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Clustering and touring are two fundamental topics in optimization that have

been studied extensively and have “launched a thousand ships”. In this thesis, we

study variants of these problems for Euclidean instances, in which clusters often

correspond to sensors that are required to cover, measure or localize targets and

tours need to visit locations for the purpose of item delivery or data collection.

In the first part of the thesis, we focus on the task of sensor placement for

environments in which localization is a necessity and in which its quality depends

on the relative angle between the target and the pair of sensors observing it. We

formulate a new coverage constraint that bounds this angle and consider the problem

of placing a small number of sensors that satisfy it in addition to classical ones such as

proximity and line-of-sight visibility. We present a general framework that chooses

a small number of sensors and approximates the coverage constraint to arbitrary

precision.

In the second part of the thesis, we consider the task of collecting data from a



set of sensors by getting close to them. This corresponds to a well-known general-

ization of the Traveling Salesman Problem (TSP) called TSP with Neighborhoods,

in which we want to compute a shortest tour that visits at least one point from each

unit disk centered at a sensor. One approach is based on an observation that relates

the optimal solution with the optimal TSP on the sensors. We show that the as-

sociated bound can be improved unless we are in certain exceptional circumstances

for which we can get better algorithms.

Finally, we discuss Maximum Scatter TSP, which asks for a tour that maxi-

mizes the length of the shortest edge. While the Euclidean version admits an efficient

approximation scheme and the problem is known to be NP-hard in three dimensions

or higher, the question of getting a polynomial time algorithm for two dimensions

remains open. To this end, we develop a general technique for the case of points

concentrated around the boundary of a circle that we believe can be extended to

more general cases.
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All culture is like this: the unfettered mind,

The boundless spirit’s mere imagination,

For pure perfection’s heights will strive in vain.

To achieve great things, we must be self-confined:

Mastery is revealed in limitation

And law alone can set us free again.

—Johann Wolfgang von Goethe, Nature and Art
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Chapter 1

Introduction

Of all optimization paradigms in our toolkit, casting problems as instances of

clustering or touring is perhaps one of the most popular and widespread approaches.

Consequently, attacking problems in these frameworks has spawned a multitude of

techniques. In the face of ever-changing scenarios coming from the applied fields, the

renewed challenge is to develop methods that accommodate for more complicated

constraints or objectives. A theoretical approach to these issues often times brings

unexpected insight into how we can obtain good approximate solutions. The goal

then becomes that of bringing fresh theoretical insights while keeping in mind the

original motivation and eventual applicability of our techniques.

This thesis was born out of the desire to understand how we can exploit the

geometry of the input space in designing better approximation algorithms and a

story about tracking fish. Specifically, the problems of clustering and touring appear

naturally in the context of the carp monitoring framework introduced by Bhadauria

et al [2].
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The Common Carp is a highly invasive fish that once present in a lake, un-

balances the entire ecosystem through its feeding pattern. In the Minnesota lakes,

significant effort has been invested in controlling the spread of this non native fish.

One established approach to controlling such populations has been to study the

social biology of the species. In this direction, one important observation was made

by Bajer et al [3]: adult carp tend to aggregate in certain regions of the lake for

long periods of time (for example, in feeding or breeding areas). When identified as

such, large numbers of fish can be efficiently removed through netting.

In order to detect such groups, Bajer et al [3] employ the Judas technique,

which is based on the idea that the social nature of some invasive species can be

used to betray their location [4]. Specifically, the biologists surgically implant some

of the fish with radio transmitters and release them back into the lake. The fish

are then tracked while they relocate and join the groups they usually live with.

This involves releasing boats into the lake while scientists explore various locations

(known and unknown) and try to accurately locate the Judas fish according to the

radio signals they emit.

A major challenge in this complex task of active monitoring is that it can be

expensive and daunting in terms of human resources. In this context, Bhadauria et

al [2] propose a model that automates this task by employing light weight robotic

rafts. The goal is to use a small number of rafts to correctly identify the Judas

fish, potentially using some knowledge about the most likely places where it could

be. In subsequent work, Tokekar et al [5] propose a variety of algorithms for this

and identify two distinct stages: the search phase, in which the boat scans areas of
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the lake where the fish is likely to be present, and the localization phase, in which,

once a tagged fish is detected, several bearing measurements are taken in a way that

minimizes uncertainty.

The first phase therefore roughly corresponds to computing a shortest tour

that visits targets contained in a polygonal space (i.e. the lake) in a Traveling

Salesman fashion. Moreover, in order for the boat to sense the presence of a fish

in one of these regions, it generally needs to be within a specified range of it (100-

200m). Once a fish is detected, several measurements are needed to localize it, so

in the second phase, the boat needs to choose sensing locations from which it can

compute the location of the tagged fish to arbitrary precision.

Inspired by this framework, the first problem that this thesis considers is that

of selecting a small number of stationary sensors that can accurately localize targets.

We cast this as a clustering problem and focus on ensuring that each possible target

location is appropriately covered. This would roughly correspond to having a guess

on where the fish locations might be and wanting to always be able to monitor those

locations accurately.

In the second part of this thesis, we consider the mobile aspect of active moni-

toring and compute short tours that visit regions of interest. We do this by further-

ing our structural understanding of specific touring problems. As a consequence, we

develop more efficient algorithms and gain insight that we believe can have practical

value.
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1.1 Context and Applications

We begin by describing the landscape in which our problems lie and provide

some history behind them. We also discuss some practical applications for our

techniques and mention existing general approaches.

1.1.1 Clustering with Uncertainty

Clustering is one of the fundamental problems in Computer Science, with

applications in optimization, machine learning and operations research [6, 7]. It

essentially centers around grouping input elements together such that the groups

satisfy certain local criteria and the clustering itself optimizes a global measure.

Depending on what the underlying formulation is, we can roughly classify them into

two categories:

• problems in which we want to select the smallest number of clusters such

that the membership of each element to a cluster satisfies a specific set of

constraints,

• problems in which we are given a fixed budget to spend on these clusters and

we want to cover the elements such that we optimize a global objective.

Together, these two directions have given birth to some of the most famous

problems in Theoretical Computer Science, such as Set Cover and Facility

Location respectively. Since their formulation, they have been adapted to accom-

modate a plethora of optimization scenarios and rich theories have been developed
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around them. To this day, they continue to remain relevant and adapt to current

concerns such as privacy and fairness [8, 9]. In Chapter 2, we review some of the

relevant techniques and problems.

Coverage constraints. In this thesis, we focus mainly on the first category of

problems and specifically the scenario in which each cluster corresponds to a sensor

and the task at hand is that of observing targets represented as input points. In

general, sensor placement problems are formulated as coverage problems in which

each element needs to be covered by a sensor. Given a set of target locations

(potentially infinite) and the underlying geometry, a coverage constraint is defined

that depends on the problem at hand. The corresponding optimization problem

becomes that of placing a small number of sensors that achieve the desired coverage.

For example, in the Art Gallery problem as defined by O’Rourke [10], the

targets lie inside a polygon P and the coverage constraint is that of line of sight

visibility: a guard (sensor) at location s sees a target at location t if the segment

st is contained inside the polygon P . This constraint is relevant especially in the

context of urban environments that might exhibit occlusions.

In open environments, the problem can be that of covering the polygon P with

sensors that have a limited sensing range and are therefore modeled as disks, also

known as the Disk Packing/Placement problem. More sophisticated coverage func-

tions, encountered for example in 3D reconstruction, can address the directionality

of a sensor (such as a camera) or its orientation with respect to the surface that

contains t. See the survey of Scott et al [11] for more details on such scenarios. In

essence, coverage is classically defined as a boolean function that depends on one
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sensor covering one target.

Covering for localization. A more complex notion of coverage, however,

involves not just detecting a target, but also taking measurements on it for the

purpose of localizing or describing it. Localization is an important necessity in many

mobile computing applications. In ad-hoc wireless sensor networks, it centers around

the ability of nodes to self localize using little to no absolute spatial information.

When a large number of sensors are deployed, it becomes impractical to equip all

of them with the capability of localizing themselves with respect to a global system

(such as through GPS). On the other hand, while GPS can be used for localization

in outdoor settings, localization in indoor environments remains a challenge [12].

In parallel, as “smart” home, warehouse and factory automation applications gain

traction, providing location services in such settings is becoming more important.

When mobility is considered, the problem becomes that of tracking a moving target

through a sensor network in which a set of sensors must combine measurements in

order to detect the location of the target.

In this context, most problem formulations rely on the assumption that for each

location, measurements from a single sensor are sufficient (such as in temperature

or light measurements). There are important situations, however, in which this is

not the case. For example, because of their limited capacity, most sensors cannot

directly localize a target. Cameras can only measure the relative bearing1 of t and

1In navigational terms, relative bearing corresponds to the angle between the current sensor’s

forward direction and the location of the target. For example, an object right in front of the

camera would have a relative bearing of 0. An object right to the left of the camera would have a
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as such, their measurement corresponds to a ray that originates from s and passes

through t (insufficient information if we want to pinpoint exactly the location of t).

s1 s2

t

θ1 θ2

θ

Figure 1.1: The two fixed ob-
servers are s1 and s2. The tar-
get to be localized is sitting at
position t. The measurements
available are the relative bearings
θ1 = ∠ts1s2, θ2 = ∠ts2s1 and
the distance d between s1 and
s2. Such measurements deter-
mine uniquely the position of t,
as it is the intersection of two rays
starting at s1 and s2 respectively
and passing through t.

From this perspective, a commonly used tech-

nique for localization is to employ a small num-

ber anchors (or beacons) that know their loca-

tion and are capable of transmitting it to the

other nodes seeking to localize themselves [13].

Alternatively, sensors such as cameras or micro-

phone arrays placed in the environment can col-

lect measurements which can then be used to es-

timate the locations of objects of interest [14,15].

In both approaches, some of the most pop-

ular measurements used are Euclidean distance

and angle between pairs of nodes (bearing), such

as is the case with Received Signal Strength Indicator (RSSI), time-to-arrival (ToA)

or Angle-of-Arrival (AoA). In this context, each target seeking to localize itself has

access to Euclidean distances and/or angular measurements relative to the sensors

that are in its vicinity. When exact distances or bearings from two sensors to a target

are known, localization can be easily performed through the process of triangulation,

as seen in Figure 1.1 and discussed by Williams [16].

Benefits of multiple coverage. Another reason why assigning multiple

sensors to a target is a beneficial strategy is that of energy minimization. Given

relative bearing of π/2.
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that sensors have limited energy, it can make sense to deploy a group of sensors

to observe the same target but have only one sensor per group active at any given

time. As shown by Slijepcevic et al [17], activating the sensors from each group in

a round robin fashion can lead to an extended lifespan of the entire network. On

the other hand, multiple sensors that achieve the same task ensure the property

of fault-tolerance: when one of the sensors fails, the other ones can act as backup.

Often times, these properties have been considered as variants of several clustering

and graph theoretic problems as discussed by Abrams et al [18], Khuller et al [19,20]

and Kuhn et al [21].

Tackling uncertainty. An even more fundamental problem is that there is an

inherent uncertainty in each of the measurements taken. In this context, new models

have been introduced that require measurements from at least two distinct sensor

locations in order to get a reasonable estimate. For example, some formulations

require measurements from multiple sensors to jointly converge on the location of

a target, as in the case of the sculpture garden problem of Eppstein, Goodrich and

Sitchinava [22]. Others define visibility to depend on the convex hull of the sensors,

like in the case of the triangle guarding problem considered by Smith and Evans [23].

Another way of dealing with error estimation introduced by Cressie [24] has

been to learn a probability distribution of uncertainty over the entire field to be

observed and to place sensors where the uncertainty is the highest. The problem

with this approach is that while focusing on measuring locations of high uncertainty,

it overlooks the quality of the measurement on the overall space. A more recent

result of Kraus et al [25] deals directly with the efficiency of such measurements
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and incorporates it into the uncertainty objective to be minimized. Alternatively,

models have been considered that compute Cramer-Rao bounds as lower bounds for

the accuracy of calibration [26–29].

1.1.2 Touring Problems

Deployment of sensors, for example, is often only the first step in such problem

formulations arising in practice. A variety of other scenarios arise when we allow

these sensors to be mobile or we have a robot with motor capabilities. Broadly

speaking, when the positions of targets are roughly known, the task becomes that

of computing the shortest path along which the robot can travel, collect data from

sensors in the field and then return to its original starting position. This is, at

its core, the well known Traveling Salesperson Problem (TSP), in which we

would like to compute a shortest tour that visits a given set of locations.

TSP is perhaps one of the most notoriously hard problems in Theoretical

Computer Science, in the sense in which getting better approximation algorithms for

it has resisted attack throughout time [30,31]. For example, in general graphs that

respect the triangle inequality, we have the foundational result of Christofides [32]

that gives a 1.5-approximation. Breaking this barrier remains an outstanding open

problem as the true constant is conjectured to be 4/3 [33–35]. Progress has been

made in the special case in which the underlying graph is geometric, where we

have the celebrated polynomial-time approximation schemes(PTAS) of Arora [36],

later derandomized by Rao and Smith [37], and Mitchell [38]. We also mention
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the recent significant progress on another long standing open question regarding

the asymmetric version of TSP. Specifically, Svensson et al [39] have shown the first

constant factor approximation for the case in which the underlying graph is directed

and the distance function is non-negative, satisfies triangle inequality but might not

be symmetric. For example, this models instances in which edges represent streets

whose cost is different depending on which direction we traverse them: they might

be one-way, congested with one-directional traffic or uphill.

Geometric Context. The success of the Euclidean case has give rise to a

number of efficient algorithms for a variety of other touring problems. We refer the

reader to the survey of Kumar et al [40]. We mention some here as an opportunity

to give a succinct view of the breadth of such problems:

• minimum latency problems, also know as the Traveling Repairman Problem

in which we want to minimize the time each customer has to wait before the

traveling repairman serves them [41,42],

• orienteering problems, in which we have an upper bound on the length of the

tour and we want to visit as many sites as possible [43],

• capacitated vehicle routing problems in which we have access to multiple trucks,

each capable of visiting k sites and we want to minimize the total length of

paths [44].

Moreover, Euclidean TSP has proven essential in a variety of applications and

a lot of heuristics have been proposed for it. On one hand, we have formulations

that depend on the capabilities of the robot/truck, such as in the Angle-Restricted
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Tour introduced by Fekete et al [45]. In this formulation, given set of allowable

angles, we ask whether a certain point set admits a tour in which each turn has

an angle that is from the allowed set (i.e. only right 90◦ turns, left 90◦ turns etc).

This accounts for the fact that, in practice, rotation is very limited and/or more

expensive than translation.

Similarly, the Angular-Metric TSP problem introduced by Aggarwal et al [46]

requires that the total sum of direction changes in the tour is minimized (i.e. the

direction change ranges from 0, when the next edge in the tour lies on the same

line as the one before it, and 180◦, when the next edge turns back around on the

same line). The authors also mention that an interesting open problem would be

to require that the direction change at each turn be bounded and the length of the

tour minimized: this is, in essence, the α-coverage constraint applied at each vertex

of the tour.

Finally, some machines require that the distance they travel between successive

points be large: this is formulated as the Maximum Scatter TSP problem which

asks for the tour that maximizes the length of the shortest edge. The specific

motivation behind this problem comes from the manufacturing industries where a

certain task has to be performed in different locations (such as high precision laser

cutting on a metal sheet) and each location experiences a certain regional secondary

effect once visited (such as the temperature of the surrounding area increasing). In

these circumstances, we want to avoid visiting locations that are too close to each

other in succession because we want to avoid provoking a large secondary effect. In

the laser cutting context, this would amount to a particular area exhibiting higher
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temperatures than the rest, which could negatively effect the whole outcome. Some

approaches deal with this by consequently imposing that successive locations on the

tour be well separated [47]. This is indeed the Maximum Scatter TSP problem,

which we discuss in Chapter 5 in more detail.

On the other hand, some applications depend on more complex decision mak-

ing which must adapt a shortest tour to fit within a certain overarching task. For

example, in the Data Gathering Problem defined by Tekdas et al [48], the sensors

are stationary while several robots are used to travel between them in order to col-

lect data. Additional costs such as the time it takes to gather the data make this

problem considerably different from TSP because now, multiple robots can go along

the same long path and gather data faster. This task of data collection in wireless

sensor networks has been garnering a lot of attention recently both in the theory

and in more applied circumstances [49–51].

Another exciting direction comes from the practical application of home deliv-

ery of goods [52]. Specifically, recent work has been focused on understanding the

benefit of utilizing drone technology that can support deliveries. This is known as

TSP with drone [53] or Vehicle Routing Problem with Drones [54]. In this formu-

lation, we have a truck that is equipped with several drones such that the drones

are faster than the truck but have a limited battery life or storage capacity. The

challenge then becomes to decide at which points along the tour should the truck

release the drones such that the overall delivery time is sped up. In particular,

this takes advantage of the inherent parallelism of having multiple drones that can

accomplish several fast deliveries simultaneously. Indeed, recent work has shown
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this leads to significant speedup in delivery times [54,55] and various heuristics have

been proposed [53].

TSPN. Finally, one of the most well studied generalizations of TSP is the

Traveling Salesman Problem with Neighborhoods (TSPN). In this problem, the no-

tion of visiting points is relaxed to that of visiting regions. Specifically, a region is

considered to be visited if the tour intersects it at any point contained in it. Our

Chapter 4 will be concerned with approximation algorithms for the case in which

each region is modeled as a uniform disk. We will defer the technical results for

there but we mention here that this problem is not just a natural realization of TSP

on points but also arises naturally in practice. For instance, it is also known as the

Close Enough TSP and has been applied to the task of automated meter reading

from a distance [56]. The main observation is that due to modern advances in radio

technology, a utility company only need to get within range of a certain customer in

order to read their utility consumption. We are then tasked with finding a shortest

tour that must visit the customer within some range, rather than traveling to the

customer directly. Similarly, in the Data Gathering Problem defined above, each

sensor has a limited communication range R and hence, the mobile robot must visit

disks of radius R centered at the sensors in order to receive the data. Other vari-

ations use multiple robots [50, 57] or consider the tradeoff between R and the time

it takes to download the data have also been considered [58]. When it comes to

using drone technology, one can envision already formed clusters of points that need

only be visited at a cluster representative (and have the drones released there): this

would correspond to the discrete version of TSPN, also known as Group TSP or
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One-of-a-Kind TSP [59]. All of these formulations have as their basis the TSPN on

uniform disks problem.

A lot of heuristics have been proposed for this problem. One of the most natu-

ral approaches is to select a set of points to visit and then return a TSP tour on those

points [60]. For example, one could cluster the points first such that each of them is

within some distance of the cluster head and then visit only the cluster heads [61].

Alternatively, one could identify zones of overlap that, if visited, would satisfy a lot

of demands [62]. The construction of the tour can start with an intuitive guess (such

as a convex hull) and can then be improved using simulated annealing [63], rubber

band or artificial bee colony algorithms [64]. Evolutionary [49, 65] or mixed integer

programming techniques [56] can also be used. Yuan et al. [49] provide heuristics

that fix the order in which to visit the disks and then cast the problem of decid-

ing where each disk gets visited as a continuous optimization problem. Carrabs et

al. [60] consider various discretizations of the boundary of each disk and then solve

a linear integer program to decide in which order to visit the disks. Most of these

works implement their algorithms on instances of ≈ 100 points and test the length of

the solutions produced and the runtime of the algorithm against established bench-

marks.

In Chapter 4, we discuss the TSPN problem on unit disks in more detail.
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1.2 Motivation and Contributions

We are now ready to introduce the specific problems we study and the par-

ticular motivation behind them. We identify the main questions that we strive to

answer and briefly review our results.

1.2.1 Clustering with Angular Constrains

We begin by casting uncertainty as a function of the geometry that underlies

the localization task. Specifically, from a geometric perspective, the target/sensor

geometry plays a significant role in the quality of location estimates. In this context,

another common benchmark for localization performance is the Geometric Dilution

of Precision (GDOP) that investigates how the geometry between the sensors and

the target nodes amplifies measurement errors and affects the localization error.

Savvides et al. [28, 29] observe that the error is largest when the angle θ between

two sensors and the target node is either very small or close to π.

The analysis of Kelly [66] further shows that, when triangulation is used, this

angle contributes to the GDOP at a fundamental level. When distance measure-

ments are used in triangulation, the GDOP is proportional to 1/| sin θ|. When

angular measurements are used, the GDOP is proportional to d1 · d2/| sin θ|, where

d1 and d2 are the distances from the sensors to the node. In general, distance infor-

mation comes from connectivity of the communication graph and depends on the

sensing range of the sensor. As such, it can be modeled as a disk or annulus. Bearing
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(a) When the angle θ subtended by
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small, the product of ranges is high.
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Figure 1.2: Notice that in both cases, the shape of the intersection degenerates
in one of the directions (x or y) and the feasible set of target locations becomes
unconstrained.

information is subject to additive error and can be modeled as a cone. The above

measurements become constraints on the possible location of the target, each re-

stricting the set of feasible locations. Intuitively, the quality of localization depends

on both the area and the shape of the intersection of the feasible regions defined by

the measurements. When the angle θ is close to 0 or π, the intersection becomes

unconstrained and the error unbounded. In particular, when the sensors and the

target are collinear, localization is impossible. In essence, overall uncertainty is

minimized when the sensors are well separated angularly about the target.

Inspired by these observations, our work focuses on the geometry of sensor

deployment and asks the question of where should the sensors be placed such

that we control the inherent uncertainty in measurement at the GDOP

level. Specifically, given a set of candidate sensor locations and a set of possible tar-

get locations, what is the minimum number and placement of sensors so as to ensure
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that the uncertainty in estimating the target’s location is below a given threshold

for all possible target locations? The question then becomes one of coverage and, to

this end, we define an angular constraint which we call α-coverage: given a parame-

ter α ∈ [0, π/2], each target at position t must be assigned two sensors (at positions

s1 and s2) such that the angle θ = ∠s1ts2 is in the range [α, π− α] (i.e. neither too

small nor too big). Bounding the angle in this fashion allows us to upper bound its

influence on the GDOP.

We then frame the problem of sensor placement as a bicriteria optimization

problem: given a set of possible sensor and target locations, we wish to select the

smallest number of sensors that provide α-coverage for all target locations. This for-

mulation captures the scenario in which we have discretized the space into finitely

many locations. We study this problem for a number of settings in conjunction with

other classical constraints such as sensing range and line-of-sight visibility. We ad-

dress these variants from a theoretical perspective and present a general algorithmic

framework that specifically addresses the angular constraint and iteratively obtains

better angular guarantees at the expense of larger solution sizes.

This work appeared in the proceedings of the 28th Canadian Conference on

Computational Geometry [67].

1.2.2 The Traveling Salesman Problem with Neighborhoods

The first challenge we encounter in designing better algorithms for TSPN

comes from the fundamental way in which it differs from the TSP: the solution
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requires us to not only decide in which order to visit the regions but also which points

to actually visit in each region. In this context, the first constant factor algorithms

proposed by Dumitrescu and Mitchell [68] are based on the idea of picking a specific

point from each of the disks and returning an approximate TSP on these points

as a solution. In the disjoint case, they consider an approximate TSP tour on the

centers of each disk and show that it gives a good constant factor approximation to

the original problem.

The core of their analysis is a bound that compares the length of the optimal

TSP on the centers of each disk (|TSP ∗|) with the length of the optimal TSPN on

the disks (|TSPN∗|) and says that

|TSP ∗| ≤ |TSPN∗|+ 2Rn, (1.1)

where n ≥ 2 is the number of disks in the instance. In addition, the authors use

a packing argument to lower bound the length of the optimal TSPN tour in terms

of R and n and get that π
4
Rn − πR ≤ |TSPN∗|. Overall, this gives a 3.547-

approximation and in addition, the authors show that the algorithm cannot give

better than a factor 2 approximation. As can be seen in Figure 1.3(a), the 2Rn

factor in (1.1) comes from a detour approach: any tour touching the boundary of

the disks can be turned into a tour touching the centers of each disk by going to

each center and coming back. This incurs a cost of 2R per disk.

While other methods for choosing representative points can be employed [68–

70], this approach is appealing both in its elegance and because it does not depend

on R. In addition, the tour on the centers becomes a fundamental benchmark
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against which to compare a variety of other tours, such as in TSP with drones or

data gathering. Understanding the trade-off between visiting disks at their centers

and visiting them anywhere on their boundary becomes important in designing more

nuanced algorithms for such problems.

Moreover, other existing constant factors approximations for TSPN often hide

large constants [69,71,72] that are incurred as a consequence of using general bounds

on the length of the optimal tour that do not directly exploit the structure of the

regions or of the optimal TSPN tour (bounding rectangle argument and Combination

Lemma in [70]). In order to improve on them, the challenge then becomes to develop

bounds that exploit the difference in behavior between a TSP tour (on points)

and the TSPN tour on the regions and furthermore, avoid using general purpose

techniques that add on to the overall approximation factor.

In this context, one way to improve the approximation factor for disjoint disks

is to better understand the relationship between the optimal TSP tour on the centers

and the optimal TSPN on the disks. Specifically, is the 2Rn term in (1.1) tight or

can it be improved by using specific structural properties of the optimal

TSPN?

A similar question was asked in 2011 by Häme, Hyytiä and Hakula [73] for the

case when R is very small (and hence, TSP ∗ and TSPN∗ respect the same order and

the disks are pairwise disjoint). They conjectured that the true detour term should

be
√

3nR and constructed arbitrarily large instances of disjoint disks that converge

to this case. We refer to this as the Häme, Hyytiä and Hakula conjecture.

Subsequent experiments by Müller [74], however, suggest that this might be true
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Figure 1.3: The TSP on the centers is drawn in red and the TSPN in blue. The
detour approach imagines the TSPN making a detour of at most 2R per disk in
order to visit each center. In the differential approach, we imagine the centers
moving along the bisector at uniform speed. The TSPN then corresponds to the
tour when the centers have each moved a distance R.

only for tours up to five disks and higher otherwise. No further progress has been

made towards the conjecture since then.

The basis of the Häme, Hyytiä and Hakula conjecture is their differential

neighborhoods approach, in which they start by considering a tour on the centers

and ask how should points be moved at most R away from the centers such that

the new tour on these points has the smallest length possible (Figure 1.3(b)). They

further define the shortening rate of a fixed order to be the ratio of the decrease

in tour length |TSP ∗| − |TSPN∗| over R, as R → 0. A bound of 2Rn implies a

shortening rate of at most 2n and hence the formulations are equivalent up to the

fact that, for general R, the order in which the TSP visits the centers and that in

which the TSPN visits the disks might not be the same.

This differential approach has implications beyond bounding the TSPN in
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terms of the TSP, as it is related to the theory of Euclidean curve shortening and the

rendezvous problem for mobile autonomous robots. In the latter, the robots start at

fixed positions and the goal is to develop a moving strategy for them such that they

eventually converge to a common point, preferably only using local information [75].

The perspective that is relevant to us was considered by Smith et al [76] who further

take into account the shape of the formation of robots as they are converging. In this

sense, an ordering on the robots gives an associated polygon (tour) and one could

study how this shape changes as the robots follow a specific movement pattern. For

general curves, this is known as the Euclidean curve shortening flow [77]. Smith

et al. [76] investigate the problem for the case of polygons. When the ordering on

the robots corresponds to the TSP ∗ order on their initial positions, the question

becomes that of how the TSP ∗ changes as the robots move according to a fixed

direction. Interestingly, Smith et al. [76] show that if we want to minimize the

perimeter of the polygon as it changes, each point should move along the bisector

of the internal angle of the polygon at that vertex. When all the points move at

equal speed, Häme, Hyytiä and Hakula [73] show that this strategy implies that the

shortening rate is exactly 2
∑n

i=1 cos αi
2

, where αi is the internal angle of the tour

considered. What this intuitively means for us is that instances in which the TSP

takes many sharp turns will push our detour term closer to 2Rn.

We further investigate this question and derive structural properties of the

optimal TSPN tour to describe the cases in which the bound is smaller than 2Rn.

Specifically, we show that if the optimal TSPN tour is not a straight line, at least

one of the following is guaranteed to be true: the bound is smaller than 1.999Rn or
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the TSP on the centers is a 2-approximation. This bound of 2 is tight, as there are

instances in which the TSP on the centers is exactly twice as long as the TSPN

tour on the disks. Our framework is based on using the optimality of the TSPN

tour to identify local structures for which the detour is large and then using their

geometry to derive better lower bounds on the length of the TSPN tour. This leads

to an improved approximation factor of 3.53 for the problem. We further show that

the Häme, Hyytiä and Hakula conjecture is true for the case of three disks and

discuss the method used to obtain it.

This work is scheduled to appear in the proceedings of the 30th Canadian

Conference on Computational Geometry.

1.2.3 The Maximum Scatter Traveling Salesman Problem

While Euclidean TSP is a prime example of the benefits of considering the

geometry of the underlying space in algorithm design, some instances have proven

to be even more surprising in that they can be NP-hard in general graphs but have

polynomial time algorithms once we consider Euclidean instances. Such is that case

for Maximum TSP in polyhedral metrics in finite dimensions [78] or for rectilinear

metrics in the plane [79].

In fact, a more nuanced phenomenon might be at play here. The complexity of

the problem might change drastically when we differentiate between two and higher

dimensions: some problems could be polynomially time solvable in two dimensions

and NP-hard in higher dimensions. In fact, both Maximum TSP and Maximum
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Scatter TSP are known to be NP-hard in three or higher dimensions [79] while for

both, there is evidence that some planar instances are easy [80,81]. One of the most

exciting questions in this direction then becomes whether such problems are

indeed polynomial in the planar Euclidean case or remain just as hard as

their high dimensional counterparts.

This open question is recognized as an important one by the Computational

Geometry community and has been asked several times [79,82]. The current conjec-

ture is that it remains NP-hard for this case. When it comes to Maximum Scatter

TSP, the only progress made has been to show polynomial time algorithms for points

on a line, on a circle and on specific rectangular grids [80,81]. Other interesting spe-

cial cases to consider would be points lying on the boundary of an arbitrary convex

body, or concentrated around the circle.

In our work, we begin by providing an alternative algorithm for the case of

points on a circle. As opposed to the original one by Arkin et al. [80], our algorithm

uses the geometry of the input space to derive a more general technique that does

not necessarily aim to show a fixed ordering on the points that leads to a good tour

but rather one that can be applied in less restrictive scenarios.

The circle case is interesting to us for an additional reason: it comes up in one

of the methods we develop for the Traveling Salesman Problem with Neighborhoods

in Section 4.5. Specifically, the 2Rn bound in 1.1 can be expressed as the Maximum

TSP tour on points lying on the boundary of a circle. Knowing what the Maximum

TSP tour looks like on the circle helps us identify the cases in which the detour

bound for TSPN is large. Without going into details, we mention here that those
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points correspond to locations that the optimal TSPN tour visits on the input disks.

For example, the 2Rn bound is achieved when the TSPN tour alternates in hitting

the disks in one of two (diametrically opposite) points. If that happens, then the

TSPN tour is easy to describe and the general idea is that this is the case also for

bounds close to 2Rn (not necessarily just for 2Rn exactly).

One way to understand the Maximum TSP on the circle scenario is also

through Max Scatter TSP. For the case of 2Rn, the Maximum TSP tour is ac-

tually equivalent to the Maximum Scatter TSP and intuitively, this seems to be

the case in general. A secondary question we could therefore ask is whether for

the case of points on a circle, is it the case that the Maximum TSP and

the Maximum Scatter TSP are equivalent? Furthermore, if we manage to

show such an equivalence, our analysis for TSPN could be vastly improved, since

it would allow us to make an argument locally: the points that the TSPN touches

in successive rounds actually have to be well separated on the boundary. If such

a thing were true, then it would actually allow us to obtain much better general

bounds on TSPN.
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Chapter 2

Preliminaries

At its core, the field of Theoretical Computer Science concerns itself with the

art of problem solving and the craft of algorithm design. The primary objects of

study are optimization problems, which can broadly be defined as asking for the best

solution to a certain question according to a given set of criteria. For example, in

the Traveling Salesman Problem, we want to find the shortest tour through a city

that visits a given set of locations. In the Graph Coloring context, one could ask

for a coloring of the countries on a map using the minimum number of colors such

that no two neighboring countries share the same color1. Finally, in the k-center

problem, we want to know where we should open k hospitals such that we minimize

the farthest distance any one customer must travel to its closest hospital.

Each of these problems asks for a structured answer (a tour, a valid coloring,

a set of k hospitals) and associates a cost to each such solution (length of the tour,

1The surprising answer to this question is that 4 colors always suffice. This is famously known

at the Four Color Theorem and has a fascinating history behind it. Although I did not research

this topic, I include it as a beautiful example of the unexpected depth of easy to state problems.
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number of colors used, distance to the closest hospital). From this perspective, the

best solution is one that optimizes this cost over all potential answers (minimum

length, number of colors and distance, although maximization problems are equally

common). In addition to this, we want to find such a solution efficiently and in an

automated manner that can conceivably be implemented by a computer.

More specifically, an algorithm consists of a series of unambiguous ‘basic’ in-

structions that, given some input (specific locations, map of the countries), termi-

nates in finite time and outputs a solution for the problem at hand. The notion of

efficiency encompasses not just how good the solution is with respect to the opti-

mal one but also how computationally expensive the algorithm is with respect to

resources such as time and space. In that sense, the goal of algorithm design is to

exploit the structure of the problem and of the input instances and develop methods

that are mindful of computational limitations.

Given a specific optimization problem, the subsequent questions that can be

asked are “Can this problem be solved optimally?”, “How fast can a good solution be

found?”, “What properties of the input instance can we use to make better decisions

in our algorithm?”, and so on.

2.1 Foundations of Approximation Algorithms

Formally, we begin by parameterizing our problems according to the size of

the input instance. At its core, this captures the description complexity of the

instance and it usually boils down to the number of input points, which we denote
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as n ∈ N. The runtime and space usage of the algorithm are then described in terms

of this parameter n, conventionally abstracting away system specific details. One

of the most important measure of runtime complexity is in terms of the worst case

performance of the algorithm. This functions as an upper bound on runtime/space

(through established big-oh notation) and it is sometimes accompanied by lower

bounds that capture computational limitations. While alternative measures exist

(such as average case performance), we will focus on worst case analysis throughout

this thesis.

When it comes to efficient algorithms, the broadest definition encompasses

those whose runtime and space usage is a polynomial function of n. In practice,

as data sets increase in size, the race to obtain faster algorithms continues. For

instance, significant progress has been made in our understanding of sublinear al-

gorithms and runtime lower bounds. Other directions of research have successfully

explored what can we achieve with very limited space.

Nevertheless, the standard of obtaining polynomial time algorithms remains

an important benchmark, especially since it underlies a major division in our clas-

sification of problems. On one hand, we can start by identifying the problems for

which we know a polynomial time algorithm exists. Such is the case of the b-edge

cover we consider in Section 3.5, or of our efforts for the Maximum Scatter

Traveling Salesman Problem in Chapter 4. Conventionally, they are said to

belong in the computational class P.

On the other hand, we can identify problems for which a potential solution

can be easily checked in polynomial time. These are problems that are said to be in
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NP (Nondeterministic Polynomial). For example, the question of whether a planar

country map can be validly colored with four colors is easily in NP: given a potential

coloring, we can check in polynomial time that no two neighboring countries are

colored with the same color. The majority of optimization problems fall in this

later category.

Moreover, a fundamental breakthrough was made with the Cook-Levin theo-

rem [83] and Karp’s list of 21 NP-complete problems [84]. Collectively, they estab-

lished an entire class of problems that are reducible to each other modulo polynomial

time transformations. In other words, if one of the problems in the class can be op-

timally solved in polynomial time, all the other problems in it can be as well. This

has lead to the most important open question in Theoretical Computer Science,

that of “P versus NP” . At it core, the question ultimately boils down to whether

NP-complete problems actually do admit polynomial time algorithms. In practice,

they are generally believed to be difficult to solve optimally and even thought to

capture elusive human creativity [85].

In response to this, the field of approximation algorithms designs polynomial

time solutions to NP-complete problems that are guaranteed to be within a given

factor of the optimal solution. For example, if OPT denotes the size of the optimal

solution to a given minimization (maximization) problem, then an α-approximation

algorithm is guaranteed to produce a solution of size at most α· OPT (at least

α·OPT). Sometimes, we can optimize for multiple parameters at the same time, in

which case we have bicriteria approximation algorithms. This is the case in Chap-

ter 3, when we optimize both for the number of sensor used and angular converage.
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In this thesis, we concern ourselves with getting tighter approximation factors, lower

for minimization problems and larger for maximization ones.

In particular, we can design polynomial-time approximation schemes (PTAS)

that are guaranteed to get a solution of size at most (1+ε)·OPT for any ε > 0 in time

polynomial in n for every fixed ε. The exponent might depend on ε as is for example

in O(n1/ε). If the exponent of n does not depend on ε but part of the runtime is

an arbitrary function of 1/ε, we have an efficient polynomial-time approximation

scheme (EPTAS). If the runtime also depends polynomially in 1/ε, then we call

them fully polynomial-time approximation schemes (FPTAS). This is the case for

our results in Chapter 3. In Chapter 4, we concern ourselves with lowering known

constant approximation factors.

Next, we formalize some general problems and discuss some canonical approx-

imation algorithms for clustering.

2.2 Approximation Algorithms for Clustering

In Chapter 1, we mentioned two major types of clustering problems. Now,

we mention two of the most important problems associated with the categories:

Set Cover and k-center/ k-suppliers. Additionally, we also discussed the idea

of associating multiple sensors (cluster heads) to a particular target (input point).

This is generally known as the fault tolerant case. In this section, we review known

results and their associated techniques as they will become relevant later in the

thesis.
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To begin with, we define Set Cover in the following way, where by |S| we

mean the cardinality of S:

Set Cover

Input : A set system F(X,R) where X is the universe of elements andR ⊆ 2X

is a collection of subsets of X.

Output : A subcollection S ⊆ R such that X = ∪C∈RC and |S| is minimized.

In other words, the Set Cover problem asks for the smallest number of

subsets that collectively cover the entire universe. The canonical algorithm known

for this problem is a deceivingly simple greedy strategy: at each step, choose the

set that covers the highest number of uncovered elements. This leads to a log n-

approximation, as shown by Johnson [86], Lovász [87] and Stein [88]. Surprisingly,

this is tight: Feige [89] and Lund et al [90] have shown that the log n approximation

factor is essentially the best possible for any polynomial-time algorithm. In the next

section, we further describe how geometry can help to obtain better solutions.

When it comes to fault-tolerance, one version was introduced by Abrams et

al [18], who consider the problem of minimizing the energy lifespan of a network

of sensors and formulate it as the Set k-cover problem. In this problem, one must

compute a set of k covers. Each cover consists of sensors that cover almost all

of the targets. Together, the k covers must cover the targets as many times as

possible. Intuitively, this means that each target is observed by a sensor in each of

the covers, and hence, if we activate only one cover in each time step, each single

sensor gets activated only once every k time steps. They provide a randomized

algorithm that partitions the sensors within (1−1/e) of the optimum (in expectation)
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and two deterministic algorithms that achieve 1/2 and (1 − 1/e) approximation

factors. They also show that obtaining a performance guarantee of better than

15/16 is NP-complete.

The reason why this does not directly apply to our case is that our choice

of sensors needs to be correlated: not only does every target need to be covered

twice but the sensors assigned to it have to be in a specific relative position. We

further discuss this in Section 3.6, where we adapt the original greedy strategy to

our problem and show that it does not lead to improved results precisely for the

aforementioned reasons.

We will also consider the dual problem to Set Cover, known as Hitting Set.

In this problem, we can imagine transforming a Set Cover instance by exchanging

input points with sets in the following manner:

• each subset in the original Set Cover instance now becomes an input point

in our universe,

• for each point in the original Set Cover instance, we consider the set of

subsets ofR that cover it; this will become a set in our Hitting Set instance.

Selecting the minimum number of subsets in the Set Cover instance now

corresponds to selecting a minimum number of points that collectively intersect/hit

every constructed set. Formally, we have:
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Hitting Set

Input : A set system F(X,R) where X is the universe of elements andR ⊆ 2X

is a collection of subsets of X.

Output : A set of elements H ⊆ X such that X ∩ C 6= ∅, ∀C ∈ R and |H| is

minimized.

In general, Raz et al [91] have shown that it is NP-hard to approximate the

hitting set problem to within a factor better than O(log n). Even when each

element of X is guaranteed to lie in at most two sets of R, the problem remains

NP-complete [92]. Notice that an algorithm for Hitting Set can be used to obtain

an approximation for Set Cover and vice versa. Our framework in Chapter 3 will

not use the Set Cover formulation directly but rather reduce our algorithm to

finding good hitting sets.

We will now consider the final version of clustering, that in which we have

a fixed budget on the number of clusters and we want to minimize the radius of

each cluster. We will consider the most general version, known as the k-suppliers

problem:

k-suppliers

Input : A bipartite graph G = (U, V,E) in which U is the set of suppliers and

V is the set of clients, a distance function d : U × V → R≥0 and a parameter

k ∈ N.

Output : A set S ⊆ U of k suppliers such that we minimize the

maxc∈V mins∈S d(c, s).

In other words, we need to select a set of suppliers such that we minimize the

32



maximum distance from any point in V to its closest supplier in S. If the optimal

solution to the problem is R∗, we know that every client can be serviced by a supplier

within distance at most R∗. When U = V , this is known as the k-center problem,

perhaps a more well known variant.

In general metric spaces, Hochbaum and Shmoys [93] have shown a 3-approximation

for k-suppliers . In the case of k-center, we have better 2-approximations [93,94].

These were shown to be tight by Hsu and Nemhauser [95] unless P=NP. The asym-

metric [96–98] and non-uniform cases [99] have also been considered. The wide

applicability of this optimization problem has given rise to numerous variants that

strive to incorporate useful constraints into the solution, such as capacity [100–102],

lower bounds on the size of each cluster [103,104] or outliers [105,106].

In general, techniques for k-center provide approximation guarantees by first

guessing the optimal cluster radius and considering the associated threshold graph,

a technique introduced by Hochbaum and Shmoys [93]. They obtain solutions that

either cluster everything using k clusters or provide a witness that the guess radius

is too low. By performing binary search on all possible cluster radii, they eventually

arrive at a good guess.

Given a guess radius, one can show a lower bound on the optimal solution size.

The main observation is that if two clients are far apart, they must be assigned to

different suppliers. Specifically, the size of any maximal set of such far apart clients

is a good lower bound for the size of the optimal set of suppliers. In other words,

if we pick one supplier for each such far away client, we are guaranteed to never

pick more suppliers than the optimal solution would. The algorithm then proceeds
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to focus on such far apart clients and assigns suppliers to each of them optimally.

The rest of the input clients must be, by definition, close to one of the far apart

clients and get assigned to whatever supplier is closest to the latter. The cost of

focusing on these far apart clients is that the rest of the input clients have to now

travel farther than what they would have had to travel in the optimal solution. This

approach gives the best approximation possible unless P=NP.

In the fault tolerant setting, Khuller et al [19] consider the Fault Tolerant k-

center problem. In the metric fault tolerant version, we require that each point has

multiple such close centers. This problem is NP-hard, since it is a generalization of

k-center. By the same reasoning, it is hard to approximate it within a factor better

than 2 unless P=NP. Khuller et al [19] consider several variations of this problem.

When we require that each point (regardless of it being a center or not) has δ other

centers close to it, they provide a 3-approximation for any δ and a 2-approximation

for δ < 4. When they require that only the points that have not been chosen as

centers have δ centers close, they provide a 2-approximation for any δ. For the fault

tolerant k-suppliers problem, Khuller et al [19] give a 3-approximation, which is best

unless P=NP.

2.3 The Computational Geometry Context

When it comes to Euclidean instances, it is generally believed that most NP-

complete optimization problems become easier to approximate and can even admit

polynomial time algorithms. As we have seen, the power of graph algorithms comes
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from abstracting away most of the details of the input and getting to the essence

of what makes a problem difficult. This leads to very general techniques with wide

applicability.

Nevertheless, a significant fraction of real world problems has the additional

feature that the underlying data lies in a (potentially high dimensional) Euclidean

plane. In that case, it becomes worthwhile to consider this aspect as part of our

problem formulation. This is the case especially since in such instances, we can

often design faster data structures or develop stronger structural theorems that are

not true in general.

To begin with, one of the most natural scenarios in which hitting sets are

encountered is when the universe of elements consists of points in Euclidean space

and the sets are induced by geometric objects. Even then, however, the problem

remains NP-hard for the simple case in which the sets are induced by unit disks, as

shown by Hochbaum et al [107]. Nevertheless, better than log n- approximation are

still possible, however.

In the special case in which the set system corresponds to certain geometric

objects, a general technique introduced by Haussler and Welzl [108] is that of using

ε-nets. Intuitively, for any 0 < ε ≤ 1, an ε-net is a set of elements N ⊆ X that

intersects all the ”heavy” sets of R. In the uniform case, we require N to intersect

any set C ∈ R with |C| ≥ ε|X|. More generally, consider a weight function sµ :

X → R≥0 such that the weight of a subset of X is the total weight of the points in

that subset. A set At ∈ R is called ε-heavy if µ(At) ≥ εµ(X). An ε-net N must

then intersect all ε-heavy sets in R.
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Given an algorithm that computes ε-nets in the weighted case, the challenge

is then to compute a weight function that guarantees that the ε-net will also be

a hitting set for all the sets, not just the heavy ones. The well known algorithm

of Brönnimann and Goodrich [109] iteratively computes such a set of weights and

guarantees that, eventually, a 1
2τ

-net will be a hitting set, where τ is the optimal

hitting set. Specifically, given an algorithm that computes in polynomial time an

ε-net of size O((1/ε) · g(1/ε)), they design an algorithm that returns a hitting set of

size O(τ · g(τ)), when g is a monotonically increasing sublinear function [109].

The algorithm of Even et al [110], on the other hand, solves the fractional

hitting set LP and employs the solution in building a set of weights that guarantee

that an 1
τ∗ -net is a hitting set, where τ ∗ is the value of the LP solution. The size

of the hitting set would therefore be O(τ ∗ · g(τ ∗)). Given an ε-net finder that takes

polynomial time, the running times of the two algorithms are comparable and are

polynomial in m and n, where n = |R| and m = |X|. In addition, in a recent result

by Agarwal and Pan [111], faster algorithms are presented, that can be applied to

a variety of range spaces.

Whichever algorithm we employ, the question eventually boils down to con-

structing an ε-net of small size with respect to 1/ε. Our strategy will be thus to

compute such a small ε-net and then use either the Brönnimann and Goodrich al-

gorithm [109] or the Even et al algorithm [110] as a blackbox. This will be our

strategy in Section 3.3. Moreover, in Section 3.4, we will provide more advanced

ε-net constructions for our purposes.

Depending on the underlying geometric objects in the set system, several ef-
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ficient ε-net constructions have been developed. For example, we can look at the

Vapnik - Chervonenkis (VC) dimension of the set system. The VC dimension of

a set system is the size of the largest subset Y ⊆ X that can be shattered in the

sense that |{Y ∩ S|S ∈ R}| = 2|Y |. When the set system has finite VC dimension

d, Blumer et al [112] and Komlós et al [113] show that a random sample (under

the probability distribution that assigns to s ∈ X a probability w(s)/w(X) of being

sampled) of size O((d
ε

log(1
ε
))) turns out to be an ε-net with high probability. Better

constructions are known for specific set systems: ε-nets of size O(1/ε) are known for

the case when the underlying objects are halfspaces in R2 or R2, pseudo-disks, fat

wedges, three-sided axis-parallel rectangles in R2, and translates of quadrants in R2

and of fixed convex polytopes in R3 [1, 114–116].

When it comes to k-center and k-suppliers, much less is known. Feder

et al [117] have shown that it is NP-hard to approximate k-suppliers better than

√
7 and k-center better than

√
3. This rules out the possibility of computing a

PTAS for this case, making k-center and k-suppliers one of the few clustering

problems that do not admit arbitrarily close approximations in the Euclidean case.

Nevertheless, this does not exclude the possibility of a (2 − ε)-approximation, for

some ε > 0. This remains one of the most interesting open problems in k-clustering.

Recently, Nagarajan et al [118] have made great progress in this direction, by show-

ing a (1 +
√

3)-approximation for Euclidean k-suppliers. It is unclear how this

translates into an improved approximation for k-center. In Section 3.5, we extend

their result to work for the fault tolerant case.
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Chapter 3

Clustering with Angular

Constraints

In this chapter, we discuss the problem of placing a small number of sensors so

as to satisfy the angular constraints defined in Section 1.2.1. We begin by reviewing

existing work and summarizing our results and associated challenges (Section 3.1).

We then formally define our problems and the necessary terms (Section 3.2). The

main algorithmic framework can be found in Section 3.3. We then provide further

approximations in Section 3.4 for the case of additional distance constraints. In

Section 3.6, we discuss the computational complexity of the problem and provide

evidence of hardness. Finally, we end with an approximation algorithm and some

remarks for the case in which the input space is continuous (Section 3.7).
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3.1 Introduction

In this section, we review previous works that directly relate to our problem,

summarize our results in detail and discuss the challenges that arise along the way.

3.1.1 Related Work

When it comes to sensor coverage problems, extensive work has been done al-

though surprisingly few results discuss α-coverage. Notable exceptions are the work

of Efrat, Har-Peled and Mitchell [119], Tekdas and Isler [120] and Isler, Khanna,

Spletzer and Taylor [121]. As mentioned before, Efrat et al. [119] introduce the

α-AngArt problem in which two sensors are required to α-guard a target. They

present aO(log kOPT)-approximation algorithm that guarantees α/2-coverage, where

kOPT is the smallest set of sensors that satisfy the visibility and α-coverage con-

straints. Their algorithm runs in timeO(nk4OPT log2 n logm). In contrast, we present

a framework that achieves (1− 1/δ) · α-coverage.

Tekdas and Isler [120] formalize the angle constraint in a slightly different

manner by considering an uncertainty function that depends not only on θ but also

on the relative distance between sensors and the target: given two sensors s1, s2 and

a target location t, the uncertainty is proportional to d(s1,t)·d(s2,t)
| sin θ| , where d is the `2

metric. Notice that this corresponds exactly to the observation of Kelly [66]. They

then investigate the problem of placing a minimum number of sensors such that

the maximum uncertainty is below a given threshold U . A similar approach can
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be used for the problem with just angular coverage (α-Ang) and for the one that

additionally has distance constraints ((α,R)-AngDist).

When the targets are contained in some subset of the plane and the sensors

can be placed anywhere, they present a 3-approximation with maximum uncertainty

≤ 5.5U for the case in which the uncertainty function is exactly d(s1,x)·d(s2,x)
| sin θ| . This

formulation applies directly to the task of target localization through triangulation

and the method of Tekdas et al [120] captures this elegantly by imposing a triangular

grid on the plane and placing sensors at vertices of the grid. By imposing a square

grid however, we can show that the guarantee on the uncertainty can be met exactly,

at the cost of employing a larger number of sensors. A similar approach can be used

for α-Ang and (α,R)-AngDist.

Finally, Isler et al [121] consider the case in which the sensor locations are

already given and one must compute an assignment of sensors to targets that mini-

mizes the total sum of errors. In addition, they require that each sensor be used in

tracking only one target. The version relevant to our problem is when the error is

defined as 1/ sin θ. In the case in which the sensors are equally spaced on a circle,

they present a 1.42-approximation that also applies to minimizing the maximum

error.

3.1.2 Technical Challenges and Contributions

We introduce several new problems that require α-coverage and propose a

general framework for approximating the angular constraint (Section 3.3 ). We ex-
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emplify the use of this framework in the context of three specific problems: one in

which we just consider angular constraints (α-Ang), one in which we have addi-

tional distance constraints ((α,R)-AngDist) and one in which we have visibility

constraints (α-AngArt, also considered by Efrat et al [119]).

For the case of α ≤ π/3, we provide a general bi-criteria algorithm that ap-

proximates the angular coverage to arbitrary precision while guaranteeing a good

approximation in the size of the solution. Specifically, for any δ > 1, we propose an

iterative method that guarantees (1− 1/δ) · α-coverage and contributes a factor of

log δ to the approximation factor of the solution size. A summary of our results can

be found in Table 3.1.

In Section 3.4, we present further approximations for the special case in which

we have angular and distance constraints. We relax the distance constraints from

R to 2R and 3R and reduce the approximation factor of the solution size from

O(log δ · log kOPT) to O(log δ) and O(1) respectively, while keeping the angular

coverage at (1 − 1/δ) · α. This emphasizes an inherent tradeoff in the problem

formulation: if we allow our targets to be covered from farther away, we can achieve

tighter guarantees on the number of sensors we pick.

We also consider the case in which α = 0 and construct a set of optimal size

that covers the targets within distance (1 +
√

3) · R (Section 3.5). This particular

case remains relevant since it captures the spirit of fault tolerance by requiring

two sensors to be assigned to a target. We achieve our result by showing a (1 +
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Coverage Problem Results

α-Ang O(log δ)-approximation with (1− 1/δ) · α-coverage

(α,R)-AngDist within distance R:
O(log δ · log kOPT)-approx with (1− 1/δ) · α-coverage

within distance 2R:
O(log δ · log log kOPT)-approx with (1− 1/δ) · α-coverage

within distance 3R:
O(log δ)-approx with (1− 1/δ) · α-coverage

for α = 0:

optimal set of sensors within dist (1 +
√

3) ·R
Euclidean Fault Tolerant k-suppliers:

Known 3-approximation [19], new (1 +
√

3)-approx

α-AngArt Known:
O(log kOPT)-approx with α/2-coverage [119]

New:
O(log δ · log kOPT)-approx with (1− 1/δ) · α-coverage
O(log δ · log h · log(kOPT log h))-approx for h holes

Table 3.1: Summary of our results. Depending on each problem formulation, kOPT

denotes the size of the optimal set of sensors. The results hold for any δ > 1 and
α ≤ π/3.

√
3)-approximation for the more general Euclidean Fault Tolerant k-suppliers

problem which improves on the existing 3-approximation by Khuller et al [19].

In Section 3.7, we consider the original problem introduced by Tekdas et

al [120] in which the sensors can be placed anywhere on the plane, the uncertainty

function is given as d(s1,x)·d(s2,x)
| sin θ| and we are given an upper bound U on the maximum

uncertainty. For this case, we give a 25-approximation that guarantees that the

uncertainty is ≤ U .

Lastly, we investigate the complexity of the angular constraint problem in Sec-

tion 3.6. We begin by casting our problem as a Set Cover instance and show that

the natural greedy strategy does not generally lead to good approximation algo-
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rithms. We then abstract away the geometry of the angular constraints and define

the Pairwise Selection problem. We show that this becomes a generalization of

MinRep and is therefore hard to approximate. Finally, we show that the problem

remains hard on planar graphs, from a reduction from Dominating Set.

Before describing our results however, we would like to outline the particular

theoretical difficulties that the angular constraint gives rise to and provide some

context for our strategy. Specifically, we will try to argue that classical techniques

for Set Cover and k-center are not sensitive enough to accommodate for the

particularities of the angular constraints and lead to poor approximations in general.

We will focus on identifying what exactly makes this new model hard and then use

this insight to develop a new technique that achieves improved approximations.

For simplicity, we will consider the α-Ang problem, noting that all our ob-

servations also apply to (α,R)-AngDist and α-AngArt, since they share the

angular coverage constraint. One natural way in which we can consider α-Ang is

as an instance of Set Cover. As will be seen later in the thesis (Section 3.6), this

yields yields a O(kOPT · log n)- approximation for α-Ang. By exploiting the under-

lying geometry of the problem, we can improve the above approximation factor to

O(kOPT log kOPT).

The persistent kOPT factor in the approximation comes from the fact that the

Set Cover framework cannot distinguish between sensors that help cover a lot of

targets (in isolation) and sensors that, additionally, can also help cover more targets

in conjunction with other sensors. In other words, it does not make use of the global

dependency between sensors in order to get a small solution size. Such observations
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are more in the vein of Label Cover type problems. In fact, as discussed in Sec-

tion 3.6, when considered in its full generality (i.e. points lie in arbitrary space and

coverage is defined arbitrarily), the problem becomes a generalization of MinRep

and, as such, incurs a hardness of approximation bound of 2log1−ε n, for any 0 < ε < 1

unless NP ⊆ DTIME(npolylog(n)) [122]. This is, in fact, the first bottleneck of the

problem: the contribution of one sensor depends on all the other sensors chosen in

our solution. Better approximations must then exploit the fact that the contribution

of one sensor is measured in terms of all the choices we make in our final solution

and must therefore leverage the potential of already chosen sensors when selecting

new ones.

A slightly different problem is encountered when considering classical methods

for k-center, especially in the fault tolerant setting of Khuller et al [19]. This ob-

servation specifically applies to the case in which we require each sensor to be within

a range R of the target (as in (α,R)-AngDist). In Chapter 2, we discussed some

techniques for k-center which boil down to arguing that far apart targets must be

covered by distinct sensors. In the fault tolerant case, when the sensors collaborate

to cover the targets, a similar approach can be used successfully. Furtermore, in the

case of (α,R)-AngDist, the observations from before also hold.

The problem, however, comes from the fact that we can no longer make the

argument that a target can be covered by any sensor at the price of paying for

a larger distance. The choice of sensors that we make for those far apart targets

might be optimal for those specific targets, but we cannot guarantee that they will

help α-cover any of the other targets. When the sensors can be placed anywhere,

44



we can get around this problem by adding only a small constant number of new

sensors (per each far apart target) that we can guarantee will cover the rest of the

targets, wherever they might be. In contrast, when the sensors are restricted to only

certain locations, we can no longer reason about which of the targets they will be

able to cover. In general, each of the other targets might require two additional new

sensors to be chosen in our solution. This, in turn, makes it hard to lower bound

the size of the optimal solution and provide guarantees on the number of sensors

the algorithm would choose. We identify this as the second bottleneck of our

new model. Another way of thinking about this issue is that, in (α,R)-AngDist,

the relative position of the sensors with respect to the target they are supposed to

cover is encoded as a constraint rather than a parameter to be optimized (such as

distance is in k-center). In this context, an approximation algorithm that relaxes

that constraint would have to exploit its inherent geometric structure so that it can

cover the rest of the targets in a way that can be translated quantitatively as a

function of the size of the optimal solution.

In this context, the main contribution in this chapter is a general technique for

constructing solutions with approximate α-coverage when α ≤ π/3. In particular, we

present a method that, given a set of sensors S that achieves (α−2ε)-coverage, builds

a slightly larger set S ′ that obtains (α − ε)-coverage, for any ε ≤ α/2. Essentially,

(α − ε)-coverage will be obtained by constructing pairs in which one sensor is in

S and the other one is in S ′, thus reducing the dependency between sensors and

limiting the set of pairs we consider in each step. Specifically, using the fact that S

already achieves (α− 2ε)-coverage, we reduce the task of constructing S ′ to that of
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computing hitting sets for set systems induced by geometric objects for which good

approximation factors exist. At this point, any target that is not yet (α− ε)-covered

by the sensors in S will be (α− ε)-covered by one sensor in S and another sensor in

S ′. Moreover, we can bound the size of S ′ in terms of the optimal solution size and

therefore consistently keep track of our performance guarantee.

The method generalizes the one used by Efrat et al [119] and can be iteratively

applied to obtain better and better angular guarantees at the expense of constructing

a larger set each time. It is worthwhile to note that the main technical contribution

of the proposal refers to the angle coverage constraint and as such, could be applied

to a variety of other problems as long as the other constraints (such as distance or

line-of-sight visibility) define a good set system (one with finite VC dimension, for

example).

For a given δ > 0, our method ensure an angular coverage of (1 − δ) · α

and an approximation factor for the number of sensors used that depends linearly

on the number of iterations, only logarithmically on kOPT and does not directly

depend on log δ. Specifically, when the framework is used a constant number of

times, we get a O(1)-approximation for α-Ang and O(log kOPT)-approximations

for (α,R)-AngDist and α-AngArt, while approximating the angle coverage by a

constant. This improves on the result by Efrat et al. [119] for α-AngArt for the

case of α ≤ π/3.
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3.2 Problem Formulation and Definitions

Let X ⊆ R2 be the set of potential sensor locations and T ⊆ R2 be the set of

target locations. The underlying distance function will be the `2 metric.

We consider (unordered) pairs of the form (s, s′) where s 6= s′, s ∈ S, s′ ∈ S ′

and S, S ′ ⊆ X. We denote the set of such pairs as S × S ′. Formally,

S × S ′ = {(s, s′)|s 6= s′, s ∈ S, s′ ∈ S ′}.

Definition 3.1. We say that the pair (s, s′) α-covers the target t if the angle ∠sts′ ∈

[α, π − α].

We also say that the set of pairs S × S ′ α-covers t if there exists a pair

(s, s′) ∈ S × S ′, s 6= s′, that α-covers t. When S ′ = S, we simply say that the

set S α-covers t. We say that a pair or a set of pairs α-covers a set T of targets

when it α-covers each element of T . Notice that the parameter α defines a certain

range: the higher the value of α, the smaller the range of possible values that ∠sts′

can take. We are now ready to define α-Ang:

Min SPP with Angle Constraints (α-Ang)

Input : A set of sensor locations X, a set T of target locations, an angle

parameter α ∈ [0, π/2].

Output : A set S ⊆ X of mininum cardinality such that S α-covers T .

In addition, we can require that the sensors be within a range of the targets

they cover:

47



Definition 3.2. We say that a pair or a set of pairs α-covers a set T of targets

within distance R if, for at least one of the pairs that α-covers a target, the distance

from both sensors to the target is ≤ R.

We are now ready to define (α,R)-AngDist:

Min SPP with Angle and Distance Constraints ((α,R)-AngDist)

Input : A set of sensor locations X, a set T of target locations, an angle

parameter α ∈ [0, π/2] and a distance R ≥ 0 .

Output : A set S ⊆ X of minimum cardinality such that S α-covers T within

distance R.

Finally, we consider the problem introduced by Efrat et al [119] which combines

angle coverage with line-of-sight constraints. Given two regions Q ⊆ P , the goal is

to place a small set of sensors in P that guard targets in Q. In order to obtain a

discrete set of sensors, the authors impose an arbitrary grid Γ on P and consider

potential sensors locations that are situated at the vertices of Γ. We note however,

that such a step is not necessary in our case, since X is already a discrete set. We

also require the set of target locations to be inside Q, T ⊆ Q. Given a sensor s ∈ X

and a target t ∈ T , we say that s sees t if the segment connecting the two does not

cross the boundary of P .

Definition 3.3. Two sensors s1, s2 α-guard a target t if they both see the target and

(s1, s2) α-covers t.

By extension, we say that a set S ⊆ X α-guards T if, for each target q ∈ T ,

there exist sensors s1, s2 ∈ X such that (s1, s2) α-guards q. We get the following
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optimization problem:

Min SPP with Angle and Line-of-Sight Constraints (α-AngArt)

Input : Polygons Q ⊆ P ,X ⊆ P , T ⊆ Q , and an angle parameter α ∈ [0, π/2].

Output : A set S ⊆ X of minimum cardinality such that S α-guards T .

From now on, we will refer to an optimal solution to each of the proposed

problems as SOPT and to its cardinality as kOPT. The exact problem these quantities

refer to will be obvious from context. We will also consider α and R to be global

parameters.

3.3 Algorithmic Framework for α-coverage

In this section, we describe an algorithm that, given a set S that (α − 2ε)-

covers T , constructs a set S ′ that (α − ε)-covers T . We refer to this part as the

angle reduction step because it produces a solution with a smaller angle relaxation.

First, we will show that the set S ′ exists and that its size is upper bounded by kOPT

(Section 3.3.1). Specifically, we will show that S×SOPT (α− ε)-covers T . The first

observation in this line of thought was made by Efrat et al [119]: given an arbitrary

set S ⊆ X, for every target t ∈ T , there exists a sensor s ∈ S and s∗ ∈ SOPT such

that (s, s∗) α/2-covers t. In other words, S×SOPT α/2-covers T . We generalize this

observation for the case when α ≤ π/3:

Lemma 3.1. Let ε > 0 be such that α − ε ≤ π/3 and ε ≤ α/2. Given a set S that

(α − 2ε)- covers T , let T ′ ⊆ T be the set of targets that S does not (α − ε)-cover.

Then S × SOPT (α− ε)-covers T ′ (i.e. the set S ∪ SOPT (α− ε)-covers T ).
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In other words, if S does not already (α − ε)-cover a target, then the sensors

in S can be paired up with sensors in SOPT to (α − ε)-cover it. When ε = α/2,

we start with an arbitrary set S and recover the observation of Efrat et al. [119]

for α ≤ π/3. We note that, in order to get a better that 1/2-approximation on the

angular coverage, the seed set S cannot be chosen arbitrarily. In fact, our proof

crucially uses the power of the pairs in S to (α− 2ε)-cover the targets, thus further

exploiting the collaboration between already chosen sensors.

We also note that SOPT is in fact more powerful that this since it α-covers

everything. The problem, however, is that we do not know how to fully exploit the

power of the pairs in SOPT × SOPT. By fixing some of the sensors to be in S and

looking at pairs in S×SOPT, however, we can reduce the general problem to a more

tractable one of finding a suitable set S ′ that can achieve what SOPT achieves in

this restricted framework.

Finally, notice that the above lemma only provides an existential proof for S ′,

since we do not know what SOPT is. We then show how to construct S ′ for each

of the problems considered (Section 3.3.2). In particular, we exploit this restricted

framework and construct the set S ′ by computing an approximate hitting set. We

then show how to use the algorithm iteratively and obtain (1 − 1/δ) · α-coverage

(Section 3.3.3).
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3.3.1 Existence of an Approximate Solution

We begin by defining, for each target t ∈ T , sensor s ∈ X, angle parameter

β ∈ [0, π/2] and distance r ≥ 0, the set

Rt(s, β) = {s′ ∈ X|(s, s′) β-covers t}.

In other words, Rt(s, β) represents the set of feasible locations for sensors that,

together with s, β-cover t (β will be instantiated as α − ε). Notice that, from the

point of view of t, the set Rt(s, β) is induced by two wedges around t, as seen in

Figure 3.1. A wedge is defined as the intersection of two non-parallel halfspaces in

R2. Specifically, let l be the line that passes through s and t. Let l1 and l2 be the

two lines that pass through t and form an angle of β with l. These two lines describe

two opposite wedges of interest: one that corresponds to the halfspaces above the

lines l1 and l2, and one that corresponds to the halfspaces below the lines l1 and

l2. These two wedges are exactly the ones that describe the feasible region where

s′ could be and we shall refer to their union as a double-wedge from now on. The

central angle θ of both the wedges is θ = π− 2β, and by extension we shall say that

the corresponding double-wedge has a central angle of θ = π − 2β.

In order to prove Lemma 3.1, we essentially show that SOPT must intersect the

double-wedges generated by S and T . First, notice that if a set S already (α − ε)-

covers a target t, then we do not need to worry: S will continue to (α − ε)−cover

t even when we add S ′ to S. We are therefore concerned with targets in T ′ that

are not already (α − ε)-covered by S. We note, however, that it is essential that S

(α− 2ε)-covers T ′. If S does not have this property or is arbitrary, we cannot hope
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Figure 3.1: The set Rt(s, β) is induced by the double-wedge generated by the lines
l1 and l2 and has a central angle θ = π − 2β.

to get past the α/2 barrier.

Fix such a target t ∈ T ′ and let s1, s2 ∈ S be any two sensors that (α − 2ε)-

cover t but do not (α − ε)-cover it. We will show that there exists s∗ ∈ SOPT

such that either s∗ ∈ Rt(s1, α − ε) or s∗ ∈ Rt(s2, α − ε). The candidates will be

s∗1, s
∗
2 ∈ SOPT where (s∗1, s

∗
2) is the optimal pair that α-covers t. Intuitively, each

of the double-wedges induced by s1 and s2 alone is not big enough to ”capture” s∗1

or s∗2. However, if ∠s1ts2 is in the range [α − 2ε, π − (α − 2ε)], then together, the

union Dt of these double-wedges (which will also be a double-wedge around t) will

be sufficiently well spread (i.e. have a large enough central angle ) to guarantee that

one of the optimal sensors is contained in it. In other words, at least one of the

optimal sensors s∗1 or s∗2 together with either s1 or s2 will (α− ε)-cover t.

We note, however, that the requirement that α be smaller than π/3 is relatively

tight in this framework, in the sense in which, if α− ε > π/3, then the central angle

of each of the double wedges is too small and we can no longer guarantee that their

union Dt forms a bigger double wedge. Furthermore, it is not true that Dt must
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intersect SOPT.

Consider the double-wedges D1 and D2 corresponding to Rt(s1, α − ε) and

Rt(s2, α − ε), respectively, with central angles θD1 = θD2 = π − 2(α − ε). Let

α′ = ∠(s1ts2).

Lemma 3.2. The union of the two double-wedges D1 and D2 is a larger double-wedge

D centered at t with central angle θD = π − 2(α− ε) + α′.

Proof. We refer the reader to Figure 3.2 for an intuitive explanation. Formally, let

l be the line that passes through s1 and t and let l1 and l2 the two lines that define

D1. Since ∠(s1ts2) /∈ [α − ε, π − (α − ε)], it follows that s2 is not in D1. Assume

without loss of generality that s2 is between the lines l and l1 in the counterclockwise

direction. The same proof follows for the other possible locations of s2.

Now consider D2 and let l3 and l4 be the defining lines through t, while l′ is

the line that passes through s2 and t. Notice that D1 and D2 are identical except

that D2 is a rotated copy of the D1. In other words, since ∠(l, l′) = α′, we also have

that ∠(l1, l3) = α′ and ∠(l2, l4) = α′.

Furthermore, since α′ ≤ α− ε and ∠(l1, l3) ≤ π− 2(α− ε), we have that when

α − ε < π/3, l3 lies in between l1 and l2 and the union of the two double-wedges

D1 and D2 is a continuous double-wedge D determined by l1 and l4. It has central

angle θD = θ1 + ∠(l2, l4) = π − 2(α− ε) + α′.

Our goal is to show that one of the two optimal sensors s∗1 and s∗2 must be in

Dt. The intuition is that by making Dt have a large central angle, we ensure that

the complement D′t of Dt has such a small central angle that it would not be able
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θD = π − 2(α− ε) + α′
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θD′ = 2(α− ε)− α′
α′

t

Figure 3.2: Since ∠(s1ts2) = θ, D2 is a rotation by α′ of D1 . Their union is another
double-wedge D defined by l1 and l4 with central angle θD = π − 2(α− ε) + α′.

to contain both s∗1 and s∗2.

Lemma 3.3. One of the two optimal sensors s∗1 and s∗2 must be in D.

Proof. We refer the reader to Figure 3.3 for an intuitive explanation. Let D′ be the

complement of D. Notice that D′ forms another double-wedge defined by l1 and l4

but that it does not actually contain points on these lines. The intuition is that by

making D have a large central angle, we ensure that D′ has such a small central

angle that it would not be able to contain both s∗1 and s∗2.

First, notice that D′ has a central angle

θD′ = π − θD = 2(α− ε)− α′.

Since s1 and s2 (α− 2ε)-cover the target, and we are considering the case where s2

is between l and l1, we have:

α′ ≥ α− 2ε.

Hence, we have that θD′ ≤ α. This implies that s∗1 and s∗2 cannot be both in

the same wedge of D′ without being exactly situated on the lines l1 and l4( i.e. in
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Figure 3.3: We want to show that one of the optimal sensors s∗1, s
∗
2 must be in D.

Remember that, by definition, ∠s∗1ts
∗
2 ∈ [α, π − α]. Suppose by contradiction that

they are not in D. Then they must be in D′. If they are both in the same wedge of
D′, then we must have that ∠s∗1ts

∗
2 ≤ θD′ . But θD′ ≤ α. On the other hand, if they

are in different wedges of D′, then ∠s∗1ts
∗
2 ≥ θD. But θD ≥ π − α.

D).

The other bad situation would be for them to be in different wedges of D′.

But then the angle between them would be greater than θD. Since α′ ≥ α− 2ε, we

get that

θD = π − 2(α− ε) + α′ ≥ π − α,

which would contradict the fact the ∠(s∗1ts
∗
2) ∈ [α, π − α]. In other words, at least

one of the optimal sensors s∗1 and s∗2 must be in D.

3.3.2 Construction of the Approximate Solution

Once we have determined that SOPT satisfies the requirements of Lemma 3.1,

we will show how to construct a set S ′ of approximate size that also (α−ε)-covers T ′.

As noted before, the proof of Lemma 3.1 only talks about angle coverage. Depending

on the problem at hand, the construction of S ′ will differ but the general technique
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is the same. We first illustrate it for α-Ang and then mention how to change it for

(α,R)-AngDist and α-AngArt.

In the proof of Lemma 3.1, for each target t ∈ T ′ and pair (s1, s2) ∈ S × S

that (α− ε)-covers it, we defined a double-wedge that we showed must contain one

of the sensors in SOPT. Let Dt be that double-wedge, ∀t ∈ T ′. Consider the set

system F(X,R) induced on X by these double-wedges, where we define:

R = {Dt ∩X| t ∈ T ′}.

Notice that SOPT intersects every Dt non trivially. In other words:

Lemma 3.4. The set SOPT is a hitting set for F(X,R).

In general, a set of sensors H ⊆ X is a hitting set for F(X,R) if

H ∩Dt 6= ∅, ∀ t ∈ T ′.

In other words, if we want to construct S ′, we can compute a hitting set

for F(X,R). In this context, the Hitting Set problem asks for a hitting set of

minimum cardinality. Let τ be the size of the optimal set. Notice that Lemma 3.1

shows that SOPT is a hitting set for F(X,R), so we are guaranteed that τ ≤ kOPT.

Our strategy therefore will be to construct S ′ as an approximate solution to the

Hitting set problem for F(X,R) and obtain a guarantee on S ′ in terms of kOPT.

A particularly simple yet elegant ε-net construction was given by Kulkarni

and Govindarajan [1] for the case of γ-fat wedges. A γ-fat wedge is a wedge having

a central angle of at least γ. When the sets in R are induced by such γ-wedges,

Kulkarni and Govindarajan [1] construct an ε-net of size O( π
γε

) for arbitrary γ.
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When γ ≥ π/2, the size of the ε-net becomes O(1
ε
). This directly applies to the

α-Ang problem because the wedges in each double-wedge have a central angle

θD = π − 2(α − ε) + α′ ≥ π − α, since α′ ≥ α − 2ε. Therefore, they are (π − α)-

fat. Each double-wedge can be decomposed into two disjoint wedges, so an ε
2
-net

for (π − α)-fat wedges is guaranteed to be an ε-net for our double-wedges. Since

π − α ≥ π/2, we get a hitting set of size O(τ). Adding this set to S, we get the

following:

Lemma 3.5. (Angle Reduction Step for α-Ang) Let ε > 0 be such that α−ε ≤

π/3 and ε ≤ α/2. Let S ⊆ X be a set that (α − 2ε)- covers T . Then we can find a

set S ′ ⊆ X such that S ′ (α− ε)-covers T and |S ′| = |S|+O(1) · kOPT. The running

time of the algorithm is O(kOPT ·m logm), where m = |X|.

When we consider the (α,R)-AngDist problem, the set of feasible sensor

locations becomes the intersection of a double-wedge with the circle of radius R

centered at the corresponding target. Notice that while the double-wedge captures

the angle requirements (as it did for α-Ang), the circle represents the additional

distance constraints (specific to (α,R)-AngDist). Hence, for each target t, we

define the double-sector

Ct = Dt ∩ C(t, R).

The appropriate set system then becomes F ′(X,R′), where

R′ = {Ct ∩X| t ∈ T ′}.

Similar to double-wedges, each double-sector is composed of two disjoint sec-

tors and hence, an ε
2
-net for sectors would be an ε-net for double-sectors. Since
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each sector is the intersection of two halfspaces and a circle, each of which induce

set system that have constant VC-dimension, we get that it also has constant VC-

dimension [123]. Therefore, it admits an ε-net of size O((d
ε

log(1
ε
))) [112, 113].

That, in turns, gives us a hitting set of size O(dτ · log(τ)) for F ′(X,R′). As before,

adding this set to S, we get the following:

Lemma 3.6. (Angle Reduction Step for (α,R)-AngDist) Let ε > 0 be such

that α − ε ≤ π/3 and ε ≤ α/2. Let S ⊆ X be a set that (α − 2ε)- covers T within

distance R′ ≥ 0. Then we can find a set S ′ ⊆ X such that S ′ (α−ε)-covers T within

distance max{R,R′} and |S ′| = |S| +O(log kOPT) · kOPT. The running time of the

algorithm is O(kOPT ·mn logm), where n = |T | and m = |X|.

Notice that in the above statement, the distance within which S covers the

target set does not have to be R. This does not affect our hitting set construction.

This later observation will prove useful when we relax R′ to be 2R in Section 3.4.2.

In the case of α-AngArt, for each target t, the appropriate set system

F ′′(X,R′′) is built by intersecting Dt with the set of sensors Vt in X that guard

t, called the visibility polygon of t. When the underlying polygon P is simply con-

nected, the set system (X, {Vt∩X| t ∈ T ′}) has constant VC-dimension, as pointed

out by Valtr [124]. It follows that F ′′(X,R′′) also has finite VC-dimension [123].

As such, it has a hitting set of size O(kOPT log(kOPT)). As before, adding this set

to S, we get the following:

Lemma 3.7. (Angle Reduction Step for α-AngArt) Let ε > 0 be such that

α−ε ≤ π/3 and ε ≤ α/2. Let S ⊆ X ⊆ P be a set that (α−2ε)- guards T ⊆ Q ⊆ P .
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When P is a simply connected polygon, we can find a set S ′ ⊆ X such that S ′ (α−ε)-

covers Q and |S ′| = |S|+O(log kOPT) · kOPT. The running time of the algorithm is

O(kOPT ·mn logm), where n = |T | and m = |X|.

3.3.3 Iterative Algorithm

Given the technical lemmas from before that allow us to refine the angular

coverage of a given seed set S, we can now develop a more general algorithm that

constructs a new set that achieves ((1− 1/δ) · α)-coverage for any δ > 1.

The idea is to iteratively apply the angle reduction step log δ times, first with

ε1 = α/2, then with ε2 = α/4 etc. Let Si be the set at the beginning of iteration

i ∈ {1, . . . , log δ}. Si will correspond to the set S in the angle reduction step. Once

we employ the appropriate construction, we obtain a set S ′ and set Si+1 = S ′ ∪ S.

The invariant we will maintain is that, in iteration i > 1, the set Si ((1− 1/2i)) · α-

covers T . This can be easily shown by induction on i. At the end of log δ iterations,

we have that the set Slog δ+1 ((1− 1/δ) · α)-covers T .

The running time of the algorithm is log δ times the time to find the appro-

priate hitting set plus the time it takes to find S1. This first set requires special

care and depends on the problem at hand. We require S1 to 0-cover T but one can

check that the proof of Lemma 3.1 follows in this case even when we do not have

two distinct sensors covering a target. Therefore, in the case of α-Ang, it suffices

to pick S1 to consist of any sensor in X. In each iteration, we increase the size of

our set by O(1) · kOPT and since |S1|=1, we get the following:
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Theorem 3.1. Given X, T , α ∈ [0, π/3] as above, we can find a set of sensors

S ⊆ X such that S ((1 − 1/δ) · α)-covers T and |S| = O(log δ) · kOPT, where kOPT

is the cardinality of the smallest set of sensors that α-covers T . The running time

of the algorithm is O(kOPT ·m log δ logm), where n = |T | and m = |X|.

When it comes to the (α,R)-AngDist problem, we require that the initial set

S1 has the property that each target is within distance R of at least one sensor in S1.

Notice that this is the analogue of the r-domination problem for the case of (k, r)-

suppliers (i.e. when the centers must be picked from a distinct set). Moreover,

without loss of generality, we can assume that R = 1 and then our problem becomes

an instance of the Discrete Unit Disk Cover (DUDC) problem. In DUDC,

we are given a set P of n points and a set of D of m unit disks in the Euclidean plane.

The objective is to select a set of disksD∗ ⊆ D of minimum cardinality that covers all

the points. The problem is a geometric version of Set Cover and is NP-hard [92].

Nevertheless, several constant factor approximations have been developed. For our

purpose, we will use the 18-approximation by Das et al [125] that has a runtime

of O(n log n + m logm + mn). We note that better approximations are known,

but using them in our framework would increase the total runtime considerably.

In each iteration, we increase the size of our set by O(log kOPT) · kOPT and since

|S1| ≤ 18 · kOPT, we get the following:

Theorem 3.2. Given X, T , α and R as above, we can find a set of sensors S ⊆ X

such that S ((1− 1/δ) · α)-covers T within distance R and |S| = O(log n log kOPT) ·

kOPT, where kOPT is the cardinality of the smallest set of sensors that α-covers T
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within distance R. The running time of the algorithm is O(kOPT ·mn logm log δ),

where n = |T | and m = |X|.

For α-AngArt, we need to find a set of sensors S1 ⊆ X that guard T . To

this extent, we again employ the fact that the set of visibility polygons has finite

VC-dimension [124]. Notice that finding a small S1 that guards T is the hitting set

problem for the set system made of sensors and visibility polygons corresponding

to each target. We therefore obtain a set of size O(log k∗) · k∗, where k∗ is the

size of the smallest set of sensors from X that guard T . Notice that, since SOPT

also guards T , we have that k∗ ≤ kOPT. The running time of the algorithm is

O(nk2OPT · log n log(nkOPT)). In each iteration, we increase the size of our set by

O(log kOPT) · kOPT and since |S1| = O(log kOPT) · kOPT, we get the following:

Theorem 3.3. Given polygons Q ⊆ P ,X, T , and α ∈ [0, π/3] as above, we can

find a set of sensors S ⊆ X such that S ((1 − 1/δ) · α)-guards T and |S| =

O(log n log kOPT) · kOPT, where kOPT is the cardinality of the smallest set of sensors

that α-guards T . The running time of the algorithm is O(kOPT · mn logm log n),

where n = |T | and m = |X|.

Notice that we can also apply the algorithm only a constant number of times.

In particular, for any c > 0, we get the following results:

• for α-Ang, we get a O(1)-approximation that achieves ((1−1/2c)·α)-coverage

and runs in time O(kOPT ·m logm)

• for (α,R)-AngDist and α-AngArt, we get a O(log kOPT)-approximation

that runs in time O(kOPT ·mn logm).
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We note that, in the case of α-AngArt, we obtain better approximations

that Efrat et al [119], in the sense that we are able to approximate the α-coverage

constraint to any constant factor while using only O(log kOPT ·kOPT) sensors. More-

over, our running times are comparable: O(nk4OPT log2 n logm) in Efrat et al versus

O(kOPT ·mn logm) for our approximation. We note that their running time comes

from the fact they do not directly use the bounded VC dimension of the set system.

Instead, they use a previous algorithm designed by Efrat et al [126] for approxi-

mating the Art Gallery problem when the set of targets is unconstrained. In

that scenario, they impose a grid on the space of targets and restrict their choices

to vertices of the grid. The intuition is that this is a good approximation for the

general case when we can place targets anywhere and a good assumption since it al-

lows them to design a Brönnimann and Goodrich algorithm [109] - type algorithm.

For this restricted problem, they obtain a O(log k∗)-approximation, where k∗ is the

size of the optimal set of sensors places on vertices of the grid that could guard the

entire polygon. The expected algorithm runs in time O(nk∗2 log k∗ log(nk∗) log2 ∆),

where ∆ is the ratio between the diameter of the polygon and the grid size. When

angle constraints are added, they adapt this algorithm to only consider vertices of

the grid that also satisfy α-coverage.

In our scenario in which targets have to be chosen from a discrete set, we do

not need to impose a grid and can directly apply the Brönnimann and Goodrich al-

gorithm [109] algorithm. For the case in which the targets can be placed anywhere,

their algorithm could be employed instead while maintaining the same approxima-

tion guarantees.
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3.4 Relaxed Distance Constraints and α-coverage

The geometric objects at the core of our method are wedges centered at targets

whose central angles depend on α and ε. These ranges define the set of feasible

locations from which we must choose a new set of sensors and are given as input

to the afferent hitting set problem. In the case of (α,R)-AngDist, the distance

constraints require that the sensors we pick be within range R of the target, so our

wedges become sectors through intersection with a disk of radius R centered at the

target. In this context, we employ the canonical ε-net construction of Blumer et

al [112] and Komlós et al [113] and obtain a O(log kOPT)-approximation.

In an attempt to reduce the approximation factor in this latter case, we con-

sider relaxing the distance constraint and allowing the chosen sensors to be within

distance 2R or 3R of the targets. Relaxing the distance allows us to include these

double-sectors in unions of objects for which better ε-net constructions exist. The

question then becomes which secondary objects we should consider and how to

design specific ε-net for them.

To this end, we will first review known constructions and identify challenges we

might encounter when trying to adapt them for our double-sectors. In the following

sections, we will discuss our constructions in detail and show that they lead to good

bicriteria approximations. We note an interesting phenomena, however:

• without violating the distance contraints, we can get aO(log kOPT)-approximation

on the size of the hitting set,
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• with violating the constraint to 2R, we can get aO(log log kOPT)-approximation,

• with violating the constraint to 3R, we can get a O(1)-approximation.

Our framework therefore explores the inherent trade-off in the optimization

component: once we allow our targets to be covered from farther away, we can pick

less sensors to cover them. Moreover, we believe the methods used to achieve them

might be of independent interest for other problems in which the sets to be hit by

the ε-net are induced by targets that need to be covered within a specific distance.

3.4.1 Challenges

In general, one possible technique for building a good ε-net is to construct

a grid-like structure on top of the input points and pick points (deterministically

or randomly) that will be guaranteed to intersect the heavy ranges. Without any

guarantees on the sizes of the ranges (for some notion of size), one could split the

input points into vertical and horizontal strips that each contain some constant

fraction of ε · n points and pick points in each such cell. The heavy ranges will

be then guaranteed to intersect at least a constant fraction of these cells, which

could then be used to show that they also contain at least one of the chosen points.

The direct consequence of allowing both such a horizontal and vertical discretization,

however, would be that the number of cells would increase quadratically in 1
ε
, leading

to sub optimal bounds on the size of the ε-net. Better constructions would have to

somehow allow such a discretization to happen in only one direction and present

efficient techniques for picking less that 1/ε points in each such cell. As an example,
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we refer the reader to the result of Aronov et al. [127] for a powerful construction that

builds an ε-net of size O(1
ε

log log(1
ε
)) for a variety of objects such as axis-parallel

rectangles, boxes and α-fat triangles.

In this context, the elegant construction of Kulkarni et al [1] splits the input

points in only one such direction (say horizontally) and then picks a constant number

of points in each generated strip. The fact that wedges themselves extend indefinitely

in the other (complementary) direction is key to showing that they contain one of

the chosen points. In the case of sectors, the additional requirement that they be

bounded by a circle, however, makes achieving a similar result considerably harder.

In order to obtain a similar result and at the same time handle the boundedness

of our ranges, we employ the fact that all the sectors have a similar radius R. This

allows up to further split the points in the perpendicular direction (vertically) but

this time, in equally spaced strips of fixed width R. Intuitively, one can think of

these vertical strips as bounding the horizontal strips in a way that mimics the way

our sectors are bounded wedges. This, however, is not enough to ensure that a good

rule exists for picking a constant number of points in each cell. In particular, the

rule of Kulkarni et al [1] does not work either. Essentially, this comes from the fact

that the intersection of a particular sector with each such cell yields a shape that

is rather cumbersome. We deal with this issue by extending the sectors in a way

in which each such possible intersection looks roughly like the intersection of an

infinite wedge with one of our horizontal strips. In this context, we bear in mind

the fact that our sectors are centered at the target and that any point we pick in

our ε-net represents a sensor that should respect the angle and distance constraints.
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To this end, our construction guarantees that we pick sensors that will never violate

the angular constraint and will be within 2R or 3R of the target they are assigned

to.

Before we describe our construction, we will briefly outline the one in Kulkarni

and Govindarajan [1] and then show how it fails in the case of double-sectors. The

first step is to construct an ε-net for a more restricted type of wedges called axis-

aligned wedges. An axis-aligned wedge is a wedge with angle less than π/2 in which

one of the halfspaces is parallel to either the horizontal or the vertical axis. Similarly

to Kulkarni and Govindarajan [1], we define an axis-aligned sector to be a sector

in which one line is parallel to either the horizontal or vertical axis. There are

8 different types of axis-aligned wedges (sectors) and they are denoted being of

as Type 1, Type 2 etc. In particular, a Type 1 wedge (sector) is formed by the

intersection of a horizontal halfspace and another halfspace defined by a line with a

positive slope. [1] focus on constructing an ε-net for Type 1 wedges (sectors), noting

that the construction can be modified in an intuitive way to work for other types of

axis-aligned wedges (sectors).

We now proceed to describe the rule for picking points from Kulkarni et al [1].

Our constructions are similar to theirs, so we briefly summarize the common ele-

ments and explain the differences in more detail in each section. The main idea is to

divide the input points into 2/ε horizontal slices each containing εn/2 points. Each

slice is numbered i, 1 ≤ i ≤ 2/ε, from bottom to top in terms of the y-coordinate

to the highest. For each slice, let Pi be the set of points contained in or above slice

i and let Hi denote the convex hull of those points. Kulkarni and Govindarajan [1]
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(a) The argument for wedges.
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pi
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(b) The argument for sectors.

Figure 3.4: In the case of wedges, the point N(pi) must be contained in the wedge.
However, that is no longer the case for a sector.

associate with Hi an ordering H ′i of the points on its boundary, in counterclockwise

direction starting with the point of highest y-coordinate. For every point p ∈ H ′i,

they define N(p) ∈ H ′i to represent the point right after p in H ′i, with N(p) being the

first element of H ′i in the case when p is the last element of the ordering. They then

consider the restriction of H ′i to slice i and define H ′′i to be the maximal subsequence

of H ′i that consists of points on the boundary of Hi that belong to slice i. This set is

not empty since it must contain the points of lowest y-coordinate in Hi, which are

in slice i. Notice that the points in H ′′i go in counterclockwise direction, essentially

from left to right. The rule for picking points in the ε-net is the following: for each

slice i, pick the point pi that is the last point in H ′′i and its corresponding N(pi).

Notice that the two points essentially correspond to the rightmost vertices in the

convex hull whose segment crosses slice i. This leads to an ε-net of size 4/ε. At this

point, it is straightforward to see that any ε-heavy wedge that fully contains slice

i and some other slice above it must either contain pi or N(pi) or both. We refer

the reader to Fig. 3.4(a) for an intuitive explanation. In addition, Fig. 3.4(b) shows
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how the argument fails when we consider sectors instead of wedges.

The proof technique for showing that the set is indeed an ε-net is to first notice

that any wedge that contains ≥ εn points must intersect at least two slices. Look

at the first slice i (from bottom to top) that the wedge intersects nontrivially. If the

wedge does not already contain pi, then it must contain N(pi) because otherwise, the

hyperplane defined by the line passing through pi and N(pi) and that corresponds

to Hi will not contain any point in slice i that is contained in the wedge. We refer

the reader to Figure 3.4(a) for a visual representation of this argument. Therefore,

such a heavy wedge is guaranteed to contain a point from the ε net.

When we deal with sectors instead of wedges, the above argument fails, as seen

in Fig 3.4(b). The explanation is that once a wedge intersects a slice, it contains

every point in that slice situated to the right of the wedge. That is not true for

sector because they can intersect a slice multiple times and therefore contain only

a bounded part of that slice. Hence, they do not necessarily have to include N(pi).

In this context, the trick is to divide each slice into bounded blocks and pick points

from each such block. That will limit how far to the right the sector needs to extend

in order to intersect the ε-net.

3.4.2 Smaller Hitting Set Constructions for 2R

We start by considering an arbitrarily chosen system of coordinates and inter-

secting it with our double-sectors. Each sector then decomposes into at most three

separate sectors: two sectors, A1 and A2, of acute central angles θ1 and θ2 and one

68



A1

A2

B

B′

A′
1

A′
2

t

R

R

(a) Approximation by right trapezoids
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(b) Approximation by right triangles and
squares.

Figure 3.5: Each sector intersects with the coordinate axes and decomposes into at
most 3 smaller sectors A1,A2 and A3. We extend each of these smaller sectors into
geometric objects for which smaller ε-net constructions exist.

sector, B, with central angle π/2, as seen in Figure 3.5.

We first approximate A1 and A2 by two right trapezoids A′1 and A′2 whose

bases are parallel to the coordinate axes, as shown in Figure 3.5(a). The larger

bases will have a length R · (1+cos θ1) and R · (1+cos θ2) respectively. We extend B

into a square of side R. This operation enlarges the set of feasible sensor locations

in a way that preserves angle coverage but relaxes the distance constraint from R

to at most 2R.

Once we have this new set system, we can modify the construction of Kulkarni

and Govindarajan [1] for γ-fat wedges by partitioning the space of input points into

horizontal and vertical strips of width R and then constructing an ε-net in a similar

manner. Since the modification is relatively straightforward, we defer it to later in

the section. We obtain an ε-net of size O(W
R
· 1
ε
), where W = max{xr − xl, yt −

yb}, where xr and xl (and yb and yl) are the minimum and maximum over all x-
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coordinates (y-coordinates) of points in X.

In general, W could be as high as kOPT, so this approximation is only valu-

able when W is small. In particular, we will use it in the case in which W =

O(log log kOPT). When W = Ω(log log kOPT), we employ a different ε-net construc-

tion. Instead of turning A1 and A2 into trapezoids, we turn them into right triangles

A′′1 and A′′2 as seen in Figure 3.5(b). We then obtain a set system composed of right

triangles and axis parallel rectangles, for which Aronov et al [127] give a randomized

O(n log n) construction of ε-nets of size O( 1
αε
· log log(1

ε
)). Overall, we get that:

Theorem 3.4. Given X, T , α > 0 and R as above, we can find a set of sen-

sors S ⊆ X such that S ((1 − 1/δ) · α)-covers T within distance 2R and |S| =

O( 1
α

log n log log kOPT) · kOPT, where kOPT is the cardinality of the smallest set of

sensors that α-covers T within distance R. The running time of the algorithm is

O(kOPT ·mn logm log n), where n = |T | and m = |X|.

Construction of the ε-net. Formally, we divide the input points into hori-

zontal slices that each contain εn/4 points each and vertical strips each of width R.

The horizontal slices will be numbered i,1 ≤ i ≤ d4εe. The vertical strips will be

numbered j, 1 ≤ j ≤ dxl−xr
R
e, where xl and xr represent the leftmost and rightmost

x-coordinates of the input points. Each slice i and strip j therefore define the block

Bij and let Pij denote the points contained in all the blocks Bi′j with i′ ≥ i. In other

words, Pij contains all the points in or above slice i restricted to strip j. Let Hij

denote the convex hull of the points in Pij, for all Pij 6= ∅ and, just like before, let

H ′ij be an ordering of all the points on its boundary, in counterclockwise direction
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starting with the topmost point. We keep N(p) as before and consider a new point

M(p) ∈ H ′ij to represent the point right before p in the ordering, with M(p) being

the first element of H ′′ij in the case when p is the last element of the ordering. Sim-

ilarly as before, let H ′′ij represent the sequence H ′ij restricted to block Bij. Notice

that H ′′ij could be empty in the situation in which Bij contains no points. However,

we will never deal with such blocks in our proof.

The rule for picking points in the ε-net is the following: for each non-empty

block Bij, let qij and pij be the first and the last points in the ordering H ′′ij (possibly

the same). We then add to the ε-net the points qij,M(qij), pij and N(pij). The

intuition is that now we want to select essentially the leftmost and rightmost points

on the boundary of the convex hull, since our sector will intersect blocks either on

the left or on the right. The size of this set is bounded by 4 · d4
ε
e · dxl−xr

R
e.

Correctness. We will now show that a set constructed in such a way is indeed

an ε-net for the new set systems we construct. Our strategy will be to extend the

sectors in such a way that when we restrict our attention to how they intersect

each block, they behave locally as wedges. First, let us notice that a sector with

central angle ≥ π/2 can always be decomposed into at most 3 smaller sectors: two

axis aligned sectors A1 and A2 with acute central angles θ1 and θ2 and one sector

B with a right central angle and whose radii are axis parallel. Let us consider the

sectors described in Figure 3.5(a). For each of the A1 and A2 sectors, we extend

the axis-parallel radius by R cos θ1 and R cos θ2 respectively away from the target.

This segment will be the larger base of each respective trapezoid. We then draw a

line l perpendicular to the extended axis parallel radius. Simultaneously, we attach
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(b) Case 2: either the left side of A′ must
include N(pij) or the right side of A′ must
include N(pi,j+1).

Figure 3.6: Within each block, the trapezoid A′ behaves like a wedge.

a segment to the non axis-parallel radius that is parallel to the axis parallel radius.

We extend this segment until it intersects l. This point of intersection will define the

right trapezoid that encloses the sector. We denote them A′1 and A′2. Notice that

the maximum distance from t to points in A′1 is achieved by the top right vertex of

A′1 and is
√

2R2(1 + cos2 θ1) ≤ 2R. Similarly for A′2, the maximum distance from

the target is achieved by the bottom right vertex and is
√

2R2(1 + cos2 θ2) ≤ 2R.

When it comes to B, we draw the square B′ of radius R that has the target as its

bottom left corner. The maximum distance from the target then becomes R
√

2. We

extend all other axis-aligned sectors in a similar way.

Lemma 3.8. Our construction is an ε-net for this modified set system.

Proof. We focus our attention on right trapezoids that correspond to Type 1 sectors.

We will refer to the Type 1 sector as A and to its corresponding trapezoid as A′.

Let θ be the central angle of A. Notice that the bottom base of A′ has length

(1 + cos θ)R and since it is the longest of the bases, A′ will intersect exactly two

adjacent vertical strips. We denote those strips as j and j+1 and the corresponding
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disjoint components of A (and A′ respectively) as Aj and Aj+1( and A′j and A′j+1

respectively). Notice that since we are considering ε-heavy sectors, it follows that

either Aj or Aj+1 must contain at least εn/2 points. By extension, either A′j or A′j+1

must contain at least εn/2 points. We distinguish two types of intersections and

show that our construction is an ε-net in each case.

Case 1. The vertical line separating strips j and j + 1 intersect both bases

of A′, as seen in Figure 3.6(a). In other words, A′j is another right trapezoid and

A′j+1 is a rectangle. Suppose A′j contains at least εn/2 points. Then it means that

it must intersect at least 2 horizontal slices. Let j be the minimum index strip that

has a non empty intersection with A′j. Notice that A′j extends all the way to the

right of block Bij and thus, if pij does not belong to A′j, then it must be the case

that N(pij) belongs to it. Otherwise, all the points of Aj that are in strip i would

not be included in the convex hull Hij. Notice that it does not have to be the case

that N(pij) is contained in Aj, but it must be contained in A′j. In the converse case

in which A′j+1 contains at least εn/2 points and strip i is identified accordingly, if

qi,j+1 is not in Aj+1, then M(qi,j+1) must be, because otherwise all the points that

of Aj+1 that are in strip i will not be included in the convex hull Hi,j+1. This is the

case that motivated us choosing qi,j+1 and M(qi,j+1): while A′j+1 might not extend

all the way to the right of Bi,j+1, it does extend all the way to the left of it.

Case 2. The vertical line separating strips j and j + 1 intersect only the

bottom base of A′, as seen in Figure 3.6(b). In other words, A′j is another right

triangle. Suppose A′j contains at least εn/2 points. Just as before, that means that

it must intersect at least 2 horizontal slices. Let j be the minimum index strip that
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has a non empty intersection with A′j. If pij does not belong to Aj, then it must

mean that N(pij) belongs to it. Otherwise, all the points of Aj that are in strip i

would not be included in the convex hull Hij. This is the standard argument used

by [1]. In the converse case in which A′j+1 contains at least εn/2 points and strip i

is identified accordingly, we first note that A′j+1 must contain the vertical line that

separates strips j+1 and j+2. In other words, to its right, it contains everything in

Bi,j+1. Thus, one of the points pi,j+1 and Npi,j+1
must be contained in A′j+1. Notice

that this is not true when we consider for Aj+1.

We have thus shown that our construction is an ε-net for trapezoids that

correspond to Type 1 sectors. This construction can be adapted to work for all

other types of sectors and their corresponding trapezoids. This provides an ε-net

of size O(W
R
· 1
ε
) for axis aligned sectors, where W = max{xr − xl, yt − yb}, where

xr and xl (and yb and yl) are the minimum and maximum over all x-coordinates

(y-coordinates) of points in X. This transfers into an ε-net of size O(W
R
· 1
ε
) for

our double-sectors under the relaxed radius constraint. The running time of the

algorithm is O(kOPTm logm).

Next, we describe how we apply the result of Aronov et al [127]. Apart from

extending the right angle sector B into a square B′ of side length R, we also extend

each sector A1 and A2 into right triangles whose sides are parallel to the coordinate

axes. Consider an arbitrary sector that is centered at a target t and whose central

angle is θ ∈ (0, π/2], such as the ones shown in Figure 3.5(b) (all other types of
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sectors will be similarly modified). We first observe that there is only one way in

which we can extend this sector into a triangle without violating the angle con-

straints. Specifically, we can only extend the two radii of the sector and we will

do so by drawing a perpendicular line to the radius that is already parallel to the

coordinate axis. The second (non-parallel) radius will be extended until it meets

this perpendicular and their intersection will determine the triangle. In this way,

we ensure that the radius relaxation is minimized. Specifically, the farthest point

from the target will exactly be the new intersection point and will be at a distance

of R
cos θ

from t. Unfortunately, this can be arbitrarily large, since θ can be arbitrarily

close to π/2.

In order to fix this, we rotate the original sector in such a way that we guarantee

that both smaller sectors A1, A2 have a central angle that is less than π/3. This

way, we can ensure that the maximum distance relaxation is 2R. As noted before,

the central angle of each of the original sectors is in the range [π − α, π − α/2] and

α ≤ π/2. Therefore, if we clockwise rotate the coordinate axes by iα/6 radians for

∀i, i ≤ d12π
α
e, one of these configurations is going to give us the desired property.

We then solve the problem for each of these d12π
α
e configurations separately.

Assuming that both sectors A1 and A2 were successfully extended into the

right triangles A′′1 and A′′2, we are now ready to apply the results of Aronov et

al [127]:

• for the set system formed out of the squares B, notice that they are axis-

parallel, and we get an ε-net of size O(1
ε
· log log(1

ε
)).
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• for the set system composed of right triangles whose sides are parallel to the

coordinate axes, as noted by Aronov et al [127], we can assume that each

triangle has the same orientation: the perpendicular sides of each triangle

meet at the lower left vertex of the triangle (the semi-canonical right triangle

considered by Aronov et al [127]). We can then directly apply their results

and obtain an ε net of size O(1
ε
· log log ε). Notice that as such, the size of the

ε-net does not depend on α. By computing such ε-nets for each of the d12π
α
e

configurations, we obtain a total set of size O( 1
αε
· log log(1

ε
)).

In total, we obtain an ε net for our overall set system of size O( 1
αε
· log log(1

ε
)).

By decomposing each double-sector into sectors and then extending those into their

appropriate shapes, we obtain a similarly sized ε-net for our double-sectors with the

relaxed radius constraint. The expected running time of the algorithm is O(n log n)

[127].

Combining these two approaches give us the results in Theorem 3.5.

3.4.3 Smaller Hitting Set Constructions for 3R

In an attempt to reduce the approximation factor in this latter case, we con-

sider relaxing the distance constraint and allowing the chosen sensors to be within

distance 3R of the targets. In other words, we extend the radius of our sectors

from R to 3R. Inspired by the construction of Kulkarni and Govindarajan [1], we

then propose a deterministic rule for picking sensors and obtain a “relaxed” ε-net of

size O(RI
R
· 1
ε
), where RI is the diameter of the largest enclosing ball of all possible
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sensor locations. We note that this construction is not cyclical: we are not building

an ε-net for sectors of radius 3R. In our case, our heavy ranges have the special

property that at least ε · n of their points are actually contained inside the sector

of radius of R. The main difference between our construction and the one in [1]

is the fact that the objects the latter considers are infinite and, as such, allow for

simpler grid-based constructions. In fact, this distinction is indeed the source of the

additional RI
R

factor that we incur in our bound. To our knowledge, this is the first

ε-net construction whose size depends linearly on 1
ε

and the ratio of the diameter of

the input space to the size of the ranges (that is, when size can be appropriately de-

fined). We note that the O(1
ε
) construction of Pach and Woeginger [?] for translates

of convex polygons does implicitly depend on solving the problem for points con-

tained inside a bounded square. It is unclear, however, how to adapt their method

for the case in which the ranges are sectors of similar radius but can have arbitrary

central angles and orientations.

In general, RI could be as high as kOPT, so in order to get rid of this depen-

dency, we employ the shitting strategy of Hochbaum and Maass [128] that allows

us to construct a global solution by individually solving the problem on instances

of fixed width. This further incurs a constant factor in our final solution size. The

analysis then yields an overall hitting set of size O(kOPT) that achieves the desired

(α− ε)-coverage and is within distance 3R of the targets. Formally, we get that:

Theorem 3.5. Given X, T , α > 0 and R as above, we can find a set of sensors

S ⊆ X such that S ((1 − 1/δ) · α)-covers T within distance at most 3R and |S| =
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O(log δ) · kOPT. The running time of the algorithm is O(kOPT ·mn logm log n).

We now proceed to formally describe the ingredients. As usual, we will focus

on describing an ε-net for sectors, noting that this translates into a 2ε-net for double

sectors. We start by designing an ε-net for extended sectors of radius 3R. In other

words, if A is an ε-heavy sector of radius R with central angle θ ∈ [π − α, π − α/2]

and A′ is the corresponding sector we obtain by extending the radius of A to 3R,

then we must have that the ε-net H we construct intersects A′ non trivially.

Theorem 3.6. In the case in which the ranges are induced by sectors of radius R

that have central angle in the range [π−α, π−α/2], for α ∈ [0, π/2], there exists an

ε-net construction H of size O(RI
R
· 1
ε
) that guarantees that, for each ε-heavy sector,

there exists a point in H that intersects the corresponding extended sector of radius

3R. In this result, RI represents the radius of the smallest enclosing ball of all the

input points.

Proof. Consider an arbitrary system of coordinate axes. We first decompose each

sector A into smaller ones that have one side parallel to the coordinate axes, which

we call axis parallel sectors. Because its central angle is smaller than π, A will

decompose into at most 3 smaller axis parallel sectors, each with central angle at

most π/2. If we build an ε-net for axis parallel sectors, this will turn into a 3ε-net

for the more general type of sectors, so we will restrict out attention to the former.

Notice that there are 8 different types of axis parallel sectors. We will describe

the construction for one such type and note that it can be intuitively modified to

work for the other types. In particular, we will look at sectors that are formed by
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the intersection of one horizontal halfspace and another one defined by a line with

positive slope, as seen in Fig. 3.4(a).

For reasons that will become evident later in the proof, however, we must

require that all possible axis-parallel sectors either have central angle of at most

π/3 or exactly π/2. To that end, we consider 2 additional coordinate axes that are

rotated copies of the initial coordinate axes, each by a factor of π/3, one in clockwise

and the other one in counterclockwise direction. It can be easily checked that now,

given any sector A, there exists a system of coordinate axes that will decompose A

into at most 3 axis parallel sectors that all have central angles that are either ≤ π/3

or exactly π/2. By constructing separate ε-nets for each such coordinate axes, we

incur an additional factor of 3 in our solution size.

Construction of the ε-net. We now proceed to describe the rule for picking

points. In this part, our construction is similar to the one by Kulkarni et al [1].

We modify it in the following ways: first, we will have 4/ε horizontal slices each

containing εn/4 points each. We will further divide the input space into vertical

strips of width R each. The horizontal slices will be numbered i,1 ≤ i ≤ d4εe. The

vertical strips will be numbered j, 1 ≤ j ≤ dxl−xr
R
e, where xl and xr represent the

leftmost and rightmost x-coordinates of the input points. Each slice i and strip

j therefore define the block Bij and let Pij denote the points contained in all the

blocks Bi′j with i′ ≥ i. In other words, Pij contains all the points in or above slice

i restricted to strip j.

Let Hij denote the convex hull of the points in Pij, for all Pij 6= ∅ and, just like

before, let H ′ij be an ordering of all the points on its boundary, in counterclockwise
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Figure 3.7: Within each block, A behaves almost like a wedge.

direction starting with the topmost point. Similarly, let H ′′ij represent the sequence

H ′ij restricted to block Bij. Notice that H ′′ij could be empty in the situation in which

Bij contains no points. However, we will never deal with such blocks in our proof.

Our rule for picking points will still pick pij and N(pij), where pij is the last element

in H ′′ij and N(pij) is defined as before. In addition, we also pick the leftmost and

rightmost points in each block Bij. The size of the final set H will be 4 ·d4
ε
e·dxl−xr

R
e.

Correctness. We will now consider an ε-heavy axis parallel sector A and

show that H will intersect A’s extended sector of radius 3R. We will focus on the

case in which the central angle θ of A is ≤ π/3. We first begin by noticing that,

since A is a sector of radius R, it intersects at most 2 consecutive horizontal strips.

In particular, we will have one of two cases, as seen in Fig. 3.7.

Case 1. The vertical line separating strips j and j+ 1 intersects the arc of A,

as seen in Fig. 3.7(a). In this case, A decomposes into a left component A1 and a

right component A2. One of these two must contain at least εn/2 points. Suppose

it is the left component A1. Since each horizontal slice contains exactly εn/4 points,
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A1 must intersect at least 2 horizontal slices (not necessarily consecutive). Let j

be the minimum index strip that has a non empty intersection with A1. If pij is

contained in A1, we are in good shape. Otherwise, N(pij) must be contained in the

space we get by extending the non horizontal side of A until it meets the closest

vertical strip to the right. This is because, otherwise, th convex hull Hi would not

cover the points in A1 that are contained in slice i and all the other slices that are

above i (of which there is at least one). The farthest possible location for N(pij) is

exactly the intersection point with the vertical line. In this situation, the distance

from the target is at most R/ cos θ) and since θ ≤ π/3, we get that the maximum

distance to the target is 2R.

When the right component A2 has more than εn/2 points, we note that it

must also intersect at least 2 horizontal slices. In this case, we consider the leftmost

point in slice i. It must be contained in the smallest axis parallel rectangle that

encloses A2. The farthest point in this scenario is the upper right corner, which is

at most R
√

1 + sin2 θ ≤ R
√

2 away from the target.

Case 2. The vertical line separating strips j and j + 1 intersect a side of

the sector, as seen in Fig. 3.7(b). We again decompose into the right and left

components A1 and A2 respectively. If A1 contains more than εn/2 points, we are

guaranteed that either pij of Npij are contained in it, by a similar argument as above.

If, on the other hand, A2 contains more than εn/2 points, in the case in which pi,j+1

is not contained in it, then N(pi,j+1) will be contained in the extended object that

we get from intersecting the non-parallel side of A with the closest vertical line to

the right. The farthest point in this object is at at most R(1 + 1/ cos θ) ≤ 3R away
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from the target.

The other case we need to consider is when A has a central angle of π/2. In

that case, we extend it to the smallest enclosing square (of side length R). When

the square intersects the vertical line between strips j and j + 1, separating the

square into A1 and A2, we will have that either A1 will contain the rightmost point

in box Bij or A2 will contain the leftmost point in Bi,j+1. The farthest point from

the target is the top right corner of the square and is R
√

2 away from the target.

We have therefore shown that our construction will always contain points that

are close to the targets that correspond to the heavy sectors. Additionally, we must

note that all of these points are not just a distance at most 3R away from the target:

they are also contained in A’s extended sector of radius 3R. In other words, we are

guaranteed that the initial angle constraint that A imposes is not violated.

Finally, we must note that, in this specific construction, we consider the hori-

zontal width Wx = xr−xl because we are dealing with a specific kind of axis parallel

sectors given by a specific choice for our coordinate axes. For the other types of

axis parallel sectors, the factor will depend on Wy = yt− yb, where yt and yb are the

y-coordinates of the top and bottom vertices in the input space. We get that, for a

fixed coordinate system, the size of the ε-net will be at most O(1) · d1
ε
e · dW

R
e, where

W = max{Wx,Wy}. Combining this with the other constructions that correspond

to the rotated systems of coordinate axes, we get that the size of the ε-net will be

at most O(1) · d1
ε
e · dRI

R
e, where RI is the diameter of the smallest enclosing ball of

all the input points.
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Remark 1. An alternative way of thinking about the above construction is

that by relaxing the radius constraint to 3R, we can include our double sectors in

slightly larger geometric objects for which we construct an ε-net of sizeO(RI
R
· 1
ε
). The

way we extend each sector is deterministic and depends on the choice of coordinate

axes and the corresponding type of axis-parallel sector. We note, however, that this

is not the same as constructing an ε-net for the extended sectors of radius 3R. Each

of our objects are subsets of the extended sector of radius 3R but their construction

relies crucially on the fact that we were extending from sectors of radius R.

Remark 2. We note that our choice for the threshold of π/3 for the central

angle of an axis parallel sector was rather arbitrary. As we have seen, it was used

in bounding the distance from the farthest point of the ε-net guaranteed to be in

the extended sectors to the target at the center of the sector. Smaller distance

guarantees can be obtained by considering smaller thresholds at the expense of

requiring more rotated copies of systems of coordinate axes (which in turn will

increase the approximation factor in the overall ε-net size).

We will now show how to use this construction in order to build a set S ′ that

is within a constant of the size of the optimal hitting set and guarantees that the

points we pick are contained in the extended sectors of radius 3R. Specifically, we

will show the following:

Lemma 3.9. Let ε > 0 be such that α− ε ≤ π/3 and ε ≤ α/2. Let S ⊆ X be a set

that (α− 2ε)- covers T within distance R′ ≥ 0. Then we can find a set S ′ ⊆ X such

that S ′ (α− ε)-covers T within distance max{3R,R′} and |S ′| = |S|+O(1) · kOPT.
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Proof. As we have seen before, we can construct S ′ as a hitting set for a new set of

geometric objects that we obtained by extending each double sector. Specifically,

given the set system F ′(X,R′) containing sectors of radius R, we constructed a new

set system F ′new(X,R′new) for which we gave an ε-net construction of size O(RI
R
· 1
ε
).

First notice that the size τ ∗new of the optimal hitting set for F ′new is upper bounded

by the size τ ∗ of the optimal hitting set for F ′. A straightforward application of

Brönnimann and Goodrich [109] would therefore get a set S ′ with |S ′| = O(RI
R
· τ ∗).

In order to get a constant approximation factor instead, we will employ the

shifting technique of Hochbaum and Maass [?] as it applies to our case. Before we

describe its application, however, we first note that we will construct S ′ by first

restricting ourselves to each of the systems of coordinate axes that we considered in

the previous construction. Each sector in F ′ corresponds to exactly one coordinate

system, specifically the one in which it has the desired property that it decomposes

into at most 3 smaller sectors that have a central angle that is either ≤ π/3 or

exactly π/2. Each coordinate system i therefore corresponds to a different set of

ranges F ′new,i(X,R′new,i) that are extensions of the sectors of radius R affiliated with

that coordinate system. In other words,

R′new = R′new,1 ∪R′new,2 ∪R′new,3.

As such, we will construct S ′ by actually constructing three separate hitting

sets which we will denote as S ′1, S
′
2 and S ′3 and then taking their union. Let τ ∗new,1,

τ ∗new,2 and τ ∗new,3 be the size of the optimal hitting set in each of these set systems.

It follows that τ ∗new,1 ≤ τ ∗new etc. We will now construct hitting sets such that each
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|S ′i| is within a constant fraction of τ ∗new,i.

We now fix a coordinate system and notice that the appropriate ε-net con-

struction from before has size O(1) · d1
ε
e · dW

R
e, where W = max{Wx,Wy}. In other

words, for a set of points and ranges that are all contained inside a space with

W ≤ k · R, we would get a hitting set of size at most O(k) times the size of the

optimal hitting set for those points. We will denote this local algorithm as A.

The shifting technique of Hochbaum and Maass [128] provides a way of an-

alyzing the global approximation factor we would get by applying algorithm A on

instances of bounded W and returning the union of all the hitting sets we compute.

We will not reproduce the argument entirely in this paper, only mention how it

applies to our case. We first need to define the appropriate partition into smaller

instances. Suppose we first divide X into vertical strips of width l · 6R, where l ≥ 2

is an arbitrary parameter. We now need to decide how we will appropriately par-

tition the ranges in R′new,i. If a range is completely contained in a strip, we assign

it to it. Otherwise, assign the range to the strip that contains its center (the target

that is the center of the sector). Each such range is contained in a double sector of

radius 3R which can intersect at most one additional strip. This is what motivates

us to consider strips of size l · 6R instead of l · 2R. For each such strip, we employ

an algorithm A′ (to be defined later) that will take as input the ranges associated

with that strip and the set of sensors contained in the enlarged strip of side length

(l + 1) · 3R (i.e. the original strip padded with 3R on the left and right).

Now we can see how the global optimal hitting set behaves with respect to

the localized optimal hitting sets in each of the strips. We notice that a point in
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the global optimum can appear at most twice in the induced hitting sets for two

consecutive strips. Moreover, when we consider the other possible partitions into

strips of width l6̇R (obtained by shifting a strip to the right by 6R), the sets of points

that get double counted in each of the partitions are disjoint. This is because, if

a point in the optimal global hitting set gets double counted in one partition, it

will never get double counted again in any of the shifted l − 1 partitions since the

ranges that contribute to it being double counted are no longer in two distinct strips.

Therefore, the analysis of Hochbaum and Maass [128] applies and we get that, if the

algorithm A′ solves the hitting set problem for its input strip within a factor of αl,

we are guaranteed to obtain an overall approximation guarantee of αl · (1 + 1
l
) (by

taking the minimum hitting set over all possible l partitions). The way we are going

to determine αl is by reproducing the above argument and splitting each horizontal

strip of width (l + 1) · 6R into vertical strips of length l · 6R. At this point, we can

use algorithm A and give to it a set of points and ranges that are fully contained

in a square of side length (l + 1) · 6R. At this point, A will return a hitting set

that is within a factor of O(l) of the optimum. This, in turn, will mean that the

approximation factor for A′, αl is also at most O(l). By choosing l = 2, we get a

constant factor of approximation overall. The actual constants depend directly on

the ε-net constructions used and an improvement in that direction would directly

translate in an improvement for the hitting set algorithm.
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3.5 Euclidean Fault Tolerant k-suppliers

Another interesting special case of (α,R)-AngDist is the one in which α = 0,

since it requires us to place two distinct sensors within distance R of each target, in

the spirit of fault- tolerance. In this context, a slightly different but relevant problem

is the fault tolerant−k− suppliers problem, as defined by Khuller et al. [19].

Before we define the fault tolerant− k− suppliers problem, we would like to

first talk about the (k, r)-center problem as defined by Bar-Iral et al [129], since

it captures nicely the bi-criteria nature of our problem. In this problem, we are

given a set of n input points and the goal is to choose k points (centers) out of

the input points such that every point is within distance r of at least some chosen

center. The underlying structure is a graph and the distance is a given function on

pairs of vertices (metric or not). There are two ways to attack this problem, each of

which gives rise to different optimization problems. On one hand, one could fix the

number of centers to be k and then focus on minimizing r: this is the well-known

k-center problem. On the other hand, one could fix the radius r and consider

minimizing k: this then becomes the r-domination problem [129].

The (k, r)-suppliers problem is similar to (k, r)-center. The main differ-

ence is that the set of centers must be picked from a separate set. Formally, we are

given a bipartite graph G = (U, V,E) in which U is the set of suppliers and V is the

set of clients, and a distance function d : U×V → R≥0. In the k-suppliers problem,

the objective is to find a subset S ⊆ U of suppliers of cardinality k such that all the
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clients in V are within radius r of a center. Specifically, we desire a set S that sat-

isfies minS⊆U,|S|≤k maxv∈V minu ∈S d(v, u). The analogue suppliers r-domination

problem requires a set S of minimum size such that maxv∈V minu ∈S d(v, u) ≤ r.

An interesting variation of the (k, r)-suppliers is the fault tolerant (k, r)-

suppliers problem, in which we require a client to be close to at least δ of the

suppliers, for a given parameter δ ≤ k. Specifically we define

d(δ)(v, S) = minA⊆S,|A|=δ maxu∈A d(v, u).

Then the δ-neighbors k-suppliers problem (or alternatively, the fault tolerant−

k − suppliers problem with parameter δ) requires us to find a set S ⊆ U of

cardinality k such that S satisfies minS⊆U,|S|≤k maxv∈V d(δ)(v, S). Conversely, the

δ-neighbors suppliers r-domination problem requires us to find a set S ⊆ U

of minimum cardinality such that

maxv∈V d(δ)(v, S) ≤ r.

Then the δ-neighbors suppliers r-domination problem with δ = 2 and r = R

is exactly (α,R)-AngDist with α = 0.

In this section, we outline a general algorithm for the case in which the input

points are in the Rd, the distance function is the l2 metric, and δ is arbitrary.

Specifically, we obtain the following:

Theorem 3.7. There exists a polynomial time (1 +
√

3)-approximation algorithm

for the Euclidean δ-neighbors k-suppliers problem in any dimension.

While the k-suppliers problem requires us to minimize the covering radius
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rather than the size of the set of centers, the analysis of the above algorithm ac-

tually relies on solving the suppliers r-domination problem when r is relaxed.

Specifically, let r∗ be the optimal radius for the k-suppliers problem. The algo-

rithm uses a standard technique for dealing with bottleneck problems introduced by

Hochbaum and Shmoys [93]: the optimal distance must be one of the pairwise dis-

tances between suppliers and clients and thus, we can find it by doing binary search.

Our algorithm hence works with a guess R for r∗ and computes a solution to the

suppliers r-domination with r = (1 +
√

3) · R. We therefore get the following

result as well:

Theorem 3.8. Given X, T , and R as above, we can find a set of sensors S ⊆ X

such that S 0-covers T within distance R · (1 +
√

3) and |S| = kOPT, where kOPT

is the cardinality of the smallest set of sensors that 0-covers T within distance R.

The running time of the algorithm is O(n2 log n(m + n log n)), where n = |T | and

m = |X|.

In the (1 +
√

3)-approximation for k-suppliers, the key observation made by

Nagarajan et al [118] is the following:

Lemma 3.10. (Nagarajan et al [118]) If three clients have pairwise distances strictly

greater than
√

3 · R, then they cannot be covered within distance R by the same

supplier.

Proof. We restrict our attention to points in R2, mentioning that they also follow

for Rd. We refer the reader to Figure 3.8 for an intuitive explanation. Let t1, t2, t3

be the three clients and suppose by contradiction that there exists a supplier s such
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R
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Figure 3.8: Suppose you are given three clients t1,t2,t3 all within pairwise distance
exactly R

√
3 of each other and within distance exactly R of a supplier s. The angle

∠t1st2 then becomes 2π/3 and similarly for ∠t2st3 and ∠t3st1. However, once we
require that d(t1, t2) > R

√
3, we must have that ∠t1st2 > 2π/3. Moreover, the same

holds true when d(s, t1) and d(s, t2) are ≤ R.

that d(s, t1) ≤ R, d(s, t2) ≤ R and d(s, t3) ≤ R. Restrict your attention to the

triangle 4t1st2. Because d(t1, t2) > r
√

3, that implies that ∠t1st2 > 2π/3. In a

similar way, we have that ∠t1st3 > 2π/3 and ∠t2st3 > 2π/3. But we have that

∠t1st2 + ∠t2st3 + ∠t3st1 = 2π,

which leads to a contradiction.

Notice that this is a more advanced observation that the classical one we have

mentioned before. In that observation, only two far apart targets were considered at

each time (i.e. with distance greater than 2R) with the guarantee that they cannot

share the same vertex. In the Euclidean context, this observation can be extended

to three far apart targets as long as we require that the pairwise distance between

them is greater than
√

3R. This is where the particular structure of the Euclidean

space comes into place, since, in general metric spaces, this observation does not

hold true.
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The authors hence restrict their attention to a maximal set P of clients that

have pairwise distances >
√

3 · R. Notice that this is a more advanced observation

that the classical one we mention in the introduction. In that observation, only

two far apart targets were considered at each time (i.e. with distance greater than

2R) with the guarantee that they cannot share the same vertex. In the Euclidean

context, this observation can be extended to three far apart targets as long as we

require that the pairwise distance between them is greater than
√

3R. This is where

the particular structure of the Euclidean space comes into place, since, in general

metric spaces, this observation does not hold true.

They construct the graph G that has P as the vertex set and an edge between

two clients in P if they can be covered within distance R by the same supplier.

Since any supplier can serve at most two clients in P , there exists a one-to-one

correspondence between suppliers and edges in G and the problem of clustering the

clients in P becomes equivalent to finding an minimum size edge cover of G. An

edge cover of G is a subset of edges such that each vertex of G is incident to one

of the selected edge. In other words, an edge cover would correspond to a set of

sensors that cover each of the targets in P within distance R. This problem can

be solved optimally in polynomial time [130]. Once they compute a set S ⊆ X

of suppliers that cover the clients in P within distance R, all the other clients are

within distance ≤
√

3 away from P and hence, within distance ≤ (1 +
√

3) away

from S.

In the case of fault tolerant k-suppliers, the same observation applies

and hence, we still have a one-to-one correspondence between edge inG and suppliers
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in X. The structure of the optimal solution, however, is different. It corresponds to

a simple b-edge cover: a subset of edges such that each vertex v ∈ P is incident

on at least bv edges, for all v ∈ P . In our case, bv = δ. It is known that computing

a minimum size simple b-edge cover problem can be done in polynomial time

by computing a maximum size b-matching [130]. The latter can be solved in time

O(n2 log n(m+ n log n)), where n is the number of vertices and m is the number of

edges [131]. The analysis that obtains a (1 +
√

3)-approximation remains the same.

3.6 Complexity of Angular Constraints

In this chapter, we address the theoretical complexities of the problems intro-

duced when we would like to satisfy the angle constraints optimally. First, we discuss

the Set Cover approach we outlined in the introduction and how the geometry of

the angle constraints can be used to obtain a O(kOPT log kOPT)-approximation for

α-Ang, (α,R)-AngDist and α-AngArt (Section 3.6.1).

In terms of the complexity of the problems introduced, notice that, while the

(α,R)-AngDist and the α-AngArt problems are similar to the r-domination

and the Art Gallery problems, they are not quite generalizations of them. The

case in which α = 0 essentially imposes no angle constrains on the relative position

of the chosen sensors but it does require that two distinct sensors be assigned to each

target. An optimal solution in this case would be a solution for the r-domination

and the Art Gallery problems, but we cannot guarantee an equivalence be-

tween solution sizes. In particular, given a solution to the latter problems, it is
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not clear how many new sensors we would have to add in order to get a solution

for (α,R)-AngDist or α-AngArt. We nevertheless believe these problems to be

NP-complete and to that end, we present some partial progress.

In particular, we generalize the pairwise dependencies between sensors to a

more general framework which we call Pairwise Selection that we show is a

generalization of the Min Rep problem introduced by Kortsarz [122]. As such,

it is hard to approximate within a factor better than 2log1−ε n, for any 0 < ε < 1

under some standard complexity assumptions (Section 3.6.2). It is worthwhile to

note that Min Rep is the minimization version of the established Label Cover

problem introduced by Arora et al [132]. The latter is a canonical problem used in

showing strong hardness of approximation results for a lot of problems, as observed

by Arora and Lund in [133]. We believe it to be rather interesting that Pairwise

Selection, which is mainly motivated by its applicability, generalizes a problem

that is normally employed for its theoretical versatility.s

Having said that, these above results do not necessarily hold when the under-

lying space is Euclidean and the constraints are geometric. To this end, we make

partial progress by exhibiting a reduction from dominating set that might be used

in proving NP-completeness for α-Ang, (α,R)-AngDist and α-AngArt (Section

3.6.3).
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3.6.1 Set Cover and the Geometry of the Sets

In the introduction, we considered α-Ang as an instance of Set Cover:

let the universe of elements be the set of targets T and for each pair of sensors

s, s′ ∈ X, let S(s,s′) be the set of targets that (s, s′) α-covers. We adapt the generic

Set Cover algorithm for the case in which we want to minimize the number of

sensors that cover the universe. Let SOPT be the size of the smallest set of sensors

that provide α-coverage and let kOPT be its size. We use two greedy heuristics:

• Pick-pair: at each step, pick a fresh pair pnew = {snew1 , snew2 } that maximizes

the number of targets it covers from the ones that are left unconvered

• Pick-sensor: pick a fresh sensor snew that maximizes the number of targets that

are covered by pairs including snew and the sensors already picked.

Lemma 3.11. The above heuristics gives a solution that uses at most 2
(
kOPT

2

)
(1 +

log( n

(kOPT
2 )

)) number of sensors.

Proof. In the initial round, we can choose the pair that maximizes the number of

targets covered. Since
(
SOPT

2

)
covers the universe, it follows that there must exist

a pair of sensors s1, s2 ∈ SOPT that covers at least n

(kOPT
2 )

targets. For ease of

calculation, let us denote γ =
(
kOPT

2

)
.

By the properties above, we can guarantee that the pair we pick covers at least

1
γ
n of the targets. So now we are left with covering at most n(1− 1/γ) targets. S∗

guarantees that there exists a pair that covers at least a fraction 1/γ of the remaining

targets. However, if we use Pick-pair and pick a new pair, we cannot guarantee that
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the we will pick the maximum coverage pair of the remaining ones. If, however, we

use Pick-sensor and pick the sensor that maximizes coverage with the newly formed

pairs, we also cannot guarantee that it achieves the maximum. Instead, we can try

both approaches and look at the disjoint pairs (as in Pick-pair) and the ones that

are formed with the already chose sensors (as in Pick-sensor) and pick the one with

the best coverage. Then we can indeed guarantee that its coverage is at least 1/γ

of the remaining nodes.

At this point, we can guarantee that we are left with at most n(1 − 1/γ)2

uncovered targets. Notice that adding a new pair or a new target to the set can

actually cover much more than a fraction of 1/γ but this is not guaranteed. Notice

also that, in each step, we add at most two new sensors. If we repeat this argument

for t = γ log n steps, we are left with no uncovered vertices and our solution size

is at most 2γ log n. We therefore get a ((kOPT − 1) log n) -approximation for the

problem of picking a minimum number of sensors that ensure α-coverage.

This can be further improved by noticing that, once we have ≤ γ targets left,

we can cover them by picking at most 2γ pairs, since each new pair must cover at

least one target. That gives us that the number of rounds is γ log(n/γ) and our

total solution size is at most:

2γ log(n/γ) + 2γ = 2
(
kOPT

2

)
(1 + log( n

(kOPT
2 )

)).

This in turn leads to an approximation factor of (kOPT − 1)(1 + log( n

(kOPT
2 )

).

One can construct examples for which this analysis is tight. Other adaptations

of greedy algorithms for Set Cover run into the same problem: we cannot guar-
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antee a better upper bound on the size of the optimal set cover. Moreover, a better

upper bound would still have to depend on kOPT and logn. Notice that, in general,

a solution of size k for the Set Cover instance requires a number of sensors that

is greater than
√
k but smaller than 2k. Let S∗ be the optimal solution to the

Set Cover instance and k∗ its size. We get that k∗ ≤ k2OPT and that the number

of sensors that S∗ uses is at least kOPT. Therefore, a solution of size k = k∗ log n

would use at least
√
k∗ log n sensors and at most 2k∗ log n sensors. This becomes a

solution that uses at least
√
kOPT · log n sensors and at most log n · k2OPT sensors.

s′s

O1

O2

Rα

Rα

Rα = d(s,s′)
2 · 1

sin(α)

D1

D2

Figure 3.9: Any two distinct sen-
sors s 6= s′ uniquely determine,
for a given α ∈ (0, π/2], two
disks D1 = D(O1, Rα) and D2 =
D(O2, Rα) of similar radius that
have s and s′ on their bound-
ary. The set of targets that are
α-covered by the (s, s′) is exactly
(D1∪D2)\ (D1∩D2). The radius
of the disks depends on α and is
Rα = d(s,s′)

2
· 1
sinα

.

One way in which we can improve the

above approximation factor is by exploiting the

underlying geometry: each S(s,s′) is induced by

the symmetric difference of two disks D1 and

D2 determined by s and s′, as shown in Figure

3.11 and formally proven below. Notice that this

set system can be obtained from the set system

made of sensors and their corresponding D1,D2

by applying the operation of set union, inter-

section and then difference to the disks D1,D2.

Since the set system made of points and disks has

finite VC-dimension, it follows that the former

set system also has finite VC-dimension [123].

Given a set system with VC dimension d, the original ε-net observations of Haus-

sler and Welzl [108] and Brönnimann and Goodrich [109] can be used to construct
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a set cover of size at most O(d log(d · k∗) · k∗). When the dimension is finite,

this leads to a O(log k∗)-approximation. In our context, this translated into a

O(kOPT log kOPT)-approximation for α-Ang. We note that the same results also

apply for (α,R)-AngDist and α-AngArt, since the appropriate set systems would

be obtained by intersecting the symmetric difference with two disks of radius R cen-

tered at s and s′ (in the case of (α,R)-AngDist) or with the visibility polygons of s

and s′ (in the case of α-AngArt). Since both circles and visibility polygons have fi-

nite VC dimension, we have that the corresponding set systems for (α,R)-AngDist

and α-AngArt also have finite VC dimension and as such, the O(kOPT log kOPT)-

approximation still holds.

Geometry of the sets. We now proceed to prove our claim that the set of

targets that two sensors α-cover is induced by the symmetric difference of two disks.

Let those two sensors be denoted as S1 and S2. We are interested in determining

the set of target locations T for which ∠(S1TS2) ∈ [α, π − α].

S1 S2

T

T ′
1

θ

θ

Oθ

O

θ

T ′

π − θ

Figure 3.10: The circle centered
at Oθ that passes through S1 and
S2. All the points on the same
arc (minor or major) between S1

and S2 will have the same angle,
either θ or π − θ.

First, we will fix a value θ and ask the ques-

tion of what is the set of target locations for

which ∠(S1TS2) ∈ {θ, π− θ}. Consider an arbi-

trary circle centered Oθ (to be determined later)

that passes through S1 and S2. Notice that all

the points on the same arc (minor or major) be-

tween S1 and S2 will have the same angle with

respect to S1 and S2, as shown in Figure 3.10.

Furthemore, if the acute angle corresponding to
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one of the arcs is some β, then the obtuse angle

corresponding to the other arcs will be π − β.

The question then becomes that of determining where the center Oθ should be

placed in order for the respective angle to be θ. First, notice that it is always going

to be on the perpendicular bisector of S1S2, where O is the midpoint of the segment.

We also know that S1Oθ is going to be the radius of the circle and if ∠S1TS2 = θ,

then ∠S1OθO = ∠S1OθS2

2
= θ and the location of Oθ is given by

OθO = S1Oθ · cos θ.

Since S1Oθ = S1S2

2 sin θ
, we get that

OθO = S1S2

2
· cot θ.

At this point, we note that this set of equations defines two symmetric choices

for Oθ, one in each of the halfspaces defined by the line S1S2. In general, we will

denote the choice for the upper halfspace to be Oθ and the lower half as O′θ. We

denote the upper circle by

Cθ = C(Oθ,
S1S2

2
· 1
sin θ

),

and similarly C ′θ = C(O′θ, S1S2

2
· 1
sin θ

). In this context, we get that:

Lemma 3.12. For any point T ∈ Cθ ∪ C ′θ, the angle ∠S1TS2 ∈ {θ, π − θ}.

Now look at a point T for which ∠S1TS2 = θ and consider the circumscribed

circle for the triangle 4TS1S2. A similar analysis of its radius and center location

reveals that it is exactly either Cθ or C ′θ. Moreover, the same holds true when we

require that ∠S1TS2 = π − θ. In other words, we get that:
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Lemma 3.13. The set of points T for which ∠S1TS2 ∈ {θ, π−θ} is exactly Cθ∪C ′θ.

We can therefore focus on just describing the circles Cθ for which θ ∈ [α, π/2].

Because of the monotonicity of the cot function, we get that:

0 ≤ OOθ ≤ S1S2

2
· cotα.

In other words, the set of all targets that can be α-covered by S1, S2 is exactly
θ=π/2⋃
θ=α

Cθ ∪ C ′θ.

S1 S2O

Oα

C(Oα, S1S2

2 · 1
sinα )

C(O, S1S2

2 )

Figure 3.11: The union of circles
Cθ = C(Oθ,

S1S2

2
· 1

sin θ
) for θ ∈

[α, π/2] is the symmetric differ-
ence between Dα = D(Oα,

S1S2

2
·

1
sinα

) and Dπ/2 = D(O, S1S2

2
).

We investigate this union by first looking

at

θ=π/2⋃
θ=α

Cθ. As can be seen in Figure 3.11, it

turns out that this set is exactly the symmetric

difference between Dα and Dπ/2, where Dα and

Dπ/2 are the disks associated with the circles Cα

and Cπ/2:

Lemma 3.14. For any α ∈ [0, π/2], we have

that:

θ=π/2⋃
θ=α

Cθ = Dα ∪ Dπ/2 \ (Dα ∩ Dπ/2).

Proof. We will prove this statement by consid-

ering a general point in Dα ∪Dπ/2 \ (Dα ∩Dπ/2)

and showing that it belongs to the boundary of some circle C(Oθ,
S1S1

2
· 1
sin θ

) for

θ ≤ α ≤ π/2. The other direction of inclusion is straightforward.

Let |S1S2| = d and w.l.o.g. consider the coordinate system that has 0 as the

origin. Let S1 have coordinates (−d
2
, 0) and S2 have (d

2
, 0). The center Oθ will then

have the coordinate (0, d
2

cot θ). An arbitrary point T (x, y) ∈ Dα∪Dπ/2\(Dα∩Dπ/2)

will satisfy one of the following conditions:
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Case 1. It is in Dα but not in Dπ/2, in which case we have that:

x2 +

(
y − d

2
cotα

)2

≤
(
d

2
· 1

sinα

)2

(3.1)

and

x2 + y2 >

(
d

2

)2

(3.2)

Case 2. It is in Dπ/2 but not in Dα, in which case we have that:

x2 + (y − d

2
cotα)2 >

(
d

2
· 1

sinα

)2

(3.3)

and

x2 + y2 ≤
(
d

2

)2

(3.4)

Given such a point T (x, y), we will look at the circumscribed circle of4TS1S2.

Naturally, this angle will correspond to a particular C(Oθ,
S1S2

2
· 1
sin θ

), as we have

remarked before. So we really need to check that θ ∈ [α, π/2]. This is equivalent to

checking whether the radius Rθ = S1S2

2
· 1
sin θ

is smaller than the radius Rα = d
2
· 1
sinα

.

We also know that the radius of the circumscribed circle satisfies the formula:

Rα =
S1T · S2T · S1S2

4A4S1TS2

,

where A4S1TS2 is the area of 4S1TS2. Since A4S1TS2 = 1
2
S1S2 · |y|, we get that:

Rα =

√
(x+ d

2
)2 + y2 ·

√
(x− d

2
)2 + y2

2|y| .

So in order to check that θ ∈ [θ, π/2], we need to check that the following inequality

holds: √
(x+ d

2
)2 + y2 ·

√
(x− d

2
)2 + y2

2|y| ≤ d

2
· 1

sinα
. (3.5)
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Therefore, we must show that in the first case, properties (3.1) and (3.2) imply

(3.5) and, in the second case, (3.3) and (3.4) also imply (3.5).

First, notice that (3.1) and (3.2) require that y ≥ 0. This is because, if y < 0,

we would have that:

x2 +

(
y − d

2
cotα

)2

= x2 + y2 +

(
d

2
cotα

)2

− 2y
d

2
cotα

>= x2 + y2 +

(
d

2
cotα

)2

>

(
d

2

)2

+

(
d

2
cotα

)2

=

(
d

2
· 1

sinα

)2

,

which is a contradiction with (3.1). A similar argument shows that (3.3) and (3.4)

require that y ≤ 0. Notice that the sign of x does not matter in our properties or

the rest of the proof, so we can assume without loss of generality that x ≥ 0.

Let us first consider the first case in which (3.1) and (3.2) are true. Because

y ≥ 0, we are left to show that:((
x+

d

2

)2

+ y2

)
·
((

x− d

2

)2

+ y2

)
≤ 4y2 ·

(
d

2
· 1

sinα

)2

.

Define the function f(y) =
((
x+ d

2

)2
+ y2

)
·
((
x− d

2

)2
+ y2

)
− 4y2 ·

(
d
2
· 1
sinα

)2
.

Then the inequality to prove becomes f(y) ≤ 0. We can rewrite the function the

following way:

f(y) = y4 + y2 · g(x) + h(x),

where g(x) = 2x2 + 2
(
d
2

)2− 4
(
d
2

)2 1
sin2 α

and h(x) =
(
x2 −

(
d
2

)2)2
. Notice that g(x)

is always increasing, but h(x) is increasing for x ≥ d
2

and decreasing otherwise.
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Suppose x ≥ d
2

and notice from (3.1) that:

x2 ≤
(
d

2
· 1

sinα

)2

−
(
y − d

2
cotα

)2

=

(
d

2

)2

− y2 + 2y · d
2

cotα.

We then have that g(x) ≤ g

(√(
d
2

)2 − y2 + 2y · d
2

cotα

)
= −4

(
d
2

)2
cot2 α − 2y2 +

4y · d
2

cotα and h(x) ≤ h

(√(
d
2

)2 − y2 + 2y · d
2

cotα

)
= y4 + 4y2 ·

(
d
2

)2
cot2 α− 4y3 ·

d
2

cotα. Therefore, we have that:

f(y) ≤ y4 + y2 · g

√(d
2

)2

− y2 + 2y · d
2

cotα

+ h

√(d
2

)2

− y2 + 2y · d
2

cotα


= 0.

Now suppose x < d
2
. Then the function h(x) is decreasing. From (3.2) we have

that x2 ≤ (d
2
)2 − y2, so then we get that h(x) ≤ h

(√(
d
2

)2 − y2) = y4 and

f(y) ≤ y4 + y2 · g

√(d
2

)2

− y2 + 2y · d
2

cotα

+ h

√(d
2

)2

− y2


= 4y2 · d
2

cotα ·
(
y − d

2
cotα

)
.

If y ≤ d
2

cotα, then it follows that f(y) ≤ 0.

So now we need to consider the case when y ≥ d
2

cotα. For this case, we will

look at f(y) as an equation of degree 2 in y2. Notice that:

∆ = g2(x)− 4h(x)

= 16

(
d

2

)2

cot2 α ·
[(

d

2

)2
1

sin2 α
− x2

]
.

Since x ≤ d
2
≤ d

2
1

sinα
, we get that ∆ ≥ 0. Let Y = y2 and notice that the solutions
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to the equation f(Y ) = 0 are:

Y1,2 =
−g(x)±

√
∆

2

= −x2 −
(
d

2

)2

+ 2

(
d

2

)2
1

sin2 α
± 2

d

2
cotα ·

√(
d

2

)2
1

sin2 α
− x2.

In order to guarantee that f(Y ) ≤ 0, we need to show that Y2 ≤ Y ≤ Y1.

First, let us show that Y ≤ Y1. Notice that (3.1) implies that

Y = y2 ≤

d
2

cotα +

√(
d

2

)2
1

sin2 α
− x2

2

,

in which we inherently used that d
2

cotα ≤ y.

It turns out that
(
d
2

cotα +
√

(d
2
)2 1

sin2 α
− x2

)2
= Y1 so we get that Y ≤ Y1.

Now we will show that Y ≥ Y2. Notice that (3.2) implies that

Y = y2 ≥ −x2 + (
d

2
)2,

so we only need to show that Y2 ≤ −x2 + (d
2
)2. Notice:

− x2 −
(
d

2

)2

+ 2

(
d

2

)2
1

sin2 α
− 2

d

2
cotα ·

√(
d

2

)2
1

sin2 α
− x2 ≤ −x2 +

(
d

2

)2

⇐⇒

2

(
d

2

)2(
1

sin2 α
− 1

)
= 2

(
d

2

)2

cot2 α ≤ 2 · d
2

cotα ·
√(

d

2

)2
1

sin2 α
− x2 ⇐⇒

d

2
cotα ≤

√(
d

2

)2
1

sin2 α
− x2 ⇐⇒

x2 ≤
(
d

2

)2

·
(

1

sin2 α
− cot2 α

)
=

(
d

2

)2

,

which is true by our initial assumption.

Now we will consider the second case, in which (3.3) and (3.4) are true. Re-

member that in this case, we have that y ≤ 0 so we denoting y0 = |y|, the equations
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(3.3), (3.4) become:

x2 +

(
y0 +

d

2
cotα

)2

>

(
d

2
· 1

sinα

)2

(3.6)

x2 + y20 ≤
(
d

2

)2

(3.7)

and claim (3.5) remains as before:

f(y0) =

((
x+

d

2

)2

+ y20

)
·
((

x− d

2

)2

+ y20

)
− 4y20 ·

(
d

2
· 1

sinα

)2

≤ 0.

Notice that it follows from (3.7) that x ≤ d
2
, so again ∆ ≥ 0. By a similar

argument as before, we get from (3.6) that:

y0 ≥ −
d

2
cotα +

√(
d

2

)2
1

sin2 α
− x2 ≥ 0

because x ≤ d
2
. So we can safely say that:

Y0 = y20 ≥

−d
2

cotα +

√(
d

2

)2
1

sin2 α
− x2

2

= Y2.

On the other hand, from (3.7) we get that Y0 ≤ (d
2
)2−x2 which can be shown to be

≤ Y1.

S1
S2

O

Oα

Cα = C(Oα, S1S2

2
1

sinα )

O′
α

C′α = C(O′
α,

S1S2

2 · 1
sinα )

Figure 3.12: The union of circles Cθ =
C(Oθ,

S1S2

2
· 1
sin θ

) and C ′θ = C(O′θ, S1S2

2
· 1
sin θ

)
for θ ∈ [α, π/2] is the symmetric differ-
ence between Dα = D(Oα,

S1S2

2
· 1
sinα

) and
D′α = D(O′α,

S1S2

2
· 1
sinα

).

Notice that we have initially as-

sumed that all the centers are situated

in the same half plane defined by S1S2.

However, our proof works for the oppo-

site half plane as well, where we consider
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the symmetric center O′α. In this case,

we get the same type of result as before:

α=π/2⋃
α=θ

C ′θ = D′α ∪ Dπ/2 \ (D′α ∩ Dπ/2).

Taking the union over all circles in both half spaces, we get that their union is the

symmetric difference of Dα and D′α, as seen in Figure 3.12. Formally, claim that:

Lemma 3.15. For any α ∈ [0, π/2], we have that:

α=π/2⋃
α=θ

Cθ ∪
α=π/2⋃
α=θ

C ′θ = Dα ∪ D′α \ (Dα ∩ D′α).

Proof. Rewriting the symmetric difference formulas from before, we get that

α=π/2⋃
α=θ

Cθ ∪
α=π/2⋃
α=θ

C ′θ = (Dα \Dπ/2) ∪ (Dπ/2 \Dα) ∪ (D′α \Dπ/2) ∪ (Dπ/2 \D′α).

Our claim then becomes:

(Dα \Dπ/2) ∪ (Dπ/2 \Dα) ∪ (D′α \Dπ/2) ∪ (Dπ/2 \D′α) = (Dα \D′α) ∪ (D′α \Dα).

We will prove this claim by showing that

(Dα \Dπ/2) ∪ (Dπ/2 \D′α) = Dα \D′α.

The other side of the equality will follow by symmetry.

Consider a point T (x, y) in Dα \Dπ/2, i.e. satisfying (3.1) and (3.2). We will

then show that it is contained in Dα \D′α. We have shown before this implies that
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y ≥ 0. Now we need to show that T /∈ D′α. This is because:

x2 +

(
y +

d

2
cotα

)2

≥ x2 + y2 +

(
d

2

)2

cot2 α

>

(
d

2

)2

+

(
d

2

)2

cot2 α

=

(
d

2

)2
1

sin2 α
.

Now consider the case when T ∈ Dπ/2 \D′α. By symmetry, we have that this

implies y ≥ 0. We need to show that T ∈ Dα. From property (3.4), we have that

that

x2 +

(
y − d

2
cotα

)2

≤ x2 + y2 +

(
d

2

)2

cot2 α

=

(
d

2

)2

+

(
d

2

)2

cot2 α

=

(
d

2

)2
1

sin2 α
.

We therefore get that

(Dα \Dπ/2) ∪ (Dπ/2 \D′α) ⊆ Dα \D′α.

Now consider a point T ∈ Dα \D′α. We have two cases:

Case 1. If T ∈ Dπ/2, then because T /∈ D′α, we have that T ∈ Dπ/2 \D′α.

Case 2. If T /∈ Dπ/2, then because T ∈ Dα, we have that T ∈ Dα \Dπ/2.

In other words, we get

Dα \D′α ⊆ (Dα \Dπ/2) ∪ (Dπ/2 \D′α).
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3.6.2 The Pairwise Selection Formulation

In this section, we would like to switch the perspective from the previous

section in the following way: instead of considering the elements of the universe to

be the targets, we consider them to be the sensors. Specifically, consider the graph

G = (V,E) with vertex set V = X and the edge set E to be such that there exists

an edge (s, s′) ∈ E between two sensors s, s′ ∈ V if they α-cover a target.

For each target t ∈ T , we look at all the pairs of sensors that α-cover it. By

definition, this will be a subset Et of the edges in E, i.e. a subset of the pairs of

sensors. The task of picking the smallest number of sensors that α-cover T then

becomes equivalent to picking the smallest set of vertices S ⊆ V with the property

that, for each target t ∈ T , there exist two sensors s, s′ ∈ S such that (s, s′) ∈ Et.

We formalize this as the Pairwise Selection problem:

Pairwise Selection

Input : A graph G = (V,E) and a collection E1, E2, . . . , El of l subsets of

edges, Ei ⊆ E, for all i ∈ 1, l.

Output : A set S ⊆ V of mininum cardinality such that E[S] ∩Ei 6= ∅, for all

i ∈ 1, l.

By E[S] we mean the edges induced by the subset S, i.e. an edge e = (u, v) is

in E[S] if both of its endpoints are in S, u, v ∈ S. In this context, we say that the

edge (u, v) is satisfied or, more specifically, the edge (u, v) satisfies the set Ei if u

and v are both chosen in the set and (u, v) ∈ Ei.1
1This is because we can associate with each vertex v a boolean variable xv and then each set
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We now show that the Min Rep problem is a special case of Pairwise Se-

lection. In Min Rep, we are given a bipartite graph G = (A,B,E), where

|A| = |B| = n. Each of the sets A and B are partitioned in k sets of size q = n
k

each,

A = {Ai|i ∈ {1, . . . , k}} and B = {Bi|i ∈ {1, . . . , k}}. Given this, we form a the

bipartite supergraph H in which the vertices represent the sets Ai and Bi. Vertices

Ai and Bj are connected by a superedge if there exist elements ai ∈ Ai and bj ∈ Bj

that are adjacent in G. In this situation, we say that the edge (ai, bj) covers the

superedge (Ai, Bj). The Min Rep problem asks for the set S = A′∪B′ of minimum

size such that the pairs (a′, b′), a′ ∈ A′, b′ ∈ B′ cover all the superedges of H.

Any such instance of Min Rep can be transformed into an instance of Pairwise

Selection in the following way: for each superedge (Ai, Bj) define the set

Ei,j = {(a, b)|a ∈ Ai, b ∈ Bj}.

In this construction, a min size solution to Min Rep is equivalent to a min-

imum size solution to Pairwise Selection. In other words, if there exists an

α-approximation algorithm for Pairwise Selection, then we would immediately

get an α-approximation algorithm for Min Rep. Kortsarz [122] showed, however,

that there is a hardness of 2log1−ε n, for any 0 < ε < 1 for Min Rep unless NP

⊆ DTIME(npolylog(n)), and hence, for Pairwise Selection as well. In terms of

positive results, there is a O(n1/3 log2/3 n)-approximation algorithm for Min Rep

due to Charikar et al [134]. We believe it would be an interesting challenge to try

to extend it to Pairwise Selection.

Ei can be described as the clause
∨

(u,v)=e∈Ei

(xv ∧ xu).
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3.6.3 Dominating Set Reduction

Given the Pairwise Selection problem we defined in the previous section,

it is clear how instances of α-Ang etc. can be represented as special cases of it.

The hardness of approximation results, however, do not follow. In fact, as we have

shown, these problems admit O(kOPT log kOPT)- approximations as instances of Set

Cover.

Such approximations were obtained as a consequence of exploiting the inherent

geometry of the problems. In general, it is believed that geometric instances are

normally easier to solve than their more general counterparts. This essentially comes

from the fact that, in general, it is hard or even impossible to construct Euclidean

instances that are equivalent to general instances (which might not even satisfy the

triangle inequality). In fact, in the case of Pairwise Selection, it is unclear even

how to incorporate the notion of geometry in the problem formulation, i.e. the sets

E1, . . . , El can be determined arbitrarily.

Nevertheless, one way in which we can encode the geometry of the problem is

by considering planar graphs. Roughly speaking, a planar graph is a graph that can

be drawn on the sphere without any of its edges crossing. One could use a planar

graph as an instance of a geometric graph and use whatever complexity results are

available for planar graphs to reduce from. In particular, Garey et al [92] have shown

that the Dominating Set problem is NP-complete on planar graphs even when

restricted to planar graphs of degree at most 3. In the Dominating Set problem,

we are looking for a dominating set of minimum size. Furthermore, Valiant [135]
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has given a transformation that embeds any planar graph of degree at most 4 in

the plane in such a way that its vertices have integer coordinates and its edges are

vertical and horizontal line segments.

At this point, we can trace what a possible reduction for α-Ang etc. could

look like: given a general instance of the Dominating Set problem on planar

graphs of degree at most 3, apply the transformation of Valiant [135] and obtain an

embedding of the graph in the plane. The next step would be to then construct an

instance of α-Ang etc. that is equivalent to the given Dominating Set instance.

We would then obtain that α-Ang etc are NP-complete. To that end, we present

an intermediary ingredient in the reduction: given an instance of Dominating

Set, we present an equivalent instance of Pairwise Selection. In particular,

this reduction can be used to show that:

Theorem 3.9. Pairwise Selection is NP-complete on planar graphs of degree

at most 3.

We note that the reduction does not exploit the geometry of the input graph

and as such, we believe it can be used as a blueprint for proving NP-completeness

or α-Ang etc in the following way: consider an instance of Dominating Set

on planar graphs of degree ≤ 3, apply the transformation of Valiant [135] and

construct an instance of α-Ang etc that satisfies geometrically the instance of

Pairwise Selection we construct. Specifically, we need to make sure that the sets

Et which we construct for each target can actually be realized by the constraints in

α-Ang etc. For example, if, in the construction, we require a set Et = {(s1, s2)},
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we need to make sure that, in the transformed graph, the target t is α-covered only

by the pair of sensors (s1, s2) and by no other pair of sensors in X.

We now proceed with the actual reduction.

Construction:

Given an instance G = (V,E) of the Dominating Set problem, we construct

the following instance of the Pairwise Selection problem. For each vertex u ∈ V ,

we add an auxiliary vertex u′. Let the set of such auxiliary vertices be called V ′.

Throughout the remainder of the proof, we will denote vertices in V exclusively by

single letters, i.e. u, and their associated auxiliary vertices as the corresponding

letter followed by an apostrophe, i.e. u′ represents the auxiliary vertex of u.

u

u′
z′

w

v

t

z

w′

v′

t′

Figure 3.13: Suppose v, w, t, z are
neighbors of u in G. Then Eu will
consist of all the red edges that u
particsipates in, plus all the blue
edges that are associated with u
and its neighbors.

For each vertex u ∈ V , we define an edge

between u and its corresponding auxiliary ver-

tex u′ ∈ V ′. In other words, we define the

set E ′ = {(u, u′)|u ∈ V }. The input graph

to the Pairwise Selection problem will be

G = (V ∪ V ′, E ∪E ′). We will refer to the origi-

nal edges in E as being red edges and the newly

formed edges in E ′ as being blue. For each ver-

tex u ∈ V , we denote the neighborhood of u in

G by NG(u) = {v|∃e ∈ E, e = (u, v)}. For each vertex u ∈ V , we define the set

Eu = {e ∈ E|u ∈ e} ∪ {(u, u′)} ∪ {(v, v′)|v ∈ NG(u)}.

Dominating set of size k → pairwise selection of size 2k:
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Proof. Let D ∈ V be a dominating set in G. Define S = D∪D′ where D′ = {u′|u ∈

D}. We claim that S is a valid pairwise selection for the graph G′. Consider an

arbitrary vertex u ∈ V and its associated set Eu. We distinguish two cases:

Case 1. u was selected in the dominating set. Then both u and u′ are in S, and

therefore, the edge (u, u′) ∈ E[S]. It follows that (u, u′) ∈ E[S] ∩ Eu 6= ∅.

Case 2. u was not selected in the dominating set. But then there must exist a vertex

v ∈ NG(u) such that v ∈ D. Then v, v′ ∈ S and (v, v′) ∈ E[S] ∩ Eu 6= ∅.

Therefore, S forms a valid pairwise selection and since |D| = k, we have that

|S| = 2k.

Pairwise selection of size k → dominating set of size bkc:

Proof. Let S be a pairwise selection of size k. First, notice that if u′ ∈ S, then it

must be the case that either u ∈ S or there exists a smaller pairwise selection of size

k− 1. If u /∈ S, then u′ cannot contribute to any edge in E[S] and therefore can be

removed from the set. Right now, it is not clear whether the same holds for vertices

u ∈ S: it could be the case that u′ /∈ S. We will argue, however, that any pairwise

selection S in which this happens can be transformed into another pairwise selection

S∗, of smaller or equal size, in which, for every u ∈ S∗, we have that u′ ∈ S∗. In

other words, S∗ only consists of vertices u and their auxiliary vertices u′. We call a

pairwise selection with this property symmetrically built.

Before we describe that transformation, we will first show how to obtain a

dominating set from a symmetrically built pairwise selection S∗. Let D = S∗ ∩ V .
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We claim that this set D forms a dominating set in G. Notice that we only need

concern ourselves with vertices v ∈ V that are not in D. Look at the associated set

Ev. Since S∗ is a valid pairwise selection, we must have that there exists an edge

in Ev ∩ E[S∗] that satisfies Ev. But since E[S∗] ∩ Ev consists only of blue edges

(because all potential red edges require that v ∈ S∗)and since, v, v′ /∈ S∗, we have

that there must exist another blue edge in Ev that is satisfied. But every such edge

in Ev is defined by a neighbor u of v and its auxiliary vertex u′. So there must

exist a neighbor u ∈ S∗. But that implies that there exists a neighbor u ∈ D. So

v is adjacent to a vertex in the dominating set. Since the |S∗| = 2|D|, we get the

appropriate equivalence.

Now we will describe how to transform any pairwise selection S into a symmet-

rically built pairwise selection S∗ of smaller or equal size. By our initial observation,

we can assume that there are no u′ ∈ S such that u /∈ S. Let v ∈ S be such that

v′ ∈ S. We call such a vertex in S a symmetric vertex. Every other vertex u ∈ S

that is not symmetric will be called assymetric. Therefore, a symmetrically built

pairwise selection therefore consists only of symmetric vertices.

Intuition:

Suppose a pairwise selection S is not symmetrically built. Then it must be the

case that there exists a vertex u ∈ S that is asymmetric. The general intuition is

that we will delete u from S, therefore gaining a budget of 1, and instead ”activate”

the auxiliary vertex of another symmetric vertex, therefore maintaining the solution

size. Notice that activating auxiliary vertices does not damage our solution: it can

only improve satisfiability. On the other hand, deleting a vertex might make our
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solution incorrect.

At this point, it is useful to point out that deleting an asymmetric vertex u

could potentially affect the satisfiability status of Eu and all Ev for v ∈ NG(u).

This is because the edges that u is adjacent belong only to the aforementioned sets.

Moreover, notice that if a neighbor v ∈ NG(u) has not been chosen in the pairwise

selection, then removing u will not affect the satisfiability of Ev. This is because

the only edges in Ev that are adjacent to u are (u, v) and (u, u′). Since v /∈ S and

u′ /∈ S, we already know that those edges did not contribute to satisfying Ev in the

first place. So deleting u will not affect them negatively.

So we will only concern ourself with neighbors of u that have been chosen in

S. Notice that in order for the set Eu to be satisfied, we need at least one neighbor

v of u to be in S, i.e. ∃v ∈ NG(u), v ∈ S. We distinguish the following cases:

Case 1. Every neighbor of u that is included in S is symmetric. In that case,

notice that u cannot contribute in satisfying any sets Ev, where v ∈ V − {u}. This

is because, the only way u can contribute to a set Ev is if v ∈ NG(u) and v ∈ S.

But if v ∈ S, it must be symmetric and the edge (v, v′) already satisfies the set Ev.

In this context, we can safely discard u from the set S and recurse on the remaining

set which has 1 less asymmetric vertex and is of smaller size.

Case 2. There are some neighbors of u that are in S but are asymmetric. In

this context, we would like either to add the auxiliary vertex u′ to S (and therefore

make u symmetric) or discard u entirely. Notice however, that regardless of which

one of these operations we do, this will not affect the satisfiability status of the sets

Ev where v ∈ NG(u) and v is symmetric (by the argument from above). The only

114



u

u′
z′

w

v

t

z

w′

v′

t′

x y

x′ y′

Figure 3.14: The red vertices belong to S.

potential damage could be done to sets Ev where v ∈ NG(u) and v is asymmetric.

We can therefore restrict our attention only to sets Ev in which v ∈ S is asymmetric.

At this point, we can try to investigate the local neighborhood of u. We are

guaranteed that u has at least one neighbor v that is also asymmetric. At this point,

we cannot simply afford to add u′ to S because that would increase our solution size.

So can we delete u instead? Suppose we do that. Then the sets affected by this are

Eu, Ev and every other set Ez in which z ∈ NG(u) and z is asymmetric. We could

activate v′ and that takes care of the satisfiability of Eu and Ev. Unfortunately, that

does not guarantee that Ez is satisfied as well (notice that earlier, Ez could have

potentially been satisfied by the edge (u, z) which now is not satisfied any more).

In order to control such a scenario, we need to investigate the global structure of

asymmetric vertices. For example, in Fig. 3.14, the red vertices belong to S.

In this context, consider the subgraph of G induced by these asymmetric ver-

tices. We shall refer to this subgraph as H. In other words, H consists of all

asymmetric vertices together with the red edges that they define. Notice, how-

ever, that in the case we are considering, none of these vertices has degree 0 in H.
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Figure 3.15: Swap z with u′ in our construction.

This is because we are considering asymmetric vertices whose neighbors are also

asymmetric.

At this point, suppose the graph H has a vertex of degree 1. For demonstrative

purpose, suppose we consider vertex z and let u be its only neighbor in H. Notice

then that we can remove vertex z from S and instead replace it with u′, like in

Fig. 3.15.

Then the set Ez is satisfied by the edge (u, u′) and u becomes symmetric. The

solution size stays the same. At this point, we have reduced the set of asymmetric

vertices by 2 and we can recurse.

Suppose, on the other hand, that the graph H does not have any vertices of

degree 1, like in Fig. 3.16(a).

In this context, pick any vertex, say vertex v with neighbors z and t as in the

figure. Then we claim that we can safely delete v from S. This is because the only

sets potentially satisfied by an edge of v are Ev and the sets associated with NH(v).

However, every vertex y ∈ NH(v) has degree at least 2, and therefore, the set Ey is

already satisfied by an edge other than (y, v). In Fig. 3.16(b), the sets Ez and Et are

satisfied by the edges (z, x) and (t, w) which must exist because the degrees of z and
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Figure 3.16: If the graph does not have vertices of degree 1, then we can reduce the
size of our instance.

t are ≥ 2. The only other set that is affected by the disappearance of v is Ev itself.

This can be solved by making one of v’s neighbors symmetric. In our case, the edge

(t, t′) satisfies the set Ev. We therefore get a new pairwise selection instance of the

same size in which we have reduced the number of asymmetric vertices by 2, like in

Fig 3.16(b).

3.7 The Continuous Case

In this chapter, we discuss the case in which we can place the sensors anywhere

on the plane. As mentioned in the introduction, the problem with trying to adapt

k-center methods to our problem is that, once we select sensors that can optimally

cover the far apart targets, we cannot guarantee that those sensors can help cover

the rest of the targets. Geing able to place sensors wherever we want, however,

allows us to select an additional small set of sensors that, together with the optimal

sensors, can cover a target wherever it might be.
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In this context, we present a constant factor approximation for the sensor

placement problem considered by Tekdas et al [120], in which they consider an

upper bound U on the uncertainty function given as:

U(s1, s2, t) = d(t,s1)·d(t,s2)
| sin θ| ,

where θ = ∠s1ts2. The task becomes that of selecting the smallest number of sensors

that cover each target such that for each target t, there exists a pair of sensors s1, s2

such that U(s1, s2, t) ≤ U . By tiling the plane with triangles and placing sensors

at vertices of the triangular grid, Tekdas et al [120] give a 3-approximation that

guarantees that the maximum uncertainty is ≤ 5.5U . In order to avoid the bi-

criteria nature of the result, we show that an alternative tiling with squares gives a

25-approximation that guarantees that we never exceed the uncertainty threshold.

The approach in both cases is similar to the k-center approach described in

the introduction, but at first sight, it might be unclear how the problems are similar

in nature. In particular, the product d(t, s1) · d(t, s2) can be allowed to be high

as long as the value for sin θ is high as well( i.e. θ is close to π/2). Moreover, by

considering the product of distances instead of the individual distances themselves,

we are allowing one sensor to be really close to the target while the other one can

be really far away. In terms of localization, this makes intuitive sense: a sensor

that is really close to the target will produce measurements that already have high

accuracy. On the other hand, k-center requires all sensors to be within range of

the target.

To this end, the following observation becomes essential: if d(s1, t) >
√
U and
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d(s2, t) >
√
U , then U(s1, s2, t) > U for any value of θ. In other words, both sensors

cannot be far away from the target at the same time. A solution to this problem

will guarantee that, for each target, at least one of the sensors assigned to it will be

within a distance of
√
U of it. We refer to such a sensor as the primary sensor for t.

Notice that, if two targets t1 and t2 are far apart in the sense that d(t1, t2) > 2
√
U ,

then they cannot have the same primary sensor. In other words, if we consider a

maximal set P ⊆ T of targets with pairwise distance > 2
√
U , the size of that set is

a lower bound on kOPT.

Our strategy will be to place 25 sensors around each target t ∈ P and use the

previous lower bound to guarantee that we never use more than 25kOPT number of

sensors in total. The necessity of placing more than one sensor per target in P comes

from the fact that all the other targets (that are not in P ) must also be covered.

From the definition of P as a maximal set, we know that each of these targets will

be within distance ≤ 2
√
U of a target t in P . Our strategy will therefore be to place

sensors around t that will cover not just t, but any target within distance ≤ 2
√
U

of t. In other words, we consider disks of radius 2
√
U centered at each target t ∈ P .

Let such a disks be denoted as Dt. Given a method that can place c sensors and

cover all the targets in one Dt, we get that the total number of sensors we use is :

c× |{Dt : t ∈ P}| = c× |P | ≤ c× kOPT.

The last ingredient, therefore, is a method that, given a disk of radius 2
√
U

centered at a target t ∈ P , places a constant number of sensors that can cover any

target contained in that disk. To that end, Tekdas et al [120] propose a method
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that uses 3 sensors s1, s2, s2 and guarantees that, given a target t′ ∈ Dt, there exist

two distinct sensors si 6= sj with i, j ∈ {1, 2, 3} such that:

U(si, sj, t
′) ≤ 5.5U .

Their strategy is to place s1, s2, s3 equally spaced on the boundary of the disk

of radius 3

√
1
4

√
C centered at t and then show that for any t′, there exists a pair that

achieves an uncertainty of at most 5.5U . Our strategy will be to place sensors that

cover all targets within uncertainty exactly U . We do this by tiling the disk with

squares and placing sensors at each of the vertices of the square, as seen in Figure

3.17.

t

√
U

2
√
U

Figure 3.17: We tile the disk of
radius 2

√
U centered at t with

16 squares of size
√
U . We then

place sensors at each of the ver-
tices of the squares, 25 in total.

As seen, we require
(

4
√
U√
U

)2
= 16 squares,

which in total use 25 sensors. We are now left

to show that, given any target in Dt, there ex-

ists a pair of sensors that cover it within un-

certainty U . We do this by showing that each

square ABCD can cover all the targets in its

interior, as shown in Figure 3.18(a).

Formally, we show the following:

Lemma 3.16. Any square ABCD of side
√
U

that has sensors placed at its vertices can cover

any target T in its interior with uncertainty ≤ U .

Proof. Let O be the center of ABCD and O1, O2, O3 and O4 be the center’s projec-

tions on each of the sides of the square. For each of the triangles described by the
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(a) Given a square ABCD, we color code
some of the pairs, in this way: (A,B)- pur-
ple, (B,C) - red , (C,D) - green, (A,D)
- blue. The color map shows which of the
pairs minimizes the uncertainty in which
areas of the square.

A B

CD

O

O1

O2O4

O3

A,D B,C

A,B

C,D

B,CA,D

C,D

A,B

(b) We split the square into 8 areas
and for which of them, we assign
a pair of sensors. We will claim
that, for any target contained in
one of the areas, the assigned pair
will cover it within uncertainty U .

Figure 3.18: Partitioning of the square based on angular coverage.

points above, we assign a pair of sensors, as shown in Figure 3.18(b). For example,

for the triangle 4AOO1, we assign the pair A,D.

We claim that any potential target contained inside such a triangle will have

uncertainty smaller than U when paired with the designated pair. The only excep-

tion to the rule is the vertices of the triangle themselves. If a target is located at any

such location, we pair it with its 2 adjacent vertices. In that case, the uncertainty

would be
√
U ·
√
U

sin(90◦) = U .

Let us now proceed by showing that the claim is true for the triangle 4AOO1

and an arbitrary target T contained inside it. Let T1, T3 and T4 be its projections

on the AB,AD and DC sides of the square. We refer the reader to Figure 3.19 for

a pictorial view of our notation.

For ease of computation, we will refer to the side length of the square as R

and the length of the AT1 segment as x · R and the length of the AT4 as y · R.
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α
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Figure 3.19: We consider a target T contained inside the triangle 4AOO1 and its
projections T1, T3 and T4 on AB,AD and DC respectively. The pair assigned to
this triangle is (A,D) so our task will be to show that U(A,D, T ) ≤ U .

Notice that x ∈ (0, 1
2
] and y ∈ [0, 1

2
] and furthermore, y ≤ x. These two parameters

define all the points in the triangle 4AOO1, including locations on the edge AB but

excluding point A. We shall also denote the angles ∠TAT1 = α and ∠TDT3 = β.

Notice then that ∠ATT4 = α and ∠DTT4 = β.

Let us compute the uncertainty in terms of these parameters:

U(A,D, T ) = AT ·DT
sin(∠ATD)

.
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Notice that:

sin(∠ATD) = sin(∠ATT4 + ∠DTT4)

= sin(α + β)

= sin(α) cos(β) + cos(α) sin(β))

=
TT1
AT
· DT3
DT

+
AT1
AT
· TT3
DT

=
y ·R
AT

· x ·R
DT

+
x ·R
AT

· (1− y) ·R
DT

=
xy ·R2 + x(1− y) ·R2

AT ·DT

=
x ·R2

AT ·DT .

We get that:

U(A,D, T ) = AT 2·DT 2

x·R2 .

But, by Pythagora’s theorem applied in the triangle 4ATT1 and we get that:

AT 2 = AT 2
1 + TT 2

1 = x2 ·R2 + y2 ·R2 = (x2 + y2) ·R2

Similarly, by looking at the triangle 4DTT3, we get:

DT 2 = DT 2
3 + TT 2

3 = x2 ·R2 + (1− y)2 ·R2 = (x2 + (1− y)2) ·R2

Overall, we have that:

U(A,D, T ) = R2 · (x2+y2)·(x2+(1−y)2)
x

.

Remember that R2 = U , so, in order to show that U(A,D, T ) ≤ U , it suffices to

show that:

(x2 + y2) · (x2 + (1− y)2) ≤ x,
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since x > 0. Let

f(x) = (x2 + y2) · (x2 + (1− y)2)− x

= x4 + x2 · (y2 + (1− y)2)− x+ y2 · (1− y)2

= x4 + x2 · g(y)− x+ h(y),

where g(y) = y2 + (1 − y)2 and h(y) = y2 · (1 − y)2. Notice that the function

g(y) = 2y2 − 2 · y + 1 has derivative g′(y) = 4 · y − 2 and hence is decreasing when

y ∈ [0, 1
2
]. Therefore, g(y) ≤ g(0) = 1 for y ∈ [0, 1

2
]. On the other hand, the function

h(y) = y2 · (1− y)2 = y4 − 2 · y3 + y2 has derivative

h′(y) = 4 · y3 − 6 · y2 + 2 · y

= 2y · (2y2 − 3 · y + 1)

= 2y · (2y − 1) · (y − 1)

≥ 0,

for y ∈ [0, 1
2
]. Hence, h is increasing on the interval [0, 1

2
] and since y ≤ x, we get

that h(y) ≤ h(x). Therefore:

f(x) ≤ x4 + x2 − x+ x2 · (1− x)2

≤ 2 · x4 − 2 · x3 + 2 · x2 − x

≤ x · (2 · x3 − 2 · x2 + 2 · x− 1)

≤ 0,

for x ∈ (0, 1
2
] since the function x · (2 ·x3− 2 ·x2 + 2 ·x− 1) goes below 0 in between

the roots 0 and 0.64780.
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The same holds for points in all the other triangles and their corresponding

assigned sensor pairs. The argument is similar to the one described above and

exploits the appropriate symmetries.

We have therefore shown that we can place 25 sensors and cover any target

contained in Dt within uncertainty ≤ U . Notice, however, that we did not make

any assumptions about the positions of the targets. In fact, our result holds for

the general case in which not just the sensors, but also the targets, can be located

anywhere on the plane. The same situation applies as before. In other words, we

have shown the following:

Theorem 3.10. For the case when the sensors can be placed anywhere on the plane,

there exists a polynomial time algorithm that uses at most 25 · kOPT sensors and

covers every target within uncertainty ≤ U (both for the case in which the target set

is discrete and for when it is continous).

The above argument could also be made for (α,R)-AngDist, in the sense that

we could argue that sensors placed at A,B,C,D will collaborate to cover the targets

inside the square. For that, we will be able to use the geometric representation from

Section 3.6.1 and show that the union of all those symmetric differences (one for

which pair of sensors) will cover the entire square. Is is unclear, however, what the

side of the square should be chosen to be, i.e. it will most likely depend on α.
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Chapter 4

The Traveling Salesman Problem

with Neighborhoods

In this chapter, we present out contribution to the Traveling Salesman Problem

with Neighborhoods on uniform disks. We begin in Section 4.1 by reviewing the

related work on the TSPN in more detail, presenting our results and giving an

intuitive view of our approach. We then define our terms in Section 4.2 and proceed

to define the main ingredients of our result in Section 4.3. Specifically, we describe

our lower bounds and structural theorems there. We then perform the analysis of

the main algorithm in Section 4.4 and also discuss alternate approaches for some

special cases. In Section 4.5, we present a technique for proving the Häme, Hyytiä

and Hakula conjecture which helps us prove it for n = 3 and which we believe shows

promise for the case of n > 3.
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4.1 Introduction

In this section, we review previous work on TSPN in general, present our

results and provide a high level description of our methods.

4.1.1 Related Work

The Traveling Salesman Problem with Neighborhoods (TSPN) is a generaliza-

tion of the classical Euclidean Traveling Salesman Problem (TSP), when each point

to be visited is replaced with a region (interchangeably, a neighborhood) and the

objective is to compute a tour of minimum length that visits at least one point from

each of these regions. While it is known that Euclidean TSP admits a Polynomial

Time Approximation Scheme (PTAS) due to the celebrated results of Arora [136]

and Mitchell [137], Euclidean TSPN has been shown in fact to be APX-hard [71,138]

even for line segments of comparable length [72]. The geometric version of TSPN

was first studied by Arkin and Hassin [70] who gave constant factor approxima-

tions for a variety of cases. Since then, there has been a wide ranging study of

TSPN for different types of regions. In the case of connected regions, there is a

series of O(log n) approximations [72, 139, 140]. Better approximations are known

for cases that consider various restrictions on the regions such as comparable sizes

(i.e. diameter), fatness (ratio between the smallest circumscribing radius and largest

inscribing radius, or how well can a disk approximate the region) and pairwise dis-

jointness or limited intersection [68, 71, 72, 141–146]. We refer the reader to [147]
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for a comprehensive survey of the results.

Dumitrescu and Mitchell [68] were the first to specifically address the case of

uniform disks in 2001. They showed a PTAS for disjoint unit disks and simpler

constant factor approximations for the disjoint and overlapping cases. The specific

factor of 3.547 for disjoint disks is relative to using a routine for TSP on points (i.e.

the actual constant depends on the subroutine used). The PTAS and the 3.547-

approximation are the best known factors for the disjoint case. Later, Dumitrescu

and Tóth [143] improved the constant factor in [68] for the overlapping case from

7.62 to 6.75 and extended it to unit balls in Rd, giving a O(7.73d)-approximation.

When the balls are disjoint, Elbassioni et al. [72] showed a O(2d/
√
d)-approximation.

Most recently, Dumitrescu and Tóth [69] gave a randomized constant factor for (po-

tentially overlapping) disks of arbitrary radii (the actual constant is not mentioned

and seems large). As noted by the authors in [143], while the complexity of the

disk case is well understood generally, the question of obtaining practical and better

constant factor approximations remains of high interest.

4.1.2 Technical Contributions and High Level Ideas

We make the first progress on the Häme, Hyytiä and Hakula conjecture and

develop a twofold method that either improves the 2Rn bound in (1.1) or shows

that the TSP on the centers is a good approximation for the TSPN on the disks.

Formally, we get that

Theorem 4.1. For any n ≥ 4 disjoint disks of radius R at least one of the following
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is true:

• TSPN∗ is supported by a straight line,

• |TSP ∗| ≤ |TSPN∗|+ 1.999Rn,

• |TSP ∗| ≤ 2 · |TSPN∗|.

Our framework also gives an overall 3.53-approximation for the case of uniform

disjoint disks and a 6.728-approximation for the overlapping case.

While the improvement in the overall approximation factor is small, our frame-

work strives to provide new insight into the problem that can be explored further.

Specifically, the 2-approximation (optimal with respect to the method of computing

a TSP on the centers [68]) comes from the case in which the TSPN tour takes a

lot of sharp turns. Furthermore, it is based on a lower bound that does not rely

on packing arguments. To the best of our knowledge, this is the first such bound

specifically for TSPN out of all arguments for general fat regions [141]. As such, it

might be of independent interest and it could, for example, lead to improved approx-

imation factors for balls in Rd that do not depend exponentially on the dimension.

Moreover, the fatness of the disks is used in showing that short sharp turns lead

to a disk being visited multiple times and can conceivably be used to show similar

properties for other fat regions.

We start by fixing an order σ and comparing the TSPN tour that visits the

disks in that order to the TSP tour that visits their respective centers in the same

order. The 2Rn term in (1.1) comes from considering the points at which the TSPN
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touches the boundary of each disk and charging each such vertex with a 2R detour

for going to its respective center and coming back. In this view, the 2Rn term

cannot be improved since the charge on each vertex will always be 2R. Instead, we

reinterpret the bound as charging the edges of the TSPN tour instead of its vertices

and notice that the charge for each edge can now be anywhere between −2R and

2R, depending on how close the tour is to (locally) visiting pairs of disks optimally.

In this context, we define a “bad” edge to be one that incurs a large charge (i.e.

> (2 − ε)R for some ε > 0). We show that such bad edges lead to the TSPN tour

exhibiting sharp turns (i.e. with small interior angle). When the edges of the sharp

turn are long, we use that to derive a better lower bound on the overall TSPN tour

length. On the other hand, when one of them is short, we show that the tour must

then visit a disk twice (i.e. visit it once, then touch another disk and return back

to it). The crux of the argument is in understanding how these short sharp turns

that visit a disk multiple times influence the global detour term.

When a tour visits a disk more than once, two scenarios follow naturally from

the classical TSP case of just visiting points: either the order σ is not optimal or

the tour must follow a straight line. Surprisingly, we show that a third alternative

scenario is also possible, whose local structure we call a β-triad. The main technical

contribution of the paper is in describing structural properties of such β-triads and

showing that they actually have a low average detour. Specifically, we construct an

additional order σ′ and use an averaging argument to show that β-triads have low

detour when compared to the TSP tours that visit the centers in the order σ and

σ′. This then allows us to conclude that they have a low detour with respect to the
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optimal TSP on the centers.

Along the way, we also show that the Häme, Hyytiä and Hakula conjecture

is true for n = 3 and use it to bound the average detour of β-triads. We include a

discussion of the method used to derive it, involving Fermat-Weber points, which

might be useful for the case of n ≥ 4. We also discuss how our approach can be used

within the framework of Dumitrescu and Tóth [143] to yield improved approximation

factors for the overlapping disks case.

4.2 Preliminaries

We consider n ≥ 3 disjoint disks of radius R in the Euclidean plane. We denote

an optimal TSP tour on the centers of the disks as TSP ∗. Similarly, TSPN∗ will

denote an optimal TSPN tour on the disks. Our results will be with respect to a

fixed TSPN tour (which we call simply TSPN) described by a sequence of ordered

points P1, P2, . . . , Pn on the boundary of the disks such that the tour is a polygonal

cycle with edges (Pi, Pi+1). Furthermore, we have that for each of the input disks,

there exists some i ∈ [1, n] such that point Pi is on the boundary of the disk.

Notice that the points Pi induce a natural order σ on the disks with centers

O1, O2, . . . On, i.e. σ corresponds to the identity permutation on P1, . . . , Pn. For

the majority of our theorems, we will assume that TSP always refers to a tour on

the centers and in the order σ on the disks. When we need to make a difference,

we will further use TSP (σ′) to be the tour which visits the centers in the order

given by the permutation σ′. Given two such permutations σ and σ′, we say that
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σ ∩ σ′ refers to the maximal set of points on which σ and σ′ agree. In this context,

TSPN(σ ∩ σ′) refers to the collection of paths we get from visiting the points Pi

according to σ ∩ σ′. Similarly, TSP (σ ∩ σ′) corresponds to the collection of paths

that we get from visiting the points Oi according to σ ∩ σ′.

Finally, we denote the length of a tour T as |T |. When T is a collection of

paths, we have that |T | represents the total length of each of the paths. When A

and B are points, we have that |AB| denotes the length of the segment AB. We

therefore have that |TSPN | =
∑n

i=1 |PiPi+1| and |TSP | =
∑n

i=1 |OiOi+1|, where

Pn+1 = P1 and On+1 = O1.

4.3 β-triads and a Structural Theorem

Before we formally define what a “bad” edge is, we will describe how to inter-

pret the 2Rn detour bound from [68] as charging edges instead of vertices. We fix

an order σ and consider the points Pi and Oi as previously defined. The argument

in [68] then says that we must have:

∑
i |OiOi+1| ≤

∑
i |PiPi+1|+ 2Rn.

In this context, the term
∑

i PiPi+1 + 2Rn is the length of a tour that follows

the TSPN tour and additionally, at each point Pi, takes a detour of 2R to visit the

center Oi and come back. Choosing σ to be the optimal order in which TSPN∗

visits the disks gives us ( 1.1). In this view, the detour term 2Rn is obtained by

charging 2R to each point Pi of the TSPN tour. Instead, we can also think of it as

coming from charging each edge PiPi+1 of the tour with a local detour of 2R in the
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following sense:

|OiOi+1| ≤ |PiPi+1|+ 2R.

This new perspective is quite natural since it captures the observation that

the shortest edge which visits the disks centered at Oi and Oi+1 has length exactly

|OiOi+1| − 2R and hence the TSPN tour has to pay at least that for each pair

of consecutive disks it visits. In this sense, we decompose the global detour term

of 2Rn into n local detour terms |OiOi+1| − |PiPi+1| that essentially quantify how

efficient the TSPN on the disks is locally.

In this context, saying a TSPN edge has a high local detour is equivalent to

saying that it is close to being locally optimal or shortest possible: when the edge

is exactly of length |OiOi+1| − 2R, its local detour is 2R (the maximum). If, on

the other hand, we know that the edge is bounded away from |OiOi+1| − 2R, i.e.

|PiPi+1| > |OiOi+1| − 2R + εR, for some ε > 0, this translates into a local detour

of at most (2 − ε)R. Intuitively, such an edge is “good” for us because it allows

us to lower the overall detour term. In contrast, “bad” PiPi+1 edges are the ones

for which the local detour term is large and consequently, their length is closer to

|OiOi+1| − 2R. Our technique is motivated by trying to describe the behavior of

such bad edges.

Formally, we consider a fixed angle parameter β ∈ [0, π/12] that we instantiate

later when we derive the overall bounds. We define the function:

f(O1O2, β) =
√
|O1O2|2 +R2 − 2R|O1O2| cos β,
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β

P1
P2

A

B

C

Figure 4.1: Bad edges are guaranteed to have both endpoints in the blue arcs: if
|P1P2| ≤ |AC|, then P1P2 is a bad edge. In contrast, the dashed edges are guaranteed
to be good edges.

which is |O1O2| − R when β = 0 and |O1O2| + R when β = π. Intuitively, the

quantity f(O1O2, β) − R will control how close we are to |O1O2| − 2R. We then

say that the edge P1P2 is bad if |P1P2| ≤ f(O1O2, β) − R and good otherwise

(we abstract away the dependency on β for simplicity). Bad edges are close to

|O1O2| − 2R and will incur a large local detour. In contrast, using straightforward

algebra, one can show that a good edge P1P2 is guaranteed to have a small detour:

|O1O2| ≤ |P1P2|+ (1 + cos β)R.

4.3.1 Consecutive Bad Edges

The idea behind defining bad edges in terms of f(O1O2, β)−R is that it allows

us to restrict the location of P1 and P2 on the boundary of their respective disks

as seen in Figure 4.1. Specifically, there are exactly two points A and B on the

boundary of the first disk with the property that the shortest distance from A or B

to the boundary of the second disk is exactly f(O1O2, β) − R. Not coincidentally,

they form an angle of β with O1O2 : ∠AO1O2 = ∠BO1O2 = β. In general, P1
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(and in a similar fashion P2) is guaranteed to lie in the short arc between A and B

whenever P1P2 is upper bounded by f(O1O2, β)−R:

Lemma 4.1. If P1P2 is bad, then the angles ∠O1O2P2 and ∠O2O1P1 are ≤ β.

Proof. Let γ = ∠O1O2P2 ≤ π and notice that O1P2 = f(O1O2, γ). Consider the

point Q where O1P2 intersects the first disk and note that the shortest distance

from P2 to the first disk is exactly P2Q = f(O1O2, γ) − R. We therefore get that

P1P2 ≥ P2Q. Now notice that, if γ > β, then f(O1O2, γ) > f(O1O2, β) and so

P2Q > f(O1O2, β) − R, which would lead to a contradiction. The same argument

can be applied for P2 and we get our conclusion.

When a second bad edge P2P3 is considered, we can conclude that the angle

O1O2O3 has to be at most 2β and hence the TSP on the centers must make a sharp

turn after it visits O2. Specifically, let O3 be the center of the disk visited next at P3

and assume that the edge P2P3 is also bad. Notice that the angle ∠O1O2O3 formed

by the TSP is either ∠O1O2P2 + ∠P2O2O3 or |∠O1O2P2 − ∠P2O2O3|. Regardless,

we have that ∠O1O2O3 ≤ ∠O1O2P2 + ∠P2O2O3 and get the following corollary:

Corollary 4.1. If both P1P2 and P2P3 are bad edges, then the angle ∠O1O2O3 is

≤ 2β.

If that happens and the disks are close to each other, we have that one of

the edges of the TSP must actually intersect a disk twice. Specifically, if |O1O2| ≤

R/ sin(2β), then the support line for O2O3 must pass through the disk centered at

O1. In general, it is not true that if O2O3 intersects the first disk, we immediately
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get that the associated TSPN edge P2P3 must also intersect it. In our case, however,

we have that the slope of P2P3 is very close to the one of O2O3 due to the fact that

it is a bad edge. We use this information to show that if O2O3 does not intersect

the first disk, then P2P3 cannot be a bad edge.

Theorem 4.2. If P1P2 and P2P3 are bad edges and O1O2 ≤ R/ sin(2β), then the

segment P2P3 intersects the disk centered at O1.

Proof. We consider the case in which ∠O1O2O3 = ∠O1O2P2 + ∠P2O2O3 and note

that all the other cases are similar. We denote the two lines originating at O2 that

are tangent to the first circle as `1 and `2 such that the line O2O3 is in between `1

and O2O1. Note that this is possible because the angle that `1 forms with O2O1 is

at least 2β (since O1O2 ≤ R/ sin(2β)) but the angle that O2O3 forms with O2O1 is

at most 2β (Corollary 4.1).

Our strategy will be to first show that the segment P2P3 is contained in the

wedge defined by `1 and `2 (Figure 4.2). Notice that, since the wedge defines a

convex space, it is enough to show that P2 and P3 are contained in it.

We first show that the point P2 has to be in the wedge. Let S1 and S2 be the

points in which the segment O1O2 intersects the first and second disk. Similarly,

let T2 and T3 be the points in which O2O3 intersects the second and third disk. We

then have that P2 is between T2 and S2.

Now we only need to show that P3 is in between `1 and `2. We will do that

by arguing that any choice of P3 outside of the wedge will contradict the fact that

P2P3 is a bad edge.
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O3

O1 O2

P3

P2

P
`1

`3

`2

Figure 4.2: When O2O3 crosses the disk centered at O1, we must also have that
the segment P2P3 also crosses it. We show this by arguing that P2P3 is contained
between the two lines `1 and `3 and that P2 and P3 are on separate sides of the first
disk.

Let α1 = ∠O1O2P2 and α2 = ∠P2O2O3, and so α1, α2 ≤ β (Lemma 4.1). First

notice that if neither `1 nor `2 intersect the third disk, then we are done because

we have that the entire boundary is contained in the convex space (since O3 is

already in between `1 and `2). Assume then that `1 intersects the third disk at a

point P above the line O2O3, since ∠O3O2O1 ≤ 2β ≤ ∠PO2O1. Moreover, since

∠PO2O1 ≥ 2β, we have that ∠PO2P2 ≥ 2β − α1 ≥ β and so PP2 ≥ f(PO2, β)

(because |P2O2| = R). Since |PO2| ≥ |T3O2| and |T3O2| ≥ R, this implies that

|PP2| ≥ f(T3O2, β). Using the fact that f(x, β) ≥ x−R cos β for any x and β 6= 0,

one can verify that:

f(T3O2, β) = f(O2O3 −R, β)

=
√

(|O2O3| −R)2 +R2 − 2R(|O2O3| −R) cos β

>
√
|O2O3|2 +R2 − 2R|O2O3| cos β −R

> f(O2O3, β)−R.

This means that P cannot be a possible position for P3 because then P2P3 would
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be too big. Moreover, any point Q ”above” P (i.e. such that ∠O3O2Q > ∠O3O2P )

would also not work as a possible position for the same reason. In other words, P3

has to be underneath the line PO2 = `1.

In order to prove that P3 is also above the line `2, we will consider an additional

line `3 originating at O2 that makes an angle of β with O2P2 and is underneath it.

This new line makes an angle of β + α2 with O2O3 and since `2 makes an angle of

≥ 2β + α1 + α2 with O2O3, we get that `3 is in between O2O3 and `2. In other

words, if we show that P3 is above `3, then we also get that P3 is above `2. If

`3 does not intersect the third disk, then we are done as before, so assume that

it intersects it at a point Q on the boundary. Similarly as before, we have that

P2Q = f(O2Q, β) ≥ f(O2T3, β) > f(O2O3, β)−R. This in turn implies that P3 has

to be above Q, otherwise P2P3 would be too big. Therefore P3 must be above the

line `3.

At this point, we have that the segment P2P3 is contained in the wedge defined

by `1 and `2. We know that the first disk is tangent on both sides to `1 and `2 but

this does not directly imply that P2P3 must actually intersect it. In order to have

that, we must also ensure that P2 and P3 lie on different sides of the first disk. We

argue this by showing that O3 itself must be on the other side of the first disk as

O2. Since the disks do not intersect, this implies that P3 is on a different side from

P2. In order to show this, notice that we can assume, without loss of generality,

that O1O2 ≤ O2O3. Let T be the point on O2O3 such that O1T ⊥ O2O3. Since

∠O1O2O3 ≤ 2β and O1O2 ≤ R/ sin(2β), this means that T is contained in the first

disk. Suppose that O3 is on the segment O2T (effectively in between O1 and O2).
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Then O2O3 < O2T but, since O2T = O1O2 cos(∠O1O2T ) ≤ O1O2, this would lead

to a contradiction. We therefore get that O2 and O3 are on different sides of the

first disk and that the same is true for P2 and P3. This shows that the segment

P2P3 must intersect the first disk.

4.3.2 Introducing β-triads

The fact that the disk centered at O1 is crossed by both P1P2 and P2P3 suggests

that the TSPN might not be optimal because it could be shortcut. Our structural

theorem identifies when that is the case and isolates the remainder as having a

specialized local structure which we call a β-triad. Formally, we say that a specific

TSPN subpath Pn − P1 − P2 − P3 is a β-triad if it satisfies all of the following

properties (Figure 4.3):

• P1P2 and P2P3 are bad edges and O1O2 ≤ R/ sin(2β),

• P1, P2, P3 are not collinear but Pn, P1, P2 are collinear with P1 between Pn and

P2.

P3

Pn

P1

P2

O3

On

O1 O2

Q1

Figure 4.3: The path Pn − P1 − P2 − P3 forms a β-triad.
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We state the structural theorem here and refer the reader to Appendix ?? for

a complete argument. The case in which the TSPN tour follows a straight line that

stabs all the disks is discussed separately in Section BLAH BLAH BLAH and is of

separate interest.

Theorem 4.3. For n ≥ 4, if P1P2 and P2P3 are bad edges and O1O2 ≤ R/ sin(2β)

then at least one of the following is true:

• the TSPN tour is not optimal,

• the TSPN tour is supported by a straight line or

• the path Pn − P1 − P2 − P3 forms a β-triad.

Proof. We distinguish between the case in which P2P3 intersects the first disk at P1

and otherwise. In the first case, we will show that either the TSPN is not optimal

or all the disks are stabbed by it. The second case is more involved and reduces

to describing what the local structure of the TSPN must be such that it does not

necessarily fall in the previous two cases.

Case 1: P1, P2, P3 are collinear. Then consider the point Pn that connects to

P1. The cost that the TSPN pays for visiting the four disks is |PnP1|+|P1P2|+|P2P3|

but by triangle inequality, we know that |PnP2| ≤ |PnP1|+|P1P2|, so the TSPN would

visit P2 directly and pass through P1 on its way to P3. If the inequality is strict, then

this directly implies that the TSPN is not optimal. When we have equality, however,

this implies that Pn, P1 and P2 are now also collinear and furthermore, that P1 lies

between P2 and Pn. In other words, we have that on the line from P2 to Pn, we have
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both P3 and Pn to the left of P1. Now look at how point P4 connects to P3 and notice

that the portion of TSPN for the five disks is now |P4P3|+|P3P2|+|P1P2|+|P1Pn| and

again, we can ask the question of why wouldn’t the TSPN go straight to P2 instead

and visit P3 along the line P2P3. Specifically, we have |P4P2| ≤ |P4P3| + |P3P2|

with the TSPN not being optimal whenever this inequality is strict. We therefore

consider the case in which |P4P2| = |P4P3|+ |P3P2| and get that now P4 has to also

be collinear with the other points and furthermore, P3 has to be between P4 and P2.

Continuing this process, we get that all the TSPN points would have to be collinear

and in the order P2, P1, P3, P4, . . . , Pn−1 with Pn potentially being anywhere past

P1. In this case, we have that the TSPN is a supported by a straight line that stabs

all of the disks.

Case 2: P1, P2, P3 are not collinear. Let the line P1P2 intersect the first

disk for the first time at Q1. By the argument from before, we know that if |PnP2| <

|PnP1|+ |P1P2|, then the TSPN cannot be optimal since another tour could go from

Pn straight to visiting P2 and then visit P1 on the way to P3, at a lesser cost. When

Pn, P1 and P2 are collinear, in that order, we say that Pn − P1 − P2 − P3 form a

β-triad.

4.3.3 Properties of β-triads

Theorem 4.3 says that if |TSPN∗| is not a straight line, then the triad has a

local detour of at most 3
√

3R. Lemma 4.2 further states that all the bad triads are
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also edge disjoint. In order to prove that, we go back to the proof of Theorem 4.3.

Note that we distinguished between the case in which P1, P2 and P3 are collinear

(Case 1) and when they are not(Case 2). The first case leads to the TSPN being

a straight line, which is ruled out by our assumptions. In the second case, the

optimality of TSN∗ implies that Pn, P1 and P2 are also collinear, with P1 between

P2 and Pn.

Lemma 4.2. All the β-triads in a given TSPN tour are edge disjoint.

Proof. Assume there is another bad triad that shares edges with Pn−P1−P2−P3.

We distinguish four cases, based on the type of edges they have in common.

Case 1: Pn−1−Pn−P1−P2 is a bad triad. This case cannot happen since

Pn, P1, P2 are collinear.

Case 2: Pn−2−Pn−1−Pn−P1 is a bad triad. Then, by definition, we must

have that PnP1 is also a bad edge. We will show, however, than this cannot be. For

this, we will use an additional lemma:

Lemma 4.3. If PiPi+2 is a straight line that passes through point Pi+1 such that

Pi+1 is between Pi and Pi+2, then it cannot be that both PiPi+1 and Pi+2Pi+1 are bad

edges.

Proof. Assume that both PiPi+1 and Pi+2Pi+1 are bad edges. Then Corollary 4.1

implies that the angle ∠OiOi+1Oi+2 ≤ 2β. Now consider the convex hull of the two

disks centered at Oi and Oi+1 (Figure 4.4). If the disk centered at Oi+2 intersects

the convex hull, then Pi+2 must be contained in that convex hull, otherwise the line
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Oi+1 Oi

Oi+2

Oi+2

Pi+1
Pi+2

Pi+2

Pi

Figure 4.4: A potential TSPN path is drawn in blue. Because the angle
∠OiOi+1Oi+2 ≤ π/2, we have that Oi and Oi+1 are on the same side of the hy-
perplane described by the red line. That, in turns, give two options for the disk
centered at Oi+2 to intersect the (extended) convex hulls of the other two diskss,
drawn in green. In each case, the points are visited in the wrong order.

Pi − Pi+1 − Pi+2 would not exist. But in that case, the points would be visited out

of order. Specifically, Pi+2 would be between Pi and Pi+1.

Now assume that the disk centered at Oi+2 does not intersect the convex hull.

Since the angle ∠OiOi+1Oi+2 ≤ 2β ≤ π/6, this implies that Oi+2 is in the same

halfspace as Oi with respect to the line perpendicular to OiOi+1 passing through

Oi+1. We extend the convex hull infinitely in that halfspace by allowing the tangent

lines to be infinite on that side. By the same argument as before, we know that the

disk centered at Oi+2 must intersect this extended region. But then we would get

again that the points are out of order: Pi would be between Pi+1 and Pi+2.

When Pi = Pn, Pi+1 = P1 and Pi+2 = P2, Lemma 4.3 tells us that it cannot

be that P1 is between Pn and P2 and both edges P1Pn and P1P2 are bad. Therefore

we are done with this case.

Case 3: P1−P2−P3−P4 is a bad triad. This case is similar to Case 1 and

cannot happen, since P1, P2 and P3 cannot be collinear. Case 4: P2−P3−P4−P5
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is a bad triad. This case is similar to Case 2 because we have that P2, P3 and P4

are collinear with P3 between P2 and P4 and both P2P3 and P3P4 being bad edges.

4.3.4 Structural Theorem

The case of β-triads is interesting because it arises naturally as a consequence

of dealing with regions instead of points. Given any optimal tour that exhibits

internal angles ≤ π/6, we can always add an extra disk at each sharp turn that

will maintain optimality, pairwise disjointness and be intersected twice by this tour,

giving rise to a β-triad. It is therefore important that we understand their behaviour.

Because of the fact that P1P2 and P2P3 are bad edges, the β-triad is likely

to have a high detour with respect to TSP (σ). Nevertheless, we show that there

exists an alternate ordering σ′ such that the average detour of the three edges in

the β-triad with respect to (|TSP (σ)|+ |TSP (σ′)|)/2 is 3
√

3R. The order σ′ takes

advantage of the fact that the disk centered at O1 is crossed twice and inverts the

order in which it is visited without changing the cost of the underlying TSPN tour.

The 3
√

3R bound comes from proving the Häme, Hyytiä and Hakula conjecture for

n = 3 (Section 4.5). In order to be able to construct σ′ consistently across multiple

β-triads, we also show that β-triads are isolated events and specifically that they

are edge-disjoint (Lemma 4.2).

Theorem 4.4. If the TSPN in the order σ has k β-triads that together cover a set

of edges of total length LT , then we can construct another order σ′ that agrees with
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σ on everything except the order inside the β-triads such that:

|TSP (σ)|+ |TSP (σ′)|
2

≤ |TSP (σ ∩ σ′)|+ LT + 3
√

3Rk.

Proof. We discuss the case for k = 1 and show how to modify the argument for k > 1.

Suppose that Pn − P1 − P2 − P3 form a β-triad. We know that TSP (σ) visits the

centers of each disk in the order O1, O2, O3, . . . On. We consider an additional order

σ′ such that TSP (σ′) visits the centers in the order O2, O1, O3, . . . On. Notice that

both σ ad σ′ agree on the order O3, O4, . . . , On and that they differ in the fact that σ

visits O1 after On and before O2 and σ′ visits O1 after O2 and before O3. Therefore,

for T ′ = TSP (σ ∩ σ′), we have that |T ′| = |O3O4| + . . . + |On−1On|, |TSP (σ)| =

|T ′|+ |OnO1|+ |O1O2|+ |O2O3| and |TSP (σ′)| = |T ′|+ |OnO2|+ |O2O1|+ |O1O3|.

On the other hand, the length of the TSPN with respect to the orders σ

and σ′ stays the same. The local cost of visiting Pn − P1 − P2 − P3 is LT =

|PnP1|+ |P1P2|+ |P2P3| = |PnP2|+ |P2P3|, since Pn, P1 and P2 are collinear and P1

is between Pn and P2. We also know that P2P3 intersects the disk centered at O1 at

some point Q1 that is different from P1 (Theorem 4.2). In other words, the TSPN

that visits the points Pn − P1 − P2 − P3 can be reimagined as visiting the points

Pn − P2 −Q1 − P3 and therefore respecting the order σ′. The local cost of crossing

these edges is the same as before: |PnP2|+ |P2Q1|+ |Q1P3| = |PnP2|+ |P2P3| = LT .

We now apply Theorem 4.5 (the 3
√

3R bound for n = 3) on the TSP tour

On −O1 −O2 with the TSPN tour Pn − P1 − P2 and get that:

|OnO1|+ |O1O2|+ |OnO2| ≤ |PnP1|+ |P1P2|+ |PnP2|+ 3
√

3R

≤ 2|P2Pn|+ 3
√

3R.
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On the other hand, if we consider the tour O1 − O2 − O3 with the TSPN tour

P2 −Q1 − P3, we get that:

|O1O2|+ |O2O3|+ |O1O3| ≤ |Q1P2|+ |P2P3|+ |P3Q1|+ 3
√

3R

≤ 2|P2P3|+ 3
√

3R.

Combining the two inequalities and rearranging some terms gives us that:

|TSP (σ)|+ |TSP (σ′)| =2|T ′|+ |OnO1|+ |O1O2|+ |O2O3|+

+ |OnO2|+ |O2O1|+ |O1O3|

=2|T ′|+ |OnO1|+ |O1O2|+ |OnO2|+

+ |O1O2|+ |O1O3|+ |O2O3|

≤2|T ′|+ 2|P2Pn|+ 2|P2P3|+ 6
√

3R.

Since LT = |P2Pn|+ |P2P3|, we get our conclusion.

When k > 1, we construct the order σ′ by switching the order in which we

visit the centers in each β-triad in the same way as before. Since all the β-triads

are edge disjoint (Lemma 4.2), we can construct σ′ without any conflicts because

any reordering that happens in one β-triad will not affect another β-triad.

4.4 Improved Bounds on TSPN

Our main strategy will be a careful balancing of good and bad edges, in which

the detour of good edges will be upper bounded by (1+cos β)R and that of bad edges

by 2R. While the bad edges will have the highest detour possible, we will use the fact
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that they must also be large in order to lower bound the TSPN tour more efficiently

than Lemma 4.5 from [68] and [143], which we quote here for completeness.

We quote the more general version formulated in [143], since we will actually

use it with a slight modification.

Lemma 4.4. [143] Given a connected geometric graph G = (V,E) in R2 and C

the set of points that are at most x away from the vertices and edges of G, we have

that:

Area(C) ≤ 2x · |G|+ πx2,

and this is tight in general.

The shape C defined above can alternatively be thought of as the shape we

describe when we slide a disk of radius x along the edges of G (i.e. the Minkowski

sum of G with a disk of radius x). The charging scheme behind the analysis starts at

an arbitrary vertex of G and initially pays a charge of πx2 for it. Next, each edge e

we sweep from this vertex to the next will incur an additional charge of only |e| ·2x.

Because the graph G is connected, we can continue this way and sweep through

the entire graph while only incurring an additional charge of e|G| · 2x. Next, we

instantiate Lemma 4.4 with G being a TSPN tour and x = 2R and notice that the

disk of radius 2R visiting a vertex P on the boundary of a disk actually covers the

entire disk of radius R whose boundary P is on. Since the disks are disjoint, we get

that Area(C) ≥ πR2 · n and so we have that:

Lemma 4.5. [68, 143] For n disjoint disks of radius R, we have that any TSPN

tour T on them satisfies:
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π
4
Rn− πR ≤ |T |.

4.4.1 Disjoint Uniform Disks

We will now show the proof of Theorem 4.1.

Proof. Assume the TSPN∗ is not a straight line. We start by singling out the β-

triads and considering the two orderings σ and σ′ from Theorem 4.4. If there are

k1 β-triads T1, . . . , Tk1 spanning edges of total length LT , we get that:

|TSP ∗| ≤ |TSP (σ)|+ |TSP (σ′)|
2

≤ |TSP (σ ∩ σ′)|+ LT + 3
√

3R · k1.

Observe that TSPN(σ ∩σ′) is a collection of disjoint paths. From all of these

paths, we further extract each from these a total of k2 subpaths G1, . . . ,Gk2 consisting

of good edges. Notice that the remaining subpaths left in σ∩σ′ consist of bad edges

which do not form a β-triad. Suppose we obtain l such remaining subpaths paths

B1, . . . ,Bl. In other words, we have decomposed the TSPN into three categories of

subpaths:

• k1 β-triads T1, . . . , Tk1 ,

• k2 paths G1, . . . ,Gk2 that cover the remaining good edges, and

• l paths B1, . . . ,Bl that consist only of bad edges which do not form β-triads.

We are now ready to evaluate the detour that each of these paths takes. For

each i ∈ [1, k2] let ψi the natural order on the disks associated with Gi and let ni be

the number of edges in Gi. We have that:
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|TSP (ψi)| ≤ |TSPN(ψi)|+ (1 + cos β)R · ni.

When it comes to the paths Bj, with j ∈ [1, l], let σj be their natural associated

orders and let mj be the number of edges it contains. We have that |TSP (σj)| ≤

|TSPN(σj)|+ 2R ·mj.

Let N =
∑k2

i=1 ni be the total number of edges in G1, . . . ,Gk2 and M =
∑l

j=1mj

the total number of edges in B1, . . . ,Bl. By construction, we decomposed TSPN(σ∩

σ′) into these two groups of edge disjoint paths and we therefore get that:

|TSP (σ ∩ σ′)| =
k2∑
i=1

|TSP (ψi)|+
l∑

j=1

|TSP (σj)|

≤
k2∑
i=1

(
|TSPN(ψi)|+ (1 + cos β)R · ni

)
+

l∑
j=1

(
|TSPN(σj)|+ 2R ·mj

)
≤ |TSPN(σ ∩ σ′)|+ (1 + cos β)RN + 2RM.

Including the β-triads back into our bound, we get that:

|TSP ∗| ≤ |TSP (σ)|+ |TSP (σ′)|
2

≤ |TSP (σ ∩ σ′)|+ LT + 3
√

3R · k1

≤ |TSPN(σ ∩ σ′)|+ LT + 3
√

3R · k1 + (1 + cos β)RN + 2RM

≤ |TSPN |+ 3
√

3R · k1 + (1 + cos β)RN + 2RM.

In other words, we’ve expressed the total detour of the TSPN according to

edges that participate in β-triads, edges in G1, . . . ,Gk2 and edges in B1, . . . ,Bl. By

construction, none of these paths share edges and so 3k1 + N + M = n. Let
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K = 3k1 +N be the total number of edges either in a β-triad or in G1, . . . ,Gk2 and

since
√

3 ≤ 1 + cos β, we have that:

|TSP ∗| ≤ |TSPN |+ (1 + cos β)R ·K + 2R · (n−K).

Case 1: when K ≥ n
2
. In this situation, we have that:

|TSP ∗| ≤ |TSPN∗|+ 3 + cos β

2
·R · n.

The average detour per edge 3+cosβ
2

is better than the 2R bound, but it is

constrained by the choice of β ∈ [0, π/12], which means that the best we could hope

for is an average detour of 1
2
(3+cos π

12
)R < 1.983R. We note that the average detour

in the Häme, Hyytiä and Hakula conjecture is
√

3R ≈ 1.732R. Using Lemma 4.5

gives us that

|TSP ∗| ≤
(

1 +
2

π
· (3 + cos β)

)
· |TSPN∗|+

+ 2 · (3 + cos β)R .

For large n, the 1 + 2
π
· (3 + cos β) term will dominate our approximation factor and

is at most 3.525, when β = π/12.

Case 2: when K < n
2
. In this situation, even the overall detour might

be large, we will show that in fact, in this case, TSP ∗ is a 2-approximation and

therefore, the best that it can be in general. We know that each path Bj consists

of bad edges which do not form any β-triads. In other words, if P1P2 is an edge

in it, then we know that |O1O2| > R/ sin(2β) which in turn means that |P1P2| >
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(1/ sin(2β)− 2) ·R. Overall we have that:

|TSPN | ≥
l∑

j=1

|Bj| ≥
( 1

sin (2β)
− 2
)
R · (n−K)

≥
( 1

2 sin (2β)
− 1
)
R · n.

Since the total detour could be at most 2R per edge, we get that:

|TSP ∗| ≤
(

1 +
2

1
2 sin (2β)

− 1

)
· |TSPN |.

When β = 1
2

arcsin 1
6
, the detour from Case 1 becomes 3+cosβ

2
≈ 1.998 and the

approximation factor from Case 2 becomes exactly 2. We note that the machinery

described can be used to obtain more nuanced results. In particular, lower choices

for β will drive the approximation factor in Case 2 even lower than 2, at the expense

of a higher detour bound for Case 1.

More generally, we can consider a parameter α > 1 that we will set later in the

proof. We include here only the aspects that change. Depending on whether K ≤ n
α

or not, we will employ different lower bounds on |TSPN |, in a similar fashion as

before.

Case 1: when K ≥ n
α
. In this situation, we have that:

|TSP ∗| ≤ |TSPN∗|+ 1 + cos β + 2(α− 1)

α
·R · n.
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Using Lemma 4.5 gives us that

|TSP ∗| ≤
(

1 +
4

π
· 1 + cos β + 2(α− 1)

α

)
· |TSPN∗|+ 4 · 1 + cos β + 2(α− 1)

α
R

≤
(

1 +
4

π
· 1 + cos β + 2(α− 1)

α

)
· |TSPN∗|+ 8R

≤
(

1 +
8

π
− 4

π
· 1− cos β

α

)
· |TSPN∗|+ 8R.

Case 2: when K < n
α
. We know that each path Bj consists of bad edges

which do not form any β-triads. In other words, if P1P2 is an edge in it, then we know

that |O1O2| > R/ sin(2β) which in turn means that |P1P2| > (1/ sin(2β) − 2) · R.

Overall we have that:

|TSPN | ≥
l∑

j=1

|Bj|

≥
( 1

sin (2β)
− 2
)
R · (n−K)

≥ α− 1

α
·
( 1

sin (2β)
− 2
)
R · n.

Since the total detour could be at most 2R per edge, we get that:

|TSP ∗| ≤
(

1 +
α

α− 1
· 2

1
sin (2β)

− 2

)
· |TSPN |.

If we want to achieve a factor 2-approximation in Case 2, we need to have

β ≤ 1
2

arcsin(1
4
) and set

α = 1 + 2/( 1
sin (2β)

− 4).

In this case, the detour in Case 1 becomes 2 − (1 − cos β)(2 − 1/(1 − 2 sin (2β))

which achieves a minimum of ≈ 0.998 on the interval [0, 1
2

arcsin(1
4
)]. Setting α =

1 + 2/(c/sin(2β) − 2c − 2) for c = 2.53 and β = 0.1831 gives us that both of these

cases lead to a 2.53-approximation.
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4.4.2 Overlapping Uniform Disks

We discuss how the analysis from the disjoint case carries over to the case of

overlapping disks. As we mentioned before, the best known approximation for this

case is by Dumitrescu and Tóth [143]. In general, approaches for this case take

advantage of known analyses for the disjoint case and adapt them in a smart way to

the overlapping case. We begin by roughly describing the technique of Dumitrescu

and Tóth [143] and the show how the analysis changes when we use our framework.

Specifically, Dumitrescu and Tóth [143] start by computing a monotone max-

imal set of disjoint disks I by greedily selecting the leftmost disk and deleting all

of the other input disks that intersect it. Let k be the size of the set we end up

wth. They then compute an approximate TSP tour on the centers of the disks in I,

either using the available schemes [136, 137] or Christofides [32]. We call this tour

TI . They then augment this tour in such a way that we visit all the input disks, not

just the ones in I. Before we discuss the augmentation part, we first define some

notation and mention some bounds that follow naturally.

Let the optimal TSP tour on the centers in I be TSP ∗I . The eventual tour TI

that we compute will be an a-approximation to TSPN∗I so we have that:

|TI | ≤ a · |TSP ∗I |. (4.1)

On the other hand, we know that this set of disks also has an associated

optimal TSPN tour, which we call TSPN∗I . Finally, we denote the optimal TSPN
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tour on all the disks by TSPN∗. We know that the tour on I is a lower bound:

|TSPN∗I | ≤ |TSPN∗|. (4.2)

The size of our final solution will be compared to |TSPN∗| and to that end, we

use lower bounds on |TSPN∗I | in conjunction with (4.2) to get lower bounds on

|TSPN∗|. This is the part where our new framework will come in, because |TSPN∗I |

is a tour on disjoint disks by definition.

The next step is to augment TI with detours of length O(R) along the disks

in I such that it touches every other disk not in I. The total length of the solution

would then become |TI | + O(1) · |I| · R. Specifically, Dumitrescu and Tóth [143]

consider short curves around each disk in I that are guaranteed to cross any of the

disks to its right that intersect it. Because the maximal set was chosen from left to

right, that covers all the disks that could possibly intersect it. We refer the reader

to [143] for the detailed construction. The authors show that the length of the

resulting tour T is within O(1) · |I| ·R of |TI |:

|T | ≤ |TI |+ (A · k +B) ·R, (4.3)

where A = 2 · (π
6

+
√

3− 1) and B = 4−
√

3.

Combining 4.1 and 4.3, we upper bound the length of the solution |T | in terms

of |TSP ∗I | as such:

|T | ≤ |TI |+ (A · k +B) ·R

≤ a · |TSP ∗I |+ (A · k +B) ·R
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In order to complete the analysis, we would need to bound |TSP ∗I | in terms

of |TSPN∗| and we do that through |TSPN∗I |. The analysis from Dumitrescu and

Tóth [143] uses the bounds from Dumitrescu and Mitchell [68] for the case of disjoint

disks. Specifically, they apply Lemma 4.5 to get that:

kR ≤ 4

π
· |TSPN∗I |+ 4R.

This, together with the bound |TSP ∗I | ≤ |TSPN∗I |+ 2Rk and (4.2) yields:

|T | ≤ a · |TSP ∗I |+ (Ak +B) ·R

≤ a · (|TSPN∗I |+ 2Rk) + (Ak +B) ·R

≤ a · |TSPN∗I |+ (2a+ A) · kR +BR

≤ a · |TSPN∗I |+ (2a+ A) ·
( 4

π
|TSPN∗I |+ 4R

)
+BR

≤
(
a+ (2a+ A)

4

π

)
· |TSPN∗I |+ (8a+ 4A+B)R

≤
(

(1 +
8

π
)a+

4A

π

)
· |TSPN∗I |+ (8a+ 4A+B)R

≤
(

(1 +
8

π
)a+

4A

π

)
· |TSPN∗|+ (8a+ 4A+B)R

Plugging in the values for A and B gives an overall approximation term of:

(1 +
8

π
)a+

4A

π
≤
(7

3
+

8
√

3

π

)
· (1 + ε) ≤ 6.75 · (1 + ε).

Our framework changes the last stage in which we compare |TSP ∗I | with

|TSPN∗I |. We do a similar analysis as in the disjoint case, except for the tour

on I. We get that Case 1 would therefore correspond to getting that:

|TSP ∗I | ≤ |TSPN∗I |+X ·R · k,
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where X = 2− 1− cos β

α
(instead of 2R). We can then replace it in the analysis

and get:

|T | ≤ a · (|TSPN∗I |+XRk) + (Ak +B) ·R

≤
(
a+ (Xa+ A)

4

π

)
· |TSPN∗I |+ (8a+ 4A+B)R

≤
(

(1 +
4X

π
)a+

4A

π

)
· |TSPN∗|+ (4Xa+ 4A+B)R

In Case 2, we have that the overall detour is 2Rk, but there is a different

lower bound on |TSPN∗I |:

|TSPN∗〉 | ≥ Y ·Rk,

where Y = α−1
α
·
(

1/(2 sin (2β))− 1
)

. Using the fact that Rk ≤ 1/Y · |TSPN∗I |, the

analysis then becomes:

|T | ≤ α · |TSPN∗I |+ (2α + A) · kR +BR

≤ α · |TSPN∗I |+
2α + A

Y
· |TSPN∗I |+BR

≤
(
α +

2α + A

Y

)
· |TSPN∗I |+BR.

If we set α and β like in the previous section, we get that both of the approximation

factors are upper bounded by 6.728.

4.4.3 The Straight Line Case

Here we focus on the second possibility in Theorem 4.3 in which the optimal

TSPN is supported by a straight line that stabs all the disks. We show that in this

case, we can return in polynomial time a solution that is within an additive factor

of 4R from the optimal TSPN∗. We note that when the TSPN might not be a line
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but the disks themselves admit a line transversal, a
√

2-approximation follows from

the work of Dumitrescu and Mitchell [68]. We explain the result for completeness.

We start by identifying the centers that are the farthest apart and considering

the direction orthogonal to the line going through them. This direction induces

parallel segments of length 2R in each of the disks (that each go through the centers).

It is easy to check that any line transversal through the disks is a line transversal

through the segments except for the first and last disk in the associated geometric

permutation (for those two disks, the TSPN will stop at the boundary of the disk and

never cross the entire circle). Conversely, any line transversal through the segments

will automatically also stab the disks. Now compute a shortest line segment that

stabs all of these segments in time O(n log n) using the algorithm of Bhattacharya

et al. [148]. We note that this is optimal up to an additive factor of 4R that comes

from the fact that the optimal TSPN∗ might have to travel 4R to hit the first and

the last two segments in the geometric permutation.

In general, when we know that the disks admit a line transversal, we can

output a solution that is a
√

2-approximation [68]. This follows indirectly from an

algorithm used for connected regions of the same diameter, when there is a line

that stabs all of the diameters. Given the parallel segments of length 2R that we

constructed earlier, we know that they can also be stabbed by a line. Now consider

the smallest perimeter axis-aligned rectangle that intersects all of the segments,

of width w and height h. This will be the solution that we return. Arkin and

Hassin [70] argued that any tour which touches all four sides of the rectangle must

have length at least 2
√
h2 + w2. Since h + w ≤

√
2 ·
√
h2 + w2, we get that the
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rectangle is a
√

2-approximation.

4.5 The Fermat-Weber Approach

In this section, we prove that the Häme, Hyytiä and Hakula conjecture is true

for n = 3 and discuss a different way of looking at the TSPN tour that we believe

might be of independent interest. We start with the observation that the shortest

tour on the centers is equivalent to the shortest tour on translates of those centers,

as long as all those centers are translated according to the same vector. In other

words, if we fix a direction and translate each center along that direction until it

reaches its boundary, the shortest tour on the newly obtained points will be exactly

the same as the shortest tour on the centers themselves.

O1

O2

O3

O4

P1
P2

P3

P4

B4

B3

B2

B1

Figure 4.5: The translated view,
when the tour visits the same
point on the boundary of each
disk.

Formally, let Bi be the point we obtain

by translating the center Oi along a fixed vec-

tor of length R. Then the TSP on the points

B1, B2, . . . , Bn (in that order) has the same

length as the TSP tour on O1, O2, . . . On (Fig-

ure 4.5). One advantage of visiting the first set

of points (instead of the center points) is that it

might be more similar geometrically to what the

TSPN actually does. In terms of the following

analysis, we would get that:

|TSP ∗| ≤ |TSPN∗|+ 2 ·
n∑
i=1

|PiBi|.
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In this context, a natural question arises about the choice for the points Bi that

minimizes the term
∑n

i=1 |PiBi|. In order to see what this best choice would be,

we transform this input instance into another one by essentially superimposing all

the disks on top of each other (Figure 4.6(a)). Specifically, our new instance will

consist of one disk of radius R centered at a point O such that the points Bi map

to a single point B (corresponding to O translated by the same fixed vector). We

then map each point Pi of the TSPN to a corresponding point Qi on the boundary

of this disk such the vector OQi is a translate of the vector OiPi. We then get that:

n∑
i=1

|PiBi| =
n∑
i=1

|QiB|,

and so the best choice for B is the one that minimizes the sum
∑n

i=1 |QiB|, otherwise

know as the Fermat-Weber point or 1-median of the points Q1, Q2, . . . , Qn [149,150].

We note, however, that while the average distance to the Fermat-Weber point will

never be greater than 2R, there are instances in which this is tight. Consider, for

example, the points Qi to be the vertices of a convex 2n-gon and notice by triangle

inequality that the center of the disk is exactly their Fermat-Weber point (any other

point will incur distances greater than the sum of the diagonals).

We can therefore say that when the points Bi are evenly spaced on the bound-

ary of the disk the Fermat-Weber point is exactly the center and so we gain no

improvement by moving the centers Oi towards the points Bi. It turns out, how-

ever, that the location of the points on the boundary is not as restrictive as the order

in which the TSPN visits them. To see that, consider a different transformation in

which we only move the centers Oi and Oi+1 along a fixed vector. In other words, we
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Q1

Q4

Q3

Q2

O
B

(a) Unified view when we translate
each Oi to the same point on the
boundary.

Q1

Q4

Q3

Q2

O

(b) n different choices for B, when
we choose a different B for each pairs
of points Oi and Oi+1

Figure 4.6: The detour bound depending on what kind of Fermat-Weber points we
consider.

choose a new vector for each pair of consecutive centers and only compare |PiPi+1|

locally against the newly obtained segment. This does not give us an overall valid

tour on the centers, but it allows us to tailor the choice of B for each two points Pi

and Pi+1. Specifically, we would get that:

|OiOi+1| ≤ |PiPi + 1|+ |QiB|+ |Qi+1B|.

In this case, we know that any point on the segment QiQi+1 minimizes the distances

in question and so we get that:

|OiOi+1| ≤ |PiPi + 1|+ |QiQi+1| and |TSP ∗| ≤ |TSPN∗|+
n∑
i=1

|QiQi+1|.

In other words, the largest detour obtained in this way is when the TSPN vis-

its the points Pi in the order of the Maximum TSP on the associated points Qi

(Figure 4.6(b)). The case in which all the points are evenly distributed along the

boundary no longer becomes that restrictive. We can still construct, however, in-

stances for which the Max TSP is exactly 2Rn and that is when the points visited
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are exactly diametrically opposite each other. Nevertheless, we are able to show

that for n = 3, the detour is bounded by 3
√

3R. Let A,B,C be any three points

on the boundary of a circle of disk R centered at O. We then have that that

|AB| + |AC| + |BC| ≤ 3
√

3R and the Häme, Hyytiä and Hakula conjecture for

n = 3 follows:

Theorem 4.5. For n = 3, we have that any tour which visits the disks in an order

σ satisfies the bound

|TSP (σ)| ≤ |TSPN(σ)|+ 3
√

3R.
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Chapter 5

The Maximum Scatter Traveling

Salesman Problem

In this chapter, we discuss the Maximum Scatter TSP problem, for which we

strive to get polynomial time algorithms. We propose a method inspired by the case

when all the points lie on the circle and discuss how it can be extended to more

general cases. Specifically, we propose a property of the input point set that, when

present, leads to a polynomial time algorithm for computing an optimal Maximum

Scatter tour.

5.1 Introduction

In this section, we review existing work on the topic and discuss our contribu-

tions.
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5.1.1 Related Work

The Maximum Scatter Traveling Salesman Problem was first introduced by

Arkin et al. [80] who considered the general metric case and the Euclidean case of

points on a line and on a circle. For the metric case, they showed a 0.5-approximation

and showed that this is tight unless P=NP. For the line and circle case, they showed

polynomial time algorithms and asked the question whether the factor 0.5 can be

improved for the Euclidean case. The line case focuses on obtaining an exact order-

ing on the points that guarantees an optimal scatter, regardless of the underlying

geometry. This is based on exploiting the combinatorial properties of the tour. The

same approach is then extended to the circle case. In the line case, the maximum

possible scatter of a tour can be determined in linear time (by exploiting a combina-

torial bound on it) and the tour itself is then constructed in additional constant or

linear time depending on the parity of number of points. In contrast, we present an

alternative algorithm for points on a circle that we extend to work for more general

scenarios.

Fekete [79] showed that the Euclidean version is NP-hard for dimensions three

or higher but did not settle the case of two dimensions. The reduction is the same

one used for Maximum TSP and involves embedding a grid graph on the surface

of a three-dimensional sphere. As such, the smallest class of graphs for which Max

Scatter TSP is NP-hard are graphs of maximum degree four in three or more di-

mensions.

Recently, Kozma and Mömke [82] gave a general efficient polynomial approx-
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imation scheme for a general class of metrics, called constant doubling dimensions,

that include the `2 metric. Additionally, they also designed polynomial time ap-

proximation schemes when the dimension is log-logarithmic1, or when it is constant

and ε is at least a constant times 1/ log log n.

Around the same time, Hoffman et al. [81] presented an algorithm for points on

a regular grid that extends the line approach from Arkin et al. [80]. The underlying

idea is that of exploiting the fixed solution for the line case (i.e. specific ordering

regardless of the geometry) and augmenting it with another similar rule for the

second dimension of the grid. In general, this is not necessarily guaranteed to

obtain optimal results and in the worst case, gives a
√
10
5

-approximation for some

cases. For the case of grids with an odd number of columns or for quadratic grids,

this is shown to indeed lead to an optimal solution.

5.1.2 Technical Challenges and Contributions

The new challenge that Maximum Scatter TSP or Maximum TSP bring into

the conversation is that their optimality becomes hard to be exploited locally. Specif-

ically, advances on the Euclidean TSP front have come from the ability to separate

the input space into smaller regions for which we can compute the problem ex-

actly and then incorporate into a dynamic program. Such is the case for the m-

guillotine method employed by Mitchell [38] and the shifted dissection method used

by Arora [36]. When it comes to Maximum Scatter TSP, such methods are no longer

1The time complexity known as log-logarithmic refers to runtimes that can be upper bounded

by a constant time log log n, where n is the size of the input space.
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of immediate use because the solution restricted to a small region should by defini-

tion be empty. In other words, local solutions are no longer guaranteed to lie in a

small region of the input space. In our approach, we overcome this by starting with

highly global structures such as a collection of cycles that span the input points. We

then argue about when these cycles can be combined into a tour by making local

arguments.

We propose a general framework inspired by the case when all the points lie

on the circle and discuss how it can be extended to more general cases.

5.2 Preliminaries

We denote the n input points by P = {P1, P2, . . . , Pn}. We assume that all

of our points are in R2 with the Euclidean metric. A tour then corresponds to an

ordering σ : N → {1, . . . , n} on these points such that the tour consists of straight

line segments of the form Pσ(i)Pσ(i+1) for i = {1, . . . , n} and σ(n + 1) = σ(1). We

denote the length of a segment PQ to be the associated `2 distance between the

endpoints P and Q and we denote it as |PQ|. In this context, the scatter of specific

tour and its associated order σ becomes

mini |Pσ(i)Pσ(i+1)|.

The Maximum Scatter TSP problem therefore asks for an order σ that maxi-

mizes the scatter of the associated tour.

The first thing we notice is that we can reduce this problem to that of finding

a Hamiltonian tour in a threshold graph. Specifically, the scatter of the optimal tour
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will be achieved by one of the input edges PQ. In other words, we have
(
n
2

)
choices

for the optimal scatter and we can try them all. Given a specific guess `, we discard

from our input the edges PQ of length less than ` (i.e. build the threshold graph)

and attempt to compute a Hamiltonian tour on them. In general, a Hamiltonian

tour on a graph is a tour that visits every point once. Notice that, if `∗ is the scatter

of the optimal tour, then any guess ` ≤ `∗ should also ensure that G is Hamiltonian.

We can therefore start with the length of the smallest edge and keep increasing

our guess ` until we produce a proof that there can be no Hamiltonian tour on the

associated threshold graph. At that point, we return the largest guess so far that

produced a tour.

We therefore assume a guess ` from now on and concern ourselves only with

edges of length ≥ `. Specifically, we define

Definition 5.1. Given a point P ∈ P and a fixed distance threshold `, we define the

reachability area of P to be the set R(P ) ⊆ P of input points Q such that |PQ| ≥ `.

In other words, R(P ) consists of all the points that P can connect to, i.e.

the neighbors it has in the associated threshold graph. In the Euclidean plane,

this corresponds to the difference between the input set P and the ball of radius `

centered at P .

5.3 The Circle Case

In this section, we assume that all the input points lie on the boundary of a

circle D with radius R. In this case, the reachability area of a point P behaves in
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the following way:

• if 2R ≤ `, then R(P ) is the empty set for any P , because every point on the

boundary of D is at most 2R away from P . This case is trivial and we do not

consider it.

• if 2R > `, then R(P ) is induced by an arc A(P ) on the boundary of D centered

at an imaginary point P ′, the diametrically opposite point of P on the circle.

Furthermore, the length of the interval is the same for all input points.

We will focus on the 2R > ` scenario whenever we discuss the circle case. Our

strategy for this case will be to compute a series of initial cycles and show that

they can always be combined into a Hamiltonian tour unless the guess scatter ` is

too large. We proceed to describe and identify cycles for which this is possible and

conclude with a polynomial time algorithm that produces a Hamiltonian tour if one

exists.

5.3.1 Description of Cycles

Given a cycle C, we define the coverage of that cycle as being the collection of

arcs that the cycle “sweeps” as it visits points. We begin by first identifying these

arcs locally:

Definition 5.2. For a subpath A−B − C of a given cycle, we denote by
>
ACB the

arc between A and C that does not contain B.

We can think of the arc
>
ACB as capturing the fact that locally, the point B
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A1
A3 Ak−1

A2A4Ak

(a) The coverage of an
even cycles decomposes
into two arcs (upper and
lower coverage).

A1

A3

A2

the arc A1A3

the arc A1A2

the arc A2A3

(b) The coverage of an odd cycle is the en-
tire boundary of the circle.

Figure 5.1: The coverage of even versus odd cycles.

covers the area between its two neighbors in the cycle. The global coverage of the

entire cycle then becomes the union of such arcs over all subpaths:

Definition 5.3. The coverage of a cycle C denoted Cov(C), is the part of the circle

boundary given by:

Cov(C) =
⋃

A−B−C∈C

>
ACB.

The intuition behind this concept is that even cycles induce bipartite graphs

and that the notion of coverage reflects this by consisting of two separate opposing

intervals (Fig. 5.4(a)). Formally, we can discover the paths A− B − C by ordering

the vertices of the cycle. Let P1, P2, . . . , Pk correspond to such an ordering σ, then:

Cov(C) =
⋃
i

>
PiPi+2Pi+1

.

When the cycle has an even number of vertices, any ordering on them will

decompose the coverage into arcs between odd indexed points and arcs between

even indexed points. Specifically, we can consider the arcs between P1, P3, . . . , Pk−1
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and the arcs between P2, P4, . . . , Pk. Any ordering we might consider would give rise

to the same two collections and hence, we can speak of odd/upper coverage and of

even/lower coverage. Specifically, given an ordering σ, we define:

UCovσ(C) =
>
P1P3 ∪

>
P3P5 ∪ . . ..

and

LCovσ(C) =
>
P2P4 ∪

>
P4P6 ∪ . . ..

Because we only consider even cycles, we get that, for any ordering σ:

Cov(C) = UCovσ(C) ∪ LCovσ(C).

Throughout our proofs, the choice for σ will not matter, since any ordering

will give rise to the same partition of the vertices. Each of halves gives rise to a

continuous arc. Moreover, each of the arcs are bounded by vertices of the cycle:

Lemma 5.1. For any even cycle C that visits the points P1, . . . , P2k in that order,

we have that the upper and lower coverage induce continuous arcs on the circle.

Proof. We prove this by considering partial sums. We note that :

UCovσ(C) =
>
P1P3 ∪

>
P3P5 ∪ . . .

>
P2k−1P1.

We start with the observation that
>
P1P3 is continuous by definition. Then we

consider the union
>
P1P3 ∪

>
P3P5 and note that the second arc we consider overlaps

with the first arc in at least one point (i.e. P3). Since both of the components

are themselves continuous, we get that their union must also be continuous. We

continue like this for the rest of the sum.
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Note that the two halves are each based on disjoint set of points but they

do not necessarily represent disjoint arcs on the circle. It could happen that they

intersect but that will not affect our arguments.

On the other hand, if the cycle has an odd number of vertices, this partition

is not necessarily consistent across orderings and we can no longer make such a

distinction into upper and lower halves. In fact, we can show that the coverage of

an odd cycle is not at all partitioned and must in fact cover the entire boundary of

the circle (Fig. 5.4)

Lemma 5.2. The coverage of an odd cycle is the entire boundary of the circle.

P1

P2

P3

P4

Pi

P3

Figure 5.2: We have drawn the coverage arc Λ in dark red. Consider the possible
location of P3. In dashed green lines, we have drawn a potential location for P3,
between Pi and P2. Notice that, in that case, the coverage arc for P1 and P3 would
be the entire dashed green arc, because that is the one opposing P2. Therefore,
the whole arc between Pi and P2 is restricted for P3. Similarly, we have drawn the
restricted locations for P4 and P5.

Proof. Assume by contradiction that the coverage does not cover the entire circle.

Then there must exist an arc Λ ⊆ D bounded by vertices of the cycle that spans all

its vertices: Cov(C) ⊆ Λ. Let one of the boundary vertices be P1 and Pi be those

endpoints. We then get that all the points of the cycle are contained on the arc Λ
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between P1 and Pi. We then order the cycle in such a way that P2 becomes the

neighbor of P1 that is closest to Pi. Please refer to Fig. 5.2 for a visual explanation.

We will show that there is no way for us to arrange the rest of the points

such that we avoid sweeping the entire circle. In other words, we will try to restrict

the location of the other points on Λ while making sure that their corresponding

coverage also keeps within Λ.

First, notice that P3 cannot be in the interval PiP2. If P3 were in between Pi

and P2, then the coverage arc
>
P1P3P2 would include the complement of Λ, which we

don’t want. Let P3 then be in the interval P1P2. Now consider the location of P4.

We claim that P4 cannot be located in the interval P1P3. Otherwise, the coverage

arc
>
P2P4P3 would again include the complement of Λ. Continuing this argument,

we overall get that:

• P3 cannot be between Pi and P2

• P4 cannot be between P1 and P3

• P5 cannot be between Pi and P4

• P6 cannot be between P1 and P5 etc.

• P2k−1 cannot be between Pi and P2k−2

• P2k cannot be between P1 and P2k−1.

However, because the cycle is odd, we will eventually reach a k such that A2k

must actually correspond to A1 (that way, we will have A2k−1 connecting back to A1).

On the other hand, our constraints say that any A2k cannot be contained between
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A1 and A2k−1, making it impossible for us to close the cycle while maintaining the

constraint that our coverage is restricted to the arc Λ.

We will now proceed to describe how cycles interact by looking at their cov-

erage. Specifically, we will argue that if two cycles have overlapping coverage, then

they can be combined into a bigger cycle.

5.3.2 Interleaving Cycles

P1 P2

Pi

Q1 Q2

Qi

Figure 5.3: If the red edges ex-
ist, then we can form a bigger
cycle by going P1 . . . Pi . . . P2 −
Q2 . . . Qi . . . Q1 − P2 − P1.

Our goal is to determine cases in which two

cycles spanning different point sets can be com-

bined. Intuitively speaking, if one of the cycles

connects to a point that is in the general vicin-

ity of the second cycle, then we have identified a

candidate point where a join can be made.

The main approach we will take for com-

bining two cycles is that of exchanging two

known edges, one from each cycle, with two

newly formed edges that go across the two cycles. More specifically, we will find

two adjacent points P1, P2 and Q1, Q2 in each of the cycle and claim that they have

to form two disjoints connections between them (Figure 5.3). We will then cut

both cycles by taking out the edges between their two neighboring points (P1P2 and

Q1Q2) and glue them together using the newly formed connections (either P1Q1,

P2Q2 or P1Q2, P2Q1). We begin by formally defining this strategy:
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Definition 5.4. We say that two cycles can be merged if we can combine them

into a bigger cycle that visits all of their vertices.

We now proceed to identify cases when such an operation can be done eas-

ily between two cycles. The first such case we discuss is when two cycles have

overlapping coverages. We formally define this phenomenon as interleaving :

Definition 5.5. Two cycles C1 and C2 are said to be interleaving if Cov(C1) ∩

Cov(C2) 6= ∅. In other words, there is a subpath A−B −C in C1 and a vertex Y in

C2 such that Y ∈>
ACB. (Fig. 5.4).

We get that:

Lemma 5.3. Two interleaving cycles can always be merged.

A C

B

Y

X Z

(a) We have the red A −
B − C cycle and the green
X − Y − Z cycle with the
property that Y is contained
in the coverage arc between
A and C. We can then guar-
antee that the edge Y B must
also exist and also that AX
or CX would exist.

A C
Y

I(C)

I(Y )

I(A)

(b) We have that I(Y ) is covered
on the left by I(C) and on the
right by I(A) and that I(A)∪ I(C)
form a continuous arc that contains
I(B).

Figure 5.4: Interleaving cycles always merge.
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Proof. Let A − B − C and X − Y − Z be the subpaths as described in the defini-

tion. First, notice that since both A and C are connected to B, then Y will also be

connected to B (Fig. 5.4 (a)). This is because when we move Y on the arc either to-

wards A or C, the (acute) angle ∠BOY keeps increasing, and therefore the segment

BY will be longer than either BA or BC. Alternatively, from the perspective of B,

the area of feasibility I(B) is a continuous interval on the boundary and hence, the

induced reachability area R(B) consists of consecutive points. Since both A and C

belong to R(B), then so should Y . We identify this as a distinct property of the

geometry of the points:

Property 1. Any point Y on the arc
>
ACB must also connect to B. In other

words,
>
ACB ⊆ I(B).

As an alternative proof to Property 1, we can assume that the edge Y B does

not exist. Then the angle ∠BOY facing C would either be too small or too large.

If it were too small, then it would follow that the edge BC would not exist either.

If, on the other hand, the angle were too large, then its complement facing A would

be too small. In that case, however, the edge AB could not exist.

Now that we have that Y and B must connect, we have an opportunity to

merge the two cycles using this new connection. We show next that one of Y ’s

neighbor in its cycle has to connect to one of B’s neighbor. Since A and C share

a neighbor, we have that B ∈ R(A) ∩R(C) and therefore I(A) ∪ I(C) represents a

continuous arc on the circle. On the other hand, since Y is in between A and C and

all intervals of feasibility have the same size, we have that I(Y ) is a shifted version

of I(A) and I(C) (Fig. 5.4(b)). We therefore get that I(B) must be contained in
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the arc I(A) ∪ I(C). This becomes the second useful property:

Property 2. Any point Y on the arc
>
ACB has the property that I(Y ) ⊆

I(A) ∪ I(C).

As an alternative proof to Property 2 would be that, if we assume that the

edge AZ didn’t exist, we would get that the angle ∠AOZ facing C would either be

too small or to big. If it is too small, then the edge Y Z could not exist. If, on the

other hand, the angle were too large, then the complement angle facing A would be

too small. Then we would get that the edge AB could not exist.

We finish the argument by considering X and Z to be Y ’s neighbors in the

second cycle. We then have that X,Z ∈ I(A)∪ I(C), so they are both connected to

one of the vertices A or C. Notice that any one of these edges would work: AX, AZ,

CX or CZ (if any of these edges exist, we can merge the two cycles). Depending

on the position of X and Z relative to B, two of these edges is guaranteed to exist

and we can successfully merge the two cycles.

A direct consequence of this is that whenever we have an odd cycle present, we

can always merge it with all the other cycles present. We do this by first connecting

it to all the even cycles and then to the remaining odd cycles. We incorporate this

as part of our algorithm later on.

5.3.3 Neighboring Even Cycles

We now consider the case in which there are no interleaving cycles and there-

fore, their coverage arcs are disjoint. Nevertheless, we are still able to connect
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them in a meaningful way. Notice that, due to Lemma 5.2, only even cycles can be

non-interleaving. From now on, these are the only cycles we will consider.

The next special case we identify is when two cycles do not interleave but for

some reason still exhibit some level of connectivity:

Definition 5.6. Two even non-interleaving cycles C1 and C2 are said to be neigh-

boring if there are points A in C1 and X in C2 such that AX is an edge in the

graph.

Notice that, because the edge AX exists, we can always connect the two

cycles to a path. The challenge is to do so in a strategic manner that allows us

to eventually argue that they must connect as a cycle. We begin by first noticing

that neighboring cycles should be able to connect at the boundary points of their

coverage arcs. Specifically, given an even cycle, we have that its upper and lower

halves are bounded by points of the cycle. Intuitively, if the edge AX exists, then

moving A towards one of the boundary points should only increase the length of the

edge AX. Formally, we get that:

Lemma 5.4. If two even cycles are neighboring, then it must be that they can

connect at their boundary points of their coverage arcs. Moreover, they will do so

in a precise way that will be given by the geometry of the cycles.

Proof. Consider one of the cycles and let E1 and E2 be the boundary points of the

upper coverage arc and let E3 and E4 be the ones for the lower coverage arc (in

counter-clockwise order). Suppose that A is on the upper arc and therefore sits

between E1 and E2. Furthermore, let X belong to the second cycle and sit on the
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cycle between E1 and E4 in counter-clockwise order (Fig. 5.5). In this case, we will

show that the edge E2X must also exist. Similar arguments can be used to treat

the other cases.

A

E3

E2 E1

E4

X

I(A)

I(E2)

Figure 5.5: The first cycle’s coverage is drawn in red and is split between the upper
and the lower coverage arcs. The boundary points are E1, E2, E3 and E4. The
second cycle is drawn in green.

First, notice that E2 sits to the left of A and therefore, I(E2) will be to the

right of I(A) (i.e. it is shifted to the right). In other words, the right endpoint of

I(E2) is to the right of the right endpoint of I(A). Since X ∈ I(A), we then have

that the right endpoint of I(E2) will also be to the right of X. The reason this is

the case is because E2 has to connect to the lower half of the first cycle. Specifically,

R(E2) must contain at least two points on the lower half, between E3 and E4. We

can therefore find a point B ∈>E3E4 such that B ∈ I(E2). That means that I(E2)

extends from B all the way to its right endpoints. Since X is in between those two

points, we therefore get that X must be in I(E2). By repeating this argument from

the perspective of the second cycle, we can now show that X can also be assumed

to be a boundary point. Moreover, we can deduce that, if we want to determine

potential edges AX, then the boundary points E1 and E4 will search the arc
>
E2E3E1
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and the boundary points E2 and E3 will search the arc
>
E1E4E2 .

Now that we established that the boundary points of the cycles must connect,

our next step is to define an ordering of the cycle that allows us to take advantage

of that fact in a strategic way. Specifically, we will reduce the problem of merging

two cycles to checking whether certain boundary points can connect.

Lemma 5.5. Given an even cycle C, we can order its vertices in such a way that

they form a path that starts and ends at the corresponding left/right boundary points

of the upper and lower coverage arcs. Additionally, we can construct a cycle in

which opposite boundary points (from different coverage arcs) are connected.

Proof. Let the cycle has 2k points. Order the points starting and ending at the right

boundary points of the two halves, as in Fig. 5.6(a). We denote the right bound-

ary point of the upper half as A1 and continue in counter-clock fashion to denote

points with increasing odd indices A3, . . . , A2k−1 until we hit the left boundary point

(A2k−1). For the lower half, we denote the right boundary point as A2k and continue

counterclockwise in decreasing even indices until we hit the left boundary A2.

To begin with, we first show that the vertices ordered in such a way form a

path that starts at A1 and ends at A2k. As a principle, we will show that:

• A2 must be connected to A1 and A3

• A4 must be connected to A3 and A5

• A2l must be connected to A2l−1 and A2l+1
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A2

A2k−1
A1

A2k
A4

A3

Ai

Aj

A5

A2l−1A2l+1

A2lI(A1)

I(Ai)

(a) Each even cycle can be de-
composed into the odd points
and the even points, that corre-
spond to different coverage arcs.
Ordering them counterclockwise
gives us a path that starts and
ends at the right endpoints of
each coverage arc (A1 and A2k.)

A1
A3
A5

A2l−1

A2k−1

A2
A4
A6

A2l

A2k

A2l+1

(b) In red, we represented
the edges that we are guar-
anteed to exist. Through
a similar argument, we can
also get that the green
edges exist and therefore
obtain a path that starts
and ends at the left end-
points of each coverage arc
(A2 and A2k−1).

Figure 5.6: Even cycles can be ordered.

This will not be the final form of the cycle, but it will help us argue about the

existence of edges that will be helpful in constructing the cycle.

We begin by first showing that A2 must be connected to A1 and A3. Suppose

that A1 and A2 are not connected. Then we will argue that none of the other odd

points can be connected to A2 either. Let Ai 6= A1 be an odd neighbor of A2 in the

actual cycle. Such a point will always exist because A2 must always have at least

two (odd) neighbors in the cycle. By the way we defined the points, Ai is to the

left of A1 and hence, I(Ai) will be to the right of I(A1). In other words, the right

endpoint of I(Ai) appears after the right endpoint of I(A1) in counter-clockwise

order. But since I(A1) does not include A2 but still needs to cover other neighbors

of A1, we get that the right endpoint of I(A1) comes after A2 in counter-clockwise
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order. This in turn means that the right endpoint of I(Ai) also comes after A2 and

hence that A2 /∈ I(Ai). Therefore, A1 and A2 must be connected.

We mention here an alternative argument that depends on angle measure-

ments. If A1 and A2 do not connect, then we know that the angle A10A2 facing

A2k is either too small or too large. If it is too small, then we get that all A1A2`+1

distances will be smaller than A1A2 and hence A1 will have degree 0. This is not

possible since we know that A1 must have at least 2 odd indexed neighbors. On the

other hand, if the angle is too large, that implies that its complement in too small.

In this case, any edge of the form A2`1A2 will be smaller than A1A2 and therefore

A2 would have degree 0. This would again cause a contradiction with the fact that

they participate in a cycle.

In order to prove that A2 must also connect to A3, we first use the fact that

A2 must have another odd indexed neighbor Ai apart from A1. If Ai = A3, then

we have our claim. If, on the other hand, Ai 6= A3, we can no longer be sure that

A2 connects to A3. But then, A3 would be situated between A1 and Ai and so,

by Property 1 in the proof of Lemma 5.3, we have that A3 ∈
>
A1AiA2 ⊆ I(A2) and

therefore, A2 and A3 must also be connected.

We now continue that argument and show that A4 must be connected to A3

and A5. Suppose A3 is not connected to A4. Then, by similar arguments as before,

we can argue that all the other odd points to the left of A3 can’t connect to A4

either (i.e. A5, . . . , A2k−1). But that only leaves A1 as A4’s neighbor, and we know

that A4 has degree at least two. Therefore, A3 must be connected to A4.

Now assume that A4 is not connected to A5. By the same reasoning as before,
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no other higher indexed odd points can connect to A4. in that case, we have that

A4 must connect to A1 and A3 in the cycle. In addition to this, the same holds for

A2: if there is a point Ai that covers A2, then that point must also cover A4. We

are then left with the situation that A2 and A4 can only be connected to A1 and

A3. However, in the original cycle (containing more than four points), A2 and A4

need to connect to at least 3 different odd vertices. If they only connect to two odd

vertices, then we will have cycle on exactly four points which satisfies our initial

constraints.

The previous argument can be made more general to show that A2` must

connect to A2`−1 and A2`+1. Suppose, to start with, that A2`−1 does not connect to

A2`. Then A2`+1, . . . , A2k−1 cannot be connected to A2` either. Looking at I(A2`+1),

we know that it must be fully contained on either side of A2`. Suppose it is on

the right, i.e. in the arc
>
A2`+2A2k. In other words, it cannot connect to any of the

points A2, . . . , A2`. We then also get that A2`−1, A2`+1, . . . A2k−1 cannot connect to

A2, . . . , A2`. Therefore, in the original cycle, the points A2, . . . , A2` must be covered

solely by the remaining odd points A1, A3, . . . , A2`−3. In other words, we have that

` distinct even points can only be connected to ` − 1 distinct odd points. But, as

noticed before, in any subpath of a cycle, ` even points need at least ` + 1 distinct

odd neighbors (if they have exactly `, then they must form a cycle).

Now suppose that I(A2`−1) is fully contained in the left side of A2`, i.e.

I(A2`−1) ⊆
>
A2A2`−2. Then notice that A2` can only connect to A2, A4, . . . , A2`−2.

Furthermore, the same is true for A1, A3, . . . , A2`−3 as well. Overall we have that

the points A1, A3, . . . , A2`−1 can only be covered by the points A2, A4, . . . , A2`−2.
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In other words, we have ` distinct odd points that can only be connected to ` − 1

distinct even points. We run into the same situation as before. We can therefore

conclude that A2`−1 must connect to A2`.

We are left to show now that A2` must also connect to A2`+1. Applying the

same reasoning from before would give us that A2, A4, . . . , A2` can only be connected

to A1, A3, . . . , A2`−1. In other words, we would have ` even points that can only be

connected to ` odd points. If the cycle has a total number of 2` points, then we

would get a cycle with the desired properties. Otherwise, the number of odd points

would not be enough to be able to connect the ` even points to the rest of the cycle.

In a similar manner, we can look from the perspective of the odd vertices and

argue that A1 needs to be connected to A2 and A4, A3 needs to be connected to A4

and A6 and, in general, A2`−1 needs to be connected to A2` and A2`+2. These edges,

will, in turn, give us the path A2 − A1 − A4 − A3 . . .− A2k.

Moreover, by using all the edges we have shown must exist, we can also con-

struct a cycle that visits all the points. The easiest way to construct is by induc-

tively starting with the cycle A1 − A2 − A3 − A4. We can extend this cycle by

replacing the edge A3 − A4 with the path A3 − A6 − A5 − A4, to get the cycle

A1−A2−A3−A6−A5−A4. The most important thing to notice about this cycle

is that it contains the edges A1A2 and A2k−1A2k.

We have now shown that each even cycle can be ordered such that it can be

transformed into any of these structures:

• a path between A1 and A2k
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• a path between A2 and A2k−1

• a cycle that connects A1 with A2 and A2k−1 with A2k.

A1

X1

X2
X2l

X2l−1 A2
A2k

(a) The cycles cross, i.e.
their coverage arcs are on
opposite sides with respect
to the other cycle.

A2k−1

A2

A2kX1

X2l−1

X2l

X2

(b) The cycles do not cross.

Figure 5.7: The two cycles are drawn in red and green. The blue edge exists because
the cycles are neighboring. Dashed blue edges do not exist.

Now we are in a good position to determine when two cycles can be merged.

Consider the two cycles as ordered in Fig. 5.7. We assumed, without loss of gen-

erality, that the point X is on the arc
>
A2A2k−1. From Lemma 5.4, we get that A

will either be A1 or A2k (i.e. those are the two boundary points guaranteed to be

searching that arc). We distinguish between two cases, based on where the other

coverage arc of the second cycle is situated: does the second cycle cross the first one

or not?

Case 1: the cycles cross (Fig. 5.7(a)). In other words, the coverage arcs

of the second cycle are on opposite sides of the first cycle’s coverage arcs (if the first

cycle does not consist of two disjoint coverage arcs, then we are in Case 2). In this

case, we can either have that A1 connects to X1 or that A2k connects to X2l−1. In
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the first case, notice that if the edge A2X2 also exists, we can merge the two cycles

into another cycle. Specifically, we can invoke Lemma 5.5 and get the first cycle

connecting A1 with A2 and the second one connecting X1 with X2. We can then

replace these edges with A1X1 and A2X2 and be done.

If, on the other hand, the edge A2X2 does not exist, then we claim that

A2, . . . , A2k cannot connect to X2, . . . , X2l. First notice that these points are con-

tained on the same side of the line A2X2, opposite from the points A1 and X1. Let

>
A2X2 be the arc that contains A2, . . . , A2k and X2, . . . , X2l. Since the edge A2X2

does not exist, that means that the central angle of
>
A2X2 is either too small or too

big. If the angle is small, that means that all the central angles between points in

A2, . . . , A2k and points in X2, . . . , X2l are also going to be small. Therefore, none of

those edges can exist. If on the other hand, the angle is too big, then its complement

is too small and A1 and X1 cannot connect, which is a contradiction.

In the case in which the edge A2kX2l−1 exists (instead of A1X1), we can merge

the two cycles when additionally we also have that the edge A2k−1X2l exists. Oth-

erwise, through similar arguments as before, we can conclude that A1, . . . , A2k−1

cannot connect to X2, . . . , X2l.

Case 2: the cycles do not cross (Fig. 5.7(b)). In this case, we claim that

they can always be merged into a cycle. Since the two points are neighboring, we

can either have that A1 connects to X1 or that A2k connects to X2l. If A1X1 exists

then by the same reasoning as before, we can arugue that the points A2 and X2 must

be connected. In this case, notice that the line A2X2 has the entire cycle A1, A2 . . .

on one arc and the points X1, . . . , X2l−1 and X2 on the other arc. If A2 and X2
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are not connected, one of those arcs is too small and therefore, cannot contain any

connected points, which is a contradiction. Therefore, A2X2 must be an edge. The

case in which the edge A2kX2l) exists can be treated in a similar way.

As noticed in Lemma 5.4, the only other case to be considered for this ar-

rangement is when X2l−1 actually connects to A2k or A2k−1 connects to X2l (these

are the only other cases in which two cycles can be neighboring).

5.3.4 Diverging Even Cycles

We have therefore identified the conditions under which we can merge two

neighboring cycles. In particular, we have noticed that if the two neighboring cycles

do not cross each other, they can always be merged. We will from now on only focus

on cycles that cross each other. Assume, throughout our argument, that our two

neighboring cycles are ordered as in Fig. 5.7. We identify the cycle that we could

not merge into cycles.

Definition 5.7. The two cycles in Fig. 5.7(a) are said to be diverging if:

1. at least one of the edges A1X1 and A2X2 does not exist and

2. at least one of the edges A2k−1X2l and A2k and X2l−1 does not exist.

As we have seen before, if two neighboring cycles are not diverging, then we

can always merge them. We will show that otherwise, they cannot be merged.

Lemma 5.6. Two diverging cycles can never be merged.
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A2k−1, . . . , A1

A2k, . . . , A2

X2, . . . , X2l

X1, . . . , X2l−1

Figure 5.8: We represent the coverage arcs for each cycle. The red and green
edges are part of the original cycles and link opposing coverage arcs. The blue edge
represents the edge A1X1 and potentially other ones. The dashed edges mean that
no edges between any points in those coverage arcs can exist.

Proof. We will consider the case in which two out of the four edges exist. The other

cases can be treated the same. Without loss of generality, we assume that the edges

A1X1 and A2k−1X2` exist. As noted before, the fact that the edge A2X2 does not

exist implies that the arc
>
A2X2 containing the points A2, . . . , A2k and X2, . . . , X2`

is to small and therefore, none of the points on it can be connected. Similarly,

we also get that the points A2, . . . , A2k and X1, . . . , X2`−1 cannot be connected. In

other words, we get the graph in Fig. 5.8. In particular, we have that the only

possible neighbors of A2k, . . . , A2 are the points A1, . . . , A2k−1. Not only can those

even points not connect to points in the second cycle but they also cannot connect

with each other. In other words, we have k points who collectively can be covered

by only k other points. But this means that they can never be part of a bigger cycle

because then they would require at least k + 1 distinct neighbors.

We can now ask the question of whether N pairwise diverging cycles can be

merged. We consider the same scenario as before and show that, if we add a third
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cycle that diverges with both of them, there is no way to merge them to a cycle.

In the two cycle case, we argued that there is no way to connect the points

A2, . . . , A2k to a bigger cycle because they didn’t have enough neighbors. Our strat-

egy for the three cycle case is going to be the same: our goal will be to identify a

coverage arc that does not have any neighbors beyond the ones in the original cycle

it belongs to. Naturally, if A2, . . . , A2k continues to have no new neighbors in this

third cycle, then we are done.

A1

X1

X2

A2k−1
X2l

X2l−1
A2

A2k

Y2m

Y2
Y1

Y2m−1

(a) Three diverging cycles.

Y2, . . . , Y2m

Y1, . . . , Y2m−1

A2k−1, . . . , A1

X1, . . . , X2l−1A2k, . . . , A2

X2, . . . , X2l

(b) Corresponding coverage arcs for each cycle,
together with edges between them representing
whether they can connect or not.

Figure 5.9: Notice that, because of divergence, each blue edge that exists has a
corresponding/opposing dashed blue edge that cannot exist.

Lemma 5.7. Multiple pairwise diverging cycles can never be merged.

Proof. Assume that the third cycle provides new neighbors for A2, . . . , A2k. In other

words, we assume that the cycle Y1, . . . , Y2m has a point that connects to some point

in A2, . . . , A2k. First, we notice that this new cycle must cross with both of the

cycles, as in Fig. 5.9(a). This means that one coverage arc Y1, . . . Y2m−1 is on the

arc X2l and A2k and the other arc is in between A2k−1 and X2l−1. From this, we

immediately get that the points X2, . . . , X2`, A2, . . . , A2k and Y1, . . . , Y2m−1 cannot

connect, since they are on the small arc A2X2 from before. Because of Lemma 5.4,
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we get that if we want A2, . . . , A2k to connect to the third cycle, the only connection

possible is between A2k and Y2m. This is because the only other option would be for

A2 to connect to Y1 but we dismissed that observation from before. Now, since we

have that A2k connects to Y2m and the A and Y cycles diverge, we also get that the

edge A2k−1Y2m−1 cannot exist because it is too small. This now implies that the arc

>
A2k−1Y2m−1 opposing the edge A2kY2m is too small and therefore, none of the points

A1, . . . , A2k−1, X2, . . . , X2` and Y1, . . . , Y2m−1 can connect.

At this point, we have two coverage arcs that are possible candidates for our

argument: Y1, . . . , Y2m−1 and X2, . . . , X2`. We have shown that Y1, . . . , Y2m−1 cannot

connect to any of the other coverage arcs except X1, . . . , X2`−1. If we have that

Y1, . . . , Y2m−1 does not connect to X1, . . . , X2`−1, then we are done. Otherwise,

assume that they do connect and get that the edge Y1X2`−1 must exist, according to

Lemma 5.4. But since the Y and the X cycles are divergent, we then get that the

edge Y2X2` cannot exist and the arc
>
Y2X2` opposing Y1X2`−1 is too small. We then

get that none of the points Y2, . . . , Y2m, A1, . . . , A2k−1 and X2, . . . , X2` can connect.

This in turn means that the coverage arc X2, . . . , X2` does not connect to any other

points except the ones in its original cycle.

We can repeat this argument inductively and show that N pairwise diverging

cycles cannot be merged into a cycle.
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5.3.5 Polynomial Time Algorithm

We are now ready to describe a polynomial time algorithm for points on a

circle. We will then discuss the specific properties that are needed in order for this

algorithm to go through for more general cases. The pseudocode for the algorithm

is given below.

We start by a running a maximum 2-matching algorithm on our input points

[130]. As we have seen in Chapter 3, this can be done in timeO(n2 log n(m+n log n)),

where n is the number of vertices and m is the number of edges [131]. By definition,

this generates a subgraph such that each vertex has degree at most 2. This in turn

corresponds to a collection of edges and cycles. For our purposes, we consider edges

to be cycles on two points. The time to compute the 2-matching dominates the

overall runtime.

We do a preprocessing step where, for each even cycle, we detect the endpoints

of their upper and lower coverage arcs, as we do in Lemma 5.5. We also keep track

of which cycle each point belongs to and further, in the case of even cycles, whether

they are in the upper or lower coverage arc. This can be done in O(n) time by going

around the circle.

Out of the cycles we obtain, we distinguish between the case in which one odd

cycle is present and not. If we encounter an odd cycle, we use Lemma 5.2 to argue

that every other cycle computed must interleave with this odd cycle and then apply

the strategy described in Lemma 5.3 to merge them with the odd one. We do one

merge step per cycle and it takes O(n) per merge to detect where the witness for
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interleaving happens and to relabel all the vertices to belong to the new cycle. In

the worst case, this takes O(n2) time overall.

If, on the other hand, there are no odd cycles present and we first consider

pairwise interleaving and merge those cycles that do interleave. We can detect this

by going around the circle and detecting when a point that belongs to one cycle

appears among points that belong to another cycle’s upper or lower coverage. Each

time we encounter an occurrence, we can update the label of the points. Once we

no longer encounter interleaving cycles, we can easily detect neighboring cycles by

applying Lemma 5.4: it is enough to look at the points right next to the boundary

of the cycle. By Lemma 5.6, we know that there must exist a neighboring cycle that

we can merge with. Otherwise, we could never compute a Hamiltonian cycle and

we return false. We continue this until all cycles have been merged. This case can

also be performed in O(n2).

5.4 The General Case

In this section, we discuss more general cases for which our approach applies.

5.4.1 Separability as a General Principle

We identify here the general principle that lies behind our proofs in Section 5.3.

Our goal is to reduce our technique to a property that can be easily checked for a

set of input points and from which our polynomial time algorithm follows easily.

Specifically, we identify the principle as the input points having the property of
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Algorithm 1 One Circle Case

Input: A set of points on a circle and a guess for D, the length of min edge in the
Max Scatter TSP
Output: A tour if the guess is good, otherwise the guess is too small.

1: Construct the graph G given the threshold D
2: Compute a maximum 2-matching on G, obtain a series of cycles of G
3: if there are any odd cycles then
4: take one odd cycle
5: while there are even cycles do
6: merge the odd cycle with the even one because they interleave
7: update the odd cycle
8: you have only odd cycles left, pick one cycle C
9: while there are still other odd cycles do

10: merge one odd cycle with C because they interleave
11: update C to correspond to the new cycle
12: else
13: while there are interleaving cycles do
14: merge them
15: compute boundary points for each even cycle
16: while there are neighboring cycles do
17: pick a pair that you can merge
18: check that the new cycle merges with other existing cycles
19: if the remaining cycles cannot be merge then
20: exit, the guess is too small

separability:

Definition 5.8. For a given guess scatter, we say that an input set of points P is

separable if it is convex and for all points Pi and Pj that do not connect, we have

that there can be no edges between the input points contained in one of the induced

hyperplanes.

In the circle case, this property holds because the edge PiPj not existing cor-

responds to the angle ∠PiOPj being too small or alternatively, its complement too

small. Furthermore, each hyperplane induces two complementary arcs on the bound-

ary of the circle, one whose central angle would be too small. It then follows that
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no points lying on that arc could form edges. We also mention that if a point set

is separable, then it also follows that all reachability areas must be continuous with

respect to a fixed clockwise or counter-clockwse ordering on the points.

We also note that separability implies the fact that every reachability area

consists of consecutive points in the ordering:

Lemma 5.8. Given an ordering on the points, if P is separable, then the reachability

area of every point consists of consecutive points.

Proof. Suppose there exists a point Pi that does not connect to Pj but connects to

points Pk and P` that are on different sides of Pj in the ordering. From the definition

of separability, it follows that one of the two hyperplanes defined by PiPj contains

points that cannot connect. From convexity, we have that Pk and P` belong to

different hyperplanes. Since Pi belongs to both, it would then follow that either the

edge PiPk or PiP` cannot exist.

Our proofs in Section 5.3 contain alternate arguments that specifically high-

light when this principle is applied. We then get that:

Lemma 5.9. If a point set is separable for a given guess scatter, then it admits a

Hamiltonian tour that can be computed in polynomial time.

Proof. Our algorithm is the same as the one for the circle case explained in Sec-

tion 5.3.5. Notice that our algorithm is independent of the fact that the points are

on a circle and just depend on the fact that we have an available ordering on the

points for which the point set is separable. The order follows naturally from the

convexity.
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We note that not all convex point sets are separable, as can be seen from

Fig. 5.10. In this example, there exists a Hamiltonian tour but for the given guess

scatter, the points are not separable. We also note that in this example, P2’s reach-

ability are consists of the points P4 and P6 that are not consecutive on the convex

hull.

P1 P2 P3

P4P5P6

Figure 5.10: In this construction, |P2P5| ≤ |P3P4| and |P2P5| ≤ |P1P6|. If we set the
guess scatter at P2P5, we get that the point set is not separable. In red, we can see
that a possible Hamiltonian tour.

We note that separability can be tested in O(n2) by looking at the adjacency

matrix of the associated threshold graph.
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Chapter 6

Conclusion

In this thesis, we discussed several clustering and touring problems in the Eu-

clidean plane. Our work was motivated by applications in robotics and logistics

planning such as sensor placement and data collection. Our goal was to provide al-

gorithms with provable theoretical guarantees that take advantage of the underlying

geometry of the instances and improve on the state-of-the-art.

In Chapter 3, we formulated a new coverage constraint that we used to limit

the uncertainty incurred by two sensors trying to localize a target. Existing tech-

niques fall short in this new regime, as they are not well suited to deal with sensors

that collaborate in order to cover a target. In this context, we designed a general

framework that selects a small number of sensors and approximates the new cov-

erage constraint to arbitrary precision in most cases. We applied our technique to

obtain good approximation algorithms for a variety of sensor placements problems

with additional line-of-sight or proximity constraints. In the course of our analysis,

we provided additional approximations for specialized cases and also investigated
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the computational complexity of the problem on general metric spaces. We mention

here some specific open problems:

Problem 1. Extend the results of Lemma 3.1 to also apply for the case of

α > π/3. As of now, in order for the proof to work, it looks like the requirement that

α ≤ π/3 is necessary in order to guarantee that the union of the two double-wedges

corresponding to s1 and s2 is a larger double-wedge. Without that requirement,

their union would not be a continous double-wedge and the optimal sensors might

“fall between the cracks”. However, we do not believe that we have exploited the full

structure of the set S of already chosen sensors. In particular, the proof is concerned

with adding sensors that (α− ε)-cover targets in T that are not yet already (α− ε)-

covered by sensors in S. If a target t is not already (α − ε)-covered, however, it

means that, from the perspective of t, all the sensors in S are either really close

together (angle < α − ε) or really far apart (angle > π − α + ε), so in some sense,

it might not matter what our choice for s1 and s2 is. In this way, we might still be

able to pick s1 and s2 in a way that guarantees that the union of their respective

double-wedges will be a continuous double-wedge that must necessarily contain one

of the optimal sensors.

Problem 2. in Section 3.4, we proposed other bi-criteria approximations for

the case of angular coverage and distance constraints. At the cost of relaxing the

distance constraint by factors of 2 and 3, we were able to obtain exponential improve-

ments in the approximation factor for the number of sensors selected. We achieved

this by designing small hitting sets for geometric objects that include our original

sets but are strictly larger. We also employed the shifting technique of Hochbaum
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and Maass [128] to combine multiple local hitting sets into a global one whose size

does not depend on the diameter of the input points. It would be interesting to

see in what other situations these techniques apply. Conventionally, constructing

small hitting sets for a certain type of objects is done by exploiting properties of

those objects such as fatness, combinatorial complexity or VC dimension. When it

come to the potential applications of hitting sets, however, it might be meaningful

to consider relaxed versions in which the point chosen are guaranteed to be within

a certain distance of each object chosen.

Problem 3. Extend the framework to incorporate other measures of uncer-

tainty, such as the one introduced by Tekdas et al [120]. As we have seen, by setting

R =
√
U sinα, we can guarantee that the uncertainty will be smaller than U . The

choice for α, however, can be arbitrary. It is unclear if there exists a specific choice

for α that would give us the smallest approximation factor. We could try to devise

a result similar to that of Lemma 3.1, which would require that we take into con-

sideration how small changes in α can affect the overall uncertainty. Alternatively,

we could consider an additional probability distribution on the uncertainty measure,

and give more priority to the areas in which we have low confidence, in the manner

of Kraus et al [25]. In this sense, the problem would relate to a weighted version of

α-Ang etc, in which we try to maximize the total weight of the targets covered.

Problem 4. Incorporate motion and compute a shortest path that visits the

targets and takes measurements that respect the angle constraint. For this, we could

first use our framework to compute the smallest number of sensing locations (the

locations where we would previously place sensors) and then compute a TSPN tour
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that visits all such locations. The analysis would have to compute the length of such

a tour with the optimal length tour that could potentially resemble an Angular-

Metric TSP tour that, when visiting each target, changes direction in a bounded

way. In other words, it takes one measurement as it enters the target and then

a second measurement as it leaves, but from a perspective that is well separated

angularly. This would amount to computing an Angular-Metric TSP tour in

which each direction change is bounded, which is one of the open problems identified

by Aggarwal et al [46].

In Chapter 4, we investigated the Traveling Salesman Problem with Neigh-

borhoods when the neighborhoods are uniform disks. This is an important gener-

alization of the famous Traveling Salesman Problem and our particular motivation

came from the task of gathering data from sensors that don’t have a communication

infrastructure sand need to be visited by a tour. A fundamental question that arises

from this generalization compares the optimal TSP tour on the centers of the disks

with the TSPN solution. In particular, what is the gain that we get from visiting

the disks at their boundaries rather than at their center? We investigate this ques-

tion and show nuanced results that either improve on known bounds or show better

lower bounds on the length of the optimal TSPN tour. As a consequence, we show

an improved constant factor approximation for TSPN. We mention some natural

open problems:

Problem 5. The intuition behind our new lower bound is that an optimal

TSPN tour should not visit a disk multiple times unless it is supported by a straight

line. While this is true for TSP, it is no longer true for TSPN. In fact, there are
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natural structures for which this can happen, which we identify as β-triads. In

describing such instances, the main property of disks that we use is the fact that

their tangents from a point can be determined exactly. We believe a similar property

can be described for objects that have a large diameter or more specifically, are fat.

The next step in our method would therefore to apply our technique for such classes

of objects.

Problem 6. For the case of overlapping disks, we used the algorithm of

Dumitrescu and Tóth [143] that first computes a tour on a maximal subset of disjoint

disks and then augments that tour to visit the remaining disks. We incorporated our

analysis by updating the lower bounds that we get on the tour on the disjoint disks

and that lead to an improved overall factor, as expected. It would be interesting

to see how our structural understanding behaves in this new setting as well. For

instance, how does a β-triad behave in the presence of additional overlapping disks?

On one hand, if there are no such overlapping disks, then we don’t need to augment

our tour locally. On the other hand, if there are overlapping disks, that presents

an opportunity for us to choose how we visit them locally. Specifically, can we

modify our initial maximal set such that we construct more β-triads and obtain

better bounds?

Problem 7. For our proof of the Häme, Hyytiä and Hakula conjecture for

n = 3 in Section 4.5, we used a transformation in which we mapped all the points at

which the TSPN touches each disk to points on the boundary of a fixed circle. Using

the theory of Fermat-Weber points, we then showed that the detour bound can be

expressed as a Maximum TSP tour on those points. Understanding the structure of
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instances in which this Maximum TSP tour has a large optimal value (i.e. close to

2Rn) can help us describe the cases in which the TSPN tour on the disks is much

smaller than the TSP tour on the centers. Furthermore, showing that the Maximum

TSPN tour corresponds to a Maximum Scatter TSP tour in the circle case would

allow us to understand the behaviour of the TSPN tour locally rather than just

globally. Since the Maximum Scatter TSP case is well understood in the circle case,

this could also provide us a full description of how both of these tours look like on

the circle.

Problem 8. The method of considering detour bounds can be extended to

allow for different cost functions. For example, in the Data Gathering framework

of Tekdas et al [48], one needs to decide how close to get to the sensors in order

to download the data. The interesting trade-off is that the closer we get to the

sensor, the faster we can download the data. The final cost of the tour obtained

consists not just of the length of the tour computed but also of the time it takes to

download data from each sensor. Similarly, one can imagine a scenario in which we

would have fixed radii but the cost of traveling inside and outside the disks might

be different. In all of these scenarios, the algorithm of Dumitrescu and Mitchell [68]

lends itself nicely because it uses the TSP on the centers as a common benchmark.

It would be interesting to see how our framework behaves in front of these scenarios.

Specifically, can we control the type of edges that we get by setting the radius profiles

accordingly? How does the download cost feature into our detour bound and how

does that carry through our analysis?

Finally, in Chapter 5, we visit the Maximum Scatter TSP in more detail.
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Specifically, we are interested in a long standing open problem that asks whether

the two dimensional Euclidean case is polynomially time solvable. The answer is

known for points on a line, a circle and for some type of rectangular grids but

the solutions are highly specialized and the geometry is used in indirect ways. We

provide an alternate solution for the case of points on a circle and determine a

specific property that the input points must have in order for our algorithm to

apply. We then further refine our algorithm and discuss more cases for which we

believe it applies. We mention some directions in which we plan to follow our work:

Problem 9. The property of separability that we have identified as underly-

ing our algorithm refers to a unit disk graph (i.e. threshold graph) on points in a

convex position. We can extend the property to points in general position for which

an ordering exists that exhibits separability. It would be interesting to further in-

vestigate this line of thought and identify if known graph classes exhibit it naturally.

This would give us a more systematic understanding of the cases for which polyno-

mial time algorithms exist and furthermore, point us to potential construction for

showing NP-hardness.

Problem 10. In line with Problem 7, understanding whether Max Scatter

TSP is the same as Max TSP for points on a circle could point to a more general

equivalence. There are convex instances for which we know that they cannot be

equivalent, but it would be worthwhile to understand the scope of it. The idea

would be to establish a framework that links our algorithm for Max Scatter on

the circle to one for Max TSP and therefore generalize our results to the latter.

Specifically, we can ask whether Max TSP is easy to solve on separable instances.
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[82] László Kozma and Tobias Mömke. Maximum scatter tsp in doubling met-
rics. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 143–153. SIAM, 2017.

[83] Stephen A Cook. The complexity of theorem-proving procedures. In Pro-
ceedings of the third annual ACM symposium on Theory of computing, pages
151–158. ACM, 1971.

[84] Richard M Karp. Reducibility among combinatorial problems. In Complexity
of computer computations, pages 85–103. Springer, 1972.

[85] Avi Wigderson. Knowledge, creativity, and p versus np, 2006.

[86] David S. Johnson. Approximation algorithms for combinatorial problems.
Journal of Computer and System Sciences, 9(3):256 – 278, 1974.

[87] L. Lovász. On the ratio of optimal integral and fractional covers. Discrete
Math., 13(4):383–390, January 1975.

[88] SK Stein. Two combinatorial covering theorems. Journal of Combinatorial
Theory, Series A, 16(3):391–397, 1974.

[89] Uriel Feige. A threshold of ln n for approximating set cover. Journal of the
ACM (JACM), 45(4):634–652, 1998.

[90] Carsten Lund and Mihalis Yannakakis. On the hardness of approximating
minimization problems. Journal of the ACM (JACM), 41(5):960–981, 1994.

[91] Ran Raz and Shmuel Safra. A sub-constant error-probability low-degree test,
and a sub-constant error-probability pcp characterization of np. In Proceedings
of the twenty-ninth annual ACM symposium on Theory of computing, pages
475–484. ACM, 1997.

[92] Michael R. Garey and David S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York,
NY, USA, 1979.

[93] Dorit S. Hochbaum and David B. Shmoys. A unified approach to approxima-
tion algorithms for bottleneck problems. J. ACM, 33(3):533–550, May 1986.

[94] Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster dis-
tance. Theor. Comput. Sci., 38:293–306, 1985.

[95] Wen-Lian Hsu and George L Nemhauser. Easy and hard bottleneck location
problems. Discrete Applied Mathematics, 1(3):209–215, 1979.

208



[96] Rina Panigrahy and Sundar Vishwanathan. An o(log* n) approximation al-
gorithm for the asymmetric p-center problem. J. Algorithms, 27(2):259–268,
1998.

[97] Aaron Archer. Two O (log* k)-approximation algorithms for the asymmetric
k-center problem. In Integer Programming and Combinatorial Optimization,
8th International IPCO Conference, Utrecht, The Netherlands, June 13-15,
2001, Proceedings, pages 1–14, 2001.

[98] Inge Li Gørtz and Anthony Wirth. Asymmetry in k -center variants. Theor.
Comput. Sci., 361(2-3):188–199, 2006.

[99] Deeparnab Chakrabarty, Prachi Goyal, and Ravishankar Krishnaswamy. The
non-uniform k-center problem. In 43rd International Colloquium on Automata,
Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy,
pages 67:1–67:15, 2016.

[100] Judit Bar-Ilan, Guy Kortsarz, and David Peleg. How to allocate network
centers. 15:385–415, 11 1993.

[101] Samir Khuller and Yoram J Sussmann. The capacitated k-center problem.
SIAM Journal on Discrete Mathematics, 13(3):403–418, 2000.

[102] Marek Cygan, MohammadTaghi Hajiaghayi, and Samir Khuller. Lp round-
ing for k-centers with non-uniform hard capacities. In Foundations of Com-
puter Science (FOCS), 2012 IEEE 53rd Annual Symposium on, pages 273–282.
IEEE, 2012.

[103] Gagan Aggarwal, Rina Panigrahy, Tomás Feder, Dilys Thomas, Krishnaram
Kenthapadi, Samir Khuller, and An Zhu. Achieving anonymity via clustering.
ACM Transactions on Algorithms (TALG), 6(3):49, 2010.

[104] Sara Ahmadian and Chaitanya Swamy. Approximation algorithms for cluster-
ing problems with lower bounds and outliers. In 43rd International Colloquium
on Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016,
Rome, Italy, pages 69:1–69:15, 2016.

[105] Moses Charikar, Samir Khuller, David M. Mount, and Giri Narasimhan. Algo-
rithms for facility location problems with outliers. In Proceedings of the Twelfth
Annual Symposium on Discrete Algorithms, January 7-9, 2001, Washington,
DC, USA., pages 642–651, 2001.

[106] Marek Cygan and Tomasz Kociumaka. Constant factor approximation for
capacitated k-center with outliers. In LIPIcs-Leibniz International Proceedings
in Informatics, volume 25. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2014.

[107] Dorit S Hochbaum and Wolfgang Maass. Fast approximation algorithms for
a nonconvex covering problem. Journal of algorithms, 8(3):305–323, 1987.

209



[108] David Haussler and Emo Welzl. Epsilon-nets and simplex range queries. In
Symposium on Computational Geometry, pages 61–71, 1986.
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