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Version Control Systems were primarily designed to keep track of and provide

control over changes to source code and have since provided an excellent way to

combat the problem of sharing and editing files in a collaborative setting. The re-

cent surge in data-driven decision making has resulted in a proliferation of datasets

elevating them to the level of source code which in turn has led the data analysts to

resort to version control systems for the purpose of storing and managing datasets

and their versions over time. Unfortunately existing version control systems are

poor at handling large datasets primarily due to the underlying assumption that

the stored files are relatively small text files with localized changes. Moreover the

algorithms used by these systems tend to be fairly simple leading to suboptimal

performance when applied to large datasets. In order to address the shortcomings,



a key requirement here is to have a Dataset Version Control System (DVCS) that

will serve as a common platform to enable data analysts to efficiently store and

query dataset versions, track changes to datasets and share datasets between users

at ease.

Towards this goal, we address the fundamental problem of designing storage

layouts for a wide range of datasets to serve as the primary building block for

an efficient and scalable DVCS. The key problem in this setting is to compactly

store a large number of dataset versions and efficiently retrieve any specific ver-

sion (or a collection of partial versions). We initiate our study by considering

storage-retrieval trade-offs for versions of unstructured dataset such as text files,

blobs, etc. where the notion of a partial version is not well-defined. Next, we

consider array datasets, i.e., a collection of temporal snapshots (or versions) of

multi-dimensional arrays, where the data is predominantly represented in single

precision or double precision format. The primary challenge here is to develop ef-

ficient compression techniques for the hard-to-compress floating point data due to

the high degree of entropy. We observe that the underlying techniques developed

for unstructured or array datasets are not well suited for more structured dataset

versions – a version in this setting is defined by a collection of records each of

which is uniquely addressable. We carefully explore the design space for build-



ing such a system and the various storage-retrieval trade-offs, and discuss how

different storage layouts influence those trade-offs. Next, we formulate several

problems trading off the version storage and retrieval cost in various ways and de-

sign several offline storage layout algorithms that effectively minimize the storage

costs while keeping the retrieval costs low. In addition to version retrieval queries,

our system also provides support for record provenance queries. Through exten-

sive experiments on large datasets, we demonstrate that our proposed designs can

operate at the scale required in most practical scenarios.
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Chapter 1: Introduction

The proliferation of data from an increasing number of highly diverse sources

ranging from social networks to healthcare, business transactions to climate data

and the numerous applications that reap benefits from it has undoubtedly made it

an invaluable commodity. As such this commodity needs to be harnessed properly

in order to extract the tremendous business value or derive rich scientific knowl-

edge that is inherent within it. This in turn has led to an increase in data-driven

decision making in a large number of areas including, but not limited to, on-

line advertising, credit scoring, financial trading, chronic disease forecasting and

treatment, fraud detection, product recommendation and so on [38, 68]. This data-

driven decision making process has also resulted in an explosion in the number of

datasets that are generated in the process within organizations that are treated at

par with source code due to their inherent value [45].

Due to the huge and diverse nature of these datasets, researchers, domain ex-

perts and “data science” teams across multiple domains tend to collaborate to
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harvest the knowledge out of it. Consider for example, the Human Brain Project

(HBP)1 launched in October, 2013 and aimed to put in place a cutting-edge re-

search infrastructure for brain research, cognitive neuroscience and brain-inspired

computing. The HBP Consortium has 116 partners from a wide range of European

organizations and brings together experts in areas of neuroscience, computing and

medicine to advance the state-of-the-art. It is beyond question that a project of

this dimension that involves participation of several institutions and across multi-

ple disciplines would require a collaboratory platform that enables individuals or

teams to share, exchange, collaborate on code and datasets.

While data science algorithms that mine the data for extracting valuable in-

sights are important, managing the datasets is also critical for supporting data

science activities. There are well-defined collaborative tools that allow teams to

manage and collaborate on source-code such as Git, SVN or Mercurial; however

none of these tools are well-suited for managing, sharing and tracking changes

to large datasets [5, 6]. This has resulted in teams resorting to storing data in

file systems and using ad-hoc techniques for managing the data. In order to deal

with the difficulties, a key requirement here is to have a Dataset Version Con-

trol System (DVCS), that may serve as a platform for efficiently storing versions

1https://www.humanbrainproject.eu/

2
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of data, capture modifications succinctly, identify differences between versions,

share the datasets and be able to execute different types of queries at ease. In

addition to these, such a system should also be able to support auditing and prove-

nance tracking. Further, the system needs to be able to handle datasets that range

from hundreds of MBs to several TBs and consist of several thousand versions. In

this dissertation, we focus on developing techniques that are suited for handling

diverse data types, ranging from unstructured types such as documents, images,

etc., to more structured datasets such as CSV datasets, array datasets, etc. Finally,

to handle the scale that we envision and simultaneously support efficient queries,

designing workload-aware storage layouts is important that serve as the backbone

of our DVCS.

1.1 Motivating Scenarios

In this section, we present practical scenarios that motivate us to design dis-

tinct layouts for storing different types of datasets compactly and answering fre-

quently issued queries on those datasets, efficiently.

[Intermediate Result Datatsets] For most organizations dealing with large vol-

umes of diverse datasets, a common scenario is that many datasets are repeatedly

3



analyzed in slightly different ways, with the intermediate results stored for fu-

ture use. Often, we find that the intermediate results are the same across many

pipelines (e.g., a PageRank computation on the Web graph is often part of a multi-

step workflow). Often times, the datasets being analyzed might be slightly dif-

ferent (e.g., results of simple transformations or cleaning operations, or small up-

dates), but are still stored in their entirety. There is currently no way of reducing

the amount of stored data in such a scenario: there is massive redundancy and du-

plication, and often the computation required to recompute a given version from

another one is small enough to not merit storing a new version.

[Data Science Dataset Versions] In the absence of any dataset management tools,

a group of data scientists working on a dataset curation workflow, may need to

make modifications to the datasets for cleansing, corrections, adding annotations,

etc., at various stages. Not every modification is applied in-place as it is also

important to checkpoint the data at various stages of the workflow for the pur-

poses of accountability. This results in the generation of new versions throughout

the data curation process. Moreover, every time another team of data scientists

wishes to work on a particular version of the dataset, they make a private copy

and perform modifications to it. As a result, there is massive redundancy and du-

plication across these copies, and there is a need to minimize these storage costs

4



while keeping these versions easily retrievable.

[Array Dataset Versions] The increasing volumes of array data generated by

geospatial and temporal data such as satellite imagery, high-resolution climate

simulations, telescope imagery has triggered the need for understanding and de-

veloping efficient techniques for array data management. For example, a single

day of simulated time for mesoscale climate modeling can generate 30 GB of data

while an entire ensemble simulation requiring the equivalent of several thousand

years of simulated time can generate more than 30 PB of data [54]. Similarly, the

Large Synoptic Survey Telescope (LSST) will generate 10s to 100s of petabyte a

year of imagery and derived data [10]. Although enormous computational power

can be applied to run the simulations themselves, storing the data that is generated

during these simulations, and later querying it during subsequent offline analysis,

can be a major challenge, especially with the trend toward very high resolution

simulations. In many cases, the inability to offload the data onto a storage device

in a timely manner leads domain scientists to throw away much of the data that is

generated, maybe by sampling at a lower resolution, or by storing only a subset of

the simulation variables, or by summarizing in various ways. Since it is difficult

to evaluate the long-term importance of any specific data products at simulation

time, none of these options is very attractive, and often simulations need to be

5



re-run when deficiencies in the stored data are revealed.

[Keyed Dataset Versions] A healthcare provider who wants to perform different

types of diagnostic and prognostic analytics may need to continuously maintain

and analyze Electronic Health Records (EHRs) of thousands to millions of pa-

tients, where each EHR is identified uniquely by a primary key, e.g. SSN of

patient. The EHR dataset is continuously changing through addition/deletion of

new patient EHRs and updates to existing ones. For many practical reasons, re-

sults of applying any analytics are usually stored in the same EHR documents.

Data analysts usually target a particular group of people when running analytical

tasks in order to minimize the number of variables, e.g., people between age 50

- 60, belonging to a given ethnicity, with certain other characteristics, etc. As a

result the number of updates per version usually remains restricted to a small per-

centage w.r.t the total pool of patients. Different teams of data scientists, with dif-

ferent goals, may be tweaking, training, and applying predictive models to those

documents at the same time. Because of decentralized nature of the updates and

increased use of collaborative analytics, the resulting version histories are mostly

“branched”. For accountability and debugging, it is essential that the precise de-

tails and provenance of all of those steps are maintained; e.g., an analyst must be

able to clearly identify which versions of the EHRs were used to train a particu-

6



lar model, or which models were used to derive a specific individual prediction.

It is also necessary for them to retrieve all or a subset of past versions of pa-

tients to analyze them for insights. Further, looking up a patient history from the

point it enters their system is a very common query for them. The EHR schemas

also evolve continuously when new data points that correspond to non-existing at-

tributes are added in the form of new medical tests or measurements to a subset of

the EHRs. Given the scale of the data, continuously evolving and semi-structured

schema, and a desire to support distributed collaboration, key-value stores are of-

ten a natural option for storing such data (an extraction step to convert from the

highly normalized relational databases where the original data is stored is quite

common).

1.2 Challenges in Designing Storage Layouts for Versioned Datasets

Designing storage layouts constitute an important problem in the design of a

DVCS. An ideal storage layout in a DVCS must not only reduce the query exe-

cution time of the most frequently issued (or popular) queries in the system but

also bring down the storage cost by exploiting redundancies in the dataset. Fur-

thermore, due to different types of (versioned) datasets that a DVCS is expected

to handle, a particular storage layout that may be appropriate for a given type of

7



dataset may not be suitable at all for another type of dataset. In what follows,

we present three challenges that arise in the context of managing and designing

storage layouts for three different types of datasets and the versions derived from

it.

Challenge 1. As demonstrated in the first two scenarios above, there is a high

degree of overlap among these datasets that makes it necessary to exploit the re-

dundancy in order to store them compactly. However, it is easy to see that more

compactly we store the datasets, more time we spend in reconstructing the ver-

sions and vice-versa. The first challenge, which we consider in this dissertation,

is understanding the storage–recreation tradeoff. We illustrate this trade-off via

an example.

Example 1. Figure 1.1(i) displays a version graph, indicating the derivation re-

lationships among 5 versions of a dataset. Let V1 be the original dataset. Say

there are two teams collaborating on this dataset: team 1 modifies V1 to derive

V2, while team 2 modifies V1 to derive V3. Then, V2 and V3 are merged and give

V5. As presented in Figure 1.1, V1 is associated with 〈10000, 10000〉, indicating

that V1’s storage cost and recreation cost are both 10000 when stored in its en-

tirety (we note that these two are typically measured in different units – see the
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Figure 1.1: (i) A version graph over 5 datasets – annotation 〈a, b〉 indicates a storage cost
of a and a recreation cost of b; (ii), (iii), (iv) three possible storage graphs.

second challenge below); the edge (V1 → V3) is annotated with 〈1000, 3000〉,

where 1000 is the storage cost for V3 when stored as the modification from V1 (we

call this the delta of V3 from V1) and 3000 is the recreation cost for V3 given V1,

i.e, the time taken to recreate V3 given that V1 has already been recreated.

One naive solution to store these datasets would be to store all of them in

their entirety (Figure 1.1 (ii)). In this case, each version can be retrieved directly

but the total storage cost is rather large, i.e., 10000 + 10100 + 9700 + 9800 +

10120 = 49720. At the other extreme, only one version is stored in its entirety
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while other versions are stored as modifications or deltas to that version, as shown

in Figure 1.1 (iii). The total storage cost here is much smaller (10000 + 200 +

1000 + 50 + 200 = 11450), but the recreation cost is large for V2, V3, V4 and

V5. For instance, the path {(V1 → V3 → V5)} needs to be accessed in order to

retrieve V5 and the recreation cost is 10000 + 3000 + 550 = 13550 > 10120.

Figure 1.1 (iv) shows an intermediate solution that trades off increased storage

for reduced recreation costs for some version. Here we store versions V1 and

V3 in their entirety and store modifications to other versions. This solution also

exhibits higher storage cost than solution (ii) but lower than (iii), and still results

in significantly reduced retrieval costs for versions V3 and V5 over (ii).

Despite the fundamental nature of the storage-retrieval problem, there is sur-

prisingly little prior work on formally analyzing this trade-off and on design-

ing techniques for identifying effective storage layouts for a given collection of

datasets. Much of the prior work in literature focuses on a linear chain of ver-

sions, or on minimizing the storage cost while ignoring the recreation cost.

Challenge 2. As demonstrated by the third scenario above, reducing the volume

of the datasets after it has been generated is an important challenge that needs to

be addressed. Moreover, since floating point data is the most prevalent type of
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data generated by scientific simulations, it is important to consider compression

techniques tailored for such data due to its high degree of entropy, especially in

the lower order bytes of the mantissa (fraction) part [19]. Querying the data after

it has been stored is important for purposes of analyzing the data – the domi-

nant form of queries on arrays are range slicing queries i.e. queries that read a

hyper-rectangle from one or a collection of array versions. As a result, while it

is important to pursue aggressive techniques that reduce the volume of data, it is

equally important to design storage layouts for array data that minimize the query

latencies for the aforementioned queries.

An array dataset is essentially a collection of temporal snapshots (or versions)

of multi-dimensional arrays. Since arrays are homogenous entities, each cell in an

array stores data of the same type. Therefore, each cell of a collection of multi-

dimensional array snapshot may contain a temperature measurement, recorded at

a particular point in 3D space at a certain point in time or generated as a result

of climate simulation model. Using the relational model for arrays turns out be

inefficient [81], thereby requiring a different data model for efficient representa-

tion. Further, simple delta-based encoding would turn out to be inefficient for

answering range queries as the entire array version version has to be retrieved

for returning a portion of the array that falls within the query range. Therefore
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the second challenge here is to design the storage layout for array datasets with

floating point data that would facilitate efficient range queries on the data.

Challenge 3. The techniques developed for unstructured and array datasets (i.e.

unstructured text data, blobs, records with no primary keys) are not well-suited

for keyed datasets that comprise a significant part of the data ecosystem, as we

observe subsequently. We define a version in this setting to be a collection of

records each having a primary key that may be used to uniquely identify a specific

record. For simplicity, consider a chain of deltas between versions where a delta

between two versions captures the information needed to transform one version

into another. Each delta may have new records, updates to existing records or

records that are marked as deleted. To access versions towards the end of the delta-

chain we need to apply all the deltas one after another from the base version until

we reach the queried version. Thus the number of records fetched is proportional

to the distance of the version from the base version. However, we observe that it

suffices to store the records within the versions only once along with a map that

stores the version to primary key information. In this case, for any version query

we need to access exactly the same number of records that a version contains.

Motivated by this observation, we store the records only once in a key-value store

(KVS). Therefore, if we need to retrieve a version, we need to consult a map that
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has all the keys of records that belong to a version.

The third challenge thus arises in the context of designing efficient storage lay-

outs for datasets with keyed records. Now consider the final scenario presented

above where versions consists of on the order of a hundred thousand records;

querying the KVS for each version recreation on the order of the number of

records in it turns out to be an expensive operation. An alternate approach is

to issue range queries to the KVS for retrieving the versions. However the client

needs a version to record map for issuing the queries. Unfortunately the size of

these maps may be on the order of a few Gigabytes and may turn out to be a bur-

den on the part of the client. To avoid this bottleneck, we put multiple records

together into a chunk and maintain a map per chunk that indicates the versions

that each record belongs to. In addition to this map that is maintained on a per

chunk basis, we maintain another map that indicate the chunks in which records

of a version belongs to. This approach reduces the number of requests to the KVS

by several orders of magnitude depending on the average number of records per

chunk. The latter map, which is of few KBs, resides with the user and is consulted

during version recreation.

In order to validate our claim, we performed a simple experiment using Apache

Cassandra [1] as the underlying KVS. Each version in the dataset has around
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Chunk size Time (in secs.)
1 65.415

10 14.175
100 3.098

1000 1.072
10000 0.562

Table 1.1: Query performance for different chunk sizes; version size ∼100K records

100K records and there are a total of 1 million unique records stored in the KVS

and each record occupies around 100 bytes. The query here is to reconstruct a

version implying that we need to retrieve around 100K records for every version

reconstruction query from the KVS. In the naive setting, we maintain a chunk of

unit size and issue around 100K requests to the KVS. In comparison, we create

larger sized chunks using a random assignment of records to chunks. As a re-

sult, we need to retrieve more number of chunks than exactly required to recreate

a version. However the overhead of retrieving additional chunks and scanning

through them to extract the records is significantly less. Table 1.1 illustrates the

performance of the different chunking strategies described above.

Thus the challenge of designing an efficient storage layout for keyed records

reduces to the problem of partitioning records into chunks, such that span of a

version query is minimized. We define span (of a version) to be the number of

queries to the underlying KVS.
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Also note that there may be small differences between two different versions

of a record (e.g., only a single attribute may be updated in a document). One way

to exploit this overlap is to store the two versions of the record together in a “com-

pressed” fashion, with specific compression technique chosen according to the

data properties (e.g., one may store “deltas” (differences) between the two records,

or use an off-the-shelf compression tool that in effect does the same thing). Such

compression, however, negatively impacts the query performance and restricts the

data placement opportunities. Therefore another challenge here is to partition the

records to minimize the span in the presence of record compression.

This dissertation focuses on identifying and addressing the fundamental chal-

lenges involved in the design of a DVCS for efficient and scalable dataset version

management. Towards this goal, we have focussed primarily on designing effi-

cient storage layouts for both structured and unstructured datasets that serve as

the backbone in the pursuit of building scalable and efficient DVCS.

1.3 Contributions and Dissertation Organization

In this dissertation, we address the aforementioned challenges in a systematic

manner. Our primary goal here is to evaluate the underlying requirements of a

DVCS and come up with appropriate design layouts for storing and querying both
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unstructured and structured data.

1.3.1 Layouts for Unstructured Datasets

The high degree of redundancy present in the datasets, that are mostly unstruc-

tured, resulting from collaboratory efforts motivates us to use delta encoding to

store them compactly. Delta encoding is a technique that only stores the changes

that have occurred to a target version with respect to a source version, instead of

storing the entire target version. In general, the source and the target versions are

so chosen such that their delta is small, which in other words imply that they have

a large amount of overlap between them. Thus it is possible to form a weighted

graph where nodes correspond to versions and the edge between two versions ex-

ist if the delta between them have been computed. The size of the delta (in bytes)

forms the weight of the edge between the versions. In order to represent the mate-

rialized versions, we add an edge between every version to an empty root version

and the weight of the edge is basically the size of the materialized version. To

obtain the minimum storage solution, we must choose the appropriate edges in

this graph that minimize the overall cost of the resulting tree. Using the resulting

tree, it is possible to reconstruct any version of interest by applying the deltas in

the path from a materialized version to the desired version.
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However using delta compression to minimize storage space may lead to very

high latencies while retrieving specific versions. We also demonstrate that the

compaction heuristics used by popular VCS’ like Git and SVN are ineffective at

storing datasets, both in terms of resources consumed and the quality of solution

produced. More importantly, they focus only on reducing the storage footprint

of the datasets involved while ignoring the effect of the compaction strategy on

query performance. Thus, to address the first challenge mentioned above, we

propose novel problem formulations towards understanding the storage and recre-

ation tradeoff in a principled manner. We formulate several optimization problems

for a majority of the variations which are shown to be NP-Hard [23]. As a result,

we design several efficient heuristics that are effective at exploring this trade-off

and present an extensive experimental evaluation over several synthetic and real-

world workloads demonstrating the effectiveness of our algorithms at handling

large problem sizes.

Our contributions here are as follows:

1) We formally define and analyze the dataset versioning problem and consider

several variations of the problem that trade off storage cost and recreation

cost in different manners, under different assumptions about the differenc-

ing mechanisms and recreation costs.
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2) We provide two light-weight algorithms: one, when there is a constraint on

average recreation cost, and one when there is a constraint on maximum

recreation cost; we also show how we can adapt a prior solution for balanc-

ing minimum spanning trees and shortest path trees for undirected graphs.

We also demonstrate that our algorithms outperform the compaction algo-

rithms used by popular VCS’ like Git and SVN due to their ineffectiveness

at storing datasets, both in terms of resources consumed and the quality of

solution produced.

3) We have built a prototype system where we implement the proposed al-

gorithms. We present an extensive experimental evaluation of these algo-

rithms over several synthetic and real-world workloads demonstrating the

effectiveness of our algorithms at handling large problem sizes.

A detailed description of the contributions listed above can be found in Chap-

ter 3.

1.3.2 Layouts for Array Datasets

To address the challenge of reducing the data volume after it has been gener-

ated but before storing it, we can use sophisticated compression techniques that

exploit the high spatial and temporal correlation that exists in the data generated
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by scientific simulations. While the conventional compression techniques such

as as zlib [18] and lzo [11] are efficient for compressing the data, the overall

compression ratio may be enhanced by using them in conjunction with some pre-

processing techniques, such as computing deltas, which makes the data amenable

to better compression. Further, it is essential to select the best compression proce-

dure given a particular dataset, instead of using a fixed, preselected compression

technique. Although better compression ratios reduce space on disk, they may re-

sult in higher compression and/or decompression times. For example, zlib does

a very good job of compressing a dataset, however it loses out to lzo in terms of

compression/decompression speed. Therefore, it is essential to provide users with

the flexibility of choosing the appropriate compression technique(s) based on their

individual requirements. However, both zlib and lzo are not suitable for com-

pressing floating point data, which is the most predominant type of data resulting

from scientific simulations necessitating the need for development of compression

techniques for such data. Moreover, the full precision of floating point data may

not always be required for some applications, e.g., visualizations, where trunca-

tion of the lower order mantissa bits can be tolerated. As a result, we may not be

required to retrieve all the bytes of floating point data for query processing. Thus

we can perform a byte-wise partitioning of the floating point data before storing
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on disk.

Before the data is stored, it is partitioned and then compressed. The execu-

tion begins by analyzing a sample of the data to be stored in an offline mode

and chooses the appropriate compression scheme suited for the given dataset.

Thereafter the multi-dimensional simulation data is partitioned along three dif-

ferent dimensions: (1) temporal, (2) spatial, and (3) bytewise. Partitioning the

multidimensional data along both temporal and spatial dimensions is a technique

employed for alleviating dimension dependency, resulting in low latency range

queries.. In addition to single-level array partitioning, we implement a two-level

array partitioning technique and propose a variant of the technique when the effect

of compression is taken into consideration. Another dimension of partitioning is

bytewise, motivated by the observation that the full precision of the data is not

required in many offline analysis and visualization tasks. Therefore the data is

partitioned along byte boundaries, with the added benefit that the compression ef-

ficiency for this storage strategy is significantly better than traditional compression

techniques for floating point data.

Overall, our contributions are as follows:

1) We design and implement PSTORE, a framework for managing array datasets

that supports a suite of compression schemes and selects the best compres-
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sion plan based on the nature of the data. This procedure is carried out in an

offline mode where a representative sample of the data selected for ingestion

is analyzed and a compression plan is selected.

2) We integrate both byte-wise partitioning of floating point data and partition-

ing along data array dimensions to provide maximum flexibility in terms of

accessing the desired data elements.

3) We propose a two-level partitioning/chunking strategy in the context of

compression and show that it is better off (w.r.t the query response time)

compared to a single-level chunking with compression.

4) For long running range queries, where several data chunks are accessed, it

is beneficial to hide I/O latencies by overlapping them with CPU processing

time. Since file accesses are often sequential, we can process one chunk at

a time and overlap the I/O access for the next chunk with CPU processing

of the current chunk.

A detailed description of PSTORE can be found in Chapter 4.
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1.3.3 Layouts for Datasets with Keys

To address the final challenge, instead of using delta encoding, we elevate

records within the versions to first class citizens as every version can be expressed

in terms of their constituent records. Although the presence of a primary key in

each record makes it unique within a version, the same is not true across versions.

Since a record may be unchanged from one version to the next, to be able to refer

to a specific record within a specific version, we use a composite key: 〈primarykey,

versionid〉, where the second part refers to the version-id of the version where

the record was created. This allows us to uniquely reference records within a

global address space. We chose to use version-id of the appropriate version instead

of an auto-incremented value as the latter introduces additional difficulties in a

decentralized setting without any obvious benefits. Our objective here is to be

able to retrieve any version with the help of an index that maintains the version

to composite key mapping. To be able to deploy our solution in a distributed

environment, we choose to store the records in a key-value store.

Due to the aforementioned issues, this problem must be solved by explicitly

creating chunks of records, where records belonging to the same set of versions are

grouped together. The primary challenge here now is deciding how to partition the
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records into chunks to maximize the query performance. To address the challenge

at hand, we formally define the problem and draw connections to other existing

problems in literature. We show that the problem maps to an existing problem

and is NP-Hard. As a next step, we propose several heuristics that effectively use

the information to partition the record space efficiently. Thereafter we focus on

a more general version of the aforementioned problem that attempts to compress

different versions of the record together while simultaneously trying to achieve a

good partitioning of the records. Through extensive experimentation over multiple

datasets, we demonstrate that our proposed techniques can operate at the scale

required in most practical scenarios.

Our key contributions are as follows:

1) We systematically explore the design space for supporting versioning as a

first-class construct in distributed key-value stores and present a detailed

analysis of the different trade-offs and how different baselines fare with

respect to those.

2) We propose a flexible system architecture, that supports the key desiderata

through use of chunking.

3) We design novel offline partitioning algorithms that exploit how the versions
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relate to each other to identify good chunking strategies. We also present an

online algorithm to keep the partitioning and the indexes up-to-date as new

versions are committed.

4) We have built a working prototype, RSTORE, on top of the Apache Cas-

sandra key-value store, which we use to validate our design decisions. We

expect that RSTORE, like many NoSQL stores, will primarily be deployed

in a distributed environment; however, it can also be used in a local cluster.

We describe this in detail in Chapter 5.
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Chapter 2: Literature Survey

In this chapter, we present a survey of the literature in managing versioned

data. We begin with a discussion of prior work in multi-versioned data manage-

ment in relational database systems, array databases, XML and graph databases

and present the key differences with our work. Deduplication of data in storage of

archival data and backup systems is an important area of research that is related

to eliminating redundancy and storing multiple versions of data compactly. We

present a comprehensive literature survey and compare the techniques with the

techniques we develop in this dissertation. Thereafter, we provide a survey of ver-

sion control systems, that were primarily designed to keep track of and manage

changes to source code. In this dissertation, our primary goal is to design storage

layouts for version control systems for datasets. Next, we review cloud-based data

systems, and in particular, key-value stores that serves as the backbone of RStore,

our system for managing multi-versioned keyed documents. We also review dif-

ferent types of partitioning techniques that we have used for array datasets and
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keyed datasets, for minimizing the query latencies on these datasets. Finally, we

conclude the literature survey with floating point data compression techniques;

floating point data is the predominant type of data generated in scientific simula-

tions and compressing such data due to its high degree of entropy is challenging

and constitutes an important topic for survey.

2.1 Multi-Version Storage Systems

2.1.1 Relational Database Management Systems.

An important requirement of a large number of database systems is to store

and retrieve multiple versions of records which led to extensive research in the

area of temporal and versioned databases [36, 57, 58, 59, 65, 82]. Most of this

work focuses on managing a linear chain of versions and retrieving a version

as of a specific time point (called snapshot queries). There also has been work

in the area of temporal databases for handling data evolving with time [76, 77].

There are several databases that support “time travel” features that allow users

to retrieve historical snapshots. Postgres [80] was the among the first to offer

temporal functionality. Thereafter, there were many databases from the industry

that supported this feature [9, 15, 17].
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2.1.2 Scientific Databases

The inadequacy of current commercial relational database management sys-

tems has triggered the need for developing specialized data management systems

for catering to science applications [81]. The requirements include a 1) nested ar-

ray data model, 2) science-specific primitive operations, 3) no-overwrite storage,

4) time-travel, to name a few. This has resulted in many specialized multidimen-

sional array-processing systems [21, 28] with support for querying old versions

of data. Recent work by Seering et al. [74] considered the problem of storing an

arbitrary tree of versions in the context of scientific databases. Their proposed

techniques are based on finding storage layouts for compactly storing dataset ver-

sions. Soroush and Balazinska [78] present a storage manager for versioned arrays

and supports extraction of sub-arrays of a version or multiple sub-arrays across a

range of versions. It also supports approximate version selection and historical

queries to speed-up exploration of versioned arrays.

2.1.3 XML and Graph Databases.

There has been a lot of work on providing versioning support and compactly

storing graph and XML data. Buneman et al. [30] proposed an archiving tech-
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nique where all versions of the data are merged into one hierarchy. An element

appearing in multiple versions is stored only once along with a timestamp. This

technique of storing versions is in contrast with techniques where retrieval of cer-

tain versions may require undoing the changes (unrolling the deltas). The hierar-

chical data and the resulting archive is represented in XML format which enables

use of XML tools such as an XML compressor for compressing the archive. It

was not, however, a full-fledged version control system representing an arbitrarily

graph of versions; rather it focused on algorithms for compactly encoding a lin-

ear chain of versions. There has been prior work on compressing XML data [55]

and providing versioning support [34]. Tools like XyDiff [37], X-Diff [84] have

contributed towards comparing XML documents.

Most of the prior work on compressing graphs looked into neighborhood

queries on the compressed graphs [20, 25, 35]. Khurana and Deshpande [51]

present an approach for managing historical graph data for large information net-

works, and for executing snapshot retrieval queries on them. LLAMA is a graph

storage and analysis system that allows temporal analysis on multiple snapshots

which are constructed with each new batch of updates; the base snapshot is rep-

resented using compressed row storage format and new snapshots are constructed

using copy-on-write approach [60]. ImmortalGraph [62] is a system for storing
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and analyzing temporal graphs that optimize in-memory organizations of temporal

graphs by sharing storage and computation to ensure faster graph query process-

ing.

2.1.4 Other Deduplication Schemes.

The area of automatic elimination of duplicate data in storage systems has wit-

nessed a lot of prior work. Key techniques from this area are primarily employed

for use in archival and backup systems. Douglis and Iyengar [39] present sev-

eral techniques to identify pairs of files that could be efficiently stored using delta

compression even if there is no explicit derivation information known about the

two files. Ouyang et al. [64] studied the problem of compressing a large collection

of related files by performing a sequence of pairwise delta compressions. They

proposed a suite of text clustering techniques to prune the graph of all pairwise

delta encodings and find the optimal branching (i.e., MCA) that minimizes the to-

tal weight. Similar techniques have been used by Seering et al. [74] for compactly

storing versions of array datasets. Burns and Long [31] present a technique for in-

place re-construction of delta-compressed files using a graph-theoretic approach.

Kulkarni et al. [52] present a more general technique that combines several dif-

ferent techniques to identify similar blocks among a collection files, and use delta
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compression to reduce the total storage cost (ignoring the recreation costs). There

is also work on file content deduplication by indexing that employs hashes (or sig-

natures) for identifying similar blocks of data [27, 69]. The technique works by

first identifying similar chunks of data across files or documents by computing a

set of fingerprints for each chunk and then comparing the number of common fin-

gerprints to assess the similarity. These fingerprints are then used to build indexes.

Thus each block of chunk is stored once and each document can be represented by

a collection of signatures. We refer the reader to a recent survey [66] for a more

comprehensive coverage of this line of work.

Our work in Chapter 3 and Chapter 5 focuses on managing versions of data

that can form an arbitrary DAG whereas prior work on temporal relational databases

was restricted to managing a linear chain of versions. Further prior work on dedu-

plication systems has primarily looked into the problem of minimizing the total

storage cost as they were mostly used for archival purposes. We consider the

problem of minimizing both storage and recreation cost by trading off one with

the other.
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2.2 Version Control Systems (VCS)

Version Control Systems (VCS) were primarily designed to keep track of and

provide control over changes to source code (e.g. Git, SVN, Mercurial). It pro-

vides an excellent way to combat the problem of sharing files in a collaborative

setting. They follow a no-overwrite storage model that enables users to retrive

any version created at any point in time. Despite their popularity, these systems

largely use fairly simple algorithms underneath and are known to have significant

limitations when working with large files [5]. Many of the limitations stem from

the assumption that the files being stored are relatively small text files with lo-

calized changes; data science applications, on the other hand, typically feature a

range of large datasets from unstructured text files to structured database tables

and the change patterns tend to be more complex. As a result, a variety of ex-

tensions like git-annex [7], Git Large File Storage [8], etc., have been developed

to make them work reasonably well with large files. However these extensions

are simple workarounds that replace large files with text pointers inside Git, while

storing the actual file on a remote server. There has been some recent work on

building a version control system specifically geared towards handling relational

tables [61] and addresses some of the storage issues that arise while storing and
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querying the tables.

In Chapter 3, we build a dataset version control system that is inspired from

the conventional version control system, such as Git. Version control systems are

built upon the idea of a no-overwrite model and exploit the differences between

neighboring versions of the files for compact storage. Through extensive experi-

ments, we demonstrate that the underlying algorithms employed by Git and SVN

are inefficient when dealing with large files both in terms of storage and resource

consumption. We also show that these algorithms are primarily aimed at reducing

the storage costs without considering the recreation cost of the versions.

2.3 Cloud-based Data Systems

Most cloud-based data systems including key-value stores primarily focus on

providing efficient support for storing and retrieving data at the record level.

Some of them provide support for additional features such as allowing range

queries [1, 33, 67] however it would be difficult for them to support range queries

on versioned datasets in the absence of special indexes. Although there is no full-

fledged support for storing and querying multiple versions of the same record in

these existing systems, there is some discussion about providing support for some

naive form of versioning using the existing APIs in these systems. For example,
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the following online material [3, 14] describes how to implement versioning fea-

ture in Couchbase [2] and MongoDB [13]. The techniques described are similar

and advocates storing the previous versions of the record in a separate shadow

collection before overwriting it with the updated value. A version number prop-

erty (an int32 called version) is added to the document to keep record of

the different versions. The major downside of this approach as described is that

records cannot be updated in batches and the older versions are more expensive

to retrieve. Moreover it is not clear if they support compressing multiple versions

of the same record together. These cloud-based systems also uses partitioning to

distribute data across multiple nodes (or partitions). However in most of the cases,

this is a simple hash-based partitioning scheme and is orthogonal to the sophisti-

cated record-partitioning schemes that we employ to improve query performance.

In Chapter 5, we build a system to store and retrieve multiple versions of

the same record as they evolve over time and use a key-value store for storing

“chunks” of records. We show that none of the queries that we intend to sup-

port, i.e., full version retrieval, partial version retrieval or record evolution query,

can be supported easily using the basic functionalities provided by a key-value

store. Moreover, we employ sophisticated record partitioning schemes to mini-

mize query latency, which is not present in any of the existing key-value stores.
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2.4 Data Partitioning

The problem of partitioning data items (or records) for minimizing the query

latencies has been addressed previously in [53] by mapping it to a hypergraph

partitioning problem, however the problem setting was completely different from

the data partitioning problem that we address in Chapter 5. The hypergraph in

the previous setting had data items or tuples as vertices and the hyperedges cor-

respond to a query in the workload that requests those data items. In Chaper 5,

we define the vertices in the graph to be the records that constitute versions and

a hyperedge connects all records that belong to a given version. The number of

records in a version according to the current problem definition is at least two

to three orders of magnitude larger than in the former setting, which makes the

current problem significantly different. The main challenge in designing these

algorithms arises due to the large sizes of the hyperedges and as a result it be-

comes difficult to get good partitions using standard hypergraph partitioning tools

such as hMETIS [49]. In this work, we employ sophisticated partitioning schemes

that partition records into different “chunks” by taking cues from the associated

version graph for minimizing the total query span.

Prior work related to chunking multidimensional data has considered both
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single-level and two-level chunking for array storage [70, 75, 79]. In the two-

level chunking scheme, the proposed techniques resort to different combinations

of both regular and irregular tiling. However they do not consider the effect of

compression while chunking the array. In Chapter 4, we propose a variant of

two-level chunking that takes into consideration the effect of compression. The

problem of tuning the chunk shape and size for a given query workload has also

been considered previously [63, 71]. We show that the earlier formulations for

computing the optimal chunk size can be modified to take into consideration the

effect of compression.

2.5 Floating-point compression

Not all datasets are amenable to delta compression and therefore there is a

need to select the best possible compression scheme for a given dataset. More-

over, the delta encoding techniques we refer to do not consider floating point

numbers explicitly, which is the most prevalent type of data generated by scien-

tific simulations and stored in multi-dimensional array snapshots. Due to the high

degree of entropy present in the low-order mantissa bits, delta encoding between

two floating point numbers does not result in low magnitude values which can then

be stored using fewer of bits. Schendel et al. [73] propose the ISOBAR system
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which does a byte-wise partitioning of floating point numbers and preprocesses

the bytes to identify compressible and hard-to-compress bytes. They observe that

it may not be effective to compress all the bytes as some of the bytes may be in-

compressible due to the high amount of randomness present in them. In Chapter 4,

we extend their technique to improve the delta encoding performance for floating

point numbers. This partitioning strategy comes with the added benefit of being

able to query the data approximately. Not all applications require full precision

data and if the user specifies a relative error bound, it is possible to avoid retrieving

all the bytes from the disk which makes query processing more efficient [48].

Other compression techniques for floating point numbers have been proposed,

such as fpzip [56] and FPC [32] that are also used widely in scientific database

applications. These techniques are based on context modeling applications, and

use predictors for predicting the next value based on the values seen earlier in a

sequence. The predicted value is then XORed with the actual value and the leading

zero bytes are compressed. The performance of these techniques may degrade due

to the use of predictors for predicting the next value. However for data generated

by scientific simulations, one may do away with these predictors by using the next

temporal or spatial value in an array since the values are highly correlated and are

usually very close to the previous value. In Chapter 4, we extend FPC in our tFPC
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and sFPC compression methods, which essentially XORs neighboring temporal

or spatial values, respectively.
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Chapter 3: Storage Layouts for Unstructured Datasets

In this chapter, we present a principled study of the problem of designing ef-

ficient storage layouts for datasets where we do not assume any structure, while

respecting the constraints involved in retrieving the versions. Here, we begin with

a description of the data and the query model, followed by some preliminaries

necessary for understanding the problem formulations. Next, we provide a de-

scription of the algorithms for constructing storage layouts for those datasets and

conclude with experimental evaluation.

3.1 Data and Query Model

Data Model. A version in this setting is stored and retrieved in terms of deltas,

where a delta from version Vj to Vi is defined as the information needed to con-

struct version Vi from version Vj . For example, we could record that Vi is just

Vj but with the 50th tuple deleted. The algorithm giving us the delta is called a
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differencing algorithm. Deltas need to be applied to a full version in order to con-

struct another version, therefore, some versions are stored in their entirety; such

versions are said to be materialized.

We let V = {Vi}, i = 1, . . . , n be a collection of versions. The derivation

relationships between versions are represented or captured in the form of a ver-

sion graph: G(V , E). A directed edge from Vi to Vj in G(V , E) represents that Vj

was derived from Vi (either through an update operation, or through an explicit

transformation). Since branching and merging are permitted in a DVCS (admit-

ting collaborative data science), G is a DAG (directed acyclic graph) instead of a

linear chain. For example, Figure 1.1 represents a version graph G, where V2 and

V3 are derived from V1 separately, and then merged to form V5.

Query Model. In a collaborative setting with large datasets, the query workload

consist of retrieving an entire version. A version in this setting is assumed to be

a data file whose contents may be unstructured text or binary data. Note that the

notion of a partial version in this setting is not well-defined since there is no way

to refer to a particular subset of the file.
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3.2 Preliminaries and Problem Overview

Storage and Recreation. Given a collection of versions V , we need to reason

about the storage cost, i.e., the space required to store the versions, and the recre-

ation cost, i.e., the time taken to recreate or retrieve the versions. As described

earlier in Section 3.1, for a version Vi, we can either:

• Store Vi in its entirety: in this case, we denote the storage required to record

version Vi fully by ∆i,i. The recreation cost in this case is the time needed

to retrieve this recorded version; we denote that by Φi,i.

• Store a “delta” from Vj: the storage cost for recording modifications from

Vj , i.e., the size the delta, is denoted by ∆j,i. The recreation cost is the time

needed to recreate the recorded version given that Vj has been recreated;

this is denoted by Φj,i.

Thus the storage and recreation costs can be represented using two matrices ∆

and Φ: the entries along the diagonal represent the costs for the materialized ver-

sions, while the off-diagonal entries represent the costs for deltas. From this point

forward, we focus our attention on these matrices: they capture all the relevant

information about the versions for managing and retrieving them.
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10000 200 3000 -- --

600 10100 -- 400 2500

-- 3200 9700 -- 550

-- -- -- 9800 2500

-- -- -- 2300 10120

10000 200 1000 -- --

500 10100 -- 50 800

-- 1100 9700 -- 200

-- -- -- 9800 900

-- -- -- 800 10120

(i) (ii)(i) ∆ (ii) Φ

Figure 3.1: Matrices corresonding to the example in Figure 1 (with additional entries
revealed beyond the ones given by version graph)

Example 2. Figure 3.1 shows the matrices ∆ and Φ based on version graph in

Figure 1.1. The annotation associated with the edge (Vi, Vj) in Figure 1.1 is

essentially 〈∆i,j,Φi,j〉, whereas the vertex annotation for Vi is 〈∆i,i,Φi,i〉. If there

is no edge from Vi to Vj in the version graph, we have two choices: we can either

set the corresponding ∆ and Φ entries to “−” (unknown) (as shown in the figure),

or we can explicitly compute the values of those entries (by running a differencing

algorithm). For instance, ∆3,2 = 1100 and Φ3,2 = 3200 are computed explicitly

in the figure (the specific numbers reported here are fictitious and not the result of

running any specific algorithm).

Discussion. Before moving on to formally defining the basic optimization prob-

lem, we note several complications that present unique challenges in this scenario.

• Revealing entries in the matrix: Ideally, we would like to compute all pair-
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wise ∆ and Φ entries, so that we do not miss any significant redundancies

among versions that are far from each other in the version graph. How-

ever when the number of versions, denoted n, is large, computing all those

entries can be very expensive (and typically infeasible), since this means

computing deltas between all pairs of versions. Thus, we must reason with

incomplete ∆ and Φ matrices. Given a version graph G, one option is to

restrict our deltas to correspond to actual edges in the version graph; an-

other option is to restrict our deltas to be between “close by” versions, with

the understanding that versions close to each other in the version graph are

more likely to be similar. Prior work has also suggested mechanisms (e.g.,

based on hashing) to find versions that are close to each other [39]. We as-

sume that some mechanism to choose which deltas to reveal is provided to

us.

• Multiple “delta” mechanisms: Given a pair of versions (Vi, Vj), there could

be many ways of maintaining a delta between them, with different ∆i,j,Φi,j

costs. For example, we can store a program used to derive Vj from Vi,

which could take longer to run (i.e., the recreation cost is higher) but is more

compact (i.e., storage cost is lower), or explicitly store the UNIX-style diffs

between the two versions, with lower recreation costs but higher storage
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costs. For simplicity, we pick one delta mechanism: thus the matrices ∆,Φ

just have one entry per (i, j) pair.

• Branches: Both branching and merging are common in collaborative anal-

ysis, making the version graph a directed acyclic graph. In this paper, we

assume each version is either stored in its entirety or stored as a delta from

a single other version, even if it is derived from two different datasets. Al-

though it may be more efficient to allow a version to be stored as a delta

from two other versions in some cases, representing such a storage solution

requires more complex constructs and both the problems of finding an op-

timal storage solution for a given problem instance and retrieving a specific

version become much more complicated. We plan to further study such

solutions in future.

Matrix Properties and Problem Dimensions. The storage cost matrix ∆ may be

symmetric or asymmetric depending on the specific differencing mechanism used

for constructing deltas. For example, the XOR differencing function results in a

symmetric ∆ matrix since the delta from a version Vi to Vj is identical to the delta

from Vj to Vi. UNIX-style diffs where line-by-line modifications are listed can

either be two-way (symmetric) or one-way (asymmetric). The asymmetry may be
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quite large. For instance, it may be possible to represent the delta from Vi to Vj

using a command like: delete all tuples with age > 60, very compactly. However,

the reverse delta from Vj to Vi is likely to be quite large, since all the tuples that

were deleted from Vi would be a part of that delta. In this paper, we consider

both these scenarios. We refer to the scenario where ∆ is symmetric and ∆ is

asymmetric as the undirected case and directed case, respectively.

A second issue is the relationship between Φ and ∆. In many scenarios, it may

be reasonable to assume that Φ is proportional to ∆. This is generally true for

deltas that contain detailed line-by-line or cell-by-cell differences. It is also true if

the system bottleneck is network communication or I/O cost. In a large number of

cases, however, it may be more appropriate to treat them as independent quantities

with no overt or known relationship. For the proportional case, we assume that the

proportionality constant is 1 (i.e., Φ = ∆); the problem statements, algorithms and

guarantees are unaffected by having a constant proportionality factor. The other

case is denoted by Φ 6= ∆.

This leads us to identify three distinct cases with significantly diverse prop-

erties: (1) Scenario 1: Undirected case, Φ = ∆; (2) Scenario 2: Directed case,

Φ = ∆; and (3) Scenario 3: Directed case, Φ 6= ∆.
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3.2.1 Objective and Optimization Metrics.

Given ∆,Φ, our goal is to find a good storage solution, i.e., we need to decide

which versions to materialize and which versions to store as deltas from other ver-

sions. Let P = {(i1, j1), (i2, j2), ...} denote a storage solution. ik = jk indicates

that the version Vik is materialized (i.e., stored explicitly in its entirety), whereas

a pair (ik, jk), ik 6= jk indicates that we store a delta from Vik to Vjk .

We require any solution we consider to be a valid solution, where it is possi-

ble to reconstruct any of the original versions. More formally, P is considered a

valid solution if and only if for every version Vi, there exists a sequence of dis-

tinct versions Vl1 , ..., Vlk = Vi such that (il1 , il1), (il1 , il2), (il2 , il3), ..., (ilk−1
, ilk)

are contained in P (in other words, there is a version Vl1 that can be materialized

and can be used to recreate Vi through a chain of deltas).

We can now formally define the optimization goals:

• Total Storage Cost (denoted C): The total storage cost for a solution P is

simply the storage cost necessary to store all the materialized versions and

the deltas: C =
∑

(i,j)∈P ∆i,j .

• Recreation Cost for Vi (denotedRi): Let Vl1 , ..., Vlk = Vi denote a sequence

that can be used to reconstruct Vi. The cost of recreating Vi using that
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sequence is: Φl1,l1 + Φl1,l2 + ... + Φlk−1,lk . The recreation cost for Vi is the

minimum of these quantities over all sequences that can be used to recreate

Vi.

3.2.2 Problem Formulations

We now state the problem formulations that we consider in this paper, starting

with two base cases that represent two extreme points in the spectrum of possible

problems.

Problem 1 (Minimizing Storage). Given ∆,Φ, find a valid solution P such that

C is minimized.

Problem 2 (Minimizing Recreation). Given ∆,Φ, identify a valid solution P such

that ∀i, Ri is minimized.

The above two formulations minimize either the storage cost or the recreation

cost, without worrying about the other. It may appear that the second formulation

is not well-defined and we should instead aim to minimize the average recreation

cost across all versions. However, the (simple) solution that minimizes average

recreation cost also naturally minimizesRi for each version.

In the next two formulations, we want to minimize (a) the sum of recreation

costs over all versions (
∑

iRi), (b) the max recreation cost across all versions
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(maxiRi), under the constraint that total storage cost C is smaller than some

threshold β. These problems are relevant when the storage budget is limited.

Problem 3 (MinSum Recreation). Given ∆,Φ and a threshold β, identify P such

that C ≤ β, and
∑

iRi is minimized.

Problem 4 (MinMax Recreation). Given ∆,Φ and a threshold β, identify P such

that C ≤ β, and maxiRi is minimized.

The next two formulations seek to instead minimize the total storage cost C

given a constraint on the sum of recreation costs or max recreation cost. These

problems are relevant when we want to reduce the storage cost, but must satisfy

some constraints on the recreation costs.

Problem 5 (Minimizing Storage(Sum Recreation)). Given ∆,Φ and a threshold

θ, identify P such that
∑

iRi ≤ θ, and C is minimized.

Problem 6 (Minimizing Storage(Max Recreation)). Given ∆,Φ and a threshold

θ, identify P such that maxiRi ≤ θ, and C is minimized.

Table 3.1 summarizes the problem formulations for the various dimensions

described above.
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Storage Cost Recreation Cost Undirected
Case,
∆ = Φ

Directed
Case,
∆ = Φ

Directed
Case,
∆ 6= Φ

P1 min{C} Ri <∞, ∀i PTime, Minimum Spanning Tree
P2 C <∞ min{max{Ri|1 ≤ i ≤ n}} PTime, Shortest Path Tree
P3 C ≤ β min{

∑n
i=1Ri} NP-hard, NP-hard, LMG Algorithm

P4 C ≤ β min{max{Ri|1 ≤ i ≤ n}} LAST
Algorithm†

NP-hard, MP Algorithm

P5 min{C}
∑n

i=1Ri ≤ θ NP-hard, NP-hard, LMG Algorithm
P6 min{C} max{Ri|1 ≤ i ≤ n} ≤ θ LAST

Algorithm†
NP-hard, MP Algorithm

Table 3.1: Problem Variations With Different Constraints, Objectives and Scenarios.

3.2.3 Mapping to Graph Formulation

In this section, we’ll map our problem into a graph problem, that will help

us to adopt and modify algorithms from well-studied problems such as minimum

spanning tree construction and delay-constrained scheduling. Given the matrices

∆ and Φ, we can construct a directed, edge-weighted graph G = (V,E) repre-

senting the relationship among different versions as follows. For each version Vi,

we create a vertex Vi in G. In addition, we create a dummy vertex V0 in G. For

each Vi, we add an edge V0 → Vi, and assign its edge-weight as a tuple 〈∆i,i,Φi,i〉.

Next, for each ∆i,j 6=∞, we add an edge Vi → Vj with edge-weight 〈∆i,j,Φi,j〉.

The resulting graph G is similar to the original version graph, but with several

important differences. An edge in the version graph indicates a derivation rela-

tionship, whereas an edge in G simply indicates that it is possible to recreate the
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target version using the source version and the associated edge delta (in fact, ide-

ally G is a complete graph). Unlike the version graph, G may contain cycles, and

it also contains the special dummy vertex V0. Additionally, in the version graph,

if a version Vi has multiple in-edges, it is the result of a user/application merging

changes from multiple versions into Vi. However, multiple in-edges in G capture

the multiple choices that we have in recreating Vi from some other versions.

Given graph G = (V,E), the goal of each of our problems is to identify a

storage graph Gs = (Vs, Es), a subset of G, favorably balancing total storage cost

and the recreation cost for each version. Implicitly, we will store all versions and

deltas corresponding to edges in this storage graph. (We explain this in the context

of the example below.) We say a storage graph Gs is feasible for a given problem

if (a) each version can be recreated based on the information contained or stored

in Gs, (b) the recreation cost or the total storage cost meets the constraint listed in

each problem.

Example 3. Given matrix ∆ and Φ in Figure 3.1(i) and 3.1(ii), the corresponding

graph G is shown in Figure 3.2. Every version is reachable from V0. For example,

edge (V0, V1) is weighted with 〈∆1,1,Φ1,1〉 = 〈10000, 10000〉; edge 〈V3, V5〉 is

weighted with 〈∆3,5,Φ3,5〉 = 〈800, 2500〉. Figure 3.3 is a feasible storage graph

given G in Figure 3.2, where V1 and V3 are materialized (since the edges from
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V1

V3V2

V5V4

<200,200> <1000,3000>

<50,400> <800,2500> <200,550>

V0

<10000, 10000>

<10100, 10100> <9700,9700>

<9800,9800> <10120,10120>

<800,2300>

<1100,3200>

<900,2500>

<500,600>

Figure 3.2: Graph G

V1

V3V2

V5V4

<200,200>

<9700,9700>

<50,400> <200,550>

V0

<10000, 10000>

Figure 3.3: Storage Graph Gs

V0 to V1 and V3 are present) while V2, V4 and V5 are stored as modifications from

other versions.

After mapping our problem into a graph setting, we have the following lem-

mas.

Lemma 1. The optimal storage graph Gs = (Vs, Es) for all 6 problems in Ta-

ble 3.1 must be a spanning tree T rooted at dummy vertex V0 in graph G.

Proof. Recall that a spanning tree of a graph G(V,E) is a subgraph of G that (i)

includes all vertices of G, (ii) is connected, i.e., every vertex is reachable from

every other vertex, and (iii) has no cycles. Any Gs must satisfy (i) and (ii) in order

to ensure that a version Vi can be recreated from V0 by following the path from

V0 to Vi. Conversely, if a subgraph satisfies (i) and (ii), it is a valid Gs according
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to our definition above. Regarding (iii), presence of a cycle creates redundancy

in Gs. Formally, given any subgraph that satisfies (i) and (ii), we can arbitrarily

delete one from each of its cycle until the subgraph is cycle free, while preserving

(i) and (ii).

For Problems 1 and 2, we have the following observations. A minimum span-

ning tree is defined as a spanning tree of smallest weight, where the weight of a

tree is the sum of all its edge weights. A shortest path tree is defined as a spanning

tree where the path from root to each vertex is a shortest path between those two

in the original graph: this would be simply consist of the edges that were explored

in an execution of Dijkstra’s shortest path algorithm.

Lemma 2. The optimal storage graph Gs for Problem 1 is a minimum spanning

tree of G rooted at V0, considering only the weights ∆i,j .

Lemma 3. The optimal storage graph Gs for Problem 2 is a shortest path tree of

G rooted at V0, considering only the weights Φi,j .

3.3 Proposed Algorithms

As discussed in Section 3.2, our different application scenarios lead to dif-

ferent problem formulations, spanning different constraints and objectives, and
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different assumptions about the nature of Φ,∆.

Given that the problems discussed above are NP-Hard [23], we now focus on

developing efficient heuristics. In this section, we present two novel heuristics:

first, in Section 3.3.1, we present LMG, or the Local Move Greedy algorithm,

tailored to the case when there is a bound or objective on the average recreation

cost: thus, this applies to Problems 3 and 5. Second, in Section 3.3.2, we present

MP, or Modified Prim’s algorithm, tailored to the case when there is a bound or

objective on the maximum recreation cost: thus, this applies to Problems 4 and 6.

We present two variants of the MP algorithm tailored to two different settings.

Then, we present two algorithms — in Section 3.3.3, we present an approx-

imation algorithm called LAST, and in Section 3.3.4, we present an algorithm

called GitH which is based on Git repack. Both of these are adapted from literature

to fit our problems and we compare these against our algorithms in Section 3.4.

Note that LAST does not explicitly optimize any objectives or constraints in the

manner of LMG, MP, or GitH, and thus the four algorithms are applicable under

different settings; LMG and MP are applicable when there is a bound or con-

straint on the average or maximum recreation cost, while LAST and GitH are

applicable when a “good enough” solution is needed. Furthermore, note that all

these algorithms apply to both directed and undirected versions of the problems,
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e04

(a) (b)

Figure 3.4: Illustration of Local Move Greedy Heuristic

and to the symmetric and unsymmetric cases.

3.3.1 Local Move Greedy Heuristic

The LMG algorithm is applicable when we have a bound or constraint on the

average case recreation cost. We focus on the case where there is a constraint on

the storage cost (Problem 3); the case when there is no such constraint (Problem

5) can be solved by repeated iterations and binary search on the previous problem.

Outline. At a high level, the algorithm starts with the Minimum Spanning Tree

(MST) as GS , and then greedily adds edges from the Shortest Path Tree (SPT)
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that are not present in GS , while GS respects the bound on storage cost.

Detailed Algorithm. The algorithm starts off with GS equal to the MST. The

SPT naturally contains all the edges corresponding to complete versions. The

basic idea of the algorithm is to replace deltas in GS with versions from the SPT

that maximize the following ratio:

ρ =
reduction in sum of recreation costs

increase in storage cost

This is simply the reduction in total recreation cost per unit addition of weight to

the storage graph GS .

Let ξ consists of edges in the SPT not present in the GS (these precisely cor-

respond to the versions that are not explicitly stored in the MST, and are instead

computed via deltas in the MST). At each “round”, we pick the edge euv ∈ ξ that

maximizes ρ, and replace previous edge eu′v to v. The reduction in the sum of

the recreation costs is computed by adding up the reductions in recreation costs

of all w ∈ GS that are descendants of v in the storage graph (including v itself).

On the other hand, the increase in storage cost is simply the weight of euv minus

the weight of eu′v. This process is repeated as long as the storage budget is not

violated. We explain this with the means of an example.
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Example 4. Figure 3.4(a) denotes the current GS . Node 0 corresponds to the

dummy node. Now, we are considering replacing edge e14 with edge e04, that is,

we are replacing a delta to version 5 with version 5 itself. Then, the denominator

of ρ is simply ∆04 −∆14. And the numerator is the changes in recreation costs of

versions 4, 5, and 6 (notice that 5 and 6 were below 4 in the tree.) This is actually

simple to compute: it is simply three times the change in the recreation cost of

version 4 (since it affects all versions equally). Thus, we have the numerator of ρ

is simply 3× (Φ01 + Φ14 − Φ04).

Complexity. For a given round, computing ρ for a given edge is O(|V |). This

leads to an overall O(|V |3) complexity, since we have up to |V | rounds, and upto

|V | edges in ξ. However, if we are smart about this computation (by precomputing

and maintaining across all rounds the number of nodes “below” every node), we

can reduce the complexity of computing ρ for a given edge to O(1). This leads

to an overall complexity of O(|V |2) Algorithm 1 provides a pseudocode of the

described technique.

Access Frequencies. Note that the algorithm can easily take into account access

frequencies of different versions and instead optimize for the total weighted recre-

ation cost (weighted by access frequencies). The algorithm is similar, except that
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Algorithm 1: Local Move Greedy Heuristic
Input : Minimum Spanning Tree (MST) , Shortest Path Tree (SPT),

source vertex V0, space budget W
Output: A tree T with weight ≤ W rooted at V0 with minimal sum of

access cost
1 Initialize T as MST.
2 Let d(Vi) be the distance from V0 to Vi in T , and p(Vi) denote the parent of

Vi in T. Let W (T ) denote the storage cost of T .
3 while W (T ) < W do
4 (ρmax, eSPT )← (0, ∅)
5 foreach euv ∈ ξ do
6 compute ρe
7 if ρe > ρmax then
8 (ρmax, ē)← (ρe, euv)
9 end

10 end
11 T ← T \ eu′v ∪ euv; ξ ← ξ \ euv
12 if ξ = ∅ then
13 return T
14 end
15 end

the numerator of ρ will capture the reduction in weighted recreation cost.

3.3.2 Modified Prim’s Algorithm

Next, we introduce a heuristic algorithm based on Prim’s algorithm for Min-

imum Spanning Trees for Problem 6 where the goal is to reduce total storage

cost while recreation cost for each version is within threshold θ; the solution for

Problem 4 is similar.
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Outline. At a high level, the algorithm is a variant of Prim’s algorithm, greedily

adding the version with smallest storage cost and the corresponding edge to form

a spanning tree T . Unlike Prim’s algorithm where the spanning tree simply grows,

in this case, even if an edge is present in T , it could be removed in future iterations.

Furthermore, we maintain at all stages the recreation cost of all nodes present in

T to be within the threshold θ

Detailed Algorithm. At all stages, the invariant maintained by the algorithm is

that the recreation cost of all versions in T is bounded within θ. At each iteration,

the algorithm picks the version Vi with the smallest storage cost to be added to

the tree. Once this version Vi is added, we consider adding all deltas to all other

versions Vj such that their recreation cost through Vi is within the constraint θ,

and the storage cost does not increase. Each version maintains a pair l(Vi) and

d(Vi): l(Vi) denotes the marginal storage cost of Vi, while d(Vi) denotes the total

recreation cost of Vi. At the start, l(Vi) is simply the storage cost of Vi in its

entirety.

We now describe the algorithm in detail using pseudocode. Set X represents

the current version set of the current spanning tree T in Algorithm 2. Initially

X = ∅. In each iteration, the version Vi with the smallest storage cost (l(Vi)) in

the priority queue PQ is picked and added into spanning tree T (line 7-8). When
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Figure 3.6: Undirected Graph G

Vi is added into T , we need to update the storage cost and recreation cost for all

Vj that are neighbors of Vi. Notice that in Prim’s algorithm, we do not need to

consider neighbors that are already in T . However, in our scenario a better path to

such a neighbor may be found and this may result in an update (line 10-17). For

instance, if edge 〈Vi, Vj〉 can make Vj’s storage cost smaller while the recreation

cost for Vj does not increase, we can update p(Vj) = Vi as well as d(Vj), l(Vj)

and T . For neighbors Vj 6∈ T (line 19-24), we update d(Vj), l(Vj),p(Vj) if edge

〈Vi, Vj〉 can make Vj’s storage cost smaller and the recreation cost for Vj is no

bigger than θ. Algorithm 2 terminates in |V | iterations since one version is added

into X in each iteration.

Example 5. Say we operate on G given by Figure 3.5, and let the threshold θ be

6. Each version Vi is associated with a pair 〈l(Vi), d(Vi)〉. Initially version V0

is pushed into priority queue. When V0 is dequeued, each neighbor Vj updates
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Figure 3.7: Illustration of Algorithm 2 in Figure 3.5

< l(Vj), d(Vj) > as shown in Figure 3.7 (a). Notice that l(Vi), i 6= 0 for all i

is simply the storage cost for that version. For example, when considering edge

(V0, V1), l(V1) = 3 and d(V1) = 3 is updated since recreation cost (if V1 is to

be stored in its entirety) is smaller than threshold θ, i.e., 3 < 6. Afterwards,

version V1, V2 and V3 are inserted into the priority queue. Next, we dequeue V1

since l(V1) is smallest among the versions in the priority queue, and add V1 to

the spanning tree. We then update < l(Vj), d(Vj) > for all neighbors of V1, e.g.,

the recreation cost for version V2 will be 6 and the storage cost will be 2 when

considering edge (V1, V2). Since 6 ≤ 6, (l(V2), d(V2)) is updated to (2, 6) as

shown in Figure 3.7 (b); however, < l(V3), d(V3) > will not be updated since the

recreation cost is 3+4 > 6 when considering edge (V1, V3). Subsequently, version

V2 is dequeued because it has the lowest l(V2), and is added to the tree, giving

Figure 3.7 (b). Subsequently, version V3 are dequeued. When V3 is dequeued

from PQ, (l(V2), d(V2)) is updated. This is because the storage cost for V2 can
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be updated to 1 and the recreation cost is still 6 when considering edge (V3, V2),

even if V2 is already in T as shown in Figure 3.7 (c). Eventually, we get the final

answer in Figure 3.7 (d).

Complexity. The complexity for Algorithm 2 is the same as that for Prim’s algo-

rithm, i.e., O(|E| log |V |). Each edge is scanned once and the priority queue need

to be updated once in the worst case.

3.3.3 LAST Algorithm

Here, we sketch an algorithm from previous work [50] that enables us to find

a tree with a good balance of storage and recreation costs, under the assumptions

that ∆ = Φ and Φ is symmetric.

Outline. The algorithm starts from a minimum spanning tree and does a depth-

first traveral (DFS) over the minimum spanning tree. During the process of DFS,

if the recreation cost for a node exceeds the pre-defined threshold (set up front),

then this current path is replaced with the shortest path to the node.

Detailed Algorithm. As discussed in Section 3.2.3, balancing between recreation

cost and storage cost is equivalent to balancing between the minimum spanning

tree and the shortest path tree rooted at V0. Khuller et al. [50] studied the problem
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Algorithm 2: Modified Prim’s Algorithm
Input : Graph G = (V,E), threshold θ
Output: Spanning Tree T = (VT , ET )

1 Let X be the version set of current spanning tree T ; Initially T = ∅, X = ∅;
2 Let p(Vi) be the parent of Vi, l(Vi) denote the storage cost from p(Vi) to Vi,

d(Vi) denote the recreation cost from root V0 to version Vi; Initially
∀i 6= 0, d(V0) = l(V0) = 0, d(Vi) = l(Vi) =∞ ;

3 Enqueue < V0, (l(V0), d(V0)) > into priority queue PQ;
4 (PQ is sorted by l(vi));
5 while PQ 6= ∅ do
6 < Vi, (l(Vi), d(Vi)) >← top(PQ), dequeue(PQ);
7 T = T∪ < Vi, p(Vi) >, X = X ∪ Vi;
8 for Vj ∈ (Vi’s neighbors in G) do
9 if Vj ∈ X then

10 if (Φi,j + d(Vi)) ≤ d(Vj) and ∆i,j ≤ l(Vj) then
11 T = T− < Vj, p(Vj) >;
12 p(Vj) = Vi;
13 T = T∪ < Vj, p(Vj) > d(Vj)← Φi,j + d(Vi);
14 l(Vj)← ∆i,j;
15 end
16 end
17 else
18 if (Φi,j + d(Vi)) ≤ θ and ∆i,j ≤ l(Vj) then
19 d(Vj)← Φi,j + d(Vi);
20 l(Vj)← ∆i,j; p(Vj) = Vi;
21 enqueue(or update) < Vj, (l(Vj), d(Vj)) > in PQ;
22 end
23 end
24 end
25 end

of balancing minimum spanning tree and shortest path tree in an undirected graph,

where the resulting spanning tree T has the following properties, given parameter

α:
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• For each node Vi: the cost of path from V0 to Vi in T is within α times the

shortest path from V0 to Vi in G.

• The total cost of T is within (1 + 2/(α − 1)) times the cost of minimum

spanning tree in G.

Even though Khuller’s algorithm is meant for undirected graphs, it can be applied

to the directed graph case without any comparable guarantees. The pseudocode is

listed in Algorithm 3.

Let MST denote the minimum spanning tree of graph G and SP (V0, Vi) de-

note the shortest path from V0 to Vi in G. The algorithm starts with the MST

and then conducts a depth-first traversal in MST . Each node V keeps track of its

path cost from root as well as its parent, denoted as d(Vi) and p(Vi) respectively.

Given the approximation parameter α, when visiting each node Vi, we first check

whether d(Vi) is bigger than α×SP (V0, Vi) where SP stands for shortest path. If

yes, we replace the path to Vi with the shortest path from root to Vi in G and up-

date d(Vi) as well as p(Vi). In addition, we keep updating d(Vi) and p(Vi) during

depth first traversal as stated in line 4-7 of Algorithm 3.

Example 6. Figure 3.8 (a) is the minimum spanning tree (MST) rooted at node V0

of G in Figure 3.6. The approximation threshold α is set to be 2. The algorithm
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starts with the MST and conducts a depth-first traversal in the MST from root V0.

When visiting node V2, d(V2) = 3 and the shortest path to node V2 is 3, thus 3 <

2× 3. We continue to visit node V2 and V3. When visiting V3, d(V3) = 8 > 2× 3

where 3 is the shortest path to V3 in G. Thus, d(V3) is set to be 3 and p(V3) is set

to be node 0 by replacing with the shortest path 〈V0, V3〉 as shown in Figure 3.8

(b). Afterwards, the back-edge < V3, V1 > is traversed in MST. Since 3 + 2 < 6,

where 3 is the current value of d(V3), 2 is the edge weight of (V3, V1) and 6 is

the current value in d(V1), thus d(V1) is updated as 5 and p(V1) is updated as

node V3. At last node V4 is visited, d(V4) is first updated as 7 according to line

3-7. Since 7 < 2 × 4, lines 9-11 are not executed. Figure 3.8 (c) is the resulting

spanning tree of the algorithm, where the recreation cost for each node is under

the constraint and the total storage cost is 3 + 3 + 2 + 2 = 10.

Complexity. The complexity of the algorithm is O(|E| log |V |). Given the mini-

mum spanning tree and shortest path tree rooted at V0, Algorithm 3 is conducted

via depth first traversal on MST. It is easy to show that the complexity for Algo-

rithm 3 is O(|V |). The time complexity for computing minimum spanning tree

and shortest path tree is O(|E| log |V |) using heap-based priority queue.
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Algorithm 3: Balance MST and Shortest Path Tree [50]
Input : Graph G = (V,E), MST , SP
Output: Spanning Tree T = (VT , ET )

1 Initialize T as MST . Let d(Vi) be the distance from V0 to Vi in T and p(Vi)
be the parent of Vi in T .

2 while DFS traversal on MST do
3 (Vi, Vj)← the edge currently in traversal;
4 if d(Vj) > d(Vi) + ei,j then
5 d(Vj)← (d(Vi) + ei,j);
6 p(Vj)← Vi;
7 end
8 if d(Vj) > α ∗ SP (V0, Vj) then
9 add shortest path (V0, Vj) into T ;

10 d(Vj)← SP (V0, Vj);
11 p(Vj)← V0;
12 end
13 end
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Figure 3.8: Illustration of LAST on Figure 3.6
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3.3.4 Git Heuristic

This heuristic is an adaptation of the current heuristic used by Git and we refer

to it as GitH. GitH uses two parameters: w (window size) and d (max depth).

Outline. We consider the versions in an non-increasing order of their sizes. The

first version in this ordering is chosen as the root of the storage graph and has depth

0 (i.e., it is materialized). At all times, we maintain a sliding window containing

at most w versions. For each version Vi after the first one, let Vl denote a version

in the current window. We compute: ∆′l,i = ∆l,i/(d − dl), where dl is the depth

of Vl (thus deltas with shallow depths are preferred over slightly smaller deltas

with higher depths). We find the version Vj with the lowest value of this quantity

and choose it as Vi’s parent (as long as dj < d). The depth of Vi is then set to

dj + 1. The sliding window is modified to move Vl to the end of the window (so it

will stay in the window longer), Vj is added to the window, and the version at the

beginning of the window is dropped.

Git uses delta compression to reduce the amount of storage required to store a

large number of files (objects) that contain duplicated information. However, git’s

algorithm for doing so is not clearly described anywhere. An old discussion with

Linus has a sketch of the algorithm. However there have been several changes to
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the heuristics used that don’t appear to be documented anywhere. The following

describes our understanding of the algorithm based on the latest git source code 1.

Here we focus on “repack”, where the decisions are made for a large group of

objects. However, the same algorithm appears to be used for normal commits as

well. Most of the algorithm code is in file: builtin/pack-objects.c

Step 1: Sort the objects, first by “type”, then by “name hash”, and then by “size”

(in the decreasing order). The comparator is (line 1503):

static int type_size_sort(const void *_a, const

void *_b)

Note the name hash is not a true hash; the pack name hash() function (pack-objects.h)

simply creates a number from the last 16 non-white space characters, with the last

characters counting the most (so all files with the same suffix, e.g., .c, will sort

together).

Step 2: The next key function is ll find deltas(), which goes over the files

in the sorted order. It maintains a list of W objects (W = window size, default 10)

at all times. For the next object, sayO, it finds the delta betweenO and each of the

objects, say B, in the window; it chooses the the object with the minimum value
1Cloned from https://github.com/git/git on 5/11/2015, commit id:

8440f74997cf7958c7e8ec853f590828085049b8
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of: delta(B, O) / (max depth - depth of B) where max depth

is a parameter (default 50), and depth of B refers to the length of delta chain

between a root and B.

The original algorithm appears to have only used delta(B, O) to make the

decision, but the “depth bias” (denominator) was added at a later point to prefer

slightly larger deltas with smaller delta chains. The key lines for the above part:

• line 1812 (check each object in the window):

ret = try_delta(n, m, max_depth, &mem_usage);

• lines 1617-1618 (depth bias):

max_size = (uint64_t)max_size * (max_depth -

src->depth) / (max_depth - ref_depth + 1);

• line 1678 (compute delta and compare size):

delta_buf = create_delta(src->index, trg->data,

trg_size, &delta_size, max_size);

create delta() returns non-null only if the new delta being tried is smaller

than the current delta (modulo depth bias), specifically, only if the size of the new
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delta is less than max size argument. Note: lines 1682-1688 appear redundant

given the depth bias calculations.

Step 3. Originally the window was just the last W objects before the object

O under consideration. However, the current algorithm shuffles the objects in

the window based on the choices made. Specifically, let b1, . . . , bW be the cur-

rent objects in the window. Let the object chosen to delta against for O be

bi. Then bi would be moved to the end of the list, so the new list would be:

[b1, b2, . . . , bi−1, bi+1, . . . , bW , O, bi]. Then when we move to the new object af-

ter O (say O′), we slide the window and so the new window then would be:

[b2, . . . , bi−1, bi+1, . . . , bW , O, bi, O
′]. Small detail: the list is actually maintained

as a circular buffer so the list doesn’t have to be physically “shifted” (moving bi

to the end does involve a shift though). Relevant code here is lines 1854-1861.

Finally we note that git never considers/computes/stores a delta between two

objects of different types, and it does the above in a multi-threaded fashion, by

partitioning the work among a given number of threads. Each of the threads oper-

ates independently of the others.

Complexity. The running time of the heuristic isO(|V | log |V |+w|V |), excluding

the time to construct deltas.
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Dataset DC LC BF LF
Number of versions 100010 100002 986 100
Number of deltas 18086876 2916768 442492 3562
Average version size (MB) 347.65 356.46 0.401 422.79
MCA-Storage Cost (GB) 1265.34 982.27 0.0250 2.2402
MCA-Sum Recreation Cost (GB) 11506437.83 29934960.95 0.9648 47.6046
MCA-Max Recreation Cost (GB) 257.6 717.5 0.0063 0.5998
SPT-Storage Cost (GB) 33953.84 34811.14 0.3854 41.2881
SPT-Sum Recreation Cost (GB) 33953.84 34811.14 0.3854 41.2881
SPT-Max Recreation Cost (GB) 0.524 0.55 0.0063 0.5091

Figure 3.9: Dataset properties and distribution of delta sizes (each delta size scaled by the
average version size in the dataset).

3.4 Experimental Evaluation

We have built a prototype version management system, that will serve as a

foundation to DATAHUB [22], a system for facilitating collaborative data science.

The system provides a subset of Git/SVN-like interface for dataset versioning.

Users interact with the version management system in a client-server model over

HTTP. The server is implemented in Java, and is responsible for storing the ver-

sion history of the repository as well as the actual files in them. The client is

implemented in Python and provides functionality to create (commit) and check

out versions of datasets, and create and merge branches. Note that, unlike tradi-

tional VCS which make a best effort to perform automatic merges, in our system

we let the user perform the merge and notify the system by creating a version with

more than one parent.
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Implementation. In the following sections, we present an extensive evaluation

of our designed algorithms using a combination of synthetic and derived real-

world datasets. Apart from implementing the algorithms described above, LMG

and LAST require both SPT and MST as input. For both directed and undirected

graphs, we use Dijkstra’s algorithm to find the single-source shortest path tree

(SPT). We use Prim’s algorithm to find the minimum spanning tree for undirected

graphs. For directed graphs, we use an implementation [12] of the Edmonds’

algorithm [83] for computing the min-cost arborescence (MCA). We ran all our

experiments on a 2.2GHz Intel Xeon CPU E5-2430 server with 64GB of memory,

running 64-bit Red Hat Enterprise Linux 6.5.

3.4.1 Datasets

We use four data sets: two synthetic and two derived from real-world source

code repositories. Although there are many publicly available source code repos-

itories with large numbers of commits (e.g., in GitHub), those repositories typ-

ically contain fairly small (source code) files, and further the changes between

versions tend to be localized and are typically very small; we expect dataset ver-

sions generated during collaborative data analysis to contain much larger datasets

and to exhibit large changes between versions. We were unable to find any realis-
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tic workloads of that kind.

Hence, we generated realistic dataset versioning workloads as follows. First,

we wrote a synthetic version generator suite, driven by a small set of parameters,

that is able to generate a variety of version histories and corresponding datasets.

Second, we created two real-world datasets using publicly available forks of pop-

ular repositories on GitHub. We describe each of the two below.

Synthetic Datasets: Our synthetic dataset generation suite2 takes a two-step ap-

proach to generate a dataset that we sketch below. The first step is to generate a

version graph with the desired structure, controlled by the following parameters:

• number of commits, i.e., the total number of versions.

• branch interval and probability, the number of consecutive

versions after which a branch can be created, and probability of creating a

branch.

• branch limit, the maximum number of branches from any point in the

version history. We choose a number in [1, branch limit] uniformly at

random when we decide to create branches.

• branch length, the maximum number of commits in any branch. The
2Our synthetic dataset generator may be of independent interest to researchers working on

version management.
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actual length is a uniformly chosen integer between 1 and branch length.

Once a version graph is generated, the second step is to generate the appropri-

ate versions and compute the deltas. The files in our synthetic dataset are ordered

CSV files (containing tabular data) and we use deltas based on UNIX-style diffs.

The previous step also annotates each edge (u, v) in the version graph with edit

commands that can be used to produce v from u. Edit commands are a combina-

tion of one of the following six instructions – add/delete a set of consecutive rows,

add/remove a column, and modify a subset of rows/columns.

Using this, we generated two synthetic datasets (Figure 3.9):

• Densely Connected (DC): This dataset is based on a “flat” version history,

i.e., number of branches is high, they occur often and have short lengths.

For each version in this data set, we compute the delta with all versions in a

10-hop distance in the version graph to populate additional entries in ∆ and

Φ.

• Linear Chain (LC): This dataset is based on a “mostly-linear” version his-

tory, i.e., number of branches is low, they occur after large intervals and

have longer lenghts. For each version in this data set, we compute the delta

with all versions within a 25-hop distance in the version graph to populate
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Figure 3.10: Results for the directed case, comparing the storage costs and total recreation
costs

∆ and Φ.

Real-world datasets: We use 986 forks of the Twitter Bootstrap repository and

100 forks of the Linux repository, to derive our real-world workloads. For each

repository, we checkout the latest version in each fork and concatenate all files

in it (by traversing the directory structure in lexicographic order). Thereafter, we

compute deltas between all pairs of versions in a repository, provided the size

difference between the versions under consideration is less than a threshold. We

set this threshold to 100KB for the Twitter Bootstrap repository and 10MB for the

Linux repository. This gives us two real-world datasets, Bootstrap Forks (BF) and

Linux Forks (LF), with properties shown in Figure 3.9.
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3.4.2 Experimental Results

Directed Graphs. We begin with a comprehensive evaluation of the three algo-

rithms, LMG, MP, and LAST, on directed datasets. Given that all of the algorithms

have parameters that can be used to trade off the storage cost and the total recre-

ation cost, we compare them by plotting the different solutions they are able to

find for the different values of their respective input parameters. Figure 3.10(a–

d) show four such plots; we run each of the algorithms with a range of different

values for its input parameter and plot the storage cost and the total (sum) recre-

ation cost for each of the solutions found. We also show the minimum possible

values for these two costs: the vertical dashed red line indicates the minimum

storage cost required for storing the versions in the dataset as found by MCA, and

the horizontal one indicates the minimum total recreation cost as found by SPT

(equal to the sum of all version sizes).

The first key observation we make is that, the total recreation cost decreases

drastically by allowing a small increase in the storage budget over MCA. For ex-

ample, for the DC dataset, the sum recreation cost for MCA is over 11 PB (see

Table 3.9) as compared to just 34TB for the SPT solution (which is the mini-

mum possible). As we can see from Figure 3.10(a), a space budget of 1.1× the
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Figure 3.11: Results for the directed case, comparing the storage costs and maximum
recreation costs

MCA storage cost reduces the sum of recreation cost by three orders of magni-

tude. Similar trends can be observed for the remaining datasets and across all the

algorithms. We observe that LMG results in the best tradeoff between the sum

of recreation cost and storage cost with LAST performing fairly closely. An im-

portant takeaway here, especially given the amount of prior work that has

focused purely on storage cost minimization (Section 2), is that: it is possible

to construct balanced trees where the sum of recreation costs can be reduced

and brought close to that of SPT while using only a fraction of the space that

SPT needs.

We also ran GitH heuristic on the all the four datasets with varying window and

depth settings. For BF, we ran the algorithm with four different window sizes (50,
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25, 20, 10) for a fixed depth 10 and provided the GitH algorithm with all the deltas

that it requested. For all other datasets, we ran GitH with an infinite window size

but restricted it to choose from deltas that were available to the other algorithms

(i.e., only deltas with sizes below a threshold); as we can see, the solutions found

by GitH exhibited very good total recreation cost, but required significantly higher

storage than other algorithms. This is not surprising given that GitH is a greedy

heuristic that makes choices in a somewhat arbitrary order.

In Figures 3.11(a–b), we plot the maximum recreation costs instead of the sum

of recreation costs across all versions for two of the datasets (the other two datasets

exhibited similar behavior). The MP algorithm found the best solutions here for all

datasets, and we also observed that LMG and LAST both show plateaus for some

datasets where the maximum recreation cost did not change when the storage

budget was increased. This is not surprising given that the basic MP algorithm

tries to optimize for the storage cost given a bound on the maximum recreation

cost, whereas both LMG and LAST focus on minimization of the storage cost and

one version with high recreation cost is unlikely to affect that significantly.

Undirected Graphs. We test the three algorithms on the undirected versions

of three of the datasets (Figure 3.12). For DC and LC, undirected deltas between

pairs of versions were obtained by concatenating the two directional deltas; for the

76



2 3 4 5 6 7 8
Storage Cost (GB) 1e3

3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0

S
u
m

 o
f 

R
e
cr

e
a
ti

o
n
 C

o
st

 (
G

B
)

1e4
Dataset: DC

(a)
1 2 3 4 5 6 7

Storage Cost (GB) 1e3
3.0
3.5
4.0
4.5
5.0
5.5
6.0

S
u
m

 o
f 

R
e
cr

e
a
ti

o
n
 C

o
st

 (
G

B
)

1e4
Dataset: LC

(b)
3.0 3.5 4.0 4.5 5.0 5.5 6.0

Storage Cost (GB) 1e 2
3.8
4.0
4.2
4.4
4.6
4.8
5.0
5.2
5.4

S
u
m

 o
f 

R
e
cr

e
a
ti

o
n
 C

o
st

 (
G

B
)

1e 1
Dataset: BF

(c)
2 3 4 5 6 7 8

Storage Cost (GB) 1e3
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

M
a
x 

R
e
cr

e
a
ti

o
n
 C

o
st

 (
G

B
)

Dataset: DC

(d)

LMG MP LAST

Figure 3.12: Results for the undirected case, comparing the storage costs and total recre-
ation costs (a–c) or maximum recreation costs (d)

BF dataset, we use UNIX diff itself to produce undirected deltas. Here again

we observe that LMG consistently outperforms the other algorithms in terms of

finding a good balance between the storage cost and the sum of recreation costs.

MP again shows the best results when trying to balance the maximum recreation

cost and the total storage cost. Similar results were observed for other datasets but

are omitted for brevity.

Workload-aware Sum of Recreation Cost Optimization. In many cases, we

may be able to estimate access frequencies for the various versions (from histori-

cal access patterns), and if available, we may want to take those into account when

constructing the storage graph. The LMG algorithm can be easily adapted to take

such information into account, whereas it is not clear how to adapt either LAST

or MP in a similar fashion. In this experiment, we use LMG to compute a storage
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Figure 3.13: Taking workload into account leads to better solutions

graph such that the sum of recreation costs is minimal given a space budget, while

taking workload information into account. The worload here assigns a frequency

of access to each version in the repository using a Zipfian distribution (with ex-

ponent 2); real-world access frequencies are known to follow such distributions.

Given the workload information, the algorithm should find a storage graph that

has the sum of recreation cost less than the index when the workload information

is not taken into account (i.e., all versions are assumed to be accessed equally fre-

quently). Figure 3.13 shows the results for this experiment. As we can see, for the

DC dataset, taking into account the access frequencies during optimization led to

much better solutions than ignoring the access frequencies. On the other hand, for

the LF dataset, we did not observe a large difference.
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Running Times. Here we evaluate the running times of the LMG algorithm.

Recall that LMG takes MST (or MCA) and SPT as inputs. In Fig. 3.14, we report

the total running time as well as the time taken by LMG itself. We generated a set

of version graphs as subsets of the graphs for LC and DC datasets as follows: for

a given number of versions n, we randomly choose a node and traverse the graph

starting at that node in breadth-first manner till we construct a subgraph with n

versions. We generate 5 such subgraphs for increasing values of n and report the

average running time for LMG; the storage budget for LMG is set to three times

of the space required by the MST (all our reported experiments with LMG use less

storage budget than that). The time taken by LMG on DC dataset is more than LC

for the same number of versions; this is because DC has lower delta values than

LC (see Fig. 3.9) and thus requires more edges from SPT to satisfy the storage

budget.

On the other hand, MP takes between 1 to 8 seconds on those datasets, when

the recreation cost is set to maximum. Similar to LMG, LAST requires the

MST/MCA and SPT as inputs; however the running time of LAST itself is lin-

ear and it takes less than 1 second in all cases. Finally the time taken by GitH

on LC and DC datasets, on varying window sizes range from 35 seconds (win-

dow = 1000) to a little more than 120 minutes (window = 100000); note that, this
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Figure 3.14: Running times of LMG

excludes the time for constructing the deltas.

In summary, although LMG is inherently a more expensive algorithm than MP

or LAST, it runs in reasonable time on large input sizes; we note that all of these

times are likely to be dwarfed by the time it takes to construct deltas even for

moderately-sized datasets.

3.5 Conclusion

In this chapter, we use delta compression to store unstructured datasets com-

pactly due to the high overlap and duplication among the datasets, where some

datasets or versions are stored as modifications from other datasets. Such delta

compression however leads to higher latencies while retrieving specific datasets.

We studied the trade-off between the storage and recreation costs in a principled
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manner, by formulating several optimization problems that trade off these two in

different ways. We also presented several efficient algorithms that are effective

at exploring this trade-off. Using extensive experimental evaluation we show that

our techniques not only outperform existing version control systems but also ca-

pable of handing large problem sizes.
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Chapter 4: PSTORE: Storage Layouts for Array Datasets

As described in the Section 1.3.2, the techniques developed in Chapter 3 are

not suitable for answering range queries that require fine grained access to the

array cells. In this chapter, we present our PSTORE framework for managing and

querying large volumes of array datasets. PSTORE is an end-to-end framework

containing two modules, namely, 1) a data ingestion module and 2) a query pro-

cessing module for managing array datasets. We begin with a description of the

data and the query model, followed by the detailed description of the two modules.

The data ingestion module may execute in parallel with the simulation that is gen-

erating the data, and performs both partitioning and compression of the data. The

data generated by the simulation is transferred to the data ingestion module one

snapshot at a time, as the snapshots are progressively generated (a snapshot typi-

cally corresponds to a time step in a physical simulation) which are subsequently

chunked and compressed. Thereafter, the data ingestion module sends the com-

pressed data chunks to the storage system as they are produced, and may have to
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wait to gather enough data before compression. The compressed chunks are also

inserted into an index structure for querying the data efficiently. The query pro-

cessing module runs offline in a separate computing environment decoupled from

the data ingestion module.

4.1 Data and Query Model

Data Model. The primary unit of storage and retrieval in PSTORE is a cell in a

multi-dimensional array snapshot. Arrays are homogenous entities, each cell in an

array stores data of the same type. For ease of explanation, we assume the array

dataset stores the result of a single simulation variable. Each multi-dimensional

array snapshot, storing the result of a given simulation, usually has the same di-

mensions. Therefore, every snapshot corresponding to that particular simulation

variable occupies the same size. Every array cell can be uniquely identified by the

spatial and temporal coordinates (or version-id). Since these arrays are the result

of a simulation, therefore, the resulting version graph is a linear chain.

Query Model. PSTORE primarily supports array slicing queries; given range of

spatial and temporal coordinates, the query returns a hyper-rectangle from one

or a collection of array versions. Floating point data is the most prevalent type
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of data generated by scientific simulations. Further, not all applications require

full precision of data or are able to tolerate reduced precision. Therefore, given a

relative error bound, and the range of spatial and temporal coordinates, the query

returns the appropriate number of bytes of a floating point data, that approximates

the actual value of the data.

4.2 Compression Schemes

We describe the different compression schemes supported by our framework.

Unlike most prior work (e.g.,[78]), we do not rely on a single compression scheme,

and instead determine the compression scheme based on the structure of the data,

or the requirements of the user. The data to be compressed is analyzed in an

offline mode to determine the best scheme, in accordance with the user pref-

erence or the overall efficiency (based on both compression ratio and compres-

sion/decompression time). The simulation data that is currently compressed is an-

alyzed periodically to ensure that we are still using the best compression scheme

even when the distribution of the simulation data changes. We now discuss the

different compression schemes implemented in PSTORE.

Bytewise Compression (bwc): This compression technique is similar to the one
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described by Schendel et al. in a recent work [73]. Data is partitioned into

columns of bytes and the compressible bytes are identified by computing the byte

value frequency distribution. The compressible bytes are then compressed using

a backend compression algorithm such as zlib [18] or lzo [11]. We use zlib

to obtain better compression ratios, and lzo to achieve faster compression and

decompression rates as required. However unlike in [73], we do not compress and

store all the compressible bytes together, as that adds considerable overhead to

reconstruct the data due to required reshuffling of the bytes. Further, for approx-

imate query processing where only a contiguous subset of the bytes are required,

it is wasteful to decompress those bytes that are not required for answering the

given query. As an exception to this strategy, only the two most significant bytes

of a variable are stored together regardless of whether both are compressible or

not. The reasoning behind this exception will be discussed in Section 4.3.2.

Bytewise-XOR Compression (bwcXOR): For scientific simulation datasets, there

is a high degree of spatial and/or temporal correlation between neighboring ar-

ray elements. As a result, the magnitude of the difference between two adja-

cent spatial or temporal data elements in the dataset may be small. Determining

such correlations is essentially a preprocessing step towards better compressibil-
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ity. The method for computing the difference between variables that we choose

is XOR, rather than subtraction, as it yields a higher compression ratio both with

two’s complement integer and sign-magnitude floating point number representa-

tions [32]. After the data is partitioned into columns of bytes and the compressible

byte columns are identified, we apply the XOR operation between the bytes of two

different variables located spatially or temporally adjacent to each other. However,

the XOR operation is not applied between incompressible byte columns as those

are highly entropic and the resultant XOR value between two entropic bytes is

also highly entropic. This is especially true for lower order bytes in a floating

point variable where the bit randomness is often very high. The XORed byte

columns are then compressed using one of the backend compression algorithms.

All the snapshots except the last snapshot in a given data chunk are XORed in

a temporal XOR operation. A spatial XOR operation can be applied on the last

snapshot to further enhance the overall compression or it may be left unaltered,

depending on the degree of spatial correlation between the variables and/or the

amount of compression/throughput required. This snapshot is used for retrieving

the prior snapshots by applying the XOR operation in the reverse direction, a pro-

cess referred to as unrolling hereafter. For retrieving the first snapshot, all prior

snapshots needs to unrolled first and hence this technique comes with an overhead
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due to this unrolling process. We have designed this compression technique as an

alternate compression scheme compared to the ISOBAR technique [73].

FPC: FPC is a compression technique developed for compressing 64-bit float-

ing point data [32]. FPC predicts values by sequentially using two predictors

(fcm [72] and dfcm [44]) and selects the value closer to the actual value. There-

after, FPC performs an XOR between the two values and encodes the leading zero

bytes of the result using three bits. The scheme uses an additional bit to spec-

ify which of the two predictors was used for prediction. The resulting 4-bit code

and the non-zero residual bytes are written to the output. We observe that in the

context of climate or simulation datasets, the value from the predictor in FPC can

be replaced with an adjacent spatial or temporal value (due to the high degree of

correlation between neighboring elements in these datasets). The removal of the

predictor from the FPC algorithm speeds up its execution. In addition, the single

bit of storage which is needed by the predictor is no longer required. We also ex-

tend FPC for single precision floating point data as well. For 32-bit floating point

values, we assign two bits for counting the leading zero bytes, although there are

five different possibilities (0 to 4). In the context of our climate datasets, we have

observed that the count of four leading zeroes occurs least frequently. As a result,
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all XOR results with four leading zero bytes are treated the same as values with

only three leading zero bytes, with the fourth zero byte emitted as part of the out-

put. Our framework supports two different versions of FPC, sFPC and tFPC to

denote XORing along spatial and temporal dimensions, respectively.

Other schemes: In addition to the compression schemes described above, our

framework also implements the naive compression algorithms that apply zlib

or lzo over the data. As an alternative to this approach, an XOR of the vari-

ables along the spatial or temporal dimensions can be performed followed by the

application of one of the backend compression algorithms.

Compression Method t2m th2 psfc
CR % gain CR % gain CR % gain

naive zlib 1.325 0.00 1.305 0.00 1.279 0.00
naive lzo 0.996 -24.83 0.996 -23.68 0.996 -22.12
naivexor+zlib 1.375 3.77 1.371 5.05 1.474 15.25
tFPC 1.510 13.96 1.509 15.63 1.682 31.51
sFPC 1.615 21.89 1.631 24.98 1.529 19.55
bwc+zlib 1.823 37.58 1.833 40.46 1.823 42.53
bwcxor+zlib 1.798 35.70 1.804 38.24 1.880 46.99
bwc+lzo 1.686 27.25 1.696 29.96 1.643 28.46
bwcxor+lzo 1.669 25.96 1.676 28.43 1.776 38.86

Table 4.1: Performance comparison of compression ratios between different compression
schemes (compression ratio (CR) and % improvement relative to zlib (% gain) for each
dataset). The best scheme for each dataset is highlighted.

Experimental comparison and discussion: Table 4.1 presents compression ra-
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tios and their percentage improvement over the naive approach for three different

datasets t2m, th2 and psfc. The data is obtained from a simulation of the

CWRF climate model [4]. A detailed description of the data is provided in Sec-

tion 4.5.

First, we consider the use of a difference operator (i.e., XOR) as a pre-processing

step. The use of the difference operator between correlated data values for better

compressibility has been advocated in [78] for compressing snapshots in a sci-

entific database system. They propose the use of variable-length delta encoding

and subsequently using run-length encoding for compressing the bitmasks. The

work targets compressing large number of zeroes and the small magnitude differ-

ences generated in the process of delta encoding. However, the technique may

not be suitable for compressing floating point values, since taking the differences

between two floating point values does not always result in small bit differences

in values due to the way in which floating point numbers are actually represented.

Further, the number of zeroes after delta encoding is comparatively small. We

must keep in mind that a high degree of correlation between adjacent variables

does not necessarily result in a zero in most cases for floating point numbers, due

to the highly entropic low-order mantissa bits. We note from Table 4.1 that even

selectively applying a difference operator between compressible bytes (bwcXOR)

89



does not always turn out to be profitable when measuring compression ratio. The

compression ratios of bwc for the datasets t2m and th2 are better than bwcXOR.

In addition, the decompression cost for schemes employing a difference operator

for enhancing compressibility is higher than those without them. However, we ob-

serve that bwcXOR outperforms bwc for the dataset psfc and therefore justifies

the inclusion of bwcXOR in the suite of compression schemes in the framework.

Among all the compression schemes, the bwc schemes with or without the dif-

ference operator turn out to be the best for floating point data when measuring

compression ratios. Our primary intent in this analysis is to establish that the use

of the difference operator in scientific datasets, especially for datasets having a

high degree of correlation, may not always turn out to be beneficial in terms of

improving the compression ratio. Therefore care must to taken to choose the com-

pression scheme selectively, rather than relying on a single compression scheme.

Better compression ratios for the data especially in a setting that involves huge

amounts of simulation data being generated is an absolute necessity. In addition to

reducing storage requirements, better compression also reduces the bandwidth re-

quirement for transmitting the data to storage, or put another way, enables the data

to be delivered faster from the generation site to the storage nodes. However, the

stored data needs to be analyzed (or queried) later, hence efficient retrieval of the
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(a) Dataset t2m

(b) Dataset th2

(c) Dataset psfc

Figure 4.1: Total execution time for data retrieval with different compression schemes,
for three datasets. The datasets are described in Section 4.5.
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data is as important as developing better compression techniques for storage effi-

ciency. Therefore we also need to incorporate query response time while choosing

a compression technique for a given dataset. In Figure 4.1, we show the total exe-

cution time, which includes the I/O time (time taken to retrieve the data from the

disk) and the CPU time (which includes the time to decompress the data, unroll

the data when we perform an XOR operation and reshuffle the data for the bwc)

for different compression schemes that PSTORE supports. We also demonstrate

the I/O time for uncompressed data; the CPU time is zero in this case as we do not

compress or perform an XOR on it. Since compression efficiency is dependent on

the input data size, usually with larger data chunks resulting in better compression

ratios, we perform the experiments on a data chunk size of around 3 MB. We deter-

mined this value empirically by experimenting with the same datasets that we use

in the current experiment and observe the 3 MB value to be similar to that deter-

mined in previous studies [46, 73, 85]. We observe that disk I/O time constitutes

a small percentage of the overall execution time and as a result compression ratio

plays only a small role in reducing the overhead of data retrieval. Instead we pay a

high price for decompressing the data and therefore care should be taken in choos-

ing the appropriate compression scheme if compression ratio is not the only prior-

ity. We note that for t2m the disk space savings due to bwc + zlib (compression
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scheme with the highest compression ratio) is 45.15% compared to 40.69% when

we use lzo in combination with bwc while the latter scheme performs decom-

pression faster. Therefore an application that does not desire much space savings

but does require fast query response time might want to select the latter scheme.

The best compression scheme for the psfc dataset results in 46.81% disk savings

compared to 39.14% when bwc+lzo is used. However the overall execution time

for bwcXOR+lzo is around 2.5× higher than that of the other scheme due to cost

of the unrolling operation. This implies that although using XOR may lead to

higher compression ratios, there is a heavy price to pay when querying data com-

pressed by this scheme. We emphasize that although lzo may not be comparable

to zlib in terms of compression efficiency, it still proves to be a useful backend

compression scheme when query throughput is important.

4.3 Data Partitioning

In this section, we describe the different data partitioning techniques that are

employed in our PSTORE framework. We first describe partitioning along dimen-

sions (which include both spatial and temporal dimensions) followed by bytewise

partitioning. The former partitioning technique alleviates dimension dependency

whereas the latter is useful for achieving better compression ratios and for answer-
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ing certain types of queries.

4.3.1 Partitioning along Dimensions

The multidimensional data is partitioned (or chunked) regularly across both

temporal and spatial dimensions, where all partitions are assigned an almost equal

number of elements. Regular chunking of multidimensional data has been shown

to be an effective partitioning technique for many types of array operations [79]. If

available, we use workload information to choose the chunk size and shape; such

workload-aware chunking can lead to significant speedups for range queries [71].

Sarawagi et al. [71] showed that the average number of block fetches for a given

access pattern can be minimized by choosing the shape of a chunk appropriately.

A block B is defined as the unit of transfer used by the file system for data

movement to and from the storage device. The shape of a chunk is specified

by the tuple (c1, c2, . . . , cn), where ci is the length of the ith dimension of the

multidimensional chunk. A probability is assigned to each query access pattern

independent of the actual position of occurrence in the array and the positions are

assumed to be uniformly distributed across the entire domain. Therefore access

patterns can be represented as {(Pi, si1, si2, . . . , sin) : 1 ≤ i ≤ k} where k is the

number of different classes of queries and Pi is the probability of occurrence of the
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ith class. Queries in this case are specified by an n-dimensional hypercube with

only lengths of accesses in each dimension. The problem with the formulation

for average number of block fetches by Sarawagi et al. [71] is that in some query

instances the computed number of blocks to be fetched is exactly one less than

the actual number of blocks to be fetched. That error is amplified due to the

multiplication of factors across dimensions. Thus the error is significant if it is

made for the majority of the dimensions of a given class. Otoo et al. [63] therefore

modify the objective function as follows:

k∑
i=1

Pi

n∏
j=1

(
sij − 1

cj
+ 1

)
(4.1)

In order to minimize the amount of additional data fetched from the disk, the

chunk shape must satisfy the constraint:

n∏
i=1

ci ≤ B (4.2)

The goal in that prior work was to choose the chunk shape satisfying Eq. 4.2 that

minimizes Eq. 4.1.

However, we note that the effect of compression has not been taken into ac-

count in earlier work, in computing the optimal chunk shape for array storage. We
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want to compress the data before it is stored in secondary storage to reduce the

storage footprint on disk and also to maximize the disk bandwidth utilization. If

the data has to be transferred over a network to/from the storage nodes, compres-

sion helps to reduce the transfer time as well. The compression ratio of standard

compression algorithms like zlib also starts to degrade if the chunks contain too

few bytes; let us denote such a threshold by Bc. This threshold may be different

for different types of data and different algorithms, but can be easily learned given

a sample dataset and an algorithm. Above this threshold, the compression ratio

usually stabilizes to a fixed ratio ρ. To guarantee a good compression ratio, we

place the following constraint on the chunk shape:

n∏
i=1

ci ≥ Bc (4.3)

At the same time, we want the compressed chunk to fit within a multiple of the

disk block size B: ∏n
i=1 ci
ρ

≤ mB (4.4)

The threshold Bc is usually a multiple of the block size B and thus Bc ≤ m′B
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where m,m′ are positive integers. We then have the following relation:

m′B ≤
n∏

i=1

ci ≤ mρB (4.5)

where m′ ≤ m. Our intent here is to show how the constraints can be modified to

incorporate the effect of compression into the optimization process. It is then not

difficult to compute the optimal dimensions using the procedure outlined in [63].

The bytewise precision partitioning technique results in a compressed and an

uncompressed data chunk corresponding to the compressible and incompressible

bytes in a floating point data set. For best performance, this implies that there

should be two different chunking strategies, one for the compressed bytes and

another for the uncompressed ones, tuned according to the query workload. How-

ever, supporting two different chunking strategies would require maintaining two

separate index structures which might prove to be a costly overhead. Another

problem with this approach is that it requires two separate chunking strategies to

chunk two different data representations. As a result, the number of snapshots in

a chunk for the compressed data may be different from that required for the un-

compressed data, which would require buffering and could slow down the overall

chunking process. For these reasons, we do not chunk the data differently in the
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current implementation, nevertheless it would be an interesting study for future

work to compare performance between these two alternatives.

We must keep in mind that with larger chunk sizes there is a higher price for

decompression. Instead we can extend the idea of a two-level chunking scheme [79]

by not compressing the entire chunk, but first partitioning into sub-chunks and

then compressing the sub-chunks separately. We write the entire chunk to the

disk. With this design, we do not have to decompress the entire chunk but only

those sub-chunks that are required to answer the query. With this design, we just

need to ensure that the sub-chunks satisfy Eq. 4.3 and the whole chunk satisfies

Eq. 4.4, maximizing both compression ratio and I/O performance.

4.3.2 Bytewise Partitioning

In many applications, the full precision of the data may not be needed. For

example, the lower order mantissa bits of a floating point number may be truncated

during some types of visualization applications, since the human eye may not

be capable of perceiving such fine differences. The IEEE 754 standard [19] for

floating point arithmetic represents single precision values as a single sign bit, 8

exponent bits and 23 mantissa bits. Representing double precision values requires

a single sign bit, 11 exponent bits and 52 mantissa bits. The mantissa bits in a

98



floating point number represent a fractional component in the overall value and

the lower order bits each contribute an exponentially smaller value to the overall

magnitude of the number as we move from the higher to the lower order bits. This

implies that discarding the lower order bytes in a floating point number (where

the mantissa is stored) introduces less error compared to discarding higher order

bytes. In contrast, truncation by discarding lower order bytes is not a feasible

option for integer data due to the loss of significant bits that is not mitigated by

multiplication by an exponent as for floating point data [48].

Table 4.2 presents the maximum relative error produced based on the number

of mantissa bits retained for both single and double precision floating point data.

Due to the small maximum relative errors introduced due to truncation of man-

tissa bits, it might suffice for applications to only retrieve the higher order k bytes

corresponding to the amount of error the application can tolerate. This format of

data access also requires partitioning the values in bytewise fashion. Therefore

bytewise partitioning of values serves the dual purpose of enabling precision level

partitioning and enhancing the compressibility of the data. While partitioning the

data bytewise we always store the higher order two bytes together as they contain

the sign and the exponent bits and truncation of exponent bits would introduce un-

acceptably high error rates. Also due to the expected high degree of correlation in
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the data, the higher order bits (which include the sign, exponent and higher order

mantissa bits) of adjacent variables are likely to be similar. As the exponent bits

in both single and double precision numbers span the first two higher order bytes,

it is beneficial to store them together to enhance the compressibility of the data.

However, partitioning the numbers bytewise requires reconstructing them when

retrieving the data, which will introduce some overhead. When partial precision

data is retrieved, the missing bytes are replaced with a fixed pattern as defined by

the user.

4.4 Query Processing

We support range queries in the query processing module of PSTORE. For re-

trieving the data for a range selection query, PSTORE determines the overlapping

chunks in the query range and locates the data chunks on disk using the index. Af-

ter the chunks are retrieved from disk, overlap with the sub-chunks within every

chunk is determined from the query region. The overlapping sub-chunks are then

extracted by decompressing them (if they were compressed in the data ingestion

state) after determining their location from the header information that was stored

along with the each chunk.

Decompression is an expensive operation and results in CPU processing time
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that can be even more than the time for I/O operations. We reduce this overhead

by parallelizing the decompression. Sub-chunk decompression can be parallelized

as every sub-chunk can be decompressed independently once a chunk is retrieved

from disk. However, this process does not always lead to a linear speedup with

the number of CPUs available. This is because not all the sub-chunks need to be

extracted from a chunk, as they may not overlap with the query region. Further,

since the process of sub-chunk extraction is overlapped with the chunk retrieval

from disk (as described in Section 4.4.2), the overall processing time decreases

with increasing parallelism until the CPU processing time becomes equal to the

I/O processing time.

Significant
Bytes

Max.
Error%

(SP)

Max.
Error%

(DP)
2 2.6e-1 3.1e0
3 1.0e-3 1.2e-2
4 - 4.8e-5
5 - 1.9e-7
6 - 7.3e-10
7 - 2.8e-12

Table 4.2: Maximum relative error due to reduced precision of IEEE 754 single and dou-
ble precision floating point numbers

For approximate query processing, the application retrieves fewer bytes from

disk, since the target application is able to tolerate lower precision. So the over-

all processing time should be lower compared to retrieving all the bytes for each
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(a) Dataset t2m

(b) Dataset th2

(c) Dataset psfc

Figure 4.2: Compression Ratio for different values of byte-precision for single precision
datasets
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data element from disk. Moreover, for partial precision data retrieval, usually the

higher order bytes for the data elements are retrieved, which are generally more

compressible than the lower order bytes. As a result the I/O operations are less

expensive than when retrieving all (or only lower order) bytes of the data elements.

(a) Retrieval time using bwc+zlib and bwc+lzo

(b) Retrieval time using bwcXOR+zlib and bwcXOR+lzo

Figure 4.3: Partial (upper 2 bytes) retrieval time vs. full (4 bytes) retrieval time for differ-
ent compression schemes for dataset T
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4.4.1 Two-level chunking with compression

Larger chunks help amortize disk seek overhead but pose a problem when the

query region is a small subset of the chunk. We do not have random access to in-

dividual elements inside a chunk and therefore it is wasteful to process additional

elements when the actual query region is a small contiguous fraction of the entire

chunk. Smaller chunks however, reduce the average processing time for access-

ing an element in a chunk but introduces overheads from additional disk seeks.

Two-level chunking seeks to balance the two factors. A larger chunk is split into

regular sized sub-chunks so that the overall processing overhead is minimized.

The larger chunks are the units of disk I/O while the smaller chunks form the unit

of array processing. Two-level chunking has been studied previously [70, 75, 79],

but without including the effects of compression. There are several strategies we

may choose to apply when using two-level chunking with compression. One strat-

egy is to compress the chunks before writing them to disk. The drawback of this

approach is that in the case of range queries, it is seldom the case that one needs

to access all the data elements contained in the larger chunk. As a result, we

must pay the cost of decompression for the additional data that is not needed. As

we observed previously, decompression is a relatively costly operation, therefore
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it might be beneficial to compress the smaller sub-chunks individually and then

combine them into a chunk before writing to the disk. Two-level chunking also

opens up parallelization opportunities by allowing us to process the sub-chunks in

parallel and thus speed up query processing. In our implementation, we follow a

regular chunking scheme for both chunks and sub-chunks, as this chunking strat-

egy has been shown to yield the best performance compared to irregular chunking

schemes [79] and determine the optimal chunking layout empirically.

4.4.2 Chunk prefetching

For long running range queries, where multiple chunks may be accessed, we

can improve performance by hiding I/O latencies by overlapping them with CPU

processing time. Since a chunk access is sequential, we want to process one chunk

at a time and overlap the I/O access of the next chunk with CPU processing of the

current chunk. With two-level chunking, we can further process the sub-chunks

in an embarrassingly parallel fashion as all the computations related to each sub-

chunk can be executed independently. This is advantageous because we require

large chunks to amortize the I/O time and simultaneously the presence of a large

number of sub-chunks in a chunk enables higher throughput.
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4.5 Experimental Results

We evaluate the performance of the different components that constitute PSTORE.

We use a real dataset for this purpose which is based on the Regional Earth Sys-

tem Model (RESM) to provide climate and environmental information for a wide

range of end users with drastically different data demands. RESM is based on

the state-of-the-art regional climate model CWRF [4] that predicts mesoscale cli-

mate processes, including atmosphere, hydrology, crop, soil, air and water quality

and their interactions. The dataset contains numerous variables each of which

records measurements of parameters such as temperature, pressure, relative hu-

midity, wind velocity, actual biogas emissions, CO concentration, etc. The mea-

surement is either performed on a region of space defined by a 2D grid or a 3D

grid and is recorded periodically over a fixed time duration. Each such grid is

termed a snapshot at a particular instance in time. We perform our evaluation on

both 3D and 4D datasets, which are described below.

3D dataset: Each snapshot in this dataset is a 138×195 array recorded over a

3 hour interval, so there are 8 snapshots per day. Currently, we have simulation

data for one month, which has a total 240 snapshots for all the variables. We used

three variables (i) t2m: air temperature at 2m, (ii) th2: potential temperature at
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2m, and (iii) psfc: surface pressure, for the purpose of experimentation with 3D

datasets.

4D dataset: This dataset differs from the 3D dataset in that it has an added

height dimension, which makes each snapshot a 138×195×35 matrix. We used

two variables from this 4D dataset T and P which denotes perturbation tempera-

ture and perturbation pressure, respectively.

The total size of the dataset is around 140 GB and each measurement is stored

as a single-precision floating point variable. The dataset is represented in the

netCDF format [16].

We performed our experiments on an Intel Xeon E7450 (2.4 GHz). This ma-

chine has 4 sockets each having 6 cores with a total of 24 threads and a 48 GB

main memory.

4.5.1 Effect of Bytewise Partitioning on Compression

We study the effect of bytewise partitioning on the compression ratio. While

reading partial or reduced precision data from the disk, we always read the higher

order bytes which contain the sign, exponent and a subset of the mantissa bits.

For single precision data, we have two possibilities for reduced precision data,

either 16 bits (upper 2 bytes) or 24 bits (upper 3 bytes). From Figure 4.2 we
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(a) Single precision dataset: t2m & psfc

(b) Double precision dataset: obs info.trace &
obs error.trace

Figure 4.4: Throughput of shift and copy reconstruction technique for (a) single and
(b) double precision datasets
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observe that for every compression scheme, the compression ratio of the higher

order 2 bytes is best. This is because there is a high degree of correlation between

the adjacent variables in this dataset and this correlation is captured best by the

sign, exponent and the higher order mantissa bits, which causes these values to be

very similar or equal for much of the data. We also observe that the compression

ratio for 16-bit precision is almost 5× better than for 24-bit precision. The large

difference can be explained by the fact that lower order mantissa bits are highly

entropic, so are responsible for the decrease in compression ratio. Therefore, an

application that can tolerate 0.26% relative error in precision (see Table 4.2) can

achieve a large savings in disk space and faster query response times due to the

high compressibility of the data at reduced precision.

Figure 4.3 shows query retrieval times for full and partial precision data for

different partitioning parameters with different compression schemes. Figure 3(a)

shows the retrieval times when the upper 2 bytes of data are compressed with

bwc+zlib and bwc+lzo, and Figure 3(b) shows the retrieval times when XOR-

ing had been applied during compression and unrolling must be done during query

retrieval. The lower 2 bytes are not compressed because they are highly entropic.

We observe that the partial query retrieval for bwc+zlib takes around 70% of

the full query retrieval time across all partition configurations whereas the partial

109



query retrieval time is 50% of the full query retrieval time for bwc+lzo, since the

decompression time for bwc+zlib is higher than for bwc+lzo. From Figure 4.2

we see that the compression ratio for zlib is higher than for lzo. Moreover

lzo fails to compress the data when k = 20, i.e., when sub-chunks are smaller,

and therefore we have no data points at that value of k. Figure 3(b) shows that

using XOR and unrolling introduces significant overhead in the retrieval process,

which causes the partial query retrieval time to increase to around 80% and 70%

of the full query retrieval time for bwcXOR+zlib and bwcXOR+lzo schemes,

respectively.

However, bytewise partitioning introduces some overhead due to the recon-

struction required to build a floating point number from its individual bytes. We

study the overhead for two different types of reconstruction techniques, measuring

overall throughput. The first technique is to reconstruct the floating-point number

by byte shifting while the second technique copies the individual bytes to their re-

spective offsets in memory to reconstruct the original number. Figure 4.4 presents

the throughput obtained while reconstructing the bytes using both the shift and

the copy method. We observe that the shift method outperforms the copy method

in the throughput obtained. This is because the copy method involves moving

many single or small groups of bytes (if subsequent bytes in a variable are kept
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together in a partition) to the target location requiring multiple byte copy opera-

tions with each copy operation associated with some fixed overhead. In case of

byte shift operation the entire data element (4 or 8 bytes) is constructed in-place

by byte shifting (which is a cheap operation) and then assigned to the target vari-

able requiring a single move operation. As previously noted, we reconstruct at

least the most significant two bytes for both single and double precision data. The

throughput gain is at least 54% and 17% when reconstructing the two most signif-

icant bytes, for single and double precision data respectively. We also note that,

not surprisingly, the throughput gain decreases with an increase in the number of

bytes reconstructed.

4.5.2 Two-level Chunking

We demonstrate experimentally the variation in query response time as the

number of sub-chunks and chunks for a given variable in the dataset is varied.

We also show that our proposed approach to two-level chunking with compres-

sion outperforms single-level chunking with compression. The experiments are

performed on both 3D and 4D datasets.

We compare single-level (1L) chunking to two-level (2L) chunking in the con-

text of compression. We measure the performance of slicing queries for 1000
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Figure 4.5: Performance of array slicing queries for single-level and two-level chunking.

(a) 3D dataset t2m (b) 3D dataset psfc

Figure 4.6: Total execution time (CPU + I/O) for array slicing queries for single-level (1L)
and two-level (2L) chunking with different partition numbers on two different datasets

queries generated uniformly at random for a 3D dataset. For experiments involv-

ing 4D datasets, we restrict the number of such queries to 100, as this dataset is

bigger than the 3D dataset by around an order of magnitude. The 3D dataset has

two spatial dimensions while the 4D dataset has three of them, with each dataset

having a temporal dimension denoting the timestamps in which the simulations

were run. In the experiments, each spatial dimension is k-way partitioned, i.e.
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(a) Dataset t2m: k = 8, t = 16 (b) Dataset t2m: k = 16, t = 16

Figure 4.7: Query performance (CPU + I/O time) varying chunk size, for the 3D dataset
t2m

each dimension is divided into k partitions. Therefore each snapshot has kd sub-

chunks, where d is the number of spatial dimensions. For example, when k = 4

and d = 2, 16 × 16 snapshot is partitioned into 16 (42) sub-chunks, where each

sub-chunk is stored in a separate file. The value t gives the number of temporal

dimensions or snapshots that will be included in each file. If t = 16, then each

file has 4 × 4 × 16 elements, which we refer to as single-level chunking. This

configuration can also be denoted by the tuple (k, t). For two-level chunking, we

specify an additional parameter s, which denotes the number of chunks to parti-

tion the data into. In other words, it also indicates the number of sub-chunks that

would be allowed in a chunk. The 16 sub-chunks that were created by 4-way par-

titioning before, can be viewed as a 4 × 4 array of sub-chunks. In a similar way,

each dimension in this array is now s-way partitioned. For s = 2, the 4× 4 array

is partitioned into 4 (2 × 2) chunks and each chunk is stored in a separate file.
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We denote a two-level partitioning by the tuple (k, t, s). Although each spatial di-

mension is partitioned equally into k or s parts, our framework supports unequal

partitioning across different dimensions as well.

Figure 4.6 shows a breakdown into CPU time and I/O time for the 3D datasets

t2m and psfc. For 3D dataset, the chunk is always 2-way partitioned (s = 2) and

the number of snapshots in a chunk is 16. From Figure 4.5, we observe that the

performance of the 1L and 2L chunking strategies is similar for smaller number

of partitions. Since the number of partitions is small, the number of chunks to be

written to disk is small, resulting in fewer disk seeks. However the performance

of the 1L strategy degrades with an increase in the number of partitions. This is

because of the increase in disk seeks for the 1L strategy, whereas the number of

disk seeks remains almost constant for all the configurations for the 2L strategy.

This is due to the use of full chunks as the unit of disk access for the 2L strat-

egy. The best performance for the set of partitions selected is achieved for the (8,

16, 2) and (16, 16, 2) configurations for the 3D dataset, as can be observed from

Figure 4.5. Increasing the number of sub-chunks beyond 16 decreases the perfor-

mance of the 2L strategy. The decreased performance comes from an increase in

CPU processing time, due to the overhead of decompressing a large number of

relatively small sub-chunks.
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We study the effect of variation in chunk size in Figure 4.7 and Figure 4.8

by fixing k and t. We observe that CPU time remains almost unaffected by the

change in the chunking parameters, confirming that using chunk as the unit of disk

I/O does not affect CPU time significantly. For the 3D dataset, s = 2 turns out to

be the optimal choice of chunk partition.

(a) Dataset T: k = 8, t = 16 (b) Dataset T: k = 16, t = 16

Figure 4.8: Query performance (CPU + I/O time) varying chunk size for the 4D dataset T

This value of s is best for different values of k and t, as can be seen from

Figure 7(a) and 7(b). Figure 8(a) and 8(b) show the variation of s for the 4D

dataset. In this case, s = 5 is the optimal choice for chunk partition. In general,

the optimal value of s for a given dataset can be found by analyzing a sample of

the dataset in the pre-processing step.
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(a) Dataset T

(b) Dataset P

Figure 4.9: Strong scalability of the query retrieval framework for 4D datasets for different
partition configurations
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4.5.3 Parallelizing Query Retrieval

In a two-level chunking scheme, the sub-chunks can be processed in paral-

lel once the chunks intersecting with the query region are retrieved from disk.

However, these two processes are performed in a pipelined fashion using double

buffering by default. To see this, we executed the query framework with partition

parameters (8, 8, 4) and (8, 16, 4), since those configurations were the best param-

eters for the 4D dataset for the given query workload, determined empirically. We

observe from Figure 4.9 that the framework does not scale beyond 8 cores/threads

for these queries. As the number of core increases, the compute time decreases

and becomes equal to the I/O time, which remains fixed irrespective of the in-

crease in the number of cores. The application cannot perform better once the I/O

time becomes greater than or equal to the compute time for the queries. For the

parallelization process, we assign each compute thread a sub-chunk to perform

the decompression process in parallel, to remove the performance bottleneck of

the expensive decompression operations. However, we note that there are still

load balance issues that limit performance even if we assign n threads evenly to

the kd sub-chunks (n ≤ kd, d = 3 in this case). It is likely that at some times

in executing the queries, the number of sub-chunks to be processed will be less
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than n. This is because a query region might intersect with too few sub-chunks in

some cases, or that different sub-chunks take different amounts of time to process.

Load imbalance is therefore another reason why the application may not scale lin-

early with increasing number of threads, if overall performance is limited by CPU

computations rather than I/O time.

Figure 4.10: Effect of prefetching and double buffering on query performance with dif-
ferent partition configuration (k) on the 4D dataset P

4.5.4 Chunk Prefetching

Figure 4.10 shows the reduction in query execution time due to chunk prefetch-

ing. Chunk prefetching is achieved by using double-buffering in memory with the

chunk to be processed next prefetched and stored into memory while processing

for the current chunk takes place from a different buffer. Additional buffers could

be employed if more than one disk is available. To perform the prefetching, we
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use two separate types of threads; several dedicated solely to CPU processing (one

per available CPU/core) while the other is dedicated to disk I/O. This straightfor-

ward optimization hides the disk access time behind the processing time, as long

as the processing time dominates the I/O time, as we have seen is true in most

cases we have experimented with. The current experiment is performed on the 4D

dataset where the partition parameter k is varied from 4 to 20 in steps of 4, fixing t

and s at 16 and 4, respectively. From Figure 4.10 we observe that it is possible to

completely overlap the disk access time with the CPU processing time via chunk

prefetching.

4.6 Conclusion

In this chapter, we presented the design, implementation, and evaluation of

PSTORE, a no-overwrite storage manager for managing array data generated dur-

ing scientific simulations. The data ingestion module in PSTORE contains a

suite of compression techniques designed to handle diverse types of floating point

datasets generated during scientific simulations, thereby permitting applications

the flexibility to choose the most appropriate compression technique. PSTORE

also supports approximate query processing by retrieving partial precision data if

that is sufficient for the application needs, and contains several other optimiza-
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tions for efficient query execution. Our extensive experimental evaluation illus-

trates that different compression techniques work better for different datasets, and

further that using bytewise partitioning and two-level chunking can lead to signif-

icantly higher compression ratios and lower query execution times respectively.
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Chapter 5: RSTORE: A System for Managing Datasets with Keyed

Records

As demonstrated in the challenges in Section 1.2, the techniques meant for

unstructured or array datasets are not suitable for datasets with keyed records.

In this chapter, we describe RSTORE, a system aimed at managing datasets with

keyed records and executing queries efficiently over the data. We start with a brief

description of the underlying data model, followed by a description of the retrieval

queries we aim to support. Thereafter, we describe briefly the individual system

components to provide an overview of the overall system architecture along with

a set of baselines and discuss the trade-offs under different settings. Next, we

define the problem formally and discuss the algorithms for solving the problem

and demonstrate the efficiency of the algorithms through extensive experiments.
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5.1 Data and Query Model

Data Model. The primary unit of storage and retrieval in our system is a record,

which may refer to a tuple/row in a tabular dataset, a JSON document in a docu-

ment collection, or a time series. A record is considered to be immutable, and any

change to it results in a new version of the record. We make no assumptions about

the structure, type or the size of a record, except for assuming the existence of a

primary key, denoted Ki, that can be used to uniquely identify a specific record

within a collection of records. For simplicity, we assume there is a single such

collection (also called a dataset) that the system needs to manage, that is being

modified simultaneously by a team of users over time in a collaborative fashion,

resulting in a set of versions over time. We assume there is a single root version

of the dataset, from which all other versions are derived (an empty root version

can be added to handle the scenario where there are multiple starting collections).

Let V = {V0, V1, . . . , Vn−1} denote the set of versions stored in the system;

each version is identified uniquely by a version-id (either an auto-incremented

value, or hashes as in git). A new version is derived from an existing version

through an update operation or a transformation, that essentially boils down to

modifying/deleting existing records and/or adding a new set of records. We denote
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the set of changes from Vi to Vj by ∆i,j and refer to it as the delta from Vi to Vj .

Note that in this case, ∆i,j is symmetric, i.e., ∆i,j may be used to derive Vi from

Vj as well, thus making ∆i,j = ∆j,i. These derivations are encoded in the form of

a directed version graph.

Composite Keys. Since a record may be unchanged from one version to the

next, to be able to refer to a specific record within a specific version, we use

a composite key: 〈primarykey, version-id〉, where the second part refers to the

version-id of the version where the record was created. This allows us to uniquely

reference records within a global address space. We chose to use version-id of the

appropriate version instead of an auto-incremented value as the latter introduces

additional synchronization overhead in a decentralized setting with no obvious

benefits.

Query Model. In a collaborative setting with large datasets, the query workload

may consist of a variety of queries, with differing characteristics, as shown in

Section 1.1.

• Record Retrieval: Analogous to a key-value store, a user/application may want

to retrieve a record with a specific primary key K from a specific version V .

Note that we cannot simply retrieve the record with the composite key 〈K,V 〉,
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Figure 5.1: An Example Version Graph with 5 Versions

since the record may have originated in one of the predecessor versions to V .

This, in fact, forms a major challenge in this setting.

• Version Retrieval: Analogous to typical VCS, here the goal is to retrieve the

entire version given a version-id, i.e., all the records that belong to the version.

• Range Retrieval: This query enables retrieving a version partially, by specify-

ing a range of primary keys and a version-id.

• Record Evolution: Finally, we may want to analyze the evolution of a record

from its point of origin to the current state of the system. In other words, given

a primary key, we want to find all the different records with that primary key

across all versions.

Example 7. Fig. 5.1 displays a version graph with five versions V0 (root), V1, V2, V3, V4,
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with a total of nine distinct records.

We create composite keys for the records in V0 by adding V0 as the second com-

ponent to the keys. V1 is derived by modifying K3 of V0 and adding a new record

〈K4, V1〉. In this case ∆0,1 = {+〈K3, V1〉,+〈K4, V1〉,−〈K3, V0〉}. V2 is derived

from V0 (and after V1) by modifying K3 as well, adding a new record 〈K5, V2〉,

and deleting record 〈K2, V0〉. V3 is derived next by deleting record 〈K2, V0〉 from

V1. Finally, V4 is derived by modifying 〈K3, V1〉 of V2. Note that the derived ver-

sion forms the version identifier component in the composite key, which is also the

version in which the particular record appears for the first time. To retrieve a spe-

cific record, say K3 from version V3, it is not sufficient to look for composite key

〈K3, V3〉 (which does not exist), rather, we need to maintain a version-to-record

mapping (Fig. 5.1), that must be consulted to identify the composite key to be

retrieved (〈K3, V1〉 in this case).

5.2 Key Trade-Offs

We begin with a brief discussion of the key trade-offs in storing such versioned

datasets in the cloud, and then evaluate 3 baseline options with respect to those

trade-offs.
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• Storage and compression. There are two considerations here. First, we would

prefer to only store a single copy of a record that appears in multiple versions.

This however complicates performance of full or partial version retrieval queries

since the requisite records may be stored all over the place. Second, we would

like RSTORE to handle records of varying sizes, from a few bytes to a few MBs.

In the latter case, there may be small differences between two different versions

of a record (e.g., only a single attribute may be updated in a large JSON docu-

ment). One way to exploit this overlap is to store the two versions of the record

together in a “compressed” fashion, with specific compression technique cho-

sen according to the data properties (e.g., one may store “deltas” (differences)

between the two records, or use an off-the-shelf compression tool that in effect

does the same thing). Such compression, however, negatively impacts the query

performance by restricting the data placement opportunities.

• Query performance. Different partitioning and layout schemes are appropriate

for the different classes of queries listed above. Record evolution queries are

best served by grouping together all the different records with the same primary

key, whereas full version retrieval queries prefer grouping together all records

that belong to the same version. A general-purpose system must offer knobs that

allow adapting to a specific query workload.
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• Online updates. Another important consideration is the ability to handle up-

dates, i.e., new versions being added. Ideally the cost of incorporating a new

version is proportional to the size of the update itself, i.e., the difference be-

tween the new version and the version it derives from.

Next, we discuss a few baseline approaches that serve as layers on top of a key-

value store, and how they fare w.r.t. these trade-offs.

• Single address space: Perhaps the simplest option is to store the records di-

rectly, using the composite key as the key for the underlying key-value store.

Although simple to implement and offering best performance for updates (in-

gest), this approach has several disadvantages. First, there is no way to use

compression to reduce storage requirements, since different records with the

same primary key are stored separately. Second, given a specific version V and

a specific primary key K, retrieving the record with that primary key from that

version (if present) requires an additional index. This is because of the way

composite keys are generated – we first need to identify the predecessor version

to V where that primary key was last modified. This complicates the execution

of all the queries listed above. Not only does the index have to be repeatedly

consulted, we may need to issue many queries against the backend key-value

store.
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• “Sub-chunk” approach: Here, we group together all the records with the same

primary key K, and store it in compressed fashion using K as the key; we call

such a group of records with the same primary key a sub-chunk. This approach

has the best storage cost and best performance for record evolution queries (and

possibly single record queries, if the average number of different records per

primary key is small). However, full or partial version retrieval queries require

retrieving significant amounts of irrelevant data, especially if the data is not

highly compressible (i.e., different records with the same primary key are more

different than similar). Further, ingest is expensive since each of the relevant

sub-chunks must be retrieved, de-compressed, and compressed after adding the

appropriate record.

One alternative here is to create multiple sub-chunks per primary key, which

results in retrieving less data and also speeds up online updates (the “single

address space” approach is a special case). However, this negates much of the

simplicity of the approach, since additional indexes need to be used to identify

the specific sub-chunks that contains the data for a given version.

• Delta approach: Here, analogous to how version control systems like git work,

for each version, we store the difference from its predecessor version, i.e., the

“delta” that allows us to get to the version from the predecessor version. The
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predecessor version itself may be stored as a delta from its predecessor and so

on, forming delta chains. The main advantage of this approach is that updates

are easy to handle, especially since we assume that a new version is presented

as a delta from its predecessor version. Assuming that the delta is computed by

exploiting similarities at the level of records, this approach naturally accrues the

benefits of compression. However, performance of key-centric queries, i.e., spe-

cific record queries and record evaluation queries, is very poor for this approach.

Even partial retrieval queries are difficult to do with this approach.

Table 5.2 summarizes some of these trade-offs, by showing expressions for vari-

ous different costs under some simplifying assumptions. Specifically, we assume

a version with mv records, with a sequence of changes each updating a fraction

d of the records; thus the version graph here is a “chain”. Note that this is a

worst-case scenario for the delta approach; however, the main problem with the

delta approach is partial or single record retrieval queries, where it has abysmal

performance.

Too Many Queries Problem. None of the baseline approaches are thus appropri-

ate for storing and querying a large number of versions of keyed records. Further,

all of these approaches require making a large number of queries to the underly-

ing key-value store for full or partial version retrieval. This is because the records
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belonging to a specific version V cannot be easily described. For example, in

the first approach (and the partial sub-chunk approach), we need to use separate

indexes to identify the “keys” that must be retrieved, and all of those must be re-

trieved separately from each other (efficient support for large IN queries from the

key-value store may help, but only shifts the problem to the key-value store). Sim-

ilarly, in the Delta approach, all the requisite deltas must be retrieved one-by-one.

Chunk size 1 10 100 1000 10000
Time (in secs.) 65.42 14.18 3.10 1.07 0.56

Table 5.1: Benefits of “chunking”

To validate our claim, we performed a simple experiment using Apache Cas-

sandra. Each version in the dataset has about 100K 100-byte records, with a total

of 1 million unique records stored in the KVS. The query here is to reconstruct

a version, i.e., we need to retrieve around 100K records for every version recon-

struction query from the KVS. In the naive setting, we maintain a chunk of unit

size and issue around 100K requests to the KVS. In comparison, if we create

larger sized chunks using a random assignment of records to chunks, we need to

retrieve more number of chunks than exactly required to recreate a version. How-

ever the overhead of retrieving additional chunks and scanning through them to
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Algorithms Storage Space Random Version Point Query
(total data, #queries) (total data, #queries)

IND nmvs mvs, mvs/sc sc, 1

DELTA mvs(1 + cd(n− 1)) mvs

(
1 +

cd(n− 1)

2

)
, n/2 mvs

(
1 +

cd(n− 1)

2

)
, n/2

SUBCHUNK mvs(1 + cd(n− 1)) mvs(1 + cd(n− 1)), mv s+ cd(n− 1)s, 1
SA mvs(1 + d(n− 1)) mvs, mvs s, 1

Table 5.2: Comparing the different options for storing versioned records along different
dimensions under some simplifying assumptions (IND: Independent w/chunking, SA:
Single Address Space). n = number of versions (arranged in a chain); mv = number of
records in a version (constant), d = fraction of records that are updated in every version
update, c = compression ratio (typically c, d � 1), s = size of a record, sc = size of a
chunk. For the queries, the table shows: amount of data retrieved, number of queries.
This analysis assumes the cost of consulting any indexes is negligible.

extract the records is significantly less. Table 5.1 illustrates the significant bene-

fits of reducing the number of queries made to the key-value store. Unfortunately,

because of the aforementioned problem, this problem must be solved by explicitly

creating “chunks” of records, where records belonging to the same set of versions

are grouped together.

5.3 Architecture

Figure 5.2 shows the high-level architecture of our system. In what follows,

we describe the primary components that constitute our system, namely (i) Data

Ingest Module, (ii) Data Placement Module, and (iii) Query Processing Module,

as well as the different design choices that were made while building this system.
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Figure 5.2: System Architecture

Backend Key-value Store Our system is intended to act as a layer on an extant

distributed key-value store, in order to leverage the significant research and im-

plementation that has gone into designing scalable, fault-tolerant systems. Our

implementation specifically builds on top of Apache Cassandra, but we only as-

sume basic get/put functionality from it. As shown in Figure 5.2, the basic unit

of storage in the key-value store a chunk of records, with the keys called chunk-

ids; chunk-ids are generated internally and are not intended to be semantically

meaningful. Each chunk is divided into sub-chunks, each of which corresponds

to records with the same primary key and are stored in a compressed fashion; sub-

chunks often may contain only one record. In addition, a chunk also contains a

mapping that indicates, for each record, which versions it belongs to (as a list of

version-ids). Such a mapping is essential since a record may belong to multiple

versions, and as discussed above, there is no easy way to identify which records
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belong to which versions.

This design was motivated by the desire to address the shortcomings of the

baseline approaches discussed above, by having several tuning knobs that could

be used to adapt to different data and query workloads. The main reason behind

chunking was to address the problem of too many queries. By keeping records that

need to be retrieved together in a single chunk, we minimize the number of queries

that need to be made to the backend store. At the same time, through appropriately

setting the parameters, our system can easily emulate the behavior of the different

baselines discussed above. For example, the “sub-chunk” approach can be easily

emulated by forcing the partitioner to put all records with the same primary key in

a single chunk, and keep different primary keys in separate chunks. However, in

general, for mixed workloads, a hybrid solution ends up being ideal, where each

chunk contains a few sub-chunks, each containing a subset of the records with the

same primary key; such a partitioning not only reduces storage requirements by

exploiting compression, but also reduces the number of queries that need to be

made to the back-end.

Example 8. Table 5.3 shows two different partitionings for the data from Ex-

ample 7. To reconstruct version V1 which contains 〈K0, V0〉, 〈K1, V0〉, 〈K2, V0〉,

〈K3, V1〉, 〈K4, V1〉, we must retrieve chunks C0, C1, C2, C3 for P0, and chunks
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C0, C1, C2 for P1 (using the indexes discussed below). Overall, P1 reduces the

average number of chunks to be retrieved per version by 0.6, and is thus a better

option.

Partition P0 P1

C0 {〈K0, V0〉, 〈K1, V0〉} {〈K0, V0〉, 〈K1, V0〉}
C1 {〈K2, V0〉, 〈K3, V0〉} {〈K2, V0〉, 〈K3, V0〉}
C2 {〈K3, V1〉, 〈K3, V2〉} {〈K3, V1〉, 〈K4, V1〉}
C3 {〈K4, V1〉, 〈K5, V2〉} {〈K3, V2〉, 〈K5, V2〉}
C4 {〈K3, V4〉} {〈K3, V4〉}

Table 5.3: Different Partitionings for Data

Application Server (AS) The application server serves as the interface between

the clients and the backend KVS, and comprises of three main modules described

next. It uses the KVS for persisting any of its data structures. Multiple copies of

AS could co-exist, with the standard caveat that any data structures must be kept

consistent across them (not currently supported in RSTORE).

AS currently provides a basic set of VCS commands. A user can pull any

specific version by specifying its ID, or may pull the latest version in a branch

(including the main master branch). Unlike a typical VCS, AS also provides the

ability to retrieve partial versions or evolution history of a specific key as discussed

in Section II(A). Any changes made by the user can be committed as a new version

as discussed below.
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Data Ingest Module Whenever a user commits a version, a version-id is gener-

ated by the system and is returned to the user after the commit process is complete.

Even if two versions committed are exactly the same, the system will generate

different version-ids for the two different commits (to account for different users,

times at which they are committed, etc.). Due to the relatively large sizes of the

datasets, the system requests only those records from the client that have changed,

which in essence is the delta from the predecessor version. Thus the delta in-

cludes those records which have changed w.r.t. the previous version, records that

are newly added and records that are deleted. If the client is unable to provide the

delta, then the server needs to retrieve the prior version and perform a diff opera-

tion to check which records have been modified. However, in most settings, it is

reasonable to assume that the client can do this.

Since updating the key-value store, and all the indexes, for every new version

would be impractical, the received deltas are kept in a separate storage area, that

are processed in a batch fashion by the data placement module.

Data Placement Module This module is responsible for organizing the ingested

data for efficient query processing. Once all the tuples ingested have been as-

signed a composite key, the data storage module scans through the records and

places them into appropriate chunks using the underlying partitioning algorithm.
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In addition to placing the records, it is also responsible for constructing the version-

record index for every chunk constructed and the version-chunk index that resides

with the client for retrieving the versions. The chunks and associated indexes are

stored in the KVS separately, in two distinct tables.

Indexes and Query Processing Module After the partitioning is completed, the

system needs to know which chunks must be retrieved to extract the records be-

longing to a version. As discussed above, such an index is required even in

the simplest approach, to be able to store any specific record only once even

if it appears in multiple versions. Figure 3(a) depicts the entire mapping, de-

notedM|K|×|V |×|C|, between primary keys, version-ids, and chunks, that captures

where each record is stored, and which versions contain it. The cells of this 3-

dimensional matrix are annotated with version-ids that are required to construct

the appropriate composite keys. Specifically, the entryM(Ki, Vj, Ck) = Vl if a

record with composite key 〈Ki, Vl〉 is placed in chunk Ck and belongs to version

Vj; otherwise the entry is set to 0. This matrix is expected to be very large and

highly sparse, but the information it depicts must be somehow maintained, either

implicitly or explicitly, in the system.

We maintain this information as follows. First, with each chunk in the backend

key-value store, we maintain the slice of the matrix corresponding to that chunk,

136



MCi . This allows us to extract the records that belong to any specific version

after the chunk has been retrieved from the backend key-value store. In aggregate,

all of these “chunk maps” contain exactly the same information asM|K|×|V |×|C|.

Note that, the chunk maps will exploit the sparsity of the 2D matrix by using a

value list representation of the matrix.

Second, in order to be able to decide what chunks to retrieve for a given query,

we maintain two lossy projections of the matrix: (1) a mapping between primary

keys and chunks that tells us which chunks contain records for a given primary

key, and (2) a mapping between versions and chunks that tells us which chunks

contain records from a given version. We use in-memory hashmaps to store these

mappings.

Query processing itself is straightforward given these indexes. We briefly sum-

marize it below.

Version Retrieval: The second projection is consulted to identify which chunks

need to be retrieved, and those chunks are retrieved by issuing queries in parallel

to the backend store. After the chunks are retrieved, the chunk maps are used to

extract the records that belong to that version.

Record Evolution: Similar to the above but the first projection is used instead.
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Range Retrieval/Record Retrieval: Similar to “index-ANDing”, both the pro-

jections are used here to obtain two lists of chunks, and all chunks in the intersec-

tion are retrieved from the backend store. Note that, it is possible for us to retrieve

a chunk and, after analyzing the chunk map, discover that it contains no records

of interest – this is an artifact of these being lossy projections.

The size of the version-to-chunk mapping is essentially the sum total version

span across all versions, assuming the mappings are stored as adjacency lists. For

dataset C0 in Table II (one of our bigger datasets), this results in a total index size

of 11.25MB, compared to a total dataset size of 16GB after deduplicating. The

size of the primary key-to-chunk mapping is governed by the number of primary

keys and the number of different chunks they belong to, which in turn is depends

on the size of the chunk and the degree of compression. The size of the map

for dataset C0 ranges from 25MB to 75MB. Thus even with significantly larger

datasets and numbers of versions, these indexes can easily fit in the large main

memory machines that are available today. In fact, with larger datasets, we would

typically use larger chunk sizes and sub-chunk sizes, both of which directly lead

to lower index sizes. We further note that these sizes are before compressing the

indexes themselves – standard techniques from inverted indexes literature can be

used to compress the adjacency lists without compromising performance.
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C3 0 0 0 V4 0 0

C2 0 0 0 0 0 0 0

C1 0 0 0 0 V1 0 0 0

C0 0 0 0 0 0 0 0 V2 0

V4 V0 V0 0 0 0 0 0 0 0 0

V3 V0 V0 0 0 0 0 0 0 0

V2 V0 V0 0 0 0 0 0 0

V1 V0 V0 0 0 0 0 0

V0 V0 V0 0 0 0 0

K0 K1 K2 K3 K4 K5

(a) (b)

Figure 5.3: (a) Entire 3D mapping; (b) Lossy projections maintained as indexes

5.4 Formalizing the Optimization Problem

The key computational challenge here is deciding how to partition the records

into chunks to minimize the storage cost and maximize the query performance (or

minimize the retrieval costs). As we discussed in Section 5.2, both the amount of

data retrieved and the number of chunks retrieved are crucial performance factors

from the perspective of querying, whereas compressing records by putting differ-

ent records with the same primary key in the same chunk is crucial for minimizing

storage costs. To achieve predictable performance, we made the following design

decision.

(Fixed chunk size assumption). All chunks are assumed to be approximately the

same size, denoted C, with variations of upto 25% allowed.
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This variation in the chunk size gives us flexibility while assigning variable-

sized records to chunks, and ensures that we are not forced to do frequent reorga-

nization when adding new versions. We recommend that the specific percentage

be chosen based on the ratio of the average record size and the chunk size, so that

a small number of records could be added to an already full chunk while staying

within the limit; for our datasets, 25% ends up being a somewhat conservative

number, and in our experimental evaluation, the chunks were rarely more than

5-10% overfull.

This allows us to focus on the number of chunks retrieved for queries as the

key performance metric. Formally, we define the span of a query to be the num-

ber of chunks that must be retrieved to answer that query.

Let n denote the total number of versions, m denote the total number of dis-

tinct records in them, and G denote the version graph depicting the relationships

between the versions. For a given partitioning (i.e., chunking), the storage cost

and the retrieval costs can be calculated as follows.

Storage Cost. The total storage required is dominated by the chunks; the different

indexes constitute a relatively small and largely fixed overhead. However, because

of compression, it is hard to express the total storage required by the chunks an-

alytically. Instead we use the number of chunks required as a proxy for the total
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storage cost. Since all chunks are about the same size, this faithfully captures the

relative storage costs of different partitionings.

Retrieval Costs. For a query, let θi denote the total number of chunks that need to

be accessed for answering it. The total retrieval cost is comprised of the communi-

cation cost, which in turn depends on the number of queries made to the backend

(θi) as well as the total number of bytes transferred, and the CPU cost of extract-

ing the relevant records from the chunks. Once again, it is difficult to express this

cost analytically; however, given the fixed chunk size assumption, the overall cost

is largely proportional to θi, and we use that as our retrieval cost metric.

Since there are two different objectives here, analogously to [23], we can for-

malize optimization problems in different manners. However, our fixed chunk

size assumption simplifies the problem somewhat if there is no compression.

Case 1: No Record-Level Compression. In this case, the total number of chunks

is approximately equal to the total number of bytes across all the records divided

by the size of a chunk (C). Thus the optimization problem can simply be stated

as minimizing the retreival cost for a query workload by appropriately assigning

records to the chunks.

Case 2: Record-Level Compression Allowed. In this case, the number of chunks
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required depends on how much compression can be obtained by grouping together

the records with the same primary key. In this paper, we do not attempt to solve

the problem in its full generality. Instead, we simplify the problem by assum-

ing that a parameter, denoted k, is provided that controls how many records with

the same primary key may be compressed together. (k = 1 corresponds to No

Record-level Compression case). We use this parameter to partition the records

with the same primary key into sub-chunks that are compressed together in a first

phase. Then, the problem of assigning sub-chunks to chunks reduces to Case 1,

since the total number of chunks required is once again fixed.

Converting Version Graphs to Version Trees. The following observation leads

to the importance of version graphs in partitioning the records: A record (or a

group of records) that appears in a version in a given branch of a tree can only be

present in versions which are its descendants thereby allowing records present in

different branches to be placed in different chunks, resulting in better partitioning

decisions. In the next section, we discuss three different algorithms that partition

the records into respective chunks. Except the shingles-based algorithm, the other

algorithms use the version graph as a guide while creating the partitions. Those al-

gorithms traverse the nodes of this graph in some particular order, read the records

in the deltas and place them in the chunks.
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Figure 5.4: Converting a version DAG to a version tree

Due to the inherent complexity of the problem of partitioning, we use version

graphs with no merges (henceforth referred to as version trees), in the subsequent

partitioning techniques that use it. We use Figure 5.4 to demonstrate the process

of dealing with merges in version graph. Versions V5, V6 and V7 form the list of

parents of V8. To convert the DAG to a tree, we choose a parent of V8 arbitrarily

(in this case V6) retaining the edge between them while deleting the other two

edges. In this process, there are records in V8 that arrived exclusively from V5

and V7 which are renamed to make them appear as newly inserted records. This

conversion is solely used during the partitioning phase and the original version

graph is still available to any queries afterwards.

Connection to other problems. The problem of partitioning records into chunks

is closely related to the problem of identifying bicliques in a bipartite graph [40].
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In the current problem setting, the relationships between records and versions can

be represented as a bipartite graph where there is an edge between a version and a

record if that record appears in that version. We want to identify records that are

present across a large number of versions from the bipartite graph. This is essen-

tially finding the maximal biclique in the graph. In this case, we are interested in

enumerating all maximal bicliques in the graph and then selecting bicliques that

have disjoint set of records. However the problem of enumerating all maximal

bicliques turns out to be NP-Hard [29]. Once we have the set of bicliques, we

need to chunk them into bins of fixed size such that the number of bins required

is minimized. This is the classical bin-packing problem and is NP-Hard.

The indexes used for recreating the versions have significant redundancy. Re-

call that an index for a version stores the keys of the records present in the version.

In the current setting, the 〈chunk-id, record-key〉 pair can be used as a substitute of

record keys. For two versions differing only by a few keys, the amount of redun-

dancy is huge and therefore necessitates development of techniques for compress-

ing the index. This problem is exactly equivalent to the problem of compression

of posting lists [24, 86], where the version-id and the record keys correspond to

the term and the document-id’s in which the terms appear, respectively. This prob-

lem is also related to compressing graphs where the version-id and the record keys
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correspond to a graph node and its neighbors [20, 25, 35].

5.4.1 Discussion

In our discussion so far and in our prototype implementation, we assume that

the backend KVS supports only a basic get/put interface. This raises the question

of whether KV stores with richer functionality like range queries or stored pro-

cedure may negate the need for our approach. Although the trade-offs would be

somewhat different, the key aspects of our approach are fundamental to the prob-

lem setting of maintaining versioned collections of records. Briefly, there are four

key issues here: (1) exploiting overlap across versions, which we handle by not

duplicating records, (2) retrieving a specific record from a specific version, which

requires maintaining several large indexes efficiently, (3) too many queries prob-

lem, which we mitigate through careful assignment of records to chunks, and (4)

compressing multiple versions of large records without compromising retrieval

performance, which we handle through “sub-chunking”.

As we discuss in Sections 5.2, not addressing any of these will lead to sub-

stantial performance issues. Hence, all four of the above proposed solutions must

be present in any system that solves this problem effectively. In our prototype

implementation that we presented in the paper, we assumed a simple key-value
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store (for maximum portability), and thus all four of those techniques had to be

part of the RSTORE layer on top. Conceivably, a key-value store could handle one

of those issues internally (i.e., implement one or more of our proposed techniques

inside the key-value store), eliminating the need for them in RSTORE. However,

we are not aware of prior work along these lines, and we consider the development

of these approaches to be a lasting contribution of our work.

Having support for range queries does not unfortunately remove the need for

any of the four techniques as described above. The “index” that tells us which

records constitute a version still needs to be maintained in RSTORE; and the

queries that will be posed against the backend key-value store will not be “range”

queries. For example, in the example in Figure 1, the list of records that constitute

any of the versions cannot be captured as a range query on the composite key.

Need for compression further complicates this because we need to retrieve “sub-

chunks” that contain the required records, and the sub-chunk IDs are effectively

random.

Support for efficient large IN queries may help to some extent, depending on

how they are implemented (in Cassandra, they are implemented by broadcasting

to all data servers which leads to worse performance). In particular, that support

will reduce the benefits of chunking, but not eliminate it. We still have the “too
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many queries” problem, but internally to the key-value store, i.e., there will be

too many queries between the server that is collecting the query answer and the

backend servers that host the data. So a chunking approach may lead to improved

performance. Unfortunately none of the key-value stores we investigated support

large IN queries to investigate this properly.

Finally, “stored procedures” cannot help here unless a large amount of the

logic in RSTORE, including indexes, compression/decompression modules, and

query module, is duplicated there. Even then, the “too many queries” problem is

still present between the query and the data servers.

5.5 Partitioning Algorithms

In this section, we present three different algorithms to solve the partitioning

problem formalized in Section 5.4. We begin with an adaptation of a standard

shingles-based algorithm for finding bicliques, followed by two algorithms that

exploit the inherent structure in the problem as embodied in the version graph.

5.5.1 Shingles-based partitioning

To minimize query spans, we want to place records together that are common

to a large number of versions. This requires determining the similarity between
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Algorithm 4: Computing shingles for a set of versions
Input : Set of versions V ∈ Si, a family of l pairwise-independent hash

functions H
Output : Shingle array of size l

1 shingles[Si]← {}
2 for each h ∈ H do
3 shingles[S]← {shingles[S],minv∈V h(v)}
4 end
5 return shingles

records based on the versions they belong to. Here we adapt a standard technique

for finding bi-cliques based on shingles or min-hashing, which provide an estimate

of the similarity between large sets [29]. Briefly, for each set (here the set of

versions that a specific record belongs to), we compute l min-hashes, using hash

functions h1, ..., hl; for each hi, we apply the hash function to all the elements in

the set and take the minimum of those as the ith min-hash. This gives us a list

of l-shingles (min-hash values) for each record (Algorithm 4). To compute the

shingle ordering, we sort and order the records based on this list of shingle values

in a lexicographical fashion. This ordering places records whose version sets have

high similarity (i.e., overlap) in close proximity to each other. This shingle-based

order is then used to place the records into the chunks (Algorithm 5).

We also build the chunk maps, MCi after all records have been assigned to

their chunks. For every record in version Vi, we determine the chunk Ci that it

belongs to and add it to set of composite keys for that chunk. After scanning the
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Algorithm 5: Shingle-based partitioning
Input : A set r of records, version graph Gt, chunk capacity C
Output : Set of chunks that partitions the records

1 // Traverse the versions, scan records, construct record to version map
2 // Compute Shingles for each record
3 for each ri ∈ r do
4 ωi = ComputeShingles(ri)
5 end
6 // Sort the records based on shingle values(ωi)
7 Sort(r)
8 for each ri ∈ r do
9 // Assign records to chunks Cj using the shingle-based sort-order

10 if Cj < C then
11 Cj ← Cj ∪ ri
12 end
13 else
14 Create a new chunk and assign ri
15 end
16 end

full version, we visit every chunk that contained records from Vi and write the

version to composite key list to the corresponding chunk map file on disk. After

this process is repeated for every version, we have the complete chunk map file

for every chunk. The adjacency list in each chunk map file is then converted to

a bitmap, compressed and stored in the KVS. Note that we use this algorithm for

constructing the chunk maps for the subsequent partitioning algorithms as well.

Complexity. The complexity of the shingle-based technique for partitioning the

records may be broken down as follows:
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1) Constructing the record to version map takes O(nm′) time which requires

visiting every version and scanning every record in it, where O(m′) is the

average number of records in a version.

2) Next we compute the shingles for every record. If each record belongs to

O(nV ) versions, then the time taken is O(mnV ). Note that the quantity

mnV is O(nm′) as both of them denote the total number of records in the

dataset.

3) Sorting the records based on l shingle values takes O(m logm). Here the

value of l is a small constant.

4) Assigning the records to chunks can be done in O(m) time.

5) Building the chunk maps takes O(n(m′ + ρC)) time. Here ρC denotes the

average number of chunks that records of any given version belongs to.

Thus we have ρC = O(m′) and the time complexity of constructing the

chunks is O(nm′).

Therefore the overall time complexity of this algorithm is O(m logm+ nm′).
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5.5.2 Bottom-Up Traversal

In this approach, we partition the records in the versions by traversing the

version tree bottom-up1. The key idea here is to identify and chunk records that

do not belong to versions above as we move up through the versions in the version

tree. For simplicity, we will first describe the approach for 1-ary version trees and

then extend it to general trees. Let us consider a version Vi as depicted in Fig. 5.5

which needs to be processed. Since we follow a bottom-up approach, the versions

below Vi in the version tree have already been processed. Let Si denote the set

of records in Vi. The collection of sets πi+1 = {S1
i+1, S

2
i+1, . . . , S

p
i+1} contain the

records that are returned by version Vi+1 and denote the following:

S1
i+1 : records present in Vi+1 but not in any version below.

S2
i+1 : records present in Vi+1, Vi+2 but not in any version below.

:

Sp
i+1 : records present in Vi+1, Vi+2, . . . , Vi+p.

Here p denotes the number of versions from the current version (in this case Vi+1)

up to the leaf version. Similarly, Vi needs to return these sets to its parent Vi−1. In

1The Bottom-Up algorithm is inspired by [47] that gives an algorithm for partitioning a graph
into two equal-sized partitions. In general, partitioning even trees is NP-hard [41].
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the present iteration, we compute the collection πi = {S1
i , S

2
i , . . . , S

p
i }, where

S1
i : records present in Vi but not in any version below.

:

Sp
i : records present in Vi, Vi+1, . . . , Vi+p.

These sets are computed as follows:

S2
i = S1

i+1 ∩ Si, S3
i = S2

i+1 ∩ Si

:

S1
i = Si \ (S2

i ∪ S3
i . . . ∪ S

p
i )

It is also possible to express the sets in πi in terms of deltas. First, we will define

deltas, discuss some of their algebraic properties and then describe the expres-

sions. A delta ∆ between two versions Vi and Vj is a set of records that may be

split into two disjoint sets, a positive delta set, ∆+ and a negative delta set, ∆−.

∆−ij denotes the set of records that are present in Vi but not in Vj , whereas ∆+
ij

denotes the set of records that are present in Vj but not in Vi. It is easy to see that

∆+
ij = ∆−ji and ∆−ij = ∆+

ji. For the following expression to hold, we require the

deltas to be consistent [43], i.e., ∆+
ij ∩∆−ij = φ. The collection πi can expressed
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in terms of ∆ as follows:

S1
i = ∆−i,i+1, S2

i = ∆−i+1,i+2 \∆i,i+1

:

Sp
i : Vn \

p−1⋃
j=0

∆i+j,i+(j+1)

Note that for the last term we have the whole version Vn instead of a ∆− since the

last version does not have a ∆ to some other version that captures the records that

are exclusively present in version Vn. For general trees, computing πi changes

slightly only for versions which have more than one child. In those cases S1
i is the

union of the ∆− between version Vi and its children.

Given the collection of sets obtained from Vi+1 and the sets computed at Vi, it is

now possible to determine the records that exclusively belong to certain versions,

denoted by ψi = {α1
i , α

2
i , . . . , α

p
i }. Thus we have,

α1
i = S1

i+1 \ S2
i (records present only in Vi+1)

:

αp
i = Sp

i+1 \ S
p
i (records present in Vi+1, Vi+2, . . . , Vi+p)

Lemma 4. Given a linear chain of versions, we have
⋂p

j=1 α
j
i = φ, at any version
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i.

Note that the records present in the sets from α1
i to αp

i are not present in any ver-

sion from Vi or above; so we can chunk these records. The records in set αp
i must

be chunked first, followed by those in αp−1
i and so on. This is because records in

αp
i belong to p consecutive versions, followed by records in αp−1

i which belong to

p − 1 consecutive versions and so on, the chunking process at any given version

starts filling a new chunk (or bin). This is to ensure that access to highly common

records during version reconstruction is not split across multiple chunks, which in

turn results in increasing the version span. The partial chunks that may get created

at the end of every chunking step are merged at the end to reduce fragmentation.

We demonstrate the chunking process through an example as follows.

Example 9. Consider Fig. 5.5 where we have a linear chain of versions. Boxes

represent records within versions and the colored boxes are the records which

appear in Vi+1 and not in any prior version. Therefore the colored boxes represent

the records in ψi with the purple record representing α1
i , since they appear only

in version Vi+1. Similarly, we have the blue record in α2
i and so on. It is easy to

see that the record in red must be chunked first, followed by the records in green

and orange, then blue and finally purple.

For general trees, the primary difference with the existing approach lies in
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Algorithm 6: Bottom-Up Traversal for Partitioning
Input : Version graph Gt, root version Vr and deltas, sub-tree limit β, chunk

capacity C
Output : Set of chunks that partitions the records

1 Bottom-Up (Vr)
2 return set of chunks
3 Bottom-Up (v) {
4 if v is not null then
5 for each child ∈ v do
6 Bottom-Up (child)
7 end
8 // process the sub-tree Tv rooted at v
9 for each version Vj ∈ Tv do

10 compute Sj
v

11 end
12 // return set collection πv to parent of v
13 // compute the records exclusive to v and chunk them
14 // adjust sub-tree Tv if the size of sub-tree > β

15 end
16 }

processing versions with more than one child. Recall that at every version Vi, the

child of Vi returns p different sets to its parent. If Vi has λ children, then it receives

λ × p sets from its children. Unlike in linear chains (Lemma 4), a given record

may be present in more than one set (and no more than λ sets, one from each

child) for general trees. In the presence of multiple sets obtained from multiple

children, ordering the records may be performed as follows:

1) For every record, assign a count based on the number of consecutive ver-

sions it belongs to. The count is added for records that appear in multiple
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Figure 5.5: Bottom-Up Partitioning for Linear Chains

sets.

2) Sort the records.

A close approximation to the above technique may be obtained by considering sets

of records that belong to similar number of consecutive versions. Therefore sets

from different children that correspond to same number of consecutive versions,

are chunked together. To deal with duplicate records, a hash-table is maintained

to identify records that have already been chunked.

Controlling the subtree of a version. The size of the subtree corresponding to

a version in the tree dictates the amount of processing that needs to be done per

version. For general trees, the size of subtrees is significantly larger compared to
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linear chains due to the presence of multiple branches per version on an average.

In order to bound the amount of processing, we may choose to have at most β

nodes (or sets) in the subtree; the subtree can be reduced by merging nodes within

it. Recall that each version in subtree corresponds to a set of records Sj
i+1 that

Vi+1 returns to Vi. The merging involves the following steps:

1) Sort the leaves of the subtree by the sizes of the corresponding sets and store

it in Ls.

2) For every version Vx in the sorted set:

a) Merge the contents with its parent Vp. Remove Vx from Ls.

b) If every child of Vp have been merged, then include Vp in Ls.

3) Repeat until the number of nodes in subtree is equal to β.

It is easy to see that a reduction in the size of the subtree reduces the total execution

time of the BOTTOM-UP algorithm as the amount of processing per version is

proportional to β. This may be true upto a certain β as the overhead of merging

the nodes may dominate for smaller values of β. However, with a decrease in a

number of sets, the partitioning quality may also degrade, explained as follows.

Consider that there are 10 sets below a version forming a linear chain and we

want to determine the records in ψi. We find that record 〈Ki, Vi〉 belong to 10
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consecutive versions whereas record 〈Kj, Vj〉 belong to 5 consecutive versions,

among other records. Therefore record 〈Ki, Vi〉 has a higher ordering than record

〈Kj, Vj〉 during the chunking process. Now, consider that β = 5. In this case, both

the records may be placed together; record 〈Kj, Vj〉 may be chunked with other

records that have higher depth instead of 〈Ki, Vi〉, which leads to degradation of

the partitioning strategy.

An outline of the bottom-up partitioning algorithm is provided in Algorithm 6.

Complexity. At every version, the number of set operations we perform is

proportional to the the number of versions below it. Each set operation can be

bounded by O(m′) although in practice this is significantly less as this is propor-

tional to the size of a delta. Thus the total complexity of set operations for all

versions is O(nβm′). The complexity of constructing the chunks and chunk maps

is O(nm′).

5.5.3 Depth-First/Breadth-First Traversal

To see if the benefits of the Bottom-up approach could be obtained using a

simpler algorithm, we designed two algorithms which also use the version tree

but make the partitioning choices greedily. These approaches traverse the version

tree starting from the root in a depth-first or a breadth-first fashion, and chunk the
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Figure 5.6: Version Tree Partitioning (using DFS)

records as they are encountered. We illustrate this with an example.

Example 10. Consider the version tree in Fig. 5.6, and assume the chunk size is

4 records. As the the root version V0 is visited, all the records are placed in the

first chunk C0. Next, we visit one of the descendants of V0, say V1 and place the 2

records in the next available chunk C1. Now, we have two options here, (a) visit

version V2 (breadth-first traversal) and place the two records in the remaining

space in chunk C1, (b) visit version V3 (depth-first traversal) and place the two

records in the remaining space in the chunk C1. Note that going with option (a)

implies that any descendant of V1 will not access any of the records from V2.

Similarly, none of the descendants of V2 will access any of the records added

to chunk C1(a) from V2 resulting in the possibility of increasing the span of the

versions. In contrast, option (b) admits all the descendants of V3 to acces all the
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Algorithm 7: Depth-First Traversal for Partitioning
Input : Version graph Gt, root version Vr and deltas, chunk capacity C
Output : Set of chunks that partitions the records

1 dfsStack← {}
2 for each Vi ∈ Gt do
3 visited[Vi]← false
4 end
5 push dfsStack, Vr
6 while dfsStack is not empty do
7 u← peek dfsStack
8 if u has child then
9 v ← getNextChild(u)

10 if not visited[v] then
11 visited[v]← true
12 push dfsStack, v
13 // read the delta and populate the chunk
14 for each record ri ∈ ∆u,v do
15 Ci ← Ci ∪ ri
16 // if Ci is full then allocate a new chunk
17 end
18 end
19 end
20 else
21 pop dfsStack
22 end
23 end
24 return set of chunks

records in chunk C1(b).

Assuming that most of the versions do not differ significantly from their par-

ent version, traversing the version tree depth-first turns out to be more beneficial

than breadth-first approach. An outline of the depth-first partitioning algorithm is

provided in Algorithm 7.
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Complexity. The complexity of this algorithm is O(nm′), where O(nm′) is

for traversing the all the records in each version. The complexity of chunk map

construction is O(nm′).

5.5.4 Partitioning Compressed Records

V1V1

V6V6

V2V2

V4V4 V5V5

V3V3

V0V0

{<K0, V0>, <K1, V0>, <K2, V0>, <K3, V0>}{<K0, V0>, <K1, V0>, <K2, V0>, <K3, V0>}

+{<K0, V1>, <K2, V1>}
- {<K0, V0>, <K2, V0>}
+{<K0, V1>, <K2, V1>}
- {<K0, V0>, <K2, V0>}

+{<K0, V2>, <K3, V2>}
-{<K0, V1>, <K3, V0>}
+{<K0, V2>, <K3, V2>}
-{<K0, V1>, <K3, V0>}

+{<K0, V4>, <K3, V4>}
-{<K0, V2>, <K3, V2>}
+{<K0, V4>, <K3, V4>}
-{<K0, V2>, <K3, V2>}

+{<K1, V5>, <K2, V5>, <K3, V5>,
<K5, V5>}
-{<K1, V0>, <K2, V1>, <K3, V2>}

+{<K1, V5>, <K2, V5>, <K3, V5>,
<K5, V5>}
-{<K1, V0>, <K2, V1>, <K3, V2>}

+{<K1, V3>, <K4, V3>}
-{<K1, V0>}
+{<K1, V3>, <K4, V3>}
-{<K1, V0>}

+{<K3, V6>, <K2, V6>}
-{<K3, V0>, <K2, V1>}
+{<K3, V6>, <K2, V6>}
-{<K3, V0>, <K2, V1>}

V1V1

V2V2
V3V3

V0V0

{<K0, V0>, <K1, V0>, <K2, V0>, <K3, V0>}{<K0, V0>, <K1, V0>, <K2, V0>, <K3, V0>}

+{<K0, V1>, <K2, V1>}
-{<K0, V0>, <K2, V0>}
+{<K0, V1>, <K2, V1>}
-{<K0, V0>, <K2, V0>}

+{<K3, V2>}
-{<K3, V0>}
+{<K3, V2>}
-{<K3, V0>}

+{<K4, V3>}+{<K4, V3>}

V5V5

+{<K5, V5>}+{<K5, V5>}

(a) (b)

Id CK Sub-chunk

SC0 <K0, V1> {<K0, V1>, <K0, V2>, <K0, V4>}

SC1 <K0, V0> {<K0, V0>}

SC2 <K1, V0> {<K1, V0>, <K1, V3>, <K1, V5>}

SC3 <K2, V1> {<K2, V1>, <K2, V5>, <K2, V6>}

SC4 <K2, V0> {<K2, V0>}

SC5 <K3, V2> {<K3, V2>, <K3, V4>, <K3, V5>}

SC6 <K3, V0> {<K3, V0>, <K3, V6>}

SC7 <K4, V3> {<K4, V3>}

SC8 <K5, V5> {<K5, V5>}

(c)

Figure 5.7: Partitioning compressed records: (a) Original Version Tree, (b) Transformed
Version Tree, (c) Sub-chunk list with k = 3 – CK indicates composite keys of the sub-
chunks

Next, we show how we handle the case where k > 1, i.e., we wish to exploit
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compression by putting together records with the same primary key in the same

chunk. As discussed in Section 2.5, we use a two-phase approach, where we first

create the sub-chunks by grouping together records with the same primary key

(with at most k per sub-chunk), and then choose one of the partitioning algorithms

discussed so far for the chunking itself by treating the sub-chunks as records.

Similar to records, we assign composite keys to these sub-chunks. One issue

here is that, the original version tree may not be valid any more, and must be

transformed (as discussed below) before the partitioning algorithms are invoked.

We impose the following constraint on any sub-chunk: the records that are

grouped together are “connected” in the version tree, i.e., the versions that they

belong to form a connected subgraph of the version tree. For example, in Figure

5.7, we would never group together 〈K1, V3〉 and 〈K1, V5〉, without 〈K1, V0〉 (their

common ancestor). This is being done in order to boost compression as records

are more likely to be similar to their parents than their siblings. Delta-encoding

may be used to compress records within chunks; thus all the sibling records would

be delta-ed against their common parent.

The sub-chunk creation algorithm proceeds by traversing the version tree bottom-

up; at every version (excluding the leaf versions) we inspect its children and con-

sider the records that originated in those child versions via inserts or updates.
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Every version can be assumed to have a collection of sets Ψ, each set in the col-

lection Ψ corresponds to a primary key that originated in that version. At any

given version Vi, we either construct sub-chunks (for every primary key present

in Vi or any of its children) or delay the process until the next ancestor of Vi. Let

e(Ki) be a binary variable associated with a primary key Ki, which is 1 if Ki is

present in Vi, otherwise 0. Let s(Ki) denote the count of the number of records

for primary key Ki across every child of Vi. If e(Ki) = 1 and s(Ki) ≤ k − 2,

an union of the records is constructed and the set is added to Ψ of Vi. However

if e(Ki) = 0, instead of an union, the versions containing the records having

primary key Ki are added to the child list of the parent of Vi. In the situation,

when s(Ki) + e(Ki) ≥ k, we construct subchunks out of the largest set in Ψ

even though the set size may be less than k and then recurse on the conditions

mentioned above. We present an algorithm for sub-chunk construction at a given

version Vi (Algorithm 8). At every version Vi, we aggregate a list of primary keys

that appears in Vi or any of its children and denote it by σ(Vi). For each Ki in

σ(Vi), we execute the steps described earlier.

Transformed Version Tree. The next step is to construct the transformed version

tree TV T from the actual treeOV T by treating the sub-chunks as individual records.

Each sub-chunk is assigned a representative composite key 〈Ki, Vi〉 which may
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Algorithm 8: Sub-chunk Construction Algorithm at Version Vi
Input : Version graph Gt, version Vi and deltas, sub-chunk size k
Output : Set of sub-chunks

1 for each Ki ∈ σ(Vi) do
2 if e(Ki) = 1 then
3 if s(Ki) = k − 1 then
4 construct sub-chunk.
5 end
6 else if s(Ki) ≤ k − 2 then
7 construct an union of records; add to Ψ
8 end
9 else

10 construct sub-chunk out of the largest set. Repeat.
11 end
12 end
13 else
14 if s(Ki) ≤ k − 1 then
15 add the children with Ki to parent of Vi
16 end
17 else
18 construct sub-chunk out of the largest set. Repeat.
19 end
20 end
21 end

lead to duplicate versions. Given the sub-chunks, the example below demonstrates

the assignment of sub-chunks to records and the construction of the transformed

version tree. Different values of k will lead to different transformations of OV T

where each transformed version can be treated as a new dataset. The original

partitioning algorithms can now be executed on these transformed datasets while

taking into account the duplicate versions.
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Example 11. Fig. 5.7(a) represents the original version tree and Fig. 5.7(b) rep-

resents the transformed version tree. The sub-chunks corresponding to k = 3 are

extracted from OV T and are listed in Fig. 5.7(c) along with composite keys as-

signed to them. For deriving Fig. 5.7(b) from Fig. 5.7(a), we make a breadth-first

traversal of OV T and at each version visit all the records that originated in that

version. For every record, we pull up the corresponding sub-chunk that it belongs

to and check whether it has already been used or not. For the root version in V0,

none of the sub-chunks corresponding to the records would have been assigned

already. Therefore, the sub-chunks SC1, SC2, SC4 and SC6 are assigned the fol-

lowing representative composite keys: 〈K0, V0〉, 〈K1, V0〉, 〈K2, V0〉 and 〈K3, V0〉,

respectively. Next, we move on to the records in V1. We observe that 〈K0, V1〉 and

〈K2, V1〉 does not belong to the sub-chunks that were assigned composite keys in

the previous step. So we assign SC0 and SC3 to 〈K0, V1〉 and 〈K2, V1〉, respec-

tively. At V2, we see that 〈K0, V2〉 is already in SC0 whereas 〈K3, V2〉 isn’t part of

any sub-chunk that has been assigned already. Thus 〈K3, V2〉 is the representative

composite key of SC5. Similarly, 〈K4, V3〉 is assigned to SC7. Next we visit V4

and observe records that were new to it have already been a part of sub-chunk that

have been assigned to its ancestors. In other words, V4 has the same records as

that of V2 and hence V4 is a duplicate of V2 and hence V4 is deleted. As we move

165



on to V5 we note that 〈K5, V5〉 has not assigned; thus SC8 is assigned to 〈K5, V5〉.

Finally, we observe that V6 is a duplicate of V3 and hence deleted. These steps

result in the transformed version tree in Fig. 5.7(b).

Creating the sub-chunks is expensive since the algorithm has to extract the

sub-chunks by visiting all the different versions. For creating a single sub-chunk

consisting of k records, we have to visit k different versions. To speed up this

process, we first create the sub-chunks where we just have the composite keys of

the records that form the sub-chunk. Thereafter, we concatenate the records from

the versions and sort them by their primary keys on disk. Next, we scan the sorted

record list and read all the records belonging a given primary key into memory.

Since we maintain a record to sub-chunk map, we now create all the sub-chunks

corresponding to the primary key, compress them and store them into a disk-based

key-value store. Thus the sub-chunk creation is completed in a single pass over

this sorted list of records.

Complexity. The complexity of the sub-chunk construction algorithm isO(nm′+

m logm), where O(nm′) is for traversing the all the records in each version and

the second component is for sorting the unique records for sub-chunk extraction.

The complexity of chunk map construction is O(nm′).
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5.6 Online Partitioning

The main challenge with keeping the partitioning up-to-date with every new

version is that, even if a version Vc differs from its parent version Vp by just a

few records, all the chunks that contain Vp’s records need to be updated (if only to

update the chunk maps). As discussed earlier, we instead incorporate new versions

in a batched fashion, by maintaining the deltas corresponding to the new versions

in a separate write store, called a delta store, and by using an adapted version of a

partitioning algorithm when the number of versions reaches a certain size (called

the batch size, a user-configurable parameter).

To exploit the possibly high overlap across versions in the current batch, we

compute a union of the chunk maps that need to be updated and then update every

chunk map only once per batch. In order for a chunk map to be updated if it

already exists, it has to be fetched from the KVS, updated and then written back

again. Instead, every time a chunk map needs to be updated per batch, we recreate

the chunk index from scratch and then write it back to KVS, saving the cost of

fetching the chunk indexes from the KVS. This is possible by maintaining the

required indexes around due to its small memory footprint. The complexity of

the background process is determined by the size of the batch and the choice
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of the partitioning algorithm. In general, a smaller batch size would result in

faster partitioning, however the quality of partitioning degrades with respect to

a larger batch as more versions in a batch is beneficial for making better record

placement decisions. Note that we do not re-partition records once they have

been partitioned, however record re-partitioning, although expensive, may result

in improving the overall version span. We leave this problem for future work.

5.7 Experiments

In this section, we present a comprehensive evaluation of the RSTORE system.

We use a distributed installation of Apache Cassandra across upto 16 nodes for

storing the partitioned records and their associated indexes. Each node has 16 GB

of main-memory. We ran our experiments on a 2.2 GHz Intel Xeon CPU E5-2430

server with 64GB of memory, running 64-bit RedHat Enterprise Linux 6.5.

5.7.1 Datasets

We use a collection of synthetically generated datasets for the experiments.

For each dataset, we first generate a corresponding version graph by starting with

a single version, and then generating a set of modifications to it using the method

outlined in [23], which closely follows real-life version graphs. Thereafter, we
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create a set of records for the base (root) version where each record is created as a

JSON document. Every record in the base version is assigned an auto-incremented

primary key and a randomly generated value of the requisite size. Each of the

other versions is generated by updating or deleting a set of records in its parent,

or inserting new records. The selection of records for updating and deleting either

follows a random or a skewed (Zipf) distribution.

We have generated a wide spectrum of version graphs and corresponding

datasets that mimics real-world use cases. They differ primarily along five factors:

1) branching factor (linear to highly branched), 2) average version graph depth

(56 to 300), 3) nature and percentage of updates (random vs skewed updates with

1− 50% change), 4) number of records in a version (from a few thousand to hun-

dreds of thousands of records), and 5) number of versions (from a few hundred

to several thousand). The size of the records in the dataset also vary widely from

a few bytes to several kilobytes. The number of unique records in the dataset

varies from a little more than 1M records to around 17M records and total size

of a dataset varies from ≈ 30 GB to close to 1 TB. We refer to Table 5.4 for a

detailed description of the datasets.
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Dataset #V AD RPV %U UT #UR
(M)

URS
(GB)

TS
(GB)

A0 300 300 100K 50 R 12.3 11.9 31.67
A1 300 300 100K 5 S 1.51 5.77 140.14
A2 300 300 100K 5 R 1.34 5.14 141.26
B0 1001 293.5 100K 5 S 4.17 8 192.24
B1 1001 293.5 100K 5 R 4.22 8.07 193.77
B2 1001 293.5 100K 10 R 8.35 8.02 195.69
C0 10001 143 20K 10 R 16.53 15.95 196.46
C1 10001 143 20K 1 R 1.75 1.69 193.01
C2 10001 143 20K 5 S 8.17 7.87 193.05
D0 10002 94.4 20K 10 R 16.62 16.03 196.48
D1 10002 94.4 20K 1 R 1.77 1.71 193.07
D2 10002 94.4 20K 5 S 8.20 7.90 193.09
E 10001 170 20K 10 R 16.52 78.96 972.84
F 1001 56 100K 20 R 16.67 79.64 981.11

Table 5.4: Description of datasets: 1) #V: #Versions, 2) AD: Average Depth, 3) RPV:
∼Records per Version, 4) %U: %updates, 5) UT: Update Type (R: Random, S: Skewed),
6) #UR: Unique Records (in Million), 7) URS: Size of Unique Records (in GB), 8) TS:
Total size (in GB)

5.7.2 Evaluation of Partitioning Algorithms

Comparison based on Total Version Span. We begin with comparing the per-

formance of the partitioning algorithms: BOTTOM-UP, SHINGLE, DEPTHFIRST,

and BREADTHFIRST. Here, we use the total version span (i.e., the total number

of chunks retrieved for reconstructing all versions) for comparing the algorithms

while fixing the chunk size to 1MB (we chose this chunk size since it provides

a good balance between the number of queries and amount of data retrieved). In

addition to algorithms that partition the record space for minimizing the version
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(a)

(b)

Figure 5.8: Comparison of Total Version Span (without compression)

span, we also show performance of the DELTA baseline. We omit the SUBCHUNK

baseline since the total version span for that approach is very high (all chunks must

be retrieved for any version query).

In Fig. 5.8, we observe that BOTTOM-UP, SHINGLE and DEPTHFIRST out-

perform DELTA across all datasets, thus establishing that DELTA is inferior as a

technique for handling keyed datasets (BOTTOM-UP outperforms DELTA by upto

8.21× and on an average by about 3.56× across all datasets). The performance

of SHINGLE degrades with a decrease in the average depth of the version trees,
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Figure 5.9: Effect of sub-tree size on performance of BOTTOM-UP (Dataset B0)

while that of DEPTHFIRST improves. However unlike BOTTOM-UP, none of

these techniques perform uniformly well across all datasets. BREADTHFIRST

is always worse than DEPTHFIRST (for reasons described in Section 5.5.3) except

for linear chains when they reduce to the same technique.

Effect of Subtree size on performance. We vary the size of the subtree (β)

BOTTOM-UP and observe the total version span (Fig. 5.9). As the size of the

subtree decreases, the total version span increases as explained in Section 5.5.2.

The total time taken by the algorithm first decreases with decrease in subtree size

(due to decrease in processing per node) and then increases. The increase in total

time for β < 20 in Fig. 5.9 can be attributed to increased processing time for

merging the nodes. As β decreases the number of nodes needed to merge also

increases.

172



(a) Dataset A0, Pd = 10% (b) Dataset A0, Pd = 5%

(c) Dataset A0, Pd = 1% (d) Dataset C0, Pd = 10%

(e) Dataset C0, Pd = 5% (f) Dataset C0, Pd = 1%

Figure 5.10: Partitioning quality and compression ratios as sub-chunk size is varied for
different algorithms
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5.7.3 Effect of Compression on Partitioning

We now attempt to understand the performance of the partitioning algorithms

on the compressed representation (Fig. 5.10). The degree of compression in the

datasets is affected by two factors: (i) the number of records or the size of the sub-

chunk, (ii) the amount of relative difference introduced between records due to

updates. We simulate the second factor by generating the datasets such that when

a record is updated, the amount of change w.r.t to the parent record is limited by

a certain percentage, denoted by Pd. For a given version tree, we generate three

datasets by limiting the change to 10%, 5% and 1%. For each such dataset, we

vary the sizes of the sub-chunks (X-axis) and measure the total version span (Y-

axis) at each sub-chunk value. We also plot the compression ratio (parallel Y-axis)

of the dataset at every value of sub-chunk size. There are two factors that affect

the total version span: (1) Sub-chunk size: As the number of records in each sub-

chunk increases, the total version span increases due to a decrease in the number

of records fetched per chunk. (2) Compression Ratio: Compressing the sub-

chunks brings down the total number of chunks required to store the records. As

a result, with increasing compression ratio the total version span is also expected

to decrease. Note that we do not compare DELTA against these techniques as it is
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not possible to perform compression of records across multiple versions.

We observe that across all datasets, BOTTOM-UP has the best performance in

terms of total version span. As Pd decreases, we note that the total version span

for same sub-chunk values decreases across all partitioning techniques and across

all datasets. For example consider dataset C0, Fig. 10(d), Fig. 10(e) and Fig. 10(f);

the total version span at max sub-chunk size 50 decreases steadily with Pd across

all the partitioning techniques. This is because Factor 2 outperforms Factor 1

stated above and results in an overall decrease in total version span. However if

we just consider Fig. 10(d), we observe an increase in total version span with max

sub-chunk size which can be attributed to Factor 1 which is dominant here. But as

we increase the degree of compression in Fig. 10(e), the effect of Factor 2 helps

in reducing the effect of Factor 1, resulting in an overall reduction in total version

span compared to the previous figure. Finally in Fig. 10(f), Factor 2 dominates

over Factor 1 as the total version span now decreases with an increase in max

sub-chunk size. This behavior was observed for Dataset D0 and other datasets as

well (not plotted). However this is not true for Dataset A which is a linear chain as

opposed to a branched tree like in the previous case. This is because Factor 2 has

a more dominant role over Factor 1 due to the compression ratios which is better

for dataset A compared to the other datasets.
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(a) Dataset A0, Q1 performance. SUBCHUNK: 4075.68s (b) Dataset A0, Q2 performance. SUBCHUNK: 132.42s
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(c) Dataset A0, Q3 performance. SUBCHUNK: 0.0058s (d) Dataset C0, Q1 performance. SUBCHUNK: 406.17s

(e) Dataset C0, Q2 performance. SUBCHUNK: 107.23s (f) Dataset C0, Q3 performance. SUBCHUNK: 0.0325s

Figure 5.11: Query Processing Performance
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5.7.4 Query Processing Performance

In the following experiments (Fig. 5.11), we evaluate the query processing per-

formance of BOTTOM-UP, DEPTHFIRST, SHINGLE and DELTA for three types of

queries, namely, 1) Full Version Retrieval (Q1), 2) Partial Version Retrieval (Q2)

and, 3) Record Evolution (Q3) on two different datasets. In all of these experi-

ments we vary the max sub-chunk size from 1 to 50 and measure the total time

taken to execute each of these queries against a randomly generated workload.

Since intra-record compression is a limitation for DELTA, we restrict the DELTA

experiment only to when the sub-chunk size is 1. We observe that BOTTOM-UP

outperforms DEPTHFIRST, SHINGLE and DELTA in terms of the query perfor-

mance for Q1 and Q2; the performance curve of Q2 is similar to that of Q1 as

partial version span is loosely proportional to full version span. Also note that

time taken by DELTA for Q2 is greater than Q1. This is because in the worst-case

the full version is first reconstructed and then the required records are filtered.

Recall that we fetch all the records corresponding to a primary key for Q3.

Therefore we observe that storage representations with increasing sub-chunk sizes

lead to better query processing performances for Q3. For DELTA, we need to re-

construct all the versions that and then filter out the required records which ren-
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Query Worload Dataset # nodes in cluster
Avg. Version Span 1 2 4 8 12 16
Q1 (in secs.) G 7.35 7.95 8.99 10.49 10.97 11.39
Avg. version span 507.99 559.49 622.88 702.92 710.24 702.21
Q3 (in secs.) G 0.35 0.48 0.49 0.46 0.63 0.48
Avg. key span 21 32 34 33 46 34
Q1 (in secs.) H 61.83 63.24 64.38 73.71 74.30 78.86
Avg. version span 400.24 436.48 451.20 554.92 561.60 594.92
Q3 (in secs.) H 0.98 1.33 2.29 2.38 2.69 3.05
Avg. key span 6 9 16 18 21 24

Figure 5.12: Scalability Experiments

ders execution of Q3 impractical. We also report the query performance of SUB-

CHUNK technique against the caption of each query for each dataset. Although

the full and partial version retrieval queries performs the worst for SUBCHUNK,

it outperforms all other techniques for record evolution query.

5.7.5 Scalability of RSTORE

To demonstrate scalability of RSTORE, we ran a series of experiments where

we doubled the cluster size starting at 1 up to 16, and then approximately double

the amount of data by doubling the number of versions. We used two datasets

specifically for this experiment, whose 16-node configurations were as follows:

(a) Dataset G: total size of the unique records = 255 GB, with 10k versions hav-

ing ≈ 50K records each (version size: ∼275 GB, total size: 2.6 TB), (c) Dataset
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Batch # of versions
Size 250 500 750 1001
125 1.13 1.36 1.52 1.63
250 1.00 1.12 1.23 1.32
500 - 1.00 - 1.10

(a) Dataset B1

Batch # of versions
Size 2500 5000 7500 10001
1250 1.04 1.05 1.06 1.08
2500 1.00 1.004 1.001 1.018
5000 - 1.00 - 1.005

(b) Dataset C1

Figure 5.13: Online Partitioning Performance

H: size of the unique records = 280 GB, with 2k versions having approx 100K

records each (version size: ∼2.86 GB, total size: 5.76 TB). We partition the

records using BOTTOM-UP approach. At each cluster configuration, we mea-

sure the full version retrieval times (partial version retrieval times showed similar

behavior) and the record evolution times. As Fig. 5.12 shows, RSTORE exhibits

good weak scalability, and is able to handle appropriate larger datasets with larger

clusters; the increased query times are largely attributable to increased version or

key spans. We also note that RSTORE currently processes the retrieved chunks

sequentially while constructing the query result and cannot benefit from the in-

creased parallelism; we are working on parallelizing the entire end-to-end process,

which will result in further improvements in the query latencies.
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5.7.6 Online Partitioning

In this experiment (Fig. 5.13), we measure the performance of the online parti-

tioning algorithm under different batch sizes for two datasets using the BOTTOM-

UP partitioning technique. To measure the partitioning quality at a given point, we

compute the ratio of the total version span obtained by online partitioning using

that batch size, to that obtained by running an offline version of BOTTOM-UP for

the same number of versions. Overall, even with small batch sizes, we observe

reasonable penalties, with the partitioning quality improving with an increase in

batch size. Thus, online partitioning without repartitioning, combined with a full

repartitioning periodically, presents a pragmatic approach to handling updates.

5.8 Conclusion

In this chapter, we designed and built a system, RSTORE, for managing a large

number of versions and branches of a collection of keyed records in a distributed

hosted environment, and systematically analyzed the different trade-offs therein.

Our work is motivated by the popularity of key-value stores for storing large col-

lections of keyed records or documents, the increasing trend towards maintaining

histories of all changes that have been made to the data at a fine granularity, and the
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desire to collaboratively analyze and simultaneously modify or transform datasets.

We showed that simple baseline approaches to adapting a key-value store to add

versioning functionality suffer from serious limitations, and proposed a flexible

and tunable framework intended to be used a layer on top of any key-value store.

We also designed several novel algorithms for solving the key optimization prob-

lem of partitioning records into chunks. Through an extensive set of experiments,

we validated our claims, design decisions, and our partitioning algorithms.
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Chapter 6: Conclusion

Dataset version control system is an important data management tool that en-

able collaborations across multiple teams working with large amounts of data.

In this dissertation, we have explored various storage layout designs for a wide

spectrum of versioned datasets, used across a wide range of applications, that

constitute an important problem in the design of a DVCS. We observe that each

dataset present a unique storage layout challenge that prevents the application of

techniques developed for other datasets.

For highly unstructured versions of datasets, the predominant form of data

generated from various sources, we used delta compression to store the datasets in

a compact manner that exploits the high overlap and duplication among datasets.

However such compression leads to higher query latencies when retrieving spe-

cific datasets. We studied the trade-off between the storage and reconstruction cost

in a principled manner, by formulating several optimization problems that trade-

off the storage and reconstruction cost in different ways. We also proposed several
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algorithms for designing storage layouts that effectively explore the trade-off and

present an extensive experimental evaluation that demonstrates the effectiveness

of the algorithms. We also demonstrate that our algorithms outperform existing

version control systems like Git and SVN thereby showing that they are not the

best tools for managing large datasets.

Next, we considered array datasets generated mostly in scientific simulations,

that predominantly consist of floating point data. We have developed a system

PSTORE, that partitions the dataset along three dimensions – spatial, temporal and

bytewise, to alleviate the dimension dependency while processing range queries

and to enable compression of high entropy floating point data. Thereafter, we

chose the best compression technique from a suite of compression schemes by

analyzing a sample from the dataset. PSTORE also supports approximate query

processing by retrieving partial precision data if that is sufficient for the applica-

tion needs, and contains several other optimizations for efficient query execution.

Our extensive experimental evaluation illustrates that different compression tech-

niques work better for different datasets, and further that using bytewise partition-

ing and two-level chunking can lead to significantly higher compression ratios and

lower query execution times respectively.

Finally, we focussed on dataset versions with keyed records and have designed
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and built a system, RSTORE, for managing such datasets in a distributed environ-

ment. Our work is motivated by the popularity of key-value stores for storing large

collections of keyed records or documents, the increasing trend towards maintain-

ing histories of all changes that have been made to the data at a fine granularity,

and the desire to collaboratively analyze and simultaneously modify or transform

datasets. We showed that simple baseline approaches to adapting a key-value

store to add versioning functionality suffer from serious limitations, and proposed

a flexible and tunable framework intended to be used a layer on top of any key-

value store. We also designed several novel algorithms for solving the key opti-

mization problem of partitioning records into chunks. We have also designed an

online algorithm for partitioning the records as they enter the system. Through an

extensive set of experiments, we validated our claims, design decisions, and our

partitioning algorithms.
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