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Recent advances in machine learning, specifically problems in Computer Vision

and Natural Language, have involved training deep neural networks with enormous

amounts of data. The first frontier for deep networks was in uni-modal classification

and detection problems (which were directed more towards ”intelligent robotics” and

surveillance applications), while the next wave involves deploying deep networks on

more creative tasks and common-sense reasoning. We provide two applications of

these, interspersed by an analysis on these deep models.

Automatic colorization is the process of adding color to greyscale images. We

condition this process on language, allowing end users to manipulate a colorized

image by feeding in different captions. We present two different architectures for

language-conditioned colorization, both of which produce more accurate and plau-

sible colorizations than a language-agnostic version. Through this language-based

framework, we can dramatically alter colorizations by manipulating descriptive color

words in captions.

Researchers have observed that Visual Question Answering(VQA) models tend



to answer questions by learning statistical biases in the data. (for example, the

answer to the question “What is the color of the sky?” is usually “Blue”). It is of

interest to the community to explicitly discover such biases, both for understanding

the behavior of such models, and towards debugging them. In a database, we

store the words of the question, answer and visual words corresponding to regions

of interest in attention maps. By running simple rule mining algorithms on this

database, we discover human-interpretable rules which give us great insight into

the behavior of such models. Our results also show examples of unusual behaviors

learned by the model in attempting VQA tasks.

Visual narrative is often a combination of explicit information and judicious

omissions, relying on the viewer to supply missing details. In comics, most move-

ments in time and space are hidden in the gutters between panels. To follow the

story, readers logically connect panels together by inferring unseen actions through

a process called closure. While computers can now describe what is explicitly de-

picted in natural images, in this paper we examine whether they can understand

the closure-driven narratives conveyed by stylized artwork and dialogue in comic

book panels. We construct a dataset, COMICS, that consists of over 1.2 million

panels (120 GB) paired with automatic textbox transcriptions. An in-depth anal-

ysis of COMICS demonstrates that neither text nor image alone can tell a comic

book story, so a computer must understand both modalities to keep up with the

plot. We introduce three cloze-style tasks that ask models to predict narrative and

character-centric aspects of a panel given n preceding panels as context. Various

deep neural architectures underperform human baselines on these tasks, suggesting



that COMICS contains fundamental challenges for both vision and language.

For many NLP tasks, ordered models, which explicitly encode word order

information, do not significantly outperform unordered (bag-of-words) models. One

potential explanation is that the tasks themselves do not require word order to

solve. To test whether this explanation is valid, we perform several time-controlled

human experiments with scrambled language inputs. We compare human accuracies

to those of both ordered and unordered neural models. Our results contradict the

initial hypothesis, suggesting instead that humans may be less robust to word order

variation than computers.
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Chapter 1: Introduction

Research in Artificial Intelligence(AI) formally began at the Dartmouth Sum-

mer Research Project on Artificial Intelligence in 1956. Since then, the field has gone

through ebbs and flows, but we are currently at the forefront of its greatest crest -

the era of Deep Neural Networks (DNNs). The fields of Machine Learning (ML),

Computer Vision (CV), Natural Language Processing (NLP) and Speech Recogni-

tion, amongst others, have been completely revolutionized and dominated by deep

architectures. Although neural networks conceptually predate the Dartmouth con-

ference [Hebb, 1949, McCulloch and Pitts, 1943], it was not until the emergence of

Graphical Processing Units (GPUs) and internet scale data that Neural Networks

became house-hold technology (this is no exaggeration, for an Amazon Echo device

is a home device that relies on Deep Networks for its speech recognition).

1.1 Creative Deep Networks

In recent years, Deep Networks has been deployed towards solving non-traditional

tasks, which previously required the expertise of a creatively skilled human. Excel-

lent examples are Generative Adverserial Networks[Goodfellow et al., 2014, Isola

et al., 2017], or Image Style Transfer network by Gatys et al. [2016], both of which

1



can be used to imitate artwork in the style of any Renaissance master. Before this

technology existed, one would at best have to employee a skilled art student to do

the same. In this thesis, we explore and analyze applications of AI in such creative

ventures.

First, we cover the task of image colorization, the art of applying colors to

black and white images. Those well versed in the film industry are all too aware

that attempts to colorize black and white movies are extremely tedious projects.

The work of Zhang et al. [2016] showed that even this task is possible for an end-to-

end deep neural network, which takes as input greyscale images and is trained to spit

out the respective color images. The intuition behind this work is that patches that

correspond to specific objects, like stop signs, or backgrounds, like grass, tend to

have fixed colors throughout a large dataset (red and green, respectively). But what

about cars or trains or dogs, which occur in nature in a wider variety of colors? The

solution we propose in Chapter 2 uses language to uniquely disambiguate objects

that can occur in different colors.

A second aspect of Deep Learning is that it serves as a useful tool for social

scientists and researchers in the digital humanities. AI has already been used to

analyze novels[Iyyer et al., 2016] and narratives[Huang et al., 2016a], but a unique

confluence of Vision and Language occurs in the analysis of comic books. To under-

stand one panel and predict what might happen in the next, an understanding of

both artwork and text is required. In Chapter 4 of this thesis, we create the largest

English language dataset of comic books and develop novel tasks and architectures

to predict the contents of a future panel, given n preceding panels.
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1.2 Analyzing Deep Networks

In the previous section, we heavily alluded to the fact that Deep Networks

learn to solve tasks by ingesting large quantities of data. These architectures can

be somewhat opaque and complex (i.e., black-boxes), and thus far, are excellent at

imitation but not so at reasoning. An important unsolved problem for the research

community is Visual Question Answering (VQA), in which a Deep Network answers

a question about an image. On popular datasets like Antol et al. [2015] and Goyal

et al. [2017], the state of the art model, [Teney et al., 2018] obtains 70% accuracy,

while a strong baseline [Kazemi and Elqursh, 2017] obtains around 60% accuracy.

This gives one an impression that deep networks are actually intelligent, but this isn’t

so - they merely have the veneer of intelligence. We show in Chapter 3 empirically

that these models answer questions not by logic or reasoning, but by correlating key

words in the question and visual elements in the image, with answer words.

Finally, a curious observation in NLP is that models which do not take into

account the order of words in a sentence often perform similarly to models which

do [Iyyer et al., 2015]. This is significant because unordered models are simpler and

faster than ordered ones. To explore this phenomenon further, in Chapter 5 we

explore the effect of word order on both humans and machines on a diverse set of

Vision and NLP tasks.
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Chapter 2: Learning to Color from Language

2.1 Overview

Automatic image colorization [Zhang et al., 2016, Cheng et al., 2015, Larsson

et al., 2016, Iizuka et al., 2016, Deshpande et al., 2017]—the process of adding color

to a greyscale image—is inherently underspecified. Unlike background scenery such

as sky or grass, many common foreground objects could plausibly be of any color,

such as a person’s clothing, a bird’s feathers, or the exterior of a car. Interactive

colorization seeks human input, usually in the form of clicks or strokes on the image

with a selected color, to reduce these ambiguities [Levin et al., 2004, Huang et al.,

2005, Endo et al., 2016, Zhang et al., 2017]. We introduce the task of colorization

from natural language, a previously unexplored source of color specifications.

Many use cases for automatic colorization involve images paired with language.

For example, comic book artwork is normally first sketched in black-and-white by

a penciller; afterwards, a colorist selects a palette that thematically reinforces the

written script to produce the final colorized art. Similarly, older black-and-white

films are often colorized for modern audiences based on cues from dialogue and

narration [Van Camp, 1995].

Language is a weaker source of supervision for colorization than user clicks. In

4



particular, language lacks ground-truth information about the colored image (e.g.,

the exact color of a pixel or region). Given a description like a blue motorcycle

parked next to a fleet of sedans, an automatic colorization system must first localize

the motorcycle within the image before deciding on a context-appropriate shade of

blue to color it with. The challenge grows with abstract language: a red color palette

likely suits an artistic rendering of the boy threw down his toy in a rage better than

it does the boy lovingly hugged his toy.

Figure 2.1: Three pairs of images whose colorizations are conditioned on correspond-

ing captions by our FILM architecture. Our model can localize objects mentioned

by the captions and properly color them.

We present two neural architectures for language-based colorization that aug-

ment an existing fully-convolutional model [Zhang et al., 2016] with representations

learned from image captions. As a sanity check, both architectures outperform a

language-agnostic model on an accuracy-based colorization metric. However, we are

more interested in whether modifications to the caption properly manifest them-

selves in output colorizations (e.g., switching one color with another); crowdsourced

evaluations confirm that our models properly localize and color objects based on

captions (Figure 2.1).
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2.2 Model

This section provides a quick introduction to color spaces (Sec. 2.2.1) and

then describes our baseline colorization network (Sec. 2.2.2) alongside two models

(Sec. 2.2.3) that colorize their output on representations learned from language.

2.2.1 Images and color spaces

An image is usually represented as a three dimensional tensor with red, green

and blue (rgb) channels. Each pixel’s color and intensity (i.e., lightness) are jointly

represented by the values of these three channels. However, in applications such

as colorization, it is more convenient to use representations that separately encode

lightness and color. These color spaces can be obtained through mathematical

transformations of the RGB color space; in this work, following Zhang et al. [2016],

we use the cie Lab space [Smith and Guild, 1931]. Here, the first channel (L) encodes

only lightness (i.e., black-and-white). The two color channels a and b represent color

values between green to red and blue to yellow, respectively. In this formulation,

the task of colorization is equivalent to taking the lightness channel of an image as

input and predicting the two missing color channels.

2.2.2 Fully-convolutional networks for colorization

Following Zhang et al. [2016], we treat colorization as a classification problem

in cie Lab space: given only the lightness channel L of an image (i.e., a greyscale

version), a fully-convolutional network predicts values for the two color channels a
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and b. For efficiency, we deviate from Zhang et al. [2016] by quantizing the color

channels into a 25×25 grid, which results in 625 labels for classification. To further

speed up training, we use a one-hot encoding for the ab channels instead of soft

targets as in Zhang et al. [2016]; preliminary experiments showed no qualitative

difference in colorization quality with one-hot targets. The contribution of each

label to the loss is downweighted by a factor inversely proportional to its frequency

in the training set, which prevents desaturated ab values. Our baseline network

architecture (FCNN) consists of eight convolutional blocks, each of which contains

multiple convolutional layers followed by batch normalization [Ioffe and Szegedy,

2015].1 Next, we propose two ways to integrate additional text input into FCNN.

2.2.3 Colorization conditioned on language

Given an image I paired with a unit of text T, we first encode T into a contin-

uous representation h using the last hidden state of a bi-directional lstm [Hochre-

iter and Schmidhuber, 1997]. We integrate h into every convolutional block of the

FCNN, allowing language to influence the computation of all intermediate feature

maps.

Specifically, say Zn is the feature map of the nth convolutional block. A con-

ceptually simple way to incorporate language into this feature map is to concatenate

h to the channels at each spatial location i, j in Zn, forming a new feature map

Z′ni,j = [Zni,j ;h]. (2.1)

1See Zhang et al. [2016] for complete architectural details. Code and pretrained models are

available at https://github.com/superhans/colorfromlanguage.
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ab Accuracy Human Experiments

Model acc@1 acc@5 plaus. qual. manip.

FCNN 15.4 45.8 20.4 32.6 N/A

CONCAT 17.9 50.3 39.0 34.1 77.4

FILM 23.7 60.5 40.6 32.1 81.2

Table 2.1: While FILM is the most accurate model in ab space, its outputs are

about as contextually plausible as CONCAT’s according to our plausibility task,

which asks workers to choose which model’s output best depicts a given caption

(however, both models significantly outperform the language-agnostic FCNN). This

additional plausibility does not degrade the output, as shown by our quality task,

which asks workers to distinguish an automatically-colorized image from a real one.

Finally, our caption manipulation experiment, in which workers are guided by a

caption to select one of three outputs generated with varying color words, shows that

modifying the caption significantly affects the outputs of CONCAT and FILM.

While this method of integrating language with images (CONCAT) has been

successfully used for other vision and language tasks [Reed et al., 2016, Feichtenhofer

et al., 2016], it requires considerably more parameters than the FCNN due to the

additional language channels.

Inspired by recent work on visual question answering, we also experiment with

a less parameter-hungry approach, feature-wise linear modulation [Perez et al., 2018,

FILM], to fuse the language and visual representations. Since the activations of

FILM layers have attention-like properties when trained on vqa, we also might
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a green pickup truck next to trees

x8

+CONV

batch norm
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Figure 2.2: FILM applies feature-wise affine transformations (conditioned on lan-

guage) to the output of each convolutional block in our architecture.

expect FILM to be better at localizing objects from language than CONCAT on

colorization (see Figure 2.4 for heatmap visualizations).

FILM applies a feature-wise affine transformation to the output of each con-

volutional block, where the transformation weights are conditioned on language

(Figure 2.2). Given Zn and h, we first compute two vectors γn and βn through

linear projection,

γn = Wnγh βn = Wnβh, (2.2)

where Wnγ and Wnβ are learned weight matrices. The modulated feature map then

becomes

Z′ni,j = (1 + γn) ◦ Zni,j + βn, (2.3)

where ◦ denotes the element-wise product. Compared to CONCAT, FILM is

parameter-efficient, requiring just two additional weight matrices per feature map.
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2.3 Experiments

We evaluate FCNN, CONCAT, and FILM using accuracy in ab space

(shown by Zhang et al. [2016] to be a poor substitute for plausibility) and with

crowdsourced experiments that ask workers to judge colorization plausibility, qual-

ity, and the colorization flexibly reflects language manipulations. Table 2.1 sum-

marizes our results; while there is no clear winner between FILM and CONCAT,

both rely on language to produce higher-quality colorizations than those generated

by FCNN.

2.3.1 Experimental setup

We train all of our models on the 82,783 images in the mscoco [Lin et al., 2014]

training set, each of which is paired with five crowdsourced captions. Training from

scratch on mscoco results in poor quality colorizations due to a combination of not

enough data and increased image complexity compared to ImageNet [Russakovsky

et al., 2015]. Thus, for our final models, we initialize all convolutional layers with a

FCNN pretrained on ImageNet; we finetune both FILM and CONCAT’s convo-

lutional weights during training. To automatically evaluate the models, we compute

top-1 and top-5 accuracy in our quantized ab output space2 on the mscoco valida-

tion set. While FILM achieves the highest ab accuracy, FILM and CONCAT do

not significantly differ on crowdsourced evaluation metrics.

2We evaluate accuracy at the downsampled 56×56 resolution at which our network predicts

colorizations. For human experiments, the prediction is upsampled to 224×224.
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2.3.2 Human experiments

We run three human evaluations of our models on the Crowdflower platform to

evaluate their plausibility, overall quality, and how well they condition their output

on language. Each evaluation is run using a random subset of 100 caption/image

pairs from the mscoco validation set,3 and we obtain five judgments per pair.

Plausibility given caption: We show workers a caption along with three images

generated by FCNN, CONCAT, and FILM. They choose the image that best

depicts the caption; if multiple images accurately depict the caption, we ask them

to choose the most realistic. FCNN does not receive the caption as input, so it

makes sense that its output is only chosen 20% of the time; there is no significant

difference between CONCAT and FILM in plausibility given the caption.

Colorization quality : Workers receive a pair of images, a ground-truth mscoco

image and a generated output from one of our three architectures, and are asked to

choose the image that was not colored by a computer. The goal is to fool workers

into selecting the generated images; the “fooling rates” for all three architectures

are comparable, which indicates that we do not reduce colorization quality by con-

ditioning on language.

Caption manipulation: Our last evaluation measures how much influence the cap-

tion has on the CONCAT and FILM models. We generate three different col-

3We only evaluate on captions that contain one of ten “color” words (e.g., red, blue purple).
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orizations of a single image by swapping out different colors in the caption (e.g.,

blue car, red car, green car). Then, we provide workers with a single caption (e.g.,

green car) and ask them to choose which image best depicts the caption. If our

models cannot localize and color the appropriate object, workers will be unable to

select an appropriate image. Fortunately, CONCAT and FILM are both robust

to caption manipulations (Table 2.1).

2.4 Discussion

Both CONCAT and FILM can manipulate image color from captions (fur-

ther supported by the top row of Figure 2.3). Here, we qualitatively examine model

outputs and identify potential directions for improvement.

Language-conditioned colorization depends on correspondences between lan-

guage and color statistics (stop signs are always red, and school buses are always

yellow). While this extra information helps us produce more plausible colorizations

compared to language-agnostic models (second row of Figure 2.3), it biases models

trained on natural images against unnatural colorizations. For example, the yellow

sky produced by CONCAT in the bottom right of Figure 2.3 contains blue artifacts

because skies are usually blue in mscoco. Additionally, our models are limited by

the lightness channel L of the greyscale image, which prevents dramatic color shifts

like black-to-white. Smaller objects are also problematic; often, colors will “leak”

into smaller objects from larger ones, as shown by FILM’s colorizations of purple

plants (Figure 2.3, bottom-middle) and yellow tires (middle-left).
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Figure 2.4 shows activation maps from intermediate layers generated while

colorizing images using the FILM network. Each intermediate layer is captured

immediately after the FILM layer and is of dimension h×w×c (e.g., 112×112×64,

28×28×512, etc.), where h is the height of the feature map, w is its width, and c is

the number of channels.4 On inspection, the first few activation maps correspond to

edges and are not visually interesting. However, we notice that the sixth activation

map usually focuses on the principal subject of the image (such as a car or a horse),

while the eighth activation map focused everywhere but on that subject (i.e., entirely

on the background). This analysis demonstrates that the FILM layer emulates

visual attention, reinforcing similar observations on visual QA datasets by Perez

et al. [2018].

2.5 Future Work

While these experiments are promising, that there are many avenues to im-

prove language-conditioned colorization. From a vision perspective, we would like

to more accurately colorize parts of objects (e.g., a person’s shoes); moving to more

complex architectures such as variational autoencoders [Deshpande et al., 2017] or

PixelCNNs [Guadarrama et al., 2017] might help here, as could increasing training

image resolution. We also plan on using refinement networks [Shrivastava et al.,

2017] to correct for artifacts in the colorized output image. On the language side,

moving from explicitly specified colors to abstract or emotional language is a par-

4We compute the mean across the c dimension and scale the resulting h×w feature map between

the limits [0, 255].
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ticularly interesting. We plan to train our models on dialogue/image pairs from

datasets such as comics [Iyyer et al., 2017] and visual storytelling [Huang et al.,

2016a]; these models could also help learn powerful joint representations of vision

and language to improve performance on downstream prediction tasks.
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Figure 2.3: The top row contains successes from our caption manipulation task

generated by FILM and CONCAT, respectively. The second row shows examples

of how captions guide FILM to produce more accurate colorizations than FCNN

(failure cases outlined in red). The final row contains, from left to right, particularly

eye-catching colorizations from both CONCAT and FILM, a case where FILM

fails to localize properly, and an image whose unnatural caption causes artifacts in

CONCAT.
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Figure 2.4: Examples of intermediate layer activations while generating colorized

images using the FILM network. These activation maps correspond to the mean

activation immediately after the FILM layers of the sixth, seventh, and eighth

blocks. Interestingly, the activations after the FILM layer of Block 6 always seems

to focus on the object that is to be colorized, while those of Block 8 focus almost

exclusively on the background. The activation maps do not significantly differ when

color words in the caption are manipulated; therefore, we show maps only for the

first color word in these examples.
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Chapter 3: Explicit Bias Discovery in Visual Question Answering

Models

3.1 Overview

In recent years, the problem of Visual Question Answering (VQA ) - the task

of answering a question about an image has become a hotbed of research activity

in the computer vision community. While there are several publicly available VQA

datasets[Antol et al., 2015, Johnson et al., 2017a, Krishna et al., 2016, Malinowski

and Fritz, 2014], our focus in this chapter will be on the dataset provided in [Antol

et al., 2015] and [Goyal et al., 2017], which is the largest natural image-question-

answer dataset and the most widely cited. Even so, the narrowed-down version of

the VQA problem on this dataset is not monolithic - ideally, several different skills

are required by a model to answer the various questions. In Figure 3.1(left) , a

question like “What time is it?” requires the acquired skill of being able to read

the time on a clock-face, “What is the title of the top book?” requires an OCR-like

ability to read sentences, whereas the question “What color is the grass?” can be

answered largely using statistical biases in the data itself (because frequently in this

dataset, grass is green in color). Many models have attempted to solve the problem
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of VQA with varying degrees of success, but among them, the vast majority still

attempt to solve the VQA task by exploiting biases in the dataset [Kazemi and

Elqursh, 2017, Teney et al., 2018, Agrawal et al., 2018, Fukui et al., 2016, Ben-

younes et al., 2017], while a smaller minority address the individual problem types

[Andreas et al., 2016, Trott et al., 2018]. Keeping the former in mind, in this work,

we provide a method to discover and enumerate explicitly, the various biases that are

learned by a VQA model. For example in Figure 3.1(right), we provide examples

of questions containing the phrase “How many?”, which a strong baseline model

[Kazemi and Elqursh, 2017] answers with “4”. Our method discovers that this

trained VQA model seems to have learned that giraffes and chairs have four legs,

stop signs have four letters, and kitchen stoves have four burners. The core of our

method to discovering such biases is the classical Apriori algorithm [Agrawal and

Srikant, 1994] which is used to discover rules in large databases - here the database

refers to the VQA validation set, which can be mined to produce these rules.

In theory, it can be argued that most deep learning algorithms reduce training

error by learning biases in the data, no matter what the task [Wang et al., 2017].

This is evident from the observation that validation/test samples from the long tail

of a data distribution are hard to solve, simply because similar examples do not

occur frequently enough in the training set. However, explicity enumerating these

biases in a human-interpretable form is possible only in a handful of problems, such

as VQA . VQA is particularly illustrative because the questions and answers are in

human language, while the images (and attention maps) can also be interpreted by

human beings. VQA is also interesting because it is a multi-modal problem - both
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language and vision are required to solve this problem. The language alone (i.e., an

image agnostic model) can generate plausible (but often incorrect) answers to most

questions (as we show in Section 3.4.1), but incorporating the image generates more

accurate answers. That the language alone is able to produce plausible answers

strongly indicates that VQA models implicitly use simple rules to produce answers

- we endeavour in this chapter to find an approach that can discover these rules.

Finally, we note that in this work, we do not seek to improve upon the state

of the art. We do most of our experiments on the model of Kazemi and Elqursh

[2017], which is a strong baseline for this problem. We choose this model because it

is simple to train and analyze. To concretely summarize, our main contribution is to

provide a system that can capture macroscopic rules that a VQA model ostensibly

utilizes to answer questions. To the best of our knowledge, this is the first detailed

work that analyzes the VQA dataset of Goyal et al. [2017] in this manner.

The rest of this chapter is arranged as follows : In Section 3.2 , we discuss

related work, specifically those which look into “debugging” models and identifying

pathological behaviors of VQA models. In Section 3.3, we discuss details of our

method. In Section 5.2, we provide experimental results and list (in a literal sense)

some rules we believe the model is employing to answer questions. We discuss

limitations of this method and conclude in Section 5.4.
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3.2 Background and Related Work

The VQA problem is most often solved as a multi-class classification problem.

In this formulation, an image(I) usually fed through a CNN, and a question(Q) fed

through a language module like an LSTM [Hochreiter and Schmidhuber, 1997] or

GRU [Cho et al., 2014], are jointly mapped to an answer category (like “yes”, “no”,

“1”, “2”, etc). Although the cardinality of the set of all answers given a QI dataset is

potentially infinite, researchers have observed that a set of a few thousand (typically

3000 or so) most frequently occurring answers can account for over 90% of all answers

in the VQA dataset. Further, the evaluation of VQA in Antol et al. [2015] and

Goyal et al. [2017] is performed such that an answer receives partial credit if at least

one human annotator agreed with the answer, even if it might not be the answer

provided by the majority of the annotators. This further encourages the use of a

classification based VQA system that limits the number of answers to the most

frequent ones, rather than an answer generation based VQA system (say, using a

decoder LSTM like Vinyals et al. [2015]).

On debugging deep networks: The seminal work by Lipton [2018] suggests

that the Machine Learning community does not have a good understanding of what

it means to interpret a model. In particular, this work expounds post-hoc inter-

pretability - the act of interpreting a model’s behavior based on some criteria, such

as visualizations of gradients [Selvaraju et al., 2017], or attention maps [Xu et al.,

2015] after the model has been trained. Locally Interpretable Model Agnostic Expla-

nations (LIME), [Ribeiro et al., 2016] explain a classifier’s behavior at a particular
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point by perturbing the sample and building a linear model using the perturbations

and their predictions. A follow up work [Ribeiro et al., 2018] constructs Anchors,

which are features such that, in an instance where these features hold, a model’s

prediction does not change. This work is the most similar prior work to ours, and

the authors provide a few results on VQA as well. However, they only assume the

existence of a model, and perturb instances of the data, whereas ours assumes the

existence of responses to a dataset, but not the model itself. We use standard rule

finding algorithms and provide much more detailed results on the VQA problem.

On debugging VQA :Agrawal et al. [2016a] study the behavior of models on

the VQA 1.0 dataset. Through a series of experiments, they show that VQA models

fail on novel instances, tend to answer after only partially reading the question

and fail to change their answers across different images. In Agrawal et al. [2018],

recognizing that deep models tend to use a combination of identifying visual concepts

and prediction of answers using biases learned from the data, the authors develop

a mechanism to disentangle the two. However, they do not explicitly find a way to

discover such biases in the first place. In Goyal et al. [2017], the authors introduce a

second, more balanced version of the VQA dataset that mitigates biases (especially

language based ones) in the original dataset.

3.3 Method

We cast our bias discovery task as an instance of the rule mining problem,

which we shall describe below. The connection between discovering biases in VQA
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and rule mining is as follows : each (Image, Question, Answer) triplet can be cast a

transaction in database, where each word in the question, answer and image patch

(or visual word) is akin to an item. There are now three components to our rule

mining operation :

• First, a frequent itemset miner picks out a set of all itemsets which occur at

least s times in the dataset where s is the support. Because our dataset has

over 200,000 questions (the entire VQA validation set), and the number of

items exceeds 40,000 (all question words+all answer words+all visual words),

we choose GMiner [Chon et al., 2018] due to its speed and efficient GPU

implementation.

• Next, a rule miner Apriori [Agrawal and Srikant, 1994] forms all valid associa-

tion rules A→ C, such that the rule has a support > s and a confidence > c.

Here, the itemset A is called antecedent and the itemset C is called consequent.

We choose s = 0.0005 in this instance and do not place initial bounds on c.

• Finally, a post-processing step removes obviously spurious rules by considering

the causal nature of the VQA problem (i.e., only considering rules that obey

: Image/Question → Answer). For the purpose of the current work, we query

these rules with search terms like {What,sport}.

More concretely, let the ith (Image, Question) pair result in the network pre-

dicting the answer ai. Let the question itself contain the words {wi1, wi2, ...., wik}.

Further, while answering the question, let the part of the image that the network

shows attention towards correspond to the visual code-word vi. Then, this QI+A
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corresponds to the transaction {wi1, wi2, ...., wkk , vi, ai}. By pre-computing and com-

bining question, answer and visual vocabularies, each item in a transaction can be

indexed uniquely. This is shown in Figure 3.2 and explained in greater detail in the

following sections.

3.3.1 Baseline Model

The baseline model we use in this work is from [Kazemi and Elqursh, 2017],

which was briefly a state-of-the-art method, yielding higher performance than other,

more complicated models. We choose this model for two reasons : first, its simplicity

(in other words, an absence of “bells and whistles”) makes it a good test-bed for

our method and has been used by other works that explore the behavior of VQA

algorithms [Mudrakarta et al., 2018, Feng et al., 2018]. The second reason is that

the performance of this baseline is within 4% of the single-model state of the art

[Teney et al., 2018] without using external data. We use the implementation of

https://github.com/Cyanogenoid/pytorch-vqa.

3.3.2 Visual Codebook Generation

We generate the visual codebook using the classical “feature extraction fol-

lowed by clustering” technique of [Sivic and Zisserman, 2003]. First, we use the

bounding-box annotations in MSCOCO[Lin et al., 2014] and COCO-Stuff[Caesar

et al., 2018] to extract 300,000 patches from the MSCOCO training set. After re-

sizing each of the patches to 224 × 224 pixels, we extract ResNet-152[He et al.,
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2016] features for each of these patches, and cluster them into 1250 clusters using

k-means clustering[Ding et al., 2015]. We note in Figure 3.3 that the clusters have

both expected and unexpected characteristics beyond “objectness” and “stuffness”.

Expected clusters include dominant objects in the MSCOCO dataset like zebras,

giraffes, elephants, cars, buses, trains, people, etc. However, other clusters have

textural content, unusual combinations of objects as well as actions. For example,

we notice visual words like “people eating”, “cats standing on toilets”, “people in

front of chain link fences”, etc, as shown in Figure 3.3. The presence of more eclectic

code-words casts more insight into the model’s learning dynamics - we would prefer

frequent itemsets containing the visual code-word corresponding to “people eating”

than just “people” for a QA pair of (what is she doing?, eating).

3.3.3 From attention map to bounding box

In this work, we make an assumption that the network focuses on exactly one

part of the image, although our method can be easily extended to multiple parts.

Following the elucidation of our method in Section 3.3 and, given an attention map,

we would like to compute the nearest visual code-word. Doing so requires making

the choice of a bounding box that covers enough of the salient parts of the image.

While there are trainable (deep network based) methods of doing so [Wang and

Shen, 2017], we instead follow the simpler formulation suggested by Chen et al.

[2016], which states that : given a percentage ratio τ , find the smallest bounding
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box B which satisfies :

∑
pεB

G(p) ≥
∑
p

G(p), τε[0, 1]

Since we follow Kazemi and Elqursh [2017] who use a ResNet-152 architecture for

visual feature extraction, the attention maps are of size 14 × 14. It can be shown

easily that given a m × n grid, the number of unique bounding boxes that can be

drawn on this grid, i.e., num bboxes = m×n×(m+1)×(n+1)
4

, and when m = n = 14,

num bboxes turns out to be 11,025. Because m(= n) is small and fixed in this case,

we pre-compute and enumerate all 11,025 bounding boxes and pick the smallest one

which encompasses the desired attention, with τ = 0.3. This part of the pipeline is

depicted in Figure 3.4.

3.3.4 Pipeline Summarized

Now, the pipeline for the experiments (Figure 3.2) on the VQA dataset in-

cluding images is as follows. We provide as input to the network in - an image and

a question. We observe the second attention map and use the method of Section

3.3.3 to place a tight-fitting bounding-box around those parts of the image that the

model attends to. We then extract features on this bounding-box using a ResNet-

152 network and perform a k-nearest neighbor search (with k = 1) to obtain its

nearest visual word from the vocabulary. The words in the question, visual code-

word and predicted answer for the entire validation set are provided as the database

of transactions to the frequent itemset miner [Chon et al., 2018], and rules are then

obtained using the Apriori algorithm [Agrawal and Srikant, 1994].
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3.4 Experiments

3.4.1 Language only statistical biases in VQA

We show that a large number of statistical biases in VQA are due to language

alone. We illustrate this with an obvious example : a language-only model, i.e.,

one that does not see the image, but still attempts the question, answers about

40% of the questions correctly on VQA 2.0 validation set and 48% of the questions

correctly on VQA 1.0 validation set. However, on a random set of 200 questions from

VQA 2.0, we observed empirically that the language-only model answers 88.0% of

questions with a plausibly correct answer even with a harsh metric of what plausible

means. Some of these responses are fairly sophisticated as can be seen in Table

3.1. We note, for example, that questions containing “ kind of bird” are met with a

species of bird as response, “What kind of cheese” is answered with a type of cheese,

etc. To the naked eye, it seems that the model maps out key words or phrases in

the question and ostensibly tries to map them through a series of rules to answer

words. This strongly indicates that these are biases learned from the data, and the

ostensible rules can be mined through a rule-mining algorithm.

3.4.2 Vision+Language statistical biases in VQA

In this section, we will examine some rules that have been learned by our

method on some popular question types in VQA . Question types are taken from

[Antol et al., 2015] and for the purpose of brevity, only a very few instructive rules
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Question Predicted Ground-truth

What kind of bird is perched on this branch ? Owl Sparrow

What does that girl have on her face ? Sunglasses Nothing

What kind of cheese is on pizza ? Mozzarella Mozzarella

What is bench made of ? Wood Wood

What brand of stove is in kitchen ? Electric LG

Table 3.1: We run a language-only VQA baseline and note that although only 40%

of the questions are answered correctly in VQA 2.0, a large number of questions

(88%) in our experiments are answered with plausibly correct responses. For exam-

ple, “Sunglasses” would be a perfectly plausible answer to the question “What does

that girl have on her face?” - perhaps even more so than the ground-truth answer

(“Nothing”). The last example shows an implausible answer provided by the model

to the question.
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for each question type are displayed. These question types are : “What is he/she

doing?”, “Where?” (Figure 3.9), “What time?”, “What brand?” (Figure 3.8), and

“Why?”. The tables we present are to be interpreted thus : A question containing

the antecedent words paired with an image containing the antecedent visual words

can sometimes (but not always) lead to the consequent answer. Two instances of

patches mapping to this visual word (Section 3.3.2) are provided. The presence of

an ∗ after the consequent is to remind the reader that the consequent word came

from the set of answers.

3.4.2.1 What time?

A selection of rules involving “What time?” questions are provided in Figure

3.5 which depend on whether the query is for the general time of the day, the current

time obtained by reading a clock-face or the time (i.e., season) of the year. The model

used in our work, Kazemi and Elqursh [2017], does not have the ability to read the

time - it merely guesses a random time in the HH:MM format, as long as this is one

of the answer categories. A single antecedent word phrase can be associated with

multiple antecedent visual words. Indeed, there are several visual words associated

with afternoon and night, but we have provided only two for brevity.

3.4.2.2 Why?

Traditionally, “Why?” questions in VQA are considered challenging because

they require a reason based answer. We describe some of the rules purportedly
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learned by our model for answering “Why?” questions, in Figure 3.6. Some inter-

esting but intuitive beliefs that the model has learned are that movements cause

blurry photographs (why,blurry→movement), outstretching one’s arms help in bal-

ancing (why,arm→balance) and that people wear helmets or orange vests for the

purpose of safety (why,helmet/orange→safety). In many of these cases, no visual

element has been picked up by the rule mining algorithm - this strongly indicates

that the models are memorizing the answers to the “Why?” questions, and not

performing any reasoning. In other words, we could ask the question “Why is the

photograph blurry?” to an irrelevant image and obtain “Movement” as the predicted

answer.

3.4.2.3 What is he/she doing?

More interesting are our results on the “What is he/she doing?” category of

questions (Figure 3.7). While common activities like “snowboarding” or “typing”

are prevalant among the answers, we noticed a difference in rules learned for male

and female pronouns. For the female pronoun (she/woman/girl), we observed only

stereotypical outputs like “texting” even for a very low support, as compared to

a more diverse set of responses with the male pronoun. This is likely, a reflection

on the inherent bias of the MSCOCO dataset which the VQA dataset of [Antol

et al., 2015, Goyal et al., 2017] is based on. Curiously, another work by Hendricks

et al. [2018] had similar observations for image captioning models also based on

MSCOCO.
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3.5 Limitations and Summary

In this work, we present a simple technique to explicitly discover biases and

correlations learned by VQA models. To do so, we store in a database - the words

in the question, the response of the model to the question and the portion of the

image attended to by the model. Our method then leverages the Apriori algorithm

to discover rules from this database. We glean from our experiments that VQA

models intuitively seem to correlate elements in the question and image to answers.

While simplicity is the primary advantage of our method, some drawbacks are the

following : the exact nature of these elements is limited by the process used to

generate the visual vocabulary. As a result, rules involving colors are difficult to

identify because ResNets are trained to be somewhat invariant to colors. The visual

attention could also focus on the wrong part of the image. Further, the mapping

between an image region and the visual vocabulary is an inexact process.

Our work is consistent with other works in deep learning on fairness and

accountability, which often shows a skew towards one set of implied factors (like

gender), compared to others. It is also possible to use the ideas in this work to

demonstrate effectiveness of VQA systems - showing dataset biases presented by a

frequent itemset and rule miner is a viable alternative to cherry-picking examples

of questions answered correctly by the system. Finally, our method is not limited

only to VQA , but any problem with a discrete vocabulary (textual or visual). A

possible future extension of this work is to track the development of these rules as

a function of training time.

30



Figure 3.1: In Figure 1 (left), we show examples of two questions in VQA which

the model requires a “skill” to answer (such as telling the time, or reading), and a

third which can be answered using statistical biases in the data. On the right, we

show examples of statistical biases which lead a model to answer “4” (referred to

as consequents), given a set of questions containing the phrase “How many?” and

various visual elements (antecedents). Note that each row in this figure represents

multiple questions in the VQA validation set. This particular instance of the trained

VQA model seems to have learned that giraffes and chairs have four legs, stop

signs have four letters, and kitchen stoves have four burners. The * next to the

answer reminds us that it is from the set of answer words. Upon inspection, we

found 33 questions (out of >200k) in the VQA validation set which contain the

words {How,many,burners} and the most common answer predicted by our model

for these is 4 (which also resembles the ground-truth distribution). However, some

of them were along the lines of “How many burners are turned on?”, which led to

answers different from “4”.

.
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which dessert are you tempted to try

.........

ResNet-152

concat

Attention

k-nearest 
neighbor

Codebook

✓

donut
cake
icecream
.
.

Answer VQA itemset "database"

1. what, dessert, are, you, tempted, to, try,                 , donut*

2. what, sport, are, they, playing,                   , baseball*

3. ....................

softmax

LSTM

Figure 3.2: The model from [Kazemi and Elqursh, 2017] tries to answer the question

”Which dessert are you tempted to try?”. In doing so, the visual attention focuses

on a region of the image which contains donuts. We use the method by [Chen et al.,

2016] to place a bounding box over this region, which maps to a distinct visual word

representing donuts in our vocabulary. Our database of items thus contains all of

the words of the question, the visual word and the answer words. Rules are then

extracted using the Apriori algorithm [Agrawal and Srikant, 1994]

.

sky

pizza

lamp

giraffe

zebra

people's bottoms

cat on toilets

people eating

women in bridal attire

plastic packaging

people wearing suits

black and white tennis teams

people carrying surfboards

objects with wires

stadium crowds

Figure 3.3: We show visual code-words generated by the method of Section 3.1. In

the first (left-most) column, we notice visual code-words corresponding to objects or

patches in MSCOCO, but in the latter two columns (on the right) we notice code-

words corresponding to more complex visual concepts like “people eating”, “women

in bridal-wear” or “black-and-white tennis photographs”.
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Figure 3.4: In the first example, critical to answering the question correctly is

discovering the presence of a fence (shown in red) in the attention heat-map. The

cropping method of Chen et al. [2016] places a conservative box over this region,

which corresponds to net-like or fence-like visual code-words like a tennis-net or a

baseball batting-cage in the visual codebook. Similarly, in the second example, the

attention corresponds to a visual code-word which clearly depicts boats, and in the

third example, the attention corresponds to the teddy-bear code-word.
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No. antecedant antecedant consequents support confidence
words visual words x 10 ˆ -5

1 what,time,day afternoon* 5.1317 0.55

2 what,time,day night* 3.26563 1.0

3 what,time,clock,show 11:30* 3.26563 0.21

4 what,time,year fall* 2.33259 0.38

Figure 3.5: What time? : Rule 1 shows kite-flying during the daytime, whereas

rule 2 shows traffic lights during night. “What time?” asked about an image con-

taining a clock prompts the model to guess a random hour of the day (rule 3). The

fall season seems to be associated with a visual word depicting leafless trees (rule

4).

No. antecedant antecedant consequents support confidence
words visual words x 10 ˆ -5

1 arm,why - balance* 3.26563 0.47

2 why,umbrella raining* 2.79911 0.6

3 umbrella,why shade* 6.06473 0.62
4 why,blurry - movement* 6.06473 0.46
5 behind,why,fence - safety* 2.33259 0.63
6 orange,why - safety* 2.33259 0.5
7 helmet,why - safety* 4.66518 0.77

Figure 3.6: Why? : Rules that exceeded the support threshold indicate that arms

are outstretched for balance (rule 1), umbrellas protect one from rain and provide

shade (rules 2-3), and that fences, orange (vests) and helmets lead to safety (rules

5-7).
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No. antecedant antecedant consequents support confidence
words visual words x 10 ˆ -5

1 doing,what,man skateboarding* 13.529 0.81

2 doing,what,man snowboarding* 2.79911 0.55

3 doing,what,man flying kite* 2.79911 0.75

4 doing,what,man surfing* 4.19866 1.0

5 doing,what,man playing frisbee* 2.33259 0.31

6 doing,what,man typing* 1.86607 0.67

7 doing,what,woman texting* 1.86607 0.4

Figure 3.7: What is he/she doing? : The rules in this table show standard

activities in the VQA (and MSCOCO) datasets like skateboarding, snowboarding,

flying a kite, playing frisbee, etc. We observed a difference in diversity of rules

for male (he,man,boy) and female pronouns (she,woman,girl,lady) even at very low

support. This indicates that the VQA , or more likely, the MSCOCO datasets are

unintentionally skewed in terms of gender.
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No. antecedant antecedant consequents support confidence
words visual words x 10 ˆ -5

1 brand,what wilson* 5.59822 0.57

2 brand,computer,what dell* 5.1317 0.5

3 brand,what apple* 4.19866 0.56

4 brand,what yamaha* 6.99777 0.43

5 brand,what nokia* 2.33259 0.63

6 brand,what jetblue* 2.33259 0.38
7 brand,what,soda - coca cola* 6.06473 0.33

Figure 3.8: What brand? : The VQA model seems to have learned that the

Wilson brand is related to tennis, Dell and Apple make laptop computers and that

Jetblue is a “brand” of airline. The visual similarity between old models of Nokia

phones and TV remotes explains rule 5. Interestingly, rule 7, which pertains to

“What brand of soda?” does not have an accompanying visual word. This indicates

either that the model has not learned to disambiguate between various soda brands,

or that our rule finding method has failed to learn of such a disambiguating rule.
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No. antecedant antecedant consequents support confidence
words visual words x 10 ˆ -5

1 where on building* 6.06473 0.21

2 where,elephant africa* 4.19866 0.39

3 where skate park* 5.1317 0.24

4 where bathroom* 5.59822 0.23

5 where airport* 21.9263 0.61

6 where downtown* 4.19866 0.41

Figure 3.9: Where? : The model of Kazemi and Elqursh [2017] has learned that

clocks often appear on facades of buildings, elephants are from Africa, aircraft can

be found in airports and that buses are found in the downtown of a city
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Chapter 4: The Amazing Mysteries of the Gutter:

Drawing Inferences Between Panels in Comic Book Nar-

ratives

4.1 Overview

Comics are fragmented scenes forged into full-fledged stories by the imagina-

tion of their readers. A comics creator can condense anything from a centuries-long

intergalactic war to an ordinary family dinner into a single panel. But it is what the

creator hides from their pages that makes comics truly interesting: the unspoken

conversations and unseen actions that lurk in the spaces (or gutters) between adja-

cent panels. For example, the dialogue in Figure 4.1 suggests that between the sec-

ond and third panels, Gilda commands her snakes to chase after a frightened Michael

in some sort of strange cult initiation. Through a process called closure [McCloud,

1994], which involves (1) understanding individual panels and (2) making connective

inferences across panels, readers form coherent storylines from seemingly disparate

panels such as these. In this chapter, we study whether computers can do the same

by collecting a dataset of comic books (COMICS) and designing several tasks that

require closure to solve.
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Figure 4.1: Where did the snake in the last panel come from? Why is it biting the

man? Is the man in the second panel the same as the man in the first panel? To

answer these questions, readers form a larger meaning out of the narration boxes,

speech bubbles, and artwork by applying closure across panels.

Section 4.2 describes how we create COMICS,1 which contains ∼1.2 million

panels drawn from almost 4,000 publicly-available comic books published during

the “Golden Age” of American comics (1938–1954). COMICS is challenging in

both style and content compared to natural images (e.g., photographs), which are

the focus of most existing datasets and methods [Xu et al., 2015, Krizhevsky et al.,

2012, Xiong et al., 2016]. Much like painters, comic artists can render a single

object or concept in multiple artistic styles to evoke different emotional responses

from the reader. For example, the lions in Figure 4.2 are drawn with varying de-

1Data, code, and annotations to be made available after blind review.
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grees of realism: the more cartoonish lions, from humorous comics, take on human

expressions (e.g., surprise, nastiness), while those from adventure comics are more

photorealistic.

Comics are not just visual: creators push their stories forward through text—

speech balloons, thought clouds, and narrative boxes—which we identify and tran-

scribe using optical character recognition (ocr). Together, text and image are

often intricately woven together to tell a story that neither could tell on its own

(Section 4.3). To understand a story, readers must connect dialogue and narration

to characters and environments; furthermore, the text must be read in the proper

order, as panels often depict long scenes rather than individual moments [Cohn,

2010]. Text plays a much larger role in COMICS than it does for existing datasets

of visual stories [Huang et al., 2016b].

To test machines’ ability to perform closure, we present three novel cloze-style

tasks in Section 4.4 that require a deep understanding of narrative and character

to solve. In Section 4.5, we design four neural architectures to examine the impact

of multimodality and contextual understanding via closure. All of these models

perform significantly worse than humans on our tasks; we conclude with an error

analysis (Section 5.3) that suggests future avenues for improvement.

4.2 Creating a dataset of comic books

Comics, defined by cartoonist Will Eisner as sequential art [Eisner, 1990], tell

their stories in sequences of panels, or single frames that can contain both images
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Figure 4.2: Different artistic renderings of lions taken from the COMICS dataset.

The left-facing lions are more cartoonish (and humorous) than the ones facing right,

which come from action and adventure comics that rely on realism to provide thrills.

and text. Existing comics datasets [Guérin et al., 2013, Matsui et al., 2015] are too

small to train data-hungry machine learning models for narrative understanding;

additionally, they lack diversity in visual style and genres. Thus, we build our own

dataset, COMICS, by (1) downloading comics in the public domain, (2) segment-

ing each page into panels, (3) extracting textbox locations from panels, and (4)

running ocr on textboxes and post-processing the output. Table 4.1 summarizes

the contents of COMICS. The rest of this section describes each step of our data
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# Books 3,948

# Pages 198,657

# Panels 1,229,664

# Textboxes 2,498,657

Text cloze instances 89,412

Visual cloze instances 587,797

Char. coherence instances 72,313

Table 4.1: Statistics describing dataset size (top) and the number of total instances

for each of our three tasks (bottom).

creation pipeline.

4.2.1 Where do our comics come from?

The “Golden Age of Comics” began during America’s Great Depression and

lasted through World War II, ending in the mid-1950s with the passage of strict

censorship regulations. In contrast to the long, world-building story arcs popular

in later eras, Golden Age comics tend to be small and self-contained; a single book

usually contains multiple different stories sharing a common theme (e.g., crime or

mystery). While the best-selling Golden Age comics tell of American superheroes

triumphing over German and Japanese villains, a variety of other genres (such as

romance, humor, and horror) also enjoyed popularity [Goulart, 2004]. The Digital
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Comics Museum (dcm)2 hosts user-uploaded scans of many comics by lesser-known

Golden Age publishers that are now in the public domain due to copyright expira-

tion. To avoid off-square images and missing pages, as the scans vary in resolution

and quality, we download the 4,000 highest-rated comic books from dcm.3

4.2.2 Breaking comics into their basic elements

The dcm comics are distributed as compressed archives of jpeg page scans.

To analyze closure, which occurs from panel-to-panel, we first extract panels from

the page images. Next, we extract textboxes from the panels, as both location and

content of textboxes are important for character and narrative understanding.

Panel segmentation: Previous work on panel segmentation uses heuristics [Li et al.,

2014] or algorithms such as density gradients and recursive cuts [Tanaka et al.,

2007, Pang et al., 2014a, Rigaud et al., 2015] that rely on pages with uniformly

white backgrounds and clean gutters. Unfortunately, scanned images of eighty-year

old comics do not particularly adhere to these standards; furthermore, many dcm

comics have non-standard panel layouts and/or textboxes that extend across gutters

to multiple panels.

After our attempts to use existing panel segmentation software failed, we

turned to deep learning. We annotate 500 randomly-selected pages from our dataset

with rectangular bounding boxes for panels. Each bounding box encloses both the

2http://digitalcomicmuseum.com/

3Some of the panels in COMICS contain offensive caricatures and opinions reflective of that

period in American history.
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panel artwork and the textboxes within the panel; in cases where a textbox spans

multiple panels, we necessarily also include portions of the neighboring panel. After

annotation, we train a region-based convolutional neural network to automatically

detect panels. In particular, we use Faster r-cnn [Ren et al., 2015] initialized with a

pretrained VGG CNN M 1024 model [Chatfield et al., 2014] and alternatingly optimize

the region proposal network and the detection network. In Western comics, panels

are usually read left-to-right, top-to-bottom, so we also have to properly order all of

the panels within a page after extraction. We compute the midpoint of each panel

and sort them using Morton order [Morton, 1966], which gives incorrect orderings

only for rare and complicated panel layouts.

Textbox segmentation: Since we are particularly interested in modeling the inter-

play between text and artwork, we need to also convert the text in each panel to

a machine-readable format.4 As with panel segmentation, existing comic textbox

detection algorithms [Ho et al., 2012, Rigaud et al., 2013] could not accurately lo-

calize textboxes for our data. Thus, we resort again to Faster r-cnn: we annotate

1,500 panels for textboxes,5 train a Faster-r-cnn, and sort the extracted textboxes

within each panel using Morton order.

4Alternatively, modules for text spotting and recognition [Jaderberg et al., 2016] could be built

into architectures for our downstream tasks, but since comic dialogues can be quite lengthy, these

modules would likely perform poorly.
5We make a distinction between narration and dialogue; the former usually occurs in strictly

rectangular boxes at the top of each panel and contains text describing or introducing a new scene,

while the latter is usually found in speech balloons or thought clouds.
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4.2.3 OCR

The final step of our data creation pipeline is applying ocr to the extracted

textbox images. We unsuccessfully experimented with two trainable open-source

ocr systems, Tesseract [Smith, 2007] and Ocular [Berg-Kirkpatrick et al., 2013], as

well as Abbyy’s consumer-grade FineReader.6 The ineffectiveness of these systems is

likely due to the considerable variation in comic fonts as well as domain mismatches

with pretrained language models (comics text is always capitalized, and dialogue

phenomena such as dialects may not be adequately represented in training data).

Google’s Cloud Vision ocr7 performs much better on comics than any other system

we tried. While it sometimes struggles to detect short words or punctuation marks,

the quality of the transcriptions is good considering the image domain and quality.

We use the Cloud Vision API to run ocr on all 2.5 million textboxes for a cost of

$3,000. We post-process the transcriptions by removing systematic spelling errors

(e.g., failing to recognize the first letter of a word). Finally, each book in our dataset

contains three or four full-page product advertisements; since they are irrelevant for

our purposes, we train a classifier on the transcriptions to remove them.8

4.3 Data Analysis

In this section, we explore what makes understanding narratives in COMICS

difficult, focusing specifically on intrapanel behavior (how images and text interact

6http://www.abbyy.com

7http://cloud.google.com/vision

8See supplementary material for specifics about our post-processing.
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INTRAPANEL

SUBJECT-TO-SUBJECT: 32.7%

SCENE-TO-SCENE: 13.8%

ACTION-TO-ACTION: 34.6%

CONTINUED CONVERSATION: 17.7%

INTERDEPENDENT: 92.1%

WORD-SPECIFIC: 4.4%

PARALLEL: 0.57%

PICTURE-SPECIFIC: 2.8%

MOMENT-TO-MOMENT: 0.39%

Figure 4.3: Five example panel sequences from COMICS, one for each type of

interpanel transition. Individual panel borders are color-coded to match their intra-

panel categories (legend in bottom-left). Moment-to-moment transitions unfold like

frames in a movie, while scene-to-scene transitions are loosely strung together by

narrative boxes. Percentages are the relative prevalance of the transition or panel

type in an annotated subset of COMICS.

within a panel) and interpanel transitions (how the narrative advances from one

panel to the next). We characterize panels and transitions using a modified version

of the annotation scheme in Scott McCloud’s “Understanding Comics” [McCloud,

1994]. Over 90% of panels rely on both text and image to convey information, as

opposed to just using a single modality. Closure is also important: to understand

most transitions between panels, readers must make complex inferences that often

require common sense (e.g., connecting jumps in space and/or time, recognizing

when new characters have been introduced to an existing scene). We conclude that

any model trained to understand narrative flow in COMICS will have to effectively
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tie together multimodal inputs through closure.

To perform our analysis, we manually annotate 250 randomly-selected pairs of

consecutive panels from COMICS. Each panel of a pair is annotated for intrapanel

behavior, while an interpanel annotation is assigned to the transition between the

panels. Two annotators independently categorize each pair, and a third annotator

makes the final decision when they disagree. We use four intrapanel categories

(definitions from McCloud, percentages from our annotations):

Word-specific, 4.4%: The pictures illustrate, but do not significantly add to a

largely complete text.

Picture-specific, 2.8%: The words do little more than add a soundtrack to a

visually-told sequence.

Parallel, 0.6%: Words and pictures seem to follow very different courses without

intersecting.

Interdependent, 92.1%: Words and pictures go hand-in-hand to convey an idea

that neither could convey alone.

We group interpanel transitions into five categories:

Moment-to-moment, 0.4%: Almost no time passes between panels, much like

adjacent frames in a video.

Action-to-action, 34.6%: The same subjects progress through an action within

the same scene.

Subject-to-subject, 32.7%: New subjects are introduced while staying within

the same scene or idea.

47



Scene-to-scene, 13.8%: Significant changes in time or space between the two

panels.

Continued conversation, 17.7%: Subjects continue a conversation across panels

without any other changes.

The two annotators agree on 96% of the intrapanel annotations (Cohen’s

κ = 0.657), which is unsurprising because almost every panel is interdependent. The

interpanel task is significantly harder: agreement is only 68% (Cohen’s κ = 0.605).

Panel transitions are more diverse, as all types except moment-to-moment are rel-

atively common (Figure 4.3); interestingly, moment-to-moment transitions require

the least amount of closure as there is almost no change in time or space between

the panels. Multiple transition types may occur in the same panel, such as simulta-

neous changes in subjects and actions, which also contributes to the lower interpanel

agreement.

4.4 Tasks that test closure

To explore closure in COMICS, we design three novel tasks (text cloze, visual

cloze, and character coherence) that test a model’s ability to understand narratives

and characters given a few panels of context. As shown in the previous section’s

analysis, a high percentage of panel transitions require non-trivial inferences from

the reader; to successfully solve our proposed tasks, a model must be able to make

the same kinds of connections.

While their objectives are different, all three tasks follow the same format:
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THANKS OLD TIMER! 
THE BATS WOULD 

HAVE GOT US, SURE! 
WHERE’D THEY COME 

FROM?

SCOTTY’S MY NAME. 
I’M THE SHERIFF. MEAN 
TO TELL YOU’VE NEVER 
HEARD OF THE BATS?

THANKS OLD TIMER! THE 
BATS WOULD HAVE GOT 

US, SURE! WHERE’D 
THEY COME FROM?

SCOTTY’S MY 
NAME. I’M THE 

SHERIFF. MEAN TO 
TELL YOU’VE 

NEVER HEARD OF 
THE BATS?

character 
coherence

visual
cloze

Figure 4.4: In the character coherence task (top), a model must order the dialogues

in the final panel, while visual cloze (bottom) requires choosing the image of the

panel that follows the given context. For visualization purposes, we show the original

context panels; during model training and evaluation, textboxes are blacked out in

every panel.

given preceding panels pi−1, pi−2, . . . , pi−n as context, a model is asked to predict

some aspect of panel pi. While previous work on visual storytelling focuses on

generating text given some context huang2016visual, the dialogue-heavy text in

COMICS makes evaluation difficult (e.g., dialects, grammatical variations, many

rare words). We want our evaluations to focus specifically on closure, not gener-

ated text quality, so we instead use a cloze-style framework [Taylor, 1953]: given

c candidates—with a single correct option—models must use the context panels to

rank the correct candidate higher than the others. The rest of this section describes

each of the three tasks in detail; Table 4.1 provides the total instances of each task
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with the number of context panels n = 3.

Text Cloze: In the text cloze task, we ask the model to predict what text out of

a set of candidates belongs in a particular textbox, given both context panels (text

and image) as well as the current panel image. While initially we did not put any

constraints on the task design, we quickly noticed two major issues. First, since the

panel images include textboxes, any model trained on this task could in principle

learn to crudely imitate ocr by matching text candidates to the actual image of

the text. To solve this problem, we “black out” the rectangle given by the bounding

boxes for each textbox in a panel (see Figure 4.4).9 Second, panels often have

multiple textboxes (e.g., conversations between characters); to focus on interpanel

transitions rather than intrapanel complexity, we restrict pi to panels that contain

only a single textbox. Thus, nothing from the current panel matters other than the

artwork; the majority of the predictive information comes from previous panels.

Visual Cloze: We know from Section 4.3 that in most cases, text and image work

interdependently to tell a story. In the visual cloze task, we follow the same set-up

as in text cloze, but our candidates are images instead of text. A key difference is

that models are not given text from the final panel; in text cloze, models are allowed

to look at the final panel’s artwork. This design is motivated by eyetracking studies

in single-panel cartoons, which show that readers look at artwork before reading the

text [Carroll et al., 1992], although atypical font style and text length can invert

9To reduce the chance of models trivially correlating candidate length to textbox size, we remove

very short and very long candidates.
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this order [Foulsham et al., 2016].

Character Coherence: While the previous two tasks focus mainly on narrative

structure, our third task attempts to isolate character understanding through a re-

ordering task. Given a jumbled set of text from the textboxes in panel pi, a model

must learn to match each candidate to its corresponding textbox. We restrict this

task to panels that contain exactly two dialogue boxes (narration boxes are excluded

to focus the task on characters). While it is often easy to order the text based on

the language alone (e.g., “how’s it going” always comes before “fine, how about

you?”), many cases require inferring which character is likely to utter a particular

bit of dialogue based on both their previous utterances and their appearance (e.g.,

Figure 4.4, top).

4.4.1 Task Difficulty

For text cloze and visual cloze, we have two difficulty settings that vary in

how cloze candidates are chosen. In the easy setting, we sample textboxes (or panel

images) from the entire COMICS dataset at random. Most incorrect candidates

in the easy setting have no relation to the provided context, as they come from

completely different books and genres. This setting is thus easier for models to

“cheat” on by relying on stylistic indicators instead of contextual information. With

that said, the task is still non-trivial; for example, many bits of short dialogue can

be applicable in a variety of scenarios. In the hard case, the candidates come from

nearby pages, so models must rely on the context to perform well. For text cloze, all
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HIYA KID! ALL 
ALONE???

ALICE! I’VE BEEN 
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Figure 4.5: The image-text architecture applied to an instance of the text cloze

task. Pretrained image features are combined with learned text features in a hier-

archical lstm architecture to form a context representation, which is then used to

score text candidates.

candidates are likely to mention the same character names and entities, while color

schemes and textures become much less distinguishing for visual cloze.

4.5 Models & Experiments

To measure the difficulty of these tasks for deep learning models, we adapt

strong baselines for multimodal language and vision understanding tasks to the

comics domain. We evaluate four different neural models, variants of which were

also used to benchmark the Visual Question Answering dataset [Antol et al., 2015]

and encode context for visual storytelling [Huang et al., 2016b]: text-only, image-

only, and two image-text models. Our best-performing model encodes panels with

a hierarchical lstm architecture (see Figure 4.5).
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On text cloze, accuracy increases when models are given images (in the form

of pretrained vgg-16 features) in addition to text; on the other tasks, incorporating

both modalities is less important. Additionally, for the text cloze and visual cloze

tasks, models perform far worse on the hard setting than the easy setting, con-

firming our intuition that these tasks are non-trivial when we control for stylistic

dissimilarities between candidates. Finally, none of the architectures outperform

human baselines, which demonstrates the difficulty of understanding COMICS:

image features obtained from models trained on natural images cannot capture the

vast variation in artistic styles, and textual models struggle with the richness and

ambiguity of colloquial dialogue highly dependent on visual contexts. In the rest of

this section, we first introduce a shared notation and then use it to specify all of our

models.

4.5.1 Model definitions

In all of our tasks, we are asked to make a prediction about a particular panel

given the preceding n panels as context.10 Each panel consists of three distinct

elements: image, text (ocr output), and textbox bounding box coordinates. For

any panel pi, the corresponding image is zi. Since there can be multiple textboxes

per panel, we refer to individual textbox contents and bounding boxes as tix and

bix , respectively. Each of our tasks has a different set of answer candidates A:

text cloze has three text candidates ta1...3 , visual cloze has three image candidates

10Test and validation instances for all tasks come from comic books that are unseen during

training.
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za1...3 , and character coherence has two combinations of text / bounding box pairs,

{ta1/ba1 , ta2/ba2} and {ta1/ba2 , ta2/ba1}. Our architectures differ mainly in the encod-

ing function g that converts a sequence of context panels pi−1, pi−2, . . . , pi−n into a

fixed-length vector c. We score the answer candidates by taking their inner product

with c and normalizing with the softmax function,

s = softmax(AT c), (4.1)

and we minimize the cross-entropy loss against the ground-truth labels.11

Text-only: The text-only baseline only has access to the text tix within each panel.

Our g function encodes this text on multiple levels: we first compute a representation

for each tix with a word embedding sum12 and then combine multiple textboxes

within the same panel using an intrapanel lstm [Hochreiter and Schmidhuber, 1997].

Finally, we feed the panel-level representations to an interpanel lstm and take its

final hidden state as the context representation (Figure 4.5). For text cloze, the

answer candidates are also encoded with a word embedding sum; for visual cloze, we

project the 4096-d fc7 layer of VGG-16 down to the word embedding dimensionality

with a fully-connected layer.13

11Performance falters slightly on a development set with contrastive max-margin loss func-

tions [Socher et al., 2014] in place of our softmax alternative.
12As in previous work for visual question answering [Zhou et al., 2015], we observe no noticeable

improvement with more sophisticated encoding architectures.
13For training and testing, we use three panels of context and three candidates. We use a

vocabulary size of 30,000 words, restrict the maximum number of textboxes per panel to three, and

set the dimensionality of word embeddings and lstm hidden states to 256. Models are optimized
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Image-only: The image-only baseline is even simpler: we feed the fc7 features of

each context panel to an lstm and use the same objective function as before to score

candidates. For visual cloze, we project both the context and answer representations

to 512-d with additional fully-connected layers before scoring. While the COMICS

dataset is certainly large, we do not attempt learning visual features from scratch as

our task-specific signals are far more complicated than simple image classification.

We also try fine-tuning the lower-level layers of vgg-16 [Aytar et al., 2016]; however,

this substantially lowers task accuracy even with very small learning rates for the

fine-tuned layers.

Image-text: We combine the previous two models by concatenating the output of

the intrapanel lstm with the fc7 representation of the image and passing the result

through a fully-connected layer before feeding it to the interpanel lstm (Figure 4.5).

For text cloze and character coherence, we also experiment with a variant of the

image-text baseline that has no access to the context panels, which we dub NC-

image-text. In this model, the scoring function computes inner products between

the image features of pi and the text candidates.14
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Model Text Cloze Visual Cloze Char. Coheren.

easy hard easy hard

Random 33.3 33.3 33.3 33.3 50.0

Text-only 63.4 52.9 55.9 48.4 68.2

Image-only 51.7 49.4 85.7 63.2 70.9

NC-image-text 63.1 59.6 - - 65.2

Image-text 68.6 61.0 81.3 59.1 69.3

Human – 84 – 88 87

Table 4.2: Combining image and text in neural architectures improves their ability

to predict the next image or dialogue in COMICS narratives. The contextual

information present in preceding panels is useful for all tasks: the model that only

looks at a single panel (NC-image-text) always underperforms its context-aware

counterpart. However, even the best performing models lag well behind humans.

4.6 Error Analysis

Table 4.2 contains our full experimental results, which we briefly summarize

here. On text cloze, the image-text model dominates those trained on a single

modality. However, text is much less helpful for visual cloze than it is for text cloze,

using Adam [Kingma and Ba, 2014] for ten epochs, after which we select the best-performing model

on the dev set.
14We cannot apply this model to visual cloze because we are not allowed access to the artwork

in panel pi.

56



suggesting that visual similarity dominates the former task. Having the context of

the preceding panels helps across the board, although the improvements are lower in

the hard setting. There is more variation across the models in the easy setting; we

hypothesize that the hard case requires moving away from pretrained image features,

and transfer learning methods may prove effective here. Differences between models

on character coherence are minor; we suspect that more complicated attentional

architectures that leverage the bounding box locations bix are necessary to “follow”

speech bubble tails to the characters who speak them.

We also compare all models to a human baseline, for which the authors man-

ually solve one hundred instances of each task (in the hard setting) given the same

preprocessed input that is fed to the neural architectures. Most human errors are

the result of poor ocr quality (e.g., misspelled words) or low image resolution. Hu-

mans comfortably outperform all models, making it worthwhile to look at where

computers fail but humans succeed.

The top row in Figure 4.6 demonstrates an instance (from easy text cloze where

the image helps the model make the correct prediction. The text-only model has no

idea that an airplane (referred to here as a “ship”) is present in the panel sequence,

as the dialogue in the context panels make no mention of it. In contrast, the image-

text model is able to use the artwork to rule out the two incorrect candidates.

The bottom two rows in Figure 4.6 show hard text cloze instances in which

the image-text model is deceived by the artwork in the final panel. While the final

panel of the middle row does contain what looks to be a creek, “catfish creek jail”

is more suited for a narrative box than a speech bubble, while the meaning of the

57



correct candidate is obscured by the dialect and out-of-vocabulary token. Similarly,

a camera films a fight scene in the last row; the model selects a candidate that

describes a fight instead of focusing on the context in which the scene occurs. These

examples suggest that the contextual information is overridden by strong associa-

tions between text and image, motivating architectures that go beyond similarity

by leveraging external world knowledge to determine whether an utterance is truly

appropriate in a given situation.

4.7 Related Work

Our work is related to three main areas: (1) multimodal tasks that require

language and vision understanding, (2) computational methods that focus on non-

natural images, and (3) models that characterize language-based narratives.

Deep learning has renewed interest in jointly reasoning about vision and lan-

guage. Datasets such as ms coco [Lin et al., 2014] and Visual Genome [Krishna

et al., 2016] have enabled image captioning [Vinyals et al., 2015, Xu et al., 2015,

Karpathy and Li, 2015] and visual question answering [Malinowski et al., 2015, Lu

et al., 2016]. Similar to our character coherence task, researchers have built models

that match tv show characters with their visual attributes [Everingham et al., 2006]

and speech patterns [Haurilet et al., 2016].

Closest to our own comic book setting is the visual storytelling task, in which

systems must generate [Huang et al., 2016a] or reorder [Agrawal et al., 2016b]

stories given a dataset (sind) of photos from Flikr galleries of “storyable” events
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such as weddings and birthday parties. sind’s images are fundamentally different

from COMICS in that they lack coherent characters and accompanying dialogue.

Comics are created by skilled professionals, not crowdsourced workers, and they offer

a far greater variety of character-centric stories that depend on dialogue to further

the narrative; with that said, the text in COMICS is less suited for generation

because of ocr errors.

We build here on previous work that attempts to understand non-natural im-

ages. Zitnick et al. [Zitnick et al., 2016] discover semantic scene properties from a

clip art dataset featuring characters and objects in a limited variety of settings. Ap-

plications of deep learning to paintings include tasks such as detecting objects in oil

paintings [Crowley and Zisserman, 2014, Crowley et al., 2015] and answering ques-

tions about artwork [Guha et al., 2016]. Previous computational work on comics fo-

cuses primarily on extracting elements such as panels and textboxes [Rigaud, 2014];

in addition to the references in Section 4.2, there is a large body of segmentation

research on manga [Aramaki et al., 2014, Pang et al., 2014b, Matsui, 2015, Kovanen

and Aizawa, 2015].

To the best of our knowledge, we are the first to computationally model content

in comic books as opposed to just extracting their elements. We follow previous work

in language-based narrative understanding; very similar to our text cloze task is the

“Story Cloze Test” [Mostafazadeh et al., 2016], in which models must predict the

ending to a short (four sentences long) story. Just like our tasks, the Story Cloze

Test proves difficult for computers and motivates future research into commonsense

knowledge acquisition. Others have studied characters [Iyyer et al., 2016, Elson
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et al., 2010, Bamman et al., 2014] and narrative structure [Schank and Abelson,

1977, Lehnert, 1981, Chambers and Jurafsky, 2009] in novels.

4.8 Summary & Future Work

We present the COMICS dataset, which contains over 1.2 million panels

from “Golden Age” comic books. We design three cloze-style tasks on COMICS

to explore closure, or how readers connect disparate panels into coherent stories.

Experiments with different neural architectures, along with a manual data analysis,

confirm the importance of multimodal models that combine text and image for

comics understanding. We additionally show that context is crucial for predicting

narrative or character-centric aspects of panels.

However, for computers to reach human performance, they will need to become

better at leveraging context. Readers rely on commonsense knowledge to make sense

of dramatic scene and camera changes; how can we inject such knowledge into our

models? Another potentially intriguing direction, especially given recent advances

in generative adversarial networks [Goodfellow et al., 2014], is generating artwork

given dialogue (or vice versa). Finally, COMICS presents a golden opportunity for

transfer learning; can we train models that generalize across natural and non-natural

images much like humans do?
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catfish creek 
jail

thanks , lem ah 
sho nuff will

hang tight evah   
one - we ‘ uns are 
UNK for the drink !

you won ‘ t be 
using this 
transmitter

here is sorcery 
black magic 

UNK him , boys !
guess i ‘ ll … great 

guns ! another ship !

correct candidate incorrect candidates

black hood 
overcoming 

scorpio

about this why 
i might be 

murdered next!

the shooting 
begins

Figure 4.6: Three text cloze examples from the development set, shown with a sin-

gle panel of context (boxed candidates are predictions by the text-image model).

The airplane artwork in the top row helps the image-text model choose the correct

answer, while the text-only model fails because the dialogue lacks contextual infor-

mation. Conversely, the bottom two rows show the image-text model ignoring the

context in favor of choosing a candidate that mentions something visually present

in the last panel.
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Chapter 5: The Effect of Word Scrambling Across Natural Language

Tasks

5.1 Overview

How much does word order matter for natural language processing tasks?

Bag-of-words representations, which ignore word order, have historically served as

reliable features for machine learning models [Wang and Manning, 2012]. This

trend has continued as deep learning has gained prominence, and neural network

architectures that ignore word order are often competitive with those that explicitly

encode it [Iyyer et al., 2015, Wieting et al., 2016, Hill et al., 2016]. This suggests that

word order is not essential for many nlp tasks, even in languages such as English

that have relatively strict word order.

We ask crowdsourced participants to read both normal and randomly scram-

bled sentences to solve five different sentence-level tasks: sentiment analysis, textual

entailment, reading comprehension, and visual question-answering in two settings.1

1All of our experiments are on English; we expect potentially very different results on languages

with freer word order. Previous work [Yamashita, 1997] suggests that human processing time is

not affected by deviations from canonical word order in Japanese, which has overt case and allows

scrambling.
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shape of object right the the cube 
small gray ? to what small red is 

Figure 5.1: A sample task from CLEVR with a scrambled question about an image.

The question is highly ambiguous: the answer depends on whether the cube is red

or gray. The original question is ”What shape is the small red object to the right

of small gray cube?”

To discourage workers from exhaustively decoding scrambled sentences into gram-

matical English, we perform experiments in limited-time scenarios where we might

expect them to “satisfice” [Simon, 1957], relying on “good enough” heuristics [Fer-

reira et al., 2002] with bags of words rather than syntactic processing. To our

knowledge, this is the first human study of scrambling across multiple linguistic

decision tasks.

We compare the human results with those of neural unordered and ordered
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Unscrambled Scrambled Neural Models

Task 5s 30s INF 5s 30s INF NBOW LSTM LSTM-scram

SST 80.7 86.7 87.1 70.3 76.0 79.9 83.6 84.3 78.4

SNLI 91.4 90.2 94.8 85.6 88.5 88.6 92.3 92.1 91.3

SQUAD 71.0 71.6 78.0 49.4 53.1 64.0 43.8 48.7 N/A

VGQA 84.0 85.2 89.3 83.9 82.3 88.3 67.6 67.0 61.5

CLEVR 79.7 83.3 86.1 59.7 64.5 67.5 54.3 55.8 47.4

Table 5.1: Accuracy for the five tasks for human participants and neural models.

models: our experiments demonstrate that for complex tasks, humans decline signif-

icantly more than computers in scrambled settings. This result suggests that “good

enough” heuristics are not good enough to make sense of bags-of-words, implying

that humans have in some sense overfit to grammatically-correct sentences.

5.2 Experiments

We investigate nlp tasks that differ both in difficulty and the types of rea-

soning required to solve them. Sentiment analysis, for example, is limited to single-

sentence understanding, while solving visual question-answering problems requires

connecting question text to image representations. We limit our analysis to tasks

that can be cast as classification problems, which excludes complex tasks such as
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machine translation and summarization.2 Concretely, we measure human accuracy

on scrambled and unscrambled versions of the following five tasks:

SST, sentiment analysis [Socher et al., 2013]: Sentence-level binary classifica-

tion (positive or negative). Many sentences in this dataset contain negations and

complex syntactic modifiers that require word order to properly understand.

SNLI, textual entailment [Bowman et al., 2015]: Given two sentences, the task

is to determine the relationship between them (entailment or contradiction).3 The

first sentence in the pair is always unscrambled, while the second sentence varies.

SQUAD, reading comprehension QA [Rajpurkar et al., 2016]: Given a ques-

tion about a paragraph from Wikipedia, find a one or two-word span of text within

the paragraph that answers the question. The paragraph is always unscrambled,

while the question varies.

Visual Genome QA (VGQA), simple visual question answering [Krishna

et al., 2016]: questions about photographs with five answer choices each. We limit

the task to only questions whose answers are numbers (”How many lamps?”) or

colors (”What color is the hat?”) to simplify selection of distractor candidates.

CLEVR: complex visual question answering [Johnson et al., 2017b]: Ques-

tions about relationships between abstract 3D objects in an artificial image (Fig-

ure 5.1) that require positional reasoning to solve. We restrict the maximum ques-

2This decision simplifies our crowdsourced ui; quality control is far more difficult (and expen-

sive) when workers’ answers are unconstrained.
3SNLI also contains “neutral” pairs, but in all of our experiments Turkers strongly disagreed

on the distinction between “neutral” and “contradiction” even with training. Thus, our reported

results are just for the binary case.
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tion length to 15 words, as longer questions are difficult to solve under time pressure

even in the unscrambled setting.

5.2.1 Human Timing Experiments

We impose three time limits for reading a given sentence: five seconds, thirty

seconds, and infinite (inf) time. Our motivation is to see whether accuracy degrades

more in scrambled settings when time pressure is increased vs. unscrambled settings.

We conduct our experiments on the Crowdflower platform. For each task, we

randomly select 200 examples from the test set and scramble 100 of them. We then

give these examples to crowdsourced workers, where each example is answered by

seven different workers for redundancy. In timed experiments, we ask workers to

click a button to reveal the input text; the text disappears after a fixed number of

seconds. For tasks that ask questions about some provided context (e.g., squad or

vqa), we allow workers to always see the context.

5.2.2 Neural Network Experiments

Deep learning methods are state-of-the-art on all five of our chosen tasks.

Thus, we restrict our computational comparison to neural bag-of-words (word em-

bedding sum) vs. order-aware recurrent lstm architectures [Hochreiter and Schmid-

huber, 1997]. All of the tasks aside from sentiment analysis require reasoning about

additional contextual input (e.g., a Wikipedia passage in squad or an image in

clevr), which adds further architectural complexity to encode the context. We
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keep the context representation method fixed for both nbow and lstm models.4

To mimic the human setting for entailment, we always use an lstm to encode the

first sentence and switch between nbow and lstm encoders for the second sen-

tence. In the visual QA tasks, we represent the image using the penultimate layer

of a VGG-19 convolutional network [Simonyan and Zisserman, 2014] pretrained on

ImageNet [Deng et al., 2009].

5.3 Discussion

In this section, we analyze the effects of scrambling and time pressure on

both human and computer accuracy. We then compare humans to different neural

architectures and training settings. Finally, we analyze how sentence length and

complexity affect human accuracy and draw connections to psycholinguistic theories

that may explain the results.

5.3.1 Scrambling Degrades Human Accuracy

While human performance is above that of neural models in all of the untimed

unscrambled settings, Table 1 shows that when scrambling is introduced, human

performance on clevr, squad, and sst degrades significantly. clevr, for which

syntax is critical (as shown in Figure 5.1), drops almost 20% in absolute accuracy

when word order is removed, while the simpler vgqa decreases by less than 1%.

4We citep previously-published nbow and lstm results for squad [Weissenborn et al., 2017],

as the implementation is complex; consequently, we are unable to report the “human-like” lstm

setting.
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The difference between unordered (nbow) and ordered (lstm) neural models is

much lower than the difference between human scrambled and unscrambled accuracy

on these harder tasks; we give some possible explanations in Section 5.3.3. We

also observe that human performance significantly degrades with the length of the

question, as shown for clevr in Figure 5.2.
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Figure 5.2: In the clevr task, scrambled sentences lead to ambiguities in under-

standing the question. In shorter questions, however, one may expect there to be

fewer ambiguities compared to longer ones. This is shown empirically by a gap be-

tween human unscrambled and scrambled performance that widens with length of

the question.
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5.3.2 Time Limits Degrade Scrambled Task Accuracy

For humans, not all tasks are equally difficult under time pressure – the accu-

racy difference between scrambled and unscrambled settings is generally larger for

more difficult tasks :

SQUAD: (64.0− 49.4)− (78.0− 71.0) = 7.6

SST: (87.1− 80.7)− (79.9− 70.3) = 3.2

CLEVR: 1.4

SNLI: −0.4

VGQA: −0.9

This suggests that for harder scrambled tasks, humans are actively trying to

unscramble the sentence; by limiting their time, their performance degrades more in

the scrambled setting. In contrast, tasks such as vgqa are easy enough that humans

do not have to resort to unscrambling, which is shown by the approximately equal

decline in scrambled and unscrambled settings as the time limit decreases.

5.3.3 Implications for Human Processing

Psycholinguistics research studies how humans and machines resolve ambigu-

ities such as prepositional attachment [Brill and Resnik, 1994, Hindle and Rooth,

1993] and garden paths [Ferreira and Henderson, 1991, Patson et al., 2009]. In our

scrambled tasks, since we randomly permute the words, workers cannot rely on syn-
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tactic processing (especially in limited-time scenarios). The experiments thus force

them to rely on plausible semantics, or “good enough” heuristics [Ferreira et al.,

2002]. Our results show that for more difficult tasks, these heuristics are not in fact

good enough to correctly solve them, and that syntactic processing is necessary.

With this in mind, we consider the results for each data set.

In SST, while important phenomena such as negation and polarity require

deeper processing [Wilson et al., 2005, Wiegand et al., 2010] and often confuse

bag-of-words sentiment analyzers, we know from our neural experiments and prior

research [Pang et al., 2002, Turney, 2002] that words are good enough for most

cases. If words with positive polarity appear, the sentiment is likely positive, for

example. Our experiments indicate that the same is true for humans: in the timed

experiments, there is a consistent 10% gap between the scrambled and unscrambled

conditions, but given unlimited time, humans can achieve nearly 80% accuracy.

SNLI True textual entailment requires not only syntactic processing, but also

logical inference. High human performance on this task is likely due to the simplified

definition of entailment in the dataset. Specifically, sentences often marked as “con-

tradictions” are unrelated propositions, and in some examples, it may be possible to

use only lexical similarity/dissimilarity to classify the entailment relation, obviating

the need for syntax. Despite this, it is still surprising that on scrambled sentences,

humans even outperform the lstm models on normal sentences. It is possible that

humans can correctly intuit that too many unrelated words in a sentence indicate a

“contradiction”.

SQUAD This task is cognitively extremely demanding, and it is therefore
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unsurprising that it yields the most precipitous drop in performance in the scrambled

case but that accuracy increases significantly as more time is allotted. The timed

experiments also test human memory, as in the five second setting it is likely that

longer questions are not fully processed before the question disappears. However,

low accuracy even in the untimed scrambled case suggests the questions cannot be

comprehended by “good enough” heuristics alone.

VGQA The questions and answers in this task are extremely simple, thus

lending themselves to easier plausibility-based processing. For instance, color what

ball the is has only one plausible interpretation. In other words, a fast, plausibility-

based heuristic representation is ”good enough”;thus, we see very little difference in

accuracy across any conditions.

CLEVR Unlike vgqa, this task requires that highly-specific semantic roles

are preserved (Figure 5.1), but there is little inherent plausibility to the expected

semantic relations between two different colored cubes in the same way that there

is with the roles of the words such as man-dog-bite, for which humans have known

semantic preferences. [Frankland, 2015, Van Herten et al., 2006] However, since

the participants are given the image, the “plausibility” is provided by the image

itself. [Gigerenzer and Goldstein, 1996] Within a short time frame, humans must

process the image and possible answers, and then make a semantically-plausible

choice based on a bag-of-words. As we expect, there is a massive drop (around 20%

for each given timeframe) in performance when scrambling the words.

The vision-based experiments (vgqa and clevr) require integration of both

visual and linguistic information, but yield notable differences in accuracy. With 30
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seconds or more and no scrambling, the difference in human accuracy between them

is slight (around 2-3%), but in the scrambled condition, clevr shows massive drops

while vgqa shows almost none. The latter can rely general plausibility heuristics

both because these are images with typical actors and objects and because the

sentences are simple enough to be interpretable when scrambled, neither of which

is the case in clevr.

5.4 Summary

The competitive performance of unordered neural models when compared to

lstm based models raises questions about the importance of word order in NLP

tasks. To shine further light on this problem, we present a set of timed human ex-

periments that involve solving nlp tasks with scrambled and unscrambled textual

inputs. We show empirically that the degradation of human performance on scram-

bled inputs lies on a spectrum. This indicates that many common NLP tasks, such

as those in our experiments might not intrinsically require word order, but humans

struggle in orderless settings possibly because they are accustomed to grammatically

ordered sentences.
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Chapter 6: Conclusion

In this thesis, we introduce two novel problems to the research community

meant to be solved by DNNs and provide two novel means of analyzing problems

that are typically solved using DNNs.

In Chapter 2, we introduce the task of colorization of greyscale images from

natural language. We show promising results which show that objects with statisti-

cally ambiguous colors can be uniquely colored using language. Possible extensions

include the colorization of images using more abstract language, which might con-

tain words like “angry” or “winter”, and correction of artifacts in the colorized

image using refinement networks[Shrivastava et al., 2017]. Inspired by our work,

Gunel et al. [2018] add generative adverserial networks [Goodfellow et al., 2014] to

manipulate fashion images using language.

In Chapter 4, we create the world’s largest dataset of English language comic

books, design three cloze style tasks around this dataset, and develop models to solve

these tasks. Experiments with different neural architectures, along with a manual

data analysis, confirm the importance of multimodal models that combine text and

image for comics understanding. However, there is a gap in terms of performance,

between humans and computers in accurately predicting the contents of a future
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panel of a comic book.

In Chapter 3, we develop a simple technique that helps us understand sources

of bias in solving VQA problems. To the best of our knowledge, such a detailed

analysis of the behavior of VQA models has not been done before. To do this,

we subject the responses of a VQA model to frequent itemset and rule mining

algorithms. Through our experiments, we can confidently state that a VQA model

tries to correlate words and elements in the question and image, with words in the

answer. Future applications involve studying how these rules develop as a function

of training time.

Finally, in Chapter 5, we study for the first time, the effect that word order

has on human and machine performance on a variety of NLP and Vision tasks. We

show empirically that unlike unordered neural models, human performance remains

relatively high on some tasks with scrambled word order, but degrades significantly

in others. This might be because many tasks do not intrinsically require word order,

but humans are accustomed to sentences with fixed word orders.
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