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This dissertation studies the design of auction markets where bidders are un-

certain of their own values at the time of bidding. A bidder’s value may depend

on other bidders’ private information, on total quantity of items allocated in the

auction, or on the auctioneer’s private information.

Chapter 1 provides a brief introduction to auction theory and summarizes

the main contribution of each following chapter. Chapter 2 of this dissertation ex-

tends the theoretical study of position auctions to an interdependent values model

in which each bidder’s value depends on its opponents’ information as well as its

own information. I characterize the equilibria of three standard position auctions

under this information structure, including the Generalized Second Price (GSP)

auctions, Vickrey-Clarke-Groves (VCG) auctions, and the Generalized English Auc-

tions (GEA). I first show that both GSP and VCG auctions are neither efficient nor

optimal under interdependent values. Then I propose a modification of these two

auctions by allowing bidders to condition their bids on positions to implement ef-

ficiency. I show that the modified auctions proposed in this chapter are not only



efficient, but also maximize the search engine’s revenue.

While the uncertainty of each bidder about its own value comes from the

presence of common component in bidders ex-post values in an interdependent values

model, bidders can be uncertain about their values when their values depend on the

entire allocation of the auction and when their values depend on the auctioneer’s

private information. Chapter 3 of this dissertation studies the design of efficient

auctions and optimal auctions in a license auction market where bidders care about

the total quantity of items allocated in the auction. I show that the standard

uniform-price auction and the ascending clock auction are inefficient when the total

supply needs to be endogenously determined within the auction. Then I construct

a multi-dimensional uniform-price auction and a Walrasian clock auction that can

implement efficiency in a dominant strategy equilibrium under surplus-maximizing

reserve prices and achieve optimal revenue under revenue-maximizing reserve prices.

Chapter 4 of this dissertation analyzes an auctioneer’s optimal information

provision strategy in a procurement auction in which the auctioneer has private

preference over bidders’ non-price characteristics and bidders invest in cost-reducing

investments before entering the auction. I show that providing more information

about the auctioneer’s valuation over bidders’ non-price characteristics encourages

those favored bidders to invest more and expand the distribution of values in the

auction. Concealment is the optimal information provision policy when there are

two suppliers.
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Chapter 1: Introduction

1.1 Introduction

Auctions have been used since antiquity for selling a variety of objects. The

earliest record of auction appears as early as 500 B.C. (Krishna 2002 [1]). Some most

commonly used auctions include auctions for selling treasury bills, mineral rights,

art and antiques, agricultural produce and livestock, used cars, luxury wines, etc. In

addition to selling items, auctions can also be used for purchasing a variety of items.

For example, government usually use procurement auctions to allocate construction

contracts, and firms often use auctions for buying inputs, subcontracting tasks, and

acquiring another firm in takeover battles. In most recent decades, auctions of rights

to use the electromagnetic spectrum for telecommunication are used widely in many

countries.

Since the auctioneer is uncertain about bidders’ valuations of the item being

sold, a common aspect of auctions is that they elicit information, in the form of

bids, from potential buyers regarding their willingness to pay or from potential sell-

ers regarding their willingness to sell, and the outcome - that is, who wins what

and pays how much - is determined solely on the basis of the received information

(Krishna 2002 [1]). Therefore, auctions provide a simple and well-defined economic
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environment of incomplete information game and a valuable testing-ground for eco-

nomic theory. In the benchmark model of independent private values, each bidder

knows the value of object to itself at the time of bidding. The auctioneer does not

have private information, and other bidder’s information does not affect a particular

bidder’s value.

The design of auction depends on specifics of the auction market, including

nature and quantity of items, information structure among bidders, existence of

budget constraints, fairness considerations, etc. Depending on the nature of items

being sold, auctions can be categorized into single-unit auctions, multiple identi-

cal unit auctions, and multiple heterogeneous unit auctions. The most commonly

used single-unit auction formats include first-price sealed-bid auctions, second-price

sealed-bid auctions, open ascending price (English) auctions, and open descending

price (Dutch) auctions. Under the context of multiple identical unit auctions, some

commonly used sealed-bid auction formats include discriminatory (pay-as-bid) auc-

tions, uniform-price auctions, Vickrey auctions, and dynamic aution formats include

Dutch auctions, English auctions, and Ausubel auctions. There is a growing recent

literature on auctions for multiple heterogenous items, and some auction formats

that have been designed by auction theorists include simultaneous ascending auc-

tions, ascending proxy auctions, and combinatorial auctions. This dissertation stud-

ies auction design in three different types of auction markets: multiple heterogenous

items, multiple identical items, and single item auctions.

From the perspective of an auction designer, some of the most important

criteria in auction design are listed below:
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1. Efficiency: The objects end up in the hands of the bidders who value them

most, i.e., the total surplus generated in the auction is maximized.

2. Revenue: The auction raises high expected revenue for the seller.

3. Simplicity: The allocation and payment rules are straightforward and easy to

understand for the bidders.

4. Transparency: The allocation and payment rules are transparent to all par-

ticipants.

5. Speed of the auction: The auction can conclude in a short period of time.

6. Facilitate bidder participation: The auction can attract sufficient number of

bidders to participate.

7. Collusion-proof: The auction is not highly vulnerable to collusion.

This dissertation explores auction design in three different markets using efficiency

and revenue maximization as the two main objectives. Each chapter examines an

important departure from the standard pure private value model and explores how

to use auction design to implement the goals of efficiency and revenue-maximization

under this departure. The departure from pure private value model comes from

the fact that each bidder’s value depends on other bidders’ private information in

Chapter 2, on total supply in the auction in Chapter 3, and on the auctioneer’s

private information in Chapter 4. In the following subsection, I will provide a brief

overview of motivation and a summary of main results and contributions of each

chapter.
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1.2 Summary of Contributions

Existing theoretical literature models position auctions either under complete

information or with incomplete information assuming pure private values. Since

advertisers bidding for the same keyword in sponsored search auctions are often

oligopoly competitors operating in the same industry, each bidders value from re-

ceiving a click of its online advertisement can depend on other bidders private in-

formation as well as its own information, which is better described by the interde-

pendent values model introduced by Milgrom and Weber (1982) [2] for single-unit

auctions.

Chapter 2 of this dissertation extends the theoretical study of position auc-

tions to an interdependent values model in which each bidder’s value depends on its

opponents’ information as well as its own information. Position auctions are used

by major search engines to allocate multiple advertising positions on search result

pages. In this chapter, I examine efficiency and revenues of three position auction

formats: Generalized Second-Price (GSP) auctions, VCG-like auctions and Gener-

alized English Auctions (GEA). I find that both the GSP auction and the VCG-like

auction with one-dimensional bidding language can be inefficient under interdepen-

dent values, which contrasts previous literature that favors the GSP auction for its

simplicity. I next show this inefficiency problem can be fully resolved by adopting

a multi-dimensional bidding language that allows bidders to bid differently across

positions. Moreover, the dynamic GEA that implicitly adopts a multi-dimensional

bidding language always implements efficiency in an ex-post equilibrium. Then I
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provide a revenue ranking of the three efficient position auctions and character-

ize the optimal position auction under interdependent values. I find that under

independent signals and a set of regularity conditions, the three efficient position

auctions also implement the optimal revenue subject to no reserve price. The main

results of this chapter imply that there is a trade-off between simplicity versus effi-

ciency and revenue in auction design: using a simple bidding language can come at

a loss of efficiency and revenue. This trade-off depends critically on the information

structure.

In auctions for selling operating licenses in some downstream market, the

quantity of licenses allocated in the auction determines the structure of downstream

market and therefore enters each bidder’s value in the auction. How to design an

auction to maximize total surplus of auction participants is an interesting problem,

as there exists a trade-off of selling more licenses and preserving the values of winning

a license for the winners.

Chapter 3 of this dissertation studies the design of efficient auctions and opti-

mal auctions in a license auction market where bidders care about the total quan-

tity of items allocated in the auction. I first characterize the VCG mechanism in

this environment and show that a sequence of reserve prices that specify minimum

acceptable bid for every additional unit to be allocated are needed to determine

supply endogenously in any efficient auction. Then I characterize the equilibria of

the uniform-price auction and the ascending clock auction after introducing such

reserve prices and show that both auctions are inefficient under any reserve prices.

I next construct a multi-dimensional uniform-price auction that allows bidders to
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condition their bids on total supply to implement efficiency. On the other hand,

I show that a Walrasian clock auction can implement the efficient outcome in a

dominant strategy equilibrium through a tatonnement process. I next character-

ize the optimal auction under the presence of quantity externalities and show that

the optimal reserve price is strictly higher than the efficient reserve price for every

additional unit. Moreover, both the efficient and the optimal reserve prices under

the presence of quantity externalities are higher than their counterparts in markets

without quantity externalities.

In the standard model of procurement auctions, the suppliers provide identical

products and are exogenously differentiated in costs. In practice, suppliers are often

horizontally differentiated in non-price characteristics and can engage in pre-auction

cost-reducing investments. When the auctioneer has private valuation over bidders’

non-price characteristics, whether to disclose this valuation will affect bidders’ in-

vestment incentives and endogenously determine the profile of bidders’ values in the

auction.

Chapter 4 of this dissertation analyzes an auctioneer’s optimal information

provision strategy in a procurement auction in which bidders invest in cost-reducing

investments before entering the auction. In this chapter, I analyze the equilibrium

investment strategies of bidders under three different information provision schemes:

public disclosure, private disclosure, and concealment of preferences over bidders.

I find that pre-auction investments are strategic substitutes among bidders, and

providing more information about the auctioneer’s preference encourages those more

favored bidders to invest more, which results in a more dispersed distribution of

6



costs among bidders in the auction. Then I compare the expected revenues in a

second-score auction under these three information provision schemes. I find that

concealment is the optimal information scheme when there are only two bidders,

while the revenue ranking can be reversed when the number of bidders is sufficiently

large.
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Chapter 2: Position Auctions with Interdependent Values

2.1 Introduction

Position auctions are used by many search engines to allocate a list of adver-

tising positions on search result pages. When an Internet user enters a keyword or

phrase on a search engine, the list of advertisements generated by that search is

the result of a position auction. Because of consumers’ sequential search habits1,

advertising links placed on the top of web page receive more clicks than those placed

on the bottom of web page (Brooks 2004 [5]), representing a typical set of vertically

differentiated items. Each advertising link’s click probability can be measured by

click-through-rate (CTR), which is given by the average number of clicks the link

receives per unit time.

There are three different designs of position auction that have been analyzed in

the literature, including the Generalized Second Price (GSP) auction, the Vickrey-

Clarke-Groves (VCG) auction, and the Generalized English Auction (Edelman et

1Consumers tend to search from top to bottom when reading a list and may end search at any

time, so the top links are more likely to be clicked than the bottom links. This search behavior

can be viewed as a rule of thumb, or as a rational behavior given positive search cost and correct

expectation about advertisers’ relevance ((Athey and Ellison 2011 [3]); (Chen and He 2011 [4])).
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al. 2007 [6]). Variants of the Generalized Second Price auction have been exten-

sively used by major search engines including Google and Yahoo!2. In the standard

model of GSP auction with pay-per-click payment rule described in Edelman et al.

(2007) [6], advertisers submit one-dimensional per-click bids that can be applied

to any position. The positions are allocated according to the ranking of bids, and

each bidder who wins a position pays the bid of the bidder who is placed one po-

sition below for each click. The total revenue generated by an advertising position

depends on the advertiser’s per-click payment and the click-through-rate (CTR) of

the position.

The GSP auction3 is favored by many previous studies for its efficiency and

revenue properties under complete information as well as its simplicity in bidding

language and payment rule: one-dimensional bids are used to determine the allo-

cation of multiple positions, and payment for each position depends only on the

highest losing bid for that specific position. Besides its simplicity, the GSP auction

always implements the efficient allocation and yields weakly higher revenue than

2The Generalized Second Price auction has several variations in its form. One important

variation is to adopt a vector of “quality scores” computed based on click-through-rate history

to adjust bids and rank advertisers in the order of adjusted bids instead of raw bids. Another

variation is to adopt a pay-per-impression scheme instead of a pay-per-click scheme. Under the

pay-per-click scheme, an advertiser will be charged every time a user clicks on its advertisement.

Under the pay-per-impression scheme, an advertiser will be charged every time a user sees the

search result page that contains its advertisement regardless of whether the user clicks on the

advertisement or not. Google currently uses the pay-per-click GSP auction with quality scores.
3Following Edelman et al. (2007) [6], the GSP auction in this paper refers to the auction with

pay-per-click GSP payment rule and leaves aside the quality scores.
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the VCG auction under complete information (Edelman et al. 2007 [6]; Milgrom

2010 [7]). These desirable properties of the GSP auction depend critically on the

complete information assumption. The justification of complete information in the

literature comes from the claim that advertisers can learn about their own values as

well as each other’s values from information revealed in previous rounds of auction.

However, this claim implicitly assumes that advertisers’ values do not evolve over

time intervals between bidding, so the information revealed in previous rounds fully

reveals advertisers’ values for the current round.

In practice, considerable uncertainty exists in the environment of sponsored

search auctions. For example, consider the keyword “iphone.” Each advertiser’s

value from receiving a click of the online advertisement depends on how likely con-

sumers are going to purchase a new iphone upon click, which can be affected sig-

nificantly by product upgrading and new releases in the iphone market. Consider

the time when Apple releases a new version of iphone, then each advertiser’s value

changes continuously over time after the first day of release, and it is not practical

to precisely predict consumer demand or advertisers’ values in advance. Consider

another keyword for example, “hotel in DC,” then each advertiser’s value per click

depends on how likely consumers are going to book a hotel after clicking on its

advertisement, which can be affected by a variety of factors including weather, day

of the week, time of the year, special events in DC, etc. Therefore, advertisers’

values evolve continuously for many keywords that are related to markets with fre-

quent demand shocks. The evolution in advertisers’ values as result of shocks is

also pointed out in Fershtman and Pavan (2016) [8] and Abhishek and Hosanagar
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(2012) [9]. On the other hand, it is not practical for advertisers to update bids in a

continuous manner given the fact that each advertiser is interested in a large set of

keywords. The stochasticity in consumer demand and the existence of time interval

between bid updating imply that information revealed from previous rounds in the

auction does not provide complete information about an advertiser’s own value or

its opponents values at the current round of bidding.

Another important fact not captured by prior literature is that advertisers

bidding for a position under the same keyword are often oligopoly competitors op-

erating in the same industry. Compared to traditional advertising, a main advantage

of sponsored advertising is that it allows advertisers to effectively target consumers.

This advantage naturally comes with the fact that advertisers under the same key-

word are selling identical or imperfectly substitutable products or services in the

market related to the search keyword. Since each advertiser’s value per click evolves

continuously under demand shocks, it is reasonable to assume that there is some

common component in bidders’ ex-post values that is driven by demand shocks in

the same market. For example, when Apple releases a new version of iphone, con-

sumers are more likely to buy a new iphone after click on an advertisement, and all

advertisers are subject to the same demand shock. While consumer demand cannot

be precisely predicted, each advertiser can still have some imprecise estimation of

its value per click. Suppose a given advertiser receives a private signal that contains

information about how likely consumers are going to purchase a new iphone after

the release. Then the private signals of other advertisers would be informative about

the first advertiser’s ex-post value per click, given the fact that consumer demand
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drives a common component in all advertisers’ ex-post values. Since the advertisers’

private signals contain information about consumer demand in the same market,

it is also reasonable to assume the signals are affiliated in distribution. Therefore,

the information structure in position auctions is better described by the interde-

pendent values model introduced by Milgrom and Weber (1982) [2] for single-unit

auctions, in which one bidder’s value can depend on other bidders’ private infor-

mation, and bidders’ private information are affiliated. However, the performance

of the GSP auction, the VCG auction and the Generalized English Auction is not

well-understood when bidders have interdependent values. This paper fills the gap

in the literature and extends the study of position auctions into a broader class of

information structure.

In this paper, I model a single-round position auction under the symmetric

interdependent values setup in Milgrom and Weber (1982) [2]. Since each bidder’s

ex-post value depends on its opponents’ private information, bidders can be uncer-

tain about their ex-post values at the time of bidding, and a generalized version of

the “winner’s curse” in Milgrom and Weber (1982) [2] is present: the expected value

per click conditional on winning a superior position is lower than that conditional

on winning an inferior position. Winning a top position conveys some bad news, as

it implies overestimation of ex-post value from receiving a click. The main analysis

of this paper explores how the incomplete information and the presence of the gen-

eralized “winner’s curse” under interdependent values affect efficiency and revenues

of GSP auctions, VCG-like auctions4, and Generalized English Auctions.

4Although the VCG mechanism is not defined under interdependent values, I define a VCG-
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Under this symmetric interdependent values model, I first show that both the

GSP auction and the VCG-like auction can be inefficient, which contrasts with pre-

vious literature that favors the GSP auction for its simplicity. Then I propose a

modification of the GSP auction and the VCG-like auction by adopting a multi-

dimensional bidding language that allows each bidder to bid differently across po-

sitions (i.e., using a multi-dimensional bidding language) to improve efficiency. I

call these two modified auctions K-dimensional GSP auctions and K-dimensional

VCG auctions, respectively. I characterize the unique symmetric Bayesian Nash

equilibrium in these two modified auctions and show that efficiency can be fully im-

plemented in both auctions after adopting this multi-dimensional bidding language.

On the other hand, the Generalized English Auction that implicitly adopts a multi-

dimensional bidding language always implements the efficient allocation in an ex-

post equilibrium. Moreover, the K-dimensional GSP auction and the K-dimensional

VCG auction are always revenue equivalent, while the dynamic Generalized English

Auction yields higher revenue under affiliated signals. In the special case of indepen-

dent signals, all three efficient auctions are revenue equivalent. I also characterize the

optimal position auction that generates the highest expected revenue subject to no

reserve price as a direct revelation mechanism and show that under certain regularity

conditions, this optimal auction is equivalent to the Generalized-VCG mechanism

that assigns all positions efficiently in an ex-post equilibrium. When bidders have in-

like auction called the one-dimensional VCG auction that adopts a VCG-like payment rule under

interdependent values. This one-dimensional VCG auction is analogous to the second-price auction

in Milgrom and Weber (1982) [2]’s study of single-unit auctions under interdependent values.
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dependent signals, the optimal revenue subject to no reserve price can be practically

implemented by the K-dimensional GSP auction, the K-dimensional VCG auction,

and the Generalized English Auction under mild regularity conditions. Therefore,

when bidders have interdependent values, modifying the bidding language from one-

dimensional to multi-dimensional in position auctions not only improves efficiency,

but also improves revenue under certain conditions.

The inefficiency of the GSP auction and the VCG-like auction comes from the

fact that both auctions use a simple one-dimensional bidding language that restricts

bidders to submit the same bid for all positions, while the expected payoff of winning

a superior position can be lower than that of an inferior position in both auctions

under interdependent values. As long as there are more than one positions, the

bid-shading incentive is stronger for bidders with higher signals, since they are more

likely to win the superior position, while bidders who receive lower signals are more

concerned with winning any position instead of winning a top position. The dif-

ferentiated bid-shading incentives across bidders drive the inefficiency in both GSP

auctions and VCG-like auctions. By allowing bidders to submit multi-dimensional

bids that express willingness to pay per click separately for each position, bidders can

easily incorporate the difference in expected payoffs from winning different positions

into their bids. Therefore, the differentiated bid-shading incentives across bidders

are replaced by each bidder’s differentiated bid-shading incentives across positions.

This explains the efficiency of K-dimensional GSP and VCG auctions. Similarly,

in the dynamic Generalized English Auction, bidders not only update beliefs about

their expected values per click from the history of drop-out prices, but also update
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beliefs about which position they are going to win by dropping out at the current

clock price during the dynamic process. The Generalized English Auction implicitly

adopts a multi-dimensional bidding language, which is the main force that drives

its efficiency.

Compared to the two static auctions, the dynamic Generalized English Auc-

tion not only has an advantage in terms of naturally adopting a multi-dimensional

bidding language, but also generates higher expected revenues under affiliated sig-

nals. This revenue dominance result comes from the fact that dynamic auctions

outperform static auctions in revenue by eliciting more information about bidders’

signals through the drop-out process. On the other hand, the revenue equivalence

between the K-dimensional GSP and the K-dimensional VCG auctions comes from

the fact that both auctions use variations of a “second-price” payment rule in which

a given bidder’s bid only affects its allocation but not its payment. Bidders are

able to incorporate the difference in payment rules into their bidding strategies,

which drives the revenue equivalence result between these two static auctions un-

der the general assumption of affiliated signals. The revenue equivalence of all

three auctions under independent signals is consistent with the well-known revenue

equivalence theorem. Under independent signals, the expected revenue of the three

efficient position auctions is also equivalent to the optimal revenue implementable

in any Bayesian incentive compatible and individually rational mechanism subject

to no reserve price under certain regularity conditions. This result comes from the

fact that when the rank ordering of bidders’ values is aligned with the rank order-

ing of bidders’ marginal revenues given any realization of signals, the auctioneer’s
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objective of maximizing total surplus is aligned with the objective of maximizing

revenue.

The main contribution of this paper is the follows. First, I extend the study

of position auctions into interdependent values and prove the inefficiency of stan-

dard auction formats that include GSP auctions and VCG-like auctions. Second, I

identify the source of this inefficiency and propose a modification of standard posi-

tion auction formats that implements full efficiency. Third, I provide a comparison

across three different position auction formats in both efficiency and revenue and

provide a discussion on the optimal auction under this broad class of information

structure. This paper not only provides guidance on the design of sponsored search

auctions used by search engines, but also provides implications on allocating spon-

sored advertisement space in a wide range of two-sided platforms, such as Facebook,

Amazon, and Yelp. The main results of this paper imply that there is a trade-off

between simplicity versus efficiency and revenue in auction design: simplicity can

come at a loss of efficiency and revenue. This trade-off depends critically on the

information structure.

2.2 Related Literature

This paper is related to the earliest position auction literature including Edel-

man et al. (2007) [6] and Varian (2007) [10]. Edelman et al. (2007) [6] characterize

the set of locally-envy free equilibria of the GSP auction under complete informa-

tion, and show that the GSP auction has a locally-envy free equilibrium that yields
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the same payoff outcome as the dominant strategy equilibrium of the VCG auction.

Moreover, this equilibrium gives the bidder-optimal payoff among all locally-envy

free equilibria. In a complementary article, Varian (2007) [10] characterizes the en-

tire set of Nash equilibria in the GSP auction under complete information. Milgrom

(2010) [7] shows that the GSP auction can be viewed as a simplified mechanism that

restricts each bidder to submit the same bid for all positions. This simplification in

bidding language eliminates the lowest revenue equilibrium and leaves only higher

revenue equilibria under complete information. Dutting et al. (2011) [11] points

out that Milgrom (2010) [7]’s result depends critically on the complete information

assumption. This paper provides theoretical support for Dutting et al. (2011) [11]’s

discussion of the trade-off between simplicity and expressiveness in mechanism de-

sign by showing that the GSP auction with one-dimensional bidding language can

be suboptimal in both efficiency and revenue under interdependent values, in sharp

contrast to the results in Edelman et al. (2007) [6], Varian (2007) [10] and Milgrom

(2010) [7] that favor the GSP auction under complete information. Moreover, the

cost of conciseness in the design of GSP auction is also pointed out in the computer

science literature. Abrams et al. (2007) [12] show that an equilibrium can fail to

exist in the GSP auction with pay-per-click payment scheme when each bidder has

a vector of different values for obtaining different slots. Benisch et al. (2008) [13]

show that the GSP auction can be arbitrarily inefficient under some distributions of

the advertisers’ preferences when advertisers have private information and describe

a technique that computes an upper bound on the expected efficiency of the GSP

auction for a known distribution of advertisers’ preferences. This paper comple-

17



ments these computer science studies by providing some insights on the trade-off

between simplicity and efficiency from an economic perspective.

In an incomplete information setting, Edelman et al. (2007) [6] model an

ascending auction called the Generalized English Auction (GEA) that implements

the same payoff outcome as the dominant strategy equilibrium of the VCG auc-

tion under independent private values. However, the GEA is the dynamic format

of the VCG auction, rather than the dynamic format of the GSP auction. Little

was known about equilibria of the GSP auction under incomplete information until

Gomes and Sweeney (2014) [14] first characterized the Bayesian Nash Equilibrium

of the GSP auction in an independent private values model and showed this unique

equilibrium can be inefficient under some click-through rate profiles. This paper ex-

tends Gomes and Sweeney (2014) [14]’s study by introducing interdependent values

into the model, identifying the source of inefficiency in the GSP auction, as well

as comparing the performance of the GSP auction to other auction formats. An

implication of Gomes and Sweeney (2014) [14]’s inefficiency result is that the VCG

auction performs better than the GSP auction under incomplete information when

bidders have independent private values. Ashlagi (2007) [15] points out that the

VCG auction is the unique truth-revealing position auction under an anonymous

allocation rule with symmetric independent private values. Under complete infor-

mation, Varian and Harris (2014) [16] show that the VCG auction performs better

than the GSP auction under “broad match” of keywords and under unknown click-

through rates. This paper extends the comparison between GSP auctions and VCG

auctions to interdependent values.
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This paper is closely related to the literature on auctions and mechanism

design under interdependent values. Milgrom and Weber (1982) [2] characterize

the equilibria of second-price auctions, first-price auctions and English auctions and

compare the expected revenues of these auctions under symmetric interdependent

values. A number of other articles examine the existence of efficient mechanisms

under interdependent values without symmetry assumption (Jehiel and Moldovanu,

2001 [17]; Dasgupta and Maskin, 2000 [18]; Perry and Reny, 2002 [19]; Ausubel,

1999 [20]; Ausubel and Cramton, 2004 [21]). This paper extends the literature on

auction design under interdependent values into multi-unit position auctions.

This paper complements the recent position auctions literature5 that intro-

duces some realistic assumptions into Edelman et al. (2007) [6]’s model. Some stud-

ies endogenize advertisers’ values by incorporating consumer search into the model

and show that firms are ranked in the order of relevance and consumers search

sequentially in equilibrium (Athey and Ellison, 2011 [3]; Chen and He, 2011 [4];

Kominers, 2009 [23]). Several other studies introduce allocative externalities among

bidders by allowing click-through rate of each position to depend on the allocation of

advertisers6 (Deng and Yu, 2009 [32]; Farboodi and Jafaian, 2013 [33]; Hummel and

McAfee, 2014 [34]; Izmalkov et al., 2016 [35]; Lu and Riis, 2016 [36]). There are also

5Most recent advances in this literature are summarized in Qin et al. (2015) [22].
6There is a similar line of research in the computer science literature (Aggarwal et al., 2008 [24];

Constantin et al., 2011 [25]; Ghosh and Mahdian, 2008 [26]; Kempe and Mahdian, 2008 [27]). Other

computer science literature on similar topics such as algorithm design in adword auctions, forward-

looking bidders and prophet inequality include Mehta et al. (2005) [28], Bu et al. (2007) [29], and

Alaei et al. (2012 [30]; 2013 [31]).
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studies quantify the efficiency loss that may arise in the GSP auction under different

modeling assumptions, including correlated private values, allocative externalities,

uncertain click-through rate profiles, etc. (Lucier and Leme, 2011 [37]; Roughgar-

den and Tardos, 2015 [38]; Caragiannis et al., 2015 [39]). This paper differs from

the aforementioned studies by keeping Edelman et al. (2007) [6]’s assumption of

exogenous click-through rates while introducing informational interdependency in

bidders’ values, which to my knowledge has not been done by previous studies.

Finally, this study is related to the strand of literature on mechanism design.

Myerson (1981) [40] characterizes the optimal mechanism for single-unit auctions

with independent private values. Ausubel and Cramton (1999) [41] find that in auc-

tion markets with perfect resale, it is optimal to allocate items efficiently. Edelman

and Schwarz (2010) [42] generalize Myerson (1981) [40]’s optimal mechanism design

to position auctions with independent private values and show that this optimal

revenue can be implemented by a Generalized English Auction with an optimal re-

serve price. Roughgarden and Talgam-Cohen (2013) [43] and [44]Li (2017) extend

the characterization of optimal single-unit auction to interdependent values. Ulku

(2013) [45] characterize the optimal mechanism for allocating a set of heterogamous

items under interdependent values. The last part of this paper provides a corollary

of Ulku (2013) [45] under the special environment of position auctions.
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2.3 Model

A search engine wishes to sell K positions to N > K bidders7, each with

single-unit demand for an advertising position on the search result page of the

same keyword. Bidders are indexed by i ∈ {1, 2, · · · , N}. Positions are indexed

by k ∈ {1, 2, · · · , K} according to their ranks on the web page and are vertically

differentiated in their commonly known qualities measured by click-through-rates

(CTR): (α1, α2, · · · , αK)8, in which α1 ≥ α2 ≥ · · · ≥ αK . Each bidder receives a

private signal xi ∈ [0, x̄] that affects her value from getting a click of her adver-

tisement. The signals are distributed over [0, x̄]N according to a commonly-known

joint distribution function F (x1, x2, · · · , xN), with density f(x1, x2, · · · , xN). The

value per click9 of each bidder vi(., .) depends on her private signal xi as well as her

opponents’ signals x−i ∈ [0, x̄]N−1.

For every bidder i, vi(., .) satisfies the following assumptions10:

A1 (Value Symmetry): For all bidder i, there is a function vi : [0, x̄]N → R such

that each bidder i’s ex-post value per click is given by vi(xi, x−i), given any signal

7In this paper, I use masculine pronoun for the auctioneer (search engine) and feminine pronouns

for the bidders (advertisers).
8Following Edelman et al. (2007) [6], the CTR of position k is measured by the expected

number of clicks per period received by the advertiser whose advertisement is placed on position

k. The CTR of each position does not depend on the identity of bidder placed on that position or

any other position.
9Following Edelman et al. (2007) [6], I assume each bidder’s value from getting a click does not

depend on the position of her advertisement.
10Assumptions A1-A5 follows from Milgrom and Weber (1982) [2].
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profile (x1, x2, · · · , xN). The value function vi(xi, x−i) is symmetric across bidders.

Moreover, the function vi(xi, x−i) is symmetric in its last N − 1 arguments, which

implies that each bidder’s value vi(xi, x−i) is preserved under any permutation of

opponents’ signals x−i.

A2 (Value Monotonicity): For all i, vi(xi, x−i) is nonnegative, continuous and

strictly increasing in xi, nondecreasing in every component of x−i:

∂vi(xi, x−i)

∂xi
> 0,

∂vi(xi, x−i)

∂xj
≥ 0, ∀j 6= i (2.1)

Bidders have non-trivially interdependent values if ∂vi(xi,x−i)
∂xj

6= 0 for j 6= i.

A3 (Single-crossing Condition): For all i, for all j 6= i, for all signals (x1, x2, · · · , xN),

∂vi(xi, x−i)

∂xi
≥ ∂vj(xj, x−j)

∂xi
(2.2)

Under assumptions A1-A3, the ranking of signals is aligned with the ranking of

values. The bidder who receives the k-th highest signal also has the k-th highest

ex-post value.

I assume the joint density function f(x1, x2, · · · , xN) satisfies the following

assumptions:

A4 (Signal Symmetry): f(x1, x2, · · · , xN) is a symmetric function of its arguments.

A5 (Signal Affiliation): The variables x1, x2, · · · , xN are affiliated. For all x, x′ ∈

[0, x̄]N ,

f(x ∨ x′)f(x ∧ x′) ≥ f(x)f(x′) (2.3)

This model introduces the information structure of interdependent values into
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position auctions. I restrict attention to symmetric equilibria in this paper11. Given

symmetry of the model, it suffices to study the equilibrium bidding strategy of an

arbitrary bidder i. A critical object in Milgrom and Weber (1982) [2] is the first

order statistic Y1, which is the random variable denoting the highest signal received

by bidder i’s opponents. The following definition generalizes the first-order statistic

notion to position auctions:

Definition 2.1. For any arbitrary bidder i, let X be the random variable represent-

ing bidder i’s own signal xi. For all k ∈ [1, K], let Yk be the k-th order statistic

representing the k-th highest signal received by bidder i’s opponents. Let Gk(yk|xi)

be the conditional distribution of statistic Yk given X = xi, and let gk(yk|xi) be

the associated density function. Let vk(xi, yk) be bidder i’s expected value of a click

conditional on i’s signal xi and the k-th order statistic that takes value yk:

vk(xi, yk) = E
[
v(xi, x−i)

∣∣X = xi, Yk = yk
]

(2.4)

For an arbitrary bidder i, the realization of Yk is the minimum value that the

signal of bidder i can take such that bidder i should win a position no lower than

the k-th highest position in any efficient allocation.

Definition 2.2. A position auction is efficient if it always assigns positions in the

rank ordering of bidders’ ex-post values, given any number of positions K, with

11It will be shown that symmetry is a necessary condition for any equilibrium to be efficient

in both one-dimensional assortative position auctions and K-dimensional assortative position auc-

tions (Lemma 2.1 and Lemma 2.4), so restricting attention to symmetric equilibria does not lose

generality in the efficiency analysis.
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any CTR profile (α1, α2, · · · , αK). Under assumptions A1-A3, a position auction

is efficient if it always assigns positions in the rank ordering of bidder’s private

signals.

The “winner’s curse” concept in Milgrom and Weber (1982) [2] can be extended

to this model of position auctions with interdependent values in the following sense:

at any monotonic bidding equilibrium, winning a higher ranked position conveys

worse information about bidder i’s expected value than winning a lower ranked

position. For all k, j ∈ {1, 2, · · · , K}, if k < j, then vk(xi, xi) ≤ vj(xi, xi). The

inequality is strict under non-trivially interdependent values.

2.4 Inefficiency of One-dimensional Position Auctions

A unique feature of position auctions is that each bidder’s value from getting

a click does not depend on the position of her advertisement12. Based on this

assumption, the commonly-used GSP auction adopts a simple bidding language

that only requires each bidder to submit a one-dimensional bid based on her value

per click from any position and computes her bid profile by scaling her bid by the

click-through rates of the K positions, instead of asking each bidder to bid for each

position separately.

In this section, I analyze the efficiency of GSP auctions and VCG-like auctions

with this one-dimensional bidding language and show that both auctions can be

12Goldman and Rao (2014) [46] use experimental data to test this assumption and get supportive

result.
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inefficient when there are at least two positions under certain CTR profiles. I begin

the analysis by characterizing the allocation rule and payment rule in GSP auctions

and VCG-like auctions.

2.4.1 One-dimensional Position Auctions

A position auction (µ̃, p̃) that adopts one-dimensional bids (b1, b2, · · · , bN) ∈

RN , in which bi ∈ R represents bidder i’s bid per click for any position, is called a

one-dimensional position auction. The allocation rule µ̃i(b1, b2, · · · , bN) =(
µ̃

(1)
i (b1, b2, · · · , bN), µ̃

(2)
i (b1, b2, · · · , bN), · · · , µ̃(K)

i (b1, b2, · · · , bN)
)

is a vector of K

functions, in which µ̃
(k)
i (b1, b2, · · · , bN) : RN → [0, 1] maps a profile of bids (b1, b2, · · · , bN)

to the probability that bidder i wins position k. The payment rule p̃i(b1, b2, · · · , bN) =(
p̃

(1)
i (b1, b2, · · · , bN), p̃

(2)
i (b1, b2, · · · , bN), · · · , p̃(K)

i (b1, b2, · · · , bN)
)

is a vector of K

functions, in which p̃
(k)
i (b1, b2, · · · , bN) : RN → R maps a profile of bids to the

payment of bidder i for position k.

For an arbitrary bidder i, given her opponents’ bids b−i, define b̂k(b−i) as the

k-th highest bid in b−i, which implies b̂1(b−i) ≥ b̂2(b−i) ≥ · · · ≥ b̂K(b−i). For any

k ≥ 1, if there are n ≥ 2 equivalent k-th highest bids in b−i, then b̂k(b−i), b̂
k+1(b−i),

..., b̂k+n−1(b−i) are assigned randomly for those n equivalent bids. A one-dimensional

position auction is assortative if it assigns the k-th highest position to the bidder

who submits the k-th highest bid.

Definition 2.3. In a one-dimensional position auction (µ̃, p̃), the allocation rule µ̃

is assortative if for all k ∈ {1, 2, · · · , K},
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µ̃
(k)
i (bi, b−i) =


1 if b̂k(b−i) ≤ bi < b̂k−1(b−i)

0 else

(2.5)

Any tie is broken randomly.

Definition 2.4. The one-dimensional GSP auction is characterized by the one-

dimensional assortative allocation rule and the GSP payment rule given below. For

all k ∈ {1, 2, · · · , K},

p̃
G,(k)
i (bi, b−i) =


αkb̂

k(b−i) if b̂k(b−i) ≤ bi < b̂k−1(b−i)

0 else

(2.6)

Next, I define a VCG-like position auction format called one-dimensional VCG

auction that is analogous to the second-price auction under the context of interde-

pendent values single-unit auction in Milgrom and Weber (1982) [2].

Definition 2.5. The one-dimensional VCG auction is characterized by the one-

dimensional assortative allocation rule and a VCG-like payment rule given below.

For all k ∈ {1, 2, · · · , K},

p̃
V,(k)
i (bi, b−i) =


∑K

j=k(αj − αj+1)b̂j(b−i) if b̂k(b−i) ≤ bi < b̂k−1(b−i)

0 else

(2.7)

Although the single-unit second-price auction analyzed by Milgrom and Weber

(1982) [2] admits a Bayesian equilibrium that always implements efficient allocation

under assumptions A1-A3, I will show that an analogous result does not exist in

the one-dimensional VCG auction with multiple positions and non-trivially interde-

pendent values.
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2.4.2 Characterization of Equilibrium

I start the efficiency analysis by providing a necessary and sufficient condition

for existence of an efficient Bayesian equilibrium in any one-dimensional assortative

position auction.

Lemma 2.1. A one-dimensional position auction (µ̃, p̃) with assortative allocation

rule is efficient if and only if there exists a symmetric equilibrium in which each

bidder’s bidding strategy β(xi) is strictly increasing in xi, for any number of positions

K, with any CTR profile (α1, α2, · · · , αK).

Proof. See Appendix.

Next, I develop the main result of section 2.4: both the one-dimensional GSP

auction and the one-dimensional VCG auction can be inefficient when bidders have

interdependent values. Note that it is sufficient to show inefficiency can occur with

K = 2 positions. For both of the one-dimensional GSP auction (G) and the one-

dimensional VCG auction (V), I first provide a necessary condition for any mono-

tonic bidding strategy βL(xi) to be a Bayesian equilibrium of the auction L ∈ {G, V }

with two positions, and then finish the analysis by showing that the unique βL(xi)

characterized by this equilibrium condition cannot be monotonic under some CTR

profiles.

Lemma 2.2. In the one-dimensional GSP auction with two positions, if an efficient

Bayesian equilibrium bidding strategy βG(xi) exists, then βG(xi) is characterized as

below:
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For all xi ∈ [0, x̄], βG(xi) satisfies the Volterra equation

βG(xi) =
g1(xi|xi)

[
(α1 − α2)v1(xi, xi) + α2

∫ xi
0
βG(y2)g2|1(y2|xi, xi)dy2

]
+ g2(xi|xi)α2v

2(xi, xi)

α1g1(xi|xi) + α2g2(xi|xi)
(2.8)

Proof. See Appendix.

Lemma 2.3. In the one-dimensional VCG auction with two positions, if an efficient

Bayesian equilibrium bidding strategy βV (xi) exists, then βV (xi) is characterized as

below:

For all xi ∈ [0, x̄],

βV (xi) =
g1(xi|xi)(α1 − α2)v1(xi, xi) + g2(xi|xi)α2v

2(xi, xi)

g1(xi|xi)(α1 − α2) + g2(xi|xi)α2

(2.9)

Proof. See Appendix.

To better understand the characterization of equilibria in Lemma 2.2 and

Lemma 2.3, let ΠL
1 (xi, y1, y2) and ΠL

2 (xi, y1, y2) denote the expected payoffs from

winning position 1 and 2 in auction L ∈ {G, V } respectively, given the realizations

of X = xi, Y1 = y1, Y2 = y2. The equilibrium bidding strategy βG(xi) characterized

in Lemma 2.2 is derived from the following equilibrium condition:

g1(xi|xi)
[
(α1 − α2)v1(xi, xi)− α1β

G(xi) + α2

∫ xi

0

βG(y2)g2|1(y2|xi, xi)dy2

]
︸ ︷︷ ︸

E[ΠG
1 −ΠG

2 |X=xi,Y1=xi]

+ g2(xi|xi)
[
α2v

2(xi, xi)− α2β
G(xi)

]
︸ ︷︷ ︸

E[ΠG
2 |X=xi,Y2=xi]

= 0

(2.10)

Similarly, the equilibrium bidding strategy βV (xi) characterized in Lemma 2.3
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is derived from the following equilibrium condition:

g1(xi|xi)
[
(α1 − α2)

(
v1(xi, xi)− βV (xi)

)]︸ ︷︷ ︸
E[ΠV

1 −ΠV
2 |X=xi,Y1=xi]

+g2(xi|xi)
[
α2

(
v2(xi, xi)− βV (xi)

)]︸ ︷︷ ︸
E[ΠV

2 |X=xi,Y2=xi]

= 0

(2.11)

Note that in the special case of independent private values where vk(xi, xi) = xi

for all k, the equilibrium of the one-dimensional VCG auction is given by βV (xi) =

xi, consistent with the dominant strategy equilibrium in the VCG auction under

independent private values. In the special case of α2 = 0, the equilibrium βV (xi) =

v1(xi, xi) is consistent with the symmetric equilibrium of the second-price auction

in Milgrom and Weber (1982) [2]. In the special case of α1 = α2, the equilibrium

βV (xi) = v2(xi, xi) is consistent with the equilibrium of the uniform-price auction

with single-unit demands in Ausubel et al. (2014) [47].

Equations (2.10) and (2.11) imply that in both one-dimensional GSP auctions

and one-dimensional VCG auctions with two positions, for an arbitrary bidder i with

signal xi, the net impact of winning position 1 instead of position 2 on the margin of

Y1 = xi and winning position 2 instead of nothing on the margin of Y2 = xi weighted

by corresponding probability masses must equal zero at any efficient equilibrium.

For all xi ∈ [0, x̄],

g1(xi|xi)E
[
ΠL

1−ΠL
2

∣∣∣X = xi, Y1 = xi

]
+g2(xi|xi)E

[
ΠL

2

∣∣∣X = xi, Y2 = xi

]
= 0, L ∈ {G, V }

(2.12)

The intuition behind this equilibrium condition is that in a one-dimensional

assortative position auction, for any bidder i, increasing bid increases the probability

of winning position 1 instead of position 2 and the probability of winning position 2
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instead of nothing at the same time, so each bidder’s optimal strategy βL(xi) must

balance the trade-offs between every pair of adjacent positions at corresponding

margins. I next show that the unique βL(xi) satisfying this equilibrium condition

cannot be monotonic under some CTR profile, for both L = G, V .

2.4.3 Efficiency Analysis

The following two propositions present the main result of section 2.4:

Proposition 2.1. For any value function vi(xi, x−i) satisfying assumptions A1-

A3, there exists some number of positions K with some CTR profile under which

no efficient Bayesian equilibrium exists in the one-dimensional GSP auction.

Proof. See Appendix.

Proposition 2.2. For any non-trivially interdependent value function vi(xi, x−i)

satisfying assumptions A1-A3 and ∂vi(xi,x−i)
∂xj

6= 0 for j 6= i, there exists some number

of positions K with some CTR profile under which no efficient Bayesian equilibrium

exists in the one-dimensional VCG auction.

Proof. See Appendix.

The intuition behind Proposition 2.1 and Proposition 2.2 is that in both one-

dimensional GSP auctions and one-dimensional VCG auctions with two positions,

there exists some CTR profile under which the superior position is less desirable than

the inferior position given expected payoffs, which leads to differential bid-shading

incentives across bidders and results in non-existence of monotonic equilibrium bid-

ding strategy. The following analysis elaborates this intuition in each auction.
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The source of inefficiency of one-dimensional GSP auctions comes from the

single-dimensionality of its bidding language and its payment rule. In a one-dimensional

GSP auction with two positions, when the click rate of the second position is close

to that of the first position, a bidder receives similar number of clicks from winning

either position but pays a much higher price for each click from winning the first

position than winning the second position conditional on Y1 = xi:

lim
α2→α1

E
[
ΠG

1 − ΠG
2

∣∣∣X = xi, Y1 = xi

]
= α1

∫ xi

0

(
βG(y2)− βG(xi)

)
g2|1(y2|xi, xi)dy2 < 0

(2.13)

The inequality follows from the fact that βG(y2) < βG(xi) for all y2 ∈ [0, xi) given

any strictly increasing function βG(.). Therefore, at any monotonic equilibrium, the

second position is more desirable than the first position conditional on Y1 = xi for

any bidder i when α2 is sufficiently close to α1. Under the one-dimensional bidding

language, each bidder is forced to submit the same bid for both positions, so the

equilibrium bid must balance net trade-offs between all pairs of adjacent positions

weighted by corresponding probability masses gk(xi|xi) that varies with signal xi,

as shown in equation (2.12). Because the weight attached to E[ΠG
1 − ΠG

2 |X =

xi, Y1 = xi] is higher for bidders with higher signals xi compared to those with lower

signals, the bid-shading incentive is stronger for the former. This differentiated bid-

shading incentive across bidders’ signals can lead to violation of monotonicity of the

unique equilibrium bidding strategy βG(xi) characterized in Lemma 2.2. Therefore,

a symmetric and strictly increasing equilibrium bidding strategy does not exist under

certain CTR profiles. According to Lemma 2.1, there exists no efficient equilibrium
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in the one-dimensional GSP auction under some CTR profile.

The result of Proposition 2.1 is consistent with the main result of Gomes

and Sweeney (2014) [14], who solve the Volterra equation that characterizes the

equilibrium of the one-dimensional GSP auction under independent private values

and show it can be non-monotonic under some CTR profile. They also show non-

monotonicity tends to occur when the click-through rate of the inferior position is

close to that of the superior position when there are two positions. Proposition

2.1 introduces interdependent values into their model and identifies an additional

source of non-existence of monotonic equilibrium: the non-existence of monotonic

equilibrium not only comes from the GSP payment rule, but also comes from the

single-dimensionality of bidding language in the GSP auction. Proposition 2.2 pro-

vides further support for this argument by showing that with the one-dimensional

bidding language, modifying the GSP payment rule to the more complicated VCG-

like payment rule does not resolve the inefficiency problem under interdependent

values, as differentiated bid-shading incentives across bidders still exist in the one-

dimensional VCG auction.

The source of inefficiency of one-dimensional VCG auctions comes from its

one-dimensional bidding language and the presence of the generalized “winner’s

curse” under interdependent values. Similar to the one-dimensional GSP auction,

the weight attached to trade-offs between each pair of adjacent positions gk(xi|xi)

varies in xi in the one-dimensional VCG auction. Under the VCG-like payment

rule, it is optimal for each bidder to bid her true expected value per click condi-

tional on Y2 = xi if the probability of winning the first position is zero so that
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only the trade-off between winning the second position and nothing needs to be

considered. However, for any bidder who receives a signal xi > 0, there is positive

probability of winning the first position at any monotonic equilibrium. With non-

trivially interdependent values, the expected value vk(xi, xi) differs across positions,

with v1(xi, xi) < v2(xi, xi) under the generalized “winner’s curse.” Therefore, every

bidder with xi > 0 shades bid below v2(xi, xi). Bidders with higher signals have

stronger bid-shading incentive, since they need to weigh the impact of the general-

ized “winner’s curse” more significantly given that they are more likely to win the

first position when other bidders bid monotonically. This differentiated bid-shading

incentive can lead to non-monotonicity of the unique equilibrium bidding strategy

βV (xi) characterized in Lemma 2.3, which implies that the one-dimensional VCG

auction must also be inefficient under some CTR profile when there are two posi-

tions. Moreover, the non-existence of monotonic equilibrium in the one-dimensional

VCG auction also tend to occur when α2 is close to α1, as the bid-shading incentive

under the generalized “winner’s curse” is amplified when the quality of the superior

position is not significantly better than the quality of the inferior position.

To summarize this section, it can be concluded that a common source of inef-

ficiency of the one-dimensional GSP auction and the one-dimensional VCG auction

comes from the fact that both auctions use a simple one-dimensional bidding lan-

guage to determine the allocation of multiple differentiated positions. Restricting

bidders to one-dimensional bids requires the equilibrium bid to balance the net trade-

offs between all pairs of adjacent positions on different margins, which is impossible

for any monotonic bidding strategy under certain CTR profiles. It is natural to
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conjecture that allowing bidders to submit different bids for each position such that

the equilibrium bid for each position k balances only the trade-off between position

k and position k + 1 conditional on Yk = xi may resolve the inefficiency problem.

The next section confirms this conjecture.

2.5 Efficiency of K-dimensional Position Auctions

In this section, I propose a modification of the one-dimensional GSP auction

and the one-dimensional VCG auction by allowing each bidder to submit K separate

bids (i.e., a K-dimensional bid) and show that both auctions have unique efficient

Bayesian equilibria given any number of positions K with any CTR profile after this

modification. Moreover, the Generalized English Auction that implicitly adopts a K-

dimensional bidding language has a unique efficient ex-post equilibrium. The main

result of this section shows that adopting a multi-dimensional bidding language can

fully implement efficiency in position auctions under interdependent values.

2.5.1 K-dimensional Position Auctions

I first construct a class of position auctions that adopts a K-dimensional bid-

ding language and a K-dimensional assortative allocation rule that corresponds to

the assortative allocation rule in one-dimensional position auctions. A position auc-

tion (µ, p) that adopts K-dimensional bids (b1, b2, · · · , bN) ∈ RK × RN , in which

bi ∈ RK represents bidder i’s bid per click for every position k ∈ {1, 2, · · · , K},

is called a K-dimensional position auction. The allocation rule µi(b1, b2, · · · , bN) =
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(
µ

(1)
i (b1, b2, · · · , bN), µ

(2)
i (b1, b2, · · · , bN), · · · , µ(K)

i (b1, b2, · · · , bN)
)

is a vector of K

functions, in which µ
(k)
i (b1, b2, · · · , bN) : RK × RN → [0, 1] maps a profile of bids

(b1, b2, · · · , bN) to the probability that bidder i wins position k. The payment rule

pi(b1, b2, · · · , bN) =
(
p

(1)
i (b1, b2, · · · , bN), p

(2)
i (b1, b2, · · · , bN), · · · , p(K)

i (b1, b2, · · · , bN)
)

is a vector of K functions, in which p
(k)
i (b1, b2, · · · , bN) : RK×RN → R maps a profile

of bids to the payment of bidder i for position k.

For any position k, define Sk(b1, b2, · · · , bN) as the set of bidders who should

win some position strictly above the k-th highest position at bidding profile (b1, b2, · · · , bN)

according to the allocation rule of the auction:

Sk(b1, b2, · · · , bN) =
{
j ∈ {1, 2, · · · , N}

∣∣ ∃ k′ < k s.t. µ
(k′)
j (bj, b−j) = 1

}
(2.14)

For any arbitrary bidder i, given any profile of K-dimensional bids (bi, b−i), define

max
{
bk−i/Sk(bi,b−i)

}
as the highest bid for position k among bidder i’s opponents who

do not win any position above k. A K-dimensional position auction is assortative if

its allocation rule is characterized by the following definition:

Definition 2.6. In a K-dimensional position auction (µ, p), the allocation rule µ is

assortative if for all k ∈ {1, 2, · · · , K},

µ
(k)
i (bi, b−i) =


1 if i /∈ Sk, max

{
bk−i/Sk(bi,b−i)

}
≤ bki

0 else

(2.15)

Any tie is broken randomly.

In an assortative K-dimensional position auction (µ, p), each bidder submits a

vector of K bids (b1
i , b

2
i , · · · , bKi ) simultaneously in a sealed-bid format. The auction-

35



eer collects all bids at once and assigns the first position to the bidder who submits

the highest bid for position 1, the second position to the bidder who submits the

highest bid for position 2, among those who do not win position 1, etc. Once a

bidder is assigned a position k, her bids for lower positions bji with j > k will not

be considered in the allocation of lower positions and will be equated to zero.

I next construct two assortative K-dimensional position auctions that can

be viewed as modified one-dimensional GSP auction and modified one-dimensional

VCG auction, respectively. I call these auctions K-dimensional GSP auction and

K-dimensional VCG auction.

Definition 2.7. The K-dimensional GSP auction is characterized by the assor-

tative K-dimensional allocation rule and the following payment rule: for all k ∈

{1, 2, · · · , K},

p
G,(k)
i (bi, b−i) =


αk max

{
bk−i/Sk(bi,b−i)

}
if i /∈ Sk, max

{
bk−i/Sk(bi,b−i)

}
≤ bki

0 else

(2.16)

Definition 2.8. The K-dimensional VCG auction can be characterized by the as-

sortative K-dimensional allocation rule and the following payment rule: for all

k ∈ {1, 2, · · · , K},

p
V,(k)
i (bi, b−i) =


∑K

j=k(αj − αj+1) max
{
bj−i/Sj(bi,b−i)

}
if i /∈ Sk, max

{
bk−i/Sk(bi,b−i)

}
≤ bki

0 else

(2.17)

In addition to the class of static K-dimensional position auctions proposed
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above, the dynamic Generalized English Auction (GEA) in Edelman et al. (2007) [6]

also adopts a K-dimensional bidding language. The rule of the Generalized English

Auction is given as follows. There is a continuously ascending clock showing the

current price. Initially, all advertisers are in the auction. An advertiser can drop

out at any time, and her bid is the price on the clock when she drops out. The

auction ends when there is only one bidder left. This last bidder wins the first

position, and her per click payment equals to the next-to-last bidder’s drop-out

price. The next-to-last bidder wins the second position, and her per click payment

equals to the third highest bid, etc. Any tie is broken randomly when bidders drop

out simultaneously. All drop-out prices are observable, so each bidder’s bidding

strategy will be different every time a bidder drops out. This dynamic process

implicitly allows for a K-dimensional bidding language.

2.5.2 Characterization of Equilibria and Efficiency Analysis

To begin the efficiency analysis of K-dimensional position auctions, I first pro-

vide a necessary and sufficient condition for any K-dimensional assortative position

auction to be efficient:

Lemma 2.4. A K-dimensional position auction (µ, p) with assortative allocation

rule is efficient if and only if given any number of positions K, there exists a symmet-

ric equilibrium in which each bidder’s bidding strategy
(
β1(xi), β2(xi), · · · , βK(xi)

)
satisfies β

′

k(xi) > 0 for every position k ∈ {1, 2, · · · , K}, under any CTR profile

(α1, α2, · · · , αK).
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Proof. See Appendix.

Next, I develop the main result of section 2.5: the K-dimensional GSP auction,

the K-dimensional VCG auction, and the Generalized English Auction are always

efficient given any value function satisfying assumptions A1-A3, for any number

of positions K, with any CTR profile. I first characterize the unique symmetric

equilibria of the K-dimensional GSP Auction, the K-dimensional VCG auction and

the Generalized English Auction. It will be shown that the equilibria of all three

auctions satisfy the necessary and sufficient condition in Lemma 2.4.

2.5.2.1 Equilibrium of K-dimensional GSP Auction

The unique symmetric Bayesian equilibrium bidding strategy in the K-dimensional

GSP auction is given in Proposition 2.3:

Proposition 2.3. Define the K-dimensional bidding strategy β(xi) =
(
β1(xi), β2(xi), · · · , βK(xi)

)
as follows:

βK(xi) = vK(xi, xi) (2.18)

for the last position K.

βk(xi) = vk(xi, xi)−
αk+1

αk

[
vk(xi, xi)−

∫ xi

0

βk+1(yk+1)dGk+1

(
yk+1

∣∣X = xi, Yk = xi
)]

(2.19)

for any position k ∈ {1, 2, · · · , K − 1}.

Let b∗i = β(xi) =
(
β1(xi), β2(xi), · · · , βK(xi)

)
for each bidder i, then the n-tuple

of strategies (b∗1, b
∗
2, · · · , b∗N) is a Bayesian Nash equilibrium of the K-dimensional

GSP auction.
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Proof. See Appendix.

Proposition 2.3 shows that the equilibrium bid for the last position K in the

K-dimensional GSP auction is the expected value per click conditional on receiving

a signal just high enough to win the last position, Yk = xi. On the other hand,

the equilibrium bid for any position above the last position in the K-dimensional

GSP auction is the expected value per click subtracted by the expected payoff from

winning the next position divided by αk, conditional on Yk = xi. The subtracted

term can be interpreted as the per-click opportunity cost of winning position k.

Since βK(xi) = vK(xi, xi) is strictly increasing in xi, and

dβk(xi)

dxi
=
(

1−αk+1

αk

)∂vk(xi, xi)
∂xi

+
αk+1

αk
βk+1(xi)gk+1(xi|xi, xi) > 0, ∀k ∈ {1, 2, · · · , K−1}

(2.20)

The symmetric equilibrium bidding strategy βk(xi) for every position k is strictly

increasing in xi. According to Lemma 2.4, the K-dimensional GSP auction is always

efficient.

Corollary 2.1. The K-dimensional GSP auction always implements the ex-post

efficient allocation in a symmetric Bayesian equilibrium given any value function

vi(xi, x−i) satisfying assumptions A1-A3, for any number of positions K, with any

CTR profile (α1, α2, · · · , αK).

To better understand the equilibrium characterized in Proposition 2.3, let

ΠG
k (xi, y1, · · · , yN−1) denote the payoff of winning position k given realizations X =

xi, Y1 = y1, · · · , YN−1 = yN−1 in the K-dimensional GSP auction. The equilibrium
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bidding strategy
(
β1(xi), · · · , βK(xi)

)
solves

αk

[
vk(xi, xi)− βk(xi)

]
︸ ︷︷ ︸

E[ΠG
k |X=xi,Yk=xi]

= αk+1

[
vk(xi, xi)−

∫ xi

0

βk+1(yk+1)dGk+1|k
(
yk|xi, xi

)]
︸ ︷︷ ︸

E[ΠG
k+1|X=xi,Yk=xi]

,

∀k ∈ {1, 2, · · · , K}
(2.21)

which implies that at the symmetric equilibrium of the K-dimensional GSP auction,

each bidder should be indifferent between winning position k and position k + 1

conditional on Yk = xi, at which value her signal is just high enough to win position

k, for any position k ∈ {1, 2, · · · , K}.

2.5.2.2 Equilibrium of K-dimensional VCG Auction

The unique symmetric Bayesian equilibrium bidding strategy in the K-dimensional

VCG auction is given by Proposition 2.4:

Proposition 2.4. Let βk(xi) = vk(xi, xi) for all k ∈ {1, 2, · · · , K}. Let b∗i =

β(xi) = (β1(xi), β2(xi), · · · , βK(xi)), then the n-tuple of strategies (b∗1, b
∗
2, · · · , b∗N) is

a Bayesian Nash equilibrium of the K-dimensional VCG auction.

Proof. See Appendix.

Since vk(xi, xi) is strictly increasing in xi for all k ∈ {1, 2, · · · , K}, the K-

dimensional VCG auction is always efficient.

Corollary 2.2. The K-dimensional VCG auction always implements the ex-post

efficient allocation in a symmetric Bayesian equilibrium given any value function
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vi(xi, x−i) satisfying assumptions A1-A3, for any number of positions K, with any

CTR profile (α1, α2, · · · , αK).

To better understand the equilibrium bidding strategy characterized in Propo-

sition 2.4, let ΠV
k (xi, y1, · · · , yN−1) denote the payoff of winning position k given

realizations X = xi, Y1 = y1, · · · , YN−1 = yN−1 in the K-dimensional VCG auction.

The equilibrium bidding strategy
(
β1(xi), β2(xi), · · · , βK(xi)

)
in the K-dimensional

VCG auction solves

(αk − αk+1)
[
vk(xi, xi)− βk(xi)

]
︸ ︷︷ ︸

E[ΠV
k −ΠV

k+1|X=xi,Yk=xi]

= 0, ∀k ∈ {1, 2, · · · , K} (2.22)

which implies that at the equilibrium of K-dimensional VCG auction, each bidder

with signal xi is indifferent between winning position k and position k + 1 when

Yk = xi, for all position k. Comparing equation (2.21) and equation (2.22), it

follows that the equilibria of K-dimensional GSP auction and K-dimensional VCG

auction can be characterized by the same condition:

E
[
ΠL
k − ΠL

k+1

∣∣∣X = xi, Yk = xi

]
= 0, ∀ k ∈ {1, 2, · · · , K}, ∀ L ∈ {G, V } (2.23)

Equation (2.23) shows that with K-dimensional bidding language, each bid-

der submits K separate bids such that the bid for position k balances only the

trade-off between position k and position k + 1 conditional on Yk = xi, in contrast

to the equilibrium condition in one-dimensional position auctions characterized by

equation (2.12). The differentiated bid-shading incentive across bidders’ signals in

the one-dimensional auctions is replaced by the differentiated bid-shading incen-

tive across positions in the K-dimensional auctions, which resolves the inefficiency
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problem.

The next example provides an illustration of the Bayesian equilibrium bidding

strategies in the K-dimensional VCG auction and K-dimensional GSP auction.

Example 2.1. Consider the K-dimensional VCG auction and K-dimensional GSP

auction with K = 2 positions and N = 3 bidders, with click-through-rates normalized

to (1, α2). The bidders’ private signals are independently and identically drawn from

the uniform distribution on [0, 1]. Bidder i’s value per click vi is a function of her

own signal xi and her opponents’ signals xj, xk:

vi(xi, xj, xk) = λxi +
1− λ

2

(
xj + xk

)
, λ ∈

[1

3
, 1
]

(2.24)

Figure 1 plots the equilibrium bidding strategy
(
βV1 (x), βV2 (x)

)
in the K-dimensional

VCG auction and
(
βG1 (x), βG2 (x)

)
in the K-dimensional GSP auction, under different

values of λ ∈ {1, 1
2
, 1

3
} and α2 ∈ {0.75, 0.25}.

Figure 2.1 provides two main insights. First, comparing the equilibria under

values of λ = 1, 1
2
, 1

3
given the same α2 illustrates the impact of increasing degree of

interdependency among bidders’ values on the equilibria of the two auctions. Since

βL1 (xi) ≤ βL2 (xi) for both auctions L ∈ {G, V } under any α2, the equilibrium bid of

any bidder for position 1 is weakly lower than that for position 2 in both auctions.

The difference
(
βL2 (xi) − βL1 (xi)

)
is increasing in xi in the K-dimensional GSP

auction, while stays constant in xi in the K-dimensional VCG auction. Moreover,(
βL2 (xi) − βL1 (xi)

)
is greater in both auctions when λ is lower, which means the

degree of bid-shading for position 1 is more significant in both auctions when the
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Figure 2.1: Equilibrium Bidding Strategies in K-dimensional VCG and GSP Auction
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degree of interdependency in values is stronger and the impact of the generalized

“winner’s curse” is more significant.

Second, comparing the equilibria under α2 = 0.75 to α2 = 0.25 under the same

value of λ shows the impact of increasing difference in click-through rates between

the superior position and the inferior position on the equilibria of the two auctions.

It can be shown that under the same λ,
(
βG2 (xi)−βG1 (xi)

)
increases in α2 as well as

in xi in the K-dimensional GSP auction, while
(
βV2 (xi)−βV1 (xi)

)
remains unaffected

by α2 and stays constant in xi in the K-dimensional VCG auction. Therefore, the

bid-shading incentive for position 1 is greater when the click-through rates of two

positions are closer in the K-dimensional GSP auction, while the equilibrium bids

are unaffected by click-through rates in the K-dimensional VCG auction.

2.5.2.3 Equilibrium of Generalized English Auction

The next result of this section characterizes the unique symmetric equilibrium

of the Generalized English Auction (GEA) under interdependent values and shows

this dynamic auction that implicitly adopts a K-dimensional bidding language is

also efficient.

At any time in the auction, let n denote the number of bidders who are still

active in the auction, and (N − n) denote the number of bidders who have dropped

out. Let (pN , pN−1 · · · , pn+1) denote the drop-out prices of the (N − n) bidders,

in which pN is the bid of the first drop out bidder, and pn+1 is the bid of the last

drop out bidder at current time, so pN ≤ pN−1 ≤ · · · ≤ pn+1. When there are n
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remaining bidders in the auction, the equilibrium strategy for bidder i specifies her

optimal drop out price given her private signal xi and a history of drop out prices

(pN , pN−1, · · · , pn+1). Define

v(k)(xi, yk, yk+1, · · · , yN−1) = E
[
vi

∣∣∣X = xi, Yk = yk, Yk+1 = yk+1, · · · , YN−1 = yN−1

]
(2.25)

as bidder i’s expected value conditional on her own signal X = xi and the realiza-

tion of all of the (N − k) lowest signals among opponents’ signals, Yk = yk, Yk+1 =

yk+1, · · · , YN−1 = yN−1. The unique symmetric equilibrium of the GEA under in-

terdependent values is characterized in Proposition 2.5:

Proposition 2.5. Define strategy b∗ = (b∗N , b
∗
N−1, · · · , b∗2) as follows:

b∗N(xi) = v(K)(xi, xi, · · · , xi︸ ︷︷ ︸
(N −K)

)

b∗n(xi|pN , · · · , pn+1) =

v(K)(xi, xi, · · · , xi︸ ︷︷ ︸
(n−K)

, yn, yn+1, · · · , yN−1︸ ︷︷ ︸
(N − n) lowest signals

) if (K + 1) ≤ n ≤ (N − 1)

v(n−1)(xi, xi, yn, yn+1, · · · , yN−1︸ ︷︷ ︸
(N − n) lowest signals

)− αn

αn−1

[
v(n−1)(xi, xi, yn, yn+1, · · · , yN−1︸ ︷︷ ︸

(N − n) lowest signals

)− pn+1

]
if n ≤ K

(2.26)

in which yn, yn+1, · · · , yN−1 are calculated from

b∗N(yN−1) = pN

b∗N−1(yN−2|pN) = pN−1

· · ·

b∗n+1(yn|pN , · · · , pn+2) = pn+1

(2.27)
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The N-tupple bidding strategy (b∗, ..., b∗) is an ex-post equilibrium of the Gen-

eralized English Auction under interdependent values.

Proof. See Appendix.

Since the equilibrium bidding strategy b∗n(xi) at any stage of the GEA is in-

creasing in xi, the GEA is also efficient.

Corollary 2.3. The Generalized English Auction always implements the ex-post

efficient allocation in an ex-post equilibrium, given any value function vi(xi, x−i)

satisfying assumptions A1-A3, for any number of positions K, with any CTR profile

(α1, α2, · · · , αK).

To better understand the equilibrium of GEA, let ΠE
k (xi, y1, y2, · · · , yN−1) be

the payoff from winning position k conditional on X = xi, Y1 = y1, · · · , YN−1 =

yN−1. The equilibrium condition of GEA characterized in Proposition 2.5 can be

interpreted as

E
[
ΠE
K

∣∣∣X = xi, YK = xi, · · · , YN = xi

]
= 0, if n = N

E
[
ΠE
K

∣∣∣X = xi, YK = xi, · · · , Yn−1 = xi, Yn = yn, · · · , YN = yN

]
= 0, if K + 1 ≤ n ≤ N − 1

E
[
ΠE
k − ΠE

k+1

∣∣∣X = xi, Yk = xi, Yk+1 = yk+1, · · · , YN = yN

]
= 0, if n = k + 1 ≤ K

(2.28)

which implies that the optimal drop-out price at any time of the auction must

balance the trade-off between winning position k and position k + 1 conditional

on Yk = xi, given the profile of revealed signals from the history of drop-out prices.

When there are more bidders than positions left in the auction, each bidder’s optimal

drop-out strategy specifies the price at which she is indifferent between winning the
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lowest position and winning nothing. When there are (weakly) fewer bidders than

positions left in the auction, each bidder’s optimal drop-out strategy specifies the

price at which she is indifferent between winning the next position higher than

the current lowest position and winning the current lowest position at the most

recent drop-out price. Comparing the characterization of equilibrium in (2.28) to

the characterization of equilibrium in (2.23), it can be shown that the equilibrium

condition of GEA is similar to the equilibrium condition of the K-dimensional GSP

auction and the K-dimensional VCG auction, while the only difference comes from

that each remaining bidder can update her belief from revealed signals of drop-out

bidders in GEA.

2.6 Revenue of K-dimensional Position Auctions

In this section, I compare the expected revenues of the three efficient K-

dimensional position auctions analyzed in section 2.5 and characterize the optimal

design of position auction under interdependent values as a direct revelation mecha-

nism. Then I compare the expected revenues of the three efficient position auctions

to the optimal revenue subject to no reserve price.

2.6.1 Revenue Ranking

The following proposition gives the revenue ranking of the K-dimensional GSP

auction, the K-dimensional VCG auction and the GEA.

Proposition 2.6. The expected revenue of the Generalized English Auction is higher
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than the expected revenue of the K-dimensional VCG auction, which in turn equals

to the expected revenue of the K-dimensional GSP auction, for any value function

vi(xi, x−i) and distribution of signals F (x1, x2, · · · , xN) satisfying assumptions A1-

A5.

RGEA ≥ RK−V CG = RK−GSP (2.29)

Proof. See Appendix.

The intuition behind revenue equivalence of the K-dimensional GSP auction

and the K-dimensional VCG auction is the following. Both auctions are sealed-

bid auctions, so no information is elicited before final allocation and payments are

determined. Both auctions adopt the same K-dimensional assortative allocation rule

and some variation of a “second-price” payment rule under which each bidder’s bid

only affect her allocation but not her payment. In the proof of Proposition 2.6, it

is shown that although each bidder’s payment in the two auctions depends on her

opponents’ bids in different ways, bidders are able to incorporate different payment

rules into their bidding strategies so that the expected payment for a bidder with

the same signal xi is the same in the two auctions.

The intuition behind the revenue ranking of the GEA and the K-dimensional

VCG auction comes from the Linkage Principle in Milgrom and Weber (1982) [2].

With affiliated signals, the dynamic auction performs better than static auctions

since part of the signals are elicited during the drop-out process. On the other

hand, with independent signals, the GEA is revenue equivalent to the other two

static K-dimensional position auctions, which gives the following corollary:
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Corollary 2.4. When bidders’ signals are independently and identically distributed,

the Generalized English Auction, the K-dimensional VCG auction and the K-dimensional

GSP auction yield the same expected revenue, for any value function vi(xi, x−i) that

satisfies assumptions A1-A3.

Corollary 2.4 is consistent with the Revenue Equivalence Theorem in auction

theory. When bidders have independent signals, the K-dimensional GSP auction, the

K-dimensional VCG auction and the Generalized English Auction always implement

the same allocation and yield zero expected payoff to the bidder with lowest signal.

The revenue equivalence follows as a result.

2.6.2 Revenue Comparison with the Optimal Position Auction

I next characterize the optimal position auction under interdependent values

subject to no reserve price as a corollary of Ulku (2013) [45]’s result13 and then com-

pare expected revenues of the K-dimensional GSP auction, the K-dimensional VCG

auction and the Generalized English Auction to the optimal revenue implementable

in position auctions subject to no reserve price.

13Ulku (2013) [45] characterizes the optimal mechanism for allocating a set of heterogeneous

items under interdependent values. This paper provides a corollary of Ulku (2013) [45] in the

special environment of position auctions and provides a discussion on the connection between

efficient and optimal mechanisms under this context.
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2.6.2.1 Mechanism Design and Solution Concepts

Under the revelation principle, I characterize the optimal position auction as

a direct mechanism, in which bidders report private signals directly, while the value

function v(xi, x−i) and signal distribution F (x1, x2, · · · , xN) are common knowl-

edge. To make the expected revenue of the optimal position auction comparable to

expected revenues of the three practical auctions analyzed in section 5, I restrict

attention to the optimal position auction subject to no reserve price. A position

auction mechanism (µ, p) consists of an allocation rule µi(x) and a payment rule

pi(x) for every bidder i, where µi(x) =
(
µ

(1)
i (x), µ

(2)
i (x), · · · , µ(K)

i (x)
)

is the vec-

tor of probabilities that bidder i wins position 1, 2, · · · , K given reported signals

x ∈ [0, x̄]N , and pi(x) is the expected payment of bidder i given reported signals

x ∈ [0, x̄]N . In a deterministic mechanism, µ
(k)
i (x) ∈ {0, 1} for all k and pi(x) is the

actual payment.

Given a CTR profile (α1, α2, · · · , αK) and allocation rule µ, the expected click-

through rate qi assigned to bidder i under report x = (x1, x2, · · · , xN) is given by

qi(x) =
K∑
k=1

αkµ
(k)
i (x) (2.30)

For notational simplicity, I use the expected click-through rates (CTR)
{
qi(x)

}N
i=1

instead of N vectors of expected probabilities
{(
µ

(1)
i (x), µ

(2)
i (x), · · · , µ(K)

i (x)
)}N

i=1

as the allocation rule in the analysis. I use (q, p) and (µ, p) to refer to the same

mechanism interchangeably if qi(x) =
∑K

k=1 αkµ
(k)
i (x). The feasibility condition of

the allocation rule in a position auction mechanism is defined below:
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Definition 2.9. An allocation rule in the form of µ(x) is feasible if

0 ≤
N∑
i=1

µ
(k)
i (x) ≤ 1, ∀ k, and 0 ≤

K∑
k=1

µ
(k)
i (x) ≤ 1, ∀ i (2.31)

An allocation rule in the form of q(x) is feasible if qi(x) =
∑K

k=1 αkµ
(k)
i (x) for

all i for some allocation rule µ(x) satisfying condition (2.31).

For any bidder i with signal xi, the interim utility Ui(xi) is given by

Ui(xi) =

∫
x−i

[
qi(xi, x−i)vi(xi, x−i)− pi(xi, x−i)

]
f−i|i(x−i|xi)dx−i (2.32)

where ui(xi, x−i) = qi(xi, x−i)vi(xi, x−i)−pi(xi, x−i) is the ex-post utility of bidder i

given the signal profile (xi, x−i). I now give the definition of two solution concepts:

Definition 2.10. A position auction mechanism (q, p) is Bayesian incentive com-

patible (IC) and individually rational (IR) if for every bidder i, for any true signal

xi and any report x
′
i,

Ui(xi) ≥
∫
x−i

[
qi(x

′

i, x−i)vi(xi, x−i)− pi(x
′

i, x−i)
]
f−i|i(x−i|xi)dx−i

Ui(xi) ≥ 0

(2.33)

Definition 2.11. A position auction mechanism (q, p) is ex-post incentive compat-

ible (IC) and individually rational (IR) if for every bidder i, for any true signal

profile (xi, x−i) and any report x
′
i,

ui(xi, x−i) ≥ qi(x
′

i, x−i)vi(xi, x−i)− pi(x
′

i, x−i)

ui(xi, x−i) ≥ 0

(2.34)

In the following analysis, I characterize the optimal position auction subject

to no reserve price among all ex-post IC and IR mechanisms under affiliated signals,

51



and show that under certain regularity conditions, this optimal auction is equivalent

to the Generalized-VCG mechanism that assigns all positions efficiently, Moreover,

the optimal auction yields higher revenue than the GEA, the K-dimensional GSP

auction and the K-dimensional VCG auction. Then I show that in the special case

of independent signals, this mechanism is also optimal subject to no reserve price

among all Bayesian IC and IR mechanisms, and implements equivalent revenue as

the GEA, the K-dimensional GSP auction, and the K-dimensional VCG auction

under the same set of regularity conditions.

2.6.2.2 Characterization of the Optimal Position Auction

I first characterize the optimal mechanism subject to no reserve price among

ex-post IC and IR mechanisms under interdependent values with affiliated signals.

Given any profile of signals x, define bidder i’s marginal revenue MRi(xi, x−i)

as

MRi(xi, x−i) = vi(xi, x−i)−
1− Fi(xi|x−i)
fi(xi|x−i)

× ∂vi(xi, x−i)

∂xi
(2.35)

For any bidder i, given a vector of opponents’ reported signals x−i, define X̂k(x−i)

as the minimum value that bidder i’s signal can take such that bidder i has the k-th

highest MRi among all bidders:

X̂k(x−i) = inf
{
xi

∣∣∣MRi(xi, x−i) ≥ kmaxj 6=i
{
MRj(xj, xi, x−ij)

} }
(2.36)

in which kmaxj 6=i
{
MRj(xj, xi, x−ij)

}
is value of the k-th highest marginal revenue

among bidder i’s opponents given report x, and x−ij is the vector of signals reported

by bidders other than i and j. The following two regularity conditions are provided
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such that the optimal position auction subject to no reserve price assigns positions

in the rank ordering of MRi(x) given report x.

R1 (Value Regularity): Given any profile of signals x, for any two bidders i, j,

If xi > xj, then vi(xi, xj, x−ij) > vj(xj, xi, x−ij) (2.37)

Note that R1 is directly implied by assumptions A1-A3.

R2 (MR Monotonicity): Given any report of signals x, for all bidder i,

∂MRi(xi, x−i)

∂xi
> 0, ∀x−i (2.38)

I next provide a corollary of Ulku (2013) [45] by characterizing the optimal

position auction subject to no reserve price among all ex-post IC and IR mechanisms

under R1 and R2.

Corollary 2.5. Under regularity conditions R1 and R2, suppose the expected CTR

is given by

q∗i (xi, x−i) =


αk if X̂k(x−i) ≤ xi < X̂k−1(x−i)

0 if xi < X̂K(x−i)

(2.39)

Any tie is broken randomly. Suppose also that the payment rule is given by

p∗i (xi, x−i) = qi(xi, x−i)vi(xi, x−i)−
∫ xi

0

qi(s, x−i)
∂vi(s, x−i)

∂s
ds (2.40)

Then (q∗, p∗) is an optimal position auction among all the ex-post IC and IR mech-

anisms subject to no reserve price.

Proof. See Appendix.
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Note that in the special case of independent signals, each bidder’s marginal

revenue is given by

MRi(xi, x−i) = vi(xi, x−i)−
1− Fi(xi)
fi(xi)

× ∂vi(xi, x−i)

∂xi
(2.41)

as Fi(xi|x−i) = Fi(xi) and fi(xi|x−i) = fi(xi) under independent signals. The next

proposition shows that under R1 and R2, conditional on having no reserve price,

the optimal position auction (q∗, p∗) characterized in corollary 2.6 is also optimal

among all Bayesian IC and IR mechanisms when signals are independent.

Proposition 2.7. Under regularity conditions R1 and R2, if signals are indepen-

dent, then (q∗, p∗) is an optimal position auction among all the Bayesian IC and IR

mechanisms subject to no reserve price.

Proof. See Appendix.

Since all ex-post IC and IR mechanisms are also Bayesian IC and IR mecha-

nisms, the optimality of (q∗, p∗) under independent signals is stronger.

2.6.2.3 Revenue Comparison

I next show the optimal position auction subject to no reserve price character-

ized in Corollary 2.7 is equivalent to the Generalized-VCG mechanism proposed by

Ausubel (1999) [20], then compare the expected revenue of the Generalized-VCG

mechanism to the expected revenues of the GEA, the K-dimensional GSP auction

and the K-dimensional VCG auction.

For an arbitrary bidder i, given a vector of opponents’ bids x−i, let x̂k(x−i) be

the minimum value that bidder i’s signal can take such that bidder i has at least
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the k-th highest value among all bidders:

x̂k(x−i) = inf
{
xi

∣∣∣ vi(xi, x−i) ≥ kmaxj 6=i
{
vj(xj, xi, x−ij)

} }
(2.42)

in which kmaxj 6=i
{
vj(xj, xi, x−ij)

}
is the k-th highest value received by bidder i’s

opponents given report x, and x−ij is the vector of signals reported by bidders other

than i and j.

Define the Generalized-VCG mechanism in the context of position auctions as

follows:

qVi (xi, x−i) =


αk if x̂k(x−i) ≤ xi < x̂k−1(x−i)

0 if xi < x̂K(x−i)

pVi (xi, x−i) =


∑K

j=k(αj − αj+1)vi(x̂
j(x−i), x−i) if x̂k(x−i) ≤ xi < x̂k−1(x−i)

0 if xi < x̂K(x−i)

(2.43)

Any tie is broken randomly.

Proposition 2.8 shows that the optimal position auction subject to no re-

serve price (q∗, p∗) among all ex-post IC and IR mechanisms is equivalent to the

Generalized-VCG mechanism when an additional regularity condition described be-

low is satisfied:

R3 (MR regularity): For all i, j, given any report x,

if xi > xj, then MRi(xi, xj, x−ij) > MRj(xj, xi, x−ij) (2.44)

Proposition 2.8. Under regularity conditions R1, R2 and R3, the optimal posi-

tion auction subject to no reserve price among all ex-post IC and IR mechanisms is
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equivalent to the Generalized-VCG mechanism that assigns all positions efficiently.

This optimal revenue is weakly higher than the expected revenue of the GEA, which is

in turn weakly higher than the expected revenues of the K-dimensional GSP auction

and the K-dimensional VCG auction.

Proof. See Appendix.

The intuition behind the revenue ranking in Proposition 2.8 comes from that

in the Generalized-VCG mechanism, the payment of each bidder depends on the

entire reported signal profile from opposing bidders, while the payment of each

bidder only depends on a subset of opponents’ signals in the GEA, and depends on

none of opponents’ signals in the K-dimensional GSP auction and the K-dimensional

VCG auction. Under the logic of the Linkage Principle, when signals are affiliated,

the expected revenue of an auction is greater when each bidder’s payment depends

on more of its opponents’ signals. Therefore, the Generalized-VCG mechanism

dominates the K-dimensional GSP auction and the K-dimensional VCG auction in

both revenue and incentive compatibility, as the latter two are Bayesian incentive

compatible but not ex-post incentive compatible.

On the other hand, revenue equivalence holds among the Generalized-VCG

mechanism, the GEA, the K-dimensional GSP auction and the K-dimensional VCG

auction under independent signals:

Corollary 2.6. When bidders have independent signals, under regularity conditions

R1, R2 and R3, the optimal position auction subject to no reserve price among

all Bayesian IC and IR mechanisms is equivalent to the Generalized-VCG mecha-
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nism that assigns all positions efficiently. Moreover, this optimal revenue can be

practically implemented by the GEA, the K-dimensional GSP auction, and the K-

dimensional VCG auction.

The main insight from Corollary 2.6 is that under independent signals and

regularity conditions R1, R2 and R3, the three K-dimensional position auctions

analyzed in section 2.5 dominates the one-dimensional position auctions analyzed

in section 2.4 in both efficiency and revenue.

2.7 Conclusions

Given the performance of GSP auction under complete information analyzed

in previous literature, it is an important question to ask whether the desirable prop-

erties of GSP auction are preserved under other information structures. This paper

shows that efficiency is not preserved in the GSP auction when bidders have interde-

pendent values, which is a more realistic information structure given the oligopolistic

competition feature among advertisers bidding for the same keyword and the un-

certainty in consumer demand that all advertisers face as a result of continuous

demand shocks. This inefficiency result extends Gomes and Sweeney (2014) [14]’s

result into a broader range of information structure and provides a sharp contrast

to previous studies that favor the GSP auction under complete information, imply-

ing that the GSP auction can be a suboptimal mechanism when the information

structure deviates from complete information.

In addition to proving inefficiency of the GSP auction, this paper proves that
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the VCG auction can also be inefficient under interdependent values and shows

that the inefficiency of both GSP auction and VCG auction comes from the one-

dimensional bidding language. The one-dimensional bidding language restricts each

bidder to submit the same bid for all positions and forces each bidder to balance the

net trade-offs between all pairs of adjacent positions on corresponding margins in

equilibrium. Since a superior position can be less desirable than an inferior position

under some CTR profile given the expected payoffs in the GSP auction, bidders

with higher signals have stronger bid-shading incentives than bidders with lower

signals. As a result, bidders with higher values may lose to bidders with lower

values under this differentiated bid-shading incentive. When bidders’ values are

non-trivially interdependent, winning a superior position conveys worse news about

expected value than winning an inferior position under the generalized “winner’s

curse,” which causes differential bid-shading incentive across bidders and leads to

inefficiency in the one-dimensional VCG auction as well. On the other hand, the

dynamic Generalized English Auction that implicitly adopts a multi-dimensional

bidding language does not have this inefficiency problem, as bidders are able to

incorporate the differential bid-shading incentives into their bidding strategies across

positions.

The main conclusion of this paper is that when bidders have interdependent

values, adopting a multi-dimensional bidding language that allows bidders to bid

differently across positions not only improves efficiency, but also improves revenue.

This conclusion implies that there exists a trade-off between simplicity versus ef-

ficiency and revenue in auction design. Moreover, comparing the equilibrium of
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one-dimensional auction to its K-dimensional counterparts shows that the complex-

ity in bidding strategy is reduced under K-dimensional auctions, which implies that

there also exists a trade-off between simplicity in auction design and simplicity in

bidding strategy. This insight can also be implied from the observation that under

both one-dimensional and K-dimensional bidding language, the equilibrium bidding

strategy in the VCG auction is much simpler than the equilibrium bidding strategy

in the GSP auction, although the VCG payment rule is more complicated compared

to the GSP payment rule. These implications provide some insights to the discus-

sion on the cost of simplicity in mechanism design in both economics and computer

science literature.

This paper provides some guidance on the design of auctions for allocating

sponsored advertising spaces on a wide range of online platforms, including search

engines such as Google and Yahoo!, online shopping platforms such as Amazon

and eBay, online rating and booking platforms such as Yelp and TripAdvisor, and

social media such as Facebook, Twitter, and Instagram. All of these two-sided

platforms share the common characteristics that advertisers competing for the same

advertising space are likely selling substitutable products or services and therefore

are subject to demand shocks in the same market. When interdependency is likely

to present in bidders’ values, it may worth to use the more complicated, multi-

dimensional bidding language in order to guarantee efficiency and improve revenue.

This paper points to two future research directions. First, this paper follows

previous literature on position auctions and assumes bidders have single-unit de-

mands. However, bidders may have multi-unit demands in real position auctions.
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For example, an advertiser may demand consecutive slots on the first search result

page or demand a slot on each of the first three search result pages under a keyword.

One natural extension of this paper is to allow bidders to have multi-unit demands

and explore how introducing multi-unit demands affects the efficiency and revenue

properties of the auctions studied in this paper. Second, it would be interesting

to conduct an experimental study to test the theoretical predictions in this paper

and quantify the change in efficiency and revenue that results from modifying the

bidding language from one-dimensional to K-dimensional in position auctions.
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Chapter 3: Auctions with Quantity Externalities and Endogenous

Supply

3.1 Introduction

Auctions are used to sell operating permits in many industries, including

telecommunication, energy and electricity power. A common characteristic in these

industries is that, the total number of licenses allocated in the auction will determine

the total number of competitors in the downstream market associated to the auc-

tion and therefore enter each bidder’s value of obtaining a license. Moreover, each

bidder’s value of obtaining a license is decreasing in the total number of licenses

allocated in the auction. For example, consider auctions for allocating operating

permit in a regulated industry where each firm must acquire a license to enter the

market. The number of licenses allocated in the auction determines the number of

competitors in the downstream market, so each bidder’s value of winning a license

depends on how many licenses are allocated in total. Selling more licenses will lead

to more intensive competition in the downstream market and will reduces the value

of winning a license to each bidder. By winning a license, each bidder may impose

some negative externalities on other winning bidders. The negative externalities on
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other winning bidders comes from the greater quantity of licenses supplied in the

auction and therefore is called quantity externalities.

Under the presence of quantity externalities, there exists a trade-off between

selling more licenses and preserving bidders’ values from winning each license from

the perspective of surplus maximization1 of all participants in auction. Selling all

the licenses up to the capacity constraint may not be surplus-maximizing, as the

winners’ values are decreasing in total supply. Given the presence of this trade-off,

how to design an auction to determine both total supply and allocation to maximize

producer surplus is an interesting problem for practitioners. In this paper, I analyze

a license auction in which each bidder’s value of obtaining a license is a function

of its own private cost and total number of licenses allocated in the auction. The

main objective of this paper is to design an efficient auction that determines both

total supply and allocation to maximize producer surplus based on the bidding

profile. I also provide a discussion of auction design under other objectives, including

maximizing revenue and maximizing a weighted average of consumer surplus and

producer surplus.

I first characterize the VCG mechanism that requires each bidder to report

1This paper focuses on maximizing total surplus generated in the auction market, which is

equivalent to maximizing producer surplus in the downstream market. Since the auctioneer does

not have value over licenses, the term “total surplus” in the auction market is equivalent to “total

producer surplus” in the downstream market. I will refer to it as “producer surplus” in the

remaining of this chapter. The term “efficiency” refers to maximizing producer surplus in the

downstream market. I will include a discussion on auction design when consumer surplus in

downstream market is also considered in the end of this chapter.
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private cost directly and shows that a sequence of reserve prices are needed to de-

termine supply endogenously in any surplus-maximizing auction. That is, there is a

minimum acceptable bid for every additional unit to be sold in the auction. A k-th

unit will not be sold if the price of the k-th unit fails to meet the minimum accept-

able bid for that unit. Then I show that uniform-price auctions and ascending clock

auctions are inefficient after introducing such reserve price. The inefficiency in both

auctions come from that introducing a sequence of reserve prices to endogenously de-

termine supply will differentiate the expected values conditional on winning among

bidders, as a high-cost bidder will win a license only when the competition in auction

is weak, auction clearing price is low and total supply is low. Therefore, a higher

cost bidder will have a higher expected value conditional on winning compared to a

lower cost bidder. Moreover, there exists a continuum of bidders whose optimal bids

massed at the point of every reserve price, leading to a pooling equilibrium. After

showing the inefficiency of uniform-price auctions and ascending clock auctions, I

construct a multi-dimensional uniform-price auction that allows bidders to condi-

tion their bids on total supply and show this auction can implement the efficient

allocation in a dominant strategy equilibrium. Moreover, I construct a Walrasian

Clock auction that can dynamically implement the efficient allocation in a domi-

nant strategy equilibrium. I also characterize the revenue-maximizing mechanism

and compare the optimal reserve prices to the efficient reserve prices.

The main contribution of this paper is the follows. First, I characterize the

feature of efficient auctions and optimal auctions under the presence of quantity ex-

ternalities. Second, I prove the inefficiency of uniform-price auctions and ascending
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clock auctions after introducing such reserve prices and construct two alternative

auctions to implement the efficient allocation. Third, I provide a comparison be-

tween optimal reserve prices and efficient reserve prices and provide some guidance

to the design of practical license auctions that may involve quantity externalities

among bidders.

3.2 Related Literature

This paper is related to the strand of literature on auctions with allocative

externalities, in which each bidder cares about other bidders’ allocation. Jehiel

et al. (1996) [48] construct a revenue-maximizing auction mechanism when a sale

creates negative externalities on losing bidders, and the magnitude of those exter-

nalities depends on the identity of winner. In a subsequent paper, Jehiel et al.

(1999) [49] characterize the optimal multi-dimensional mechanism under the setting

when each buyer’s multi-dimensional type specifies the payoffs for every possible

allocation in the auction. Varma (2002) [50] analyzes equilibrium bidding strategy

in the open ascending-bid auction with identity-dependent externalities and shows

that ascending clock auction yields higher revenue compared to sealed-bid auctions,

since bidders can better avoid pay-off reducing externalities in a dynamic auction

that reveals more information about the identity of potential winner. This paper

considers a different type of allocative externalities that is caused by implementing

a different market structure through auction in the post-auction market.

The interplay between license auctions and post-auction market competition

64



has been extensively studied in the literature. Jehiel and Moldovanu (2000a) [51]

derive equilibria for a second-price auction in which the payoff to each losing bidder

is a function of the winner’s type and its own type and point out various effect

caused by both positive and negative externalities. Moldovanu and Sela (2003) [52]

study an auction for allocating a cost-reducing patent, in which each firm’s value

of obtaining the patent depends on other firms’ pre-auction production costs. They

show that standard auctions, including first-price auctions and second-price auc-

tions, lead to inefficient allocation when firms do not know each other’s production

cost at the time of bidding. Zhong (2005) [53] analyzes a license auction in which

potential firms first compete for one license then the license winner competes with

one incumbent in the market. He identifies the impact of disclosing the winning bid

to the incumbent after auction on both Cournot and Bertrand markets and shows

that price disclosure will increase revenue in Cournot market while decrease rev-

enue in Bertrand markets. Georee (2003) [54] studies bidders’ incentive of signaling

through bidding for gaining advantage in post-auction competition in different auc-

tion formats. He shows that the equilibrium bidding functions are biased upwards

in second-price auctions as bidders wish to exaggerate their competitiveness in the

downstream market, while this signaling phenomenon is less prominent in first-price

auctions and English auctions as the winner incurs the cost of her signaling choice.

All of these papers assume the total quantity of license is fixed to be one, so the im-

pact of auction on post-auction market comes from the dependency of post-auction

market outcome on the type of winning bidder. This paper complements these pa-

pers by analyzing a license auction with post-auction market competition, where
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the impact of auction on post-auction comes from the dependency of post-auction

market structure on the quantity of licenses allocated in the auction.

The presence of quantity externalities in auction markets has also been dis-

cussed in several previous papers. Katz and Shapiro (1986) [55] characterize an up-

stream research lab’s optimal pricing strategy when selling licenses to downstream

oligopolistic firms when each firm’s willingness to pay for a license depends only

upon how many of its rivals are obtaining licenses. They analyze a class of licensing

mechanisms in which the licensor announces it will sell no more than some fixed

number of licenses, each subject to a minimum bid, and characterize the optimal

licensing strategy among this class of mechanisms. In Katz and Shapiro (1986) [55],

firms are identical and do not have private information, so each firm’s value of a

license depends only on the quantity supplied in the auction. Jehiel and Moldovanu

(2000b) [56] analyze the interplay between license auctions and market structure in

a model with multiple incumbents and multiple potential entrants. In their model,

each firm’s value of a license depends on the number of incumbents, the number of

new entrants, and whether the firm is an incumbent or an entrant. They focus on

how auction format affects the incumbents’ incentives to preempt entry by bidding

for new licenses and show that the relation between number of available licenses and

the number of incumbents plays a major role. Rodriguez (1997) [57] studies entry

preemption in sequential license auctions and also shows that entry preemption in

equilibrium depends critically on the number of incumbents. This paper is closely

related to these studies by also analyzing a license auction where each firm cares

about how many licenses are allocated in the auction, while extending the afore-
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mentioned studies by allowing each firm’s value of getting an license depends not

only on the quantity supplied in the auction, but also on the firm’s private produc-

tion costs. It will be shown that the optimal mechanism uses a sequence of reserve

prices to determine supply endogenously, which falls within the class of licensing

mechanisms discussed in Katz and Shapiro (1986) [55]. Gebhardt and Wambach

(2008) [58] also considers a license auction in which each winner’s payoff depends on

the total quantity supplied and the bidder’s private cost. They propose a jumping

English auction that maximizes the sum of consumer surplus and producer surplus

by choosing both supply and allocation within the auction. This paper considers a

similar model with the objective of maximizing producer surplus and constructs a

Walrasian clock auction to implement the efficient allocation. Ranger (2004) [59]

studies a capacity auction that allocates capacity constraints to bidders who com-

pete in a Cournot game in a downstream market. He constructs a modified version

of Ausubel and Milgrom (2002) [60]’s generalized ascending proxy auction that al-

lows bidders to bid over entire allocations and shows this auction can implement the

efficient allocation. This paper is also closely related to Ranger (2004) [59] but con-

siders another type of quantity externalities that comes from the market structure

instead of capacity constraints imposed on each oligopolistic firm.

Finally, this paper is related to the literature on auctions with endogenous sup-

ply. Hansen (1988) [61] studies a procurement auction in which sellers competing to

sell to a market with negatively sloped demand curve, and the total quantity to be

supplied in the procured contract depends on the final price in the auction. They

show that an open auction yields higher revenue than a sealed-bid auction. Ozcan
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(2004) [62] models a two-stage sequential auction that mimics the license auction

for the Turkish Global Mobile Telecommunications in 2000: the first license is sold

through a standard first-price auction, then the auctioneer uses the price of the first

license to be the reserve price for the second license in a subsequent auction. The

main result in Ozcan (2004) [62] shows that this auction yields less revenue than a

sealed-bid second-price auction for selling a monopoly license. Lengwiler (1999) [63]

analyzes a multi-unit auction when the auctioneer can produce arbitrary quantities

at constant unit cost and can adjust supply as a function of bidding. He shows that

both pay-as-bid auctions and uniform-price auctions are inefficient. Izmalkov et al.

(2016) [35] considers a position auction model in which the click-through rate of each

advertiser depends on both the ranking of advertisement and the total number of ad-

vertisements placed on the website. They constructed both the efficient auction and

the optimal auction as direct revelation mechanisms and shows that supply should

be determined endogenously in both auctions. This paper is closely related to this

strand of literature and incorporate the quantity externalities within bidders’ values

of obtaining a license. I construct the efficient and optimal auction as both direct

and indirect revelation mechanisms and characterize the corresponding efficient and

optimal reserve prices that should be used to determine supply endogenously.

3.3 Model

An auctioneer wishes to sell up to K identical licenses through auction. There

is a set of N firms, each demanding one unit of the licenses to enter a regulated
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market. There are two periods. In the first period, Firms bid for licenses in an

auction. In the second period, winning firms operate in some downstream market of

an indivisible good. Each firm’s value of obtaining a license in the auction depends

on its expected profit in the post-auction downstream market. Suppose all firms

have identical capacity constraint and each firm with a license will produce 1 unit of

an indivisible good in the downstream market. The market inverse demand schedule

is P (n), in which n is the total supply that equals to the number of winning firms

in the auction. For simplicity, assume the demand schedule P (n) in this discrete

model has similar property to a linear demand curve: P (n)− P (n+ 1) = δ > 0 for

all n2. Therefore, P (1) > P (2) > P (3) > · · · > P (K).

The firms are indexed by i ∈ {1, 2, · · · , N}. Each firm has a private cost

ci of producing the indivisible good in the downstream market. The firms’ costs

are independently and identically distributed over [c, c̄]N according to distribution

function F (c), with density f(c). Therefore, each firm’s value of obtaining a license

given n licenses are sold in the auction is given by

π(ci, n) = P (n)− ci (3.1)

The auctioneer can freely choose to sell any number of licenses up to K licenses.

Since P (n) is lower when there are more firms winning a license, each firm’s value of

obtaining a license is endogenously determined by the number of licenses allocated

in the auction. For simplicity, assume P (K) ≥ c̄, so that every bidder has positive

2The results of this paper will not change significantly if I relax this assumption and only assume

n[P (n)− P (n+ 1)] is increasing in n. For notational simplicity, I assume P (n)− P (n+ 1) = δ for

all n.

69



value of winning one license when no more than K licenses are allocated in the

auction.

It is well-known that the uniform-price auction implements the efficient alloca-

tion in multi-unit auctions with fixed supply and single-unit demands. However, how

to design an auction to implement the efficient allocation that maximizes producer

surplus in the downstream market is a non-trivial problem, as both the efficient

number of licenses to allocate in the auction and the associated set of winning bid-

ders depend on bidders’ private costs (c1, c2, · · · , cN). Given any vector of bidders’

costs c ≡ (c1, c2, · · · , cN), let c(n) denote the n-th lowest value among ci and break

ties evenly, then c(1) ≤ c(2) ≤ c(3) ≤ · · · ≤ c(N). The producer surplus determined in

the auction by selling n licenses to a set of Sn ⊂ {1, 2, · · · , N} bidders is given by

PS(c, n, Sn) = n× P (n)−
∑
i∈Sn

ci (3.2)

Given any level of total supply n, the producer surplus of selling n licenses is max-

imized by selling to the n lowest-cost bidders, and the maximized total surplus of

selling n licenses is given by

PS∗(c, n) = n× P (n)−
n∑
i=1

c(i) (3.3)

The producer surplus is maximized when the total supply in the auction n∗ =

argmaxn TS
∗(c, n). To find the efficient supply level, observe that given a vector of

costs c, the marginal benefit contributed to the producer surplus by selling the n-th

license is given by

MB(c, n) = P (n)− c(n) (3.4)
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since the bidder with the n-th lowest type would not have won a license when the

total supply is (n−1). On the other hand, selling one more license reduces the value

of winning for the (n− 1) lowest-cost bidders who would still have won a license at

the total supply of (n− 1), which implies that the marginal cost of selling the n-th

license is given by

MC(n) = (n− 1)[P (n− 1)− P (n)] = (n− 1)δ (3.5)

The n-th license should be sold in an efficient auction if and only if MB(c, n) >

MC(n), which depends on the realization of c(n). Since

MB(c, n) > MB(c, n+ 1) for all n

MC(n) < MC(n+ 1) for all n

(3.6)

The maximized producer surplus PS∗(c, n) with supply n is maximized at n = n∗

such that

MB(c, n∗) ≥MC(n∗)

MB(c, n∗ + 1) < MC(n∗ + 1)

(3.7)

Definition 3.1. A license auction is efficient if for any realization of bidders’ costs

c ≡ (c1, c2, · · · , cN), it always allocate to the lowest-cost n∗ bidders, in which

n∗ = max{n|MB(c, n) ≥MC(n), n ≤ K} (3.8)

To make the problem more interesting, assume that for all n ≥ 2, there exists

an interval (cen, c̄] such that

P (n)− ci < (n− 1)δ for all ci ∈ (cen, c̄] (3.9)
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That is, for all possible supply level n ≥ 2, there exists a continnum of types (cen, c̄]

such that if c(n) falls into this interval, it is not efficient to allocate the n-th license.

cen = P (n) − (n − 1)δ is the maximum acceptable value that the n-th lowest cost

can take for n licenses to be allocated. I call each cen the “efficient reserve cost” for

the n-th unit.

Corollary 3.1. The efficient reserve costs (ce1, c
e
2, · · · , ceK) in which cen specifies the

highest possible value that the n-th lowest bidder’s cost c(n) can take for an n-th

license to be sold in an efficient auction are characterized below:

ce1 = c̄

cen = P (n)− (n− 1)δ for all n ∈ {2, · · · , K}
(3.10)

3.4 An Efficient Direct Mechanism

In this section, I show that an efficient direct revelation mechanism exists

in this environment: the VCG mechanism implements the efficient allocation in

a dominant strategy equilibrium. Since each bidder’s value of obtaining a license

depends only on its own private cost but not on other bidders’ costs, the VCG

mechanism can be directly applied. The VCG mechanism is defined as follows:

Definition 3.2. In a VCG mechanism, each bidder is asked to report his private

cost ci. Given any profile of reported costs ĉ, rank the reports in an ascending order:

ĉ(1) ≤ ĉ(2) ≤ · · · ≤ ĉ(N), then allocate licenses according to the following algorithm:

(R1) Allocate one license to the bidder with the lowest reported cost ĉ(1) and continue

to (R2).
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(R2) Allocate one license to the bidder with the second lowest reported cost ĉ(2) and

continue to (R3) if P (2)− ĉ(2) ≥ δ. Restrict total supply to one license otherwise.

(R3) Allocate one license to the bidder with the third lowest reported cost ĉ(3) and

continue to (R4) if P (3)− ĉ(3) ≥ 2δ. Restrict total supply to two licenses otherwise.

· · ·

(RK) Allocate one license to the bidder with the K-th lowest reported cost ĉ(K) if

P (K)− ĉ(K) ≥ (K − 1)δ. Restrict total supply to (K − 1) licenses otherwise.

For any total supply n, the payment of each bidder who wins one out of n

licenses is defined below:

pn(ĉ) = max
{
P (n)− ĉ(n+1), (n− 1)δ

}
The payment rule in the VCG mechanism for any total supply n > 1 depends

on what is the social opportunity cost of providing one out of n licenses to bidder

i whose reported cost ranks in the lowest n reported costs among all bidders. The

fact that n is the efficient supply given report ĉ implies

P (n)− ĉ(n) ≥ (n− 1)δ,

P (n− 1)− ĉ(n) > (n− 2)δ,

P (n− 1)− ĉ(n−1) > (n− 2)δ

(3.11)

Therefore, if any of the n lowest reported cost bidders is absent in the auction, it

is still efficient to sell at least (n− 1) licenses, as the marginal benefit of selling the

(n−1)-th license after removing any one of the lowest n cost bidders will still exceed
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the marginal cost. On the other hand,

P (n+ 1)− ĉ(n+1) < nδ,

P (n+ 1)− ĉ(n+2) < nδ

(3.12)

Therefore, if any of the n lowest reported cost bidders is absent in the auction, it

is still efficient to sell no more than n licenses, since the marginal benefit of selling

the (n + 1)-th license after removing any one of the n lowest cost bidders will still

be lower than the marginal cost.

In summary, it is never efficient to allocate fewer than (n− 1) licenses or more

than n licenses if one of the winning bidders does not participate in the mechanism.

Whether to allocate n licenses or (n− 1) licenses when one of the winning bidders

is absent depends on the lowest reported cost among losing bidders ĉn+1.

If P (n)− ĉ(n+1) ≥ (n− 1)δ, then it is still efficient to sell n licenses when any

of the n lowest cost winning bidders is absent, and the total externalities a winning

bidder imposes on its opponents is the value of winning one out of n licenses by the

lowest cost rejected bidder.

If P (n) − ĉ(n+1) < (n − 1)δ, then it is efficient to restrict supply to (n − 1)

licenses when any of the n lowest cost winning bidders is absent, and the total

externalities a winning bidder imposes on its opponents is the change in values of

obtaining a license by all the other (n− 1) winners when one fewer license is sold.

Corollary 3.2. Truth-telling is a dominant strategy equilibrium in the VCG mech-

anism.

Proof. See Appendix.
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3.5 Practical Implementation of Efficient Auctions

The VCG mechanism implies that in any indirect mechanism where bidders

submit bids rather than report costs directly to the auctioneer, the efficient level of

supply should be determined based on the bidding profile. A natural instrument to

implement this goal is to use a sequence of reserve prices to endogenously determine

the desired level of supply: For every possible level of supply n = 1, 2, · · · , K, set

a reserve price rn ≥ 0 such that the n-th license will be allocated if and only if the

n-th highest bid is no lower than rn.

In any efficient auction, since the seller has no value over licenses and the

marginal cost of selling the first license is zero, the reserve price of the first unit r1

should always be set to zero. On the other hand, since the marginal cost of selling an

additional license is strictly positive and strictly increasing in the number of licenses

already sold, the reserve price of each additional unit must be positive and strictly

higher than that of the previous unit, i.e., 0 < rn < rn+1 for all n ∈ {2, 3, · · · , K}.

According to the assumption in section 3.3, since for every possible supply level

n ∈ {2, 3, · · · , K}, there exists a continnum of costs (cen, c̄] such that it is not efficient

to allocate the n-th license when c(n) ∈ (cen, c̄], we must have rn binding for all types

in (cen, c̄], for all n ∈ {2, 3, · · · , K}.

Lemma 3.1. In any efficient auction that adopts a sequence of reserve prices

(r1, r2, · · · , rK) where rn specifies the minimum acceptable bid for the n-th license to
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be allocated, the reserve prices must satisfy

0 = r1 < r2 < r3 < · · · < rK (3.13)

and (r2, r3, · · · , rK) are binding for a continuum of types.

In this section, I analyze the equilibria of uniform-price auctions and ascend-

ing clock auctions after introducing a sequence of reserve prices (r1, r2, · · · , rK) that

specifies the minimum acceptable bid for every additional unit. I prove that ineffi-

ciency occurs in both auctions under any reserve prices that satisfy r1 < r2 < · · · <

rK , in which at least one rn is binding for some types. Furthermore, the nature

of inefficiency is similar across uniform-price and ascending clock auctions: pooling

occurs for a positive measure of types among bidders. This inefficiency result im-

plies that equilibrium bidding strategies change dramatically in multi-unit auctions

and ascending clock auctions with reserve prices when bidders care about the total

quantity of items allocated in the auction. Introducing an effective reserve price

for every additional unit to be sold in the auction will distort efficiency in both

uniform-price auctions and ascending clock auctions.

I next construct two alternative auction designs to maximize producer surplus

with efficient reserve prices that corresponds to the efficient reserve costs charac-

terized in Corollary 3.1, including a multi-dimensional uniform-price auction that

allows bidders to condition their bids on total supply in the auction, and a Wal-

rasian Clock auction that adjusts the clock price based on whether there is excess

supply in the auction at each efficient reserve price. I will show that both auctions

can implement the efficient allocation in a dominant strategy equilibrium.
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3.5.1 Uniform-Price Auction with Endogenous Supply

Consider a uniform-price auction with endogenous supply up to K licenses

defined below:

Definition 3.3. In a uniform-price auction with endogenous supply, the auctioneer

announces a sequence of reserve prices (r1, r2, · · · , rK) at the beginning of auction,

where r1 < r2 < r3 < · · · < rK. For any feasible level of supply n ∈ {1, 2, · · · , K},

rn denotes the minimum acceptable bid for the n-th unit: an n-th license is allocated

only if the n-th highest bid is no lower than rn. After observing the reserve prices,

all bidders submit sealed bids simultaneously. The auctioneer ranks all bids from top

to bottom. Let b(n) denote the n-th highest bid in the bidding profile and break ties

randomly, then b(1) ≥ b(2) ≥ · · · ≥ b(N). The licenses are allocated according to the

following algorithm:

(R1) Allocate a license to the bidder who submits the highest bid b(1) and proceed

to step (R2).

(R2) If b(2) ≥ r2, allocate a second license to the bidder who submits the second

highest bid b(2) and proceed to step (R3). If b(2) < r2, restrict supply to one license

and charge the winner max{r1, b(2)}.

· · ·

(Rn) If b(n) ≥ rn, allocate an n-th license to the bidder who submits the n-th highest

bid b(n) and proceed to step (Rn+1). If b(n) < rn, restrict supply to (n− 1) licenses

and charge all winners a uniform price of max{rn−1, b(n)}.

· · ·
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(RK) If b(K) ≥ rK, allocate a K-th license to the bidder who submits the K-th

highest bid b(K). If b(K) < rK, restrict supply to (K − 1) licenses and charge all

winners a uniform price of max{rK−1, b(K)}.

I will next show that the uniform-price auction is inefficient after introducing

any supply-determining reserve prices (r1, r2, · · · , rK) that satisfies r1 < r2 < · · · <

rK , and at least one rn is binding for a continnum of types. Note that it is sufficient

to prove inefficiency occurs when the total supply is at most 2 licenses. The next

lemma shows that when the total supply is at most K = 2 licenses, there exists

no symmetric separating monotonic equilibrium in the uniform-price auction with

endogenous supply.

Lemma 3.2. In a uniform-price auction with endogenous supply of up to K = 2

licenses and reserve prices (r1, r2) where r1 = 0, r2 > 0, and r2 > P (2) − c̄, there

exists no symmetric separating monotonic equilibrium.

Proof. See Appendix.

The result of Lemma 3.2 comes from the fact that bidders with different costs

have different expected value conditional on winning. With r2 > 0, any bid bi < r2

only affects the probability of winning when the total supply is 1 and does not

affect the probability of winning when the total supply is 2. Suppose a monotonic

separating equilibrium exists. Conditional on the total supply being restricted to 1,

it is optimal to bid the true value of obtaining a license P (1)−ci when ci > P (1)−r2.

On the other hand, any bid bi ≥ r2 only affects the probability of winning when the

total supply is 2 and does not affect the probability of winning when total supply
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is 1, as that event happens only when the lowest-cost opponent bids below r2 and

does not depend on bidder i’s bid. Conditional on the total supply being equal to 2,

it is optimal to bid the true value of obtaining a license P (2)− ci for a bidder with

ci ≤ P (2) − r2. Since P (2) − r2 < min
{
P (1) − r2, c̄

}
, no separating equilibrium

bidding strategy for bidders with costs ci ∈
(
P (2) − r2,min{P (1) − r2, c̄}

]
can

make β(ci) satisfy monotonicity condition, which contradicts the assumption that a

monotonic separating equilibrium exists.

The intuition of this result comes from that high-cost bidders will win a license

only if total supply is 1 and therefore bid more aggressively than low-cost bidders

who are more likely to win a license but must take into account that winning when

total supply being equals to 2 is also possible.

The next lemma examines the equilibrium bidding strategy for bidders with

costs ci ∈
(
P (2) − r2,min{P (1) − r2, c̄}

]
and shows that all but two possible bids

are dominated for these bidders. Therefore, pooling must occur for these bidders in

any symmetric pure strategy equilibrium.

Lemma 3.3. In a uniform-price auction with total supply K ≤ 2 and reserve prices

(r1, r2) where r1 = 0, r2 > 0 and r2 > P (2)− c̄, for bidders with costs ci ∈
(
P (2)−

r2,min{P (1) − r2, c̄}
]
, any bid bi > r2 and bi < r2 − ε for some arbitrarily small ε

are dominated. Pooling must occur in any symmetric pure strategy equilibrium.

Proof. See Appendix.

The result of Lemma 3.3 comes from that for bidders with costs ci ∈
(
P (2)−

r2,min{P (1)−r2, c̄}
]
, winning is desirable only if the total supply is 1, while winning
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when total supply is 2 yields a negative payoff. Since increasing bid when bi ≥ r2 only

increases probability of winning when total supply is 2 and does not affect probability

of winning when total supply is 1, bidding strictly higher than r2 is dominated by

bidding r2. Since decreasing bid when bi < r2 only decreases probability of winning

when total supply is 1 and does not affect probability of winning when total supply

is 2, bidding strictly lower than r2 − ε is dominated by bidding r2 − ε, in which ε is

arbitrarily small.

The next lemma builds upon the results of Lemma 3.2 and Lemma 3.3 and

shows that there exists some ĉ ∈
(
P (2)−r2,min{P (1)−r2, c̄}

]
such that all bidders

with costs ci ∈
(
P (2)− r2, ĉ

]
bid r2 and all bidders with costs ci ∈

[
ĉ,min{P (1)−

r2, c̄}
]

in equilibrium.

Lemma 3.4. In a uniform-price auction with endogenous supply of up to K = 2

licenses and reserve prices (r1, r2) where r1 = 0, r2 > 0 and r2 > P (2) − c̄, pooling

occurs for bidders with costs ci ∈
[
P (2)− r2,min{P (1)− r2, c̄}

]
. There exists some

type ĉ ∈
(
P (2)−r2,min{P (1)−r2, c̄}

]
s.t. a bidder with cost ĉ is indifferent between

bidding r2 and r2− ε for some arbitrarily small ε. The Bayesian equilibrium bidding

strategy is characterized below:
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When r2 > P (1)− c̄:

β(ci) =



P (1)− ci for ci ∈
(
P (1)− r2, c̄

]
r2 − ε for ci ∈

[
ĉ, P (1)− r2

]
r2 for ci ∈

[
P (2)− r2, ĉ

]
P (2)− ci for ci ∈

[
c, P (2)− r2

]
(3.14)

When P (1)− c̄ > r2 > P (2)− c̄:

β(ci) =



r2 − ε for ci ∈
[
ĉ, c̄
]

r2 for ci ∈
[
P (2)− r2, ĉ

]
P (2)− ci for ci ∈

[
c, P (2)− r2

]
(3.15)

Proof. See Appendix.

The following proposition generalizes the results from Lemma 3.2 to Lemma

3.4 into uniform-price auctions with endogenous supply of at most K licenses for

any integer K ≥ 2.

Proposition 3.1. In a uniform-price auction with endogenous supply of up to K

licenses and reserve prices (r1, r2, · · · , rK) where r1 < r2 < r3 < · · · < rK, if

rñ > P (ñ) − c̄ for some ñ, then pooling occurs for bidders with costs ci ∈
[
P (n) −

rn, P (n− 1)− rn
]

for all n ∈ {ñ, ñ+ 1, · · · , K}3.

Suppose ñ = 2, then the unique symmetric Bayesian pure strategy equilib-

rium bidding strategy in a uniform-price auction with endogenous supply of up to K

3If ñ = 1 or 2, then pooling occurs for bidders with ci ∈
[
P (2) − r2,min{P (1) − r1, c̄}

]
and

ci ∈
[
P (n)− rn, P (n− 1)− rn

]
for all n ∈ {3, 4, · · · ,K}
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licenses is characterized below:

When r2 > P (1)− c̄:

β(ci) =



P (1)− ci for ci ∈
(
P (1)− r2, c̄

]
r2 − ε for ci ∈

[
ĉ2, P (1)− r2

]
r2 for ci ∈

[
P (2)− r2, ĉ2

]
P (2)− ci for ci ∈

(
P (2)− r3, P (2)− r2

]
r3 − ε for ci ∈

[
ĉ3, P (2)− r3

]
r3 for ci ∈

[
P (3)− r3, ĉ3

]
P (3)− ci for ci ∈

(
P (3)− r4, P (3)− r3

]
· · ·

P (K)− ci for ci ∈
[
c, P (K)− rK

]

(3.16)
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When P (1)− c̄ > r2 > P (2)− c̄:

β(ci) =



r2 − ε for ci ∈
[
ĉ2, c̄

]
r2 for ci ∈

[
P (2)− r2, ĉ2

]
P (2)− ci for ci ∈

(
P (2)− r3, P (2)− r2

]
r3 − ε for ci ∈

[
ĉ3, P (2)− r3

]
r3 for ci ∈

[
P (3)− r3, ĉ3

]
P (3)− ci for ci ∈

(
P (3)− r4, P (3)− r3

]
· · ·

P (K)− ci for ci ∈
[
c, P (K)− rK

]

(3.17)

where ĉn is the type that is indifferent between bidding rn and rn − ε.

Therefore, pooling occurs for a positive measure of types in the unique sym-

metric pure strategy Bayesian equilibrium given any reserve prices that satisfy

r1 < r2 < · · · < rK and at least one rn is binding for a continnum of bidders. Accord-

ing to Lemma 3.1, any efficient reserve prices must satisfy 0 = r1 < r2 < · · · < rK

and at least one rn binding for some bidders, which implies that a uniform-price

auction with endogenous supply is always inefficient under any reserve prices.

Corollary 3.3. A uniform-price auction with endogenous supply of up to K licenses

is inefficient given any reserve prices (r1, r2, · · · , rK), for any possible supply level

K ≥ 2.
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3.5.2 Ascending Clock Auction with Endogenous Supply

In this section, I analyze the ascending clock auction with a sequence of posted

reserve prices that endogenously determine a total supply of at most K licenses and

show that this auction also fails to implement efficiency with any reserve prices that

satisfy r1 < r2 < · · · < rK and at least one rn is binding for some bidders.

Consider an ascending clock auction defined as follows:

Definition 3.4. In an ascending clock auction with endogenous supply, there is a

continuously ascending clock showing the current price. All bidders are in the auction

at beginning. A bidder can drop out at any time, and his bid is the clock price when he

drops out. A sequence of reserve prices (r1, r2, · · · , rK) where 0 = r1 < r2 < · · · rK is

announced before auction starts, in which each rn represents the minimum acceptable

bid for the n-th unit to be allocated.

At any time in the auction, let k denote the number of bidders who are still active

in the auction, and (N−k) denote the number of bidders who have dropped out. Let

(pN , pN−1, · · · , pk+1) denote the drop-out prices of the (N − k) bidders, in which pN

is the bid of the first drop-out bidder, and pk+1 is the bid of the last drop-out bidder

at that time, so pN ≤ pN−1 ≤ · · · ≤ pk+1.

(RK): Set the total supply equals to the maximum possible supply K at the begin-

ning. Keep the total supply to be K until the (N − K + 1)-th bidder drops out at

price pK, which leaves k = (K − 1) bidders in the auction.

• If pK ≥ rK, then stop the auction and sell one license to each of the K bidders,

including the bidder who drops out at pK. Charge all bidders a uniform price of
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max{rK , pK+1}, in which pK+1 is the drop-out price of the (N−K)-th drop-out

bidder.

• If pK < rK, then proceed to (RK-1) and decrease the total supply to K − 1.

(RK-1): Set total supply to be K−1 and keep increasing clock price. Keep the total

supply to be K − 1 until the (N −K + 2)-th bidder drops out at some higher price

pK−1 > pK, which reduces the number of active bidders from (K − 1) to (K − 2) in

the auction.

• If pK−1 ≥ rK−1, then stop the auction and sell one license to each of the K−1

bidders, including the bidder who drops out at pK−1. Charge all bidders a

uniform price of max{rK−1, pK}.

• If pK−1 < rK−1, then proceed to (RK-2) and decrease the total supply to K−2.

Repeat this algorithm and keep decreasing supply until reaching some integer n such

that pn ≥ rn at the time when the number of active bidders k drops from n to (n−1).

Then allocate a license to each of the n bidders who are still in the auction at the

price of pn − ε and charge all bidders a uniform price of max{rn, pn+1}. If p2 < r2

at the time when the number of active bidders drops from 2 to 1 in the auction,

allocate 1 license to the only active bidder and charge a price of p2.

The following proposition shows that the ascending clock auction with endoge-

nous supply is also inefficient.

Proposition 3.2. Let pk(ci|p) denote the optimal drop-out price for bidder i when

there are k bidders left in the auction and the current price is p. Suppose r2 >
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P (2)− c̄. A symmetric pure strategy Bayesian equilibrium in the ascending auction

with endogenous supply is given below:

When the current clock price p ∈ [0, r2),

• If P (1)− r2 < c̄, then

pk(ci|p < r2) =



P (1)− ci for ci ∈
(
P (1)− r2, c̄

]
∪
[
c, P (2)− r2

]
r2 − ε for ci ∈

[
ĉk2, P (1)− r2

]
r2 for ci ∈

[
P (2)− r2, ĉ

k
2

]
(3.18)

in which ĉk2 is the value of ci such that a bidder with cost ĉk2 is indifferent

between dropping out at r2 − ε and r2 given that there are k ≥ 2 bidders left

in the auction and current clock price p < r2.

• If P (1)− r2 ≥ c̄, then

pk(ci|p < r2) =



P (1)− ci for ci ∈
[
c, P (2)− r2

]
r2 − ε for ci ∈

[
ĉk2, c̄

]
r2 for ci ∈

[
P (2)− r2, ĉ

k
2

]
(3.19)

For all n ∈ {2, 3, · · · , K − 1}, when the current clock price p ∈ [rn, rn+1),

pk(ci|rn ≤ p < rn+1) =



P (n)− ci for ci ∈
[
P (n)− rn+1, P (n)− rn

]
∪
[
c, P (n+ 1)− rn+1

]
rn+1 − ε for ci ∈

[
ĉkn+1, P (n)− rn+1

]
rn+1 for ci ∈

[
P (n+ 1)− rn+1, ĉ

k
n+1

]
(3.20)
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in which ĉkn+1 is the value of ci at which a bidder is indifferent between dropping out

at rn+1 − ε and rn+1 given that there are k bidders left in the auction under current

clock price p ∈ [rn, rn+1).

When the current clock price p ≥ rK,

pk(ci|p ≥ rK) = P (K)− ci for ci ∈ [c, P (K)− rk] (3.21)

Proof. See Appendix.

Proposition 3.2 implies that the ascending clock auction is inefficient given

any sequence of reserve prices r1 < r2 < r3 < · · · < rK where at least one rn is

binding for some bidders. Therefore, it is impossible to implement efficiency using

an ascending clock auction. The pooling equilibrium implies that there is positive

probability that more than n bidders left in the auction when p < rn − ε, and all

remaining bidders drop out simultaneously when the clock price reaches p = rn − ε

for every possible level of supply n where rn is binding.

Corollary 3.4. The ascending clock auction with endogeneous supply of up to K

licenses is inefficient given any sequence of reserve prices (r1, r2, · · · , rK), for any

potential supply level K ≥ 2.

The inefficiency of both uniform-price auctions and ascending clock auctions

comes from that simply introducing a sequence of reserve prices to determine total

supply makes the total supply depends on the market clearing price in the auction:

the total supply is greater when the market clearing price is higher. Since bidders’

values of winning a license also depend on the total supply, each bidder’s bidding
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strategy will be determined by his expectation of total supply at the market clearing

price conditional on winning a license at that price.

In the uniform-price auction, bidders with high costs bid more aggressively,

since they will win a license only when their opponents also have high costs so that

the total supply is low and value of winning a license is high. On the other hand,

bidders with low costs bid less aggressively, since they need to consider the situation

of winning when their opponents also have low costs so that the total supply is high

and value of winning a license is low. For example, a bidder with cost ci > P (1)−r1

can win only if all opponents have costs above ci and the total supply is 1, while a

bidder with costs close to c may win a license under any possible level of total supply

n ∈ {1, 2, · · · , K}, so the expected value conditional on winning is much lower for

bidders with low costs compared to bidders with high costs. Furthermore, for each

threshold price rn at which the total supply increases from (n−1) to n if the market

clearing price reaches rn, there exists a positive measure of costs s.t. bidders with

costs falls in this range will gain a positive payoff from winning when total supply

is (n− 1) and gain a negative payoff from winning when total supply is n. Pooling

is the only possible equilibrium for these bidders.

In the ascending clock auction, bidders’ optimal drop-out strategy depends on

the current clock price. For all n ∈ {2, 3, · · · , K}, the total supply increases from

(n−1) to n and each bidder’s value of winning drops from P (n−1)−ci to P (n)−ci

every time the clock price reaches a threshold level rn. At any clock price, each

bidder goes through a mental calculation of thinking about whether winning yields

a positive payoff if the auction is about to end at that price. A bidder will drop out
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only if the payoff of winning a license with payment and supply level determined by

the current clock price becomes non-positive. When the clock price is low, the value

of winning a license is high if the auction ends at the current clock price as the supply

will be low, so bidders are willing to stay longer in the auction. When the clock price

is very close to rn, there is a continuum of types ci ∈
[
P (n)− rn, P (n− 1)− rn

]
s.t.

bidders with those types no longer want to stay in the auction if the total supply

increases to n from (n−1). Those bidders with costs close to P (n−1)−rn will drop

out at rn− ε to avoid the loss from winning one out of n licenses after price reaches

rn. On the other hand, bidders with costs close to P (n) − rn will drop out at rn

given that there is positive probability that more than (k − n) bidders drop out at

rn− ε so that the auction ends before price reaches rn with a total supply of (n− 1)

licenses, giving them a strictly positive payoff. Therefore, there always exists some

type ĉkn such that a bidder with cost ĉkn is indifferent between dropping out at rn

and rn − ε. All bidders with costs ci ∈ [ĉkn, P (n− 1)− rn] drops out simultaneously

at rn− ε, and all bidders with costs ci ∈ [P (n)− rn, ĉkn] drops out simultaneously at

rn.

3.5.3 Multi-dimensional Uniform-price Auction

The inefficiency result of the standard uniform-price auction and ascending

clock auction comes from the fact that each bidder is uncertain about his ex-post

value of winning a license when the final supply is endogenously determined in the

auction. In this section, I construct a multi-dimensional uniform-price auction that
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allows bidders to condition their bids on the total supply in the auction. I will

show that this auction can implement the efficient allocation in a dominant strategy

equilibrium with a sequence of reserve prices that corresponds to the efficient reserve

costs defined in Corollary 3.1.

Consider a multi-dimensional uniform-price auction defined as follows.

Definition 3.5. In a multi-dimensional uniform-price auction, the auctioneer an-

nounces a sequence of reserve prices (r1, r2, · · · , rK) where r1 < r2 < r3 · · · < rK at

the beginning of the auction. Each bidder submits a vector of bids (b1
i , b

2
i , · · · , bKi ), in

which bni denotes the bid conditional on total supply to be S = n. For each possible

supply level n, let Sn denote the set of winners in round (Rn) or before (Rn). The

allocation rule and payment rule are described as follows.

(R1) Rank all bids conditional on S = 1. If the highest bid among {b1
i }i∈N is

greater than r1, allocate one license to the bidder who submits the highest bid among

{b1
i }i∈N . Otherwise, do not sell any license.

(R2) Rank all bids conditional on S = 2 among the remaining bidders N \ S1. If

the highest bid among {b2
i }i∈N\S1 is greater than r2, then allocate a second license to

that bidder and continue to (R3). Otherwise, restrict supply to be 1 and charge the

winner the greater of the highest losing bid among {b1
i }i∈N and r1.

(R3) Ranks all bids conditional on S = 3 among the remaining bidders N \ S2. If

the highest bid among {b3
i }i∈N\S2 is greater than r3, then allocate a third license to

that bidder and continue to (R3). Otherwise, restrict supply to be 2 and charge both

winners the greater of the highest losing bid among {b2
i }i∈N\S1 and r2.
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· · ·

(RK) Rank all bids conditional on S = K among the remaining bidders N\SK−1. If

the highest bid among {bKi }i∈N\SK−1
is greater than rK, then allocate a K-th license

to that bidder. Otherwise, restrict supply to be (K − 1) and charge all winners the

greater of the highest losing bid among {bK−1
i }i∈N\SK−2

and rK−1.

The next proposition characterizes the equilibrium in the multi-dimensional

uniform-price auction with reserve price r1 < r2 < r3 < · · · < rK .

Proposition 3.3. In a multi-dimensional uniform-price auction with reserve prices

(r1, r2, · · · , rK), in which r1 < r2 < r3 < · · · < rK, a symmetric dominant strategy

equilibrium is characterized below:

For all n ∈ {1, 2, · · · , K},

βn(ci) =


P (n)− ci, for ci ∈

[
c, P (n)− rn

]
0, for ci ∈

(
P (n)− rn, c̄

] (3.22)

Proof. See Appendix.

Corollary 3.5. With a sequence of reserve prices (r1, r2, · · · , rK) where rn = (n−

1)δ for all n, the multi-dimensional uniform-price auction implements the efficient

allocation in a dominant strategy equilibrium and is outcome equivalent to the VCG

mechanism.

The efficiency of the multi-dimensional uniform-price auction comes from the

fact that by allowing bidders to submit different bids conditional on different supply,

each bidder can easily incorporate the difference in expected values conditional on

91



winning at different supply levels into their bids. For every possible supply level

n, conditional on the total supply to be S = n, it is a dominant strategy for each

bidder to bid P (n)− ci if P (n)− ci ≥ rn and bid 0 if P (n)− ci < rn. Conditional on

bidding bni > rn, the probability for total supply to be S = n does not depend on each

bidder’s own bids, but only depends on each bidder’s opponents’ bids. Therefore,

the fact that supply is endogenously determined within the auction does not distort

each bidder’s incentive to bid their true values conditional on each supply level in

the multi-dimensional uniform-price auction. Given that it is a dominant strategy

for each bidder to bid true value conditional on S = n, the efficient reserve prices

should be ren = P (n) − cen = (n − 1)δ for all n. Under this sequence of reserve

prices, the multi-dimensional uniform-price auction always implements the efficient

allocation.

3.5.4 Walrasian Clock Auction

In this subsection, I construct a Walrasian Clock auction in which the clock

price can either go up or go down according to whether there is excess demand or

excess supply in the auction. I will show that efficiency can be implemented by this

auction through a tatonnement process.

Consider a Walrasian clock auction with endogenous supply of up to K licenses

defined as follows:

Definition 3.6. In a Walrasian clock auction, there is a clock showing the current

price. At any time of the auction, each bidder states whether he is “in” or “out”
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of the auction given the current clock price. Denote the number of active bidders at

clock price p as k(p), then k(p) represents the aggregate demand at price p.

At the beginning of auction, the auctioneer announces a sequence of reserve

prices (r1, r2, · · · , rK) where r1 < r2 < · · · < rK. Starting from supply level n = K,

run the following algorithm:

(RK) The auctioneer sets the total supply equals to K and set the clock price p

equals to rK. Each bidder states whether he is “in” or “out” of the auction. Compare

the total demand k(rK) to total supply K:

• If k(rK) ≥ K, there is excess demand at the clock price rK. The auctioneer

will announce supply to be fixed at K and run an ascending clock auction from

clock price rK.

• If k(rK) < K, there is excess supply at rK. The auctioneer will reduce supply

to be K − 1 and reducing the clock price to rK−1. The auction continues to

(RK-1).

(RK-1) The auctioneer sets the total supply equals to K− 1 and set the clock price

p equals to rK−1.each bidder states whether he is “in” or “out” of the auction. The

bidders who stated “in” the auction at price of rK in the previous round (RK) are

required to remain in the auction at price rK−1, so we must have k(rK−1) ≥ k(rK).

Compare the total demand k(rK−1) to total supply (K − 1):

• If k(rK−1) ≥ K − 1, there is excess demand at the clock price rK−1. The auc-

tioneer will announce supply to be fixed at (K − 1) and then run an ascending

clock auction from clock price rK−1.
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• If k(rK−1) < K− 1, there is excess supply at rK−1. The auctioneer will reduce

supply to be K−2 and reducing the clock price to rK−2. The auction continues

to (RK-2).

· · ·

(Rn) The auctioneer sets the total supply equals to n and set the clock price p equals

to rn. Each bidder states whether he is “in” or “out” of the auction. Those who

stated “in” in round (Rn+1) must remain in round (Rn). Compare the total demand

k(rn) to total supply n:

• If k(rn) ≥ n, there is excess demand at the clock price rn. The auctioneer will

announce supply to be fixed at n and then run an ascending clock auction from

clock price rn.

• If k(rn) < n, there is excess supply at rn. The auctioneer will reduce supply

to be (n − 1) and reducing the clock price to rn−1. The auction continues to

(Rn-1).

Repeat this algorithm until getting k(rn) ≥ n for some integer n and run an ascend-

ing clock auction of n items starting from price p = rn. In round (R1), if k(r1) > 1,

then run an ascending clock auction that starts from p = r1. If k(r1) = 1, then

allocate 1 license to the only active bidder at r1. If k(r1) = 0, then the seller does

not sell any license.

The next proposition characterizes the equilibrium in the Walrasian clock auc-

tion:
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Proposition 3.4. For all possible supply levels n ∈ {K,K − 1, · · · , 2, 1}, the dom-

inant strategy equilibrium in round (Rn) is characterized as follows.

1. When clock price p = rn at the beginning of (Rn), it is a dominant strategy

equilibrium for each bidder i to state “in” if P (n)− ci ≥ rn and state “out” if

P (n)− ci < rn. Only bidders with costs ci ≤ P (n)− rn will be in the auction.

2. If k(rn) ≥ n and the auction transforms into an ascending clock auction with

n items, it is a dominant strategy equilibrium for each bidder who stated “in”

at price rn to drop out at his true value of winning one out of n licenses,

β(ci) = P (n)− ci.

3. If k(rn) < n and the auction proceeds to round (Rn-1), the equilibrium strategy

in (Rn) with all n replaced by (n − 1) is a dominant strategy equilibrium in

round (Rn-1).

Proof. See Appendix.

Given the equilibrium characterized above, it is straightforward to see that

with reserve prices ren = P (n)− cen = (n− 1)δ for all n, the Walrasian clock auction

implements the VCG outcome in a dominant strategy equilibrium:

Corollary 3.6. With a sequence of reserve prices (r1, r2, · · · , rK) where rn = (n−

1)δ for all n, the Walrasian clock auction dynamically implements the efficient al-

location in a dominant strategy equilibrium and is outcome equivalent to the VCG

mechanism and the multi-dimensional uniform-price auction.
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3.6 An Optimal Direct Mechanism

In this section, I follow Myerson (1981) [40]’s optimal auction design approach

and characterize the optimal auction under quantity externalities as a direct reve-

lation mechanism. I will show that the optimal auction can also be implemented

by introducing a sequence of reserve costs to determine supply. I next compare the

optimal reserve costs to the efficient reserve costs as well as to the optimal reserve

costs in standard auctions without quantity externalities.

3.6.1 Mechanism Design and Solution Concepts

In a direct mechanism, bidders report their private costs ci directly. An auction

mechanism (µ, t) consists of an allocation rule µi(c) and a payment rule ti(c) for

every bidder i, in which µi =
(
µ

(1)
i (c), µ

(2)
i (c), · · · , µ(K)

i (c)
)

is the vector of joint

probabilities that bidder i wins a license when a total of n ∈ {1, 2, · · · , K} licenses

are allocated in the auction given reported costs c ∈ [c, c̄], and ti(c) is the expected

payment of bidder i given reported costs c ∈ [c, c̄]. It is straightforward to define

the feasibility constraint in any direct mechanism as follows:

Definition 3.7. An allocation rule µ is feasible if for any supply level n ∈ {1, 2, · · · , K},

(1)

0 ≤ µ
(n)
i ≤ 1, ∀i, and

∑
i

µ
(n)
i ≤ n (3.23)

(2) If µ
(n)
i (c) > 0 for some i, then µ

(n
′
)

j (c) = 0, for all n
′ 6= n, for all j.

That is, given any level of supply n, each bidder’s probability of winning must
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fall in [0, 1], the sum of winning probabilities across bidders does not exceed the

number of items to be allocated, and the total supply must be unique.

For a bidder i with cost ci, the interim utility Ui(ci) is given by

Ui(ci) =

∫
c−i

[ K∑
n=1

µ
(n)
i (ci, c−i)

[
P (n)− ci

]
− ti(ci, c−i)

]
︸ ︷︷ ︸

ui(ci,c−i)

f−i(c−i)dc−i (3.24)

in which ui(ci, c−i) =
∑K

n=1 µ
(n)
i (ci, c−i)

[
P (n)−ci

]
−ti(ci, c−i) is the ex-post utility of

bidder i given reports (ci, c−i). A direct auction mechanism (µ, t) satisfies incentive

compatibility condition if the following definition holds:

Definition 3.8. A direct auction mechanism (µ, t) is Bayesian incentive compatible

(IC) and individually rational (IR) if for every bidder i, for any value of true cost

ci and any reported cost c
′
i,

Ui(ci) ≥
∫
c−i

[ K∑
n=1

µ
(n)
i (c

′

i, c−i)
[
P (n)− ci

]
− ti(c

′

i, c−i)
]
f−i(c−i)dc−i

Ui(ci) ≥ 0

(3.25)

In the following analysis, I characterize the optimal auction mechanism under

quantity externalities among all Bayesian IC and IR mechanisms subject to the

feasibility constraint.

3.6.2 Characterization of the Optimal Auction Mechanism

For any possible supply level n ∈ {1, 2, · · · , K}, define bidder i’s marginal

revenue function conditional on total supply equals n as

MR(ci, n) = P (n)− ci −
Fi(ci)

fi(ci)
(3.26)
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I also assume that the marginal revenue functions are regular: For any bidder i, for

any n ∈ {1, 2, · · · , K},

∂MR(ci, n)

∂ci
< 0 (3.27)

The next lemma characterizes any Bayesian IC and IR mechanism in this model:

Lemma 3.5. A mechanism (µ, t) is Bayesian IC and IR if for every bidder i, the

following conditions hold:

(1) For any ci, c
′
i ∈ [c, c̄], if c

′
i ≥ ci, then

∫
c−i

K∑
n=1

µ
(n)
i (c

′

i, c−i)f−i(c−i)dc−i ≤
∫
c−i

K∑
n=1

µ
(n)
i (ci, c−i)f−i(c−i)dc−i (3.28)

(2)

Ui(ci) = Ui(c̄) +

∫ c̄

ci

∫
c−i

K∑
n=1

µ
(n)
i (s, c−i)dsf−i(c−i)dc−i (3.29)

(3)

Ui(c̄) ≥ 0 (3.30)

Proof. See Appendix.

The next lemma characterizes the seller’s ex-ante expected revenue in any

Bayesian IC and IR mechanism:

Lemma 3.6. For any Beyesian IC and IR mechanism that satisfies the conditions

in Lemma 3.5, the ex-ante expected revenue is given by

ER =
∑
i

∫
c

{ K∑
n=1

µ
(n)
i (ci, c−i)×

{
P (n)− ci −

Fi(ci)

fi(ci)

}}
f(c)dc−

∑
i

Ui(c̄) (3.31)

Proof. See Appendix.
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Let c(1) ≤ c(2) ≤ · · · ≤ c(K) denote the realizations of the lowest, the second

lowest, ..., the K-th lowest cost among the N bidders. The result of Lemma 3.6

implies that given any possible supply level of n, the optimal auction assigns n

licenses to the n lowest-costs bidders only if the n-th lowest-cost bidder’s type c(n)

satisfies

P (n)− c(n) −
Fi(c(n))

fi(c(n))
≥ 0 (3.32)

However, as the seller needs to optimize over total supply given the presence of

quantity externalities, P (n) − c(n) −
Fi(c(n))

fi(c(n))
≥ 0 is a necessary but not sufficient

condition for total supply to be n. The following analysis characterizes the optimal

reserve costs in this model. I first consider the total expected revenue from selling

a fixed number of n licenses in an optimal auction subject to no reserve price, and

then choose reserve prices that select the total supply to maximize revenue.

Given any cost profile c, the ex-post revenue of selling n licenses in an optimal

auction without any reserve price is given by

R(c, n) =
n∑
i=1

{
P (n)− c(i) −

Fi(c(i))

fi(c(i))

}
(3.33)

Compare R(c, n) and R(c, n − 1) for any n, given a profile of reported costs c, the

marginal increment in total revenue by selling an n-th license equals to the marginal

revenue of the bidder with the n-th lowest cost:

MR(c(n), n) = P (n)− c(n) −
Fi(c(n))

fi(c(n))
(3.34)

The marginal decrement in total revenue by selling an n-th license is the loss of

P (n− 1)− P (n) = δ in π(c(i), n− 1) for all the (n− 1) lowest-cost bidders,

MC(n) = (n− 1)δ (3.35)
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The n-th license should be sold in the optimal auction if and only if MR(c(n), n) ≥

MC(n) given the realization of costs c.

Since

MR(c(n), n) > MR(c(n+1), n+ 1) for all n

MC(n) < MC(n+ 1) for all n

(3.36)

The total revenue is maximized at the supply level n∗ s.t.

MR(c(n∗), n
∗) ≥MC(n∗)

MR(c(n∗+1), n
∗ + 1) < MC(n∗ + 1)

(3.37)

Therefore, the optimal mechanism can be constructed as follows. Each bidder is

asked to report his private cost ci. Given any profile of reported costs ĉ, rank the

reported costs in an ascending order: ĉ(1) ≤ ĉ(2) ≤ · · · ≤ ĉ(N), then allocate licenses

according to the following algorithm:

(R1) allocate one license to the bidder with the lowest reported cost ĉ(1) if P (1)−

ĉ(1) −
Fi(ĉ(1))

fi(ĉ(1))
≥ 0 and continue to (R2); stop the algorithm and sell zero license

otherwise;

(R2) allocate one license to the bidder with the second lowest reported cost ĉ(2) if

P (2)− ĉ(2)−
Fi(ĉ(2))

fi(ĉ(2))
≥ δ and continue to (R3); stop the algorithm and sell one license

otherwise;

...

(RK) allocate one license to the bidder with the K-th lowest reported cost ĉ(K) if

P (K)− ĉ(K) −
Fi(ĉ(K))

fi(ĉ(K))
≥ (K − 1)δ; sell (K − 1) license otherwise.

The following proposition gives the formal definition of the optimal direct

mechanism:
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Proposition 3.5. Suppose the marginal revenue functions MR(ci, n) satisfy the

regularity condition. For any vector of costs c ∈ RN with any N ≥ n, define Cn(c)

as the n-th lowest value among components of c. Consider the following mechanism

(µ∗, t∗):

µ
∗(n)
i (ci, c−i) =



1 if ci ≤ Cn(c−i),

MR
(
Cn(ci, c−i), n

)
− (n− 1)δ ≥ 0,

and MR
(
Cn+1(ci, c−i), n+ 1

)
− nδ < 0

0 else

(3.38)

for all n ∈ {1, 2, · · · , K − 1}, and

µ
∗(K)
i (ci, c−i) =



1 if ci ≤ CK(c−i),

MR
(
CK(ci, c−i), K

)
− (K − 1)δ ≥ 0,

0 else

(3.39)

for n = K. Any tie is broken randomly. The payment rule is given by

t∗i (ci, c−i) =
K∑
n=1

µ
∗(n)
i (ci, c−i)

[
P (n)− ci

]
−
∫ c̄

ci

K∑
n=1

µ
∗(n)
i (s, c−i)ds (3.40)

Then (µ∗, t∗) is an optimal auction among all Bayesian IC and IR mechanisms.

Corollary 3.7. Let c∗n denote the optimal reserve costs conditional on selling n

licenses for all n ∈ {1, 2, · · · , K}. Then the optimal reserve costs (c∗1, c
∗
2, · · · , c∗K)

are given by

P (n)− c∗n −
Fi(c

∗
n)

fi(c∗n)
= (n− 1)δ, for all n (3.41)
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Since MR(ci, n) is strictly decreasing in ci, this directly implies that given any

supply level of n ≥ 2, the optimal reserve type c∗n under the presence of quantity

externalities is strictly lower than the optimal reserve type c
′
n without the presence

of quantity externalities, in which c
′
n is given by

P (n)− c′n −
Fi(c

′
n)

fi(c
′
n)

= 0 for all n (3.42)

Corollary 3.8. For any n ∈ {2, 3, · · · , K}, the optimal reserve cost c∗n under the

presence of quantity externalities is strictly lower than the optimal reserve cost c
′
n

without the presence of quantity externalities.

The next corollary compares the optimal reserve costs (c∗1, c
∗
2, · · · , c∗K) to the

efficient reserve costs (ce1, c
e
2, · · · , ceK):

Corollary 3.9. For any n ∈ {1, 2, · · · , K}, the optimal reserve cost c∗n is strictly

lower than the efficient reserve cost cen.

Moreover, since the optimal reserve prices (r∗1, r
∗
2, · · · , r∗K) also satisfy r∗1 <

r∗2 < · · · < r∗K , according to Lemma 3.1, Proposition 3.1, Proposition 3.2, Propo-

sition 3.4, and Proposition 3.3, it is impossible to implement the optimal revenue

in standard uniform-price auctions or ascending clock auctions, while the multi-

dimensional uniform-price auction and the Walrasian clock auction can implement

the optimal revenue using a sequence of reserve prices that correspond to the optimal

reserve costs characterized in Corollary 3.7.

Corollary 3.10. With a sequence of reserve prices (r1, r2, · · · , rK) where r∗n sat-

isfies r∗n = P (n) − c∗n, in which P (n) − c∗n −
Fi(c

∗
n)

fi(c∗n)
= (n − 1)δ for all n, the multi-
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dimensional uniform-price auction and the Walrasian clock auction can implement

the optimal revenue.

3.7 Auction Design under Consideration of Consumer Surplus

The analysis in previous sections on auction design under the objective of

maximizing producer surplus can be extended to the case when consumer surplus

is also considered. In this section, I will briefly discuss the efficient supply level

and characterize efficient reserve prices when the auctioneer cares about consumer

surplus.

Assuming there are at least K consumers in the downstream market. Each

has a positive value of obtaining the product provided by suppliers who win a license

and enter the industry. The value profile of the K highest value bidders is given

by v(1) ≥ v(2) ≥ · · · ≥ v(K), and assume v(K) > c(K). Assuming the downstream

market is allocative efficient. For every supply level n selected in the auction, the n

consumers with highest values will each make a transaction at market price P (n).

Then the maximized consumer surplus given the value profile v and supply level n

is given by

CS∗(v, n) =
n∑
i=1

v(i) − P (n)× n (3.43)

The consumer surplus in the downstream market will be increased by v(n)−P (n) +

(n − 1)δ > 0 when an n-th license is allocated. Therefore, the auctioneer should

always allocate all K licenses when the objective is to maximize consumer surplus

in the downstream market. The consumer surplus maximizing reserve price is given
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by 0 = r1 = r2 = · · · = rK . Since the supply will not be determined endogenously

within the auction, both the standard uniform-price auction and the ascending clock

auction can implement the consumer surplus-maximizing allocation in a dominant

strategy equilibrium.

The maximized total surplus in the auction at supply level n is given by

TS∗(v, c, n) =
n∑
i=1

v(i) −
n∑
i=1

c(i) (3.44)

Since v(n) > c(n) for all n, the auctioneer should always allocate all K licenses when

the objective is to maximize total surplus in the downstream market. The total

surplus maximizing reserve price is also given by 0 = r1 = r2 = · · · = rK . The

supply will be fixed at K in any total surplus-maximizing auction as well, and the

uniform-price auction and the ascending clock auction can both implement the total

surplus-maximizing outcome.

Now suppose the auctioneer cares about a weighted average of consumer sur-

plus and producer surplus. The maximized weighted surplus under supply level n

is given by

WS∗(v, c, n) = ρCS∗(v, n) + (1− ρ)PS∗(c, n)

= ρ
[ n∑
i=1

v(i) − P (n)× n
]

+ (1− ρ)
[
P (n)× n−

n∑
i=1

c(i)

] (3.45)

The marginal benefit of selling an n-th license is

MB(n, v, c) = ρ
[
v(n) − P (n) + δ(n− 1)

]
+ (1− ρ)

[
P (n)− c(n)

]
(3.46)

The marginal cost of selling an n-th license is

MC(n) = (1− ρ)δ(n− 1) (3.47)
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Setting marginal benefit to marginal cost will give the efficient reserve cost under

the objective of maximizing weighted surplus with parameter ρ:

c
′

n = max
{ 1

1− ρ
[
ρv(n) + (1− 2ρ)[p(n)− δ(n− 1)]

]
, c̄
}

(3.48)

in which 1
1−ρ

[
ρv(n) + (1− 2ρ)[p(n)− δ(n− 1)]

]
is decreasing in n.

When 1 ≥ ρ ≥ 0.5, the auctioneer cares more about the consumer surplus than

the producer surplus, the weighted surplus-maximizing reserve cost c
′
n = c̄ for all n,

so the weighted surplus-maximizing reserve price is given by 0 = r
′
1 = r

′
2 = · · · = r

′
K ,

and the auction will allocate K licenses for certain.

When 0.5 > ρ > 0, the auctioneer cares more about producer surplus than

consumer surplus. There may exist some n
′ ≤ K s.t. c

′
n < c̄ for all n ≥ n

′
. n

′
is

the smallest integer that satisfies 1
1−ρ

[
ρv(n) + (1 − 2ρ)[p(n) − δ(n − 1)]

]
< c̄. The

value of n
′

depend on ρ, value profile v and the cost profile c. The weighted surplus-

maximizing reserve costs will be c̄ = c
′
1 = c

′
2 = · · · = c

′

n′−1
> c

′

n′
> c

′

n′+1
> · · · > c

′
K .

The weighted surplus-maximizing reserve price will be in the form of 0 = r
′
1 = r

′
2 =

· · · = r
′

n′−1
< r

′

n′
< · · · < r

′
K . Both the multi-dimensional uniform-price auction

and the Walrasian clock auction with the weighted surplus-maximizing reserve prices

can implement the weighted surplus-maximizing allocation in a dominant strategy

equilibrium.

When ρ = 0, the auctioneer only cares about producer surplus, and 0 = re1 <

re2 < · · · < reK as shown in the previous analysis.
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3.8 Conclusions

This paper characterizes the design of efficient and optimal mechanisms in a

license auction that allocates operating permits in a regulated industry. I first show

that a sequence of reserve prices that specify minimum acceptable bids are needed

to determine supply endogenously in any efficient auction. Then I characterize the

equilibria of uniform-price auctions and ascending clock auctions after introducing

such reserve prices and show that both auctions are inefficient with any reserve

prices. I next construct a multi-dimensional uniform-price auction that can im-

plement the efficient allocation using reserve prices that correspond to the efficient

reserve costs in a dominant strategy equilibrium. Then I construct a Walrasian clock

auction that can dynamically implement the same efficient outcome as the multi-

dimensional uniform-price auction under the same reserve prices. I also characterize

the optimal auction and the corresponding optimal reserve prices. In the end of this

chapter, I provide a discussion on auction design when the auctioneer cares about

consumer surplus. I show that the multi-dimensional uniform-price auction and the

Walrasian Clock auction can implement the optimal revenue with appropriately cho-

sen optimal reserve prices and implement the weighted surplus-maximizing outcome

with corresponding reserve prices when consumer surplus is also considered in the

auction.

One implication of this paper is that in auctions that determine structure

of some downstream markets, the supply should always be endogenously deter-

mined within the auction. Moreover, the standard multi-unit auctions such as the
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uniform-price auction and the ascending clock auction are not well-performed with

endogenous supply, since introducing any binding reserve prices that can endoge-

nously determine supply will result in pooling equilibrium for both auctions. This

result implies that the standard uniform-price auctions and ascending clock auc-

tions can be suboptimal when each bidder care about the total quantity of items

allocated in the auction, and more complicated auction designs are needed from

both surplus-maximizing and revenue-maximizing perspectives.

Another implication of this paper is that both the efficient and the optimal

reserve prices are higher than their counterparts in markets without quantity exter-

nalities. Therefore, auction practitioners may want to consider increasing reserve

prices from both surplus-maximizing and revenue-maximizing perspectives after tak-

ing quantity externalities into account.
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Chapter 4: Information Provision in Procurement Auctions with En-

dogenous Investments

4.1 Introduction

Auctions are used in procurement settings to allocate contracts to suppliers

in a variety of markets such as electricity, government securities, and construction

rights. In a benchmark model of single-unit procurement auctions, bidders sell

identical products with exogenously differentiated production costs. However, many

practical procurement markets have two departures from the standard model. First,

the suppliers can be horizontally differentiated in their non-price characteristics, and

the auctioneer often has preference over non-price characteristics of the product.

Second, bidders can often engage in pre-auction cost-reducing investments. This

study is motivated by these two distinctive features in many procurement markets.

Existence of product differentiation is common in procurement auctions. Ex-

amples of non-price attributes that the auctioneer might care about include product

design, input materials, time of completion, reputation of the supplier, etc. (Asker

and Cantillon 2008 [64]). Empirical evidence of product differentiation in procure-

ment auctions is also documented in newspapers and previous studies. For example,
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when two aircraft manufacturing companies Airbus and Boeing competed for a con-

tract from Iberia Airlines, their bids were evaluated together with their product

characteristics in the procurement auction. According to the Wall Street Jounral

on March 10, 2003, Iberia has privately known preferences on several characteristics

such as fleet composition of the potential suppliers’ products, as it will affect future

maintenance cost (Thomas and Wilson 2012 [65]). Under the presence of product

differentiation, a supplier’s value in the auction not only depends on its production

cost but also depends on the auctioneer’s privately known preference.

Pre-auction investments among bidders are also common in procurements. For

example, prior to bidding for a road construction contract, suppliers can invest in

machinery and other equipments to reduce cost. Empirical evidence of pre-auction

investments can also be found in previous studies. For example, defense contractors

invest substantial resources in R & D before bidding for a government contract

(Lichtenberg 1986 [66]; Li et al. 2006 [67]).

Under these two departures from the standard procurement auction model,

suppliers face a trade-off between higher sunk investment costs and higher expected

return in the auction, and the auctioneer’s information provision policy can affect

the suppliers’ investment strategies. Since each supplier will choose the investment

level at which the marginal expected return to investment in the auction equals to

the marginal investment cost, and the expected return to investment depends on

the auctioneer’s valuation over the supplier.

It is well understood how to design an optimal auction mechanism that max-

imizes the auctioneer’s expected revenue given homogenous bidders who enter the
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auction with private exogenous monetary types (Myerson 1981 [40]). Some studies

have explored pre-auction investment incentives with homogenous products (Pic-

cione and Tan 1996 [68]; Bag 1997 [69]; Arozamena and Cantillon 2004 [70]). How-

ever, no study has examined suppliers’ investment incentives on cost reduction when

product differentiation presents. The objective of this study is to investigate the im-

pact of the auctioneer’s information provision policy on suppliers’ pre-auction invest-

ment incentives and the auctioneer’s expected revenue when product differentiation

presents among suppliers.

In this chapter, I assume that the auctioneer can commit to one of the following

three information disclosure policies: publicly disclose her private valuations over all

suppliers’ products; privately disclose her valuation over each supplier’s product; or

completely conceal her valuations. Then I analyze equilibrium investment strategy of

suppliers before entering a second-score sealed-bid procurement auction and compare

the expected revenues of auction under these three information provision schemes.

The main result of this chapter shows that pre-auction investments are strategic

substitutes among bidders, and providing more information about the auctioneer’s

preference encourages those more favored bidders to invest more, which increases

cost differentiation among bidders. The main analysis focuses on the case when there

are only two bidders and shows that disclosing more information will reduce expected

revenue by discouraging the lower quality bidder from investment and giving higher

informational rent to the higher quality bidder. I also provide a discussion of the

general case when there are more than 2 bidders and show that disclosing more

information will increase expected revenue by promoting competition among higher
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quality bidders when the number of bidders is sufficiently large.

4.2 Related Literature

This paper is connected to the literature on procurement auctions with dif-

ferentiated products. Asker and Cantillon (2008) [64] provide a systematic analysis

of equilibrium behavior in scoring auctions when suppliers have multi-dimensional

types. Thomas and Wilson (2012) [65] experimentally compare first-price auctions

and multilateral negotiations when horizontal product differentiation is introduced

into a procurement auction. The major difference between this chapter and the

previous studies on scoring auctions is that the existing literature on scoring auc-

tions takes product characteristics and cost as different dimensions of each bidder’s

exogenously given multi-dimensional type, while this chapter models product dif-

ferentiation as assigning each seller a subjective “quality” privately known to the

auctioneer and assumes each bidder’s cost is endogenously determined by invest-

ment.

This chapter is also related to the literature studying optimal information re-

lease of the auctioneer when the auctioneer owns private information that enters

bidders’ valuations. Milgrom and Weber (1982) [2] analyze the optimal release of

information in an auction with affiliated values and find that it is optimal for the auc-

tioneer to publicly announce her private information. On the other hand, Ganuza

(2004) [71] analyzes a horizontally differentiated market in which the auctioneer

has private information about product characteristics and bidders have horizontally
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differentiated preferences over the product space. He shows that when releasing

information is costly to the auctioneer, the auctioneer has incentives to release less

than efficient level of information. Coleff and Garcia (2014) [72] study the optimal

release of information in a procurement auction in which sellers can choose their

horizontal product characteristics according to the auctioneer’s reported preference.

They show that it is not optimal for the auctioneer to send public information to

all sellers under presence of entry cost. Closely related to this paper, Colucci et

al. (2015) [73] compare the performance of different information provision schemes

under first-score auctions and second-score auctions in a model with differentiated

bidders whose qualities are private information to the auctioneer. However, they

assume bidders’ costs are heterogenous and commonly known in the model, while

I adopt Dasgupta (1990) [74]’s production model and assume bidders’ costs are

determined by their own investment decisions and a random variable. In Ganuza

(2004) [71]’s model, the auctioneer’s information provision will alter the bidders’

perception of their own values. In Coleff and Garcia (2014) [72], the auctioneer’s in-

formation provision will alter the equilibrium profile of bidders’ horizontal locations

and the number of bidders. In Colucci et al (2015) [73], the auctioneer’s information

provision will change the bidders’ bidding strategies in the first score auction. This

study is different from the above studies in the sense that the auctioneer’s informa-

tion provision will alter the profile of bidder’s values by changing their investment

incentives.

This chapter is also closely related to the strand of literature on studying bid-

ders’ pre-auction investment incentives under different auction mechanisms. Most of
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this literature focus on studying suppliers’ investment incentives in sealed-bid auc-

tions for a homogenous product. A common goal of these studies is to compare the

equilibrium investment levels induced by the auction mechanism to the socially op-

timal investment level, and compare the performance of different mechanisms based

on their efficiency in inducing pre-auction investments (Piccione and Tan 1996 [68];

Bag 1997 [69]). However, there exists no mechanism that can uniquely implements

ex ante efficient investment when suppliers can only make investment decisions si-

multaneously prior to the auction (Arozamena and Cantillon 2004 [70]; Li et al.

2006 [67]; Hatfield et al. 2015 [75]; Tomoeda 2015 [76]). Different from these previ-

ous studies that focus on finding socially-optimal investment-inducing mechanism,

the goal of this study is to find an information provision scheme that maximizes the

auctioneer’s ex ante expected revenue in a second score auction, given the presence

of differentiated sellers and pre-auction investment opportunity.

4.3 Model

4.3.1 Environment

An auctioneer wishes to procure one unit of an indivisible product that may

come in different varieties. There areN risk-neutral potential suppliers i ∈ {1, 2, · · · , N}

providing imperfect substitutes that feature different varieties of this product1. The

product characteristic of each supplier is exogenous and observable to the auction-

eer. The auctioneer values the specific product of each supplier differently. There

1In this paper, I use feminine pronoun for the auctioneer and masculine pronouns for bidders.

113



are two stages of the game: investment stage and auction stage. The time line of

the game is presented as below:

1. t=1: At the beginning of the investment stage, the auctioneer announces the

allocation and payment rules of a second score auction and the information

disclosure policy. The auctioneer can choose to publicly announce the entire

profile of her valuations to all suppliers, or to privately inform each supplier

her value for that supplier, or to conceal this information.

2. t=2: N suppliers enter the game. The auctioneer observes the product charac-

teristics of each supplier and privately learns her valuation over their products

{qi, }Ni=1. Each qi measures the match between the auctioneer’s private taste

over product design and supplier i’s product characteristics, and qi is called

bidder i’s quality in the remaining of this chapter. Assuming preference is

quasilinear in price, then the auctioneer’s utility from purchasing supplier i’s

product at price pi is

U(qi, pi) = qi − pi (4.1)

If the auctioneer does not disclose any information, then all suppliers have

common belief that qi is independently and identically distributed according

to distribution G(.) on [q, q̄]. Furthermore, assume q > g(0)+ η̄ and there is no

outside buying options so that it is always ex post efficient for the auctioneer

to purchase the product from one of the potential suppliers.

3. t=3: The auctioneer sends a private signal q̂i ∈ {{qi}Ni=1, qi, ∅} to every bidder

i according to the information policy chosen at t = 1.
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4. t=4: After observing the signal provided by the auctioneer, each supplier i

makes an investment ki ∈ R+ simultaneously to reduce the cost of his product

given common cost-reducing technology g(.). ki is the sunk cost of investment.

5. t=5: At the beginning of the auction stage, each supplier i receives a random

cost shock ηi that is independently and identically distributed according to a

commonly known uniform distribution H(.) on [η, η̄].

Following Dasgupta (1990) [74]’s production cost model, I assume the total

production cost of supplier i is given by

ci = c(ki, ηi) = g(ki) + ηi (4.2)

in which g′ < 0, g′′ > 0, lim
k→0
−g′(k) = ∞, and lim

k→∞
−g′(k) = 0, so the cost

reducing investment exhibits decreasing returns.

Each supplier i’s “value” vi as the total trading surplus that he can provide

by selling the product to the auctioneer is therefore given by

vi = v(qi, ki, ηi) = qi − g(ki)− ηi (4.3)

6. t=6: Each supplier submits bid bi that represents the minimum payment he

is willing to accept to provide the product in a second score auction. The

scoring rule used in the auction is

σi = qi − bi (4.4)

The auctioneer announces scores of all the bidders at end of the auction. The

highest-score bidder i wins the contract and receives a payment equals to the
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bid of the supplier j with the second highest score, adjusted by their quality

difference: pi = bj + qi − qj.

4.3.2 Equilibrium of Second Score Auction

I will first show that truth-telling is still a dominant strategy for suppliers in

the second score procurement auction when each supplier’s value depends on the

auctioneer’s information qi.

Corollary 4.1. In the second score procurement auction with differentiated suppliers

selling imperfect substitutes, it is still a dominant strategy for each supplier to bid

his true production cost ci.

Proof. See Appendix.

Since the auctionner privately knows the qualities of all bidders, by submitting

a bid bi, the value profile of all bidders {vi}Ni=1 will be revealed. Therefore, the second

score auction can be written as a direct revelation mechanism in which the arguments

of the allocation rule and the payment rule is the profile of bidders’ values {vi}Ni=1.

4.3.3 Equilibrium of Investment Stage

In this section, I will characterize each supplier’s optimal investment strategy.

At the investment stage, the suppliers choose investment levels to maximize their

expected payoffs in the auction, given that all suppliers report truthfully in the

second score auction.
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Define F̂−i
(
.
∣∣q−i, k∗−i) as the distribution of the highest value among bidder

i’s (N − 1) opponents’ values at the beginning of the auction stage, before the

random cost shocks η are realized. Then F̂−i(.|q−i, k∗−i) depends on opposing bidders’

qualities q−i and equilibrium investment strategies k∗−i.

The incentive compatibility of the second score auction implies that the ex-

pected payoff of bidder i with value vi is given by

Πi(vi) = Πi(v) +

∫ vi

v

F̂−i
(
τ
∣∣q−i, k∗−i)dτ (4.5)

At the investment stage, each supplier chooses an investment level k∗i that

maximizes the expected payoff in the auction as a best response to opponents’

investments k∗−i, given the distribution of qualities and random cost shocks, and the

information provided by the auctioneer q̂i.

Definition 4.1. A profile of investments chosen at investment stage {k∗i }Ni=1 is an

equilibrium under information provision scheme q̂i if for all i,

k∗i ∈ argmax
ki

Eq,η

[ ∫ vi(qi,ki,ηi)

v
F̂−i
(
τ
∣∣k∗−i, q−i)dτ ∣∣∣q̂i]− ki (4.6)

Let V̂ (v1, v2, · · · , vN) denote the second highest value given a profile of values

{vi}Ni=1. Then V̂ (v1, v2, · · · , vN) is the auctioneer’s ex-post revenue given {vi}Ni=1.

The auctioneer’s problem is to choose q̂i ∈
{
{qj}Nj=1, qi, ∅

}
to induce a profile of

values (v1, · · · , vN) that yields the highest ex ante expected revenue in the auction,

given that suppliers will play equilibrium investment strategy in the investment

stage given the information provided by the auctioneer.
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Definition 4.2. The auctioneer’s problem of optimizing information provision is

max
q̂∈{{qj}Nj=1,qi,∅}

Eη

[
V̂
(
v1, v2, · · · , vN

)]
s.t. vi = qi − g(k∗i )− ηi

k∗i ∈ argmax
ki

Eq,η

[ ∫ qi−g(ki)−ηi

v

F̂−i
(
τ
∣∣k∗−i, q−i)dτ ∣∣∣q̂i]− ki ∀i

(4.7)

To study the impact of auctioneer’s information provision of private valuations

qi, I will compare the suppliers’ equilibrium investment strategies and expected

revenues in the auction under concealment, private disclosure, and public disclosure.

The main analysis will focus on the case where there are only N = 2 bidders. A

discussion of the general case with N ≥ 2 bidders will be provided in the end.

4.4 Equilibrium Investment Strategies with Two Sellers

In this section, I will analyze the suppliers’ investment strategy when there

are N = 2 bidders. Let i and j denote the identity of the 2 bidders. For each bidder

i, the distribution of the opposing bidder j’s value given bidder j’s quality qj and

investment k∗j at the beginning of the auction is given by

F̂−i
(
τ
∣∣qj, k∗j ) = Prob

(
qj − g(k∗j )− ηj ≤ τ

)
= Prob

(
ηj ≥ qj − g(k∗j )− τ

)
= 1−H

(
qj − g(k∗j )− τ

)
(4.8)

Given the distribution of quality G(q), let Q1 and Q2 denote the random vari-

ables that represent the highest order statistic and the second highest order statistic

among bidders’ qualities, respectively. Let (q1, q2) be realizations of (Q1, Q2). Then

q1 = max{qi, qj} and q2 = min{qi, qj} for any realization of qualities {qi, qj}.
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Define ∆(G) as the ex ante expected difference between q1 and q2 given dis-

tribution G:

∆(G) = E
(
q1 − q2

∣∣G) (4.9)

∆(G) represents the expected dispersion of the auctioneer’s valuation on the two

bidders’ products, which in turn measures how much the auctioneer cares about non-

price characteristics relative to cost. Mathematically, ∆(G) represents the expected

difference between the first order statistics and the second order statistics among

2 draws given distribution G(.). Holding the expected quality constant, a greater

∆(G) implies that the expected difference between the higher quality and the lower

quality is larger, i.e., the auctioneer is willing to pay more for contracting with

the high-quality supplier instead of the low-quality supplier. When ∆(G) = 0,

q1 = q2 = E(q|G), this model turns into the standard procurement auction model

without product differentiation: the auctioneer’s valuation for any supplier’s product

equals E(q|G) and is common knowledge. There is no difference between the three

information provision schemes when ∆(G) = 0.

Since the three information disclosure policies yields the same expected revenue

when ∆(G) = 0, I will next explore how the expected revenue under the three

disclosure policies change when holding the expected quality constant and increasing

the dispersion of qualities ∆(G) in the following analysis.
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4.4.1 Equilibrium under Concealment of Quality

Under concealment of qualities, each supplier chooses investment strategy

knowing only the distribution of (qi, qj) and distribution of (ηi, ηj). Note that at the

time of investment, suppliers are ex ante identical with symmetric distribution of qi

and ηi.

Given any level of opponent’s investment kj, each bidder i chooses investment

k∗i that solves

max
ki

∫
qi

∫
qj

∫ qi−g(ki)−Eηi

v

{
1−H

(
qj − g(kj)− τ

)}
dτdG(qj)dG(qi)− ki (4.10)

Take the first order condition will give supplier i’s best response investment function

k∗i (kj) to the opponent’s investment kj. A subgame perfect equilibrium (kCi , k
C
j ) is

given by kCi = k∗i (k
C
j ) and kCj = k∗j (k

C
i ). By examining the first order condition and

the second order condition of equation (4.10), the next proposition shows that the

two bidders will chose identical investment kC in equilibrium, in which kC depends

only on the cost reducing technology g(.).

Proposition 4.1. Under concealment of quality with N = 2, both suppliers will

select an identical investment kCi = kCj = kC in a subgame perfect equilibrium. kC

does not depend on G(.).

Proof. See Appendix.

Proposition 4.1 comes from the ex ante symmetry across bidders at the time

when they make investment decisions. At the optimal level of investment, the
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marginal expected return from investment should equal the marginal cost of invest-

ment, given that the opponent also invests optimally. Given the ex-ante symmetry

of the bidders, the expected return of investment in auction is always equivalent

for two bidders, and the marginal cost of investment depends only on technology

g(.). Therefore, the equilibrium investment kC is identical across bidders and is

independent of the quality distribution G(q).

4.4.2 Equilibrium under Private Disclosure of Quality

Under private disclosure of quality, suppose a symmetric perfect Bayesian

equilibrium investment strategy kD : [q, q̄] → R+ exists. Each supplier’s optimal

investment strategy kDi solves

max
ki

∫
qj

∫ qi−g(ki)−Eηi

v

{
1−H(qj − g

(
kD(qj)

)
− τ)

}
dτdG(qj) (4.11)

The equilibrium investment strategy of each bidder kDi = kD(qi) is characterized by

the first order condition of i’s objective function given in equation (4.11).

The next proposition shows that privately disclosing quality qi to each bidder

will induce ex ante high quality suppliers to invest more aggressively compared

to low quality suppliers. The symmetric equilibrium investment strategy kD(qi) is

increasing in qi.

Proposition 4.2. When there are only 2 bidders, under private disclosure of quality,

the perfect Bayesian equilibrium investment kD(qi) is increasing in qi.

Proof. See Appendix.
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Proposition 4.2 comes from the fact that the optimal investment decision of

each bidder depends on the expected return of investment in the auction. Suppliers

with higher quality products has higher expected probability of winning the auction

than suppliers with lower quality products. The former has higher expected return

for any given level of investment.

4.4.3 Equilibrium under Public Disclosure of Quality

Now suppose the auctioneer publicly announce the entire quality profile {qi, qj}

at the beginning of investment stage to all bidders. Under the public disclosure of

quality, each bidder will hold different belief over the distribution of its opponent’s

value. Given {qi, qj}, and any level of opponent’s invesment kj, each bidder i will

choose investment strategy k∗i that solves

max
ki

∫ qi−g(ki)−Eηi

v

(
1−H

(
qj − g(kj)− τ

))
dτ (4.12)

Under public disclosure of (qi, qj) to each bidder, the best response investment

k∗i (kj; qi, qj) to opponent’s investment kj is characterized by the first order condition

of i’s objective function given by equation (4.12) with kAj replaced by kj. Let (kAi , k
A
j )

denote the subgame perfect equilibrium investment profile under public disclosure

(announcement) of qualities. For any quality profile (qi, qj), the subgame perfect

equilibrium investment profile under public information disclosure (kAi , k
A
j ) is de-

fined as kAi (qi, qj) = k∗i (k
A
j ; qi, qj) and kAj (qi, qj) = k∗j (k

A
i ; qi, qj), in which k∗i (.; qi, qj)

and k∗j (.; qi, qj) are each bidder’s best response function.

The next proposition shows that given the same cost reducing technology
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g(.), publicly disclosing all bidders’ qualities will further induce the high quality

supplier to invest more aggressively, and the low quality supplier to invest less

aggressively. Each bidder’s equilibrium investment kAi (qi, qj) under announcement

of entire quality profile is increasing in (qi − qj).

Proposition 4.3. When there are only 2 bidders, under public disclosure of qualities

(qi, qj), each bidder’s best response investment k∗i (kj; qi, qj) is increasing in (qi −

qj) and decreasing in kj. The subgame perfect equilibrium investment kAi (qi, qj) is

increasing in (qi − qj).

Proof. See Appendix.

Proposition 4.3 comes from the fact that the higher quality bidder has higher

expected return from investment, as the expected probability of winning the auction

is higher. When the higher quality bidder knows exactly his ex ante advantage before

the auction starts, his investment incentive will be stronger, while the lower quality

bidder will be discouraged from investing given this information. This is because

the pre-auction investments are strategic substitutes between bidders, and knowing

that opponent has a low quality for certain will make the high quality bidder believe

that the investment of the opponent is also low, which further increases the expected

return from investment.
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4.4.4 Revenue Comparison

At the beginning of auction, the expected value of bidder i with quality qi and

investment ki before the realization of random cost component ηi is given by

V (ki, qi) =

∫ η̄

η

(
qi − g(ki)− ηi

)
dH(ηi)

= qi − g(ki)− Eηi

(4.13)

Define V (kL1 , q1) and V (kL2 , q2) as the equilibrium expected value of the high

quality supplier and the low quality supplier under information policy L ∈ {C,D,A},

in which C represents concealment, D represents private disclosure and A represents

public disclosure (announcement), at the beginning of auction, given their equilib-

rium investments kL1 , k
L
2 under realizations Q1 = q1, Q2 = q2:

V (kL1 , q1) = q1 − g(kL1 )− Eη

V (kL2 , q2) = q2 − g(kL2 )− Eη
(4.14)

Under concealment of qualities, kC1 = kC2 = kC . Under private disclosure of qualities,

kD1 = kD(q1) and kD2 = kD(q2). Under public disclosure of qualities, kA1 = kA1 (q1, q2)

and kA2 = kA2 (q2, q1).

The ex ante expected winner’s payoff in the auction under policy L ∈ {C,D,A}

given distribution G is given by

EΠL(G) = E[V (kL1 , q1)− V (kL2 , q2)|G] (4.15)

The ex ante expected revenue to the auctioneer under policy L ∈ {C,D,A} given

distribution G is given by

ERL(G) = E[V (kL2 , q2)|G] (4.16)
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As mentioned at the beginning of this chapter, when the auctioneer does not

care about non-price characteristics and ∆(G) = 0, the three information disclosure

policy gives the same expected revenue:ERC(G) = ERD(G) = ERA(G). I will next

analyze how the expected revenues change under the three different information

provision policies as ∆(G) increases from 0 in order to compare the revenues of the

three information provision policies when ∆(G) > 0.

The next proposition shows that the expected revenues ERC(G), ERD(G) and

ERA(G) are decreasing in ∆(G) under all three information provision schemes, when

holding the expected quality constant. It can be shown that the negative impact of

increasing ∆(G) on ERC(G) is weaker than that on ERD(G) and ERA(G), at any

level of ∆(G) > 0. This implies that when there are only 2 bidders, the ex ante

expected revenue to the auctioneer is always highest under concealment of quality

among the three information schemes.

Proposition 4.4. When there are only 2 bidders, the expected revenue to the auc-

tioneer ERL(G) is decreasing in ∆(G) for all L ∈ {C,D,A}. Moreover,

dERA(G)

d∆(G)
<
dERC(G)

d∆(G)
< 0

dERD(G)

d∆(G)
<
dERC(G)

d∆(G)
< 0

(4.17)

When ∆(G) = 0, ERC(G) = ERD(G) = ERA(G)

When ∆(G) > 0, ERC(G) > ERD(G) and ERC(G) > ERA(G). Both

ERC(G)− ERD(G) and ERC(G)− ERA(G) are increasing in ∆(G).

Proof. See Appendix.

Proposition 4.4 implies that when there are only 2 bidders, it is always optimal
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for the auctioneer to conceal their qualities. When the auctioneer discloses her

private values to the bidders, the lower quality bidder will be discouraged from

making investments, which leads to lower expected value of the lower quality bidder

and lower expected revenue in the auction.

The result of Proposition 4.4 comes from the fact that ∆(G) represents the

dispersion of quality distribution G. Holding the expected quality constant and

increasing ∆(G) will generate a mean preserving spread of the original distribution,

under which it is more likely to observe a high value of q1 and a low value of q2. This

is the only source that drives the fact that EΠC(G) being increasing in ∆(G) and

ERC(G) being decreasing in ∆(G) under concealment of quality, as the equilibrium

investment kC is independent of G. This source also present under private disclosure

of quality and public disclosure of quality. However, under private disclosure and

public disclosure of quality, increasing ∆(G) will not only decrease the expected

value of q2, but also decrease the expected investment of the lower quality bidder,

as the low quality bidder will be discouraged from investment by receiving a low

quality signal. Therefore, the impact of ∆(G) on expected revenue is stronger

when the auctioneer discloses her values than that when the auctioneer conceals

her values. Moreover, the difference between expected revenues under any two

information schemes is increasing in ∆(G), as the bidders’ investment incentives

will be affected by the information provided by the auctioneer more significantly

when auctioneer cares more about non-price characteristics.

126



4.5 Conclusions

This chapter studies the information provision problem in a procurement auc-

tion where the auctioneer has private subjective valuations over the suppliers’ prod-

ucts, and suppliers have opportunity to invest in cost reduction prior to entering

the auction. In this paper, I analyze the equilibrium investment strategies of sup-

pliers under concealment of auctioneer’s private valuations, private disclosure of

auctioneer’s valuation, and public disclosure of auctioneer’s valuations, and provide

a revenue comparison among these three information provision schemes under the

presence of 2 bidders. The main conclusions are summarized as below:

First, disclosing the auctioneer’s private valuation over each supplier’s quality

will induce high quality suppliers to invest more aggressively and discourage low

quality suppliers from making investments. This result comes from the fact that

each bidder’s expected return from investment is increasing in his quality. Therefore,

providing more information will induce a more dispersed distribution of values in

the auction through this differentiation effect at the investment stage. When there

are only two bidders, providing more information will discourage the lower quality

bidder from investment and reduce the expected revenue. This leads to the result

that concealment gives the highest expected revenue among the three information

provision schemes considered in this paper.

Second, when one information scheme dominates the other information scheme

under given distribution G, the benefit of the better scheme over the worse scheme

increases in the dispersion of quality ∆(G). This result comes from the fact that
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∆(G) measures how much the auctioneer cares about qualities relative to costs.

When the auctioneer cares more about qualities, the impact of quality differentiation

on bidders’ investment incentives is stronger, and providing information on this

quality differentiation has greater impact on the equilibrium distribution of values.

I will next provide a brief discussion on the more general case when there are

N ≥ 2 bidders. Define ∆(G,N) = E[q1 − qN |G,N ]. Then ∆(G,N) measures the

dispersion of qualities among N bidders given distribution G(.). It is natural to

conjecture that given a fixed number of bidders N and distribution G, concealment

is optimal only if N is small enough s.t. the expected value of second order statistics

is decreasing in the dispersion of qualities. When N is large enough s.t. E(q2|G,N)

is increasing in ∆(G,N), then the rank order of expected revenues under three

information provision policies will be reversed, and public disclosure will provide

the highest expected revenue. When N approaches infinity, it is always optimal to

publicly disclose all qualities. This result is consistent with Ganuza (2004) [71]’s

finding that the optimal level of information provision is increasing in the number

of bidders. When there are only 2 bidders, competition in auction is weak, and

disclosing the auctioneer’s private information will give more informational rent to

the winner. In contrast, when the number of bidders is large, disclosing more infor-

mation will promote competition among the high quality bidders and will increase

the expected revenue. When the number of bidders approaches infinity so that the

model approaches a perfectly competitive market where each seller captures zero

informational rent, it is optimal for the auctioneer to disclose all information.

The findings in this chapter suggest a few directions for future research. First,
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this chapter assumes that participation in the auction is costless and the number

of bidders in the auction N is exogenous. Since the provision of the auctioneer’s

information also changes the ex ante expected payoff to the winner, it would be

interesting to allow endogenous entry of bidders. If the quality information is dis-

closed before bidders make entry decisions, then low quality bidders will not enter

the auction, which reduces the degree of competition and lowers the auctioneer’s

expected revenue. When disclosing more information is optimal under exogenous

entry, the positive impact of information disclosure on expected revenue through

inducing higher quality bidders investing more will be offset by the negative im-

pact through preventing low quality bidders from participating. On the other hand,

when there are very few bidders so that concealing information is optimal given this

fixed number of bidders, disclosing information will yield higher expected payoff to

the winner and therefore induce more bidders to enter, so the optimal information

disclosure scheme again becomes ambiguous. The next step of this research may

introduce entry cost to the model and study how the revenue ranking of three in-

formation provision schemes change when number of bidders is also endogenously

determined by the information provision scheme.

Second, this chapter assumes that providing information to bidders is costless

to the auctioneer, which is not a practical assumption, as communication between

the auctioneer and bidders usually comes at a cost. When providing information is

costly, the benefit of information disclosure to the auctioneer may be outweighed by

the cost of communication. When the cost of information provision is independent

of number of bidders, it would be optimal to disclose quality when N is large enough
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since the benefit of information provision increases in N . However, when the cost of

information provision also increases in N , the optimal level of information provision

becomes ambiguous, and the next step of this study may include providing a charac-

terization of the optimal level of information provision when providing information

is costly.
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Appendix A: Proofs for Chapter 2

Proof of Lemma 2.1:

Proof. I first show that if an equilibrium bidding strategy in a one-dimensional as-

sortative position auction is symmetric and strictly increasing, then the equilibrium

must be efficient. Let β(x) denote the equilibrium bidding strategy. β
′
(x) > 0 im-

plies that β(xi) > β(xj) for any xi > xj. Under the assortative ranking rule, bidder

i is placed above bidder j if xi > xj, so the equilibrium allocation must be efficient.

I next show that if an equilibrium of a one-dimensional assortative position

auction is efficient, then the equilibrium bidding strategy must be strictly increasing

and symmetric across bidders. Suppose an efficient equilibrium
(
β1(x1), β2(x2), · · · , βN(xN)

)
exists in a one-dimensional assortative position auction, then a bidder who receives

signal xi must be placed above a bidder who receives a lower signal xj < xi if both

win some position in equilibrium. For an arbitrary bidder i, take any value x
′
i > xi,

then there is positive probability that some of bidder i’s opponents receive signals

between xi and x
′
i, i.e., there exists j 6= i with signal xj ∈ (xi, x

′
i). Efficiency requires

that j is placed below i when bidder i receives x
′
i, and j is placed above i when i
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receives xi. Under the assortative ranking rule, this requires

βj(xj) < βi(x
′

i)

βj(xj) > βi(xi)

(A.1)

Suppose βi(x
′
i) ≤ βi(xi), then for any value of βj(xj), it is impossible for condition

(A.1) to hold, which yields a contradiction. Therefore, at any efficient equilibrium,

bidder i must bid strictly higher when receiving signal x
′
i than receiving signal xi,

i.e., for every bidder i, we must have

x
′

i > xi → βi(x
′

i) > βi(xi) (A.2)

Therefore, every bidder must use a strictly increasing bidding strategy in an efficient

equilibrium, so β
′
i(xi) > 0 for all i.

Next, suppose there exists an efficient equilibrium that is not symmetric, i.e.,

there exists i 6= j s.t. βi(x̂) 6= βj(x̂) at some x̂ ∈ [0, x̄]. Without loss of generality,

assume βi(x̂) < βj(x̂) for some x̂ ∈ [0, x̄]. Since βi(.) and βj(.) are continuous,

there exists some xi, xj ∈ [0, x̄] s.t. xj < x̂ < xi, but βi(xi) < βj(xj). Under the

assortative ranking rule, this means that bidder j who receives the lower signal xj

will get a higher position than bidder i who receives the higher signal xi > xj, which

contradicts the efficiency assumption. Therefore, if an efficient equilibrium exists in a

one-dimensional assortative position auction, then the equilibrium bidding strategy

must be symmetric across bidders, i.e., βi(.) = β(.) for all i.

Proof of Lemma 2.2:
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Proof. Define v1,2(xi, y1, y2) as bidder i’s expected value per click conditional on her

own signal equals to xi, the highest signal among her opponents Y1 equals to y1, the

second highest signal among her opponents Y2 equals to y2:

v1,2(xi, y1, y2) = E
[
vi
∣∣X = xi, Y1 = y1, Y2 = y2

]
(A.3)

Suppose a monotonic Bayesian equilibrium bidding strategy β(.) exists. For

any arbitrary bidder i, suppose all of i’s opposing bidders follow the monotonic

Bayesian equilibrium bidding strategy β(.). Let β−1(.) denote the inverse function

of β(.). Then bidder i’s best response bid b∗i maximizes

Π(bi|xi) =

∫ β−1(bi)

0

∫ y1

0

α1

[
v1,2(xi, y1, y2)− β(y1)

]
g2,1
i (y2, y1|xi)dy2dy1

+

∫ x̄

β−1(bi)

∫ β−1(bi)

0

α2

[
v1,2(xi, y1, y2)− β(y2)

]
g2,1
i (y2, y1|xi)dy2dy1

(A.4)

in which g2,1
i (y2, y1|xi) is the conditional joint density function of (Y2, Y1) given X =

xi. Let g1|2(y1|y2, xi) and g2|1(y2|y1, xi) be conditional marginal densities of Y1 given

(Y2, X) and Y2 given (Y1, X) respectively. Let g1(y1|xi) and g2(y2|xi) be conditional

marginal densities of Y1 and Y2 given X = xi respectively, then g2,1
i (y2, y1|xi) =

g1|2(y1|y2, xi)g2(y2|xi) = g2|1(y2|y1, xi)g1(y1|xi).

Take derivative of the objective function (A.4) with respect to bi:

dΠ(bi|xi)
dbi

=
g1(β−1(bi)|xi)
β ′(β−1(bi))

∫ β−1(bi)

0

α1

[
v1,2(xi, β

−1(bi), y2)− bi
]
g2|1
(
y2

∣∣β−1(bi), xi
)
dy2

− g1(β−1(bi)|xi)
β ′(β−1(bi))

∫ β−1(bi)

0

α2

[
v1,2(xi, β

−1(bi), y2)− β(y2)
]
g2|1
(
y2

∣∣β−1(bi), xi
)
dy2

+
g2(β−1(bi)|xi)
β ′(β−1(bi))

∫ x̄

β−1(bi)

α2

[
v1,2(xi, y1, β

−1(bi))− bi
]
g1|2
(
y1

∣∣β−1(bi), xi
)
dy1

(A.5)

133



Since β(xi) is an equilibrium, it is optimal for bidder i to bid b∗i = β(xi) when

her opponents follow β(.). Evaluate dΠ(bi)
dbi

at b∗i = β(xi):

dΠ(β(xi)|xi)
dbi

=
g1(xi|xi)
β ′(xi)

∫ xi

0

α1

[
v1,2(xi, xi, y2)− β(xi)

]
g2|1(y2|xi, xi)dy2

− g1(xi|xi)
β ′(xi)

∫ xi

0

α2

[
v1,2(xi, xi, y2)− β(y2)

]
g2|1(y2|xi, xi)dy2

+
g2(xi|xi)
β ′(xi)

∫ x̄

xi

α2

[
v1,2(xi, y1, xi)− β(xi)

]
g1|2(y1|xi, xi)dy1

(A.6)

According to the definition of v1(xi, xi) and v2(xi, xi), equation (A.6) is equivalent

to

dΠ(β(xi)|xi)
dbi

=
g1(xi|xi)
β ′(xi)

α1

[
v1(xi, xi)− β(xi)

]
− g1(xi|xi)

β ′(xi)
α2

[
v1(xi, xi)−

∫ xi

0

β(y2)g2|1(y2|xi, xi)dy2

]
+
g2(xi|xi)
β ′(xi)

α2

[
v2(xi, xi)− β(xi)

]
(A.7)

Bidding b∗i = β(xi) maximizes Π(bi|xi) only if dΠ(β(xi)|xi)
dbi

= 0. Setting equation (A.7)

to zero and rearrange yields

β(xi) =
g1(xi|xi)

[
(α1 − α2)v1(xi, xi) + α2

∫ xi
0
β(y2)g2|1(y2|xi, xi)dy2

]
+ g2(xi|xi)α2v

2(xi, xi)

α1g1(xi|xi) + α2g2(xi|xi)
(A.8)

This is a Volterra equation of the second kind. In the one-dimensional GSP Auction

with 2 positions, if a monotonic equilibrium bidding strategy βG(xi) exists, then

βG(xi) must satisfy the Volterra equation (A.8) for all xi ∈ [0, x̄].

Proof of Lemma 2.3:

Proof. Suppose a monotonic symmetric Bayesian equilibrium bidding strategy β(.)

exists in the one-dimensional VCG auction. For an arbitrary bidder i, suppose all
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of i’s opposing bidders follow the monotonic Bayesian equilibrium bidding strategy

β(.). Let β−1(.) denote the inverse function of β(.). Then bidder i’s best response

bid b∗i maximizes

Π(bi|xi) =

∫ β−1(bi)

0

∫ y1

0

{
α1

[
v1,2(xi, y1, y2)− β(y1)

]
+ α2

[
β(y1)− β(y2)

]}
g2,1
i (y2, y1|xi)dy2dy1

+

∫ x̄

β−1(bi)

∫ β−1(bi)

0

α2

[
v1,2(xi, y1, y2)− β(y2)

]
g2,1
i (y2, y1|xi)dy2dy1

(A.9)

Take derivative with respect to bi:

dΠ(bi|xi)
dbi

=
g1(β−1(bi)|xi)
β ′(β−1(bi))

∫ β−1(bi)

0

(α1 − α2)
[
v1,2(xi, β

−1(bi), y2)− bi
]
g2|1
(
y2

∣∣β−1(bi), xi
)
dy2

+
g2(β−1(bi)|xi)
β ′(β−1(bi))

∫ x̄

β−1(bi)

α2

[
v1,2(xi, y1, β

−1(bi))− bi
]
g1|2
(
y1

∣∣β−1(bi), xi
)
dy1

(A.10)

Since β(xi) is an equilibrium, b∗i = β(xi) maximizes Π(bi|xi) for any value of

xi. For all xi ∈ [0, x̄], evaluate dΠ(bi|xi)
dbi

at b∗i = β(xi) gives

dΠ(β(xi)|xi)
dbi

=
g1(xi|xi)
β ′(xi)

∫ xi

0

(α1 − α2)
[
v1,2(xi, xi, y2)− β(xi)

]
g2|1
(
y2

∣∣xi, xi)dy2

+
g2(xi|xi)
β ′(xi)

∫ x̄

xi

α2

[
v1,2(xi, y1, xi)− β(xi)

]
g1|2
(
y1

∣∣xi, xi)dy1

(A.11)

According to the definition of v1(xi, xi) and v2(xi, xi), this is equivalent to

dΠ(β(xi)|xi)
dbi

=
g1(xi|xi)
β ′(xi)

(α1 − α2)
[
v1(xi, xi)− β(xi)

]
+
g2(xi|xi)
β ′(xi)

α2

[
v2(xi, xi)− β(xi)

]
(A.12)

Bidding β(xi) maximizes Π(bi|xi) only if dΠ(β(xi)|xi)
dbi

= 0, which means that

bidder i cannot increase Π(bi|xi) by increasing or decreasing bid from β(xi) by any

small amount. Set dΠ(β(xi)|xi)
dbi

= 0 and rearrange the equation yields

β(xi) =
g1(xi|xi)(α1 − α2)v1(xi, xi) + g2(xi|xi)α2v

2(xi, xi)

g1(xi|xi)(α1 − α2) + g2(xi|xi)α2

(A.13)
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which characterizes the unique equilibrium bidding strategy βV (xi) in the one-

dimensional VCG auction.

Proof of Proposition 2.1:

Proof. Suppose the unique equilibrium bidding strategy βG(xi) characterized in

Lemma 2.2 is continuous and strictly increasing in xi given any CTR profile (α1, α2).

First observe that since βG(.) is continuous, when xi approaches x̄, the equilibrium

bid βG(xi) characterized in Lemma 2.2 approaches βG(x̄):

lim
xi→x̄

βG(xi) = βG(x̄) =
(α1 − α2

α1

)
v1(x̄, x̄) +

(α2

α1

)∫ x̄

0

β(y2)g2|1(y2|x̄, x̄)dy2 (A.14)

Consider the case when α2 approaches α1, the equilibrium bid βG(x̄) ap-

proaches

lim
α2→α1

βG(x̄) =

∫ x̄

0

β(y2)g2|1(y2|x̄, x̄)dy2 (A.15)

which implies that βG(x̄) satisfies

lim
α2→α1

∫ x̄

0

(
βG(x̄)− βG(y2)

)
g2|1(y2|x̄, x̄)dy2 = 0 (A.16)

However, equation (A.16) yields a contradiction to the assumption that βG(xi)

is strictly increasing in xi, since for any strictly increasing function, βG(x̄) > βG(y2)

for any 0 ≤ y2 < x̄ and βG(x̄) = βG(y2) at y2 = x̄. Therefore, it is impossible for

any strictly increasing βG(xi) to satisfy equation (A.16) at xi = x̄. Since βG(xi)

approaches βG(x̄) when xi approaches x̄, this contradiction also applies to any xi
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sufficiently close to x̄. Therefore, it is impossible for the equilibrium βG(xi) char-

acterized by Lemma 2.2 to be strictly increasing under every CTR profile. Since

βG(xi) is the unique equilibrium bidding strategy, there exists no monotonic equi-

librium in the one-dimensional GSP auction with two positions under some CTR

profile. Given the result of Lemma 2.1, this implies that there exists some number

of positions K with some CTR profile such that no efficient equilibrium exists in

the one-dimensional GSP auction.

Proof of Proposition 2.2:

Proof. Define γ(xi;α1, α2) as the weighting factor in the equilibrium bidding func-

tion βV (xi) characterized in Lemma 2.3:

γ(xi;α1, α2) =
g1(xi|xi)(α1 − α2)

g1(xi|xi)(α1 − α2) + g2(xi|xi)α2

(A.17)

then the equilibrium bidding strategy characterized in Lemma 2.3 can be rewritten

as

βV (xi) = γ(xi;α1, α2)v1(xi, xi) +
(

1− γ(xi;α1, α2)
)
v2(xi, xi) (A.18)

Take derivative of β(xi) = γ(xi)v
1(xi, xi) + (1 − γ(xi))v

2(xi, xi) with respect

to xi:

dβV (xi)

dxi
= γ(xi)

[∂v1(xi, xi)

∂xi

]
+ (1− γ(xi))

[∂v2(xi, xi)

∂xi

]
︸ ︷︷ ︸

bid-increasing incentive from higher expected values

+
∂γ(xi)

∂xi

[
v1(xi, xi)− v2(xi, xi)

]
︸ ︷︷ ︸

bid-shading incentive from the “winner’s curse”

(A.19)

The first two terms in equation (A.19) capture the positive effect of greater expected

values on βV (xi) when xi increases. As xi increases, the expected values conditional

on winning both position 1 and position 2.2 increase, which causes equilibrium bid
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βV (xi) to increase. The last term captures the negative effect of the “winner’s

curse” on βV (xi). As xi increases, bidder i is more likely to win the first position

at any monotonic equilibrium, which amplifies the “winner’s curse.” When the

negative effect from the “winner’s curse” dominates the positive effect from increased

expected values, the sign of dβV (xi)
dxi

can be negative.

Note that given any CTR profile (α1, α2), for any xi ∈ [0, x̄], the magnitude

of the “winner’s curse,” v1(xi, xi)− v2(xi, xi), is multiplied by ∂γ(xi)
∂xi

. The later can

be expressed as

∂γ(xi;α1, α2)

∂xi
=

(α1 − α2)α2

[
∂g1(xi|xi)

∂xi
g2(xi|xi)− g1(xi|xi)∂g2(xi|xi)

∂xi

]
[
g1(xi|xi)(α1 − α2) + g2(xi|xi)α2

]2 > 0 (A.20)

For any CTR profile (α1, α2) satisfying 0 < α2 < α1, take limit of ∂γ(xi;α1,α2)
∂xi

when xi approaches x̄ yields

lim
xi→x̄

∂γ(xi;α1, α2)

∂xi
= −

( α2

α1 − α2

)
× 1

g1(x̄|x̄)
× ∂g2(x̄|x̄)

∂xi
(A.21)

When α2 is sufficiently close to α1, the denominator becomes sufficiently close

to 0 so that limxi→x̄
∂γ(xi;α1,α2)

∂xi
approaches infinity. As long as v1(xi, xi) < v2(xi, xi),

the negative impact from “winner’s curse” will be dominant when xi is sufficiently

close to x̄ and α2 is sufficiently close to α1. Therefore, under any non-trivially

interdependent values, when there are K = 2 positions, there always exists some

CTR profile (α1, α2) in which α2 is strictly lower than but sufficiently close to α1

s.t. the equilibrium bid βV (xi) is decreasing in xi for values of xi close to the

upper boundary x̄. This demonstrates that there always exists some number of
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positions K with some CTR profile such that no efficient equilibrium exists in the

one-dimensional VCG auction.

Proof of Lemma 2.4:

Proof. It is straightforward to see that if every bidder adopts a symmetric and

strictly increasing bidding strategy for every position k in equilibrium of a K-

dimensional assortative position auction, then the equilibrium allocation is always

efficient. Let β(x) =
(
β1(x), · · · , βK(x)

)
be the symmetric equilibrium bidding

strategy. Since βk(x) is strictly increasing for every k, the bidder with the highest

signal will submit the highest bid for position 1 and win position 1. The bidder with

the second highest signal will submit the highest bid among the rest of bidders and

win position 2, etc. The equilibrium allocation will rank bidders according to their

signals and therefore is efficient.

I will next show that an equilibrium of a K-dimensional assortative position

auction is efficient only if every bidder uses a symmetric and strictly increasing

bidding strategy βk(x) for any position k. Suppose an efficient equilibrium exists

in a K-dimensional assortative auction, then a bidder who receives a signal xi must

be placed above a bidder who receives a lower signal xj < xi if both bidders receive

some position in equilibrium. Pick an arbitrary bidder i, for any position k ∈ [1, K],

take any value x
′
i > xi, then there is positive probability that there are exactly

(k−1) bidders who receive signals above x
′
i and one bidder j 6= i who receives signal

xj ∈ (xi, x
′
i). Efficiency requires that bidder i wins position k if bidder i receives

signal x
′
i, and bidder j wins position k if bidder i receives signal xi. With the K-
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dimensional assortative ranking rule, bidder i’s bid for position k must always be

higher than bidder j’s bid for position k when receiving x
′
i, and bidder i’s bid for

position k must always be lower than bidder j’s bid for position k when receiving

xi:

βik(x
′

i) > βjk(xj)

βik(xi) < βjk(xj)

(A.22)

This is only possible when βik(x
′
i) > βik(xi). Therefore, for every bidder i and every

position k, we must have

x
′

i > xi → βik(x
′

i) > βik(xi) (A.23)

which means βik(xi) is strictly increasing in xi for every i and every k.

Next, I will show that any efficient equilibrium in a K-dimensional assortative

position auction must be symmetric across bidders. Suppose the equilibrium is not

symmetric, i.e., there exists some k ∈ [1, K] and i 6= j s.t. βik(x̂) 6= βjk(x̂) for some

x̂ ∈ [0, x̄]. Without loss of generality, assume βik(x̂) > βjk(x̂). Since βik(.) and βjk(.)

are continuous, there exists xi, xj s.t. xi < x̂ < xj, and βik(xi) > βjk(xj). There is

positive probability that there are exactly (k− 1) bidders other than i and j receive

signals above xj. Since xi < x̂ < xj, efficiency requires that bidder j wins position k.

However, with the K-dimensional assortative ranking rule, βik(xi) > βjk(xj) implies

that bidder j cannot win position k, which yields a contradiction. Therefore, it is

impossible to have βik(x̂) 6= βjk(x̂) for any i, j, any k ∈ [1, K], and any value of

x̂. In any efficient equilibrium, each bidder must use a symmetric bidding strategy

βik(.) = βk(.) for every position k.
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Proof of Proposition 2.3:

Proof. For any arbitrary bidder i, let g
{k}
i (yk, · · · , y1|xi) be the joint density of

(Yk, Yk−1, · · · , Y1) conditional on X = xi, according to the joint distribution of

signals F (x1, · · · , xN). Define v{k}(xi; y1, y2, · · · , yk) as bidder i’s expected value

per click conditional on her own signal X equals to xi, the highest signal Y1, the

second highest signal Y2, ..., the k-th highest signal Yk received by her opponents

equals to (y1, y2, · · · , yk):

v{k}(xi; y1, y2, · · · , yk) = E
[
vi
∣∣X = xi, Y1 = y1, Y2 = y2, · · · , Yk = yk

]
(A.24)

Suppose all of bidder i’s opposing bidders follow the monotonic Bayesian equi-

librium bidding strategy β(.) = (β1(.), β2(.), · · · , βK(.)) in the K-dimensional GSP

auction. Let β−1
k (.) denote the inverse function of βk(.). Then bidder i’s best re-

sponse bid (b1∗
i , b

2∗
i , · · · , bK∗i ) maximizes

∫ β−1
1 (b1i )

0

α1

[
v{1}(xi, y1)− β1(y1)

]
g
{1}
i (y1|xi)dy1

+

∫ 1

β−1
1 (b1i )

∫ β−1
2 (b2i )

0

α2

[
v{2}(xi, y1, y2)− β2(y2)

]
g
{2}
i (y2, y1|xi)dy2dy1

+

∫ 1

β−1
1 (b1i )

∫ y1

β−1
2 (b2i )

∫ β−1
3 (b3i )

0

α3

[
v{3}(xi, y1, y2, y3)− β3(y3)

]
g
{3}
i (y3, y2, y1|xi)dy3dy2dy1

+ · · ·

+

∫ 1

β−1
1 (b1i )

∫ y1

β−1
2 (b2i )

∫ y2

β−1
3 (b3i )

· · ·
∫ β−1

K (bKi )

0

αK

[
v{K}(xi, y1, · · · , yK)− βK(yK)

]
g
{K}
i (y|xi)dy

(A.25)

Define ΠG
k

(
xi, y1, · · · , yk

)
as

ΠG
k

(
xi, y1, · · · , yk

)
= αk

[
v{k}(xi, y1, · · · , yk)− βk(yk)

]
× g{k}i (yk, · · · , y1|xi) (A.26)
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Then the objective function (A.25) can be rewritten as

Π(bi|xi) =

∫ β−1
1 (b1i )

0

ΠG
1

(
xi, y1

)
dy1︸ ︷︷ ︸

A1

+

∫ 1

β−1
1 (b1i )

∫ β−1
2 (b2i )

0

ΠG
2

(
xi, y1, y2

)
dy2dy1︸ ︷︷ ︸

A2

+

∫ 1

β−1
1 (b1i )

∫ y1

β−1
2 (b2i )

∫ β−1
3 (b3i )

0

ΠG
3

(
xi, y1, · · · , y3

)
dy3dy2dy1︸ ︷︷ ︸

A3

+ · · ·

+

∫ 1

β−1
1 (b1i )

∫ y1

β−1
2 (b2i )

∫ y2

β−1
3 (b3i )

· · ·
∫ β−1

K (bKi )

0

ΠG
K

(
xi, y1, · · · , yK

)
dyK · · · dy1︸ ︷︷ ︸

AK

(A.27)

Let Ak denote the k-th term in the objective function (A.27). The definitions

of A1, A2 and A3 are shown in the objective function (A.27). For any k ≥ 3, Ak is

given by

Ak =

∫ 1

β−1
1 (b1i )

∫ y1

β−1
2 (b2i )

· · ·
∫ yk−2

β−1
k−1(bk−1

i )︸ ︷︷ ︸
(k−1)

∫ β−1
k (bki )

0

ΠG
k

(
xi, y1, · · · , yk

)
dyk · · · dy2dy1

(A.28)

The first order condition with respect to b1
i , b

2
i , · · · , bKi is given by

∂A1

∂b1
i

+
∂A2

∂b1
i

+
∂A3

∂b1
i

+ · · ·+ ∂AK
∂b1

i

= 0

∂A2

∂b2
i

+
∂A3

∂b2
i

+ · · ·+ ∂AK
∂b2

i

= 0

· · ·

∂AK−1

∂bK−1
i

+
∂AK

∂bK−1
i

= 0

∂AK
∂bKi

= 0

(A.29)
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Since each bki enters Ak, Ak+1, · · · , AK , but does not enter any Ak′ with k′ < k.

For any 1 ≤ k ≤ K, take derivative of Ak with respect to bki and replacing bn∗i

by βn(xi) for all n ∈ {1, 2, · · · , K} yields

∂Ak
∂bki

=
1

β
′
k(β

−1
k (bki ))

∫ 1

β−1
1 (b1i )

· · ·
∫ yk−2

β−1
k−1(bk−1

i )

ΠG
k

(
xi, y1, · · · , yk−1, β

−1
k (bki )

)
dyk−1 · · · dy1

=
1

β
′
k(xi)

∫ 1

xi

· · ·
∫ yk−2

xi

ΠG
k

(
xi, y1, · · · , yk−1, xi

)
dyk−1 · · · dy1

=
gk(xi|xi)
β
′
k(xi)

αk

[
vk(xi, xi)− bki

]
(A.30)

Take derivative of Ak+1 with respect to bki , and replace bni by βn(xi) for all

n ∈ {1, 2, · · · , K} yields

∂Ak+1

∂bki
=− 1

β
′
k(β
−1
k (bki ))

∫ 1

β−1
1 (b1i )

· · ·
∫ yk−2

β−1
k−1(bk−1

i )

∫ β−1
k+1(bk+1

i )

0
ΠG
k+1

(
xi, y1, · · · , β−1

k (bki ), yk+1

)
dyk+1dyk−1 · · · dy1

=− 1

β
′
k(xi)

∫ 1

xi

· · ·
∫ yk−2

xi

∫ xi

0
ΠG
k+1

(
xi, y1, · · · , xi, yk+1

)
dyk+1dyk−1 · · · dy1

=− gk(xi|xi)
β
′
k(xi)

αk

[
vk(xi, xi)−

∫ xi

0
βk+1(yk+1)dGk+1

(
yk+1

∣∣xi, xi)]
(A.31)

Take derivative of Ak+2 with respect to bki , and replace bni by βn(xi) for all

n ∈ {1, 2, · · · , K} yields

∂Ak+2

∂bki
=

1

β
′
k(β
−1
k (bki ))

×

∫ 1

β−1
1 (b1i )

· · ·
∫ yk−2

β−1
k−1(bk−1

i )

∫ β−1
k (bki )

β−1
k+1(bk+1

i )

∫ β−1
k+2(bk+2

i )

0
ΠG
k+2

(
xi, y1, · · · , β−1

k (bki ), yk+1, yk+2

)
dyk+2dyk+1 · · · dy1

=− 1

β
′
k(xi)

∫ 1

xi

· · ·
∫ yk−2

xi

∫ xi

xi

∫ xi

0
ΠG
k+2

(
xi, y1, · · · , xi, yk+1, yk+2

)
dyk+2dyk+1dyk−1 · · · dy1

=0

(A.32)

This is because the integral of any continuous function on [xi, xi] is zero. For any
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An with n ≥ k + 2, ∂An

∂bki
also contains an integral on [xi, xi]. Therefore,

∂An
∂bki

= 0, ∀n 6= k, k + 1 (A.33)

Therefore, the K first order conditions of the objective function characterized in

(A.29) can be simplified to

∂Ak
∂bki

+
∂Ak+1

∂bki
= 0, ∀k ∈ {1, 2, · · · , K − 1}

∂AK
∂bKi

= 0

(A.34)

For the last position K, the equilibrium bid bK∗i = βK(xi) is defined by ∂AK

∂bKi
=

0, i.e.,

gK(xi|xi)
β
′
K(xi)

αK
[
vK(xi, xi)− βK(xi)

]
= 0 (A.35)

so the Bayesian equilibrium bidding strategy for the last position K in the K-

dimensional GSP auction is

βK(xi) = vK(xi, xi) (A.36)

For any position k ∈ {1, 2, · · · , K − 1}, the equilibrium bid bk∗i = βk(xi) is

characterized by ∂Ak

∂bki
+ ∂Ak+1

∂bki
= 0, i.e.,

gk(xi|xi)
β
′
k(xi)

[
αk
[
vk(xi, xi)−βk(xi)

]
−αk+1

[
vk(xi, xi)−

∫ xi

0

βk+1(yk+1)dGk+1|k
(
yk|xi, xi

)]]
= 0

(A.37)

Rearranging equation (A.37) gives the equilibrium bidding strategy βk(xi) for any

position above K in the K-dimensional GSP auction:

βk(xi) = vk(xi, xi)−
αk+1

αk

[
vk(xi, xi)−

∫ xi

0

βk+1(yk+1)dGk+1|k
(
yk|xi, xi

)]
, ∀k ∈ [1, K − 1]

(A.38)
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Proof of Proposition 2.4:

Proof. Suppose all of bidder i’s opposing bidders follow a monotonic Bayesian equi-

librium bidding strategy β(x) =
(
β1(.), β2(.), · · · , βK(.)

)
in the K-dimensional VCG

auction. Let β−1
k (.) denote the inverse function of βk(.). Let g

{K}
i (yK , · · · , y1|xi) be

the joint density of (YK , YK−1, · · · , Y1) conditional onX = xi. Let v{K}(xi; y1, y2, · · · , yK)

be bidder i’s expected value per click conditional on her own signal X equals to xi,

the highest signal Y1, the second highest signal Y2, ... the K-th highest signal YK

received by her opponents equal to (y1, y2, · · · , yK). Define ΠV
k

(
xi, y1, · · · , yK

)
as

ΠV
k

(
xi, y1, · · · , yK

)
=
[
αkv

{K}(xi, y1, · · · , yK)−
K∑
j=k

(αj − αj+1)βj(yj)
]
× g{K}i (yK , · · · , y1|xi)

(A.39)

Then bidder i’s best response bid (b1∗
i , b

2∗
i , · · · , bK∗i ) maximizes

Π(bi|xi) =

∫ β−1
1 (b1i )

0

∫ y1

0

∫ y2

0

· · ·
∫ yK−1

0

ΠV
1

(
xi, y1, y2, · · · , yK

)
dyK · · · dy1︸ ︷︷ ︸

B1

+

∫ 1

β−1
1 (b1i )

∫ β−1
2 (b2i )

0

∫ y2

0

· · ·
∫ yK−1

0

ΠV
2

(
xi, y1, y2, · · · , yK

)
dyK · · · dy1︸ ︷︷ ︸

B2

+

∫ 1

β−1
1 (b1i )

∫ y1

β−1
2 (b2i )

∫ β−1
3 (b3i )

0

· · ·
∫ yK−1

0

ΠV
3

(
xi, y1, y2, · · · , yK

)
dyK · · · dy1︸ ︷︷ ︸

B3

+ · · ·

+

∫ 1

β−1
1 (b1i )

∫ y1

β−1
2 (b2i )

∫ y2

β−1
3 (b3i )

· · ·
∫ β−1

K (bKi )

0

ΠV
K

(
xi, y1, y2, · · · , yK

)
dyK · · · dy1︸ ︷︷ ︸

BK

(A.40)

Let Bk denote the k-th term in equation (A.40). B1, B2 and B3 are given in
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equation (A.40). For all k ≥ 3, each Bk can be expressed as

Bk =

∫ 1

β−1
1 (b1i )

∫ y1

β−1
2 (b2i )

· · ·
∫ yk−2

β−1
k−1(bk−1

i )︸ ︷︷ ︸
(k−1)

∫ β−1
k (bki )

0

∫ yk

0

· · ·
∫ yK−1

0︸ ︷︷ ︸
(K−k)

ΠV
k

(
xi, y1, y2, · · · , yK

)
dyK · · · dy1

(A.41)

Since each bki only enters Bk, Bk+1, · · · , BK , but not enter any Bk′ with k′ < k,

the first order condition of the objective function (A.40) with respect to (b1
i , b

2
i , · · · , bKi )

is given by

∂B1

∂b1
i

+
∂B2

∂b1
i

+
∂B3

∂b1
i

+ · · ·+ ∂BK

∂b1
i

= 0

∂B2

∂b2
i

+
∂B3

∂b2
i

+ · · ·+ ∂BK

∂b2
i

= 0

· · ·

∂BK−1

∂bK−1
i

+
∂BK

∂bK−1
i

= 0

∂BK

∂bKi
= 0

(A.42)

Take derivative of Bk with respect to bki , and replace bni by βn(xi) for all

n ∈ {1, 2, · · · , K} yields

dBk

dbki
=

1

β
′
k(β
−1
k (bki ))

×∫ 1

β−1
1 (b1i )

· · ·
∫ yk−2

β−1
k−1(bk−1

i )

∫ β−1
k (bki )

0
· · ·
∫ yK−1

0
ΠV
k

(
xi, y1, · · · , yk−1, β

−1
k (bki ), yk+1, · · · , yK

)
dyK · · · dy1

=
1

β
′
k(xi)

∫ 1

xi

· · ·
∫ yk−2

xi

∫ xi

0
· · ·
∫ yK−1

0
ΠV
k

(
xi, y1, · · · , yk−1, xi, yk+1, · · · , yK

)
dyK · · · dy1

(A.43)

Take derivative of Bk+1 with respect to bki , and replacing bni by βn(xi) for all
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n ∈ {1, 2, · · · , K} yields

dBk+1

dbki
=− 1

β
′
k(β
−1
k (bki ))

×

∫ 1

β−1
1 (b1i )

· · ·
∫ yk−2

β−1
k−1(bk−1

i )

∫ β−1
k+1(bk+1

i )

0
· · ·
∫ yK−1

0
ΠV
k+1

(
xi, y1, · · · , yk−1, β

−1
k (bki ), yk+1, · · · , yK

)
dyK · · · dy1

=− 1

β
′
k(xi)

∫ 1

xi

· · ·
∫ yk−2

xi

∫ xi

0
· · ·
∫ yK−1

0
ΠV
k+1

(
xi, y1, · · · , yk−1, xi, yk+1, · · · , yK

)
dyK · · · dy1

(A.44)

Take derivative of Bk+2 with respect to bki , and replace bni by βn(xi) for all

n ∈ {1, 2, · · · , K} yields

dBk+2

dbki
=− 1

β
′
k(β
−1
k (bki ))

×

∫ 1

β−1
1 (b1i )

· · ·
∫ yk−2

β−1
k−1(bk−1

i )

∫ β−1
k (bki )

β−1
k+1(bk+1

i )

∫ β−1
k+2(bk+2

i )

0
· · ·
∫ yK−1

0
ΠV
k+2

(
xi, y1, · · · , β−1

k (bki ), · · · , yK
)
dy

=− 1

β
′
k(xi)

∫ 1

xi

· · ·
∫ yk−2

xi

∫ xi

xi

∫ xi

0
· · ·
∫ yK−1

0
ΠV
k+2

(
xi, y1, · · · , yk−1, xi, yk+1, · · · , yK

)
dyK · · · dy1

=0

(A.45)

since the integral of any continuous function on [xi, xi] is zero. At the equilibrium

where bi = β(xi),
dBn

dbki
contains an integral on [xi, xi] for any Bn with n ≥ k + 2, so

dBn

dbki
= 0 for all n 6= k, k + 1. Therefore, the first order conditions characterized in

equation (A.42) becomes

dBk

dbki
+
dBk+1

dbki
= 0, ∀k ∈ [1, K − 1]

dBK

dbKi
= 0

(A.46)

For the last position K, the equilibrium bid bK∗i = βK(xi) is characterized by
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dBK

dbKi
= 0:

1

β
′
K(xi)

∫ 1

xi

· · ·
∫ yK−2

xi

∫ xi

0
ΠV
K

(
xi, y1, · · · , yk−1, xi

)
dyK−1 · · · dy1

=
1

β
′
K(xi)

∫ 1

xi

· · ·
∫ yK−2

xi

∫ xi

0
αK

[
v{K}(xi, y1, · · · , yK−1, xi)− βK(xi)

]
g
{K}
i (xi, yK−1, · · · , y1|xi)dyK · · · dy1

=
gK(xi|xi)
β
′
K(xi)

αK

[
vK(xi, xi)− βK(xi)

]
=0

(A.47)

so the equilibrium bidding strategy for the last position K in the K-dimensional

VCG auction is given by

βK(xi) = vK(xi, xi) (A.48)

For any position 1 ≤ k ≤ K − 1, the equilibrium bid bk∗i = βk(xi) is charac-

terized by dBk

dbki
+ dBk+1

dbki
= 0:

1

β
′
k(xi)

∫ 1

xi

· · ·
∫ xi

0
· · ·
∫ yK−1

0

[
ΠV
k

(
xi, y1, · · · , xi, · · · , yK

)
−ΠV

k+1

(
xi, y1, · · · , xi, · · · , yK

)]
dyK · · · dy1

=
1

β
′
k(xi)

∫ 1

xi

· · ·
∫ xi

0
· · ·
∫ yK−1

0
(αk − αk+1)

[
v{K}(xi, y1, · · · , xi, · · · , yK)− βk(xi)

]
dyK · · · dy1

=
gk(xi|xi)
β
′
k(xi)

(αk − αk+1)
[
vk(xi, xi)− βk(xi)

]
=0

(A.49)

Therefore, for any position above the last position K, the equilibrium bidding strat-

egy βk(xi) in the K-dimensional VCG auction is given by

βk(xi) = vk(xi, xi), ∀k ∈ {1, 2, · · · , K − 1} (A.50)

Proof of Proposition 2.5:
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Proof. First consider the case when no bidder has dropped out. When there are more

than K bidders remaining in the auction, each bidder will not drop out until the

expected payoff from the last position K falls below zero. Suppose all the opposing

bidders adopt strategy b∗N defined in proposition 2.5, b∗N(xi) = v(K)(xi, xi, · · · , xi).

When all bidders are in the auction, at any price p, bidder i wins the last position K

by dropping out right now only if there are (N−K) bidders drop out simultaneously

at this price, i.e., the lowest (N−K) value bidders have the same signal YK = YK+1 =

· · · = YN−1 = yK . Therefore, given that all opponents follow strategy b∗N(x), bidder

i’s expected value conditional on winning K is

αKv
(K)
(
xi, yK , · · · , yK

)
= αKE[vi|X = xi, YK = yK , YK+1 = yK , · · · , YN−1 = yK ]

(A.51)

Bidder i’s expected payment conditional on winning K is

αKv
(K)
(
yK , yK , · · · , yK

)
= αKE[vi|X = yK , YK = yK , YK+1 = yK , · · · , YN−1 = yK ]

(A.52)

The expected payoff from the last position K is non-negative for bidder i if and only

if xi ≥ yK . By using strategy b∗N , bidder i will win position K or some position

above K if and only if xi ≥ yK , so b∗N is the best response bidding strategy for each

bidder i when all bidders are sill in the auction, assuming all other bidders also

adopt strategy b∗N . This is an ex-post equilibrium, since b∗N is bidder i’s optimal

strategy for any realization of opposing bidders’ signals x−i.

Next, consider the case when (N − n) bidders have dropped out, but n ≥

K + 1 bidders are still in the auction so that the allocation of no position has been
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determined. Similar to the case with N active bidders, each bidder will not drop out

until the expected payoff from the last position K falls below zero. However, the

expected payoff from the last position is now calculated conditional on the revealed

signals of the (N − n) drop-out bidders, Yn = yn, · · · , YN−1 = yN−1, in which

yn, yn+1, · · · , yN−2, yN−1 are inferred from b∗N(yN−1) = pN , b∗N−1(yN−2|pN) = pN−1,

b∗n+1(yn|pN , · · · , pn+2) = pn+1. Assume all the remaining opposing bidders adopt

strategy b∗n. At any price p, bidder i will win the position K by dropping out at the

current price only if the lowest-value (n−K) bidders among the active bidders drop

out simultaneously, i.e., they have the same signal YK = · · · = Yn−1 = yK . Bidder

i’s expected value upon winning K is

αKv
(K)
(
xi, yK , · · · , yK︸ ︷︷ ︸

(n−K)

, yn, yn+1, · · · , yN−1︸ ︷︷ ︸
(N − n) lowest signals

)
= αKE

[
vi
∣∣X = xi, YK = yK , YK+1 = yK , · · · , Yn−1 = yK , Yn = yn, · · · , YN−1 = yN−1

]
(A.53)

Her payment upon winning K is

αKv
(K)
(
yK , yK , · · · , yK︸ ︷︷ ︸

(n−K)

, yn, yn+1, · · · , yN−1︸ ︷︷ ︸
(N − n) lowest signals

)
= αKE

[
vi
∣∣X = yK , YK = yK , YK+1 = yK , · · · , Yn−1 = yK , Yn = yn, · · · , YN−1 = yN−1

]
(A.54)

Therefore, it is profitable to stay in the auction if and only if xi ≥ yK . By using

bidding strategy b∗n, bidder i will win a position no lower than K if and only if

xi ≥ yK , so b∗n is the best response bidding strategy for each bidder i when there

are K < n < N bidders in the auction. This is an ex-post equilibrium, since b∗n is

the best response given any realization of other bidders’ signals.
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Next, consider the case when n ≤ K bidders are left in the auction. When

there are n ≤ K bidders left in the auction, all the remaining bidders will win

some position, so the drop-out price of each bidder i only affect which position she

gets. In equilibrium, a bidder with signal xi should be indifferent between getting

the current lowest position n at price pn+1 and the next best position (n − 1) at

a higher price. Note that bidder i wins position (n − 1) at a higher price b only

if the lowest-value remaining bidder drops out at b. Assuming that all remaining

opposing bidders adopt strategy b∗n, bidder i’s expected payoff from winning the

next best position (n− 1) given the revealed signals (yn−1, · · · , yN) is

EΠn−1 =αn−1

[
v(n−1)

(
xi, yn−1, yn, · · · , yN

)
− b
]

=αn−1

[
v(n−1)

(
xi, yn−1, yn, · · · , yN

)
− v(n−1)

(
yn−1, yn−1, yn, · · · , yN

)]
+ αn

[
v(n−1)

(
yn−1, yn−1, yn, · · · , yN

)
− pn+1

]
(A.55)

since

b = v(n−1)
(
yn−1, yn−1, yn, · · · , yN

)
− αn
αn−1

[
v(n−1)

(
yn−1, yn−1, yn, · · · , yN

)
− pn+1

]
(A.56)

Bidder i’s expected payoff from winning the current lowest position n, given (Yn−1, · · · , YN)

is

EΠn = αn

[
v(n−1)(xi, yn−1, yn · · · , yN)− pn+1

]
(A.57)

Subtracting equation (A.57) from equation (A.55), the expected payoff from staying

in the auction and getting position (n− 1) is higher than the expected payoff from
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dropping out right now and getting position n if and only if

EΠn−1 − EΠn = (αn−1 − αn)
[
v(n−1)(xi, yn−1, yn · · · , yN)− v(n−1)(yn−1, yn−1, yn · · · , yN)

]
≥ 0

(A.58)

Inequality (A.58) holds if and only if xi ≥ yn−1. Therefore, by using bidding strategy

b∗n, bidder i wins a position no lower than (n − 1) if and only if xi ≥ yn−1, so b∗n

is the best response bidding strategy for bidder i when there are n < K bidders

remain in the auction. This is an ex-post equilibrium at the time when n bidders

are left in the auction, since b∗n is bidder i’s optimal strategy for any realization of the

other bidders signals x−i. Therefore, (b∗, · · · , b∗) characterized in Proposition 2.5

is an ex-post equilibrium in the Generalized English Auction with interdependent

values.

Proof of Proposition 2.6:

Proof. I first compare expected revenues of the K-dimensional GSP auction and

the K-dimensional VCG auction, and then compare expected revenues of the K-

dimensional VCG auction and the GEA.

Let βV (xi) =
(
βV1 (xi), β

V
2 (xi), · · · , βVK(xi)

)
and βG(xi) =

(
βG1 (xi), β

G
2 (xi), · · · , βGK(xi)

)
denote the Bayesian equilibrium bidding strategies in the K-dimensional VCG auc-

tion and K-dimensional GSP auction, respectively. According to the characteriza-

tion of βV (xi) and βG(xi) in Propositions 3 and 4, the expected prices for the last

position K in the K-dimensional VCG auction and the K-dimensional GSP auction
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are as follows:

E
[
pV,(K)

]
= αKE

[
βVK(YK)

∣∣∣{YK−1 > X > YK}
]

= αKE
[
vK(YK , YK)

∣∣∣{YK−1 > X > YK}
]

E
[
pG,(K)

]
= αKE

[
βGK(YK)

∣∣∣{YK−1 > X > YK}
]

= αKE
[
vK(YK , YK)

∣∣∣{YK−1 > X > YK}
]

(A.59)

For any position 1 ≤ k ≤ K − 1, the expected price E
[
pV,(k)

]
in the K-dimensional

VCG auction and the expected price E
[
pG,(k)

]
in the K-dimensional GSP auction

are given below:

E
[
pV,(k)

]
= (αk − αk+1)E

[
βVk (Yk)

∣∣∣{Yk−1 > X > Yk}
]

+ E
[
pV,(k+1)

]
= (αk − αk+1)E

[
vk(Yk, Yk)

∣∣∣{Yk−1 > X > Yk}
]

+ E
[
pV,(k+1)

]
E
[
pG,(k)

]
= αkE

[
βGk (Yk)

∣∣∣{Yk−1 > X > Yk}
]

= αkE
[
vk(Yk, Yk)−

[αk+1

αk
vk(Yk, Yk)− E

[
βGk+1(Yk+1)

]]∣∣∣{Yk−1 > X > Yk}
]

= (αk − αk+1)E
[
vk(Yk, Yk)

∣∣∣{Yk−1 > X > Yk}
]

+ E
[
pG,(k+1)

]
(A.60)

Equation (A.59) and (A.60) imply that

E
[
pV,(k)

]
− E

[
pV,(k+1)

]
= E

[
pG,(k)

]
− E

[
pG,(k+1)

]
, ∀k ∈ {1, 2, · · · , K − 1}

E
[
pV,(K)

]
= E

[
pG,(K)

]
(A.61)

which means the expected prices for the last position K are the same, and the ex-

pected difference in prices between any two adjacent positions are the same. There-

fore,

E
[
pV,(k)

]
= E

[
pG,(k)

]
, ∀k ∈ {1, 2, · · · , K} (A.62)

which directly implies that the K-dimensional VCG auction and the K-dimensional

GSP auction are revenue equivalent.
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Alternatively, the revenue equivalence between the K-dimensional VCG auc-

tion and the K-dimensional GSP auction can be proved by showing that the ex-

pected payments of each bidder are the same in two auctions. First consider the

case of K = 2 positions. The expected payments by a bidder with signal xi in the

K-dimensional VCG auction and the K-dimensional GSP auction are given by

mV (xi) =Pr(xi ≥ Y1)E
[
(α1 − α2) v1(Y1, Y1)︸ ︷︷ ︸

βV
1 (Y1)

+α2 v
2(Y2, Y2)︸ ︷︷ ︸
βV
2 (Y2)

∣∣∣xi ≥ Y1

]

+ Pr(Y2 ≤ xi < Y1)E
[
α2 v

2(Y2, Y2)︸ ︷︷ ︸
βV
2 (Y2)

∣∣∣Y2 ≤ xi < Y1

]

mG(xi) =Pr(xi ≥ Y1)E
[
α1

[
v1(Y1, Y1)− α2

α1

v1(Y1, Y1) +
α2

α1

E[v2(Y2, Y2)|Y1]
]

︸ ︷︷ ︸
βG
1 (Y1)

∣∣∣xi ≥ Y1

]

+ Pr(Y2 ≤ xi < Y1)E
[
α2 v

2(Y2, Y2)︸ ︷︷ ︸
βG
2 (Y2)

∣∣∣Y2 ≤ xi < Y1

]
(A.63)

The only difference betweenmV (xi) andmG(xi) comes from the term E[v2(Y2, Y2)|Y1 ≤

xi] in mV (xi) and E
[
E[v2(Y2, Y2)|Y1]

∣∣∣Y1 ≤ xi

]
in mG(xi). According to the Law of

Iterated Expectation,

E
[
E[v2(Y2, Y2)|Y1]

∣∣∣Y1 ≤ xi

]
= E

[
v2(Y2, Y2)

∣∣∣Y1 ≤ xi

]
(A.64)

which implies mV (xi) = mG(xi). Similar argument applies for any K ≥ 2 positions.

Since the expected payments of a bidder with the same signal xi are the same in

two auctions, the K-dimensional GSP auction and the K-dimensional VCG auction

are always revenue equivalent.

I next compare expected revenue of the GEA and the K-dimensional VCG

auction. The expected prices for the last position K in GEA and K-dimensional
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VCG auction are as follows:

E
[
pE,(K)

]
= αKE

[
v(K)(YK , YK ;YK+1, YK+2, · · · , YN−1)

∣∣∣{YK−1 > X > YK}
]

E
[
pV,(K)

]
= αKE

[
vK(YK , YK)

∣∣∣{YK−1 > X > YK}
]

(A.65)

According to Milgrom and Weber (1982) [2]’s Linkage Principle, E[pE,(K)] ≥ E[pV,(K)].

A formal proof is given below:

vK(xi, yK) = E
[
vi

∣∣∣X = xi, YK = yK

]
= E

[
E
[
vi
∣∣X, YK , YK+1, · · · , YN−1

]∣∣∣X = xi, YK = yK

]
= E

[
v(K)(X, YK ;YK+1, · · · , YN−1)

∣∣∣X = xi, YK = yK

] (A.66)

For xi > yK , we have

vK(yK , yK) = E
[
v(K)(X, YK ;YK+1, · · · , YN−1)

∣∣∣X = yK , YK = yK

]
= E

[
v(K)(YK , YK ;YK+1, · · · , YN−1)

∣∣∣X = yK , YK = yK

]
≤ E

[
v(K)(YK , YK ;YK+1, · · · , YN−1)

∣∣∣X = xi, YK = yK

] (A.67)

Therefore,

E
[
pV,(K)

]
= αKE

[
vK(YK , YK)

∣∣∣{YK−1 > X > YK}
]

≤ αKE
[
E
[
v(K)(YK , YK ;YK+1, · · · , YN−1)

∣∣X, YK]∣∣∣{YK−1 > X > YK}
]

= αKE
[
v(K)(YK , YK ;YK+1, · · · , YN−1)

∣∣∣{YK−1 > X > YK}
]

= E
[
pE,(K)

]
(A.68)

so the expected price for the last position K is weakly higher in the GEA than in

the K-dimensional VCG auction.

For any position k < K, the increment in expected price between position k
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and position k + 1 in GEA and K-dimensional VCG auction are as follows:

E
[
pE,(k) − pE,(k+1)

]
= (αk − αk+1)E

[
v(k)(Yk, Yk;Yk+1, · · · , YN−1)

∣∣∣{Yk−1 > X > Yk}
]

E
[
pV,(k) − pV,(k+1)

]
= (αk − αk+1)E

[
vk(Yk, Yk)

∣∣∣{Yk−1 > X > Yk}
]

(A.69)

Applying the Linkage Principle again, we have

E
[
vk(Yk, Yk)

∣∣∣{Yk−1 > X > Yk}
]
≤ E

[
v(k)(Yk, Yk;Yk+1, · · · , YN−1)

∣∣∣{Yk−1 > X > Yk}
]

(A.70)

so the increment in expected price between any two adjacent positions is weakly

higher in the GEA than in the K-dimensional VCG:

E
[
pE,(k)

]
−E

[
pE,(k+1)

]
≥ E

[
pV,(k)

]
−E

[
pV,(k+1)

]
, ∀k ∈ {1, 2, · · · , K−1} (A.71)

Since the expected price for the last position is weakly higher in GEA, and

the increment in expected price between any two positions above the last position

is also weakly higher in GEA, the expected price for every position is weakly higher

in the GEA than in the K-dimensional VCG auction. Therefore, expected revenue

in the GEA is weakly higher than expected revenue in the K-dimensional VCG

auction.

Proof of Corollary 2.51:

Proof. The proof of Corollary 2.5 is based on two lemmas. Lemma A.1 provides a

characterization of ex-post IC and IR mechanism under affiliated signals. Lemma

A.2 characterizes the ex-ante expected revenue in any ex-post IC and IR mechanism.

1The proof of Corollary 2.5 follows from Myerson (1981) [40], Ulku (2013) [45] and Li (2017) [44].
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Lemma A.1. For any value function vi(xi, x−i) satisfying assumptions A1-A3 and

signal distribution F (x) satisfying assumptions A4-A5, a mechanism (q, p) is ex-

post IC and IR if and only if for all bidder i, for any signal profile (xi, x−i), qi(xi, x−i)

is weakly increasing in xi, and the ex-post utility ui(xi, x−i) satisfies

ui(xi, x−i) = ui(0, x−i) +

∫ xi

0

[∂vi(s, x−i)
∂s

]
qi(s, x−i)ds, ∀ x−i (A.72)

ui(0, x−i) ≥ 0, ∀ x−i (A.73)

Proof. I first show that any ex-post IC and IR mechanism satisfies the characteri-

zation in Lemma A.1, then show that any mechanism satisfying the conditions in

Lemma A.1 must be ex-post IC and IR.

Suppose (q, p) is an ex-post IC and IR mechanism. According to the definition

of ex-post IC, for all bidder i, for any true signal profile (xi, x−i) and bidder i’s

reported signal x
′
i,

ui(xi, x−i) ≥ qi(x
′

i, x−i)vi(xi, x−i)− pi(x
′

i, x−i)

= ui(x
′

i, x−i) + qi(x
′

i, x−i)
[
vi(xi, x−i)− vi(x

′

i, x−i)
] (A.74)

which implies

ui(xi, x−i) ≥ ui(x
′

i, x−i) + qi(x
′

i, x−i)
[
vi(xi, x−i)− vi(x

′

i, x−i)
]

ui(x
′

i, x−i) ≥ ui(xi, x−i) + qi(xi, x−i)
[
vi(x

′

i, x−i)− vi(xi, x−i)
] (A.75)

which can be rewritten as

qi(x
′

i, x−i)
[
vi(xi, x−i)− vi(x

′

i, x−i)
]
≤ ui(xi, x−i)− ui(x

′

i, x−i)

qi(xi, x−i)
[
vi(xi, x−i)− vi(x

′

i, x−i)
]
≥ ui(xi, x−i)− ui(x

′

i, x−i)

(A.76)
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Inequality (A.76) implies that qi(xi, x−i) is weakly increasing in xi, and ui(xi, x−i)

has partial derivative

∂ui(xi, x−i)

∂xi
= qi(xi, x−i)

∂vi(xi, x−i)

∂xi
(A.77)

integrate both sides, get

ui(xi, x−i) =

∫ xi

0

[
qi(s, x−i)

∂vi(s, x−i)

∂s

]
ds+ ui(0, x−i) (A.78)

Ex-post IR implies ui(xi, x−i) ≥ 0 for all i. Since qi(xi, x−i) is weakly increasing in xi

and vi(xi, x−i) is strictly increasing in xi, equation (A.78) implies that ui(0, x−i) ≤

ui(xi, x−i) for all xi, given any x−i, so ui(xi, x−i) ≥ 0 for all xi, given any x−i, only

if ui(0, x−i) ≥ 0 given any x−i. Therefore, any ex-post IC and IR mechanism must

satisfy equation (A.78), qi(xi, x−i) increasing in xi, and ui(0, x−i) ≥ 0.

I next show that any mechanism (q, p) that satisfies equation (A.78), qi(xi, x−i)

increasing in xi, and ui(0, x−i) ≥ 0 for any x−i must be ex-post IC and IR.

Since qi(xi, x−i) is weakly increasing in xi,
∂vi(s,x−i)

∂s
> 0, and ui(xi, x−i) =

ui(0, x−i) +
∫ xi

0

[
∂vi(s,x−i)

∂s

]
qi(s, x−i)ds, it is trivial that ui(xi, x−i) ≥ ui(0, x−i) for all

xi ≥ 0, given any x−i, so ui(0, x−i) ≥ 0 for all x−i implies ex-post IR.

Suppose xi < x
′
i, then

ui(x
′

i, x−i) = ui(xi, x−i) +

∫ x
′
i

xi

[
qi(s, x−i)

∂vi(s, x−i)

∂s

]
ds

≥ ui(xi, x−i) +

∫ x
′
i

xi

[
qi(xi, x−i)

∂vi(s, x−i)

∂s

]
ds

= ui(xi, x−i) +
[
qi(xi, x−i)

(
vi(x

′

i, x−i)− vi(xi, x−i)
)]

(A.79)

This directly implies ex-post IC.
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The next lemma provides a characterization of the seller’s expected revenue

in any ex-post IC and IR mechanism.

Lemma A.2. In any ex-post IC and IR mechanism, the ex-ante expected revenue

is given by

ER =

∫
x

∑
i

{
qi(xi, x−i)

{
vi(xi, x−i)−

1− Fi(xi|x−i)
fi(xi|x−i)

× ∂vi(xi, x−i)

∂xi

}}
f(x)dx

−
∫
x−i

∑
i

ui(0, x−i)f−i|0(x−i|0)dx−i

(A.80)

Proof. Following equation (A.78) in Lemma A.1, the ex-ante expected payoff to

bidder i in any ex-post IC and IR mechanism is given by

Ex
[
ui(xi, x−i)

]
=

∫
x−i

ui(0, x−i)dF (x−i|0) +

∫
x

∫ xi

0

qi(s, x−i)
[∂vi(s, x−i)

∂s

]
dsf(x)dx

=

∫
x−i

ui(0, x−i)dF (x−i|0) +

∫
x−i

∫ x̄

0

∫ xi

0

qi(s, x−i)
[∂vi(s, x−i)

∂s

]
dsfi(xi|x−i)dxif−i(x−i)dx−i

=

∫
x−i

ui(0, x−i)dF (x−i|0) +

∫
x−i

∫ x̄

0

∫ x̄

s

qi(s, x−i)
[∂vi(s, x−i)

∂s

]
fi(xi|x−i)dxidsf−i(x−i)dx−i

=

∫
x−i

ui(0, x−i)dF (x−i|0) +

∫
x−i

∫ x̄

0

(
1− Fi(s|x−i)

)
qi(s, x−i)

[∂vi(s, x−i)
∂s

]
dsf−i(x−i)dx−i

=

∫
x−i

ui(0, x−i)dF (x−i|0) +

∫
x−i

∫ x̄

0

(
1− Fi(xi|x−i)

)
qi(xi, x−i)

[∂vi(xi, x−i)
∂xi

]
dxif−i(x−i)dx−i

=

∫
x−i

ui(0, x−i)dF (x−i|0) +

∫
x

[1− Fi(xi|x−i)
fi(xi|x−i)

qi(xi, x−i)
∂vi(xi, x−i)

∂xi

]
f(x)dx

(A.81)

The ex-ante expected total surplus of the auction is given by

TS =
∑
i

∫
x

vi(xi, x−i)qi(xi, x−i)f(x)dx (A.82)
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The ex-ante expected revenue equals to the expected total surplus subtracted

by the expected total payoff to all bidders:

ER =
∑
i

∫
x

vi(xi, x−i)qi(xi, x−i)f(x)dx

−
∑
i

{∫
x−i

ui(0, x−i)f(x−i|0)dx−i +

∫
x

{1− Fi(xi|x−i)
fi(xi|x−i)

q(xi, x−i)
∂vi(xi, x−i)

∂xi

}
f(x)dx

}
=
∑
i

∫
x

{
qi(xi, x−i)×

{
vi(xi, x−i)−

1− Fi(xi|x−i)
fi(xi|x−i)

∂vi(xi, x−i)

∂xi

}}
f(x)dx

−
∑
i

∫
x−i

ui(0, x−i)f(x−i|0)dx−i

(A.83)

According to the definition of marginal revenue MRi(xi, x−i), the seller’s prob-

lem is to maximize

ER =

∫
x

∑
i

{
qi(xi, x−i)MRi(xi, x−i)

}
f(x)dx−

∫
x−i

∑
i

ui(0, x−i)f−i|0(x−i|0)dx−i

(A.84)

subject to no reserve price, ui(0, x−i) ≥ 0 for any x−i, qi(xi, x−i) increasing in xi,

and the feasibility constraint. When MRi is strictly increasing in xi, the expected

revenue can be maximized by setting ui(0, x−i) = 0 for all x−i, and allocating higher

CTR to bidders with higher MRi. Therefore, under regularity condition R2, the

optimal allocation rule q∗ is given by

q∗i (xi, x−i) =


αk if X̂k(x−i) ≤ xi < X̂k−1(x−i)

0 if xi < X̂K(x−i)

(A.85)

in which [X̂k(x−i), X̂
k−1(x−i)] is the interval of value that bidder i’s signal can take
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such that bidder i has the k-th highest MRi(xi, x−i) given her opponents’ report

x−i.

The ex-post IC and IR conditions given in Lemma A.1 can be jointly written

as

qi(xi, x−i)vi(xi, x−i)−
∫ xi

0

qi(s, x−i)
∂vi(s, x−i)

∂s
ds−pi(xi, x−i) = ui(0, x−i) ≥ 0, ∀x−i

(A.86)

for all bidder i. Choose p∗i (xi, x−i) = q∗i (xi, x−i)vi(xi, x−i)−
∫ xi

0
q∗i (s, x−i)

∂vi(s,x−i)
∂s

ds,

then p∗i (xi, x−i) satisfies both constraint. Therefore, (q∗, p∗) is an optimal auction

subject to no reserve price among all ex-post IC and IR mechanisms.

Proof of Proposition 2.72:

Proof. To show that (q∗, p∗) characterized in Corollary 2.5 is optimal subject to

no reserve price among all Bayesian IC and IR mechanisms when bidders have

independent signals, I first characterize the optimal Bayesian mechanism subject to

no reserve price with independent signals, then show it is equivalent to (q∗, p∗). The

proof is based on two lemmas presented below:

Lemma A.3. For any value function vi(xi, x−i) satisfying assumptions A1-A3,

when bidders’ signals are independently and identically distributed, a mechanism

(q, p) is Bayesian IC and IR if for every bidder i, for any report of signals x =

(xi, x−i), the expected CTR qi(xi, x−i) is weakly increasing in xi, and the interim

2The proof of Proposition 2.7 follows from Myerson (1981) [40].
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expected utility Ui(xi) satisfies

Ui(xi) = Ui(0) +

∫
x−i

∫ xi

0

[∂vi(s, x−i)
∂s

]
qi(s, x−i)dsf−i(x−i)dx−i (A.87)

Ui(0) ≥ 0 (A.88)

Proof. I first show that any Bayesian IC and IR mechanism can be characterized by

the conditions in Lemma A.3, then finish the proof by showing that any mechanism

satisfying the characterization in Lemma A.3 must be Bayesian IC and IR.

According to the definition of Bayesian IC mechanism, for all bidder i, for any

signal profile (xi, x−i) and bidder i’s reported signal x
′
i,

Ui(xi) ≥
∫
x−i

[
qi(x

′

i, x−i)vi(xi, x−i)− pi(x
′

i, x−i)
]
f−i(x−i)dx−i

= Ui(x
′

i) +

∫
x−i

[
qi(x

′

i, x−i)
(
vi(xi, x−i)− vi(x

′

i, x−i)
)]
f−i(x−i)dx−i

(A.89)

which implies

Ui(xi) ≥ Ui(x
′

i) +

∫
x−i

[
qi(x

′

i, x−i)
(
vi(xi, x−i)− vi(x

′

i, x−i)
)]
f−i(x−i)dx−i

Ui(x
′

i) ≥ Ui(xi) +

∫
x−i

[
qi(xi, x−i)

(
vi(x

′

i, x−i)− vi(xi, x−i)
)]
f−i(x−i)dx−i

(A.90)

i.e.,∫
x−i

[
qi(x

′

i, x−i)
(
vi(xi, x−i)− vi(x

′

i, x−i)
)]
f−i(x−i)dx−i ≤ Ui(xi)− Ui(x

′

i)∫
x−i

[
qi(xi, x−i)

(
vi(xi, x−i)− vi(x

′

i, x−i)
)]
f−i(x−i)dx−i ≥ Ui(xi)− Ui(x

′

i)

(A.91)

Therefore, qi(xi, x−i) is weakly increasing in xi, and Ui(xi) has derivative

dUi(xi)

dxi
=

∫
x−i

qi(xi, x−i)
[∂vi(xi, x−i)

∂xi

]
f−i(x−i)dx−i (A.92)

integrate both sides yields

Ui(xi) =

∫
x−i

∫ xi

0

[∂vi(s, x−i)
∂s

]
qi(s, x−i)dsf−i(x−i)dx−i + Ui(0) (A.93)

162



Since qi(xi, x−i) is weakly increasing in xi and vi(xi, x−i) is strictly increasing in xi,

equation (A.93) implies that Ui(0) ≤ Ui(xi) for all xi. Therefore, Ui(xi) ≥ 0 for all

xi ∈ [0, x̄] only if Ui(0) ≥ 0.

I next show that any mechanism (q, p) that satisfies the characterization in

Lemma A.3 must be Bayesian IC and IR. Since qi(xi, x−i) is weakly increasing in

xi,
∂vi(s,x−i)

∂s
> 0, and Ui(xi) = Ui(0) +

∫
x−i

∫ xi
0

[
∂vi(s,x−i)

∂s

]
qi(s, x−i)dsf−i(x−i)dx−i, it

is trivial that Ui(xi) ≥ Ui(0) for all xi, so Ui(0) ≥ 0 implies Bayesian IR.

Suppose xi < x
′
i, then

Ui(x
′

i) = Ui(xi) +

∫
x−i

∫ x
′
i

xi

qi(s, x−i)
[∂vi(s, x−i)

∂s

]
dsf−i(x−i)dx−i

≥ Ui(xi) +

∫
x−i

∫ x
′
i

xi

qi(xi, x−i)
[∂vi(s, x−i)

∂s

]
dsf−i(x−i)dx−i

= Ui(xi) +

∫
x−i

[
qi(xi, x−i)

(
vi(x

′

i, x−i)− vi(xi, x−i)
)]
f−i(x−i)dx−i

(A.94)

This directly implies Bayesian IC.

The result of Lemma A.3 leads to the following lemma that gives an expression

of the seller’s expected revenue in any Bayesian IC and IR mechanism.

Lemma A.4. For any Bayesian IC and IR mechanism that satisfy the conditions

in Lemma A.3, the ex-ante expected revenue is given by

ER =

∫
x

∑
i

{
qi(xi, x−i)

{
vi(xi, x−i)−

1− Fi(xi)
fi(xi)

∂vi(xi, x−i)

∂xi

}}
f(x)dx−

∑
i

Ui(0)

(A.95)

Proof. The ex-ante expected payoff to an bidder i in any Bayesian IC and IR auction
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is

Exi [Ui(xi)] = Ui(0) +

∫
x

∫ xi

0

qi(s, x−i)
[∂vi(s, x−i)

∂s

]
dsf(x)dx

= Ui(0) +

∫
x−i

∫ x̄

0

∫ xi

0

qi(s, x−i)
[∂vi(s, x−i)

∂s

]
dsfi(xi)dxif−i(x−i)dx−i

= Ui(0) +

∫
x−i

∫ x̄

0

∫ x̄

s

qi(s, x−i)
[∂vi(s, x−i)

∂s

]
fi(xi)dxidsf−i(x−i)dx−i

= Ui(0) +

∫
x−i

∫ x̄

0

(
1− Fi(s)

)
qi(s, x−i)

[∂vi(s, x−i)
∂s

]
dsf−i(x−i)dx−i

= Ui(0) +

∫
x−i

∫ x̄

0

(
1− Fi(xi)

)
qi(xi, x−i)

[∂vi(xi, x−i)
∂xi

]
dxif−i(x−i)dx−i

= Ui(0) +

∫
x

[1− Fi(xi)
fi(xi)

qi(xi, x−i)
∂vi(xi, x−i)

∂xi

]
f(x)dx

(A.96)

The ex-ante expected total surplus of the auction is given by

TS =
∑
i

∫
x

vi(xi, x−i)qi(xi, x−i)f(x)dx (A.97)

The ex-ante expected revenue equals to the expected total surplus subtracted

by the expected total payoff to all bidders:

ER =
∑
i

∫
x

vi(xi, x−i)qi(xi, x−i)f(x)dx

−
∑
i

{
Ui(0) +

∫
x

{1− Fi(xi)
fi(xi)

q(xi, x−i)
∂vi(xi, x−i)

∂xi

}
f(x)dx

}
=
∑
i

∫
x

{
qi(xi, x−i)×

{
vi(xi, x−i)−

1− Fi(xi)
fi(xi)

∂vi(xi, x−i)

∂xi

}}
f(x)dx−

∑
i

Ui(0)

(A.98)

According to the definition of MRi(xi, x−i) with independent signals, the

seller’s problem is to maximize

ER =

∫
x

∑
i

{
qi(xi, x−i)×MRi(xi, x−i)

}
f(x)dx−

∑
i

Ui(0) (A.99)
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subject to no reserve price, Ui(0) ≥ 0, qi(xi, x−i) being weakly increasing in xi, and

the feasibility constraint. Since Ui(0) is a constant, it is optimal to set Ui(0) = 0.

The expected revenue is maximized by assigning higher qi to bidders with higher

MRi(xi, x−i). Under this allocation rule, the constraint that qi(xi, x−i) being weakly

increasing in xi is satisfied if MRi(xi, x−i) is strictly increasing in xi. Therefore,

given that MRi(xi, x−i) is strictly increasing in xi, the optimal allocation rule

q(xi, x−i) is given by

q∗i (xi, x−i) =


αk if X̂k(x−i) ≤ xi < X̂k−1(x−i)

0 if xi < X̂K(x−i)

(A.100)

in which [X̂k(x−i), X̂
k−1(x−i)] is the interval of value that bidder i’s signal xi can

take such that bidder i has the k-th highest MRi(xi, x−i) given opponents’ report

x−i.

The Bayesian IC and IR conditions given in Lemma A.3 can be jointly written

as

∫
x−i

{
qi(x)vi(x)−

∫ xi

0

qi(s, x−i)
∂vi(s, x−i)

∂s
ds− pi(x)

}
f−i(x−i)dx−i = Ui(0) ≥ 0

(A.101)

for all bidder i. Choose p∗i (x) = q∗i (x)vi(x) −
∫ xi

0
q∗i (s, x−i)

∂vi(s,x−i)
∂s

ds, then p∗i (x)

satisfies the joint constraint. Therefore, (q∗, p∗) is the optimal position auction

subject to no reserve price among all Bayesian IC and IR mechanisms when bidders

have independent signals.

Proof of Proposition 2.8:
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Proof. Under regularity conditions R1-R3, it is trivial that given any profile of

signals, the rank ordering of signals is equivalent to the rank ordering of values

vi(xi, x−i) as well as the rank ordering of marginal revenues MRi(xi, x−i), so for any

bidder i, given any opponents’ report x−i, we must have

x̂k(x−i) = X̂k(x−i), ∀k (A.102)

in which x̂k(x−i) is the minimum value that bidder i’s signal can take such that i

has the k-th highest value vi(xi, x−i) given x−i, and X̂k(x−i) is the minimum value

that bidder i’s signal can take such that i has the k-th highest marginal revenue

MRi(xi, x−i) given x−i. Therefore, the allocation rule of the optimal auction (q∗, p∗)

defined in Corollary 2.5 is the same as the allocation rule of the Generalized-VCG

mechanism (qV , pV ). Replacing X̂k(x−i) by x̂k(x−i) in the optimal auction (q∗, p∗)

defined in Corollary 2.5 yields

q∗i (xi, x−i) =


αk if x̂k(x−i) ≤ xi < x̂k−1(x−i)

0 if xi < x̂K(x−i)

(A.103)

p∗i (xi, x−i) = q∗i (xi, x−i)vi(xi, x−i)−
∫ xi

0

q∗i (s, x−i)
∂vi(s, x−i)

∂s
ds (A.104)

I next substitute equation (A.103) into equation (A.104) to characterize the optimal

payment rule p∗. Note that the term q∗i (s, x−i) ×
∂vi(s,x−i)

∂s
inside the integral in

p∗(xi, x−i) is given by

q∗i (s, x−i)×
∂vi(s, x−i)

∂s
=


αk

∂vi(s,x−i)
∂s

if x̂k(x−i) ≤ s < x̂k−1(x−i)

0 if s < x̂K(x−i)

(A.105)

166



so the integral of q∗i (s, x−i)
∂vi(s,x−i)

∂s
on [0, xi] is given by∫ xi

0
q∗i (s, x−i)

∂vi(s, x−i)

∂s
ds

=


αk
∫ xi
x̂k(x−i)

[
∂vi(s,x−i)

∂s

]
ds+

∑K
j=k+1

{
αj
∫ x̂j−1(x−i)

x̂j(x−i)

[∂vi(s,x−i)
∂s

]
ds
}

if x̂k(x−i) ≤ xi < x̂k−1(x−i)

0 if xi < x̂K(x−i)

=


αk
[
vi(xi, x−i)− vi(x̂k, x−i)

]
+
∑K

j=k+1 αj
[
vi(x̂

j−1, x−i)− vi(x̂j , x−i)
]

if x̂k(x−i) ≤ xi < x̂k−1(x−i)

0 if xi < x̂K(x−i)

(A.106)

Substitute the optimal allocation rule q∗ given in equation (A.103) and the integral

given in equation (A.106) into the optimal payment rule p∗ yields

p∗i (x) =


∑K

j=k(αj − αj+1)vi(x̂
j, x−i) if xi ∈ [x̂k(x−i), x̂

k−1(x−i)]

0 if xi < x̂K(x−i)

(A.107)

which is equivalent to the Generalized-VCG payment rule. Therefore, under regu-

larity conditions R1-R3, the Generalized-VCG mechanism is the optimal position

auction subject to no reserve price among all ex-post IC and IR mechanisms.

I next compare the expected revenue of the Generalized-VCG mechanism to ex-

pected revenues of the GEA, the K-dimensional GSP auction and the K-dimensional

VCG auction. Since expected revenue of the GEA is higher than the other two

static auctions, showing that the Generalized-VCG mechanism yields higher ex-

pected revenue than the GEA is sufficient for proving the revenue ranking provided

in Proposition 2.8.

The ex-ante expected price for the last position K in the Generalized-VCG
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mechanism and GEA are given by

E
[
pG−V CG,(K)

]
= αKE

[
vi(YK , Y1, · · · , YN−1)

∣∣∣{YK−1 > X > YK}
]

E
[
pE,(K)

]
= αKE

[
v(K)(YK , YK , · · · , YN−1)

∣∣∣{YK−1 > X > YK}
] (A.108)

According to the Linkage Principle,

E
[
pG−V CG,(K)

]
≥ E

[
pE,(K)

]
(A.109)

For any position 1 ≤ k ≤ K − 1, the expected price in the Generalized-VCG

mechanism and GEA are given by

E
[
pG−V CG,(k) − pG−V CG,(k+1)

]
= (αk − αk+1)E

[
vi(Yk, Y1, · · · , Yk, Yk+1, · · · , YN−1)

∣∣∣{Yk−1 > X > Yk}
]

E
[
pE,(k) − pE,(k+1)

]
= (αk − αk+1)E

[
v(k)(Yk, Yk, Yk+1, · · · , YN−1)

∣∣∣{Yk−1 > X > Yk}
]

(A.110)

Applying the Linkage Principle again yields

E
[
pG−V CG,(k)

]
− E

[
pG−V CG,(k+1)

]
≥ E

[
pE,(k)

]
− E

[
pE,(k+1)

]
(A.111)

which implies that E
[
pG−V CG,(k)

]
≥ E

[
pE,(k)

]
for all position k, so the expected

revenue of the Generalized-VCG mechanism is higher than the expected revenue of

the GEA, which is in turn higher than the expected revenue of K-dimensional VCG

auction and K-dimensional GSP auction under affiliated signals.

In the special case of independent signals, it is trivial that

E
[
pG−V CG,(K)

]
= E

[
pE,(K)

]
E
[
pG−V CG,(k) − pG−V CG,(k+1)

]
= E

[
pE,(k) − pE,(k+1)

] (A.112)

which means E
[
pG−V CG,(k)

]
= E

[
pE,(k)

]
for all position k, so the expected revenue

of the Generalized-VCG mechanism is equivalent to the expected revenue of the
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GEA, which is in turn equivalent to the expected revenue of the K-dimensional

VCG auction and the K-dimensional GSP auction under independent signals. It

follows that the optimal revenue subject to no reserve price among all Bayesian IC

and IR mechanisms is practically implementable by the GEA, the K-dimensional

GSP auction, and the K-dimensional VCG auction under independent signals.
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Appendix B: Proofs for Chapter 3

Proof of Corollary 3.2:

Proof. For any bidder i, for any n ∈ {1, 2, · · · , K}, given a profile of bidder i’s

opponents’ reported costs ĉ−i, let nmin{ĉ−i} be the n-th lowest cost among bidder

i’s opponents’ reported costs ĉ−i. Define

Ĉn(ĉ−i) = min
{
nmin{ĉ−i}, P (n)− (n− 1)δ

}
(B.1)

Suppose P (n + 1) − ĉn < nδ, so that it is not efficient to sell more than n

licenses, bidder i will win one out of n licenses in the VCG mechanism if and only if

ĉi ≤ nmin{ĉ−i}, and P (n)− ĉi ≥ (n− 1)δ (B.2)

i.e., ĉi ≤ Ĉn(ĉ−i).

The payoff of winning one out of n licenses to bidder i with true cost ci is

un(ci, ĉ−i) = P (n)− ci −max
{
P (n)− nmin{ĉ−i}, (n− 1)δ

}
(B.3)

Since un(ci, ĉ−i) ≥ 0 if and only if ci ≤ Ĉn(ĉ−i) for any n, it is a dominant strategy

to report ĉi = ci in the VCG mechanism.

Proof of Lemma 3.2:
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Proof. I will first prove that given any reserve prices 0 = r1 < r2 and r2 > P (2)− c̄,

then there must exists some types of bidders bidding below r2 in equilibrium, i.e.,

r2 is binding for some bidders.

Suppose all bidders bid above r2 in equilibrium, then total supply will be

2 for certain and bidders have a dominant strategy of bidding their true value of

winning one out of 2 licenses, β(ci) = P (2)−ci. However, for any bidders with costs

ci > P (2)−r2, P (2)−ci < r2, which contradicts the assumption that all bidders bid

above r2. Therefore, if r2 > P (2) − c̄, then there must exist some types of bidders

who bid below r2 in equilibrium.

Next, I will prove that no symmetric monotonic equilibrium bidding strategy

exists in a uniform-price auction with reserve prices (r1, r2) s.t. r1 = 0, r2 > P (2)−c̄.

Suppose a symmetric strictly decreasing Bayesian equilibrium bidding strategy

β(.) exists, given that some bidders must bid below r2 in equilibrium, there must

exist some threshold type c∗ s.t. β(ci) < r2 if ci > c∗, and β(ci) > r2 if ci < c∗.

For any bidder i with bi < r2, the only possible winning outcome is to win

one exclusive license if the lowest-cost opponent bids β(y1) < bi < r2. Given all

opponents adopt bidding strategy β(.), bidder i’s optimal bid bi solves

max
bi

∫ c̄

β−1(bi)

[P (1)− ci − β(y1)]dG1(y1) (B.4)

where G1(y1) is the distribution of the lowest cost among bidder i’s opponents. The

first order condition shows that

β(ci) = P (1)− ci if ci ∈ (c∗, c̄] (B.5)

P (1) − ci < r2 for all ci > c∗ implies c∗ = P (1) − r2. Note that as long as bi < r2,
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increasing bi only increases the probability of winning when total supply is 1 and

has no impact on probability of winning when total supply is 2. Therefore, the

equilibrium bidding strategy is the same as the equilibrium strategy in a second-

price auction with a fixed supply of 1 license when a bidder’s cost is high enough to

satisfy P (1)− ci < r2.

When P (1)− c̄ > r2 > P (2)− c̄, then P (1)− r2 > c̄, which means c∗ = c̄ and

all bidders must bid above r2 in equilibrium, contradicting the assumption that r2

is binding for some bidders. Therefore, no monotonic separating equilibrium exists

when P (1)− c̄ > r2 > P (2)− c̄.

When r2 > P (1) − c̄, then P (1) − r2 < c̄, which means c∗ = P (1) − r2 and

β
(
P (1)− r2

)
= r2 in equilibrium. Next, consider any bidder i with bi > r2, bidder

i will win one exclusive license only if its lowest-cost opponent submits a bid below

r2, i.e., y1 > c∗. Bidder i will win one out of two licenses when its lowest-cost

opponent bids above r2 and the second-lowest cost opponent bids below bi. Given

all opponents adopt bidding strategy β(.), bidder i’s optimal bid bi solves

max
bi

∫ c̄

c∗

[
P (1)− ci − β(y1)

]
dG1(y1)

+

∫ c∗

c

∫ c∗

β−1(bi)

[
P (2)− ci − β(y2)

]
dG2(y2|y1)G1(y1)

+

∫ c∗

c

∫ c̄

c∗

[
P (2)− ci − r2

]
dG2(y2|y1)G1(y1)

(B.6)

where Gn(yn) is the distribution of the n-th lowest cost. Note that bi only enters

the second term. The first order condition implies

β(ci) = P (2)− ci if ci ∈ [c, c∗] (B.7)

This is because as long as bi ≥ r2, increasing bid does not affect the probability
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of winning when the total supply is 1 but only affect the probability of winning

when the total supply is 2, since the total supply equals to 1 only if the lowest-cost

opponent bids below r2, which is not affected by bidder i’s own bid. Therefore, the

equilibrium bidding strategy is the same as the equilibrium bidding strategy in a

uniform-price auction with a fixed supply of 2 when a bidder’s cost is low enough

to satisfy P (2) − ci ≥ r2. Set P (2) − ci = r2 yields c∗ = P (2) − r2 < P (1) − r2,

which yields a contradiction to the assumption that there exists a single type c∗ s.t.

β(ci) > r2 for all ci < c∗ and β(ci) < r2 for all ci > c∗.

Given that

β(ci) =


P (1)− ci if ci ∈ (P (1)− r2, c̄]

P (2)− ci if ci ∈ [c, P (2)− r2]

(B.8)

There exists no bidding strategy for ci ∈ (P (2)− r2, P (1)− r2] such that β(ci) can

be strictly monotonic over [c, c̄].

Proof of Lemma 3.3:

Proof. For bidders with costs ci ∈
[
P (2)− r2,min{P (1)− r2, c̄}

]
, winning a license

when total supply is 2 yields a non-positive payoff. Since increasing bid when bi ≥ r2

only increases probability of winning when total supply is 2 and does not affect

probability of winning when total supply is 1, any bid bi > r2 is dominated by

bidding bi = r2.

On the other hand, winning a license when total supply is 1 yields a positive

payoff for these bidders. Since total supply equals to 1 only if β(y1) < r2, P (1) −

ci − r2 > P (1) − ci − β(y1) > 0 for all ci < min{P (1) − r2, c̄}. As long as bi < r2,
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decreasing bid does not affect probability of winning when total supply is 2 but only

decreases probability of winning when total supply is 1, so any bid bi < r2 − ε for

some arbitrarily small ε is dominated by bidding bi = r2 − ε.

Therefore, bidders with costs ci ∈
[
P (2)− r2,min{P (1)− r2, c̄}

]
will only bid

r2 or r2 − ε in equilibrium. Pooling must occur for these bidders.

Proof of Lemma 3.4:

Proof. For bidder with costs ci ∈
(
P (2)−r2,min{P (1)−r2, c̄}

]
, either r2 or r2−ε is

an optimal bidding strategy according to Lemma 3.3. Moreover, there is a trade-off

between bidding r2 and r2 − ε. Compared to bidding r2 − ε, bidding r2 improves

the probability of winning Π1(ci) = P (1) − ci − r2 + ε > 0 when the total supply

is 1 and the highest bid among opponents equals to r2 − ε, while also improves the

probability of winning Π2(ci) = P (2) − ci − β(y1) < P (2) − ci − r2 < 0 when the

total supply is 2 and the highest bid among opponents is no lower than r2.

Note that both Π1(ci) and Π2(ci) are decreasing in ci, so the gain from winning

when total supply is 1 is diminishing while the loss from winning when total supply

is 2 is increasing when ci is greater.

For bidders with costs ci sufficiently close to P (2)− r2,

lim
ci→P (2)−r2

Π1(ci) = lim
ci→P (2)−r2

P (1)− ci − r2 = P (1)− P (2) = δ

lim
ci→P (2)−r2

Π2(ci) = lim
ci→P (2)−r2

P (2)− ci − r2 = 0

(B.9)

so the gain from winning when supply equals to 1 is strictly positive while the loss

from winning when supply equals to 2 is zero. The expected payoff from bidding r2

is strictly higher than expected payoff from bidding r2 − ε.
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If P (1)− r2 ≤ c̄, then for bidders with costs ci sufficiently close to P (1)− r2,

lim
ci→P (1)−r2

Π1(ci) = lim
ci→P (1)−r2

P (1)− ci − r2 = 0

lim
ci→P (1)−r2

Π2(ci) = lim
ci→P (1)−r2

P (2)− ci − r2 = P (2)− P (1) = −δ < 0

(B.10)

so the gain from winning when supply equals to 1 is zero while the loss from winning

when supply equals to 2 is strictly negative. The expected payoff from bidding r2 is

strictly lower than expected payoff from bidding r2 − ε.

If P (1)−r2 > c̄, note that all bidders bidding at least r2 is never an equilibrium,

since the total supply will be certain to be 2, and all bidders with ci ∈
(
P (2)− r2, c̄

]
will suffer a loss Π2(ci) < 0 and will have incentive to deviate to bidding r2 − ε.

Since Π2(ci) is decreasing in ci, those bidders with costs ci sufficiently close to c̄ will

bid r2 − ε in equilibrium.

Similarly, all bidders with ci ∈
(
P (2)−r2, c̄

]
bidding r2−ε is not an equilibrium,

since bidding r2 will increase the probability of winning Π1(ci) when total supply

equals to 1. Since Π1(ci) is decreasing in ci, those bidders with costs ci sufficiently

close to P (2)− r2 will bid r2 in equilibrium.

Therefore, there must exists ĉ ∈
(
P (2) − r2,min{P (1) − r2, c̄}

]
such that

all bidders with costs ci ∈
(
P (2) − r2, ĉ

]
bid r2 and all bidders with costs ci ∈[

ĉ,min{P (1)− r2, c̄}
]

bid r2 − ε in equilibrium.

Proof of Proposition 3.2:

Proof. Consider the equilibrium drop-out price of some arbitrary bidder i when

there are k ≥ 2 bidders left in the auction. When the current clock price p < r2,

bidder i will win at the current clock price p only if all the rest of (k − 1) bidders
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drop out simultaneously at p, which gives him a payoff of P (1) − ci − p, since all

(k − 1) opponents dropping out at a price p < r2 implies the total supply is 1.

Therefore, when p < r2, a bidder will stay in the auction as long as the

value of winning one exclusive license is above the current price. If P (1) − r2 ≥ c̄,

then no bidder will drop out before r2 − ε. If P (1) − r2 < c̄, bidders with costs

ci ∈
(
P (1) − r2, c̄

]
will drop out before price reaches r2 and bidders with costs

ci ∈ [c, P (2) − r2] will stay in the auction while p < r2. The optimal drop-out

strategy for all these bidders is P (1)− ci.

However, for bidders with costs ci ∈
(
P (2) − r2,min{P (1) − r2, c̄}

]
, winning

when total supply equals to 2 yields a negative payoff, and winning when total

supply equals to 1 yields a positive payoff. To maximize probability of winning

when p < r2 and minimize probability of winning when p ≥ r2, these bidders will

either drop out at p = r2 − ε or at p = r2. Since the gain from winning when

total supply is 1 is decreasing in bidder’s cost, and the loss from winning when total

supply is 2 is increasing in bidder’s cost, there always exists some ĉk2 such that a

bidder i with cost ci = ĉk2 is indifferent between dropping out at r2 − ε and r2 given

that there are k ≥ 2 bidders left in the auction at price of p < r2.

A similar proof can be applied to any n ∈ {2, 3, · · · , K}. When the clock price

p ∈ [rn, rn+1), all bidders with costs ci ≥ P (n) − rn have dropped out. Only the

equilibrium dropping out strategy of bidders with costs ci < P (n)− rn needs to be

discussed.

At any p ∈
[
rn, rn+1

)
, a bidder will win by dropping out at p only if all the

other (k − 1) bidders drop out simultaneously at p, which gives him a payoff of
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P (n)− ci. Therefore, bidders with costs ci ∈
(
P (n)− rn+1, P (n)− rn

]
will drop out

at P (n) − ci when p ∈ [rn, rn+1). Bidders with costs ci ∈
[
c, P (n + 1) − rn+1

]
will

stay in the auction while p < rn+1. Their optimal drop out strategy is also P (n)−ci.

For bidders with costs ci ∈
(
P (n+1)− rn+1, P (n)− rn+1

]
, winning when total

supply equals to (n + 1) yields a negative payoff, while winning when total supply

equals to n yields a positive payoff. There exists ĉkn+1 such that a bidder i with cost

ci = ĉkn+1 is indifferent between dropping out at rn+1 − ε and rn+1 given that there

are k ≥ 2 bidders left in the auction at a price p ∈ [rn, rn+1).

When the clock price p ≥ rK , only bidders with ci ∈
[
c, P (K) − rK

]
are still

active. Since the total supply will be K for certain, it is a dominant strategy for

the remaining bidders to bid P (K)− ci.

Proof of Proposition 3.3:

Proof. For all n ∈ {1, 2, · · · , K}, let Πn
i (bi, b−i) denote bidder i’s payoff from auction

given bidding profile (bi, b−i) conditional on total supply S = n. Let P n(bi, b−i)

denote the probability that total supply S = n given bidding profile (bi, b−i). Let

P n
(
bi, b−i

∣∣bni ≥ rn
)

denote the probability that total supply S = n given bidding

profile (bi, b−i) conditional on bni ≥ rn. Then

P n(bi, b−i) = P n
(
bi, b−i

∣∣bni ≥ rn
)
× 1{bni ≥ rn} (B.11)

Each bidder i’s objective function is to maximize

K∑
n=1

Πn
i (bi, b−i)× P n

(
bi, b−i

∣∣bni ≥ rn
)
× 1{bni ≥ rn} (B.12)
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For any possible level of supply n at which rn > P (n) − ci, Πn
i (bi, b−i) ≤ 0 for all

(bi, b−i). It is a dominant strategy to bid bni = 0 when ci ∈
(
P (n)− rn, c̄

]
.

For all possible level of supply n at which rn ≤ P (n)− ci, each bidder i needs

to maximize Πn
i (bi, b−i)× P n

(
bi, b−i

∣∣bni ≥ rn
)
× 1{bni ≥ rn}.

Let N denote the set of all bidders. Let Sn denote the set of bidders who win

a license between rounds (R1) to (Rn). Then N \ Sn−1 is the set of bidders whose

bids bni will be considered in round (Rn). Consider the unconditional probabilities

P n(bi, b−i) first.

For n = 1,

P 1(bi, b−i) =



1 if max{b1
j}j∈N ≥ r1, and

max{b2
j}j∈N\S1 < r2

0 else

(B.13)

For all n ∈ {2, 3, · · · , K − 1},

P n(bi, b−i) =



1 if max{bkj}j∈N\Sk−1
≥ rk ∀k ∈ {1, 2, · · · , n}, and

max{bn+1
j }j∈N\Sn < rn+1

0 else

(B.14)

For n = K,

PK(bi, b−i) =


1 if max{bkj}j∈N\Sk−1

≥ rk ∀k ∈ {1, 2, · · · , K}

0 else

(B.15)

Note that conditional on bni ≥ rn, changing bni does not affect P ñ(bi, b−i) for

all possible supply level ñ ∈ {1, 2, · · · , K}. Therefore, the conditional probability
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P n
(
bi, b−i

∣∣bni ≥ rn
)

is not affected by bni . Moreover, conditional on winning a license

before round (Rn), strategically bidding bni < rn also does not affect P n(bi, b−i), as

bni is not counted in round (Rn) if bidder i wins a license before round (Rn), so the

bidders cannot strategically shade their bids for higher supply levels to lower the

final supply level conditional on winning.

Each bidder’s problem becomes choosing bni to maximize Πn
i (bi, b−i) if rn ≤

P (n) − ci, and choosing bni = 0 otherwise. Since Πn
i (bi, b−i) denote the payoff from

winning a license conditional on S = n, each bidder’s dominant strategy is to bid

his or her true value P (n)− ci conditional on S = n.

Proof of Proposition 3.4:

Proof. For all n ∈ {K,K − 1, · · · , 1}, first consider each active bidder’s bidding

strategy if k(rn) ≥ n s.t. the auction ends in round (Rn). When k(rn) = n,

the market clearing price is rn and the auction ends immediately, so there is no

need to discuss bidders’ strategies. When k(rn) > n, the auction is equivalent to

an ascending clock auction with fixed supply of n identical items and k(rn) bidders

with single-unit demands. It is well known that dropping out at true value P (n)−ci

is a dominant strategy for each bidder.

I will next analyze each bidder’s strategy at the beginning for each round n,

at the time of which the clock price is set to be p = rn. Each bidder needs to decide

whether to state “in” or “out” in the auction. For each bidder i, participating in

round (Rn) implies that bidder i will pay at least a price of rn conditional on winning

in round (Rn) when the total supply is n. First, consider the strategy for any bidder
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i with cost ci > P (n)− rn:

• If there are less than (n − 1) opponents stating “in” at clock price p = rn,

then stating “in” and “out” yields the same payoff of zero in (Rn) since no

allocation occurs in (Rn) in both cases and the auction will proceed to (Rn-1)

with the same starting price.

• If there are exactly (n− 1) opponents stating “in” at clock price p = rn, then

bidder i wins a license with a negative payoff of P (n)− ci − rn < 0 by stating

“in” and gets payoff of zero by stating “out” in (Rn).

• If there are more than (n − 1) opponents stating “in” at clock price p = rn,

then bidder i gets a non-positive payoff by stating “in” and gets a zero payoff

by stating “out” in (Rn), since the auction will end in (Rn) with a price strictly

higher than rn.

Therefore, for bidders with costs ci > P (n)− rn, stating “out” at clock price p = rn

in a weakly dominant strategy. Next, consider the strategies for any bidder with

cost ci ≤ P (n)− rn:

• If there are less than (n − 1) opponents stating “in” at the price of rn, then

stating “in” and “out” in round (Rn) yields the same payoff since no allocation

occurs at round (Rn) in both cases.

• If there are exactly (n − 1) opponents stating “in” at the price of rn, that

implies there are (n− 1) opponents with costs cj ≤ P (n)− rn, since no bidder

with costs cj > P (n) − rn will state “in” as proved above. If bidder i state
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“in” at p = rn, the auction ends immediately and bidder i gets a payoff of

P (n)−ci−rn ≥ 0. If bidder i state “out” at p = rn, the auction will proceed to

round (Rn-1). Bidder i will get a payoff of zero if not participating in (Rn-1).

Suppose bidder i participate. Since all bidders who state “in” at p = rn are

required to remain in the auction when p = rn−1, all of these (n − 1) active

bidders will be active in round (Rn-1) and the auction will end in (Rn-1) with

probability of one. Let yn−1 denote the cost of the bidder who has the highest

cost among those (n− 1) active bidders in (Rn), then yn−1 ≤ P (n)− rn. This

bidder’s drop out price is P (n− 1)− yn−1 in round (Rn-1). If bidder i drops

out before P (n−1)−yn−1, then bidder i gets zero payoff. If bidder i drops out

after P (n− 1)− yn−1 and wins one out of (n− 1) licenses, then bidder i gets

payoff of yn−1−ci. However, since yn−1 ≤ P (n)−rn, yn−1−ci ≤ P (n)−ci−rn.

Therefore, bidder i is weakly worse off by stating “out” than by stating “in”

under every possible situation when there are exactly (n−1) opponents stating

“in” at p = rn.

• If there are more than (n − 1) opponents stating “in” at clock price p = rn,

then bidder i will gets a non-negative payoff by stating “in” at p = rn and gets

a zero payoff by stating “out” at p = rn, since the auction will end in round

(Rn). Bidder i has a positive probability of winning and gets a positive payoff

in (Rn) by stating “in” and will be eliminated from auction by stating “out”.

Therefore, for bidders with costs ci ≤ P (n)− rn, stating “in” at clock price p = rn

in a weakly dominant strategy. When rn = (n − 1)δ for all n, the Walrasian clock
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auction implements the efficient allocation.

Proof of Lemma 3.51:

Proof. I will first show that any Bayesian IC and IR mechanism must satisfy the

characterizations in Lemma 3.5, then I will show that any mechanism satisfying the

characterizations in Lemma 3.6 must be Bayesian IC and IR.

Suppose (µ, t) is a Bayeisan IC and IR mechanism. According to the Bayesian

IC and IR condition, for any bidder i, for any true cost profile (ci, c−i) and bidder

i’s reported cost c
′
i,

Ui(ci) ≥
∫
c−i

{ K∑
n=1

π(ci, n)µ
(n)
i (c

′

i, c−i)− ti(c
′

i, c−i)
}
f−i(c−i)dc−i

≥
∫
c−i

{ K∑
n=1

[
π(c

′

i, n) + (c
′

i − ci)
]
× µ(n)

i (c
′

i, c−i)− ti(c
′

i, c−i)
}
f−i(c−i)dc−i

≥
∫
c−i

{ K∑
n=1

π(c
′

i, n)µ
(n)
i (c

′

i, c−i)− ti(c
′

i, c−i)
}
f−i(c−i)dc−i

+

∫
c−i

{ K∑
n=1

(
c
′

i − ci
)
× µ(n)

i (c
′

i, c−i)
}
f−i(c−i)dc−i

≥Ui(c
′

i) + (c
′

i − ci)
∫
c−i

K∑
n=1

µ
(n)
i (c

′

i, c−i)f−i(c−i)dc−i

(B.16)

Therefore,

Ui(ci) ≥ Ui(c
′

i) + (c
′

i − ci)
∫
c−i

K∑
n=1

µ
(n)
i (c

′

i, c−i)f−i(c−i)dc−i

Ui(c
′

i) ≥ Ui(ci) + (ci − c
′

i)

∫
c−i

K∑
n=1

µ
(n)
i (ci, c−i)f−i(c−i)dc−i

(B.17)

1The proof of Lemma 3.5 follows from Myerson (1981) [40].
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which can be rewritten as

Ui(ci)− Ui(c
′

i) ≥ (c
′

i − ci)
∫
c−i

K∑
n=1

µ
(n)
i (c

′

i, c−i)f−i(c−i)dc−i

Ui(ci)− Ui(c
′

i) ≤ (c
′

i − ci)
∫
c−i

K∑
n=1

µ
(n)
i (ci, c−i)f−i(c−i)dc−i

(B.18)

The inequalities imply that if c
′
i > ci, then Ui(ci)− Ui(c

′
i) > 0.

Suppose c
′
i > ci. Divide both sides by (c

′
i − ci) and take limit:

U
′

i (ci) = − lim
c
′
i→ci

Ui(ci)− Ui(c
′
i)

c
′
i − ci

= −
∫
c−i

K∑
n=1

µ
(n)
i (ci, c−i)f−i(c−i)dc−i < 0 (B.19)

Therefore, the Bayesian IC condition implies

Ui(ci) = Ui(c̄) +

∫ c̄

ci

∫
c−i

K∑
n=1

µ
(n)
i (s, c−i)f−i(c−i)dc−ids (B.20)

For all c
′
i ≥ ci,

∫
c−i

K∑
n=1

µ
(n)
i (c

′

i, c−i)f−i(c−i)dc−i ≤
∫
c−i

K∑
n=1

µ
(n)
i (ci, c−i)f−i(c−i)dc−i (B.21)

Since U
′
i (ci) < 0, the Bayesian IR condition Ui(ci) ≥ 0 for all ci ∈ [c, c̄] implies

Ui(c̄) ≥ 0 (B.22)

Therefore, any Bayesian IC and IR mechanism must satisfy the characterization in

Lemma 3.5.

I will next show that any mechanism (µ, t) that satisfies the characterization

in Lemma 3.5 must be Bayesian IC and IR.

Equation (B.20) and inequality (B.21) implies that Ui(c̄) ≤ Ui(ci) for all ci ≤ c̄.

Ui(c̄) ≥ 0 implies Bayesian IR.
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Suppose c
′
i > ci, then

Ui(ci) =Ui(c
′

i) +

∫ c
′
i

ci

[ ∫
c−i

K∑
n=1

µ
(n)
i (s, c−i)f−i(c−i)dc−i

]
ds

≥Ui(c
′

i) +

∫ c
′
i

ci

[ ∫
c−i

K∑
n=1

µ
(n)
i (c

′

i, c−i)f−i(c−i)dc−i

]
ds

=Ui(c
′

i) + (c
′

i − ci)×
∫
c−i

K∑
n=1

µ
(n)
i (c

′

i, c−i)f−i(c−i)dc−i

(B.23)

According to inequality (B.17), this condition implies Bayesian IC.

Proof of Lemma 3.6:

Proof. For each bidder i, the ex-ante expected payoff is given below:

Eci

[
Ui(ci)

]
= Ui(c̄) +

∫
c

∫ c̄

ci

K∑
n=1

µ
(n)
i (s, c−i)dsf(c)dc

= Ui(c̄) +

∫
c−i

∫ c̄

c

∫ c̄

ci

K∑
n=1

µ
(n)
i (s, c−i)dsfi(ci)dcif−i(c−i)dc−i

= Ui(c̄) +

∫
c−i

∫ c̄

c

[ ∫ s

c

K∑
n=1

µ
(n)
i (s, c−i)fi(ci)dci

]
dsf−i(c−i)dc−i

= Ui(c̄) +

∫
c−i

∫ c̄

c

Fi(s)
K∑
n=1

µ
(n)
i (s, c−i)dsf−i(c−i)dc−i

= Ui(c̄) +

∫
c−i

∫ c̄

c

Fi(ci)
K∑
n=1

µ
(n)
i (ci, c−i)dcif−i(c−i)dc−i

= Ui(c̄) +

∫
c

[Fi(ci)
fi(ci)

×
K∑
n=1

µ
(n)
i (ci, c−i)

]
f(c)dc

(B.24)

The total surplus generated in the auction is given by

TS =
∑
i

∫
c

[ K∑
n=1

µ
(n)
i (ci, c−i)π(ci, n)

]
f(c)dc (B.25)

The seller’s revenue can be derived by subtracting the total payoff of bidders
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from the total surplus:

ER =TS −
∑
i

Eci

[
Ui(ci)

]
=
∑
i

∫
c

{ K∑
n=1

µ
(n)
i (ci, c−i)π(ci, n)

}
f(c)dc

−
∑
i

{
Ui(c̄) +

∫
c

{Fi(ci)
fi(ci)

×
K∑
n=1

µ
(n)
i (ci, c−i)

}
f(c)dc

}
=
∑
i

∫
c

{ K∑
n=1

µ
(n)
i (ci, c−i)×

{
π(ci, n)− Fi(ci)

fi(ci)

}}
f(c)dc−

∑
i

Ui(c̄)

=
∑
i

∫
c

{ K∑
n=1

µ
(n)
i (ci, c−i)×

{
P (n)− ci −

Fi(ci)

fi(ci)

}}
f(c)dc−

∑
i

Ui(c̄)

(B.26)

Proof of Proposition 3.5:

Proof. The seller’s problem is to maximize

ER =
∑
i

∫
c

{ K∑
n=1

µ
(n)
i (ci, c−i)×

{
P (n)− ci −

Fi(ci)

fi(ci)

}}
f(c)dc−

∑
i

Ui(c̄)

=
∑
i

∫
c

{ K∑
n=1

µ
(n)
i (ci, c−i)×MR(ci, n)

}
f(c)dc−

∑
i

Ui(c̄)

(B.27)

subject to Ui(c̄) ≥ 0 and feasibility constraint. It is optimal to set Ui(c̄) = 0. For

every possible supply level n, it is optimal to allocate one license to each of the n

highest marginal revenue bidders. Since MR(ci, n) is decreasing in ci, it is equivalent

to say that conditional on supply level being equal to n, it is optimal to allocate one

license to each of the n lowest cost bidders.

Since the marginal impact on total revenue by selling the n-th license is

MR
(
c(n), n

)
− (n − 1)δ, to determine the optimal level of supply n∗, we need to
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find n∗ that satisfy

MR
(
c(n), n

)
− (n− 1)δ ≥ 0

MR
(
c(n+1), n+ 1

)
− nδ < 0

(B.28)

Therefore, the optimal allocation rule is

µ
∗(n)
i (ci, c−i) =



1 if ci ≤ Cn(c−i),

MR
(
Cn(ci, c−i), n

)
− (n− 1)δ ≥ 0,

and MR
(
Cn+1(ci, c−i), n+ 1

)
− nδ < 0

0 else

(B.29)

for all n ∈ {1, 2, · · · , K − 1}, and

µ
∗(K)
i (ci, c−i) =



1 if ci ≤ CK(c−i),

MR
(
CK(ci, c−i), K

)
− (K − 1)δ ≥ 0,

0 else

(B.30)

where Cn(ci, c−i) is the n-th lowest cost given a profile of reported costs (ci, c−i).

Any tie is broken randomly.

The IC and IR conditions imply

Ui(c̄) = Ui(ci)−
∫ c̄

ci

∫
c−i

K∑
n=1

µ(n)(s, c−i)dsf−i(c−i)dc−i

=

∫
c−i

{ K∑
n=1

µ(n)(ci, c−i)
[
P (n)− ci

]
−
∫ c̄

ci

K∑
n=1

µ(n)(s, c−i)ds− ti(ci, c−i)
}
f−i(c−i)dc−i

= 0

(B.31)

Set t∗i (ci, c−i) to be

t∗i (ci, c−i) =
K∑
n=1

µ(n)(ci, c−i)
[
P (n)− ci

]
−
∫ c̄

ci

K∑
n=1

µ(n)(s, c−i)ds (B.32)
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Then (µ∗, t∗) is an optimal mechanism among all Bayesian IC and IR mechanisms.
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Appendix C: Proofs for Chapter 4

Proof of Corollary 4.1:

Proof. Let bi denote the bid submitted by bidder i. Since qi is known to the auc-

tioneer, define the adjusted bid of i as v̂i = qi − bi. The true value of bidder i is

given by vi = qi − ci. Reporting bi > ci will lead to v̂i < vi and losing the auction

when the supplier could have profitably won the auction with v̂i = vi. Reporting

bi < ci will lead to v̂i > vi and winning the auction with negative payoff when

vi − v̂j < 0. Therefore, as in standard second-price auctions, it is a dominant strat-

egy for each supplier to report true value vi by submitting bid equals to marginal

cost ci truthfully.

Proof of Proposition 4.1:

Proof. Under the concealment of quality qi, each supplier’s objective function at the

investment stage is

max
ki

∫
qi

∫
qj

∫ qi−g(ki)−Eηi

v

{
1−H(qj − g(k∗j )− τ)

}
dτdGj(qj)dGi(qi)− ki (C.1)

The first order condition is given by

− g′(k∗i )×
{∫

qi

∫
qj

{
1−H(qj − g(k∗j )− qi + g(k∗i ) + Eηi)

}
dG(qj)dG(qi)

}
︸ ︷︷ ︸

expected probability of winning

−1 = 0

(C.2)
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Given the symmetry of the two bidders, the first order condition for the bidders is

symmetric, which means we must have k∗i = k∗j in equilibrium.

Since bidders are ex ante identical, in any symmetric equilibrium, the ex-ante

expected probability of winning the auction is always 1
2
, i.e.,

∫
qi

∫
qj

{
1−H(qj − g(k∗j )− qi + g(k∗i ) + Eηi)

}
dG(qj)dG(qi) =

1

2
(C.3)

The first order condition can be therefore written as

− g′(k∗i )×
1

2
− 1 = 0

− g′(k∗i ) = 2

(C.4)

The symmetric equilibrium investment under concealment of quality kC = k∗i = k∗j

is therefore independent of the distribution G(.) and H(.). For any given cost

reducing technology g(.), the equilibrium investment kC under quality concealment

is identical across bidders and identical under any distribution of quality G.

Proof of Proposition 4.2:

Proof. When the auctioneer privately discloses qi, each supplier i’s objective function

is

max
ki

∫
qj

∫ qi−g(ki)−Eηi

v

{
1−H

(
qj − g(kD(qj))− τ

)}
dτdG(qj)− ki (C.5)

The first order condition of each supplier’s objective function is

− g′(kDi )×
∫
qj

{
1−H

(
qj − g

(
kD(qj)

)
− qi + g(kDi ) + Eηi

)}
dG(qj)− 1 = 0 (C.6)

Suppose SOC < 0 s.t. an equilibrium exists. kDi = kD(qi) characterized by FOC

is the equilibrium investment strategy of supplier i with quality qi. Take total
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differentiation of FOC with respect to kDi and qi:

dkDi
dqi

= −

∫
qj
H ′
(
qj − g

(
kD(qj)

)
− qi + g(kDi ) + Eηi

)
(−g′(kDi ))dG(qj)

SOC
> 0 (C.7)

since H ′(.) > 0, −g′(.) > 0, and the denominator < 0 by second order condition.

Therefore, the equilibrium investment kDi is increasing in each supplier’s quality qi

when the auctioneer discloses qi at the investment stage.

Proof of Proposition 4.3:

Proof. Under public disclosure of qualities, the objective function for bidder i given

information (qi, qj) and the opponent’s investment kj is

max
ki

∫ qi−g(ki)−Eηi

v

{
1−H

(
qj − g(kj)− τ

)}
dτ − ki (C.8)

Each bidder i’s best response investment k∗i (kj; qi, qj) to any level of opponent’s

investment kj is characterized by

− g′(k∗i )×
{

1−H
(
qj − g(kj)− qi + g(k∗i ) + Eηi

)}
− 1 = 0 (C.9)

Take total differentiation of the best response function with respect to k∗i and
(
qi−

qj
)
:

∂k∗i
∂(qi − qj)

= −
H ′
(
− (qi − qj) + g(k∗i )− g(kj) + Eηi

)(
− g′(k∗i )

)
SOC

> 0 (C.10)

since H ′(.) > 0, −g′(k∗i ) > 0, and SOC < 0. Therefore, the best response investment

of i to any investment level of j will shift to the right when quality difference (qi−qj)

increases.
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Take total differentiation of FOC with respect to k∗i and kj:

∂k∗i
∂kj

= −
H ′
(
qj − g(kj)− qi + g(k∗i ) + Eηi

)
g′(kj)

(
− g′(k∗i )

)
SOC

< 0 (C.11)

since H ′(.) > 0, −g′(k∗i ) > 0, g′(.) < 0, and SOC < 0. So the best response

investment of i is decreasing in the opponent’s investment kj under any announced

quality (qi, qj).

The intersection of k∗i (kj; qi, qj) and k∗j (ki; qi, qj) gives the equilibrium invest-

ments (kAi , k
A
j ). For each bidder i, assuming the opponent is playing the equilibrium

kAj , then kAi is characterized by the first order condition given by

− g′(kAi )×
{

1−H
(
qj − g(kAj )− qi + g(kAi ) + Eηi

)}
− 1 = 0 (C.12)

Suppose SOC < 0 s.t. an equilibrium exists. Take total differentiation of FOC with

respect to kAi and
(
qi − qj

)
:

dkAi
d(qi − qj)

= −
H ′
(
− (qi − qj) + g(kAi )− g(kAj ) + Eηi

)(
− g′(kAi )

)
SOC

> 0 (C.13)

since H ′(.) > 0, −g′(kAi ) > 0, and SOC < 0. Therefore, the equilibrium investment

of supplier i is increasing in the announced quality difference (qi − qj).

Proof of Proposition 4.4:

Proof. The expected revenue under concealment of quality is given by

ERC(G) = E
[
V (kC , q2)

∣∣∣G] = E
[
q2 − g(kC)− Eη

∣∣∣G] (C.14)

in which kC is independent of G and q. The total effect of ∆(G) on ERC(G) is
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given by

dERC(G)

d∆(G)
=
dE
[
q2 − g(kC)− Eη

∣∣∣G]
d∆(G)

=
dE(q2|G)

d∆(G)
< 0

(C.15)

The expected revenue to the auctioneer under private disclosure of quality is

given by

ERD(G) = E
[
V (kD2 , q2)

∣∣G] = E
[
q2 − g(kD(q2))− Eη

∣∣∣G] (C.16)

Holding the expected quality constant and increasing the dispersion ∆(G) will de-

crease the expected value of the low quality and decrease the expected investment

of the low quality supplier. The total impact of ∆(G) on ERD(G) is

dERD(G)

d∆(G)
=
dE
[
q2 − g(kD(q2))− Eη

∣∣∣G]
d∆(G)

=
dE(q2|G)

d∆(G)
− g′(kD2 )kD

′
(q2)

dE(q2|G)

d∆(G)

=
dE(q2|G)

d∆(G)
×
{

1− g′(kD2 )kD
′
(q2)

}
< 0

(C.17)

Since 1− g′(kD2 )kD
′

2 (q2) > 1,

dERD(G)

d∆(G)
<
dERC(G)

d∆(G)
(C.18)

i.e., the negative impact of increased dispersion in G on ERD is greater than on

ERC . Subtracting ERD(G) from ERC(G) gives

d(ERC(G)− ERD(G))

d∆(G)
= g′(kD2 )kD

′
(q2)

dE(q2|G)

d∆(G)
> 0 (C.19)

which also implies that the difference in expected qualities under concealment and

under private disclosure is increasing in ∆(G).

192



The expected revenue to the auctioneer under public disclosure of quality is

ERA(G) = E
[
V (kA2 , q2)

∣∣∣G] = E
[
q2 − g(kA2 (q2, q1))− Eη

∣∣∣G] (C.20)

Holding the expected quality constant and increasing the dispersion ∆(G) will in-

crease the expected difference (q1− q2) and decrease the expected investment of the

low quality supplier. The total impact of ∆(G) on ERA(G) is

dERA(G)

d∆(G)
=
dE
[
q2 − g(kA2 (q2, q1))− Eη

∣∣∣G]
d∆(G)

=
dE(q2|G)

d∆(G)
− g′(kA2 )

dkA2 (q2, q1)

d(q2 − q1)

dE(q2 − q1|G)

d∆(G)

=
dE(q2|G)

d∆(G)
− g′(kA2 )

dkA2 (q2, q1)

d(q2 − q1)
(−1) < 0

(C.21)

Subtracting ERA(G) from ERC(G) gives

d(ERC(G)− ERA(G))

d∆(G)
= g′(kA2 )

dkA2 (q2, q1)

d(q2 − q1)
(−1) > 0 (C.22)

Therefore, dERA(G)
d∆(G)

< dERC(G)
d∆(G)

, and the difference in expected revenues is increasing

in ∆(G).

Since ERC(G) = ERD(G) = ERA(G) when ∆(G) = 0 and

dERA(G)

d∆(G)
<
dERC(G)

d∆(G)
< 0

dERD(G)

d∆(G)
<
dERC(G)

d∆(G)
< 0

(C.23)

We have

ERC(G) > ERD(G), and ERC(G) > ERA(G) (C.24)

for any distribution G(.) that satisfies ∆(G) > 0 when there are 2 bidders, and the

difference in expected revenues is increasing in ∆(G).
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