
ABSTRACT

Title of dissertation: Experimental Investigation into Unsteady
Force Transients on Rapidly Maneuvering Wings

Peter Mancini, Doctor of Philosophy, 2017

Dissertation directed by: Professor Anya R. Jones
Department of Aerospace Engineering

Small-scale aircraft, such as biological fliers and micro air vehicles, typically op-

erate in a low Reynolds number flight regime, Re ∼ O(102 − 105), that is known to

contain massive flow separation and unsteady force production. This work conducts

comprehensive experimental campaigns on a flat plate undergoing three simple wing

motions typical of low Reynolds number flight: surging from rest, pitching in a con-

stant free stream, and deflection of a large trailing edge flap. Water tunnel tests were

performed in collaboration between the University of Maryland (UMD) and the Air

Force Research Laboratory (AFRL). Unsteady force measurements and time-resolved

velocity fields were obtained for a wide range of incidence angles and motion rates,

spanning cases of fully attached flow to those of massively separated flow. Experiments

were conducted at Reynolds number Re = 20,000 over an extensive breadth of reduced

frequencies (0.06 ≤ k ≤ 3) representative of the conditions found in small biological

fliers. Detailed investigations into rapidly surging and pitching wings illustrated the

direct relationship between observable vortex dynamics and force/moment coefficients

during the transient acceleration and subsequent relaxation to steady state. It was



shown that circulation strength is proportional to motion rate, and faster acceleration

transients produce stronger, more coherent leading edge vortices. Experiments were also

performed on a hinged wing with a 50%-chord trailing edge flap. Dynamically pitching

the wing was shown to generate instantaneous lift response upon motion onset regardless

of initial flow attachment. Additionally, direct measurement of wing component forces

and numerical simulations using an unsteady panel method confirmed the production of

considerable unsteady forces on the stationary fore element of the hinged wing. Using a

modified aerodynamic model that accurately predicts force histories on the hinged wing,

it was determined that the largest discrepancy between Theodorsen’s classical solution

and the measured forces is due to its over-prediction of steady circulatory lift.
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Luke Smith, Jonathan Lefebvre, Hülya Biler, Zach Smith, Girguis Sedky, Phil Kirk,

Albert Medina, and Karen Mulleners.

Finally, I would like to thank my parents, who have supported me in every way

possible through my many journeys and have always pushed me to shoot for the stars.

iii



Table of Contents

List of Figures vii

List of Abbreviations xiv

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Reynolds Number and Reduced Frequency . . . . . . . . . . . . . 5
1.3.2 Lift Production in Low Reynolds Number Flight . . . . . . . . . . 7
1.3.3 Effects of Leading Edge Flow Separation . . . . . . . . . . . . . . 10
1.3.4 Trailing Edge Flaps and Flow Control . . . . . . . . . . . . . . . 12
1.3.5 Low Order Modeling of Unsteady Lift . . . . . . . . . . . . . . . . 17
1.3.6 Classical Theories: Theodorsen and Wagner . . . . . . . . . . . . 17

1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.5 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Methodology: Experimental Setup and Analysis 26
2.1 Facilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1.1 Air Force Research Lab (AFRL) . . . . . . . . . . . . . . . . . . . 26
2.1.2 University of Maryland . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Experimental Parameter Space . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.1 Wing Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.2 Translational Surge . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.3 Translational Pitch . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.4 Hinged Wing with Large Trailing Edge Flap . . . . . . . . . . . . 36

2.3 Force Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.4 Particle Image Velocimetry (PIV) . . . . . . . . . . . . . . . . . . . . . . 39
2.5 Flow Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.6 Analysis Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.6.1 Vortex Impulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.6.2 Vortex Tracking: γ1 Criterion . . . . . . . . . . . . . . . . . . . . 49
2.6.3 Vortex Tracking: Centroid of Vorticity . . . . . . . . . . . . . . . 50

2.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

iv



3 Methodology: Analytical and Numerical Models 54
3.1 Theodorsen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.1.1 Non-Circulatory Flow . . . . . . . . . . . . . . . . . . . . . . . . 57
3.1.2 Circulatory Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.1.3 Concluding Remarks on Theodorsen . . . . . . . . . . . . . . . . 71

3.2 Modified Aerodynamic Model . . . . . . . . . . . . . . . . . . . . . . . . 72
3.3 Panel Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4 Experimental Results: Single-Element Flat Plates 80
4.1 Streamwise Surge: Force and Moment Histories . . . . . . . . . . . . . . 81

4.1.1 Variations in Angle of Attack . . . . . . . . . . . . . . . . . . . . 81
4.1.2 Variations in Acceleration . . . . . . . . . . . . . . . . . . . . . . 90

4.2 Streamwise Surge: Fast versus Slow Comparison . . . . . . . . . . . . . . 96
4.3 Streamwise Surge: Vortex Tracking . . . . . . . . . . . . . . . . . . . . . 100
4.4 Translational Pitch: Force and Moment Histories . . . . . . . . . . . . . 105

4.4.1 Lift Coefficient and Lift-to-Drag Ratio . . . . . . . . . . . . . . . 105
4.4.2 Moment Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5 Experimental Results: Hinged Wing 120
5.1 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.2 General Flow Development and Inviscid Efficiency . . . . . . . . . . . . . 123
5.3 Test Matrix Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.3.1 Flap-Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.3.2 Flap-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.3.3 Flap in Full Leading Edge Stall . . . . . . . . . . . . . . . . . . . 151

5.4 Concluding Remarks on Force Measurements . . . . . . . . . . . . . . . . 159
5.5 Force Prediction Using Vortex Impulse Method . . . . . . . . . . . . . . 159

5.5.1 Vortex Dynamics: Application to Lamb’s Model . . . . . . . . . . 161
5.5.2 Vortex Impulse Model Results . . . . . . . . . . . . . . . . . . . . 171

5.6 Force Prediction via Low-Order Analytical and Numerical Methods . . . 178
5.6.1 Theodorsen and Modified Model . . . . . . . . . . . . . . . . . . . 178
5.6.2 Numerical Solution: Unsteady Panel Method . . . . . . . . . . . . 182

5.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

6 Conclusion 188
6.1 Summary of Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
6.2 Original Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
6.3 Key Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

6.3.1 Single-element flat plates . . . . . . . . . . . . . . . . . . . . . . . 191
6.3.2 Hinged Wing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
6.3.3 Low order modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 194

6.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

v



A Revisiting Theodorsen’s Lift Derivation 198
A.1 Non-Circulatory Flow: Velocity Potentials and Pressure Forces . . . . . . 198
A.2 Circulatory Flow: Velocity Potentials and Forces . . . . . . . . . . . . . . 204

B Implementation of Unsteady Panel Method 209

Bibliography 216

vi



List of Figures

1.1 Illustrative examples of the two pure rectilinear motions considered in this
work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Illustration of the various occupants in each reduced frequency vs. Reynolds
number flight regime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Maximum lift-to-drag ratio for a variety of airfoil shapes at Re O(102−108). 8
1.4 Typical wing strokes of flapping wing fliers in hover. . . . . . . . . . . . . 10
1.5 (a) (top) Conventional steady lift from potential flow. Rapid change in

velocity around sharp edge results in suction vector. (bottom) Devel-
opment of leading edge vortex and elimination of plate-parallel suction
force and instead angles it normal to the plate. (b) Dye visualization and
streamlines for a rapidly pitching flat plate in a freestream. . . . . . . . . 11

1.6 Vorticity field and surface pressure distribution on the top surface of a
two-dimensional plunging plate plunge amplitude h0/c = 0.3 and k = 1.05. 12

1.7 Pivot point study on pitching flat plate at reduced frequency k = 2 for
pivot points, 0 ≤ x ≤ 1, with dye visualization snapshots at the point
of maximum lift. Notice qualitative similarity of flow field despite twice
as large force history for the leading edge pitch, x = 0, than that of the
trailing edge pitch, x = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.8 (a) Lift versus angle of attack with (open circles) and without (open
squares) actuation at U = 5m

s
and (b) transient lift response to the

actuator pulse, scaled by its maximum value. Pulsed jet effectively in-
creases steady aerodynamic performance, but the transient aerodynamics
undergoes a negative lift spike before increasing to its peak lift after —
convective time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.9 Table describing the various flight regimes of forward and hovering flight
in terms of reduced frequency, k. Each region has an applicable set of
aerodynamic models, except those of the present study as indicated on
the table (0.1 ≤ k ≤ 10). . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

vii



1.10 Pure plunge cases (black lines, labeled 3A, 4A, 5A) with reduced fre-
quency and plunge amplitudes (left) k = 0.393, h/c = 0.5; (middle)
k = 7.86, h/c = 0.025; (right) k = 1.179, h/c = 0.5. Also shown are
(middle row) corresponding vorticity fields from CFD and (bottom row)
dye flow visualization, illustrating the flow topology for each case and
its deviation from Theodorsen’s assumptions of attached flow and planar
wake. Figure adapted from McGowan et al. [65]. . . . . . . . . . . . . . . 21

2.1 AFRL recirculating water tunnel. . . . . . . . . . . . . . . . . . . . . . . 27
2.2 UMD free-surface water tank. CAD model of motor system from Manar

and Jones [71]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3 Aspect ratio (AR) 4 flat plate used in translational surge and pitch studies.

The plate is fitted with six dye ports along the span for dye visualization
and a force balance mount for time-resolved direct force measurements. 30

2.4 (a) 3-D printed hinged wing fitted with front and rear component force
balances. (b) Glass hinged wing mechanism at UMD. (c) Illustration
of trailing edge flap kinematics for leading edge fixed at αLE = 0◦ and
αLE = 20◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 Velocity profiles for 0.125 ≤ sa/c ≤ 6, α = 45◦. . . . . . . . . . . . . . . . 34
2.6 Angle of attack time history for acceleration study. The two accelerations

are representative of a “slow” and a “fast” case pitching to a final angle
of α = 45◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.7 Typical history of flap deflection angle versus time for a motion occurring
over 1 second. (black) Motor flap deflection using Eq. 2.2, (red) half
sinusoid. [72] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.8 Motion history of the trailing edge flap for several flap frequencies. . . . . 38
2.9 Representative cases for surge and pitch motions demonstrating the low-

pass filtering process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.10 Particle image velocimetry (PIV) setup at AFRL. . . . . . . . . . . . . . 41
2.11 Snapshots of the particle image velocimetry experiment taken with a stan-

dard SLR camera. These images provide visuals of the shadow region
beneath wing due to the opaque wing material, streaklines of particles
convecting over the wing, visualization of spanwise location of the laser
plane (indicated by bright line on suction surface). . . . . . . . . . . . . . 42

2.12 Snapshot of UMD tank and laser beam path. Before interacting with the
wing, the beam enters a Powell lens (shown on right) to expand itself into a
thin sheet. (Lens image and schematic provided by http://www.altechna.com) 44

2.13 Schematic of UMD’s wing-fixed PIV setup. The wing-laser-camera system
travels together down the length of the tank as the hinged wing, centered
in the camera frame, undergoes its trailing edge flap deflections. . . . . . 45

2.14 Although PIV and dye visualization are performed at different Re (Re =
20,000 and 2,500, respectively), the flow structures are very similar. . . . 46

viii



2.15 Two PIV snapshots for (a) surging plate and (b) hinged wing experiments.

Note that when there is a clear leading and trailing edge vortex, as in (a), the

γ1 criteria (star) successfully locates the vortex center. However, when there is

no coherent circular structure, as in (b), the γ1 method struggles to accurately

find a center. The centroid method (circles), however, robustly quantifies the

center of vorticity, regardless of coherent structures or circular flow. . . . . . 52

3.1 Airfoil-aileron system in the xz-plate plane (left) and its conformal rep-
resentation in the xy circle plane (right) . . . . . . . . . . . . . . . . . . 56

3.2 Chordwise pressure distributions (left) and non-circulatory lift contribu-
tions (right) of Theodorsen’s quasi-steady solution for an (a,b) aileron
pitching about its leading edge, (c,d) airfoil-aileron system with c = 0,
and (e,f) airfoil pitching about its mid-chord. All pitch motions are for α
(or β) = 0− 20◦ at reduced frequency k = 0.35. . . . . . . . . . . . . . . 61

3.3 Plate tangential and normal velocities due to the free stream at two dif-
ferent angles of attack, illustrating the increase in plate normal force with
an increase in angle of attack. . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4 (a) Angle of attack history and (b) normal velocity component on a single-
element pitching plate, illustrating the change in plate normal velocity due
to pitch. It should be noted that this effect is independent of pivot axis
location. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.5 Virtual camber effect caused by wing pitching about pivot axis ab. Recre-
ated from Leishman [63]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.6 Lift histories for several reduced frequencies (k = 0.35, k = 0.18, and
k = 0.058) for a pitching single-element flat plate from α = 0 − 20◦ to
illustrate the contributions from the various non-circulatory and circula-
tory components of lift. Notice the various changes in magnitude of each
rate-dependent term as the flap rates vary from fast to slow pitching. . . 72

3.7 Illustration of lift contributions as expressed in the modified aerodynamic
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.8 Schematic of the panel method implementation for flow about an airfoil
with a trailing edge flap. Panel vortices are placed at the quarter-chord
and collocation points are placed at the three-quarter chord of each panel. 77

4.1 Unsteady force histories for 5◦ ≤ α ≤ 45◦ and sa/c = 1, as well as each
angle’s corresponding static lift value. . . . . . . . . . . . . . . . . . . . 83

4.2 Flow visualization at (top) s/c = 1 and (bottom) s/c = 6.25 for for
[sa/c = 1, α = 5◦, 15◦, 20◦, and 45◦]. Images have been rotated by their
corresponding incidence angles. . . . . . . . . . . . . . . . . . . . . . . . 84

4.3 Dye flow visualization (left) and PIV (right) showing the flowfield at for
sa/c = 1, α = 45◦ at three different values of s/c. . . . . . . . . . . . . . 84

4.4 Plots of drag coefficient (CD) and lift-to-drag ratio (CL/CD) for surging
wings with acceleration sa/c = 1 showing the tradeoff between increased
lift (see Figure 4.1) and drag. . . . . . . . . . . . . . . . . . . . . . . . . 87

ix



4.5 (a) Static lift curve for flat plate with theoretical prediction adjusted for
aspect ratio effects. (b) Drag polar of maximum lift coefficient for sa/c = 1
surge and static measurements. . . . . . . . . . . . . . . . . . . . . . . . 88

4.6 Acceleration study at α = 45◦ for 0.125 ≤ sa/c ≤ 6. (a) Lift coefficient
histories. (b) Circulatory component of lift history during each accel-
eration phase. Convective time, s/c, is scaled by acceleration distance,
sa/c. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.7 Lift-to-drag ratio for acceleration study at α = 45◦ . . . . . . . . . . . . . 92
4.8 (Top) Pitching moment coefficient about the mid-chord (solid lines) for

the entire acceleration study. Lift coefficient for the sa/c = 1 case (dot-
ted) is provided to show similarity in trends between lift and moment
coefficients. Vorticity plots (middle) and flow visualization (bottom) cor-
respond to maxima and minima locations in mid-chord pitching moment
for the sa/c = 1 case, indicated by vertical lines in the plot. . . . . . . . 97

4.9 Force histories of the fast (sa/c = 1) and slow (sa/c = 6) cases showing
the contributions of circulatory and non-circulatory effects. . . . . . . . . 99

4.10 (-) LEV circulation, i.e. summation of blue clockwise vorticity, and (- -)
total (positive + negative) circulation for fast and slow surge cases. . . . 100

4.11 (a) Vortex trajectories in a lab-fixed reference frame for sa/c = 1 (fast)
and sa/c = 6 (slow) cases. Trajectories in the wing-fixed reference frame
are separated into (b) wing-parallel and (c) wing-normal directions. . . . 103

4.12 Contours of vorticity and velocity vector fields illustrating leading edge
vortices on fast and slow surging wings. The yellow dot indicates the
vortex location as given by the centroid of γ1. Only every fifth velocity
vector is shown here. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.13 Lift histories for fast and slow pitching and surging cases. . . . . . . . . . 107
4.14 Comparison of lift histories for (a) fast and (b) slow pitching cases from

each of the facilities used in this study. The two facilities produce largely
equivalent force histories, despite some discrepancies due to different in-
stallation/mounting techniques. UMD forces provided by Manar et al. [80] 108

4.15 Circulation histories for fast and slow pitching and surging cases. Vertical
lines correspond to the end of each acceleration phase. . . . . . . . . . . 110

4.16 Vortex development on fast pitching and surging wings. The yellow dot
indicates the vortex location as given by the local maximum of γ1. . . . . 111

4.17 Vortex development on slow pitching and surging wings. The yellow dot
indicates the vortex location as given by the local maximum of γ1. . . . . 112

4.18 Lift-to-drag ratio for fast and slow pitch to α = 45◦ (solid) and fast surge
α = 45◦ (dashed). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.19 Moment coefficient about mid-chord for fast and slow pitch (solid) and
surge at (dashed). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.20 Vortex trajectory based on the γ1 tracking algorithm. Corresponding flow
field images are shown in Figure 4.16-4.17(a-f). . . . . . . . . . . . . . . 117

x



5.1 Smoke flow visualization and PIV of dynamic flap experiments showing
attached flow during flap deployment (top) followed by eventual relaxation
to separated steady state (bottom). Showing that the attached flow is a
physically reproducible effect over a wide kinematic parameter space. . . 125

5.2 PIV vorticity fields and streamlines for the flap-down δ = 0◦−40◦, sa/c =
0.5 case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.3 Pressure distributions for δ = 0−10◦ using (a) measurements from chord-
wise pressure taps, given by Rennie et al. [100], and (b) an unsteady point
vortex panel method. Red arrows located in the middle of the stationary
front element and at the hinge location illustrate the increase in total
pressure as flow travels aft toward the hinge. . . . . . . . . . . . . . . . 127

5.4 PIV vorticity and velocity fields for the flap-up δ = 40◦ − 0◦, sa/c = 0.5
case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.5 (a) Circulation history for various hinged wing cases and (b) comparison
between bound (black) and trailing edge wake circulation (green). Yellow
circles in (a) correspond to PIV snapshots in Figure 5.2 and 5.4. . . . . . 129

5.6 Kutta-Joukowski lift calculated from measured circulation compared to
directly measured lift from instrumented force balance. Duration of flap
deflection lies within vertical dotted lines. . . . . . . . . . . . . . . . . . 133

5.7 Lift histories of deflection rate study for (a) δ = 0−30◦ and (b) δ = 0−20◦.
Inset shows relaxation from elevated steady lift to fully developed steady
state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.8 Drag histories for deflection rate study. . . . . . . . . . . . . . . . . . . 137
5.9 Pitching moment about the quarter-chord for (a) δ = 0 − 30◦ and (b)

δ = 0− 20◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.10 (a) Circulation histories for two deflection rates of δ = 0−20◦. (b) Veloc-

ity and vorticty fields from PIV measurements documenting circulation
production for the cases presented in (a). (Top) s/c = 1

2
(sa/c), (middle)

s/c = sa/c, (bottom) s/c = sa/c + 1. Circles in (a) correspond to PIV
images in (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.11 (a) Circulation history of Figure 5.10 with convective time scaled by flap
duration. (b) Circulatory lift component from surge acceleration study
with identical scaling showing the similarities between the two sets of
kinematics. Both cases contain identical circulation development until
s/sa = 0.3, after which cases diverge based on acceleration rate. . . . . . 140

5.12 (a) Circulation history for δ = 0 − 40◦, sa/c = 0.5. (b) Velocity and
vorticty fields from PIV measurements. Circles in (a) correspond to PIV
images in (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.13 Measured lift coefficient on stationary front element (a,c) and rear flap
element (b,d) for a range of deflection rates 0.25 ≤ sa/c ≤ 4. . . . . . . . 144

5.14 Measured lift coefficient produced by the front element (blue), rear flap
element (red), and whole wing (black) for δ = 0− 20◦. . . . . . . . . . . 146

5.15 Lift histories from deflection rate study for (a) δ = 20 − 0◦ and (b) δ =
30−0◦. Horizontal dotted lines indicate initial state and final steady state
lift coefficient. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

xi



5.16 Component forces for δ = 20◦ − 0◦, sa/c = 0.25 (blue) and sa/c = 0.5
(red) kinematics. Black lines correspond to δ = 0◦ − 20◦ cases. Flap-up
cases are also flipped and zeroed to show relative magnitude to flap-down
motions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.17 Flow visualization for sa/c = 0.5 flap down (left) and flap up (right)
kinematics with the leading edge element fixed at α = 20◦. Figure adapted
from Medina, OL, Mancini, and Jones [72]. . . . . . . . . . . . . . . . . . 152

5.18 Lift histories from deflection rate study for (a) δ = 0 − 20◦ and (b) δ =
20− 0◦ with LE element fixed at 20◦. . . . . . . . . . . . . . . . . . . . 153

5.19 Comparison between surging flat plate at α = 20◦ and hinged plate with
αLE = 20◦, δ = 0◦ − 20◦. Both motion transients occur over sa/c = 1. . . 155

5.20 Lift histories on (a) front element and (b) rear element for δ = 0 − 20◦

where the leading edge is fixed at αLE = 0◦ (blue) and αLE = 20◦ (red). . 156
5.21 Lift histories on (a,c) front element and (b,d) rear element for δ = 0−20◦

where the leading edge is fixed at αLE = 0◦ (blue) and αLE = 20◦ (red). . 158
5.22 Schematic of equal and opposite strength point vortex pair as described

by Lamb. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
5.23 Absolute values of bound and wake circulations during motion transients

for flap-down and flap-up kinematics. Plot abscissas end around t =
0.7−1 depending on when the newly formed trailing edge vorticity exited
the image frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.24 Wing-fixed time history of bound and wake vorticity trajectories. . . . . 167
5.25 x-locations of centroid of vorticity and γ1 for bound and wake circulations;

sa/c = 0.5 (red) and 1 (yellow). . . . . . . . . . . . . . . . . . . . . . . 169
5.26 Bound and wake vorticity centroids at long time. Bound vorticity has

converged to a constant location near the mid-chord. Trailing edge wake
has long left the field of view and can thus no longer be accurately tracked171

5.27 Schematic illustrating the extension of Lamb’s vortex model to the present
case of a hinged wing with rapidly deflecting flap. Relative displacement,
∆x, and relative velocity, ∆u, are indicated based on the aforementioned
analysis and simplifications. . . . . . . . . . . . . . . . . . . . . . . . . . 172

5.28 Vortex impulse model comparison to experiment for flap-down cases of
various deflection rates and flap angles. . . . . . . . . . . . . . . . . . . . 174

5.29 Vortex impulse model comparison to experiment for flap-down cases for
δ = 0− 20◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

5.30 Vortex impulse method (Eq. 5.2) vs. simplified aerodynamic model (Eq.
3.25). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

5.31 Experimental results compared to two analytical models: Theodorsen’s
solution and the modified aerodynamic model of Equation 3.25. . . . . . 180

5.32 Measured lift on fore and flap elements compared to the two terms in the
modified model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

5.33 Comparison of panel method to experimental measurement with chord-
wise pressure distribution at peak acceleration, showing large unsteady
lift contribution from stationary fore element. (a) sa/c = 0.25 (b) sa/c = 1.183

xii



5.34 (a) Panel method result of chord-wise pressure distributions due to un-
steady lift term for several deflection rates of δ = 0 − 30◦ case, showing
large unsteady lift contribution from stationary fore element. (b) Panel
method compared to experimental force measurements on fore and flap
elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

A.1 Conformal representation of the wing profile illustrating vortex placement. 205

B.1 Panel method result and theoretical prediction for (a) 2 Hz sinusoidal
heaving motion at α = 0◦ and (b) an impulsively started flat plate at
α = 7◦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

xiii



Nomenclature

a Chordwise distance between mid-chord and pitch axis

AR Aspect ratio

b Semi-chord

c Chord length

CL Lift coefficient

CD Drag coefficient

CM Moment coefficient

C(k) Theodorsen’s function

ên Unit normal vector to line, s, in vortex impulse calculation

f Sampling frequency, Hz

h/c Non-dimensional plunge distance

J Impulse

j Panel index

k Reduced frequency

L Lift

P Horizontal impulse

p Pressure

Q Vertical impulse

Re Reynolds number

S Planform area or area of integration in γ1 calculation

s Convective distance, chord-lengths

s Distance between vortices (used in vortex impulse calculation)

xiv



s/c Non-dimensional convective distance

sa Acceleration distance, chord-lengths

sa/c Non-dimensional acceleration distance

t Time

t∗ Convective time, t∗ = tU
c

t/c Thickness-to-chord ratio

x Non-dimensional chordwise position

U Streamwise velocity

V|| Plate-parallel velocity

V⊥ Plate-normal velocity

X ′ Plate-parallel direction

Y ′ Plate-normal direction

Greek Symbols

α Angle of attack

αLE Angle of attack of leading edge element

β Flap deflection angle

δ Flap deflection angle

δ0 Initial flap deflection angle

δF Final flap deflection angle

∆δ Flap amplitude

Γ Circulation

xv



γ1 Vortex center, m2

s

µ Dynamic viscosity

φ Velocity potential

φ(s) Wagner’s function

ρ Density

ω Vorticity (∇× V ), 1/s

Subscripts

∞ Free stream

+ Vortex with positive vorticity

− Vortex with negative vorticity

b Bound

C Circulatory

cent Centroid

meas Experimental

NC Non-circulatory

wake Trailing edge wake

List of Abbreviations

AFRL Air Force Research Laboratory

CFD Computational Fluid Dynamics

KJ Kutta-Joukowski

xvi



LE Leading edge

LEV Leading edge vortex

MAV Micro air vehicle

NACA National Advisory Committee for Aeronautics

PIV Particle Image Velocimetry

TEV Trailing edge vortex

UMD University of Maryland

VI Vortex impulse

xvii



Chapter 1

Introduction

1.1 Motivation

Whether in natural flyers [1, 2] or for man-made vehicles [3, 4], the application of

rapidly maneuvering wings has been of interest among biologists and engineers alike for

over half a century [5]. Observation of natural fliers, especially those capable of hover,

has provided insight into efficient flight mechanics within the low Reynolds number

flight regime in which they operate. Of principal interest for flight-control applications

is understanding the extent to which lift history is quasi-steady with motion history [6].

For the past four decades, despite a concerted effort to develop more accurate models,

unsteady aerodynamic prediction tools have consisted mostly of linear methods largely

derived for attached flow regimes [7]. At present, most of these methods remain rooted

in inviscid theory and are thus inherently incapable of capturing the viscous effects

associated with low Re flight regimes without some degree of empirical correction or

robust computing power. Advancements in computational fluid dynamics (CFD) [8–10]

and analytical solvers [11, 12] have brought forth powerful tools for capturing complex
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flow physics and accurately quantifying 2D and 3D aerodynamic behavior. However,

the large computational cost of higher order solvers typically makes them unsuitable

for controller applications. Low-order models provide reasonably accurate force predic-

tions at a drastically lower run time. The most universally used low-order models are

those of classical, inviscid airfoil theory, most notably the solutions of Wagner [13] and

Theodorsen [14]. Their widespread use is largely because they provide simple, low-order

analytical models based entirely on motion history and provide reasonable results even

for separated flow [15]. The field of unsteady low Reynolds number aerodynamics con-

tains a wealth of knowledge yet to be discovered regarding quantification of separated

flow development and accurate modeling of the underlying flow physics. The present

work helps fill a void regarding the fundamental understanding of individual sources

of lift and the accuracy with which current modeling methods predict lift on rapidly

maneuvering wings.

1.2 Problem Statement

Present literature is densely populated with over a century’s worth of detailed

studies on high Reynolds number, fixed-wing aircraft and the classical aerodynamic

theories which model their steady low angle of attack flight [16]. An abundance of prior

work exists that is aimed toward understanding the underlying flow physics of large-

scale commercial and military aircraft. This is in direct contrast with the more recent

prominence of small scale aircraft of comparable size to biological fliers. These aircraft

operate in the low Reynolds number regime, Re = O(102 − 105), and have a relatively
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much larger degree of flow unsteadiness. Cai et al. [17] provided a survey of recent

advances and future development trends of small-scale unmanned vehicles, highlighting

two particular gaps in the literature that the present work aims to address: 1) a need for

documentation of aggressive flight conditions and envelopes for small-scale fixed-wing

aircraft and 2) improved dynamics modeling based on first-principles and application of

model-based linear control.

Identically replicating all of the intricacies of flapping wing flight still eludes the

aerodynamics community, despite significant advancements over the past two decades

[18]. This is in part due to the large number of geometric and kinematic parameters that

can be varied. Studies mapping the in-flight wing kinematics of natural fliers [19, 20]

have found that the kinematics can be composed of a combination of translational,

rotational, and pitching motions. It is common to isolate the individual wing motions to

analyze them separately for in-depth studies of the fundamental fluid mechanics of such

flight. The present work considers the components of rectilinear pitch and translational

(surge) acceleration over a range of rates and incidence angles (see Figure 1.1), building

upon the rich literature of accelerating finite wings in the low Reynolds number flight

regime [21–25]. There are still many complex flow phenomena occuring in this flight

regime that are not presently well understood. The exact contributions to lift from the

leading edge vortex is presently unclear, despite the large body of work on its qualitative

size and kinematics.

The objective of this work is to provide a comprehensive experimental characteri-

zation of wings undergoing a wide range of incidence angles and motion rates for surge

acceleration from rest (Figure 1.1a) and pitch in a constant free stream (Figure 1.1b) in
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(a) Surge (b) Pitch

Figure 1.1: Illustrative examples of the two pure rectilinear motions considered

in this work.

an effort to improve the understanding of flow topology and circulation history and their

effect on lift force. The study of single-element flat plates will be followed by the case of

a large, rapidly deflecting trailing edge flap in an effort to 1) quantify lift histories and

flow topologies for a wide, novel parameter space of deflection rates and flap angles and

2) apply classical unsteady aerodynamic models and address their accuracy to measured

lift.

The present work does not aim to create a new predictive model; it aims to ad-

dress the accuracy of each term that comprises Theodorsen’s model to either justify

or invalidate its use within the examined parameter space. Experimental studies fa-

cilitated the understanding of physical phenomena, which led to improvements to the

current state of predictive modeling. There are certainly more complex low-order mod-

els that go to great lengths to more accurately represent the flow physics present in
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this flight regime [26], but the novelty in a model like that of Theodorsen is its sole

dependence on motion history and linear superpositional terms. This work provides an

assessment of the applicability of several existing inviscid modeling techniques to low

Reynolds number flight and presents adapted models of Lamb’s vortex impulse method

and Theodorsen’s solution to predict forces on the hinged plate in good agreement with

force measurements.

1.3 Background

1.3.1 Reynolds Number and Reduced Frequency

The flight mechanics and fundamental mechanisms of lift production for flapping

wing vehicles are fundamentally characterized by two important non-dimensional quan-

tities: Reynolds number and reduced frequency. The Reynolds number of a flow is a

non-dimensional parameter that describes the ratio of inertial to viscous forces:

Re =
ρUc

µ
. (1.1)

This parameter can also be interpreted as the ratio of convection time-scale over diffusion

time-scale for a standard transport distance [27]. A higher Reynolds number means faster

downstream convection of a fluid structure relative to its rate of diffusion. Conversely,

lower Reynolds number flows are typically more heavily influenced by effects of shear and

vorticity due to the slower rate of convection and longer duration of near-wing presence.

For a given fluid viscosity, µ, the drastic difference in size (i.e. characteristic length,

c) and forward flight velocity, U , results in a several orders of magnitude difference in
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Reynolds number between biological fliers and commercial aircraft. Using dimensionless

quantities, such as Reynolds number, allows for the scaling of problems that share a

dynamic similitude. Comparing time-resolved results also involves non-dimensionalizing

wall clock time as a convective time, t∗, using the wing’s forward velocity (or free stream

speed) and chord length with the form t∗ = tU
c

. This describes the duration of motion

in terms of the amount of chord-lengths traveled.

Flow unsteadiness is commonly characterized by a different non-dimensional quan-

tity, reduced frequency,

k =
ωc

2U
, (1.2)

where ω is rotation rate, c is wing chord, and U is free stream velocity. Figure 1.2 pro-

vides a distribution of flight regimes for a wide variety of fliers. Commercial fixed-wing

aircraft fly at high Reynolds number but very low reduced frequency, and so their main

flight condition is steady flow. The upward trend in reduced frequency with decreasing

Re is demonstrative of the fact that small-scale vehicles increasingly depend on unsteady

flow to generate lift as their size decreases. Figure 1.2 also provides a qualitative de-

scription of the state of aerodynamics knowledge regarding the present understanding of

underlying flow physics in each Reynolds number and reduced frequency flight regime.

The present work studies the aerodynamic behavior of wings at Re = 20, 000 and re-

duced frequencies 0.06 ≤ k ≤ 1.4, which forms a range of kinematic parameters that

bridges the well-understood low reduced frequency regime to the highly unsteady high

frequency regime.
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Figure 1.2: Illustration of the various occupants in each reduced frequency vs.

Reynolds number flight regime. Figure adapted from Ames et al. [28].

1.3.2 Lift Production in Low Reynolds Number Flight

Figure 1.2 shows that small-scale fliers operate at high reduced frequency and low

Reynolds number. The present study, along with decades of prior research, provides

an understanding of the physical mechanisms by which lift is produced at the MAV

flight scale. It has been established that biological fliers and MAVs produce lift via

entirely different mechanisms than conventional aircraft, i.e. rapid flapping vs. steady

attached flow. Wings in attached flow produce lift in part due to a pressure distribution

normal to the surface along the airfoil and a leading edge suction force [29]. At high

incidence angle, flow separates about the leading edge, which leads to a loss of this

suction force. However, for rapid motions at high incidence, the formation of large-

scale vortices provides lift enhancement that appears to mitigate the loss of a suction
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force [30,31].

Figure 1.3: Maximum lift-to-drag ratio for a variety of airfoil shapes at Re

O(102 − 108) [32].

Figure 1.3 shows the degradation in airfoil performance in steady flow with de-

creasing Re. For Re < 105, flat plates generate higher lift-to-drag ratios than traditional

airfoils. At high Reynolds number, Re > 106, a turbulent boundary layer forms over the

suction side that can withstand a greater adverse pressure gradient, thus maintaining

attached flow at higher incidence than at low Re. As Re decreases, the boundary layer

remains laminar and can no longer overcome the adverse pressure gradient, especially

at high angle of attack. Thus, small-scale fliers rely less on attached flow to generate

lift and instead utilize flow separation and viscous phenomena to provide unsteady lift

enhancement. To promote flow separation, these vehicles have thinner airfoil sections

than do passenger planes and rotorcraft, with thickness-to-chord ratio t/c ≈ 3−6% [33].

The present work aims to study the fluid dynamics of wings operating with kine-

matics typical of the Re = O(104) flight regime, that is, they contain high levels of

8



unsteadiness and whose exact lift production methods are presently unclear. It is com-

mon to break down the complex motion of flapping wings into isolated motions: rotation,

surge, and pitch. The latter two will be studied in the present work and represent a

simplified two-dimensional flapping wing. Figure 1.4 provides examples of experimen-

tally obtained wing strokes using high-speed cameras observing fruit flies (Figure 1.4a)

and hummingbirds (Figure 1.4b) in hover. Results between the two fliers are very simi-

lar, and the breakdown of wing incidence on the right of Figure 1.4a shows a relatively

horizontal period of translation, motivating the present surge from rest study, and a

rapid pitch upon stroke reversal at the ends of upstroke and downstroke, motivating

the present pitch study. Dickinson and Götz [36] also studied the impulsively started

wing to draw insights into insect flight force production with the aim of further rejecting

the ‘quasi-steady state’ model, which assumes that steady state forces are produced by

the wing at each instantaneous position in the stroke cycle [37]. Dickinson admits that

although insect wings move only 2-4 chord lengths each half cycle, it is still of interest

to the aerodynamics community to observe the lift history over an extended convective

time. For example, these results may also be applied to fixed wing aircraft undergoing

rapid maneuvers that will subsequently experience a relaxation period as lift produc-

tion returns to original state. Dickinson et al. extended the translation after the plate

reached constant velocity for a distance of seven chord lengths to observe the wing’s

relaxation from maximum lift during the acceleration phase to its steady state lift long

after startup. They observed the formation, shedding, and reformation of leading edge

vortices (LEV), as illustrated in Figure 1.5a and similarly observed experimentally by

Stevens et al. in Figure 1.5b for pitching wings. It was hypothesized that leading edge
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vortices were a source of considerable lift production. Studying its formation became a

major focus of subsequent work [39,40].

(a) Wing motion and flight forces (red arrows) of fruit fly

(Drosophila melanogaster) [34]

(b) Experimental wing stroke

traces of Calypte anna [35].

Figure 1.4: Typical wing strokes of flapping wing fliers in hover.

1.3.3 Effects of Leading Edge Flow Separation

Figure 1.5a provides a schematic illustrating the effect of an LEV on lift, showing a

90◦ rotation of the suction force vector and additional contribution to the plate-normal

force. Panah et al. quantified the effect of a leading edge vortex above a plunging

plate and provided time-resolved vorticity and chord-wise pressure measurements that

clearly demonstrated the strong suction beneath the LEV (see Figure 1.6) [31]. Previous

work has concluded that faster motion rates leads to higher peak lift and LEV circulation

strength during the acceleration phase of a maneuver [38,40]. This motivates the present

work to explore the nature by which circulation production is related to motion rates.

It is important to recognize that quantitative differences in circulation produc-

tion may not necessarily correspond to unique leading and trailing edge wake shape.

Granlund et al. [41] showed a qualitative similarity between leading edge vortices cor-
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(a) Generation of detached vor-

tex lift on thin wings [36] .

(b) Dye flow visualization with streamlines calculated from ve-

locity fields (LE pitch) [38]

Figure 1.5: (a) (top) Conventional steady lift from potential flow. Rapid change

in velocity around sharp edge results in suction vector. (bottom) Development

of leading edge vortex and elimination of plate-parallel suction force and instead

angles it normal to the plate. (b) Dye visualization and streamlines for a rapidly

pitching flat plate in a freestream.

responding to peak lift for several pitch cases at k = 0.2. Figure 1.7 provides a pivot

axis study for pitching wings that illustrates a significant difference in force production,

despite nearly identical flow visualization images at peak lift. This demonstrates that for

high motion rates qualitative similarity in flow topology is not sufficient to also ensure

similar forces. Without having quantitative flow field measurements, they hypothesized

that the difference in aerodynamic force histories was likely due to a difference in cir-

culation production. The present work will support their hypothesis by providing cases
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with identical flow field histories (shape and trajectory) containing strikingly different

LEV strengths that directly contribute to a difference in force production.

Figure 1.6: Vorticity field and surface pressure distribution on the top surface

of a two-dimensional plunging plate with plunge amplitude h0/c = 0.3 and

k = 1.05. Figure from Panah et al. [39]

1.3.4 Trailing Edge Flaps and Flow Control

Building upon the present study of single-element wings, another major campaign

in this work is studying the aerodynamic behavior of a large, rapidly pitching trailing

edge flap. A two-element wing utilizes fundamental principles behind pitching wings

to provide an actuating lifting surface to increase maneuverability and act as an active

flow control device. Present studies into active flow control typically include the use

of synthetic jets and other forms of fluidic control. However, Colonius and Williams

showed that although fluidic control is remarkably effective at delaying the onset of stall

at high angle of attack and increasing steady lift coefficient (see Figure 1.8a), there is a
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Figure 1.7: Pivot point study on pitching flat plate at reduced frequency k = 2

at pivot point, 0 ≤ x ≤ 1, with dye visualization snapshots at the point of

maximum lift. Notice a qualitative similarity of the flow field despite twice as

large force history for the leading edge pitch, x = 0, than that of the trailing

edge pitch, x = 1. Figure adapted from Granlund at al. [41].

time lag or even a reversal in lift history immediately upon actuation (see Figure 1.8b

at early t∗) [42]. The benefit of a rapidly deflecting flap is that high force transients

due to flap motion are preserved whether the flow is attached or separated - a notable

advantage over most fluidic control. More importantly, the additional lift production

occurs immediately upon motion onset and without the lift reversal demonstrated in

Figure 1.8b.

Present-day flight vehicles typically employ some form of control surface to expand

the aircraft’s optimal performance envelope, allowing them to fly efficiently in a wide
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(a) (b)

Figure 1.8: (a) Lift versus angle of attack with (open circles) and without (open

squares) actuation at constant free stream and (b) transient lift response to the

actuator pulse, scaled by its maximum value. Pulsed jet effectively increases

steady aerodynamic performance in (a), but the transient aerodynamics in (b)

undergoes a negative lift spike before increasing to its peak lift after — convective

time. Figures from Colonius and Williams [42]

range of flight conditions [43]. The specific control surface mechanism considered in this

work is a large, high deflection-rate trailing edge flap for the intended situational use of

an aggressive flight maneuver or effectively nullifying a gust encounter. Sanders et al. [49]

addresses several advancements that must be accomplished for variable-geometry con-

cepts to become practical, including the development of high-energy-density actuators,

efficient integration of these actuation concepts into the structure, and understanding

the aerodynamic performance of these adaptive structures. The present work aims to

address and provide significant insight in the latter of these concepts.

Presently in the literature there is a considerable amount of work reported on the
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use of trailing edge flaps as a form of active flutter suppression [44], small perturbation

gust alleviation, [44, 45] and steady aerodynamic performance enhancement. There are

many positive attributes of implementing a trailing edge flap, but it is deeply situa-

tionally dependent when it comes to flap design, construction, and actuation. In the

aforementioned studies, the size of the flaps are typically a small fraction of the chord

length (4− 27%) [45, 46]. The actuation rates are in the quasi-steady range when used

as a variable-camber device in steady flight and around 2.5− 75 Hz [47,48] in the highly

dynamic, periodic case of rotor blades. One novelty of the present work lies in its explo-

ration of flaps with actuation rates shorter than one convective length that are capable

providing nearly instantaneous, yet transient, lift enhancement for the purposes of rapid

maneuvering or gust alleviation.

Recent studies on trailing edge flaps have made the leap from the high Reynolds

number (Re = O(106)) regime of large aircraft and entered the low Reynolds number

regime (Re = O(104)), applying them to micro air vehicle scale flapping wings [50, 51].

Xu et al. showed that in flapping wing flight, understanding the impact of flap deflection

can significantly improve lift production on the vehicle. Their study provides an opti-

mization technique that shows (via simulations) how using a simple hinged trailing edge

flap can enhance overall lift by augmenting circulation production during the maneu-

ver. Li et al. [51] came to a similar conclusion with their immersed boundary method,

illustrating how the unsteady aerodynamic performance of the “deformable” (hinged)

flapping plate is strongly dependent on the deflection phase of the trailing edge flap.

They obtained a maximum lift enhancement of 26% by tailoring their time-dependent

deflection amplitude and phase throughout the wing stroke. This evidence suggests that
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dynamic trailing edge flaps have the potential to significantly improve lift production

for rapidly maneuvering wings.

Sterenborg at al. attempted to calculate lift on a wing with a dynamic flap using

velocity fields from particle image velocimetry [52]. Using a 0.2c flap at deflection

angles ∆δ = 6◦ they only calculated the theoretical steady lift, matching experimental

measurements relatively well. However, the velocity fields were not obtained or presented

as a time-resolved history and the motions were small at moderate deflection rates.

Their aim was to apply Noca’s method [53] for lift and drag calculation using velocity

fields from PIV on a non-stationary body, i.e. the pitching trailing edge flap. Their

results did match force measurements relatively well, but the motions were likely not

generating much unsteady lift as they also matched forces using the steady form of

Kutta-Joukowski’s theorem.

There is a clear lack of experimental investigations of simplified trailing edge flap

kinematics with the aim of isolating the flap and understanding the effect it has on

lift. Often times in experiment, as is the case in Lee and Su [55], the trailing-edge

flap is deployed as a subset of a greater airfoil motion to augment general aerodynamic

performance, rendering its aerodynamic signature coupled. The most similar study to

the present work was performed by Rennie et al. on a 27%-chord trailing edge flap

undergoing pitch-and-hold maneuvers with a reduced frequency of k = 0.14. In that

range of flap deflection amplitudes and rates, they concluded that during the transient

pitch down (or up) motion of the flap, the airfoil achieves an “inviscid efficiency,” where

the lift history can be accurately predicted using unsteady thin airfoil theory. The

present work will expand on Rennie’s study by employing a larger (50%-chord) flap at
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higher deflection rates and introducing experimental particle image velocimetry (PIV)

measurements. Additionally, the more aggressive maneuvers presented in this work

introduce the dominance of non-circulatory forces on both the trailing edge flap itself,

as well as the stationary leading edge element, which to the authors’ knowledge has not

yet been addressed in the literature.

1.3.5 Low Order Modeling of Unsteady Lift

Capabilities of aerodynamic modeling range from highly-resolved CFD [56] to sim-

plified linear analytical solutions [57]. Computationally expensive, yet potentially rich

in physical accuracy, CFD and non-linear numerical solvers [58,59] provide fundamental

insight into the physical nature of unsteady flows. However, these methods are time-

intensive in their setup and execution may contain a number of numerical instability

issues [60]. Thus, low-order modeling fits well into the realm of optimization, sensitivity

analysis, and dynamics and control. Figure 1.9 provides a taxonomy of hovering and

forward flight regimes, outlining the applicable regions for several specific low-order mod-

eling techniques. Figure 1.9 also indicates the scope of the present work and highlights

the current gap in the literature this study aims to fill. Specifically, this work considers

the application of solutions from Theodorsen and Wagner to predict lift production.

1.3.6 Classical Theories: Theodorsen and Wagner

Theodorsen’s theory was originally derived with the intention of modeling unsteady

loads due to aeroelastic effects that led to aerodynamic instabilities for fixed-wing aircraft
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Figure 1.9: Table adapted from Taha [60] describing the various flight regimes

of forward and hovering flight in terms of reduced frequency, k. Each region has

an applicable set of aerodynamic models, except those of the present study as

indicated on the table for 0.1 ≤ k ≤ 10.

[61]. Theodorsen provides a general analytical solution for lift on a pitching and plunging

wing with a trailing edge flap. The potential flow solution solves for unsteady forces on

a 2-D harmonically oscillating plate under the assumptions of inviscid, incompressible

flow and subject to small disturbances. In this work, Theodorsen discloses the basic

nature of the mechanism of flutter and leaves “modifications of the primary results by

secondary effects for future investigation. Such secondary effects are: The effects of

section shape, finite span, and deviations from potential flow” [61]. The latter two are

directly investigated in the present study. The novelty of Theodorsen’s solution is its
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convenient parsing of the lift history into its constituent parts. The equation consists of

a linear superposition of terms proportional to motion history, each describing a specific

mechanism by which lift is produced. For a purely pitching wing in harmonic motion

with reduced frequency, k, the solution is given by

L = πρb2
[
Uα̇− baα̈

]
+ 2πρUbC(k)

[
Uα + b(

1

2
− a)α̇

]
. (1.3)

All terms within the brackets are directly proportional to angle of attack, α, and its time

derivatives: angular velocity, α̇, and angular acceleration, α̈. The coefficients consist of

geometric, kinematic, and free stream conditions that are typically prescribed. The first

term in Equation 1.3 contains inertial effects due to the physical body moving through

the fluid. They are non-circulatory in nature and contain what is termed the “added

mass” force. The second term is due to unsteady circulation [61–63]. Theodorsen’s

function, C(k), introduces an amplitude reduction and phase lag on the circulatory lift

response due to the presence of vorticity in the trailing edge wake. Setting C(k) =

1, as will be done in the present work, recovers the quasi steady-state assumption.

This assumption neglects the effect of periodicity and influence of wake vortices on the

airfoil. Thus, what the present work will call “Theodorsen’s solution” is simply an

unsteady potential flow solution satisfying the boundary conditions of no through-flow

on the wing surface and trailing edge Kutta condition, both of which will be discussed

in later chapters. This analytical solution accounts for unsteady, rate-dependent effects

proportional to velocity and acceleration that will prove to be dominant sources of

force production during rapid maneuvers. Theodorsen’s solution presents an extremely

valuable tool for the use of predictive modeling and control applications. However, with
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distinct assumptions of attached flow, small amplitude oscillations, and a planar wake,

it seems dubious that this solution would accurately predict forces on wing motions that

generate large leading edge vortices and non-linear trailing edge wakes.

The results of Ramesh et al. [64] indicate that lift production in high reduced

frequency, large amplitude motions appears to be heavily dependent on non-circulatory

rate-dependent lift forces (i.e., the first set of brackets in Equation 1.3) that are strictly

concerned with the motion of the wing itself and less on contributions from circulatory

forces. McGowan et al. [65] and Ol et al. [15] performed experiments on aggressive

pitch-plunge maneuvers and demonstrated a considerable resilience of Theodorsen’s lift

prediction for cases that largely violate the assumption of attached flow (see Figure

1.10). The middle case in Figure 1.10 shows a high reduced frequency, small amplitude

motion that matches Theodorsen’s solution well. The left and right cases of Figure 1.10

describe cases with moderate reduced frequencies but large plunge amplitudes, which are

intentionally performed to violate the small amplitude and attached flow assumptions.

Although the results clearly show a discrepancy between Theodorsen and experimen-

tal measurements, this work demonstrated for certain cases a relative insensitivity to

flow separation and viscous sources of circulation production that are not modeled by

Theodorsen. It was concluded that Theodorsen’s model works for cases that, despite

substantial leading edge vortex formation, still satisfy the trailing edge Kutta condition

and for cases dominated by pitch rate effects due to rapid acceleration (i.e., high reduced

frequency). However, the issue remains to fully understand the aerodynamic response

for conditions in which classical linear predictive models are not valid. The present work

aims to quantify vorticity production for cases that invalidate Theodorsen’s solution and
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assess which sources of force production accurately describe the physical flow and can

be linearly superimposed.

Figure 1.10: Pure plunge cases (black lines, labeled 3A, 4A, 5A) with reduced

frequency and plunge amplitudes (left) k = 0.393, h/c = 0.5; (middle) k =

7.86, h/c = 0.025; (right) k = 1.179, h/c = 0.5. Also shown are (middle row)

corresponding vorticity fields from CFD and (bottom row) dye flow visualization,

illustrating the flow topology for each case and its deviation from Theodorsen’s

assumptions of attached flow and planar wake. Figure adapted from McGowan

et al. [65].

Surging wing kinematics do not have rotational velocity from which to calculate

reduced frequency and are better described using the classical solution of Wagner [13].

Theodorsen’s theory is a representation of Wagner’s theory in the frequency domain
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(i.e. solution is a function of k) [66]. Wagner derived the growth of circulation about an

airfoil starting impulsively from rest at a small fixed angle of attack and describes the

lift coefficient as a function of chords traveled for a two dimensional airfoil given by

CL = (2π sinα)φ(s), (1.4)

where φ(s) is the Wagner function. Wagner’s classical 2D attached-flow solution [13]

for impulsive-start (equivalently impulsive change in free-stream speed, after subtract-

ing buoyancy or inertial effects [67], or impulsive change in angle-of attack), must of

course be modified for experimentally-realizable acceleration rates. Exploration into the

accuracy of Wagner’s solution for cases containing leading edge vortices was done for

a wing at 15 degrees incidence by Pitt-Ford and Babinsky [68], who argued that while

bound circulation on the plate was essentially zero, vorticity ascribed to the leading-edge

vortex is responsible for producing circulation not unlike that given by Wagner’s the-

ory. Further, Pitt-Ford and Babinsky, following Brennan [69] and Lamb [54], obtained a

solution for the apparent-mass contribution during the acceleration-phase of the plate’s

motion. In Wagner’s treatment this would have been a delta-function. Instantaneous

acceleration is not physically possible, so it is important to obtain theoretical solutions

that represent the correct wing kinematics.

1.4 Summary

Small-scale vehicles operate at low Reynolds number in a regime where conven-

tional airfoil performance degrades due to flow separation and loss of attached flow pres-

sure forces. Based on observation of natural fliers and replication of their wing strokes,
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flat plates supersede airfoils in aerodynamic performance for Re ≤ 105. Characteristic

flight kinematics in this regime include high reduced frequency and large amplitude wing

motion. Natural fliers and MAVs overcome limitations of flow separation by generating

lift-enhancing leading edge vortices that lead to large transient unsteady lift produc-

tion. Present low-order modeling techniques struggle to accurately predict the effect of

vortex formation, which limits their applicability to use in flight control or predictive

modeling. Steady modeling techniques simply do not capture time-dependent lift pro-

duction, which motivates an assessment of classical unsteady models such as Wagner

and Theodorsen to determine how accurately real-world unsteady lift production can

be predicted by classical theory. These models theoretically pertain only to low am-

plitude motions containing attached flow and planar wakes. The high incidence angle,

large amplitude motions of rapidly maneuvering aircraft, however, largely violate these

assumptions. It is of immediate interest to assess the extent to which these classical

models are capable of providing accurate results for lift on airfoil and airfoil-aileron

systems and amend the theoretical equations to better describe the physical flow.

1.5 Research Objectives

Review of prior work on wings operating at high incidence angle and low Reynolds

number motivates the need for a deeper understanding of the exact force-producing

mechanisms involved during aggressive wing maneuvers. In particular, the study of

unsteady aerodynamic phenomena surrounding leading edge flow separation and relative

magnitude of vortex lift to motion-induced lift has been carried out via several water
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tunnel experiments. The present work considers two wing motions fundamental to low

Reynolds number flight: translational surge and pitch (Figure 1.1). The objectives of

the present work are as follows:

1. Measure time-resolved circulation production and unsteady force histories over

a range of incidence angles and motion rates for two canonical flat plate wing

kinematics: 1) impulsively started translation and 2) pitch in a free stream from

α = 0◦ to α = 45◦.

2. Relate unsteady force histories of pitching and surging flat plates to their respective

flow topologies and analytical force predictions.

3. Characterize the aerodynamic behavior in terms of circulation and force produc-

tion of a large rapidly-deflecting trailing edge flap for a wide parameter space of

deflection rates, incidence angles, and initial flow conditions.

4. Propose modified semi-empirical and analytical aerodynamic models capable of

successfully predicting lift history on a hinged flat plate undergoing rapid deflec-

tion.

5. Apply existing analytical and numerical low-order modeling techniques to the

present set of kinematics to identify each of the physical mechanisms responsi-

ble for lift production (e.g. added mass, virtual camber).

It should be noted that actual biological fliers typically do not have rigid rectan-

gular wings. However, due to its inherent simplicity, the rigid thin flat plate has been

the subject of many research efforts in the fluid dynamics community, and it serves as a
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universal wing geometry upon which complex fluid phenomena can be studied without

concern of dissimilar planform and aeroelastic effects. Data from the present work will

contribute to the literature by providing a vast amount of experimental results that not

only covers the immediate force transient due to motion onset but also the relaxation

period over long convective times. The results of this work will improve the physical

understanding of force production during rapid wing maneuvers at low Reynolds number

and aim to provide several techniques from which to confidently predict lift.
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Chapter 2

Methodology: Experimental Setup and Analysis

2.1 Facilities

This work is the result of a multi-year collaborative effort between the University

of Maryland (UMD) and the Air Force Research Laboratory (AFRL). This collaboration

capitalized on the capabilities of each facility to provide a vast library of experimental

data in the form of direct force measurements, particle image velocimetry (PIV), and

fluorescent dye flow visualization.

2.1.1 Air Force Research Lab (AFRL), Wright Patterson AFB

Recirculating Water Tunnel

A significant portion of the experimental campaign was performed at Wright Pat-

terson Air Force Base in the Horizontal Free-Surface Water Tunnel (Figure 2.1), de-

tailed extensively by Ol [70]. All force measurements and flow visualization, as well as

particle image velocimetry for the single-element wing, were performed in this tunnel.

The water tunnel has a 4:1 contraction ratio, a test section 46 cm wide by 61 cm high,
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and a speed range of 3 to 60 cm/s. A three-degree-of-freedom motion rig is fitted to

the tunnel and consists of a triplet of H2W linear motors, driven by AMC DigiFlex

servo-drives controlled by a Galil DMC 4040 4-channel card. Each channel is carefully

configured with user-selected proportional/integral/derivative (PID) constants. Each

motor is programmed independently so that the desired angle of attack and horizontal

position time-history of the model are converted to position commands for each linear

motor. This allows for single degree-of-freedom motions such as pure pitch and pure

translation, which will be the extent of motion complexity in this work

Figure 2.1: AFRL recirculating water tunnel.

2.1.2 University of Maryland

UMD Towing Tank

Contributions to the experimental dataset from the University of Maryland were

in the form of particle image velocimetry on the hinged wing experiments in its 7 ×
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Figure 2.2: UMD free-surface water tank. CAD model of motor system from

Manar and Jones [71].

1.5 × 1 m towing tank, equipped with a four-axis motion control system capable of

independent pitch, plunge, surge, and rotational motion. The motor assembly, shown

in Figure 2.2, sits fixed atop an 80/20-constructed carriage fitted with a pair of H2W

BLDC-08 brushless linear motors that drive the assembly down the length of the 7 m

tank along a track of magnetic encoders that reports motor positions to within 0.001 mm.

The motor assembly itself (inset in Figure 2.2) consists of two independently-controlled

H2W BLDC-04 brushless linear motors for pitch/plunge control of the vertical plunge

rods and a direct-drive H2W TMS7C brushless rotary stage with a slip ring to allow for

continuous rotation. Note that the rotary stage will not be used in this study. Motor

positions were controlled using a multiaxis Galil DMC 4153 motion controller, producing

a motor position accuracy within 0.250 mm for the tow axis and 0.010 mm in the plunge

rods.
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2.2 Experimental Parameter Space

When it comes to obtaining a full understanding of unsteady aerodynamic phenom-

ena and physical principles, rapidly maneuvering wings provide a challenging engineering

problem that gets increasingly more difficult with complex motions. The comprehen-

sive library of experimental data obtained in this study focuses on acquiring a physical

understanding of the transient lift response and flow field development of two unique

but similar sets of simple canonical wing geometries and kinematics. The two major

experimental investigations include: 1) single element flat plates undergoing rapid pitch

and startup surge kinematics and 2) hinged wings with large, rapidly deflecting trailing

edge flaps.

The experimental campaign on single-element flat plates studies two very sim-

ple motion types: linear translation from startup in the streamwise direction and a

pitch-and-hold maneuver on a wing traveling at constant free stream. The hinged wing

experiments explore pitch-and-hold maneuvers of the trailing edge flap for various de-

flection rates, deflection angles, and fixed fore element positions. The following sections

detail the kinematic and geometric parameter spaces explored in these experiments.

2.2.1 Wing Models

In an effort to minimize geometric complexity, the wing shapes for both single-

element and hinged wing studies were kept as simple as possible. The single-element

wing, shown in Figure 2.3, is of aspect ratio (AR) 4 with chord length c = 76.2 mm,

5% thickness (t = 0.05c), and rounded leading and trailing edges, where aspect ratio is
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Figure 2.3: Aspect ratio (AR) 4 flat plate used in translational surge and pitch

studies. The plate is fitted with six dye ports along the span for dye visualization

and a force balance mount for time-resolved direct force measurements.

defined as AR = b2

S
, S is planform area, and b is wingspan. This wing was used for both

pitch and surge experiments.

Extending the analysis of aerodynamic behavior on single-element wings and slightly

increasing complexity, a subsequent study was performed on a hinged wing pinned at

the mid chord, shown in Figure 2.4. A plastic 3D printed NACA-0006 of 200 mm chord,

strengthened by carbon-fiber rods, spanned the test section as shown in Figure 2.4a.

This wing, manufactured and instrumented at AFRL, was sliced at the mid chord and

fitted with a connecting mechanism that allows for the instrumentation of two inde-

pendent force balances: one for the fore-element and one for the aft-element [72]. The

gap was approximately 0.5 mm and was bridged with flexible rubber tape of 0.2 mm

thickness.
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(a)

(b) (c)

Figure 2.4: (a) 3-D printed hinged wing fitted with front and rear component

force balances. (b) Glass hinged wing mechanism at UMD. (c) Illustration of

trailing edge flap kinematics for leading edge fixed at αLE = 0◦ and αLE = 20◦.
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The hinged wing mechanism used exclusively for particle image velocimetry at

UMD was constructed using two rectangular sections (2.5 in. × 20 in. × 0.125 in.)

of standard glass connected with a metallic piano hinge, as shown in Figure 2.4b. The

use of thin glass as the wing material allowed for the laser sheet in PIV experiments to

pass through undistorted, illuminating both the pressure and suction sides of the wing.

Gaps between the two plate sections were covered with a clear flexible adhesive. The

two wings used in this study (NACA-0006 at AFRL and flat plate at UMD) differed

in cross-sectional thickness; however, because both wings have symmetric profiles and

flow attachment, or lack thereof, was determined to be independent of thickness for the

present kinematics, the difference in wing sections was considered negligible, allowing

for direct comparisons between the experimental measurements.

2.2.2 Translational Surge

Figure 2.5 shows the velocity profiles describing the wing kinematics pertaining to

the surging AR 4 flat plate (see Figure 2.3). The velocity profile describes a wing to

beginning at rest and increasing velocity linearly (i.e. with constant acceleration) to a

finite final velocity at which it will translate for the remainder of the motion. Because

that ideal profile would require infinite acceleration at time t = 0+ resulting in serious

rig vibrations, velocity profiles were generated using the infinitely differentiable Eldredge

function [73], which provides a nearly trapezoidal profile with respect to time but also

includes a smoothing parameter to round the corners of the profile, which minimizes

jerk-induced rig vibrations. Velocity profiles (as shown in Figure 2.5) are computed
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using

U(t) =
k

a
ln

[
cosh(aU∞

c
(t− t1))

cosh(aU∞
c

(t− t2))

]
+
U∞ − U0

2
, (2.1)

where k = U̇c/2U∞ is the nominal acceleration rate, a is the smoothing parameter, and

t1 and t2 are the start and end times of the constant acceleration region, respectively.

Purely surging motions did not require significant corner smoothing and the velocity

profiles were made as nearly trapezoidal as the motors would allow, setting a = 21.

During all of the experiments presented here (with the exception of static measurements)

the tunnel was not running and was used as a towing tank. The wing was driven in pure

rectilinear translation at a fixed angle of attack, α. The final free stream velocity was

set to U∞ = 0.26m/s, corresponding to a Reynolds number of Re = 20,000.

All velocity profiles were linear with respect to time, accelerating to a target ve-

locity and carrying out the rest of the motion at this terminal speed. The distance over

which the wing accelerated, sa, is normalized by its chord length, c, and determines

the travel distance over which there is non-zero acceleration. Figure 2.5 illustrates the

parameter space of the investigation into the effects of wing acceleration, ranging from

a slowly accelerating case over 6 chord-lengths of wing travel to a fast case accelerating

over 0.125 chords. Additionally, an angle of attack study was performed on the sa/c =

1 case for α = 5◦, 7◦, 8◦, 10◦, 15◦, 20◦, 30◦, 35◦, and 45◦. Because this study was solely

focused on the effect of the startup transient and subsequent constant-speed translation,

the deceleration region is not of interest to the present study. The following figures will
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Figure 2.5: Velocity profiles for 0.125 ≤ sa/c ≤ 6, α = 45◦.

therefore be truncated at s/c = 14, the point at which the wing reaches the physical

constraint of the test section and deceleration begins.

2.2.3 Translational Pitch

The second simple maneuver studied here is a pitch-and-hold motion on a wing

traveling at constant speed. This motion is characteristic of perch maneuvers in fixed

wing aircraft [74] and large birds [75], as well as during stroke reversal in flapping

fliers [76,77]. Granlund et al. [22] cover a very wide and dense parameter space in terms

of pitch rate and pivot axis and provide detailed force histories and flow visualization.

The current study focuses on a smaller subset of the kinematic space, but additionally

applies novel analysis techniques on leading edge vortex dynamics, force histories, and
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circulation production.

Figure 2.6: Angle of attack time history for acceleration study. The two accel-

erations are representative of a “slow” and a “fast” case pitching to a final angle

of α = 45◦.

Figure 2.6 illustrates the experimental parameter space for the pitching flat plate

experiments. This includes an abridged study on pitch rate, Figure 2.6. Pitch motions

were run with the tunnel on at constant free stream corresponding to a Reynolds num-

ber of Re = 20,000 and begin with an initial incidence angle of α = 0◦. Since the goal

of this study was to observe and quantify the development of fully separated flow and

the formation of leading edge vortices, a final deflection angle of α = 45◦ was chosen

to assure leading edge separation and make for an intentionally aggressive maneuver.

Much like the translational surge kinematics, pitch motions were generated using Eq.

2.1 by replacing all velocity terms (U̇ , U∞, U0) with angle of attack terms (α̇, αfinal, α0).

Smoothing transients are required for the accurate observation of non-circulatory, pitch-
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rate dependent forces. The upper limit on attainable pitch rate is dependent on the

excitation of the test rig natural frequency, which causes oscillations that distort the

observable non-circulatory effects during acceleration phases [22]. The smoothing pa-

rameter, a, was selected to be 4 for the slow case and 15 for the fast case, which provided

smooth transitions to the linear profiles shown in Figure 2.6 without inducing undesired

motor jerk and wing oscillations.

2.2.4 Hinged Wing with Large Trailing Edge Flap

Much like the single-element wing experiments, the wing kinematics of the hinged

wing were kept simple to isolate the aerodynamic effect due to deploying the trailing

edge flap. The onset of trailing edge flap motion begins after the wing traveling at

constant velocity with front and back elements at fixed incidence angles reaches steady

state. Free stream was set to 200 mm/s, which, with a 200 mm chord, gave a nominal

chord-based Reynolds number of approximately 40,000. The flap is then deployed, as

given by the deflection history in Figure 2.8. The motion profile is half of a sine wave

of the form δ(t) = δ0 + 0.5A(1 − cos (2πft)), where δ0 is the initial flap angle, A is

the amplitude of the sine wave, and f is the dimensional frequency in Hz. However, to

ensure a smooth acceleration transient, we again use Eq. 2.1 with the form

δ(t) =
k

a
ln

[
cosh(aU∞

c
(t− t1))

cosh(aU∞
c

(t− t2))

]
+
δF + δ0

2
, (2.2)

where k = δ̇maxc/2U∞ is the reduced frequency, a = π2k/(2|δF − δ0|(1− σ)), and σ is a

fitting parameter. σ is chosen such that Eq. 2.2 replicates the half-sinusoid, see Figure
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Figure 2.7: Typical history of flap deflection angle versus time for a motion

occurring over 1 second. (black) Motor flap deflection using Eq. 2.2, (red) half

sinusoid. [72]

2.7.

2.3 Force Measurements

One of the primary methods of data acquisition in the current study was time-

resolved force measurement. Forces and moments were obtained via ATI NANO-25

IP68 six-component force balances. The manufacturer’s quoted uncertainty bounds for

the NANO-25 load cell are ≤ 0.28 N, which is commensurate with the highest 95%

confidence interval for dimensional forces in this study. Measurements were sampled

at 1 kHz and filtered in hardware at f = 18 Hz. Results were again filtered in post-

processing with a Chebychev II low-pass filter at 12 Hz with -20 dB attenuation. To

offset the time-shift applied to the data in the passband, a forwardbackward filtering
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Figure 2.8: Motion history of the trailing edge flap for several flap frequencies.
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technique is applied using the MATLAB command filtfilt, eliminating any phase

shifts in the filtering process. Each measurement is the result of an ensemble average

of five consecutive runs. Figure 2.9 provides representative examples of surge and pitch

cases, providing the raw, unfiltered result as well as the final result. To determine at

which frequency to apply the low-pass filter, fast Fourier transforms (FFT), using the

MATLAB function fft, were plotted to identify significant spikes corresponding to the

mechanical ringing seen in the raw force measurements. In both pitch and surge cases,

the largest peak in the FFT occurs at 12 Hz, thus dictating the frequency for the low-

pass filter. It should be noted that not all motions in this study contain large, undesired

mechanical vibrations. Less aggressive cases, e.g. slow pitch over 6 chords (red line in

Figure 2.9b), contained very little vibration throughout the prescribed motion.

Force measurements on the hinged wing were obtained in an identical fashion via

two NANO-25 force balances: one on the fore element and one on the rear element (see

Figure 2.4a).

2.4 Particle Image Velocimetry (PIV)

Time-resolved, planar (two dimensional) PIV was performed at both AFRL and

UMD to quantify velocity fields around the single-element and hinged wings. Results

were used quantitatively to measure circulation production and track the trajectories

of leading edge vortices as well as qualitatively to visually assess the nature of the flow

field and comment on its behavior.

AFRL: Single-element pitching and surging plate
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(a) Lift coefficient (left) and its fast Fourier transform (right) for the sa/c = 1 at α = 45◦ surge case

described in Figure 2.5. Raw data is in yellow, 12 Hz low-pass filtered data is in black.

(b) Lift coefficient (left) and its fast Fourier transform (right) for the sa/c = 1 and sa/c = 6,

α = 0− 45◦ pitch case described in Figure 2.6. Raw data is in yellow, 12 Hz low-pass filtered data

is in black.

Figure 2.9: Representative cases for surge and pitch motions demonstrating the

low-pass filtering process.

Shown schematically and as a lab snapshot in Figure 2.10, PIV experiments on

single-element surging and pitching flat plates at AFRL used an Nd:YLF 527nm pulsed

laser sheet of 2 mm thickness at 50 Hz to illuminate the 5 µm Vestosint seeding particles.

40



Figure 2.10: Particle image velocimetry (PIV) setup at AFRL.

Figure 2.11 provides snapshot images of the PIV experiment, showing the aforementioned

2 mm laser sheet (seen as illuminated line on suction side) aligned with the three-quarter

span and streaklines of seed particles. Images were recorded with a lab-fixed PCO DiMax

high-speed camera at a rate of 667 Hz, i.e. dt = 1.5ms. This image pair time step

was selected based on the desired particle displacement between frames of 6-10 pixels.

The camera and laser operation were externally synchronized to the wing motion via a

Quantum Composer timing box. PIV processing was performed on Lavison’s DaVis 8.1

software. A multipass, variable window-size processing method was implemented. The

first pass used a 48×48 pixel window with 1:1 square weighting and 50% overlap. The

next two passes used 32×32 pixel windows with 1:1 circular weighting and 75% overlap.

Vector post-processing was kept to a minimum by only utilizing a remove-and-replace

median filter of 2 standard deviations.

UMD: Hinged plate
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(a) (b)

Figure 2.11: Snapshots of the particle image velocimetry experiment taken with

a standard SLR camera. These images provide visuals of the shadow region

beneath wing due to the opaque wing material, streaklines of particles convecting

over the wing, visualization of spanwise location of the laser plane (indicated by

bright line on suction surface).
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Wing-fixed PIV on the hinged flat plate was conducted at the University of Mary-

land in the 7 m × 1.5 m × 1 m towing tank equipped with an Nd:YLF 527 nm pulsed

laser sheet to illuminate the ∼ 32 µm seeding particles. To create the laser sheet, a

series of mirrors and focusing optics directed the beam down the length of the tank to

hit the carriage-fixed optics that allowed the sheet to travel with the wing. As shown in

Figure 2.12, the beam, once directed vertically downward towards the wing, hits a Pow-

ell lens to turn the beam into a triangular planar laser sheet. The width and brightness

of the laser sheet can be adjusted by switching out Powell lenses of various angles (top

right image of Figure 2.12). A steeper Powell lens roof angle results in a wider but less

bright laser sheet. The laser plane was aligned with the three-quarter span location on

the wing, intended to provide two-dimensional flow fields (minimal out-of-plane flow)

while also being close enough to the camera to make use of the entire field of view.

Images were recorded at a rate of 100 Hz with a 1 MPx high-speed camera that was

fixed to the motor carriage and translated with the wing allowing for wing-fixed PIV

measurements (see Figure 2.13). The sampling rate was selected based on the desired

particle displacement between frames of, on average, 6-10 pixels. The camera and laser

operation were externally synchronized to the wing motion. PIV processing was per-

formed on Lavison’s DaVis 8.1 software. A multipass, variable window-size processing

method was implemented. The first pass used a 48 × 48 pixel window with 1:1 square

weighting and 50% overlap. The next two passes used 16 × 16 pixel windows with 1:1

circular weighting and 50% overlap. Vector post-processing was kept to a minimum by

only utilizing a remove-and-replace median filter of 1 standard deviation.
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Figure 2.12: Snapshot of UMD tank and laser beam path. Before inter-

acting with the wing, the beam enters a Powell lens (shown on right) to

expand itself into a thin sheet. (Lens image and schematic provided by

http://www.altechna.com)

2.5 Flow Visualization

Qualitative flow visualization was performed at AFRL using fluorescent dye and

planar laser fluorescence. A high concentration of Rhodamine 6G in water was injected at

the leading and trailing edges at the 3/4 semispan location by a positive-displacement

pump with a prescribed volumetric infusion rate. The dye was injected via a set of

0.5 mm internal-diameter rigid lines glued to the surface of the plate (shown in Figure

2.3). Dye was illuminated by the Nd:YLF 527 nm pulsed laser sheet of 2 mm thick-
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Figure 2.13: Schematic of UMD’s wing-fixed PIV setup. The wing-laser-camera

system travels together down the length of the tank as the hinged wing, centered

in the camera frame, undergoes its trailing edge flap deflections.

ness at 50 Hz. Images were recorded with a PCO DiMax high-speed camera through

a Nikon PC-E 45 mm Micro lens. A Tiffen orange #21 filter was used to remove the

reflected 527 nm laser light. Since the dye fluorescence wavelength was 566 nm, the re-

sulting image contained only the flow structures formed by the dye. To supplement the

quantitative force measurements, flow visualization provides images of clearly defined

flow structures that qualitatively show the flowfield throughout the wing’s motion. Force

measurements and PIV were acquired at a chord-based Reynolds number of Re = 20,000

to assure sufficient signal-to-noise ratio. However, all flow visualization experiments were

performed at a Reynolds number of 2,500 to avoid immediate diffusion and dissipation
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(a) Dye visualization (top) and PIV vor-

ticity field (bottom) of surging sa/c = 1

α = 45◦ case

(b) Dye visualization for several Reynolds numbers, showing

nearly identical flow structures developing independent of

Re.

Figure 2.14: Although PIV and dye visualization are performed at different Re

(Re = 20,000 and 2,500, respectively), the flow structures are very similar.

of the dye. Figure 2.14 provides a comparison between 1) dye experiment and PIV for

the fast surging plate at α = 45◦ (images rotated to place chord on the horizontal) and

2) Reynolds numbers for the same case ranging from Re = 2,500 - 20,000, all of which

provide nearly identical flow structures.

2.6 Analysis Techniques

Section 2.4 detailed the instrumentation and acquisition of time-resolved velocity

fields via particle image velocimetry. Beyond the straightforward acquisition of velocity

fields, additional analysis techniques were performed on PIV measurements to quantify

the strength and trajectory of vorticity production. Specifically for the hinged plate,
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vorticity measurements were used in a semi-empirical low order lift prediction model

based on the principles behind Lamb’s vortex impulse analysis [54]. The lift calculated

from the following vortex impulse method was compared to direct force measurements,

shedding light on the sources of lift production during highly unsteady kinematics and

illustrating the equivalence between force production and vorticity production.

2.6.1 Vortex Impulse

One major goal of this work is to illustrate the direct relationship between force

production and vorticity (or circulation) production on wings undergoing rapid maneu-

vers. Section 2.3 described the acquisition of direct force measurements via installing

a submersible force balance on the wing. The theoretical concept of vortex impulse, as

popularly derived by Lamb [54], introduces the idea of obtaining force production solely

via the time-resolved magnitude and trajectory of generated vorticity. Thus, we are able

to use PIV measurements to obtain a non-intrusive time-resolved force calculation for

lift production, which can be a useful tool for experiments incapable of instrumenting a

force balance.

An analytical depiction of this concept, detailed in Lamb [54], describes the fluid

impulse, J, resulting from the relative motion and growth/decay of two equal, opposite-

strength vortices as

J = ρΓsên, (2.3)
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where s is the distance between the vortices of strength Γ and ên is the unit normal

vector to the line of length s connecting the vortex centers. Eq. 2.3 can be broken down

into horizontal, P, and vertical, Q, components as

J = P + iQ = ρΓ[(z+ − z−) + i(x− − x+)], (2.4)

where the subscript “+” corresponds to the vortex with positive vorticity and “-” cor-

responds to its opposite-signed companion vortex with negative vorticity.

von Karman and Sears [78] extended upon this work and explained that the lift

force is equal to the time rate of change of vertical momentum. Differentiating Eq. 2.4

and applying the chain rule results in a lift force given by

L′ = −ρ[(u− − u+)Γ + (x− − x+)Γ̇], (2.5)

where u(t) is a horizontal velocity given by the time derivative of x(t). Non-dimensionalizing

Eq. 2.5 by the freestream dynamic pressure and chord length, we obtain an equation

for the lift coefficient,

CL = − 2

U2c
[(u+ − u−)Γ + (x+ − x−)Γ̇] (2.6)

According to Eq. 2.6, the only quantities required to compute lift (using only

flowfield information) are vortex strength, Γ(t); relative position between the vortices,

x(t); and each of their time derivatives, Γ̇(t) and u(t). Section 2.4 covered particle
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image velocimetry, which provides time-resolved velocity fields and, via mathematical

manipulation, vorticity fields. The following section will discuss the methodology by

which to obtain the vortex strength and position values required in Eq. 2.6.

2.6.2 Vortex Tracking: γ1 Criterion

The practice of identifying vortex structures is quite common in low Reynolds

number flow investigations [79–81]. There are several methods for doing so, but one

of the most common and robust methods for identifying a vortex center is to use the

γ1 equation proposed by Graftieaux, et al. [82]. This function, applied to fluid velocity

fields, characterizes the extent to which the fluid motion is circular around a point, P ,

and is given by

γ1(P ) =
1

S

∫
S

sin(θ)dS, (2.7)

where S is the area of integration and θ is the angle between point P and the ve-

locity vector at dS. A γ1 value of 1 indicates purely tangential flow and one that is

highly rotational about a single point P . As explained by Manar et al. [80], a benefit

of implementing this method is that it incorporates spatial averaging that attenuates

measurement noise, resulting in smooth, contiguous regions that ease the vortex iden-

tification process. As will be shown, this method very effectively captures the location

of a single coherent, circular vortex, but it does not have the capability to identify non-

circular, asymmetric regions of vorticity, such as the feeding shear layer to the leading

and trailing edge vortices or the bound circulation along a wing experiencing attached

flow.
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2.6.3 Vortex Tracking: Centroid of Vorticity

Calculating vortex impulse lift via Eq. 2.6 requires the position and convection

speed of two opposite-signed ideal vortices. However, because we are dealing with real

flows that generate vorticity via viscous phenomena (boundary layer development, shear

layer and vortex formation at the leading edge) there is more to the vorticity field than

purely two clearly defined vortices. Thus, we now seek to apply the principles of the

vortex impulse method to cases in which the flow field is more complex than the ideal

case. This section explains the method of tracking the position and relative motion of a

region of vorticity rather than any single coherent vortex.

Figure 2.15 provides representative vorticity measurements for the flat plate and

hinged wings during their motion transients. During the flapping motion, the hinged

wing (Figure 2.15b) experiences considerable periods of attached flow followed by gradual

development into separated flow, during both of which there is no clearly identifiable

vortex. Thus, common vortex identification methods such as γ1 will not yield an accurate

representation of the flow configuration and cannot provide the necessary values for Eq.

2.6. This motivated the implementation of a robust method that accurately defines a

representative location for the center of vorticity corresponding to the wake or to the

bound circulation on (or above) the wing.

Tracking the centroid of vorticity is an easy to implement, robust method, which

is necessary when the flow field contains more than coherent circular vortices. Centroid

coordinates [xcent, ycent] are determined based on the equations
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xcent =

M∑
j=1

N∑
i=1

xijwij

M∑
j=1

N∑
i=1

wij

(2.8)

ycent =

M∑
j=1

N∑
i=1

yijwij

M∑
j=1

N∑
i=1

wij

, (2.9)

where wij is the vorticity (w = ∇×V ) at point xij. To capture the vorticity correspond-

ing to only bound circulation or trailing edge wake circulation, masks were applied to

the flowfield to isolate the areas of interest (see solid and dashed boxes in Figure 2.15).

Within the solid contour (bound circulation) there contains both positive and negative

vorticity, highlighting another shortcoming of using γ1. The location of the resulting

“vortex” is calculated as the average of both positive and negative vorticity centroids.

x̄bound =
x+
cent + x−cent

2
(2.10)

ȳbound =
y+
cent + y−cent

2
(2.11)

Figure 2.15 contains the locations of bound and wake centroids corresponding to

(xcent, ycent) of Eq. 2.8 - 2.9 for positive, negative, and total (Eq. 2.10 - 2.11) vorticity, in-

dicated by red, blue, and black outlined circles, respectively. Notice that the γ1 method,

shown in Figure 2.15 as a star, accurately captures vortex centers for the surging plate’s

LEV and TEV and the hinged wing’s TEV; however, it could not accurately identify
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a location for the bound circulation on the hinged wing. The centroid of vorticity is

insensitive to the shape of the resulting flow field and will provide a time-resolved tra-

jectory of the motion of all the vorticity in the flowfield rather than of one single vortical

structure. For this reason, the vorticity centroid will be used to compute vortex location

for the hinged plate, whereas γ1 will be used for the surging and pitching single-element

plates.

(a) Surging wing at α = 60◦. Both γ1 and centroid

method locate leading edge vortex.

(b) Hinged wing at deflection angle δ = 40◦.

Without a discernible leading edge vortex, γ1

(star) struggles to find a location for the LEV as

required by Eq. 2.6.

Figure 2.15: Two PIV snapshots for (a) surging plate and (b) hinged wing exper-

iments. Note that when there is a clear leading and trailing edge vortex, as in (a),

the γ1 criteria (star) successfully locates the vortex center. However, when there is

no coherent circular structure, as in (b), the γ1 method struggles to accurately find

a center. The centroid method (circles), however, robustly quantifies the center of

vorticity, regardless of coherent structures or circular flow.
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2.7 Chapter Summary

The experimental portion of this work aimed to quantifying the lift production

and vorticity generation during motion transients of rapidly maneuvering wings and its

subsequent relaxation to steady state. This experimental study is the result of a multi-

year collaborative effort between the Air Force Research Laboratory and the University

of Maryland, containing results of two major experimental campaigns. The first study

focuses on the force histories and separated flow development of surging and pitching

single-element flat plates at 2, 500 ≤ Re ≤ 20, 000, all of which were performed at AFRL.

The second study explores the lift history and flow field development of a hinged wing

with a rapidly deflecting trailing edge flap. For the hinged wing study, force measure-

ments and flow visualization were acquired at AFRL whereas PIV was acquired at UMD.

Both sets of experiments were measured by the methods of direct force measurements

via 6-component force balance, particle image velocimetry, and fluorescent dye flow vi-

sualization. Velocity fields acquired from PIV were used to track and quantify regions

of vorticity and, using a vortex impulse method, to predict lift production. This method

serves as both an insightful tool to examine the sources of force production as well as a

powerful non-intrusive technique for semi-empirically modeling force histories.
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Chapter 3

Methodology: Analytical and Numerical Models

The previous chapter contained a detailed description of the experimental cam-

paign regarding flat plates undergoing various combinations of surge and pitch. This

chapter aims to describe the various analytical and numerical aerodynamic force predic-

tion models that will be applied in Chapter 5 to predict force histories on the rapidly

deflecting trailing edge flap. This chapter also describes the theoretical sources of steady

and unsteady lift production that will be discussed throughout this work for each of the

experimental investigations. The main benefit of the low-order models used in this

work are their relative simplicity, which allows us to identify specifically which physical

mechanisms are being modeled and further analyze which mechanisms are dominant

for each motion. The analytical models, based in classical aerodynamic theory, require

only inputs of wing kinematics, making them suitable tools for controller applications.

The numerical model is an unsteady discrete vortex panel method that provides accu-

rate aerodynamic force histories and chord-wise pressure distributions at relatively low

computational cost. The following sections provide descriptions and limitations of each
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model, delving into the physical mechanisms modeled in each.

3.1 Theodorsen

In the late 1930’s, Theodore Theodorsen and I.E. Garrick [14,61,66] published their

revolutionary work on the problem of aerodynamic flutter. This work eventually led to

the widely used unsteady aerodynamic lift model commonly attributed to Theodorsen.

Theodorsen’s unsteady flow model provides explicit parsing of the lift history into con-

stituent parts - not only inertial and circulatory loads, but also the contribution from

the resulting trailing edge wake. This provides physical insight typically unavailable

in CFD or panel methods. The assumptions in the formulation of this model include:

inviscid, attached flow; small angular deflections, i.e. sin(α) ≈ α; planar trailing edge

wake; and satisfaction of the Kutta condition at the trailing edge. Thus, Theodorsen’s

solution ignores viscous and non-ideal flow phenomena such as wake roll-up, large vor-

tex formation and convection over the airfoil, laminar separation bubbles, and so on.

However, as discovered by many researchers to date, Theodorsen’s theoretical lift model

is able to predict with reasonable accuracy the lift due to wing kinematics that wildly

disobey these assumptions [15,83], as is the case in the present work.

A comprehensive derivation and discussion of Theodorsen’s lift solution is provided

in Appendix A. Theodorsen’s model provides a general solution for an airfoil-aileron

system under arbitrary pitch kinematics in a constant horizontal freestream, as shown

in Figure 3.1. The airfoil system can be simplified to a single-element airfoil by setting

the aileron hinge location to c = 1. Both the single-element airfoil and airfoil-aileron
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Figure 3.1: Airfoil-aileron system in the xz-plate plane (left) and its conformal repre-

sentation in the xy circle plane (right)

will be studied here. To more easily enforce boundary conditions using potential flow

singularities, the airfoil-aileron system is typically represented in the circle frame via

Joukowski’s conformal transformation, shown in the right image of Figure 3.1. The

following sections contain a recount of Theodorsen’s solution along with an explanation

of its terms. From this mathematical abstraction of the physical flow, two primary

categories of forces arise: non-circulatory and circulatory forces.

To represent the physical flow, Theodorsen introduces potential flow singularities

whose strengths are assigned to satisfy the necessary boundary conditions (i.e. the Kutta

condition and no flow through the wing). The category of non-circulatory forces arises

from enforcing the no through-flow boundary condition as the wing moves through the

surrounding fluid. This boundary condition is enforced by placing point sources and

sinks along the surface of the airfoil and assigning their strengths such that the normal

velocity at the plate surface is zero. There is no constraint placed on flow behavior other
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than the fact that it cannot physically penetrate the airfoil. Because no circulation is

introduced to satisfy this condition, these are considered non-circulatory forces.

Circulatory forces arise from the creation of circulation about the airfoil, which

is modeled by enforcing the Kutta condition at the trailing edge. This requires that no

infinite velocities can exist at the trailing edge, leading to a unique solution for vorticity

distribution along the airfoil and thus a unique lift force.

3.1.1 Non-Circulatory Flow

In order to solve the potential flow solution for flow over an airfoil undergoing ar-

bitrary kinematics, some key approximations and simplifications must first be made. By

observation that airfoil thicknesses typically have slopes much less than unity (∂za
∂x

<< 1,

where za(x) are the coordinates of the airfoil surface in the xz-plane) and that the re-

sultant fluid velocity vector differs only slightly in direction and magnitude from the

horizontal free stream velocity, U = U∞, we can introduce a disturbance velocity poten-

tial, φ′, which is obtained by parsing the total velocity potential into the uniform flow

and a perturbation potential as

φ = φ′ + Ux (3.1)

The disturbance velocity components are thus

u− U = u′ =
∂φ′

∂x
, w′ =

∂φ′

∂z
, (3.2)

which are assumed to satisfy the order-of-magnitude requirement of small disturbance

theory of u′, w′ << U .

For incompressible flows, it can be shown that the problem simplifies to Laplace’s
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equation

∇2φ′ = 0, (3.3)

subject to two-dimensional boundary conditions at the surface. The condition at the

boundary, covered in detail in Lamb [54], states that the component of fluid velocity

normal to the body, ∂φ
∂n

, is fixed by the body motion.

As previously stated, we are assuming small disturbance theory, which requires

u′, w′ << U . Thus, neglecting the terms u′2 and w′2 due to order of magnitude in-

significance, we obtain a linearized solution. For details of the derivation and use of the

unsteady Bernoulli equation, the reader is instructed to reference Appendix A.1. The

resulting expression for pressure via the linearized unsteady Bernoulli equation is given

by

p− p∞ = −ρ(U
∂φ

∂x
+
∂φ

∂t
) (3.4)

Due to antisymmetry between sources on the upper surface and sinks on the lower

surface, the pressure difference between upper and lower surfaces is

pL − pU = ∆p = −2ρ(U
∂φ

∂x
+
∂φ

∂t
). (3.5)

Finally, the total non-circulatory contribution to the lift force on the wing can be

calculated by integrating the pressure difference over the entire airfoil:

LNC = 2ρb

∫ 1

−1

U
∂φ

∂x
dx+ 2ρb

∫ 1

−1

∂φ

∂t
dx

= 2ρb

∫ 1

−1

∂φ

∂t
dx

(3.6)

Applying Eq. 3.6 to the velocity potentials given in Eq. A.14-A.17 results in the familiar
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form of Theodorsen’s non-circulatory lift

LNC = −ρb2[Uπα̇− bπaα̈− UT4β̇ − bT1β̈], (3.7)

where

T4 = − cos−1 c+ c
√

1− c2 (3.8)

T1 = −1

3

√
1− c2(2 + c2) + c cos−1 c (3.9)

Rotational Acceleration Force: Added Mass

Eq. 3.7 describes the total non-circulatory lift force on the airfoil-aileron system.

Considering now only the terms dependent on acceleration (α̈ and β̈) we can identify the

contribution of what is typically termed the “added mass force.” Added mass describes

the inertia added to a system due to the acceleration of the fluid surrounding a submerged

body, which in the present case is a pitching wing in water or air. This motion causes

a reaction force from the fluid normal to the plate surface and is proportional to the

acceleration of the body. In terms of Theodorsen’s derivation, this term arises due to

the satisfaction of the no penetration boundary condition specifically due to the wing

moving through the fluid. An additional velocity potential has to be placed in the system

to assure that the fluid velocity always remains tangent to the wing along the surface as

it moves through the fluid. This additional velocity potential is given by Eqs. A.15 and

A.17.

Non-circulatory forces due to acceleration are of considerable importance for the

present kinematics, as the reduced frequencies (k = β̇c
2U∞

) of the trailing edge flap range

from 0.044 ≤ k ≤ 0.70, which fall well into the range of what is considered “unsteady”

and where pitch rate effects become significant contributors to force production [63].
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Figure 3.2 provides lift histories (Eq. 3.7) and chordwise non-circulatory pressure dis-

tributions (integrand of Eq. 3.6) for the non-circulatory lift components for several

different wing geometries and pitch axis locations.

Figure 3.2(a,b) shows the results for a single-element wing pitching about its lead-

ing edge from α = 0−20◦ at reduced frequency k = 0.35. It is clear that for this case the

majority of non-circulatory force production is manifested in the angular acceleration α̈

term, which is antisymmetric across the x-axis following the shape of the acceleration

profile. We also notice that the pressure distribution is not symmetric over the airfoil,

but biased towards the rear half of the wing. For the case in Figure 3.2(a,b), most of the

lift is generated towards the rear of the wing due to the larger normal velocities farther

from the axis of rotation.

Similar to the single-element case, Figure 3.2(c,d) shows the effect of a large trail-

ing edge flap (c = 0) on a wing with a stationary leading edge component, (α(t) = 0).

Looking only at the rear half of the airfoil containing the pitching flap, we notice a

very similar pressure distribution to that of Figure 3.2(a): biased lift production far-

ther from the pivot axis and antisymmetric lift proportional to the flap acceleration

(points/distributions A and C). Looking at the forward half of the wing, one should

note that the motion of the trailing edge flap appears to induce a non-circulatory lift

component on the stationary leading edge element. Mathematically, this occurs because

of the influence each point singularity on the airfoil surface has on each other. Other-

wise stated, the lift-producing point sources and sinks on the trailing edge flap element

induce a velocity potential on the leading edge element that creates a net pressure dis-

tribution, despite its zero angle to the free stream (α = 0). To understand this effect
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(a) α = 0− 20◦, a = −1 (b) α = 0− 20◦, a = −1

(c) β = 0− 20◦, c = 0, α = 0◦ (d) β = 0− 20◦, c = 0, α = 0◦

(e) α = 0− 20◦, a = 0 (f) α = 0− 20◦, a = 0

Figure 3.2: Chordwise pressure distributions (left) and non-circulatory lift contributions

(right) of Theodorsen’s quasi-steady solution for an (a,b) aileron pitching about its

leading edge, (c,d) airfoil-aileron system with c = 0, and (e,f) airfoil pitching about its

mid-chord. All pitch motions are for α (or β) = 0− 20◦ at reduced frequency k = 0.35.
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from a physical standpoint, we must first examine the underlying assumptions in the

model. The assumption of inviscid flow ignores any viscous effects (e.g. flow separation,

skin friction, etc.) which all require a diffusion time scale over which to develop. We

can then conclude that any disturbance introduced by the wing will take the form of

a pressure force, as viscous forces are neglected. Further, by assuming incompressible

flow we approximate the speed of sound as approaching infinity, and thus propagation of

pressure disturbances becomes instantaneous. Therefore, the physical disturbance of the

deflecting trailing edge flap will have an effect on the streamlines over both the forward

and aft portions of the wing simultaneously, resulting in a non-zero pressure distribution

over the stationary leading edge component.

For the cases presented in this work, all of which have reduced frequencies that

characterize the motion as “unsteady”, the acceleration-dependent non-circulatory lift

component will be a driving factor in much of the lift production. This is because

the wing (or trailing edge flap) will be pitching about its leading edge, maximizing its

potential for force production. However, to show the minimizing case, Figure 3.2(e,f)

provides the case of a single-element wing pitching about its mid-chord, a = 0. Here

we see the acceleration term identically zero throughout the motion due to the antisym-

metric pressure distribution shown in Figure 3.2e. The antisymmetry arises because the

front half of the wing is accelerating in a “pitch-down” motion whereas the back half is

accelerating in a “pitch-up” motion, causing an equal and opposite pressure distribution.

Rotation-Induced Plate-Normal Acceleration Force

Non-circulatory pitch rate terms (those containing α̇ and β̇) arise from the time
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derivative of the velocity potential due to instantaneous angular deflections α and β.

When the wing is deflected with incidence to the free stream, point sources and sinks

are added to the system in order to enforce the no penetration condition solely due to

the fact that the velocity at the wing surface must now be inclined at some angle so

as to follow the shape of the wing. Eqs. A.14 and A.16 provide the velocity potential

equations for deflections α and β.

Let us now think about the effect of this deflection on velocity components in the

wing frame. Figure 3.3 provides a schematic showing the plate normal, V⊥, and plate

parallel, V||, velocities due to a wing in constant free stream. For each instantaneous

incidence angle, there is a trade-off between plate parallel and plate-normal velocities

according to V|| = U cos(α) and V⊥ = U sin(α). Therefore, as the wing pitches over

time there is a corresponding change in plate normal velocity. A time rate of change of

the normal velocity can be viewed as an acceleration, and as discussed in the previous

section, that acceleration leads to force production on the wing. The time rate of change

of plate normal velocity can be described as

V̇⊥ =
∂

∂t
V⊥ =

∂V⊥
∂α

∂α

∂t
= U cos(α)α̇, (3.10)

but with the small angle assumption, cos(α) ≈ 1, and Eq. 3.10 simplifies to

V̇⊥ ≈ Uα̇ (3.11)

Figure 3.4 shows the time histories of Eq. 3.10 and Eq. 3.11 for the α = 0 − 20◦ and

α = 0 − 40◦ cases at k = 1. The results of Eq. 3.10 are provided simply to show the

relative effect of applying the small angle assumption. It is evident that the assumption,

although wildly violated by the α = 0 − 40◦ case, only slightly alters the time history

63



of plate normal velocity. Theodorsen does use the small angle assumption, however,

and for the present case (sinusoidal pitch) it results in a symmetric profile. Note that

the acceleration term provided by Eq. 3.11 is equivalent to that given in the first term

of Theodorsen’s non-circulatory lift, Eq. 3.7. This force can be considered a rotation-

induced plate normal acceleration force.

Figure 3.3: Plate tangential and normal velocities due to the free stream at two different

angles of attack, illustrating the increase in plate normal force with an increase in angle

of attack.

It is important to recognize that this acceleration term is independent of pitch

axis location. Unlike the non-circulatory rotational acceleration force discussed in the

previous section, Eq. 3.11 does not depend on pitch axis as it is simply an instantaneous

change in the direction and magnitude of the plate normal velocity component, which

also means that this effect is uniform along the chord. Recalling the non-circulatory

force histories of Figure 3.2, Point B on each plot represents the point at which the force

due to rotational acceleration is zero and lift is solely due to the pitch rate term. From

the pressure distributions for the single-element pitch cases (Figure 3.2 a,e), symmetry

about the mid-chord confirms that the plate-normal acceleration due to pitch rate is
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uniform along the chord. Thus, it can be stated that the resultant force from this

term acts at the mid-chord. To further investigate the nature of this force, observe the

single-element force histories given in Figure 3.2(b, f). Although they differ in pitch axis

location, by which the rotational acceleration term is significantly affected, the pitch

rate term remains the same between the two cases.

(a) Pitch kinematics (b) Time derivative of plate-normal velocity

component.

Figure 3.4: (a) Angle of attack history and (b) normal velocity component on a single-

element pitching plate, illustrating the change in plate normal velocity due to pitch. It

should be noted that this effect is independent of pivot axis location.

3.1.2 Circulatory Flow

Theodorsen derived the present formulation in consideration of a harmonically

oscillating airfoil with a fully developed planar wake extending from the trailing edge to

infinity. The present work concerns only a flap-and-hold motion of the trailing edge flap

(as opposed to reciprocating flap motions), which does not produce an oscillating fully

developed wake, especially in the time during and immediately following the transient
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flap. Although there is yet much insight to be gained from understanding the effect wake

vorticity has on the airfoil, that is not of immediate interest in the present study and

we are going to ignore the wake in our own formulation. That said, it is still important

to cover, although in a slightly abridged fashion, the underlying physics modeled in

the circulatory lift term of Theodorsen’s model. As with the non-circulatory material,

a comprehensive derivation and discussion of Theodorsen’s circulatory lift solution is

provided in Appendix A.2.

The magnitude of bound circulation on the wing is determined by satisfying the

Kutta condition, which states that circulation must be chosen such that the fluid velocity

is finite at the sharp (trailing) edge. Leaving the mathematical derivation for the reader

to examine in the Appendix, the final expression for circulatory lift in Theodorsen’s

model [61] is

LC = −2πρUb
(
Uα + b(

1

2
− a)α̇ +

T10

π
Uβ + b

T11

2π
β̇
)
C, (3.12)

where

T10 =
√

1− c2 + cos−1 c (3.13)

T11 = cos−1 c (1− 2c) +
√

1− c2 (2− c) (3.14)

and C is the Theodorsen function,

C =

∫∞
1

x0√
x02−1

γ(x0)dx0∫∞
1

√
x0+1√
x0−1

γ(x0, t)dx0

. (3.15)

As Bisplinghoff [62] comments, there are two ways researchers typically simplify the lift
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expression when dealing with low-reduced-frequency unsteady motions. The most basic

simplification is to assume that all aerodynamic loads can be calculated from steady-state

formulas (i.e. ∂
∂t

() = 0), which for the present case means only those terms dependent

on instantaneous angle of attack, α, resulting in

L ≈ 2πρUb [Uα]. (3.16)

The other common simplification, and the method employed in this work, is the “quasi

steady-state” assumption, which neglects the effect of the wake vortices on the flow

and on the airfoil. This is equivalent to setting C = 1, which technically signifies the

reduced frequency of a harmonically oscillating airfoil approaching zero. This can be

physically interpreted as a case where the wake is determined to have negligible influence

on the wing. The validity and accuracy of this assumption for the present cases will be

addressed in later sections.

Finally, combining the contributions from non-circulatory lift (Eq. 3.7) and circula-

tory lift (Eq. 3.12) we now have the full quasi steady Theodorsen model for aerodynamic

lift on a wing in arbitrary motion:

L = −ρb2(Uπα̇− bπaα̈− UT4β̇ − bT1β̈)

+ 2πρUb(Uα + b(
1

2
− a)α̇ +

T10

π
Uβ + b

T11

2π
β̇)

(3.17)

Circulatory Pitch Rate Force

It was previously stated that the non-circulatory force components arise by means

of satisfying the no penetration boundary condition on the wing surface. That is a
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Table 3.1: Breakdown of total lift production into its constituent forces according to

Theodorsen’s solution, Eq. 3.17.

Breakdown of Lift Contributions

Added mass ρb2(bπaα̈ + bT1β̈)

Rotation-induced plate normal acceleration −ρb2(Uπα̇− UT4β̇)

Virtual camber 2πρUb2((1
2
− a)α̇ + T11

2π
β̇)

Steady lift 2πρUb(Uα + T10
π
Uβ)

T1 = −1
3

√
1− c2(2 + c2) + c cos−1 c T4 = − cos−1 c+ c

√
1− c2

T10 =
√

1− c2 + cos−1 c T11 = cos−1 c (1− 2c) +
√

1− c2 (2− c)

verifiable physical boundary condition due to the fact that the fluid cannot physically

pass through the wing itself. The circulatory terms, however, take their form due to the

implementation of Kutta’s hypothesis. In an effort to sidestep the mathematical result

of infinite velocities at the trailing edge, Kutta’s hypothesis suggests that there is smooth

flow off the sharp trailing edge if there is no pressure discontinuity when passing rearward

of the airfoil. The Kutta condition therefore enforces a finite velocity at the trailing edge

(x = 1), leading to a unique solution for the bound circulation. This appears ostensibly

to be a strong-arm method for removing a mathematical discontinuity, but in fact this

result was originally observed in experiments on airfoils in steady flow at low angle of

attack, and the analytical result matches experimental force data accurately within the

confines of the original flow assumptions (i.e. steady, low angle of attack, thin airfoil).

Turning now specifically to the circulatory pitch rate components of lift (α̇ and

β̇ terms in the second term of Eq. 3.17), we find what is typically called the “virtual
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camber” term. A pitch rate about an axis ab from the mid-chord produces a linear

variation in normal perturbation velocity that results in a flow in which a fluid particle

experiences an induced camber, as shown in Figure 3.5. The distribution of normal

velocity along the chord is analogous to a shape change in the airfoil. A flat plate

pitching about point ab at rotation rate α̇ generates a normal perturbation velocity, wα̇,

of the form

wα̇ = α̇(x− ab). (3.18)

This pitch rate-induced velocity can be considered the addition of an effective

camber, zeff (x), of the form

wα̇ = U
∂zeff
∂x

. (3.19)

Substituting Eq. 3.18 into Eq. 3.19 and integrating with respect to x,

zeff (x) =

∫
wα̇
U

dx (3.20)

one can obtain the effective wing camber due to a pitch rate α̇ as follows

zeff (x) = α̇x(
x

2
− ab). (3.21)

Contrary to the non-circulatory pitch rate term (Eq. 3.7), this term does depend on

pitch axis location.

Figure 3.6 provides time histories of the individual lift components in Eq. 3.17,

illustrating their relative magnitudes as the pitch rate varies from a fast motion (k = 1)

to a slower motion (k = 0.16). Much like the non-circulatory pitch rate term, virtual

camber (dashed blue line in Figure 3.6) follows the shape of α̇ but is consistently of
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Figure 3.5: Virtual camber effect caused by wing pitching about pivot axis ab. Recreated

from Leishman [63].

much larger magnitude than its non-circulatory counterpart. This relative magnitude

will differ, however, for variable pitch axis locations.

Circulatory Steady Force

The final term in Theodorsen’s lift solution is the steady circulatory lift force.

Only dependent on instantaneous angle of attack, steady lift is, mathematically, a result

of enforcing the Kutta condition and solving for a bound circulation about the wing

that satisfies the geometric boundary conditions (no penetration, attached flow, finite

velocity at trailing edge). In the limit of all time-dependent kinematics approaching zero

(i.e. ∂
∂t

() = 0) we are left with the steady state lift of Eq. 3.16. Physically, to maintain

attached flow the fluid must accelerate around the inclined leading edge over the top

surface (termed the “suction side”) leading to a lower pressure than what is experienced

on the bottom surface (the “pressure side”). The pressure imbalance leads to a resulting

steady lift force.

Now that we have an understanding of each term’s origin and physical significance,
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we turn once again to Figure 3.6 to observe the relative magnitude of each term in

Theodorsen’s solution for several reduced frequencies. It is clear from the figure that

non-circulatory acceleration force (solid black line) is very sensitive to reduced frequency.

Its magnitude relative to the other terms should be acknowledged when understanding

the driving forces in a particular set of kinematics, as it could either be the main driving

force (k = 0.35) or a small component of force (k = 0.058). Notice the steady state lift

force remains unchanged for every reduced frequency. Thus, it is clear that when all

of the rate terms approach zero for very slow motions, the only remaining non-zero lift

component will be the steady circulatory lift.

3.1.3 Concluding Remarks on Theodorsen

Section 3.1 explored the application of Theodorsen’s solution to the current prob-

lem of a pitch-and-hold airfoil-aileron system, addressing the model’s utility as well as

its limitations. Each constituent term in Theodorsen’s final lift equation was explained

in detail and categorized as either a non-circulatory or circulatory contribution. It was

shown that there is a coupling between the fore and aft elements when the flap deflects,

due to the nature of the incompressible and inviscid flow assumptions. As will be shown

at the end of Chapter 5, for a large trailing edge flap deflecting at high pitch rates to

angles beyond the range of the small angle assumption, Theodorsen’s model largely over-

predicts lift production compared to experimental results. The following section seeks to

develop a modified version of Theodorsen’s model to more appropriately predict physical

lift production.
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Figure 3.6: Lift histories for several reduced frequencies (k = 0.35, k = 0.18, and

k = 0.058) for a pitching single-element flat plate from α = 0 − 20◦ to illustrate the

contributions from the various non-circulatory and circulatory components of lift. Notice

the various changes in magnitude of each rate-dependent term as the flap rates vary from

fast to slow pitching.

3.2 Modified Aerodynamic Model

Among the discussion of Theodorsen’s solution and its physical interpretation,

Section 3.1 showed that, theoretically, there is a non-circulatory force imposed on the
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stationary fore element when a dynamically deflecting trailing edge flap is deployed.

Theodorsen’s theory was derived from potential flow theory under the assumptions of

inviscid and fully attached flow, which might not be entirely accurate in the case of a real

world physical flow. As will be shown in the experimental results of Chapter 5, although

the flow is largely attached during the flap transient, there also exists development

of a boundary layer and small scale structures over the leading edge element. Such

developments may cause the flow to deviate from strictly adhering to potential flow

assumptions and alter the accuracy of Theodorsen’s prediction. Thus, a modified model

is presented here to provide an analytical solution for lift on a dynamic airfoil-aileron

system that does not account for the synergistic effect the wing elements have on each

other in the ideal flow case. This model aims to capture the lift-producing mechanisms of

each separate wing element and assess, based on comparisons with experiment, at what

point the aerodynamic coupling between the connected bodies becomes significant.

In the present model description, each wing element is treated as its own isolated

wing with no knowledge of a connected body to itself. Thus, contrary to Theodorsen,

this model will contain zero non-circulatory forcing on the leading edge element, because

it is stationary throughout the motion.

Figure 3.7 illustrates the decomposition of the hinged wing into two isolated wing

elements. The fore element (shown in green) is stationary at all times at constant angle

of attack α̇ = 0. One might hypothesize, therefore, that the total lift due to attached

flow on the fore element in the present geometry would be zero. Had the stationary

element been at a nonzero angle of attack, however, its lift contribution would be the

steady state circulatory lift from Theodorsen’s solution in the previous section as given
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Figure 3.7: Illustration of lift contributions as expressed in the modified aerodynamic

model.

by

LC,fore = 2πρU
b

2
(Uα), (3.22)

where b, the semi-chord of the entire airfoil-aileron system, is the whole chord length of

each wing component. Thus, the semi-chord for each of the isolated wing elements is

b/2. Applying Theodorsen’s model to the dynamically pitching rear element results in

non-circulatory and circulatory lift given by

LNC,flap = −ρπb
2

4
(Uβ̇ − b

2
aβ̈) (3.23)

LC,flap = −2πρU
b

2
(Uβ +

b

2
(
1

2
− a)β̇), (3.24)

where a = −1 because the wing is pitching about its leading edge. Total lift on the
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aileron-airfoil system can be computed by adding the contributions from Eq. 3.22 -

3.24, resulting in

Ltotal =
ρπb2

4
(Uβ̇ +

b

2
β̈) + 2πρU

b

2
(Uβ +

3b

4
β̇)

Ltotal = πρb[
b2

8
β̈ + Ubβ̇ + U2β].

(3.25)

We are now left with a very simple model for lift production that only requires

a priori knowledge of the wing kinematics. Although similar to Theodorsen’s solution,

this modified lift model differentiates itself by ignoring the effect of each element on

the other. In contrast, recall from Figure 3.2 that deflecting the trailing edge flap in

Theodorsen’s formulation induces a non-circulatory load on the stationary fore element.

The idea behind the modified model of Eq. 3.25 is to decouple the predicted lift on

each element with the hope of a) gaining a more complete understanding of the physical

mechanisms responsible for lift production and b) creating a robust model that more

closely predicts lift even when deflection angles exceed those approximated as “small

angles.”

3.3 Panel Method

Sections 3.1 and 3.2 covered analytical solutions for calculating aerodynamic lift on

pitching airfoils. These solutions made some major geometric simplifications, i.e. wing

was approximated as a flat, zero-thickness surface and boundary conditions were applied

at that surface. However, for more complicated wing geometries and kinematics, where
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those geometric assumptions become increasingly unrealistic, numerical solvers are com-

monly introduced to loosen the geometric restrictions on the wing and wake, applying

boundary conditions on the true wing surface and allowing the wake to convect appro-

priately throughout the spatial domain based on instantaneous local velocities. The

numerical solver presented here, and what is commonly used in aerodynamics research

due to its practicality and low computational costs [84] [85], is an unsteady panel

method. Discretizing the wing and wake lends the problem to be solved numerically,

which avoids the elaborate mathematical exercise required of the wake influence integral

discussed in Appendix A.2. The unsteady discrete vortex panel method, as detailed in

Katz and Plotkin [86] and described here in Appendix B, provides a model that does not

restrict the geometry or wake structure of the problem. The numerical solution from

the panel method will be compared to the analytical result of Theodorsen to assess the

utility and applicability of both methods and to experimental results to compare force

production on each of the discrete wing elements.

A panel method, among other descriptions, is a type of collocation method, which

discretizes a finite-dimensional space to numerically solve ODEs, PDEs, and integral

equations by means of satisfying the governing equations at selected points in the do-

main, called collocation points. In the present work, the boundary condition of zero

normal flow on the solid surface of the airfoil is solved and satisfied using a discrete

vortex panel method at such collocation points, illustrated in Figure 3.8.

We discussed in Section 3.1 an analytical approach to solving the vorticity distri-

bution along the airfoil and in the wake. A panel method, as outlined here, presents

a numerical approach to solving the same problem. The utility of a discrete vortex
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method lies in its use of singular vortices in place of a continuous vorticity distribution

γ(x). This is called a lumped vortex method, and it represents the chord-wise distribution

of vorticity along a panel as one vortex, Γ =
∫ c

0
γ(x)dx, shown as a “panel vortex” in

Figure 3.8. In lieu of requiring an exact analytical solution, this method allows us to nu-

merically solve a system of equations that satisfies the appropriate boundary conditions

by calculating the induced velocities from each of these discrete vortices. For further

description of the implementation process, the reader is directed to Appendix B.

η
n1 n2 n

3
n
4

Panel vortex

Collocation point
Wake vortex Гw,3

Гw,2
Гw,1

xU∞

n Panel normal vector

Figure 3.8: Schematic of the panel method implementation for flow about an airfoil with

a trailing edge flap. Panel vortices are placed at the quarter-chord and collocation points

are placed at the three-quarter chord of each panel.

Using the unsteady Bernoulli equation, a chord-wise pressure distribution can be

computed as

∆pj = ρ(U∞
Γj
∆lj

+
∂

∂t

j∑
k=1

Γk), (3.26)

where Γj is the discrete vortex strength at the j-th panel of length ∆lj. Notice that the

unsteady term in the pressure calculation is simply the time rate of change of the bound
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circulation on the wing, whereas the first term is essentially the Kutta-Joukowski form

of steady circulatory lift.

Finally, total lift is calculated by integrating pressure along the chord:

L =
N∑
j=1

∆pj∆lj cosαj (3.27)

where αj is the incidence angle of the j-th panel. The current work will present lift

in the non-dimensional form of lift coefficient, which is normalized by the freestream

dynamic pressure:

CL =
L

1
2
ρU∞

2c
(3.28)

3.4 Chapter Summary

Several modeling efforts have been implemented in this work to complement the

experimental results and elucidate some of the flow physics and lift producing mecha-

nisms during rapid maneuvers. This chapter described the mathematical details of those

modeling efforts as well as the physical mechanisms they represent. Section 3.1 covered

the derivation of Theodorsen’s solution for analytically solving aerodynamic lift on a

pitching airfoil-aileron system. Each of the non-circulatory and circulatory components

were discussed in terms of the mathematical result and physical meaning. The modified

model of Section 3.2 has been developed to decouple the interaction between the fore and

aft elements. By comparison with Theodorsen’s solution, we can determine the extent
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to which real flows, as demonstrated through experiments, behave within (or deviate

from) the ideal assumptions made by Theodorsen. Finally, an unsteady panel method is

introduced to remove geometric and wake shape restrictions, providing a low computa-

tional cost numerical solution to be compared with the theoretical result of Theodorsen

as well as experimental results.
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Chapter 4

Experimental Results: Surging and Pitching Single-Element Flat

Plates

The experimental results in this chapter aim to expand the extant literature on

rapidly maneuvering wings [21–25] by providing a comprehensive parameter sweep of

surge and pitch motions characteristic of low Reynolds number flight. The goal is to

impart new insights into the fundamental physical mechanisms responsible for force pro-

duction and flow field development from highly unsteady wing kinematics. Partially due

to the complex flow physics taking place over the wing, where nearly every assumption

in classical aerodynamic modeling is wildly violated (e.g. attached, inviscid flow; Kutta

condition at trailing edge) there lacks a low order modeling technique that accurately

predicts unsteady forces and moments on fully separated, rapidly maneuvering wings.

In order to arrive at such a model it is imperative to first grasp an understanding of the

underlying flow physics and force-generating mechanisms. This chapter experimentally

examines the unsteady aerodynamics and flow field development of single-element wings

undergoing rectilinear motions in pitch and surge at Re = 20, 000 and aims to ascertain
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the physical mechanisms responsible for lift production.

The single-element surge campaign studies the problem of a flat plate at fixed

incidence starting from rest over several angles of attack (5◦ ≤ α ≤ 45◦) and acceleration

rates (0.125 ≤ sa/c ≤ 6). The pitch study addresses the problem of a wing at zero

angle of attack in constant free stream pitching up to 45◦, focusing on two pitch rates

representative of a “fast” motion (k = 0.39) and a “slow” motion (k = 0.065).

4.1 Streamwise Surge: Force and Moment Histories

In this section, we compare particle image velocimetry and qualitative flow visu-

alization with direct measurement of lift and pitching moment for a range of smoothed

rectilinear acceleration profiles, where the acceleration (apart from endpoint smoothing)

is constant with wall-clock time for early time and then goes to zero. The goal is to

segregate circulatory from noncirculatory contributions by tracking leading edge and

trailing edge vortex trajectories, and to attempt to collapse lift coefficient variations for

a range of acceleration rates. The philosophical goal is to distill the flow physics to

their simplest form towards a closed-form or reduced-order model purely derived from

kinematics.

4.1.1 Variations in Angle of Attack

The effect of angle of attack on force coefficients was investigated to ascertain the

existence of high lift on translating wings, pinpoint the range of incidence angles over

which vortex lift becomes important, and evaluate the time scales over which it persists.
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Time histories of lift and pitching moment were measured and normalized with respect

to the wing’s terminal velocity.

The flat plate wing was set at a fixed angle of attack and accelerated to its terminal

velocity over 1 chord-length of travel. Angles of attack ranged from 5 to 45 degrees. The

resulting lift force histories, obtained at AFRL, are given in Figure 4.1. At low angles of

attack, α = 5◦-10◦, the lift coefficient curves agree well with Wagner’s prediction (shown

in the figure as Jones’ approximation [87]) and experiments from Beckwith and Babinsky

[88]. At these low angles of attack, the flow appears largely attached and adheres to the

trailing edge Kutta condition (see Figure 4.2), as is assumed in Wagner’s analysis. Bound

circulation gradually builds, monotonically increasing lift until it eventually converges

to its final steady state lift value. In an attached flow, no leading edge vortex forms and

thus there is no vortex lift.

At higher angles of attack (α ≥ 15◦), however, the flow separates at the leading

edge, a leading edge vortex forms on the suction side of the wing (Figures 4.2-4.3), and

the lift coefficient experiences a significant increase (Figure 4.1). The favorable impact

on lift from a leading edge vortex has been demonstrated by Lind [89] and Panah [31]

using chordwise pressure taps on harmonically oscillating airfoils. Once the flow becomes

largely separated as in the present case, use of classical aerodynamic theory becomes less

valid as the assumptions of attached, inviscid flow and trailing edge Kutta condition less

accurately depict the flow. Although the assumptions held within the classical models

are quite stringent, their use to help solve real world problems is rather widespread,

likely because there does not presently exist a more accurate analytical model that more

reasonably models real flow conditions.
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Figure 4.1: Unsteady force histories for 5◦ ≤ α ≤ 45◦ and sa/c = 1, as well as

each angle’s corresponding static lift value.

With regards to sources of lift production, several noteworthy phenomena occur

over the course of the wing translation. As the wing accelerates from rest, lift increases

steeply until reaching a maximum at exactly 1 chord-length of travel (i.e., when the wing

stops accelerating). While the wing is accelerating, both inertial and circulatory effects

contribute to lift production, i.e. the total lift measured is the sum of that due to added

mass as well as the growth of circulation around the wing and/or that of the leading

edge vortex. Past this point, the leading edge vortex that began forming at the start of

the wing motion continues to grow, but the added mass force (due to wing acceleration)

goes to zero. The continued growth leads to a local maximum around s/c = 2-3. As

the wing continues to translate, lift decreases as the LEV becomes less coherent and

convects down the wing towards the trailing edge, and the trailing edge shear layer curls
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s/c = 6.25

s/c = 1

45 °
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Figure 4.2: Flow visualization at (top)

s/c = 1 and (bottom) s/c = 6.25 for for

[sa/c = 1, α = 5◦, 15◦, 20◦, and 45◦].

Images have been rotated by their corre-

sponding incidence angles.

Figure 4.3: Dye flow visualization (left)

and PIV (right) showing the flowfield at

for sa/c = 1, α = 45◦ at three different

values of s/c.
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around and into the wake of the wing (see Figure 4.3, s/c = 5.5). At this stage, flow

over the upper surface of the wing is arguably more a region of recirculating flow than a

coherent vortex. Note that although the described flowfield is clearly shown in the PIV

image in Figure 4.3, the corresponding dye visualization does not at first glance provide

a similar result. Remember, dye is only injected at the 3/4 span, aligned with a thin

laser sheet as the interrogation plane. As long as the flow is sufficiently two-dimensional

(as is the case early in the wing motion), laser-fluorescent dye visualization provides

an accurate representation of the flow structures, making it an excellent heuristic tool

for PIV. However, upon the onset of three-dimensionality (e.g. spanwise flow), dye is

occasionally pulled out of the interrogation plane and is not present in the resulting

image. Thus, the presence (or absence) of dye in the flowfield images indicate possible

locations of spanwise flow.

At high angles of attack, the flow is largely separated over the entire upper surface

of the wing (see Figure 4.2), leading to unsteady flow structures shedding and reforming

throughout the wing motion. Following the local lift minima around s/c = 5.5 for

the high angle of attack cases, clockwise circulation about the leading edge regains

dominance over the wing surface (see Figure 4.3, s/c = 7.75), resulting in a second lift

peak. These periodic flowfield oscillations continue while the force histories gradually

decline towards their respective steady state values. It appears that once the high angle

of attack cases reach peak lift at the end of their motion transient (s/c = 1), there exists

a similar relaxation shape among the cases, barring humps due to LEV formation. This

downward relaxation to steady state for high angle of attack cases (α ≥ 20◦) is due to

the gradual flow development toward their steady fully separated condition. The time
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scale over which this occurs appears to mirror that of the lower angle of attack cases

(α ≤ 15◦) that gradually increase in lift toward their steady condition due to circulation

growth towards their final attached flow state, as predicted by Wagner.

It is clear from the results presented here that local flow structures such as leading

edge vortices caused by leading edge flow separation favorably augment lift by providing

a low pressure region on the suction surface. However, vortex-induced lift enhancement

comes at the cost of simultaneously increasing drag coefficient. Figure 4.4a provides

drag histories for the angle of attack study and shows a relatively linear drag increase

for 5◦ ≤ α ≤ 20◦ with increasing incidence angle, yet in the fully stalled cases (α ≥

30◦) there is a large non-linear jump in drag coefficient. Drag increases monotonically

with incidence angle as the plate-normal force vector tilts more toward the horizontal

drag direction. Lift coefficient (Figure 4.1), however, reaches a saturation point around

α = 30◦, after which an increase in angle of attack does not result in an increase in

lift. At high angles where the flow is fully stalled (i.e. full separation at the leading

edge), the resulting force vector points in the plate-normal direction. Figure 4.4b shows

the lift-to-drag ratio (CL/CD) for the angle of attack study and confirms the transition

to plate-normal force, as easily evidenced by CL/CD = 1 for α = 45◦. Insect flight,

an observable example of accelerating wings at high incidence, typically operate at a

lift-to-drag ratio around unity [90] whereas avian fliers fly around CL/CD ≈ 4− 10 [91].

Static force measurements were acquired using a stationary wing at fixed angle of

attack with the tunnel operating at a speed corresponding to Re = 20,000. Measure-

ments were obtained for −45◦ ≤ α ≤ 45◦ in increments of 2◦ as shown in Figure 4.5a.

Force measurements at each angle of attack were averaged over 26 chords traveled before
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Figure 4.4: Plots of drag coefficient (CD) and lift-to-drag ratio (CL/CD) for

surging wings with acceleration sa/c = 1 showing the tradeoff between increased

lift (see Figure 4.1) and drag.
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(a) (b)

Figure 4.5: (a) Static lift curve for flat plate with theoretical prediction adjusted

for aspect ratio effects. (b) Drag polar of maximum lift coefficient for sa/c = 1

surge and static measurements.
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slowly incrementing by 2◦ to the next angle. The measured static lift for α = ±10◦ was

in good agreement with Prandtl’s lifting line theory, CL = 2πα AR
AR+2

. Since lifting line

theory only accounts for bound circulation, it makes sense that there is good agreement

for cases in which the flow is attached and there is little to no leading edge vortex forma-

tion. This is also the region in which Wagner’s effect matched well with the unsteady lift

after long convective time in Figure 4.1. As a result, we can now compare the dynamic

and static drag polars for the surging wing angle of attack study. Figure 4.5b shows

the drag polar for both the static case and at the point of maximum lift achieved by

each sa/c = 1 case. The static polar is in agreement with flate plate results from Wang

et al. [92]. From the dynamic drag polar it is clear that around α = 20◦ any further

increase in angle of attack leads to a much higher drag penalty with diminishing gains

in lift coefficient. Since high angle of attack cases experience fully separated flow and

a resultant plate-normal force vector, by inclining the plate further it essentially turns

the force vector more in the drag direction.

The purpose of extending the travel distance out to many chord-lengths was to

assess the short-term and long-term effects of transient disturbances, e.g. wing accel-

eration and gusts, on force coefficients. Comparing the lift produced at the end of the

14 chord-length surge motion to that of its corresponding steady state value provides

an assessment of convergence. Although the unsteady lift forces in Figure 4.1 appear

to be converging in the direction of the static measurements, Figure 4.1 shows that at

s/c = 14 the unsteady forces are still 20-50% larger than static values for α > 20◦. For

cases with largely separated flow (α > 15◦), the effect of a transient disturbance has a

lasting effect on force coefficients. Low angle of attack cases experience less of a long
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term effect from the transient disturbance, as they converge more closely to their steady

values at the end of the 14 chords.

4.1.2 Variations in Acceleration

The discussion of variations in angle of attack addressed the concepts of circulation

growth and formation and convection of leading edge vortices. This study, too, will

address those concepts, but now the area of interest lies within the startup transient and

the relationship between acceleration-dependent (non-circulatory) forces and circulatory

forces. To gain insight into the effect of transient disturbances on the flowfield and force

histories, experiments were run at fixed angle of attack of α = 45◦ with widely varying

acceleration profiles.

Figure 4.6a shows the time history of lift coefficient for a wing at angle of attack

α = 45◦ and acceleration distances sa/c = {0.125, 0.25, 0.5, 1, 2, 3, 4, 5, 6}. Focusing on

the acceleration phase, the measured CL for each case appears to increase proportion-

ally to (or maintain the same shape as) its prescribed motion profile (refer to Figure

2.5), illustrating a partial dependence on acceleration profile for lift production. It was

mentioned in the previous section that although these aggressive maneuvers are capable

of producing large lift spikes, it comes at the penalty of increased drag. This accel-

eration study addresses a wing at α = 45◦, where the flow is fully separated and the

resultant force is plate-normal. Figure 4.4 showed that the sa/c = 1 case has a constant

lift-to-drag ratio of CL/CD = 1, but Figure 4.7 shows that is the case at long times
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Figure 4.6: Acceleration study at α = 45◦ for 0.125 ≤ sa/c ≤ 6. (a) Lift coeffi-

cient histories. (b) Circulatory component of lift history during each acceleration

phase. Convective time, s/c, is scaled by acceleration distance, sa/c.

for any acceleration rate. With the exception of minor differences due to varying LEV

strengths for the different acceleration profiles, the lift-to-drag ratio for a surging plate

accelerating from rest is independent of acceleration rate.

To further understand the physical sources of lift during the acceleration phase,

force measurements will be broken down into two components: circulatory and non-

circulatory. When a body accelerates through a fluid, it experiences an inertial force

often referred to as an “added-mass” effect. This non-circulatory force can be thought

of as the reaction force by the mass of the fluid being accelerated by the wing. Pitt

Ford [68] provides a complex potential analysis for an accelerating rigid flat plate in

pure translation and derives the lift coefficient contribution from added-mass as
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Figure 4.7: Lift-to-drag ratio for acceleration study at α = 45◦
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CL =
π

4

(dU
dt
c)

U2
sin(2α) (4.1)

where α is the plate’s angle of incidence and U is the plate’s instantaneous velocity. For

the case of constant acceleration, this can be simplified to

CL =
πc

8a
sin(2α) (4.2)

where a is the number of chord-lengths traveled during acceleration. From Eq. 4.2, it is

evident that the effect of added mass increases with angle of attack and with decreasing

acceleration distance (i.e. faster acceleration rate). When the wing ceases acceleration,

however, the added-mass term goes to zero. The remaining “circulatory” lift may consist

of contributions from both bound circulation and leading edge vortices. However, Pitt

Ford [68] concluded that at early time in the trajectory of a flat plate at large angle of

attack surging from rest, the bound circulation is negligibly small and, therefore, the lift

must be caused only by external vortices and non-circulatory effects. Thus, the focus

on physical sources of lift for the surging plate will remain with the non-circulatory

added mass term and the formation of leading and trailing edge vortices as the flow field

develops.

Focusing now solely on the acceleration phase, Figure 4.6b suggests a rescaling of

the x-axis of Figure 4.6a by each respective acceleration distance, sa/c, to collapse the lift

curves during their acceleration transients. Due to rig vibrations in cases where sa/c < 1,

accelerations faster than sa/c = 1 have been omitted from the figure. Applying the new

scaling, each acceleration phase occurs within 0 ≤ s/sa ≤ 1. Additionally, the added

93



mass term from Eq. 4.2 is subtracted from the measured lift to isolate the growth of

only the circulatory force component. Understand that this “circulatory force”, CL,circ,

is simply theoretical added mass subtracted from measured lift, i.e. CL,circ = CL,meas. −

CL,noncirc, and thus may contain lift contributions from the classical understanding of

circulatory lift in addition to that from any auxiliary lift-augmenting flow structures,

such as leading edge vortices. Figure 4.6b shows that the circulatory lift curves collapse

nicely when s/sa ≤ 0.4, indicating a region where circulatory lift is independent of

acceleration profile. After this collapsed region, the curves diverge and peak at s/sa = 1.

This result suggests that a main factor corresponding to the difference in lift production

between the cases (at least during the acceleration phase) is an increased circulatory

force component after s/sa ≤ 0.4.

Once the wing ceases acceleration, the added mass contribution goes away, leaving

only circulatory forces responsible for lift production. (The minor oscillations in the

beginning of the faster motions are due to physical vibrations of the rig.) Following the

peak at the end of acceleration, all curves show a decrease in lift, reaching a minimum

around s/c = 5.5−6, except for the sa/c = 5 and 6 cases, which reach minimums around

s/c = 9.5 − 10. For sa/c ≤ 4, the lift once again increases to a second local maximum

around s/c = 7.5−8. After the second lift peak, all acceleration cases gradually decrease

in lift until the end of the motion. The motion ceases at s/c = 14 due to the physical

limitations of the tunnel.

Looking further into the dynamics and force contribution of the leading edge vor-

tex, the moment coefficient was also examined. Figure 4.8 shows the pitching moment

about the mid-chord for the same range of acceleration distances. Dye flow and PIV im-
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ages in Figure 4.8 correspond to the local maxima and minima of the moment coefficient.

Since all acceleration profiles with considerable lift oscillations appear to have the same

trend, flowfield images are given only for sa/c = 1. Positive vorticity, shown in blue, can

be attributed to the leading edge vortex and clockwise rotation from the leading edge

shear layer. Negative vorticity, shown in red, typically manifests from the trailing edge

and contributes counter-clockwise vorticity to the flow field. Figure 4.8 conveys how the

formation, shedding, and reformation of the leading edge vortex shifts the location of

the dominant low pressure region chordwise along the wing. Consequently, this moves

the location of the center of pressure, affecting the moment coefficient. A similar effect

from the convecting leading edge vortex was noted in our discussion of lift coefficient.

Figure 4.8 also provides lift coefficient for the sa/c = 1 case to show the similarity in

trends.

The mid-chord pitching moment reaches a maximum around 1c, when the wing

ceases acceleration and the leading edge vortex is strong, coherent, and attached to the

leading edge of the wing. The clockwise circulation from this LEV is located forward of

the mid-chord (observed in both dye flow and vorticity in Figure 4.8), thus producing

a clockwise pitching moment (plotted as positive). This maximum, however, is short-

lived. The LEV subsequently convects off the wing surface and downstream, during

which counter-clockwise circulation from the trailing edge appears and interacts with

the leading edge vortex. This effect is clearly illustrated in the vorticity field at s/c = 5

in Figure 4.8. This phenomenon is not, however, observable in the corresponding dye

flow visualization, and thus presents a limitation in relying solely on dye injection to

visualize flow fields. The competition between the leading and trailing edge vortices leads
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to a lower resultant force and one that is located closer to the mid-chord, explaining the

minimum in moment coefficient. The LEV formation and convection repeats once more

as the clockwise vorticity from the leading edge regains dominance over the wing surface

(see Figure 4.8, s/c = 7) and moves the resulting low pressure region (and resultant force)

farther forward of the mid-chord, leading to a second local maximum. It is of interest to

note that as the center of pressure moves chordwise along the wing, the pitching moment

coefficient does not change sign, contrary to classical dynamic stall [63] during which

there is a sharp change in sign of the pitching moment [9,94]. In the case presented here,

there are dips in lift and moment coefficients corresponding to shedding LEVs, but not

to the extent one typically sees in dynamic stall.

4.2 Streamwise Surge: Fast versus Slow Comparison

Looking more closely at two cases, a “fast case” (sa/c = 1) and a “slow case”

(sa/c = 6), we consider the force contributions from circulatory and non-circulatory

effects during the acceleration of the wing. These two cases have been selected for

comparison because they differ greatly in motion aggressiveness and allow for some

insightful comparisons into the nature of force production on accelerating plates. The

fast case accelerates to its final velocity six times faster than the slow case and, thus, will

have a theoretical added mass contribution six times greater as well (see Equation 4.2).

The added mass force in the slow case is small in comparison to total lift production,

comprising only 5% of total lift by the end of the acceleration transient.

To isolate the effect of the circulatory forces on lift in the acceleration region,
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6c 5c 4c 3c 2c 1c 0.5c 0.25c 0.125c

Figure 4.8: (Top) Pitching moment coefficient about the mid-chord (solid lines)

for the entire acceleration study. Lift coefficient for the sa/c = 1 case (dotted)

is provided to show similarity in trends between lift and moment coefficients.

Vorticity plots (middle) and flow visualization (bottom) correspond to maxima

and minima locations in mid-chord pitching moment for the sa/c = 1 case,

indicated by vertical lines in the plot.
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the non-circulatory added-mass force from Eq. 4.2 was removed from the measured

force data, as shown in Figure 4.9. Even after removing the theoretical added-mass

force from the two lift curves, there is still a ∆CL between the cases, implying that the

difference in lift during the transient phase of each acceleration profile is not completely

due to inertial forces, but that circulatory forces provide a significant portion of the

measured lift, even during wing acceleration. In both of these cases, wing acceleration is

high enough that the added mass force is significantly large (- - line in Figure 4.9), but

circulatory forces ( -.- line in Figure 4.9) quickly become larger in magnitude than added

mass forces early after motion onset. Recall that what is called “circulatory force” here

is theoretical added mass subtracted from measured lift, CL,circ = CL,meas.−CL,noncirc. It

is thus gratifying that following the acceleration transient the resulting “circulatory” lift

directly aligns with measured lift at a point after which there is theoretically no added

mass contribution. This result further motivates the possibility of a linear superposition

of force contributions in the form of a low order prediction model. It is evident by

the results here that the added mass contribution is well understood. It now behooves

us to search for a physical understanding and quantification of the circulatory force

contribution.

The circulation in the flow field can be measured by summing up all of the vorticity

located above the wing within the image frame at each time step. Because the field of

view is small enough such that the image only contains approximately a 1c×1c box above

the suction side, it was deemed that all circulation in the field of view was “relevant” to

lift production. Presently, there is not a standard convention for measuring “relevant”

circulation or even a definition of such, unless it takes the form of an identifiable coherent
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Figure 4.9: Force histories of the fast (sa/c = 1) and slow (sa/c = 6) cases

showing the contributions of circulatory and non-circulatory effects.

vortex. Thus, this study limits itself to the primitive, yet robust and insightful, method

of summing up all vorticity production local to the wing within approximately a 1c radius

of the wing surface. Figure 4.10 provides time histories of measured circulation for the

fast and slow surge cases. As predicted, the fast case produces higher leading edge vortex

circulation (solid lines) during the acceleration transient, which the results of Figure 4.9

suggested. Following the rise in circulation several chords after acceleration ceases, the

fast case experiences a significant dip in total circulation (dotted lines), reaching a local

minimum at s/c = 5.5. Although this is partially due to vorticity leaving the field of

view, the PIV image in Figure 4.3 at s/c = 5.5 corroborates this result showing opposite

sign vorticity from the trailing edge making its way onto the suction surface, decreasing
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Figure 4.10: (-) LEV circulation, i.e. summation of blue clockwise vorticity, and

(- -) total (positive + negative) circulation for fast and slow surge cases.

the circulation within the interrogation window. These events line up precisely with the

local minimum in lift coefficient shown in Figure 4.6. Subsequently, the rise in circulation

peaking around s/c = 8 in Figure 4.10 lies directly in phase with the local maximum in

lift coefficient in Figure 4.6.

4.3 Streamwise Surge: Vortex Tracking

The vortex tracking algorithm described earlier, which identifies local extrema in

the γ1 function to locate vortex centers, was used to identify the leading edge vortex

trajectory throughout the wing motion. Because the real flow is in a viscous fluid,

at some point in the motion, the vortex breaks down and loses its coherent structure.
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Following vortex dissipation, the tracking algorithm can no longer accurately locate the

correct vortex center. Thus, the tracking method presented here is only carried out until

the first LEV can no longer be detected.

Figure 4.11 plots vortex trajectories in the lab-fixed and wing-fixed reference frames

for the fast and slow cases. It was previously hypothesized that, because the two cases

have vastly different force histories, their vortex trajectories would also show notable

differences. However, Figure 4.11a shows that the fast and slow surging cases actually

produce nearly identical vortex trajectories with respect to convective time. The leading

edge vortex forms immediately upon startup and translates linearly and nearly aligned

with the freestream over the first chord of travel. At s/c ≈ 1.25, both LEVs take an

immediate departure normal to the wing surface, illustrated by Figure 4.11c, remaining

at a relatively constant X ′ location (Figure 4.11b).

Vortex trajectory provides the instantaneous position of the vortex, but it does

not contain information about its size or strength. Figure 4.12 provides visualization

of the vortex in the form of vorticity plots, showing a clear difference between the two

cases. The fast surge case forms a tight, coherent vortex upon startup, and the vortex

remains this way through s/c = 1.5. The slow case, however, forms a much weaker

leading edge vortex that quickly dissipates as it convects from the wing surface. This

point is reiterated quantitatively by Figure 4.10. As expected from the larger vortex

with stronger vorticity (as seen in Figure 4.12a-b), the fast case produces consistently

higher circulation throughout the motion. As stated previously, force production during

these particular wing kinematics is largely driven by circulatory forces, which manifest

themselves largely in the strength of the leading edge vortex. This analysis shows that
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despite having nearly identical LEV trajectories, the fast and slow surging cases produce

vortices of different strengths at early times, explaining the large difference in force

histories.
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Figure 4.11: (a) Vortex trajectories in a lab-fixed reference frame for sa/c = 1

(fast) and sa/c = 6 (slow) cases. Trajectories in the wing-fixed reference frame

are separated into (b) wing-parallel and (c) wing-normal directions.

103



(a) Fast Surge: s/c = 1. (b) Fast Surge: s/c = 1.5.

(c) Slow Surge: s/c = 1. (d) Slow Surge: s/c = 1.5.

Figure 4.12: Contours of vorticity and velocity vector fields illustrating leading

edge vortices on fast and slow surging wings. The yellow dot indicates the vortex

location as given by the centroid of γ1. Only every fifth velocity vector is shown

here.
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4.4 Translational Pitch: Force and Moment Histories

Pitch plays a pivotal role in rapidly maneuvering aerial vehicles, having prevalence

in perching MAVs or tactically evasive aircraft [95, 96] and during stroke reversal in

reciprocating wings [97, 98]. The present study aims to build on the large body of

research surrounding pitching wings at low Reynolds number and offers a comparison to

the surging wing regarding vortex trajectory, circulation production, and relaxation to

steady state.

4.4.1 Lift Coefficient and Lift-to-Drag Ratio

In similar fashion to the surging wing experiments of Section 4.1, an acceleration

study was performed on the pitching wing to quantify force and circulation production.

The focus remains on the idea of a “fast” and “slow” motion, in which the motion occurs

over 1c and 6c, respectively. As defined in Figure 2.6, these correspond to reduced

frequencies k = 0.39 and k = 0.065.

Figure 4.13 provides lift histories for both fast and slow cases in which the wing

pitches about the leading edge and the corresponding surging cases from the previous

section. As discussed in Chapter 3, much of the force produced during the motion

transient of rapidly pitching wings is due to non-circulatory and circulatory pitch rate

contributions, i.e. added mass, rotation-induced plate-normal acceleration, and virtual

camber. Referring back to the force component breakdown of Theodorsen’s equation in

Figure 3.6, not only does the pitching wing have an acceleration-proportional lift term

(as does the surging wing) but also two angular velocity-proportional lift terms. The
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largest of these terms is virtual camber, which aids in turning the flow in the direction

of flow attachment and leads to a significantly larger circulatory lift force than achieved

on the surging wing. It is important to remember these additional lift sources when

observing the vastly different force histories between surge and pitch.

Figure 4.13b zooms in on the time during and immediately following the pitch-and-

hold maneuver. For the sa/c = 1 (k = 0.39) motion, peak lift is achieved at a value nearly

five times that of its steady state lift. The slow pitch case, sa/c = 6 (k = 0.065), also

experiences an unsteady lift increase, but only to a maximum value roughly twice that

of its steady state. Due to the rotational acceleration and angular velocity terms during

the motion transient, unsteady lift production exists only until t∗ = 1 and t∗ = 6 for fast

and slow motions, respectively, after which all motion-dependent lift sources go to zero

and lift production slowly relaxes to its steady state. A similar trend, although of lower

magnitude, was observed in the aforementioned surging cases. As annotated in Figure

4.13b, after t∗ = 1 the fast surging and pitching cases are kinematically equivalent; both

wings are translating at constant free stream at fixed angle of attack α = 45◦. Notice

that once the motion transients complete, both lift histories converge and follow the

same trends at the same magnitude for the duration of translation. The repeatability

of these results is further verified by Figure 4.14, which provides a comparison of force

measurements between the two facilities used in the present study: UMD and AFRL.

UMD force measurements on an AR = 2 wing were provided by Manar et al. [80]. Figure

4.14 includes the acceleration transient and several subsequent convective lengths, during

which differences in lift history due to aspect ratio effects have yet to manifest, and shows

that measurements between the two facilities are very similar.
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(a) Time history of lift coefficient for pitching (solid) and surging (dashed) wings. Regardless of

initial transient motion, all cases converge to the same final steady lift.

(b) Contents of box in (a) showing a more detailed plot of lift coefficient for the four cases. Note

that after the initial motion transient, the fast pitch and surge show extremely similar unsteady force

histories.

Figure 4.13: Lift histories for fast and slow pitching and surging cases.
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(a) sa/c = 1 (Fast pitch). (b) sa/c = 6 (Slow pitch).

Figure 4.14: Comparison of lift histories for (a) fast and (b) slow pitching cases

from each of the facilities used in this study. The two facilities produce largely

equivalent force histories, despite some discrepancies due to different installa-

tion/mounting techniques. UMD forces provided by Manar et al. [80]

Figure 4.15 provides circulation measurements for the fast and slow pitch and

surge cases. Circulation is measured by summing up all vorticity in the frame, which

admittedly neglects the pressure side and causes a nonzero circulation at time t = 0+ for

pitch measurements. Observing the total circulation for fast pitch and surge kinematics

of Figure 4.15, the two cases experience identical trends: increasing circulation from

the onset of motion through s/c = 3, undergoing a dip in total circulation reaching

a minimum at s/c = 5.5, and subsequently increasing circulation to a second local

maximum at s/c = 8 due to reformation of leading edge circulation. The peaks and

troughs in the circulation time history for fast pitch and surge are cataloged via PIV

snapshots of the vorticity field in Figure 4.16.
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Circulation for the slow cases is provided in Figure 4.15b and PIV snapshots in

Figure 4.17. The slow cases, however, do not show as similar a trend to one another.

One explanation for this lies in recognizing the significant differences in their kinematics.

Both wings complete their motions over six chords of travel, a relatively long time in

terms of convective distance and duration of flow field development. The surging case

does so fixed at high incidence angle, α = 45◦, from motion onset. Thus, immediately,

a leading edge vortex will form and separated flow phenomena begins, see Figure 4.17.

The pitching wing, however, experiences over one chord of travel under attached flow at

low angle of attack (Figure 4.17a,b) before flow develops into a feeding shear layer at

the leading edge eventually developing into a large region of circulation akin to an LEV.

Hence, the pitch vortex lasts longer than that of the surging wing. The dissimilarity in

flow development for the slow cases is reflected in dissimilar force histories (Figure 4.13).

The fast cases, however, show nearly homologous flow development and identical force

histories beyond the initial acceleration phase.

The existence of a coherent LEV has little impact on lift-to-drag ratio, as was

shown for the surging plate in Figure 4.7. A comparison of CL/CD for the pitch study

is given in Figure 4.18 and shows ratios well above unity for both fast and slow pitch.

This, of course, is partially due to the very low drag experienced by the pitching wings

near the onset of motion when the wing is deflecting from α = 0◦. Throughout each

of the pitch cases, the resulting CL/CD is always well above that of the surging case,

likely due to the dominance of virtual camber. This highlights the importance of un-

derstanding the aerodynamics of pitching wings and the possibility for practical use in

rapidly maneuvering vehicles, as was the intent for a majority of research efforts on
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(a) sa/c = 1, k = 0.39 (b) sa/c = 6, k = 0.065

Figure 4.15: Circulation histories for fast and slow pitching and surging cases.

Vertical lines correspond to the end of each acceleration phase.

reciprocating wings. The elevated lift-to-drag ratio evident at the start of the pitch

motion is not permanent, however. Non-circulatory forces during pitch act normal to

the plate; thus, throughout the pitch motion, as the plate-normal direction changes,

there is a transfer of component forces from the lift direction to drag direction. This

provides partial explanation for the steep decrease in CL/CD during motion transient as

the plate-normal vector rotates from α = 0◦ to 45◦. The insets in Figure 4.18 show that

the instant the pitch motion completes, CL/CD converges to the steady state condition

of a flat plate at α = 45◦ translating at constant velocity, where all the resultant force

is largely plate-normal resulting in CL/CD ≈ 1.
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(a) Fast Pitch: s/c = 1. (b) Fast Pitch: s/c = 1.5. (c) Fast Pitch: s/c = 2.5.

(d) Fast Surge: s/c = 1. (e) Fast Surge: s/c = 1.5. (f) Fast Surge: s/c = 2.5.

(g) Fast Pitch: s/c = 3. (h) Fast Pitch: s/c = 5.5. (i) Fast Pitch: s/c = 8.

(j) Fast Surge: s/c = 3. (k) Fast Surge: s/c = 5.5. (l) Fast Surge: s/c = 8.

Figure 4.16: Vortex development on fast pitching and surging wings. The yellow

dot indicates the vortex location as given by the local maximum of γ1.
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(a) Slow Pitch: s/c = 1. (b) Slow Pitch: s/c = 1.5. (c) Slow Pitch: s/c = 2.5.

(d) Slow Surge: s/c = 1. (e) Slow Surge: s/c = 1.5. (f) Slow Surge: s/c = 2.5.

(g) Slow Pitch: s/c = 3. (h) Slow Pitch: s/c = 5.5. (i) Slow Pitch: s/c = 7.25.

(j) Slow Surge: s/c = 3. (k) Slow Surge: s/c = 5.5. (l) Slow Surge: s/c = 8.

Figure 4.17: Vortex development on slow pitching and surging wings. The yellow

dot indicates the vortex location as given by the local maximum of γ1.
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Figure 4.18: Lift-to-drag ratio for fast and slow pitch to α = 45◦ (solid) and fast

surge α = 45◦ (dashed).

4.4.2 Moment Coefficient

Figure 4.19 contains moment coefficients about the mid-chord for the fast and

slow pitch and surge studies. Focusing on the fast motions, both pitch and surge show

increasing moment coefficient throughout the duration of the acceleration phase, peaking

at s/c = 1. Flow visualization and PIV for the surging wing in the previous section

suggested that this rise in moment coefficient was due to the growth of a leading edge

vortex fixed forward of the mid-chord. The same flow development is observed for the fast

pitch case, as shown in Figure 4.16. Yu et al. [94] provide dynamic and steady pitching

moment coefficient for a flat plate pitching about its leading edge, and their results

are direct agreement with the results presented here. Yu et al. concerned themselves

113



Figure 4.19: Moment coefficient about mid-chord for fast and slow pitch (solid)

and surge at (dashed).

only with the motion transient and force histories therein. The present work provides

extended time histories of pitching including the startup transient and its subsequent

development into its steady state condition. Without chordwise pressure transducers (or

similar measurement technique), it is not possible to identify the load distribution on the

airfoil and conclusively describe the physical sources causing the particular shape of each

moment curve. Illustrated by Figure 4.16-4.17, it is clear that flow separates immediately

at the leading edge, removing all hopes of adopting physical flow features described by

classical attached flow theory, which predicts zero moment about the quarter-chord for

symmetric airfoils.

The exact aerodynamic contribution from the leading edge vortex on pitching

moment has not been quantified here, but its position relative to the wing has been
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measured, which allows for a discussion of its trajectory and relevance to the directly

measured force and moment quantities. Figure 4.20 presents LEV trajectory in both

the lab-fixed (X, Y ) and wing-normal (X ′, Y ′) reference frames. Keep in mind that

(X ′, Y ′) is wing-fixed with the leading edge at (0, 0) and the coordinate system rotates

with the wing. Looking first at vortex tracking in the lab-fixed reference frame, Figure

4.20a, notice that every case, regardless of acceleration or motion type, has relatively

similar trajectories pointed in the horizontal free stream direction during early motion.

However, observing the results in the wing-fixed reference frame, accounting for the

time-varying wing position for pitching cases, Figure 4.20d represents vortex dynamics

as seen by the surface of the wing.

Ultimately, it is proximity to the wing surface that determines the LEV’s effect

on force and moment histories. There are many factors that contribute to the moment

coefficient, the details of which are beyond the scope of this work, but one observable

factor is the LEV’s X ′ position relative to the mid-chord and Y ′ distance off the wing

surface. Figure 4.20b-c provide time histories of vortex trajectories in the wing-fixed

frame. Regarding fast cases, the pitching wing generates a LEV that remains closer to

the leading edge (X ′pitch < X ′surge) and closer to the wing surface (Y ′pitch < Y ′surge), both

of which will contribute to a larger pitching moment about the mid-chord. However,

vortex trajectories during the first 2.5 chords traveled are not so different as to result in

the drastically larger moment coefficient in Figure 4.19.

As discussed in Chapter 3, during the acceleration phase the pitching wing expe-

riences a linear variation of angular velocity along its chord, resulting in a non-uniform

pressure distribution, which contributes to the moment about the mid-chord. The large
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spike in moment coefficient in Figure 4.19 arises during the angular deceleration portion

of the pitch that contributes a large downward force aft of the mid-chord. Differences in

LEV trajectory and strength are potentially responsible for the slightly elevated pitch-

ing moment during the constant angular velocity/linear acceleration portion, while the

non-circulatory force distribution at the end of the pitching motion is responsible for

the large spike at s/c ≈ 1. Since the acceleration profile is antisymmetric, one might

expect to see a negative spike in moment coefficient upon motion onset. At present,

this work cannot assuredly explain why that is not the case, but it is likely that the

resultant circulatory force lies forward of the mid-chord such that it offsets the negative

moment caused by plate acceleration. Whereas the large positive spike is enhanced by

the location of circulatory lift as well as plate deceleration.

Beyond approximately s/c = 2, vortices for pitch and surge depart onto different

paths: pitch remaining at constant Y ′ and traveling along the chord with increasing X ′

and surge convecting normal to the wing at constant chordwise position X ′. With no

more non-circulatory forces to account for, these vortex trajectories explain the elevated

pitching moment for the pitch case. Vortex tracking ends when vortices dissipate and

become unidentifiable by the γ1 method and vortex tracking becomes no longer reliable.

However, as shown in the PIV of Figure 4.16, following the dissipation and breakdown

of the original leading edge vortices, the two fast motions produce identical flow fields

and thus identical force and moment histories. This also exemplifies why it is difficult

to rely on individual vortex tracking to help explain force histories. At the onset of

motion, when the vortex is clearly defined and relatively circular, it can be tracked

confidently without issue. However, at some point it will break down, dissipate, and/or
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(a) Lab reference frame. (b) Fast case vortex trajectories in

the X ′ direction.

(c) Fast case vortex trajectories

in the Y ′ direction.

(d) Wing reference frame. (e) Slow case vortex trajectories in

the X ′ direction.

(f) Slow case vortex trajectories in

the Y ′ direction.

Figure 4.20: Vortex trajectory based on the γ1 tracking algorithm. Correspond-

ing flow field images are shown in Figure 4.16-4.17(a-f).
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leave the field of view. What then? At what point does a region of vorticity no longer

have influence on the aerodynamic forces and moments? These questions motivated the

departure from vortex tracking using the γ1 criterion to the vorticity centroid method

introduced in Section 2.6.3. The latter is especially useful if there is no circular vortex

at all, but instead an amorphous region of vorticity within a selected proximity to the

wing. This method will be covered in detail in the following chapter.

4.5 Chapter Summary

This chapter provided experimental analysis on unsteady aerodynamic character-

istics of rapidly surging and pitching AR = 4 flat plates with the goal of specifically

identifying physical mechanisms of lift production and their behavior at all times in the

motion. Time-resolved particle image velocimetry and unsteady force measurements

were used to describe force production on the wing as well as track and quantify the

concurrently developing flow field, all evaluated at a Reynolds number of Re = 20,000.

The surging wing investigation consisted of two separate studies of a plate at incidence

starting from rest. The first study varied angle of attack from α = 5◦−45◦ for a single ac-

celeration profile, sa/c = 1. The second study varied acceleration from sa/c = 0.125− 6

at fixed incidence α = 45◦. The pitching wing study focused on one “fast” motion

(sa/c = 1) and one “slow” motion (sa/c = 6) of a wing pitching from α = 0◦ to 45◦ with

which to compare force histories and vortex dynamics with those of the surging wing.

It was shown that vortices form via shear layer at the leading edge in cases of

leading edge pitch and translation from startup for α ≥ 15◦, resulting in a sequence

118



of vortex detachment, convection, and new vortex reformation throughout the wing

translation. At high angles of attack, each vortex contributes an additional source

of circulatory lift that causes an oscillation in force history as lift histories converge

downward to their steady state lift value. Formation of a leading edge vortex leads to

temporary lift peaks, while LEV convection and subsequent encroachment of trailing

edge vorticity above the wing leads to local lift troughs. It was shown that LEV strength

is proportional to acceleration rate. Faster motions generate stronger, more coherent

vortices that are easier to detect using tracking methods such as γ1. However, the

trajectory of LEVs in the lab-fixed reference frame are independent of motion rate.
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Chapter 5

Experimental Results: Hinged Wing with Large Trailing Edge

Flap

As shown in Chapter 4, dynamically pitching wings achieve immediate force pro-

duction upon the onset of motion, and that force is proportional to frequency and am-

plitude. The ability to provide an instantaneous lift response from an actuated lifting

surface is of extreme interest from a vehicle controls perspective and has use in the field

of gust encounter mitigation and rapid vehicle maneuvering. The results of Chapter 4

illustrate the lift-producing capabilities of single-element wings, but the high lift was

shown to come at a cost of significantly high drag signature. This chapter presents the

use of a hinged wing that aims to utilize the lift-producing capability of a pitching flap

without the need to mechanically move the entire wing.

The present hinged wing experiment extends upon the work of Rennie and Jumper

[99–101] and more recently Phillips and Wygnanski [102] by 1) approximately doubling

the size of the deflecting flap from ∼27%-chord to 50%-chord and 2) increasing the non-

dimensional flap rate by an order of magnitude. As was the case with choosing aggressive
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single-element pitch and surge kinematics in Chapter 4, the hinge location and flap

kinematics of the hinged wing have been selected to exaggerate the aggressiveness of a

flap deflection than may typically be used in conventional aircraft. The goal is to quantify

its behavior and assess the extent to which it deviates from the present understanding

of flow physics surrounding trailing edge flaps, which are typically only used to enhance

steady lift coefficient. This study addresses a much more aggressive maneuver than

has previously been investigated, widely expanding the parametric library of rapidly

deflecting trailing edge flaps and generating insight into the physical mechanisms of

lift production for this wing geometry. An additional focus has been placed on the

entry into and departure from separated flow by varying initial flap deflection angle

and stationary fore element incidence angle. This work demonstrates the notion that

separated and attached flows follow many of the same physical principles addressed by

classical airfoil theory regarding sources of unsteady force production. Whether the

plate is experiencing fully attached or massively separated flow, the rate and magnitude

of vorticity production are illustrative of the forces produced by the wing, as evidenced

by the implementation of a vortex impulse method (Section 5.5) as well as low order

analytical and numerical models based solely on flap kinematics (Section 5.6).

Experiments on the hinged wing were performed in collaboration with the Air

Force Research Laboratory. All force measurements and flow visualization were acquired

by colleagues Albert Medina and Michael Ol, whereas all PIV measurements and data

analysis were performed at the University of Maryland. Results from this collaboration

were published by Medina, Ol, Mancini, and Jones [72].
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5.1 Kinematics

Three major parameters are represented in the experimental test matrix presented

in Table 5.1: flap deflection rate, deflection amplitude, and initial flow condition

(separated or attached). Deflection rates range from a very fast motion, completing

the transient flap over sa/c = 0.25 to a nearly steady pitch over sa/c = 4, which for

δ = 0 − 30◦ correspond to k = 1.05 and k = 0.065, respectively. Recall that reduced

frequency is given by k = δ̇c
2U∞

. The complete parameter space (shown in Table 5.1)

was chosen to encompass a range of reduced frequencies and deflection angles that will

highlight the dominant force producing mechanisms for large rapidly deflecting flaps

under attached and separated flow initial conditions.

Table 5.1: Experimental parameter space explored in the fast flap study.

αLE ∆δ sa/c Forces PIV

0◦

0− 20◦

0.25, 0.5, 1, 2, 4
All sa/c = 0.5, 1

0− 30◦ All -

0− 40◦ 0.5, 1 - sa/c = 0.5, 1

0◦

20− 0◦

0.25, 0.5, 1, 2, 4
All sa/c = 0.5, 1

30− 0◦ All -

40− 0◦ 0.5, 1 - sa/c = 0.5, 1

20◦
0− 20◦

0.25, 0.5, 1, 2, 4
All -

20− 0◦ All -
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Bound circulation produced on the wing and trailing edge wake circulation were

calculated using interrogation windows as shown in Figure 2.15. At each time step, all

vorticity within each window was integrated according to the definition of circulation,

Γ =
∫ ∫

S
ω · dS, to obtain a time history of circulation. With regards to quantifying

circulation, the present analysis makes no attempt to distinguish flow structures, and

thus provides a “total circulation” in each of the regions provided in Figure 2.15. Cir-

culation computed by integrating all vorticity within a box surrounding the wing will

be called Γbound and that of the wake will be Γwake. This method was chosen based

on its simplicity, robustness, and ease of implementation for any wing geometry and

kinematics.

5.2 General Flow Development and Inviscid Efficiency

The purpose of this section is to demonstrate the general behavior of a large (50%-

chord) rapidly deflecting trailing edge flap, providing a foundation from which to gain

intuition for how the flow behaves under such kinematics and preparing the reader for

the detailed measurements and analysis of the test cases in the following section.

The most prominent concept throughout this chapter will be the idea of an “invis-

cid effectiveness,” as termed by Rennie et al. [99], which refers to the observation that

during dynamic flap deflection, the wing produces lift as predicted by unsteady thin

airfoil theory. As shown in the top left image of Figure 5.1, Rennie found via smoke

visualization that the inviscid effectiveness could be explained by a temporary flow at-

tachment during flap deflection. Flow eventually separates at long time (see bottom left
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image), resulting in a reduction in lift production, eventually relaxing to its steady state

value. The second and third columns of Figure 5.1 contain PIV snapshots of the present

experiment for δ = 0◦− 20◦ and δ = 0◦− 40◦ with acceleration sa/c = 0.5. The top row

corresponds to the moment flap deflection completes at s/c = 0.5 and the bottom row

corresponds to the steady state reached 4 chords of travel after flap deflection. Rennie

performed his experiments on a 27%-chord flap at small deflection angles (≈ 10◦) at

reduced frequencies on the order of k = 0.01 − 0.1. The middle and right columns of

Figure 5.1 correspond to a 50%-chord flap at reduced frequencies k = 0.35 and k = 0.70,

respectively, an order of magnitude larger than previous studies. This illustrates the

notion that rapid trailing edge flap deflection induces attached flow over a wide range

of motion rates and final deflection angles. It is not intuitive to imagine a large flap

at relatively high incidence, e.g. δ = 40◦, maintaining attached flow for a significant

period of time. Chapter 4 showed that single-element pitching wings experience exclu-

sively separated flow from motion onset. The hinged wing draws inspiration from the

lift-producing capability of a leading edge pitching wing, but with the added benefit of

having a stationary leading edge element to prevent immediate leading edge separation.

Figure 5.2 provides instantaneous vorticity fields and streamlines for the δ = 0◦ −

40◦, sa/c = 0.5 case, demonstrating characteristic flow field development of a flap-down

motion. Before the onset of flap deflection (Figure 5.2a), where both wing components

are stationary at zero incidence, it is expected that the flow is attached. Upon onset

of motion, streamline curvature suggests that the pitching flap induces a downward

velocity on the surrounding fluid, turning the flow in accordance to the virtual camber

term introduced by Theodorsen and discussed in Chapter 3. Even after the wing attains
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Figure 5.1: Smoke flow visualization and PIV of dynamic flap experiments show-

ing attached flow during flap deployment (top) followed by eventual relaxation to

separated steady state (bottom). Showing that the attached flow is a physically

reproducible effect over a wide kinematic parameter space.

relatively large deflection angles (δ = 20◦ in Figure 5.2b and δ = 40◦ in Figure 5.2c)

the flow does not immediately separate as seen previously on single-element pitching

flat plates [15,56]. Instead, flow follows the newly-acquired camber line of the deflected

wing for the duration of the flap transient. Figure 5.3 provides a physical explanation for

this flap-induced flow attachment. Chordwise surface pressure measurements given by

Rennie et al. [100] in Figure 5.3a show the development of a favorable pressure gradient

during the rapid flap deflection. This favorable pressure gradient allows the flow to

remain attached, despite moderate to high deflection angles. A solution for the total

pressure distribution along the wing of the present work via the unsteady panel method

is shown in Figure 5.3b. The point-vortex panel method assumes a zero-thickness wing
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(a) (b) (c)

(d) (e) (f)

Figure 5.2: PIV vorticity fields and streamlines for the flap-down δ = 0◦ − 40◦,

sa/c = 0.5 case.

and does not provide separate surface pressure distributions, but instead provides total

pressure, dP , which is equivalent to the difference between surface pressures in Figure

5.3a (see vertical red arrows in both figures). The foremost arrow corresponds to the

middle of the stationary fore element and the aftmost arrow corresponds to the hinge

location, which differ between the two studies. Thus, the two plots equivalently show

a pressure decrease on the upper surface approaching the hinge location, where the

attached flow experiences a sharp turn down the flap. This effect appears as an increase

in −Cp on the upper surface in Figure 5.3a and an increase in dP in Figure 5.3b. Based

on observation of the streamlines, it appears that the strong counter-clockwise rotating

trailing edge vortex also contributes to induced downward flow.

Following the completion of flap deflection, there remains a period of attached flow
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(a) Measured pressure with hinge at three-

quarter-chord [100]

(b) Panel method solution with hinge at mid-

chord.

Figure 5.3: Pressure distributions for δ = 0− 10◦ using (a) measurements from

chord-wise pressure taps, given by Rennie et al. [100], and (b) an unsteady point

vortex panel method. Red arrows located in the middle of the stationary front

element and at the hinge location illustrate the increase in total pressure as flow

travels aft toward the hinge.

before it begins to slowly lift off the deflected rear wing component (see Figure 5.2d -

5.2f), gradually lifting off the surface as the wing travels at fixed incidence at constant

velocity for the remainder of the test. The converse of the flap-down motion in Figure

5.2 is the flap-up motion shown in Figure 5.4, where the flow transitions from a fully

separated state to fully attached flow at δ = 0◦. As opposed to the strong trailing

edge starting vortex formed during flap-down kinematics, flap-up motions experience

instead more of a severance of the trailing edge wake (Figure 5.4b). The discarded wake

obstructs the path of the now-forming clockwise rotating trailing edge vortex attempting

to form during flap-up. The result is a smooth transition into attached flow at its final
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state (Figure 5.4d-f).

(a) (b) (c)

(d) (e) (f)

Figure 5.4: PIV vorticity and velocity fields for the flap-up δ = 40◦− 0◦, sa/c =

0.5 case.

Time-resolved bound circulation measurements for the two cases described above

are provided in Figure 5.5a with yellow circles denoting the times corresponding to

PIV images in Figures 5.2 and 5.4. Also provided in the figure are equivalent cases for

δ = 0◦ − 20◦ and δ = 20◦ − 0◦. The general trend of circulation production for the

flap-down kinematics is a nearly linear rise in circulation throughout the duration of

the pitch transient, reaching a maximum upon motion cessation. Immediately following

flap deflection there is a gradual departure from attached flow into separated flow with

no external flow structures forming over the wing, e.g. an LEV. This relatively tame

flow behavior results in a gradual decline in bound circulation until settling at its fully

developed state after approximately four seconds, which also conveniently corresponds

to a convective time of four chords traveled. The flap-up cases follow a similar, albeit
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reverse, trend in which the initial state is fully separated and circulation decreases nearly

linearly before settling to its final state, which is attached flow at zero degrees incidence

and zero net circulation. However, as shown in the PIV, there is a complex interaction

between the detached trailing edge wake and newly forming trailing edge vortex. This

interaction leads to more counter-clockwise circulation production and a slight overshoot

past the steady state value. This effect was not observed in the flap-down motion.

(a) (b)

Figure 5.5: (a) Circulation history for various hinged wing cases and (b) com-

parison between bound (black) and trailing edge wake circulation (green). Yellow

circles in (a) correspond to PIV snapshots in Figure 5.2 and 5.4.

It should be noted that the intention of this work is not only to expand the doc-

umented body of experimental results, but also to use modeling to provide low order

methods of predicting lift histories on the kinematics presented here and elsewhere within

the parameter space. Potential flow theory, the basis for the panel method and analyti-

cal models in this work, assumes two-dimensional flow and a conservation of circulation
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given by Kelvin’s circulation theorem, which states that the time rate of change of cir-

culation around a closed curve consisting of the same fluid elements is zero, typically

expressed as DΓ
Dt

= 0. Unfortunately, the present literature does not extensively over-

lap with the kinematics of the present study, and although it would be convenient to

extrapolate the results of others to justify the assumptions in this work, it would be

best to ensure the accuracy of our claims based on our own experimental results. The

use of a transparent glass wing in the PIV experiments allows for a clear, unobstructed

view of the entire flow field, providing the opportunity to check if circulation in the two

regions is, in fact, equal. As shown in Figure 2.15, the wake boundary of integration is

all encompassing of the flow field aft of the trailing edge, interfacing vertically with the

bound circulation boundary. The results are presented in Figure 5.5b for the sa/c = 0.5

0 − 20◦ and 0 − 40◦ flap cases. The absolute values of bound circulation (black) and

wake circulation (green) are nearly identical over the duration of the flap maneuver and

continue to be so over the next half chord of travel. The fact that no vorticity suddenly

leaves the PIV image frame indicates that all fluid motion is nominally two-dimensional

within the imaging slice. Additionally, this indicates that vorticity did not diffuse or dis-

sipate due to viscous effects in the wake over this time scale. Due to finite resolution of

the camera and possible reflections off the surface of the glass wing, it is not possible to

achieve complete resolution of the boundary layer near the wing surface. The near-wing

velocity field measurements are almost certainly under-resolved. However, this effect is

mediated by the fact that both the suction side and pressure side of the wing contain

under-resolved sections of opposite sign. It will be assumed for the present study that

these under-resolved regions essentially cancel out, leading to minimal inaccuracies in
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the measured bound circulation production. This assumption is supported by the fact

that the measured values of bound circulation and wake circulation are nearly identical.

Having addressed the assumptions of two-dimensional, inviscid, and attached flow,

it is now suitable to move forward in the analysis and apply concepts from thin airfoil

theory to compute lift on the wing. In a steady flow, one can calculate lift using bound

circulation via the Kutta-Joukowski theorem, L = ρUΓ. Having high deflection rates

(0.018 ≤ k ≤ 0.70) and large flap amplitudes (δ ≥ 20◦), the rapidly pitching trailing

edge flap in the present study is far from what is typically considered “steady” motion.

Thus, when applying the Kutta-Joukowski theorem to the PIV measurements and cir-

culation calculations from Figure 5.5, one should not expect to accurately predict the

total force production, as that contains time-dependent unsteady lift contributions not

captured in steady theory. Rennie et al. [100] concluded that during rapid trailing edge

flap deflection, the wing acts with an “inviscid effectiveness,” during which the wing

produces lift analogous to the potential flow solution. However, Rennie’s study used

a flap of only 27% of the chord and much smaller deflection rates (k ≤ 0.1), which

elicited negligible rate-dependent forces, e.g. added mass, and focused solely on the

inviscid nature of the resulting circulatory force. Therefore, it is instructive to attempt

to reach the same conclusion with the present setup and more aggressive motions with

the hopes of drawing similarities between our conclusions and effectively increase the

present literature’s knowledge of the parameter space. Figure 5.6 presents a comparison

of the measured steady circulatory lift (Kutta-Joukowski theorem applied to PIV data),

non-dimensionalized by free stream dynamic pressure q = 0.5ρU2
∞ and chord length, in

addition to results from direct force measurements. It is clear that the calculated lift
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from PIV does not directly match the measured lift during the motion transient, which,

as stated previously, is expected. However, there is excellent agreement between the

calculated steady lift and measured lift after the motion transient. This result coincides

with Rennie’s conclusions about the wing acting as though in ideal flow conditions in

that after the flap transient, when there are zero rate-dependent force contributions,

the force history aligns with Kutta-Joukowski theorem. Based on the results of Figure

5.6, two major attributes of trailing edge flaps become evident: 1) There is a nearly

instantaneous lift response at the onset of motion and 2) unsteady pitch rate effects

(due to δ̇ and δ̈) are dominant in this kinematic regime and responsible for over 50%

of force production. Achieving a deeper understanding of these unsteady forces and

breaking down individual lift contributions of each wing component will be the focus of

the following sections.

5.3 Test Matrix Results

5.3.1 Flap-Down

Flap-down experiments correspond to the topmost section of the test matrix (see

Table 5.1). These motions have an initial condition of attached flow, as the front and

rear elements are both at zero degrees incidence to the free stream before the trailing

edge flap undergoes flap-and-hold kinematics down to its final deflection angle. Figures

5.7a and 5.7b provide the lift histories for several flap deflection rates for ∆δ = 30◦ and

∆δ = 20◦, respectively.

Recall that a key attribute of using trailing edge flaps as a control surface and
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(a) Lift coefficient for sa/c = 0.5, δ = 0◦ − 20◦ case.

(b) Lift coefficient for sa/c = 1, δ = 0◦ − 20◦ case.

Figure 5.6: Kutta-Joukowski lift calculated from measured circulation compared

to directly measured lift from instrumented force balance. Duration of flap

deflection lies within vertical dotted lines.
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the motivation of this work to understand its aerodynamic lift response is their ability

to generate instantaneous lift perturbations upon motion onset. It is clear from Figure

5.7 that flap deflection instantly generates a large lift spike over a very short convective

time as a result of the added mass and pitch rate-dependent lift sources described in

Chapter 3. The magnitude of the lift spike is directly proportional to motion flap

frequency. The pitch-and-hold maneuvers in the present study vary in duration from a

very aggressive case of sa/c = 0.25, completing the motion over 0.25 chord-lengths, to

a very slow motion of sa/c = 4, nearing a condition of quasi-steadiness. Qualitatively,

both figures show identical trends, the main difference being the 30 degree deflection

case results in consistently higher forces. As the flap deflects more rapidly, additional

lift is generated beyond the steady circulatory response and becomes exponentially larger

with increasing flap frequency. Observe the non-linear increase in peak lift coefficient

as deflection rate increases in Figure 5.7. Similarly, the drag histories experience a

non-linear increase with increasing motion rate, as shown in Figure 5.8, although of

much smaller magnitude than lift coefficient. More importantly, though, the pitching

moment response, shown in Figure 5.9, follows the same shape as lift and drag and

will likely lead to considerable vehicle control challenges if this flap device were to be

directly implemented on a vehicle. The large force production from the trailing edge flap,

concentrated near the rear portion of the wing, contributes to large peaks in pitching

moment about the wing’s quarter chord. It should be stated that the experiments in

the present work are significantly rigid such that there is no aeroelastic effect during the

flap motions.

Larger force production for faster deflection rates is coincident with larger cir-
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culation production, shown in Figure 5.10a for δ = 0 − 20◦, sa/c = 0.5, 1; which is in

agreement with results of the previous chapter on pitching and surging wings. The faster

pitch rate case generates a maximum circulation surpassing that of the slower case dur-

ing the motion transient. However, both cases converge to the same value immediately

following the end of flap deflection. Snapshots of PIV measurements in Figure 5.10b

demonstrate the evolution of bound circulation and development of the trailing edge

vortex wake. The top and middle rows correspond to s/c = 1
2
(sa/c) and s/c = sa/c,

respectively, showing that the flow field evolution in the two cases differs slightly during

the flap transient, but 1 chord of travel after flap completion, i.e. s/c = sa/c + 1, both

cases converge to the same value of bound circulation and attain identical trailing edge

wake trajectories.

Figure 5.11a more clearly illustrates the difference in circulation production by

normalizing the horizontal axis by the duration over which the flap deflects, i.e. all

motion transients occur over s/sa = 1. Upon motion onset, both cases appear to produce

identical circulation histories until s/sa = 0.3, after which the two cases diverge and

the faster flap produces additional circulation. A similar finding was presented for lift

coefficient of the surging plate in Figure 4.5b, recreated here to show the similarities

between the two sets of kinematics. In the case of linear surge acceleration, the difference

in lift production shown in Figure 5.11b was said to be due to LEVs of increasing

strength with increasing magnitude of acceleration. The present case of a hinged wing

does not generate a LEV, as evidenced by PIV in Figure 5.10b, and therefore must be

due to another source of additional circulation. Potential flow analysis suggests that the

additional circulation is due to a “virtual camber” caused by the pitching flap that is a
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sa/c = 0.25 sa/c = 0.5 sa/c = 1 sa/c = 2 sa/c = 4

(a) Lift coefficient histories for deflection rate study of δ = 0◦ − 30◦ case.

(b) Lift coefficient histories for deflection rate study of δ = 0◦ − 20◦ case.

Figure 5.7: Lift histories of deflection rate study for (a) δ = 0 − 30◦ and (b)

δ = 0− 20◦. Inset shows relaxation from elevated steady lift to fully developed

steady state.
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sa/c = 0.25 sa/c = 0.5 sa/c = 1 sa/c = 2 sa/c = 4

(a) δ = 0− 30◦ (b) δ = 0− 20◦

Figure 5.8: Drag histories for deflection rate study.

function of pitch rate, δ̇.

Despite the wildly different transient force responses for cases ranging from 0 <

sa/c < 4, once the acceleration periods have completed and each case is kinematically

identical, i.e. translating with fixed geometry at constant speed, all cases converge to

the same lift value around s/c = 4 and subsequently exponentially decay to their steady

state lift with identical slopes, see insets in Figure 5.7. This relaxation period cor-

responds to the loss of attached flow and “inviscid effectiveness” obtained in the flap

transient that is maintained for several subsequent chords traveled. Rennie accounts for

the loss of inviscid effectiveness in his model by switching from an inviscid lift prediction

during the flap maneuver to empirical static lift data immediately following flap deflec-

tion. The present cases differ, however, because the results show a period of prolonged
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sa/c = 0.25 sa/c = 0.5 sa/c = 1 sa/c = 2 sa/c = 4

(a) δ = 0− 30◦ (b) δ = 0− 20◦

Figure 5.9: Pitching moment about the quarter-chord for (a) δ = 0 − 30◦ and

(b) δ = 0− 20◦.

inviscid effectiveness and attached flow that is obtained due to the more aggressive flap

maneuvers, in comparison to Rennie’s experiments.

Figure 5.12 illustrates the process of maintaining attached flow despite high angle

of attack for rapid deflections and the eventual development into fully separated flow at

long convective time. The extreme case of δ = 0 − 40◦ is shown here to more clearly

highlight the transition process from attached to separated flow. Red and blue arrows

are included to depict the gross motions of positive and negative vorticity in the flow

field. During deflection, the suction surface maintains entirely attached flow and the

trailing edge starting vortex curls up nearly perpendicular to the wing surface. After
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(a)

(b)

Figure 5.10: (a) Circulation histories for two deflection rates of δ = 0− 20◦. (b)

Velocity and vorticty fields from PIV measurements documenting circulation

production for the cases presented in (a). (Top) s/c = 1
2
(sa/c), (middle) s/c =

sa/c, (bottom) s/c = sa/c+ 1. Circles in (a) correspond to PIV images in (b).
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(a) (b)

Figure 5.11: (a) Circulation history of Figure 5.10 with convective time scaled

by flap duration. (b) Circulatory lift component from surge acceleration study

with identical scaling showing the similarities between the two sets of kinematics.

Both cases contain identical circulation development until s/sa = 0.3, after which

cases diverge based on acceleration rate.

flap deflection is complete, vorticity produced on both the suction and pressure side

of the wing flows off the trailing edge parallel to the flap (s/c = 1.5). As the wing

translates at constant velocity at fixed angle of attack, attached flow along the deflected

rear element begins to lift off, the free stream becomes less diverted down the path of the

wing surface, and the flow relaxes to a final state where it remains largely uninhibited

outside the regions of vorticity.

In contrast to the single-element pitch and surge cases of the previous chapter, this
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particular geometry does not form any sort of leading edge vortex or external vortical

structure following the acceleration phase of the motion, which for the single-element

case led to a wide variation of relaxation slopes. Refer back to Figure 4.6 for s/c > 6,

where all cases are kinematically identical but their lift histories vary greatly due to the

reformation of LEVs, whose strengths depend on the acceleration profile during their

motion transients several convective lengths prior. This pertains to the concept of a

”memory” in the flow. The hinged wing does not produce any such leading edge vor-

tices, and the result is that the flow has less “memory” with which to differentiate the

relaxation response of each case.

Front and Rear Element Lift Contributions

It has been established that there are no LEVs forming over the hinged wing,

which means all of the force production comes from wing camber and pitch rate ef-

fects. Chapter 3 detailed Theodorsen’s potential flow solution and discussed each of

the force-producing mechanisms. His model predicts that a hinged wing with deflecting

trailing edge flap produces unsteady non-circulatory forces on the front element, despite

it remaining stationary throughout the motion. Mathematically, this occurs because

the distribution of sources and sinks placed on the wing to satisfy the no through-flow

boundary condition affects the velocity field everywhere in the flow. Physically, the

assumption of incompressibility mandates that any local disturbance to the flow (e.g.

a physically deflecting flap) causes a pressure disturbance everywhere in the flow in-

stantaneously. The model also assumes attached, inviscid flow at all times. These last

two assumptions might be valid during the flap transient, but as shown in PIV images
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(a)

(b)

Figure 5.12: (a) Circulation history for δ = 0−40◦, sa/c = 0.5. (b) Velocity and

vorticty fields from PIV measurements. Circles in (a) correspond to PIV images

in (b).
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after long convective time the flow eventually separates from the wing surface into a

fully developed separated state aft of the wing hinge. The duration of attached flow is

directly related to the flap frequency and therefore one might hypothesize that for the

slowest motions, sa/c ≥ 2, the strict potential flow assumptions may break down and

not behave as predicted. This hypothesis has been examined by observing the force pro-

duction on each of the fore and aft wing elements. Forces were measured using two force

balances, one on the stationary front element and one on the trailing edge flap, allowing

for the discretization of force contributions between the two wing elements. Figure 5.13

provides a breakdown of force histories for each pitch rate on each of the wing elements.

Figure 5.13(a,c) show that the forces produced on the stationary leading edge element

during slow flap cases appear to follow a quasi-steady force history with increasing angle

of attack during motion transient without any sign of a lift spike or non-circulatory lift

contribution. The fast cases (sa/c ≥ 1), however, experience a clear lift spike on the

front element during flap transient very similar to, but of lesser magnitude than, that

of its rear element, see Figure 5.13(a-b, c-d). It appears that a linear increase in flap

deflection rate results in an exponential increase in lift produced by both the trailing

edge flap and stationary front element.

To provide additional insight into each component’s relative magnitude towards

overall lift production, Figure 5.14 plots lift histories of both wing elements for δ =

0 − 20◦, sa/c = 0.25, 0.5, 1, 4. Figure 5.14a contains results for the slowest case and

it is shown that both elements provide relatively equal force contributions during the

flap deflection. Post-flap they both relax to steady state conditions, of which the front

element provides a majority of the circulatory lift. As deflection rate increases, notice
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(a) Lift produced by front element (b) Lift produced by flap element

(c) Lift produced by front element (d) Lift produced by flap element

Figure 5.13: Measured lift coefficient on stationary front element (a,c) and rear

flap element (b,d) for a range of deflection rates 0.25 ≤ sa/c ≤ 4.
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that lift produced by the trailing edge flap quickly and drastically surpasses that of the

leading edge element as force production becomes more dependent on pitch rate forces

than steady circulatory force. It is not until sa/c = 0.5 that the shape of the front

element lift curve changes from resembling a quasi-steady lift slope to one containing

additional pitch-dependent forces.

For extremely aggressive flap kinematics, it is evident that lift on the front element

is significantly augmented by flap motion as predicted by theory, at least qualitatively.

Slow to moderate flap deflections do not appear to have much of an effect on the front

element. The modified aerodynamic model presented in Section 3.2 neglects any added

mass or pitch rate-dependent forces produced by the fore element in an effort to simplify

the problem and improve upon the consistently over-predicted result of Theodorsen’s

model, as will be shown at the end of this chapter. It is understood that aggressive

motions will physically contain lift on the fore element, and the difference between

force measurements and the modified model will allow for a realization of the fore ele-

ment’s unsteady lift contribution. Due to the modified model’s simplicity (three separate

clearly-defined terms), it should be feasible to identify the contribution from each of the

theoretically identified lift sources and assess the accuracy to which the model predicts

each individual contribution.

5.3.2 Flap-Up

Test cases for flap-up kinematics presented here are the exact reverse of the flap-

down kinematics of the previous section. The wing’s geometric initial condition is that of
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(a) sa/c = 4 (b) sa/c = 1

(c) sa/c = 0.5 (d) sa/c = 0.25

Figure 5.14: Measured lift coefficient produced by the front element (blue), rear

flap element (red), and whole wing (black) for δ = 0− 20◦.
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a fixed-incidence trailing edge flap, where initial lift production is at its fully developed

steady state value. The transient motion is an upward flap deflection to zero degrees

incidence, resulting in an end condition of a wing at zero degrees angle of attack. It is

important to note here that the initial condition of the flow field is fully developed flow

with separation over the aft element. Therefore, this study is useful toward identifying

whether the lift response of a flap in separated flow remains instantaneous and of the

same magnitude (but in opposite direction) as for the flap-down cases.

Figure 5.15 provides lift histories for flap-up kinematics for several deflection rates.

These rates are the same as those in Figure 5.7 but for reverse kinematics, i.e. flap pitches

from 20◦ to 0◦ and 30◦ to 0◦. The initial condition is that of a wing with deflected flap

traveling at constant velocity, U∞ and therefore has a non-zero lift coefficient for its initial

value. Upon flap-up deflection at t = 0, there is indeed an instantaneous lift response

without any lag or deadband as is occasionally observed in other lift-augmenting flow

control mechanisms, e.g. pulsed actuators [103]. The inset in Figure 5.15b details the

response time for the flap-up cases of sa/c = 0.25 and sa/c = 1. Plotted with lift

coefficient is angular acceleration of the respective pitch-and-hold maneuver, acting as

a representative quantity to show the timing of motion onset. Both plots show that

acceleration and lift history are almost identically in phase with no lag in response time.

Recall that the initial condition is not attached flow, yet there is still an instantaneous

response as predicted by classical airfoil theory. The curves in Figure 5.15a and 5.15b

are nearly indistinguishable in shape and only differ significantly in magnitude, as was

concluded for the flap-down curves in Figure 5.7. This observation further encourages

the notion that lift histories for the present geometry and flap kinematics, regardless of
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attached or separated flow states, may prove to be predictable by some sort of low order

model, two of which were discussed in Chapter 3.

Component forces for flap-up δ = 20◦ − 0◦ kinematics are provided in Figure 5.16

as blue and red lines for the sa/c = 0.25 and sa/c = 0.5 cases, respectively. Black

lines in each plot correspond to each case’s flap-down counterpart, i.e. both sets of lines

should have opposite initial and final lift values. Finally, yellow lines are the result of

flipping the flap-up lift about its initial value and shifting it to begin at zero to directly

compare the magnitudes and shapes of flap-up and flap-down lift curves. Much like

the flap-down case, flap-up kinematics are similarly driven by rate-dependent forces,

which considerably surpass the contribution from quasi-steady circulatory lift and result

in large lift spikes during the motion transient. Focusing first on the fast sa/c = 0.25

case, comparing the yellow and black lines reveals a striking similarity in magnitude

and shape of lift during the flap transient, t < 0.25. Classical aerodynamic theory using

methods of linear superposition would predict a similar result. In fact, Theodorsen’s

model would predict the yellow and black lines to be exactly identical. We see here that

this is not the case, and it is hypothesized that the disparity stems largely from the

fact that the flap-up case begins its motion from a fully developed steady state whereas

the flap-down case experiences a brief period of “inviscid effectiveness,” where it reaches

a maximum steady circulatory lift contribution akin to the theoretical value. This is

evidenced by the large overshoot of the black curve in early times for the front element,

after which it converges with the flap-up result around t = 6. Although the unpacking

of individual force contributions is not possible with only a single force measurement,

it is clear that rate-dependent forces dominate and are largely in accord between both
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(a) δ = 20− 0◦

(b) δ = 30− 0◦

Figure 5.15: Lift histories from deflection rate study for (a) δ = 20− 0◦ and (b)

δ = 30− 0◦. Horizontal dotted lines indicate initial state and final steady state

lift coefficient.
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(a) sa/c = 0.25 (b) sa/c = 0.25

(c) sa/c = 0.5 (d) sa/c = 0.5

Figure 5.16: Component forces for δ = 20◦−0◦, sa/c = 0.25 (blue) and sa/c = 0.5

(red) kinematics. Black lines correspond to δ = 0◦ − 20◦ cases. Flap-up cases

are also flipped and zeroed to show relative magnitude to flap-down motions.
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sets of kinematics, suggesting that a successful low order model remains viable with

the understanding that steady circulatory lift may have to be modified to account for

varying initial flow conditions.

5.3.3 Flap in Full Leading Edge Stall

The experimental hinged wing survey concludes by addressing force production

due to an actuating flap on a wing undergoing leading edge stall. The fore element of

the hinged wing is fixed at incidence angle αLE = 20◦, which at steady state results

in fully separated flow about the leading edge. Figure 5.17 provides qualitative flow

field images illustrating immediate separation at the leading edge for the entire motion.

Flap-up and flap-down motions, corresponding to δ = 20◦ − 0◦ and δ = 0◦ − 20◦ cases,

respectively, were tested. Flap deflection angle, δ, is measured exactly the same as it

was for the αLE = 0◦ cases, with δ = 0◦ corresponding to the flap aligned with the

horizontal. The reader should compare the results of this section to their analogous

αLE = 0◦ cases of Figures 5.7 and 5.15.

Figure 5.18 provides experimental lift histories for flap-down and flap-up actuation

with the fore element fixed at αLE = 20◦. Focusing first on the motion transient portion

of the force histories (0 < s/c < sa/c), the immediate lift response in Figure 5.18

looks very similar in shape and magnitude to those from cases with the fore element

at αLE = 0◦. There is an immediate response without deadband (either positive or

negative depending on flap direction) and maximum force production that far surpasses

the static response. By now it should be clear that actuation of a large trailing flap at
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Figure 5.17: Flow visualization for sa/c = 0.5 flap down (left) and flap up (right)

kinematics with the leading edge element fixed at α = 20◦. Figure adapted from

Medina, OL, Mancini, and Jones [72].

sufficiently high motion rate can provide significant force production independent of an

attached flow state.

Upon completion of flap deflection for both flap-up and flap-down kinematics with

αLE = 20◦, a new vortical structure forms at the leading edge around s/c ≈ 2, resulting

in augmented circulatory forces. The flap-down case appears to generate a leading edge

vortex akin to that formed during the single-element surging wing case in Chapter 4 that

grows for several convective times and convects downstream, whereas the flap up case
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sa/c = 0.25 sa/c = 0.5 sa/c = 1 sa/c = 2 sa/c = 4

(a) LE = 20◦, δ = 0− 20◦

(b) LE = 20◦, δ = 20− 0◦

Figure 5.18: Lift histories from deflection rate study for (a) δ = 0− 20◦ and (b)

δ = 20− 0◦ with LE element fixed at 20◦.
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develops more of a recirculation region than a coherent shedding LEV. These phenom-

ena are documented via fluorescent dye flow visualization in Figure 5.17. The insets of

Figure 5.18 highlight the effect of these LEVs on force production for flap-down and flap-

up motions. The flap-down cases of Figure 5.18a result in nearly identical magnitudes

and phases of the LEV-induced lift hump. The difference in magnitudes of the local

lift coefficient maxima during LEV formation at s/c = 2.2 is approximately 0.1, which

corresponds to 8% of the total lift, despite the motion profiles varying in acceleration by

a factor of 4. Therefore, the subsequent LEV formation appears to be independent of

deflection rate if the rate is sufficiently fast, i.e. in this case sa/c ≤ 1. Flap-up motions,

however, do appear to be sensitive to deflection rate, as the subsequent lift increase due

to formation of a recirculation region on the suction surface shows a delay in formation

with decreasing deflection rate.

Comparison to Surging Wing

Drawing parallels between the leading edge vortex formation due to trailing edge

flap actuation and that of an inclined plate surging from rest (described in Chapter

4), Figure 5.19 provides force histories from both flap and surge kinematics for non-

dimensional acceleration rate sa/c = 1. Recall that the for the hinged wing, the fore

element is fixed at αLE = 20◦ and the trailing edge flap reaches a final deflection angle of

δ = 20◦; therefore, after s/c = 1, both cases are equivalently translating at constant free

stream, U∞, as an uncambered wing at angle of attack α = 20◦. It is not surprising that

lift production during acceleration transients differ, as they have considerably different

starting motions. However, the comparison in Figure 5.19 suggests that there might be a
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sensitivity to the initial kinematics on subsequent flow field development and force pro-

duction following the acceleration transient. Although both sets of of kinematics show

Figure 5.19: Comparison between surging flat plate at α = 20◦ and hinged plate

with αLE = 20◦, δ = 0◦ − 20◦. Both motion transients occur over sa/c = 1.

formation, shedding, and reformation of leading edge vortices, causing an oscillatory

relaxation to an equivalent steady state value, the single-element surging wing results in

significantly larger lift during the development towards steady state. This is likely due

to a stronger initial LEV for the single-element plate, which may lead to more aggres-

sive shedding dynamics and subsequent reformation of stronger leading edge vortices.

Ultimately gained from this analysis, and that of the previous chapter, is the insight

and understanding that, depending on motion rate and type of transient kinematics, it

is very important to have knowledge of the kinematic history if one is to attempt to

predict a time history of force production on a moving wing.
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Comparison to αLE = 0◦ Case: Component Forces

We now compare component-specific force production between hinged wings un-

dergoing rapid flap actuation in both fully attached and fully separated flow. Fore and

aft component lift production for flap-down kinematics with stationary fore elements at

αLE = 0◦ (blue) and αLE = 20◦ (red) are presented in Figures 5.20 and 5.21. Rear ele-

ment actuation history is equivalent between the two cases. The only difference between

the two geometries is the fixed incidence angle of the fore element.

(a) Front element, sa/c = 0.25 (b) Rear element, sa/c = 0.25

Figure 5.20: Lift histories on (a) front element and (b) rear element for δ = 0−20◦

where the leading edge is fixed at αLE = 0◦ (blue) and αLE = 20◦ (red).

Static force production on the inclined front element naturally results in a non-zero

steady state value, as shown in each of the left column figures at t = 0, thus resulting in

an initial offset from the zero-incidence case. However, dynamic flap actuation results
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in instantaneous force production on both stationary leading edge elements independent

of inclination angle. Focusing solely on the acceleration phases, 0 ≤ s/c ≤ sa/c, if one

was to tare the initial offset from the αLE = 20◦ case, the transient lift responses would

appear almost identical. Full leading edge separation does not cause a delay or deficiency

in unsteady force production on the fore element during the motion transient, just merely

a shift due to different initial conditions. Following flap actuation, the αLE = 20◦ cases

experience the formation of a LEV that results in large lift peaks on the fore element

lasting approximately two convective lengths. LEV-induced lift enhancement occurring

over the front element from sa/c ≤ s/c ≤ 3 appears to be of similar magnitude between

the three deflection rates, contributing a maximum additional lift coefficient increase of

roughly 0.3. The primary difference between the curves is their transient response, but

the post-acceleration lift history is rather similar. Note that curves may look dissimilar

due to the difference in vertical axis scaling. The effect of the LEV is not limited

to the front element. In fact, its convection is observable by a clear lift hump during

1.5 ≤ s/c ≤ 3.5 on the rear element, capturing chordwise convection of the vortex and its

effect on each wing element as it moves. As shown in the figure insets, both cases relax,

perhaps coincidentally, to similar steady state values. Recall that one is in massively

separated flow and the other is relatively attached.

Looking now at the dynamic rear element (right columns of Figures 5.20 and

5.21), both αLE = 0◦ and αLE = 20◦ cases begin at zero lift. As with the fore element, it

appears that the rear wing element robustly produces similar force histories regardless

of an attached flow state, with perhaps a slight decrease in circulatory component for

the αLE = 20◦ cases. However, that circulatory loss accounts for a difference of only
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(a) Front element, sa/c = 0.5 (b) Rear element, sa/c = 0.5

(c) Front element, sa/c = 1 (d) Rear element, sa/c = 1

Figure 5.21: Lift histories on (a,c) front element and (b,d) rear element for

δ = 0 − 20◦ where the leading edge is fixed at αLE = 0◦ (blue) and αLE = 20◦

(red).
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≈ 0.2 between attached and separated cases. Vertical axis scaling of the sa/c = 1 case

makes curves appear very different, but note that the difference is still only 0.2.

5.4 Concluding Remarks on Force Measurements

Insensitivity to the current flow state (attached or separated) of unsteady force

production for the present wing kinematics motivates the hypothesis that the aerody-

namic responses shown here have the potential to be accurately modeled analytically

using classical attached flow theory, or some modification of such theory. This hypothesis

will be tested in the final section of this chapter.

First, the following section will explore the application of a two dimensional semi-

empirical model (vortex impulse method) to predict force production on the wing. This

effort does not satisfy the ultimate goal of identifying an accurate model based solely on

wing kinematics, as lift from vortex impulse currently requires empirical velocity field

measurements. However, the results of the following section will be used to substantiate

the use of the low order model presented in Chapter 3, providing support and explanation

of each term’s physical significance.

5.5 Force Prediction Using Vortex Impulse Method

In the early 1930’s, Sir Horace Lamb published theoretical work outlining the con-

cept of an impulsive fluid force generated from the growth and relative displacement of

two equal, opposite-strength point vortices [54]. The crux of these efforts lies in the no-

tion that aerodynamic lift can be determined by observable, quantifiable flow structures,
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i.e. vortices, assuming their behavior falls in line with the assumptions on which the the-

ory is based. The two main assumptions include: 1) two-dimensional, potential flow and

2) equal and opposite strength vortices created from a single event. This work was later

expanded upon by von Karman and Sears and repackaged to present the result in terms

of aerodynamic lift [78]. Dr. John Anderson shared this sentiment in a more general

sense in his introductory aerodynamics textbook, stating “It is not quite proper to say

that circulation ‘causes’ lift. Rather, lift is ‘caused’ by the net imbalance of the surface

pressure distribution, and circulation is simply a defined quantity determined from the

same pressures” [104]. It is the purpose of this section to reconcile the interchangeability

of lift and circulation and understand that circulation production is a physical manifes-

tation and visual representation of forces experienced by the lifting surface. Based on

flow field analysis of the previous sections, it is clear that the present experiment does

not contain two “vortices”, but instead various forms of attached and separated shear

layers. Thus, the present implementation will be an adaptation of Lamb’s point vortex

impulse model, redefining the position and location of each “vortex”. It is therefore

possible that some of the originally modeled physics may be lost. However, qualification

for each adaptation will be provided and results of the model will be shown to agree

very well with experimental measurements.
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5.5.1 Vortex Dynamics: Application to Lamb’s Model

Introduced in Chapter 2, non-dimensional lift coefficient normalized by the free

stream speed as predicted by Lamb is given by

CL =
2

U2c
[(u+ − u−)Γ + (x+ − x−)Γ̇]. (5.1)

Vortex convection speed, u, and vortex position, x, contain the subscripts “+” and “-”

corresponding to positive and negative signed vortices, respectively. Γ and Γ̇ are the

strength and time rate of change of circulation. It is important to address the fact that

Equation 5.1 is based on a potential flow model containing point singularities. Lamb’s

use of point vortices requires that all circulation is contained in an infinitesimally small

point in an otherwise irrotational flow. Figure 5.22 illustrates Lamb’s definition of a

vortex pair.

We know that point singularities do not exist physically, as it is impossible to

obtain infinite velocity at the vortex center. In order to apply Equation 5.1 to the PIV

measurements of the current work, a few adaptations must be made to the definition of

what Lamb considers a “vortex.” It was shown in the previous sections that the present

set of wing kinematics may or may not contain a coherent circular vortex, whose pres-

ence is highly dependent on flap deflection angle, pitch rate, and fore element incidence

angle. To provide a robust method for determining “vortex strength” where an iden-

tifiable vortex is not present, the current work will use the integration bounds defined

for circulation calculations, see Figure 2.15, as a fixed area in which all vorticity within

those bounds will be amalgamated into a single “vortex” of circulation strength equal
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Figure 5.22: Schematic of equal and opposite strength point vortex pair as de-

scribed by Lamb.

to the summation of that vorticity.

Vortex Strength, Γ(t)

Lamb assumes both vortices in his two-vortex system of Figure 5.22 to be of equal

and opposite strength at all times. If Eq. 5.1 is to be applied to the present experiment

it must first be proven that the two “vortices” in the PIV measurements are of equal and

opposite strength. Figure 5.23 provides time histories of bound and wake circulation for

several sets of flap kinematics. These comparisons can only be carried out for as long as

the newly formed trailing edge vorticity remains in the PIV image frame, after which the

total wake circulation can no longer be confidently measured. Additionally, since flap-up

cases have an initial condition of separated flow, and because a complete time history of

wake vorticity is not possible due to the fixed-size image window, wake vorticity mea-
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surements were offset to begin in-line with bound circulation prior to motion onset at

t = 0. This allows for the observation and comparison of their relative slopes and magni-

tudes over time. Ideally, any change in bound circulation should be equally reflected by

opposite signed vorticity concurrently shed into the wake from the trailing edge. Since

both bound and wake circulation are nearly identical for every case tested in this work,

the result of Figure 5.23 provides evidence for the assumption that the current rapidly

deflecting trailing edge flap motions generate two equal and opposite “vortices”, check-

ing off one requirement for the application of Lamb’s vortex impulse model. Circulation

strength and its time derivative will now be taken as that of measured bound circulation.

Relative Vortex Displacement and Velocity (∆x, ∆u)

It is now necessary to discuss the spatial relation of these two “vortices” with

respect to each other, as their relative displacement, ∆x, and relative velocity, ∆u,

are directly proportional to lift production. Lamb’s vortex impulse model requires the

information from two distinct vortices. As evidenced by aforementioned figures and

discussion, these results do not contain two distinct vortices. In order to implement this

method to represent the shear layers both attached to the wing and freely convecting in

the wake, it is necessary to redefine what is meant by each “vortex”. This may result

in a slight misrepresentation of the exact physics Lamb captures in his model, but the

newly defined vortex strength and position aim to parallel as closely as possible with

what is captured in Lamb’s model.

Regarding the trailing edge wake, the present experiment contains a shear layer

emanating from the trailing edge, and in order to apply a low order model, some ad-
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(a) Flap Down: (-) sa/c = 0.5, (-.-) sa/c = 1 (b) Flap Up: sa/c = 0.5

(c) Flap-Up: sa/c = 1

Figure 5.23: Absolute values of bound and wake circulations during motion

transients for flap-down and flap-up kinematics. Plot abscissas end around t =

0.7 − 1 depending on when the newly formed trailing edge vorticity exited the

image frame.

ditional effort must be taken to characterize and simplify this spatially and temporally

developing wake that contains structures other than coherent point vortices. Vortex

wakes are typically categorized as either free wakes or prescribed (fixed) wakes [105].

Free wakes provide higher-fidelity solutions by accounting for mutual induction between
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wake vortex elements, allowing the wake structure to deform with time. This comes

at the expense of significantly higher computational costs. Fixed wakes, however pre-

scribed, ignore time-stepping wake evolution altogether and enforce a specific wake tra-

jectory. Classical airfoil theories, e.g. Theodorsen and Wagner’s solutions, are typically

developed under the assumption of a horizontally convecting wake extending into an

undisturbed farfield. This allows for an analytical simplification and overall method

robustness that has perpetuated its use for nearly a century. For the present work, the

objective is to apply a low order model in a robust fashion to predict lift over a wide

design space of deflection angles, pitch rates, and initial flow conditions. Thus, it is not

practical to quantify wake shape development for every case in this work. Instead, a

general assumption for relative vortex dynamics is explored to form a robust method of

lift calculation applicable to any set of hinged wing kinematics.

Using time-resolved velocity fields from PIV measurements, two methods of vortex

tracking have been implemented: 1) Centroid of vorticity and 2) vortex center identi-

fication via γ1 criterion. The centroid of vorticity is calculated separately for both the

bound and wake vortices using Equations 2.8 - 2.11 each within the their respective

integration bounds. The γ1 criterion, Equation 2.7, requires the existence of a coherent,

circular vortex; thus, this method can only be applied to the trailing edge wake as the

bound circulation does not contain a discernible circular vortex. Conversely, the cen-

troid of vorticity method is the most robust of the two because it is insensitive to the

existence of a vortex and simply computes the mathematical centroid of any vorticity in

the interrogation region. For both methods, however, the duration over which the entire

trailing edge wake can be tracked is limited to the time it takes for the shed trailing

165



edge vortex to leave the image. For the present field of view and free stream speed,

that time corresponds to about 1 second (or one convective chord traveled). Although

a short time relative to the entire duration of acquired PIV and force measurements,

one convective chord of travel is sufficiently long to observe vortex dynamics during the

flap deflection for sa/c = 0.5 and a subsequent s/c = 0.5 at its fixed final deflection

angle. Figure 5.24 illustrates the spatial evolution of bound and wake vortices using the

centroid of vorticity and γ1 methods. Note that the γ1 method could not be applied

to the bound circulation, as it does not contain a circular vortex for the γ1 criterion to

identify. Several instantaneous snapshots of the wake are included in the figure as well

to show the nature of the wake shape over the course of flap deflection.

Focusing first, however, on the measured location of the bound vortex (green tra-

jectory in Figure 5.24), notice that the centroid of vorticity remains relatively local to

the mid-chord throughout the flap transient. Recall that this quantity is the spatial

average between the centroids corresponding to both positive and negative vorticity on

the wing itself (not shown in figure). The “vortex location” ascribed to the Lamb vortex

from bound vorticity is well-described using the centroid method, because both the lo-

cation of vorticity generation and the centroid itself are locally contained within a fixed

region over all time. That is, opposed to the trailing edge wake whose interrogation

region theoretically expands into the farfield along with the convecting wake vorticity.

The invariability in bound vortex location supports the simplification of mathematically

replacing the wing with a single vortex of strength Γbound.

As mentioned, the trailing edge wake is not locally constrained by a body and

is free to convect with the free stream. Typical use for vortex tracking methods are
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(a) Vorticity trajectories during time indi-

cated by shaded box in Figure 5.25(a), sa/c =

0.5, δ = 0− 20◦

(b) Vorticity trajectories during time indi-

cated by shaded box in Figure 5.25(b), sa/c =

0.5, δ = 0− 40◦

Figure 5.24: Wing-fixed time history of bound and wake vorticity trajectories.

to observe the motion of a particular flow structure identified as a “vortex”. This

definition may correspond to a particular threshold of the γ1 criterion or it may simply

refer to a bulk of vorticity traveling together in space. When simplifying this flowfield

to apply Lamb’s model, the trailing edge wake presents a unique problem in that its

time-dependent and case-dependent wake shape makes it difficult to ascribe a single

“location” of an entire wake. Typical vortex tracking methods are inherently weighted

heavily by the strength of the initial trailing edge vortex, despite new (and potentially

more relevant to lift production according to Biot-Savart) vorticity constantly being

shed at the trailing edge. Observe the trailing edge wake trajectories calculated by both

the vorticity centroid method and γ1 method in Figure 5.24. The γ1 method finds the

maximum value of γ1 in the flow field and follows the center of what is clearly the large

starting vortex formed during the flap transient. This method gives a good indication of
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the convection speed of a general element of wake vorticity and can be used to compute

the relative velocity between the two Lamb “vortices”. The vorticity centroid method

is similarly dominated by the strong starting vortex but is slightly pulled back towards

the wing as newly shed vorticity enters the wake. Although trajectories at long time

are not able to be shown due to a fixed field of view, one can imagine that as the wing

travels farther, the starting vortex, and subsequently the “vortex location” computed

by the two methods, will continue to grow with time and move far downstream.

Figure 5.25 provides time histories of quantified bound and wake vortex x-locations

for deflection rates sa/c = 0.5, 1 and deflection angles δ = 0− 20◦, 0− 40◦. The shaded

area (0 ≤ s/c ≤ 1) corresponds to the duration of trajectory measurements covered in

Figure 5.24. It was noted earlier that the objective of this effort is to develop a simplified

model that can be applied to a wide range of flap kinematics without having to quantify

the wake shape and vortex dynamics for each individual case. The results of Figure

5.25 provide evidence that a few parameters remain robust among cases. One of those

parameters is the location of the bound vortex. It is rather clear from Figures 5.24 and

5.25 that the location of bound vorticity can be assumed to remain fixed to the mid-chord

for all times. There are slight variations in its position over time, but for the purposes of

a low order model it can be assumed as constant. Another similarity lies in the measured

x-position history of the trailing edge wake when using either vorticity centroid or γ1

methods. The γ1 method could not be applied to the slower sa/c = 1 cases because the

tracking method could not identify one particular vortex to follow. Recall, it identifies

the maximum value of γ1 in the frame each time step, which typically resides within

the strong starting vortex. However, as illustrated in Figure 5.10, the sa/c = 1 wake
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contains more of a streak of small relatively equal strength regions of vorticity, which

causes the γ1 method to inconsistently track the same piece of vorticity over time. This

demonstrates the robustness of the centroid of vorticity method in that it will always

provide a result no matter the shape or strength of the vorticity in a region of interest.

Since lift is expressed as the rate of change of vertical momentum [78], the only

quantities required to calculate lift using Equation 5.1 are those in the horizontal di-

rection. Thus, with the bound vortex fixed to the mid-chord (u− = dx−
dt

= 0) and the

wake vorticity convecting downstream at a velocity of u+ = dx+
dt
≈ U∞ according to the

slope measured in Figure 5.25, the relative velocity between the two Lamb “vortices” is

∆u = U∞.

(a) δ = 0− 20◦. (b) δ = 0− 40◦.

Figure 5.25: x-locations of centroid of vorticity and γ1 for bound and wake

circulations; sa/c = 0.5 (red) and 1 (yellow).
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Immediately following the shaded box in Figure 5.25 there is a sharp decrease in

x−position of the tracked vortex for the sa/c = 0.5 cases. That is because vorticity

begins to leave the frame and the centroid is now shifting back towards the wing’s

trailing edge. That is, of course, a numerical artifact of the centroid method using only

the information it has within the field of view. However, it does introduce the notion

that theoretically, the trailing edge wake will eventually extend to the far field at long

time as the wing translates away from it. Assuming we had an infinite field of view and

computed the vorticity centroid, the relative distance between the wake centroid and

the bound centroid, which is fixed to the wing, would go to infinity. Mathematically,

that would be the case, but it is hard to say if that is physically correct in terms of the

physics Lamb is modeling. Remember that we are modifying an ideal point vortex into a

spatially expanding asymmetric convecting wake. The way the present work deals with

the contrasting scenarios is to place the “vortex” location at the wing’s trailing edge.

At every instant, a small segment of vorticity is produced at the trailing edge. The

assumption of inviscid flow eliminates the possibility of vortex dissipation downstream,

so it will be assumed that once a segment of vorticity is created at the trailing edge it

remains at that strength for all time. Thus, the only location in the wake where vorticity

is allowed to change magnitude, i.e. Γ̇ 6= 0, is at the trailing edge.

Figure 5.27 summarizes the results of this section and the assumptions regarding

vortex dynamics and their application to Lamb’s vortex model. Applying the assump-

tions of ∆x = c
2

cos(δ) and ∆u = U∞ to Equation 5.1 results in a final equation for lift

coefficient based only on circulation history and wing kinematics given by
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Figure 5.26: Bound and wake vorticity centroids at long time. Bound vorticity

has converged to a constant location near the mid-chord. Trailing edge wake has

long left the field of view and can thus no longer be accurately tracked

CL =
2Γ

Uc
+

Γ̇

U2
cos(δ) (5.2)

5.5.2 Vortex Impulse Model Results

Comparisons of experimental results to the semi-empirical low order vortex impulse

model of Equation 5.2 are shown for flap-down cases in Figure 5.28 and for flap-up cases

in Figure 5.29. Insets in Figure 5.28(a,b) are provided for a more detailed view of the

comparison during the flap transient.

The initial lift spike during the flap transient is attributed to unsteady rate ef-

fects, both inertial and circulatory, as discussed via classical airfoil theory in Chapter

3. It appears, though, that all of the force production, regardless of its source has been

captured by the simplified vortex impulse method of Equation 5.2. Flap-down cases

in Figure 5.28 feature a large spike whose magnitude is dependent on deflection rate.

The model appears to have no trouble accurately predicting the timing and magnitude
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Figure 5.27: Schematic illustrating the extension of Lamb’s vortex model to the

present case of a hinged wing with rapidly deflecting flap. Relative displacement,

∆x, and relative velocity, ∆u, are indicated based on the aforementioned analysis

and simplifications.

of that spike. The term in Equation 5.2 predominantly responsible for the lift spike

is the term directly proportional to circulation growth, Γ̇. It is interesting to observe

what has been characterized by Theodorsen and others in the literature as a largely

“non-circulatory” effect being modeled by an equation exclusively containing circula-

tion terms. In line with what Dr. John Anderson and Sir Horace Lamb theorized, the

circulation produced via the motion of a submerged body (under particular flow ide-

alization) can be quantitatively reshaped to identically represent lift production. Not

only does the vortex impulse model match experimental measurements during the high

lift flap transient with remarkable accuracy given the approximations made to vortex

location and convection speed, but it also predicts the relaxation to steady state. At

long time, lift is largely dominated by the “steady” term in Equation 5.2, 2Γ(t)
Uc

, which
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is dependent on instantaneous circulation. As shown back in Figure 5.5, circulation

decreases as the flow field transitions from an attached to separated flow state following

the aggressive transient flap, coinciding with a proportional lift reduction. This effect

is accurately captured by the low order vortex model. Because the relaxation process

involves a transition from attached flow to separated flow, it is further remarkable that

this inviscid theory appears to hold even when flow over the rear half of the airfoil is

entirely separated. With that known, maybe it is no longer surprising that the model

and experiment are equally in agreement in Figure 5.29, where the initial condition at

the start of the flap transient contains fully separated flow over the rear half of the wing.

The agreement between measurement and model becomes even more motivating

when recalling that force measurements were obtained in a water tunnel facility with a

NACA-0006 wall-to-wall airfoil whereas the PIV data used in the vortex impulse model

was obtained in a water tank with a finite-span (AR 4) flat plate. Experiments were,

of course, identically matched in terms of non-dimensional flap kinematics and free

stream aspects, but the difference in physical test article still remained. The apparent

independence of aspect ratio between the experimental facilities might be explained by

the fact that the force measurements were designed to contain physically 2-D flow by

using a wall-to-wall wing, and the vortex impulse method uses a 2-D plane to compute

sectional lift near the mid-chord where the flow is known to be relatively two dimensional.

An objective of this work and especially this section, is to develop an understanding

for the physical mechanisms responsible for lift production and the accuracy to which

classical airfoil theory models these mechanisms. The vortex impulse model of Equation

5.2 can be characterized as a semi-empirical model, as it requires measured circulation
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(a) sa/c = 0.5, δ = 0− 20◦ (b) sa/c = 0.5, δ = 0− 40◦

(c) sa/c = 1, δ = 0− 20◦ (d) sa/c = 1, δ = 0− 40◦

Figure 5.28: Vortex impulse model comparison to experiment for flap-down cases

of various deflection rates and flap angles.

history as an input. From a practical application standpoint, it is not feasible to obtain a

circulation history for every case one desires to model. This is the principal factor driving
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(a) sa/c = 0.5, δ = 0− 20◦ (b) sa/c = 0.5, δ = 0− 40◦

Figure 5.29: Vortex impulse model comparison to experiment for flap-down cases

for δ = 0− 20◦.

the use of classical analytical models, such as Theodorsen and Wagner’s solutions, even

for cases that do not strictly adhere to the assumptions on which the models were

derived. Since these models are so widely used, it is now instructive to compare a

classical model to a model based on accurately obtained physical data with the hopes

of drawing parallels between the two.

Figure 5.30 presents the individual lift contributions from each term in the vortex

impulse model to provide insight and general intuition for the relative magnitude of each

term at every point during the motion. As hypothesized, the magnitude of the lift spike

during flap deflection is largely dependent on deflection rate. Looking at the vortex
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impulse results for δ = 0− 20◦ cases of Figure 5.30(a,c), notice that although the term

proportional to circulation remains of relatively equal magnitude between the cases, the

term proportional to time rate of change of circulation is strikingly different. The slower

case reaches peak circulation over a longer duration, resulting in over 50% reduction in

the “unsteady” (∂Γ
∂t

) lift term. The same trend is identified for the δ = 0− 40◦ cases of

Figure 5.30(b,d).

Figure 5.30 also contains a discretization of force contributions pertaining to the

simplified classical model given by Equation 3.25, which provides an analytical lift model

solely dependent on wing kinematics and free stream speed. Note that Equation 3.25

is now non-dimensionalized by the dynamic pressure, 1
2
ρU2, and chord length of the

entire wing, 2b, to produce lift coefficient. Most importantly, this is a purely analytical

model and does not require empirical inputs or any flow field knowledge a priori. Figure

5.30 allows for the comparison of kinematic quantities (δ, δ̇, δ̈) to terms proportional to

circulation behavior (Γ, Γ̇). It has been reiterated throughout the results of this work

that circulation production is proportional to motion rate. Figure 5.30 shows that the

terms describing flap deflection rate in the analytical model are directly proportional

to the circulation production term in the vortex impulse model. Likewise, the term

describing instantaneous incidence angle is proportional to instantaneous circulation.

Baik et al. [83] and Ol et al. [15] have demonstrated that classical airfoil theory provides

reasonably accurate results when the motion rate is sufficiently high. Figure 5.30 reflects

that conclusion as the faster cases result in closer agreement to the semi-empirical model

than the slow cases, which experience an over-prediction of the analytical model. This

is likely due to less stringent flow attachment for slower cases, resulting in a lower

176



aerodynamic efficiency compared to ideal airfoil theory.

(a) sa/c = 0.5, δ = 0− 20◦ (b) sa/c = 0.5, δ = 0− 40◦

(c) sa/c = 1, δ = 0− 20◦ (d) sa/c = 1, δ = 0− 40◦

Figure 5.30: Vortex impulse method (Eq. 5.2) vs. simplified aerodynamic model

(Eq. 3.25).
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5.6 Force Prediction via Low-Order Analytical and Numerical Methods

The previous section presented a low-order model for unsteady lift prediction re-

quiring experimental circulation data as input. For the purposes of optimization, sen-

sitivity analysis, and control, low-order models cannot rely on the existence of experi-

mental results, as they are typically used as prediction tools in the absence of physical

data. This section aims to extend the discussion of theoretical lift prediction by apply-

ing classical aerodynamic concepts to accurately predict measured lift on a hinged wing

with rapidly deflecting trailing edge flap. The two low-order quasi-steady models tested

here include 1) Theodorsen’s classical solution with C(k) = 1 as well as 2) the mod-

ified aerodynamic model of Equation 3.25 specifically introduced in the present work.

Additionally, an unsteady panel method will provide a numerical solution to evince the

accuracy and/or limitations of each low-order model.

This section will focus exclusively on the flap-down motions for δ = 0 − 20◦,

0 − 30◦ at deflection rates sa/c = 0.25, 0.5, 1, 2. As shown in Section 5.3, during the

flap-down motion transients (0 ≤ s/c ≤ sa/c) flow is largely attached and produces

lift in agreement with inviscid attached flow theory, making these kinematics excellent

candidates with which to compare the theoretical models.

5.6.1 Theodorsen and Modified Model

Figure 5.31 shows the performance of the two low-order models compared to the

measured lift history for (a-d) δ = 0 − 20◦ and (e-h) δ = 0 − 30◦ at deflection rates

sa/c = 0.25, 0.5, 1, 2. Theodorsen’s solution captures the correct shape of the measured
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force history, but clearly over-predicts lift for every case. Most notably, the steady state

lift predicted by Theodorsen is considerably larger than the measured steady value. This

suggests that one specific area in which to diagnose the discrepancy is the magnitude of

its steady circulatory lift term. Inserting the present geometric and kinematic parameters

into Equation 3.17, the resulting steady circulatory lift from Theodorsen’s prediction is

CL = (2 + π)δ. In comparison, the steady state lift predicted by the modified model

is CL = πδ. The latter prediction agrees to a much higher degree with the measured

data. Therefore, it is noted that one major source of the disparity in Theodorsen’s

prediction to measured lift is its treatment of the steady circulatory term. It should

be reiterated that Theodorsen’s solution was derived under the assumption of small

angular deflections of the flap, which is clearly violated in the present case. The modified

model, which treats the hinged wing as two decoupled single-element lifting surfaces,

each producing lift according to Theodorsen’s solution for single-element plates, very

accurately predicts steady circulatory lift for all cases. To understand the accuracy of the

steady circulatory term, consider the hinged wing as a cambered wing with an imaginary

chord line connecting the leading and trailing edges. Because the hinge location is at

the half chord, the angle of attack between the imaginary chord line and horizontal free

stream, α, is α = 1
2
δ. Thus, the modified model predicts steady circulatory life to be

CL,steady = πδ = 2πα. The exceptions to this result are the slow, high deflection cases

of Figure 5.31(g,h), in which flow is likely not very strongly attached and thus acts less

efficiently than inviscid attached theory predicts.

At very early time after the onset of flap deflection, t = 0+, the steady term

for either model, which is proportional to deflection angle, is negligibly low and lift is

179



(a) sa/c = 0.25 (b) sa/c = 0.5 (c) sa/c = 1 (d) sa/c = 2

(e) sa/c = 0.25 (f) sa/c = 0.5 (g) sa/c = 1 (h) sa/c = 2

Figure 5.31: Experimental results compared to two analytical models:

Theodorsen’s solution and the modified aerodynamic model of Equation 3.25.

primarily driven by rate-dependent forces. This was also observed in Figure 5.30 via

vortex impulse analysis, which showed that the term proportional to time rate of change

of circulation is the overwhelming contributor to lift production during early stages of

the flap transient. Recall the accuracy to which the vortex impulse method matched

measured lift data. Now observe the congruence between the steady (Γ) and unsteady
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(Γ̇) terms of the vortex model to the steady (δ) and rate-dependent (δ̇, δ̈) terms of the

modified model. This agreement forms a foundation for understanding the resounding

accuracy with which the modified model predicts measured lift in Figure 5.31. As with

the steady result, Theodorsen’s model over-predicts lift during the flap transient but

to a lesser degree for more aggressive flap deflections. As Theodorsen’s rate-dependent

terms (added mass, rotation-induced plate normal acceleration, and virtual camber)

dominate force production relative to the steady circulatory force, Theodorsen becomes

much closer to measured forces, though it still over-predicts for all time.

The modified model was designed to assume zero lift contribution from the station-

ary fore element by effectively decoupling any lift-augmenting effects of flap kinematics

on the fore element. This causes an understood limitation to the model. The fact that

there exists an unsteady force on the fore element is contained in Theodorsen’s solu-

tion, but its accuracy to the physical problem remains unknown. The aforementioned

limitation of the modified model is made evident by its considerable under-prediction

of measured lift for the most aggressive flap cases in Figure 5.31. The inability of the

modified model to predict measured lift is hypothesized to be a result of a significant

physical unsteady lift force on the fore element. This hypothesis is addressed in Figure

5.32 and it is confirmed that although the rate-dependent terms of the model accurately

depict forcing on the physical flap, there exists an additional unsteady lift force produced

on the stationary fore element.
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(a) δ = 0− 20◦, sa/c = 0.25 (b) δ = 0− 30◦, sa/c = 0.25

Figure 5.32: Measured lift on fore and flap elements compared to the two terms

in the modified model.

5.6.2 Numerical Solution: Unsteady Panel Method

It was observed in Figure 5.32 that rapidly pitching the large trailing edge flap

does physically produce an unsteady lift force on the stationary fore element. The

plot shows that the modified model, although accurately capturing lift produced by the

flap itself, is not capable of capturing the additional lift on the fore element. Thus,

Theodorsen’s solution, which predicts non-zero unsteady lift on the fore element, over -

predicted measured lift, whereas the modified model under -predicted lift. This section

presents the results of an unsteady panel method, a low computational cost numerical
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solver, to address the discord between the analytical cases.

(a) δ = 0− 30◦, sa/c = 0.25

Figure 5.33: Comparison of panel method to experimental measurement with chord-wise

pressure distribution at peak acceleration, showing large unsteady lift contribution from

stationary fore element. (a) sa/c = 0.25 (b) sa/c = 1.

Detailed descriptions of the panel method and its implementation are covered in

Chapter 3 as well as in Katz and Plotkin [86]. Figure 5.33 confirms that the panel

method accurately models measured lift force for the δ = 0 − 30◦, sa/c = 0.25 case

that neither analytical model could properly capture. This result provides confidence

that the resulting pressure distributions are equally representative of the physical case.

Shown as an inset in Figure 5.33 is an instantaneous pressure distribution due to steady
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and unsteady lift terms for the time corresponding to maximum flap acceleration.

We can now further break down fore element lift into its constituent steady (Γ) and

unsteady (Γ̇) values. Plotted in green, the Γ-proportional component of fore element lift

follows the shape of the deflection history, much like the modified model’s πδ term. In

fact, a comparison of the blue and green lines in Figure 5.33 is nearly identical to the

model vs. experiment result of Figure 5.32. Figure 5.33 clearly proves that the major

discrepancy in the modified model lies in its inability to predict Γ̇-proportional forces

on the fore element. Recall that this discrepancy is not always critical in predicting lift

with sufficient accuracy. Figure 5.31 shows that the modified model works very well for

all but the most aggressive cases. Figure 5.34 provides panel method results for steady

and unsteady pressure distributions as well as component-wise force histories for each of

the examined deflection rates. Notice that pressures due to instantaneous circulation do

not change as drastically with deflection rate as pressures due to circulation’s time rate

of change. The fact that “steady” lift varies with deflection rate at all, despite each case

deflected to the same flap angle, is a result of the induced effect of the rapidly deflecting

flap on the fore element. Satisfying the boundary condition of no penetration in steady

flow (δ̇ = 0) is exclusively dependent on instantaneous wing geometry. However, when

the flap is in motion, induced flow on the fore element requires an additional circulation

adjustment to the panel vortices in order to satisfy the boundary conditions.
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(a) Steady and unsteady sources of chord-wise pressure (b) δ = 0− 30◦, sa/c = 0.5, 1, 2

Figure 5.34: (a) Panel method result of chord-wise pressure distributions due to unsteady

lift term for several deflection rates of δ = 0 − 30◦ case, showing large unsteady lift

contribution from stationary fore element. (b) Panel method compared to experimental

force measurements on fore and flap elements.

5.7 Chapter Summary

This chapter provided an investigation into the force production, flow field devel-

opment, and low order modeling of a hinged wing with rapidly deflecting trailing edge

flap. A detailed parameter space was selected to measure the effects of a wide range of

flap deflection angles, deflection rates, and initial flow conditions. Flap deflection rates
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varied from 0.25 ≤ sa/c ≤ 4 with relative changes in deflection angle ∆δ = 20◦, 30◦, 40◦.

Both flap-down (0◦ − δf ) and flap-up (δf − 0◦) were examined. All cases were run at

Re = 20,000 with the fore element stationary at fixed angle of attack αLE = 0◦. Several

additional experiments were performed with the fore element fixed at αLE = 20◦ to

assess the flap performance in a fully stalled flow.

A semi-empirical model was formulated to predict lift histories on the hinged wing

based on the original work of Lamb’s point vortex impulse model. A redefinition of

the model’s constituent terms allowed for an application of the potential flow model to

be applied to the real flow of the present work. Semi-empirical model results matched

experiment with remarkable accuracy, and an assessment of each term contributed to

an understanding of lift sources during flap deflection and quantifying force production

using only velocity fields.

Finally, several low-order models were implemented to assess whether force pro-

duction of a large rapidly deflecting trailing edge flap could be predicted using simple

low-order models. Theodorsen provides a classical solution that is widely used in the

aerodynamics community, but results from this study show that it is unfit to predict lift

on a wing with such a large flap (50% chord) deflecting at high amplitude. A modified

aerodynamic model was developed to more accurately predict forces on the present kine-

matics. This model ignores any unsteady, non-circulatory effects on the stationary fore

element and, as a result, leads to better agreement with measured lift history. Compar-

ison of this modified model with Theodorsen’s classical solution identifies a limitation of

Theodorsen in its inability to accurately capture the steady circulatory lift contribution,

leading to a significant over-prediction of total lift for every case in this study. The size
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(50% chord) and deflection angle (δ > 20◦) both contribute to violating the small per-

turbation assumption integral to Theodorsen’s analytical solution. The modified model

presented in this work may be used to accurately predict forces on hinged wings un-

dergoing flap kinematics (sa/c > 0.5), for which the fore element produces negligible

unsteady lift. The modified model begins to under-predict lift for the most aggressive

motions, for which there is significant lift production on the fore element. An unsteady

panel method provided a numerical solution that validated the modified model’s ability

to accurately predict rate-dependent forces produced by the deflecting flap but not for

the fore element. Via chord-wise pressure distributions, the panel method confirmed that

the modified model’s under-prediction equates to the unsteady lift on the fore element.
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Chapter 6

Conclusion

6.1 Summary of Research

This work contains experimental and low-order modeling efforts that have been

performed on flat plate wings with the goal of providing a fundamental understanding

of the underlying physical mechanisms by which lift is produced on rapidly acceler-

ated wings. Experiments were performed in collaboration with the University of Mary-

land and Air Force Research Laboratory, capitalizing on the unique capabilities of each

facility. Experimental methods included time-resolved unsteady force measurements,

high-speed particle image velocimetry, and dye flow visualization. Test articles included

single-element flat plates and a flat plate hinged at the mid-chord with dynamically

deflecting trailing edge flap.

Chapter 4 explored force and moment production on surging and pitching single-

element wings. Force histories were compared to time-resolved flow topology, drawing

parallels between circulation production and lift force. Acceleration from rest cases

were performed for an angle of attack sweep of 5◦ ≤ α ≤ 45◦ over non-dimensional
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acceleration distances 0.125 ≤ sa/c ≤ 6. Experiments investigating leading edge pitch

were limited to only two sets of kinematics, sa/c = 1 and sa/c = 6 for α = 0 − 45◦,

to represent a “fast” and “slow” case, respectively, and with which to compare to the

surging cases of the same sa/c. Results from this study concluded that for all motion

rates at high incidence in which massive flow separation occurs over the leading edge

there exists a stall delay and subsequent high lift transients due to motion-induced force

production and auxiliary lift enhancement from leading edge vortex dynamics.

Chapter 5 studied a flat plate wing hinged at the mid-chord undergoing pitch-and-

hold motions of the trailing edge flap. This study provided similar quantitative analysis

as performed in Chapter 4 in addition to a series of low-order predictive modeling efforts

including semi-empirical, numerical, and analytical approaches. Flap deflections ranged

from ∆δ = 20◦, 30◦, and 40◦ at rates of 0.25 ≤ sa/c ≤ 4. Despite vastly different flow

topologies and means of circulation production (attached vs. separated at the leading

edge), both single-element wing and hinged wing experiments generated lift in the form

of instantaneous force spikes upon motion onset and sustain high lift for the first few

chords after the motion transient before developing into their respective fully developed

states. Measured lift on the hinged wing has been shown to be accurately modeled by the

present work’s adaptation of a vortex impulse lift method and a modified aerodynamic

model. The latter provided an avenue for discussion regarding the over-prediction of

Theodorsen’s steady circulatory term for the flapped wing and presents an alternative

analytical model with which to predict lift.
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6.2 Original Contributions

This work yields several important original contributions that will provide insight

into lift production and modeling techniques for future studies on low Reynolds number

rapidly maneuvering wings.

1. A comprehensive experimental investigation into the unsteady aerodynamic be-

havior of pitching and surging wings at low Reynolds number (Re ∼ 104) using

time-resolved force and velocity field measurements. Measurements were obtained

over long convective time, allowing for detailed observation of the response to

motion transient as well as relaxation to steady state.

2. A fundamental understanding of the individual sources of lift production on rapidly

maneuvering wings over a wide range of motion rates and incidence angles, pro-

viding an assessment of each lift source’s magnitude relative to total lift and de-

pendence on motion rate.

3. An experimental campaign of a rapidly deflecting trailing edge flap, novel in its

size for the tested pitch-and-hold deflection rates, cataloging lift production and

flow field development for a range of flap angles and deflection rates.

4. Development of an analytical model that more accurately predicts time histories on

a hinged wing with large trailing edge flap than Theodorsen’s classical analytical

solution.
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6.3 Key Conclusions

6.3.1 Single-element flat plates

Surging from rest

1. Angle of attack

• For α ≥ 15◦, leading edge vortices form upon startup via the shear layer

that forms at the leading edge, resulting in a sequence of vortex detachment,

convection, and new vortex reformation throughout the wing translation.

• Each vortex contributes an additional source of circulatory lift that causes an

oscillation in force history as lift converges downward to its steady state value

following the motion transient. Formation of a LEV leads to temporary lift

peaks, while convection of the LEV and subsequent encroachment of trailing

edge vorticity above the wing leads to local lift troughs.

• Low angle of attack cases, α ≤ 10◦, agree with Wagner’s approximation,

do not form vortices from leading edge flow separation, and trend upward

towards their final steady lift value.

• Drag, both transient and steady, increases monotonically with incidence angle

but not entirely linearly. There is a relatively linear increase in drag for

α ≤ 20◦, beyond which there is a sharp increase in drag as flow transitions

into a fully stalled state. The gains in lift achieved by increasing angle of

attack are outweighed by the increase in drag for α > 20◦, as evidenced by

the drag polar at the point of maximum lift as well as the time history of
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lift-to-drag ratio.

2. Acceleration rate

• Theoretical added mass, as given by Pitt Ford [68], appears to accurately

model the non-circulatory force for a range of accelerations. This result sug-

gests the linear superpositionality of this term for use in a low order modeling

technique.

• Lift-to-drag ratio for surging plates at α = 45◦ is independent of acceleration.

The fully stalled flow results in an entirely plate-normal force and a CL/CD ≈

1 for every acceleration profile tested.

• Plotting force histories versus a normalized convective time (s/sa) revealed an

independence of acceleration rate on lift production for s/sa < 0.4, after which

formation of LEVs proportional to acceleration rate caused a divergence in

the curves in which the faster acceleration cases eventually produced higher

lift.

Pitching in free stream

• Virtual camber aids in turning the flow in the direction parallel to the suction

surface and retaining the LEV closer to the wing, leading to a significantly larger

circulatory lift force than achieved on the surging wing.

General conclusions

• LEV strength is proportional to acceleration rate. Faster motions generate stronger,

more coherent vortices that are easier to detect using tracking methods such as γ1.
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However, the trajectory of LEVs in the lab-fixed reference frame are independent

of motion rate. From this analysis, it is shown that vortex strength is dependent

on the rate of motion and vortex trajectory is dependent on the type of motion.

• The direct relationship between LEV trajectory and strength with lift force sug-

gests a quantifiable link between observable vortex dynamics and force/moment

coefficients. This motivates the work forward in the search for a quantitative

relationship between circulation production and force production.

6.3.2 Hinged Wing

• Dynamically pitching a trailing edge flap generates instantaneous lift upon motion

onset regardless of flow attachment. Lift production during motion transients of

flap-down and flap-up motions were identical in shape and similar in magnitude,

but the flap-up cases were consistently lower by roughly CL ≈ 0.2, presumably

from a loss of circulatory lift due to initial flow separation over the flap element.

• Circulation and lift production due to rapid trailing edge flap deployment are

proportional to motion rate.

• Bound circulation, measured as the summation of vorticity within a box encom-

passing the wing and its boundary layer, has been shown to be equal and opposite

to wake circulation within the first chord of travel, after which vorticity leaves the

field of view and is no longer detectable. This finding supports the assumption of

two-dimensionality.
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• Flap-down motions, containing deflection angles up to δ = 40◦, maintain an at-

tached flow state during the motion transient and for several subsequent convective

lengths before slowly transitioning to separated flow over the deflected element.

Time-resolved circulation measurements reflect this transition with a gradual de-

crease in circulation of approximately 22% and 55% over 4 chords of travel for the

δ = 0− 20◦ and δ = 0− 40◦ cases, respectively.

• Using an adaptation of Lamb’s vortex impulse method, 2D PIV measurements

were able to accurately predict measured force histories over the entire duration

of the test. Bound vorticity was used as vortex strength and the locations of each

vortex were selected as fixed to the mid-chord and trailing edge.

6.3.3 Low order modeling

• Theodorsen’s solution with C(k) = 1 largely over-predicts lift for every flap-and-

hold maneuver studied here. Specifically, the steady circulatory term contributes

the largest discrepancy between model and measurement, over-predicting lift dur-

ing and immediately following the motion transient by up to 61%

• The modified aerodynamic model, which decouples the two wing elements by

treating each element as an isolated wing, predicts measured lift much better

than Theodorsen both during and after the acceleration transient. For a wing

hinged at the mid-chord, steady circulatory lift in the modified model is equal to

CL,steady = πδ, opposed to CL,steady = (2 + π)δ in Theodorsen’s solution.

• Because the modified model predicts zero lift on the front element for all time
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when α = 0◦, the modified model does not accurately predict total lift for the

most aggressive flap cases sa/c ≤ 0.25, during which significant unsteady lift force

is generated on the front element.

6.4 Future Work

The present work provided a detailed description of time-resolved force histories

of rapidly accelerating plates and a fundamental analysis of the various sources of lift

during those motions. This section offers suggestions for future experimental studies to

further the work presented here and advance the knowledge of low Reynolds number

unsteady aerodynamics.

1. The work presented here can be both validated and expanded upon through the use

of chord-wise pressure taps instrumented on the wing. Pressure measurements with

the flow field information shown here would combine to quantify the spatiotemporal

response of lift enhancement due to the leading edge vortex along the chord. This

will also provide further insight into the pitching moment beyond what is capable

with measurements from a single force/moment transducer. Further, chord-wise

pressure taps would allow for additional assessment of the accuracy of Theodorsen’s

predicted pressure distribution as well as that of the numerical panel method.

2. Varying the trailing edge flap hinge location would provide a wealth of informa-

tion regarding validation for the modified model presented in this work as well

as a bridge from the case of a very small trailing edge flap (c → +1) to the

single-element wing pitching about its leading edge (c = −1). Within that study,
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there will be a drastic change in flow topology as the wing transitions from cases

with temporarily attached flow post-acceleration as shown here, where c = 0, to

cases with fully separated flow about the leading edge observed in single-element

pitching wings. Questions that this study will likely answer: Holding pitch rate

constant, do the unsteady force histories from the various hinge locations scale in

a predictable fashion? At what hinge location, i.e. size of stationary front element,

does flow separate about the leading edge as it does in the c = -1 case? Is there a

hinge location, c, for which Theodorsen’s solution more accurately predicts force

measurements.

3. Introduce multiple hinge locations on the same wing to provide more degrees of

freedom and geometric/kinematic permutations. Actuating multiple wing elements

simultaneously leads down the path of designing continuously deformable wings

capable of unique kinematics and tunable unsteady force production.

4. The present work provides a general understanding of the aerodynamic response

of large trailing edge flaps. It is recommended for future work to explore using

the flap as a control surface to mitigate the effect of a gust (streamwise or trans-

verse), deflecting the flap such that the total gust force is negated. Preliminary

experiments have been conducted, and the results suggest that gust mitigation

with a large flap is feasible. It is suggested that future work first perform a hinge

location study to completely characterize the effect of variably sized flaps in order

to better understand the size and rate requirements pertaining to any desired lift

response. The next step is to characterize the effect of a gust on the undeflected

196



wing to obtain the aerodynamic gust response of which the flap will aim to cancel

out. Finally, implement a control algorithm to generate a set of wing kinematics

to offset the known gust encounter. The simple analytical model presented in this

work predicted lift production very well and would make an excellent candidate

for use in a control algorithm.
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Appendix A: Revisiting Theodorsen’s Lift Derivation

The following sections provide a detailed derivation of Theodorsen’s solution to

supplement the discussion of its constituent terms in Chapter 3.

A.1 Non-Circulatory Flow: Velocity Potentials and Pressure Forces

Velocity Potential

We introduce a disturbance velocity potential, φ′, which is obtained by parsing the

total velocity potential into the uniform flow and a perturbation potential as

φ = φ′ + Ux (A.1)

The disturbance velocity components are thus

u− U = u′ =
∂φ′

∂x
, w′ =

∂φ′

∂z
, (A.2)

which are assumed to satisfy the order-of-magnitude requirement of small disturbance

theory of u′, w′ << U .

For incompressible flows, it can be shown that the problem simplifies to Laplace’s

equation

∇2φ′ = 0, (A.3)
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subject to two-dimensional boundary conditions at the surface. The condition at the

boundary, covered in detail in Lamb [54], states that the component of fluid velocity

normal to the body, ∂φ
∂n

, is fixed by the body motion. Another critical assumption here

is that the wing lies flat along the x-axis, despite having vertical displacement from the

horizontal described by z(x). Thus, the concern with satisfying ∂φ
∂n

= 0 simplifies to

w = 0 at the wing surface, where w is the vertical velocity perpendicular to the free

stream. This simplification leads to the expression for vertical velocity:

w =
∂za
∂t

+ U
∂za
∂x

, (A.4)

To satisfy these conditions Theodorsen applies potential flow theory to assign a

sheet of point sources and sinks along the wing surface in the circle plane to satisfy

the physical boundary conditions of attached flow and no through-flow. A sheet of

non-circulatory point sources and sinks on the upper and lower halves of the circle,

respectively, are assigned their strengths such that they satisfy Eq. A.4. The velocity

potential of a source with strength H placed at the origin is given by

φ =
H

4π
ln(x2 + y2) (A.5)

and for a source placed at (x1, y1)

φ =
H

4π
ln{(x− x1)2 + (y − y1)2}. (A.6)

To determine the necessary value of H, a close examination of the source/sink

behavior at the wing surface z = 0+ is required (presented in detail in Bisplinghoff [62]).

Satisfying the spatial boundary condition of Eq. A.4 for w(x, y, z)

w(x, y, 0+) =
∂φ′(x, y, 0+)

∂z
(A.7)
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results in the strength of the source to be given by

H(x, t) = 2w(x, t) (A.8)

or

H(x, t) = 2
∂z(x, t)

∂t
+ 2U

∂z(x, t)

∂x
(A.9)

The total potential due to the source and sink pairs can be expressed as

φ =
H

4π
ln

(x− x1)2 + (y − y1)2

(x− x1)2 + (y + y1)2
(A.10)

Integrating Eq. A.10 along the chord, thus accounting for every source/sink pair’s

potential contribution at each location, provides an expression for the velocity potential

of the entire source/sink pair sheet:

φ =
1

4π

∫ 1

−1

H(x, t) ln
(x− x1)2 + (y − y1)2

(x− x1)2 + (y + y1)2
dx1 (A.11)

In lieu of the detailed integration provided by Theodorsen [61], we present the result of

the necessary integral

∫ 1

c

ln
(x− x1)2 + (y − y1)2

(x− x1)2 + (y + y1)2
dx1 = 2(x− c) lnN − 2

√
1− x2 cos−1 c, (A.12)

where

N =
1− cx−

√
1− x2

√
1− c2

x− c
. (A.13)

and c is the hinge location of the trailing edge flap measured from the mid-chord.

Following Eq. A.11, computing the effect of an aileron bent down at deflection

angle β results in a velocity potential, φβ, found by substituting H = 2U ∂z(x,t)
∂x

= −2Uβb:
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φβ =
Uβb

π
[
√

1− x2 cos−1 c− (x− c) lnN ]. (A.14)

Similarly, to obtain the effect of the aileron pitching down at an angular velocity β̇, we

set H = −(x1 − c)β̇b2 and return

φβ̇ =
β̇b2

2π
[
√

1− c2
√

1− x2 + cos−1 c(x− 2c)
√

1− x2 − (x− c)2 lnN ]. (A.15)

To obtain the analogous effects of the angular displacement and motion of the entire

airfoil, α and α̇, set c = -1 and get

φα = Uαb
√

1− x2 (A.16)

φα̇ = α̇b2(
1

2
x− a)

√
1− x2 (A.17)

Table A.1 provides a summary of non-circulatory velocity potentials required to

satisfy the no through flow boundary condition on a pitching airfoil-aileron system in a

freestream.

Pressure and Forces

The ultimate goal of this derivation is to obtain the chord-wise pressure distribu-

tions and total force production of the airfoil-aileron system. Given the velocity poten-
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Table A.1: Velocity potential contributions from instantaneous incidence angle and angu-

lar velocity for the airfoil-aileron system required to satisfy the no through flow boundary

condition, as provided by Theodorsen [61].

Non-circulatory velocity potentials

Angle of attack / Flap deflection Angular rotation rate

φα = Uαb
√

1− x2 φα̇ = α̇b2(1
2
x− a)

√
1− x2

φβ = Uβb
π

[
√

1− x2 cos−1 c− (x− c) lnN ] φβ̇ = β̇b2

2π
[
√

1− c2
√

1− x2 +

cos−1 c(x− 2c)
√

1− x2 − (x− c)2 lnN ]

N = 1−cx−
√

1−x2
√

1−c2
x−c

tials, we can now calculate pressure by employing the unsteady Bernoulli equation:

p0 = p+
1

2
ρV 2 + ρ

∂φ

∂t
. (A.18)

For the steady free stream (V = U î + 0ĵ), the total pressure is

p0 = p∞ +
1

2
ρU2. (A.19)

As stated previously, the present formulation maintains the assumption of small pertur-

bations, which assumes the disturbance velocities in the x and y directions, u′ and v′,

are small. The velocity on the wing surface can be expressed as

V = (U + u′)̂i + w′̂j (A.20)

where

V 2 = (U2 + 2Uu′ + u′2)̂i + w′2ĵ ≈ U2 + 2Uu′ (A.21)
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As previously stated, we are assuming small disturbance theory, which requires u′, w′ <<

U . Thus, neglecting the terms u′2 and w′2 due to order of magnitude insignificance, we

obtain a linearized solution. Substituting Eq. A.21 into Eq. A.18 results in an expression

for pressure via the linearized unsteady Bernoulli equation given by

p− p∞ = −ρ(U
∂φ

∂x
+
∂φ

∂t
) (A.22)

Due to antisymmetry between the sources on the upper surface and sinks on the lower

surface, the pressure difference between the upper and lower surfaces is

pL − pU = ∆p = −2ρ(U
∂φ

∂x
+
∂φ

∂t
). (A.23)

Finally, the total non-circulatory contribution to the lift force on the wing can be

calculated by integrating the pressure difference over the entire airfoil:

LNC = 2ρb

∫ 1

−1

U
∂φ

∂x
dx+ 2ρb

∫ 1

−1

∂φ

∂t
dx

= 2ρb

∫ 1

−1

∂φ

∂t
dx

(A.24)

Applying Eq. A.24 to the velocity potentials given in Eq. A.14-A.17 results in the

familiar form of Theodorsen’s non-circulatory lift

LNC = −ρb2[Uπα̇− bπaα̈− UT4β̇ − bT1β̈], (A.25)

where

T4 = − cos−1 c+ c
√

1− c2 (A.26)

T1 = −1

3

√
1− c2(2 + c2) + c cos−1 c (A.27)
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A.2 Circulatory Flow: Velocity Potentials and Forces

Theodorsen represents circulation by a sheet of vorticity along the wing and in

the wake, which expands from the trailing edge to infinity. As in Section A.1, we

will compute the induced velocity potential due to this newly introduced potential flow

object, a vortex sheet. Each individual point vortex in the sheet has a velocity potential

given by

φvortex =
Γ

2π
tan−1 Y − Y1

X −X1

, (A.28)

where Γ is the strength of the point vortex. To satisfy Kelvin’s circulation theorem,

which requires zero net circulation production in the system, each wake vortex is paired

with a bound vortex of equal and opposite strength placed at the “image” location, 1
X0

,

shown in Figure A.1. The combined velocity potential due to a wake vortex at (X0, 0)

and its image is

φΓ =
Γ

2π

[
tan−1 Y

X −X0

− tan−1 Y

X − 1
X0

]
, (A.29)

Defining X0 + 1
X0

= 2x0 on the x-axis and X = x on the circle, simplifies Eq. A.29

to

φΓ = − Γ

2π

[
tan−1

√
1− x2

√
x0

2 − 1

1− xx0

]
(A.30)

Now that we have an equation for the velocity potential (although the vortex strength

is still unknown), we can apply Eq. A.23 for the vorticity-induced pressure on the

airfoil. Since each individual wake vortex element will be assumed to convect downstream
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Figure A.1: Conformal representation of the wing profile illustrating vortex placement.

relative to the airfoil at velocity U ,

∂φ

∂t
=

∂φ

∂x0

U (A.31)

and thus

p = −2ρU(
∂φ

∂x
+
∂φ

∂x0

) (A.32)

The partial derivatives can be simplified to

∂φ

∂x
=

Γ

2π

√
x0

2 − 1√
1− x2

1

(x0 − x)
(A.33)

∂φ

∂x0

=
Γ

2π

√
1− x2

√
x0

2 − 1

1

(x0 − x)
. (A.34)

Integrating Eq. A.32 from hinge location, c, to the trailing edge gives us the force

contribution on the aileron from each individual vortex pair. This can be extended to

the whole airfoil by setting c = −1. Thus, the circulatory aerodynamic load due to a

wake vortex is given by
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∆L = −2ρU

∫ 1

c

(
∂φ

∂x
+
∂φ

∂x0

)
dx

= −ρUbΓ

π

[
x0√

x0
2 − 1

(cos−1 c−
√

1− c2) +

√
x0 + 1

x0 − 1

√
1− c2

]
.

(A.35)

At this point, vorticity, Γ, is still an unknown spatially-continuous quantity that spans

the wake into infinity with the form

Γ = γ(x0, t)dx0 (A.36)

To obtain the total lift force on the aileron due to the continuous vortex wake, we

substitute Eq. A.36 into Eq. A.35 and integrate over the entire wake.

L = −ρUb
π

[
(cos−1 c−

√
1− c2)

∫ ∞
1

x0√
x0

2 − 1
γ(x0)dx0+

√
1− c2

∫ ∞
1

√
x0 + 1

x0 − 1
γ(x0)dx0

]
(A.37)

For c = -1 we obtain the expression for lift on the whole airfoil.

L = −ρUb
∫ ∞

1

x0√
x0

2 − 1
γ(x0)dx0 (A.38)

Applying the Kutta Condition

Section A.2 covered how to calculate the lift on the airfoil given a continuous vortex

wake. Here we discuss how to determine the magnitude of the vortex wake by satisfying

the Kutta condition. The Kutta condition states that circulation must be chosen such

that the fluid velocity is finite at the sharp (trailing) edge. Since the wing is assumed
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to lie entirely along the x-axis, we restrict this requirement to the horizontal velocity

(because the vertical component is zero due to the no through flow boundary condition),

which takes the form

∂φtotal
∂x

∣∣∣∣
x=1

= finite

=
∂

∂x
(φΓ + φα + φα̇ + φβ + φ ˙beta)

(A.39)

However, evaluating these derivatives at x = 1 leads to the denominator becoming zero,

as shown using ∂φα
∂x

as a representative example:

∂φα
∂x

= −Uαb x

1− x2
(A.40)

Since the denominator becomes zero at x = 1, the numerator must also become zero at

x = 1 in order for the horizontal velocity to be finite at the trailing edge. Differentiating

according to Eq. A.39 and setting the numerators equal to zero gives an expression

relating the wake vorticity to the wing kinematics:

1

2π

∫ ∞
1

√
x0 + 1√
x0 − 1

γ(x0, t)dx0 = Uα + b(
1

2
− a)α̇ +

T10

π
Uβ + b

T11

2π
β̇ = Q, (A.41)

where

T10 =
√

1− c2 + cos−1 c (A.42)

T11 = cos−1 c (1− 2c) +
√

1− c2 (2− c) (A.43)

Multiplying and dividing Eq. A.38 by the right and left side of Eq. A.41, respectively,

gives rise to the expression for circulatory lift in Theodorsen’s model [61]:
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LC = −2πρUbQC (A.44)

where C is the Theodorsen function,

C =

∫∞
1

x0√
x02−1

γ(x0)dx0∫∞
1

√
x0+1√
x0−1

γ(x0, t)dx0

. (A.45)

Finally, combining the contributions from non-circulatory lift (Eq. A.25) and circulatory

lift (Eq. A.44) we now have the full quasi steady Theodorsen model for aerodynamic

lift on a wing in arbitrary motion:

L = −ρb2(Uπα̇− bπaα̈− UT4β̇ − bT1β̈)

+ 2πρUb(Uα + b(
1

2
− a)α̇ +

T10

π
Uβ + b

T11

2π
β̇)

(A.46)
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Appendix B: Implementation of Unsteady Panel Method

The following is a detailed description of the unsteady panel method implemented

in the present study. This discrete vortex panel method provides a numerical solution

for the aerodynamic loads on a flat plate undergoing arbitrary motion.

The primary physical boundary condition on the plate is that of no through-flow

on the wing surface. To satisfy this condition, the appropriate tangential and normal

velocities, u and w, respectively, at each collocation point must be calculated every time

step. For any vortex located at point (x0, z0), including panel vortices and wake vortices,

the induced velocities at any point (x, z) are calculated by

 u

w

 =
Γ

2πr2

 0 1

1 0


 x− x0

z − z0

 (B.1)

where

r2 = (x− x0)2 + (z − z0)2 (B.2)

To satisfy the zero normal flow boundary condition on the wing surface, the normal

velocity component at each collocation point, which is comprised of an induced velocity
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and a freestream velocity, can be expressed as

(u,w) · n + (U(t) + uw,W (t) + ww) · n = 0 (B.3)

where the first term is the self-induced velocity from all bound vortices on the wing and

the second term is a combination of kinematic velocity due to wing motion [U(t),W (t)]

and induced velocity from the wake vortices (uw, ww). The time varying shape of the

airfoil in the wing-fixed frame is accounted for within the velocities U(t) and W (t).

This is critical in capturing added mass forces on time-dependent airfoil geometries.

Kinematic velocities are calculated as

 U(t)

W (t)

 =

 cos θ(t) − sin θ(t)

sin θ(t) cos θ(t)


 −Ẋ0

−Ż0

+

 −θ̇η

−θ̇x− ∂η
∂t

 (B.4)

where θ is pitch angle of the entire wing, which for this study is fixed at zero, requiring

all geometry deformations to be handled using the ∂η
∂t

term.

At the beginning of each time step, the distribution of vorticity along the chord is

unknown, but the freestream and wake-induced velocities are known. We must there-

fore solve for the magnitude of each panel’s vortex strength at each time step using a

variation of Equation B.3. The self-induced part can be represented by a combination

of influence coefficients, which represent the velocity components due to a unit strength

vortex element. Equation B.3 can be rewritten for collocation point 1 as
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(a11Γ1 + a12Γ2 + a13Γ3 + ...+ a1NΓN) · n + (U(t) + uw,W (t) + ww) · n = 0 (B.5)

where N is the number of panels in the wing element. In order to solve the system

of equations for every collocation point on the wing, we can turn Equation B.5 into a

matrix equation of the form



a11 a12 ... a1N a1W

a21 a22 ... a2N a2W

...
...

. . .
...

...

aN1 aN2 ... aNN aNW

1 1 ... 1 1





Γ1

Γ2

...

ΓN

ΓW


=



RHS1

RHS2

...

RHSN

Γ(t−∆t)


(B.6)

where

RHSi = −[U(t) + uw,W (t) + ww]i · ni (B.7)

The last row in Equation B.6 represents Kelvin’s circulation theorem:

Γ(t)− Γ(t−∆t) + Γwt = 0 (B.8)

where Γwt is the strength of the newly shed wake vortex at time t. This ensures that

the total wake circulation is equal to the instantaneous airfoil circulation. Thus, each

new shed wake vortex is equal to the change in airfoil circulation during that time step.
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Additionally, since the vortex wake is force-free, each vortex must convect with the local

flow velocity. This is handled in a similar manner to calculating induced velocities at

panel collocation points. The local velocity at each wake vortex is the resulting induced

velocity, (u,w)i, from all other wake and panel vortices in the flow, in addition to the

freestream. At each time step, wake vortex points are convected a distance of

(∆x,∆y)i = (u,w)i∆t. (B.9)

Via the unsteady Bernoulli equation (see Katz and Plotkin [86] for details), a

chord-wise pressure distribution can be computed as

∆pj = ρ(U∞
Γj
∆lj

+
∂

∂t

j∑
k=1

Γk), (B.10)

Notice that the unsteady term in the pressure calculation is simply the time rate of

change of the bound circulation on the wing, whereas the first term is essentially the

Kutta-Joukowski form of steady circulatory lift.

Finally, total lift is calculated by integrating pressure along the chord:

L =
N∑
j=1

∆pj∆lj cosαj, (B.11)

where ∆l is the panel length and αj is the incidence angle of the “j”th panel. The

current work will present lift in the non-dimensional form of lift coefficient, which is

normalized by the freestream dynamic pressure:
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CL =
L

1
2
ρU∞

2c
(B.12)

To review, the panel method, based on potential flow theory, has several key

assumptions built into its derivation: 1) Flow remains attached. 2) Viscous effects are

ignored, and thus wake vortices are of constant strength and do not dissipate with time.

3) Wake vortices are generated at the trailing edge only. 4) The Kutta condition at the

trailing edge is satisfied. Panel methods remain powerful tools in analyzing flows over an

airfoil, despite these simplifying assumptions. A major advantage of the unsteady panel

method is its ability to provide information on wake evolution and dynamic effects in a

distributed manner. This study aims to provide a deeper understanding of the individual

contributions to lift on a wing with a large trailing edge flap, primarily in the domains

of circulatory versus non-circulatory forces or steady versus unsteady forces. To ensure

that we can accurately capture these forces, a case that should theoretically only produce

an added mass force was explored: a single element flat plate at zero degrees incidence

harmonically oscillating at a frequency of f = 2 Hz with a non-dimensional plunge

amplitude of h/c=0.02 and a free stream of U= 0.2 chords/s. The intent here was to

apply kinematics that would produce solely an added mass force for which we know

the exact theoretical solution. Figure B.1(a) shows excellent agreement between the

panel method result and the theoretical calculation based on quasi-steady potential flow

theory given by Leishmann [63] as

213



CL =
πḧ

2U2
. (B.13)

Since the panel method forces consist of both an unsteady and a steady term,

we must be confident that the steady term is accurate as well. Figure B.1(b) shows

the panel method result for an impulsively started single-element plate at 7 degrees

angle of attack as well as the corresponding Wagner solution. The vortex panel method

includes both circulatory and non-circulatory loads, whereas the Wagner function only

includes the circulatory loads. An instantaneous change in bound circulation on the

airfoil upon startup leads to large non-circulatory loads from the second term in Eq.

B.10. Comparing the circulatory loads, however, it is clear that the panel method

and Wagner’s solution converge to the same value, confirming that the panel method

provides accurate results for both non-circulatory (Figure B.1a) and circulatory (Figure

B.1b) loads.
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(a) Sinusoidal heaving at h/c = 0.02, f = 2Hz, α = 0◦

(b) Impulsively started plate at α = 7◦.

Figure B.1: Panel method result and theoretical prediction for (a) 2 Hz sinusoidal heav-

ing motion at α = 0◦ and (b) an impulsively started flat plate at α = 7◦
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