.

4.7.3.3 Greedy Sequence and Greedy Composition

In the Greedy Sequence and Greedy Composition heuristic (GSGC), we greed-

ily fix a sequence S as the solution of the Euclidean TSP on {orig} ∪ T . Let us

write S = [orig, s1, s2, ..., s|T |, dest].

Next, we use a greedy procedure to determine a composition C for S. For the first

drone subtour, we set ST1 = (s1, s2, ..., sy1), where y1 is the maximum integer such

that len(ST1) ≤ Rα and ‖s1− sy1‖ < R. Then for the second drone subtour, we set

ST2 = (sy1+1, sy1+2, ..., sy2), where y2 is the maximum integer such that len(ST2) ≤

Rα and ‖sy1+1 − sy2‖ < R. In general, we set STj+1 = (syj+1, syj+2, ..., syj+1
), where

yj+1 is the maximum integer such that len(STj+1) ≤ Rα, yj+1 ≤ |T |, and ‖syj+1 −

syj+1
‖ < R. We then define our compositions by C = [orig, ST1, ST2, ..., STm, dest].

We then compute lenComp(C).
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To put it another way, we pack as many targets as possible into the first drone

subtour without violating the range constraints of the drone. We then pack as

many targets as possible into the second drone subtour without violating the range

constraint of the drone and so on.

4.7.3.4 Greedy Sequence and Greedy Composition with Slack

In the GSGC heuristic, if we maximally fill a drone subtour with targets, this

may leave the drone with very little slack range to fly to the first target of the drone

subtour and to return to the ship after the last target of the drone subtour. This, at

times, has the effect of strictly constraining the feasible launch and landing locations

for each drone subtour.

The Greedy Sequence and Greedy Composition with Slack heuristic (GSGC+S)

is nearly identical as GSGC. However, we set STj+1 = (syj+1, syj+2, ..., syj+1
), where

yj+1 is the maximum integer such that len(STj+1) ≤ (1 − slackFactor) ∗ Rα,

yj+1 ≤ |T |, and ‖syj+1−syj+1
‖ < (1−slackFactor)∗R, where 0 < slackFactor < 1.

The idea is that slackFactor ensures that we do not maximally fill each drone sub-

tour, which guarantees more freedom in choosing the launch and landing locations

for each drone subtour.
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4.8 MDRP-HC Computational Results

Computational results for algorithms related to MDRP-HC are found in Ta-

ble 4.3 and Table 4.4. In Table 4.3, instances are generated by randomly selecting

orig and the target set over a uniform distribution on grid of size 100 by 100. In

Table 4.4, for each instance size, |T |, we generated 25 random instances, where the

orig = (0, 0) and target locations were randomly distributed among the circles with

radius 20 centered at (25,75) and (75,25).

In both Table 4.3 and Table 4.4, R = 20 and α = 2 are fixed. The columns under

BAB-C correspond with the BAB-C solution method; the columns under GSEC cor-

respond with the GSEC solution method columns under GSGC correspond with the

GSGC solution method; and columns under GSGC+S correspond with the GSGC+S

solution method. In the GSGC+S heuristic, we fixed slackFactor = 0.2 based on

preliminary testing. Columns titled Obj, Time, Nodes, and Save correspond to

the average objective value, computational time (seconds), nodes explored in the

branch-and-bound tree, and savings relative to the Euclidean solution, respectively.

Dashes indicate an average solve time exceeding 900 seconds.
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TSP BAB-C GSEC GSGC GSGC+S
|T | Obj Obj Time Nodes Save Obj Time Save Obj Time Save Obj Time Save

6 247.206 180.212 1.619 30.040 0.271 180.621 0.112 0.269 195.918 0.010 0.207 186.590 0.009 0.245
8 276.015 199.690 17.362 121.160 0.277 200.222 0.250 0.275 217.640 0.010 0.215 208.126 0.009 0.246

10 292.055 201.632 35.987 175.960 0.310 203.125 0.053 0.304 229.211 0.011 0.215 214.035 0.011 0.267
15 342.824 - - - - 230.748 16.268 0.327 265.390 0.015 0.226 246.953 0.014 0.280
20 396.569 - - - - 254.273 234.042 0.359 296.117 0.018 0.253 273.921 0.018 0.309
30 462.943 - - - - - - - 339.226 0.041 0.267 306.920 0.042 0.337
50 573.894 - - - - - - - 402.533 0.111 0.299 360.185 0.113 0.372

100 785.445 - - - - - - - 508.073 3.034 0.353 454.771 3.048 0.421
200 1065.807 - - - - - - - 649.942 35.210 0.390 582.593 36.127 0.453

Table 4.3: Computational results for MDRP-HC on uniformly distributed instances.

TSP BAB-C GSEC GSGC GSGC+S
|T | Obj Obj Time Nodes Save Obj Time Save Obj Time Save Obj Time Save

6 260.745 216.809 2.462 39.160 0.169 217.177 0.106 0.167 222.682 0.006 0.146 222.199 0.006 0.148
8 270.946 223.620 22.477 129.000 0.175 224.023 0.374 0.173 233.241 0.007 0.139 231.105 0.007 0.147

10 283.369 233.331 208.214 497.440 0.177 233.866 1.033 0.175 244.009 0.009 0.139 242.034 0.008 0.146
15 296.968 - - - - 238.400 12.690 0.197 253.606 0.121 0.146 248.574 0.119 0.163
20 311.461 - - - - 245.267 291.369 0.213 261.503 0.019 0.160 255.025 0.018 0.182
30 331.784 - - - - - - - 271.077 0.051 0.183 262.370 0.051 0.209
50 370.613 - - - - - - - 286.639 0.210 0.227 276.490 0.210 0.254

100 441.263 - - - - - - - 319.290 5.133 0.276 303.628 5.125 0.312
200 537.363 - - - - - - - 364.963 59.861 0.321 349.491 60.115 0.350

Table 4.4: Computational results for MDRP-HC on clustered instances.
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4.8.1 Analysis of MDRP-HC Computational Results

The exact BAB-C algorithm exhibits large computational time growth similar

to BAB. The GSEC heuristic produces objective values that are very near optimal.

In the worst row of instances, BAB-C saves 31.0% relative to the TSP, whereas

GSEC saves 30.4%. This indicates that the Euclidean TSP initialization is very rea-

sonable for MDRP-HC. Nonetheless, computational tractability for GSEC becomes

an issue for larger instances.

The GSGC and GSGC+S heuristics were very fast. On the slowest set of instances

(|T | = 200, clustered), the average time spent by these heuristics, aside from solving

the TSP as an initialization, was only 0.21 seconds. This is even faster than the

GS method for MDRP, because the second order cone program LENCOMP only needs

to solve for one launch and one landing location for each drone subtour, instead of

solving for one launch and one landing location for each target location, thus reduc-

ing the number of decision variables. On average, the GSGC+S heuristic produced

higher quality solutions than GSGC, at similar computational cost. More finely

tuning slackFactor may produce better results.
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4.9 Variants, Conclusions, and Future Work

4.9.1 Variants

One of the key features of our proposed solution methods is the flexibility to

accommodate different objectives and/or constraints. We point the reader to Ap-

pendix B and Appendix C for variant problems to MDRP and MDRP-HC that can

be solved by minorly modifying our proposed solution method. These modifications

generally involve altering only a few lines of a second order cone program. Variants

presented include a close-enough version of the problem with application to signal

collection, weight constraints, energy constraints, and minimizing the sum of waiting

times.

4.9.2 Conclusions

We introduced the mothership and drone routing problem (MDRP). The prob-

lem is distinct from other papers in the literature, as the launching vehicle (i.e. “the

mothership”) is capable of moving in continuous space. This allows second order

cone programs to be used throughout as subroutines in solution methods.

Our BAB method is an exact approach to solve MDRP that works well for small

instances. However, scalability is an issue, so we introduced heuristic methods.

Aside from the time required to solve a single TSP to initialize the algorithm, the

computational time for the GS heuristic was small, averaging only 0.360 seconds for
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instances with 200 target locations. For instance sets for which we have the exact

solution, the worst performance of the GS heuristic on any row of instances pro-

duced objective values that averaged 3.39% greater than optimal; on the best row of

instances, GS was only 0.37% suboptimal. We believe the GS heuristic is a promis-

ing solution method for large instances. Two other heuristics provided marginal

improvement in objective quality relative to GS, but require more computational

time.

We also introduced the Mothership and High Capacity Drone Problem (MDRP-

HC), where a drone may visit multiple targets consecutively without returning to

the ship. We proposed both exact and heuristic methods to MDRP-HC. The ex-

act solution method was slow. However, the GSEC solution method, the GSGC

heuristic, and the GSGC+S methods provide faster solutions methods. GSEC ob-

jective values quite near the optimal solution, however, it also runs into computa-

tional tractability issues on larger instances. GSGC+S produced better results than

GSGC, indicating that by not filling every drone subtour to capacity, we not only

expand the set of feasible launch and landing locations, but this expanded choice

produces better objective values. Further tuning of the parameter slackFactor and

adding some form of local search to GSGC+S may bring objective values even closer

to optimal.
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4.9.3 Future Work

There are a number of future directions that we believe merit consideration.

In this paper, we assumed the mothership is capable of traveling by the Euclidean

metric. If the mothership is an airplane or a ship in the open seas with little to no

dry land, this may be a reasonable assumption. However, in an operational context

where the mothership is a sea vessel that is operating in a region with significant

areas of dry land, shallow waters, hostile actors, or political boundaries, the moth-

ership may not be able to always traverse straight line segments without accounting

for these obstructions. In a subsequent paper, we will describe how to account for

this. These obstructions inject non-convexity into the problem, which requires a

significant restructuring of our solution methods.

We are also interested to explore whether some ideas from this paper may carry

over to a truck-and-drone context. Another natural question to consider is this:

how could we best route a mothership that may launch more than one drone to visit

targets?
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4.10 Insert A: Computing the best composition for a given input

sequence

For any sequence S containing n targets, there are 2n−1 compositions of S.

This is equal to the number of order-dependent integer partitions possible for a

positive integer n. Thus, computing lenComp(C) for each C ∈ compositions(S) is

costly and should be avoided.

To compute the best composition C for a given input sequence S, we construct

a binary branch-and-bound tree. The root node is associated with the composition

[orig, (s1), dest]. Each time we we descend a level in the tree, we add the next tar-

get of the sequence into the child nodes. The left branch merges the target into the

preceding drone subtour. The right branch adds the target as a new drone subtour.

For a node that is associated with composition C, the lower bound is computed

as lenComp(C). The upper bound of a node with associated composition C is ∞,

unless C contains all targets that are in sequence S, in which case the upper bound

of the node is the same as the lower bound.

The branch-and-bound tree for an example sequence S = [dest, s1, s2, s3, orig] is

shown in Figure 4.4.
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Figure 4.4: A binary branch-and-bound tree that explores all compositions for the
fixed sequence S = [orig, s1, s2, s3, dest]. Each left branch appends the
new target into the preceding drone subtour. Each right branch appends
the new target as a new drone subtour. Next to each node in the figure
is the associated composition.

4.11 Insert B: Variants of MDRP

A key feature of the solution methods that we have proposed is that they are

extendable to variant problems of MDRP. In particular, we are able to modify the

constraints and/or objective of the second order cone program LENSEQ to fit the

specifications of variant problems, so long as we preserve the form of a second order

cone program, or more broadly, a semidefinite program. Additionally, if we modify

LENSEQ for a variant problem and Theorem 10 continues to hold, then applying the

solution method ALGBAB is optimal for the variant problem. We give a few examples

of how MDRP may be modified to fit variant problems.
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Penalize Flight Time

In LENSEQ, we minimize the total duration of the solution path. Suppose that,

instead, we are interested in minimizing the sum of the total duration of the solution

path and a scalar multiple (γ > 0) of drone flight time to penalize fuel expenditure of

the drone. We may accomplish this by replacing (L0) of LENSEQ with the following

objective:

minimize(
n+1∑
k=0

(cT ime(k) + (1 + γ) ∗ sT ime(k))

Minimizing the Sum of Waiting Times

Suppose we wish to minimize the sum of waiting times of all targets ti ∈ T ,

where the waiting time of a target ti is defined as the time elapsed starting from

the departure of the mothership and/or drone from orig until the drone arrives at

ti. To do so we make two modifications to LENSEQ. First, we add the following set

of constraints.

For k=1 to n:

k−1∑
i=0

(sT ime(i) + cT ime(i)) + outDroneDist(k)/α ≤ arrivalT ime(k)
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Second, we change the objective (L0) to the following.

minimize(
n∑
k=1

(arrivalT ime(k))

The Close-Enough Variant

Suppose that for each target ti ∈ T it is sufficient that a drone pass within

distance radi ≥ 0, rather than needing to visit the exact location of ti. This may be

relevant for an application where me must collect a signal or establish a line-of-sight
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with each target. To model this problem, we replace LENSEQ with LENSIGNALTOUR.

LENSIGNALTOUR:

minimize(
n+1∑
k=0

(cT ime(k) + sT ime(k)) (L0)

Subject to:

For k=0 to n:

‖lPoint(k + 1)− rPoint(k)‖ ≤ cT ime(k) (L1)

‖lPoint(k)− rPoint(k)‖ ≤ sT ime(k) (L2)

(outF lightDist(k) + inF lightDist(k))/α ≤ sT ime(k) (L3)

sT ime(k) ≤ R (L4)

End For

lPoint(0) = orig (L5)

rPoint(0) = orig (L6)

lPoint(n+ 1) = dest (L7)

rPoint(n+ 1) = dest (L8)

For k=1 to n:

‖readPointk − lPoint(k)‖ ≤ outF lightDist(k) (L9)

‖readPointk − rPoint(k)‖ ≤ inF lightDist(k) (L10)

‖sk − readPointk‖ ≤ radi (L11)

End For
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The decision variable readPointk represents a location within a distance of radk of

sk that the drone will visit. We may think of this as the designated signal reading

location for target sk.

Enforced Minimum Refuel Time

There may exist a minimum waiting period after a drone returns to the moth-

ership from one target before it is ready to be redeployed. In the simplistic case

where this minimum waiting is a fixed constant minWait, we can model this by

adding the following constraints to LENSEQ.

For k=1 to n-1:

minWait ≤ cT ime(k)

Alternatively, the minimum waiting period before relaunching may scale linearly

with the battery or fuel drained from the preceding flight (i.e. recharging or refueling

may occur at a linear rate). Suppose for each unit of drone flight time, we must

recharge for δ time units before launching to the next target, in order to replace

expended fuel. In such a case, we could add the following set of constraints.

For k=1 to n-1:

δ ∗ sT ime(k) ≤ cT ime(k)
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Enforcing Maximum Energy Expenditure

In some contexts, a drone may be tasked to deliver a payload to a target. The

weight of the payload to be delivered to target ti is wi. Let e(w) be the rate of energy

drain per unit distance when the drone is carrying a payload of weight w. Let E

be the maximum energy a drone may expend before returning to the ship. This

scenario may be modeled by adding the following set of constraints to the second

order cone program LENSEQ.

For k=1 to n:

e(wk) ∗ outF lightDist(k) + e(0) ∗ inF lightDist(k) ≤ E

4.12 Insert C: Variants of MDRP-HC

We may incorporate additional constraints or features into the MDRP-HC

model by altering the second order cone program LENCOMP. After modifying LENCOMP,

we can otherwise apply BAB-C or GSEC as normal. We give a few examples of

additional constraints or features that may be added to MDRP-HC.

Constraining Maximum Delivery Weight in Drone Subtour

In the context of delivery, we may wish to set a maximum weightW for the sum

of package weights carried by the drone at any one time. It is fairly straightforward

to extend the solution methods of MDRP-HC to this case. If the weight of the
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package delivered to ti is wi, then we simply disallow any composition that contains

a drone subtour STx such that
∑

ti∈STx wi > W . To do so, we may simply add the

following constraints to the second order cone program of LENCOMP.

For each STx ∈ C :∑
ti∈STx

(wi) ≤ W

If any drone subtour in the composition violates the maximum weight requirement,

the second order cone program will be infeasible, due to the above constraint, and

return ∞.

Constraining Maximum Delivery Energy in Drone Subtour

Similar adaptations can be made to constrain the maximum energy expendi-

ture of a drone in a single drone subtour. In practice, the battery life of UAVs is

frequently a pressing constraint that should be considered.

Suppose E is the maximum energy expenditure for a single drone subtour. De-

fine e(w) as the rate of energy expenditure per unit distance, whenever the sum of

all package weights carried by the drone is w. Also, we use wij to denote the weight

of the package delivered to stij .
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To incorporate the maximum energy expenditure E for a drone subtour, we do

the following. For each drone subtour STk ∈ C, we precompute the constant

weightTotal(STk) =
∑

ti∈STk wi. Next, for each drone subtour STk ∈ C, we pre-

compute the constant:

intraTourEnergyUsed(STk) =

|STk|∑
j=2

(‖stkj − stkj−1‖ ∗ e(weightTotal −
j−1∑
l=1

(wkl))),

which is the amount of energy expended by the drone from the arrival at the

first(STk) until arrival at last(STk).

Next, we add the following set of constraints to the second order cone program

of LENCOMP.

For each STk ∈ C :

e(weightTotal(STk)) ∗ outF lightDist(k)+

intraTourEnergyUsed(STk)+

e(0) ∗ inF lightDist(k) ≤ E

The first term of the sum on the left hand side of the inequality is the energy

expenditure from the launch point until the first target of the drone subtour; the

second term is the energy expended in the middle of the drone subtour; the third

term is the energy expended by the drone returning to the land point, carrying zero
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package weight.

Service Time

For each target ti that is visited by a drone, there may be a fixed service time

βi. However, we continue to require the drone to return to the mothership within

R time units of launch, inclusive of total service time at targets. For each drone

subtour STk ∈ C, we first compute serviceT ime(k) =
∑

ti∈STk βi. We then modify

(L6) of LENCOMP from:

(outF lightDist(k) + intraF lightDist(k) + inF lightDist(k))/α ≤ sT ime(k)

to:

(outF lightDist(k) + intraF lightDist(k) + inF lightDist(k))/α + serviceT ime(k) ≤ sT ime(k).
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Chapter 5: The Mothership and Drone Problem: Dealing with Ob-

stacles and Non-Convexities

5.1 Introduction

5.1.1 Limitations of the MDRP Model

Previously, we introduced the Mothership and Drone Routing Problem. A

fundamental assumption of the model was that the launching vehicle (i.e., the moth-

ership) was capable of moving according to the Euclidean metric. This assumption

may be reasonable in some circumstances, particularly if the mothership is itself an

airplane operating in unconstrained airspace, or if the mothership is operating in

open seas, where there are relatively few obstructions (i.e., land, political/military

boundaries, etc.).

However, in many circumstances, it is not reasonable to assume that the moth-

ership may operate according to the Euclidean metric without accounting for ob-

stacles. Dry land, shallow waters, political boundaries, military threats, piracy, bad

weather conditions, and other circumstances may force the mothership to take a

non-direct route.

Moreover, if we approximate the boundaries of these obstacles by polygons,
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the feasible domain of launch and landing locations (i.e., R2 minus the union of the

interiors of the polygons) is non-convex. This non-convexity prohibits the use of the

methods described in Chapter 4.

5.1.2 Application Background

A video released by Boeing [15] in January 2018 showcased a prototype of

an autonomous drone that has been developed. The drone is an octocopter with

vertical take-off and landing capabilities and is described as an unmanned cargo

aerial vehicle (CAV). Boeing’s CAV drone is capable of launching with much larger

payloads than drones that have been showcased by Amazon, Google, UPS, or DPD.

In the video, a Boeing engineer speaks of delivering 250 to 500 pounds of cargo at

a range of 10 to 20 miles.

The United States Navy frequently engages in disaster relief efforts around

the world. [36] After the 2010 earthquake in Haiti, which measured 7.0 on the

Richter Scale, and the 2004 Indian Ocean Earthquake and Tsunami, the United

States Navy launched relief efforts. These relief efforts involved large naval vessels

bringing supplies and medical doctors to ports. However, bringing relief supplies

inland to remote villages remains a challenge.

We envision a similar disaster relief scenario. However, instead of the ship

visiting ports, a cargo drone rides atop a ship. Disaster relief supplies are loaded

onto the cargo drone, the drone is launched to an isolated village, supplies are

offloaded from the drone to the village, and the drone returns to the mothership,
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where its batteries are replaced and cargo replenished. By utilizing drones, we avoid

many problems related to poor or damaged road infrastructure, which limit the

inland distribution of supplies. Moreover, the views offered by the drone while flying

into these villages may provide valuable information to prioritize future operations.

Nonetheless, the ship must take a path that avoids any dry land.

5.2 Problem Definition

In the mothership and drone routing problem with obstacles (MDRP+O),

there exists one mothership and one drone. The drone is capable of moving freely

in the Euclidean plane, R2. The mothership also moves according to the Euclidean

plane, except that its path may not intersect with any predetermined forbidden re-

gions. These forbidden regions are called obstacles. We define Obst as the set of

obstacles that the ship must avoid. We assume that any coastline may be approxi-

mated by the edges of a polygon. Thus, each o ∈ Obst is a region corresponding to

the interior of a polygon. There is no requirement that these polygons be convex or

regular.

The mothership and the drone begin at a starting location, denoted orig.

There exists a set of target locations T . For each ti ∈ T , we require that the

drone launch from the mothership, fly to ti, then return to the mothership. After

all targets have been visited, the mothership and drone return to a final location,

denoted dest. In this problem, we will assume orig and dest are the same location.

However, all results in this paper are easily extendable to the case that orig and
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dest are different locations.

The drone may not be separated from the mothership for more than R con-

secutive time units. The mothership has unit maximum speed; the drone has a

maximum speed of α. The drone may not visit multiple targets consecutively; it

must return to the mothership after visiting a target.

The goal is to find a path of minimum duration that begins at orig, ends at

dest, and where every ti ∈ T is visited by the drone.

5.3 Solution Method Overview

Our solution method contains four major steps. They are the following.

1. Pre-compute the “wet route distance” between each pair of vertices for any

obstacle polygon. This saves computational effort in later steps.

2. Form a discretization of potential launch/landing locations around each target

location.

3. Solve a Generalized Traveling Salesman Problem. The solution will serve as

the path of the mothership in an initial feasible solution for the MDRP+O.

4. Apply a sequential second order cone program that iteratively improves the

existing solution until a termination criterion is reached.

We provide details of these steps in the following sections.
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5.4 Step 1: Compute Pairwise Wet Route Distances

Each obstacle o ∈ Obst is the shape of a polygon. Let V (o) denote the set of

vertices of the polygon defining obstacle o. Similarly, let V (Obst) = ∪o∈ObstV (o) be

the union of all polygon vertices among all obstacles.

For each vi, vj ∈ V (Obst), we wish to compute the shortest path possible by

a mothership from vi to vj without the mothership moving through an obstacle

polygon. The method we use to compute these wet route distances is founded upon

the work of [18].

For each vi, vj ∈ V (Obst), we check if there exists a direct line-of-sight between

vi and vj. A line-of-sight exists between vi and vj if the line segment connecting vi

and vj does not pass through the interior of any polygon o ∈ Obst.

We construct a graph G = (V (Obst), E), where an edge (vi, vj) ∈ E with

corresponding edge cost of ‖vi − vj‖ exists if and only if vi and vj have a direct

line-of-sight with one another.

We next compute all pairs of shortest paths over graph G, for any pair of

vertices vi, vj ∈ V (Obst). If |V (Obst)| = m, then this can be done in by applying

Dijkstra’s Algorithm m times, once for each origin vi ∈ V (Obst), at a total worst-

case computational cost of O(m3), or O(m2log(m)) if the graph is non-dense. [21]

We use wrd(vi, vj) to denote the wet route distance between two vertices vi

and vj.
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5.5 Step 2: Discretize Potential Launch/Landing Locations

A drone with maximum flight time of R and speed α has a maximum flight

distance of Rα. Suppose a drone launches from the mothership at a location launchi,

flies to target location ti, and returns to the mothership at location landi.

Suppose that ‖launchi − ti‖ > Rα/2 and ‖landi − ti‖ > Rα/2. Then a drone

operation flying from launchi to ti and ti to landi has a combined flight distance

greater than Rα, which exceeds the maximum range of the drone. Thus, for all

targets ti, any feasible solution requires that at least one of launchi and landi to be

within distance Rα/2 of ti. Moreover, whenever there exists at least one location

accessible to the ship within distance Rα/2, pi, for each ti ∈ T , a feasible solution

exists for the MDRP+O, where pi = landi = launchi.

Our goal, at this point, is to form a feasible solution. This requires form-

ing a closed tour with a launch and/or landing point within radius Rα/2 for each

ti ∈ T . For each ti ∈ T , we construct a circle of radius shrinkFactor ∗ Rα/2,

where 0 < shrinkFactor ≤ 1. We then discretize the perimeter of that circle

into discretizationResolution equally spaced points. For a target location ti repre-

sented by the coordinate pair (xi, yi), the set of discretized points around that target

location is defined by discretization(i). The computation of discretization(i) is de-

scribed in the below pseudocode.
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For each ti ∈ T :

discretization(i) = ∅

For j = 0, 1, 2, ..., discretizationResolution− 1 :

angle = 2πj/discretizationResolution

xOffset = shrinkFactor ∗Rα/2 ∗ cos(angle)

yOffset = shrinkFactor ∗Rα/2 ∗ sin(angle)

point = (xi + xOffset, yi + yOffset)

If point not contained in any o ∈ Obst

discretization(i).add(point)

We only retain those points on the perimeter of a circle if the point does

not lie in the interior of an obstacle polygon. An example of this discretization

process with five target locations, ten obstacle polygons, shrinkFactor = 0.9 and

discretizationResolution = 10 is shown in Figure 5.1. We set shrinkFactor = 0.9

because this tended to result in a better initialization than shrinkFactor = 1.0 and

shrinkFactor = 0.8 in preliminary testing. The intuition is that we do might not

wish to initialize with a launch/landing location on the absolute edge of the drone’s

range. Doing so may get our solution stuck in a highly suboptimal local optimum.

We define dPoints = ∪ti∈Tdiscretization(i) as the union of all discretized

points constructed around all target locations.
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Figure 5.1: There are ten obstacle polygons (grey polygonal regions). There are five
target locations (purple circles) located within the obstacle locations.
These represent targets on land. Around each target location, there is
a ring of ten blue circles, because discretizationResolution = 10. The
depot is indicated by purple square in the bottom left.
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As a problem input for the Generalized Traveling Salesman Problem (which

will be solved in Step 3), we must define the cost of traversing an arc (pi, pj) with

pi, pj ∈ dPoints. In Figure 5.1, this corresponds to finding the shortest wet route

distance between each pair of blue points. To compute the cost between two dis-

cretized points, we will compute the shortest path that does not pass through the

interior of any obstacle polygon. For a pair of points pi and pj, if there exists a

direct line-of-sight, then the shortest path between them is a linear segment with

the simple Euclidean distance ‖pi− pj‖. If there does not exist a direct line-of-sight

between pi and pj, the shortest path between them that avoids all obstacles has a

distance d(pi, pj) which may be computed as follows.

d(pi, pj) = minva∈LOS(pi),vb∈LOS(pj)(‖pi − va‖+ wrd(va, vb) + ‖pj − vb‖)

In the above, LOS(p) refers to the set of vertices v ∈ V (Obst) such that there

exists a direct line-of-sight between p and v.

Proof that this computation leads to the shortest path is found in [18]. The

general idea is that is that if a direct line-of-sight does not exist between pi and

pj, then the shortest path between pi and pj necessarily makes turns at one or

more obstacle vertices. The term va corresponds to the first turn point on the path

between pi and pj. The term vb corresponds with the last turn point on the shortest

path between pi and pj. The total path distance can be written as the sum of the

Euclidean distance from pi to the first turn point, the wet route distance from the
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first turn point to the last turn point, and the Euclidean distance from the last turn

point to pj.

5.6 Step 3: Solve a Generalized TSP

The Generalized Traveling Salesman Problem (GTSP) is a generalization of

the traveling salesman problem. [32] In the ordinary traveling salesman problem, a

solution tour must visit each target location, and begin and end at some predefined

depot. In the GTSP, however, a set of locations is divided into clusters and it is

only necessary that the solution path visit at least one location in each cluster. The

objective of the GTSP is to minimize the cost of the closed tour that satisfies all

visit requirements.

In our case, we require that the tour begin and end at a predefined location

orig = dest. We also require that the mothership visit at least one point within

discretization(i) for each ti ∈ T . Such a solution ensures that the mothership pass

within distance Rα/2 of each target ti.

To solve this Generalized Traveling Salesman Problem, we used the formu-

lation below, which was solved using Gurobi 7.5.1. The subtour elimination con-

straints were added in a lazy fashion. That is, we solved a relaxed version of the

problem without subtour elimination constraints. If an optimal solution is found

for a relaxed problem that contains any subtours with less than |T | + 1 arcs, we

add a clique constraint that disallows each subtour found in the solution and we

solve again. We continue solving and adding clique constraints until an optimal
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solution is found that contains only a single closed tour that visits all |T | clusters

and orig = dest.

Minimize
∑

pi,pj∈dPoints

d(pi, pj)x(pi, pj)

Subject to: ∑
pi∈discretization(k)

x(pi, pj) = 1,∀tk ∈ T

∑
pj∈discretization(k)

x(pi, pj) = 1,∀tk ∈ T

∑
pj∈dPoints

x(orig, pj) = 1

∑
pi∈dPoints

x(pi, dest) = 1

number of arcs in any subtour ≥ |T |+ 1

x(pi, pj) ∈ {0, 1},∀pi, pj ∈ dPoints

After obtaining a solution, if x(pi, pj) = 1 in the optimal solution and if pi ∈

discretization(k), then we set launchk = pi and landk = pi. Our initial feasible

solution is characterized by the mothership traveling on the shortest wet route path

between each pair of locations (pi, pj) wherever x(pi, pj) = 1. The drone flights in

our initial solution fly from launchi to ti to landi for each ti ∈ T .

An example GTSP solution, which defines the mothership path in an initial

solution to the MDRP+O, is seen in Figure 5.2.
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Figure 5.2: There are ten obstacle polygons (grey polygonal regions). There are
five target locations (purple circles) located within the obstacle loca-
tions. These may reprsents five targets on land that must be visited.
Around each target location, there is a ring of ten blue circles, because
discretizationResolution = 10. The depot is indicated by purple square
in the bottom left. The black line segments connect consecutive visit
locations in the optimal Generalized TSP solution. Notably, for each
target location, at least one blue point in the circular ring surrounding
the target location is visited in the GTSP solution.
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5.7 Step 4: Solve a Sequential Second Order Cone Program

Our sequential second order cone program has the following broad structure.

Iterate for maxIter iterations:

• Precompute obstacle-free regions around the launch and landing locations of

the incumbent solution.

• Solve a second order cone program.

• Let the solution of the second order cone program become the incumbent

solution.

5.7.1 Precomputed Values

If we consider the Euclidean plane with one or more polygons removed, the

resulting region is non-convex. The set of allowable launch or landing locations (i.e.,

obstacle-free regions) is thus a non-convex set, because it consists of the Euclidean

plane minus a union of closed polygons.

We wish to apply the constraint that each launch and landing location must

be in an obstacle-free location. However, we seek to write this constraint in convex

form.

In our sequential second order cone program, we assume there exists an in-

cumbent feasible solution. The initial feasible solution for the first iteration of the

sequential second order cone program comes from the Generalized TSP solution. On

subsequent iterations of the sequential second order cone program, the incumbent
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solution is the optimal solution from the previous iteration of the second order cone

program.

The initial solution may be fully represented by a set of launch locations and

a set of landing locations. In particular, we use initLaunchi to denote the location

where the drone launches from the mothership towards ti ∈ T in the incumbent

solution. Likewise, initLandi denotes the location where the drone lands on the

mothership after visiting ti ∈ T .

For each ti ∈ T , we will consider a circular region around initLaunchi of

maximum radius such that the circular region does not intersect with any of the

obstacle polygons. The radius of this circle is denoted launchFreedomi. Similarly,

we computed landFreedomi as the radius of the largest circle around initLandi

that does not intersect any obstacles. The computation of launchFreedomi and

landFreedomi can be achieved using basic geometry.

The idea is that we know these circular regions around the incumbent solution’s

launch and landing points are free of obstructions. Moreover, by considering a

circular region, we are able to write an optimization problem in the form of a convex

program.

In addition to computing these obstacle-free radii around each incumbent

launch and landing location, we will also pre-compute what we call waypoints.

If we compute the shortest wet route path from initLandi to initLaunchi+1,

then either the path is direct (a direct line-of-sight exists) or there are one or

more turning points along the way. If a direct line-of-sight does not exist between

initLandi and initLaunchi+1, then firstObstCi is the location of the first turning
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point along the wet route path between them and lastObstCi is the location of the

last turning point along the wet route path between them.

If we compute the shortest wet route path from initLaunchi to initLandi, then

either the path is direct (a direct line-of-sight exists) or there are one or more turning

points along the way. If a direct line-of-sight does not exist between initLaunchi

and initLandi, then firstObstSi is the location of the first turning point along the

wet route path between them and lastObstSi is the location of the last turning point

along the wet route path between them.

All of firstObstCi, lastObstCi, firstObstSi, lastObstSi correspond with the

location of a vertex of an obstacle polygon. In Figure 5.3, we display a portion of

the route of an incumbent solution to illustrate the meaning of these variables.

5.7.2 Solve a Second Order Cone Program

We then solve the second order cone program presented below. After solving,

we will save the decision variables launchi and landi for i = 1, 2, ..., |T |, as these
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Figure 5.3: A partial incumbent route showcasing terminology related to turning
points. The black lines represent the path of the ship in a portion
of the incumbent solution. Red lines represent the flight path of the
drone. Grey polygonal regions are obstacles. The purple cirlce is target
location ti+1. Blue circles are either landing or launching points on the
incumbent solution. While mothership and drone are together, the ship
must only make one turn. Thus, firstObstCi and lastObstCi are the
same location. While ship and drone are separated during the flight of
the drone to target ti+1, the ship must turn twice: first at firstObstSi+1

and last at lastObstSi+1.
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allow us to fully determine the solution.

Minimize:
∑
i

cT imei + sT imei

Subject to:

‖launchi − initLaunchi‖ ≤ launchFreedomi

‖landi − initLandi‖ ≤ landFreedomi

‖launchi − ti‖ ≤ droneOutboundDisti

‖ti − landi‖ ≤ droneInboundDisti

(outboundDisti + inboundDisti)/α ≤ sT imei

If not exist direct line of sight from initLaunchi to initLandi :

‖launchi − firstObstSi‖ ≤ distToF irstObstSi

‖lastObstSi − landi‖ ≤ distToLastObstSi

distToF irstObstSi + wrd(firstObstSi, lastObstSi) + distToLastObstSi ≤ sT imei

Else:

‖launchi − landi‖ ≤ sT imei

If not exist direct line of sight from initLandi to initLaunchi+1 :

‖landi − firstObstCi‖ ≤ distToF irstObstCi

‖lastObstCi − launchi+1‖ ≤ distToLastObstCi

distToF irstObstCi + wrd(firstObstCi, lastObstCi) + distToLastObstCi ≤ cT imei

Else:

‖landi − launchi+1‖ ≤ cT imei
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sT imei ≤ R

cTimei ≤ R

launch0 = orig

land0 = orig

launch|T |+1 = dest

land|T |+1 = dest

5.7.3 Update the Solution

We now set initLaunchi ← launchi and initLandi ← landi for each of i =

1, 2, ..., |T |. The solution of the second order cone program of the current iteration

will be the incumbent solution for the next iteration.

5.8 Illustration of First Iterations of the Sequential Second Order

Cone Program on Example Instance

In Figures 5.4, 5.5, 5.6, 5.7, 5.8, and 5.9, we display the initial solution and

the solution after each of the first five iterations of the second order cone program.

In each of these images, obstacle regions are shown as gray polygons. Purple circles

represent target locations. Green line segments display the path of the mother-

ship. (Note: Although the images seem to show the path of the mothership passing

through obstacle polygons, the actual path does not. In the images, we simply
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connect consecutive destinations by a linear segment, although the mothership will

actually use a wet route path.) Blue line segments display outbound drone flight

segments. By outbound, we mean a segment that begins at the mothership and

ends at a target location. Red line segments display inbound drone flight segments.

By inbound, we mean a segment that begins at a target location and ends back

at the mothership. Blue circles show a circular region of maximum radius that is

obstacle-free around each launch point. Red circles show a circular region of maxi-

mum radius that is obstacle-free around each land point. The radii of these circles

are related to the precomputed constants launchFreedomi and landFreedomi for

i = 1, 2, ...., |T |.

We only display solutions after the first five iterations of the sequential sec-

ond order cone program, however, we note that after running 25 iterations of the

sequential second order cone program, the objective value appears to converge to

an objective of 287.3100.

5.9 Computational Experiments

In all computational results, we set the location of the depot as orig = dest =

[−10,−10]. We set the maximum flight time of the drone to 20 units and the

relative speed of the drone to the mothership, α = 2. The location of the centroids

of all obstacle polygons were generated uniformly, where the x-coordinate and y-

coordinate are randomly selected from U[0, 100]. A regular polygon was constructed

around the randomly selected centroid. The number of sides for the randomly
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Figure 5.4: Iteration 0: adapted Generalized TSP solution.
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Figure 5.5: Iteration 1: Solution after 1 iteration completed of sequential second
order cone program.
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Figure 5.6: Iteration 2: Solution after 2 iterations completed of sequential second
order cone program.
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Figure 5.7: Iteration 3: Solution after 3 iterations completed of sequential second
order cone program.
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Figure 5.8: Iteration 4: Solution after 4 iterations completed of sequential second
order cone program.
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Figure 5.9: Iteration 5: Solution after 5 iterations completed of sequential second
order cone program.
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generated regular polygon varied from three to eight, each with a probability of

1/6. The polygon radius was selected from a the uniform distribution U[3, 5]. By

the polygon radius, we mean the distance from the centroid of the polygon to any

vertex. Throughout, we set the maximum number of second order cone program

iterations to maxIter = 25.

Target locations were selected uniformly among the area bounded by obstacle

polygons. That is, all target locations were uniformly distributed among the “dry

land” area of the instance.

In the table of results, we additionally have the following instance parameters,

which varied depending on the set of instances.

• |Obst|: the number of obstacle polygons randomly

• |T |: the number of target locations.

In Table 5.1, each row of observations reports the average over 25 randomly

generated instances for the given number of obstacles, |Obst|, and the given number

of targets, |T |. In total, there were 200 random instances tested. In column Init Obj,

we report the average initial objective value corresponding to the initial solution that

follows directly from the Generalized TSP solution. In column Final Obj, we report

the lowest observed objective value after applying 25 iterations of the sequential

second the order cone program. Gap is computed as (Init Obj - Final Obj)/(Init

Obj). The columns Step 1 Time, Step 2 Time, Step 3 Time, and Step 4 Time

report the average computational time in seconds for each of the four steps of the

algorithm.

142



|T | |Obst| Init Obj Final Obj Gap Step 1 Time Step 2 Time Step 3 Time Step 4 Time
5 5 281.001 237.246 0.1557 0.283 0.096 0.051 0.737
5 10 301.114 252.100 0.1628 2.504 0.401 0.056 1.268
5 15 292.470 245.475 0.1607 7.920 0.930 0.056 2.041
5 20 310.527 263.400 0.1518 19.542 2.003 0.044 3.380

10 5 420.879 309.417 0.2648 0.339 0.566 4.427 1.462
10 10 420.271 315.597 0.2491 2.527 2.208 1.701 2.416
10 15 440.237 329.089 0.2525 7.407 5.082 2.123 3.510
10 20 436.171 329.784 0.2439 19.621 9.964 1.209 5.295

Table 5.1: Computational results for the MDRP+O.
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Figure 5.10: The horizontal axis displays the number of iterations of the sequen-
tial second order cone program completed. The vertical axis displays
the best known objective value after the given number of completed
iterations, averaged over the 200 instances tested.

In Figure 5.10, we visually display aggregate data for the 200 separate in-

stances that were tested. The horizontal axis displays the number of iterations of

the sequential second order cone program completed. The vertical axis displays the

average objective value over the 200 instances after the given number of iterations

of the second order cone program were completed. Very little objective value im-

provement is seen after the first several iterations of the sequential second order

cone program.

Additionally, we generated instances with 15 or more target locations. No

batch of 25 instances solved in less than 5 hours. The computational bottleneck

appeared to be related to solving the Generalized TSP (i.e., Step 3).

144



5.10 Generalizing to Energy Constraints

Suppose that rather than having maximum flight duration, a drone has, in-

stead, a maximum energy capacity given by EMAX. Suppose e is an increasing

function, where e(W ) gives the rate of energy depletion for the drone while carrying

a package with weight W . Let us suppose each target location ti ∈ T corresponds

to the location of a package that must be delivered. In particular, suppose wi is the

weight of a package to be delivered to target location ti. The objective and other

constraints are otherwise identical to before.

To account for this new version of the problem, we make a few small ad-

justments to the algorithm. Firstly, in Step 2, when forming a discretized ring of

points surrounding a target location ti, we now use a radius of α ∗ shrinkFactor ∗

(EMAX/(e(0)+e(wi)), instead of α∗shrinkFactor∗(R/2). Secondly, in the second

order cone program, we replace the line:

sT imei ≤ R

with:

(e(wi)− e(0)) ∗ outboundDisti + e(0) ∗ sT imei ≤ EMAX.

We note that setting EMAX = R and e(W ) ≡ 1 for all values of W is

equivalent to the original problem with a maximum flight time of R.
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5.11 Future Work

There are several future directions we would like to pursue. Firstly, after the

Generalized TSP has been solved, the relative order of target visitation is fixed for

the remainder of the algorithm. We would like to consider ways to modify the visit

order, perhaps by randomly perturbing some inputs and restarting the algorithm.

Additionally, we would like to do more parameter tuning and experiment with

alternative stopping criteria. Instead of terminating the algorithm after a fixed

number of iterations, we will seek to detect objective value convergence before ter-

minating. We may also wish to consider replacing circular obstacle-free regions with

elliptical regions.

We wish to consider using alternative methods to generate initial solutions for

larger instances. Initial testing indicated that the computational time increases very

rapidly within step 3 (i.e., solving the Generalized TSP) as the number of targets

increase. Rather than solving the Generalized TSP exactly, we could replace with

a heuristic method such as the one described by [59].

We would like to use real-world coastlines and map data to form real obstacle

polygons. Along with this, we would like to see if it is feasible to account for the

curvature of the earth.

Naturally, we would like to consider a multi-mothership and/or multi-drone

extension to this problem. It may also be interesting to consider a discretized

approach to the problem, rather than using a continuous second order cone program-

based method.
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An entirely different approach based on disjunctive constraints, perhaps with

some similarities to the work of [63], might be possible.

5.12 Conclusions

We extended the mothership and drone routing problem to the case where

obstacles (dry land, national boundaries, etc.) force a ship to deviate from using

straight-line Euclidean distances. We displayed how we may find an initial feasible

solution utilizing a Generalized traveling salesman formulation. We then iteratively

improve an existing solution by utilizing sequential second order cone programming.

The second order cone program utilizes circular obstacle-free regions around each

launch and landing location to model obstacle constraints in a convex manner. From

iteration to iteration, the launch and landing points are allowed to drift, which means

that the optimal solution is not confined to the initial circular obstacle-free regions.

The mothership and drone routing problem with obstacles may have applica-

tion to delivering emergency supplies to remote inland villages after a major dis-

aster that may severely impact transportation and communication networks. The

MDRP+O also may have application to planning military operations.
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Chapter 6: The Multi-visit Drone Routing Problem

6.1 Introduction

Because truck-and-drone models of delivery are relatively new to the academic

literature, many papers thus far have studied the case of a single truck and single

drone model of delivery, where the drone is capable of carrying only a single ho-

mogeneous package at a time. It is frequently assumed that the maximum drone

flight duration is constant and does not depnd on the weight of any packages to be

delivered.

6.2 Problem Definition

The Multi-visit Drone Routing Problem (MVDRP) is a model of delivery with

a single truck and a single drone. We describe the problem in the context of package

delivery to fulfill online orders, although other applications may be possible.

In MVDRP, both truck and drone start at a predefined warehouse. The truck

acts as a mobile depot and recharging platform for the drone. The drone may launch

from the truck with one or more packages, deliver these packages to their respective

locations, then return to the truck for recharging and to pick-up additional packages.
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MVDRP is distinct from most other papers in the literature, as (1) it allows for the

drone to visit multiple customers consecutively before returning to the truck, and (2)

the final leg of delivery is conducted only by the drone. If the truck is self-driving,

this model removes the need for a delivery driver on the route. (Later, we relax the

assumption that all deliveries are made by the drone.)

The goal of MVDRP is to minimize completion time. Completion time is

the elapsed time from the first departure of a vehicle from the warehouse until the

return of the last vehicle to the warehouse. All packages must be delivered before

completion time.

In the remainder of this section, we define additional problem input parameters

and constraints.

6.2.1 Problem Input Parameters

The following parameters are required as input to MVDRP.

• V is a set of feasible locations where a drone may launch or land from a truck.

We assume each v ∈ V represents a location along the street network or a

parking location.

• Let C be a set of customer delivery locations. We note that there is no

requirement that C ⊆ V or V ⊆ C. That is, customer delivery locations and

allowable launch/landing locations may be defined independently.

• depot ∈ V is a warehouse location where the truck and drone pair will start

and end its route.
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• tt(vi, vj) denotes the travel time for the truck from vi to vj, for any vi, vj ∈ V .

• td(loci, locj) denotes the travel time for the drone from location loci to location

locj, with loci, locj ∈ V ∪ C.

• For each customer delivery location ci ∈ C, we denote the weight of the package

to be delivered as wi.

• EMAX is the maximum energy capacity of the battery of the drone.

• e(loci, locj,W ) denotes the average rate of energy dissipation by the drone

per unit time, when flying from loci to locj, with loci, locj ∈ V ∪ C, while

carrying packages whose weight sums to W . The energy dissipation rate for

a drone varies by origin/destination pair for a variety of reasons (e.g., wind

direction and elevation differences between origin and destination). We only

require that e be a non-decreasing function of W . In the event that the sum

of package weights is infeasible for the drone to carry (i.e., too heavy to take-

off), we set e(vi, cj,W ) = ∞. Also, if e ≡ 1 is a constant function, then this

is equivalent to allowing a maximum flight time of EMAX.

• HOV is a constant that denotes the rate of energy dissipation per unit time

for a drone, whenever it is hovering. Hovering occurs when the drone arrives

at a rendezvous point before the truck and must wait for the return of the

truck.
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6.2.2 Problem Constraints and Additional Assumptions

Additional constraints and assumptions of MVDRP are as follows.

• A drone may launch from the truck or land on the truck at a location v, only

if v ∈ V .

• A drone must not run out of battery before returning to the truck.

• The capacity of the truck is infinite.

• Any service time by the drone at a customer location and associated energy

dissipation is already accounted for in problem inputs td and e.

• The triangle inequality holds for tt and for td.

• After the drone is launched, the truck begins immediately towards the ren-

dezvous location and does not stop in between.

• The function e always returns a non-negative value. That is, the drone can

never recuperate more energy than it expends while flying, even if elevation

differences exist between launch and landing locations.

6.3 Solution Method: Route, Transform, Shortest Path

The solution method of this section, “Route, Transform, Shortest Path” (RTS),

has three major phases.

1. Decide which order the packages should be delivered. (“Route”)
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2. Construct a transformed graph with |V | ∗ (|C|+ 1) vertices and compute edge

costs. (“Transform”)

3. Solve a shortest path problem over the graph. (“Shortest Path”)

6.3.1 Phase 1: Route

Let us compute the optimal solution to the traveling salesman problem on the

set of locations C ∪ {depot}, using td as the measure of time between any pair of

locations. Let us denote the result as:

Path = [p0 = depot, p1, p2, ..., p|C|, p|C|+1 = depot].

The first customer location to be visited is p1; the second customer location to be

visited is p2, and so on.

6.3.2 Phase 2: Transform

Let us construct a graph G′ = (V ′, E ′) with a vertex set V ′ and edge set E ′.

For each v ∈ V , there will be |C| + 1 different vertices in V ′. If we say that the

truck and drone are at launch location v′i,j, we mean that truck and drone are at the

physical location of vi and that the first j customer package locations (p1, p2, ..., pj)

have been satisfied, but pj+1, ..., p|C| have not been visited yet.

For each pair of vertices v′i1,j1 and v′i2,j2 where j1 < j2, we compute:

cost(v′i1,j1 , v
′
i2,j2

) = max(truckT ime, droneT ime).
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We define truckT ime = tt(vi1 , vi2), which represents the amount of time required

for the truck to travel from launch location vi1 to launch location vi2 . The term

droneT ime represents the amount of time for the drone to fly from launch location

vi1 to customers locations pj1+1, pj1+2, ..., pj2 (in order), then to return to the truck

at vi2 . If the flight is infeasible due to maximum energy expenditure of the drone,

we set droneT ime =∞. We note that if cost(v′i1,j1 , v
′
i2,j2

) =∞, then for any j3 > j2,

cost(v′i1,j1 , v
′
i2,j3

) = ∞. This detail is important to reduce computational time for

the construction of the modified graph for large instances.

Additionally, for each pair of vertices v′i1,j and v′i2,j, we compute:

cost(v′i1,j, v
′
i2,j

) = tt(vi1 , vi2).

This cost is relevant in the case that we land a drone after delivering to customer

pj at location vi1 , but wish to reposition the truck to location vi2 before launching

the drone towards customer pj+1.

An edge (v′i1,j1 , v
′
i2,j2

) is added toE ′ if and only if j1 ≤ j2 and cost((v′i1,j1 , v
′
i2,j2

)) <

∞.

6.3.3 Phase 3: Shortest Path

We apply Dijkstra’s Algorithm with starting vertex v′depot,0 and terminal vertex

v′depot,|C| on the graphG′ where the cost of an arc (v′i1,j1 , v
′
i2,j2

) given by cost((v′i1,j1 , v
′
i2,j2

)).

The result is a feasible solution to the MVDRP.
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Figure 6.1: Left: the solution path traced through the transformed graph G′. Right:
We display the solution path in the 2-D plane. The red square displays
the depot location. Black line segments trace the path of the truck
(traversed in roughly clockwise direction) and red line segments trace the
flight path of the drone. Green circles show customer delivery locations
and blue circles display feasible launch locations.

In a later section, we discuss how Dijkstra’s Algorithm may be replaced with the

A-star algorithm.

6.3.4 Figures to Visualize Algorithm

In Figure 6.1, on the left side, we display the solution path through the trans-

formed graph G′. On the right side, we show the corresponding physical path of

truck and drone. As an example, one edge of G′ connects v7,2 to v3,4, indicating

that after two packages have been delivered, the drone departs v7 with a rendezvous

point of v3. Upon reaching v3, four packages will have been delivered.
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Figure 6.2: The red square (near top left) is the depot location. Black arrows display
the path of the truck. Red line segments display the flight path of
the drone. Customer locations are indicated with green circles. The
diameter of green circles scales linearly with the weight of the packaged
to be delivered at that location. Blue circles are feasible launch/landing
locations.

In Figure 6.2, we display a sample solution for an instance with |C| = 120 customer

locations. Aside from solving a TSP to initialize, the solution required 5.6 seconds of

computational time. In the example, α = 2, |V | = 100, EMAX = 800, the weight of

packages were distributed uniformly over U(0, 30), and e(loci, locj,W ) = 10 +W 1.5.
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6.3.5 Theoretical Results

Let us define VAL(Path) as the objective value returned by applying Phase

2 and Phase 3 to an input delivery order Path = [depot = p0, p1, ..., p|C|, depot =

p|C|+1]. Let us define SOLN(Path) as the corresponding MVDRP route formed by

applying Phase 2 and Phase 3 to Path.

Theorem 12. Among feasible solutions to MVDRP that obey the delivery order

dictated by Path, SOLN(Path) is the best one, with corresponding objective value

VAL(Path).

Corollary 2. For some input delivery order Path, SOLN(Path) is the optimal so-

lution to MVDRP and VAL(Path) is the optimal objective value to MVDRP.

The worst-case computational performance of RTS, aside from solving the

initial TSP, is O(|C|2|V |2). However, if we know the drone cannot make more than

k1 consecutive deliveries before running out of battery, the worst-case performance

is reduced to O(max(k1|C|, log(|C||V |)) ∗ |V |2). If we also know that at any launch

location v ∈ V , there are no more than k2 feasible landing locations for the drone,

worst-case performance is reduced further to O(max(k1 ∗ k2, log(|C||V |))|C||V |).

6.4 MVDRP with Select Truck Delivery

Suppose Co
t ⊆ C is a set of package locations for which we have the option to

deliver by truck. Suppose Cr
t ⊆ Co

t ⊆ C is a set of package locations that require

delivery by the truck. We also make the assumption that a delivery by truck is not
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allowed to occur while a drone is airborne.

To model this problem, we will simply make the following modifications to MV-

DRP inputs.

• For each c ∈ Co
t , we will ensure that c ∈ V and td(c, c) = 0.

• For each c ∈ Cr
t , for all loc ∈ V ∪ C \ c, set td(loc, c) =∞.

The idea is that we are allowing (or requiring, in the case c ∈ Cr
t ) a zero-distance

drone launch. In reality, the zero-distance drone launch is a delivery serviced by the

truck.

6.5 RTS with Local Search

Our Route, Transform, Shortest Path, and Local Search (RTS+LS) algorithm

operates similarly to RTS, but considers iteratively local neighborhoods of Path and

moves downhill. We define RTS+LS as follows.

1. Initialize Path as the optimal TSP solution for C ∪ {depot} using td as the

distance metric.

2. Set oldPath = Path.

3. Construct neighborhood(Path).

4. For each neighbor in the neighborhood, compute VAL(neighbor).

5. Set Path = argminneighbor∈neighborhood(VAL(neighbor)).
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6. If oldPath = Path, terminate algorithm. Else, go to step 2.

The neighborhood(Path) is constructed by considering the following paths.

• Any path resulting from swapping the order of any pair pi, pj ∈ Path \ depot,

such that td(pi, pj) < maxSwapDist. (2-point swap)

• Any path resulting from removing any single pi ∈ P \depot and replacing after

location pj, such that td(pi, pj) < maxSwapDist. (1-point swap)

• Performing a 2-opt on any pair pi, pj ∈ Path \ depot (i.e., reversing the string

pi+1, pi+2, ..., pj), such that td(pi, pj) < maxSwapDist. (2-opt)

Because the TSP serves as a sufficiently good initialization, we may reduce the size

of the local neighborhood by only performing swaps that involve nodes that are

sufficiently close to one another (i.e., within maxSwapDist). We assume any swaps

involving nodes that are too far from one another are unlikely to improve solution

quality.

Aside from imposing a maximum swap distance, the neighborhood of delivery se-

quences is constructed in a similar to Agatz et al. [2] in the heuristic TSP-ep-all.

6.6 Multiple Drones per Truck

In the k-Multi-visit Drone Routing Problem (k-MVDRP), we allow for a truck

to carry k homogeneous drones at a time. While the truck is stopped, it can launch

up to k drones simultaneously to deliver packages. However, the truck may not
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launch additional drones at a new location until all drones have landed. The ob-

jective and problem constraints in k-MVDRP are otherwise identical to those in

MVDRP.

In the “Transform” portion of the RTS and RTS+LS algorithms, we computed

the costs of edges in G′ using:

cost(v′i1,j1 , v
′
i2,j2

) = max(truckT ime, droneT ime).

Our solution method for k-MVDRP is identical to the method in MVDRP, except

that we compute droneT ime differently. For an edge (v′i1,j1 , v
′
i2,j2

), we do not set

droneT ime as the flight time for a single drone to fly from i2 to pj1+1, deliver

pj1+1, pj1+2, ...pj2 in sequence, and rendezvous with the truck at i2. Instead, we will

partition the delivery of the package locations pj1+1, pj1+2, ...pj2 between the k drones

in a manner that attempts to minimize the longest drone flight time. The longest

flight time among the k drones then becomes the value for droneT ime

If j2 − j1 ≤ k, then the optimal partition is always to assign a single drone for

each package. If j2− j1 > k, we tried two simple methods for assigning the k drones

to the set of package locations pj1+1, pj1+2, ..., pj2 .

In the first method, called block assignments, we assign the first d(j2− j1)/ke pack-

ages to the first drone. The next d(j2 − j1)/ke are assigned to the second drone,
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and so on until all packages pj1+1, pj1+2, ..., pj2 are assigned. For example, if j2 = 15,

j1 = 4, and k = 3, then the first drone must deliver p5, p6, p7, and p8, the second

drone must deliver p9, p10, p11, and p12, and the third drone must deliver p13, p14,

and p15.

The second method of partitioning is called rotating assignments. The assignment

of packages to drones occurs in a rotating fashion. For example, if j2 = 15, j1 = 4,

and k = 3, then the first drone must deliver p5, p8, p11, and p14, the second drone

must deliver p6, p9, p12, and p15, and the third drone must deliver p7, p10, and p13.

Regardless of partitioning method, it is assumed each drone flies from vi1 , deliv-

ers its assigned packages in order, then returns to the truck at vi2 .

6.7 Computational Results

We constructed a series of test instances. For each test instance, we computed

(1) the optimal truck-only TSP solution, (2) the objective value for the MVRDP

solution found by the RTS heuristic, and (3) the objective value for the MVDRP

solution found by the RTS heuristic and 2-point swap local search. Additionally, we

recorded the computational time elapsed to compute each.

For each set of instances with a specified number of customer locations, |C|,

and a specified number of allowable launch locations, |V |, we randomly generated all

customer locations and allowable launch locations uniformly over a 100 by 100 square
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grid. The depot location was also randomly generated over a 100 by 100 square grid.

The weight of packages demanded by each customer was distributed uniformly over

U[0, 5]. This is related to Jeff Bezos’s comments which target packages up to five

pounds for drone delivery. We fixed EMAX = 40 and we set the energy drain

function e(W ) = (1 + (W/5)4). This function implies a maximum drone flight time

of 40 minutes while not carrying any packages (e(0) = 40), and a maximum flight

time of only 20 minutes while carrying 5 pounds of goods (e(5) = 20). Maximum

flight duration of the drone rapidly drops as the weight of packages carried exceeds

5 pounds. The constant HOV was set to a value of 0.5.

In these computational experiments, to determine the time of traversal for

the truck between two locations, we assumed the truck moved at unit speed and

traveled the Euclidean distance between two locations. The drone was assumed to

move according to the Euclidean distance, but at a speed of 2 units.

In Table 6.1, we display a table of results for our test instances. Each row

displays averages over 25 randomly generated instances. The columns TSP Obj,

RTS Obj, and RTS+LS Obj display the average objective value for the standard

TSP, the RTS heuristic, and the RTS heuristic with local search. The column TSP

Time displays the average solve time, in seconds, for the standard TSP. RTS Time

and RTS+LS Time display the average solve time, in seconds, for the RTS heuristic

and the RTS heuristic with local search, except for the time required for the TSP

initialization. RTS Gap is computed as (TSP Obj - RTS Obj)/TSP Obj. RTS+LS

Gap is computed as (TSP Obj - RTS+LS Obj)/TSP Obj.

The addition of local search decreased objective values, on average, by 0.9%
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(for |C| = 50, |V | = 100) and 2.69% (for |C| = 100, |V | = 50). The impact of local

search (i.e., the improvement relevant to the RTS heuristic) was most pronounced

for lower values of |V |.
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|C| |V | TSP Obj TSP Time RTS Obj RTS Time RTS Gap RTS+LS Obj RTS+LS Time RTS+LS Gap
50 50 586.62 0.213 450.63 0.663 0.2318 438.89 147.167 0.2518
50 75 569.53 0.215 416.22 1.556 0.2692 408.16 328.837 0.2833
50 100 573.17 0.204 397.88 2.708 0.3058 392.71 471.095 0.3148
75 50 683.60 0.779 572.83 1.050 0.1620 555.98 642.732 0.1867
75 75 687.499 0.672 532.05 2.318 0.2261 521.72 1134.411 0.2411
75 100 681.65 0.687 501.43 4.466 0.2644 492.62 1945.657 0.2773

100 50 784.97 1.799 695.48 1.462 0.1140 674.39 1599.216 0.1409

Table 6.1: Computational results for the MVDRP.
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6.8 Using A-Star in Place of Dijkstra’s Algorithm

In the A-star Algorithm, the label for a vertex x may be written as f(x) =

g(x) + h(x). The component g(x) is the path with shortest known duration from

the origin to vertex x, which is the same as the label found in Dijkstra’s Algorithm.

The component h(x) is a lower bound on the amount of time to traverse from vertex

x to the destination.

If for each loci, locj ∈ V , td(loci, locj) ≤ tt(loci, locj), we may compute a valid

value of h with a simple expression. For each vi ∈ V and for each k = 0, 1, ..., |C|,

we define:

h(v′i,k) = td(vi, pk+1) +

|C|∑
l=k+1

(td(pl, pl+1)).

The idea is that if the drone is at location vi, the remaining route duration after k

packages have been delivered is, at minimum, the amount of time it takes the drone

to fly directly from vi to pk+1, directly from pk+1 to pk+2, directly from pk+2 to pk+3,

and so on, until p|C|+1 = depot.

If ∃loci, locj ∈ V , such that td(loci, locj) > tt(loci, locj), we may compute h in

the following way.

h(v′i,k) = minvb∈V (tt(vi, vb) + td(vb, pk+1), td(vi, pk+1))+
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|C|∑
l=k+1

minva,vb(td(pl, va) + tt(va, vb ∈ V ) + td(vb, pl+1), td(pl, pl+1))).

The drone path between consecutive package locations pl and pl+1 may be direct,

hence the term td(pl, pl+1). Alternatively, it may be faster for the drone to fly from

pl to va, ride on the truck from va to vb, then fly from vb to pl+1.

165



Chapter 7: Contributions and Future Research

7.1 Contributions

This dissertation explored operational models that require synchronization

between a drone and another vehicle. For the vehicle routing problem with drones

(VRPD), a model that allows multiple trucks each of which may launch multiple

drones, we established a number of theoretical worst-case bounds. These bounds

state the maximum speed-up potential utilizing this models under an ideal geometry.

We also showed that the VRPD may be viewed as an intermediate problem between

the min-max vehicle routing problem and the close-enough vehicle routing problem.

For the traveling salesman problem with drone (TSP-D), we constructed an

exact solution method based on the combination of branch-and-bound and dynamic

programming. Additionally, several fast heuristics were presented and the quality

of the solutions was compared against the optimal solutions.

We introduced the mothership and drone routing problem (MDRP), the high

capacity mothership and drone routing problem (MDRP-HC), and the mothership

and drone routing problem with obstacles (MDRP+O). As far as we are aware,

these problems are new contributions to the literature on drone routing, as the

launching vehicle is capable of moving in continuous space and is not restricted to
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the street network. For MDRP and MDRP-HC, we found that second order cone

programming was an efficient embedded procedure to find the optimal launch and

landing locations. By embedding second order cone programs in branch-and-bound,

we were able to find optimal solutions for the MDRP and MDRP-HC. We proposed

greedy procedures and found that using the optimal Euclidean TSP solution for the

order to visit targets generally provided high-quality solutions with significantly less

computational time and was computationally tractable even for large instances. In

the case of MDRP+O, we proposed a sequential second order cone program. We

computed a circle of maximum radius around each launch and landing point of the

incumbent solution such that the circle does not intersect with any obstacle. We

optimally choose each launch and landing point from within those circles to form a

new incumbent solution.

We introduced the multi-visit drone routing problem (MVDRP). In the MV-

DRP, a truck and drone work in tandem to deliver packages. Unlike previous prob-

lems in the literature, we (1) allowed the drone to visit multiple customers consec-

utively, (2) allowed the user to define an arbitrary increasing function (of weight)

for the energy drain of the drone, and (3) decoupled the set of potential launch

and landing locations from the set of customer locations. We presented heuristic

solution methods that found high-quality solutions.

We showed that tandems combining one or more drones with a ship or truck

may be complementary. By combining the larger capacity of a ship or truck with the

mobility of one or more drones, we demonstrated theoretically and computationally

that the time or cost required to visit all required targets or customers may be
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reduced.

7.2 Future Work

Aside from the VRPD model, we used a single drone in our models. We believe

generalizing the MDRP and MVDRP to the case of multiple drones and/or multiple

trucks merits consideration. We plan to explore other generalizations, such as those

that allow the optimization of drone speed or allow a drone to launch along an arc

of a graph.

The economics and practical application of drones are highly dependent on

physical parameters and specifications of drones. Further testing and tuning of

model parameters may yield insights about critical factors and sensitivities in the

design of drones for different applications.

The study of operations related to drone technology is an exciting field with

a rapidly expanding set of applications. In addition to questions that we can see

on the horizon, there are many unknowns just beyond the horizon that will surely

shape the trajectory of drone research moving forward.
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