
ABSTRACT

Title of dissertation: TOWARDS BUILDING GENERALIZABLE
SPEECH EMOTION RECOGNITION MODELS

Saurabh Sahu, Doctor of Philosophy, 2019

Dissertation directed by: Professor Carol Espy-Wilson
Department of Electrical and Computer Engineer-
ing

Detecting the mental state of a person has implications in psychiatry, medicine, psy-

chology and human-computer interaction systems among others. It includes (but is not

limited to) a wide variety of problems such as emotion detection, valence-affect-dominance

states prediction, mood detection and detection of clinical depression. In this thesis we fo-

cus primarily on emotion recognition. Like any recognition system, building an emotion

recognition model consists of the following two steps:

1. Extraction of meaningful features that would help in classification

2. Development of an appropriate classifier

Speech data being non-invasive and the ease with which it can be collected has made it

a popular choice to extract features from. However, an ideal system designed should be

agnostic to speaker and channel effects. While feature normalization schemes can counter

these problems to some extent, we still see a drastic drop in performance when the training

and test data-sets are unmatched. In this dissertation we explore some novel ways towards

building models that are more robust to speaker and domain differences.



Training discriminative classifiers involves learning a conditional distribution p(yi|xi),

given a set of feature vectors xi and the corresponding labels yi, i = 1..N. For a classifier

to be generalizable and not overfit to training data, the resulting conditional distribution

p(yi|xi) is desired to be smoothly varying over the inputs xi. Adversarial training proce-

dures enforce this smoothness using manifold regularization techniques. Manifold regular-

ization makes the model’s output distribution more robust to local perturbation added to a

datapoint xi. In the first part of the dissertation, we investigate two training procedures: (i)

adversarial training where we determine the perturbation direction based on the given labels

for the training data and, (ii) virtual adversarial training where we determine the perturba-

tion direction based only on the output distribution of the training data. We demonstrate the

efficacy of adversarial training procedures by performing a k-fold cross validation experi-

ment on the Interactive Emotional Dyadic Motion Capture (IEMOCAP) and a cross-corpus

performance analysis on three separate corpora. We compare their performances to that of

a model utilizing other regularization schemes such as L1/L2 and graph based manifold

regularization scheme. Results show improvement over a purely supervised approach, as

well as better generalization capability to cross-corpus settings.

Our second approach leverages multi-modal learning and automated speech recognition

(ASR) systems toward improving the generalizability of an emotion recognition model

that requires only speech as input. Previous studies have shown that emotion recognition

models using only acoustic features do not perform satisfactorily in detecting valence level.

Text analysis has been shown to be helpful for sentiment classification. We compared

classification accuracies obtained from an audio-only model, a text-only model and a multi-

modal system leveraging both by performing a cross-validation analysis on IEMOCAP

dataset. Confusion matrices show it’s the valence level detection thats being improved

by incorporating textual information. In the second stage of experiments, we used three

ASR application programming interfaces (APIs) to get the transcriptions. We compare the
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performances of multi-modal systems using the ASR transcriptions with each other and

with that of one using ground truth transcription. This is followed by a cross-corpus study.

In the third part of the study we investigate the generalizability of generative adversarial

networks (GANs) based models. GANs have gained a lot of attention from machine learn-

ing community due to their ability to learn and mimic an input data distribution. GANs

consist of a discriminator and a generator working in tandem playing a min-max game to

learn a target underlying data distribution; when fed with data-points sampled from a sim-

pler distribution (like uniform or Gaussian distribution). Once trained, they allow synthetic

generation of examples sampled from the target distribution. We investigate the applicabil-

ity of GANs to get lower dimensional representations from the higher dimensional feature

vectors pertinent for emotion recognition. We also investigate their ability to generate syn-

thetic higher dimensional feature vectors using points sampled from a lower dimensional

prior. Specifically, we investigate two set ups: (i) when the lower dimensional prior from

which synthetic feature vectors are generated is pre-defined, (ii) when the lower dimen-

sional prior is learned from training data. We define the metrics used to measure and

analyze the performance of these generative models in different train/test conditions. We

perform cross validation analyses followed by a cross-corpus study.

Finally we make an attempt towards understanding the relation between two different

sub-problems encompassed under mental state detection namely depression detection and

emotion recognition. We propose approaches that can be investigated to build better de-

pression detection models by leveraging our ability to recognize emotions accurately.
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Chapter 1: Introduction

Human interactions via speech is the most common and efficient way of interaction

that occurs on a daily basis. Moreover, their non-invasive nature has also resulted in speech

features being popular for various tasks such as emotion recognition. Human listeners have

the ability to pick up on the emotions of the speaker they are listening to and they can

assess the speaker’s mental state. This is an ability that machines lack. Even though we

have made great progress in the field of speech recognition, speech emotion recognition

systems are still not that accurate. Furthermore, such models that have been trained with

few amounts of data, don’t perform well when evaluated under unseen test conditions. If

we want to achieve our goal of building a realistic human-computer interaction system, it is

imperative that the machines understand the emotional state of a person and generalize their

performance across unseen speakers and environments so that the conversation is natural.

Speech emotion recognition systems can help us extract useful semantics from speech

thereby improving the performance of speech recognition systems (El Ayadi et al. [30],

Nicholson et al. [88]). Apart from that, automatic recognition of a speaker’s emotional/mental

state from speech can help us build systems that can play a crucial role in early diagnosis

of psychiatric diseases (France et al. [36]). It can be used in designing web tutorials whose

response depend on the users emotion and can also be useful for pilot stress management if

implemented in cockpits of aircrafts or even in cars or trucks (Schuller et al. [107], Hansen

et al. [52]). Speech emotion recognition has also found applications in call centers (Jin et

al. [61]).
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The classification of emotions has been researched from two fundamental viewpoints:

one, that emotions are discrete and fundamentally different constructs; or two, that emo-

tions can be characterized on a dimensional basis in groupings. A typical set of emotion

classes may contain contain up to 300 emotional states (El Ayadi et al. [30], Schubiger

[104], O’Connor [90]). Obviously, classifying such a large number of emotions is very

difficult and impractical. Hence, to counter this problem, researchers came up with the

idea that emotions, like colors can be decomposed into primary components (El Ayadi et

al.[30]). The primary emotions are Anger, Disgust, Fear, Joy, Sadness, and Surprise. They

are called the archetypal or categorical emotions (El Ayadi et al. [30], Cowie et al. [25]).

Moreover, there has also been research on classifying emotions by scoring them along

certain pre-defined dimensions. There are several models having their own definition of di-

mensions that reflect the affect state of an individual. Valence-Arousal-Dominance model

has been used predominantly in studies (Valstar et al. [120], Grimm et al. [45]). Each

of these dimensions can take a continuous value from low to high. We can quantify them

as lying in the set [−1,1]. The valence dimension measures how pleasurable an emotion

is. For instance, ’anger’ and ’fear’ are low valence emotions while ’happy’ is a high va-

lence emotion. The arousal scale measures the intensity of an emotion. For example, both

’anger’ and ’rage’ are low valence emotions but ’rage’ has a higher arousal state. Similarly,

we can say ’boredom’ is a low arousal emotion along with being a low valence emotion.

The dominance scale represents the dominant/controlling nature of emotions. While both

anger and fear are low valence emotions, ’anger’ has a higher dominance value than ’fear’.

In this thesis we focus on categorical emotion classification.

Speech emotion recognition is a quite challenging task for several reasons. One of

the main reasons is that it is unclear as to which speech features are most powerful in

distinguishing between emotions (El Ayadi et al. [30]). Further, the acoustic variability

introduced by different sentences, speakers, speaking styles, speaking rates and record-
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ing conditions adds another obstacle because these properties directly affect most of the

common extracted speech features such as pitch, energy contours, Mel frequency cepstral

coefficients (MFCC) etc. Thus, designing speech recognition systems typically requires

extraction of a considerably large dimensionality of features to reliably capture the emo-

tional traits, followed by training of a machine learning system ideally with a huge amount

of data so that it performs well in unseen conditions.

As this problem has a lot of practical applications it is not surprising that research in the

field of speech emotion recognition has been going on for quite some time (Williams and

Stevens [124]). The degree of naturalness of a dataset is an important factor to be consid-

ered while designing a speech emotion recognizer (El Ayadi et al. [30]). A list of common

databases used for speech emotion/depression research has been listed in (El Ayadi et al.

[30], Ververidis and Kotropoulos [122]). An important concern is whether we should focus

on real world emotions or acted emotions. Acted ones tend to be more exaggerated but

acoustic correlates found with acted emotions do not contradict those found with real ones

(Williams and Stevens [124]) . Some acted corpora play out real life scenarios to elicit

realistic emotions (Busso et al. [13]). Below we describe some features and classification

schemes that have been used in various studies.

1.1 Features

While using features, researchers always ponder on the question of global vs local fea-

tures. Global features are one per utterance and hence its convenient for cross validation.

However, we lose the temporal information contained in speech. It could also be unreason-

able to try and train a complex classifier like SVM or HMM with global features since the

number of training vectors might not be enough (El Ayadi et al. [30]).
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1.1.1 Continuous features

Prosodic continuous speech features such as frequency and energy have been investi-

gated in a lot of studies involving mental state detection (El Ayadi et al. [30], Cummins

et al. [26]). Continuous features are related to F0, energy, articulation rate and spectral

information in various regions. They can be grouped into the following categories:

• pitch-related features

• formants features

• energy related features

• timing features

• articulation rate features

Continuous speech features have been heavily used in speech emotion recognition. For

example, Banse et al. examined vocal cues for 14 emotion categories [7]. Prosodic features

like F0, energy, etc have been used in various studies like Cowie et al. [25], Williams and

Stevens [124], Murray and Arnott [85], Oster and Risberg [91]. While these features are

quite reliable and used predominantly for emotion detection, there have been contradictory

reports for some of them. To get a global value of these features, researchers use functionals

like mean, median, range, standard deviation, quartile ranges etc (Eyben et al [35]).

1.1.2 Voice quality features

Another class of features commonly used is voice quality features. Voice quality and

perceived emotion in particular full blown emotions that make people take direct actions

are strongly related (Cowie et al. [25]). The same study categorizes the acoustic correlates

related to voice quality into following categories
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• voice level (amplitude, energy)

• voice pitch

• temporal structures

Voice quality features can be obtained from glottal signals which can be obtained from

speech by filtering out the effects of the vocal tract. Since only voiced signals are gen-

erated form voiced signals, it is imperative that we do a voiced segment detection before

using this method. However, non-uniform vocal fold behavior, presence of noise, formant

ripples are some big problems that researchers have to overcome while inverse filtering. Re-

searchers have used the method mentioned in (El Ayadi et al. [30]) for voice quality feature

extraction. Pitch and the first four formant frequencies and bandwidth are estimated from

the speech signal. The effect of the vocal tract is mitigated by subtracting the vocal tract’s

influence from harmonic amplitudes. Source features which estimate the air flow from the

lungs through glottis are an effective way to capture voice qualities (Cummins et al. [26]).

Voice qualities features can quantify irregular phonation relating to laryngeal qualities such

as breathiness, creakiness or harshness (Klatt and Klatt [66], Gobl et al. [40]). Other source

features include jitter, shimmer and harmonic to noise ratio (HNR). However, like prosodic

features there is disagreement between researchers on how to associate vocal quality fea-

tures with emotions (El Ayadi et al. [30]). For example, according to Scherer [103], tense

voice is associated with anger,joy and fear and lax voice is associated with sadness. On

the other hand, Murray and Arnott [85] were of the opinion that breathy voice is associated

with both anger and happiness while sadness is associated with a resonant voice quality.

1.1.3 Spectral features

Spectral features characterize the spectrum of speech i.e. the frequency domain repre-

sentation of a speech signal at a particular time instant in some high dimensional space.
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Studies have indicated that different emotions affect the sub-band energy distribution in

speech (El Ayadi et al. [30]. Some depression papers have reported a relative shift in

energies from lower to higher sub-bands while others have focused on sub-band energy

variability (Cummins et al. [26]). Cepstral features which are obtained from spectral fea-

tures have been used extensively for emotion recognition. While Bou-Ghazale and Hansen

[12] report that cepstral features like MFCC, linear predictor cepstral coefficients (LPCC)

outperform linear based features like LPC, Nwe et al. [89] report that linear based feature

like the log frequency power coefficient worked better than MFCC and LPCC for their

experiments. Features like power spectral density, linear prediction coefficients, Mel fre-

quency cepstral coefficients, spectral centroid, spectral flux are some examples of spectral

features. One major drawback of using these kind of features is that spectral features con-

tain both linguistic and paralinguistic information. They also contain speaker dependent

information and hence MFCCs has been widely used in speech and speaker recognition.

Ideally we would like our features for this task to be independent of any linguistic infor-

mation. So features of this sort might hinder speaker emotion recognition systems. Clearly

there are some relationships among the feature types described above. For example, spec-

tral variables relate to voice quality, and the pitch contours relate to the patterns arising

from different tones. But links are rarely made in the literature (El Ayadi et al. [30].

1.1.4 Teager energy operator

Teager energy operator based features characterize the non-linear airflow in the vocal

system (Teager and Teager [116]). Under stressful conditions, the muscle tension of the

speaker affects the air flow in the vocal system producing the sound (El Ayadi et al. [30].

Therefore, nonlinear speech features could be useful for detecting emotions or a speaker’s

mental state.

6



1.2 Classifiers for emotion recognition

Classifiers like hidden Markov models (HMM), Gaussian mixture models (GMM), ar-

tificial neural networks (ANN) and Support vector machines (SVM) have been used for the

task of emotion recognition (El Ayadi et al. [30]). Furthermore, k-nearest neighbor, fuzzy

classifiers, decision trees and systems where multiple classifiers are combined have been

employed by researchers in the past.

1.2.1 Hidden Markov Models

HMMs have been widely used for automatic speech recognition (ASR). However, HMMs

used for emotion recognition are usually fully connected unlike the HMMs used for ASR

which are left to right. Also the output of HMM states for emotion recognition are fea-

ture values extracted from larger time units spanning one or multiple words since it doesn’t

make sense to label smaller units like a phoneme with an emotion category. While de-

signing an HMM system, some design criteria are number of optimal states, type of obser-

vations (discrete or continuous) and the optimal number of observation symbols/optimum

number of Gaussians. Nwe et al. [89] showed that a four state HMM model does better

than humans in recognizing emotion for Burmese and Mandarin databases. However, we

can’t generalize the results until a more comprehensive study is done.

1.2.2 Gaussian Mixture Models

GMMs are probabilistic models used to model multi-modal distributions. Determining

the number of Gaussians is an important design problem and methods such as classifi-

cation error with respect to a cross-validation set, minimum description length, Akaike

information criterion, kurtosis based goodness of fit measures and greedy expectation-
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maximization have been employed for this task (El Ayadi et al. [30]) .GMMs are trained

using global features and thus they don’t have the ability to model the temporal dynamics of

training data. In order to do that GMMs were employed with vector auto-regressive process

resulting in Gaussian mixture vector auto-regressive models. El Ayadi et al. [31] showed

that GMM performed better than methods like HMM, k-nearest neighbors and ANN.

1.2.3 Artificial neural networks

ANNs have a better ability to model non-linear mappings as compared to HMMs and

GMMs. They also perform better than GMM or HMM when the number of training ex-

amples is low. The design criteria for ANN include the number of hidden layers, number

of neurons in each hidden layer and the activation function. The performance of an ANN

depends heavily on these parameters. Hence, researchers have tried using the aggregate de-

cision of multiple ANN architectures. The ANN can be one-class-in-one network classifier

where we have one neural network for each emotion giving binary output values indicating

the presence/absence of the emotion. The final decision is based on the output of all the

neural networks. In contrast we can also have all-emotion-in-one neural network archi-

tectures by having a softmax output layer. ANNs have performed less well compared to

GMM/HMM and how good they perform is thought to be dependent on the corpus used

for the study (El Ayadi et al. [30]). However, due to more computing power being avail-

able these days, Deep Neural Networks (DNNs) have become quite popular. DNNs are

simply ANNs with multiple hidden layers. Stuhlsatz et al. [113] report some impressive

accuracies using a DNN on 9 corpora using Generalized Discriminant Analysis features to

do a binary classification between positive and negative arousal and positive and negative

valence states.
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1.2.4 Support Vector Machines

SVMs use kernels to map the non-linear feature space to a high dimensional space

where they are linearly separable. SVMs can be used for multi-class classification by train-

ing one SVM per emotion to give a binary decision and then combining the decisions

from all the SVMs. The design criteria include the type of kernel and the cost parame-

ter C (Chang and Lin [18]). A table summarizing the performances of these classifiers is

presented in (El Ayadi et al. [30]). HMM and GMM are the more popular choice of classi-

fiers for emotion recognition. HMM has the ability to model the transitions between states

thereby capturing the temporal dynamics of how features change. But they need proper

initialization schemes for their training and parameter estimation. Models like ANN and

SVM have been employed widely as well because of their ease of implementation. Even

though the training time for an SVM is larger compared to a GMM or an HMM we used it

for our classification purposes because unlike an HMM/GMM we don’t need to initialize

any parameters.

1.3 Objectives of this study

Performance of speech emotion recognition classifiers deteriorate when evaluated on a

dataset different than the training set. Below we show the mean class-wise accuracies when

we train and evaluate a neural network based classifier on two datasets named IEMOCAP

(Busso et al. [13]) and MSP-IMPROV (Busso et al. [16]). We consider four way classifi-

cation between emotions angry, sad, neutral and angry. As can be seen in Table 1.1 cross-

corpus accuracies are always lower than in-domain speaker independent cross-validation

accuracies. The model trained on MSP-IMPROV under-performs than that of the model

trained on IEMOCAP probably because of its lower size. At the same time we can see that
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Table 1.1: Mean class-wise accuracies obtained for in-domain speaker independent cross-validation
and cross-corpus evaluation

.

→ Training IEMOCAP MSP-IMPROV
↓ Evaluation
IEMOCAP 58.15 47.04
MSP-IMPROV 43.43 49.56

the cross-corpus differences are more evident when using a model trained on IEMOCAP.

The objective of this thesis is to investigate the generalizability of speech emotion

recognition systems trained on limited amount of data. Towards that end we use existing

feature extraction schemes to train classifiers and carry out in-domain speaker independent

cross-validation studies which gives us an idea how well our models perform on unseen

speakers. Additionally, we perform cross-corpus experiments to determine how differ-

ent recording conditions/label space/annotation and data collection procedures affect the

models. We investigate the generalizability of discriminative and generative models. Dis-

criminative models learn a conditional distribution p(yi|xi), given a set of feature vectors

xi and the corresponding labels yi, i = 1..N. In other words given the training data-points

they aim to learn the hard/soft boundary between classes. Generative models on the other

hand model the distribution of the classes. They aim to learn the joint distribution p(xi,yi).

Once the joint distribution has been computed, it can be used to evaluate the p(y|x) in or-

der to classify a new data-point x. Also by sampling a point from the joint distribution it

is possible to generate synthetic examples of data-points x. If our goal is to build classifi-

cation models and we have enough labeled data available for training, then discriminative

models are the way to go. However, the annotation process can be expensive and time

consuming. Generative models can be helpful in such cases when limited labeled training

data are available since they can also exploit vast amount of unlabeled data. However, in

often cases the generalization performance of generative models is found to be poorer than

discriminative models due to differences between the model and the true distribution of
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the data (Bernardo et al [11]) which is what we aim to investigate in one of the chapters.

Specific contributions of this thesis are as follows:

1. Investigating adversarial/manifold learning based regularization schemes and com-

paring them with L1/L2 regularization that have been known to prevent overfitting in

discriminative models (chapter 3).

2. Leveraging the generalizability of automatic speech recognition systems to get the

transcripts from audio files and using them to build multi-view speech emotion recog-

nition models (chapter 4). We also study the effect of using attention mechanisms in

discriminative models that uses frame-wise features for speech emotion recognition.

3. Studying the capability of generative adversarial networks (GANs) to learn the proba-

bility distribution of the feature vectors used for speech emotion recognition (chapter

5). We perform experiments to determine how well these models can encode higher

dimensional feature vectors to lower dimensions and then use the trained GAN based

models to generate synthetic higher dimensional feature vectors. The synthetic fea-

ture vectors can potentially be used to train models in low resource conditions. To

our knowledge, this is the first such study comparing the GAN based models with

regards to their encoding ability and comparing the quality of the generated synthetic

feature vectors for speech emotion recognition.

4. Finally we talk about future directions. We show some results on how a speech emo-

tion recognition model trained on acted datasets performs on real world samples. We

also propose some experiments that can potentially improve mental heath detection

using information gained from emotion recognition models (chapter 6).
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Chapter 2: Literature Survey

A generalizable speech emotion recognition system should perform well under various

conditions. Shami and Verhelst [109] showed that aggregating data from different emotion

datasets to train a model can improve the performance as compared to when the model

is trained on just one dataset. More recently, Zhang et al [133] performed a cross-corpus

binary arousal and valence level classification across six databases to explore the effec-

tiveness of unsupervised learning across six emotion databases. The databases they used

corresponded to different languages such as German, English and Danish. They used the

Opensmile toolkit [35] to extract a 6552 dimensional feature set that consists of 39 func-

tionals of 56 low level descriptors and their delta and delta-delta coefficients. This high

dimensional feature vector was used to train a SVM with linear kernel. They performed a

6-way leave one corpus out cross-validation experiments and reported the mean class-wise

accuracies. They experimented with three different normalization techniques namely mean

subtraction, min-max normalization and mean-variance normalization performed before

and after aggregating the datasets. They reported higher accuracies with mean centering

for valence level detection while mean-variance normalization worked the best for arousal

level detection. Also normalizing the features before aggregating was found to be more

beneficial. Their next step was to investigate a unsupervised adaptation technique. They

considered three settings (i) they used only three out of five datasets for training resulting in

ten training set permutations for each of the six test sets. (ii) they trained a model on three

datasets and used it to predict the labels for remaining two training sets. They then consid-

12



ered these predicted labels as ground truth labels and used all five sets for training a model

which was evaluated on the test set. This was the unsupervised framework where availabil-

ity of unlabeled data was assumed (iii) they used data and ground truth labels from all five

sets for training. As expected the performance of unsupervised method lied somewhere in

between case (i) and case (iii). The absolute improvement in the mean accuracy over six

cross-validation splits was 0.4% for arousal detection and 0.8% for valence detection.

Abdelwahan and Busso [2] proposed feature selection based domain adaptation tech-

nique for a 4-class (angry, sad, neutral and happy) speech emotion recognition problem.

Domain adaptation is closely related to transfer learning in which our aim is to learn and fit

a model on a source data distribution that performs ’well’ on a different but related target

data-distribution. The authors’ goal here was to improve the performance of a SVM classi-

fication technique trained on IEMOCAP dataset [13] and tested on MSP-IMPROV [16]. In

most cases as in this paper, different emotion datasets are considered to have different (due

to speaker, channel, recording conditions, label space) but related (since all of them have

emotionally colored utterances) distributions. They extracted 6373 dimensional feature sets

using Opensmile which was reduced to 3000 dimensions by selecting features that corre-

late with class label of the training set but not with each other. They also train an ensemble

of SVM classifiers with each targeted towards classifying a particular emotion in particular

maximizing the f2-score obtained for that class. They then try three different methods to

select data from target set to label and use them for feature selection for each of the SVM

classifiers in the ensemble. They data selection methods include (i) vote entropy where

they select samples in target set which have the highest disagreement over the ensemble of

classifiers (ii) uncertainty sampling where the samples closest to the decision margin of a

SVM trained on source data are considered. Note that in this case only one SVM classifier

is used (iii) random sampling. Once the labeled set from target data is obtained, feature se-

lection was done sequentially by adding features one at a time to the selection set for each
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of the classifiers. The selection is done on the basis of highest f2-score obtained when the

SVM trained on source data is evaluated on the labeled target set. They showed that vote

entropy works the best when target training set is small whereas random sampling works

better for larger sample size. They also showed that implementing this feature selection

technique more often than not performs better than a baseline model trained on the features

selected using forward feature selection technique.

Abdelwahab and Busso [1] proposed using supervised model adaptation techniques to

obtain better cross-corpus performances. It can also be viewed as a domain adaptation tech-

nique where the classifier trained on a source data is adapted to perform better on a target

data. They used two different English databases for training (source data) and a smaller

French database for evaluation (target data) of their classifiers across high/low arousal and

valence detection. To reduce the effect of data-differences they mean-variance normal-

ized the features obtained for utterances from different datasets using their correspond-

ing dataset specific statistics. To mitigate the differences in their label spaces they mean-

variance normalized the scores obtained from different datasets individually. Samples with

normalized value below -0.3 were considered negative or low arousal/valence while those

with normalized value above 0.3 were considered positive or high arousal/valence. Base-

line classifiers were SVM trained only on one of the two source datasets. They explored

two adaptation techniques (i) adaptive SVM which tries to transform the decision boundary

of the already trained SVM classifier such that it classifies the labeled target data correctly

without changing the decision boundary by a large amount. (ii) incremental SVM where

along with newer target domain training data, a portion of the older source data was used

for training. Specifically, only those datapoints from source domain were retained that cor-

responded to the support vectors of the already trained SVM. This process was repeated

iteratively. They also considered using different amounts of target data to adapt the SVM

parameters. They found that using 35% of target training set for adaptation is as good as
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using all of the target training set. Furthermore, speaker diversity also didn’t seem to matter

much while selecting the data used for adaptation from target training set. Both adaptation

schemes were found to perform similarly out-performing a non-adapted model.

Sanchez et al. [102] also applied domain adaptation techniques for improving cross-

corpus accuracies. They used two datasets in their experiments namely a 911 call dataset

and LDC dataset (Liberman et al. [74]) for a binary classification task between neutral and

fear classes. Their metric was f-measure score obtained for fearful calls. The 911 call had

95 calls and hence they reported the average 95 fold leave one call out cross-validation

f-scores. The calls were broken down into segments after prosodic features were extracted.

They were used for training and evaluation of a SVM classifier. They compared training

only using the 911 data and found that it always performs similar or worse than a model

trained using 911+LDC. They tried another approach where they trained a classifier only

on LDC and used the prediction probabilities obtained for 911 as additional features along

with the prosodic features. Then they trained a model using this appended feature set ob-

tained for 911. This model was found to perform better than both the above methods. They

also employed a method called nuisance attribute projection (NAP) to compensate for the

differences in channel and utterance length duration between the two datasets. The goal

of this method was to find a projection matrix P to project the original features to a space

more robust to nuisances arising from domain differences. While the f-measure obtained

using a model trained only on 911 dataset was found to be 64.1% the best performance

was achieved by training a model on NAP 911+LDC features with the f-measure being

64.8%. In [112], Song et al. used a similar projection matrix based approach to enhance

the cross-corpus performance of speech emotion recognition models. They proposed a joint

framework to learn a common projection matrix W to project the feature representations X

onto label space or embedding space Y for the source and target datasets. Moreover, they

also attempt to minimize the differences in Y that appear due to differences in X belonging
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to different datasets. Hence, they add a maximum mean discrepancy (MMD) regulariza-

tion term that tries to minimize the difference between the mean embeddings of features

in source and target domains. At the same time, they also implement feature selection by

minimizing the l2,1 norm of W . Generally, we can say that whichever row of W has the

least l2 norm, that corresponding dimension of the feature vector has the least contribution

towards generating the embeddings. Additionally the also add a graph based regularization

term that minimizes the distance between the embeddings if the corresponding features

lie are close to each other in the feature space. The resulting objective function does not

have a closed form solution due to the presence of l2,1 norm and so an iterative algorithm

is implemented to get the matrix W and the resulting label space embeddings for target

dataset. Compared to a baseline linear classifier that directly learns the matrix W from

source without any of the regularization terms, this method showed an absolute improve-

ment of 17-18% in cross-corpus recognition accuracies and other popular projection matrix

based methods. Liu et al. [76] followed a very similar projection based matrix approach to

get the embeddings in label space except they did not have the graph based regularization

term in their objective function. The two studies used the same databases for their cross-

corpus evaluations and the better accuracies obtained using Song et al’s method shows the

worth of the graph based regularization term.

Now we focus on methods that instead of projection matrices, use auto-encoders (Baldi

[6]) to learn common feature representations for different data sets. Deng et al. [28] ex-

plored a supervised sparse auto-encoder based feature learning scheme. Their task was va-

lence level detection (high/low) in cross-corpus training scenarios. While the target dataset

was kept fixed, they used five different databases as source dataset. There were variations

between target and source datasets due to participant ages, languages and recording condi-

tions. They trained a single hidden layer auto-encoder to minimize the reconstruction error

when the feature vectors were fed to them as input. Moreover, they enforced a sparsity
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constraint penalizing when the expected activations of the hidden layer exceeds a low fixed

level. Hence, these auto-encoders were termed as sparse auto-encoders. If the hidden layer

dimension is less than that of input layer dimension then the auto-encoder learns a sparse

low dimensional representation of the input feature vectors. The transfer feature learning

procedure starts with randomly choosing a certain number of instances from the target set

belonging to a particular class and training a class specific sparse auto-encoder to minimize

its reconstruction error. Then instances belonging to the same class are selected from the

source database and reconstructed using the trained auto-encoder. It is this reconstructed

vectors that are now used as features to train a SVM classifier. The authors experimented

with different numbers of instances chosen from target set. They showed that even with

only 50 target instances, on an average the classifiers trained on reconstructed source fea-

ture sets exceed the performance of classifiers trained on actual source feature sets by 9%

across the different source datasets. Note that this was a supervised feature transfer learn-

ing method because class information from target dataset was utilized to train the sparse

auto-encoders. Deng et al. [27] extended it to an unsupervised setting as well. They used

a single layer denoising auto-encoder (DAE). While training denoising auto-encoders, the

input feature vectors are first corrupted by either adding Gaussian noise or masking certain

dimensions. Then the corrupted version is fed to auto-encoder while the output’s recon-

struction error is minimized with respect to the clean input. Since the auto-encoder in this

case is made to reconstruct clean input from its noisy version, it learns more robust and per-

tinent representations of the input. To avoid over-fitting a weight decay regularization term

was also added. The authors also implemented an adaptive DAE (A-DAE). The first step

towards training an adaptive DAE is to train a DAE to reconstruct the features in target set.

Once the weights of this target-DAE are learned, a new DAE is trained on source set but

with a modified objective function. The objective function now not only reduces the recon-

struction error for feature vectors belonging to source set, but it also forces the parameters
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of this new DAE to be closer in values to the parameters of the target-DAE. The importance

of these two terms in the objective function can be controlled by hyper-parameter tuning.

Finally the source and target datasets are encoded using the adaptive DAE and are used

to train and evaluate SVM classifiers. The authors showed that the A-DAE approach per-

forms better than DAE and some other popular feature transformation methods. Mao et al.

[80] implemented a shared hidden layer auto-encoder (SHLA) based scheme for domain

adaptation. A SHLA is an auto-encoder with a common input and hidden layer but with

separate output layers for source and target dataset. It is trained to reconstruct data from

both source and target domains. While the hidden to output layer weights are updated based

on the reconstruction errors obtained on the corresponding dataset, the input to hidden layer

weight matrix is updated in both cases. The authors considered a binary classification task

between high and low valence levels with different databases used for training and testing.

A feed-forward neural network classifier with one hidden layer was implemented for this

purpose. Similar to a SHLA, there were two output layers one for the source training set

and one for target training set. Since it was binary classification problem, each output layer

had two neurons corresponding to high and low valence classes. The input to hidden layer

weights of the classifier were initialized with the input to hidden layer weight matrix of

the SHLA. The hidden layer to output layer weights were initialized in such a way that the

priors between the related classes are shared i.e. the weight vectors from hidden layer to

’high valence’ neurons for both the source and target domains followed a Gaussian distri-

bution with identical mean vectors and covariance matrices. Similarly, the weight vectors

from hidden layer to ’low valence’ neurons for both the source and target domains followed

a Gaussian distribution with identical mean vectors and covariance matrices but different

from that of ’high valence’ neurons. So, we can say that priors between related classes

cross different datasets are shared. The authors showed that in general the shared prior

technique led to better accuracies compared to when the priors weren’t shared.
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Abdelwahab and Busso [3] trained what they call as domain adversarial neural network

(DANN) to improve the cross-corpus recognition accuracies of speech emotion recognition

models. Their goal was to learn a common representation between the samples from source

and target domain. They train a neural network classifier with two different output layers -

one for emotion classification and one for domain classification. The two tasks share some

portion of the hidden layers which is used to get the aforementioned common representa-

tion for samples from both domains. The loss function includes a term that reduces the

prediction loss obtained for source data for which we have ground truth labels available.

It includes another term that updates the shared hidden layer parameters by reversing the

sign of gradients obtained from domain classification error term. We can leverage both

source and unlabeled target data to get the domain classification loss. Hence its an un-

supervised domain adaptation method. Both loss terms compete against each other in an

adversarial manner. The gradient reversal attempts to make the features similar across do-

mains, so that feature transformation information learned from source domain is retained

for target domain. The t-distributed stochastic neighbour embedding (TSNE) plots show

that the feature transformations obtained from the last layer of the shared hidden layers

from a trained DANN for source and target domains are more indistinguishable compared

to that obtained from a baseline vanilla deep neural network (DNN). They also showed

better performance of DANN models for arousal, valence and dominance value prediction

compared to a vanilla DNN. The relative improvements over the baseline models are 22.8%

for arousal, 33.4% for valence and 15.5% for dominance. Since, they formulated it as a re-

gression problem, the metric used was concordance correlation coefficient (CCC) between

ground truth and predicted values. CCC is defined so that it combines the idea of two more

well known metrics - root mean square error (RMSE) and Pearsons correlation coefficient.

Neumann and Vu [86] investigated the importance of pre-training on source dataset fol-

lowed by fine-tuning on a few training samples from target set. They attempted a binary
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arousal and valence level classification using two datasets namely IEMOCAP (English) and

RECOLA (French). The features used for this experiment was 26 dimensional logMel fil-

terbank coefficients extracted at a frame rate of 10ms for 7.5 second long utterances. They

applied a 1D convolution over time followed by a max-pooling layer, output from which

was used to compute attention weights over time. The attention coefficients were then used

to compute a weighted sum of the information obtained from different parts of the input.

It was concatenated with the feature maps obtained after max-pooling layer and was fed

to softmax layer to get the classification prediction probabilities. They consider 4 training

scenarios : (i) within corpus speaker independent cross-validation (ii) multi-lingual cross-

validation by combining the data in IEMOCAP and RECOLA and using them for training

and validation (iii) cross-lingual (CL) where they trained on one corpus and tested on an-

other (iv) CL followed by fine-tuning on a smaller target training set (CL+FT). The mean

class-wise accuracies for both arousal and valence detection showed an increase in CL+FT

as compared to CL showing leveraging information from few target training samples can

be beneficial in cross-corpus experiments. As we have seen from previous studies this

was expected. The in-domain cross-validation studies in general performed better than CL

and CL+FT showing cross-domain differences can still matter even with fine-tuning. Kim

et al. [62] used a different transfer learning approach namely multi-task learning where

the knowledge gained from auxiliary tasks was used for improving the performance on the

main task. Their main task was emotion detection while the auxiliary tasks were gender de-

tection and naturalness (acted or natural) detection for samples in database. They used six

corpora in their experiments. Features such as F0, MFCC coefficients, voicing probability

were extracted after normalizing the gain of the utterance. They first performed in-domain

cross-validation studies on each dataset separately using long short-term memory (LSTM)

and DNN architectures both implemented under (i) a single task learning (STL) framework

where they recognized only emotions (ii) a MTL framework with shared hidden layers but
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different output layers for each of the tasks. While DNN-MTL did not provide any im-

provement over DNN-STL, LSTM-MTL improved the average of mean class-wise accura-

cies over the six cross-validation experiments by 1.7%. They then performed cross-corpus

experiments using utterances from five of the corpora for training and one for testing. The

MTL framework showed more significant improvement compared to STL framework in

his scenario. They achieved an average absolute gain of 7.4% and 5.4% when comparing

the MTL with STL frameworks in case of DNN and LSTM respectively. They concluded

that MTL is potentially more effective for larger corpora. Furthermore, the TSNE of high

level features showed better clustering according to emotions in case of MTL than STL

frameworks.

As mentioned above most of the research done to improve cross-corpus generalizability

of speech emotion recognition models involve domain adaptation techniques that try to

learn a data representation that is nuisance free across source and target datasets. The model

adaptation methods we discussed used SVM classifier with some of them leveraging the

labels of the target domain data. In this thesis, we focus our effort on training discriminative

neural network based classifiers without leveraging any information from target domain

data. Furthermore, none of the past works have explored the generalization of generative

methods. One of the aims of this thesis is to try and close that gap.
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Chapter 3: Smoothing model predictions using adversarial examples

3.1 Introduction

A speech emotion recognition system design involves extracting cues from speech and

depicting them as feature representations. This is followed by training a classification

algorithm using existing supervised/semi-supervised methods (Busso et al. [14], Koelstra

et al. [68]). We consider a setting with N training examples {xi,yi}, i = 1, ..,N, where xi

is the obtained feature representation for example i and yi is the corresponding label. Let

x and y denote the random variables of which xi and yi are instances. A typical supervised

learning approach involves modeling the probability p(y|x) using a chosen functional form

(e.g. neural networks or a support vector machine classifier). For the chosen model (trained

on finite training data) to generalize well to unseen data, the probability p(y|x) is desired

to have certain properties (Chapelle et al. [19]). One such property is the smoothness of

the distribution p(y|x) which states that if two points xi and xj are close to each other in the

feature space (based on some distance metric), then so should be their corresponding model

outputs p(yi|xi) and p(y j|xj). The underlying idea is for the classifier to be generalizable

and not overfit to training data. Enforcing this smoothness can be particularly useful for

low resource tasks such as emotion recognition, where collecting a large number of labeled

data instances may not always be possible.

Szegedy et al. [114] showed that neural network models are vulnerable to something

called adversarial examples. These are examples only slightly different from the training
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examples but the trained model fails in recognizing their class correctly. Clearly, this is

a roadblock towards building generalizable models. Goodfellow et al. [44] suggested an

improved method called adversarial training (AT) in which the perturbations are added

along a specific adversarial direction. The adversarial direction for a certain training data

point is the direction along which the label probability of the model for that data point is

most sensitive. Miyato et al. [? ] proposed an extension of adversarial training, termed

Virtual Adversarial Training (VAT) wherein determining the adversarial direction doesn’t

depend on the availability of labels. Both of these methods are implemented by adding an

extra regularization term to the vanilla loss term. We refer to the training methods proposed

by Goodfellow et al. [44] and Miyato et al. [? ] as adversarial training procedures,

and investigate their applicability for improving the performance of emotion recognition

systems.

Similarly, manifold regularization methods impose this smoothness by modifying the

optimization objective (Belkin et al. [10]). Manifold regularization exploits the distribu-

tion p(x) as available through a set of labeled/unlabeled points to better estimate p(y|x),

thereby leveraging the concept of manifold learning to enforce model smoothness. In the

past, researchers have investigated manifold learning methods for speech-based emotion

recognition. Most of these methods attempt to learn the manifold by reducing the di-

mensionality of the input feature space and subsequently feeding them to a classifier. For

example, Kim et al. [64] and Ping et al. [94] employed isometric feature embedding for

deriving the manifolds and then used Gaussian Mixture Models as classifiers. You et al.

[129] employed Lipschitz embedding for non-linear manifold learning in an unsupervised

way followed by using support vector machines for classification. Qian et al. [96] applied a

supervised manifold learning method by considering the difference between feature subsets

of different classes and reported improvement in recognition accuracy. However, none of

them have investigated manifold regularization techniques that jointly optimize a manifold
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regularization loss along with supervised classification loss. In particular, jointly optimiz-

ing the two losses has shown promise with deep neural networks (DNNs) for improving

ASR (Tomar and Rose [117]) and sentiment classification (Zhou et al. [134]). Researchers

have proposed several manifold regularization techniques, starting from Belkin et al. [10]

and Geng et al. [37]. These methods make use of available labeled/unlabeled data points

for regularization for better performance of classification models.

In this paper we compare the performance of AT and VAT to that of a baseline DNN

model for emotion recognition. After training the model using the aforementioned pro-

cedures, we evaluate its performance under two settings: (i) Running a cross validation

experiment on a single corpora (ii) Doing a cross corpora study. Under the single corpora

setting, we aim to understand the impact of adversarial training on system performance un-

der matched conditions. In the cross corpora setting, we train the model on a single dataset

and evaluate performance on three separate unseen datasets. We also compare the adver-

sarial training procedures with other regularization schemes. Along with the widely known

L1/L2, we also investigate the effect of the graph based manifold regularization scheme

discussed in Tomar and Rose [117]. We hypothesize that since manifold regularization

imposes smoothness constraint on the model’s outputs for the data points that are in the

neighborhood of each other, it can also make the model more robust to noise arising due

to difference in data distributions. In the following sections, we provide a background of

the adversarial training procedures (AT and VAT) and other regularization schemes that we

have employed. This is followed by a detailed explanation of the experiments after which

we present our conclusions.
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Figure 3.1: Figure representing the sigmoid activation function and its derivative

3.2 Understanding adversarial examples

Even though deep neural networks are highly non-linear functions, Goodfellow et al.

[44] suggest that the existence of adversarial examples can be explained by considering

simple linear models. They argue that complex neural network models such as LSTMs or

feed-forward networks with activation functions such as sigmoid, ReLUs (Rectified Linear

Units) or maxout (Goodfellow et al. [43]) are kept in their linear region of operation for

efficient and easier optimization. For example, the derivative of sigmoid function gets

saturated in its non-linear region, thereby not providing enough gradients for the network

to learn as shown in the figure 3.1. However it might come as a surprise that these models

have very different outputs for a small deviation in the input. But that is usually the case

when we work in high dimensional spaces. Consider a linear model with weights w and

input x. Let x̃ = x+η be the adversarial input with η being the adversarial error term

added to input. Assume that ‖η‖∞≤ ε where ε is a small quantity. So, the activation of the
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linear model for the perturbed input is given by wT x̃ = wT x+wT η . Assuming w ∈Rn and

the average absolute value of the elements in w is m, wT η ≤ εmn. Hence, even though the

input changes by a small amount ε the output of the model changes by an amount of the

order of εmn which can be a substantial quantity when working in higher dimensions.

One way of mitigating the effect of adversarial examples is to find such examples and

train the model with them. Let us consider a binary classification problem with ground truth

labels y = {−1,1}. We train a model that estimates the probability for a given datapoint x

using the equation : P(y = 1) = σ(wT x+b), where σ is the sigmoid function. To estimate

the parameters w, loss function L(x,y) is minimized over the training data. Since the log

function is monotonic, formally L(x,y) can be defined as:

L(x,y) =


−log(σ(wT x+b)), if y = 1

−log(1−σ(wT x+b)), if y =−1
(3.1)

=


log(1+ e−(w

T x+b)), if y = 1

log(1+ e(w
T x+b)), if y =−1

(3.2)

= log(1+ e−y(wT x+b)) (3.3)

= T (−y(wT x+b)) (3.4)

where, T (z) = log(1+ ez). To derive the perturbation term η constrained by ‖η‖∞≤ ε for

the above loss function, we can follow the fast gradient sign method as mentioned in [44].

Basically it states:

η = εsign(∇xL(x,y)) (3.5)

= εsign

(
−
(

e−y(wT x+b)

1+ e−y(wT x+b)

)
yw

)
(3.6)

= −εsign(y)sign(w) (3.7)

26



Since, y · sign(y) = |y|= 1 and (wT sign(w)) = ‖w‖1, the loss term L(x̃,y) for the perturbed

input x̃ = x+η can be written as:

L(x̃,y) = T (−y(wT x̃+b)) (3.8)

= T (−y(wT x+b)− y(wT
η)) (3.9)

= T (−y(wT x+b)+ ε(y · sign(y))(wT sign(w))) (3.10)

= T (−y(wT x+b)+ ε‖w‖1) (3.11)

It can be observed that to some extent minimizing the loss function for adversarial inputs

is akin to L1 regularization. However, it is less stringent than L1 regularization penalty

because in this case as the model starts making confident predictions, y(wT x+b) attains a

high value thereby making the function T (z) enter its saturation region. This in turn does

not provide enough gradients for w to change as can be seen in Figure 3.2. Hence the effect

of term ε‖w‖1 disappears in this case unlike vanilla L1 regularization.

An alternative way to counter the effect of adversarial examples is via adding a reg-

ularization term to the overall loss function as has been done in Goodfellow et al. [44]

and Miyato et al. [? ]. This is the approach that we have followed for our task of speech

emotion recognition. In the following section, we explain the loss functions for a baseline

neural network without any regularization and the loss terms obtained after employing the

various regularization techniques.

3.3 Delving into loss functions

Let {xi,yi}, i = 1, ..,N be the set of N labeled data points that will be used to train a

neural network model. We represent the parameters of the neural network by θ . Then the
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Figure 3.2: T (x) = log(1+ ex). Note how the graph saturates when x→−∞

output for the point xi is given by θ(xi). θ(xi) is a vector of probabilities that the neural

network assigns to each class in the label space spanned by y. It is computed using softmax

activation. A loss function is defined based on the neural network outputs and the one

hot-vectors yi corresponding to labels yi, as shown below. V (θ(xi),yi) is the loss for the

data point xi and ground truth label yi . Choices for the loss function include cross-entropy

(usually for classification tasks), mean squared error (usually for regression tasks) or the

hinge loss. We choose cross-entropy as the loss function for our baseline neural network.

L =
1
N

N

∑
i=1

V (θ(xi),yi) (3.12)

With a small number of training instances N, its hard to generalize the performance

of a model trained solely on the loss above. The trained model performs well on training

set but not so much on unseen data suggesting overfitting. Studies have used L1 or L2

regularizers on neural network parameters or dropout to prevent overfitting on the training
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set (Tripathi and Jadeja [118]). Manifold learning and smoothing is another way to pre-

vent overfitting and build models that generalize better. Along with the methods mentioned

above, we also implemented a graph based manifold regularization technique that lever-

ages the smoothness assumption that was mentioned in Section 3.1 Another approach is to

add a regularization term that penalizes large differences in model outputs when a small

perturbation is added to a data point. This mitigates the effect of adversarial examples on

a trained model. We determine the perturbation based on two existing methods: (i) adver-

sarial training and, (ii) virtual adversarial training. A brief overview of these methods are

given below.

3.3.1 L1/L2 regularization

L1/L2 regularization techniques belong to a larger class of parameter norm based penal-

ties which have been used for regularization for quite some time (Goodfellow et al. [41]).

Denoting training data points as xi, ground truth labels as yi and the parameters of the

model as Θ, the modified loss function consists of the supervised loss function V and a

regularization term f (Θ).

L ′ =
1
N

N

∑
i=1

V (θ(xi),yi)+α f (Θ) (3.13)

The hyperparameter α controls the weight given to the regularization term. For a neural

network based model, usually only the weights (denoted by W) are modified and the biases

(denoted by b) are unaffected by the regularization term. Weights involve the dynamics be-

tween two variables while biases control a single variable. Hence, fitting biases accurately

requires less data than fitting weights and hence we would not gain much by regularizing

the biases.

For L2 regularization f (Θ) is chosen as squared L2 norm. L2 norm for a vector is
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defined as the square root of the sum of squares of its components. So, the loss function

becomes

L ′ =
1
N

N

∑
i=1

V (θ(xi),yi)+α‖W‖2
2 (3.14)

The weights W are updated by taking the derivative of the loss function with respect to

the weight vector and implementing stochastic gradient descent. L2 regularization doesn’t

have much affect on the components of the weight vector that have a larger impact on the

objective function. On the contrary, the components of the weight vector which do not

affect the gradient undergo decay much faster. This leads to mitigating any training noise

induced along those components and prevent overfitting.

For L1 regularization f (Θ) is chosen as L1 norm. L1 norm for a vector is defined as

the sum of the absolute value of its components. So, the loss function becomes

L ′ =
1
N

N

∑
i=1

V (θ(xi),yi)+α‖W‖1 (3.15)

Unlike L2 regularization, L1 regularization makes the model more more generalizable by

inducing sparsity in the parameter space. A technique called ’least Absolute shrinkage and

selection operator’ or LASSO leverages this property and removes less important feature’s

coefficients to zero thereby doing feature selection. While L2 regularization is the same

as Bayesian MAP (Maximum a posteriori) inference with Gaussian prior on weights, L1

regularization is the same as MAP with Laplacian prior on weights.

3.3.2 Adversarial training

Adversarial training (Goodfellow et al. [44], Miyato et al. [? ]) modifies the loss

function in such a way that it penalizes large deviations in model outputs when small per-

turbations are added to the training data points xi. A perturbation vector ri
a is determined
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for every datapoint xi followed by optimizing the modified loss Ladv to train a neural net-

work, as shown in Equation 3.16. D is a non-negative function that quantifies the distance

between the predictions θ(xi + ri
a) and targets yi. D is usually chosen to be cross entropy

or Kullback-Leibler divergence. α is a tunable hyper-parameter, determining the trade-off

between L and the adversarial loss.

Ladv = L +α× 1
N

N

∑
i=1

D(yi,θ(xi + ri
a)) (3.16)

The perturbation ri
a is determined based on Equation 3.17. The hyper-parameter ε

determines the search neighborhood for ri
a.

ri
a = arg max

r:‖r‖≤ε

D(yi,θ(xi + r)) (3.17)

Considering ||r|| to be the Euclidean norm, ri
a in Equation 3.17 can be approximated as

shown below.

radv ≈ ε
g
‖g‖2

,where g = ∇xiD(yi,θ(xi)) (3.18)

If ||r|| is considered to be the infinity norm, then ri
a is computed using Equation 3.5. The

gradient term in both the equations is obtained by differentiating the baseline loss func-

tion with respect to the input. It can be easily computed during back-propagation. It can

be observed that the regularization term added to the baseline loss function in adversarial

training depends on the ground truth labels. Hence, it can be considered as a supervised

regularization scheme unlike the other methods discussed here. We note that this opti-

mization has two hyper-parameters to tune, α and ε . We investigate the impact of these

hyper-parameters on the model performance in one of our experiments.
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3.3.3 Virtual Adversarial training

Virtual adversarial training (Miyato et al. [? ]) also modifies the loss function in such a

way that it penalizes large deviations in model outputs for small perturbations in the input.

A perturbation vector ri
v is determined for every datapoint xi followed by optimizing the

modified loss Ladv to train a neural network, as shown in Equation 3.19.

Ladv = L +α× 1
N

N

∑
i=1

D(θ(xi),θ(xi + ri
v)) (3.19)

The perturbation ri
v is determined based on Equation 3.20. The hyper-parameter ε

determines the search neighborhood for ri
v.

ri
v = arg max

r:‖r‖≤ε

D(θ(xi),θ(xi + r)) = arg max
r:‖r‖≤ε

D(xi,r, θ̂) (3.20)

where θ̂ is the current estimate of model parameters. Assuming D is KL divergence, we

can observe that D(xi,r, θ̂) = 0 for r = 0. Hence we can’t find an expression for ri
v as we

did for ri
a using Equation 3.18. Since the minimum value a KL divergence can attain is 0,

the derivative ∇rD(xi,r, θ̂) = 0 at r = 0. Using these along with Taylor’s approximation

we get:

D(xi,r, θ̂) ≈ D(xi,r, θ̂)|r=0 +rT
∇rD(xi,r, θ̂)|r=0 +rT H(xi, θ̂)r (3.21)

= rT H(xi, θ̂)r (3.22)

where H(xi, θ̂) = ∇∇rD(xi,r, θ̂)|r=0. Assuming we have a symmetric Hessian matrix

H(xi, θ̂) (which would be the case if D is twice differentiable at r = 0) would imply its

unit length eigenvectors ei (associated with the i-th biggest eigenvalue λi) are orthogonal.
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Therefore, any unit vector r can be expressed as sum of these basis vectors i.e.

r =
K

∑
i=1

αiei such that
K

∑
i=1

α
2
i = 1 (3.23)

Hence, for ‖r‖= 1

rT H(xi, θ̂)r =
K

∑
i=1

α
2
i ei

T H(xi, θ̂)ei (3.24)

=
K

∑
i=1

α
2
i λi ≤

K

∑
i=1

α
2
i λ1 = λ1 (3.25)

And the maximum is obtained when r is the dominant eigenvector e1. The perturbation

term can therefore be computed as:

ri
v = arg max

r:‖r‖≤ε

rT H(xi, θ̂)r = ε · e1(xi, θ̂) (3.26)

The dominant eigenvector for H(xi, θ̂) can be computed by initializing a randomly sampled

unit vector r̃0 and using the power iteration method.

r̃m+1 =
H r̃m

‖H r̃m‖
(3.27)

The power iteration method will converge as long as the random initialization isn’t orthog-

onal to the dominant eigenvector e1 and the rate of convergence would depend on the ratios

λk
λ1

for k 6= 1. Expressing r̃0 as mentioned in Equation 3.23 we can work out the convergence
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of power iteration method.

r1 = H r̃0 (3.28)

= H(
K

∑
i=1

αiei) (3.29)

=
K

∑
i=1

αiHei (3.30)

=
K

∑
i=1

αiλiei (3.31)

Pre-multiplying H to both sides of the above equation m times, where m is large we get,

rm =
K

∑
i=1

αiλi
mei (3.32)

= λ1
m[α1e1 +

K

∑
i=2

αi

(
λk

λ1

)m
ei] (3.33)

≈ λ1
m

α1e1 (3.34)

Equation 3.34 follows from the fact that |λ1|< |λ2|< ... < |λk| and therefore the ratios→ 0

as m→ 0. Hence, power iteration method converges to a vector lying along the dominant

eigenvector direction. The number of iterations m is a hyper-parameter for VAT. We didn’t

see any major differences in the model’s performance for different values of m and so it

was fixed at m = 1. In VAT, it can be seen that the adversarial perturbation term depends

on the model parameters θ . While updating the model parameters using backpropagation,

we do not take into account the gradient flow from the perturbation term. Further details

about the algorithm to compute ri
v can be obtained from (Miyato et al. [? ]).

Equation 3.20 is very similar to Equation 3.17 except instead of ground truth labels yi

we use the ”virtual” labels θ(xi) which are probabilistic estimates obtained from a neural

network model. Since the regularization loss term is independent of ground truth labels,
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it can be used in semi-supervised training scenarios where the first term L is computed

using labeled data and the second term is computed using both labeled and unlabeled data.

3.3.4 Graph based manifold regularization

We also try a graph based manifold regularization scheme that penalizes the model

for producing very different outputs for input datapoints within a certain neighborhood.

However unlike using KL divergence as in case of VAT, we consider Euclidean distance

in this case. Manifold regularization was proposed by Belkin et al. [10] and similar to

above methods we add a regularization penalty term to the cross entropy loss function. Let

us consider training datapoints xi(i = 1, ..,N), with corresponding labels yi. For a choice

of Reproducible Kernel Hilbert Space (RHKS) Hk and a loss function V , they optimize

equation 3.35 to yield a classifier function f ∗ belonging to the space Hk. In the equation,

V (xi,yi, f ) is considered to be cross-entropy loss function as ours is a classification prob-

lem. || f ||2I is a regularization term modifying the parameters of the classifier depending on

the distribution of the set of given data points in the training set (please refer to Section 2

in Belkin et al. [10] for more details). γI is the hyper-parameter controlling the trade-off

between the losses in the equation 3.35.

f ∗ = arg min
f∈Hk

1
N

N

∑
i=1

V (xi,yi, f )+ γI|| f ||2I (3.35)

|| f ||2I is computed as shown in equation 3.36.

|| f ||2I=
N

∑
i=1

∑
xi

u∈
Neighborhood of xi

|| f (xi)− f (xi
u)||22

||xi−xiu||2
(3.36)

The loss minimizes the Euclidean distance between the outputs for labeled instance

xi: f (xi) and a set of data-points in the neighborhood of xi: f (xi
u). Neighborhood xi

u for
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any point xi is defined as the set of points lying within a L2 norm ball centered at xi. The

distance between the outputs is inversely weighted by the distance between xi and xi
u, so

that the loss function weights the distance || f (xi)− f (xi
u)||22 more when xi

u is closer to xi

when considering Euclidean distance. For fast computation, we compute the loss term in

Equation 3.35 iteratively, updating the weights based on cross-entropy loss first and then

updating them based on the regularization loss. A similar approach was followed in Gupta

et al. [48] where the authors explored semi-supervised learning on twitter sentiment dataset

using doc2vec features. Since, the regularization term is independent of ground truth labels,

it can be used in a semi-supervised setting like VAT.

3.4 Comparison of various generalization schemes

We perform experimental investigations under two settings: (i) a single corpora setting

using a cross validation setup and, (ii) a cross corpora setting involving training on one

corpus and testing on the other. In the single corpora setting, we aim to test improvements

in the generalized performance of the model under matched dataset conditions. However,

in the case of cross-corpora evaluation, representations for emotional utterances tend to be

dissimilar due to factors such as differences in data collection protocol and noise conditions.

Through cross-corpora evaluation, we aim to investigate if manifold regularization can

yield models robust to the corpus specific variations.

3.4.1 Single corpora setting

We use the Interactive Emotional Dyadic Motion Capture (IEMOCAP) dataset (Busso

et al. [13]) for our single corpora evaluation. The dataset consists of five sessions of scripted

and improvised interactions between two actors acting out real world situations. No two

sessions have the same set of actors, enabling us to do a speaker independent leave-one-
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session-out five-fold cross validation. The database comes with the dyadic conversation

segmented into utterances which are on an average about 5 seconds in duration. The utter-

ances were then labeled by three annotators for emotion labels such as happy, sad, angry,

excitement and neutral. We only use utterances for which we obtain a majority vote re-

garding the ground truth label. Following the work of Kim and Provost [65], we combine

the utterances in the happy and excited classes to get a “combined happy” class for our

experiments. This was done to obtain a more balanced dataset, given there are only a small

number of “happy” class instances. For our classification experiments we focused on a set

of 5531 utterances shared amongst four emotional labels: neutral (1708), angry (1103), sad

(1084), and happy (1636). Overall, this amounts to approximately 7 hours of data.

3.4.2 Cross corpus evaluation

We use a set of four datasets for the cross corpora evaluation. We train a DNN on the

IEMOCAP dataset to identify four classes of emotion, followed by predictions on these

datasets.

Surrey Audio Visual Expressed Emotion (SAVEE) database: Surrey Audio-Visual

Expressed Emotion (SAVEE) database (Haq et al. [53]) has recordings of four male speak-

ers reciting IEEE sentences in seven different emotions. For the purpose of our evaluation,

we only select the subset of utterances belonging to one of the four target emotions, as pre-

dicted by the model trained on the IEMOCAP dataset. The dataset consists of 60 utterances

each belonging to the angry, sad, happy classes and 120 neutral utterances. We acknowl-

edge that transfer of models across corpora spanning different label spaces is a challenge.

By selecting a subset of utterances in our experiments, we simulate a study that assumes

that the two datasets span the same label space.
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Electromagnetic Articulography (EMA) database: Electromagnetic Articulography

(EMA) database (Lee et al. [72]) contains a set of 680 utterances spoken in four differ-

ent target emotions, such as anger, happiness, sadness and neutrality. Speakers are na-

tive speakers of American English: two females and one male. Note that the label space

spanned by this dataset is equivalent to the one spanned by utterances in the training set.

Linguistic Data Consortium’s (LDC) emotional prosody dataset: This database

(Liberman et al. [74]) was developed by LDC and contains the recordings of professional

actors reading a series of semantically neutral utterances (dates and numbers) spanning

fourteen distinct emotional categories. We select a subset of 714 utterances from the dataset

that span the four emotion labels as modeled using training on the IEMOCAP dataset.

MSP-IMPROV dataset: MSP-IMPROV (Busso et al. [16]) has actors participating

in dyadic conversations across six sessions and like IEMOCAP they also have been seg-

mented into utterances. But unlike IEMOCAP, it also includes a set of pre-defined 20 target

sentences that are spoken with different emotions depending on the context of conversation.

There are 7798 utterances belonging to the same four emotion classes. The class distribu-

tion is unbalanced with the number of utterances belonging to happy/neutral class more

than three times that of angry/sad.

We note that there are several dissimilarities between the IEMOCAP dataset and the

datasets used in the cross corpora study. Whereas the speakers in EMA and LDC have an

American accent, SAVEE has speakers having a British accent. Unlike IEMOCAP, these

databases aren’t dyadic conversations. While EMA and SAVEE have speakers speaking

different sentences emulating different emotions, in the LDC database we have speakers

reading out numbers while emulating different emotions. While MSP-IMPROV is more

similar to IMEOCAP than others in terms of how it was collected, the data distribution in

both is very different. We next discuss the features extracted on these datasets.
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3.4.3 Features

We use the openSMILE toolkit to extract 1582 dimensional feature vector (Eyben et al.

[35]). This feature set consists of various functionals computed for spectral, prosody and

energy based features. The same feature set has also been used in several previous works

including the INTERSPEECH Paralinguistic Challenges (Schuller et al. [108]). Similar

sets of spectral, prosodic and energy based features have shown considerable success in

emotion classification and affect tracking (Gupta et al. [47]). However an increased fea-

ture count leads to the “curse of dimensionality”, a problem that manifold learning and

smoothing can mitigate.

3.4.4 Experimental setup

We use a DNN as our classification model, such that the output layer consists of four

nodes (each corresponding to an emotion), with softmax activation function. The DNN has

three hidden layers with the number of neurons in each layer set to 64. The objective func-

tion V (θ(xi),yi) is chosen to be the cross entropy loss in our experiments (Goodfellow et al.

[41]). We performed L1/L2 regularizations and compared their performance with the other

regularization techniques mentioned above. While performing AT, we chose the D function

to be the cross entropy between yi and θ(xi + ra
i ), while in the case of VAT, D is set to be

the cross entropy between θ(xi) and θ(xi+rv
i ). Miyato et al. [? ] considered two different

distance functions D for VAT training: (i) Kullback-Leibler divergence between θ(xi) and

θ(xi + rv
i ). (ii) cross entropy between θ(xi) and θ(xi + rv

i ). We also experimented with

the Kullback-Leibler divergence as the distance function D, without observing significant

differences in the model performances. We also replaced the adversarial error terms ra
i and

rv
i with a random error term and analyzed if adding perturbations along targeted directions

rather than random has any advantage. While performing graph based regularization, we
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consider the neighborhood of each point xi to be its two nearest neighbors.

We implemented the models in Keras (Chollet et al. [22]) with a Tensorflow backend

and performed optimization using stochastic gradient descent (Zhang [132]). Our evalua-

tion metric is Unweighted Accuracies (UWA) which has been used previously in emotion

classification tasks (Sahu et al. [101]). Since the distribution of emotion classes are un-

balanced in the datasets of interest, the UWA metric assigns equal weight to each emotion

class during evaluation. Next, we present further details regarding the single corpus and

cross corpus evaluation.

Results: Single corpus setting

We perform a leave one session out cross validation experiment on IEMOCAP. Through

this experiment, we aim to understand the impact of the hyper-parameters, mainly the im-

pact of ε and α for adversarial training procedures on the model performance. We first

study the impact of regularization factor α as mentioned in Equations 3.14 and 3.15. The

plots are shown in Figure 3.3. It was observed that with regularizations, increasing the

weight of the regularization term to a higher value decreases model performance. This

makes sense because we still want the cross entropy error term V (θ(xi),yi) to dictate the

training of the DNN and not the regularization terms. The optimum performance was ob-

tained for α = 0.005 for L1 and α = 0.05 for L2 regularizations.

For adversarial training procedures, in order to study their impact individually, we per-

form evaluation by perturbing one of the two parameters, while keeping the other constant.

By altering ε , we aim to understand the impact of smoothing radius around the data-points

on the model performance and perturbing α impacts the weight of the adversarial loss on

the overall optimization. The plots comparing the UWA of baseline DNN with that of DNN

with adversarial training procedures for different values of hyper-parameters is shown in
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Figure 3.4. It is evident that DNN trained with adversarial training procedures perform

better than the baseline DNN. First, the value of α was kept fixed at 2 and ε was varied.

For DNN trained with AT regularization term, the model shows a higher performance for

lower value of ε peaking at ε = 0.5. As we increase the value of ε , the model’s perfor-

mance starts deteriorating. This is expected since ε defines the neighborhood around an

input feature vector over which the conditional distribution p(y|x) is smoothed. Increasing

the radius of this neighborhood forces our model to learn smoother functions that cannot

capture the complexity of the conditional distribution function p(y|x) thereby decreasing

its performance on the validation set. For lower values of ε , AT outperforms VAT which

may be due to the fact that AT is a supervised learning scheme where we use actual labels

to find the adversarial direction. However, for higher values of ε , the trend reverses which

leads us to believe that for larger values of search radius we are better off smoothening the

output of the perturbed input with respect to the output of the actual input rather than the

label. Similar observations can be made when we compare targeted perturbations versus

random perturbation term added to input. For lower values of ε , targeted adversarial train-

ing procedures are better while for higher values, adding a perturbation in random direction

performs better than both the adversarial training procedures; all of which perform worse

than baseline DNN with no regularization. Changing the weight α while keeping ε fixed

at 0.5 did not seem to affect the accuracies of AT very much. For VAT however, increas-

ing the weight of the VAT loss parameter in the loss function decreases the performance

of the system. These experiments showed that with the right value of hyper-parameters,

using adversarial training procedures that add perturbation along a targeted direction per-

form better than adding perturbations along a random direction. It was observed that for

α = 2 and ε = 0.5 performance of AT was the best. We also implemented the graph based

manifold regularization scheme. The results obtained using the above hyper-parameters

for various regularization schemes are mentioned in Table 4.1. The hyper-parameters so
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Table 3.1: Unweigthed accuracies obtained for different regularization schemes from the cross-
validation experiment

.

Model UWA
Baseline DNN 58.15
L1 regularization 59.02
L2 regularization 59.21
AT 59.54
VAT 58.17
Graph based manifold regularization 58.35
L2 + AT 60.33

obtained have been tuned via the cross-validation scheme. It was seen that AT performs the

best compared to other regularization schemes. Implementing it along with L2 regulariza-

tion further seemed to improve the results by a relative amount of approximately 4%. It is

observed that AT performs better than the other regularization schemes where the ground

truth label is not taken into account.

We further analyze the posterior probability distribution of the labels given the fea-

ture vectors (expressed by p(y|x)) by projecting and visualizing the four dimensional out-

put vector θ(xi) using t-Stochastic Neighbor Embedding (t-SNE) approach proposed by

Maaten and Hinton [78]. t-SNE is a dimension reduction technique that clusters similar

vector values together. The four dimensional output is projected to a two dimensional

space using t-SNE and plotted in Figure 3.5 for one of the cross-validation sets. The results

shown are with the hyperparameter values ε and α values fixed at 0.5 and 2, respectively.

We observe that compared to baseline DNN, neural networks trained with adversarial train-

ing procedures are better able to distinguish the ’happy’ samples. While for the baseline

DNN most of the pink ’happy’ samples overlap with blue ’neutral’ samples, for the other

two regularized models especially the one trained with AT, we see a few clusters formed

more or less entirely of the pink samples. Analyzing the confusion matrix suggests that this

leads to less confusion between utterances belonging to other classes with ’happy’ class.
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Figure 3.3: Unweighted accuracies vs the hyper-parameter α for baseline DNN (green) and DNN
with L1 regularization on left (blue) and with L2 regularization on right (blue).

Table 3.2: Cross-corpus accuracies (%) obtained using baseline DNN and DNN models trained with
different regularization schemes. The training was performed using IEMOCAP in all cases.

Test Dataset Baseline DNN DNN with L2 DNN with AT DNN with L2+AT
MSP-IMPROV 43.43 43.57 45.22 45.37
SAVEE 47.29 52.29 53.13 52.5
EMA 57.77 58.32 64.51 64.1
LDC 43.66 43.28 45.64 45.97

Results: Cross corpus evaluation

Since the adversarial training procedure make the model robust to small perturbations

to the input training points, we hypothesize that the regularized models are also robust to

variation across datasets due to dissimilar noise conditions. Hence a model trained on an

external corpus can achieve better performance on a dataset of interest. To verify this, we

did a cross corpus analysis where the whole of IEMOCAP dataset was used for training and

a different corpus was used for testing. We extract the openSMILE features for the four

external corpora, followed by mean-variance normalization using in-corpus statistics. We

compare the UWA for three datasets as shown in Table 3.2 and show the superior perfor-
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Figure 3.4: Unweighted accuracies vs the hyper-parameters ε (left) and α (right)

Figure 3.5: TSNE plots comparing the output of the baseline DNN model (left), DNN trained with
AT (center) and DNN trained with VAT (right)

mance of models trained with regularization procedures than baseline DNN. This indicates

that the adversarial procedures increase model robustness to cross-corpus differences. We

also note that the IEMOCAP trained models perform better on EMA compared to the other

three datasets. This can be explained by domain variabilities. While SAVEE has British

accented speech, in LDC the actors are reading out just numbers instead of actual English

sentences. EMA being an American English corpus where participants are reading out

sentences, comes closest to IEMOCAP which has actors having conversations in English.
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The worst performance on MSP-IMPROV can probably be explained by the fact that this

dataset is more realistic compared to SAVEE and EMA that are more extreme in terms

of the emotional dialogs. This observation suggests that despite better model generaliza-

tion across datasets, data specific characteristics still play a part in determining the model

performance.

3.5 Conclusion and future work

In this chapter, we show the effectiveness of adversarial training procedures for emotion

classification using a DNN model. The regularization schemes enforce the smoothness of

the output probabilities p(y|x), a case particularly applicable to low resource tasks such as

emotion classification. We perform two sets of evaluation, a single corpus evaluation on

the IEMOCAP dataset and four evaluations using a cross-corpus setup. In both the cases,

we observe an improvement in the classification performance using adversarial training.

Regularization methods such as VAT and graph based manifold learning scheme that do

not leverage the ground truth labels do not show significant improvement probably because

of the less amount of data available to us while training. We perform further investigation

to understand the impact of the model hyper-parameters on the model performance and

analyze the model outputs using t-SNE projections of the model outputs.

In the future, we aim to conduct further investigations using the adversarial loss. In

particular, the VAT training procedure and the graph based manifold learning scheme

can be used for semi-supervised training schemes. This can be performed using an in-

domain/external source for unlabeled data. Another interesting area to further investigate

would be to study the effects of one regularization scheme on another when multiple regu-

larization schemes are implemented together. As can be seen from the cross-corpus results,

using L2 regularization with AT doesn’t always give an improvement. We also aim to
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investigate other distance metrics D and its impact on the performance. Another perti-

nent problem is making the cross-corpus study compatible to different output label spaces

across the datasets. Finally, one can also test the adversarial methods to other low resource

problems.
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Chapter 4: Multi-modal learning for Speech Emotion Recognition : An

Analysis and comparison of ASR outputs with ground truth

transcriptions

4.1 Introduction

Speech is the most common and efficient way of interaction that occurs on a daily basis

and its non-invasive nature has also resulted in speech features being popular for various

tasks one of them being emotion recognition. It has applications in several fields including

building intelligent voice-assistants, psychiatry, analysis of human interaction and other

behavioral studies (El Ayadi et al. [30]). Affect recognition or emotion recognition is a

well-researched field and the results demonstrate that using speech features does a better

job at predicting arousal levels (intensity) than valence (pleasantness) level of the utterance.

Valstar et al. [119] employed a support vector machine based regressor and found that the

metric concordance correlation coefficient (CCC) is higher for predicting arousal levels

than valence. They managed to improve the valence prediction task using information

from other modalities such as video and physiological signals. The work by Yang and

Hirschberg [127] shows similar results on a couple of databases after extracting features

from raw waveform and spectrogram using a convolutional neural network and passing

them through a neural network based regressor to get the predicted arousal and valence

scores. Li and Akagi [73] employed a fuzzy inference based system and their results show
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a lower mean absolute error and a higher CCC in predicting arousal than valence across

three different languages. From the results shown by Lotfian and Busso [77] it can be

observed that the same is still true even after employing curriculum learning. The work by

Kim et al. [63] compared different neural network based systems in classifying between

angry, sad, neutral and happy and it was observed that all of them struggled in classifying

the ’happy’ samples correctly.

These results indicate that audio-based systems can be improved in predicting valence

levels by leveraging information from other modalities. Since our aim was to build an

emotion recognition model that only uses speech as input and modern state of the art ASR

models can generate good transcriptions, we looked at previous works using audio and

text features. Metallinou et al. [81] combined audio, video and phoneme level transcripts

for multi-modal emotion classification and showed an improvement as compared to a uni-

modal classifier. Zadeh et al. [130] used word level acoustic, vision and text features to

implement an attention architecture that captures cross-modal dynamics. In the work by

Hazarika et al. [54], similar features were input to a deep neural framework that was im-

plemented to capture the dynamics between speakers in a dyadic conversation. However,

none of these works have provided an insight of why multi-modal learning helps for emo-

tion classification and what is the contribution from each modality. Furthermore, all of

them have used ground truth text transcription for their experiments which can be time-

consuming and expensive to obtain. Schuller et al. [105, 106] trained an ASR model on

the dataset at hand and used the spoken words along with acoustic features for emotion

recognition. However, due to unavailability of ground truth transcriptions they were unable

to compare how much is the loss in performance when they use ASR transcriptions instead

of ground truth. In this paper we analyze the performance of a multi-modal system em-

ploying audio and text features, with the hypothesis that while audio features help us with

detecting arousal levels, the text features help us with valence prediction. We also devel-
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oped a system that uses transcriptions obtained from different ASR models and compare its

performance with that of a system that uses only audio features and a multi-modal system

using ground truth transcriptions. In the following sections, we provide a background of

the datasets used for our cross-validation and cross-corpus study. Before we carry out the

experiments analyzing audio and text modality we explore a couple of different attention

mechanisms (Chorowski et al. [23]) in neural network architectures with audio features as

input for emotion classification. We wanted to see if they could improve accuracies when

we are training with limited data. We then carry out the multi-modal experiments where we

use both audio and textual features and show our results and analysis. Finally we present

our conclusions and future directions.

4.2 Methodology

In this section we explain the databases, feature sets and classifiers used for our exper-

iments. We then talk about the different ASR models employed to get the transcriptions to

be used instead of ground truth transcriptions.

4.2.1 Datasets

IEMOCAP

We use the Interactive Emotional Dyadic Motion Capture (IEMOCAP) dataset (Busso

el al. [13]) as one of the datasets in our experiments. The dataset consists of five sessions.

In each session, two actors act out scenarios which are either scripted or improvised. No

two sessions have the same actor participating in them. This enabled us to perform a five

fold leave-one-session out cross-validation analysis on IEMOCAP. The conversations have

been segmented into utterances which are then labeled by three annotators for emotions
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Figure 4.1: Distribution of valence (top) and arousal (bottom) values for utterances in IEMOCAP
belonging to classes angry (red), sad (green), neutral (blue) and happy (black) classes

such as happy, sad, angry, excitement and, neutral. Manual transcriptions provided with

the dataset are considered as ground truth transcriptions. For our experiments, we only

use utterances for which we could obtain a majority vote and assign that as the ground

truth label. We used approximately 7 hours of data from the dataset which amounts to

5530 utterances : neutral (1708), angry (1103), sad (1083), and happy (1636). Apart from

annotating for categorical emotions, the utterances were also rated on a scale of 1-5 in terms

of their arousal and valence; 1 being low arousal/valence and 5 being high arousal/valence.

In Figure 4.1 we show a class-wise distribution of arousal and valence values. It can be seen

that while ’anger’ is low valence and high arousal, ’sad’ is low both in terms of valence and

arousal. ’Neutral’ is more or less symmetrical along the mean for arousal and valence. The

emotion ’happy’ is high in valence and and has more percentage of utterances with higher

arousal than ’neutral’ and ’sad’ but lesser than that of ’angry’. Following the observations

in the work by Neumann and Vu [87] we set the length of utterances as 7.5 seconds. Shorter

utterances were pre-padded with zeros while longer ones were clipped.
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MSP-IMPROV

MSP-IMPROV (Busso et al. [16]) has actors participating in dyadic conversations

across six sessions and like IEMOCAP they also have been segmented into utterances.

But unlike IEMOCAP, it also includes a set of pre-defined 20 target sentences that are

spoken with different emotions depending on the context of conversation. There are 7798

utterances belonging to the same four emotion classes : neutral (3477), angry (792), sad

(885), and happy (2644). The class distribution is unbalanced with the number of utterances

belonging to happy/neutral class more than three times that of angry/sad. We didn’t have

ground truth transcriptions available for this dataset. We used MSP-IMPROV to perform a

cross-corpus study where we used it as a test set while IEMOCAP was used as training set.

4.2.2 Feature extraction

We extracted two sets of features for the speech based model and compared their per-

formances. The first set was the Extended Geneva Minimalistic Acoustic Parameter Set

(EGeMAPS) extracted using the openSMILE toolkit (Eyben et al. [34]). It is a 23 dimen-

sional feature set consisting of prosodic features like pitch, loudness, jitter, shimmer and

spectral parameters. These features were computed for every 20 ms window with a 10 ms

overlap. To reduce the computation time, we took the expectation of every ten such con-

secutive frames so that we have a smoother feature summary vector every 100ms which

was then fed to the LSTM. A similar approach was employed in the work by Zadeh et al.

[130] to get word level acoustic features from frame level features. The second feature set

was computed using the toolkit pyAudioAnalysis (Giannakopoulos [39]). This feature set

was also used by Chernykh et al. [21] for speech emotion recognition. The motivation

behind using such a feature set is the expectation that it would be more helpful towards

building a speaker agnostic emotion recognition model since they don’t include prosodic
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features. Speaker-based normalization was applied to reduce speaker specific effects using

only the neutral speech as proposed by Busso et al [15]. Real world emotion recognition

systems usually have access to such samples, so its a fair assumption to make that they can

normalize the utterances from test speakers (Le and Provost [69]).

We used 100 dimensional Glove embeddings (Pennington et al. [92]) to initialize the

embedding layer of the text based neural network model. The embeddings are computed by

essentially factorizing the logarithm of a word-word co-occurrence count matrix obtained

from a 2014 dump of Wikipedia (glove.6B). The embedding layer was then fine-tuned for

the task at hand by backpropagating the error values obtained from the output layer.

4.2.3 Classification models

We used recurrent cells to compute a sequence of high-level representations from the

time-series of feature vectors capturing their contextual information as has been done by

Lee and Tashev [71] and Huang and Narayanan [59]. For the audio modality, we had two

long short-term memory (LSTM) layers with 256 and 128 hidden units, respectively, fol-

lowed by a dense layer of 64 neurons with rectified linear unit (ReLU) activation which was

connected to the output layer consisting of four neurons with softmax activation. Our text

based model had a similar architecture except there was an embedding layer that matched

the words with their corresponding Glove vector which was input to the first LSTM layer.

For our multi-modal system, the summary feature vectors obtained from the second LSTM

layer of the audio modality and the text based model were concatenated to form a 256 di-

mensional vector. This was followed by a ReLU activated dense layer with 64 neurons and

finally the output layer. A recurrent dropout probability of 0.3 was applied to all the recur-

rent layers in all the models. The hyper-parameters such as the number of recurrent/dense

layers, number of recurrent units, batch size, dropout probability etc. were decided based
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on the cross-validation study done on IEMOCAP. Since the audio features were computed

every 100 ms for a 7.5 second segment, we have 75 time-steps for audio modality. For text-

based LSTM, we had 40 time-steps meaning the transcriptions were limited to 40 words if

they were longer than that, otherwise zero-padding was applied.

4.2.4 ASR models employed

Our next experiments involved running two free ASR applications to generate the tran-

scriptions and using them in our experiments instead of ground truth transcriptions. This

automatically generated transcription enables us to have an emotion recognition model that

only requires speech as its input so that we can do away with the manual transcription of the

utterances. We used the codes from Zhang’s github repository [131] to get the transcrip-

tions by implementing the models from Wit.ai (a Facebook company) and Google. We

note that the ASR engines from Google and Wit.ai were not able to generate transcriptions

for all the utterances mainly due to troubles with communicating with the API’s server.

For IEMOCAP, Google and Wit.ai could transcribe 89.9% and 78.3% of the samples, re-

spectively. For MSP-IMPROV, the percentage of utterances for which we could obtain

transcriptions using APIs from Google and Wit.ai are 90.55% and 60.24%, respectively.

Below we show a few ground truth (GT) annotations and their ASR transcriptions.

1. GT: You’re going to fill out a form on your desk

Google: fill out a form on your desk

WIT.ai: out a form on your desk

2. GT: you have to tell me

Google: you have to tell me

WIT.ai: you have to tell me
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3. GT: Really you don’t work for anybody it’s just you

Google: really you don’t work for anybody it’s just you

WIT.ai: really don’t work for anybody is up

4.3 Exploring attention mechanisms

In IEMOCAP and MSP-IMPROV the annotations for emotion are given at an utter-

ance level. However all the frames of an utterance might not be relevant at determining

the emotion that it should belong to. Hence, we might need to weigh the frame/window

level features appropriately based on their importance. This is what the attention mecha-

nism does. Our goal here was to see if attention mechanisms help us with our experiments

where we have limited data. Weighing the frame-wise features might be a good idea but at

the same time computing the attention weights leads to an increase in number of parameters

which might lead to over-fitting in such cases. We considered only the audio modality for

these experiments. The baseline model was as described in section 4.2.3. We incorporated

our attention mechanisms between the first and second layer of LSTMs i.e. the sequential

output of the first layer of LSTM was weighed by the attention weights before being fed to

the second layer of LSTM. Let’s denote the output for time-step t obtained from the first

LSTM layer as h(t) ∈ Rn, where n is the number of hidden units in the LSTM layer. If we

denote the attention weight for time t by α(t) ∈ R, then the output of the attention mech-

anism is denoted by c(t) = α(t)h(t) We investigated two ways to compute the attention

weights as described below:

1. att1: a scalar attention weight α(t) ∈ R computed based on the root mean square

energy (RMSE) of the audio signal. For a segment of an audio signal, its RMSE

is defines as the square root of the sum of squares of the samples occurring in that

segment. Let e(t) ∈ R be the RMSE value obtained for the t-th window of an audio
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signal. To make sure it has the same temporal resolution as the time-series of feature

vectors being fed to LSTMs, the RMSE was computed for a window of 200 ms with

a frame interval of 100 ms. The attention weight for time t was then computed using

the following equation:

α(t) =
e(t)

∑
T
t ′=1 e(t ′)

(4.1)

So, h(t) from segments with lower RMSE will have lower contribution towards mak-

ing the final decision than the ones with higher RMSE. Note that employing this at-

tention mechanism doesn’t lead to any increase in the number of trainable parameter

2. att2: a scalar attention weight αt ∈ R computed from the output of the first LSTM

layer h(t). This is similar to the way the attention weights were computed using

equation 9 in Huang and Narayanan [59] and also in Neumann and Vu [87]. We

define a weight layer w ∈ Rn which was shared across the time-steps. The attention

weight for time t was then computed using the following equation:

α(t) =
wT h(t)

∑
T
t ′=1 wT h(t′)

(4.2)

Note that in this case the number of trainable parameters increase by a value of n.

In Figure4.2, we plot the raw waveform and the attention waveforms obtained using the

two mechanisms along with the energy waveform obtained from h(t). Note that as h(t) ∈

Rn, we simply squared and summed its different dimensions to get the energy waveform

for h(t). We can see that while the profile of attention time-series att1 computed from

RMSE e(t) follows the intensity of signal, att2 follows the envelope of the energy waveform

obtained from h(t). This is expected behavior given how they have been computed. So, to

get the best of the both worlds our final attention att was considered to be a weighted sum
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Figure 4.2: Plots of raw waveform (top left), att1 (bottom left), att2 (top right), energy of h(t)
(bottom right) for two audio files. Note that while att1 follows the envelope of the raw waveform,
att2 follows the envelope of energy waveform of h(t)

of att1 and att2 i.e.

att = (1−β )att1 +βatt2 (4.3)

We varied the parameter β = [0,0.2,0.8,1] to see the effect of weighting the two attention

mechanisms differently. From Figure4.3 we observe that the mean class-wise accuracy

obtained over the five cross-validation splits of IEMOCAP doesn’t vary significantly from

baseline. This is similar to the results obtained in Huang and Narayanan [59] and also

in Neumann and Vu [87] where implementing attention mechanisms didn’t lead to any

significant changes in accuracies from the model without attention mechanism. At the

same time we can see that it decreases as we increase the value of β . Note that as β

increases, contribution of att2 increases. We believe it could be because of limited data

and any advantage gained by implementing the attention mechanism is overshadowed by

over-fitting. This means the attention profile so computed is specific to the training set and

does not generalize well to unseen validation sets. It would be an interesting experiment to

56



Figure 4.3: Unweighted accuracies vs beta. As we increase the parameter ’beta’ accuracy decreases
which is possibly because of overfitting

see their effects on emotion recognition on a larger dataset.

4.4 Multi-modal experiments

Here we show the results and our analysis for the experiments performed. Our met-

ric would be un-weighted accuracy (UWA) which is the average of class-wise accuracies.

Since our datasets are not perfectly balanced, we believe it would be a better metric to use

than the overall accuracy or weighted accuracy. The results shown have been averaged

across four runs with different random seeds.

4.4.1 Comparing audio and text modalities

Our initial set of experiments were carried out to show the worth of multi-modal sys-

tems. We compared the two different audio feature sets EGeMAPS and the ones obtained

using pyAudioAnalysis but didn’t notice a big difference in the accuracies. We believe that

since the feature sets have undergone speaker based normalization prior to being fed to

57



the neural network model, we are getting rid of speaker specific characteristics and hence

the speaker-specific prosodic features used in EGeMAPS don’t deteriorate the performance

of the audio-only model.We chose to use the pyAudio feature set for further experiments.

Next we investigated the performance of a text-based system and a multi-modal system.

It can be seen from Table 4.1 that both of those models perform better than an audio-only

model. To verify our assumption that the audio modality is better for detecting arousal

while the text modality is better at detecting valence, we provide the confusion matrices

in Figure 4.4. It can be seen that the audio-based model (left) performs better than the

text-based model (center) in detecting ’anger’ which is a high arousal emotion. From the

first row of the matrices, we can also see that the text based model is more likely to confuse

the ’angry’ and ’sad’ classes than is the audio based model. This is because both anger and

sadness are low valence emotions but they differ in their arousal level, thereby making it

easier for the audio modality to distinguish between the two. Both the models perform sim-

ilarly when it comes to identifying the ’neutral’ speech samples. This is probably because

the ’neutral’ class lies somewhere in the middle of the arousal and valence axes and not at

one of the extremes. Hence neither of the modalities end up having any advantage over the

other. However, text based models do a much better job in identifying the ’happy’ sam-

ples than the audio based model. While the audio based model classifies 26% of ’happy’

samples as angry, our text based model does a better job at distinguishing between the two

classes. It further strengthens our hypotheses that text based models are better than audio

based models in distinguishing between high and low valence utterances. While anger is

a low valence emotion, happiness is high valence. Combining the two modalities we see

that class-wise accuracies either improve or remain almost the same for all of the classes.

Accuracies for ’sad’ and ’neutral’ obtained using multi-modal system are better than that

of uni-modal systems indicating that speech and text features supplement each other while

identifying samples from these two classes.
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To further identify which modality helps with classification of what emotions, we im-

plemented an attention based multi-modal fusion for emotion recognition as has been done

by Hori et al [57] for video description. However, our implementation was a simpler ver-

sion of their implementation. One reason for a simpler implementation was because we had

lesser amount of data-points to work with and hence a simple implementation with lesser

number of parameters would prevent over-fitting. Another reason for this was because of

the way these problems are formulated. For a video description model, input to a recurrent

network are video samples and their output would be sentences which is a sequence of

words. This architecture is known as many-to-many recurrent model because both input

and output are sequential. In our case the input to LSTM models is a time-series consist-

ing of audio/text features for an utterance whereas the output is just one emotion label per

utterance. These models are known as many-to-one recurrent models. Implementing an

attention model for a many-to-one recurrent model is more simplified than many-to-many

recurrent models as we don’t have to consider the effect of a sequential output on comput-

ing the attention weights. But the core idea still remains the same. We want to implement

an attention mechanism which assigns relevance weights to the summary feature vectors

obtained from each modality. The summary feature vectors are then multiplied by the cor-

responding relevance weights and added before being fed to the following layers. Please

note that in the multi-modal system explained in section 4.2.3 the two summary vectors

were being concatenated instead of being added. While Hori et al. reported an improve-

ment in performance from multimodal fusion, we didn’t notice any significant change in

our metric UWA. However it did give us some important insights as to how the audio and

text modalities work towards classifying the four emotions. We now describe our imple-

mentation to compute the relevance weights for the two modalities. Let the summary vector

obtained for the time series of audio features after passing them through LSTM layers be

denoted by a ∈ Rm and the summary vector obtained for the sequential text features be
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t ∈ Rm where m is the number of units in the final LSTM layer (assuming its the same for

both audio and text modalities as in our case). We define a weight layer w ∈ Rm which

was shared across the two modalities. The relevance weights γ and τ for audio and text

modalities respectively were computed using the following equations:

γ =
wT a

wT a+wT t
(4.4)

τ = 1− γ =
wT t

wT a+wT t
(4.5)

Hence, if for an utterance γ < 0.5, it implies τ > 0.5 and so text modality was weighed

more in classifying that particular utterance. In Figure 4.5 we plot the histograms depicting

the number of utterances having a certain value of audio relevance γ as computed from

the multi-modal attention mechanism. We observe that while for ’angry’ and ’sad’ classes

γ > 0.5 for most utterances, its the other way around for ’neutral’ and ’happy’. This means

that for classifying most of the ’angry’ and ’sad’ utterances audio modality was found to

be more relevant while for most ’neutral’ and ’happy’ utterances text modality was more

helpful. Referring to Figure 4.1 gives us an insight as to why this could have been the case.

We note that the histogram is obtained for the training set of one of the cross-validation

splits so as to make sure that most of the utterances were assigned to the correct class

although the accuracy wasn’t 100% because the training was stopped once the validation

error started rising. We see that while most of ’angry’ utterances have high arousal, most

of ’sad’ utterances have low arousal but they have similar valence distribution. Hence, text

features being better at detecting valence would get confused to distinguish between the two

while audio features can easily make that distinction. At the same time both ’neutral and

’happy’ classes have a good amount of their utterances with neither high nor low arousal

values (concentrated around that 3-3.5 region on the x-axis) and hence audio modality can

be helpful in classifying ’angry’ or ’sad’ from these two classes. Similarly, ’neutral’ is
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Table 4.1: UWA obtained from 5-fold cross-validation on IEMOCAP. Ground truth text transcrip-
tions are used here.

Model pyAudio Egemaps Glove pyAudio + Glove
UWA 56.94 56.85 61.89 68.18

Figure 4.4: Confusion matrices for one of the validation splits showing the class-wise accuracies
of audio-only (left), text-only (center) and multi-modal (right) systems. Numbers shown are in
percentages

the only class with most utterances having neither high nor low valence unlike the other

three classes which leads to text features being more helpful in classifying the ’neutral’

utterances. Similarly,’happy’ is the only class with utterances having higher valence than

the rest of the classes so text features play a greater role in identifying them. However, we

also see audio modality being assigned higher relevance weight for some of the ’happy’

utterances. This is probably because some ’happy’ utterances also have high arousal values

causing them to be confused with ’angry’ as seen from the multi-modal confusion matrix

in Figure 4.4. Even though that matrix was computed for one of the validation sets, the

same confusion must also be occurring in training set. This experiment further verified our

claim that audio helps with arousal level classification while text helps with valence level

classification.
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Figure 4.5: Histogram plots showing the relevance weights assigned to audio modality (γ) for dif-
ferent utterances belonging to different classes namely angry (green), sad (black), neutral (blue) and
happy (red). The vertical black line in each plot shows x=0.5 i.e. for samples lying along that line
there is equal contribution from audio and video. Note that for most angry and sad utterances, audio
modality contributes more towards classifying them while for neutral and happy utterances its the
other way round.

4.4.2 ASR model output vs ground truth transcriptions used for multi-

modal classification

Having performed the multi-modal experiments on ground truth transcriptions, we now

created a pipeline where we only used audio data as input. We used the ASR transcriptions

generated from audio in the multi-modal system instead of ground truth transcriptions.

Since, the different APIs were able to transcribe different numbers of utterances, we ran

the experiments comparing the models with a different train/test file-list for each API. This

resulted in different accuracies even when only audio features were used or when they were

used along with text features obtained from ground-truth transcriptions. Figure 4.6(a)

shows the comparison between the cross-validation UWAs obtained from the audio only

model, the multi-modal system using ground truth text and the multi-modal system using

the API’s transcription. It indicates that the model trained on ground truth transcriptions
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Figure 4.6: (a) Left figure compares the performance of an audio-only model with multi-modal
systems using ground truth text or the ASR transcriptions for the different ASR systems (b) In the
right we show the performance of the different ASR modules used in our experiment on IEMOCAP.
Lower is better

perform better than the ASR transcriptions as expected. We get a relative loss of 4% and

5.3% in accuracy compared to ground truth transcriptions when using Google’s and Wit.ai’s

ASR engine, respectively. To compare the quality of the transcriptions generated, we com-

puted the word error rate (WER) by measuring the Levenshtein distance (Heeringa [55])

(LD) between the generated transcriptions and the ground truth ones for each IEMOCAP

utterance and then averaging it over the entire dataset. Levenshtein distance between two

sentences measures the minimum number of insertions/deletions/substitutions of words re-

quired to convert one sentence to another. In general, longer utterances are more likely

to have a higher LD when compared to shorter utterances because there are more words

where the ASR model can make an error in transcribing. Since the different API’s tran-

scribed different numbers of utterances, this measure could provide us with a skewed idea

about the performance of APIs. Hence, we also computed a normalized Levenshtein dis-

tance (NLD) where we divide LD by the number of words in the ground truth transcription.

Figure 4.6 compares the performance of the two ASR APIs in terms of those two metrics.

We see that the difference is less stark in case of NLD, however both the metrics show sim-

ilar trends. The lower drop in UWA compared to ground truth transcriptions was obtained
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using Google’s system. This can be explained by its lower word error rate as obtained for

the IEMOCAP dataset. Google’s and Wit.ai’s APIs have probably been trained on a large

amount of data so that the deep learning models used for ASR in both the APIs were more

generalizable giving us satisfactory performance on an unseen dataset. Wit.ai’s API seems

to perform worse than Google’s API in terms of UWA, but we should also keep in mind that

we are using different subsets of the dataset to evaluate the models. Also we are using less

data to train the pipeline using Wit.ai’s transcriptions (as explained in section 4.2.4) which

could also be one of the reasons for its worse performance. Having looked at the WER

of the two APIs, we now compare the average confusion matrix obtained over five cross-

validation sets for multi-modal systems using ground truth transcription vs ASR outputs

in Figure 4.7. It can be observed that class-wise accuracies are higher when ground truth

transcriptions are used as expected. Comparing models using Google API’s output with

that of using ground truth transcriptions, the absolute increase in percentage of ’happy’

samples being classified as ’angry’ and ’neutral’ is more than that of the ’sad’ class. This

could be because the arousal value distribution of ’happy’ utterances is more similar to

’angry’ and ’neutral’ than that of ’sad’ utterances (from Figure 4.1). When using Wit.ai

API’s output instead of the ground truth transcriptions we see more ’angry’ samples being

miss-classified as ’happy’ probably for a similar reason. The same is true when there are

more ’sad’ samples being miss-classified as ’neutral’ and ’happy’ when Wit.ai is used to

transcribe. These observations show that using worse quality transcriptions leads to more

confusion between classes with similar arousal values which points to the fact that audio

features contribute to the classification to a greater extent in such cases.
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Figure 4.7: Confusion matrix obtained from multi-modal systems using ground truth transcriptions
(left) and ASR transcriptions (right) using (a) Google’s and (b) Wit.ai’s API

4.4.3 Cross-corpus analysis

To verify the generizability of our model, we did a cross-corpus analysis where we

trained our model using IEMOCAP and tested it on MSP-IMPROV. We preferred IEMO-

CAP for training because it is more balanced. We have compared the performance between

an audio-only system and a multi-modal system using the generated transcriptions. The

tokenizer used in these experiments were generated from the IEMOCAP dataset. Doing

so would allow us to capture the cross-domain difference in their vocabulary. Utterances

in MSP-IMPROV for which we could not find any of the words in the tokenizer were not

used in the experiment. We see a similar trend where using ASR transcriptions along with

audio results in a better emotion recognition model. The Google based system gives a rela-

tive improvement of 9.8% and using Wit.ai’s ASR API results in a relative improvement of
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Table 4.2: Cross corpus results with IEMOCAP as training set and MSP-IMPROV as test set.
Model Google Wit.ai
Audio only 35.93 38.06
Audio + ASR output 39.45 40.08

5.2% compared to an audio-only model. However, the improvements weren’t as much as

observed in cross-validation experiments, possibly due to cross-domain differences in the

vocabulary of IEMOCAP and MSP-IMPROV.

4.5 Conclusion

Our experiments demonstrate that acoustic features help in detecting level of arousal

whereas the text based model helps in detecting valence level. Combining information

from both to build a multi-modal system seems to increase the class-wise accuracies. When

using ASR transcriptions instead of ground truth ones, audio features seem to contribute

more towards deciding which class an utterance should belong to. Deep learning based

ASR models trained on thousands of hours of data (Prabhavalkar et al. [95]) improves their

generalizability thereby giving us meaningful transcriptions for unseen datasets which we

can leverage to get higher cross-corpus accuracies. Hence, we can take advantage of the

genralizability of ASR models to improve the generalizability of emotion classification

models. In the future we plan to investigate the utility of articulatory features by incorpo-

rating them in our models. We also aim to explore various word embeddings other than

Glove or sub-word embeddings which are better at handling out of domain vocabulary

words. We also plan to look at ways we can get word embeddings specific for an emotion

recognition/sentiment classification task (Tang et al. [115]). It would also be interesting to

explore text features obtained using dictionaries used specifically for an emotion recogni-

tion/sentiment classification tasks. Additionally, we plan to explore novel ways to combine

the information from the audio and text modes in the multi-modal learning framework.
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Chapter 5: Generative models to capture the underlying distribution of

feature vectors

5.1 Introduction

Emotion recognition is a fairly widely researched topic. Some of the previous works

done by Williams and Stevens [124] and by Banziger and Schere [8] include use of F0

contours. In their survey paper, El Ayadi et al. [30] mention several features such as for-

mant features, energy related features, timing features, articulation features, TEO features,

voice quality features and spectral features useful for emotion recognition . Researchers

have also investigated various machine learning algorithms such as Hidden Markov Mod-

els (Lin and Wei [75]), Gaussian Mixture Models (GMM) (Hu et al [58]), Artificial Neural

Networks (Singh et al [111]), Support Vector Machines (SVM) (Ververidis and Kotropou-

los [122]) and binary decision trees (Lee et al [70]) for emotion classification. Recently,

researchers have also proposed several deep learning based approaches for emotion recog-

nition (Huang and Narayanan [59]). Stuhlsatz et al. [113] reported accuracies using a Deep

Neural Network on 9 corpora using Generalized Discriminant Analysis features to do a bi-

nary classification between positive and negative arousal and positive and negative valence

states. Xia and Liu [125] implemented a denoising auto-encoder for emotion recognition.

They captured the neutral and emotional information by mapping the input to two hid-

den representations, and later using an SVM model for further classification. Ghosh et al.

[38] used denoising auto-encoders and showed that the bottleneck layer representations are
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highly discriminative of activation intensity and at distinguishing negative versus positive

valence.

A typical setup in several of these studies involves using a large dimensionality of fea-

tures and using a machine learning algorithm to learn class boundaries in the corresponding

feature space. This design renders a joint feature analysis in the high dimensional space

rather difficult. Methods such as principal component decomposition (PCA) and linear

discriminant analysis (LDA) have been known to compress high dimensional feature into

lower dimensions. PCA aims to de-correlate the features by finding the axes with maximum

variance where the data is most spread, and then projecting the original feature vectors onto

those dimensions. LDA projects data-points onto axes so as to minimize the within class

covariance of the projected data-points but maximize the between class co-variances. More

details about these methods can be found in the book ”Pattern classification” by Duda et

al [29]. Auto-encoders (Baldi [6]) have also been used for similar tasks. The input high

dimensional feature vector is passed as input to a stack of neural network layers. The initial

part of an auto-encoder is known as encoder. It consists of a series of hidden layers with

the number of neurons in them decreasing from one layer to another. The final layer of

encoder called the bottleneck layer, has the same number of neurons as the dimension of

the compressed space. Assuming the encoding function is denoted by E, for an input x

the output of an encoder can be denoted by E(x). The second part of auto-encoder follow-

ing the encoder is called a decoder which renders the compressed representation back to

the original dimension through a series of neural network layers. Denoting the decoding

function by D, the final transform that the auto-encoder applies on an input x is given by

D(E(x)). The weights of the neural network layers are then updated by backpropagating

errors from a loss function which intends to make D(E(x)) as similar to x as possible either

by minimizing the mean square error between them or using a cross entropy loss func-

tion. PCA, LDA and auto-encoders have been investigated as dimensionality reduction
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techniques for speech emotion recognition (You et al [128] and Cibau et al [24]). However

the drawback of these methods is that even in the lower dimensions, it is hard to see struc-

tures or clusters being formed by the feature vectors belonging to same class. We train a

model that leverages label information to cluster the input vectors and then apply the com-

pressed representation on a test/validation set. We believe this type of a framework can

be useful in deciding the worth of features being used for a particular task. For example,

if the compressed features from both training and test sets cluster well according to the

categories they belong to, it means the features are well suited for the classification task. If

on the other hand it doesn’t cluster well for test set, it means they are not. We compare this

method with other traditional methods both qualitatively and quantitatively and investigate

their generalizability.

The next part of this chapter is focused on generative models. As mentioned before,

discriminative models learn a conditional distribution p(yi|xi), given a set of feature vectors

xi and the corresponding labels yi, i = 1..N. Generative models on the other hand model the

distribution of the classes. They aim to learn the joint distribution p(xi,yi). We implement

generative adversarial networks (GANs, proposed by Goodfellow et al [42]) based models

to learn the distribution of feature vectors used for speech emotion recognition. We define

metrics on how to compare the different models and investigate their generalizability and

applicability.

5.2 Generative adversarial networks

A generative adversarial network consists of two components: a generator, G and a

discriminator, D. Given a random sample z from a random probability distribution pz, the

generator is responsible for generating a fake data-point G(z). The discriminator attempts

to classify real samples x (drawn from a distribution pdata) against the one generated by
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the generator. Probability distribution pz is usually considered to be of lower dimensional

and simpler than the data distribution pdata. Popular choices include Gaussian or a uniform

distribution. The objective of training a GAN is to obtain a generator that can mimic

real data such that the discriminator is incapable of differentiating between real and fake

samples. GAN is trained using the following optimization on the GAN loss V (D,G).

min
G

max
D

V (D,G) = Ex∼pdata[logD(x)]+Ez∼pz [log(1−D(G(z)))] (5.1)

In the equation above, D(x) and D(G(z)) are the probabilities that x and G(z) are inferred

to be real sample by the discriminator. Note that in the optimization in equation 5.1, the

generator attempts to fool the discriminator as it tries to minimize V (D,G). During GAN

training, optimization of the loss function is achieved by updating the parameters of the

discriminator and generator networks in an iterative way. We minimize the discriminator

and generator losses as defined below and track them separately. Note that for discriminator

loss, y is 1 if input is x and 0 if input is G(z).

Disc. loss: − y log(D(x))− (1− y) log(1−D(G(z)))

Gen. loss: − log(D(G(z))),where x∼ pdata, z∼ pz

(5.2)

Figure 5.1 provides a block diagram of a GAN architecture. While a lot of work has

been done exploring the applicability of GANs for vision tasks, there are only a few such

works that has explored their utility for speech emotion recognition in recent years. In

[51], Han et al propose adding an extra GAN based adversarial loss term along with the

usual categorical cross entropy loss term to predict emotions from speech. Eskimez et al

[32] investigate unsupervised feature learning using various GAN and auto-encoder based

architectures for speech emotion recognition. In the next sections we discuss the variations

of GAN architectures we have used followed by our experiments and results.

70



Figure 5.1: Block representation of a GAN architecture. A GAN requires access to real samples
from a dataset and samples from a probability density.

5.2.1 Adversarial auto-encoders

Adversarial auto-encoders (AAE) proposed by Makhzani et al [79] have been shown

to perform quite well in digit recognition and face recognition tasks. We use adversarial

auto-encoders for emotion recognition in this paper motivated by their performances on

other tasks for feature compression as well as data generation from random noise sam-

ples. Speech emotion recognition involves working with high dimensional features which

can render a joint feature analysis in a high dimensional space rather difficult. Adversar-

ial auto-encoders address this issue by encoding a high dimensional feature vector onto a

code vector, which can be further enforced to follow a pre-defined probability distribution

function. This has been termed as mapping space distribution (MSD) in Figure 5.2. To the

best of our knowledge, this is the first such application of adversarial auto-encoders to the

domain of emotion recognition. We borrow a specific setup of adversarial auto-encoders

with adversarial regularization to incorporate class label information as has been shown

in Figure 5.2. An adversarial auto-encoder broadly consists of two major components: a

generator and a discriminator. In Figure 5.2, we show the generator at the top, which given

a sample x from the real data (e.g. pixels from an image, features from a speech sample)

learns a code vector for the data sample. We model an auto-encoder for this purpose, where
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the model learns to reconstruct x through a bottleneck layer. We represent the reconstruc-

tion for x as x′ in Figure 5.2. The discriminator (in the bottom half of Figure 5.2) obtains

the code vectors encoded by the auto-encoder as well as samples from MSD, and learns

to discriminate the encoded real samples from the MSD samples. The generator and the

discriminator operate against each other, where the discriminator attempts to accurately

classify real samples against MSD samples and the generator produces code vectors re-

sembling MSD samples to confuse the discriminator (so that the discriminator is not able

to distinguish real from synthetic inputs). They further proposed tricks such as, in a setting

where the samples x belong to different classes, the MSD is a mixture of Probability Dis-

tribution Functions with as many components as the number of classes. In our case it was

chosen to be a 2-dimensional 4 component (since our task is a 4-way classification) Gaus-

sian mixture with same co-variance matrices and their mean vectors orthogonal to each

other. The orthogonal means ensure that the different mixture components are maximally

separated. Furthermore, to enforce each component of the mixture PDF to correspond to

a class, the authors regularized the hidden code vector generation by providing a one-hot

encoding for the classes to the discriminator.

Our model is trained while the following two adversarial losses converge: (i) cross-

entropy is minimized for code vectors to be classified as MSD samples (implying encoder

is able to generate code vectors resembling MSD), and (ii) cross-entropy is minimized so

that the discriminator is able to classify between encoded samples and samples from MSD.

More specifically, while adversarial losses converge the parameters of the adversarial auto-

encoder are updated in the following iterative way:

• Weights of the auto-encoder (both encoder and decoder) are updated based on a re-

construction loss function. We chose this function to be Mean Squared Error (MSE)

between the inputs x and the reconstruction x′.
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Figure 5.2: A summarization of the adversarial auto-encoders. The generator at the top creates code
vectors. The discriminator learns to classify the code vectors generated from real data from the
synthetic samples. Label information is provided to discriminator so that samples from a particular
class are mapped to a specific mixture component of MSD

• The data is transformed by the encoder and we sample an equal number of samples

from MSD p(z). Weights of the discriminator are updated to minimize cross-entropy

to classify between encoded samples and samples from MSD.

• We then freeze the discriminator weights. The weights of encoder are updated based

on its ability to fool the discriminator (equivalently minimizing the cross-entropy for

real samples to be labeled as MSD samples).

Once trained, we can use the encoder to get compressed representations of higher dimen-

sional feature vectors. At the same time we can sample points from MSD, pass it through

decoder and generate synthetic feature vectors. The performances of an adversarial auto-

encoder in this regard are discussed later in this chapter.
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5.2.2 Data generating GAN

The main purpose of implementing an adversarial auto-encoder was to generate mean-

ingful lower dimensional representations from higher dimensional features. The synthetic

samples generated from the decoder of the auto-encoder was a useful by-product. While

we mapped the encoded samples to match a mapping space distribution with maximally

separated mixture components until adversarial losses converge, the only updates done to

the decoder (that generates synthetic samples given samples from MSD) were based on

the auto-encoder reconstruction error. A question that comes to mind is how realistic the

synthetic samples would be if we trained a GAN based model where a discriminator differ-

entiates between synthetic and real samples until adversarial losses converge. We discuss

such an implementation in this section. The architecture is similar to what has been shown

in Figure 5.1 with a few modifications. The real samples consisted of the high dimensional

feature vectors obtained from real data. pz was considered to be same as the pdf of MSD

in case of an adversarial auto-encoder i.e. a 2-dimensional 4 component Gaussian mixture

with orthogonal means and same co-variance matrix to ensure the mixture components are

maximally separated. Since, we consider our dataset to have four classes, we train the GAN

in such a way that each component of the mixture pdf when passed through the generator,

generates a synthetic sample belonging to a specific class. To ensure correspondence be-

tween the mixture components and classes, we provide the discriminator with an additional

input of one-hot label vector in the same way we did in case of adversarial auto-encoder’s

discriminator. For real data-points the one-hot label vector depicted its class whereas in

case of synthetic samples it depicted the mixture index of the 4 component Gaussian mix-

ture from which it was generated. The generator in our data generating GAN had the same

architecture as the decoder of our adversarial auto-encoder set up. To make sure the adver-

sarial errors converge, we had to incorporate some tricks. The changes incorporated were
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mainly to improve the generator: (i) Initializing the generator’s weight with the decoder’s

weight of a trained adversarial auto-encoder (ii) keeping the generator’s learning rate higher

than the discriminator (0.01 vs 0.001 respectively) and, (iii) training the generator for two

iterations for every iteration of discriminator training. The effects of these methods has

been discussed in more detail in Sahu et al [100]. We call this architecture dGAN 1.

One thing to note in this architecture is that pz was considered to be a mixture pdf based

on the number of classes we have. However, in most GAN applications it is considered to

be a simpler pdf like a normal or a uniform distribution. We modified our above GAN

architecture so that pz was now a normal distribution. We also modified it so that now it

was a conditional GAN (Mirza et al [82]) where along with providing the generator with a

sample z from pz we also provide it the class label that we want the generator’s output to

belong to. This was required as we did not have different mixture components to generate

data from for different classes. In addition we added an extra term to the GAN loss function

that maximizes the mutual information between the class label provided at the generator

input and the discriminator output. Since, implementing the actual mutual information loss

was intractable, we implement an approximation using variational technique as has been

discussed in Chen et al [20]. We note that only the parameters of the generator are modified

based on this mutual information loss function. We call this architecture dGAN 2.

While adversarial losses converge the parameters of the dGANs are updated in the

following iterative way:

• Points are sampled from pz and fed to generator to generate synthetic samples (along

with class labels in case of dGAN 2). Weights of the discriminator are updated to

minimize cross-entropy to classify between synthetic samples and real samples.

• We then freeze the discriminator weights. The weights of generator are updated

based on its ability to fool the discriminator (equivalently minimizing the cross-

75



Figure 5.3: Architectures for dGAN 1 (left) and dGAN 2 (right). Note that in case of dGAN 2 the
discriminator has a second output layer which predicts the class of the synthetic samples generated.
Mutual info. based loss is added while optimization so that the predictions are as close to the class
label being provided to the generator.

entropy for synthetic samples to be labeled as real samples). In case of dGAN 2,

an additional loss term based on mutual information is also considered to update

generator’s weights.

Once trained, we can sample points from pz and feed it to the generator (along with the

class labels in case of dGAN 2) to generate synthetic samples.

5.2.3 Adversarial auto-encoder with data generating GAN

The next set of GAN architectures we implemented was to get the best of both worlds by

combining adversarial auto-encoders with data generating GANs discussed in last sections.

Since, the generator of the data generating GANs in our case had the same architecture as

the decoder of adversarial auto-encoders, we simply combined the the two and trained them

jointly as shown in Figure5.4. Since the adversarial auto-encoder and the data generating

GANs are trained simultaneously, there was no need to initialize with the decoder’s weight

of a trained adversarial auto-encoder as was done in case of dGAN 1. Also instead of five,

the generator was trained for three iterations for every iteration of discriminator training.

We call the two architectures as AAE dGAN 1 and AAE dGAN 2 corresponding to the
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Figure 5.4: Architectures for AAE dGAN 1 (top) and AAE dGAN 2 (bottom). Note that there are
two discriminators now, one to learn the encoding space and one to generate data samples. While
in AAE dGAN 1, the encoding space is pre-defined to be a mixture of 4 maximally separated
Gaussians, in case of AAE dGAN 2 it is being learned from the training data provided using a code
generator block

data generating GANs they have been derived from. Note that AAE dGAN 2 has been

implemented by Wang et al. for computer vision tasks [123].

While adversarial losses converge the parameters of the AAE dGANs are updated in

an iterative way alternating between an AAE training phase and a dGAN training phase. In

the AAE training phase:

• Weights of the auto-encoder (both encoder and decoder) are updated based on a re-

construction loss function. We chose this function to be Mean Squared Error (MSE)

between the inputs x and the reconstruction x′.

• The data is transformed by the encoder and we sample an equal number of samples
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from pz. In case of AAE dGAN 2, the sampled points are also passed through the

code generator: block CG. Weights of the discriminator (D 1 in pictures) are up-

dated to minimize cross-entropy to classify between encoded samples and samples

obtained/derived from pz.

• We then freeze the discriminator (D 1) weights. The weights of encoder are up-

dated based on its ability to fool the discriminator (equivalently minimizing the cross-

entropy for real samples to be labeled as MSD samples).

In the dGAN training phase:

• Points are sampled from pz and fed to decoder (in case of AAE dGAN 1) or to

CG + decoder along with a class label (in case of AAE dGAN 2). Weights of the

discriminator (D 2 in pictures) are updated to minimize cross-entropy to classify

between synthetic samples and real samples.

• We then freeze the discriminator (D 2) weights. The weights of decoder (in case of

AAE dGAN 1) or to CG + decoder (in case of AAE dGAN 2) are updated based

on its ability to fool the discriminator (equivalently minimizing the cross-entropy for

synthetic samples to be labeled as real samples). In case of dGAN 2, an additional

loss term based on mutual information is also considered to update the weights.

Once trained, we can use the encoder to get compressed representations of higher dimen-

sional feature vectors. At the same time we can sample points from pz, pass it through

decoder (in case of AAE dGAN 1) or through CG + decoder along with a class label(in

case of AAE dGAN 2) to get synthetic feature vectors.

One thing to note is that unlike in case of AAE dGAN 1 where the coding space was

specified to be a mixture of 4 maximally separated Gaussians, in case of AAE dGAN 2
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the code generator block (CG) learns the coding space from the training data provided. We

next evaluate these models’ coding and synthetic data generating capabilities.

5.3 Comparison of various models’ performance

In this section we discuss the performances of the various various GAN based models.

The adversarial auto-encoder and the derived models (AAE dGAN 1 and AAE dGAN 2)

have an encoder that can project the higher dimensional features onto a lower dimensional

code space. At the same time they can also be used to generate synthetic features by

sampling points from a prior pz and passing it through the decoder. The other two GAN

based models dGAN 1 and dGGAN 2 have only the capability to generate synthetic data

points when we feed their generator with points sampled from a prior pz. After training the

models on utterances with emotions, we conduct two specific experiments: (i) judging the

encoder’s capability to project higher dimensional feature vectors onto lower dimensions in

AAE based models, (ii) judging the GAN based models’ capabilities to generate synthetic

data. We compare them with each other and with a traditional approach like fitting a GMM.

5.3.1 Features

We use the openSMILE toolkit to extract a set of 1582 dimensional feature vector [35].

This feature set consists of various functionals computed for spectral, prosody and energy

based features. Same feature set has also been used in several previous works including

the INTERSPEECH Paralinguistic Challenges [108]. Similar sets of spectral, prosodic and

energy based features has shown considerable success in emotion classification and affect

tracking [47].
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5.3.2 Projecting higher dimensional points onto lower dimensions

In this section we look at the encoders’ performance to project higher dimensional fea-

ture vectors onto lower dimensions. The goal of this experiment is to quantify the loss in

discriminability after compressing the original feature to a smaller feature subspace. We

compare the different AAE based models as well as using more traditional methods for

feature compression like PCA and LDA. We also implement a vanilla auto-encoder and

compare its compression quality with others. The encoder of the AAE based models im-

plemented have 1582 neurons in their input layer corresponding to the feature dimension.

It is followed by three hidden layers with 1000, 500 and 100 neurons respectively before

the samples are fed to a bottleneck layer with K neurons corresponding to the dimension

of the code space. This is followed by a decoder with 100, 500 and 1000 neurons in three

hidden layers followed by an output layer of 1582 neurons. The code generator in case

of AAE dGAN 2 had an input layer of 24 neurons which was fed samples from a 20 di-

mensional zero mean unit variance Gaussian distribution. The remaining 4 neurons were

used to provide the class info using a four dimensional one-hot vector, each neuron corre-

sponding to an emotion. This was followed by a hidden layer with 40 neurons followed

by an output layer with K neurons corresponding to the dimension of the code space. The

hidden layers in all these blocks had regularized linear (ReLU) activation while the bottle-

neck and output layers in all these blocks had linear activation. K was fixed at 2 for AAE

and AAE dGAN 1 where the prior pz was explicitly defined as mixture of four maximally

separated Gaussians, each mixture corresponding to an emotion. In case of AAE dGAN 2

where the code space is learned from data using a code generator block, we swept the value

of K among 2, 8, 64 and 256 to find the dimension of the code space that achieves the

best separation of the compressed feature vectors. We also experimented with training the

encoder and decoder of AAE dGAN 2 with and without L2 regularization. We discuss the
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effect of regularization below. The discriminator in AAE and the discriminators D 1 in

the AAE dGANs all had the same architecture. The input layer has K + 4 neurons, and

was fed with K dimensional samples from either the bottleneck layer of auto-encoder or

the samples derived from prior pz along with class label/mixture index using a four dimen-

sional one hot vector. This was followed by three hidden layers with 1000,500 and 100

neurons with ReLU activation and finally an output layer with one neuron with sigmoid

activation indicating whether the sample fed to the discriminator was from bottleneck layer

or whether it was a sample derived from pz. The discriminators D 2 in AAE dGANs has

the same architecture as D 1 except the input layer which takes in high dimensional feature

sets as input. There is also an auxiliary output layer with four neurons to predict the class

of synthetic samples which is used to compute the mutual information based loss. The

vanilla auto-encoder implemented for comparison purposes had the same architecture as

the architecture of the auto-encoder blocks in the AAE based models.

Single corpora setting

We use IEMOCAP dataset (Busso et al [13]) to run a leave-one-session out five fold

cross validation analysis. Since each session had independent speakers we ensure there is

no speaker overlap between training and validation sets. Since the individual feature values

lie over a wide range of values we do mean-variance normalization of both training and

validation sets. We use training data statistics to normalize the validation set.

For a specific cross-validation iteration, we train an AAE based model with the train-

ing set. Then we obtain the lower dimensional representations of the raw features for both

training and validation set using the trained encoder. Note that the AAE based models

aren’t being provided any label information while getting the lower dimensional repre-

sentations. In Figure 5.5, we look at the two adversarial cross-entropy losses namely the
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Figure 5.5: Discriminator’s (blue) and Generator’s (red) loss curves for training (left) and one of the
validation sets (right) for (a) AAE (b) AAE dGAN 1 (c) AAE dGAN 2

discriminator and generator losses for the three AAE based models. We plot these errors

per epoch on the training and the validation set during one specific cross-validation set for

all three AAE based models. We observe that the adversarial losses converge indicating

that the discriminator’s ability to discriminate is countered by generator’s ability to con-

fuse it. This trend is observed for both, training and validation sets, indicating that the

learnt parameters generalize well to data unseen during model training. We also observe

that the error seems to be converging the best for AAE dGAN 1 indicating their superior

coding ability. After we train the AAE based models, we use the encoder in auto-encoder to

compute the code vectors for the training set as well as the validation set. We then train an

SVM classifier on the openSMILE features as well as lower dimensional representation of

these features as obtained using the following techniques: Principal Component Analysis

(PCA), Linear Discriminant Analysis (LDA), an auto-encoder and finally the code vector

representations learned using the AAE based models. We learn and obtain these lower di-

mensional representations (PCA, LDA, auto-encoder and AAE based) of the openSMILE

features on the training set, which are then used to train the SVM model. The SVM param-

eters (box-constraint and kernel) are tuned using an inner-cross validation on the training

set. Since our goal here is dimension reduction, we keep the maximum dimension of these

representations during our experiments to be 256. We use Unweighted Accuracy (UWA)

82



Table 5.1: Cross-validation accuracies when the raw opensmile features or its compressed represen-
tations are fed to SVM. Metric used was UWA or mean class-wise accuracies

Features Dimension UWA
Raw opensmile features 1582 59.46

PCA on raw features

2 45.76
8 53.62

64 57.61
256 56.49

LDA on raw features
2 50.22
3 53.42

Vanilla auto-encoder

2 46.78
8 56.02

64 57.36
256 57.41

AAE with 4-mixture Gaussian prior 2 57.01
AAE dGAN 1 with 4-mixture Gaussian prior 2 57.78

AAE dGAN 2

2 33.89
8 50.59

64 56.14
256 57.06

as our evaluation metric which is basically the average of class-wise accuracies. This is

especially helpful in cases where all the training set doesn’t have equal number fo samples

from all classes. We list the results of the classification experiment in Table 5.1.

From the results, we observe that the performances of SVMs trained on the openSMILE

features and the code vectors are fairly close especially in case of AAE and AAE dGAN 1

where we compress the feature sets from 1582 to just 2 dimensions. This indicates that

the compressed code vectors capture the differences between the emotional labels in the

openSMILE feature space to a fairly high degree. We do not observe as high a performance

from any of the other feature compression techniques when we limit their dimensionality

to 2. AAE dGAN 1 slightly outperforms AAE which further confirms our observation

from Figure 5.5 that it has better coding capability. This is probably because while in case

of AAE, the parameters of the decoder are updated based only on reconstruction error,
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Figure 5.6: Effect of regularization on coding capability of AAE dGAN 2

in case of AAE dGAN 1 they are also updated based on the adversarial losses so as to

make their output resemble real features. Updating the parameters of encoder then based

on reconstruction error of the auto-encoder, makes it better at compressing the real sam-

ples onto K dimensions because they can probably generate more realistic samples when

passed through the decoder in case of AAE dGAN 1. We will verify this claim in a later

section. Methods such a PCA and compressing using vanilla auto-encoder achieve similar

performance when we increase the dimension of the compressed feature vectors. Same

is the case with AAE dGAN 2. The superior performance of AAE and AAE dGAN 1 as

compared to AAE dGAN 2 can be explained by the fact that while in the former cases

we explicitly define the code space pz to be maximally separated Gaussians, in the latter

there is no such explicit definition and learning the code space is data driven. Note that

the results for AAE dGAN 2 shown in Table 5.1 are when we use L2 regularization on en-

coder and decoder parameters while training them. Figure 5.6 shows the accuracies when

regularization is applied vs when its not and we can see clearly that regularization helps.

Although the results havent been reported, we note that regularization did not provide us

with any benefits in the other two AAE based models. This is probably because without

regularization, the code space learned while training in AAE dGAN 2 is too specific to the
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Figure 5.7: TSNE/scatter plots for samples in training (left) and validation (right) set for one of
corss-validation IEMOCAP splits (a) 1582-D raw Opensmile features (b) their 64-D PCA encodings
(c) 256-D encodings obtained from a vanilla auto-encoder (d) 2-D encodings obtained from AAE
(e) 2-D encodings obtained from AAE dGAN 1 (f) 256-D encodings obtained from AAE dGAN 2.
Note that the 2-D encoding from AAE and AAE dGAN 1 resemble the matching space distribution
which is a mixture of four 2-D Gaussians with orthogonal mean vectors.

training set and fails to generalize well for an unseen validation set. We don’t face this is-

sue with the other two AAE based models because the mapping space distribution has been

pre-defined to be a mixture of four maximally separated Gaussians. Figure 5.7 we show

the scatter/TSNE plots of clusterings obtained from models shown in bold in Table 5.1 for

one of the training and validation sets. We observe that AAE based models show almost

perfect clustering for training set unlike the non-AAE based methods. This is because of

providing label information to the discriminator explicitly while training them. The scatter
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plot of 2-dimensional encodings show that the validation set samples are also fairly sepa-

rable in case of AAE and AAE dGAN 1. Figure 5.7 provides a sense of the separability

of emotion labels by plotting the scatter/TSNE plots of the compressed feature space of

the 1582-dimensional openSMILE features. The classification experiments in Table 5.1

quantify this separability.

This low dimensional representation retaining the discriminability across classes pro-

vides a powerful tool for analysis in a low dimensional subspace, which is otherwise not

possible with a large feature dimensionality. The low dimensional representation could be

used for applications such as clustering as well as an “experimentation by observation”, as a

low dimensional code vector (in particular 2-D) allows plotting the emotion utterances and

analyzing them. We also note the fact that the auto-encoder allows reconstructing the fea-

tures from these code vectors. Therefore, a recovery of the actual utterance representations

is also possible, which is otherwise more lossy in other dimension reduction techniques.

Cross corpus setting

Having studied the ability of GAN based architectures to encode higher dimensional

features onto a lower dimensional space in a single corpora setting, we now move to per-

forming cross-corpus evaluations. The objective of this experiment is to investigate if a

GAN based model can produce meaningful lower dimensional encodings for an external

corpus. We use IEMOCAP for training and MSP-IMPROV [16] as our testing set. MSP-

IMPROV, like IEMOCAP, also has actors participating in dyadic conversations which has

then been segmented into utterances and annotated by evaluators. There are 7798 utterances

in total spanned across the same four emotion classes. However, the distribution across

classes was highly unbalanced with the number of utterances belonging to happy/neutral

class more than three times the number of angry/sad samples. This prompted us to use it
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Table 5.2: Cross-corpus accuracies obtained on MSP-IMPROV. Training of SVM is done using
either raw opensmile features or encoded version of higher dimensional raw features extracted from
utterances in IEMOCAP

Raw PCA Vanilla AAE AAE dGAN 1 AAE dGAN 2
opensmile auto-encoder

Dimension 1582 64 256 2 2 256
UWA 45.14 44.29 44.53 41.51 41.83 44.88

as a test set rather than training set. We only select a few of the models for cross-corpus

comparison, specifically the ones which performed better than others and whose results are

mentioned in bold in Table 5.1. From results in Table 5.2 we can make similar observa-

tions that using AAE and AAE dGAN 1 we can reduce the dimensionality significantly

without much loss in accuracy. However the loss in accuracy in cross-corpus case is more

compared to what we saw in cross-validation cases due to domain differences. Unlike

cross-validation experiments, higher dimensional encodings obtained from a vanilla auto-

encoder or AAE dGAN 2 or by using PCA seem to be a better representation than the 2D

encodings obtained from AAE and AAE dGAN 1. In Figure 5.8 we show the scatter plots

of the encoded features obtained from AAE and AAE dGAN 1. It shows the some amount

of separability is still maintained when features are compressed onto two dimensions. How-

ever the scatter plot for test set is highly populated with blue and magenta samples because

of higher number of neutral and happy samples in MSP-IMPROV.

5.3.3 Generative capability of GAN models

We next examine the possibility of synthetically creating samples representative of

utterances with emotions using the GAN based models we have trained. We generate

the synthetic vectors using the models discussed above i.e. AAE, dGAN 1, dGAN 2,

AAE dGAN 1 and AAE dGAN 2. For AAE, dGAN 1 and AAE dGAN 1 we randomly

sample points from prior pz which is a mixture of four Gaussians with orthogonal means.
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Figure 5.8: Scatter plots for 2D encodings obtained for MSP-IMPROV utterances for (a) AAE (b)
AAE dGAN 1. Models are trained using IEMOCAP.

For dGAN 2 and AAE dGAN 2 the points are sampled from a zero mean uni-variate 20

dimensional Gaussian distribution. Once the points are sampled they are passed through

the trained decoder of the auto-encoder in case of AAE and AAE dGAN 1 and through the

trained generator in case of dGAN 1 and dGAN 2. For AAE dGAN 2 it is passed through

the code generator block followed by feeding its output to the trained decoder. Note that

in case of dGAN 2 and AAE dGAN 2 the generator/code generator is also given the label

as input along with samples from the Gaussian prior. Please refer to Figures 5.2, 5.3, 5.4

for a visualization of the work flow of how the synthetic feature vectors were generated.

This synthetically generated vector thus is an openSMILE-like feature vector obtained by

passing a randomly sampled 2-dimensional code vector through the decoder/generator of

the GAN based models (and not directly obtained from an utterance from the database).

Note that in case of AAE, dGAN 1 and AAE dGAN 1 each GMM component was en-

forced to pertain to a specific emotion label through discriminator regularization using the

one hot label vector. The labels for the synthetically generated samples is assigned to be

the same as the GMM component label used to sample the code vector. In case of dGAN 2

and AAE dGAN 2, the synthetic vectors are assigned the label which was fed to the gen-

erator/code generator block along with samples from the prior. Note that while in case
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of AAE the decoder’s parameter is only updated based on reconstruction error, in case of

dGANs the generator’s parameter are updated based on the adversarial losses. In case of

AAE dGANs we use both reconstruction error and adversarial losses to update the decoder

parameters. In Figure 5.9 we show the reconstruction error curves for AAE, AAE dGAN 1

and AAE dGAN 2 and adversarial losses for dGANs and AAE dGANs for training and

validation set belonging to one of the cross-validation experiments. We observe that while

the reconstruction errors decreases, the adversarial error converges indicating that the dis-

criminators ability to discriminate between real and synthetic data points is countered by

generators ability to confuse it. This trend is observed for both, training and validation sets,

indicating that the learned parameters generalize well to data unseen during model training.

While the convergence of loss functions are a helpful tool to judge the training of GANs,

we can’t judge the quality of synthetic samples being generated. To this end we perform

two experiments explained below:

• Using real samples as training set and synthetic data as test set. The objective of

this experiment is to assess the similarity between real and synthetic data by using

a model trained on real data to classify synthetic data. This would give us an idea

about the quality of the synthetic data. However, it may so happen that all or majority

of the generated samples belong to the same or only a few of the class (called mode

collapse Arjovsky et al. [5]) or even if we get samples from all modes/classes there is

not much variance within samples belonging to the same class i.e. they are not a good

representation of the class to which they belong because it will be under represented.

• Using synthetic samples as training set and real data as test set. This experiment

will give us an idea which model produces samples that are good representations of

all the classes. This measure would reflect the diversity of synthetic data. In other

words, the classifier trained using synthetic samples form a GAN model that’s liable
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Figure 5.9: Reconstruction or adversarial errors (discriminator’s (blue) and generator’s (red) er-
rors) for one of the cross-validation splits (a) AAE (b) dGAN 1 (c) dGAN 2 (d) AAE dGAN 1 (e)
AAE dGAN 2. a(i), b(i), c(i), d(i,iii), e(i,iii) belong to training set while a(ii), b(ii), c(ii), d(ii,iv),
e(ii,iv) belong to validation set

to mode collapse would perform poorly. Note that the test set in this case should have

real data samples from all classes.

Single corpora setting

We perform the above experiments on IEMOCAP in a speaker independent cross-

validation setting. For each cross-validation split, lets call the training set used to train

the GAN model as set-1 and the validation set as set-2. The real samples mentioned in

above three steps can either come from set-1 or set-2. We can use synthetic data points as
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training set and use wither set-1 or set-2 as test set. Similarly, we can use set-1 or set-2 as

training set and synthetic samples as test set. Finally we can append set-1 with synthetic

data points to train a classifier and evaluate it on set-2. The purpose of using set-1 for ex-

periments is to judge how the synthetic samples compare to the real samples that were used

to train the GAN generating them. With set-2 we intend to determine how the synthetic

samples compare to real samples obtained from utterances involving new speakers. We

choose SVM as classifier and as before the SVM parameters (box-constraint and kernel)

are tuned using an inner-cross validation on the training set. The metric used is UWA.

We report the average UWA over the five cross-validation splits. We generate 6000 syn-

thetic data-points which is almost the same number of data-points in the entire IEMOCAP

set that we consider for our experiments. We show the results for the different train and

test conditions in Table 5.3. Since, it is a 4-way classification chance accuracy should be

1
4 = 25%. We note that the accuracies obtained using the dGAN models are either equal to

or very close to that number which indicates that the data generated using those models are

as good as sampling random points from 1582 dimensional space. The results are however

more interesting for AAE based models which shows the importance of auto-encoders in

the GAN based models. It can be seen that results obtained for set-1 are better than that for

set-2. This is expected as set-1 was used to train the GAN models and hence the generated

data should be more like set-1 than set-2 which has independent speakers than set-1. It

can be observed that using synthetic data produced by AAE dGAN 1 gives us better re-

sults than that produced by AAE which is probably because how the decoder is trained.

While in case of AAE decoder parameters are updated based only on reconstruction loss,

in case of AAE dGAN 1 the parameters are updated based on an additional adversarial

loss that determines how close it is to real data. We hypothesize that this extra update is

what leads to better synthetic sample generation by AAE dGAN 1 that also generalizes

better for unseen speakers. Another interesting thing to note is the characteristic of syn-
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Table 5.3: Cross-validation accuracies (%) obtained using different combinations of data-sets for
training and evaluating a classifier. Set-1 refers to the training set of a cross-validation split used to
train the GAN model while set-2 refers to the validation set.

Train : Set-1 Train : Synthetic Train : Set-2 Train : Synthetic
Test : Synthetic Test : Set-1 Test : Synthetic Test : Set-2

AAE 85.60 48.58 72.52 45.89
AAE dGAN 1 88.41 49.91 74.75 46.96
AAE dGAN 2 55.20 52.24 45.63 51.58
dGAN 1 25.26 25 25 25.28
dGAN 2 25 25 25 25

thetic data generated using AAE dGAN 2. When used as test set, the classifiers trained

on real data are unable to classify them as good as they classify samples generated from

AAE and AAE dGAN 1. However, training a classifier on synthetic data obtained from

AAE dGAN 2 performs better at classifying real data-points than a classifier trained on

samples generated from AAE and AAE dGAN 1. This indicates that data generated using

the model AAE dGAN 2 has more diverse samples than data generated using AAE and

AAE dGAN 1. The difference lies in the prior pz from which points are sampled to be fed

into the decoder to generate synthetic samples. While in case of AAE and AAE dGAN 1 it

is pre-defined to be a mixture of four Gaussians, in case of AAE dGAN 2 the GAN model

learns it during training. The coding space of AAE dGAN 2 also has more dimensions

(256) than AAE and AAE dGAN 1 (2). This provides the decoder with a wider range of

input samples which probably leads to diverse synthetic data-points.

Lower dimensional visualizations of synthetic data

To further analyze the synthetic data samples, we plot the t-SNE embeddings of real

data and data generated from AAE, AAE dGAN 1 and AAE dGAN 2. From Figure ??

we observe that while majority of the synthetic data lies in the space spanned by the real

data, we also see some samples in the space not spanned by the real data. We believe
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Figure 5.10: Comparison of t-SNE embeddings of real data with synthetic data generated using the
three AAE based GAN models for one of the cross-validation splits of IMEOCAP.

such samples when used to train a classifier along with real data, will supplement the per-

formance of the classifier by providing it with extra information. We look at this aspect

briefly when we do cross-corpus experiments. We observe that the data generated by AAE

models with pz as mixture of four Gaussians has similar t-SNE plots and quite different

from the data generated by AAE dGAN 2 where pz is Gaussian. We note that synthetic

data generated using our models also come with their corresponding labels. In Figure ??

we observe the class-wise clustering of the synthetic samples with each color representing

one class. We note that the clustering of samples obtained from AAE and AAE dGAN 1

is quite different from that of obtained from AAE dGAN 2. This is probably because of

the way we are enforcing the condition that generated samples should fall into four distinct

classes. While in case of AAE and AAE dGAN 1 it is enforced by selecting a mixture

of Gaussian prior with orthogonal means, in case of AAE dGAN 2 it is enforced by max-

imizing the mutual information between generated data and the labels being fed to the

code generator block which generates those samples. The distinct clusters seen in case of

AAE dGAN 2 suggest that it produces samples that have higher between-class discrim-
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Figure 5.11: Class-wise clustering of the synthetic data generated using AAE (left), AAE dGAN 1
(center) and AAE dGAN 2 (right). Each of the four color represents a specific class

inability to AAE and AAE dGAN 1. On the other hand in case of AAE dGAN 2, the

embeddings of the synthetic samples belonging to the same class are concentrated over a

small circular region as compared to the embeddings of samples generated from the other

two models suggesting lower within-class variability in case of AAE dGAN 2. We also

pass the synthetic samples through the trained encoder of AAE dGAN 1. We re-iterate

that the encoder of AAE dGAN 1 was trained to project the higher dimensional feature

vectors onto two dimensions with the coded space resembling mixture of four Gaussian

with orthogonal means. The scatter plot for various models are shown in Figure 5.12. We

see a significant amount of overlap across classes for data-points obtained from dGAN

models which explains their substandard performance. Looking at the ’angry’ (red) and

’sad’ (green) synthetic samples obtained from AAE and AAE dGAN 1, we observe that

their variance is only along one dimension unlike the ’angry’ and ’sad’ samples obtained

from AAE dGAN 2. The ’happy’ (magenta) samples also seem to have more variance in

case of AAE dGAN 2 compared to the other two models. The ’neutral’ (blue) samples

seem to be overlapping to a greater extent with ’happy’ and ’sad’ samples in case of AAE
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Figure 5.12: Scatter plot for the encoded points obtained for synthetic data generated using (a) AAE
(b) dGAN 1 (c) dGAN 2 (d) AAE dGAN 1 (e) AAE dGAN 2

and AAE dGAN 1 than AAE dGAN 2. Hence, we hypothesize that a classifier trained

with the more diverse synthetic samples obtained from AAE dGAN 2 is better at classify-

ing real data points than the other two AAE based models.

Cross corpus setting

Having studied the convergence of GAN architectures and evaluating the quality of syn-

thetically generated samples produced by them in a single corpora setting, we now move to

performing cross-corpus evaluations. The objective of this experiment is to investigate how

well the synthetically generated samples generalize for classification tasks on an external

corpus (as opposed to being applicable for only in-domain tasks). We generate the synthetic

samples from GAN models trained using the entire IEMOCAP dataset. Since, synthetic
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data obtained from trained dGAN models didn’t give us better than chance accuracy in

cross-validation experiments, for cross-corpus experiments we only train AAE based mod-

els. As before, we conduct two experiments (Table 5.4). First, use the synthetic dataset as

training set and MSP-IMPROV as test set. This was followed with using MSP-IMPROV to

train a classifier and evaluating it on synthetic data. We observe that evaluating a classifier

that has been trained on MSP-IMPROV to classify the synthetic sets shows higher accura-

cies when the synthetic samples are generated using AAE dGAN 1 and AAE dGAN 2 that

the AAE based models where decoder is receiving an extra adversarial error to update its

parameters produces more generalizable samples. On the other hand, evaluating different

classifiers which has been trained using synthetic samples generated from different AAE

based GAN models perform almost similarly in classifying samples from MSP-IMPROV.

This is probably because of the differences in distributions of utterances belonging to dif-

ferent classes in MSP-IMPROV and the synthetic data sets. While the synthetic data is

balanced with respect to all the classes, MSP-IMPROV has more happy and neutral sam-

ples compared to angry and sad. Hence, the classifiers trained on different synthetic sets

make similar mistakes when it comes to classifying the evaluation set leading to similar

mean class-wise accuracies.

Finally we investigate the feasibility if using the synthetic feature vetors along with real

data in low resource conditions. To start with, for our baseline classifier we train a SVM

on IEMOCAP data and tested it on MSP-IMPROV. Then we added 600 synthetic data

samples generated from the AAE based models and look for any improvement in accuracy.

As Table 5.5 shows we indeed see a minor improvement in accuracy when synthetic data

is used along with real data. Further experiments are needed to determine the applicability

of synthetic data for training models in low resource conditions
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Table 5.4: Cross-corpus accuracies obtained on MSP-IMPROV. Synthetic data is generated from
GAN based models trained on IEMOCAP

Train : MSP-IMPROV Train : Synthetic
Test : Synthetic Test : MSP-IMPROV

AAE 42.07 38.3
AAE dGAN 1 51.93 38.61
AAE dGAN 2 49.53 37.72

Table 5.5: Training using IEMOCAP with and without synthetic data and test on MSP-IMPROV.
Note that we see aminor improvement in accuracy when synthetic data is used along with IEMO-
CAP. Each column represents the model from which synthetic data was generated.

Baseline AAE AAE dGAN 1 AAE dGAN 2
31.01 32.08 32.52 32.32

5.4 Conclusion and future work

Automatic emotion recognition is a problem of wide interest with implications on un-

derstanding human behavior and interaction. A typical emotion recognition system de-

sign involves use of high dimensional features on a curated dataset. We implemented

GAN based models which can encode the higher dimensional features onto a lower di-

mensional space. At the same time, they are also generative models that can provide us

with synthetic feature vectors. We establish that the code vectors learnt by the adversarial

auto-encoder can be obtained in a low dimensional subspace without losing much class

discriminability in the higher dimensional feature space. Having a pre-defined code space

pz with maximally separated components seem to encode the higher dimensional features

more efficiently than if we try to learn the encoding space from data. We also observe that

synthetically generated samples from these models do seem to retain relevant class infor-

mation. Additionally from our experiments we found that updating the decoder parameters

with adversarial error along with reconstruction error seems to generate ”better” synthetic

samples. It is encouraging to see these results given limited datasets that we have exper-
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imented with (IEMOCAP has around only 7 hours of training data). With more data it is

expected that GANs will be able to learn a more generalized distribution/manifold where

the openSMILE feature vectors lie. The experiments show that a generator’s job to esti-

mate a more complex PDF from a simpler PDF is more complex than a discriminator’s

job which is to distinguish between fake and real samples. Hence, we had to incorporate

tricks like updating the generator more times for a single update of discriminator or keep-

ing the learning rate of generator more than that of a discriminator. All our GAN models

enforce the conditio that the generated data should belong to four distinct classes. We ob-

serve that enforcing that clustering by implementing an infoGAN framework rather than

specifying a Gaussian mixture prior with orthogonal means leads to generation of samples

with inter-class variability but low within class variability. Cross corpus results showing an

improvement in accuracy when real data is appended with synthetic data suggests that the

synthetic samples could be generalizable across datasets with different priors. This opens

up the possibility of using them in low resource conditions.

In future, we plan to investigate auto-encoder architectures that can be fed frame level

features instead of utterance level features. We believe temporal dynamics of feature con-

tours can lead to better classification results. It will also be interesting to study the effects

of weighting the two updates that the decoder in AAE dGAN 1 and AAE dGAN 2 re-

ceives (one from reconstruction error of the auto-encoder and one from the adversarial

error determining how well it can fool a discriminator into believing its output is are real

datapoints). We can also investigate trying different loss functions to train the GAN based

models. Wasserstein GAN [5] has been very popular in recent years. It uses earth-mover

distance instead of Jensen-Shannon divergence (used by traditional GANs, Arjovsky et al.

[4]) to learn a complex PDF from a simpler one and has been shown to be better at handling

the mode collapse problem. Another interesting avenue could be to explore the usage of

synthetic data generated as additional training samples in low resource settings. A more
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detailed study needs to be done to determine their applicability in low resource conditions.

For example, we can vary the amount of synthetic data in the training set and see how it

affects accuracy. While too less of synthetic data probably wouldn’t give us any advantage,

using too much of synthetic data might not be ideal because we want the model to be trained

mostly on real data. Finally, the GAN based architecture can also be used in analysis of

other behavioral traits such as engagement [46] jointly with the emotional states.
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Chapter 6: Future directions

This dissertation investigates the ways in which we can enhance the generalizability of

speech emotion recognition models so that they perform better on evaluating the emotions

of unseen speakers and cross-corpus tasks. We start off with discussing ways to improve

discriminative models and then move on to talk about generative models. Our first approach

to boost the performance of discriminative models using only audio features was based on

regularization approaches and manifold learning techniques. We found that adversarial

examples based manifold learning techniques can lead to more generalizable models. Fur-

thermore, supervised approach led to better results than semi-supervised approaches. At

the same semi-supervised approaches where the adversarial examples were found without

using the label information did not lead to significant improvements. This could be because

of the limited training data available to us (approximately 7 hours as compared to hundreds

or thousands of hours used to build models used for commercial applications). However,

audio features can only help so much. The reason behind this was because while audio

features can help detect the arousal or intensity level of a speaker, they fail to do well in

detecting the valence or pleasantness of an utterance. Since, the words used by a speaker

can tell us about their sentiments, we leveraged the text transcriptions and used them to

build a multi-modal system utilizing both audio and text features for emotion recognition.

We observed that while audio features helped with arousal detection, text features indeed

helped with valence detection with the multi-modal system out-performing both these uni-

modal systems. Since, our end goal was to come up with a pipeline that utilizes only
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speech as input, we used existing deep learning based ASR API’s trained on thousands of

hours of data to get the transcriptions. We then compared the performances of systems

using audio features along with ASR transcriptions with that of using audio features with

ground truth transcriptions. While we see a deterioration in performance as expected, using

ASR transcriptions along with audio features as opposed to using only audio features gave

us an absolute improvement of around 10% in our within-corpus cross-validation study.

Moreover, we also saw improvements in cross-corpus study showing that these models

are indeed generalizable across cross-corpus differences appearing due to recording con-

ditions, label space, speakers and annotators. Having investigated ways to improve the

generlizability of discriminative models, our next step was to focus on generative models.

Generative models could be helpful in understanding the underlying process that generated

the data. We can set the model parameters so that we can generate synthetic data that can

potentially be used to train models in low resource conditions. We used auto-encoder and

GAN based architectures to do so. Not only did we measure the quality of synthetic data

generated, we also investigated their ability to encode higher dimensional feature vectors

onto lower dimensions. The quality of these encodings was judged by how distinguishable

they are as compared to the original higher dimensional raw feature vectors. We compared

different architectures with different loss functions to generate synthetic feature vectors

from samples obtained from lower dimensional priors. While one of them only used the

reconstruction error as seen in auto-encoders, couple of them used only GAN based ad-

versarial errors. Finally, we implemented architectures using both of them. Additionally

we also investigated the effect of having a pre-defined prior vs having a data-driven prior

from which synthetic samples are generated. We also defined metrics and visualizations

to judge the quality of synthetic feature vectors generated. We found that the quality of

the synthetic vectors obtained from architectures using only reconstruction error was better

than those using only adversarial error. But it was best for the architectures whose parame-
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ters were updated using both these errors showing that they were complimentary. From our

within-corpus speaker independent cross-validation experiments we concluded that using

a data-driven prior learned from training data produces more generalizable samples. How-

ever, with cross-corpus experiments it did not matter as much. The error functions used to

update the parameters seemed to matter more in this case. We next list out some potential

future directions we can extend this work to.

6.1 Appending low volume datasets with adversarial counterparts

More the amount of training data, better is the performance of deep learning algorithms.

To that end, researchers in computer vision community resort to data augmentation tech-

niques such as cropping, rotating and flipping input images etc (Wang and Perez [93]). In

speech emotion recognition where limited data-sets are usually an issue, data augmentation

techniques can be handy. One method could be augmenting the training data set with their

respective adversarial counterparts. As mentioned in chapter 3, we can find the perturbation

vector ri
a for every data-point xi using the equations 3.17 and 3.18. We can then add the

perturbation vector to the actual data-point to get its adversarial counterpart. The ground

truth label for the adversarial counterpart can be considered to be same as that of the actual

datapoint following the smoothness assumption which states that the resulting conditional

distribution p(yi|xi) is desired to be smoothly varying over the inputs xi (Huang et al. [60]).

In chapter 3, instead of appending the dataset, we enforced this assumption by regularizing

the loss function of the neural network. It would be interesting to see how appending a

dataset with its adversarial counterparts instead of loss function regularization affects the

training and generalization of the model. We can also compare the effect of augmenting

the dataset by adding random perturbations to actual data-points rather than finding the

adversarial perturbation. We think data augmentation using adversarial counterparts would
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be more beneficial than augmentation by adding random noise vectors. We saw a similar

trend in Figure 3.4 with the model performing better when regularization was carried out by

adding adversarial perturbation as opposed to random perturbation to the input datapoint.

Another interesting experiment could be to generate such adversarial examples using a

GAN based framework as proposed by Xiao et al. [126] and augment the training dataset

using such examples. The purpose of [126] was however not data augmentation but to

generate adversarial examples of high perceptual quality that a traditional classifier trained

on real unperturbed images would fail to classify. They compare their method with other

methods that generate such adversarial examples. In their approach, instead of computing

the perturbation vector ri
a for every data-point xi explicitly, they train a GAN to do so.

While the generator generates the perturbation given an input image, the discriminator

tries to distinguish between the input image and the perturbed image obtained by adding

the perturbation to the input. Training this GAN architecture would make the perturbed

images look like real images. At the same time, they also include another term to their loss

function that encourages these perturbed images to be miss-classified (not being classified

as input image’s class) by a trained classifier. This can be done by maximizing the distance

between the prediction of the classifier and the ground truth. Note that the parameters of

the trained classifier aren’t updated while back-propagation. Only the parameters of the

generator is updated during this process. This would encourage the generated images to

be an adversary of the actual image. They trained their network using image datasets and

claim once the generator is trained, it can generate perturbations efficiently for any image.

They show perturbed images which look exactly like the images they have been generated

from which is miss-classified by a classifier trained only un-augmented dataset. It would

be interesting to investigate the effect of such a data augmentation technique for speech

emotion recognition.
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6.2 Emotion recognition on real world datasets

The experiments presented in this thesis till now has been on acted datasets. While it

is easier to collect it would be more realistic to train and evaluate our models on real word

datasets. We have done a pilot study on a couple of call center conversations provided

to us by Hughes telecommunications that involved affect detection based on audio and

sentiment analysis based on text to analyze how the calls went. For audio based affect level

detection, we trained two convolutional neural network based architectures, one for valence

and another for arousal detection using 3 second speech samples from two acted corpora

available to us namely, IEMOCAP and MSP-IMPROV. The arousal and valence levels of

the resulting utterances have been annotated by various annotators on a Likert scale of 1-

5, with their average being considered as the ground truth rating. For our experiments,

speech samples with arousal/valence rating < 2.5 were labelled as low arousal/valence

and anything with arousal/valence rating > 2.5 as high arousal/valence. In total we have

approximately 7 hours of speech that was used for training the models and performing a

binary classification between high/low arousal or high/low valence with the two soft-max

activated neurons in the final layer of the model giving us the probability of a speech sample

belonging to each of the two classes . We performed a speaker independent cross-validation

(i.e. there is no overlap of speakers between training and validation set) to fix the hyper-

parameters of the network. The cross-validation accuracy obtained for arousal detection is

around 85%, whereas for valence it is only around 63%. These results are consistent with

the findings in chapter 4 where we have shown that models trained using audio data work

better for arousal level detection than for valence level detection.

The first step in analyzing the Hughes data consisted of speaker diarization which was

done by hand for the purpose of this study. Second, the data for the customers and the

representatives was divided into 3 second chunks that were then passed through the model
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separately. We extract Mel filterbank based spectrograms for the utterances with a frame

interval of 0.5 seconds. This data is fed to our pre-trained models to obtain the probability

of the utterance being high arousal/high valence. Since, there were no ground truth anno-

tations of the call center conversations for their arousal and valence levels, our analysis are

based on our own perceptions of affect and sentiment. The representatives in the conversa-

tions were always calm. An example is shown in Figure 6.1 where the spectrogram and the

arousal plot are shown for a 3 second segment of speech from the representative in one of

the phone calls. Note that there appears to be a shift in the data plot vs the audio because

each point in the former is plotted at the center of the 3 second window. That is, a data

point at 1.5 seconds shows the value for a window ranging from 0-3 seconds. As can be

seen, the probability of being aroused never exceeds 0.2, indicating that the representative

was calm while speaking, a result we have verified by listening to the utterances. As in the

example above, the representatives in both of the calls provided are perceived to be calm

by us throughout the call and the arousal values we get confirm this impression except in 6

out of 1087 3-second turns when the probability of being aroused exceeded 0.5 (for these

cases, the values always lie between 0.55 to 0.77). This results gives an accuracy of 99.4%

in detecting low arousal calls belonging to the representatives. Being able to detect that the

representatives are calm based on the audio is especially important. The speech of the rep-

resentative in one of the calls was not recognized correctly by Google’s ASR API for most

of the call, presumably because of his accent. It is likely the case that many representatives

will have an accent which may make textual analysis ineffective.

In Figure 6.2, we show an example from the customer in the 25 minute phone call who

was sometimes annoyed. For this particular segment, she is annoyed about her internet bill

increasing and we can see the arousal detector evaluating it to be a high arousal utterance

towards the end of the utterance. Listening to the turn confirms the fact that her voice in-

deed becomes louder and annoyed towards the end of the conversation. The transcription
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Figure 6.1: Spectrogram and plot of arousal probability of a call center representatives utterance.
The higher the value, the more aroused is the speaker. Its fairly low values indicate the person
remained calm during the call

Figure 6.2: Customer’s response where the arousal tends to rise towards the end of her sentence.
The arousal values are marked with an arrow at the bottom for the boxed region

of the audio with the more aroused portion written in bold is: ”Okay (stammers) they had

somebody come out here (stammers) that was just a thing (unclear), I called yall coz my

bill went up”. Altogether, the customer in the 25-minute call had 28 conversation sides

that were at least 3 seconds long. Out of the 28 utterances, 14 were judged by us as being

low arousal, while we felt the remaining had some portions that we would consider high

arousal. Of the 14 low arousal calls, our model predicted 12 of them correctly with it show-

ing low arousal probabilities throughout the utterance. For one of the other two calls, it is

the case that while the customer does not appear to be aroused, she was clearly bothered

and it is this part of the utterance where the arousal detector had high values. Of the 14
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Figure 6.3: Valence probability plot for two utterances for when the customer laughs (left) vs when
she doesn’t (right). Higher value shows the person is more pleasant. Note that there is an increase
in valence in case of laughter.

conversation sides that had certain high arousal parts within them, our model failed to find

any high arousal regions in four of them. In all of these four utterances, the relevant aroused

portion was only about 3 seconds long which means the algorithm had little data to predict

the arousal values. For the second phone call, the arousal detection of half of 6 conversa-

tion sides for the customer confirm our perception. The arousal detector gives high values

in the beginning of the call when she introduces herself and during an utterance when she

laughs. On the other hand, the arousal value declines when she faintly says ”okay thank

you”. However, in the remaining three conversation sides, the model mistakenly detects

high arousal during portions of the utterances. The performance of valence detector wasnt

as good as we would like. However, there was an interesting result that we show in Fig-

ure 6.3 where we contrast two situations, one where the valence profile rises and one where

the valence profile stays low. In the one to the left, the valence profile rises when she starts

to laugh. In the one on the right, she is making a statement of why she has made the call.

Transcriptions are provided in the boxes. Overall we felt the arousal detector performed
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reasonably well especially given it was trained on acted and improvised speech. Thus, we

feel it would be significantly more accurate if it is trained on actual call center conver-

sations. This should also be the case for the valence detector and we believe it is worth

exploring whether using matched data would improve its performance to a level where it

will be useful. Furthermore, we also obtained ASR transcriptions from Google’s API and

used it for sentiment analysis of the conversations. We used term frequency-inverse docu-

ment frequency (Ramos [97]) also called tf-idf that depicts the importance of a word in a

corpus as the value of it is increased proportionally to the number of occurrences of that

word in the document (in our case, one side of the conversation), but will be offset by how

many documents contains that particular word. For our purpose, a document is one side

of a telephone conversation. Then we used the SentiWordNet corpus (Esuli and Sebastiani

[33]) in Pythons Natural Language Toolkit to evaluate the sentiment of a particular word

in the given context by assigning them a positivity or negativity score. The overall positive

and negative score for a response was computed by weighing each of its constituent word’s

sentiment score by their tf-idf score and adding them. The sentiment analysis metric was

computed by taking the difference between the positive and negative scores of the response.

If the metric is less than 0, the response is classified as having a negative sentiment, and as

having a positive sentiment otherwise and the magnitude gives an idea of the strength of

that overall sentiment. Based on these values, we concluded that the customer in one of the

calls had a negative sentiment while the representative in that conversation had a slightly

positive sentiment. From listening, we feel that the representative handled the situation

well. For the other call, both the customer and the representative had positive sentiment

scores indicating the call went through without a hiccup which was indeed the case.

Our next step in this study is to use in-domain call center conversations to train the affect

recognition models. We have been provided with 75 phone conversations which we had

diarized using pyAudioAnalysis [39] and chunked into 5 second segments. Currently we
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are in the process of getting annotations that we can use as ground truth labels to train the

emotion recognition models. Apart from getting the annotations for arousal and valence,

we are also asking the annotators to categorize the utterances into one of the four classes

relevant to the task at hand namely angry, calm, frustrated and pleasant. Moreover we

have also asked the annotators if they can hear just one speaker or they can hear multiple

speakers in that 5 second segment which can be used to evaluate the diarization system.

6.3 Connecting depression detection and emotion recognition

In [99], we talk about an Average Magnitude Difference Function (AMDF) based fea-

ture that quantifies the voice quality features such as jitter (change in pitch across pitch

periods), shimmer (change in amplitude across pitch periods) and breathiness (amount of

aperiodicity in voiced regions) that showed promise for the task of depression detection.

We believe these features capture the psychomotor retardation present in a depressed per-

sons speech. It was found that in general, depressed voice has more jitter, shimmer and

sounds, more breathy. The dataset we used was the Mundt database [84] which include

speech data collected from 35 physician-referred patients undergoing treatment for depres-

sion. The patients were assessed weekly once over a period of 6 weeks. We used both

the sustained vowel sounds (four vowels a, i, ae, u held for 4-5 seconds each) and the free

flowing utterances where the patients talk about their emotional state, physical state and

their ability to function for our study. The decision whether a person was depressed or

not was determined by using the Hamilton Depression (HAM-D) score [50] which ranges

between 0-26, with higher score implying more severe depression. Sessions with scores

greater than 17 were considered to be ones where the patient was depressed and sessions

with score less than 7 were considered to be ones where the patient was not depressed,

while the session with intermediate scores were considered ones where the subjects mental
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state was ambiguous and so their data was not included in the study as has also been done

by Helfer et al. [56]. We only used the data from six patients who underwent a change

in their depressive state which was reflected by a decrease in their HAM-D scores. Since,

we didnt have a lot of data we build a speaker dependent classifier i.e. the training and

test set had speaker overlap. We used support vector machines (SVM) as classifiers. We

used voiced frames from the free flowing utterances for training the SVMs and reported an

utterance wise classification accuracy of 77.8%. At the same time, it was also found that

the AMDF based features can be useful for the task of emotion classification by Ko and

Espy-Wilson [67]. Using the emotion database from USC that also contains electromag-

netic articulography measurements [72] it was shown that using the AMDF based features

together with Mel Frequency Cepstrum Coefficients(MFCC) and pitch related features led

to a better performance in comparison to the openSMILE toolkits emobase feature set. It

not only improved the overall accuracy by 3.3% but also greatly reduced the feature space

by 72%. Caruana [17] defines two tasks to be similar if they use the same features to make

a decision. Based on the results we got from the above two experiments we can conclude

that the task of emotion recognition and depression detection are similar because the same

AMDF features helped us with both the classification tasks.

In another study conducted by Gupta et al. [49], it was found that incorporating depres-

sion severity as a parameter in Deep Neural Networks (DNNs) by altering the activation

functions using the depression score show improvements in arousal and valence prediction

compared to a DNN with a vanilla tanh activation function. We performed experiments on

affect prediction using the Audio-Visual Depressive language Corpus [120], which involves

subjects with varying degree of depression. The dataset consists of both free flowing ut-

terances where the participant is answering a question and read speech where the person is

reading a pre-defined script. Each video is continuously rated for three affective dimensions

of valence, arousal and dominance at a frame rate of 30 Frames Per Second by a set of 3-5
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annotators. The final ground truth affect ratings are computed as the frame-wise mean over

the annotator ratings for a given session. The subjects in the sessions also complete the

standardized self-assessment based Beck Depression Inventory-II (BDI-II) questionnaire

[9]. The score ranges between 0-63, with a higher score implying more severe depression.

Our results on both the sessions show that using depression severity can improve arousal

and valence prediction, thereby suggesting a link between the two tasks.

Since, the tasks of emotion recognition and depression detection have similar charac-

teristics we hypothesize that we can use the information from one task to help with the task

of the other. Our goal is to use a model’s knowledge in recognizing emotions/affect state

to better estimate the presence/severity of depression. One such approach could be to use

transfer learning. The core idea of transfer learning is utilizing the knowledge learned from

solving one problem to solve a different but related problem. While the concept of transfer

learning can be useful to build more generalizable models, it can also assist us with related

tasks. For example, Razavian et al. [110] reported state of the art results when they used

a convolutional neural network (CNN) trained on Imagenet dataset for object classification

to classify bird images from Caltech-UCSD Birds (CUB) 200-2011 dataset. Note that birds

formed one of the categories in the Imagenet dataset. Pre-training has also applications in

audio music classification (Van den Oord et al. [121]) and for natural language processing

tasks (Mou et al. [83]). Now we describe a typical transfer learning set up. We have a

dataset A and a task for which it was collected TA. We have another dataset B and corre-

sponding task TB. We aim to use the knowledge that the model has gained while learning

TA to perform TB. The steps involved in pre-training are:

1. We have a neural network model M initialized randomly.

2. Pre-training: We have a large dataset A on which we train M for task TA.

3. We have the dataset of interest B and we are interested in Task TB. Instead of initializing

the weights randomly and training on B, we take the model M already trained on A as our
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initialization.

4. Fine-tuning: We fine-tune the weights by training on B. The fine-tuning can be done for

all/some of the hidden layers.

Since, we believe emotion recognition and depression detection are related, we can pre-

train a network to recognize emotions/affect and then fine-tune the weights of the layers on

the depression dataset. So dataset A is a dataset which has the emotion/affect labels avail-

able and task TA for which the model M is trained is emotion/affect recognition. B is the

dataset of interest which in our case is the depression database and hence task TB is depres-

sion detection. One potential roadblock we could face in such an approach is the size of

pre-training dataset. Usually pre-training dataset A is large compared to dataset of interest

B. Researchers working in object detection problems have access to huge amounts of data.

For example, Imagenet has 1.2 million images in it. But it is difficult to get such a huge

dataset for the task of emotion recognition/depression detection. For, example, IEMO-

CAP database that we have used for our experiments has around 10 hours of data (around

10,000 utterances) if we consider all 15 emotional categories. It would be interesting to

explore how good of a pre-trained model we can achieve from 10 hours of emotional data.

We could combine several emotion recognition datasets to mitigate this problem. We can

pre-train using all of them together or using them sequentially one at a time. Apart from

pre-training we can also explore multi-task learning (MTL) frameworks that leverages the

use of auxiliary tasks to improve the performance of a model for a target task. One such

neural network based MTL framework could be where we train the same neural network

for emotion classification and depression detection simultaneously with a different output

layer for each of these tasks while the other layers are shared. Ruder [98] discusses some

MTL framework that could be worth exploring.
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learning in cross-corpus acoustic emotion recognition. In 2011 IEEE Workshop on
Automatic Speech Recognition & Understanding, pages 523–528. IEEE, 2011.

[134] Shusen Zhou, Qingcai Chen, and Xiaolong Wang. Active deep networks for semi-
supervised sentiment classification. In Proceedings of the 23rd International Con-
ference on Computational Linguistics: Posters, pages 1515–1523. Association for
Computational Linguistics, 2010.

124


