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People use recommender systems to improve their decisions, for example, item

recommender systems help them find films to watch or books to buy. Despite

the ubiquity of item recommender systems, they can be improved by giving users

greater transparency and control. This dissertation develops and assesses interactive

strategies for transparency and control, as applied to event sequence recommender

systems, which provide guidance in critical life choices such as medical treatments,

careers decisions, and educational course selections. Event sequence recommender

systems use archives of similar event sequences, such as patient histories or student

academic records, to give users insight into the order and timing of choices, which

are more likely to lead to their desired outcomes.

This dissertation’s main contribution is the use of both record attributes and

temporal event information as features to identify similar records and provide ap-

propriate recommendations. While traditional item recommendations are generated

based on choices by people with similar attributes, such as those who looked at this



product or watched this movie, the event sequence recommendation approach allows

users to select records that share similar attribute values and start with a similar

event sequence, and then see how different choices of actions and the orders and

times between them might lead to users’ desired outcomes.

This dissertation applies a visual analytics approach to present and explain

recommendations of event sequences. It presents a workflow for event sequence rec-

ommendation that is implemented in EventAction. Results from empirical studies

show that these prototypes can assist users in making action plans and raise users’

confidence in following their plans. It presents case studies in three domains to

demonstrate the effectiveness and safety of generating event sequence recommenda-

tions based on personal histories. It also offers design guidelines for the construction

of user interfaces for event sequence recommendation and discusses ethical issues in

dealing with personal histories.

This dissertation contributes an analytical workflow, an interactive system,

and design guidelines identified in empirical studies and case studies, opening new

avenues of research in explainable event sequence recommendations based on per-

sonal histories. It enables people to make better decisions for critical life choices

with higher confidence.
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Chapter 1: Introduction

“History does not repeat itself, but it rhymes.”

–Mark Twain

Recommender systems are being widely used to assist people in making deci-

sions, for example, item recommender systems help customers to find films to watch

or books to buy. Despite the ubiquity of item recommender systems, they can be

improved by giving users greater transparency and control. This dissertation devel-

ops and assesses interactive strategies for transparency and control, as applied to

event sequence recommender systems, which provide guidance in critical life choices

such as medical treatments, careers decisions, and educational course selections.

Time-stamped event sequence data has become ubiquitous with the development of

mobile devices, electronic communication, and sensor networks. It can be collected

from social network activities, online clickstreams, electronic health records, and

student academic activities. Event sequence recommender systems use archives of

similar event sequences, such as patient histories or student academic records, to

give users insight into the order and timing of their choice, which are more likely to

lead to their desired outcomes.

Imagine the following scenario (illustrated in Figure 1.1): I am a student at
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Figure 1.1: An illustration of the student advising scenario.

the end of my second year of graduate school. I wish to become a professor and

wonder what jobs other students like me got. Then, I wonder what those who ended

up being professors did in their last two years of studies. Did they go on internships?

When and how many times? I know that publishing is important, but when did

they typically publish papers? Does it seem better to start early or all at the end?

Did they get a masters on the way? Did they work as teaching assistants? Early on

or later toward the end? So I meet with my department’s graduate advisor. He pulls

a set of students’ records from the campus archives who are similar to me based on

their first two years of studies. He explains to me their outcomes in terms of the

time it took to graduate and job type. Then, I look at those who became professors,

review the recommendations, and discuss together an action plan, combining the

wisdom of the advisor and the system’s recommendations based on events and the

orders and times between them identified as correlated with becoming a professor.
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1.1 Problem and Approach

The research question of this dissertation is: What combination of algorith-

mic analysis and interactive visual exploration can augment analysts’ ability to find

similar records, review recommended actions, and make action plans to improve

outcomes?

To find a group of records with features in common with a seed record, one ap-

proach is to specify a query and the results are records that exactly match the query

rules. Extensions to standard query languages (e.g., TQuel [13] and T-SPARQL [14])

have been introduced to ease the task of querying temporal data. Such temporal

queries typically consist of elements such as the required events, temporal relation-

ships between the events, and attribute ranges of the events or records.

The temporal query approach is useful when users have prior assumptions

about the data so as to specify query rules. However, it is unsuitable to be applied

alone for the task of finding similar records—only a few or zero results will be found

if many query rules are specified to fully characterize the seed record, or if only

a few rules are used, the results may not be similar to the seed record in aspects

outside the query rules. Besides, precisely formulating temporal queries remains

difficult and time-consuming for many domain experts. My approach enables users

to find and explore similar records using both record attributes and temporal event

information as similarity criteria. To encourage engagement and inspire users’ trust

in the results, it provides different levels of controls and context for users to adjust

the similarity criteria.
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Understanding how different sequences of events lead to different outcomes is

an important task in event sequence analysis, leading to hypotheses about causa-

tion. For example, OutFlow [7] uses a network structure to aggregate similar event

sequences into progression pathways and summarizes the pathways’ possible out-

comes. TreatmentExplorer [8] provides a novel graphic interface for presenting the

outcomes, symptoms, and side effects of treatment plans. CoCo [10] helps analysts

compare two groups of records (e.g., with different outcomes) and uses high-volume

hypothesis testing to systematically explore differences in the composition of the

event sequences found in the two groups.

These tools visualize the outcomes of a given set of records, enabling users

to see the outcomes and progression pathways associated with these records. My

approach is to extend these work by providing recommended sequences of temporal

events that might help achieve users’ desired outcomes. It also allows users to define

personalized action plans and provides feedback on the probability of success. In

addition, while most existing tools assume a binary outcome, my approach enables

users to explore multiple outcomes.

1.2 Contributions

This dissertation’s main contribution is the use of both record attributes and

temporal event information as features to identify similar records and provide ap-

propriate recommendations. While traditional item recommendations are generated

based on choices by people with similar attributes, such as those who looked at this
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product or watched this movie, the event sequence recommendation approach allows

users to select records that share similar attribute values and start with a similar

event sequence, and then see how different choices of actions and the orders and

times between them might lead to users’ desired outcomes.

This dissertation applies a visual analytics approach to present and explain

recommendations of event sequences. It presents a workflow for event sequence rec-

ommendation that is implemented in EventAction. Results from empirical studies

show that these prototypes can assist users in making action plans and raise users’

confidence in following their plans. It presents case studies in three domains to

demonstrate the effectiveness and safety of generating event sequence recommenda-

tions based on personal histories. It also offers design guidelines for the construction

of user interfaces for event sequence recommendation and discusses ethical issues in

dealing with personal histories. This dissertation opens new avenues of research in

explainable event sequence recommendations based on personal histories and enables

people to make better decisions for critical life choices with higher confidence.

The concrete contributions of this dissertation are:

• A systematic analytical workflow for event sequence recommendation that will

be applicable in diverse applications (Figure 1.2).

• An interactive prescriptive analytics system and user interfaces to assist users

in making action plans and to raise users’ confidence in the action plans (Fig-

ure 1.3), and the integration of an automatic sequence recommendation algo-

rithm to reduce users’ effort in using the system.
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• Empirical studies of interface components and case studies in three domains,

including education, marketing, and healthcare, that provide evidence of the

effectiveness of generating event sequence recommendations based on personal

histories.

• Design guidelines for the construction of event sequence recommendation user

interfaces and usage guidelines for mitigating the ethical issues in dealing with

personal histories.

1.3 Dissertation Organization

The remainder of this dissertation is organized as follows: Chapter 2 discusses

existing techniques and software tools that can contribute to generating and pre-

senting recommendations of event sequences; Chapter 3 describes the design and

evaluation of PeerFinder (Figure 1.4), a visual interface that enables users to find

and explore records that are similar to a seed record; Chapter 4 introduces a novel

hierarchical visualization (LikeMeDonuts, Figure 1.5) that provides an overview of

a group of similar records with a flexible hierarchy of criteria values, similarity en-

coding, and interactive support for trimming the group; Chapter 5 introduces the

workflow (Figure 1.2), user interface (EventAction, Figure 1.6), and automatic al-

gorithm for event sequence recommendation; Chapter 6 reports on case studies that

demonstrate the applications of my research to solve real problems in three different

domains; Finally, Chapter 7 describes the design guidelines and usage guidelines

produced through my studies, summarizes the contributions of this dissertation,
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discusses promising future directions, and gives closing remarks.
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Figure 1.3: The user interface of the final design of EventAction for supporting a
seamless analytical workflow for making action plans to achieve the desired outcome.

9



% 
of

 re
co

rd
s w

ith
 a

ct
ivi

tie
s i

n 
th

is 
pe

rio
d:

10
0%

0%

Si
m

ila
r r

ec
or

ds
Al

l a
rc

hi
ev

d 
re

co
rd

s

Ex
ac

t m
at

ch
W

ith
in

 to
le

ra
nc

e
Ig

no
re

d
Ou

ts
id

e 
to

le
ra

nc
e

Ex
ac

t m
at

ch
Si

m
ila

r
Se

ed
 re

co
rd

 va
lu

e

F
ig

u
re

1.
4:

P
ee

rF
in

de
r
:

A
v
is

u
al

in
te

rf
ac

e
th

at
en

ab
le

s
u
se

rs
to

fi
n
d

an
d

ex
p
lo

re
re

co
rd

s
th

at
ar

e
si

m
il
ar

to
a

se
ed

re
co

rd
.

T
o

en
co

u
ra

ge
en

ga
ge

m
en

t
an

d
in

sp
ir

e
u
se

rs
tr

u
st

in
th

e
re

su
lt

s,
P

ee
rF

in
d
er

p
ro

v
id

es
d
iff

er
en

t
le

ve
ls

of
co

n
tr

ol
s

an
d

co
n
te

x
t

th
at

al
lo

w
u
se

rs
to

ad
ju

st
th

e
si

m
il
ar

it
y

cr
it

er
ia

.
It

al
so

al
lo

w
s

u
se

rs
to

se
e

h
ow

si
m

il
ar

th
e

re
su

lt
s

ar
e

to
th

e
se

ed
re

co
rd

.
In

te
rm

ed
ia

te
re

su
lt

s
ar

e
d
is

p
la

ye
d

an
d

u
se

rs
ca

n
it

er
at

iv
el

y
re

fi
n
e

th
e

se
ar

ch
.

10



% 
of

 re
co

rd
s w

ith
 a

ct
ivi

tie
s i

n 
th

is 
pe

rio
d:

10
0%

0%
# 

of
 e

ve
nt

 o
cc

ur
re

nc
es

:
tw

ic
e

on
ce

F
ig

u
re

1.
5:

L
ik

eM
eD

on
u

ts
:

A
n
ov

el
h
ie

ra
rc

h
ic

al
v
is

u
al

iz
at

io
n

th
at

p
ro

v
id

es
an

ov
er

v
ie

w
of

a
gr

ou
p

of
si

m
il
ar

re
co

rd
s

w
it

h
a

fl
ex

ib
le

h
ie

ra
rc

h
y

of
cr

it
er

ia
va

lu
es

,
si

m
il
ar

it
y

en
co

d
in

g,
an

d
in

te
ra

ct
iv

e
su

p
p

or
t

fo
r

tr
im

m
in

g
th

e
gr

ou
p
.

11



F
ig

u
re

1.
6:

E
ve

n
tA

ct
io

n
:

A
v
is

u
al

an
al

y
ti

cs
ap

p
ro

ac
h

to
(1

)
id

en
ti

fy
si

m
il
ar

re
co

rd
s,

(2
)

ex
p
lo

re
p

ot
en

ti
al

ou
tc

om
es

,
(3

)
re

v
ie

w
re

co
m

m
en

d
ed

ev
en

t
se

q
u
en

ce
s

th
at

m
ig

h
t

h
el

p
ac

h
ie

ve
th

e
u
se

rs
go

al
s,

an
d

(4
)

in
te

ra
ct

iv
el

y
as

si
st

u
se

rs
as

th
ey

d
efi

n
e

a
p

er
so

n
al

iz
ed

ac
ti

on
p
la

n
as

so
ci

at
ed

w
it

h
a

p
ro

b
ab

il
it

y
of

su
cc

es
s.

12



Chapter 2: Background and Related Work

I summarize existing techniques and software tools that can contribute to my

goal of enabling users to generate recommendations of event sequences that might

lead to their desired outcome. My work is particularly inspired by previous research

on recommender systems, similarity measures, event sequence analysis, collaborative

visualization, and ethical issues in information systems.

2.1 Recommender Systems

When making decisions, people often lack sufficient experience or competence

to evaluate the potentially overwhelming number of alternative choices. Recom-

mender systems tackle this challenge by providing personalized suggestions for items

likely to be of use to a user [15].

2.1.1 Recommendation Techniques

Previous work identified four major classes of recommendation techniques [16].

The two most popular ones are content-based, which recommends items similar

to what the users liked in the past [17], and collaborative filtering, which finds

other users with similar tastes and recommends items they liked to the current
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user [18–20]. When large-scale user profiles are available, demographic techniques

can be used to generating user-specific recommendations based on common patterns

in the population [21]. When domain knowledge about item features are available,

knowledge-based techniques can estimate how much an item meets a user’s needs

and identify the best matches [22, 23].

In practical applications, multiple recommendation techniques are often com-

bined to encourage the strength and diminish the weakness [24,25]. Besides, recent

advances reveal that it is important to incorporate temporal information into the

recommendation process. For example, seasons and opening hours are important

context for recommending tourist locations [26] and users’ daily activity patterns

should be considered when recommending social events [27].

2.1.2 Evaluating Recommender Systems

Approaches for evaluating recommender systems differ depending on the goals

of an evaluation. Early work in this field primarily focused on the accuracy of

recommendation algorithms. For example, Herlocker et al. [28] used mean absolute

error to measure the deviation between preference ratings predicted by algorithms

and provided by users. Shardanand and Maes [29] discovered that error of the

extremes can be valuable and measured separately large errors between the predicted

and user ratings.

Follow-up research found accurate predictions crucial but insufficient for de-

veloping recommender systems that can actually influence the behavior of users. A
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variety of measures regarding user satisfaction have been introduced to fill this gap.

For example, McNee et al. [30] built a citation recommender system for research

papers and measured the novelty of the recommended references to users. In an

experiment on music recommender systems, Sinha and Swearingen [31] examined

the role of transparency by measuring recommenders’ ability to explain the recom-

mendations to users. Besides, commercial recommender systems also quantify user

satisfaction with the number of product purchases and returns [19,27,32].

2.1.3 Opportunities

My recommendation approach extends the collaborative filtering technique

since I also generate recommendations by referring to archived records that share

similar features with the seed record. However, compared to traditional recom-

mender systems that recommend items such as books to read or social events to

attend, my dissertation focus on recommending sequences of temporal events. Here,

each event can be treated as an item and two additional dimensions need to be

considered: (1) the combinations of events and their orders, and (2) the timings of

the events. Besides, I develop a prescriptive analytics system designed to present

and explain the recommendations. It augments traditional recommender systems

by guiding users to define a personalized action plan associated with an increased

probability of success.
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2.2 Similarity Measures

Similarity is a fundamentally important concept in many research domains [33].

For example, in bioinformatics for gene sequence alignment [34] or protein clus-

tering [35], in linguistics for approximate string matching [36] or text categoriza-

tion [37], in computer vision for face recognition [38], and in healthcare for identi-

fying similar patients [39,40].

2.2.1 Multidimensional Data

Data scientists investigated how to measure the similarity between two mul-

tidimensional data cubes. For example, Baikousi et al. [41] conducted user studies

to explore various distance functions to identify the preferred measurement between

values of a dimension and between data cubes. Spertus et al. [42] present an empiri-

cal evaluation of similarity measures for recommending online communities to social

network users, where the effects of the measures are determined by users’ propensity

to accept the recommendation. Sureka and Mirajkar [43] extensively studied differ-

ent similarity measures for online user profiles and discover that no single similarity

measure could produce the best results for all users. They suggest using different

similarity measure for different users.

I extend existing work on perceived similarity and study temporal data, which

is an important component of people’s healthcare histories, academic records, and

online profiles. My interviews confirmed that choices of similarity measures rely on

users’ preferences and analysis goals, and my user studies revealed that providing
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Figure 2.1: (s|qu)eries [1] provides a visual interface for specifying queries on event
sequence data based on regular expressions.

controls and context will increase users’ engagement and trust in similarity search

results.

2.2.2 Temporal Data

To find records of event sequences with features in common with a seed record,

one approach is to specify a query and the results are records that exactly match

the query rules. Extensions to standard query languages (e.g., TQuel [13] and T-

SPARQL [14]) have been introduced to ease the task of querying temporal data.

Temporal queries typically consist of elements such as the required events, temporal

relationships between the events, and attribute ranges of the events or records.

Precisely formulating temporal queries remains difficult and time-consuming for

many domain experts. Visual tools have been developed to further ease the task by

enabling users to interactively specify query rules and providing visual feedback to

facilitate the iterative refinements of the queries (e.g., (s|qu)eries [1] (Figure 2.1),

COQUITO [2] (Figure 2.2), and EventFlow [3]) (Figure 2.3).
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Figure 2.2: COQUITO [2] provides a visual interface that assists cohort construction
with temporal constraints. Intermediate results are displayed so users can iteratively
refine a query.

The temporal query approach is useful when users have a prior assumption

about the data such as hypotheses or domain knowledge, so as to specify the query

rules. However, it is unsuitable to be applied alone for the task of finding similar

records—only a few or zero results will be found if many query rules are specified

to fully characterize the seed record, or if only a few rules are used, the results may

not be similar to the seed record in aspects outside the query rules.

An alternative approach to finding similar records is to start with the seed

record, determine useful patterns, and search for records with similar patterns.

Mannila and Ronkainen [44] presented a model for measuring the similarity of event

sequences. The model computes an edit distance based on three transformation

operations at the event level, including insert, delete, and move. This approach

can preserve the order of the matched events and performs better when the num-

ber of operations is small. Match & Mismatch measure [45] introduces a similarity
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Figure 2.3: EventFlow [3] presents a visual query language that allows users to
draw the desired sequence of event relationships. Results are displayed as detailed
timelines and summarized in an aggregated overview.

score that emphasizes the time difference of matched events and the number of

mismatches, which supports matching without preserving the order. Besides, a vi-

sual interface was also provided to show a ranked list of similar records and allow

users to adjust parameters. Recent work [46,47] describes more advanced similarity

measures for specific domains and problems. In addition to event sequences, tech-

niques for finding similar records have been developed in other domains such as the

similarity-based data-driven forecasting for time series [48].

My work extends existing similarity metrics for temporal data and enables

users to find and explore records that are similar to a seed record using both record

attributes and temporal event information. To encourage engagement and inspire

users’ trust in the results, it also provides different degrees of controls and levels of

context that allow users to adjust the similarity criteria.
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2.3 Event Sequence Analysis

Data that contains temporal information can be modeled as sequences of tem-

poral events, which appear in a wide range of domains, from engineering, to social

media, finance, and healthcare. Techniques for representing event sequences and

extracting insights from them are crucial to developing novel solutions and being

increasingly studied.

2.3.1 Visual Representations

Starting with LifeLines [4, 5] (Figure 2.4), early research on event sequence

visualization focuses on depicting the medical history of a single patient (e.g., Bade

et al. [49], Harrison et al. [50], and Karam [51]). These tools allow users to visually

inspect trends and patterns in a record by showing detailed events. LifeLines2 [6]

(Figure 2.5) extends this approach to multiple records but do not scale well when

displaying a large number of records in a stacked manner.

Techniques have been introduced to handle large sets of records by offering

time or category based aggregations. LifeFlow [52] introduces a method to aggregate

multiple event sequences by combining them into a tree structure on an alignment

point. Likewise, OutFlow [7] (Figure 2.6) combines multiple event sequences based

on a network of states. EventFlow [53] extends LifeFlow’s concept to interval events

and introduces simplification strategies to deal with large data volumes and pattern

variety [54]. DecisionFlow [55] provides supports for analyzing event sequences with

larger numbers of categories.
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Figure 2.4: LifeLines [4,5] provides a visual interface for showing the medical history
of a single patient.

My visualization designs were inspired by prior work and adapted to the needs

of showing both detailed histories of individual records and activity summaries of

groups.

2.3.2 Frequent Sequence Mining

One popular research topic in temporal data mining is discovering frequently

occurring sequential patterns, which can generate novel insights and drive deci-

sion making [56]. Many techniques have been developed to support this task and

the main challenge is that a combinatorially explosive number of intermediate sub-
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Figure 2.5: LifeLines2 [6] supports showing multiple records on the same display in
a stacked manner.

sequences need to be examined. Early work mainly focused on developing efficient

and automatic algorithms. Apriori-like [57,58] approaches assume that frequent pat-

terns cannot contain any non-frequent sub-patterns. Given a percentage prevalence

threshold, they start by collecting frequent patterns containing only one frequent

event and then iteratively grow the patterns by appending new events. The process

stops when no more frequent patterns can be found. These approaches become less

efficient as the pattern volume or length grows.

Follow-up work addressed this issue and improved the procedure. For example,

PrefixSpan [59] and SPADE [60] reduce the number of data scans, and SPAM [61]
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Figure 2.6: OutFlow [7] uses a network structure to aggregate similar event se-
quences into progression pathways and summarizes the pathways’ possible outcomes.

uses a bitmap representation to encode the event sequences and accelerates the

mining computations with bitwise operations. Recently, Perer and Wang [62] intro-

duced a visual interface for these black-box automatic algorithms. It enables users

to explore the results of frequent sequences at different levels of details.

Frequent sequential patterns can provide guidance for users to identify im-

portant activity patterns, especially for patterns that occur frequently in archived

records having the seed record’s desired outcome. In my dissertation, I will explore

frequent sequence mining techniques and apply them in the system.

23



2.3.3 Outcome Analysis

Understanding how different sequences of events lead to different outcomes is

an important task in event sequence analysis, leading to hypotheses about causa-

tion. OutFlow [7] (Figure 2.6) uses a network structure to aggregate similar event

sequences into progression pathways and summarizes the pathways’ possible out-

comes. Its application for electronic medical records, CareFlow [63], allows doctors

to analyze treatment plans and their outcomes for patients with certain clinical

conditions. TreatmentExplorer [8] (Figure 2.7) provides a novel graphic interface

for presenting the outcomes, symptoms, and side effects of treatment plans. Care-

Cruiser [9] (Figure 2.8) enables doctors to retrospectively explore the effects of

previously applied clinical actions on a patient’s condition. CoCo [10] (Figure 2.9)

helps analysts compare two groups of records (e.g., with different outcomes) and uses

high-volume hypothesis testing to systematically explore differences in the composi-

tion of the event sequences found in the two groups. MatrixWave [11] (Figure 2.10)

allows the exploration and comparison of two sets of event sequences with different

outcomes by displaying the event sequences in a matrix and showing their differences

at each step.

These tools visualize the outcomes of a given set of records, enabling users

to see the outcomes and progression pathways associated with these records. My

approach is to extend these work by providing recommended sequences of temporal

events that might help achieve users’ desired outcomes. It also allows users to define

personalized action plans and provides feedback on the probability of success. In
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Figure 2.7: TreatmentExplorer [8] visually presents the outcomes, symptoms, and
side effects of treatment plans.

addition, while most existing tools assume a binary outcome, my approach enables

users to explore multiple outcomes.

2.4 Ethical Issues in Information Systems

While information technology offers powerful tools that can serve to improve

people’s life, the same technology may also raise ethical issues such as threatening

our privacy or providing inaccurate information that mislead our decisions. Ma-

son [64] summarizes four types of ethical issues in information systems: privacy

(what information to reveal), accuracy (who is responsible for the authenticity and

accuracy), property (who owns information), and accessibility (what information

can a person or an organization obtain). Similarly, Nissenbaum [65] introduces the
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Figure 2.8: CareCruiser [9] supports exploring the effects of previously applied clin-
ical actions on a patient’s condition.

concept of accountability in computing to ensure that harms and risks caused by

technology can be answered and handled.

One main source of ethical issues is the bias in computer systems, which can

be further categorized into three groups: preexisting, technical, and emergent [66].

Specifically, preexisting biases originate in social institutions or personal biases of

individuals who design the system, and in contrast, technical biases typically relate

to limitations of computer hardware and software. After the system has been built,

emergent biases may occur as it encounters situations that have not been considered

in the design, most often when the usage of the system extends or the context of

use shifts.

In my dissertation, by working with real users and domain professionals, I

will study the ethical issues in dealing with personal histories. Specifically, I will

investigate (1) what the potential biases are in using histories of similar others to

provide recommendations, (2) what the potential dangers are in allowing advisees
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Figure 2.9: CoCo [10] enables systematic exploration of event sequence comparisons.
Given two groups of records, it detects their differences in the composition of the
event sequences.

to use the system alone, and (3) how to balance the opinions of advisors and the

recommendations generated from data, especially when there is a contradiction. I

will discuss these ethical issues and propose possible solutions.

2.5 Summary

This chapter discussed previous work in various related research topics, includ-

ing recommender systems, similarity measures, event sequence analysis, and ethical

issues in information systems. These techniques, software tools, and theories can

contribute to my goal of enabling users to generate recommendations of event se-

quences that might lead to their desired outcome. My dissertation will contribute a

systematic analytical workflow and an interactive prescriptive analytics system for

event sequence recommendation. My empirical studies and case studies will produce
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Figure 2.10: MatrixWave [11] allows visually compare two set of events sequences
by creating a matrix visualization that shows the differences at each step.

design guidelines for the construction of event sequence recommendation user inter-

faces and usage guidelines for mitigating the ethical issues in dealing with personal

histories.
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Chapter 3: Finding Similar People to Guide Life Choices:

Challenge, Design, and Evaluation

People often seek to use examples of similar individuals to guide their own life

choices. For instance, patients may want to receive the treatments that work for

others with similar physical conditions and disease symptoms, or new students may

wish to follow the trajectory of former graduates who had similar backgrounds and

academic performances and ended up with a successful career. In the era of big data,

where electronic health records and electronic student records are commonplace,

exploring the data of similar individuals to receive advice on life choices and foresee

potential outcomes is becoming possible. However, finding the records of similar

individuals from databases is an important yet difficult step, often overlooked or

existing in some analytical applications only as a black-box process [7, 8, 67].

Imagine a patient suffering from a knee injury who wants to understand if

people like her chose surgery first then physical therapy or a more conservative

treatment, and wants to know how long before they return to normal use of their

knees. But what data should be used as evidence for people like her? As a light-

weight woman in her thirties, will she trust results based on data from older women?

From strong athletes? From those with prior knee injuries? Or with several unre-
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lated medical conditions? To narrow the results, more information from the medical

record could be used to tailor the set of similar patients, such as the degree of every-

day physical activities and previous knee conditions. Specifying such a query using

standard tools is incredibly complex as a large number of rules need to be specified,

and since every person is unique, the result set of specific and complex queries is

likely to be empty.

To understand users’ needs, I reflected and built on experience accumulated

from working with case study partners (medical researchers, doctors, marketing and

transportation analysts, etc.) for more than a decade while developing tools and

interfaces for the exploration of personal records. Searching for similar records was

requested by many users. My long-term goal is to support prescriptive analytics

interfaces that guide users as they make plans informed by the history of similar

people [7, 8, 67–69]. Searching for similar records is the focus of this dissertation.

After summarizing the challenges in finding similar people, I report on the

results of 13 interviews that informed my design effort. I implemented PeerFinder1,

a visual interface that enables users to find and explore records that are similar

to a seed record (either their own record or the record of a person they intend to

counsel). PeerFinder uses both record attributes and temporal event information.

To encourage engagement and inspire users’ trust in the results, PeerFinder provides

different levels of controls and context that allow users to adjust the similarity

criteria. It also allows users to see how similar the results are to the seed record.

Intermediate results are displayed and users can iteratively refine the search.

1This work was published at ACM CHI 2017 [70].
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My contributions include:

• A clarification of the challenges in finding similar people to guide life choices

and a need analysis with 13 interviews.

• A flexible prototype, PeerFinder, which allowed us to explore different levels

of controls and context, and interface styles to refine the results.

• The results of a user study with 18 participants and 4 expert reviewers com-

paring three interface configurations.

3.1 Challenges

Every person is unique, and finding similarities between individuals is a multi-

faceted and subjective process. This dissertation focuses on similarity in the context

of making critical life choices (and not other uses such as eliminating duplications,

searching for criminal activity, or finding job applicants).

3.1.1 Trust in the Evidence Contained in the Results

Making life choices based on data found in similar records takes a leap of

faith. It implies that users are confident that the found records are similar enough

to them to provide personalized evidence to guide their choices, and that decisions

that were optimal for similar records will also be optimal for them. This confidence

may be based on (1) trust in the source of the data and algorithm (e.g., results

coming from one’s doctor or NIH may be trusted more than those coming from an

unknown source), (2) previous experience (e.g., once results have been found useful,
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the next result may be more likely to be trusted), and (3) understanding how the

results were obtained (e.g., looking under the hood and being able to adjust the

search parameters) [31, 71, 72]. Increased knowledge may also (appropriately) lead

to lower trust when users realize that the results are not really very similar to the

seed record [73].

3.1.2 No Natural Computable Distance Measure

Electronic records of personal histories (e.g., patients, students, historical fig-

ures, criminals, customers, etc.) consist of multivariate data (e.g., demographic

information) and temporal data (time-stamped events such as first diagnosis, hospi-

tal stays, interventions) where each event belongs to a category. Intuitively, we can

consider a record that is identical to the seed record to be the most similar while

a record with all opposite attribute values and no common events can be seen as

the most dissimilar, but defining a nuanced similarity measure to rank records by

similarity is challenging.

The similarity between numerical values (e.g., age or weight) can be easily

assessed by standard distance functions and normalized. Ordinal values also lend

themselves to such distance (e.g., student letter grades), but categorical values pose

problems. Sometimes the distance between values can be estimated using a standard

hierarchical structure, e.g., the ICD-10 codes [74] allows a distance measure between

diseases to be computed. However, there are no natural distance measures for

categorical attributes in general, such as between races or academic disciplines.
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Moreover, temporal events add enormous complexity to the similarity measurement:

not only are there no natural distance metrics between event categories but there is

no generally accepted method to rank differences in sequence patterns. Specifically,

what should be the “distance” created by a missing event or a reordering of events?

Nevertheless, it is possible to define an initial similarity for each pair of records

as a weighted composite of scores arbitrarily set for all individual measures and

possible differences. Hundreds of arbitrary decisions have to be made, but users

may be able to adjust those parameters for specific applications.

3.1.3 The Subjective Nature of Similarity

While there is no natural numerical distance between people, patients and

students express very strong opinions about records being similar or dissimilar to

them based on how they identify or not with the other person, making the no-

tion of similarity very subjective. How people perceive similarity depends on their

preferences, experiences, and beliefs, and has been dismissed by some as a slippery

notion [75]. Educators may see students of different majors as absolutely dissimilar.

Doctors may see as the most similar the patients that are taking exactly the same

combination of drugs.

3.1.4 Similar for Which Purpose?

How people evaluate similarity is affected by their goals. Someone looking

for medical guidance will most likely ignore the similarity of education or place of
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residence. I identified the following possible use of a similarity search:

• Compute outcome measures, e.g., to estimate the chance of developing a dis-

ease or achieving a desired goal. Here a large number of similar records are

needed, and knowledge of which criteria influence the outcome will guide the

similarity judgment. Physicians may know that having had children affects

certain types of cancer but patients may not. Students may only consider

publication activities to estimate the likelihood of getting a postdoc position.

• Identify stories to motivate. A physician may be trying to remember the case

of a similar patient who had a good outcome to encourage a patient to follow a

specific treatment. Here, gender and age may contribute little to the similarity

of the clinical cases, but be required to motivate the patient.

• Make plans for future actions, e.g., to define long-term treatment plans based

on the outcomes of similar patients or recommend interventions to retain a cus-

tomer based on the histories of similar customers. Here the records’ temporal

information may become more important. For example, a student seeking

course planning advice will put more weight on the similarity of the sequence

of classes and grades.

3.1.5 Lack of Ground Truth Benchmark Data

Well-developed research topics such as face or image recognition, document

search or topic classification have a long history and ground truth datasets have

been developed to evaluate results of various algorithms and a much lesser extent of
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user interfaces. Even subjective judgments have been collected and aggregated. In

contrast, searching for similar people to guide life choices is a new topic of research

and there exists no benchmark dataset to train machine learning models or evaluate

prototypes. Besides, since the data structure and perception of similarity vary

among domains, it will be difficult to generalize the evaluation results gathered

from one domain to others, so various benchmark datasets will be needed.

In summary, searching for similar records is technically easy using arbitrary

distance measures, but similarity judgments are subjective and there is no validated

measure or established ways to measure the quality of the result set before generating

personalized evidence-based recommendations for life choices. Therefore, I believe

that providing users with some control over the search and context information about

the results is critical to building trust in the recommendations. This dissertation

is a first investigation into the design space of a new research area: personalized

search for similar personal records.

3.2 Informing the Design

The challenges described above highlight the need to provide users with some

level of control over the selection of the criteria to be used in the search. To further

understand how users would want to specify which criteria to use and how to present

results and context, I conducted a series of interviews.
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3.2.1 Interviews

Thirteen potential users were interviewed (4 graduate students, 2 graduate

advisors, 2 physicians, a start-up CEO, and 4 researchers working in healthcare

or marketing). Each interview lasted approximately one hour, including a semi-

structured interview and a ranking task to provoke further discussions. I asked

participants about what information they might want to gather from similar records,

what criteria they would want to use when searching for similar records, and what

information would increase their confidence in the value of the results.

Three separate scenarios were used. A student advising scenario asked partic-

ipants to imagine a setting where an advisor is meeting with a current student to

make plans for the year. For the healthcare scenario, I asked participants to think

of a doctor working with a patient to make a treatment plan. For marketing, I

asked the participants to imagine that they were designing a series of interventions

(e.g., calls, ads, or coupons) to retain an important customer, and could look for

similar customers to inform their intervention design. Each participant chose one or

two scenarios according to their backgrounds. While most participants could easily

identify with the student and healthcare situations, the marketing scenario was used

only by three participants. They could assume both user roles: the person expecting

to receive guidance or the person hoping to provide guidance to others.

I asked the participants to discuss (1) what they would hope to learn from

the data of similar records, (2) what criteria they wanted the tool to consider in

the similarity search, and (3) what information they would need to determine if the
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results were similar enough to provide personalized evidence. I told participants

to assume that data privacy concerns had been resolved (e.g., only aggregate data

would be available if access to details had not been granted).

After a period of open-ended discussion, participants were provided with six

printed records, among which one was assigned as the seed and the other five were

archived records being searched. Participants were encouraged to think aloud as

they tried to rank the archived records by similarity to the seed record, and to

describe the criteria they considered in the comparison, the difficulties they faced,

and any supports they wanted from a visual interface to complete such task.

3.2.2 Results

I summarize the results and present my findings.

3.2.2.1 What to Learn from Similar Records

In all three scenarios, participants confirmed the expected uses, in particular,

the prediction of outcomes. For example, students wanted to know what jobs similar

students got after graduation and their salaries; marketing researchers wanted to

know the likelihood of a promotion link being clicked. In addition, participants

also asked for estimating the effect of an action on the future of the seed record

(i.e., “what if” analysis, a simplified action plan recommendation). For example, a

student wanted to test if taking an internship in the last year would increase her

likelihood of getting a job at Google, and an advisor wanted to answer students
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asking if taking an extra class in the next semester might drop the GPA, or if giving

up a difficult class would delay graduation. A student stated that “the information I

know about my peers would definitely help me make better decisions.” Both advisers

and physicians commented that they often used examples from similar records to tell

motivational stories to their advisees or patients, but that it is difficult to remember

those similar cases.

3.2.2.2 Similarity Criteria

Participants responded on average with 11 criteria (SD = 3.92), using both

record attribute criteria and temporal criteria. Record attribute criteria included

categorical values (e.g., gender, nationality, major, research topic, diagnosed disease,

or membership tier), and numeric values (e.g., age, weight, height, family income,

number of chronic problems, or company size). Temporal criteria included the time

between events (e.g., between pick advisor and publication, between two painful

episodes, or between sending advertisements and clicking on the promotion link),

and the pattern of event occurrences (e.g., a change in the number of publications

over time, lose weight and then get sick, or search for a product online and then

purchase in the store). Most temporal criteria were stated in general terms (e.g.,

recently, in the past) with some exceptions in the medical domain, where well-

defined, specific temporal patterns were mentioned.

Participants did give examples of criteria which should be ignored (e.g., women

are rare in Computer Science so a female participant wanted that criterion to be
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ignored). Users may also want particular time periods to be ignored as well (e.g., a

school semester when the student was ill).

Some criteria were cited as being more important than others, but in many

cases, participants were uncertain about how distinguishable a criterion was for the

population or how relevant a criterion was for the knowledge they wanted to gain

from the similar records. For example, a student advisor said: “I am sure about

certain criteria but not confident about many others. I want to use the tool to de-

cide if a factor is important in the context of my analysis goal.” All participants

mentioned their criteria depend on intended use of the similar records. A physi-

cian stated “gender is important for finding similar patients with breast cancer but

does not matter for hypertension or diabetes,” another said “they are similar for a

purpose.”

A common method used to select criteria was to identify unique characteristics

of the seed record. For example, a student may have changed advisors three times in

a year, or a patient may be uninsured and cannot afford expensive treatment plans.

Participants wanted the system to highlight those unique characteristics.

3.2.2.3 How to Evaluate the Similar Records

The participants proposed five possible strategies for reviewing the results and

determining if they are actually similar enough to the seed record: Sample inspection,

inspecting individual records, especially the most and least similar ones. Difference

between records, reviewing differences between the seed record and individual similar
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records. Distributions, reviewing histograms of the values of each criterion among

similar records. Statistical information, reviewing the number of records in the

result, the weight of each criterion, and the statistics for each criterion (e.g., min,

max, mean, variance). Context, comparing and contrasting the set of similar records

to the entire population. A student described his reason for choosing such reviewing

strategies: “I picked the criteria, so I just need to confirm if the results reflect my

choices.”

3.2.2.4 System Design Needs

Based on my initial analysis and participants’ suggestions, I propose a list of

five design needs.

N1. Dynamic criteria specification: To see and adjust which criteria are used—or

not, and limit acceptable tolerance.

N2. Criteria prioritization: To assign weights to different criteria and highlight

criteria with higher importance.

N3. Uniqueness identification: To receive assistance in identifying unique charac-

teristics of the seed record compared to all archived records.

N4. Result review: To review statistics and distributions of the similar records and

detailed information of each individual in the results (if access is granted).

N5. Goal-driven exploration: To explore how relevant each criterion is to their

analysis goal and identify important criteria depending on that goal.
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I hope that providing controls over the search process (N1-2) and context for

the results (N3-4) will reduce the challenges of trust and subjectivity in finding

similar records. In an attempt to bound the scope of this dissertation to a similarity

search interface, the last need is not addressed because it depends entirely on the

end goal of the overall application. For example, if the goal is to estimate what job

is most likely to be attained by a student, the application will need to identify which

criteria are correlated to the student job placements. Outcome analysis tools such

as DecisionFlow [55] and CoCo [10] could be used.

3.3 Description of PeerFinder

This section describes the user interface and search algorithm of PeerFinder,

a visual interface that enables users to find and explore records that are similar to

a seed record.

3.3.1 Interface

PeerFinder has four coordinated views2 (Figure 3.1): on the left is the seed

record with a timeline (a) and attributes (b), which are also used for criteria control.

In the center is the ranked list of similar records (c), and on the right is the overview

of the similar records (d). The interface can be configured by advanced users using a

control panel that adjusts the visibility of all interface components. Here I describe

the Complex version of PeerFinder configured to provide maximum control and

2A demo video is available at http://hcil.umd.edu/peerfinder.
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context. Two simpler versions are described later.

3.3.1.1 Seed Record Timeline

A simplified timeline of the seed record is shown in a table (Figure 3.1a),

where rows represent event categories and columns represent time periods. Events

of the same category that occur in the same period are aggregated and shown as

a square, with the size of the square encoding the number of occurrences. For

students’ records, time periods can be school semesters (e.g., Spring, Summer, and

Fall). Advanced users can specify other time period rules based on specific data

and applications. User interviews suggested that temporal criteria use only rough

time periods so I chose this table-based design which simplifies the timeline while

allowing users to explore how the numbers of event occurrences evolve over time.

Users can select or deselect event categories as criteria or specify temporal

patterns by selecting cells in the timeline table. To provide a population overview

and help users identify unique temporal patterns of the seed record, the data from

all archived records are shown as a heatmap in the table background. In each table

cell, the darkness of the background color encodes the percentage of records that

had at least one event in this category and this period. Hovering on a cell shows

the details.
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3.3.1.2 Similarity Criteria Controls

Similarity criteria are displayed in three groups (Figure 3.1b): categorical

(e.g., gender or major), numerical (e.g., age or GPA), and temporal. Categorical and

numerical criteria are automatically defined based on the available record attributes.

Temporal criteria are added when a pattern has been specified on the timeline (e.g.,

having an internship every summer). Each criterion is represented by a rectangular

glyph showing its name and context information (i.e., the value of the seed record

attribute and distribution of all archived records), along with controls for tolerance

range, matching rule, and weight:

Tolerance range: Users can define a tolerance range to treat multiple categor-

ical values or a range of numerical values equally to the value of the seed record,

which will increase the similarity of records with those values. For example, users

may decide to treat M.S. and Ph.D. students equally, and set a value range between

3.1 and 3.7 for GPA.

Matching rule: For each criterion, users can define its matching rule by select-

ing among “Ignore” (×), “Close Match” (∼), or “Exact Match” (=). The default

rule for all criteria is “Close Match” where records with smaller differences from the

seed record will be considered as more similar and ranked higher. The results could

have diverse criteria values since the ranking considers the overall difference between

records. To narrow results and explicitly include or exclude certain criteria values,

users can switch to the “Exact Match” rule and use the tolerance range selector to

specify the criteria values that all records in the results must match (e.g., only keep-
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ing Computer Science students who have more than one year of work experience).

Users can also set the rule to “Ignore” if they do not want to use that criterion.

Weight: Users can give more importance to certain criteria by adjusting their

weights using a slider. Increasing the weight magnifies the differences between each

archived record and the seed record while small differences in that criterion become

smaller. By default, all criteria have a weight of 1, which can be adjusted to any

value between 0 (ignored) and 2 (doubled). The color of the round handle becomes

red when the weight is high to help users locate the criteria with higher weight.

3.3.1.3 Similar Record Ranked List

Each time users add or adjust a similar criterion, PeerFinder automatically

re-runs the search and shows the refined list of the top similar records (10% by

default) in a ranked list (Figure 3.1c). Each row in the list represents a similar

record, consisting of a record ID, values of specified similarity criteria, and a timeline

of temporal events. Specifically, the criteria values are displayed in a table with the

same layout as the similarity criteria control panel. Values in a green background

are within the specified criteria tolerance range while those with a gray background

are outside the range. The criteria values and the timelines provide detailed context

of each similar record and enable users to spot check the results.
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3.3.1.4 Similar Record Overview

Criteria value distributions of the similar records are shown at the top of Fig-

ure 3.1d to provide an overview of the results. The colors of the bars are consistent

with those in the criteria control glyphs, where green bars represent criteria values

within the tolerance range, gray bars represent those outside the tolerance range,

and the triangles show the value of the seed record. My initial design overlaid the

distributions of similar records on the distributions of all archived records (Fig-

ure 3.1b) using the same axes. However, the number of similar records is usually

very small compared to the entire population, making the bars difficult to see clearly.

The bottom of Figure 3.1d shows the distribution of the distance scores of all

archived records (gray bars) and similar records (green bars). The average distance

scores are also marked on the chart. This distribution provides an overview about

which records are included in the results and how different they are compared to

the entire population.

3.3.1.5 Other Configurations

Simpler configurations may be needed to satisfy the needs of intermittent users

or to be embedded in specific applications. Advanced users or application designers

can configure the visibility of all interface components to provide different levels

of controls and context. In the user study, I used three configurations: Baseline,

Simple and Complex. Baseline provides no controls over the criteria, emulating a

black-box interface (Figure 3.3). IDs are only shown to indicate that the search has
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completed. Simple allows turning on and off each criterion and shows distributions

of the results (Figure 3.2).

3.3.2 Search Algorithm

As users add or adjust a similarity criterion, PeerFinder automatically executes

the similarity search and updates the results on the display. The search execution

consists of two steps. First, a filtering step uses “Exact Match” criteria to eliminate

records that do not match. Second, the ranking step uses “Close Match” criteria

to sort the records and identify the top most similar records. Details are described

below.

3.3.2.1 Filtering

For each criterion marked as “Exact Match” the following process is used:

if the tolerance range is not set, only the archived records that have the exact

same value (or pattern for temporal criteria) as the seed record will be retained.

Otherwise, the records’ criteria values need to be within the tolerance ranges to be

retained. The tolerance range is represented by a set of values for categorical criteria

and by a pair of upper and lower bounds for numerical or temporal criteria.

3.3.2.2 Ranking

Next, “Close Match” criteria are used to rank the archived records by their

similarities to the seed record. A comprehensive distance score is computed for each

47



c

d

ba

F
ig

u
re

3.
2:

T
h
e
S
im

p
le

ve
rs

io
n

of
P

ee
rF

in
d
er

p
ro

v
id

es
b
as

ic
cr

it
er

ia
co

n
tr

ol
s

(t
u
rn

in
g

on
an

d
off

ea
ch

cr
it

er
io

n
in

ti
m

el
in

e
(a

)
an

d
re

co
rd

at
tr

ib
u
te

s
(b

))
,

an
d

si
m

p
le

co
n
te

x
t

(r
ec

or
d

ID
s

(c
)

an
d

ov
er

al
l

d
is

tr
ib

u
ti

on
of

th
e

re
su

lt
s

(d
))

.

48



c

b

a

Figure 3.3: The Baseline version of PeerFinder provides no controls over the criteria
(users can only see the seed record’s temporal events (a) and attribute values (b))
and no context (only a list of IDs as results (c)).
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archived record based on the empirical assumption that the archived records tend

to be more different from the seed record if they have (1) nonidentical values for

categorical attributes, (2) larger discrepancies in numerical attribute values, and (3)

larger deviations in activity patterns. The algorithm first assesses the difference in

each criterion and then summarizes them into a single distance score.

Categorical criteria: For each categorical criterion cc ∈ C, I define the differ-

ence between an archived record r and the seed record s as:

∆C(cc, r, s) =


0 v(cc, r) ∈ t(cc, s)

α v(cc, r) /∈ t(cc, s)

where v(cc, r) returns cc’s value of a given record and t(cc, s) returns the set of

values in the tolerance range of cc or {v(cc, s)} if the tolerance is not specified. I

let α = 0.5 to keep a balance between categorical and numerical criteria, but the

optimal value depends on the data and analysis.

Numerical criteria: For each numerical criterion nc ∈ N , the difference be-

tween an archived record r and the seed record s is formulated as:

∆N(nc, r, s) =



|v(nc, r)− tu(nc, s)| v(nc, r) > tu(nc, s)

|v(nc, r)− tl(nc, s)| v(nc, r) < tl(nc, s)

0 otherwise

where v(nc, r) returns the nc’s value of a given record and tu(nc, s) and tl(nc, s)

returns the upper and lower bound of the tolerance range of nc, respectively. When

the tolerance of nc is not specified, I have tu(nc, s) = tl(nc, s) = v(nc, s). Before

the computation, values of each numerical criterion are standardized by scaling to
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range [0, 1].

Temporal criteria: For each temporal criterion tc ∈ T , I compute a value

v(tc, r) for each archived record r, reflecting its difference from the seed record s in

activity patterns:

v(tc, r) = ‖p(tc, r)− p(tc, s)‖

where p(tc, r) returns a two-dimensional vector (x=time, y=event category) repre-

senting the activity pattern of r. Since v(tc, r) returns a numerical value, I reuse

the difference function for numerical criteria and let ∆T = ∆N .

Finally, I summarize a comprehensive distance score for each pair of archived

record r and the seed record s based on weighted Euclidean distance [76]:

distance(r, s) =

√∑
cc∈C

wcc∆2
C(cc, r, s) +

∑
nc∈N

wnc∆2
N(nc, r, s) +

∑
tc∈T

wtc∆2
T (tc, r, s)

where w ∈ [0,+∞) is the weight assigned to a criterion.

3.4 Evaluation

Searching for similar people to guide life choices is still a new research area

and many user studies will be needed to evaluate PeerFinder as it gets embedded

in applications that use the ranked list of records to provide guidance. Similarity

remains subjective (see early section on challenges) and no ground truth dataset

exists, so I chose to focus this first lab study and expert interviews on gaining

insights into factors that engage users and promote more trust in the results.
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3.4.1 User Study

A within-subject user study compared three versions of PeerFinder (Figure 3.1-

3.3) using different levels of complexity (Baseline, Simple, and Complex), as a

combination of control and context. The goal was to understand how the levels

of controls and context affect users’ engagement and their confidence in the ability

of the results to be useful. I were interested to see if users would defy conventional

guidelines and prefer a more complex interface that demanded more time to use. I

also wanted to get feedback to improve the interface.

3.4.1.1 Participants and Apparatus

I recruited 18 university students by email (10 males and 8 females, aged 20–

30, M = 24.67, SD = 3.12). Ten of the participants had technical backgrounds

and were experienced in software development, statistics, and data analysis (from

the Information School or the Department of Computer Science). The other 8 had

limited technical backgrounds but used computers in their study, e.g., web design

or print design in the Art Department. None of the participants had prior experi-

ence with PeerFinder. Each participant received 10 dollars. A desktop computer

was used, with a 24-inch display of resolution 1920×1200 pixels, a mouse, and a

keyboard.
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3.4.1.2 Datasets for Evaluation

I constructed three synthetic datasets with realistic but simplified features to

test the three PeerFinder designs. Each dataset contained 500 records of archived

university students. The records had three categorical attributes: gender (male or

female), major (Computer Science, HCI, Math, Art), program (B.S., M.S., Ph.D.),

and international student (yes or no); four numerical attributes: age (when they

started school), GPA, previous work experience (year), and average study time per

day (hour). Eight categories of temporal events were included, including “start

school”, “core course”, “advanced course”, “paper”, “TA (Teaching Assistant)”,

“RA (Research Assistant)”, “pick advisor”, and “internship”. On average each

archived record contained 35 events over 5 years. I generated record attributes

with normal and binomial distributions. For temporal events, I reviewed real data

and included similar patterns with random variations. The names of events and

attributes are generic so that all students can conduct the tasks.

I originally wanted to customize the seed record to match the participant’s

own data and ask them to search for students like themselves, but I decided against

this strategy to normalize the task and avoid privacy and confidentiality issues.

Instead, I handpicked a record (named Elisa Frasco and illustrated in Figure 3.3a)

that would serve as the seed record: a female international student, majoring in

Computer Science and currently in the third year of her Ph.D. study. She is 24

years old and has one year of work experience before starting graduate school. On

average, she spends 8 hours on study each day and maintains a relatively high GPA

53



of 3.65. The timeline showed no papers in the first two years, internships in the last

two summers, work as a TA all along except for an RA position in the last semester,

after picking an advisor.

3.4.1.3 Hypotheses

My hypotheses were:

H1. Users’ confidence will be the highest with Complex and the lowest with Base-

line in that the result set is similar enough to the seed record to provide

evidence to guide making academic plans.

H2. Users will prefer Complex and Simple over Baseline.

H3. Users will spend the longest time using Complex and the shortest time using

Baseline.

H4. Users will make more result refinements using Complex than Simple.

H5. Users will give higher ratings for ease of learning and ease of use for Simple

and Baseline than Complex.

I hypothesized that users would spend longer time (H3) and make more result

refinements (H4) in Complex, thus increasing their trust in the results (H1) and

preference for the interface (H2). H3 and H4 were also an attempt to capture user

engagement. Ease of learning and ease of use (H5) was included to replicate prior

research showing that added complexity reduces ease of learning and ease of use and

contrast the results with preferences [77,78].
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3.4.1.4 Procedure

After the initial email recruitment, I sent more detailed directions: “You will

be asked to (1) learn about a (hypothetical) close and important friend of yours who

needs advice to improve her academic plan, such as when to take advanced classes,

whether to intern during the summer, or when to try to publish papers, and (2) use

three different user interfaces to search for students similar to that friend. Data

from those similar students will be used as evidence to provide guidance for your

friend. You will not be asked to provide or review the guidance itself, only to select

a set of similar students.” The record of the hypothetical friend was also provided

and participants were encouraged to get familiar with it.

In the lab, each session lasted about 60 minutes. In a brief general training

(about 5 minutes), the experimenter made sure that participants were familiar with

the task and the hypothetical friend, and answered questions. Next, one of the three

versions of PeerFinder (Baseline, Simple, or Complex) was used and the participants

were shown a short tutorial (max 5 minutes) covering its interface and operations.

The experimenter answered questions and encouraged them to think aloud. The

participants were reminded to care about their friend and there was no time limit for

the task. When satisfied with the results, the participants needed to click a “finish”

button and complete a user satisfaction questionnaire using a 7-point Likert scale:

Q1. How easy was it to learn the interface (1=very difficult, 7=very easy)?

Q2. How easy was it to use the interface (1=very difficult, 7=very easy)?
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Q3. How confident were you that the records in the results were similar enough to

your friend in order to provide evidence to guide her making academic plans

(1=not confident at all, 7=very confident)?

The training, task, and questionnaire were repeated with the other two ver-

sions using different datasets so that the results varied. Interface order and datasets

were counterbalanced. Participants were allowed to see and adjust the subjective

rating they gave for previous versions. Task completion times and numbers of re-

sult refinements (i.e., the number of adjustments in criteria controls) were recorded

automatically. After using all three versions, participants were asked to rank them

based on preference and debriefed to collect feedback.

3.4.1.5 Results

Repeated Measures ANOVA was applied to compare the completion times

(log-transformed) and numbers of result refinements, and paired t-test was used for

post-hoc comparisons. For questionnaire ratings, I used Friedman test and pairwise

Wilcoxon test. All tests used a significance level of 0.01.

Questionnaire: As reported in Figure 3.4, Baseline was rated the easiest to

learn in Q1 followed by Simple and Complex. Significant differences were found

among the ratings (χ2(2) = 28.00, p < 0.001). Follow-up comparisons indicated that

all pairwise differences were significant. The average ratings in Q2 showed the same

order of the three versions for the ease of use and the differences were significant

(χ2(2) = 32.11, p < 0.001). Pairwise comparisons found significant differences
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Figure 3.4: Average ratings for each version of PeerFinder in the user satisfac-
tion questionnaire (error bars show 95% confidence intervals). 1=very difficult and
7=very easy in Q1 and Q2; 1=not confident at all and 7=very confident in Q3.

between Complex and Baseline and between Complex and Simple. These results

supported H5.

In Q3, Complex had the highest confidence rating (M = 5.89) followed by

Simple (M = 4.11) and Baseline (M = 1.67). Significant differences among the

ratings were detected (χ2(2) = 32.14, p < 0.001) and all pairwise differences were

significant, which supported H1.

Completion time: On average, the participants spent 0.65 minutes (SD =

0.34) on Baseline, 6.16 minutes (SD = 2.12) on Simple, and 16.03 minutes (SD =

6.17) on Complex (Figure 3.5a). Significant differences were found in the log-

transformed completion times across these three versions (F2,34 = 248.42, p < 0.001).

Post-hoc comparisons showed all pairwise differences were significant, supporting

H3.

Result refinement: On average, the participants made 16.39 refinements (SD =

14.08) using Simple and 34.17 refinements (SD = 16.90) using Complex (Fig-

ure 3.5b), which was a significant increase of 108%, supporting H4.
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Figure 3.5: (a) Average completion times and (b) average numbers of result re-
finements using different versions of PeerFinder (error bars show 95% confidence
intervals).

3.4.1.6 Preference and Feedback

16 out of 18 participants chose Complex as their preferred interface. Two

picked Simple, and Baseline was always the least favorite, which confirmed H2.

Ease of learning and use: Although Baseline was rated as the easiest version

to learn and to use, many participants commented on their disappointment, e.g., “I

can do nothing.” 9 participants commented that Simple offered a good balance of

simplicity and capability, e.g., “I like the binary controls and clear presentation of

the results. I felt more focused.” Another who preferred Simple explained that “the

controls satisfy my needs and the Simple interface is easier to explain to the friend

I am helping.” As for Complex, 11 participants gave a neutral rating in Q1 or Q2

and 4 of them suggested that “it requires training and practice to become familiar

with this interface.” In contrast, one participant who thought Complex was easy to

learn explained: “The graphs are the same everywhere. After understanding one, I

understand others.”
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Confidence: All participants expressed lacking trust in the results generated

by Baseline and the most common feedback was “the results look random.” One

participant emphasized: “I want to know how the algorithm gives these IDs.” An-

other added: “The results may be good but without any details, I am skeptical about

it.” 15 participants gave higher confidence ratings for Complex than Simple. The

most common reason given was control: “The advanced controls enable me to get

more precise results,” or “when using the Simple version I can see some flaws in

the results but cannot fix them,” or “since I have the functionalities to do more, I

am more motivated to pay attention and try different settings.” Participants also

appreciated seeing the similar records provided by Complex: “it helps me verify the

results and correct small mistakes” or “seeing concrete students provide inspirations

for tuning the controls and specifying temporal patterns.”

Participants expressed concerns about the complexity of the Complex version.

One described: “There are many options and data you need to keep track of. It

was like piloting a plane.” Another said that “the [similar] student information

were distracting when I was not using it.” One participant who preferred Simple

commented: “My trust diminished every time I got lost. I worried about missing

anything.”

Search strategies: Most users only briefly reviewed the display of Baseline. On

the other hand, I observed users repeatedly turning on and off criteria in Simple and

inspecting the result distributions to see the effects. When using Complex, users

commonly carefully reviewed the criteria one by one and tried different settings.

They kept an eye on the result distributions, and reviewed the details of a few
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similar records to verify their settings. At the end, many scanned the entire list of

similar records looking for problems.

Suggestions: Suggestions included starting simple and allowing users to add

controls and details as needed, enabling users to choose colors and interface layout,

marking important records. Automatic aids were also requested: recommending

criteria settings to save users’ effort and detecting outliers in the results for users

to review. Usability suggestions included making buttons more noticeable, flipping

the layout entirely to show the seed at the top and results below, and merging both

distributions (for the population and the seed record) into one.

3.4.2 Expert Review

I conducted one-on-one 45-minute interviews with domain experts whose pro-

fessional activities involved providing guidance to others: three student advisors

(E1-3) and a physician (E4), each having at least 10 years of experiences. I demon-

strated the three interfaces using the same datasets as in the user study and asked

the experts to explore on their own. I answered questions and recorded comments

and preference.

All four experts expressed great enthusiasm for PeerFinder: “it helps me pro-

vide advice based on data and avoid false assumptions” (E1), “it provides a new

method to make use of the collected student data” (E2), and “it provides a faster

and data-driven way to quickly profile a student and start the conversation” (E3).

E1 and E3 preferred Complex. E1 suggested allowing users to re-arrange and turn
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on and off each view since different views are used at different stages during the

exploration. E3 wanted to look at the “future” activities and outcomes of those

similar students. E2 picked Simple stating that “the interface is simpler and helps

me communicate the results with other advisors or students.” E4 stated that all

three versions have values depending on usage: “The Complex version could be very

useful for patients working on their own for health maintenance. For regular doctor

visits the Simple version may work better since the time is very limited.” He men-

tioned that diseases usually have their own schema which can be used as presets

for the criteria settings. The importance of privacy protection was repeated, and

ethical issues were mentioned, for example: “Some students may be demoralized by

the worst cases in the results (similar records).”

3.5 Discussion

All hypotheses were confirmed with size effects larger than I expected. For

example, I expected more participants would prefer the Simple version, but despite

the increased complexity, the Complex version was preferred by the majority of

users. Engagement, as measured by time spent on task and number of interactions,

was also higher when using Complex. More importantly, confidence was higher

when using Complex. These findings suggest that users should be provided with

controls over the search process when making life choices. The lab study was tied to

a particular scenario (student advising) but my research emphasizes that different

situations of use require different criteria to be used, reinforcing the importance of
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customization for the end user and for the application developer. While some of the

challenges remain (e.g., no ground truth), I believe that there is value in clarifying

those challenges, and that the PeerFinder prototype and evaluation approaches (e.g.,

measuring trust) will inspire others to develop better solutions to these challenges.

Reviewing ethical issues is important. Bad data that reinforces existing biases

may be taken as truth and data that challenges them dismissed. Will a poorly

performing student be discouraged when seeing the outcome of similar students?

Or will a high achieving “anomalous” student in a poor achievement cohort set her

horizon too low? Those issues argue strongly for collaborative use where the advisee

is working alongside an experienced advisor who can interpret the results or judge

data quality. However, advisors’ guidance will not solve all problems since they are

also vulnerable to biases [79]. PeerFinder mitigates this issue by giving transparent

data access to both advisors and advisees and involving them in the decision-making

process.

My user study had several limitations. I tested only three configurations,

omitting alternate versions, for example, one that included no control but provided

rich context. Testing all nine configurations will help tease out the separate roles of

increased control and increased context. I chose a within-subject design so the Base-

line may have seemed more disappointing to participants who saw other versions

first. Between-group studies may affect the differences in confidence, but then pref-

erence cannot be collected. In my study, I made sure that there were records similar

to the seed record, but even with “big data” there may be cases where few similar

records exist. In those cases, we need to verify that user confidence remains low. I
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did not evaluate the accuracy of the search algorithm because ground truth is not

available. I hope that increased interest in this topic will lead to the development

of benchmark datasets. In the meantime, the search algorithm can be improved

to handle multi-attribute data, treat ordinal attributes separately, and incorporate

refined similarity measures for temporal patterns. Lastly, my study focused on a

student advising scenario. Medical scenarios are likely to be more complex unless

the tool is customized to a carefully chosen medical specialty and diagnosis. In the

future, I also hope to incorporate outcome data and help users identify the similarity

criteria that are most correlated to the outcomes of interest.

3.6 Summary

People often seek examples of similar individuals to guide their own life choices.

This chapter characterized the challenges facing designers and evaluators of systems

supporting this task. It described PeerFinder, a prototype interface that enables

users to interactively find and review records based on similarity to a seed record

using both record attributes and temporal event information. While there is still

much to do to improve the interface, my user study with 18 participants suggested

that users are more engaged and more confident about the results when provided

with more control and more context, even at the cost of added complexity. The

following chapters present the design process of advanced visual interfaces for finding

similar and dissimilar people and report on case studies of PeerFinder embedded in

real applications.
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Chapter 4: Advanced Visual Interfaces for Finding Similar and Dis-

similar People

Recommendation applications can guide users in making critical life choices

by referring to the activities of similar peers. With the rapid accumulation and

digitization of personal records, software tools have been developed to enable the

retrieval and analysis of the data of similar individuals to facilitate making critical

decisions. For example, patients and their physicians may explore data from similar

patients to select the best treatment (e.g., PatientsLikeMe [39], CureTogether.com).

Students making academic plans may be inspired by the achievements of similar

students (e.g., PeerFinder [70], EventAction [67]). While automated black-box rec-

ommendation techniques are effective and used widely in shopping and entertain-

ment applications [18, 19, 80], transparency is critical when users review data and

recommendations for life decisions, carefully decide to accept a recommendation, or

remain doubtful [31,71]. In this chapter, I focus on how to improve the selection of

peer groups, i.e., how to select “people like me,” or “people like the patient, student,

or customer I am advising.”

Previous work suggested that users are more engaged and more confident about

making critical life choices when provided with more controls and more context, even

64



at the cost of increased complexity [70]. The next question then becomes: which

controls and context should be provided? How do users find a satisfying peer group?

And how can I facilitate this process?

In this chapter, I report on three visualization designs and three analytic

workflows to support users in retrieving, reviewing, and refining peer groups, making

use of both record attributes and simple patterns of temporal events found in the

record1. I introduce LikeMeDonuts, a novel hierarchical visualization providing an

aggregated overview while preserving details about individual peers, to support users

in reviewing similarities and differences of a group of records compared to the seed

record. While most existing tools focus on hierarchies that have a fixed structure

(e.g., the ICD-10 codes [74] or phenotypes [82]), I investigate situations when the

order of the hierarchy is flexible and subjective, depending on the analysis goals and

users’ preferences. My prototype provides controls for users to interactively adjust

the layout, create visual representations that best satisfy their needs, and refine the

peer group composition. It also provides recommendations on improving the layout

so as to reduce visual clutter and mitigate issues of scalability.

I refined the design through three rounds of formative usability evaluation with

a total of 12 target users, and report how the prototype evolved on users’ feedback.

I propose three analytic workflows for forming peer groups and report on users’

experience and preferences.

My contributions include:

• A novel hierarchical visualization (LikeMeDonuts) that provides an overview

1This work was published at ACM TIST 2018 [81].
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of peer groups with a flexible hierarchy of criteria values, similarity encoding,

and interactive support for trimming the peer group.

• An interactive visualization system (iteratively refined through three rounds of

formative usability study) that combines three new visualization components

and supports three analytic workflows.

4.1 User Interface

After describing motivation and goals, this section describes the final design of

the interface. The rest of the chapter will describe early designs, problems uncovered

during three rounds of usability testing, and how the design evolved. Finally, the

discussion section addresses remaining challenges and possible solutions.

4.1.1 Motivations and Needs Analysis

In PeerFinder [70], I described user studies investigating how the complexity of

the interface affects users’ engagement in the decision making process and confidence

in the results. I used two visualization components, barcharts and a ranked list,

and evaluated the interface through a user study with 18 university students and

interviews with 4 domain experts (three student advisors and a physician). Based

on my discussions with the participants, I identified two critical users’ needs which

motivate the design of the new interface components introduced in this work:

N1. Tracking across multiple criteria. The interface should allow users to

track and review a group of records that share similar values across multiple
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criteria, so that users can estimate the size of the group, explore how those

records are distributed in other criteria, and refine the results by removing

the group when necessary. The barcharts in my original design only support

showing the value distribution of each separate criterion.

N2. Reviewing results at different levels-of-detail. The interface should pro-

vide both individual-level details and group-level overviews so that users can

efficiently review and refine the results of similar records using both record

attributes and temporal events. While the ranked list in my original design

was useful to display full details of individual records, users were unable to get

an overview of those records.

To satisfy these needs, I designed three new visualization components for re-

viewing and refining peer groups. My main goal when designing LikeMeDonuts

(Figure 4.1c) was to reveal distributions across combinations of multiple similar-

ity criteria (e.g., female students majoring in Computer Science and having GPAs

higher than 3.5). LikeMeDonuts allows users to estimate the size of multiple groups

of records (i.e., the branches in a hierarchy of criteria) and provides interactive con-

trols for selecting or removing groups, and rearranging the hierarchy that shapes

those groups (N1).

The purpose of Ranking Glyph (Figure 4.1d) and History Heatmap (Fig-

ure 4.1e) was to provide a compact overview of the ranked list of the similar records

(N2). The Ranking Glyph aimed to help users understand how similarities and dif-

ferences for each criterion evolve as they go down the ranked list of similar records

68



(e.g., are students having two internships more likely to be ranked on the top?).

The History Heatmap helps users inspect common temporal patterns of activities

for the entire peer group—or a selected subset (e.g., are students like me still taking

classes in the fourth year?).

Those new components are integrated into the existing PeerFinder interface,

which provides basic interface components: the seed record timeline (Figure 4.1a),

similarity criteria controls (Figure 4.1b) and the underlying similarity search algo-

rithm, and the basic ranked list of similar records for displaying detailed information

(Figure 4.1f). Those basic components have also been refined as a beneficial side

effect of the usability study (e.g., consistent use of color and improved coordina-

tion between components). In the rest of this section, I describe the basic interface

components first, then I present the new components in greater detail.

4.1.2 Basic Interface Components

Seed record timeline. The seed record’s history of activities is shown as an

aggregated timeline in a timetable (Figure 4.2a), where each row represents an event

category and each column represents a time period. Events in each table cell are

aggregated and represented as a square in gray and the number of event occurrences

is represented by the size of the square. Users can specify temporal patterns of the

seed record on the timeline and use them as similarity criteria for the search. In

Figure 4.2, two temporal patterns have been specified based on the seed record’s

internship (having an internship every summer) and research activities (no papers
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d

Exact match

Within range

Out of range

Figure 4.2: Four of the basic components that refine the PeerFinder interface: (a)
seed record timeline, (b) similarity criteria controls, (c) similarity distribution, and
(d) similar record distribution. In this example, a total of 10 similarity criteria
are used, including two temporal criteria in the bottom row. The mouse cursor
is hovering on the temporal criterion of “no papers in the first two years and late
selection of an advisor.” This criterion and the corresponding temporal pattern are
highlighted in orange.

in the first two years and late selection of an advisor). The temporal criteria are

added as glyphs in the criteria control panel. Users can hover on a glyph to highlight

the temporal pattern and the focused criterion in other visualizations in an orange

color.
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Similarity criteria controls. All available criteria are shown. Categorical crite-

ria (such as major) and numerical criteria (such as GPA) are automatically extracted

from the available data, and temporal criteria are added when specified by users.

Each criterion is displayed as a rectangular glyph (Figure 4.2b) showing its name,

the value for the seed record and the distribution for all archived records. Users can

select how the criterion is to be used: “Ignore” (×), allow “Close Match” (∼), or

require “Exact Match” (=). A tolerance range can also be defined to treat multiple

categorical values or a range of numerical values as equivalent of the value of the

seed record (e.g., treat M.S. and Ph.D. equally or set a GPA range between 3.2 and

3.7). The weight of each criterion can also be adjusted. As users adjust the controls,

the results are updated immediately and reflected in all visualizations. Users can

reorder the criteria by dragging the glyphs. Changes in order are reflected in other

interface components but do not affect which records are included in the result set.

Similarity distribution. Based on the criteria settings, a similarity score is

computed for each archived record (see PeerFinder [70] for algorithmic details) and

a histogram of the scores is displayed (Figure 4.2c). Users can adjust the portion of

the histogram that is selected for the results, i.e., the peer group. In Figure 4.2c,

the top 20% most similar records (100 out of 500) are selected. Since the similarity

scores change when users adjust the criteria controls, I provide three options to help

users keep track of the record selection (shown as radio buttons in the toolbar): the

“by Top N” option keeps users’ selection of a fixed number of most similar records,

the “by Percentage” option keeps the selection of a fixed percentage of most similar

records, and the “by Similarity” option selects records whose similarity scores are
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above a user-defined threshold.

Similar record distribution. A separate view shows barchart distributions of

criteria values of (only) the similar records (Figure 4.2d). The layout of the barcharts

is consistent with the layout of the glyphs of the criteria control panel and the color

of the bars is consistent with other components of the interface. Users can hover

on a single bar to review the criterion range of values and number of records, and

hover on a bar chart to highlight that criterion in other visualizations.

Basic ranked list of similar records. The individual records are displayed in

a ranked list, showing the attribute values and the event history for each record

(Figure 4.1f). For privacy, the individual records will need to be hidden when users

do not have proper viewing permission [70]. Part of the overviews or their labels

may also need to be hidden when the number of records included is too low.

Improvements have been made to the basic interface components, e.g., the new

color scheme used in the LikeMeDonuts was propagated to older components, and

brushing and linking capabilities were added to coordinate all the views.

I now describe the new visualization components.

4.1.3 LikeMeDonuts

LikeMeDonuts is a radial space-filling visualization that shows the criteria

values of the similar records as a hierarchical tree (Figure 4.3). An image of the

seed record is placed at the center, anchoring the display on that person. Each

donut ring represents a criterion (and one level of a tree structure). Criteria set

72



Exact match

Within range

Out of range

Figure 4.3: This LikeMeDonuts shows two criteria as a two-level hierarchical tree.
An image of the seed record is placed at the center. The inner ring represents gender.
It shows that most records in the peer group are females like the seed record. The
males are shown in gray, indicating that they are outside the tolerance range. The
outer ring is for program. Among the females, most are B.S. students, and some
are M.S. (shown in dark green because they are within range but not exactly like
the seed record) or Ph.D. students. The males are all M.S. or Ph.D. students. The
thin partial ring outside the donuts highlights records that are within range for both
criteria.

to “Ignore” in the similarity criteria controls are not displayed. Ring sectors in

bright green represent the proportion of people in the group whose values exactly

match the value of the seed record, sectors in dark green represent those within the

user-specified tolerance ranges, and gray sectors represent those outside tolerance

ranges.

A thin additional partial ring is shown outside the donuts to highlight the

records that are most similar to the seed record (based on the selected criteria).

The arc is in bright green if the record’s criteria values are all exactly matched,

or in dark green if all criteria values are within range. When integrated into the

larger interface, in Figure 4.4, I use the empty corner space to display contextual

information and controls. The top left shows the number of similar records being
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a c

d

b e

% of records with activities in this period: 100%0%

Figure 4.4: All views are coordinated. In this example, a group of records are
selected in the LikeMeDonuts (a) and therefore highlighted in orange in the similar
record distribution (b), the Ranking Glyph (c) and the selected records are brought
to the top of the similar record ranked list (e). The History Heatmap (d) is also
updated to show only the events from the selected records. A “Paper and Advisor”
temporal pattern was included in the criteria and appears as a numerical distance
score in the LikeMeDonuts (with smaller values indicate more similar). The location
of the pattern is also highlighted in the timelines of the individual records.

reviewed and the total number of archived records. The color legend is at the bottom

right. Controls for interactively editing the peer group within the LikeMeDonuts

are at the top right corner.
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4.1.3.1 Interactions

The donut rings and ring sectors are responsive to users’ interactions and

are linked to other visualizations on the interface. Hovering on a criterion in the

similarity criteria controls highlights the matching donut ring with an orange border.

Hovering on a ring sector highlights records represented by that sector with orange

borders. When users click on one or multiple ring sectors, the selected records

are highlighted in other visualizations (Figure 4.4): (1) orange bars are added in

the similar record distribution barcharts, (2) the ranking of the selected records is

shown in orange in the Ranking Glyph, (3) the History Heatmap shows the temporal

activities of the selected records—using a color gradient from dark orange to white,

(4) the individual selected records are be moved to the top of the ranked list of

records with their IDs colored in orange, and (5) if a temporal criterion is used,

the patterns will be highlighted with orange borders in the timelines of the similar

records.

A set of control buttons are provided for editing the peer group at the record

level. At the start, the buttons are disabled. Clicking on ring sectors will select a

record subset and enable the “Remove Selected Records” button. As users make

edits, the “Undo”, “Redo”, and “Reset” buttons become available. The removed

records are filtered out and excluded in other visualizations immediately.
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4.1.3.2 Animated Transitions

I carefully designed a four-stage animation [83,84] to clarify the transition that

occurs when users adjust the criteria controls or edit the peer group at the record

level. The first stage fades out records removed from the peer group and criteria

set to “Ignore” (i.e., removed). In the second stage, the LikeMeDonuts is resized to

fill the screen space made available by removed donut rings or make space for new

donut rings that will need to be added later. The third stage adjusts the size and

color of the ring sectors and reorders them according to the updated peer group.

The last stage fades in those newly added records and criteria/rings. A stage will

be skipped if no changes occur during it. Each stage is set to 500 milliseconds. The

entire animation takes two seconds at most for adjusting criteria controls, and one

second for making an edit at record level (only involving the first and third stages).

Users can turn the animation on or off.

4.1.3.3 Order of Donut Rings

Given a set C of n criteria, the number of donut ring sectors is:

number of sectors =
n∑

i=1

(
i∏

j=1

‖cj‖

)
c ∈ C

where ‖c‖ is the number of unique values of a criterion and as j increases, cj moves

from an inner ring to an outer ring. Note that ‖cj‖ appears in (n− j + 1) terms of

the summation. Therefore, inner rings have a larger impact on the result than outer

rings. To minimize the number of sectors, criteria with smaller numbers of possible
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values should stay in the inner rings, whereas those with larger numbers of possible

values need to be placed in the outer rings. My system recommends an order of the

donut rings at the start that minimizes the total number of sectors (therefore setting

the default order of criteria in all other views). Users can then rearrange the rings

to create views that better match their preferences by dragging the rings inward or

outward, or dragging the criteria glyphs in the criteria control panel (Figure 4.1b).

In summary, the LikeMeDonuts is a novel and highly customizable overview

of a peer group that allows users to rapidly evaluate the similarities and differences

of records in the group compared to the seed record. Interaction allows users to

remove subsets directly in the LikeMeDonuts, spot matching controls or records in

other coordinated views, and reorganize the rings.

4.1.3.4 Alternative Designs

Before settling on a sunburst-like circular layout, I explored alternative designs

for presenting the similar records and the similarity criteria. I tested parallel coordi-

nates [85] and radar plots [86], two common designs for visualizing multi-dimensional

data. They were effective at revealing patterns between adjacent dimensions. How-

ever, since the dimensions are not hierarchically structured, it is difficult to track a

group of records that share similar values across multiple criteria (e.g., male patients

aged around 60 with Hyperglycemia) or to show the size of a group. Also, parallel

coordinates have severe overlapping issues when displaying categorical values.

I also tested icicle plots and Treemaps [87], but as I compared all those designs
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Figure 4.5: (a) Ranking Glyph and (b) History Heatmap summarizing both criteria
values and temporal activities of 44 most similar records. The figure includes two
separate tooltips that would be shown when hovering on a glyph or a time period
of the heatmap. In the Ranking Glyph, I see that the top portion of the highlighted
“Program” glyph has few green bars. In comparison, for the “Paper & Advisor
Pattern” glyph (second row, fourth column) most green matching records are at the
top, indicating that the top records have the right pattern and that this criterion
may have a strong influence on the overall similarity.

my desire to center the design around the seed record (and a photo of the person)

become stronger and I narrowed my design space to only circular designs. The classic

sunburst design was enhanced and adapted to my application: (1) the hierarchy of

similarity criteria can be reordered, (2) a set of operations allow users to modify the

hierarchy and layout based on preferences, and (3) the photo at the center provides

a visual reminder that all the information is relative to that person.

4.1.4 Ranking Glyph

The role of the Ranking Glyph is to help users understand how similarities

and differences for each criterion evolve as they go down the ranked list of similar

records. Each glyph represents a criterion and each horizontal bar within a glyph

represents a record (Figure 4.5a). Records are ranked by their similarity to the
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seed record in all glyphs, with the most similar ones at the top and least similar

ones at the bottom. The same consistent color scheme is applied. Bright green

bars indicate that the criteria value of those records are identical to the value of

the seed record while dark green bars represent records with criteria values within

user-specified tolerance ranges. Records with criteria values outside tolerance ranges

are shown as gray bars. The glyphs are arranged in the same layout as the criteria

controls (Figure 4.1b) and the record ranked list (Figure 4.1f). Hovering on a glyph

highlights the focused criterion in other visualizations. Records selected in other

visualizations will be highlighted in orange in the Ranking Glyph, revealing their

positions in the ranked list.

4.1.5 History Heatmap

The History Heatmap summarizes the temporal events of the entire peer group

or any selected subset of records. Each row of the timetable represents an event

category and each column represents a time period (Figure 4.5b). In the example of

students’ academic records, each time period is a semester (e.g., Spring, Summer,

and Fall). The darker the color of a cell the more events occurred in the time period,

revealing hot spots in black (such as unsurprisingly“Start” in the first semester) and

unpopular event in white (e.g., “Advanced Course” in Summer). When users select

a subset of the similar records in other visualizations (e.g., by clicking on a ring

sector in LikeMeDonuts), their activities will be shown in the history Heatmap,

using an orange color gradient.
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Figure 4.6: The startup screen that shows basic information of the seed record and
suggests three workflows for users to start the analysis: (1) show identical records,
(2) show all archived records, and (3) show top 10% most similar records.

4.1.6 Support for Analytic Workflows

The first thing users typically do is to select the seed record. This would be

done in the larger application in which PeerFinder may be embedded (e.g., Even-

tAction [67]). Then the startup screen displays basic information about the seed

record and provides a choice of three possible ways to proceed, i.e., three workflows2,

which come with explanations (Figure 4.6). These three workflows were born from

the observations and interviews of users of the initial version of PeerFinder [70], and

from my own discussion of possible ways to get started with the process.

The “Show Identicals” workflow helps users start with a small set of records

and then relax constraints. It presents users with all similarity criteria set to “Exact

Match” at the start and finds only identical records. Users can then adjust tolerance

2A demo video illustrating the interface and workflows is available at http://hcil.umd.edu/

peerfinder.
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ranges or relax some of the criteria to “Close Match” to find a larger set of records

with similar values. The second workflow is “Show All”, which starts by selecting

everybody and letting users review how the seed record differs from the entire pop-

ulation. All criteria are set by default to “Close Match” and all records are selected

in the similarity distribution panel (Figure 4.2c). Users can then narrow the results

by switching the criteria to “Exact Match”, narrowing tolerance ranges and thus

reducing the total number of records in the results. The “Show Top” workflow also

uses “Close Match” for all criteria at the start but narrows the results to the top

10% most similar records. Users can further adjust the criteria and the similarity

range to narrow or expand the results.

4.1.7 Interface Configuration Panel

On the top of the interface is a configuration panel that allows users to control

the visibility of each interface component, so that different interface configurations

can be used during different analysis stages. Pressing the “ESC” key will show and

hide the interface configuration panel. Users can also rearrange the layout by drag-

and-drop of interface components. In the usability study, I saw participants hide

the criteria control panel and similarity distribution panel after they were happy

with the criteria settings, and move the History Heatmap next to the seed record

timeline to compare the activity patterns.
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4.2 User Study and Iterative Design Process

The new design evolved over three rounds of a formative usability study to

evaluate the comprehensibility and learnability of the interface components and gain

an understanding of users’ analytic workflows in forming groups of similar people.

I summarize the study procedure and report on users’ feedback, describing how my

prototype evolved.

4.2.1 Participants and Apparatus

I recruited a total of 12 university students by email (5 males and 7 females,

aged 22–31, M = 26.33, SD = 3.08). All participants used computers in their

study. The entire study was spread over three rounds during a month. In each

round, I conducted study sessions with four participants and iteratively improved

the prototype based on their feedback. A desktop computer was used, with a 24-inch

display of resolution 1920×1200 pixels, a mouse, and a keyboard. Each participant

received 10 dollars.

4.2.2 Dataset

I constructed a synthetic dataset of 500 archived records of university students

with realistic but simplified features. The records had four categorical attributes:

gender (male or female), major (Computer Science, HCI, Math, or Art), program

(B.S., M.S., or Ph.D.), and international student (yes or no); four numerical at-

tributes: age (when they started school), GPA, previous work experience (year),
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and average study time per day (hour). Eight categories of temporal events were

included: “start school”, “core course”, “advanced course”, “paper”, “TA (teach-

ing assistant)”, “RA (research assistant)”, “pick advisor”, and “internship”. On

average, each archived record contained 35 events over 5 years. I generated record

attributes with normal and binomial distributions. For temporal events, I reviewed

real data and included similar patterns with random variations. The names of events

and attributes are generic so that all students can conduct the tasks.

I handpicked one of the synthetic records to serve as the seed record. Her

name is Elisa Frasco. The photo is authorized for using in mock-ups3. Elisa is an

imaginary female international student, majoring in Computer Science and currently

in the third year of her Ph.D. study. She is 24 years old and has one year of work

experience before starting graduate school. On average, she spends 8 hours on study

each day and maintains a GPA of 3.65. Her timeline shows no papers in the first

two years, internships in the last two summers, working as a TA all along except for

an RA position in the last semester, after picking an advisor.

4.2.3 Procedure

Each session lasted about an hour. During the first five minutes, the experi-

menter made sure that participants were familiar with the task and the hypothetical

friend. I told participants: “You will be asked to (1) learn about a (hypothetical)

close and important friend of yours who needs advice to improve her academic plan,

such as when to take advanced classes, whether to intern during the summer, or

3https://randomuser.me
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when to try to publish papers, and (2) use a user interface to search for students

similar to that friend. Data from those similar students will be used as evidence

to provide guidance for your friend. You will not be asked to provide or review the

guidance itself, only to select a set of similar students.” The record attributes and

temporal events of the hypothetical friend were provided in a table and participants

were encouraged to get familiar with it. Questions were answered.

Next, the startup screen of the interface was shown (Figure 4.6), and par-

ticipants were encouraged to think aloud, explain the decisions they made, and

comment on the interface. Participants decided what workflow option they wanted

to use on their own and entered the main interface. No training was provided prior

to the start. Participants explored the interface on their own and used the similarity

criteria controls and visualizations to complete the task. If a participant was stuck

for three minutes not being able to do what they wanted (e.g., did not understand an

element of the interface) the experimenter provided hints and answered questions.

The participants were reminded to care about their friend and there was no time

limit for the task. The study session ended when the participant was satisfied with

the peer group. If they had not used a component of the interface, the experimenter

asked them to try it. At the end of the session, I asked participants to go back to

the startup screen and try the other workflows. I collected learnability problems,

comments, and suggestions for improvements.
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4.2.4 Results and Evolution of the Design

I report on the participants’ preferences toward the three workflows, and then

focus on the three new visualizations. I report on users’ feedback and describe how

my prototype evolved.

4.2.4.1 Analytic Workflows

All participants seemed able to understand the workflow options provided on

the startup screen on their own. The “Show Identicals” workflow was the most

popular and was selected by seven out of 12 participants. “Show Top” and “Show

All” workflows were used by three and two participants, respectively. Two partic-

ipants in the first round complained that it was hard to anticipate the amount of

data they would have to look at using the three options. I addressed this issue by

adding the number of records next to the workflow options. After completing the

task, I asked participants to try the other workflow options for 5 minutes each and

rank the three options by preference. Three participants who had initially selected

“Show Identicals” during the task changed their mind. Eventually, “Show Top” was

the favorite of 5 participants, followed by “Show Identicals” (4) and “Show All” (3).

Since there was no clear winner, I decided to keep all three workflows. In the future,

usage logs from a larger number of users might help identify an adequate default

workflow.

One common reason provided for favoring “Show All” and “Show Top” was

wanting a larger number of similar records to get started. Comments included: “it
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shows me a big picture” and “the overview helps me understand what I am dealing

with.” In particular, one who preferred “Show Top” explained “it starts with a good

set of similar records and saves my time,” and another said “it guarantees some good

results.” The participants who did not like “Show All” complained that showing

all the data was overwhelming and one said “I am lost. Seeing everything equals

to seeing nothing.” Another participant pointed out that “the show all (workflow)

is not scalable. It will destroy the visualizations and slow down the system.” Two

participants were concerned about the biases in “Show Top” and explained: “I want

to see all the data instead of a small sample picked by the system.”

From the five participants who liked “Show Identicals” I heard comments such

as: “I preferred to start simple” or “the (ranking) algorithm was not involved and I

had a better feeling of control.” However, others complained that “it takes a longer

time to get enough results” and that “start from blank was frustrating. I thought the

system was broken.” Two participants pointed out that they would choose “Show

Identicals” or “Show All,” depending on the analysis, as one said: “If I have a strong

purpose such as predicting my job after graduation, I will start with only identicals

and prepare queries based on my questions. Otherwise, I will start with all the data

and try different (criteria) settings in a data-driven way.”

4.2.4.2 LikeMeDonuts

All participants were able to understand the meaning of the donut rings on

their own. The color scheme was also understandable. One participant applauded
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that “the color scheme is the same everywhere in the system. I learned it from the

criteria controls.” Another said “the color legend and the text labels made it clear

to me.” Participants heavily used LikeMeDonuts just after they finished selecting

the initial criteria settings. They mainly focused on reviewing the gray sectors and

often went back to adjust the criteria controls to “exclude unexpected records.” All

participants left some gray sectors in the final results. One explained that “I am

aware about the gray areas but those criteria are less important. I will filter them

out if I want fewer records in the results.” Another participant who deliberately

balanced the gender of the peer group said: “The gray records are not errors but

expected. I kept the male students in gray to show the diversity.”

All participants commented positively about the four-stage animated transi-

tions of LikeMeDonuts and everyone mentioned that the animations helped them

keep track of the changes. I asked the participants to turn off the animations and ex-

plore for a few minutes. One participant was immediately confused and said aloud:

“Already? It updates too fast and I did not even notice.” Another pointed out that

“this is a complex interface. The animation helps me manage it.” However, later in

the analysis, five participants changed their mind. One explained “the animations

take time to play and slow down my operations.” Another added: “As I become

familiar with and trust the system, I may want to turn it off.” So providing the

option to turn off the animation is required. At the end, all participants strongly

agreed that animations are important for new users to learn the system, confirming

previous findings (e.g., [88]). Seven participants stated that they will keep the ani-

mation active all the time. One said “it does not take that much time” and another
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emphasized “I make mistakes sometimes. It helps me verify my operations.”

As for sorting the donut rings, nine out of 12 participants moved important

criteria to the inner rings and kept less important ones in the outer rings. One

explained that “I read the donuts from inside to outside” and another said “I prefer

to keep important things around my friend.” Two participants used the opposite

order because “the outer rings have more space for important criteria.” The last

participant used a mixed strategy. He first sorted the criteria by the number of

unique values and then by their importance. During the first round of the usability

study, no participant had discovered that they could reorder the donut rings by

dragging the criteria icons. I improved this by adding a dragging handler to the

icons and changed the mouse cursor to a “Move” style when hovering on the icon.

This helped all remaining participants discover the feature.

In the first two rounds of the study, three out of 8 participants had not been

able to understand the ring sectors on their own. Two blamed the grouping of sectors

in the inner rings: “I see only a few divisions in the inner rings but many in the outer

rings. I did not realize that the rings are aligned to show individual records.” They

suggested two ideas to improve learnability: (1) removing the grouping and drawing

borders to separate individual records, and (2) highlighting individual records with

borders when hovering on a sector. I implemented the second solution and kept

the grouping, which helps LikeMeDonuts scale to larger numbers of records. The

four remaining participants discovered the meaning of the donuts on their own and

commented that the highlighting was helpful for reviewing individual records.

The thin partial ring sectors outside the donuts were not available during the
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first two rounds of the study. I observed four out of 8 participants pointing fingers

at the screen trying to identify individual records with all criteria values in green.

One of them explained that “I wanted to see if there were any identical records after

I changed the criteria.” I then designed the thin ring to highlight identical records

and all four participants in the third round were able to understand it on their

own. “I found the green arc when I was focusing on a very similar record,” one

commented, “I immediately understood.”

4.2.4.3 Ranking Glyph

The initial design of the Ranking Glyph came from brainstorming ideas to

represent how the top records differed from the bottom records. In the initial pro-

totype, I had placed the Ranking Glyph on the left side, below the criteria control

panel. I hoped that users would understand the Ranking Glyph layout from the

layout of the criteria. However, none of the participants of the first round of testing

guessed the meaning of the glyph. After being explained how the Ranking Glyph

worked one participant said that “it (the glyph) looks like a compressed version of

the records” and that “they are both sorted by similarity,” suggesting that the Rank-

ing Glyph should be moved next to the similar record ranked list (Figure 4.1f). I

moved the Ranking Glyph to the top of the record list and I also moved the History

Heatmap next to it (previously displayed as the background colors of the seed record

timeline). These two visualizations combined provide a true overview of the results.

In the subsequent two rounds of usability testing, all participants were able to
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understand the Ranking Glyph on their own. The most common learning strategy

was to look at individual records first in the ranked list. “It looks like a barcode of

the record list” one participant commented. Further testing should verify that the

glyph is still learnable when the individual records are hidden for privacy reasons.

The participants typically used Ranking Glyph to determine a similarity thresh-

old, as one said: “I used the barcharts to filter by value and used the glyphs to filter

by similarity.” Five participants particularly liked the way the glyphs are sorted.

One said “it is useful for checking how the top 5% and bottom 5% records look like.”

Another (who had some data mining background) commented: “The glyphs can tell

me how each criterion influences the overall similarity. I can easily see the trivial

(less influential) ones and put less weight on them.”

The main complaint about the Ranking Glyph is its small size. One participant

complained that “it is too small and hard to track individuals. I can see the top 5%

records but cannot see the fifth record.” Another said “I am more willing to interact

with the donuts than the ranking glyph. The pixels (bars) are too small.” To mitigate

this issue, I connected Ranking Glyph with LikeMeDonuts so that users benefit from

both the interactivity of the donuts and the sorted overview of the Ranking Glyph.

Specifically, when a subset of records are selected in the donuts, the horizontal bars

representing those records are highlighted, showing their rankings in the entire peer

group (Figure 4.4c).
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4.2.4.4 History Heatmap

In the first round of the study, the history heatmap was on the left side,

combined with the seed record timeline (displayed as background color of the seed

record event squares in each cell). The first-round participants were not able to tell

if it was showing the activities of all archived records or similar records. Therefore,

I moved the History Heatmap to the top of the similar record ranked list, right next

to the Ranking Glyph. All remaining participants were able to guess the meaning

of the color darkness in the History Heatmap on their own. One participant stated:

“The heatmap is intuitive, just like you add up the gray squares in the timelines

below.”

Six participants reported findings from the History Heatmap. For example,

“I was able to see the transition from core course to advanced course and hotspots

of internships in the summer,” one said, “some interesting patterns just jump into

my eyes.” I also observed two participants using the History Heatmap to help

understand the activity of the seed record, as one explained “I wonder if my friend

has done any abnormal thing.” To better support this task, I now allow users

to change the layout of the interface components so the History Heatmap can be

moved closer to the seed record timeline to compare the activities side-by-side. In

the future, adding a way to compute the difference between two records or between

the seed record and the peer group average may be useful for the timeline views.
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4.2.4.5 Similar Record Barcharts

All participants were able to understand the similar record distribution bar-

charts (Figure 4.4b) immediately and could correctly tell the meaning of colors,

horizontal axis, and heights. During the analysis, the participants typically used

the barcharts to briefly review the criteria distributions when adjusting the crite-

ria controls. One participant explained that “it helps me verify my settings” and

another added that “it just looks simpler than other visualizations.”

When asked to compare barcharts to LikeMeDonuts, all participants preferred

LikeMeDonuts. Three reasons were commonly mentioned. First, LikeMeDonuts

provides the capability to track individual records (by following a radius of the

circle), which is not possible in barcharts. “The donuts show an extra level of

information” one participant explained. Second, LikeMeDonuts shows an overview

of the entire peer group while barcharts only show overviews of individual criteria.

One participant stated that “when I turn off the labels and step back, I can estimate

the overall similarity of the group from the colors” and another commented that

“using barcharts, I need to read eight separate charts. I only need to focus on one

chart using the donuts.” In contrast, they thought barcharts were only useful for

reviewing a single criterion at a time, as one participant said: “It makes no sense

to compare the bars between two criteria, like the number of female students to the

number of Computer Science students.” Finally, five participants mentioned that

LikeMeDonuts is more aesthetic and one added: “It looks cool. I feel more motivated

to show this to my friend.”
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The participants also pointed out that a unique advantage of barcharts is that

they make visible trends in the criteria values, e.g., “it shows me the overall shape

and I can clearly see records with extreme criteria values,” or “barcharts can guide

me to filter out outliers.” In comparison, they found it difficult to review criteria

distributions in LikeMeDonuts, where criteria values are repeatedly split within

each branch. “Values in the outer rings are not aggregated and I need to review the

sectors one by one,” commented by a participant during the second round of study.

To address this weakness, I coordinated LikeMeDonuts with barcharts: when users

click on a subgroup in the donuts, the distributions of the selected records will be

highlighted in the barcharts (Figure 4.4b). This enables users to review the criteria

distributions of subsets of records.

4.3 Discussion

I discuss the limitations and new opportunities discovered in my study.

4.3.1 Limitations

All the study participants were university students, so a more diverse popula-

tion should be tested to further improve the interface. Larger numbers of partici-

pants and longer periods of use may alter usage patterns and lead to new strategies

and other analysis workflows. The interface can be further improved. For example,

the green similarity color encoding could be applied to the timelines as well and

missing data may have to be represented with a separate encoding.
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Scalability becomes an issue for most interactive visualizations as the size of

the data grows. My system prototype runs smoothly with a testing dataset of

10,000 records, each with an average of 40 events. A larger number of archived

records can slow down the computation of similarity and the rendering of the vi-

sualizations. Better techniques to cluster and compare records in groups would

enhance the performance for applications requiring extremely large datasets, such

as millions of online customer records. When the number of criteria grows larger,

showing all criteria at once is likely to overwhelm most users (as illustrated in Fig-

ure 4.7). Automatically selecting two or three criteria to start may be useful [89,90].

Splitting the criteria into multiple LikeMeDonuts may also be useful (e.g., one for

demographics, another for academic experience, and a third for work experience),

but evaluation is needed to identify and quantify benefits, and other solutions may

emerge.

Applying the interface to other application domains is likely to reveal further

issues. For example, I know that more advanced temporal query methods [2,3] will

need to be integrated to tackle most medical applications. Other data types need

to be supported, e.g., network connections between individuals [91–93]. My study

mainly focused on the scenario of making critical life decisions when users demand

more controls and context even at the cost of added complexity [70,71]. My designs

and findings may not be applicable to recommender systems for making less critical

decisions in entertainment and shopping applications.

Finally, while most students, patients, and others who must make life choices

are eager to follow the paths of predecessors, there are dangers to such an ap-
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Exact match

Within range

Out of range

Figure 4.7: The LikeMeDonuts showing all the 8 available criteria of the student
dataset used in the usability study.

proach. Biases may be introduced when the data available do not represent people

adequately or when there are errors or missing attributes in the data [94]. Decision-

makers who consult databases of predecessors risk repeating old paths which are no

longer relevant because past histories of bias have been rectified or because circum-

stances have changed. While there may still be lessons from the past, users need to

be reminded that their history is unique and that breaking from past paths may be

a powerful way to distinguish themselves. Visual analytics solutions may already be

a big improvement compared to black box solutions, but how do we provide guard

rails to limit the effect of possible biases?

4.3.2 New Opportunities

While automated black-box recommendation techniques are effective and used

widely in entertainment and shopping applications, transparency is critical when
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users review recommendations for critical life decisions [31,71]. My early investiga-

tion suggests that visual representations such as the LikeMeDonuts can help users

review similarities and differences in the peer student group. Another example with

a real dataset of professors is shown in Figure 4.8.

Beyond similarities and differences, “DiverseDonuts” can also be designed to

guide the creation of diverse teams. Diversity can drive innovation in teams [95].

An organization may need to assemble a panel of peers to review the grievance

brought up by an employee. In this case, the group of peers needs to be close to

the employee but diverse enough to include members from diverse divisions of the

company, genders, backgrounds, and with some age and background variations. De-

tecting clusters and selecting representative records from each cluster is a potential

approach to pursue.

Finally, I believe that tools such as the one described in this dissertation can

help data scientists define better distance metrics that can then be used automati-

cally in some situations after proper evaluations are conducted.

4.4 Summary

Recommendation applications can guide users in making critical life choices by

referring to the activities of similar peers. This chapter focused on how to improve

the selection of peer groups. It described a novel set of visual techniques (LikeMe-

Donuts, Ranking Glyph, and History Heatmap) and a visual encoding of similarity,

which can be combined with basic methods for criteria selection and timeline views.
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The resulting combination and user-controlled selection of workflows enable users

to rapidly evaluate the similarities and differences in a peer group compared to a

seed record. Interaction facilitates the review of aggregated summaries as well as

individual record views and their ranking. A formative lab evaluation strengthen my

belief that finding “people like me” is a challenging problem that will greatly ben-

efit from visual analytics approaches. While similarity between people will remain

a subjective measure and vary based on the context of use, the creation of ground

truth datasets for specific situations will pave the way to more formal evaluation.
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Chapter 5: Event Sequence Recommendation: Workflow, Interface,

and Integration

The growing interest in event analytics has resulted in a flurry of novel tools

and applications using visual analytics techniques to tackle varied problems in

healthcare, customer service, education, cybersecurity, etc. The central tasks in-

clude describing, summarizing, or comparing collections of event patterns, search-

ing event sequences to find records of interest or build cohorts, predicting outcomes

associated with event patterns, studying variants from established workflows, etc. I

believe the next breakthroughs for event analytics will come by going beyond the

usual descriptive and predictive analytics to develop actionable guidance by way of

prescriptive analytics [96].

In layman’s terms, the prescriptive analytics for event sequences consists of

recommended actions (what and when) that would lead to the desired outcome

based on the history of similar archived records. Imagine the following scenario: I

am a student at the end of my second year of graduate school. I wish to become a

professor and wonder what jobs other students like me got. Then, I wonder what

those who ended up being professors did in their last two years of studies. Did they

go on internships? When and how many times? I know that publishing is important,
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but when did they typically publish papers? Does it seem better to start early or

all at the end? Did they get a masters on the way? Did they work as teaching

assistants? Early on or later toward the end? So I meet with my department’s

graduate advisor. He pulls a set of students’ records from the campus archives who

are similar to me based on their first two years of studies. He explains to me their

outcomes in terms of the time it took to graduate and job type. Then, I look at

those who became professors, review the recommendations, and discuss together an

action plan, combining the wisdom of the advisor and the system’s recommendations

based on events and timings identified as correlated with becoming a professor.

The research question is what combination of algorithmic analysis and interac-

tive visual exploration can augment analysts’ ability to review recommended actions

and improve outcomes?

Recommender systems are being widely used to assist people in making deci-

sions, for example, recommending films to watch or books to buy. The main novelty

of the approach proposed in this dissertation is that it uses event sequences as fea-

tures to identify similar records and provide appropriate recommendations. While

traditional product recommendations can be described with simple explanations

such as “people with attributes like yours also looked at this product or watched

this movie,” my approach can be summarized by the following statement: “Based

on what happened to people who started with an event sequence similar to yours,

what the sequences of actions and their timings are that might lead to your desired

outcome.”

Properly presenting and explaining recommendations is critical to the effec-
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tiveness of recommender systems and decision support tools in general, as it helps

develop users’ trust in the system and motivate users’ actions [97]. Visualization

techniques, such as ranked lists [45] and two-dimensional maps [98], have been used

to pursue this goal. EventAction1 provides a visual analytics approach to (1) find

similar archived records, (2) explore potential outcomes, (3) review recommended

event sequences that might help achieve the users’ goals and identify key steps

that are of particular importance, and (4) assist users as they interactively define a

personalized action plan associated with a probability of success. The main contri-

butions of this dissertation are as follows:

• The first attempt—to the best of my knowledge—at a prescriptive analytics

system to present and explain recommendations of event sequences.

• A proposed four-step workflow for event sequence recommendation.

• A design study of EventAction, which instantiates the proposed workflow in

the context of a student advising application, and reports on an evaluation

conducted with three graduate students.

The general EventAction principles instantiated in the student advising appli-

cation can be applied to many other domains. In the case of doctors formulating

medical treatment plans, EventAction can help doctors find archived patients who

have medical histories similar to the current patient and identify treatments asso-

ciated with a good outcome. Another application might be eCommerce companies

1This work was published at IEEE VAST 2016 [67].
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planning a series of interventions to retain a current customer. They would find

archived customers who started with an event sequence similar to the current cus-

tomer, and then recommend sequences of actions and their timings that increase the

likelihood of retention. A third promising domain is sports coaching. For example,

in the middle of a basketball game, a good coach formulates a plan to increase the

team’s likelihood of winning the game. EventAction can help the coach find archived

games that had a similar first half, and suggest actions such as using an agile point

guard immediately or attempting more three-pointers in the last five minutes.

5.1 Preliminary Design of EventAction

5.1.1 Driving Application and Needs Analysis

The new concept of EventAction had been germinating based on prior event

sequence analytics case studies. The design process was accelerated by choosing

a specific application (student advising) to drive a multi-phase design study. My

process was inspired by the nine-stage framework proposed by Sedlmair et al. [99].

Specifically, my work roughly matches the learn (visualization literature), discover

(tasks and needs), design (visual, interaction, and algorithm), implement (proto-

types), deploy (to domain expert and gather feedback), reflect (on designs and

refine guidelines), and write (design study paper) stages in that framework. This

section focuses on the discover stage, while later sections cover the design, imple-

ment, deploy, and reflect stages, which informed revisions to the user and task

characterizations, and led to refinements to the prototype.
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To learn about student academic planning, I worked closely with the profes-

sor who manages the Computer Science department’s review of graduate student

progress and has eleven years of experience in student advising. I will call this main

category of target user the “review manager.” The department conducts annual

reviews of students’ accomplishments to encourage progress through program mile-

stones. Students report their activities during the past year, including the series of

courses they took, papers they published, internships, awards, etc. Based on these

event sequence data, the review manager conducts one-on-one reviewing sessions

with the students to provide recommendations and help them plan the subsequent

years so they may reach their career goal.

Often, the review manager makes recommendations by referring to the de-

partment’s requirements and by recalling the experience of students he advised in

the past. While certain general recommendations such as “finishing your classes no

later than the fifth semester” or “starting to work with professors in the second year”

can be made in this manner, the review manager found it difficult to personalize the

recommendations to fit each student’s progress and career goal, and finding relevant

stories from past student histories that may provide inspiration and encouragement.

Facing this challenge, the review manager needs a tool to help him analyze the

collected dataset of archived students’ academic activities, and augment his ability to

make personalized recommendations for each student. I held weekly meetings with

the review manager during which I conducted informal interviews to understand the

advising workflow and demonstrated the early prototypes of EventAction to collect

his feedback and suggestions. Based on the discussions, I gathered and refined a list
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of design needs that EventAction should support to augment the advising workflow:

N1. Find Similar Archived Students: Querying the archived students’ data to find

those whose activities are similar to the current student in their early years in

school.

N2. Estimate Potential Outcomes: Summarizing the outcomes of the similar archived

students to estimate the outcome of the current student.

N3. Recommend Actions: Providing recommendations on what actions to take

and when to take the actions to improve the current student’s likelihood of

achieving the desired outcome.

N4. Evaluate Action Plans: Providing immediate feedback on the action plan made

by the current student and enabling the current student to review and tune

the action plan iteratively based on the feedback.

N5. Protect Privacy: Protecting students’ privacy by showing only safe aggre-

gations and providing adequate management of access rights to the detailed

information.

I identified three variant scenarios of use: (1) the review manager might use

the tool independently, for example, before or after an initial meeting with a student,

(2) the review manager might explore the data and review suggestions standing side

by side with a student, and (3) a student might use EventAction alone or with a

peer. I discuss other usage scenarios in the evaluation and discussion sections.
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Figure 5.1: The workflow of EventAction. In this section, I provide the details of
each step using the driving scenario of student advising.

5.1.2 Workflow and User Interface

EventAction enables a data-driven workflow to help analysts generate a plan

of action based on recommendations2 (Fig. 5.1). Seeded with a current record for

review, EventAction extracts, from the set of all archived records, a cohort of records

that are most similar to the current record. Each record is represented as a sequence

of events and each event belongs to a particular event category. Outcomes are often

defined by the inclusion of certain events in a record, for example, events representing

students’ first placements. EventAction estimates the current record’s potential

outcomes based on the outcome distribution of the similar archived records, and

recommends actions by summarizing the activities of those who achieved the desired

outcome. Action plans can be made for the current record and EventAction provides

immediate feedback by showing how the plan affects the outcome estimation. In this

section, I describe the steps of EventAction’s workflow, using the student advising

scenario to illustrate those steps.

2A demo video is available at http://hcil.umd.edu/eventaction.
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5.1.2.1 Reviewing Current Record

When using EventAction, a review manager starts by retrieving a current

student’s record from the database. The record of a student working alone would be

loaded automatically. Users can also select an initial desired outcome. EventAction

shows the detail timeline in a table, where each row represents an event category

and each column represents a period of time (Fig. 5.2b). To reduce visual clutter

and show periodic patterns, events that occurred during the same time period are

aggregated and encoded by the size of the gray square in each table cell. My initial

design was derived from Lifeline2 [100]. It showed the precise timing of all events

but caused overlaps when multiple events occur close together. My revised design

applied the bucketing strategy [54] to aggregate the events within time periods,

which dramatically simplifies the display.

EventAction allows users to specify the time periods, as they are likely to be

highly dependent on specific application domains. For students’ academic records,

the review manager segmented each year into three periods according to the school

semesters: Spring (January to May), Summer (June to August), and Fall (September

to December). The time axis of the current student (Fig. 5.2b) shows the exact date,

while the time axis of the archived students uses relative time (Fig. 5.2f).

5.1.2.2 Finding Similar Archived Records

To find similar archived students, EventAction compares the event sequence

patterns of the current student and each archived student. The length of the compar-
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ison window is defined by the length of the current student’s timeline. The similarity

between two students is measured by the Euclidean distance of the feature vectors

extracted from the students’ event sequences within the comparison window. In this

dissertation, I defined the feature vector to be the number of events in each cate-

gory. I chose a simple similarity algorithm to facilitate my goal of rapidly building a

deployable prototype including all the steps of the workflow. The discussion section

reviews possible enhancements.

Then, EventAction computes a similarity score between the current student

and each archived student and shows the results in the similarity distribution view

(Fig. 5.3a). I included a range selection widget to allow users to customize the set

of archived students to be considered as the similar cohort. EventAction facilitates

the range selection by showing five indicators which were determined through it-

erative refinement with the review manager: the total number archived students,

the number of selected (similar archived) students, the number of selected students

with the desired outcome (visible in green), the sampling fraction, and the average

similarity score.

After the cohort selection, individual timelines of the similar archived students

are displayed for inspection in the lower middle section of the screen, if the user has

access rights to those records (Fig. 5.3b). The design partner chose to align each

record by Fall, which is the typical semester for starting school. Temporal patterns

such as the number of courses students take or the most common semester students

advance to candidacy become easier to observe.
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Figure 5.3: (a) The distribution of the similarity between the current student and
each archived student. (b) The timelines of the selected students are displayed for
inspection.

5.1.2.3 Exploring Potential Outcomes

Based on the outcome distribution of similar archived students, EventAction

lists the potential outcomes for the current student and estimates likelihoods. The

outcome distribution view (Fig. 5.4) shows two sets of bars: the thicker bars rep-

resent the similar archived students, and the thinner bars represent the baseline of

all archived students. From this view, users can estimate: (1) the current student’s

most likely outcome, (2) the current student’s probability of achieving the desired

outcome, and (3) whether the current student is more or less likely to achieve the
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Figure 5.4: (a) The outcome distributions of similar archived students (thicker bar)
and all archived students (thinner bar). (b) EventAction estimates users’ action
plans and show the updated outcome distribution with triangles. The desired out-
come is highlighted in green.

desired outcome compared to all archived students. Users can change the desired

outcome at any time in the process and all views are updated accordingly.

Using the correlation view (Fig. 5.5), users can further explore which event

categories are most correlated with the probability of having each outcome, so as to

identify important event categories that the current student should pay attention to

when making the action plan. Each cell or line chart shows the correlation between

an outcome and an event category generated based on the similar archived students.

The x-axis represents the number of occurrences of that event category in a student’s

entire timeline. The y-axis represents the probability of having that outcome, which

equals to the percentage of students who had that number of occurrences and had

that outcome. The size of the dots encodes the number of records. Dots of more

than 10 records are connected with lines to show the overall trends. The background
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Figure 5.5: The correlations between outcomes and event categories. The enlarged
example chart shows that most of the students had between 4 and 8 RAs, and having
more RAs is positively correlated to the current student’s likelihood of becoming an
Academic Postdoc.

color of the charts encodes the Pearson correlation coefficient of the dots, weighted

by their sizes. The vertical dashed line shows the number of event occurrences the

current student has so far.

My initial design only used histograms to show the distributions of student

populations with different numbers of event occurrences. It was named “feature dis-

tribution” but was found not very helpful. Instead of seeing only the distributions,

users seemed more interested in learning how the event occurrence is correlated to

the probability of achieving an outcome, especially the desired one. Thus, I calcu-

lated the percentage values for “probability of success” from the categorical outcome

attribute, and added background colors to encode the correlation coefficient. I then

changed the histogram to lines and dots to show the detailed relationship between
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“probability of success” and numbers of event occurrences. To avoid potential mis-

interpretation, I added text explanations triggered by mouse hovering. I recognize

that the correlation information may not be easy for every user to interpret, but

its value was immediately recognized by my Computer Science design partner and

students. Simpler designs may be possible.

5.1.2.4 Reviewing Recommended Actions

After identifying event categories that are most correlated to the current stu-

dent’s likelihood of achieving the desired outcome, users can explore the activity

summary view to investigate the temporal aspect of the recommended actions. Users

can choose to show either all or similar archived students (Fig. 5.6a), and can drill

down to see only the activities of those who had the desired outcome of the current

record (Fig. 5.6b), or compare the activities between everyone and those who had

the desired outcome (Fig. 5.6c).

The activity summary view is directly integrated in the timeline of the current

record (Fig. 5.6a) and the activity patterns can be used to guide the specification

of the action plan. The background color of each cell in the table represents the

percentage of records that had at least one occurrence of the event category in

that time period. The darker the background color, the more prevalent this event

category is in this time period. The size of the gray square encodes the most common

number of occurrences, which suggests the typical number of this event in this time

period. Users can hover on a square to review the detailed distribution of event
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occurrences.

My square-based design was inspired by previous work in network compar-

ison [11, 101], which studied different glyph designs for matrix visualizations and

found that the square-based method outperformed the rest. My early prototypes

also tried to color the inner square instead of the entire cell. However, this approach

makes it difficult to read the color when the square is small. I also considered

swapping the mapping, using the background color to represent the number of oc-

currences and square size to encode the prevalence, but this was inferior to my final

design because the visual encoding became inconsistent with the timeline view and

my users found the color less precise in representing sparse numbers.

5.1.2.5 Reviewing and Tuning Plans

After reviewing the activity summary, users can iteratively specify an action

plan with the guidance of the activities of the reference. They can add events of a

category and in a time period by clicking on the corresponding cell of the student

timeline (Fig. 5.6d). The planned events are shown as squares side-by-side with the

recommended ones and multiple clicks rotate through the range of possible values.

The current design was chosen for two main reasons. First, the square-based glyph

is simple and consistent with the timeline and activity summary views. My users

were able to understand its meaning immediately. Second, compared to designs

that encode only the difference (i.e., where the user plans less or more activities

than others), the side-by-side squares give users a more direct overview about the
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Figure 5.6: (a) Activities of similar archived records, (b) activities of records that
were similar and achieved the desired outcome, (c) activities that distinguished
records that achieved the desired outcome (i.e., the difference between (b) and (a)),
and (d) users making actions plans with (b) as a reference. The background color of
each cell encodes the percentage of records that had at least one event in the period,
and the size of the square within the cell shows the typical number of occurrences.
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current action plan. It also encourages users to personalize their plan instead of

making an “average” plan.

EventAction reruns the workflow to update the outcome estimation periodi-

cally (every second by default) as the plan is being updated. Practically, EventAc-

tion adds the planned events to the current student’s record, extends the comparison

window accordingly to the new length of the current student’s record, and updates

the cohort of similar archived students. Finally, EventAction updates the outcome

estimation and shows the changes in the outcome distribution view as triangles

(Fig. 5.4b), giving users immediate feedback on how their action plans affect the

estimated likelihood of achieving the possible outcomes. In this manner, the users

can iteratively refine the action until they are satisfied with the results. I chose not

to update the views of the similar archived students (lower part of the screen as

in Fig. 5.2e-g) continuously to keep the context stable and focus attention on the

outcome estimations.

5.1.2.6 Reflections on the Design Evolution

The overall design of EventAction went through a dozen iterations over a

three-month period, during which I held weekly meetings with the review manager

to deploy and demonstrate the latest version of the prototype, gather his feedback,

and discuss an improvement plan. I revised the placement of the seven views of

EventAction until the order matched the natural progression of the task. Adding

the workflow control panel was very helpful as it suggests the next possible action
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(e.g., finding similar records or specifying a plan of action) and guides users through

the needed steps. Views open as the analysis progresses: only the workflow control

panel is open at the start, then the timeline of the selected record can be reviewed,

and the similarity distribution view appears, followed by the similar archived record

timelines, and the outcome distribution view and correlation view.

Aligning the timelines of the current record and the similar archived records

was important, as well as clearly highlighting the time period used for computing

the similarity. Again, aggregating the data by user-specified periods (semesters in

this example) both simplified the displays and facilitated the definition of the plan.

One important design decision I made was to deliberately avoid suggesting a single

recommended series of actions, but instead provide an environment to help users

understand the basis for the recommendation and a visual representation of the

actions others had taken (like trails in the sand).

Several iterations also led to the consistent use of green color for the desired

outcome across different views. Only the correlation view uses a different color

palette, mapping a warm orange color hue for positive correlation and cool purple

color hue for negative correlation. I made this exception for two reasons. First, if

I use green, then only the column that represents the desired outcome should be

colored in green while others should not. Thus, I would have to use two color schemes

to encode the same information in the same view, which is confusing. Second,

the correlation has both negative and positive values. Thus, a bi-color scheme is

necessary.
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5.1.3 Evaluation

I conducted an exploratory evaluation of EventAction to understand whether

and how it was helpful in student advising, and identified its usability issues and

limitations. My evaluation goals were aligned with the workflow of EventAction:

• Find Similar Archived Students: Was the meaning of similarity clear?

Were there alternative approaches to assessing similarity? What were users’

strategies for selecting similar archived students?

• Explore Potential Outcomes: Was the outcome estimation based on sim-

ilar archived students reliable to users? Was the correlation view easy to

understand? How would the correlation view assist in making action plans?

• Review Recommended Actions: Was the activity summary view easy to

understand? Would users be able to identify recommended actions?

• Review and Tune Plans: How did users proceed to define their action

plans? How often should the outcome estimation be recalculated?

In an academic context, to protect the privacy of prior student records and

ensure an accurate understanding of the limitations of the data, allowing students

to work alone may be infeasible. Nevertheless, I decided to use this scenario as

a usability study to guide the design of EventAction. I again use the problem

of graduate student advising, but for this test scenario, I constructed a synthetic

dataset of 500 archived students, and included features of the real data.
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Most of the archived students were enrolled in the Ph.D. program, and their

recorded event categories included “start school”, “advanced course”, “core course”,

“classes done”, “masters degree”, “publication”, “advanced to candidacy”, “TA”

(Teaching Assistant), and “RA” (Research Assistant). The students’ first place-

ments were categorized into four types, including (1) software engineer, (2) industrial

postdoc (e.g., research positions in labs such as Microsoft Research), (3) academic

postdoc, and (4) assistant professor. The placement information was used as the

students’ possible outcomes.

I recruited three current Ph.D. students in my department who had never seen

EventAction and elicited their feedback and suggestions. A laptop computer with

a 15.4-inch display was used. I asked the participants to imagine that the selected

current student was them and to use EventAction to make a plan to increase their

likelihoods of achieving their desired outcomes. I provided no training and encour-

aged the participants to think aloud and report their difficulties and any findings

of interest. Each session lasted about 50 minutes. The timeline view showing the

records of similar archived students was disabled, just as it would need to be when

using real data, in order to protect privacy.

All three participants (referred as P1-3 ) found the workflow control panel easy

to use and followed the workflow in their analyses. Below I describe the study results

from each step of the workflow.

Find Similar Archived Students: All three participants understood the simi-

larity distribution view and discovered that they could use the selection brush to

adjust the cohort of similar archived students. The participants diverged in their
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strategies for selecting similar archived students. P1 selected the first half of all

archived students as similar and commented: “The shape looks like a normal dis-

tribution so I set the threshold at the average.” P2 selected the 100 most similar

archived students: “I only want those who are more similar to me.” P3 explored

different strategies and decided to set a threshold of a third of the largest similarity

score. He explained “setting a lower bound gives me more confidence.”

Explore Potential Outcomes: P1 chose academic postdoc as his desired out-

come, P2 chose assistant professor, and P3 chose software engineer. All participants

verbalized that they could estimate their own likelihoods of having each outcome

from the outcome distribution of similar archived students. P1 immediately found

that “my chance seems below the average.” P2 was concerned about the reliability

of the results as he realized that “the number of assistant professors is small.” P3

thought the estimation could be more accurate if he could prioritize the event cate-

gories and put more weight on core courses. “These are more relevant to my goal,”

he explained.

All participants had to spend at least five minutes to fully understand the

correlation view. One common initial misinterpretation was to see the y-axis of the

line chart as the number of students instead of the percentage. P1 and P3 corrected

this misinterpretation by themselves as they inspected a few more charts, and the

experimenter provided clarification after P2 remained uncertain about the meaning

of the correlation chart for five minutes. The participants found many insights after

they became familiar with the charts. For example, “I need to take more advanced

courses to increase my chance” (P1 ), “RA and publications are important” (P2 ),
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and “publications seem not relevant to me” (P3 ). P2 and P3 expressed concerns

about the large number of charts that need to be inspected. P2 explained “it is

hard to keep track of what I have found, ..., I want a summary statement to remind

me of the important things.” P3 suggested sorting the event categories by their

correlations to the desired outcome: “I want to see the important ones first.”

Review Recommended Actions: All three participants were able to understand

the activity summary view without training. They started by reviewing the ac-

tivities of both all and similar archived students and found patterns and outliers,

such as “students take more advanced courses than core courses in the later years”

(P1 ), and “some students pick advisors as late as in their fourth year” (P3 ). They

then narrowed down to those who had achieved their desired outcomes. P2 and P3

commented positively on the consistent use of green color for showing data relevant

to the desired outcome: “I know things that are green in the timeline are important

and need to pay attention to.” While P1 and P2 understood the concept of “dis-

tinguishable activities,” it took P3 a while to realize it was a simple comparison.

“There are too many levels of subgroups and I was lost,” P3 explained.

Review and Tune Plans: None of the participants noticed the table cells in

the activity summary view became clickable at this step. The experimenter had

to provide hints to help them proceed, and P3 suggested providing guidance when

users enter this step for the first time. When making action plans, P2 and P3

mainly referred to the activities of those who achieved their desired outcomes, and

P2 explained “I want to at least be similar to these students.” P1 primarily referred

to the activities that distinguish those who became academic postdoc and said:
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“These activities can make me stand out from the average.” All participants used

both reference groups and switched between them multiple times. They also referred

to the correlation view. “The correlation view tells me what to do and the activity

summary view tells me when to do,” P3 emphasized.

All three participants explicitly mentioned that EventAction’s immediate feed-

back made them more motivated to improve the plan: “I am not satisfied; I probably

need to make a better plan,” P1 said as he found his likelihood of becoming an aca-

demic postdoc is still below all archived students. “The feedback enable me to make

and compare alternative plans,” P3 commented.

In the end, all three participants completed an action plan. P2 was particularly

satisfied with the experience and said: “I appreciated that EventAction is evidence

based. It is easier to understand than professors’ suggestion. Different professors

often gave me different suggestions and confused me a lot.” P1 hoped to make an

optimal plan and proposed a feature that “I only need to set my expectation and

EventAction tells me what to do.” P3 expressed concerns about the reliability of

EventAction’s approach that “the [archived] students might graduate many years

ago and things have changed a lot today.”

In practice, until the accuracy and value of the recommendation and outcome

estimation have been validated, it is unlikely that students would interact directly

with private data about other students or that students would evaluate the likelihood

of outcomes in the absence of guidance and encouragement of an advisor. However,

this evaluation step still provided valuable usability information and input from

students.
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5.1.4 Discussion

My early evaluation suggests that EventAction was helpful for students, as

they were able to use EventAction to effectively find similar archived students,

explore the potential outcomes of the current student, review recommended actions,

and prepare and iteratively improve action plans. Overall, the prescriptive analytics

workflow of EventAction was easy to learn and the data-driven approach to student

advising was appreciated by users.

5.1.4.1 Reliability of Recommendations

The holy grail of recommender systems is to convert recommendations into

users’ actions. Providing reliable recommendations has the potential to increase

users’ trust in the system and thus motivate actions. On the one hand, the reliability

depends on the quantity and quality of the data available. To better profile the

current advisee and find accurate similar archived records, the data describing each

record must be rich, and to find sufficient similar archived records, the data volume

must be large and representative. In the early design of EventAction, the data

contained only event sequences and outcomes. Additional attributes for records

(e.g., demographics information) and events (e.g., the grade of a course) can be

included to improve the quality of the retrieved set of similar archived records.

On the other hand, convincing users that the recommendations are actually

reliable may prove to be equally difficult, and will require further research on the

impact of algorithms and the user interface on users’ perception of the quality of the
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prediction. Overconfidence can also be an issue. My users identified several promis-

ing elements in the design of EventAction: (1) visually presenting the raw data

and the statistics, (2) consistent use of color to mark data and patterns relevant to

users’ desired outcomes, (3) providing detailed textual explanations on demand as

tooltips, and (4) presenting not only unexpected insights but also expected findings

that match the users’ domain knowledge. Users also pointed out several limitations

of EventAction. For example, my initial similarity algorithm does not give users the

flexibility to tune the similarity measures, and it is difficult to keep track of find-

ings and recall them at the plan-making stage. Besides, although users could open

multiple windows to make multiple action plans in parallel, my current prototype

does not support saving or visually comparing alternative plans, which would be a

useful feature to add.

Compared to the recommendations of products to purchase or films to watch,

recommendations using event sequences could yield an exponential number of pos-

sible combinations, and differences between two recommended event sequences are

likely to be small. The novel approach EventAction uses to solve this problem is

that it does not explicitly recommend a particular sequence directly (e.g., Shani

et al. [102]), but relies on the user to interpret the probabilities from the correla-

tion analysis and aggregated event sequence on a timeline to construct a reasonably

good, even if not optimal, plan.
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5.1.4.2 Scalability and Generality

Scalability remains a challenge for most interactive visualizations. This initial

prototype did not tackle scalability issues yet. It ran smoothly with a testing dataset

of 10,000 records, each with an average of 42 events. A larger number of archived

records would slow down the searching for similar archived students and the au-

tomatic re-computation after the action plan was updated. A manual mechanism

could be used instead to allow users to decide when to trigger the time-consuming

functions. For applications requiring extremely large datasets, such as millions of

web customer records, interactive tools using EventAction’s current workflow may

help researchers understand the role event sequences can play in determining similar-

ity and selecting a plan of action, and ultimately lead to specialized non-interactive

algorithms for real-time action selection (i.e., determining a series of interventions).

Finally, the student review application I selected offered useful simplifications

allowing the rapid development of a functional prototype that could be deployed

for immediate testing. Graduate student records tend to be of similar length, the

number of event categories is fairly small, and the semester organization lends itself

to a meaningful bucketing strategy to simplify the display of temporal patterns.

Easy access to real data and experienced users was also a significant advantage, and

my pre-existing familiarity with the general domain and data contributed to my

ability to design a useful interface rapidly.

While I believe other application domains will benefit from the general ap-

proach of EventAction, further research is needed to tackle the wide variety of event
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data characteristics and the needs of different users. To start this process I have

initiated a collaboration with eCommerce industry partners to investigate the use

of EventAction to plan multi-step interventions. My early discussions suggest that

a potential use for EventAction is to help in-house analysts devise and tune the

strategies to find similar customers and plan interventions that match the desired

outcome (e.g., retain a customer or get him to upgrade) with the goal of later trans-

ferring those strategies to automated algorithms. I have also started investigating

applications in the medical domain.

I believe my approach will provide a fresh way for doctors and researchers to

plan long-term medical treatments and follow-up actions associated with a desired

outcome. EventAction’s approach may facilitate the discussion between patients and

medical professionals as they make choices and plan treatment next steps, and—

once further refinements are made—may inspire new ways to provide evidence-based

medicine and foster patient engagement in the decision process. My preliminary

studies with health data suggest many specific needs. First, interval events (e.g., a

week-long hospitalization) need to be treated differently from point events (e.g., a

blood test) since the event duration is often critical to making decisions. Passive

events (e.g., disease symptoms or diagnoses), which users cannot plan for, should

be tagged separately from active interventions (e.g., treatments). Furthermore,

users need to be able to prioritize certain events in the records and ignore others—

such as those coming from untrusted sources. Finally, records are typically long

and complex, so finding a similar case may rely on matching complex patterns but

focusing on a small portion of the record.
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5.2 Automatic Recommendation of Event Sequences

In this section, I introduce an extension to EventAction for generating rec-

ommendations of action plans automatically3. After a user has selected the similar

records, the event sequences of those similar records who have achieved the user’s

desired outcome will be analyzed and a representative action plan will be recom-

mended to the user. Users can review the recommended plan and choose to (1) follow

the plan without modification, (2) tune the plan to better fit their needs, or (3) use

the recommended plan as a reference and design their own plans from scratch. In

this section, I describe the algorithm for generating sequence recommendations and

the challenges and solutions for integrating it into EventAction.

5.2.1 Sequence Recommendation Algorithm

Markov decision processes (MDPs) are widely used in applications as a math-

ematical framework for solving sequential decision problems (e.g., navigating a

robot) [104]. My sequence recommendation algorithm developed based on MDPs

and an implementation provided by Theocharous et al. [105]. This section provides

a step-by-step overview of how the algorithm generates recommendations of event

sequences (illustrated in Figure 5.7).

3This work was published at ACM CHI EA 2018 [103].
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5.2.1.1 Sequence Modeling

The first step is to model archived event sequences using a probabilistic suffix

tree (PST), which takes into account a record’s activities so far to recommend the

next action. PST provides a compact way of modeling temporal patterns that com-

presses the input sequences to accelerate computation. Each node in a PST encodes

a frequent suffix of history events and is associated with a probability distribution

of the next events. Given a PST model and the history event suffix S = (e1, e2...et),

the probability of the next event can be estimated as P (et+1|S). My implementation

used the pstree algorithm [106] in R language.

5.2.1.2 Markov Decision Process

After building the PST, the next step is to create MDP models. The MDP

model can be computed directly from the PST, where the states of the MDP are

nodes of the PST and the state transition probability is derived from the longest

paths in the PST. Specifically, given a history event suffix S = (e1, e2...et) available

as a node in the PST tree, the model computes the transitioning probability from

each node to every other node by identifying the longest suffixes in the tree for every

additional event that an action can produce.

5.2.1.3 Thompson Sampling

The last step is to find the optimal policies generated by the MDP models

for generating recommended event sequences. My implementation uses Thompson
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sampling [107], which is a heuristic approach for choosing actions that addresses

the exploration-exploitation dilemma in the multi-armed bandit problem [108]. In

particular, Thompson sampling is capable of choosing the next actions in real time to

maximize the “expected reward” as specified on each state (usually provided in the

dataset or specified by users). Gopalan and Mannor [109] have extended Thompson

sampling to be applicable to MDPs. Specifically, in each round of sampling, an

action a∗ is simulated according to the probability that it maximizes the expected

reward E (r|S, a∗), where S = (e1, e2...et) is the suffix of history events. Theocharous

et al. [105] conducted experiments to compare Thompson sampling against a greedy

planning strategy and found that Thompson sampling runs faster and can produce

more rewards than the greedy approach.

5.2.2 Integration into EventAction

I describe the three major challenges and my solutions for integrating the

automatic recommendation algorithm into EventAction.

5.2.2.1 Event Co-Occurrence

The sequence recommendation algorithm [105] was originally designed for rec-

ommending travel plans, where each event represents a place to visit without any

overlapping. However, event co-occurrences commonly exist in many other appli-

cation domains where multiple events occur or being logged at the same time. For

example, a patient may take multiple drugs together and a student may attend
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multiple classes during a day. Due to the use of probabilistic suffix tree, the original

sequence recommendation algorithm was not capable of modeling or recommending

sequences with co-occurred events.

My implementation overcomes this challenge by transforming the co-occurred

events into event episodes. Each episode is an unordered combination of events with

possible repetitions, represented by a vector E = (|e1| , |e2| ... |en|). Event episodes

are categorized by its event compositions and the raw event sequences are encoded

into sequences of event episodes, which can be used by the sequence recommendation

algorithm. The recommended plan also consists of event episodes and is decoded

back to the original events before presenting to users.

5.2.2.2 Reward Function

In the use case of recommending travel plans, the “reward” for visiting each

place (i.e., event) can be assessed based on its ratings from past visitors, which

can be easily obtained from online services (e.g., TripAdvisor4 or Google Maps5).

However, subjective ratings for events are generally not available and difficult to

collect in many other domains. To make the sequence recommendation algorithm

usable even when rewards are not provided in the dataset, I defined a default reward

function by counting the popularities of the events of records that are similar to the

seed record and have achieved the desired outcome. This reward function makes the

assumption that the event popularities are correlated with the outcomes. Users are

4https://www.tripadvisor.com

5https://maps.google.com
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Figure 5.8: Seed record timeline (left) and recommended plan (right). In this exam-
ple, the recommended plan emphasizes on research activities such as RA (research
assistantship) and paper. It also suggests taking more advanced courses.

encouraged to verify this assumption or define their own reward functions.

5.2.2.3 Scalability

The time complexity for computing the Markov Decision Process mainly de-

pends on the number of nodes in the probabilistic suffix tree, which grows exponen-

tially as the number of unique sequences increases. To reduce the latency, users can

choose to classify the event episodes and only keep N representatives. A larger N

will produce more tailored recommendations but cost longer computation time. The

default value of N is 20 and the computation typically takes less than one minute.

However, the optimal setting depends on specific datasets and analytical goals. In

addition, the recommendation algorithm is run in a separate process in parallel with

the system’s main process, so that users can keep exploring during the computation.

After the computation completes, a recommended plan will be displayed on top of

the seed record timeline on the future side (Figure 5.8).

131



5.3 Final Design of EventAction

The final design of EventAction integrates the PeerFinder visual components

(Chapter 3-4) and the automatic sequence recommendation algorithm (Section 5.2),

supporting a seamless analytical workflow for developing action plans to achieve the

desired outcome. In this section, I describe the user interface, workflow, architec-

ture, and data pipeline of the integrated EventAction system. I also report on an

experiment evaluating its performance on large testing datasets.

5.3.1 Interface Overview

The final design of EventAction consists of two tabs of 12 interface views6

(Figure 5.9): (a,f) seed record timeline, (b,k) activity summary view, (c,l) similar

record timelines, (d) outcome distribution view, (e) outcome correlation view, (g)

similarity criteria control panel, (h) similarity score distributions, (i) similar record

distributions, and (j) LikeMeDonuts.

View (a)-(e) are organized in one tab for reviewing and tuning recommended

plans. View (f)-(l) are in another tab for reviewing and refining similar records.

All views are coordinated and connected to the same server backend. Users can

switch between tabs by clicking on the navigation menu. The navigation menu also

provides three configuration modes for each tab. Basic mode will hide complex

views (c,e,j,k) and all user controls in (g). Simple mode will show additional views

(c,k) and provide binary controls (“Use” or “Ignore”) in (g). Complex mode will

6A demo video is available at http://hcil.umd.edu/eventaction.
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show all available views and provide weight and tolerance controls in (g).

5.3.2 Analytical Workflow

Figure 5.10 illustrates the analytical workflow of EventAction. The workflow

was developed and refined based on my observations of user behaviors during em-

pirical studies and case studies. The typical workflow starts from selecting a seed

record and the first step is to find a group of similar archived records. After submit-

ting the similar records and the reward function, a recommendation model will be

computed and users can review a recommended action plan. Then, users can further

refine the plan by directly editing the plan using the activities of similar records as

a reference, adjusting the reward function to receive an updated recommendation,

or refining the similar records.

I have also noticed many small deviations in the workflow during user studies

and case studies. For example, some changed the order of the steps (e.g., reviewing

the recommended plan before refining similar records), some skipped certain steps

(e.g., skipped reviewing and refining similar records), and some started refining

similar records by keeping only identical records while some started by showing all

records. How users perform the analyses depends on many factors such as their

familiarity with the interface, the duration of the analyses, and specific datasets

and analytical goals. To satisfy different users’ needs, EventAction supports flexible

analytical workflows. For example, EventAction allows users to skip the step of

finding similar records and start by reviewing the recommended plan. In this case,
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Figure 5.9: The user interface of the final design of EventAction.
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the recommendation will be generated using a set of records retrieved with default

similarity criteria.

5.3.3 System Overview

EventAction is a web application based on the client-server model7. The back-

end is developed in Python using the Flask web framework, which can be deployed

remotely on a server machine or locally on a client machine. The frontend is de-

veloped in HTML, CSS, and JavaScript, and runs on a web browser. EventAction

mainly used three external libraries: NumPy (scientific computing), D3.js (visual-

ization), and jQuery (cross-platform JavaScript). This section provides an overview

of the code organization, system architecture, and data pipeline of EventAction.

5.3.3.1 Code Organization

EventAction was developed using the object-oriented design methodology,

where the code are organized as independent and reusable classes. The entire project

consists of 13,947 lines of code, including 10,875 lines for the frontend (JavaScript),

2,209 lines for the backend (Python), and 863 lines for the automatic recommenda-

tion algorithm (R). Figure 5.11 shows an overview of the organization of the code

and the system architecture.

1. Frontend: The frontend module contains code for visualizations, interface

views, workflow controllers, and utilities. Each type of visualization is im-

7EventAction is available for commercial and non-commercial licensing. To request a review
copy of EventAction, contact plaisant@cs.umd.edu.
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plemented in a separate file, such as record timelines (record timeline.js),

LikeMeDonuts (sunburst tree.js), and criteria controls (criteria icon.js). The

visualizations are encapsulated in classes and can be easily reused in other

visualization applications. The interface views are built by laying out and

connecting one or more visualizations into meaningful displays. The code in

this group can be reused to reproduce the data displays. The workflow con-

trollers contain application-level code for fetching data from the backend and

linking different interface views together, so as to support the analytical work-

flow of EventAction. Finally, utilities provide helper functions that are used

throughout the system.

2. Backend: The backend code are organized into four groups. The web server

communicates with the frontend through HTTP GET and POST methods

and routes the data requests. The data processing group handles loading and

transforming the raw data into record instances, and storing them in memory.

They also response to requests for aggregated data, such as the activity sum-

maries for the History Map visualization. The similarity computation group

aims at assessing the similarity between each archived record and the seed

record based on users’ criteria settings. Finally, the utility group contains

frequently used helper functions.

3. Machine Learning: The machine learning module contains code for generat-

ing recommendations of action plans. This module runs in a separate process

and communicates with the backend through inter-process pipes. This ar-
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Model

api_recommendation.R

configs.R

functions.R

3. Machine Learning

Python Adapter

recommendation.py

rmdp.py

2. Backend

Utilities

config.py

util.py

constants.py

setting.py

Web Server

EventAction.py

Data Processing

file_loader.py

dataset.py

models.py

plantable.py

activity_summary.py

Similarity Computation

temporal_criteria.py

distance.py

features.py

Visualizations

record_timeline.js
criteria_histogram.js
criteria_weight_slider.js
criteria_distribution_icon.js
criteria_icon.js
criteria_matrix.js
similar_record.js
similarity_histogram.js
similarity_control.js
similarity_overview.js
sunburst_tree.js
featurelens_glyph.js
record_summary.js
histogram.js
linechart.js
barchart.js
plantable.js

Utilities

config.js
alert.js
util.js
constants.js

Interface Views

view_criteria_distribution.js
view_criteria_plot.js
view_current_record_criteria.js
view_current_record_timeline.js
view_similar_records.js
view_similarity_control.js
view_similarity_overview.js
view_sunburst_tree.js
view_record_summary.js
view_target_timeline.js
view_population_timeline.js
view_action_plan.js
view_population_outcome.js
view_outcome_distribution.js

Workflow Controllers

launcher.js
workflow_peerfinder.js
workflow_eventaction.js
workflow.js
data.js
views.js
version.js
ui_events.js
ui.js

1. Frontend

Figure 5.11: Code organization and architecture overview of EventAction.

chitecture allows the system to take advantage of a wide range of machine

learning algorithms implemented in programming languages beyond Python

(e.g., MATLAB, R, and Java). Moreover, separating the machine learning

process from the system’s main process can keep the user interface responsive

during the computation, not interrupting users’ exploration.
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5.3.3.2 Data Pipeline

This section describes the data pipeline of EventAction for finding similar

records and reports on an experiment to analyze its performance. As illustrated

in Figure 5.12, the data pipeline consists of 6 steps, from loading the raw data to

showing the results of similar records. The raw data are two tab-delimited text files,

one for temporal events and the other for record attributes (Table 5.3.3.2). Each

record (identified by a unique Record ID) is represented as a sequence of events and

each event belongs to a particular Event Category and is assigned a Timestamp.

Descriptive information of each record is carried in attributes and stored as a pair

of Attribute Name and Attribute Value. Next, I describe in detail how EventAction

processes the data through each step of the pipeline.

Column 1st 2nd 3rd

Event File Record ID Event Category Timestamp

Attribute File Record ID Attribute Name Attribute Value

Table 5.1: Format of input files for EventAction.

1. Data Loader: After the analysts load the raw data (identified by Data

Name), EventAction creates record instances to organize the event and at-

tribute information of each record and stores them in memory. In each record

instance, the event sequence is structured as an Array and the attributes are

structured as a HashMap. Record instances are indexed by Record IDs so

that they can be retrieved in constant O(1) time. At this step, users need to

specify the Seed Record of their analyses.
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2. Time Filter: At this step, users define a time window of the history, for

example, from start school until the end of the third school year. EventAc-

tion will extract events within this history window from each record and use

them for finding similar records. The time filter iterates over the events of all

archived records in O(E) time, where E is the total number of events in the

dataset.

3. Criteria Filter: For each similarity criterion marked as “Exact Match” the

following process is used: if the tolerance range is not set, only the archived

records that have the exact same value (or pattern for temporal criteria) as the

seed record will be retained. Otherwise, the records’ criteria values need to be

within the tolerance ranges to be retained. The tolerance range is represented

by a set of values for categorical criteria and by a pair of upper and lower

bounds for numerical or temporal criteria. This step iterates over all archived

records and all criteria in O(R·C) time, where R is the total number of records

in the dataset and C is the number of criteria of each record.

4. Ranker: Next, “Close Match” criteria are used to rank the archived records

by their similarities to the seed record. A comprehensive distance score is com-

puted for each archived record by first assessing the difference in each criterion

and then summarizing them into a single distance score (see Section 3.3.2 for

algorithmic details). Both assessing the differences in “Close Match” criteria

and computing the summary distance score take O(R · C) time. Ranking the

records by similarity takes O(R logR) using Python’s built-in sorting algo-
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rithm.

5. Similarity Filter: Given a Similarity Threshold specified by users, EventAc-

tion further removes records that are not similar enough compared to the seed

record (i.e., records with a distance score larger than the threshold). This step

iterates over the records and takes O(R) time.

6. Interface: Finally, the remaining similar records are passed to the visualiza-

tion views (Figure 5.9) and shown to users. The views also provide interactive

controls for users to refine the results. Users can also configure the visibility

of the visualizations and controls as described in Section 5.3.1.

5.3.3.3 Performance Analysis

Finding similar records is a task that frequently repeats during analyses. I

have conducted experiments to evaluate its performance. In theory, the overall

time complexity of the EventAction data pipeline is O(E +R · (C + logR)), where

E is the total number of events, R is the total number of records, and C is the

number of criteria of each record. To provide a sense of timing, I conducted an

experiment using the final version of EventAction with synthetic datasets of varying

numbers of records (100, 200, 400, 800, 1,600, 3,200, 6,400, 12,800, 25,600, and

51,200) and numbers of criteria (10, 20, and 30). In each dataset, half of the criteria

were categorical and the other half were numerical. All criteria were set to “Close

Match.” On average each record contained a sequence of 40 events and thus the total

numbers of events in the testing datasets are 4,000, 8,000, 16,000, 32,000, 64,000,
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Figure 5.13: The average runtime of the EventAction data pipeline on synthetic
datasets of varying numbers of records and numbers of criteria.

128,000, 256,000, 512,000, 1,024,000, and 2,048,000.

Figure 5.13 reports the average runtime of 100 repetitions tested on each

dataset. All tests were performed on a machine with a 2.3 GHz Intel Core i7

processor with 16 GB 1600 MHz DDR3 memory. The results show that the time for

finding similar records grows almost linearly as the number of records (R) increases

by a factor of 2, and the growth rate was mainly determined by C.

5.4 Summary

This chapter described a novel approach for prescriptive analytics that enables

analysts to conduct similarity-based data-driven action planning and an automatic

sequence recommendation algorithm to reduce users’ effort. I designed and imple-

mented a functional prototype called EventAction for a selected application domain
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(student advising), which was tested with synthetic data for three graduate stu-

dents. My evaluation demonstrated that the interface could be learned quickly

and the proposed workflow was comprehensible. While recommender systems are

commonly used, the novelty of my approach is that it uses both record attributes

and event sequences as features to identify similar records and appropriate actions.

Visual analytics techniques are particularly useful because they provide a rich aggre-

gated presentation of the recommendations, allowing users to explore alternatives

and adjust parameters. Analysts can combine prior knowledge and data-driven in-

sights into an actionable plan along with a measure of the likely outcome. I believe

that this approach can be applied to a wide variety of domains such as healthcare

or business analytics, and that the dissertation opens the door to a new direction of

promising research. The following chapter reports on four case studies that demon-

strate the use of EventAction in three application domains.
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Chapter 6: Solving Real Problems: Case Studies

This chapter reports on four case studies, summarized in Table 6, that demon-

strate the use of EventAction in three application domains: education, marketing,

and healthcare. Each case study was conducted with real users and using real-world

datasets, following the Multi-dimensional In-depth Long-term Case studies (MILCs)

procedure [110]. The case studies provided evidence of the effectiveness of gener-

ating event sequence recommendations based on personal histories, and produced

five major design guidelines for the construction of event sequence recommendation

user interfaces and three usage guidelines for mitigating the ethical issues in dealing

with personal histories. The design guidelines and usage guidelines are described in

Section 7.1.1 and 7.1.2, respectively.

6.1 Students’ Academic Planning for Student Advisors

This section reports on a case study conducted with a student review manager

who has access to all student records. This person was a professor with 12 years of

experience in advising graduate students in Computer Science. The case study took

place over three weeks. During the first week, I demonstrated my prototype using

a synthetic dataset and the review manager prepared a dataset of real students’
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Domain Data Size Duration Highlighted Results

6.1 Education 8,253 events

641 records

8 event types

3 weeks Inspected all archived records to

check the data quality. Found sim-

ilar records and made an action plan

for a fourth-year Ph.D. student, who

wanted to become an assistant pro-

fessor. Helped several students de-

termine appropriate career goals.

6.2.1 Marketing 8,191 events

500 records

15 event types

4 weeks Made plans for sending onboarding

emails to new customers to increase

engagement. Selected a seed record

who received and opened the first two

emails but had not clicked any links.

Specified a plan with an 11% increase

in the seed record’s likelihood of mak-

ing 1-2 clicks.

6.2.2 Marketing 26,472 events

997 records

6 event types

4 weeks Investigated which campaign chan-

nels will be the most effective for con-

verting a current customer into sales

qualified. Selected a seed record who

actively opened emails but never vis-

ited any product websites during the

past 5 months. Specified a plan and

the seed record’s likelihood of becom-

ing sales qualified increased by 10%.

6.3 Healthcare 3,630 events

107 records

5 event types

8 weeks Investigated how EventAction can

help health coaches prescribe per-

sonalized health interventions. Se-

lected a current patient as the seed

record, who had health alerts every

day during the last three days. Spec-

ified an intervention plan and the es-

timated likelihood of resolving the

alerts within 5 days increased by 8%.

Table 6.1: Summary of all four case studies that demonstrate the use of EventAction
in three application domains.
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data. During the second week, I deployed my prototype to the review manager’s

workstation and he used my prototype to perform the task of finding similar records.

During the third week, the review manager focused on the task of making action

plans. I recorded the review manager’s analysis process, findings, and feedback. I

provided training and necessary guidance, and answered questions over the initial

visits and follow-up meetings. Figure 6.1 illustrates a synthetic dataset of student

records.

6.1.1 Data Preparation

The review manager prepared a dataset of 641 archived records of graduate

students in the Computer Science department. Most of the students were enrolled

in the Ph.D. program. The dataset contains 8,253 events of students’ academic ac-

tivities, including courses (core or advanced), assistantships (teaching or research),

publications, and milestones (start school, done classes, and advance to candidacy).

Students’ record attributes include numbers of grades (As, Bs, and Cs), numbers of

assistantships (teaching and research), number of publications, class status (course-

work completed or not), and candidacy status (advanced or not).

The review manager categorized the students’ first placements into four types,

including (1) software engineer, (2) industrial postdoc (e.g., research positions in

labs such as Microsoft Research), (3) academic postdoc, and (4) assistant professor.

The placement information was used as the students’ possible outcomes. The review

manager also had access to the records of current students.
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During the analysis the data from the author of this dissertation (a fourth-year

Ph.D. student) was used as the seed record. All other records were de-identified.

The analysis goal was to find a group of students similar to him, so that follow-up

analyses may be conducted based on the similar records, such as predicting the first

placement of the seed record after graduation and generating recommendations to

help the seed record make academic plans for the next year.

The review manager worked on his own computer with a 30-inch display. He

was already familiar with the interface so no training was necessary.

6.1.2 Finding Similar Records

6.1.2.1 Reviewing All Data

The review manager started with the “Show All” workflow to obtain a com-

plete overview of the entire data. After about 5 seconds, the data were loaded and

visualizations rendered. The review manager first explored the barcharts to inspect

the criteria distributions of all archived students. He verified that the criteria val-

ues matched his expectations, for example, the percentages of students who had

done classes and who had advanced to candidacy, and the distribution of the course

grades.

Then, the review manager explored the record timelines and History Heatmap

to review temporal information. He first looked at the seed record’s history activities

during the last four years and found 8 consecutive research assistantships since year

one. “Your research assistantship started early,” he commented, “this could be a
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useful pattern.” The review manager also noticed two B grades during the seed

record’s second year of study. He specified these two temporal patterns as similarity

criteria using the seed record timeline panel.

He then reviewed the temporal activities of all archived students. The History

Heatmap showed an activity summary and confirmed several of his expectations,

e.g., that there is a transition from teaching assistantship to research assistantship

starting in the third semester, and that most students achieved the “done with

classes” milestone between the third and the sixth semester as required by the

department. However, two findings were unexpected. First, the students started

to receive fewer As in the third semester. The review manager thought this could

be caused by the increase in the difficulty of the advanced courses, or due to the

fact that a number of students had finished taking classes and thus no grades were

recorded. Second, nearly twice as many publication events occurred in the Spring

semester than in the Fall semester. The review manager was unsure about this

phenomenon. One hypothesis may be that many conferences in Computer Science

announce paper acceptances in the Spring and hold the conference later in the year.

The review manager then explored the similarity score distribution. He found

that the shape of the distribution had two peaks, where the first peak contained

the top 37% most similar records, and the second peak was taller and contained

the remaining records. “This looks strange,” he said, “I was expecting a normal

distribution with one peak.” To understand how the peaks were formed, he selected

records in the second peak. By looking at the barcharts, he realized that those are

all new graduate students in their first or second year: they all had less than four
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assistantships, had not yet finished classes or advanced to candidacy. The review

managed said: “Now it makes sense. The first peak are senior students like you

and the second peak are junior students unlike you. We only need those senior

ones.” He then selected the top 10% most similar students and started using other

visualizations to review in detail.

6.1.2.2 Reviewing Similar Records

The review manager started reviewing similar records using LikeMeDonuts.

Immediately, he found that only a few exact matches were bright green while most

of the sectors in the donuts were gray. “The colors help me estimate the overall

quality of the peer group,” he commented, “I will add some tolerance and try to make

it about 50% green before reviewing in detail.” As he was adjusting the tolerance

ranges, he noticed a unique branch of records in LikeMeDonuts: these records were

included as the top 10% most similar but they had not done classes yet. The review

manager followed the branch to inspect other criteria values of them. “This is

weird,” he said after exploring for a while, “they all have advanced to candidacy

but not done classes. We may have errors in the data.” He clicked on the branch

of LikeMeDonuts and records were highlighted in the barcharts, Ranking Glyph,

and record ranked list. He reviewed the record ranked list to check the temporal

activities. The review manager found that those students had not even the “start

school” milestone events. He suddenly realized that they were probably transfer

students brought in by professors who moved to the university. “Their candidacy
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status was transferred to our department but some of their courses were unqualified

to transfer,” he explained, “we may leave them in the results but keep the gray color

to be noticeable.”

The review manager then explored the Ranking Glyph. He read the glyphs

one by one and found three types of patterns: (1) green on the top and gray on the

bottom (e.g., research assistantship and publications), (2) dominated by green or

gray (e.g., done classes, advanced to candidacy), and (3) alternating between green

and gray (e.g., course grades). “Some criteria seem more correlated to the overall

similarity and have a larger impact on the ranking,” he commented and adjusted the

criteria controls to increase the weights of research assistantship and publications,

and reduced the weights of course grades. “The alternating pattern indicates that

individual course grades are not good features to characterize graduate students,” he

added.

6.1.2.3 Feedback

Overall, the review manager found the prototype very effective for finding

similar students and enable a data-driven way for student advising. When asked

about his preferences for the visualizations and analytic workflows, he stated that

“the three visualizations all have their own uses that cannot be easily replaced by

each other.” He expressed some enthusiasm for the Ranking Glyph because “it

provides an effective overview to understand the effect of each criterion on the overall

ranking.” He also liked the use of color in LikeMeDonuts because it “provides a good
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overview of the quality of the similar records.”

The review manager stated that he preferred to use the “Show All” workflow,

especially when working with a new dataset: “Starting with all the available data

helps obtain an unbiased overview and provides means to check the data quality and

discover initial findings to guide the analysis.” He also emphasized that “under-

standing why those least similar students are different from you can also provide

insights.” However, he expressed concerns about the visual clutters and interac-

tion latency when showing all the data as the number of records becomes extremely

large. In the end, the review manager applauded that “seeing both attributes and

temporal activities is important for reviewing student records. I appreciate that your

system provides visualizations for this purpose.”

6.1.3 Making Action Plan

6.1.3.1 Exploring All Archived Students

In the first session, the review manager focused on exploring all archived stu-

dent records to examine the quality of the data and check if the students’ perfor-

mance matched the department’s expectation. He chose a random current student

and selected all archived students in the similarity distribution view.

At first, he looked at the outcome distribution and correlation views showing

the placement information of all archived students, and the activity summary view

showing the activity patterns during their studies. He confirmed that the distribu-

tion of the students’ placements matched his expectation and most of the activities
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(e.g., courses and assistantships) met the department’s requirements.

The hotspots in two event categories attracted his attention: A few students

had their “start school” events in the third year instead of at the beginning. The

review manager checked the source data and confirmed the pattern, explained by

some students being allowed to take classes before being officially admitted. A

second finding was that the most common time for advancing to candidacy was

the fourth year instead of the fifth (the department’s deadline) or the sixth (the

effective deadline from the university, after an extension), and he commented that

this provided an important insight for improving the department’s management,

suggesting benefits outside of the one-on-one review scenario.

6.1.3.2 Becoming an Assistant Professor

In the second session, the aforementioned fourth-year Ph.D. student in the

department served as the advisee. He described his goal as wanted to become an

assistant professor after graduation. The review manager used EventAction to select

the top 100 most similar archived students for the analysis.

The outcome distribution showed that the most common outcome of the simi-

lar archived students was software engineer and the least common one was assistant

professor. Still, the percentage of assistant professors among the similar archived

students was higher than that among all archived students. The review manager

could easily explain to the advisee the probability of becoming an assistant professor

is low but his likelihood was above the average.
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Next, the review manager explored the correlation view and looked for event

categories that were most positively correlated with the assistant professor outcome,

including “publication”, “RA”, and “advanced course”. He noticed that the advisee

had already been RA for several semesters but was short of advanced courses and

publications. He recommended that the advisee should keep working as an RA, take

more advanced courses, and start to accumulate publications.

The review manager then inspected the activity summary view to investigate

when might be the best time for these recommended activities. He adjusted the

controls to show the aggregated view of the activities of similar archived students

who became assistant professors. The results showed a clear pattern of having an RA

and publications in each Fall or Spring semester, and that the most common time

for taking advanced courses was in the fourth year, before advancing to candidacy.

The review manager showed the display to the advisee and they entered a draft

action plan together following the pattern. EventAction estimated a 3% increase in

the advisee’s likelihood of becoming an assistant professor.

The review manager then switched to show activities that distinguished those

who became assistant professors from others. Compared to all similar archived

students, more of those who became assistant professors had TAs in the final year.

The review manager endorsed the benefit of building up teaching experience before

going on the job market. They refined the action plan accordingly and the estimated

likelihood increased by another 2%.
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6.1.3.3 Determining an Appropriate Goal

In the third session, the review manager investigated a common situation in

which a current student needs help with both determining a goal and making an

action plan. He picked a random current student and selected the top 100 most sim-

ilar archived students. The outcome distribution showed that the current student’s

likelihood is above the average in becoming a software engineer, but much below the

average in becoming an assistant professor. The review manager commented: “If

this student’s goal is to become an assistant professor, I would recommend pursuing

a postdoc first.”

The review manager repeated this process and suddenly found an outlier: the

student was not similar to most of the archived students as shown in the similarity

distribution view. The review manager inspected the student’s record in detail

and realized that the student made slow progress in both course and research: “I

need to make sure this student knows the department’s requirements and deadlines.”

The review manager remarked: “EventAction could help students get a sense of

their situations and help them decide whether to continue their Ph.D. studies or

not.” Future development may also help identify outliers and provide support for

reviewing the records before meeting with those students.

6.1.3.4 Feedback

At the end of the analysis, the review manager commented: “Recalling a few

memorable prior students and applying [the knowledge] to advise current students is
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biased. I tend to trust the data and statistics.” Still, the dialog with the student

suggests that the review manager was using his own judgment and experience to

evaluate the value of the generated patterns and guide the recommendation process.

After the case study, the review manager planned to continue evaluating Even-

tAction in more student advising cases. He expressed the needs to collect additional

data to make the outcome prediction more specific, such as students’ satisfaction

toward their first placements and how soon they get promoted.

6.2 Campaign Planning for Marketing Analysts

This section reports on two case studies conducted with 5 marketing analysts

and using real-world event sequence datasets1. Two of the analysts focused on email

campaigns, two on cross-channel marketing, and one on web analytics. Each case

study lasted about a month consisting of interviews, data preparation, system de-

ployment, and data exploration. During the case studies, I provided training and

necessary guidance, and answered questions. The study goal was to investigate

how EventAction can help marketers prescribe personalized marketing interven-

tions. Figure 6.2 illustrates a synthetic dataset of customer records. Since market-

ing datasets usually contain large numbers of records, it is impossible to precisely

make plans for each customer. The marketing analysts in the case studies evaluated

EventAction by selecting seed record that is representative of a type of customers

so that the action plan will be applicable to them as well.

1This work was published at ACM CHI EA 2018 [111].
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6.2.1 Customer Onboarding

After customers start the trial of a product of the company, the marketers will

send them a series of 5 onboarding emails to help them learn to use the product

and to engage them to make purchases after the trial period. Each of the 5 emails

provides different content, including welcome notes, product promotions, tutorials,

and learning resources. In this case study, the analysts wanted to make plans for

sending onboarding emails to new customers so as to increase their engagement.

6.2.1.1 Data

The analysts provided a dataset of 25,000 archived records of past customers

who have received the 5 onboarding emails. The dataset contains about 112,000

events tracking the send, open, and click of each email. I used a sample of 500

records and 8,191 events in the case study. Only one record attribute existed in the

dataset indicating the regions of the customers. The outcome was defined by the

number of emails that customers clicked any links in, such as links to the product

purchase website or to tutorial videos, which is an indicator of their engagement

during the product trial. The outcome was categorized into “0 click”, “1-2 clicks”,

and “3-5 clicks”, where “3-5 clicks” was the most desired one.

6.2.1.2 Analysis

The analysts selected a seed record who had received and opened the first two

emails but did not click on any links. They wanted to make a plan for the subsequent
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emails that may lead to the outcome of “3-5 clicks.” They started by specifying a “no

click” pattern and only keeping customers having this pattern. Then, they selected

the top 30% most similar records as the peer group and continued to review guidance

for planning.

The analysts opened the activity summary view to review the email sending

patterns of all archived records. The heatmap showed hotspots approximately every

7 days with some variations, which was expected by the analysts. From the outcome

distribution view, the analysts realized that the seed record’s likelihood of clicking 3-

5 emails was only about 3%, which was much worse than the baseline of all archived

records. The analysts decided to lower their expectations and changed the desired

outcome to “1-2 clicks.”

Then, they reviewed activities that distinguish customers who had “1-2 clicks”

from others in the peer group. A green hotspot for email #3 showed up three days

after sending email #2. About 11% more similar customers who received email #3

on that day will make 1-2 clicks during the onboarding. If they also open that email,

the difference will further increase to 14%. The analysts checked the content of email

#3 and found that it was featuring learning resources and tutorials for the product.

They explained: “we thought it might be an important email and now EventAction

provides evidence for it.” Following these findings, the analysts specified a plan for

sending the subsequent emails. EventAction estimated an 11% increase in the seed

record’s likelihood of making 1-2 clicks.
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6.2.2 Channel Attribution Analysis

In this case study, the marketing analysts wanted to understand which cam-

paign channels will be the most effective for converting a current customer into sales

qualified, which means they are ready for the sales team to reach out.

6.2.2.1 Data

The analysts prepared a dataset of 997 customer records and 26,472 events.

The record attributes included which product was promoted and the region of the

campaign. Campaign activities included “event invitation”, “paid search ads”, and

“email sent”. Customers’ activities included “email open”, “email click”, and “web-

site visit”. The outcome was defined by whether or not a customer became sales

qualified judged by the sales team.

6.2.2.2 Analysis

The analysts select a seed record who actively opened emails but never visited

any product websites during the past 5 months. They reviewed the profile of the

customer and found that their past interactions with this customer were mainly by

email with only a few “event invitations” and no “paid search ads.” They created a

new similarity criterion to reflect this pattern and selected the top 20% most similar

records as the peer group.

The analysts immediately noticed that in the following 5 months those similar

customers usually continue to actively receive and open emails. Their likelihood of
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becoming sales qualified was slightly below the baseline but still promising. The

analysts switched to show activities distinguishing those who became sales qualified

from others. Green hotspots showed up in the 6th and 7th months for “event invita-

tion”, “email sent”, and “email click” indicating that sending out event invitations

and campaign emails soon may help improving the outcome. The analysts specified

a plan using these insights and the estimated likelihood increased by 10% which

outperformed the baseline.

6.2.3 Feedback

6.2.3.1 Pseudo A/B Testing

In both case study, the marketing analysts found EventAction useful for testing

hypotheses based on historical data. They commented that EventAction allowed

them to simulate plans and get results immediately, which can help select variables

for A/B testings.

6.2.3.2 Temporal Information

All marketing analysts liked EventAction’s visual and interactive way for ex-

ploring the temporal information as one said “I can see the data directly.” The

analysts of the channel attribution study also applaud that EventAction introduced

a new time dimension for their attribution analysis because it not only informed

them about which channels were important but also showed how the importance

evolves over time. In addition, EventAction enabled them to filter the records using
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temporal patterns, which helps getting more precise results.

6.2.3.3 Automatic Planning

The analysts were excited about EventAction’s automatic plan recommenda-

tion feature because “it will save a lot of time and effort in the long term.” However,

they prefer to learn more about the mechanism before relying on it in real tasks.

They suggested a workflow of showing the recommended plan at the beginning and

allowing users to modify it during the analysis, which is a workflow deviation sup-

ported by EventAction (Section 5.3.2).

6.2.4 Challenges and Solutions

Through the process of the two case studies, the analysts have highlighted

the challenges in analyzing customer records and planning marketing interventions.

These challenges lie in both the uniquenesses of customer records and specific mar-

keting tasks. I cover the 4 major challenges and discuss my solutions.

6.2.4.1 Limited Record Attributes

Unlike patient or student records, customer records are usually anonymous

without details such as demographics, diagnoses, or surveys. The available record

attributes are usually very limited which makes it difficult to profile the customers

and design personalized campaign strategies. EventAction addresses this challenge

by using customer’s activity patterns to identify similar customers and guide the
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planning. For example, given a customer who opens campaign emails but never

visits the product website, marketers can find similar customers having this activity

pattern and explore what campaign strategies worked the best for them.

6.2.4.2 Visualizing Complex Temporal Data

Temporal data in the marketing domain are difficult to visualize due to their

complexities in three aspects: (1) the number of event categories is large capturing

various campaign-related activities; (2) the amounts of events in categories are very

different, ranging from hundreds of email sents to only one or two purchases; (3)

many events occur at the roughly same time causing severe overlaps and visual

clutters.

EventAction’s timeline view can effectively handle event co-occurrences (3)

by aggregating events in each time period. However, since it uses the sizes of the

squares to show the numbers of events, popular categories will dominate the view

(2), making squares in minor categories invisible. I addressed this issue by using a

power scale size = sqrt(num) when the range of the sizes is large. I also grouped

the event categories into three classes to help users focus on one group at a time (1):

interventions, reactions, and outcome. However, a more scalable timeline design is

still needed to fully address A1.
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6.2.4.3 Large Number of Records

A marketing dataset may contain millions of customer records, which can

significantly slow down the computation and rendering. EventAction mitigated this

issue by only visualizing similar records. To accelerate the similarity computation,

future work could be conducted to investigate other techniques such as clustering

and comparing records in groups.

6.2.4.4 Slow and Expensive A/B Testing

Conducting A/B testings to examine different campaign strategies may cost

significant resources and take a long time when the number of variables is large.

EventAction provides a low-cost approach allowing marketers quickly simulate dif-

ferent plans using historical data and get immediate results. The actual A/B testing

will only need to cover strategies with promising results or low confidences (e.g., very

few archived records matched the criteria).

6.3 Medical Intervention Planning for Health Coaches

This section reports on a case study conducted with two health analysts and

using real-world patient health records. The entire case study lasted about two

months consisting of biweekly discussions, interviews, data preparation, system de-

ployment, and data exploration. I provided training and necessary guidance, and

answered questions over the meetings and interviews. The study goal was to inves-

tigate how EventAction can help health coaches provide personalized health inter-

165



ventions. Figure 6.3 illustrates a synthetic dataset of patient records.

6.3.1 Task

This case study was conducted with health analysts partnered with a patient

management company. The company hires health coaches to monitor patients’

health conditions with sensors. When an alert shows up, the coach needs to help

the patient resolve it. The study goal was to evaluate if EventAction can help

determine the best way to resolve those health alerts.

Health coaching traditionally encompasses five principal roles: (1) providing

self-management support, (2) bridging the gap between clinician and patient, (3)

helping patients navigate the health care system, (4) offering emotional support,

and (5) serving as a continuity figure. While health coaches have always had to

interpret information and decide engagement strategies, with the introduction of

mHealth tools, an effective health coach must be able to interpret more frequent,

voluminous and diverse data, in effect becoming a data analyst, in addition to a

behavior change agent. Health coaches must decide: who needs attention, the pri-

ority of outreaches, what mode of contact may work best, and what approach may

be appropriate. Traditionally, this was accomplished with judgment and limited

data, but innovative analytics incorporating pervasive data and individual differ-

ences (e.g., demographics) allow one to make these decisions based on what worked

for similar cases, offering new found possibilities for precision healthcare through

mHealth.
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6.3.2 Data

The research setting includes 107 health insurance plan members that were

pragmatically enrolled in a mHealth care management program. These plan mem-

bers are age 34-66, with poorly controlled chronic disease, principally congestive

heart failure, as identified by the plan using healthcare claims data. The cohort

consists wholly of Medicaid managed care plan members. It can be argued this

population faces specials challenges with the social determinants of health, factors

such as housing, transportation, access to food, safe neighborhoods. While the re-

sults need to be considered in light of these differences from affluent populations,

the treatment activities chronic disease patients should adhere to and the role of

health coaches are similar. The data used in this case study included demographics

(gender, birthday, weight), test results (diastolic, SpO2), outreaches (1,004 events

including coaching call, voice message, text message, and others), and care gaps

(2,626 alert events).

6.3.3 Analysis

During the case study, the health analysts selected a current patient (46 years

old, male) as the seed record. EventAction retrieved and displayed the profile and

recent activities of the patient. The analysts immediately noticed that while the

weight of the patient was in the normal range, he had extremely high diastolic and

SpO2 readings. They adjusted the weights of these two similarity criteria to find

patients with similar test results.
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From the timeline, the analysts found the patient had health alerts every day

during the last three days, indicating that health coaches’ attention was needed for

resolving the alerts. However, as clearly shown in the timeline, the health coach

only called the patient once on the third day, which was delayed and unexpected.

The analysts created a new similarity criterion to reflect this pattern of not being

contacted during the first two days of alerts. The top 20% most similar records were

selected as the peer group. The outcome distribution view showed that the health

alerts of 69% of those similar patients got resolved within 5 days, which was slightly

above the baseline of 61%.

To develop a health intervention plan for resolving the alerts of the patient,

the analysts reviewed the activity summary of those similar patients. The heatmap

showed that 69% of the similar patients will continue to have alerts on the fourth

day and the number stays above 50% until the eighth day. Furthermore, the most

common health interventions for those patients were daily coaching call. The an-

alysts switched to show activities distinguishing patients who had their alerts re-

solved within 5 days from others. Green hotspots showed up for coaching call during

the fifth, sixth, and seventh days, indicating that interventions were most effective

during these periods. The analysts specified a plan using these insights and the

estimated likelihood of resolving the alerts within 5 days increased by 8%.
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6.3.4 Feedback

Reviewing EventAction with health analysts provided actionable insights. A

powerful component of EventAction is that it allows for hypothesis testing of patient

results. For example, a health coach (or care manager) can pose the question to the

data: “What could happen when similar patients to the patient under inquiry did

X?” Further, the system allows for addressing population health strategies through

easily identifying and segmenting patient cohorts by customizable data parameters.

The study indicated that more interpretation of results was needed. I antic-

ipate this will be built into training materials and more tooltips will be included

that display advice when the pointer hovers over it. The clear flagging of strategies

that are recommended or not recommended were additional features highlighted for

development. Besides, the use of a tool that embeds peer comparisons for health

naturally raises privacy concerns that one may be exposing peers unnecessarily. Ad-

ditional work to conceive appropriate anonymization for large-scale implementation

is needed. Finally, the heatmap meanings were not totally clear at first, although the

color darkness made it easy to see where similar patients achieved desired results.

I recognize the limitation that the results are for one mHealth care manage-

ment system and involve feedback from a limited number of health analysts, how-

ever, this exploratory case study provides a novel visualization with innovative and

insightful findings for future exploration.
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6.4 Incomplete Case Studies

EventAction was used in three other case studies that were not completed for

a variety of reasons. This section describes those incomplete case studies to help

potential users identify conditions for suitable applications of EventAction.

6.4.1 Too Sparse Temporal Events

A transportation case study used a dataset of emergency responders’ activities

during auto accidents. The study partner wanted to use EventAction to develop

rescue plans for ongoing emergencies by finding similar previous accidents. The

temporal events in the dataset consisted of hundreds of categories, which were hand

typed by operators and included detailed information such as the names of the

responders. EventAction was able to load and visualize the dataset. However, since

the events were categorized into too many categories, each category only contained

one or two events in several time periods, making it difficult to find valid common

patterns or generate reliable recommendations. The study partner was redirected

to find appropriate strategies to aggregate the event categories and to change the

method the data is recorded (e.g., asking the operators to select from a list of possible

event categories).

6.4.2 Too Complex Temporal Patterns

One healthcare case study was incomplete due to the extreme complexity of

the temporal patterns. This case study used a dataset of patients’ electronic health
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records. Each record consisted of a patient’s complete medical history for years

and contained thousands of detailed events such as hospital visits, prescriptions,

and health examinations. The study partner wanted to evaluate if EventAction can

find similar patients and help doctors prescribe treatments. EventAction was first

used to explore a small sample with around 50 events in each record and was able

to find reasonably similar records. However, after including all the events, each

patient’s temporal activities became very complex and unique and spanned over

years, making it was difficult to visually confirm the common patterns between the

similar records and the seed record or to assess their similarities. The study partner

decided to simplify the dataset before continuing the analysis, such as extracting

events with a time window and coalescing hidden complex events into one [54].

6.4.3 No Suitable Outcome

Another healthcare case study was incomplete because the study partners were

unable to define a suitable outcome for the records. The case study was conducted

with three health analysts using a dataset of medical activities recorded in the

emergency room. The analysts wanted to evaluate if EventAction can recommend

possible treatment plans for a current patient by finding similar previous patients.

After a few visits and meetings, I was able to build an initial EventAction demo

to illustrate the process of finding similar patients. However, the analysts then

realized that they had not collected data for the outcomes of the patients (e.g.,

survived or died). Since EventAction requires a clearly defined outcome attribute
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in each record to generate recommendations, the analysts decided to pause the case

study and returned to gather the missing outcome information.

6.5 Summary

This chapter has reported on four case studies that illustrate the use of Even-

tAction in three application domains: education, marketing, and healthcare. The

case studies were conducted with real users and using real-world datasets, providing

evidence of the effectiveness of generating event sequence recommendations based

on personal histories. I have also described three other case studies that were not

completed for a variety of reasons to help potential users identify conditions for

suitable applications of EventAction.
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Chapter 7: Discussion and Future Directions

Recommender systems are being widely used to assist people in making deci-

sions, for example, item recommender systems help customers to find films to watch

or books to buy. Despite the ubiquity of item recommender systems, they can be

improved by giving users greater transparency and control. This dissertation devel-

ops and assesses interactive strategies for transparency and control, as applied to

event sequence recommender systems, which provide guidance in critical life choices

such as medical treatments, careers decisions, and educational course selections.

While traditional item recommendations are generated based on choices by people

with similar attributes, such as those who looked at this product or watched this

movie, the event sequence recommendation approach allows users to select records

that share similar attribute values and start with a similar event sequence, and then

see how different choices of actions and the orders and times between them might

lead to users’ desired outcomes.

In this final chapter, I first describe the design guidelines and usage guidelines

produced through my studies. Then, I summarize the contributions this dissertation

has made toward explainable event sequence recommendations. Next, I discuss

several promising future directions to extend my current software prototypes and
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studies. Finally, I conclude the dissertation with some high-level closing remarks.

7.1 Guidelines

In this section, I describe five major design guidelines for the construction

of event sequence recommendation user interfaces and three usage guidelines for

mitigating the ethical issues in dealing with personal histories (Table 7.1). These

guidelines are produced through my empirical studies of interface components and

case studies in three domains, including education, marketing, and healthcare.

G1: Center the interface design on the seed record.

G2: Increase algorithm transparency with visualizations and user controls.

G3: Show both individual-level details and group-level overviews.

G4: Include both record attributes and temporal activities.

G5: Support flexible analytical workflows and satisfy different users’ needs.

G6: Use rich, large, and representative data.

G7: Remind users that it is okay to be unique among past paths.

G8: Encourage collaborative use with an experienced advisor.

Table 7.1: Design guidelines (G1-5) for the construction of event sequence recom-
mendation user interfaces and usage guidelines (G6-8) for mitigating the ethical
issues in dealing with personal histories.

7.1.1 Design Guidelines

G1. Center the interface design on the seed record. Unlike many other

event sequence visualization tools [7, 52, 53, 55], the analytical workflow of

EventAction is oriented by a seed record. Centering the interface design on

the seed record can emphasize the workflow and keep users focused on the

tasks of finding similar records and making action plans for the seed record.
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For example, when designing the LikeMeDonuts, I placed an image of the seed

record at the center, which provides a visual reminder that all the information

is relative to that person. The thickness of each donut ring and the color of

each cell are meaningful in achieving the goal of finding similarity or differences.

Users found this design clearly illustrated the purpose of the interface and they

tended to move important criteria closer to the image to be focused.

G2. Increase algorithm transparency with visualizations and user con-

trols. My study results showed that increasing the algorithm transparency

of sequence recommender systems can increase users confidence and engage-

ment, even at the cost of added complexity. In addition, how people perceive

the similarity between personal records is very subjective depending on their

preferences, experiences, and beliefs, and has been dismissed by some as a

slippery notion [75]. It is possible to define a set of initial similarity criteria

but users should be able to review and adjust those criteria for specific appli-

cations. For example, EventAction provides visualizations to help users review

similar records and provides controls for users to adjust similarity criteria. No-

tably, this dissertation mainly focused on the scenario of making critical life

decisions when users demand more controls and context even at the cost of

added complexity [70, 71]. My designs and findings may not be applicable to

recommender systems for making less critical decisions in entertainment and

shopping applications.

G3. Show both individual-level details and group-level overviews. Review-
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ing and refining the results of similar records are key steps in the analytical

workflow of event sequence recommendation. The interface should provide

both individual-level details and group-level overviews so that users can ef-

ficiently review and refine similar records using both record attributes and

temporal events. In addition, the group-level overviews should allow users to

track and review a group of records that share similar values across multiple

criteria, so that users can estimate the size of the group, explore how those

records are distributed in other criteria, and refine the results by removing the

group when necessary. For example, EventAction uses a ranked list to show in-

dividual details and provides three visualization components for reviewing and

refining peer groups, including LikeMeDonuts, History Heatmap, and Ranking

Glyph.

G4. Include both record attributes and temporal activities. Electronic

records of personal histories (e.g., patients, students, historical figures, crim-

inals, customers, etc.) consist of multivariate record attributes (e.g., demo-

graphic information) and temporal activities (time-stamped events such as

first diagnosis, hospital stays, interventions). To compare personal records

and define similarity criteria, it is important to take into consideration both

record attributes and temporal activities. In particular, I found temporal ac-

tivities play a more fundamental role in some application domains such as

digital marketing, where the records are usually anonymous without detailed

attributes such as demographics, diagnoses, or surveys. In EventAction, both
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record attributes and temporal activities are used as features to identify simi-

lar records and provide appropriate recommendations. It allows users to select

records that have similar attributes and start with a similar event sequence,

and then see how different choices of actions and the orders and times between

them might lead to users’ desired outcomes.

G5. Support flexible analytical workflows and satisfy different users’ needs.

I have noticed many different user workflows in user studies and case studies,

deviating from the default analytical workflow (Figure 5.10). For example,

some changed the order of the steps (e.g., reviewing the recommended plan

before refining similar records), some skipped certain steps (e.g., skipped re-

viewing and refining similar records), and some started refining similar records

by keeping only identical records while some started by showing all records.

How users perform the analyses depends on many factors such as their famil-

iarity with the interface, the duration of the analyses, and specific datasets and

analytical goals. To satisfy different users’ needs, the interface should support

flexible analytical workflows. For example, EventAction allows users to skip

the step of finding similar records and start by reviewing the recommended

plan. In this case, the recommendation will be generated using a set of records

retrieved with default similarity criteria.
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Figure 7.1: The startup screen of EventAction that prompts usage guidelines and
identifies potential issues and biases in the data.

7.1.2 Ethical Issues and Usage Guidelines

Reviewing ethical issues is important in dealing with personal histories. I

discuss the ethical issues faced in my studies and describe three usage guidelines for

mitigating those issues. EventAction provides a startup screen that prompts these

usage guidelines and identifies potential issues and biases in the data (Figure 7.1).

G6. Use rich, large, and representative data. The holy grail of recommender

systems is to convert recommendations into users’ actions. Providing reliable

recommendations has the potential to increase users’ trust in the system and

thus motivate actions. The reliability depends on the quantity and quality

of the data available. To better profile the current advisee and find accurate
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similar archived records, the data describing each record must be rich, and

to find sufficient similar archived records, the data volume must be large and

representative. Biases may be introduced when the data available do not rep-

resent people adequately and there are few similar records exist, or when there

are errors or missing attributes in the data [94]. In those cases, it is important

to ensure that the algorithm’s confidence in generating the recommendation

and the user’s confidence in following the recommendation remain low.

G7. Remind users that it is okay to be unique among past paths. Over-

confidence can also be an issue. While most students, patients, and others

who must make life choices are eager to follow the paths of predecessors, there

are dangers to such an approach. Decision-makers who consult databases of

predecessors risk repeating old paths which are no longer relevant because past

histories of bias have been rectified or because circumstances have changed.

While there may still be lessons from the past, users need to be reminded that

their history is unique and that breaking from past paths may be a powerful

way to distinguish themselves.

G8. Encourage collaborative use with an experienced advisor. Bad data

that reinforces existing biases may be taken as truth and data that challenges

them dismissed. Will a poorly performing student be discouraged when seeing

the outcome of similar students? Or will a high achieving “anomalous” stu-

dent in a poor achievement cohort set her horizon too low? Those issues argue

strongly for collaborative use where the advisee is working alongside an expe-
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rienced advisor who can interpret the results or judge data quality. However,

advisors’ guidance will not solve all problems since they are also vulnerable to

biases [79]. EventAction mitigates this issue by giving transparent data ac-

cess to both advisors and advisees and involving them in the decision-making

process.

7.2 Summary of Contributions

This dissertation contributes an analytical workflow, an interactive system,

and design guidelines identified in empirical studies and case studies, opening new

avenues of research in explainable event sequence recommendations based on per-

sonal histories. It enables people to make better decisions for critical life choices

with higher confidence. The concrete contributions of this dissertation are:

• A systematic analytical workflow for event sequence recommenda-

tion that will be applicable in diverse applications. The workflow was

developed and refined based on my observations of user behaviors during em-

pirical studies and case studies. The typical workflow starts from a seed record

and the first step is to find a group of similar archived records. After submit-

ting the similar records and the reward function, a recommendation model will

be computed and users can review a recommended action plan. Then, users

can further refine the plan by directly editing the plan using the activities

of similar records as a reference, adjusting the reward function to receive an

updated recommendation, or refining the similar records. Many small devia-
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tions have also been observed in the studies, such as skipping or changing the

order of certain steps. To satisfy different users’ needs, EventAction supports

flexible analytical workflows. For example, EventAction allows users to skip

the step of finding similar records and start by reviewing the recommended

plan. In this case, the recommendation will be generated using a set of records

retrieved with default similarity criteria.

• An interactive prescriptive analytics system and user interfaces to

assist users in making action plans and to raise users’ confidence in

the action plans, and the integration of an automatic sequence rec-

ommendation algorithm to reduce users’ effort in using the system.

Through iterative usability studies and case studies, I have designed, devel-

oped, and refined two user interfaces: PeerFinder and EventAction. PeerFinder

presents a visual interface that enables users to find and explore records that

are similar to a seed record. To encourage engagement and inspire users’ trust

in the results, PeerFinder provides different levels of controls and context that

allow users to adjust the similarity criteria. EventAction provides a visual

analytics approach to (1) identify similar records, (2) explore potential out-

comes, (3) review recommended event sequences that might help achieve the

users’ goals, and (4) interactively assist users as they define a personalized

action plan associated with a probability of success. The final EventAction

system integrates the PeerFinder visual components and an automatic se-

quence recommendation algorithm, supporting a seamless analytical workflow
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for developing action plans to achieve users’ desired outcomes.

• Empirical studies of interface components and case studies in three

domains that provide evidence of the effectiveness of generating

event sequence recommendations based on personal histories. The

studies include (1) a student advising case study conducted with a professor

on a dataset of real students’ data, (2) two digital marketing case studies con-

ducted with 5 marketing analysts and using real-world datasets of customer

records, and (3) a medical case study conducted with two health analysts using

real-world patient health records.

• Design guidelines for the construction of event sequence recommen-

dation user interfaces and usage guidelines for mitigating the ethi-

cal issues in dealing with personal histories. The design guidelines in-

clude (1) center the interface design on the seed record, (2) increase algorithm

transparency with visualizations and user controls, (3) show both individual-

level details and group-level overviews, (4) include both record attributes and

temporal activities, and (5) support flexible analytical workflows and satisfy

different users’ needs. The usage guidelines include (1) use rich, large, and

representative data, (2) remind users that it is okay to be unique among past

paths, and (3) collaborative use with an experienced advisor.
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7.3 Future Directions

The goal of this dissertation was to explore the research area of explainable

event sequence recommendations and open up new directions for future researchers.

In addition to the power of the user controls and visualizations provided by EventAc-

tion, and the contributions of this dissertation, I have identified huge opportunities

to extend my current software prototypes and studies. In this section, I discuss

various ways in which this work can be further developed.

7.3.1 Scaling Up

Scalability becomes an issue for most interactive visualizations as the size of

the data grows. A larger number of archived records can slow down the computa-

tion of similarity, the rendering of the visualizations, and users’ interpretation of the

results. While using powerful machines can accelerate the computation and render-

ing, how to reduce human effort in analyzing larger datasets remains challenging

for EventAction. I propose three future directions to support analyses of extremely

large datasets, such as millions of online customer records.

7.3.1.1 Seed Group

While making action plans for a advisee at a time is the typical scenario in

many application domains (e.g., healthcare and education), users from several other

domains such as digital marketing requested support for handling a seed group (i.e., a

group of records of interest), for example, customers in Maryland who have received
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at least three promotional emails but have not purchased yet. Then, marketers

can explore archived customers similar to the seed group and develop campaign

strategies to increase the purchase rate of the group. A direct and promising solution

is to allow users to specify a query characterizing the seed group using EventAction’s

seed record timeline and similarity criteria controls, with additional visualizations

and controls for reviewing and refining the seed group.

7.3.1.2 Record Categorization

Similarity searches often return too many matched and partially matched

records. Although EventAction presents the results of similar records in a ranked

list with the most similar ones on the top, it still costs users extra time to ex-

plore and find useful information. To resolve this “information overload” problem,

database research has been done to cluster or categorize query results into mean-

ingful groups. For example, Vadrevu et al. [112] proposed a clustering method for

news search results using a composite metric of meta data, textual data, and query

terms, and Chakrabarti et al. [113] proposed a categorization approach by building

a hierarchy based on data attributes. However, few papers addressed this problem

in the context of event sequences. One potential solution is to categorize the similar

records by their differences compared to the seed record, such as missing or having

extra events, or variations in the ordering or temporal distribution of events. Users

can easily understand how the records in each category deviate from the seed record

and explore a category of records at a time.
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7.3.1.3 Criteria Selection

When the number of criteria grows larger, showing all criteria at once is likely

to overwhelm most users. Automatically selecting two or three criteria to start

may be useful [89, 90]. Automatic techniques for assigning weights to the criteria

or classifying the criteria into multiple groups may also be useful (e.g., one for

demographics, another for academic experience, and a third for work experience),

but formal evaluation is needed to identify and quantify benefits.

7.3.2 Supporting Collaboration

The typical usage scenario of EventAction is an advisor collaborating with an

advisee on personalizing an action plan for the advisee. In this scenario, both the

advisor and advisee are involved in exploring the data and creating the plan. The

degree of engagement will influence the quality of the plan and advisee’s trust in the

plan. Unlike existing collaborative visualization systems as summarized by Isenberg

et al. [114], one unique challenge in supporting collaboration in EventAction is that

the collaborators play asymmetric roles: (1) advisors are usually familiar with the

system and thus can fully understand the visualizations and confidently use the

controls while advisees are typically novice users who prefer to start with a simple

interface, (2) advisors are privileged to review archived records with private infor-

mation while advisees should only see de-identified data or aggregated summaries,

and (3) advisors have knowledge about domain policies and previous professional

experience while advisees know better about their own personal preferences and
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needs. Currently, EventAction treats advisors as the main users, who control the

system, explore the visualizations, and describe the findings to advisees. Develop-

ing an asymmetric collaboration framework will likely increase advisees’ engagement

in using EventAction and also benefit similar software tools for student advising,

patient caring, and client consulting.

7.3.3 Celebrating Diversity

Beyond similarities and differences, visualization tools can also be designed to

guide the creation of diverse teams. Diversity can drive innovation in teams [95].

An organization may need to assemble a panel of peers to review the grievance

brought up by an employee. In this case, the group of peers needs to be close

to the employee but diverse enough to include members from diverse divisions of

the company, genders, backgrounds, and with some age and background variations.

One solution is to extend EventAction’s search algorithm to include both “similarity

criteria” and “diversity criteria.” Then, clusters can be detected in the search results

and representative records can be selected from each cluster to achieve diversity.

7.4 Closing Remarks

This chapter summarized all results and contributions from this dissertation

and discussed promising future opportunities to extend the current software pro-

totypes and studies. The contributions of this dissertation have been implemented

in EventAction, an interactive prescriptive analytics system along with a system-
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atic analytical workflow, to assist users in making action plans and to raise users’

confidence in the action plans. Empirical studies in three domains have provided

evidence of the effectiveness of generating event sequence recommendations based

on personal histories. Through the design, implementation, and evaluation of Even-

tAction, I have produced design guidelines for the construction of event sequence

recommendation user interfaces and usage guidelines for mitigating the ethical issues

in dealing with personal histories. I believe this dissertation will open new avenues

of research in explainable event sequence recommendations based on personal his-

tories and enable people to make better decisions for critical life choices with higher

confidence.
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