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We investigate set-theoretic dividing lines in model theory. In particular, we are

interested in Keisler’s order and Borel complexity.

Keisler’s order is a pre-order on complete countable theories T , measuring the satu-

ration of ultrapowers of models of T . In Chapter 3, we present a self-contained survey on

Keisler’s order. In Chapter 4, we uniformize and sharpen several ultrafilter constructions

of Malliaris and Shelah. We also investigate the model-theoretic properties detected by

Keisler’s order among the simple unstable theories.

Borel complexity is a pre-order on sentences of Lω1ω measuring the complexity of

countable models. In Chapter 5, we describe joint work with Richard Rast and Chris

Laskowski on this order. In particular, we connect the Borel complexity of Φ ∈ Lω1ω with

the number of potential canonical Scott sentences of Φ. In Chapter 6, we introduce the

notion of thickness; when Φ has class-many potential canonical Scott sentences, thickness

is a measure of how quickly this class grows in size. In Chapter 7, we describe joint work

with Saharon Shelah on the Borel complexity of torsion-free abelian groups.
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Chapter 1: Introduction

Modern model theory began with Morley’s categoricity theorem [65]:

Theorem 1.0.1. Suppose T is a complete countable theory. If T is κ-categorical for some

uncountable cardinal κ, then T is κ-categorical for every uncountable cardinal κ.

Soon after, Morley’s proof was refined by Baldwin and Lachlan [2] to give the modern

formulation:

Theorem 1.0.2. Suppose T is a complete countable theory. Then the following are

equivalent:

(A) T is κ-categorical for some uncountable κ.

(B) T is ω-stable and has no Vaughtian pairs.

(C) T is κ-categorical for every uncountable κ.

This theorem follows a template that has repeated often since. Namely, we begin

with some semantic property of theories, frequently involving uncountable set theory.

Then the hope is to find a syntactic characterization of this property. In this case, we

view the property as being particularly significant, and likely to have applications in

applied model theory.

In the case of Morley’s categoricity theorem, the relevant semantic properties of T

are κ-categoricity, for uncountable cardinals κ. The equivalent syntactic property is being
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ω-stable and having no Vaughtian pairs. We note that the notion of being ω-stable (or

totally transcendental, in Morley’s terminology) was discovered by Morley in the course

of proving the categoricity theorem; this has become a key hypothesis in applications of

model theory to algebraic geometry and other fields.

We view classification theory as the program of hunting down or dreaming up se-

mantic properties to play the role of κ-categoricity, and then isolating their syntactic

equivalents; a large part of Shelah’s career has been devoted to this. Most famously,

in [75] Shelah took the spectrum of T as the semantic property of interest: namely, given

T and an uncountable cardinal λ, let I(T, λ) denote the number of models of T of size λ up

to isomorphism. The function I(T, ·) is called the spectrum of T ; so always I(T, λ) ≤ 2λ.

When sometimes I(T, λ) < 2λ, this indicates that T is nice. In the transformational

work [75], Shelah determined the asymptotic behavior of I(T, λ) in terms of purely syn-

tactic properties of T , and used this to solve a slew of open problems in model theory,

including Morley’s conjecture that (I(T, λ) : λ ≥ ℵ1) is always nondecreasing.

There are many additional sources of semantic properties to investigate. In this

thesis, we are concerned with two of them: Keisler’s order and Borel complexity. In the

remainder of the introduction, we give a summary of our main results.

1.1 Keisler’s Order

Suppose M is a structure in a countable language, and U is an ultrafilter on P(λ).

Then we can form the ultrapower Mλ/U ; by  Loś’s theorem, this is an elementary extension

of M , and in particular elementarily equivalent to M . We wish to understand what Mλ/U

looks like. As a test question: is Mλ/U λ+-saturated?

In [34], Keisler made the following definitions:
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Definition 1.1.1. Suppose U is a λ-regular ultrafilter on P(λ). Then say that U λ+-

saturates T if for some or every M |= T , Mλ/U is λ+-saturated.

Given complete countable theories T0, T1, say that T0 Eλ T1 if whenever U is a λ-

regular ultrafilter on P(λ), if U λ+-saturates T1 then U λ+-saturates T0. Say that T0 E T1

if T0 Eλ T1 for all λ.

E is called Keisler’s order; we view T0 E T1 as meaning that it is easier to saturate

models of T0 than those of T1. We are interested in the dividing lines induced by Keisler’s

order. More precisely:

Definition 1.1.2. Temporarily let T denote the set of all complete countable theories; so

(T,E) is a preorder. Say that D is a dividing line in E if D ⊆ T is downward-closed under

E (this much actually makes sense for any preorder ≤ on T). D is a principal dividing

line if there is a single λ-regular ultrafilter U on some P(λ), such that D is the set of all

T ∈ T which are λ+-saturated by U .

We wish to understand what the principal dividing lines in E are; these, in turn,

would determine E. This question has attracted a lot of attention, but progress has been,

until recently, rather slow.

We will give a more detailed history of Keisler’s order in Section 3.1. For now, we

skip ahead to a fairly recent development of Malliaris and Shelah.

Namely, given an ultrafilter U on the complete Boolean algebra B and a complete

countable theory T , Malliaris and Shelah define in [56] what it means for U to be (λ,B, T )

moral, and they prove the following:

Theorem 1.1.3. Suppose B is a complete Boolean algebra with the λ+-c.c. and with

|B| ≤ 2λ. Suppose U is an ultrafilter on B. Then there is a λ-regular ultrafilter U∗ on
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P(λ), such that for every complete countable theory T , U∗ λ+-saturates T if and only if

U is (λ,B, T ) moral.

This yields a new strategy for constructing dividing lines in Keisler’s order: find a

Boolean algebra B which is small in some sense (in [56], B has the ℵ1-c.c.) and construct

an ultrafilter U on B which is as generic as possible. Then the smallness of B will prevent

U from being (λ,B, T ) moral for some T , and its genericity will ensure that U is (λ,B, T ′)-

moral for other T ′. This strategy has been used to great success by Malliaris and Shelah

in [56], [57] and [58].

1.1.1 Chapter 3: A Survey of Keisler’s Order

In Chapter 3, we present a self-contained and systematic treatment of Keisler’s order,

in what we believe to be the most logical fashion. Ultimately this means moving away from

thinking about regular ultrafilters on P(λ), and instead focusing on arbitrary ultrafilters

on complete Boolean algebras. Moreover, instead of considering ultrapowers of models,

we instead look at specializations of Boolean valued models. Using this framework, we

give many equivalences of what it means for U to be (λ,B, T )-moral, for instance:

Theorem 1.1.4. Suppose U is an ultrafilter on the complete Boolean algebra B, and T

is a complete countable theory. Then U is (λ,B, T )-moral if and only if for some or every

λ+-saturated B-valued model M of T , the specialization M/U is λ+-saturated.

These equivalences justify the following generalization of Definition 1.1.1:

Definition 1.1.5. Suppose U is an ultrafilter on the complete Boolean algebra B, and

suppose T is a complete countable theory. Then say that U λ+-saturates T if U is (λ,B, T )-

moral.
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We take this as our basic notion to investigate. In view of Theorem 1.1.3, it would

be equivalent to change the definition of E to allow the ultrafilter U to be on any complete

Boolean algebra B with the λ+-c.c. and with |B| ≤ 2λ. Actually, in Corollary 3.16.20, we

strengthen this to show that the hypothesis |B| ≤ 2λ can be weakened. In particular:

Theorem 1.1.6. Suppose T0, T1 are complete countable theories, and λ is a cardinal.

Then T0 Eλ T1 if and only if for every complete Boolean algebra B with the λ+-c.c., and

for every ultrafilter U on B, if U λ+-saturates T1, then U λ+-saturates T0.

We remark that the bulk of the proof of this theorem consists of Malliaris and She-

lah’s Separation of Variables and Existence Theorems from [56], and involves complicated

ultrafilter constructions on P(λ). We find it convenient to take Theorem 3.2.4 as our

operating definition of E for most of the survey, deferring its proof until the end.

There are several new results in the survey; we describe some of them now.

In Section 3.15, we prove the following. Special cases are proved by Malliaris and

Shelah in [57] and [56].

Theorem 1.1.7. Suppose B is a complete Boolean algebra with the λ-c.c. and U is a

nonprincipal ultrafilter on B. Then U does not λ+-saturate any unsimple theory. If U is

additionally ℵ1-incomplete, then U does not λ+-saturate any nonlow theory.

This makes clear the role the chain condition is playing: namely, to constrict the

possible theories that we can saturate. We note this theorem is sharp: if B has an antichain

of size λ, then we show in Theorem 3.16.5 that there is an ultrafilter U on B which λ+-

saturates every complete countable theory.

In Section 3.8, we discuss the interpretability orders E∗κ, for κ ∈ {ℵ1, 1}; these are

approximation to Keisler’s order. E∗ℵ1
was originally introduced in [78] by Shelah as a gen-
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eral context for proving positive reductions in Keisler’s order. The point is that E∗ℵ1
⊆E,

and so to prove T0 E T1 it is enough to prove T0 E∗ℵ1
T1; further, the arguments in some

ways become cleaner. However, dealing with E∗κ does introduce certain complications

versus E. We introduce our own interpretability orders E×κ , which eliminate these com-

plications. We still have E×1 ⊆E
×
ℵ1
⊆E, and further, E×κ allows an elegant general theory

of combinatorial characteristics of models of ZFC−.

We prove in Section 3.18 that E×ℵ1
⊆E∗ℵ1

, and also E×1 ⊆E∗1 except perhaps on pairs

of stable theories. Thus, all of the positive reductions we prove in E×ℵ1
carry over to E∗ℵ1

.

Moreover, we use this machinery to deduce the following in Corollaries 3.18.9 and 3.18.10:

Theorem 1.1.8. E∗1 and E∗ℵ1
coincide on pairs of theories which are not both stable.

Hence, if suitable instances of GCH hold, then NSOP2 theories are nonmaximal in E∗ℵ1
,

and in ZFC, simplicity is a dividing line in E∗ℵ1
.

The hence portion follows from corresponding results for E∗1, proved in [8], [7] and

[61].

1.1.2 Chapter 4: Amalgamation Properties and Keisler’s Order

In Chapter 4, we give a streamlined treatment of many existing ultrafilter construc-

tions in Keisler’s order.

The following theorem is due to Malliaris and Shelah [57]:

Theorem 1.1.9. Suppose there is a supercompact cardinal σ; set λ = σ+. Then there is a

complete Boolean algebra B with the λ-c.c., and an ultrafilter U on B, which λ+-saturates

exactly the simple theories. Hence, simplicity is a principal dividing line in Keisler’s order.

Using similar arguments, I proved the following in [87]:
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Theorem 1.1.10. Set λ = (2ℵ0)+. Then there is a complete Boolean algebra B with

the λ-c.c., and an ℵ1-incomplete ultrafilter U on B, which λ+-saturates exactly the low

theories. Hence, lowness is a principal dividing line in Keisler’s order.

Finally, we have the following improvement of a theorem of Malliaris and Shelah [58];

here, Tk+1,k is the theory of the random k-ary k+ 1-clique free hypergraph. Malliaris and

Shelah proved the special case where k < k′ − 1, which is already enough to deduce that

Keisler’s order has infinitely many classes.

Theorem 1.1.11. For each k < k′, Tk+1,k 6E Tk′+1,k′ .

We present all of these theorems as a single instance of a general ultrafilter construc-

tion, parametrized by a suitable sequence of cardinals. Moreover, we are able to obtain

purely model-theoretic upper and lower bounds for the relevant principal dividing lines in

Theorem 1.1.11, which detect weaker and stronger notions of k-dimensional amalgama-

tion. We do not have any examples of theories witnessing a gap between our bounds; we

introduce the notion of a “well-behaved” simple theory, and show that for these theories,

all of our notions of k-dimensional amalgamation coincide.

1.2 Borel Complexity

We now move on from Keisler’s order and consider Borel complexity. The motivation

here is to find interesting dividing lines for countable model theory. The näıve method

of just counting the number of countable models of isomorphism does not give enough

information, since the maximum number of 2ℵ0 is achieved even in relatively simple cases.

Given a sentence Φ ∈ Lω1ω, we can form Mod(Φ), the set of models of Φ with

universe ω. This is naturally a standard Borel space, where the Borel sets are taken to
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be solution sets to formulas of Lω1ω. In [12], Friedman and Stanley make the following

definition.

Definition 1.2.1. Suppose Φ,Ψ are sentences of Lω1ω. Then f : Φ ≤B Ψ is a Borel

reduction if f : Mod(Φ) → Mod(Ψ) is a Borel map, such that for all M,N ∈ Mod(Φ),

M ∼= N if and only if f(M) ∼= f(N). We say that Φ ≤B Ψ if there is some f : Φ ≤B Ψ.

Say that Φ ∼B Ψ (Φ and Ψ are Borel bireducible) if Φ ≤B Ψ ≤B Φ.

We describe some of the initial results on ≤B obtained by Friedman and Stanley

in [12].

First, Friedman and Stanley showed that there is a maximal class of sentences under

≤B, namely the Borel complete sentences. For example, graphs are Borel complete, as are

groups, rings, linear orders, and trees.

Also, Friedman and Stanley introduced the Friedman-Stanley tower. There are

many equivalent formulations of this; we will find a certain family (Φα : α < ω1) of

sentences of Lω1ω to be the most convenient to work with. The countable models of Φα up

to isomorphism are, in a precise sense, identifiable with HCω+α, the hereditarily countable

sets of foundation rank less than ω + α. It is easy to see that Φα ≤B Φβ for α ≤ β; using

sophisticated methods of descriptive set theory, Friedman and Stanley show that when

α < β, then Φα <B Φβ (i.e. Φα ≤B Φβ but Φβ 6≤B Φα).

1.2.1 Chapter 5: Potential Canonical Scott Sentences and Borel Complexity

In Chapter 5, we include the results of [89], joint work with Richard Rast and Chris

Laskowski, although we make some small changes to notation.

One of the central ideas of [89] is the following. Given a structure M , let css(M)

denote its canonical Scott sentence; this is a canonical sentence of L|M |+ω characterizing
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M up to back-and-forth equivalence; in particular, if M is countable, then css(M) ∈

Lω1ω characterizes M up to isomorphism. Given Φ ∈ Lω1,ω, let CSS(Φ) denote the set

{css(M) : M ∈ Mod(Φ)}. Then any Borel map f : Mod(Φ) → Mod(Ψ) induces an

injection f∗ : CSS(Φ)→ CSS(Ψ).

Next, given a sentence Φ ∈ Lω1ω, let CSS(Φ)ptl be the class of all ϕ ∈ L∞ω, such

that there is some forcing extension V[G] of the universe with ϕ ∈ CSS(Φ)V[G]. These are

the potential canonical Scott sentences of Φ.

We define Φ to be short if CSS(Φ)ptl is a set as opposed to a proper class and define

the potential cardinality of Φ, denoted ‖Φ‖, to be the (usual) cardinality of CSS(Φ)ptl if

Φ is short, or ∞ otherwise.

Now, if f : Φ ≤B Ψ, then this induces some injection f∗ : CSS(Φ) ≤HC CSS(Ψ),

which in turn induces an injection (f∗)ptl : CSS(Φ)ptl → CSS(Ψ)ptl. This is the content of

Theorem 5.3.11:

If ‖Ψ‖ < ‖Φ‖, then Φ 6≤B Ψ.

The advantage of this is that the potential cardinality ‖Φ‖ is, in applications, some-

thing we can calculate; thus, this gives an important new method for proving nonreducibil-

ities.

As a particular example: we define (a version of) the Friedman-Stanley tower (Φα :

α < ω1) in Section 5.3.4, and show that each ‖Φα‖ = iα. This gives a much simpler proof

that Φα <B Φβ for α < β than the original proof of Friedman and Stanley.

We use the machinery of potential canonical Scott sentences to analyze several

specific first order theories. In particular, in [42], Koerwien defined a certain first order

theory K, proved K does not have Borel isomorphism relation, and asked whether or not

K is Borel complete. We resolve this negatively by showing that ‖K‖ = i2. This gives

9



the first example of a first order theory which is not Borel complete, and which does not

have Borel isomorphism relation.

1.2.2 Chapter 6: Borel Complexity, Thickness, and the Schröder-Bernstein prop-

erty

One limitation of potential cardinality is that there exist sentences Φ which are

not short (i.e. ‖Φ‖ = ∞) and yet Φ is not Borel complete. For example, let TAG1 ∈

Lω1ω axiomatize torsion abelian groups. By Ulm’s classification of abelian p-groups, we

can identify CSS(TAG1) with [ω1]ℵ0 (countable sets of ordinals), and so we can identify

CSS(TAG1)ptl with P(ON) (the class of all sets of ordinals). In particular, TAG1 is not

short. But Friedman and Stanley showed in [12] that TAG1 is not Borel complete, and in

fact Φ2 6≤B TAG1.

In Chapter 6, we introduce the notion of thickness. Namely, for each sentence

Φ ∈ Lω1ω, we get the thickness spectrum τ(Φ, ·) of Φ, a function from cardinals to car-

dinals; τ(Φ, ·) is closely related to |CSS(Φ)ptl ∩ Vλ+ |. It follows immediately from the

definition that for every λ, τ(Φ, λ) ≤ |CSS(Φ)ptl ∩ Vλ+ | ≤ iλ+ , and τ(Φ, ·) is monotoni-

cally increasing, and limλ→∞ τ(Φ, λ) = ‖Φ‖.

The definition of thickness is arranged so that it is a Borel-reducibility invariant:

Theorem 1.2.2. Suppose Φ ≤B Ψ. Then for every cardinal λ, τ(Φ, λ) ≤ τ(Ψ, λ).

As a first application of thickness, we show that τ(Φα,ℵ0) = τ(TAGα,ℵ0) = iα for

all 1 ≤ α < ω1, and thus, Φα+1 6≤B TAGα for all α < ω1, generalizing the theorem of

Friedman and Stanley in [12] that Φ2 6≤B TAG1.

We then present another application of the thickness machinery, namely to the

Schröder-Bernstein property. We make the following definitions, which are slightly modi-
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fied from previous contexts:

Definition 1.2.3. Suppose L is a language, and M,N are L-structures. Then say that

f : M ≤ N is an embedding if it is a homomorphism; that is, f commutes with the

function symbols, and if R is an n-ary relation, then f [RM ] ⊆ RN .

Definition 1.2.4. Say that Φ has the Schröder-Bernstein property if for all M,N |= Ψ

countable, if M ∼ N then M ∼= N .

Then we are able to prove the following. κ(ω), the ω’th Erdös cardinal, is the least

cardinal satisfying κ → (ω)<ω2 . κ(ω) is a large cardinal, i.e. it cannot be proven to exist

in ZFC; nonetheless, it is relatively low in the hierarchy of large cardinal axioms.

Theorem 1.2.5. Assume κ(ω) exists, and suppose Φ has the Schröder-Bernstein property.

Then for every cardinal λ, τ(Φ, λ) ≤ λ<κ(ω), so in particular TAG1 6≤B Φ.

The following is essentially a special case.

Theorem 1.2.6. Assume κ(ω) exists. Then there is no Borel reduction from graphs to

colored trees, which takes nonisomorphic graphs to nonbiembeddable trees.

We also introduce a hierarchy of α-ary Schröder Bernstein properties for each ordinal

α, and prove analogous statements for them.

1.2.3 Chapter 7: Borel Complexity of Torsion-Free Abelian Groups

In Chapter 7, we describe the results of [82], joint with Shelah, where we investigate

the complexity of countable torsion free abelian groups.

In [12], Friedman and Stanley leverage the Ulm analysis [86] to show that torsion

abelian groups are far from Borel complete. They then pose the following question:
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Question. Let TFAG be the theory of torsion-free abelian groups. Is TFAG Borel

complete?

This has attracted considerable attention, but has nonetheless remained open. The

following theorem of Hjorth [23] is the best known so far:

Theorem 1.2.7. Φα ≤B TFAG for every α < ω1.

This means that if TFAG is not Borel complete, then it represents a very new

phenomenon. In fact, in [12], Friedman and Stanley separately described the following

question as one of the basic open problems of the general theory: if Φ is a sentence of

Lω1ω and if Φα ≤B Φ for each α < ω1, must Φ be Borel complete?

Using the basic idea of Theorem 1.2.7, we are able to prove the following. Here,

≤a∆1
2

is the absolute ∆1
2-reducibility notion, defined like ≤B, except we allow the reduction

to be absolutely ∆1
2, rather than Borel.

Theorem 1.2.8. Suppose there is no transitive model of ZFC− + κ(ω) exists. Then

Graphs ≤a∆1
2

TFAG.

Corollary 1.2.9. It is consistent with ZFC that Graphs ≤ZFC− TFAG, and hence that

TFAG is ≤ZFC−-complete.

The key set-theoretic contribution is the following partial converse to Theorem 1.2.6:

Theorem 1.2.10. Suppose there is no transitive model of ZFC− + κ(ω) exists. Then

there is an absolutely ∆1
2-reduction from graphs to colored trees, which takes nonisomor-

phic graphs to nonbiembeddable trees.

This suggests that perhaps TFAG has some α-ary Schröder-Bernstein property.

Then α = 0 case has already been investigated: the Schröder-Bernstein property for
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TFAG fails, as first proved by Goodrick [17] (in fact, the failure was with elementary

embedding). Recently, Calderoni and Thomas have shown in [85] that the relation of

biembeddability on models of TFAG is Σ1
1-complete, which is as bad as possible.

For α > 0, we are able to prove the following (where we use injective group homo-

morphisms as our notion of embedding):

Theorem 1.2.11. For every α < κ(ω), TFAG fails the α-ary Schröder-Bernstein property.

The construction breaks down at κ(ω), so the following remains open:

Question. Does TFAG have the κ(ω)-ary Schröder-Bernstein property?

If the answer is yes, then this would imply that TFAG is not Borel complete.
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Chapter 2: Preliminaries

In this chapter, we collect together some background results that will be needed

later.

We work in ZFC; V denotes the universe of all sets. We formalize all of model

theory within ZFC. For instance, countable languages L are construed as being elements

of HC (the set of hereditarily countable sets).

If X is a set and κ is a cardinal, then [X]κ denotes the set of all subsets of X of

cardinality less than κ. P(X) denotes the powerset of X. Also, if X is a class, then P(X)

denotes the class of all subsets of X.

2.1 Forcing Notions and Boolean Algebras

For background, see Jech [27] or Kunen [44].

A forcing notion is a pre-order (P,≤) with a maximal element 1; in other words, ≤

is a transitive relation. We will always identify P with its separative quotient, defined by

putting p ∼ q if for all p′, p′ is compatible with p if and only if p′ is compatible with q.

When we say that P is a forcing notion, we always mean P is a set (rather than a proper

class), unless explicitly stated otherwise.

A complete boolean algebra B is a structure (B,≤, 0, 1,
∧
,
∨
,¬) satisfying the axioms

for a Boolean algebra, with the greatest lower bound property (equivalently, the least upper

bound property). When we view B as a forcing notion, we always mean B+, the set of
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positive elements of B.

Suppose B0,B1 are complete Boolean algebras. Then say that B0 is a complete

subalgebra of B1 if B0 is a subalgebra of B1, and for every X ⊆ B0, the join of X as

computed in B0 is the same as computed in B1. (This implies the corresponding statements

for meets.)

Given a forcing notion P , let B(P ) be its unique Boolean algebra completion; that

is the unique Boolean algebra, up to isomorphism, such that P densely embeds into B(P ).

(B(P ) exists and is unique by Theorem 14.10 of [27].) We always view P as a dense subset

of B(P ) even though when P is not separative, the canonical map from P to B(P ) is not

injective; this is not a real problem, since the map is injective on the separative quotient

of P , and as mentioned above we always identify P with its separative quotient. Every

element of B(P ) can be written as
∨
X for some X ⊆ P , which in fact can be chosen to

be an antichain. Further,
∨
X ≤

∨
Y if and only if for every x ∈ X, there is x′ ≤ x and

y ∈ Y such that x′ ≤ y.

Definition 2.1.1. For sets X,Y and a regular cardinal θ, let PXY θ be the forcing notion

of all functions partial functions from X to Y of cardinality less than θ, ordered by reverse

inclusion. Let BXY θ be its Boolean algebra completion.

Definition 2.1.2. Suppose B is a complete Boolean algebra. An antichain on B is a subset

C of B, such that for all distinct c, c′ ∈ C, c ∧ c′ = 0. If C,C′ are maximal antichains,

then C refines C′ if for every c ∈ C there is some c′ ∈ C′ such that c ≤ c′; in this case,

c′ is unique. Easily, every finite set of maximal antichains has a common refinement.

Here are three important properties of forcing notions.

• Say that P is θ-closed if every descending chain from P of length less than θ has a
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lower bound in P .

• Say that P is < θ-distributive if the intersection of every family of < θ-many dense,

downward closed subsets of P is dense. Say that P is θ-distributive if it is < θ+-

distributive.

• Say that P is κ-c.c. if every antichain from P has size less than κ. (Historically, this

is also called κ-saturated, although this term is no longer used.)

Clearly θ-closed implies < θ-distributive, and every forcing notion P is < ℵ0-

distributive. Also, P is < θ-distributive if and only if B(P )+ is, and similarly P is κ-c.c.

if and only if B(P )+ is.

Example 2.1.3. c.c.(P(λ)) = λ+, and P(λ) is θ-distributive for all θ.

PXY θ is θ-closed and (|Y |<θ)+-c.c., and so BXY θ is < θ-distributive and (|Y |<θ)+-c.c.

The chain condition is proved using the ∆-system lemma, e.g. Theorem II.1.2 of [44].

We want the following lemma on distributivity; see [27] Lemma 7.16 for (A) if and

only if (B) if and only if (C), and see [13] for (A) if and only if (D).

Lemma 2.1.4. Suppose B is a complete Boolean algebra. Then the following are equiv-

alent:

(A) For all α∗ < θ, for all (bα,i : α < α∗, i ∈ Iα), we have

∧
α<α∗

∨
i∈Iα

bα,i =
∨

f∈
∏
α<α∗ Iα

∧
α<α∗

bα,f(α).

(B) B is < θ-distributive.

(C) Every family of < θ-many maximal antichains of B has a common refinement.
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(D) For each α∗ < θ, Player I has no winning strategy in the following transfinite game:

Players I and II alternate picking a descending chain (aα : α ≤ α∗) from B+ (the

chain need not be strictly descending) where Player I gets to pick a0 and aδ for δ

limit. Player I wins if at some point play cannot continue (i.e. at some limit stage

δ ≤ α∗,
∧
α<δ aα = 0).

We deduce the following consequences: first, if B is < θ distributive for θ singular,

then B is θ-distributive. So the least θ such that B is not < θ-distributive, is regular.

Second, suppose P is a forcing notion and p, q ∈ P . Say that p decides q if either

p ≤ q or else p and q are incomparable. Trivially, then, if P is σ-distributive and X ∈ [P ]σ,

then the set of all p ∈ P which decide each q ∈ X is dense.

Now we discuss the κ-c.c. First of all, the following is Theorem 7.15 from [27]:

Theorem 2.1.5. If κ is least such that P has the κ-c.c., then κ+ ℵ0 is regular.

This κ will come up enough that we make the following definition, following [27].

Note that κ-c.c. is sometimes also referred to as being κ-saturated.

Definition 2.1.6. If P is a forcing notion, then let c.c.(P ) be the least κ such that P has

the κ-c.c.

So always c.c.(P ) ≤ |P |+, and as long as c.c.(P ) ≥ ℵ0, it is regular. The latter fails

exactly when P is finite, as the following facts indicate:

Proposition 2.1.7. Let B be a complete Boolean algebra; write λ = c.c.(B). If B is λ-

distributive, then λ = µ+ is a successor cardinal, and B ∼= P(µ). Hence B is θ-distributive

for all θ.

Proof. I claim that the atoms of B (i.e. minimal nonzero elements of B) are dense in B.
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This suffices, since then B ∼= P(µ), where µ is the cardinality of the set of atoms of B, and

then necessarily λ = µ+.

So suppose towards a contradiction that the atoms are not dense in B. Say there

are no atoms below c. Inductively choose a sequence (Cα : α ≤ λ) of maximal antichains

of B below c (i.e., each Cα ∪ {¬c} is a maximal antichain of B), such that Cα refines Cβ

for all α > β, and such that for every α < λ and for every d ∈ Cα, there are at least two

elements d0,d1 ∈ Cα+1 such that di ≤ d. At the successor stages, we are using that there

are no atoms below c; at the limit stages, we are using λ-distributivity.

Now let cλ ∈ Cλ; for all α ≤ λ, let cα be the unique element of Cα with cλ ≤ cα.

Then (cα : α < λ) is a strictly descending chain in B. Thus (cα ∧ ¬cα+1 : α < λ) is an

antichain from B, contradicting that B has the λ-c.c.

In particular:

Corollary 2.1.8. If B is a complete Boolean algebra and c.c.(B) = n < ℵ0, then B ∼= P(n).

If B is infinite, then c.c.(B) ≥ ℵ1.

Proof. The first claim follows since B is < ℵ0-distributive. For the second, if c.c.(B) ≤ ℵ0,

then the atoms must be dense in B, since otherwise we could find an infinite descending

chain from B and thus get an infinite antichain as above. Thus B ∼= P(n) for some

n < ω.

2.2 σ-complete ultrafilters

The ultrafilter U on the complete Boolean algebra B is σ-complete if for all κ < σ

and for all (aα : α < κ) from U ,
∧
α<κ aα ∈ U . This is the same as asking that for every

κ < σ and for every descending sequence (aα : α < κ) from U ,
∧
α<κ aα 6= 0. We define the
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completeness of U to be the least σ such that U is σ+-incomplete, or∞ if U is σ-complete

for all σ. Also, note that U is ∞-complete if U is principal, i.e.
∧
U 6= 0.

We need a couple of straightforward lemmas on σ-complete ultrafilters. They are

both easy generalizations of the B = P(λ) case, but I don’t know if they have been

recorded anywhere in generality.

Lemma 2.2.1. Suppose U is a nonprincipal ultrafilter on the complete Boolean algebra

B, with completeness σ. Then σ < c.c.(B), and there is a maximal antichain C of B of

size σ such that for each c ∈ C, c 6∈ U . Thus U induces a σ-complete ultrafilter on C, and

so σ is measurable.

Proof. Choose (aα : α < σ) a descending sequence from U such that
∧
α aα = 0. We can

suppose a0 = 1 and for limit δ < σ, aδ =
∧
α<δ aα. Let cα = aα\aα+1 for each α < σ;

then I claim C = {cα : α < λ} is a maximal antichain of B and each cα 6∈ U .

The only part that is not clear is maximality; suppose c ∧ cα = 0 for each α < σ.

Then it is easy to prove by induction on α that c ≤ aα for each α < σ.

The special case of the following lemma when B = P(λ) is Proposition 4.1 of [28].

A cardinal σ is strongly compact if, whenever Γ is a set of Lσσ-formulas, if every subset

of Γ of size less than σ is satisfiable, then Γ is satisfiable.

Lemma 2.2.2. Suppose σ is strongly compact, and B is a complete Boolean algebra,

and D is a σ-complete filter on B. Suppose B is < σ-distributive. Then D extends to a

σ-complete ultrafilter on B.

Proof. Let L be the language with a constant symbol for each element a ∈ B (also denoted

a), and with a unary relation symbol U . Let Γ assert the following:

• {a ∈ B : U(a)} is an ultrafilter (this is first-order);
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• For every descending chain (aγ : γ < γ∗) from B of length less then σ, if U(aγ) holds

for each γ then U(
⋂
γ aγ) holds;

• U(a) holds for all a ∈ D.

To see that this is σ-satisfiable: let Γ0 ⊆ Γ have size less than σ. Choose X ∈ [B]<σ

containing all the constants appearing in Γ0. Let a0 =
⋂
{a : a ∈ X ∩ D}, so a ∈ D is

nonzero (as D is σ-complete). Choose a1 ≤ a0 nonzero such that a1 decides every element

of X (this is possible since B is < σ-distributive). For all b ∈ B, define U(b) to hold if

and only if a ≤ b. Then this clearly defines a model of Σ0.

2.3 Forcing

We briefly review forcing, following Jech [27].

If P is a forcing notion, then define the class NP of P -names inductively, as follows:

σ̇ is a P -name if every x ∈ σ̇ is of the form (p, τ̇) for some p ∈ P and some P -name

τ̇ . If X ⊆ P and σ̇ is a P -name, then define valP (σ̇, X) inductively, by valP (σ̇, X) =

{valP (τ̇ , X) : there is some p ∈ X and some q ≤ p with (q, τ̇) ∈ σ̇}.

If P is a forcing notion, then say that G is P -generic over V if G is a filter on P

living in some larger model of set theory W, and for every dense subset D of P with

D ∈ V, G ∩D is nonempty. (It is equivalent that G ∩ A is nonempty, whenever A ∈ V is

a a maximal antichain from P .)

Define V[G] ⊆ W to be {valP (σ̇, G) : σ̇ ∈ NP }. I claim V ⊆ V[G]. Indeed, given

X ∈ V, define X̌ ∈ NP , the canonical name for X, inductively via X̌ = {(x̌, 1) : x ∈ X}.

Then obviously valP (X̌,G) = X.

We call V[G] a P -generic forcing extension of V, and say that we have forced over

P .
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In the special case where P = B+ where B is a complete Boolean algebra, the

definition of names can be simplified.

Definition 2.3.1. Suppose B is a complete Boolean algebra. Then define NB, the set of

nice B-names, as follows: σ̇ ∈ NB if σ̇ is a function from V into NB. We have NB ⊆ NB+ ,

and further every B+-name is equivalent to a nice B-name.

Generally, if P is a forcing notion, we say that ȧ is a nice P -name if ȧ ∈ NB; so we

can always restrict to nice P -names without loss of generality.

Suppose B is a complete Boolean algebra, ϕ(xi : i < n) is a formula of set theory,

and σ̇i : i < n is a sequence of B-names. Then define ‖ϕ(σ̇i : i < n)‖B ∈ B inductively via:

• ‖σ̇0 ∈ σ̇1‖B =
∨
τ̇1∈dom(σ̇1)(σ̇1(τ̇1) ∧ ‖σ̇0 = τ̇1‖B);

• ‖σ̇0 = σ̇1‖B =
∧
i<2

(∧
τ̇i∈dom(σ̇i)

(¬τ̇i ∨ ‖τ̇i ∈ σ̇1−i‖B)
)

;

• ‖ϕ(σ̇i : i < n) ∧ ψ(σ̇i : i < n)‖B = ‖ϕ(σ̇i : i < n)‖B ∧ ‖ψ(σ̇i : i < n)‖B;

• ‖¬ϕ(σ̇i : i < n)‖B = ¬‖ϕ(σ̇i : i < n)‖B;

• ‖∃xϕ(x, σ̇i : i < n)‖B =
∨
σ̇∈VB ‖ϕ(σ̇, σ̇i : i < n)‖B.

If P is a forcing notion and p ∈ P , say that p forces ϕ(σ̇i : i < n), and write

p P ϕ(σ̇i) : i < n, if p ≤ ‖ϕ(σ̇i : i < n)‖B(P ). We say that P forces ϕ(σ̇i : i < n), and

write P  ϕ(σ̇i : i < n), if 1P P ϕ(σ̇i : i < n).

The following key theorem on forcing is a straightforward induction, see Theorem

14.29 of [27]:

Theorem 2.3.2. Suppose P is a forcing notion, and V[G] is a P -generic forcing extension,

and ϕ(xi : i < n) is a formula of set theory with a parameter for V̌ , and (σ̇i : i < n) is
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a sequence from VP , then (V[G],V) |= ϕ(valP (σ̇i, G) : i < n) if and only if there is some

p ∈ G such that p forces ϕ(σ̇i : i < n).

Also, the following is Theorem 14.24 of [27]:

Theorem 2.3.3. Suppose P is a forcing notion and ϕ is an axiom of ZFC. Then P  ϕ.

In particular, if V[G] is a P -generic forcing extension, then V[G] |= ZFC. Also, V[G] has

the same ordinals as V.

Finally, the following is one of many ways of justifying taking forcing extensions of

V (see the next section for a discussion of ZFC−):

Theorem 2.3.4. Suppose T is any extension of ZFC. Then T is equiconsistent with T∗,

the theory in the language (V,W, ε), which asserts:

• V ⊆W , and ε ⊆W ×W ;

• (V, ε) |= T ∗;

• (W, ε) |= ZFC− + every set is countable;

• V,W have the same ordinals.

Proof. Technically, we view this as a theorem of ZFC; i.e., we are working in some

V |= ZFC.

Clearly if T∗ is consistent, then so is T . So suppose T is consistent. Let ZFC−0

be a finite fragment of ZFC−, and let ZFC0 be a large enough finite fragment of ZFC;

in particular we need ZFC0 to prove that ZFC−0 is forced by the Levy collapse of the

ordinals.
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Choose ϕ ∈ T . Let (ZFC0 + ϕ)∗ be defined from ZFC0 + ϕ in the same way T∗

is defined from T , except replacing ZFC− with ZFC−0 . We show that (ZFC0 + ϕ)∗ is

consistent, which suffices.

Choose V∗ |= T . V∗ need not be well-founded, but nonetheless it suffices to show

that V∗ believes (ZFC0 + ϕ)∗ is consistent. We work within V∗ and forget that V∗ is

possibly ill-founded; so we are assuming that V |= T , and we are trying to show that

(ZFC0 + ϕ)∗ is consistent. Choose a countable transitive model V of ZFC0 + ϕ, let P V

be the Levy collapse of the ordinals (a class forcing notion in V ), and let V [G] be a forcing

extension by P V . Then (V [G], V,∈) |= (ZFC0 + ϕ)∗.

Note that if (V,W,∈) |= T ∗, then for every forcing notion P ∈ V, (P(P ))V is

countable in W, so it is easy to construct a P -generic filter over V in W. Henceforward,

we will make use of this to freely suppose that P -generic forcing extensions of V exist.

A frequent theme in forcing is to understand how combinatorial properties of the

forcing notion P correspond to properties of P -generic forcing extensions. For example,

we have the following consequences of distributivity and the chain condition:

The following is Theorem 15.6 of [27]:

Theorem 2.3.5. Suppose P is θ-distributive, P forces that ḟ : θ → V̌. Then P forces

that ḟ ∈ V̌. So forcing by P does not add θ-sequences.

Thus, if P is < θ-distributive, then whenever κ ≤ θ is a cardinal, P forces that κ

remains a cardinal.

And the following is Lemma VII.6.8 of [44]:

Theorem 2.3.6. Suppose P is κ-c.c. and ḟ is a P -name such that for some set X, P

forces dom(ḟ) = X̌, then we can find some map F with domain X, such that for all x ∈ X,
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|F (x)| < κ, and such that P forces that for all x̌ ∈ X̌, ḟ(x̌) ∈ F̌ (x̌).

In particular, if λ ≥ κ is a cardinal then P forces that λ remains a cardinal.

2.4 ZFC−

Let L∈ = {∈} be the language of set theory. Our metatheory will always be ZFC.

Frequently we will need to work in transitive models of set theory; but there are not

guaranteed to be set models of ZFC. ZFC− is a convenient fragment of ZFC for this

purpose.

There are some pathologies to be avoided in the definition of ZFC−. In particular,

the näıve formulation of ZFC− where one just removes power set is ill-behaved, see [15].

The problem is that various formulations of our axioms are no longer equivalent: we really

want collection instead of replacement, and we want the well-ordering principle instead of

the axiom of choice.

Definition 2.4.1. Let ZFC− be ZFC but: remove power set, and strengthen choice to

the well-ordering principle, and strengthen replacement to the collection principle (this is

as in [15]).

Example 2.4.2. If χ is a regular cardinal, then H(χ) |= ZFC−, where H(χ) is the set

of sets of hereditary cardinality less than χ. Thus, if A is any transitive set, then there is

some transitive V |= ZFC− with |V | = |tcl(A)|+ ℵ0.

Note that we usually denote H(ℵ1) as HC.

Most arguments that do not appeal explicitly appeal to powerset go through in

ZFC−. For instance, successor cardinals are regular. Transfinite induction works fine.

Every set X is in bijection with an ordinal α; thus it makes sense to define the cardinality

of X to be the least such ordinal α.
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The following lemma must be reproven for every fragment of ZFC one works with.

For ZFC− it is standard; for example, it is a (very) special case of theorems proved in [24].

Lemma 2.4.3. Suppose V |= ZFC−, and suppose P is a forcing notion. Then the forcing

theorem holds for P , in other words: we have a definable forcing relation P in V, and if

G is P -generic over V, then V[G] |= ϕ(ȧ1, . . . , ȧn) if and only if there is some p ∈ G which

forces ϕ(ȧ1, . . . ȧn). Also, if G is P -generic over V, V[G] |= ZFC−.

2.5 Density and Independence

The following is a slight generalization of the classical Hewitt-Marczewski-Pondiczery

theorem of topology; see [10] for a reference.

Theorem 2.5.1. Suppose θ ≤ µ ≤ λ are infinite cardinals such that θ is regular, µ = µ<θ

and λ ≤ 2µ. Suppose (Xα : α < λ) are topological spaces such that for each α < λ, Xα

has a dense subset of size at most µ. Let X be the < θ-support product of (Xα : α < λ).

Then X has a dense subset of size at most µ.

In [10], only the classical case where θ = ℵ0 is explicitly considered, but as remarked

there, the generalization is easy.

We will be interested in the following special case. Actually, it can be used to prove

Theorem 2.5.1, as is done in [10] (although historically, Theorem 2.5.1 was proved first).

Corollary 2.5.2. Suppose θ ≤ µ ≤ λ are infinite cardinals such that θ is regular, µ = µ<θ,

and λ ≤ 2µ. Then there is a sequence (fγ : γ < µ) from λµ such that for all partial

functions f from λ to µ of cardinality θ, there is some γ < µ such that fγ extends f .

We now discuss the alternative viewpoint of independent antichains, and use them

to prove Corollary 2.5.2, as in [10].
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Definition 2.5.3. Suppose B is a Boolean algebra. Suppose C is a family of maximal

antichains of B. Then say that C is a θ-independent family of maximal antichains if for

every s ∈ [C]<θ, and for each choice function f on s (i.e. f(C) ∈ C for all C ∈ s),∧
C∈s f(C) is nonzero. If we omit θ then we mean θ = ℵ0.

The key observation of [10] is that Theorem 2.5.1 and Corollary 2.5.2 are actually

both reformulations of the following combinatorial statement. In [10], just the case B =

P(λ) is considered, but the general case is the same.

Theorem 2.5.4. Suppose B is a complete Boolean algebra with an antichain of size λ.

Suppose θ ≤ λ and λ = λ<θ. Then B admits a θ-independent family C of maximal

antichains with |C| = 2λ; moreover we can arrange each C ∈ C has cardinality λ.

Proof. Let I be the set of all pairs (s, r) where s ∈ [λ]<θ and r : P(s)→ λ. Then |I| = λ.

We can find a maximal antichain (as,r : (s, r) ∈ I) of B. (Suppose (aγ : 1 ≤ γ < λ)

be an antichain which is not maximal, and define a0 = ¬
(∨

γ≥1 aγ

)
; this is a maximal

antichain, and then we can reindex.)

For each A ⊂ λ and for each α < λ, let cA,α =
∨
{a(s,r) : (s, r) ∈ I, r(A ∩ s) = α}

and let CA = {cA,α : α < λ}, and finally let C = {CA : A ⊆ λ}. I claim this works.

Clearly each CA is an antichain of size λ, and clearly |C| = 2λ, so it suffices to show that

C is θ-independent. So suppose (Aγ : γ < γ∗) is a sequence of distinct subsets of λ of

length γ∗ < θ, and suppose cAγ ,αγ ∈ CAγ for each γ < γ∗. Choose s ∈ [λ]<θ large enough

so that each Aγ ∩ s 6= Aγ′ ∩ s, for γ 6= γ′. Choose r : P(s) → λ such that for all γ < γ∗,

r(Aγ ∩ s) = αγ . Then a(s,r) ≤ cAγ ,αγ for all γ < γ∗, witnessing that
∧
γ<γ∗

cAγ ,αγ 6= ∅.

We now give a proof of Corollary 2.5.2, following [10].

It suffices to consider the case λ = 2µ. So suppose θ is regular and µ = µ<θ. By
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Theorem 2.5.4 applied to B = P(µ), we can find a θ-independent family C of maximal

antichains of P(µ) with |C| = 2µ, such that each for each C ∈ C, |C| = µ. Enumerate

C = (Cα : α < 2µ), and for each α let Fα : µ→ µ be surjective, so that {F−1
α (γ) : γ < µ}

enumerates Cα. For each γ < µ, define fγ : 2µ → µ via fγ(α) = Fα(γ). I claim this works.

Indeed, suppose f is a function from 2µ to µ of cardinality less than θ. The θ-independence

of F just means that
⋂
α∈dom(f) F

−1
α (f(α)) is nonempty. Choose γ in the intersection; so

for all α ∈ dom(f), Fα(γ) = f(α). This just means that fγ extends f .

2.6 Model-Theoretic Notation and Terminology

Our model-theoretic notation is standard; see, for instance, [37]. We will typically

be dealing with a complete first order theory in a countable language; in this case, C

denotes its monster model. x, y denote finite tuples of variables. Sometimes, to reduce

visual clutter, x, y are also used to denote finite tuples of variables, but this is always

explicitly stated; by default, x, y are single variables.

For the reader’s convenient reference, we give a list of some of the model theoretic

terminology we will be using, and the implications between them.

• OP is the order property; a theory is stable if it does not have the order property,

so usually we write unstable instead of OP . See [37].

• IP is the independence property; SOP is the strict order property. NIP and NSOP

are their negations, respectively. A theory is stable if and only if it is NIP and

NSOP . The canonical example of a theory with IP is Trg, the theory of the random

graph. The canonical example of a theory with SOP is Th(Q, <), the theory of dense

linear orders. See [37].
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• FCP is the finite cover property; NFCP is its negation. We use the definition of

finite cover property from [75]; thus NFCP implies stability, but typically we will

write stable without the finite cover property, for emphasis. See [75].

• SOPn : n ≥ 1 is a family of strict order properties weakening SOP , with negations

NSOPn. We have SOP → SOPn+1 → SOPn for all n. For n ≥ 3 the implications

are strict, but all of the implications SOP1 → SOP2 → SOP3 are open. See [38].

• TP is the tree property. A theory is simple if it does not have the tree property, so

we usually write unsimple instead of TP . Simplicity is a weaking of stability; for

example, Trg is a simple, unstable theory. See [37].

• TP1, TP2 are the tree properties of the first and second kind, respectively, with

negations NTP1, NTP2. TP1 is equivalent to SOP2, and henceforward we use SOP2

exclusively. A theory is simple if and only if it is NSOP2 and NTP2, in particular,

simple theories are all NSOP . See [38].

• Lowness is a property intermediate between stability and simplicity. Most natural

examples of simple theories are low, for instance Trg is low. See [37].
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Chapter 3: A Survey on Keisler’s Order

In this chapter, we present a self-contained and systematic treatment of Keisler’s

order, in what we believe to be the most logical fashion. Ultimately this means moving

away from thinking about regular ultrafilters on P(λ), and instead focusing on arbitrary

ultrafilters on complete Boolean algebras. Our treatment revolves around the notion of

full B-valued structures.

3.1 A History of Keisler’s Order

We give a brief history of Keisler’s order.

First of all, we review the ultrapower construction. Suppose M is an L-structure,

λ is a cardinal (or generally any index set), and U is an ultrafilter on P(λ). Then we

can form the ultrapower Mλ/U of M by U as follows. Mλ/U will be an L-structure

with universe Mλ/E, where Mλ is the set of all functions f : λ → M , and where E

is the equivalence relation defined by: fEg if and only if {α < λ : f(α) = g(α)} ∈ U .

Then given an n-ary relation R ∈ L, we put ([fi]E : i < n) ∈ RM
λ/U if and only if

{α < λ : RM (fi(α) : i < n)} ∈ U , and similarly for function symbols (we will spell out the

details in greater generality later). We have a natural embedding j : M →Mλ/U sending

a ∈M to the constant map fa : λ→ {a}. Then j is in fact an elementary embedding; this

is  Loś’s theorem, and j is called the  Loś embedding [48].

We wish to understand what Mλ/U looks like. As a test question: is Mλ/U λ+-
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saturated?

In order to obtain a satisfactory answer for an arbitrary structure M , we need some

regularity hypothesis:

Definition 3.1.1. Suppose U is an ultrafilter on P(λ). Then say that U is λ-regular if

there is a sequence (Xα : α < λ) from U , such that for every infinite I ⊆ λ,
⋂
α∈I Xα = ∅.

Keisler proved the following fundamental theorem in [34]:

Theorem 3.1.2. Suppose T is a complete countable theory, and U is an ultrafilter on

P(λ), and M0,M1 |= T . Then the following both hold:

(A) If U is λ-regular, then Mλ
0 /U is λ+-saturated if and only if Mλ

1 /U is.

(B) If M0,M1 are both λ+-saturated, then Mλ
0 /U is λ+-saturated if and only if Mλ

1 /U

is.

This gives many new semantic properties to investigate. In particular, given a λ-

regular ultrafilter U on P(λ), one can ask: for which complete countable theories T is it

true that for some or any M |= T , Mλ/U is λ+-saturated? We view this as detecting how

difficult it is to saturate models of T .

Motivated by these questions, Keisler made the following definitions:

Definition 3.1.3. Suppose U is a λ-regular ultrafilter on P(λ). Then say that U λ+-

saturates T if for some or every M |= T , Mλ/U is λ+-saturated.

Given complete countable theories T0, T1, say that T0 Eλ T1 if whenever U is a λ-

regular ultrafilter on P(λ), if U λ+-saturates T1 then U λ+-saturates T0. Say that T0 E T1

if T0 Eλ T1 for all λ.
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E is called Keisler’s order; we view T0 E T1 as meaning that it is easier to saturate

models of T0 than those of T1. We are interested in the dividing lines induced by Keisler’s

order. More precisely:

Definition 3.1.4. Temporarily let T denote the set of all complete countable theories;

so (T,E) is a preorder. Say that D is a dividing line in E if D ⊆ T is downward-closed

under E (this much actually makes sense for any preorder). D is a principal dividing line

if there is a single λ-regular ultrafilter U on some P(λ), such that D is the set of all T ∈ T

which are λ+-saturated by U .

We wish to understand what the principal dividing lines in E are; these, in turn,

would determine E. This question has attracted a lot of attention, but progress has been,

until recently, rather slow.

We summarize most of what is known on Keisler’s order. In [34], Keisler proved

that there is a maximal class in E, and it includes Th(P(ω)). Further, he proved that

there is a minimal class in E; in fact, it is not hard to see that any uncountably categorical

theory is minimal. Finally, Keisler showed that any theory with the finite cover property

is not minimal:

Matters stood there for a while; so it was conceivable at this point that Keisler’s

order had only two classes. Then, Shelah illuminated the situation considerably in [75]

with the following two theorems:

Theorem 3.1.5. The E-minimal class of theories is the class of stable theories without

the finite cover property. The next-least E-class of theories (exists and) is the class of

stable theories with the finite cover property. In other words:

(A) If T0 is stable without the finite cover property, then for all T1, T0 E T1.
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(B) If T1 is stable with the finite cover property, and T2 is either unstable or is stable

with the finite cover property, then T1 E T2.

(C) If T0 is stable without the finite cover property, and T1 is stable with the finite cover

property, and T2 is unstable, then T1 6E T0 and T2 6E T1. In fact, the finite cover

property is a principal dividing line in E, as is stability.

Theorem 3.1.6. If T is a complete countable theory with SOP , then T is maximal in E.

Thus, it follows that E has at least three classes (where two theories T0, T1 are

Keisler-equivalent if T0 E T1 E T0). Shelah also showed in [75] that consistently, Trg, the

theory of the random graph, is not E-maximal; thus, consistently there are at least four

classes. Shelah asked if these were all of them. Apparently [58] this was viewed as likely.

There were two key technical innovations in Shelah’s work in [75], although both

were in nascent forms. Note that Theorem 3.1.5(A), (B) and Theorem 3.1.6 both concern

positive reductions in E, while Theorem 3.1.5(C) involves a negative reduction. It turns

out these involve almost completely different toolsets. Work on Keisler’s order has since

bifurcated along these two directions. We first describe the positive reduction aspect, and

trace its development to the present; then we discuss the negative reduction aspect.

First, to prove the positive reductions above, Shelah made the conceptual shift to

studying the ultrapower Mλ/U as situated within the class ultrapower Vλ/U . As notation,

let j : V � Vλ/U be the  Loś-embedding. It is not quite true that Mλ/U = j(M); this is

because j(M) is, in Vλ/U , a j(L)-structure. If L is infinite, then j(L) will contain extra

symbols; if the arities of the symbols in L are unbounded, then some of the “symbols” of

j(L) will have nonstandard arity. But if we let jstd(M) denote the reduct of j(M) to L,

then Mλ/U ∼= jstd(M).
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Now, suppose p(x) is a partial type over Mλ/U of cardinality at most λ. Then one

can try to find some set p̌(x) ∈ Vλ/U , such that Vλ/U believes p̌(x) is a consistent, finite

set of j(L)-formulas over j(M), and such that p(x) ⊆ p̌(x). Then necessarily, Vλ/U must

believe that p̌(x) is realized in j(M). This implies p(x) is realized in Mλ/U . In [75], for

example, Shelah constructs p̌(x) as a union of a chain of approximations; at limit stages,

we need some saturation hypothesis on Vλ/U , which is met if U λ+-saturates some theory

with SOP .

In [78], Shelah generalized this approach to studying Keisler’s order by introducing

the interpretability order E∗κ. Actually, in [78], only the case κ = ℵ1 is considered. As a

convention (following [61]), we define that every structure M is 1-saturated.

Definition 3.1.7. Suppose T, T∗ are complete countable theories with monster models

C,C∗ respectively. Then an interpretation of T in T∗ is given by some definable subset X

of Cn
∗ , and for each m-ary relation symbol R ∈ LT , an m-ary definable subset R∗ ⊆ Xm,

and for each m-ary function symbol f ∈ LT , an m-ary definable function f∗ : Xm → X,

such that (X, . . .) |= T . Given M∗ |= T∗ we always get an interpreted model M |= T .

Suppose T0, T1 are complete countable theories. Suppose κ is either an infinite

cardinal or else 1. Then say that T0 E∗λκ T1 if there is some countable theory T∗ interpreting

both T0 and T1, such that for all κ-saturated M∗ |= T∗, if we let Mi be the interpreted

model of Ti, then if M1 is λ+-saturated, so is M0. Say that T0 E∗κ T1 if T0 E∗λκ T1 for all

λ.

So, for κ < κ′, E∗κ⊆E∗κ′ .

We warn the reader that differing indexing systems for E∗κ have been used in later

papers (for instance, in [61]); for these other indexing systems, we can no longer prove

that E∗ℵ1
⊆E, and so we stick to Shelah’s original formulation from [78] (which in any case
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seems more natural). The differences among these versions are minor, and the reader

attached to the alternative versions will have no problem adapting our arguments.

The reason these orders were conceived was due to the following: if T0 E∗λℵ1
T1

then T0 Eλ T1, i.e. E∗λℵ1
⊆Eλ. Indeed, suppose T∗ witnessed T0 E∗λℵ1

T1, and let U be

a λ-regular ultrafilter on P(λ). Let M∗ |= T∗. Let Mi be the interpreted model of Ti.

Since U is λ-regular, it is ℵ1-incomplete, and so as proved by Keisler [34], Mλ
∗ /U is ℵ1-

saturated. But Mλ
i /U is (isomorphic to) the interpreted model of Ti in Mλ

∗ /U , and if

Mλ
1 /U is λ+-saturated, so is M0. Thus, if U λ+-saturates T1, then it also λ+-saturates T0.

It follows that E∗ℵ1
⊆E. In all cases where we can prove T0 E T1, we can actually

prove T0 E∗ℵ1
T1 (although frequently with extra work); thus, E∗ℵ1

captures all of the

currently known techniques for proving positive reductions in Keisler’s order.

In [78], Shelah notes that Theorem 3.1.5 holds for E∗ℵ1
, and strengthens Theo-

rem 3.1.6 to show that any theory with SOP3 is maximal in E∗ℵ1
(and hence in E).

The interpretability orders were further investigated in [8] (Džamonja and Shelah)

and [80] (Shelah and Usvyatsov), which together imply that any theory T with NSOP2 is

nonmaximal in E∗1. Note that this is a negative reduction result, namely: if T has NSOP2

then Th(Q, <) 6E∗ T . Thus the corresponding statement for E does not follow, and in fact

it is a major open problem whether or not theories with NSOP2 must be nonmaximal in

Keisler’s order.

Malliaris entered the scene with [53], where she proved the following:

Theorem 3.1.8. Suppose U is a λ-regular ultrafilter on P(λ) and M is a structure. Then

Mλ/U is λ+-saturated if and only if Mλ/U is locally λ+-saturated; i.e. for every formula

ϕ(x, y), every positive ϕ-type over M of cardinality at most λ is λ+-saturated.

One can summarize this as saying “Keisler’s order is local.” This is compelling
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evidence that Keisler’s order detects model-theoretically significant dividing lines, in par-

ticular that it has a syntactic formulation.

In [49] [50] [51], Malliaris used similar techniques to obtain several further results,

including: there is a E-minimal unstable theory (for instance, the theory of the random

graph), and there is a E-minimal TP2 theory. These results were later extended to E∗1 by

Malliaris and Shelah in [61].

Recently, Malliaris and Shelah prove in [54] that every SOP2 theory is E-maximal.

This proof is substantially more involved than Shelah’s proof in [78] that SOP3-theories are

E-maximal. Remarkably, Malliaris and Shelah were able to leverage the same techniques

to solve a seemingly unrelated problem on cardinal invariants of the continuum, namely

they showed that p = t. Soon after, in [59], Malliaris and Shelah show that theories with

SOP2 are E∗ℵ1
-maximal.

The second key innovation in Shelah’s work on Keisler’s order in [75] was for proving

the negative reduction, Theorem 3.1.5(C). This amounts to the construction of special

ultrafilters. Shelah’s insight was to find a λ-regular filter D on P(λ), such that P(λ)/D,

considered as a Boolean algebra, has the ℵ1-c.c, but is still sufficiently rich.

In the papers [60], [55], and [56], Malliaris and Shelah clarified this construction

technique: namely, they translated the problem of constructing λ-regular ultrafilters on

P(λ) to constructing arbitrary ultrafilters on complete Boolean algebras B.

Specifically, given an ultrafilter U on the complete Boolean algebra B and a complete

countable theory T , Malliaris and Shelah define in [56] what it means for U to be (λ,B, T )

moral; one should think of this as an abstract version of U λ+-saturating T , although

the definition is purely combinatorial and does not mention saturation. For ultrafilters

on P(λ) at least, one can give a nice definition: U is (λ,P(λ), T ) moral if and only if for
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some or any λ+-saturated M |= T , Mλ/U is λ+-saturated. (The choice of M does not

matter, by Theorem 3.1.2(B).) In particular, if U is λ-regular, then this is the same as U

λ+-saturating T .

In [56], Malliaris and Shelah prove the following (it is the key consequence of their

Existence Theorem and Separation of Variables Theorem):

Theorem 3.1.9. Suppose B is a complete Boolean algebra with the λ+-c.c. and with

|B| ≤ 2λ. Suppose U is an ultrafilter on B. Then there is a λ-regular ultrafilter U∗ on

P(λ), such that for every complete countable theory T , U∗ λ+-saturates T if and only if

U is (λ,B, T ) moral.

The strategy set forth for ultrafilter constructions in [56] is as follows: find a Boolean

algebra B which is small in some sense (in [56], B has the ℵ1-c.c.) and construct an

ultrafilter U on B which is as generic as possible. Then the smallness of B will prevent U

from being (λ,B, T ) moral for some T , and its genericity will ensure that U is (λ,B, T ′)-

moral for other T ′.

In [56], Malliaris and Shelah use these ideas to show that T 6E Trg whenever T is

nonlow. Then, in [57], they refine the technique to show that if there is a supercompact

cardinal, then simplicity is a principal dividing line in E.

In [58], Malliaris and Shelah push these techniques further to show that Keisler’s

order has infinitely many classes. Namely, for each n > k ≥ 3, let Tn,k be the theory of

the random k-ary n-clique free graph (Malliaris and Shelah subtract 1 from the indices).

They showed that for 3 ≤ k′ < k − 1, Tk′+1,k′ 6E Tk+1,k. The idea here is that Tk+1,k fails

k-dimensional amalgamation, which is worse when k is small. Note that there is a gap;

Malliaris and Shelah left open whether or not Tk+1,k E Tk+2,k+1 is possible.

In [88], I show that if there is a supercompact cardinal, then Keisler’s order is not
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linear, using the techniques from results in [57] and [58]; this was obtained independently

by Malliaris and Shelah [61]. Also, I show in [87] that lowness is a principal dividing line

in Keisler’s order (with no set-theoretic hypotheses).

3.2 The Approach Via Boolean-Valued Models

Suppose we have an ultrafilter U on the complete Boolean algebra B. We would like

to understand what it means for U to be (λ,B, T )-moral. (The combinatorial definition

of Malliaris and Shelah is rather technical.)

One can try to characterize this in terms of ultrapowers: suppose M |= T . Then

one can form the Boolean-valued ultrapower MB/U similarly to the case when B = P(λ)

(in particular, if B = P(λ) then MP(λ)/U ∼= Mλ/U). These generalized ultrapowers have

been around for a while, for instance they were investigated by Mansfield [62]. It is natural

to ask:

Question. Suppose U is an ultrafilter on B and T is a complete countable theory. Are

the following equivalent?

• U is (λ,B, T )-moral.

• For some or every λ+-saturated M |= T , MB/U is λ+-saturated.

As remarked above, this is true when U = P(λ). When B is not λ+-distributive,

however, the proof breaks down, and as far as we know it is open if this holds in general.

Nonetheless, there is another way of making sense of U being (λ,B, T )-moral, namely

through full B-valued structures.

To give the reader an idea of what these objects are: suppose first M is an ordinary

L-structure. Let L(M) be the set of formulas with parameters from M . View the elemen-
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tary diagram of M as a map ‖ · ‖M from L(M) into the complete Boolean algebra {0, 1}.

To get a full B-valued L-structure, replace {0, 1} by B. (The formal definition is given

in Section 3.3.) So, a full B-valued L-structure M is in particular a pair (M, ‖ · ‖) where

‖ · ‖ : L(M) → B. We say that M is a full B-valued model of T , and write M |=B T , if

‖ϕ‖M = 1 for all ϕ ∈ T . For example, if M is an ordinary L-structure, then Mλ is a full

P(λ)-valued structure, with ‖ϕ(fi : i < n)‖Mλ = {α < λ : M |= ϕ(fi(α) : i < n)}. More

generally, if M |= T and if B is a complete Boolean algebra, then MB |=B T .

In Section 3.3, we prove Corollary 3.3.8, a compactness theorem for full B-valued

models; this is the cornerstone of our development. The following is a simplified version:

Theorem 3.2.1. Suppose B is a complete Boolean algebra, X is a set, and F : L(X)→ B.

Then the following are equivalent:

(A) There is some full B-valued structure M ⊇ X such that ‖ · ‖M extends F ;

(B) For every finite Γ ⊆ L(X), there is some full B-valued structure M ⊇ X such that

‖ · ‖M extends F �Γ.

In Sections 3.5 and 3.6, we prove the following:

Theorem 3.2.2. Suppose T is a complete countable theory, B is a complete Boolean

algebra, and U is an ultrafilter on B. Then the following are equivalent, for all λ:

(I) U is (λ,B, T )-moral;

(II) For some λ+-saturated full B-valued model M of T , the specialization M/U is λ+-

saturated;

(III) For every λ+-saturated full B-valued model M of T , the specialization M/U is λ+-

saturated.
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We believe this justifies the following definition:

Definition 3.2.3. Suppose T is a complete countable theory, and U is an ultrafilter on

the complete Boolean algebra B. Then U λ+-saturates T if U is (λ,B, T )-moral.

So if U is an ultrafilter on P(λ), then U λ+-saturates T if and only if for some or

any λ+-saturated M |= T , Mλ/U is λ+-saturated; if U is λ-regular, then the saturation

condition on M can be dropped.

In view of Theorem 1.1.3, it would be equivalent to change the definition of E to

allow the ultrafilter U to be on any complete Boolean algebra B with the λ+-c.c. and with

|B| ≤ 2λ. Actually, in Corollary 3.16.20, we strengthen this to show that the hypothesis

|B| ≤ 2λ can be dropped. Thus:

Theorem 3.2.4. Suppose T0, T1 are complete countable theories, and λ is a cardinal.

Then T0 Eλ T1 if and only if for every complete Boolean algebra B with the λ+-c.c., and

for every ultrafilter U on B, if U λ+-saturates T1, then U λ+-saturates T0.

We remark that the bulk of the proof of this theorem consists of Malliaris and She-

lah’s Separation of Variables and Existence Theorems from [56], and involves complicated

ultrafilter constructions on P(λ). We view these constructions as essentially unimportant:

most of of our arguments only deal with ultrafilters on some much nicer algebra B, typi-

cally with the λ-c.c., and we only care about P(λ) because of the definition of E. For this

reason, we take Theorem 3.2.4 as our operating definition of E for most of the survey, and

defer its proof until the end.

We draw the reader’s attention to the new results we prove in Chapter 3.

In Section 3.14, we show that there is a E-minimal nonlow theory TCas. I first

proved this in [87]. We prove the main theorem of [87], namely that lowness is a dividing
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line in Keisler’s order, in Chapter 4.

In Section 3.15, we prove the following. Special cases are proved by Malliaris and

Shelah in [57] and [56].

Theorem 3.2.5. Suppose B is a complete Boolean algebra with the λ-c.c. and U is a

nonprincipal ultrafilter on B. Then U does not λ+-saturate any unsimple theory. If U is

additionally ℵ1-incomplete, then U does not λ+-saturate any nonlow theory.

This makes clear the role the chain condition is playing: namely, to constrict the

possible theories that we can saturate. We note this theorem is sharp. First of all, if B

has an antichain of size λ, then we show in Theorem 3.16.5 that there is an ultrafilter U

on B which λ+-saturates every complete countable theory. Second, Malliaris and Shelah

show the following in [57]: suppose there is a supercompact cardinal σ; set λ = σ+. Then

there is a complete Boolean algebra B with the λ-c.c., and an ultrafilter U on B which

λ+-saturates exactly the simple theories. Further, in [87], I show in ZFC that for some λ

and some complete Boolean algebra B with the λ-c.c., there is an ℵ1-incomplete ultrafilter

U on B which λ+-saturates exactly the low theories.

In Section 3.8, we discuss the interpretability orders E∗κ. Dealing with E∗κ does

introduce certain complications versus E. We introduce our own interpretability orders

E×κ , which eliminate these complications. We still have E×1 ⊆E
×
ℵ1
⊆E, and further, E×κ

allows an elegant general theory of combinatorial characteristics of models of ZFC−. We

prove in Section 3.18 that E×ℵ1
⊆E∗ℵ1

, and also E×1 ⊆E∗1 except perhaps on pairs of stable

theories. Thus, all of the positive reductions we prove in E×ℵ1
carry over to E∗ℵ1

. Moreover,

we use this machinery to deduce Corollaries 3.18.9 and 3.18.10:

Theorem 3.2.6. E∗1 and E∗ℵ1
coincide on pairs of theories which are not both stable.

Hence, if suitable instances of GCH hold, then NSOP2 theories are nonmaximal in E∗ℵ1
,

40



and in ZFC, simplicity is a dividing line in E∗ℵ1
.

The hence portion follows from corresponding results for E∗1, proved in [8], [7] and

[61].

3.3 A Compactness Theorem for Boolean-Valued Models

In view of Theorem 3.1.9, we are led to consider arbitrary ultrafilters on complete

Boolean algebras B in our analysis of Keisler’s order. Malliaris and Shelah always consider

such ultrafilters accompanied by a pullback to a regular ultrafilter on P(λ), but we avoid

this by working in the generality of B-valued models. In this section, we define B-valued

models and prove a compactness theorem for them. This will be the cornerstone of our

development.

The idea for B-valued models appears to originate with Mostowski [66]; however,

they have mainly been investigated as a tool for forcing, as in [27] Chapter 14. There does

not seem to be a completely standard definition of B-valued model; we remark on variants

at the end of the section.

Definition 3.3.1. If L is a theory and X is a set, then let L(X) be the set of all L-

formulas with parameters taken from X. To be formal, we view the elements of X as new

constant symbols, but it would work equally well to view them as variables.

Suppose B is a complete Boolean algebra and L is a language. A B-valued L-

structure is a pair (M, ‖ · ‖M) where:

1. M is a set;

2. ϕ 7→ ‖ϕ‖M is a map from L(M) to B;

3. If ϕ is a logically valid sentence then ‖ϕ‖M = 1;
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4. For every formula ϕ ∈ L(M), we have that ‖¬ϕ‖M = ¬‖ϕ‖M;

5. For all ϕ,ψ, we have that ‖ϕ ∧ ψ‖M = ‖ϕ‖M ∧ ‖ψ‖M;

6. For every formula ϕ(x) with parameters from M, ‖∃xϕ(x)‖M =
∨
a∈M ‖ϕ(a)‖M;

7. For all a, b ∈M distinct, ‖a = b‖M < 1.

(M, ‖ · ‖M) is full if for every formula ϕ(x) with parameters from M, there is some

a ∈M such that ‖∃xϕ(x)‖M = ‖ϕ(a)‖M.

In fact, we will almost always restrict to full B-valued L-structures. As is customary

in model theory, we will write that M is a full B-valued L-structure, suppressing ‖ · ‖M,

whenever possible.

Remark 3.3.2. Axiom 6 together with fullness are equivalent to requiring that for all

formulas ϕ(x) with parameters from M, ‖∃xϕ(x)‖M is the maximum of {‖ϕ(b)‖M : b ∈

M}, i.e. always ‖∃xϕ(x)‖M ≥ ‖ϕ(b)‖M, and there is some b with equality holding. In

particular the axioms for a full B-valued L-structure are finitary.

In the definition of full B-valued L-structures, we only used ∃,∧,¬. It is easy to see

that one can add ∨,→ via the usual definitions, and they behave as expected. Universal

quantification is also easy, but we isolate it as a lemma:

Lemma 3.3.3. Suppose M is a full B-valued L-structure, and ∀xϕ(x) is a formula with

parameters from M (formally, we treat this as ¬∃x¬ϕ(x)). Then ‖∀xϕ(x)‖M is the min-

imum of {‖ϕ(b)‖M : b ∈ M}, that is, always ‖∀xϕ(x)‖M ≤ ‖ϕ(b)‖M, and there is some

b ∈M with equality holding.

In particular, if ‖∀xϕ(x)‖M = 1, then for all a ∈M |x|, ‖ϕ(a)‖M = 1.
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The following theorem will allow us to define the specialization operation. This

operation is first considered by Rasiowa and Sikorski [71], although there, in the absence

of fullness, one needs the ultrafilter to be sufficiently generic. The general case is implicitly

developed by Mansfield [62].

Theorem 3.3.4. Suppose B is a complete Boolean algebra, M is a full B-valued L-

structure, and U is an ultrafilter on B. Then there is pair (M,π) where:

• M is an ordinary L-structure,

• π : M→M is a surjection,

• for every ϕ(a) ∈ L(M), ‖ϕ(a)‖M ∈ U if and only if M |= ϕ(π(a)).

If (M ′, π′) is any other such pair, then there is a unique isomorphism σ : M ∼= M ′

such that σ ◦ π = π′.

Proof. First we construct (M,π).

Define E ⊆ M ×M via: aEb if and only if ‖a = b‖M ∈ U . E is an equivalence

relation by condition (3) of the definition of B-valued models, and Lemma 3.3.3.

Claim 1. For all formulas ϕ(x) with n free variables, and for all a, b ∈Mn, if aiEbi for

each i < n, then ‖ϕ(a)‖M ∈ U if and only if ‖ϕ(b)‖M ∈ U .

Proof. This is also by condition (3) of the definition of B-valued models, and Lemma

3.3.3.

Let the domain of M be M/E, and let π : M→M be the canonical surjection.

For each n-ary relation symbol R of L, put RM = {π(a) : a ∈Mn, ‖R(a)‖M = 1}.

This is well-defined by Claim 1.
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Suppose f is an n-ary function symbol of L. I claim that for all a ∈ Mn, there is

some b ∈M with ‖f(a) = b‖M ∈ U , and moreover, π(b) is uniquely determined by π(a).

To see this, note first that by condition (3) in the definition of B-valued model, we have

that ‖∀x∃yf(x) = y‖M = 1, and so by Lemma 3.3.3, for every a, ‖∃yf(a) = y‖M = 1,

and so by fullness, there is some b such that ‖f(a) = b‖M = 1 ∈ U . Thus we have shown

existence. For uniqueness, note that by condition (3) and Lemma 3.3.3 again, for all

a, a′, b, c, if ‖f(a) = b‖M ∈ U and ‖f(a′) = c‖M ∈ U and π(ai) = π(bi) for all i < n, then

‖b = c‖M ∈ U , i.e. π(b) = π(c). Thus we can define fM (F (a)) = π(b) for some or every

b ∈M with ‖f(a) = b‖M ∈ U .

We now check by induction on formulas ϕ(a) ∈ L(M) that ‖ϕ(a)‖M ∈ U if and only

if M |= ϕ(π(a)). If ϕ(ti(a) : i < n) is atomic (so each ti(a) is a term, and ϕ(xi : i < n) is

either x0 = x1 or else R(xi : i < n) for some n-ary relation R), then choose (bi : i < n)

from M such that each ‖ti(a) = bi‖M = 1 (by condition (3), Lemma 3.3.3 and fullness).

Then ‖ϕ(t(a))‖M = ‖ϕ(b)‖M, and since each tMi (π(a)) = π(bi) (by induction on terms),

we have M |= ϕ(t
M

(π(a))) if and only if M |= ϕ(π(b)). So we can replace ϕ(ti(a) : i < n)

by ϕ(bi : i < n). If ϕ(b) is b0 = b1 then we conclude by definition of E; if ϕ(a) is R(b)

then we conclude by definition of RM .

The rest of the inductive argument is fairly straightforward. To handle negations,

we need that U is ultra, i.e. for all c ∈ B, c ∈ U if and only if ¬c 6∈ U . To handle the

existential stage, we use fullness of M.

Finally, the uniqueness claim is trivial; note that π′ must induce a bijection between

M/E and M ′, and this is the desired isomorphism from M to M ′.

Definition 3.3.5. Suppose B is a complete Boolean algebra, M is a full B-valued L-

structure, and U is an ultrafilter on B. Let (M/U , [·]M,U ) be the pair (M,π) as constructed
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in Theorem 3.3.4; we call M/U the specialization of M at U , and we call [·]M,U the

canonical surjection. We will only ever use the defining property of (M/U , [·]M,U ): [·]M,U

is a surjection, and for every ϕ(a) ∈ L(M), ‖ϕ(a)‖M ∈ U if and only if M/U |= ϕ([a]M,U ).

Usually M is clear from context, and we omit it in [·]M,U .

Remark 3.3.6. Suppose M is an ordinary L-structure. Then we can define an associated

{0, 1}-valued L-structure (M, ‖ · ‖M) such that M is the domain of M and ‖ϕ(a)‖M = 1

if and only if M |= ϕ(a). This sets up an exact correspondence between ordinary L-

structures and {0, 1}-valued L-structures, with the inverse map given by specialization at

U , where U is the unique ultrafilter on {0, 1}. Thus, henceforward we identify ordinary

L-structures with {0, 1}-valued L-structures, and use the terms interchangeably; we tend

to prefer “{0, 1}-valued.” (Note that every {0, 1}-valued L-structure is automatically full.)

As a convention, lightface M is used for {0, 1}-valued models, and boldface M is used for

general B-valued models.

Note also that whenever B0 is a subalgebra of B1, then every full B0-valued structure

is a full B1-valued structure. The main case we use this is when B0 = {0, 1}.

We now aim to prove a compactness theorem for full B-valued L-structures. The

reader familiar with forcing can give a rather slicker proof, noting that B-valued L-

structures are in correspondence with B-names for models of T ; we prefer to avoid forcing

machinery in this survey.

Theorem 3.3.7. Suppose B is a complete Boolean algebra, X is a set, and F : L(X)→ B.

Then the following are equivalent:

(A) There is some full B-valued structure M and some map τ : X →M, such that for

all ϕ(a) ∈ L(X), F (ϕ(a)) ≤ ‖ϕ(τ(a))‖M.
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(B) For every ultrafilter U on B, there is some {0, 1}-valued L-structure M and some

map τ : X →M , such that for all ϕ(a) ∈ Γ, if F (ϕ(a)) ∈ U then M |= ϕ(τ(a)).

(C) For every finite Γ0 ⊆ Γ and for every c ∈ B+, there is some {0, 1}-valued L-structure

M and some map τ : X → M , such that for every ϕ(a) ∈ Γ0, if c ≤ F (ϕ(a)) then

M |= ϕ(τ(a)).

Proof. (A) implies (B): suppose (A) holds, and let U be given. Let M = M/U , and let

τ ′ : X →M be the composition of τ with [·]U . Then this witnesses (B) holds.

(B) implies (C): Suppose (B) holds, and suppose c, Γ0 are given. Let U be an

ultrafilter on B containing c; and let τ : X → M be as promised by (B). Then this also

works for (C).

(C) implies (A): This will be a Henkin construction.

Let X∗ = X ∪Y , where Y is disjoint from X with |Y | = |X|+ℵ0. Write κ = |X∗| =

|X|+ ℵ0, and write Γ = L(X).

We will be considering pairs (∆, G), where ∆ ⊆ L(X∗) and G : ∆ → B. Given

such a pair (∆, G), and given c ∈ B+, define Tc,∆,G to be the following theory in L(X∗)

(where we view the elements of X∗ as constants). Namely Tc,∆,G := {ϕ(a) ∈ Γ : c ≤

F (ϕ(a))} ∪ {ϕ(a) ∈ ∆ : c ≤ G(ϕ(a))} ∪ {¬ϕ(a) : ϕ(a) ∈ ∆, c ≤ ¬G(ϕ(a))}.

Let P be the set of all pairs (∆, G) with ∆ ⊆ L(X∗) and G : ∆→ B, such that for

every c ∈ B+, Tc,∆,G is satisfiable. (If we wanted to reprove the standard compactness

theorem, we would replace all occurrences of “satisfiable” by “finitely satisfiable,” as in

[64].) We view P as partially ordered under componentwise ⊆. Note that by hypothesis,

(∅, ∅) ∈ P .

We plan to find some G∗ : L(X∗) → B such that (L(X∗), G∗) ∈ P , and such

that for all formulas ϕ(x) with parameters from X∗, there is some a ∈ X∗ such that
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G∗(∃xϕ(x)) = G∗(a). We note now how to finish, assuming this. Note first that for

all ϕ(a) ∈ L(X), G∗(ϕ(a)) ≥ F (ϕ(a)), as otherwise, set c = F (ϕ(a)) ∧ ¬G(ϕ(a)); then

Tc,L(X∗),G∗ is unsatisfiable. Also, (X∗, G∗) satisfies all the axioms of a full B-valued model,

except possibly for condition (7). So let M = X/E where aEb if and only if G(a = b) = 1,

and let ‖ϕ([a/E])‖M = G∗(ϕ(a)), and let τ : X →M be defined by a 7→ [a/E].

So it suffices to find G∗. We break this into claims.

Claim 1. Suppose (∆, G) ∈ P , and suppose |∆| < κ. Then for every ϕ(a) ∈ L(X∗), we

can find some c∗ such that (∆ ∪ {ϕ(a)}, G ∪ {(ϕ(a), c∗)}) ∈ P .

Proof. Let C0 be the set of all c ∈ B+ such that Tc,∆,G implies ϕ(a) (i.e., every model

of Tc,∆,G is a model of ϕ(a), where we are viewing the elements of X as constants). Let

c0 =
∨

C0.

Let C1 be the set of all c ∈ B different from 1, such that T¬c,∆,G implies ¬ϕ(a). Let

c1 =
∧

C1.

I first of all claim that c0 ≤ c1. This amounts to showing that for all d0 ∈ C0

and for all d1 ∈ C1, d0 ≤ d1. Suppose not; write c = d0 ∧ ¬d1. Then by definition of

C0 and C1, we must have that Tc,∆,G implies both ϕ(a) and ¬ϕ(a), i.e. is unsatisfiable,

contradicting the compatability of (∆, G).

Finally, I claim that any c∗ with c0 ≤ c∗ ≤ c1 will work for the Claim. Indeed, let

c∗ be given as such, and write ∆′ = ∆ ∪ {ϕ(a)}, G′ = G ∪ {(ϕ(a), c∗)}.

Let c ∈ B+ be given; we can suppose c decides c∗. Suppose first c ≤ c∗; thus c ≤ c1.

Note that Tc,∆′,G′ = Tc,∆,G ∪{ϕ(a)}; we need to show this is consistent. Suppose towards

a contradiction that Tc,∆,G implies ¬ϕ(a). Then ¬c ∈ C1 by definition of C1, so c1 ≤ ¬c,

contradicting c ≤ c1 is nonzero.

Suppose instead that c ≤ ¬c∗, thus c ≤ ¬c0. Note that Tc,∆′,G′ = Tc,∆,G∪{¬ϕ(a)};
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we need to show this is consistent. Suppose towards a contradiction that Tc,∆,G implies

ϕ(a). Then c ∈ C0 by definition of C0, so c ≤ c0, contradicting c ≤ ¬c0 is nonzero.

Claim 2. Suppose (∆, G) ∈ P , and suppose |∆| < κ. Suppose ∃xϕ(x) ∈ ∆, where ϕ(x)

has parameters from X∗. Choose a ∈ Y which does not occur in any formula in ∆ (note

a cannot occur in any formula of Γ = L(X) either). Write ∆′ = ∆ ∪ {ϕ(a)}, and write

G′ = G ∪ {(ϕ(a), G(∃xϕ(x))}. Then (∆′, G′) ∈ P .

Proof. Suppose c ∈ B+ is given; we can suppose c decides G(∃xϕ(x)) (which is equal to

G′(ϕ(a))). Since a does not appear in Tc,∆,G, we have that Tc,∆,G ∪{ϕ(a)} is satisfiable if

and only if Tc,∆,G∪{∃xϕ(x)} is satisfiable, which is the case if and only if c ≤ G(∃xϕ(x)).

Thus, if c ≤ G′(ϕ(a)) then Tc,∆′,G′ is satisfiable. Finally, if c ≤ ¬G′(ϕ(a)), then Tc,∆,G

implies ¬ϕ(a); since Tc,∆,G is satisfiable, so is Tc,∆′,G′ .

Claim 3. Suppose (∆α, Gα : α < α∗) is an increasing chain from P , where α∗ is a limit

ordinal. Write ∆ =
⋃
α ∆α, write G =

⋃
αGα. Then (∆, G) ∈ P .

Proof. Suppose c ∈ B+; then note that Tc,∆,G =
⋃
α<α∗

Tc,∆α,Gα , so we can apply standard

compactness.

To finish the construction of G∗ and hence the proof, note that using Claims 1

through 3 it is now straightforward to find an increasing chain ((∆α, Gα) : α ≤ κ) from P

(recall κ = |X∗| = |X|+ ℵ0) such that:

• For all α < κ, |∆α| ≤ |α|;

• For every formula ϕ(a) ∈ L(X∗), there is α < κ with ϕ(a) ∈ ∆α;

• For every formula ϕ(x) with parameters from X∗, there is a ∈ X∗ and α < κ, such

that {∃xϕ(x), ϕ(a)} ⊆ ∆α and such that Gα(∃xϕ(x)) = Gα(ϕ(a)).
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Then Gκ is visibly as desired.

The following minor modification will frequently be more convenient in applications:

Corollary 3.3.8. Suppose B is a complete Boolean algebra, X is a set, Γ ⊆ L(X), and

F0, F1 : Γ → B with F0(ϕ(a)) ≤ F1(ϕ(a)) for all ϕ(a) ∈ Γ. Then the following are

equivalent:

(A) There is some full B-valued structure M and some map τ : X →M, such that for

all ϕ(a) ∈ Γ, F0(ϕ(a)) ≤ ‖ϕ(τ(a))‖M ≤ F1(ϕ(a));

(B) For every ultrafilter U on B, there is some {0, 1}-valued L-structure M and some

map τ : X →M , such that for all ϕ(a) ∈ Γ, if F0(ϕ(a)) ∈ U then M |= ϕ(τ(a)), and

if F1(ϕ(a)) 6∈ U , then M |= ¬ϕ(τ(a));

(C) For every finite Γ0 ⊆ Γ and for every c ∈ B+, there is some {0, 1}-valued L-structure

M and some map τ : X → M , such that for every ϕ(a) ∈ Γ, if c ≤ F0(ϕ(a)) then

M |= ϕ(τ(a)), and if c ≤ ¬F1(ϕ(a)) then M |= ¬ϕ(τ(a)).

Proof. We can first suppose Γ = L(X), by setting F0 = 0 and F1 = 1 on new formulas.

Then define F : L(X) → B via F (ϕ(a)) = F0(ϕ(a)) ∨ ¬F1(¬ϕ(a)). Apply Theorem 3.3.7

to F , noting that (A), (B), (C) there are each equivalent to (A), (B), (C) here.

Historical Remark. B-valued models appear to be first considered by Mostowski [66].

After the advent of forcing, they were independently defined by Scott and Solovay [72],

and Vopěnka [91]. We follow the more modern notation of Mansfield [62].

In many of these definitions, the evaluation map ‖ · ‖M is defined only on the basic

atomic formulas. Note that clauses (4), (5) and (6) show that this completely determines

‖ · ‖M, but then one must check that condition (3) holds. Rasiowa and Sikorski prove
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this in [70], assuming a short list of axioms for equality and function symbols. This is

their completeness theorem for B-valued models, and it also follows from the proof of

Theorem 3.3.7.

Condition (7) is nonstandard, but tame; if it failed, one should mod out by the

equivalence relation E, defined via aEb if ‖a = b‖M = 1.

3.4 More on Boolean-Valued Models

In this section, we define the appropriate notion of maps between full B-valued

models, and show that λ+-saturated B-valued models exist. Then we define B-valued

ultrapowers.

Definition 3.4.1. Given M,N B-valued L-structures, say that f : M � N is an elemen-

tary map if f : M → N, and for every ϕ(a) ∈ L(M), ‖ϕ(a)‖M = ‖ϕ(f(a))‖N. Note this

implies f is injective, by condition (7) above (this is the reason I insist on (7)). Say that

M � N if the inclusion is elementary.

Say that f : M ∼= N if f : M � N is bijective (and so f−1 : N �M).

If f : M � N are full and U is an ultrafilter on B, then this induces an elementary

map [f ]U : M/U � N/U . When f is the inclusion, we pretend [f ]U is also, even though

the equivalence classes grow.

The following is a typical application of Corollary 3.3.8.

Example 3.4.2. Suppose M is a B-valued L-structure. Then there is some full N �M.

Proof. Write X = M, write Γ = L(M), and write F0 = F1 = ‖ · ‖M, and apply Corol-

lary 3.3.8.

Remark 3.4.3. � has several obvious properties:
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• If f : M → N is a function, where M,N are full B-valued L-structures, and if B is

a complete subalgebra of B∗, then whether or not f : M � N does not depend on

whether we consider M,N to be B-valued structures or B∗-valued structures.

• Suppose α∗ is a limit ordinal, and (Mα : α < α∗) is an increasing chain of full

B-valued L-structures with each Mα �Mα+1. Write Mα∗ =
⋃
α<α∗

Mα and write

‖ · ‖Mα∗ =
⋃
α<α∗

‖ · ‖Mα . Then Mα∗ is a full B-valued L-structure, and for all

α < α∗, Mα �M.

Definition 3.4.4. If T is a complete countable theory, we say that M is a full B-valued

model of T if (M, ‖ · ‖M) is full and ‖ϕ‖M = 1 for all ϕ ∈ T . Let M |=B T be short-hand

for this.

The reader familiar with abstract elementary classes (see, for instance, [1]) will note

that the class of full B-valued models of T can be formulated as an abstract elementary

class, and the following theorem says it has downward Löwenheim-Skolem number ℵ0, the

joint embedding property and the amalgamation property; the existence of λ+-saturated

models follow on general grounds.

Theorem 3.4.5. Suppose T is a complete countable theory and B is a complete Boolean

algebra. Then the following all hold:

1. (Downward Löwenheim-Skolem) Suppose M |=B T and X ⊆ M. Then there is

N �M with X ⊆ N and |N| ≤ |X|+ ℵ0.

2. (Joint Embedding) Suppose M0,M1 |=B T . Then we can find N |=B T such that

there exist embeddings fi : Mi � N.

3. (Amalgamation Property) Suppose M,M0,M1 |=B T and M �M0 and M �M1.
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Then we can find some N |=B T and some fi : Mi � N, such that f0 and f1 agree

on M.

Proof. (1): For each formula ϕ(x, y) (with no hidden parameters), choose fϕ : M|y| →M

such that always ‖ϕ(fϕ(a), a)‖M = ‖∃xfϕ(a)‖M. Choose N ⊆ M with |N| ≤ |X| + ℵ0,

such that N is closed under each fϕ; then N �M.

(2), (3): Use Corollary 3.3.8, and the fact that {0, 1}-valued models of T have joint

embedding and amalgamation.

Definition 3.4.6. Suppose M |=B T where T is a complete countable theory. Then we

say that M is λ-saturated if for all M0 � N0 |=B T with |N0| < λ, we have that every

f : M0 � M can be extended to some g : N0 � M. M is λ-universal if for all N |=B T

with |N| < λ, we can find some f : N �M.

As mentioned above, the following is a general fact about AECs with joint embed-

ding and with amalgamation; the proof is exactly the same as in standard model theory.

Theorem 3.4.7. If M |=B T is λ-saturated, then it is λ-universal. Also, for every λ,

there is some λ-saturated M |=B T .

We will want the following refinement (which doesn’t make sense in general AECs).

Definition 3.4.8. Suppose N,M |=B T , and A ⊆ N. Then say that f : A→M is partial

elementary if or all ϕ(a) ∈ L(A), ‖ϕ(a)‖N = ‖ϕ(f(a))‖M.

Remark 3.4.9. Suppose M |=B T . Then M is λ-saturated if and only if whenever

N |=B T has |N| < λ, and whenever A ⊆ N and f : A → M is partial elementary, then

there is an extension of f to N (or equivalently, to A∪{a} for any a ∈ N). This is because

full B-valued models of T actually have amalgamation over sets: if M0,M1 |=B T and
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‖ · ‖M0 , ‖ · ‖M1 agree on M0 ∩M1, then we can find some K |=B T and some fi : Mi � K,

such that f0 and f1 agree on M ∩N.

We now define Boolean ultrapowers. These are implicit in the work of Scott and

Solovay [72], and made explicit by Vopenka [91]. We follow the notation of Mansfield [62].

These will be helpful in some applications, and they are a relatively concrete source of

examples of B-valued models.

Definition 3.4.10. Suppose M |= T . Let MB be the set of all partitions of B by M ,

namely the set of all functions a : M → B, such that for all a, b ∈M , a(a)∧ a(b) = 0, and

such that
∨
a∈M a(a) = 1. Given ai : i < n a sequence from MB, put ‖ϕ(ai : i < n)‖B =∨

M |=ϕ(ai:i<n)

∧
i<n ai(ai). Note that this does not depend on the choice of a (which is

always allowed to contain more parameters than ϕ uses).

Let i : M → MB be the embedding sending a ∈ M to the function i(a) : M → B

which takes the value 1 on a, and 0 elsewhere. We call this the pre- Loś embedding.

The following theorem is the compilation of Corollary 1.2 and Theorem 1.4 of [62].

Theorem 3.4.11. Suppose M is a {0, 1}-valued structure and B is a complete Boolean

algebra (so M is also a full B-valued structure). Then MB is a full B-valued L-structure,

and i : M �MB.

Proof. We first verify axioms (1) through (5), and (7) of a B-valued model. (1) through

(3) are trivial.

(4): Suppose ϕ(a) is given, write a = (ai : i < n). Define F : Mn → B via

F (ai : i < n) =
∧
i<n ai(ai). Write c := ‖ϕ(a‖M =

∨
F [ϕ(Mn)] and d := ¬‖ϕ(a)‖M =∨

F [¬ϕ(Mn)]. Then c ∧ d = 0 since ϕ(Mn) and ¬ϕ(Mn) are disjoint, and for every

a 6= b ∈ Mn, F (a) ∧ F (b) = 0. Also, c ∨ d = 1 since ϕ(Mn) ∪ ¬ϕ(Mn) = 1, and since
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∨
a∈Mn F (a) = 1. Thus d = ¬c.

(5) is similar.

(7): If a 6= b are elements of MB, we can choose a ∈M such that a(a) 6= b(a). We

can suppose a(a) 6≤ b(a). Then ‖a 6= b‖M ≥ a(a) ∧ ¬b(a) > 0, so ‖a = b‖M < 1.

Now we check axiom (6) together with fullness, as in Remark 3.3.2. Suppose ϕ(x,ai :

i < n) is given. Then for any b, trivially ‖ϕ(b,ai : i < n)‖M ≤ ‖∃xϕ(x,ai : i < n)‖M.

We need to find b such that equality holds.

Write c∗ = ‖∃xϕ(x,ai : i < n)‖M and let D be the set of all nonzero c ≤ c∗ such

that for all i < n, there is a (necessarily unique) ai,c ∈ M such that c ≤ ai(ai,c). This

is easily dense below c∗, so we can find a maximal antichain C ⊆ D below c∗. For each

c ∈ C, choose bc ∈ M such that M |= ϕ(bc, ai,c : i < n). Let C′ be an extension of C to

a maximal antichain of B, and choose bc arbitrarily for c ∈ C′\C. For each b ∈M , define

b(b) =
∨
{c ∈ C′ : bc = b}. Then b ∈MB works.

That i : M �MB follows trivially from the definition.

There is another way of viewing MB, as described in Theorem 1.3 of [62], which is

frequently helpful; note that this is what is really going on in the proof of fullness above.

Definition 3.4.12. Suppose M |= T . Then define an inverse partition of B by M to be

a pair (C, f) where C is a maximal antichain of B and f : C → M . Given two inverse

partitions (C0, f0), (C1, f1), define (C0, f0) ∼ (C1, f1) if there is a common refinement C

of C0,C1, such that for all c ∈ C, if ci is the unique element of Ci with c ≤ ci (for each

i < 2), then f0(c0) = f1(c1).

We can identify MB with the set of all (C, f)/ ∼, where (C, f) is an inverse partition

of B by M ; namely associate to (C, f) the partition a of M by B, such that a = 0
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outside the range of f , and such that a �f [C]= f−1. Given ((Ci, fi) : i < n), note that

‖ϕ((Ci, fi) : i < n)‖M can be evaluated as follows: by chooing a common refinement of

(Ci : i < n), we can suppose Ci = Cj = C for all i < n. Then ‖ϕ((C, fi) : i < n)‖M =∨
{c ∈ C : M |= ϕ(fi(c) : i < n)}.

This is particularly natural when B = P(λ), in which we can always suppose C =

{{α} : α < λ}; this gives an isomorphism MP(λ) ∼= Mλ. This is the reason for the notation

MB.

If M |= T and U is an ultrafilter on B, then we can consider the composition

j := [·]U ◦ i : M →MB/U . We call this the  Loś embedding.  Loś’s theorem states that this

map is elementary in the special case B = P(λ). Mansfield proves the general case in [62],

and seems to credit it to Scott and Vopenka. It follows immediately from what we have

done.

Corollary 3.4.13. Suppose M |= T and U is an ultrafilter on B. Then j : M �MB/U .

Example 3.4.14. Suppose U is an ultrafilter on P(λ), and M |= T is λ+-saturated

(considered as a {0, 1}-valued model of T ). Then Mλ is λ+-saturated (considered as a full

P(λ)-valued model of T ).

Proof. Suppose N |=P(λ) T with |N| ≤ λ. It suffices to show that whenever A ⊆ N and

f : A→Mλ is partial elementary, and whenever a ∈ N, there is some partial elementary

g : A ∪ {a} →Mλ extending f .

So let A, f, a be given. Enumerate A = {aβ : β < λ}. Write bβ = f(aβ), so

bβ : λ → M . Fix α < λ; by λ+-saturation of M , we can find b(α) ∈ M such that for

every ϕ(a, aβ0 , . . . , aβn−1) ∈ L(A ∪ {a}), M |= ϕ(b(α), bβ0(α), . . . , bβn−1(α)) if and only if

α ∈ ‖ϕ(a, aβ0 , . . . , aβn−1)‖N. Then b : λ → M is such that g := f ∪ {(a, b)} is partial

elementary.
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3.5 Keisler’s Order

We now give what we believe is the most natural formulation of Keisler’s order,

in the general context of B-valued models. Namely, we view the following question as

fundamental: suppose M |=B T is λ+-saturated, and U is an ultrafilter on B. Is M/U

λ+-saturated?

We analyze this situation with the following definitions.

Definition 3.5.1. Given M |=B T , and p(x) ⊆ L(M ∪ x), say that p(x) is a partial type

over M if for each finite subset Γ(x) ⊆ p(x), ‖∃x
∧

Γ(x)‖M > 0. By the arity of p(x) we

mean the length of x (always finite).

If p(x) is a partial type over M and U is an ultrafilter on B, let [p(x)]U be the image

of p(x) under [·]U : M → M/U . Say that p(x) is a partial U-type over M if [p(x)]U is a

partial type over M/U .

Theorem 3.5.2. Suppose U is an ultrafilter on the complete Boolean algebra B, suppose

T is a complete first order theory in a countable language, and suppose λ is an (infinite)

cardinal. Then the following are all equivalent.

(A) Whenever M |=B T has |M| ≤ λ, and whenever p(x) is partial U-type over M (of

arity 1), then there is some N �M such that N/U realizes [p(x)]U .

(B) Whenever M |=B T , and whenever p(x) is a partial U-type over M of cardinality at

most λ, then there is some N �M such that N/U realizes [p(x)]U .

(C) Whenever M |=B T , there is some N �M such that N/U is λ+-saturated.

(D) There is a λ+-universal M |=B T such that M/U is λ+-saturated.

(E) Every λ+-saturated M |=B T satisfies that M/U is λ+-saturated.
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Proof. (E) implies (D), and (C) implies (B) implies (A) are trivial.

(D) implies (A): Suppose M∗ is λ+-universal and M∗/U is λ+-saturated. Suppose

M |=B T has |M| ≤ λ and suppose p(x) is a complete U-type over M. Since M∗ is

λ+-universal, after relabeling we can suppose M �M∗. But then M∗/U realizes [p(x)]U ,

since it is λ+-saturated.

(A) implies (C) is a standard union of chains argument.

Thus all the upward implications hold.

(A) implies (E): suppose (A) holds, and let M∗ |=B T be λ+-saturated. Choose

p(x) a partial U-type over M of cardinality at most λ. We can suppose it is a partial

U-type over M0 �M, where |M0| ≤ λ. Choose N �M0 such that N/U realizes [p(x)]U ;

we can suppose |N| ≤ λ. Since M∗ is λ+-saturated, we can suppose after relabeling that

N �M∗, and finish.

We thus feel justified in making the following definition. Previously, this definition

was only made in the case when U is a λ-regular ultrafilter on P(λ).

Definition 3.5.3. Suppose U is an ultrafilter on B, and T is a complete countable theory.

Then say that U λ+-saturates T if some or every of the equivalent clauses of Theorem 3.5.2

hold; for instance, if some or every λ+-saturated M |=B T satisfies that M/U is λ+-

saturated.

Example 3.5.4. Suppose U is an ultrafilter on P(λ) and T is a complete countable

theory. Let M |= T be λ+-saturated. By Example 3.4.14, Mλ is a λ+-saturated P(λ)-

valued model of T . Thus, U λ+-saturates T if and only if Mλ/U is λ+-saturated, which

is the case if and only if U is (λ,B, T )-moral. In the case when U is λ-regular, this agrees

with the standard definition of λ+-saturation, so we have introduced no conflicts.
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We will show in the next section, Theorem 3.6.10, that this holds always: if U is an

ultrafilter on B, then U λ+-saturates T if and only if U is (λ,B, T )-moral. Also, at the

end of the survey, we will prove Corollary 3.16.20, which in particular says the following:

Theorem 3.5.5. Suppose T0, T1 are complete countable theories. Then T0 Eλ T1 if for

every complete Boolean algebra with the λ+-c.c., and for every ultrafilter U on B, if U

λ+-saturates T1 then U λ+-saturates T0.

The proof of Corollary 3.16.20 is involved, and the techniques used are not important

for what we wish to do. This is why we defer the proof.

Alert. In the meantime, we take Theorem 3.5.5 as our operating definition of Eλ.

We explore several alternative formulations of λ+-saturation. First, we give a for-

mulation that is most similar to ultrapowers. Frequently, in arguments involving Keisler’s

order, it is helpful to not only consider ultrapowers of models Mλ/U , but also the ultra-

power of the universe Vλ/U in which they live. For a general complete Boolean algebra B,

VB is typically not saturated enough for this to be helpful, so instead we wish to consider

saturated elementary extensions i : V � V. Actually, this presents formal difficulties

due to quantifying over proper class maps, so instead we consider saturated elementary

extensions i : V � V, for transitive set models V of ZFC−.

Convention. V always denotes the universe of sets. V will denote a transitive set

model of ZFC−. V will denote a full B-valued model of ZFC−, often associated with an

elementary embedding i : V � V.

Definition 3.5.6. Suppose B is a complete Boolean algebra, V |= ZFC− is transitive,

and i : V � V |=B ZFC−. Suppose M ∈ V is a structure in the countable language

L. Then let istd(M) be the full B-valued L-structure defined as follows. Its domain
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is {a ∈ V : ‖a ∈ i(M)‖V = 1} (this set is also denoted istd(M)). Given a formula

ϕ(ai : i < n) ∈ L(istd(M)), let ‖ϕ(ai : i < n)‖istd(M) = ‖i(M) |= ϕ(ai : i < n)‖V.

Example 3.5.7. Let V |= ZFC− and B is a complete Boolean algebra; write V = V B |=B

ZFC− and let i : V � V be the pre- Loś embedding. Suppose M ∈ V . Then istd(M) is

naturally isomorphic to MB.

Thus we can view the istd-operator as a generalization of M 7→MB.

The following theorem is a simple application of Corollary 3.3.8.

Theorem 3.5.8. Suppose B is a complete Boolean algebra, V |= ZFC− and i : V � V.

Suppose M ∈ V is a structure. If V is λ+-saturated, then so is istd(M).

We immediately get the following.

Corollary 3.5.9. Suppose B is a complete Boolean algebra, U is an ultrafilter on B, λ is

a cardinal, and T is a complete countable theory. Then the following are equivalent:

(A) U λ+-saturates T .

(B) For some or every transitive V |= ZFC−, and for some or every i : V � V with V

λ+-saturated, and for some or every M |= T with M ∈ V , istd(M)/U is λ+-saturated.

We now aim for a combinatorial criterion for whether or not U λ+-saturates T ,

which will be helpful for when we want to forget all the model theory. The notion of

distribution was already implicit in Keisler’s work, but Malliaris was the first to use the

word distribution [53]. The term  Loś map is also introduced by Malliaris in [53], in the

case of B = P(λ) and M = Mλ for some M |= T .

Definition 3.5.10. Given an index set I, an I-distribution in B is a function A : [I]<ℵ0 →

B+, such that A(∅) = 1, and s ⊆ t implies A(s) ≥ A(t). If D is a filter on B, we say that
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A is in D if im(A) ⊆ D. I will often be λ, but at other times it is convenient to let I be

a partial type p(x).

Say that A is multiplicative if for all s ∈ [I]<ℵ0 , A(s) =
∧
i∈s A({i}). So, multi-

plicative distributions are in correspondence with maps A : I → B+, such that the image

of A has the finite intersection property.

If A,B are I-distributions in B, then say that B refines A if B(s) ≤ A(s) for all

s ∈ [I]<ℵ0 .

If A is an I-distribution in B and B is a J-distribution in B, then say that A ∼= B

if there is some τ : A ∼= B, that is, some bijection τ : I → J such that for all s ∈ [I]<ℵ0 ,

A(s) = B(τ [s]).

We now connect the notion of distributions to model theory.

Definition 3.5.11. Suppose T is a theory, suppose M |=B T , and some p(x) is a partial

type over M. Then the  Loś map of p(x) is the p(x)-distribution Lp(x) in B defined as

follows: Lp(x)(Γ(x)) = ‖∃x
∧

Γ(x)‖M, for each Γ(x) ∈ [p(x)]<ℵ0 . So if U is an ultrafilter

on B, then p(x) is a partial U-type if and only if Lp(x) is in U .

Generally, A is an (I, T )- Loś map in B if A is an I-distribution in B, and A is

isomorphic to the  Loś-map of some partial type p(x) over some M |=B T . Let the arity of

A be the least possible arity of p(x) witnessing this.

Say that ϕ is an I-sequence of formulas if ϕ = (ϕi(x, yi) : i ∈ I) for some sequence

of formulas ϕi(x, yi), where all of the yi’s are disjoint with each other and with x. Let the

arity of ϕ be the length of x. Say that A is an (I, T, ϕ)- Loś map if A is an (I, T ))- Loś

map, and we can moreover choose the witnesses M, p(x), τ : A ∼= Lp(x) such that for all

i ∈ I, τ({i}) is an instance of ϕi(x, yi).

So A is an (I, T )- Loś map if and only if A is an (I, T, ϕ)- Loś map for some I-sequence
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of formulas ϕ.

The following is a criterion for being a  Loś map that is often easier to evaluate.

Essentially this is a special instance of Corollary 3.3.8.

Theorem 3.5.12. Suppose B is a complete Boolean algebra, A is an I-distribution, and

ϕ = (ϕi(x, yi) : i ∈ I) is an I-sequence of formulas. Then following are equivalent:

(A) A is an (I, T, ϕ)- Loś map.

(B) For every ultrafilter U on B, there is some M |= T and some sequence (ai : i ∈ I)

from M<ω, such that for every s ∈ [I]<ℵ0 , M |= ∃x
∧
i∈s ϕ(x, ai) if and only if

A(s) ∈ U ;

(C) For every s ∈ [I]<ℵ0 , and for every c ∈ B+ such that c decides A(t) for all t ⊆ s,

there is some M |= T and some sequence (ai : i ∈ s) from M<ω, such that for each

t ⊆ s, M |= ∃x
∧
i∈t ϕi(x, ai : i ∈ s) if and only if c ≤ A(t).

Proof. Let Γ ⊆ L(yi : i ∈ I) be T ∪ {∃x
∧
i∈s ϕi(x, yi) : s ∈ [I]<ℵ0}. Define F : Γ→ B via

F �T= 1 and F (∃x
∧
i∈s ϕi(x, yi)) = A(s) for each s ∈ [I]<ℵ0 .

Note then that (A) is equivalent to there being some M |=B T and some map

τ : {yi : i ∈ I} → M, such that for all ψ(y) ∈ Γ, F (ψ(y)) = ‖ψ(τ(y))‖M. Consider

Corollary 3.3.8 with X = {yi : i ∈ I}, Γ as defined above and F0 = F1 = F . Then easily,

(A), (B), (C) of Corollary 3.3.8 are equivalent to (A), (B), (C) here, and so they are all

equivalent.

The following fundamental theorem explains why we care about distributions.

Theorem 3.5.13. Suppose U is an ultrafilter on B, and p(x) is a partial type over M |=B

T . Then the following are equivalent:
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(A) There is N �M such that N/U contains a realization of [p(x)]U ;

(B) Lp(x) has a multiplicative refinement in U .

Proof. (B) implies (A): let B be a multiplicative refinement of Lp(x) in U . We apply

Corollary 3.3.8. Let X = M ∪ {x}. Let Γ = L(M) ∪ p(x), and define F0 : Γ → B via

F0 �M= F1 �M= ‖·‖M and, for each ϕ(x) ∈ p(x), F0(ϕ(x)) = B({ϕ(x)}) and F1(ϕ(x)) = 1.

Multiplicativity of B and the definition of a Loś map translates into (C) of Corollary 3.3.8

hold, and so by (A) of Corollary 3.3.8 and λ+-saturation of M, we can find a ∈M such

that for each ϕ(x) ∈ p(x), ‖ϕ(x)‖M = B({ϕ(x)}). Then [a]U realizes [p(x)]U .

(A) implies (B): Choose N � M and b ∈ N such that [b]U realizes [ṗ(x)]U . For

each Γ(x) ∈ [dom(ṗ(x))]<ℵ0 , put B(Γ(x)) = ‖Γ(b)‖N. Then this is easily a multiplicative

refinement of Lp(x).

Thus:

Theorem 3.5.14. Suppose U is an ultrafilter on the complete Boolean algebra B, and

suppose T is a theory. Then the following are equivalent:

(A) U λ+-saturates T ;

(B) Every (λ, T )- Loś map in U has a multiplicative refinement in U ;

(C) Every (λ, T )- Loś map of arity 1 in U has a multiplicative refinement in U .

Proof. For (A) if and only if (B), use Lemma 3.5.13 and formulation (B) of Theorem 3.5.2.

For (B) if and only if (C), use Theorem 3.5.2 (A) if and only if (B).
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3.6 Saturation of Ultrapowers

In this section, we connect our previous definitions with saturation of ultrapowers,

in particular we will prove Theorem 3.1.2(A). We continue to proceed in the generality

of a complete Boolean algebra B; this necessitates strengthening the notion of regularity.

Many of the ideas required to adapt to the general case are motivated by arguments of

Mansfield in [62].

Definition 3.6.1. Suppose I is an index set and suppose B is a complete Boolean algebra.

Then (ai : i ∈ I) is an I-regular sequence from B if (ai : i ∈ I) has the finite intersection

property, and for each J ∈ [I]ℵ0 ,
∧
i∈J ai = 0. Say that (ai : i ∈ I) is strongly I-regular if

additionally, the set of all b ∈ B+ which decide each ai is dense.

Suppose D is a filter on B and λ is a cardinal. Then D is (strongly) λ-regular if

there is a (strongly) λ-regular sequence (aα : α < λ) such that each aα ∈ D.

For example, if U is a λ-regular ultrafilter on P(λ), then U is also strongly λ-regular.

In general this holds whenever U is λ+-distributive.

The following easy lemma is proved in many places for P(λ), see e.g. Lemma 1.3

from Chapter 6 of [75].

Lemma 3.6.2. Suppose λ is infinite and B has an antichain of size λ. Then B admits a

strongly λ-regular sequence, and hence also a strongly λ-regular ultrafilter.

Proof. Let (cs : s ∈ [λ]<ℵ0) be an antichain from B. For each α < λ, let aα =
⋃
α∈s cs.

Then (aα : α < λ) is strongly (ℵ0, λ)-regular. Any extension to an ultrafilter is strongly

λ-regular.

In fact, the converse holds. We remark that when building ultrafilters with λ+-

63



saturation in mind, the main case of interest is in complete Boolean algebras B with the

λ-c.c.; thus, having an antichain of size λ should be viewed as rare.

Theorem 3.6.3. Suppose B is a complete Boolean algebra. Then B admits a strongly

λ-regular sequence if and only if B has an antichain of size λ.

Proof. If B has an antichain of size λ, use Lemma 3.6.2. Conversely, suppose B admits a

strongly λ-regular sequence (aα : α < λ).

Let cγ : γ < κ be a maximal antichain from B such that each cγ decides each aα.

For each γ < κ, define Yγ = {α < λ : cγ ≤ aα}. So each |Yγ | < ℵ0, but
⋃
γ Yγ = λ. Thus

λ is the union of κ-many finite sets, so κ = λ, and B has an antichain of size λ.

We will want the following lemma.

Lemma 3.6.4. Suppose B is a complete Boolean algebra, and (ai : i ∈ I) is a strongly I-

regular sequence from B, and bi ≤ ai for each i, and (bi : i ∈ I) has the finite intersection

property. Then (bi : i ∈ I) is strongly I-regular.

Proof. We need to show that the set of all c ∈ B+ which decide each bi is dense.

Given c ∈ B+, choose c0 ≤ c such that c0 decides each ai. Let X = {i ∈ I : c0 ≤ ai},

a finite subset of I. Note that c0 ≤ ¬bi for each i 6∈ X. Choose c1 ≤ c0 such that c1

decides bi for each i ∈ X; then clearly c1 decides bi for all i ∈ I.

In order to deduce saturation properties of MB/U from regularity of U , we will need

a more general notion of (λ, T )- Loś maps.

Definition 3.6.5. Suppose A and B are I-distributions in B. Then say that B con-

servatively refines A if there is a multiplicative I-distribution C such that each B(s) =

A(s) ∧C(s). Equivalently, for all s ∈ [λ]<ℵ0 , B(s) = A(s) ∧
∧
i∈s B({i}).
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We remark on a simple but important point.

Lemma 3.6.6. Let B be a complete Boolean algebra and let U be an ultrafilter on B. If

A is an I-distribution in U and B is a conservative refinement of A in U , then B has a

multiplicative refinement in U if and only if A does.

Proof. Since B refines A, any multiplicative refinement of B is also one of A.

Suppose C is a multiplicative refinement of A in U . Then define C′(s) = C(s) ∧∧
i∈s A({i}) ∈ U . This is clearly multiplicative, and since C refines B, we get C′(s) ≤

B(s) ∧
∧
i∈s A({i}) = A(s) so C′ refines A.

Definition 3.6.7. Suppose A is a distribution in B. Then say A is an (I, T )-possibility if

A is a conservative refinement of an (I, T )- Loś map. If ϕ is an I-sequence of formulas, then

say that A is an (I, T, ϕ)-possibility if A is a conservative refinement of an (I, T, ϕ)-Loś

map.

So A is an (I, T )-possibility if and only if A is an (I, T, ϕ)-possibility for some

I-sequence of formulas ϕ.

The following is analogous to Theorem 3.5.12.

Theorem 3.6.8. Suppose B is a complete Boolean algebra, A is an I-distribution, and

ϕ = (ϕi(x, yi) : i ∈ I) is an I-sequence of formulas. Then following are equivalent:

(A) A is an (I, T, ϕ)-possibility.

(B) For every ultrafilter U on B, there is some M |= T and some sequence (ai : i ∈ I)

from M<ω, such that for every s ∈ [I]<ℵ0 with A({i}) ∈ U for all i ∈ s, M |=

∃x
∧
i∈s ϕ(x, ai) if and only if A(s) ∈ U ;
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(C) For every s ∈ [I]<ℵ0 , and for every c ∈ B+ such that c decides A(t) for all t ⊆ s

and such that c ≤ A({i}) for all i ∈ s, there is some M |= T and some sequence

(ai : i ∈ s) from M<ω, such that for each t ⊆ s, ∃x
∧
i∈t ϕi(x, ai : i ∈ s) is consistent

if and only if c ≤ A(t).

Proof. Let Γ ⊆ L(yi : i ∈ I) be T ∪ {∃x
∧
i∈s ϕi(x, yi) : s ∈ [I]<ℵ0}. Define F0 : Γ → B

via F0 �T= 1 and F0(∃x
∧
i∈s ϕi(x, yi)) = A(s) for each s ∈ [I]<ℵ0 . Define F1 : Γ→ B via

F1 �T= 1 and F1(∃x
∧
i∈s ϕi(x, yi)) = A(s) ∨

∨
i∈s ¬A{i} for each s ∈ [I]<ℵ0 .

I claim that (A) is equivalent to there being some M |=B T and some map τ : {yi : i ∈

I} →M, such that for all ψ(y) ∈ Γ, F0(ψ(y)) ≤ ‖ψ(τ(y))‖M ≤ F1(ψ(y)). Indeed, suppose

(A) holds via B, that is B is an (I, T, ϕ)- Loś map and A is a conservative refinement of

B. Choose τ∗ : B ∼= Lp(x), where p(x) is a partial type over M. Let A′ = A ◦ τ−1
∗ , a

p(x)-distribution with τ∗ : A ∼= A′. Note τ∗(ϕi(x, yi)) = ϕi(x, ai) for some ai ∈ M; let

τ : {yi : i ∈ I} →M be given by yi 7→ ai (this is well-defined since we are assuming the

yi’s are all disjoint from each other). Clearly this works, and the argument reverses.

Consider Corollary 3.3.8 with X = {yi : i ∈ I}, and Γ, F0, F1 as defined above.

Then easily, (A), (B), (C) of Corollary 3.3.8 are equivalent to (A), (B), (C) here, and so

they are all equivalent.

It is finally convenient to state Malliaris and Shelah’s definition of morality from [56]:

Definition 3.6.9. Suppose T is a complete countable theory, B is a complete Boolean

algebra, and U is an ultrafilter on B. Then U is (λ,B, T )-moral if every (λ, T )-possibility

A in U has a multiplicative refinement in U .

Then we have the following, as promised:
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Theorem 3.6.10. Suppose U is an ultrafilter on B. Then U λ+-saturates T if and only

if U is (λ,B, T )-moral.

Proof. By Theorem 3.5.14 and Lemma 3.6.6.

Henceforward we avoid the terminology “(λ,B, T )” moral.

We now integrate the hypothesis of regularity.

Definition 3.6.11. Suppose A is an I-distribution in B. Then say that A is strongly

I-regular if (A({i}) : i ∈ I) is strongly I-regular.

So by Lemma 3.6.4, if A is strongly I-regular and B is a refinement of A, then

B is strongly I-regular. Also, easily if A is strongly I-regular, then the set of all c ∈ B

which decide A(s) for all s ∈ [I]<ℵ0 is dense, and hence (A(s) : s ∈ [I]<ℵ0) is strongly

[I]<ℵ0-regular.

We are now finally ready to prove Keisler’s original Theorem 3.1.2(A). (Note that

we have already proved (B), via Theorem 3.5.2 and Example 3.4.14.)

Theorem 3.6.12. Suppose B is a complete Boolean algebra, and U is a strongly λ-regular

ultrafilter on B. Then the following are equivalent:

(A) U λ+-saturates T ;

(B) Every strongly λ-regular (λ, T )-possibility in U has a multiplicative refinement in U ;

(C) For some M |= T , MB/U is λ+-saturated;

(D) For every M |= T , MB/U is λ+-saturated.

Proof. (A) if and only if (B) is by Theorem 3.6.10 and Lemma 3.6.4.
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(B) implies (D): suppose M |= T , and p(x) is a partial U-type over MB of cardinality

≤ λ. Let A be a conservative, strongly I-regular refinement of Lp(x) in U . Let B be

a multiplicative refinement of A in U . Let C be a maximal antichain of B such that

each c ∈ C decides each B({ϕ(x)}). For each c ∈ C, let Γc(x) = {ϕ(x) ∈ p(x) :

c ≤ B({ϕ(x)})}. Then |Γc(x)| < ℵ0, and so we can f(c) ∈ M realizing Γc(x). Then

clearly [(C, f(c))]U ∈MB/U realizes p(x). (Here we are viewing MB as the set of inverse

partitions of B by M .)

(D) implies (C): trivial.

(C) implies (B): Choose M |= T such that MB/U is λ+-saturated, and let A be a

strongly λ-regular (λ, T )-possibility. Say A is a (λ, T, ϕ)-possibility, where ϕ = (ϕα(x, yα) :

α < λ). Let C be a maximal antichain of B such that each c ∈ C decides each A(s), for

s ∈ [λ]<ℵ0 . Given c ∈ C, let ∆c = {α < λ : c ≤ A({α})}; so |∆c| < ℵ0. Thus we can find

(fα(c) : α ∈ ∆c) from M such that for all s ∈ [∆c]<ℵ0 , M |= ∃x
∧
α∈s ϕα(x, fα(c)) if and

only if c ≤ A(s). Let fα(c) be arbitrary if α 6∈ ∆c.

For each α < λ, let aα ∈ MB be the element corresponding to the inverse par-

tition (C, fα) of M . Let p(x) = {ϕα(x, aα) : α < λ}. Note that given s ∈ [λ]<ℵ0 ,

‖∃x
∧
α∈s ϕα(x, aα)‖MB =

∨
{c ∈ C : c ≤ A(s)} = A(s) ∈ U . In particular p(x) is a

partial U-type over MB. Let a ∈MB be such that [a]U realizes p(x). After refining C, we

can suppose a is represented by the inverse partition (C, f) of M .

For each s ∈ [λ]<ℵ0 , let B(s) = ‖
∧
α∈s ϕα(a, aα)‖. So B(s) is a multiplicative

distribution in U , and clearly B(s) refines A(s).
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3.7 Good Ultrafilters

The following definition is natural, in view of Theorem 3.5.14; it is originally due

to Keisler [34] (in the case B = P(λ)), although we drop his requirement that U be

ℵ1-incomplete.

Definition 3.7.1. The ultrafilter U on the complete Boolean algebra B is λ+-good if

every λ-distribution in U has a multiplicative refinement in U .

For example, the unique ultrafilter on {0, 1} is λ+-good for all λ. More generally,

principal ultrafilters are λ+-good for all λ. Theorem 3.15.1 shows the converse as well.

Also, note that if U is λ-complete then it is λ+-good: given a λ-distribution A in U ,

just let B(s) =
∧
{A(t) : max(t) ≤ max(s)}. Then B is a multiplicative refinement of A

in U . In particular, every ultrafilter is ℵ1-good. Also note that if U is λ+-good and κ ≤ λ

then U is also κ+-good.

The following theorem of Keisler [34] is the key property of λ+-good ultrafilters.

Theorem 3.7.2. Suppose U is an ultrafilter on B. Then the following are equivalent:

(A) U is λ+-good.

(B) For every countable complete theory T , U λ+-saturates T .

(C) U λ+-saturates Th([ω]<ℵ0 ,⊆).

Thus Th([ω]<ℵ0 ,⊆) is maximal in Keisler’s order.

Proof. (A) implies (B): by Theorem 3.5.14.

(B) implies (C): trivial.

(C) implies (A): Let T = Th([ω]<ℵ0 ,⊆).
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Suppose U is an ultrafilter on I, and is not λ+-good. That means that there is a

distribution A in U which has no multiplicative refinement in U . Let ϕ = (ϕα(x, yα)) be

defined by: ϕα(x, yα) is x ⊆ yα. Then by Theorem 3.6.10 it suffices to show that A is a

(λ, T, ϕ)- Loś map.

We apply Lemma 3.5.12, using Characterization (C). So let s ⊂ λ be finite and let

c ∈ B decide A(t) for all t ⊆ s. Let J = {t ⊆ s : c ≤ A({t}). Let (nt : t ∈ J ) be distinct

elements of ω, and for each i ∈ s, let ai = {nt : i ∈ t ∈ J }. Then clearly for any t ⊆ s,⋂
i∈t ai is nonempty if and only if t ∈ J , as desired.

We also remark on the following theorem of Mansfield, namely Theorem 4.1 [62]:

Theorem 3.7.3. Suppose U is a λ+-good and ℵ1-incomplete ultrafilter on B. Then for

any {0, 1}-valued structure M , MB/U is λ+-saturated. In particular, if U is ℵ1-incomplete

then MB/U is ℵ1-saturated.

The proof of Theorem 3.7.3 proceeds by showing that if U is λ+-good and ℵ1-

incomplete, then U is strongly λ-regular, and so we can apply Theorems 3.6.12 and 3.7.2.

(Mansfield did not use the terminology of strongly λ-regular, but the concept is implicit,

and in fact this motivated our definition of strongly λ-regular.) We will eventually prove

the stronger Theorem 3.14.16, which optimizes the hypothesis of λ+-good; so we defer the

proof of Theorem 3.7.3 for now.

We now discuss existence of λ+-good ultrafilters. In [34], Keisler showed that if

2λ = λ+, then there is a λ-regular ultrafilter on P(λ). In [45], Kunen removed the

hypothesis that 2λ = λ+. With Theorem 3.16.1, we will prove that if B is any complete

Boolean algebra with an antichain of size λ, then B admits a strongly λ-regular, λ+-good

ultrafilter. Conversely, it will follow from Theorem 3.15.1 that if U is a nonprincipal,
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λ+-good ultrafilter on B, then B has an antichain of size λ.

Constructions of ultrafilters on P(λ) are somewhat complicated, due to the fact that

P(λ) is cramped. In this section, we present a considerably simpler proof that there is

a strongly λ-regular, λ+-good ultrafilter on B2λℵ0ℵ0
. We hope the reader will find this

enlightening, although we will not make direct use of it. We recall the definitions:

Definition 3.7.4. For sets X,Y and a regular cardinal θ, let PXY θ be the forcing notion

of all functions partial functions from X to Y of cardinality less than θ, ordered by reverse

inclusion. Let BXY θ be its Boolean algebra completion.

Theorem 3.7.5. Suppose λ is a cardinal. Then there is a strongly λ-regular, λ+-good

ultrafilter U on B2λℵ0ℵ0
.

Proof. For each α ≤ 2λ, write Bα = Bαℵ0ℵ0 , a complete subalgebra of B2λℵ0ℵ0
. We

construct an increasing chain of ultrafilters Uα on Bα, by induction on α ≤ 2λ.

By Theorem 3.6.3, we can find a strongly λ-regular ultrafilter U1 on B1. Note that

any ultrafilter on B2λ extending U1 will also be strongly λ-regular; so now all we have to

arrange is λ+-goodness.

Note that each Bα has the λ+-c.c. (by the ∆-system lemma). In particular, every

element of B2λ can be written as the join of λ-many elements from P2λℵ0ℵ0
. Hence B2λ =⋃

α<2λ Bα (since cof(2λ) > λ), and every λ-distribution in B2λ is in Bα for some α < λ.

Also, there are only |Bλ| = 2λ-many λ-distributions in B.

Thus, by a typical diagonalization argument, it suffices to verify the following:

Claim. Suppose Uα is an ultrafilter on Bα, and A is a λ-distribution in Uα. Then there

is an ultrafilter Uα+1 on Bα+1 extending Uα, such that A has a multiplicative refinement

in Uα+1.
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Proof. Choose a bijection ρ : [λ]<ℵ0 → λ. For each s ∈ [λ]<ℵ0 , let cs = {(α, ρ(s))} ∈

Pα+1ℵ0ℵ0 ⊆ Bα+1; so (cs : s ∈ [λ]<ℵ0) is an antichain, and whenever a ∈ Bα is nonzero,

then a ∧ cs is nonzero for all s. For each s ∈ [λ]<ℵ0 , define B(s) =
∨
{A(t) ∧ ct : s ⊆ t ∈

[λ]<ℵ0 .

B is clearly a λ-distribution.

I claim that B is multiplicative; let s ∈ [λ]<ℵ0 . Suppose towards a contradiction

e :=
(∧

α∈s B{α}
)
∧ (¬B(s)) were nonzero. Then we can find e′ ≤ e nonzero, and (sα :

α ∈ s) a sequence from [λ]<ℵ0 , such that each α ∈ sα, and such that e′ ≤ A(sα) ∧ csα for

each α ∈ s. Since (cs : s ∈ [λ]<ℵ0) is an antichain this implies sα = sα′ = t say, for all

α, α′ ∈ s. Visibly then s ⊆ t, and so e′ ≤ A(t) ∧ ct, contradicting that e′ ∧B(s) = 0.

I claim that Uα ∪ {B(s) : s ∈ [λ]<ℵ0} has the finite intersection property, which

suffices. So suppose towards a contradiction it did not; then we can find s ∈ [λ]<ℵ0 and

a ∈ Uα such that a∧B(s) = 0. But then a∧A(s)∧cs = 0, so a∧A(s) = 0, but A(s) ∈ Uα

so this is a contradiction.

The above ultrafilter construction is extremely typical; in fact, we will always just

be trying to construct as generic an ultrafilter as possible on B, and relying on properties

of B to control saturation. Note that if B has many antichains of size λ then we expect

to get a λ+-good ultrafilter, which is an uninteresting outcome. Hence we will focus on

complete Boolean algebras B with the λ-chain condition, and so our ultrafilters will not

be strongly λ-regular.

3.8 The Interpretability Orders

Suppose we are trying to show T0 Eλ T1. So let B be a complete Boolean algebra

with the λ+-c.c., let U be an ultrafilter on B, let V |= ZFC− be transitive and let
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i : V � V, where V |=B ZFC− is λ+-saturated. Then it suffices to show that for some or

every Mi |= Ti with Mi ∈ V , if istd(M1)/U is λ+-saturated, then so is istd(M0)/U .

Write V̂ = V/U , a {0, 1}-valued model of ZFC−; let j : V � V̂ be the composition

[·]U ◦ i. It turns out that most of our arguments really just involve V̂ , and in fact the

presence of U ,B,V is distracting notational baggage.

The interpetability orders E∗λκ capture this abstract situation; they were introduced

by Shelah [78]. We recall their definitions from Section 3.1. As a convenient piece of

notation (following [61]), we say that every structure M is 1-saturated.

Definition 3.8.1. Suppose T, T∗ are complete countable theories, and C∗ is the monster

model of T∗. Then an interpretation of T in T∗ is given by some definable subset X of

Cn
∗ , and for each m-ary relation symbol R ∈ LT , an m-ary definable subset R∗ ⊆ Xm,

and for each m-ary function symbol f ∈ LT , an m-ary definable function f∗ : Xm → X,

such that (X, . . .) |= T . Given M∗ |= T∗ we always get an interpreted model M |= T . We

depict interpretations as functions I : M∗ 7→M .

Suppose κ is an infinite cardinal or 1, and λ ≥ ℵ0. Suppose T0, T1 are complete

countable theories. Then say that T0 E∗λκ T1 if there is a complete countable theory

T∗and interpretations I0, I1 of M∗ in T∗, such that for all κ-saturated M∗ |= T∗, if we let

Mi = Ii(M∗) be the interpreted model of Ti in M∗, then: if M1 is λ+-saturated, then so

is M0. Say that T0 E∗κ T1 if T0 E∗λκ for all λ.

The two main cases of interest are κ = 1 and κ = ℵ1.

We follow the indexing system of [78], which is modeled after Keisler’s order. In later

papers, e.g. in the recent [61], λ+-saturation is replaced by λ-saturation, and T0 E∗κ T1

is defined to mean T0 E∗λκ T1 for sufficiently large regular λ. We view this as a strange

choice, since under this indexing system it is not known if E∗ℵ1
⊆E.
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It is not immediate that E∗κ is transitive; one has to show one can compose inter-

pretations in a suitable sense. This is stated without proof in [78]. We prove it, for the

record:

Lemma 3.8.2. For all λ > ℵ0, and for all cardinals κ which are infinite or 1, E∗λκ is

transitive.

Proof. Suppose T0, T1, T2 are theories with T0 E∗λκ T1 E∗λκ T2. Let T∗ and interpretations

I0, I1 witness that T0 E∗λκ T1, and let S∗ and interpretations J1, J2 witness that T1 E∗λκ T2.

We can suppose that the languages of T∗ and S∗ are disjoint. Let R∗ be the theory

in the language L(T∗) ∪ L(S∗) ∪ {F}, such that M∗ |= R∗ if and only if M∗ �L(T∗)|= T∗

and M∗ �L(S∗)|= S∗ and FM∗ : I1(M∗ �L(T∗))
∼= J1(M∗ �L(S∗)). It suffices to show that R∗

is consistent, since then it clearly witnesses that T0 E∗λκ T1.

Since consistency is absolute, we can pass to a forcing extension in which there is

some cardinal κ > ℵ0 with κ = κ<κ. Then we can find some M∗,0 |= T∗ and M∗,1 |= S∗

each of size κ and each κ-saturated; we can suppose both models have domain κ. Then

I1(M∗,0) is a κ-saturated model of T1, and of size κ, as is J1(M∗,1); thus, we can find an

isomorphism FM∗ : I1(M∗,0) ∼= J1(M∗,1). Let M∗ be the L(T∗) ∪ L(S∗) ∪ {F}-structure

with universe κ, such that M∗ �L(T∗)= M∗,0, and M∗ �L(S∗)= M∗,1, and FM∗ is as given.

Then M∗ |= R∗.

Dealing with the interpretability ordersE∗κ frequently introduces such complications;

since our main interest remains in Keisler’s order, we introduce our own intepretability

orders E×κ , which are designed with the goal of being user-friendly. Keisler-order proofs

will go through verbatim for E×κ , and will be clearer in this context; further, we will get

an elegant characterization of E×κ in terms of combinatorial characteristics of models of
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ZFC−.

Convention. V̂ will be a model of ZFC−, typically not well-founded. Frequently V̂ will

come from an embedding j : V � V̂ , where V is transitive.

Whenever V̂ |= ZFC−, we will identify HF (the hereditarily finite sets) with its

copy in V̂ . All other elements of V̂ will be decorated with a hat (for instance we write

ω̂ rather than (ω)V̂ ), or at least the attempt will be made; sometimes readability takes

precedence. For instance, we usually say n̂ < m̂ rather than n̂ <̂ m̂ for nonstandard

numbers m̂, n̂. Given X̂ ∈ V̂ , we have the associated subset {â ∈ V̂ : â ∈̂ X̂} of V̂ . We

will not be careful about distinguishing between these going forth.

We say that V̂ is ω-standard, or is an ω-model, if ω̂ = ω (i.e. every natural number

of V̂ has finitely many predecessors). We will mainly be interested in the case where this

fails.

Definition 3.8.3. Suppose V |= ZFC− is transitive, and j : V � V̂ , and M is an L-

structure in V . Then j(M) is a j(L)-structure, where possibly some of the symbols of j(L)

are nonstandard; let jstd(M) be the “reduct” to L.

Example 3.8.4. Suppose U is an ultrafilter on B, and V |= ZFC− is transitive, and

i : V � V where V |=B ZFC− . Write V̂ = V/U . Let j : V � V̂ be the composition

[·]U ◦ i. Then given M |= T with M ∈ V , jstd(M) ∼= istd(M)/U . This is because if a ∈ V

and ‖a ∈ i(M)‖V ∈ U , then we can find b ∈ istd(M) such that ‖a = b‖V ∈ U .

Thus we view the jstd operator as a generalized ultrapower.

Example 3.8.5. Suppose M,N are L-structures. By the proof of Theorem 3.8.2, the

following are equivalent:

• M ≡ N .
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• For some transitive V |= ZFC− with M,N ∈ V , there is some j : V � V̂ such that

jstd(M) ∼= jstd(N).

• For every transitive V |= ZFC− with M,N ∈ V , there is some j : V � V̂ such that

jstd(M) ∼= jstd(N).

This follows from the proof of Lemma 3.8.2. Note this is a baby version of the

Keisler-Shelah theorem [77], which says we can in fact arrange V̂ = V λ/U , for some λ and

some ultrafilter U on P(λ).

We can phrase E∗λκ in these terms as follows:

Lemma 3.8.6. Suppose κ is regular or 1. Then the following are equivalent:

(A) T0 E∗λκ T1;

(B) There is some countable transitive V |= ZFC− with T0, T1 ∈ V , and some Mi |= Ti

both in V , such that whenever j : V � V̂ , if V̂ is κ-saturated and jstd(M1) is

λ+-saturated, then jstd(M0) is λ+-saturated.

(C) There is some countable transitive V |= ZFC− with T0, T1 ∈ V , and some Mi |= Ti

both in V , and some j0 : V � V̂0, and some countable expansion (V̂0, . . .) of V̂0, such

that whenever j1 : (V̂0, . . .) � (V̂ , . . .), if (V̂ , . . .) is κ-saturated and (j1 ◦ j0)std(M1)

is λ+-saturated, then (j1 ◦ j0)std(M0) is λ+-saturated.

Proof. (A) implies (B): Suppose T∗ and interpretations I0, I1 witness that T0 E∗λκ T1.

Let M∗ |= T∗. Choose a countable transitive V |= ZFC− with T∗,M∗, T0, T1 ∈ V .

This works, because if j : V � V̂ has V̂ κ-saturated, then jstd(M∗) is κ-saturated, and

jstd(Mi) = Ii(jstd(M∗)).

(B) implies (C): clear.
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(C) implies (A): Let T∗ be the elementary diagram of (V̂0, . . .). We get natural

interpretations Ii of Ti in T∗, using the constant symbols for j0(Mi). Then this witnesses

T0 E∗λκ T1.

The choices of M0,M1 ∈ V in (B), (C) above are often rather delicate, essentially

because λ+-saturation isn’t well-behaved at this level of generality. It is better to restrict

to realizing pseudofinite partial types. We define what we mean by pseudofinite:

Definition 3.8.7. Suppose V |= ZFC− is transitive, and j : V � V̂ . Say that X ⊆ V̂

is pseudofinite (with respect to V̂ ) if there is some X̂ ∈ V̂ finite in the sense of V̂ , with

X ⊆ X̂. So if X̂ ∈ V̂ , then X̂ is pseudofinite if and only if it is finite in the sense of V̂ .

The following characterization may be helpful for understanding our terminology.

Note that always, the domain of jstd(M) is the same as domain of j(M); we will (try to)

use the former when reasoning in V, and the latter when reasoning in V̂ .

Lemma 3.8.8. Suppose V |= ZFC− is transitive, and j : V � V̂ , and M is an L-structure

in V . Suppose V̂ is ω-nonstandard, and p(x) is a partial type over jstd(M). Then p(x) is

pseudofinite if and only if there is some pseudofinite X ⊆ jstd(M) such that p(x) is over

X.

Proof. Suppose p(x) is pseudofinite; let X be the set of all parameters used in p(x). We

wish to show X is pseudofinite. By hypothesis we can find some set ∆̂ ∈ V̂ finite in the

sense of V̂ , with p(x) ⊆ ∆̂; then define X̂ ∈ V̂ to be the set of all elements of j(M) which

occur as a parameter in a formula in ∆̂. Since ∆̂ is finite in V̂ , so is X̂.

Conversely, suppose p(x) is a partial type over X with X pseudofinite. Let z =

(zi : i < ω) be variables and let (ψn(x, z) : n < ω) enumerate all L-formulas in these

variables. After rearranging, we can suppose each ψn(x, z) only uses the variables (x, zn),
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where zn = (zi : i < n). Choose n̂ ∈ ω̂ nonstandard, and let ∆̂ ∈ V̂ = {ψm̂(x, a) : m̂ <

n̂, a ∈ jstd(M)m̂}. So ∆̂ is finite in V̂ and p(x) ⊆ ∆̂.

We make the following key definition:

Definition 3.8.9. Suppose V |= ZFC− is transitive, and j : V � V̂ , and M is an L-

structure in V . Say that jstd(M) is λ+-pseudosaturated if every pseudofinite partial type

p(x) over a subset of jstd(M) of size at most λ is realized in jstd(M).

Note that in the definition of λ-pseudosaturation, it is enough to consider types p(x)

of arity 1. Also, it is equivalent to require |p(x)| ≤ λ.

Example 3.8.10. Suppose V |= ZFC− is transitive, and j : V � V̂ is ω-standard, and

M is an L-structure in V . Then pseudofinite subsets of V̂ are the same as finite subsets

of V̂ , so jstd(M) is always λ+-pseudosaturated. Thus, the case where V̂ is ω-standard will

be degenerate in our context. Henceforward we will exclude it, even though some of what

we do goes through in a vacuous sense.

The following theorem motivates our interest in λ+-pseudosaturation. It does not

seem to have been articulated before. It is another take on the fundamental phenomenon

underlying Keisler’s order.

Theorem 3.8.11. Suppose V |= ZFC− is transitive and j : V � V̂ is ω-nonstandard,

and M0 ≡ M1 are two elementarily equivalent L-structures in V . Then jstd(M0) is λ+-

pseudosaturated if and only if jstd(M1) is.

Proof. Suppose M1 is λ+-pseudosaturated; we show that M0 is also. As remarked above,

it suffices to consider types of arity 1 (the only effect of this is to increase readability).

Let p(x) = {ϕα(x, aα) : α < λ)} be a pseudofinite type over M0; we show p(x) is realized
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in M0. Choose some pseudofinite ∆̂ ∈ V̂ , such that p(x) ⊆ ∆̂. By separation in V̂ , we

can suppose ∆̂ = ∆̂(x) is a set of j(L)-formulas over j(M0) in the free variable x.

Since V̂ believes j(M0) ≡ j(M1) (by elementarity of j : V � V̂ ), we can find a set

Γ̂(x) of j(L)-formulas over j(M1) in the variable x and a bijection f̂ : ∆̂(x)→ Γ̂(x), such

that the following are true in V̂ :

(I) For every ϕ̂(x, â) ∈ ∆̂(x), f̂(ϕ̂(x, â)) = ϕ̂(x, b̂) for some b̂ ∈ j(M1)|â|;

(II) For every ∆̂0(x) ⊆ ∆̂(x), j(M0) |= ∃x
∧

∆̂0(x) if and only if j(M1) |= ∃x
∧
f̂ [∆̂0(x)].

Let q(x) be the image of p(x) under f̂ . By (I), q(x) is a set of L-formulas over

jstd(M1) in the free variable x. By (II), p(x) is consistent. Visibly q(x) ⊆ Γ̂(x) is pseud-

ofinite.

Thus q(x) has a realization b ∈ jstd(M). Let Γ̂0(x) be defined in V̂ as the set of

all ϕ̂(x) ∈ Γ̂ such that j(M1) |= ϕ̂(b). Let ∆̂0(x) = f̂−1[Γ̂0(x)]. By (II), in V̂ , j(M0) |=

∃x
∧

∆̂0(x), so we can find a ∈ jstd(M0) such that in V̂ , j(M) |= ∆̂0(a). Since p(x) ⊆ ∆̂0(x)

we conclude that a realizes p(x).

One can given an equivalent formulation of the interpretability order E∗κ in terms

of pseudosaturation (see Corollary 3.18.8). However, the formulation is not particularly

natural (we must restrict to V̂ which admit an expansion to a certain theory ZFC−∗ ). We

view the following as the most natural interpretability order:

Definition 3.8.12. Suppose V |= ZFC− is transitive, j : V � V̂ is ω-nonstandard,

and suppose T is a complete countable theory with T ∈ V . Then say that V̂ λ+-

pseudosaturates T if for some or everyM |= T withM ∈ V , jstd(M) is λ+-pseudosaturated.

(This also depends on j; if there is ambiguity we would write (j, V̂ ) λ+-pseudosaturates

T .)
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Suppose κ is infinite or 1. Then say that T0 E
×
λκ T1 if there is some countable

transitive V |= ZFC− containing T0, T1 such that whenever j : V � V̂ , if V̂ is κ-saturated

and ω-nonstandard, and if V̂ λ+-pseudosaturates T1, then also it λ+-pseudosaturates T0.

Say that T0 E×κ T1 if T0 E
×
λκ T1 for all λ.

Note that for κ < κ′, E×κ⊆E×κ′ . Corollary 3.18.8 states that E×κ⊆E∗κ for uncountable

κ. Further, Corollary 3.18.7 states that E×1 ⊆E∗1 also, except perhaps on stable theories.

We do not know about the reverse implications. In any case, henceforward we will prove

positive reductions in E×κ . Corollaries 3.18.7 and 3.18.8 can be used to get corresponding

results for E∗κ.

Similar ideas are used in Corollary 3.18.9 to show that E∗1 and E∗ℵ1
coincide on pairs

of theories which are not both stable. This allows the transfer of several nonreducibility

results to E∗ℵ1
, as described in Corollary 3.18.10.

Remark 3.8.13. Suppose T0, T1 are complete countable theories. As far as we are aware,

it would be equivalent to drop the countability assumption in E×κ , and also to change the

existential quantification for V to a universal quantification. That is, as far as we know,

T0 E×κ T1 if and only if for some or every transitive V |= ZFC− with T0, T1 ∈ V , for every

j : V � V̂ with V̂ κ-saturated and ω-nonstandard, and for every λ, if V̂ λ+-pseudosaturates

T1, then it also λ+-pseudosaturates T0.

We now connect E×κ with Keisler’s order; namely, we will show that E×ℵ1
⊆E.

The following theorem is a simple application of Corollary 3.3.8.

Theorem 3.8.14. Suppose B is a complete Boolean algebra, V |= ZFC− is transitive

and i : V � V. Suppose U is an ultrafilter on B; write V̂ = V/U . If V is λ+-saturated,

then every subset of V̂ of size at most λ is pseudofinite.
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We immediately get the following.

Corollary 3.8.15. Suppose B is a complete Boolean algebra, U is an ultrafilter on B, λ

is a cardinal, and T is a complete countable theory. Then the following are equivalent:

(A) U λ+-saturates T .

(B) For some or every transitive V |= ZFC− with T ∈ V , and for some or every

i : V � V with V λ+-saturated, and for some or every M |= T with M ∈ V ,

istd(M)/U is λ+-saturated.

(C) For some or every transitive V |= ZFC−, for some or every i : V � V with V

λ+-saturated, V/U λ+-pseudosaturates T .

Proof. (A) if and only if (B) is Theorem 3.5.9. (B) implies (C) is trivial. (C) implies (B)

follows from Theorem 3.8.14.

Corollary 3.8.16. Suppose T0 E
×
ℵ1
T1. Then T0 E T1.

Proof. Since every ultrafilter U is ℵ1-good, we have that if V |=B T is ℵ1-saturated, then

so is V/U . Thus we conclude by Corollary 3.8.15(C).

Remark 3.8.17. It is also easy to check that if U is a λ-regular ultrafilter on P(λ), then

every subset of Vλ/U of cardinality at most λ is pseudofinite. This is the reason regularity

is helpful in controlling saturation of ultrapowers.

3.9 Maximality of SOP2

Recall from Theorem 3.7.2 that Keisler proved the existence of a E-maximal class

[34], and it contains Th([ω]<ℵ0 ,⊆). In [75], Shelah showed that in fact every SOP theory

T is maximal, in particular Th(Q, <) is maximal; this is where we can see the beginnings
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of the interpretability-order viewpoint. Later in [78], Shelah improved this to show that

every SOP3 theory is maximal.

Then, in [54], Malliaris and Shelah proved that in fact every SOP2 theory is maximal,

which is best known so far. This is substantially harder than the SOP3-result.

In this section, we describe some of the main concepts from [54], deferring the proof

of their central theorem until the end of the survey, in Section 3.17. We then describe how

this is used to show SOP2 theories are maximal.

A fascinating outgrowth of the ideas developed in [54] is its application to cardinal

invariants of the continuum; in fact, Malliaris and Shelah were able to solve the oldest

open problem in the field, by showing p = t. This is also discussed in Section 3.17.

One large difference in our treatment is that in [54], Malliaris and Shelah use cofinal-

ity spectrum problems as their base set theory. This is is a weak fragment of arithmetic,

not even strong enough for exponentiation. We stick to ZFC−, and thus avoid many

difficulties.

We begin with some definitions.

Definition 3.9.1. If (L,<) is a linear order, and κ, θ are infinite regular cardinals, then

a (κ, θ)-pre-cut in L is a pair of sequences (a, b) = (aα : α < κ), (bβ : β < θ) from L, such

that for all α < α′, β < β′, we have aα < aα′ < bβ < bβ′ . (a, b) is a cut if there is no

c ∈ L with aα < c < bβ for all α, β. Let the cut spectrum of (L,<) be C(L,<) := {(κ, θ) :

L admits a (κ, θ) cut}. Define cut(L,<) = min{κ+ θ : (κ, θ) ∈ C(L,<)}.

Note that it would be equivalent to drop the requirement of regularity.

Definition 3.9.2. By a tree T we mean a partially ordered set (T,<) with meets and

a minimum element 0T , such that the predecessors of every element are linearly-ordered.

In contexts where this conflicts with normal usage (where we want the predecessors to be
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well-ordered) we could call these trees “model-theoretic trees.” Given a tree (T,<) define

tree-tops(T ) to be the least (necessarily regular) κ such that there is a (strictly) increasing

sequence (sα : α < κ) from T with no upper bound in T .

Definition 3.9.3. Suppose V̂ is an ω-nonstandard model of ZFC−. Then define CV̂ =

C(ω̂, <̂), and define pV̂ = cut(ω̂, <̂). Also, let tV̂ be the minimum over all n̂ < ω̂ of

tree-tops(n̂<n̂, ⊂̂). Unraveling the definitions, tV̂ is the least κ such that there is some

n̂ < ω̂ and some increasing sequence (ŝα : α < κ) from n̂<n̂, with no upper bound in n̂<n̂.

Malliaris and Shelah say that V̂ has “κ+-treetops” if κ < tV̂ . Note that tV̂ is can

also be defined as the least κ such that there is some n̂ < ω̂ and some increasing sequence

(ŝα : α < κ) from n̂<n̂, with no upper bound in ω̂<ω̂; this is because if ŝ is any upper

bound, then ŝ �m̂ is an upper bound in n̂<n̂, where m̂ ≤ n̂ is largest so that ŝ �m̂∈ n̂<m̂.

The following lemma is a component of Shelah’s proof in [75] that SOP theories

are maximal. Actually, in the context of the cofinality spectrum problems from [54], this

lemma need not hold. This is an artifact of cofinality spectrum problems; in Section 10

of [54], Malliaris and Shelah derive the lemma in the context of ultrapower embeddings,

following the proof of Shelah’s theorem. In fact, in [59], Malliaris and Shelah comment

that cofinality spectrum problems with exponentiation are enough for this to go through.

Lemma 3.9.4. Suppose V̂ |= ZFC− is ω-nonstandard. Then pV̂ ≤ tV̂ . In fact, (tV̂ , tV̂ ) ∈

CV̂ .

Proof. Suppose (sα : α < κ) is an increasing sequence from n̂∗
<n̂∗ with no upper bound,

where κ is regular. We show (κ, κ) ∈ CV̂ .

Let <̂lex be the lexicographic ordering on n̂<n̂∗∗ .

Note that if s ∈ T̂ , then sα
_(0) ≤̂lex s≤̂lexsα _(n̂∗ − 1) if and only if sα ⊆ s. Since
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(sα : α < κ) is unbounded, it follows that (sα
_(0) : α < κ) and (sα

_(n̂∗ − 1) : α < κ)

form a (κ, κ)-cut in (n̂<n̂∗∗ , (<̂lex)∗).

In V̂ , let σ̂ : (n̂<n̂∗∗ , <̂lex) → (|n̂<n̂∗∗ |, <̂) be the order preserving bijection. Then

(σ̂(sα
_(0)) : α < κ) and (σ̂(sα

_(n̂∗ − 1)) : α < κ) witness that (κ, κ) ∈ C(ω̂, V̂ ).

The following corresponds to Claim 2.14 of [54].

Lemma 3.9.5. Suppose V̂ |= ZFC− is ω-nonstandard. Suppose (T̂ , <̂) is a finite tree in

V̂ . Then tree-tops(T̂ , <̂) ≥ tV̂ .

Proof. There is in V̂ a subtree of ω̂<ω̂ which is isomorphic to T̂ ; so we can suppose that

T̂ is a subtree of ω̂<ω̂. Then T̂ is a subtree of n̂<n̂∗∗ for some n̂∗ < ω̂.

Now suppose (sα : α < κ) is an increasing sequence from T̂ with κ < tV̂ ; we show

there is an upper bound in T̂ . To see this let s+ be an upper bound of (sα : α < κ) in

ω̂<ω̂, and let n̂ be largest so that s+ �n̂ ∈̂ T̂ ; and let s = s+ �n̂.

The following theorem corresponds to Theorem 4.1 of [54], although there the au-

thors must also assume λ < tV̂ in the absence of Lemma 3.9.4.

Theorem 3.9.6. Suppose V̂ |= ZFC− is ω-nonstandard. Suppose p(x) = (ϕα(x, aα) :

α < λ) is a partial type over V̂ of cardinality λ < pV̂ . Suppose X̂ ∈ V̂ is pseudofinite,

and ϕ0(x) is “x ∈ X̂.” Then p(x) is realized in V̂ .

Proof. Obviously this is true when λ is finite.

Suppose the lemma is true for all λ′ < λ; we show it is true for λ. This suffices.

Write n̂∗ = |X̂|.

We choose (sα : α ≤ λ) an increasing sequence from X̂<n̂∗ , such that if we let

n̂α = l̂g(sα), then for all β < α < λ and for all n̂ < n̂α, V̂ |= ϕβ(sα(n̂), aβ). Obviously

then sλ will be as desired.
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Let s0 = ∅ say. At successor stage α, just use the hypothesis for λ′ = |α| < λ.

Suppose we have defined (sα : α < δ) where δ ≤ λ. Using |δ| < pV̂ ≤ tV̂ (by

Lemma 3.9.4), we may apply Lemma 3.9.5) to choose s+ ∈ X̂<n̂∗ , an upper bound on

(sα : α < δ).

Let m̂0 = l̂g(s+). For β ≤ δ we will define m̂β so that for all α < δ, and for all

β < β′ < δ, n̂α < m̂β′ < m̂β, and further for every β ≤ δ, we have that for every β′ < β

and for every n̂ < m̂β, V̂ |= ϕβ′(s+(n̂), aβ′). Note once we finish we can set sδ = s+ �m̂δ .

Having defined m̂β for β < δ, let m̂β+1 be the greatest m̂ < m̂β such that for all

n̂ < m̂, V̂ |= ϕβ(s+(n̂), aβ); this works. Having defined m̂β for all β < δ′ ≤ δ, since

δ′ ≤ δ ≤ λ < pV̂ we can choose m̂δ′ with n̂α < m̂δ′ < m̂β for all α < δ, β < δ′.

This concludes the construction.

We will want the following tweak (which perhaps fails for cofinality spectrum prob-

lems). It says essentially that if λ < pV̂ , then V̂ is λ+-pseudosaturated. Note that when

considering types over models of ZFC−, it always suffices to consider formulas with sin-

gleton parameters, since ZFC− has definable pairing functions.

Theorem 3.9.7. Suppose V̂ |= ZFC− is ω-nonstandard and λ < pV̂ is an infinite cardi-

nal. Suppose p(x) = {ϕα(x, aα) : α < λ} is a partial type over V̂ , such that {aα : α < λ}

is pseudofinite. Then p(x) is realized in V̂ .

Proof. We first consider some special cases.

Case 1. Suppose each ϕα(x, aα) is ϕ(x, aα) for some fixed formula ϕ(x, y). Let X̂ ∈ V̂

be finite in V̂ with each aα ∈ X̂. By applying collection in V̂ (to the finite set P̂(X̂)), we

can find some Ŷ ∈ V̂ such that for every X̂0 ⊆ X̂, if there is some b ∈ V̂ such that ϕ(b, a)
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holds for every a ∈ X̂0, then there is some such b ∈ Ŷ . By choosing a well-ordering of Ŷ

and picking least witnesses, we can suppose Ŷ is finite in the sense of V̂ .

Let q(x) = p(x) ∪ {“x ∈ Ŷ ”}. By Theorem 3.9.6, it suffices to note that q(x) is

finitely satisfiable. But this is clear, by choice of Ŷ .

Case 2. Suppose each ϕα(x, aα) is Σn, for some fixed n < ω. Let ψ(x, y, z) be a truth

predicate for Σn formulas; that is, for all Σn-formulas ϕ(x, y), ZFC− proves

∀x∀y(ψ(x, y, ϕ(x, y))↔ ϕ(x, y))

(we can suppose ϕ(x, y) is hereditarily finite, hence 0-definable uniformly in all

models of ZFC−, so it makes sense to plug it in as a parameter). Then we can replace

each ϕα(x, aα) by ψ(x, aα, ϕα(x, y)), and so we are in the first case.

General case. Write X = {aα : α < λ}; choose X̂ ∈ V̂ finite in the sense of V̂ , with

X ⊆ X̂. For each n < ω, let In = {α < λ : ϕα(x, aα) is Σn} and let pn(x) = {ϕα(x, aα) :

α ∈ In}; so each pn(x) ⊆ pn+1(x) and p(x) =
⋃
n pn(x). By Case 2, we can find a

realization bn of pn(x). By Case 2 (or even Case 1, and just using λ ≥ ℵ0), we can find

some n̂∗ < ω̂ nonstandard and some some function f̂ ∈ V̂ with domain n̂∗, such that for

all n < ω, f̂(n) = bn. For each n̂ < n̂∗, write bn̂ = f̂(n̂).

For each m < ω, choose some truth predicate ψm(x, y, z) for Σm-formulas. For each

n̂ < n̂∗, let ∆̂m,n̂ be the set of all Σm-formulas of set theory ϕ̂(x, a) in V̂ (so not necessarily

a real formula of set theory) such that a ∈ X̂ and V̂ |= ψm(bn̂, a, ϕ̂(x, y)). By Case 2,

we can find some ∆̂m such that for all m ≤ n < ω, ∆̂m ⊆ ∆̂m,n, and for all α ∈ Im,

ϕ(x, aα) ∈ ∆̂m. By overflow, we can find some n̂m < ω̂ nonstandard, such that for all

n ≤ n̂ ≤ n̂m, ∆̂m ⊆ ∆̂m,n̂.

By Case 2 again, we can find some n̂ < ω̂ nonstandard, such that n̂ < n̂m for all
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m < ω. Then for all m < ω, ∆̂m ⊆ ∆̂m,n̂. But this implies bn̂ realizes pm(x) for all m < ω,

hence bn̂ realizes p(x).

The following corollary follows immediately from Theorem 3.9.7. Similar ideas are

implicit in Shelah’s proof in [75] that SOP theories are maximal in Keisler’s order.

Corollary 3.9.8. Suppose V |= ZFC− is transitive and j : V � V̂ is ω-nonstandard and

λ < pV̂ . Then for all complete, countable theories T , V̂ λ+-pseudosaturates T .

Finally, the following theorem is Central Theorem 9.1 of [54] (except in the context

of cofinality spectrum problems, only ≥ is necessarily true).

Theorem 3.9.9. Suppose V̂ |= ZFC−. Then pV̂ = tV̂ .

We describe Malliaris and Shelah’s proof of Theorem 3.9.9 in Section 3.17.

We can now easily show that SOP2 theories are maximal in Keisler’s order. In fact

we will show they are maximal in E×1 ; this is both more general and more transparent,

although it requires no extra argument. Relatedly, Malliaris and Shelah note in [59] that

SOP2 is maximal in E∗1, although this does require extra argument. Alternatively, one can

deduce maximality of SOP2 in E∗1 from maximality in E×1 and the general Corollary 3.18.7.

Definition 3.9.10. Suppose T is a complete countable theory and ϕ(x, y) is a formula.

Then ϕ(x, y) has SOP2 if there are (as : s ∈ ω<ω) each of the same length as y, such

that for each η ∈ ωω, (ϕ(x, aη�n) : n < ω) is consistent, but whenever s, t ∈ ω<ω are

incomparable, ϕ(x, as) ∧ ϕ(x, at) is inconsistent. By compactness, this is equivalent to

saying for each n < ω, there are (as : s ∈ n<n) satisfying the analogous properties. T has

SOP2 if some formula of T does. Otherwise it has NSOP2.
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Actually, these are the standard definitions of TP1; for SOP2, typically one uses

2<ω instead of ω<ω. But this is equivalent, see [38].

Theorem 3.9.11. Suppose V |= ZFC− is transitive and j : V � V̂ is ω-nonstandard,

and suppose T ∈ V is a countable complete theory with SOP2, and suppose λ ≥ tV̂ . Then

V̂ does not λ+-pseudosaturate T .

Proof. By decreasing λ we can suppose λ = tV̂ . Suppose towards a contradiction that V̂

did λ+-pseudosaturate T . Let M |= T with M ∈ V . Let ϕ(x, y) be a formula of T with

SOP2.

Let n̂∗ < ω̂ and let (ŝα : α < λ) be an increasing sequence from n̂<n̂∗∗ with no upper

bound in n̂<n̂∗∗ .

By elementary, we can choose f̂ : n̂<n̂∗∗ → jstd(M)lg(y) in V̂ , such that (f̂(ŝ) : ŝ ∈

n̂<n̂∗∗ ) is as in the definition of ϕ(x, y) being SOP2.

By λ+-pseudosaturation of jstd(M) we can choose a ∈ jstd(M)|x| such that jstd(M) |=

ϕ(a, f̂(ŝα)) for each α < κ. In V̂ , let ŝ∗ be the union of all ŝ ∈ n̂<n̂∗∗ such that jstd(M) |=

ϕ(a, f̂(ŝ)). Then ŝ ∈ n̂<n̂∗∗ is an upper bound to (ŝα : α < λ), contradiction.

Corollary 3.9.12. Suppose T has SOP2. Then T is maximal in E×1 , hence also in E×ℵ1

and E.

Malliaris and Shelah use this in [54] to give a characterization of λ+-goodness among

λ-regular ultrafilters on P(λ). The same argument gives a general characterization in our

context.

Theorem 3.9.13. Suppose U is an ultrafilter on the complete Boolean algebra B and λ

is a cardinal. Then the following are equivalent:

(A) U is λ+-good.
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(B) For some or every transitive V |= ZFC−, and for some or every i : V � V with V

λ+-saturated, λ < pV/U = tV/U .

Proof. In (B), write V̂ = V/U .

(A) implies (B): by Theorems 3.7.2 and 3.8.15, V̂ λ+-pseudosaturates Th(ω,<).

Hence (ω̂, <) is λ+-pseudosaturated, so λ < pV̂ .

(B) implies (A): by Corollary 3.9.8, we know that V̂ λ+-pseudosaturates the theory

Th([ω]<ℵ0 ,⊆), thus by Theorems 3.7.2 and 3.8.15, U is λ+-good.

In terms of characterizing the maximal class of Keisler’s order, all that is known

currently is the following. I proved in [87] that low theories are non-maximal in E. This

is an adaptation of a theorem of Malliaris and Shelah [57]: if there is a supercompact

cardinal, then simple theories are non-maximal in E. For the interpretability order E∗1,

more is known. Results of [8] (Džamonja and Shelah) and [80] (Shelah and Usvyatsov)

together show that if T is NSOP2, and if suitable instances of GCH hold, then T is not

maximal in E∗1. Therefore, consistently SOP2 characterizes maximality in E∗1. The pieces

for this are all put together in [59]. Finally, in [61], Malliaris and Shelah prove in ZFC

that simple theories are not maximal in E∗1.

By Corollary 3.18.10, the corresponding statements for E∗ℵ1
hold also.

3.10 Keisler’s Order on Stable Theories

Having just finished looking at the top of Keisler’s order, we now take a look at

the bottom. The situation here is much better understood. Indeed, Shelah proved the

following in Chapter VI of [75]:

Theorem 3.10.1. The E-minimal class of theories is the class of stable theories without
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the finite cover property. The next-least E-class of theories (exists and) is the class of

stable theories with the finite cover property. In other words:

(A) If T0 is stable without the finite cover property, then for all T1, T0 E T1.

(B) If T1 is stable with the finite cover property, and T2 is either unstable or is stable

with the finite cover property, then T1 E T2.

(C) If T0 is stable without the finite cover property, and T1 is stable with the finite cover

property, and T2 is unstable, then T1 6E T0 and T2 6E T1.

We describe his proof in this section. We actually prove the positive reductions (A)

and (B) in E×ℵ1
. It follows that Theorem 3.10.1 also holds for E×ℵ1

. This is really just a

matter of presentation; Malliaris and Shelah have previously observed in [61] that these

results translate to the interpretability order E∗ℵ1
. They also prove there that E∗1 properly

refines E∗ℵ1
on the stable theories, and promise in a forthcoming paper to show E∗1 has

exactly six classes on stable theories.

Definition 3.10.2. Let T be a complete countable theory. Then ∆ is a set of partitioned

formulas if ∆ = {ϕi(x, yi) : i ∈ I}, that is it is a set of partioned formulas with distin-

guished variables x . The arity of ∆ is |x|. Suppose ∆ is a set of partitioned formulas;

then a (positive) ∆-formula is a (positive) boolean combination of formulas of the form

ϕ(x, a) for ϕ(x, y) ∈ ∆ and parameters a ∈ C. A (positive) ∆-type is a partial type p(x),

such that every ϕ(x, a) ∈ p(x) is a (positive) ∆-formula. If A is a set we let S∆(A) be the

set of all maximal ∆-types over A; so we have the obvious restriction map from Sn(A)

to S∆(A), where n is the arity of ∆. If a ∈ C then tp∆(a/A) ∈ S∆(A) is the set of all

∆-formulas ϕ(x, b) such that b ∈ A and |= ϕ(a, b). If ∆ is the single formula ϕ(x, y) we

write ϕ(x, y) instead of {ϕ(x, y)}.
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Suppose I is an index set and ∆ is a set of partitioned formulas of T of arity m. For

an index set I, a set {ai : i ∈ I} is (∆, n)-indiscernible if each ai has length m and for every

tuples of distinct elements (i0, . . . , in−1), (j0, . . . , jn−1) from In, tp∆(ai0/ai1 . . . ain−1) =

tp∆(aj0/aj1 . . . ajn−1).

The formula ϕ(x, y) has the finite cover property if: for every n there exists m > n

and (ai : i < m) such that {ϕ(x, ai) : i < m} is inconsistent, but every n-element subset

is consistent. T has the finite cover property if some formula ϕ(x, y) has the finite cover

property.

The following equivalents of the finite cover property are proved in [75] Chapter

II Theorem 4.4 and Theorem 4.6. One should note that if T does not have the finite

cover property then necessarily T is stable ( [75] Theorem II.4.2). Actually Shelah only

explicitly proves (A) if and only if (B) (Theorem II.4.2) and (C) implies (A) (Theorem

II.4.6), but (B) implies (C) is trivial.

Theorem 3.10.3. For T a stable, complete countable theory, the following are equivalent:

(A) T has the finite cover property.

(B) There is a formula ϕ(x, y, z) such that for every c ∈ C of length |z|, ϕ(x, y, c) defines

an equivalence relation Ec, and for arbitrarily large n there is cn ∈ C|z| such that

Ecn has exactly n classes.

(C) There is some finite set ∆ of partitioned formulas and some M |= T , such that for

arbitrarily large m there is a (∆, n)-indiscernible set {ai : i < m} from M which

cannot be extended to an infinite (∆, n)-indiscernible set from M .

Also, not having the finite cover property implies stability, but we will always just

say “stable and not the finite cover property” for emphasis.
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We now introduce two combinatorial characteristics of models of ZFC−, that will

control how saturated unstable models can be, and how saturated models of theories with

the finite cover property can be, respectively.

Definition 3.10.4. If (L,<) is a linear order with proper initial segment ω, then let

lcf(L,<)(ω) be the least cardinal κ such that there is a descending sequence (aα : α < κ)

from L\ω which is cofinal above ω (i.e., for every a ∈ L, if a < aα for each α < κ, then

a ∈ ω). Also, let µ(L,<) denote the least cardinality of an initial segment L0 of L which

properly contains ω. So lcf(L,<)(ω) ≤ µ(L,<) always.

Suppose V̂ |= ZFC− is ω-nonstandard. Then let lcfV̂ (ω) = lcf(ω̂,<)(ω) (this agrees

with our previous definition) and let µV̂ = µ(ω̂,<). So lcfV̂ (ω) ≤ µV̂ .

The next three theorems will show (A) and (B) hold from Theorem 3.10.1, and make

a fair amount of progress towards (C) as well.

The following is a translation of Theorem VI.4.8 of [75] into the language of inter-

pretability orders.

Theorem 3.10.5. Suppose V |= ZFC− is transitive, and j : V � V̂ is ω-nonstandard,

and suppose T ∈ V is a countable unstable theory. Write λ = lcfV̂ (ω). Then V̂ does not

λ+-pseudosaturate T .

Proof. Choose ϕ(x, y) an unstable T -formula (we can suppose x is a single variable by

Theorem II.2.13 of [75], not that it matters). Let M |= T with M ∈ V .

Choose (anm : m < n < ω) from M |y| such that for each m∗ < n < ω, M |=

∃x
∧
m<m∗

ϕ(x, anm) ∧
∧
m≥m∗ ¬ϕ(x, anm). Let (â

n̂
m̂ : m̂ < n̂ < ω) = j((anm : m < n < ω)).

Let n̂ < ω̂ be nonstandard. Let (ĉα : α < λ) be a decreasing sequence from ω̂ with

ĉ0 = n̂, which is cofinal above ω; this is possible by the definition of λ.
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Let p(x) be the pseudofinite type over jstd(M) defined by: p(x) = {ϕ(x, â
n̂
i ) : i <

ω} ∪ {¬ϕ(x, â
n̂
ĉα) : α < λ}. It suffices to show p(x) is omitted by jstd(M); so suppose

towards a contradiction b ∈ jstd(M) realized it. Let Q(m̂∗) be the property: for all

m̂ < m̂∗, ϕ(b, â
n̂
m̂). Q(i) holds for all i < ω, but since (ĉα : α < λ) is cofinal above ω,

Q(m̂∗) fails for all nonstandard m̂∗. This contradicts overspill.

The next two theorems are translations of Theorem VI.5.1 of [75] (except, see the

remark before Theorem 3.10.7).

Theorem 3.10.6. Suppose V |= ZFC− is transitive, and j : V � V̂ is ℵ1-saturated.

Suppose T ∈ V is a countable stable theory with the finite cover property, and suppose

M |= T with M ∈ V . Then jstd(M) is µV̂ -saturated but not µ+

V̂
-pseudosaturated.

In particular, if λ is any cardinal, then V̂ λ+-pseudosaturates T if and only if λ < µV̂ .

Proof. Suppose M |= T with M ∈ V . We show jstd(M) is µV̂ -saturated but not µ+

V̂
-

pseudosaturated.

Clearly, jstd(M) is ℵ1-saturated. Thus, to show jstd(M) is µV̂ -saturated, it suffices

by Lemma III.3.10 of [75] to verify that whenever {ai : i < ω} is an indiscernible set from

jstd(M), then it can be extended to an indiscernible sequence of size µV̂ .

Since V̂ is ℵ1-compact, we can choose some ∆̂, n̂, ŵ such that the following hold:

• In V̂ , ∆̂ is a finite set of partitioned formulas of j(T );

• Each formula ϕ(x, y) of T with first variable x is in ∆̂;

• n̂ < ω̂ is nonstandard;

• In V̂ , ŵ = {âm̂ : m̂ < n̂} is a set of elements from j(M) which is (∆̂, n̂)-indiscernible,

and âi = ai for i < ω.
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(It is clear that each finite fragment of the above conditions is satisfiable.) Then

{âm̂ : m̂ < n̂} has cardinality at least µ̂V̂ , and is an indiscernible set extending {ai : i < ω},

so M is µV̂ -saturated.

Now we show that jstd(M) is not µ+

V̂
-pseudosaturated. Let ϕ(x, y, z) be a formula

witnessing (B) of Theorem 3.10.3 holds. Let X ⊆ ω be the set of all n < ω such that for

some c ∈ M |z|, EMc has exactly n classes. Then the nonstandard elements of j(X) are

cofinal above ω; thus we can choose n̂∗ ∈ j(X) nonstandard such that |{n̂ : n̂ < n̂∗}| = µV̂

(as computed in V). Let c ∈ ω̂|z| be such that in V̂ , E
j(M)
c has n̂∗ classes.

Let f̂ : n̂∗ → j(M) choose a representative from each Ec-class. Consider the partial

type p(x) over jstd(M) which says ¬ϕ(x, f̂(n̂), c) for all n̂ < n̂∗. p(x) is pseudofinite, and

by choice of n̂∗, |p(x)| = µV̂ . But p(x) is omitted in jstd(M) by choice of f̂ .

In the following theorem, the fact that jstd(M) is λ+-pseudosaturated for all λ, even

λ ≥ |jstd(M)|, is a novelty of pseudosaturation; but its proof is a simple tweak of the first

claim as proved by Shelah.

Theorem 3.10.7. Suppose V |= ZFC− is transitive, and j : V � V̂ is ℵ1-saturated.

Suppose T ∈ V is a countable stable theory without the finite cover property, and suppose

M |= T with M ∈ V . Then jstd(M) is |ω̂|-saturated, and is λ+-pseudosaturated for all λ.

In particular, for all λ, V̂ λ+-pseudosaturates T .

Proof. Suppose M |= T . Write κ = |ω̂|. We first show jstd(M) is κ-saturated.

We know that jstd(M) is ℵ1-saturated. So it suffices by Lemma III.3.10 of [75] to

verify that whenever {ci : i < ω} is an indiscernible set from jstd(M), then it can be

extended to an indiscernible set of size |ω̂|.

Now, since (C) from Theorem 3.10.3 fails, we can find f : ω → ω such that for all
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n < ω, if {ci : i < f(n)} is a (∆, n)-indiscernible set from M , then it can be extended to

an infinite (∆, n)-indiscernible set. Write f̂ = j(f).

Since V̂ is ℵ1-saturated, we can choose some ∆̂, n̂, ŵ such that the following hold:

• In V̂ , ∆̂ is a finite set of partitioned formulas of j(T );

• Each formula ϕ(x, y) of T is in ∆̂;

• n̂ < ω̂ is nonstandard;

• ŵ = {ĉi : i < f̂(n̂)} is a (∆̂, n̂)-indiscernible set from j(M) with ĉi = ci for i < ω.

But then by choice of f and elementarity, we can find in V̂ an infinite (∆̂, n̂)-

indiscernible set {ĉm̂ : m̂ < ω̂}. In V, this is an indiscernible set of size κ extending

{ci : i < ω}.

Now we check that jstd(M) is λ+-pseudosaturated for all λ. This will essentially be

a tweak of the proof of Lemma III.3.10 of [75]:

Let p(x) be a pseudofinite type over jstd(M), say p(x) is over X̂ ∈ V̂ with X̂

pseudofinite. We wish to show p(x) is realized in jstd(M).

Let q(x) be a non-forking extension of p(x) to jstd(M). Let (aα : α < ω + ω) be

Morley sequence in q(x) (i.e., each aα realizes q(x) �a(β):β<α), with each aα ∈ jstd(M); we

can find such a sequence by ℵ1-saturation. Note that q(x) is based on (aα : ω ≤ α < ω+ω).

By the preceding argument, we can find a set {ân̂ : n̂ < ω̂} in V̂ with âi = ai for all i < ω,

which when considered in V is an indiscernible set.

By overspill, we can find, in V̂ , a finite set ∆̂ of j(L)-formulas, containing all of the

true formulas of L. By Ramsey’s theorem in V̂ , we can find Ŷ ⊆ ω̂ infinite, such that

{ân̂ : n̂ ∈ Ŷ } is ∆̂-indiscernible over X̂. Then in V, {ân̂ : n̂ ∈ Ŷ } is indiscernible over X̂.

It suffices to show that for some or every n̂ ∈ Ŷ , ân̂ realizes p(x) (the choice of n̂
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does not matter by indiscernibility). Suppose ϕ(x, b) ∈ p(x) is given; suppose towards a

contradiction that jstd(M) |= ¬ϕ(ân̂, b) for some or every n̂ ∈ Ŷ .

Write ψ(y, x) = ϕ(x, y). Choose i∗ < ω such that tpψ(b/{aα : α ∈ i∗+1∪ [ω, ω+ω)}

does not fork over {aα : α ∈ i∗ ∪ [ω, ω+ ω)}. Since q(x) is based on {aα : ω ≤ α < ω+ ω}

we must have that jstd(N) |= ϕ(ai, b) for all i ≥ i∗.

Write J = {i < ω : i ≥ i∗} ∪ Ŷ . Then {aj : j ∈ J} is indiscernible, and there are

infinitely many j ∈ J with jstd(M) |= ϕ(aj , b), and there are infinitely many j ∈ J with

jstd(M) |= ¬ϕ(aj , b). This easily contradicts the stability of ϕ(x, y).

Thus we have shown (A) and (B) hold of Theorem 3.10.1; we now aim towards

showing (C). This will be an ultrafilter construction. Shelah’s proof in [75] essentially

goes through a precursor to Theorem 3.1.9. We will give a streamlined treatment in terms

of complete Boolean algebras.

Suppose U is an ℵ1-incomplete ultrafilter on the complete Boolean algebra B. Recall

as a special case Definition 3.4.10 that if B is a complete Boolean algebra, then (ω,<)B

is a full B-valued model of Th(ω,<). Its domain is the set of all partitions of n by ω,

that is, the set of all n : ω → B such that for all n < m, n(n) ∧ n(m) = 0, and such that∨
n n(n) = 1. We have ‖n < m‖ωB =

∨
n<m n(n) ∧m(m), and similarly for ≤,=, etc. If

U is an ultrafilter on B, then we view (ω,<)B/U as an elementary extension of (ω,<).

Definition 3.10.8. Suppose U is an ℵ1-incomplete ultrafilter on the complete Boolean

algebra B. Then define µU = µ(ω,<)B/U and define lcfU (ω) = lcf(ω,<)B/U (ω).

Again lcfU (ω) ≤ µU .

In order to see that these definitions are significant, we need the following theorem

and corollary.

96



Theorem 3.10.9. Suppose B is a complete Boolean algebra, and (ω,<) � (L, <) is a B-

valued elementary extension with (L, <) ℵ1-saturated. Then there is a unique embedding

i : (ω,<)B � (L, <) which is the identity on ω. The image of i consists exactly of those

n ∈ L such that
∨
n<ω ‖n = n‖L = 1. Thus, if n is in the image of i and ‖m ≤ n‖L = 1,

then m is in the image of i.

Proof. Given n ∈ (ω,<)B, we can by ℵ1-saturation find m ∈ L such that each ‖m =

n‖L = n(n). I claim that this specifiies m uniquely, so that we can set i(n) = m.

Indeed, suppose m′ were another element of L with each ‖m′ = n‖L = n(n). Then∨
n ‖m = n‖L =

∨
n ‖m′ = n‖ = 1, so we can choose a maximal antichain C of B such

that for each c ∈ C, there are m(c),m′(c) < ω with c ≤ ‖m = m(c) ∧m′ = m′(c)‖L.

But then each m(c) = m′(c), as otherwise c ≤ n(m(c)) ∧ n(m′(c)) = 0. Thus each

c ≤ ‖m = m′‖L, and this happens on a maximal antichain. Thus ‖m = m′‖L = 1, and

so m = m′.

It is simple to see that i is an elementary embedding, and that we had no choice.

Moreover, if m ∈ L has
∨
n ‖m = n‖L = 1, then we can define n ∈ (ω,<)B with each

n(n) = ‖m = n‖L, so i(n) = m.

The final claim follows easily, since we have the identity:
∨
n ‖n = n‖L = 1 if and

only if
∨
n ‖n ≤ n‖L = 1.

In future we will always suppose (ω,<)B � V, i.e. i is the inclusion.

Corollary 3.10.10. Suppose B is a complete Boolean algebra and U is an ultrafilter on B.

Suppose (L, <) � (ω,<) is ℵ1-saturated. Then (L, <)/U is an end extension of (ω,<)B/U .

Proof. By the above convention, we can suppose (ω,<)B � (L, <). Thus we can also view

(ω,<)B/U � (L, <)/U , and so the statement of the corollary makes sense.
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Suppose n ∈ L and m ∈ (ω,<)B with ‖n ≤ m‖L ∈ U . Note that min(n,m) makes

sense by fullness of L, and that [min(n,m)]U = [n]U . By Corollary 3.10.9, min(n,m) ∈

(ω,<)B, so [n]U ∈ (ω,<)B/U .

Corollary 3.10.11. Suppose U is an ultrafilter on the complete Boolean algebra B. If T

is stable without the finite cover property, then U λ+-saturates T for all λ.

Suppose additionally U is ℵ1-incomplete. If T is stable with the finite cover property,

then U λ+-saturates T if and only if λ < µ+
U . If T is unstable then U does not lcfU (ω)+-

saturate T .

Proof. Suppose V |= ZFC− is transitive; choose i := V � V with V ℵ1-saturated. Write

V̂ = V/U . Then by Corollary 3.10.10, µU = µV̂ and lcfU = lcfV̂ . Thus we conclude by

Theorems 3.8.15, 3.10.5, 3.10.6 and 3.10.7.

One can ask after the situation for ℵ1-complete U ; in fact we will later (see Re-

mark 3.14.12) that if U is ℵ1-complete, then U λ+-saturates every stable theory for every

λ, so it is reasonable to set µU =∞.

Now to finish the proof of Theorem 3.10.1 it suffices to verify the following theorem.

The argument is based on Theorem 3.12 from [75] Chapter 6, although there is a minor

gap in that proof. (Claim VI.3.18 (4) from [75] is false.) The problem does not arise in our

treatment with complete Boolean algebras, although there are also more direct patches.

Recall that Pαℵ0ℵ0 is the forcing notion of all finite partial functions from α to ℵ0,

ordered by reverse inclusion; Bαℵ0ℵ0 is its Boolean algebra completion.

Theorem 3.10.12. Suppose ℵ0 < κ ≤ µ are cardinals with µ = µℵ0 and κ regular. Let

α∗ be the ordinal product µκ, or any other ordinal with cof(α∗) = κ, such that for all

α < α∗, |α∗\α| = µ. Let B = Bα∗,ℵ0,ℵ0 . Then there is an ℵ1-incomplete ultrafilter U on B
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with µU = µ and lcfU (ω) = κ.

Proof. For each α ≤ α∗ let Pα = Pα,ℵ0,ℵ0 and let Bα = Bα,ℵ0,ℵ0 . Note that for α < α′,

(ω,<)Bα � (ω,<)Bα′ , and if n,m ∈ Bα, then ‖n < m‖Bα = ‖n < m‖Bα′ , etc.

For each α < α∗, let nα ∈ (ω,<)Bα+1 be the element defined via nα(m) = {〈α,m〉}

(i.e., the function with domain {α}, which sends α to m).

I claim we can choose by induction on α < α∗ ultrafilters Uα on Bα such that:

(I) For α < α′, Uα ⊆ Uα′ ;

(II) For each α < α∗, nα is Uα+1-nonstandard (i.e. for each m < ω, [nα]Uα+1 > m);

(III) Suppose α < α∗, and for each Uα-nonstandard m ∈ (ω,<)Bα , [nα]Uα+1 < [m]Uα+1 .

Indeed, suppose towards a contradiction we have chosen Uα and cannot continue.

Then there must be some m∗ < ω and some finite tuple (mi : i < i∗) from (ω,<)Bα and

some a ∈ Uα, such that a ∧ ‖nα ≥ m∗‖Bα+1 ∧
∧
i<i∗
‖nα < mi‖Bα+1 = 0.

Write f = {〈α,m∗〉} = ‖nα = m∗‖Bα+1 . Then by wedging the preceding equation

with f , we get that f ∧ a ∧
∧
i<i∗
‖m∗ < mi‖Bα+1 = 0. But a ∧

∧
i<i∗
‖m∗ < mi‖Bα ∈ Uα

is nonzero, so we can find g ∈ Pα below it; then since g and f have no common domain,

g ∪ f = g ∧ f ∈ Pα+1 is nonzero, a contradiction.

Let U =
⋃
α<α∗

Uα. Since Bα∗ has the ℵ1-c.c. and since κ = cof(κ) > ℵ0, we have

that U is an ultrafilter on Bα∗ , and (ω,<)Bα∗ =
⋃
α<α∗

(ω,<)Bα . From this it is clear that

(nα : α < α∗) is a cofinal sequence above ω in (ω,<)Bα∗/U , and hence lcfU (ω) = cof(α∗) =

κ and µU ≥ min{α∗\α : α < α∗} = µ. But also µU ≤ |Bα∗ | ≤ |Pα∗ |ℵ0 = µ, so we are

done.
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3.11 Keisler’s Order is Local

We present a theorem due to Malliaris [53], that says that ultrapowers are saturated

if and only if they are locally saturated. We present this in the terminology of E×ℵ1
; the

translations are straightforward.

First of all we want the following lemma; it is Lemma 9 from [53].

Lemma 3.11.1. Suppose V̂ |= ZFC− is ℵ1-saturated. Suppose θ < lcfV̂ (ω), and X ⊂ V̂

has size at most θ (so X need not be definable). Suppose (X̂n : n < ω) is a sequence of

elements of V̂ with X ⊆ X̂n for each n < ω. Then there is X̂ ∈ V̂ with X ⊆ X̂ ⊆ X̂n for

each n < ω.

Proof. By replacing X̂n with
⋂
m≤n X̂m we can suppose X̂n ⊇ X̂m for n < m. If for some

n < ω we have X̂n = X̂m for all m ≥ n then we are done, so by discarding duplicates we

can suppose X̂n ) X̂m for all n < m. Enumerate X = {âα : α < θ}.

By ℵ1-saturation, we can choose a linear ordering <̂∗ of X̂0 in V̂ , such that for all

â 6∈ X̂n and for all b̂ ∈ X̂n, we have â<̂∗b̂. Additionally we can choose some nonstandard

n̂∗ < ω̂ and some map f̂ : n̂∗ → X̂0 such that:

• f̂(n) ∈ X̂n\X̂n+1 for each n < ω;

• For all n̂ < m̂ < n̂∗, f̂(n̂)<̂∗f̂(m̂).

Note that for each nonstandard n̂ < n̂∗, we have f̂(n̂) ∈
⋂
n∈ω X̂n.

Since θ < lcfV̂ (ω), we can find n̂α : α ≤ θ a descending sequence of nonstandard

numbers from D̂, so that for all α < θ, f̂(n̂α+1)<̂∗âα. Then X̂ := {â ∈ X̂0 : f̂(n̂θ)<̂∗â} is

as desired.
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Recall the definition of “set of partitioned formulas,” etc. from Section 3.10.1. We

will want the following well-known fact:

Lemma 3.11.2. Suppose ∆ = {ϕi(x, yi) : i < n} is a finite set of partitioned formulas.

Then there is a formula ψ(x, z) such that for every infinite set A, every ∆-formula over A

is logically equivalent to a positive ψ-formula over A. In particular every ∆-type over A

is logically equivalent to a positive ψ-type over A, and every complete ∆-type over A is

equivalent to a conjunction of instances of ψ.

Proof. Let z0, . . . , zm−1 = z be new variables, for m large enough (we need there to be

at least 2n distinct partitions of m). Let σi(z) : i < n, τi(z) : i < n be distinct equality

types. Then let ψ(x, y0 . . . yn−1z) be

∧
i<n

σi(z)→ ϕi(x, yi) ∧
∧
i<n

τi(z)→ ¬ϕi(x, yi).

The following is the main theorem of [53], generalized to the context of E×ℵ1
.

Theorem 3.11.3. Suppose V |= ZFC− is transitive, j : V � V̂ is ℵ1-saturated, and

T ∈ V is a complete countable theory. Suppose M |= T with M ∈ V , and λ is a cardinal.

Then the following are equivalent.

(A) jstd(M) is λ+-pseudosaturated;

(B) For every formula ϕ(x, y) and for every positive, pseudofinite ϕ-type p(x) over M of

cardinality at most λ, p(x) is realized in M .

Proof. Obviously (A) implies (B).
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(B) implies (A): We break into cases, and show that in each of them, (B) implies

(A).

First, if T is stable without the finite cover property, then (A) holds.

Second, suppose T is stable with the finite cover property. If λ ≥ µV̂ , then by the

proof of Lemma 3.10.6 we have that (B) fails, and if λ < µV̂ then by Theorem 3.10.6,

jstd(M) is in fact λ+-saturated, so in particular (A) holds.

Third, if T is unstable and λ ≥ lcfV̂ (ω), then by the proof of Lemma 3.10.5 (and

applying Lemma 3.11.2 to ∆ = {ϕ(x, y),¬ϕ(x, y)}), (B) fails.

Finally we have the key case, where T is unstable and λ < lcfV̂ (ω). Suppose

(B) holds, and let p(x) ∈ S1(A), where A ⊆ jstd(M) is pseudofinite. Choose Â ∈ V̂

pseudofinite with A ⊆ Â (we can suppose Â ⊆ jstd(M)). Let (yi : i < ω) be variables,

and for each n < ω, let yn = (yi : i < n). As in the proof of Theorem 3.8.11, we can find

formulas (ϕn(x, yn) : n < ω) which list all L-formulas in the variables (x, yi : i < ω).

For each n < ω, let Xn = {a ∈ An : ϕn(x, a) ∈ p(x)} and let pn(x) = {ϕn(x, a) : a ∈

Xn}, so p(x) is the union of {pn(x) : n < ω}. By hypothesis and Lemma 3.11.2, we can

find an ∈ jstd(M) realizing
⋃
n′≤n pn′(x).

For each n < ω, write X̂0
n = Ân. For each n ≤ i < ω let X̂i+1

n be the set of all b ∈ X̂0
n

such that for each n ≤ j ≤ i, M |= ϕn(aj , b). Clearly, for each n < ω, the hypotheses of

Lemma 3.11.1 are met for Xn and (X̂i
n : n ≤ i < ω). Hence we can choose X̂n from V̂

with Xn ⊆ X̂n ⊆ X̂i
n for each i ≥ n.

Thus, for all m < ω, we have that for all n ≤ m and for each b ∈ X̂n, jstd(M) |=

ϕn(am, b). Write (âm̂ : m̂ < ω̂) = j((am : m < ω)). By ℵ1-saturation, we can find some

nonstandard m̂ such that for all n < ω and for all b ∈ X̂n, jstd(M) |= ϕn(âm̂, b). Then in

particular, âm̂ realizes p(x).
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We now introduce some terminology designed to understand when (B) above holds

for a particular ϕ(x, y). This is closely related to the terminology of characteristic se-

quences, arrays, and diagrams of [49].

Definition 3.11.4. If I is an index set, then a pattern on I is some ∆ ⊆ [I]<ℵ0 such that

∆ is downward-closed (i.e. closed under subsets), and such that [I]1 ⊆ ∆. A ∆-clique is

a subset X ⊆ I with [X]<ℵ0 ⊆ ∆. If ∆ is a pattern on I and ∆′ is a pattern on J , then

say that ∆′ is an instance of ∆ if for all s ∈ [J ]<ℵ0 there is some map f : s→ I such that

for all t ⊆ s, t ∈ ∆′ if and only if f [t] ∈ ∆. Say that two patterns ∆,∆′ are equivalent if

they are instances of each other.

Note that every pattern is equivalent to a pattern on ω. Note also that if ∆ ⊆ [I]<ℵ0

is downward closed, then ∆ is always a pattern on
⋃

∆.

Definition 3.11.5. Suppose ϕ(x, y) is a formula of T and ∆ is a pattern on I. Then ∆

is a (T, ϕ(x, y))-pattern if for every s ∈ [I]<ℵ0 there are M |= T and (ai : i ∈ s) from M ,

so that for all t ⊆ s, M |= ∃x
∧
i∈t ϕ(x, ai) if and only if t ∈ I.

Note that if ϕ(x, y) is a formula of T , then there is a pattern ∆ on ω such that if

∆′ is any pattern on I, then ∆′ is a (T, ϕ(x, y))-pattern if and only if ∆′ is an instance of

∆. This is most useful in specific examples, when we can choose an easy-to-understand ∆

and then forget about T, ϕ(x, y).

Definition 3.11.6. If B is a complete Boolean algebra and A is an I-distribution and ∆

is a pattern on J , then say that A is an (I,∆)-distribution if for every s ∈ [I]<ℵ0 and for

every c ∈ B+ such that c decides At for all t ⊆ s, and such that c ≤ A{i} for all i ∈ s,

there is some f : s→ J such that for all t ⊆ s, c ≤ At if and only if f [t] ∈ ∆. (Compare

this with the characterization of (λ, T )-possibilities in Theorem 3.6.8.)
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If ϕ(x, y) is a formula, then say that A is an (I, T, ϕ(x, y))- Loś map (possibility) if

it is an (I, T, ϕ)- Loś map (possibility), where ϕ = (ϕ(x, yi) : i ∈ I) is obtained from ϕ by

taking I-many disjoint copies yi of y.

Finally, we define what will be, for our purposes, an exhaustive list of combinatorial

invariants of models of ZFC−.

Definition 3.11.7. Suppose V |= ZFC− is transitive, j : V � V̂ , and suppose ∆ ∈ V

is a pattern on I (so I ∈ V ). Then let λV̂ (∆) be the least λ such that there is some

pseudofinite X ⊆ jstd(I) with |X| ≤ λ, such that [X]<ℵ0 ⊆ j(∆), and such that there is

no X̂ ∈ j(∆) with X ⊆ X̂.

If T is a complete countable theory in V and ϕ(x, y) is a formula of T , then let λV̂ (ϕ)

be the minimum of all λV̂ (∆), for ∆ a (T, ϕ(x, y))-pattern on ω (really this depends on T

and j as well; in practice this will not cause confusion). Let λV̂ (T ) be the minimum over

all formulas ϕ(x, y) (with x a single variable) of λV̂ (ϕ).

Suppose U is an ultrafilter on the complete Boolean algebra B, and ∆ is a pattern

on ω (say). Then let λU (∆) be the least λ such that there is some (λ,∆)-distribution in

U with no multiplicative refinement in U . If ϕ(x, y) is a formula of T then let λU (ϕ) be

the minimum over all ϕ(x, y)-patterns ∆ on ω of λU (∆). Let λU (T ) be the minimum over

all λU (ϕ), for ϕ(x, y) a formula of T .

In all of these cases, if no such λ exists, then we let the corresponding value be ∞.

Example 3.11.8. For any pattern ∆ on ω, and for any j : V � V̂ , we have that λV̂ (∆) ≥

pV̂ by Theorem 3.9.6, hence each λT ≥ pV̂ . Note that by Theorems 3.9.11 and 3.9.9, if T

has SOP2 then λV̂ (T ) = pV̂ . Similar statements hold for the ultrafilter versions.

We now connect these notions with the following two simple theorems.
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Theorem 3.11.9. Suppose V |= ZFC− is transitive and j : V � V̂ is ℵ1-saturated and

suppose T ∈ V is a complete countable theory. Then V̂ λ+-pseudosaturates T if and only

if λ < λV̂ (T ); and this implies λ < λV̂ (ϕ(x, y)) for all formulas ϕ(x, y) of T .

Proof. This is basically Theorem 3.11.3, restated. The point is the following: suppose

M |= T with M ∈ V , and let ϕ(x, y) be a formula of T . Let ∆ = {s ∈ [M |y|]<ℵ0 : M |=

∃x
∧
b∈s ϕ(x, b)} and let ∆̂ = j(∆). Then positive ϕ-types p(x) over jstd(M) correspond

exactly to subsets X of jstd(M)|y| with [X]<ℵ0 ⊆ ∆̂, and, assuming p(x) is pseudofinite,

p(x) is realized in jstd(M) if and only if there is some X̂ ∈ ∆̂ with X ⊆ X̂. Moreover, it

suffices for λ+-pseudosaturation to consider types in a single variable x.

Theorem 3.11.10. Suppose U is an ultrafilter on the complete Boolean algebra B, sup-

pose V |= ZFC− is transitive, suppose i : V � V is λ+-saturated, and suppose ∆ ∈ V is

a pattern on I. Then λ < λU (∆) if and only if λ < λV/U (∆). Thus, for all λ, T , we have

that U λ+-saturates T if and only if λ < λU (T ), i.e. whenever A is a (λ, T, ϕ)- Loś map in

U for some formula ϕ(x, y) of T , then A has a multiplicative refinement in U .

Proof. Write V̂ = V/U . We know that U λ+-saturates T if and only if V̂ λ+-pseudosaturates

T if and only if λ < λV̂ (T ). Thus it suffices to show the first claim, since then λ < λV̂ (T )

if and only if λ < λU (T ).

Suppose first λ ≥ λU (∆). Then we can find A, a (λ,∆)-distribution in U with

no multiplicative refinement in U . By Corollary 3.3.8 and λ+-saturation of V, we can

find some X ∈ V such that ‖X ∈ [I]<ℵ0‖V = 1, and we can find (aα : α < λ) with

each ‖aα ∈ X‖V = 1, such that for all s ∈ [λ]<ℵ0 , ‖{aα : α ∈ s} ∈ i(∆)‖V = A(s). If

Ŷ ∈ j(∆) had each [aα]U ∈ Ŷ , then write Ŷ = [Y]U ; , and define B(s) = ‖{aα : α ∈ s} ⊆

Y‖V ∧ ‖Y ∈ i(∆)‖V; this is clearly a multiplicative refinement of A in U , contradicting
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choice of A. Thus no such Ŷ exists, and this witnesses λ ≥ λV̂ (∆).

Conversely, if λ ≥ λV̂ (∆), then we can find some pseudofinite X ⊆ j(I) of size at

most λ with [X]<ℵ0 ⊆ j(∆), such that there is no X̂ ∈ j(∆) with X ⊆ X̂. Enumerate

X = {[aα]U : α < λ}, and for each s ∈ [λ]<ℵ0 define A(s) = ‖{aα : α ∈ s} ∈ istd(∆)‖V.

Then A is an (I,∆)-distribution in U . Suppose towards a contradiction that B were a

multiplicative refinement of A in U . By Corollary 3.3.8 and λ+-saturation, we can find

Y ∈ V such that ‖Y ∈ i(∆)‖V = 1, and for each α < λ, ‖aα ∈ Y‖V = B({α}); then

Ŷ = [Y]U contradicts our choice of X.

We can use patterns to measure the complexity of formulas.

Definition 3.11.11. Suppose ∆ is a pattern on I, and ϕ(x, y) is a formula of T . Say that

ϕ(x, y) admits ∆ if ∆ is a (T, ϕ(x, y))-pattern. ( Really this definition should have T as a

parameter; in ambiguous cases we may say “in T .”) Say that T admits ∆ if some ϕ(x, y)

does.

The following corollary is now immediate.

Corollary 3.11.12. Suppose T0, T1 are countable complete theories, such that for all

patterns ∆ (on ω), if T0 admits ∆, then T1 admits ∆. Then T0 E
×
ℵ1
T1.

3.12 A Minimal Unstable Theory

Let Trg be the theory of the random graph. Malliaris proved in [50] that Trg is

a E-minimal unstable theory. We present her proof, with routine translations into the

terminology of E×1 . Malliaris and Shelah prove in [61] that Trg is a E∗1-minimal unstable

theory, although that proof has some additional complications that we avoid with the ×
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version (one can recover their result using Corollary 3.18.7).

The following essentially describes an (ω, 2)-array as in [49].

Definition 3.12.1. Let ∆(IP ) be the pattern on ω × 2, defined to be the set of all

s ∈ [ω × 2]<ℵ0 such that for all n < ω, {(n, 0), (n, 1)} 6⊆ s. (Think of (n, 0) as being

¬(n, 1).)

And the following is Claim 3.7 from [49].

Lemma 3.12.2. Suppose T is a complete theory and ϕ(x, y) is a formula of T . Define

θ(x, y0, y1) = ϕ(x, y0)∧¬ϕ(x, y1). Then θ(x, y0y1) admits ∆(IP ) if and only if θ(x, y0y1)

has the independence property, which is the case if and only if ϕ(x, y) has the independence

property.

Thus T has the independence property if and only if it admits ∆(IP ).

Proof. Suppose (an : n < ω) witnesses that ϕ(x, y) has the independence property. For

each n < ω, write bn,0 = (a2n, a2n+1), and write bn,1 = (a2n+1, a2n). Then (bn,i : (n, i) ∈

ω × 2) witnesses that θ(x, y0y1) admits ∆(IP ).

Suppose (bn,i : (n, i) ∈ ω × 2) witnesses that θ(x, y0y1) admits ∆(IP ); then (bn,0 :

n < ω) witnesses that θ(x, y0y1) has the independence property.

Finally, suppose that θ(x, y0y1) has the independence property. Then for every n,

we can find some A ⊆ C|y| with |A| = 2n, such that |Sϕ(A)| ≥ 2n. This implies there is

no polynomial bound on |Sϕ(A)| in terms of |A|; by Theorem II.4.10 of [75], this implies

ϕ(x, y) has the independence property.

The following lemma is helpful in understanding the invariant λV̂ (∆(IP )). It is a

translation of remarks in [50] into the context of E×ℵ1
, for instance see the discussion in

Example 2 in Section 3.2.
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Lemma 3.12.3. Suppose V |= ZFC− is transitive, and j : V � V̂ . Then λV̂ (∆(IP )) is

the least λ such that for some n̂ < ω̂, there are disjoint X0, X1 ⊆ n̂ each of size at most

λ, such that there are no disjoint X̂0, X̂1 ∈ V̂ with each Xi ⊆ X̂i.

Proof. Given X ⊆ n̂× 2 with [X]<ℵ0 ⊆ j(∆(IP )), define Xi = {m̂ < n̂ : (m̂, i) ∈ X}; note

that if there exists X̂i : i < 2 with each Xi ⊆ X̂i, then X ⊆ X̂0×{0}∪X̂1×{1} ∈ j(∆(IP )).

Conversely, given X0, X1 ⊆ n̂ disjoint, define X = X0 × {0} ∪X1 × {1}. Note that

if there exists X̂ ∈ j(∆(IP )) with X ⊆ X̂, then if we set X̂i = {n̂ : (n̂, i) ∈ X̂} for each

i < 2, then X̂0, X̂1 are disjoint and each Xi ⊆ X̂i.

Finally, we give a helpful characterization of λU (∆(IP )) (although it will not be

immediately used). For the following, note that we really only need V �∅, i.e. the reduct

to the language of equality.

Lemma 3.12.4. Suppose B is a complete Boolean algebra and U is an ultrafilter on

B. Write I = λ × 2. Then λU (∆(IP )) is the least λ such that there is a I-distribution

A in U of the following form, with no multiplicative refinement in U . Namely, for some

V |=B ZFC− and for some (aα,i : (α, i) ∈ I) from V, we have that each A(s) =
∧
{‖aα,0 6=

aβ,1‖V : (α, 0), (β, 1) ∈ s}.

Proof. Easily, any such A is a (λ × 2,∆(IP ))-distribution. Conversely, suppose A is a

given (λ,∆(IP ))-distribution in U . Choose some transitive V |= ZFC−, for instance

V = HC; choose i : V � V with V λ+-saturated, and choose (xα : α < λ) a pseudofinite

sequence from V such that each ‖xα ∈ i(ω × 2)‖V = 1, and for all s ∈ [λ]<ℵ0 , ‖{xα : α ∈

s} ∈ i(∆(IP ))‖V = A(s) (using Corollary 3.3.8).

For each α < λ, choose mα such that ‖xα ∈ {mα} × 2‖V = 1, and choose kα such

that ‖xα ∈ ω × {kα}‖V = 1; this is possible by fullness of V (note kα is determined by
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the pair (‖kα = 0‖V, ‖kα = 1‖V). For each α < λ, there is a unique f(α) < 2 such that

‖kα = f(α)‖V ∈ U . For each s ∈ [λ]<ℵ0 , let A′(s) = A(s) ∧
∧
α∈s ‖kα = f(α)‖V; then

this is a conservative refinement of A in U . Thus A′ has a multiplicative refinement in U

if and only if A does.

For each i < 2, let {aα,i : α < λ} list {mβ : f(β) = i}, with repetitions if necessary.

Let A′′ be the I-distribution defined from (aα,i : (α, i) ∈ I) as in the statement of the

lemma. Note that A′′ is in U , since whenever f(β) 6= f(β′), we have ‖mβ 6= mβ′‖V ∈ U .

Thus A′′ has a multiplicative refinement in U , which easily gives a multiplicative refinement

of A′.

Putting it all together:

Theorem 3.12.5. Suppose V |= ZFC− is transitive, and j : V � V̂ is ω-nonstandard,

and λ is a cardinal. Then the following are equivalent:

(A) V̂ λ+-pseudosaturates Trg;

(B) V̂ λ+-pseudosaturates some unstable theory;

(C) λ < λV̂ (∆(IP )).

Proof. (A) implies (B) is trivial.

(B) implies (C): suppose T ∈ V is unstable such that V̂ λ+-pseudosaturates T , i.e.

λ < λV̂ (T ). Now T either has SOP or else IP ; if T has SOP then in particular it has

SOP2, so λV̂ (T ) = pV̂ ≤ λV̂ (∆(IP )). If on the other hand T has IP , then T admits

∆(IP ) so we get λV̂ (T ) ≤ λV̂ (∆(IP )) in any case.

(C) implies (A): let M |= Trg with M ∈ V , and let p(x) be a pseudofinite partial

type over jstd(M) of cardinality at most λ; say p(x) is over n̂ < ω̂. We can suppose
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p(x) ∈ S1(A) is nonalgebraic for some pseudofinite A. Let X0 = {a ∈ A : R(x, a) ∈ p(x)}

(defined in V) and let X1 = {a ∈ A : ¬R(x, a) ∈ p(x)}, and conclude by Lemma 3.12.3.

We immediately get the following corollaries. The first is Lemma 5.3 of [50] (stated

there just for Keisler’s order).

Corollary 3.12.6. Trg is a E×1 -minimal unstable theory. That is, if T is unstable then

Trg E
×
1 T . Thus, this holds for E×ℵ1

and E as well.

In particular, E×ℵ1
and E both satisfy that the least class is the class of stable theories

without the finite cover property, and the next-least class is the class of stable theories

with the finite cover property, and the next-least class is the class of Trg.

Corollary 3.12.7. Suppose U is an ultrafilter on the complete Boolean algebra B. Then

the following are equivalent:

(A) U λ+-saturates Trg;

(B) U λ+-saturates some unstable theory;

(C) λ < λU (∆(IP )).

It is a major open problem in the subject, see e.g. Problem (1) in the list of open

problems in [61], to determine the Keisler class of the random graph model-theoretically.

Examples of theories in this class are rather sparse; for instance, one can show n-ary ran-

dom hypergraphs are equivalent to Trg, but the following concrete question remains open.

Let ACFA be the theory of an algebraically closed field of with a generic automorphism.

ACFA is incomplete; one must specify the characteristic, and also the isomorphism type

of the automorphism restricted to the algebraic closure of the emptyset.
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Question. Suppose T is a completion of ACFA. Is T equivalent to the random graph in

E×1 , or at least in E?

3.13 A Minimal Unsimple Theory

It is unclear where exactly the tree properties of the first and second kind were first

given these names. Various sources claim they are defined in [79]; the notions do appear

there, but are left unnamed. We give the definition of TP2 as in [38]; TP1 is equivalent to

SOP2 (as described in [38]).

Definition 3.13.1. The formula ϕ(x, y) has TP2 (tree property of the second kind) if there

are (an,m : n,m < ω) such that for all n < ω and for all m < m′ < ω, ∃x(ϕ(x, an,m) ∧

ϕ(x, an,m′)) is inconsistent, but such that for all η ∈ ωω, {ϕ(x, an,η(n))} is consistent.

Then Theorem 0.2 of [79] states the following (although neither TP2 nor SOP2 are

given names):

Theorem 3.13.2. If T is unsimple then either T has TP2 or else T has SOP2.

In [50], Malliaris proved the existence of a minimal TP2 theory. In view of The-

orem 3.13.2 and Theorem 3.9.12 (due to Malliaris and Shelah [54]), this must also be a

minimal unsimple theory; in fact, Malliaris anticipated this would be the case in [50]. We

follow her argument now, with the routine translations into the language of E×1 . However,

we prefer to use a more straightforward theory as our example:

Definition 3.13.3. Let L∗rg be the language (U, V, f) where U, V are disjoint sorts and

f ⊆ U × U × V is a ternary relation symbol. Let T ∗rg be the model completion of the

theory asserting that f : [U ]2 → V . So T ∗rg is axiomatized by the following:

• The universe is the disjoint union of U and V , both infinite;
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• f is the graph of a symmetric function from U ×U\{(u, u) : u ∈ U} → V , which we

denote as a function f : [U ]2 → V (formally we may define f(u, u) = u, or a special

garbage value);

• For every u0, . . . , un−1 ∈ U , and for every v0, . . . , vn−1 ∈ V , there is some u ∈ U

such that f(u, ui) = vi for each i < n.

We think of models of T ∗rg as random graphs, except instead of the graph being

two-valued (either an edge is in or out), it is V -valued.

We now proceed as in the previous section. The following definition is equivalent to

the notion of (ω, ω, 1)-arrays from [49].

Definition 3.13.4. Let ∆(TP 2) be the pattern on ω × ω consisting of all s ∈ [ω × ω]<ℵ0

satisfying: for all n < ω, |s ∩ {n} × ω| ≤ 1.

The following is then trivial. (This is equivalent to Claim 3.8 of [49], although our

definition of TP2 absorbs some of the work.)

Lemma 3.13.5. Suppose ϕ(x, y) is a formula of T . Then ϕ(x, y) has TP2 if and only if

ϕ(x, y) admits ∆(TP 2). Thus T has TP2 if and only if T admits ∆(TP 2).

Example 3.13.6. T ∗rg admits ∆(TP2), via the formula f(x, y0) = y1. Namely, let M |=

T ∗rg; choose (an : n < ω) distinct elements from MU , choose (bm : m < ω) distinct elements

from MV , and for each (n,m) ∈ ω × ω, let cn,m = (an, bm). Then (cn,m : n,m < ω)

witnesses f(x, y0) = y1 admits ∆(TP2).

In particular, T ∗rg is unsimple.

The following is essentially Theorem 6.9 of [50].
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Lemma 3.13.7. Suppose V |= ZFC− is transitive, and j : V � V̂ is ω-nonstandard, and

λ is a cardinal. Then λV̂ (∆(TP2)) is the least λ such that for some n̂ < ω̂, there is some

X ⊆ n̂ of cardinality at most λ (not necessarily in V̂ ) and some f : X → n̂, such that

there is no f̂ : n̂→ n̂ in V̂ extending f .

Proof. Given f ⊆ n̂× n̂ with [f ]<ℵ0 ⊆ j(∆(TP2)), define X to be the projection of f onto

the first coordinate, and note that f is a function from X to n̂. Any extension of f to

f̂ : n̂ → n̂ is itself an element of j(∆(TP2)) with f ⊆ f̂ . Conversely, suppose f : X → n̂

is given with |X| ≤ λ, and we have ĝ ∈ j(∆(TP2)) with f ⊆ ĝ. Note that ĝ is a partial

function from ω̂ to ω̂; define f̂ : n̂ → n̂ via f̂(m̂) = ĝ(m̂) if m̂ ∈ dom(ĝ), and f̂(m̂) = 0

else.

Lemma 6.8 of [50] is the direction (A) ≤ (C) of the following lemma.

Lemma 3.13.8. Suppose B is a complete Boolean algebra and U is an ultrafilter on B.

Then the following cardinals are equal:

(A) λU (∆(TP2));

(B) The least λ such that there are V |=B ZFC− and (aα : α < λ) from V, such that

there is no multiplicative λ-distribution B in U such that each B({α, β}) decides

‖aα = aβ‖V (necessarily as dictated by U);

(C) The least λ such that there are V |=B ZFC− and (aα : α < λ) from V, such that

[aα]U 6= [aβ]U for all α 6= β, and such that there is no multiplicative λ-distribution

B in U with B({α, β}) ≤ ‖aα 6= aβ‖V for all α 6= β.

In [51], Malliaris defines U to be λ+-good for equality if λ is less than any or all of

these values (under an equivalent formulation in terms of regular ultrapowers).
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Proof. Let λA, λB, λC be the cardinals defined in items (A), (B), (C).

λC ≤ λB: suppose λ < λC , we show λ < λB. Let V, (aα : α < λ) be given. Let E be

the equivalence relation on λ defined via: E(α, β) if [aα]U = [aβ]U (i.e. ‖aα = aβ‖V ∈ U).

Let I ⊆ λ be a choice of representative for λ/E, i.e., such that each α < λ is E-related to

exactly one β ∈ I. Let f : λ→ I be the map witnessing this, so for all α < λ and for all

β ∈ I, [aα]U = [aβ]U if and only if β = f(α). Since λ < λC , we can find a multiplicative

I-distribution B0 in U with each B0(α, β) ≤ ‖aα 6= aβ‖V. Define B, a λ-distribution in

U , via B(s) = B0(f [s]) ∧
∧
α∈s ‖aα = af(α)‖V. Then this clearly works to show λ < λB.

λB ≤ λA: suppose λ < λB, we show λ < λA. Suppose A is a given (λ,∆(TP 2))-

distribution in U . Choose some transitive V |= ZFC−, and let i : V � V with V

λ+-saturated, and choose (xα : α < λ) a sequence from V so that each ‖xα ∈ i(ω ×

ω)‖V = 1, and such that for all s ∈ [λ]<ℵ0 , ‖{xα : α ∈ s} ∈ i(∆(TP2))‖V = A(s) (using

Corollary 3.3.8).

For each α < λ, choose nα,mα such that ‖xα = (nα,mα)‖V = 1 (possible by fullness

of V). By two applications of λ < λB, we can find a multiplicative distribution B in U

such that for all α < β < λ, B({α, β}) decides ‖nα = nβ‖V and decides ‖mα = mβ‖V,

from which it follows that B is a multiplicative refinement of A.

λA ≤ λC : suppose λ < λA, we show λ < λC . So suppose V, (aα : α < λ) are

given. Define a λ-distribution A in U via A(s) =
∧
α<β∈s ‖aα 6= aβ‖V. Easily this is a

(λ,∆(TP2))-distribution and thus it has multiplicative refinement B in U . Then B will

be as desired.

Putting it all together:

Theorem 3.13.9. Suppose V |= ZFC− is transitive, and j : V � V̂ is ω-nonstandard,

and λ is a cardinal. Then the following are equivalent:
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(A) V̂ λ+-pseudosaturates T ∗rg;

(B) V̂ λ+-pseudosaturates some unsimple theory;

(C) λ < λV̂ (∆(TP2)).

Proof. (A) implies (B) is trivial.

(B) implies (C): suppose T ∈ V is unsimple and V̂ λ+-pseudosaturates T , i.e.

λ < λV̂ (T ). Now T either has SOP2 or else TP2; if T has SOP2 then λV̂ (T ) = pV̂ ≤

λV̂ (∆(TP2)). If on the other hand T has TP2, then T admits ∆(TP2) so we get λV̂ (T ) ≤

λV̂ (∆(TP2)) in any case.

(C) implies (A): let M |= T ∗rg with M ∈ V and let p(x) be a pseudofinite partial

type over jstd(M) of cardinality less than λ; say p(x) ∈ S1(A), with A pseudofinite and

|A| ≤ λ. We can suppose p(x) is nonalgebraic.

Note that if V (x) ∈ p(x), then it is isolated by asserting x 6= v for all v ∈ VM ∩ A.

Thus, any v ∈ V jstd(M)\A realizes p(x).

So suppose instead U(x) ∈ p(x). Write A = A0 ∪ A1 where A0 = A ∩ U jstd(M) and

A1 = A ∩ V jstd(M). After extending A and p(x), we can suppose that for all u ∈ A0,

there is some v ∈ A1 such that f(x, u) = v ∈ p(x). Choose some pseudofinite Â ∈ V̂ with

A ⊆ Â. Let g ⊆ A × A be the set of all pairs (u, v) such that p(x) |= f(x, u) = v. Then

g is indeed a partial function from Â to Â, and hence can be extended to a total function

ĝ : Â → Â with ĝ ∈ V̂ (by Lemma 3.13.7 and applying a bijection between Â and its

cardinality in V̂ ). Then we can find u∗ ∈ U jstd(M) such that for all u ∈ Â ∩ U jstd(M), if

ĝ(u) ∈ V jstd(M), then jstd(M) |= f(u∗, u) = ĝ(u). Then u∗ clearly realizes p(x).

We immediately get the following corollaries. The first is Lemma 5.3 of [50] (stated

there just for Keisler’s order).
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Corollary 3.13.10. T ∗rg is a E×1 -minimal unsimple theory. That is, if T is unsimple then

T ∗rg E
×
1 T . Thus, this holds for E×ℵ1

and E as well.

Corollary 3.13.11. Suppose U is an ultrafilter on the complete Boolean algebra B. Then

the following are equivalent:

(A) U λ+-saturates T ∗rg;

(B) U λ+-saturates some unsimple theory;

(C) λ < λU (∆(TP2)).

A similar proof shows that T ∗feq is also a minimal unsimple theory, although we view

that example as unnatural. A better example is the following:

Definition 3.13.12. Let Trf be the theory of the random binary function. That is, Trf

is the model completion of the empty theory in the language containing a single binary

function symbol F .

Trf is shown to be NSOP1 in [43] (and by an easier proof, one can also show

that T ∗rg is NSOP1). In particular, Trf is NSOP2. Further, Trf is TP2 via the formula

f(x, y0) = y1, exactly as for T ∗rg.

Theorem 3.13.13. Trf is also a minimal unsimple theory in E×1 .

Proof. Suppose V |= ZFC− is transitive (we just need to check the countable case),

and j : V � V̂ is ω-nonstandard, and suppose λ < λV̂ (∆(TP2)). It suffices to show V̂

λ+-pseudosaturates Trf .

So let F : ω2 → ω be such that (ω, F ) |= Trf , and write F̂ = j(F ) (we also use F to

denote the symbol in the language). Let p(x) be a pseudofinite partial type over (ω̂, F̂ ),
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say p(x) is over X ⊆ n̂ with |X| ≤ λ. Since λ < µV̂ , we can find Y ⊆ n̂ with X ⊆ Y and

|Y \X| = λ. Extend p(x) to a complete type q(x) over Y such that for all a ∈ Y , there

is b ∈ Y with q(x) |= F (x, a) = b, and there is c with q(x) |= F (a, x) = c, and there is

c∗ ∈ Y with q(x) |= F (x, x) = c∗. Thus q(x) induces a function f : Y → Y via f(a) = the

unique b ∈ Y with q(x) |= F (x, a) = b, and similarly a function g : Y → Y via g(a) = the

unique c ∈ Y with q(x) |= F (a, x) = c.

We can suppose q(x) is nonalgebraic; then note that q(x) is isolated by the formulas

{x 6= a : a ∈ Y },{F (x, a) = f(a) : a ∈ Y }, {F (a, x) = g(a) : a ∈ Y }, and {F (x, x) = c∗}.

Since λ < λV̂ (∆(TP2)), we can find some function f̂ : n̂ → n̂ extending f and some

function ĝ : n̂ → n̂ extending g. Thus we can find a∗ ≥ n̂ such that F̂ (a∗, a) = f̂(a) and

F̂ (a, a∗) = ĝ(a) for all a < n̂, and such that F̂ (a∗, a∗) = c∗; then a∗ realizes q(x) and

hence p(x).

3.14 A Minimal Nonlow Theory

In this section, we proceed similarly to Sections 3.12 and 3.13 to show that there

is a minimal nonlow theory in Keisler’s order. I first proved this result in [87], although

we will be translating the results into the terminology of E×1 .

First, we define what we mean by low:

Definition 3.14.1. The complete countable theory T is low if it is simple and for every

formula ϕ(x, y), there is some k such that for all b, if ϕ(x, b) does not k-divide over ∅ then

it does not divide over ∅.

This is the standard definition of low, for instance it is equivalent to the definition

in [5], where the concept of lowness is introduced. Malliaris defined low slightly differently

starting in [52], namely not requiring T to be simple (this definition is then also used in
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later papers by Malliaris and Shelah, for instance in [56]). To clarify:

Definition 3.14.2. T has the finite dividing property (FDP) if there is some formula

ϕ(x, y) such that for every k there is some indiscernible sequence (bn : n < ω) over the

emptyset such that {ϕ(x, bn) : n < ω} is k-consistent but not consistent.

What Malliaris calls low is what we call not having the finite dividing property; and

we say that a theory T is low if it is simple and does not have the finite dividing property.

Note that one can easily check that (Q, <) does not have the finite dividing property,

and so the finite dividing property is not a dividing line in Keisler’s order. Lowness, on

the other hand, is [87].

TCas was introduced by Casanovas [6] and was in fact the first example of a simple

non-low theory. The language LCas is (R,P,Q,Qn : 1 ≤ n < ω), where P,Q,Qn are

each unary relation symbols and R is binary. We adopt the convention that a, a′, . . . are

elements of P , b, b′, . . . are elements of Q.

1. The universe is the disjoint union of P and Q, both infinite;

2. Each Qn ⊆ Q, and the Qn’s are infinite and disjoint;

3. R ⊆ P ×Q;

4. For each a ∈ P and for each n < ω, there are exactly n elements b ∈ Qn such that

R(a, b);

5. Whenever B0, B1 are finite disjoint subsets of Q such that each |B1∩Qn| ≤ n, there

is a ∈ P such that R(a, b) for all b ∈ B1 and ¬R(a, b) for all b ∈ B0.

6. For all A0, A1 finite disjoint subsets of P , there is b ∈ Q such that R(a, b) for all

a ∈ A1 and ¬R(a, b) for all a ∈ A0.
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Actually, if in the definition of LCas we allow n = 0 then Q0 will be completely

harmless, so for notational convenience we let LCas be (R,P,Q,Qn : n < ω).

In [6] it is shown that TCas is complete, and is the model completion of the theory

axiomatized by the first four items above. In particular, it is shown that TCas has quantifier

elimination in an expanded language, where we add predicates S... that express, given

A0, A1 ⊂ P finite and disjoint with A1 6= ∅, how many b ∈ Qn are there such that R(a, b)

for all a ∈ A1 and ¬R(a, b) for all a ∈ A0. It follows that the algebraic closure of a set X

is X ∪
⋃
{b ∈

⋃
nQn : there is a ∈ X ∩P such that R(a, b)}, and every formula over a set

X is equivalent to a quantifier-free formula over acl(X).

Casanovas also shows that TCas is simple with the following forking relation: X |̂
Z

Y if and only if acl(X)∩acl(Y ) ⊆ acl(Z). Finally, the formula R(x, y) witnesses that TCas

is not low.

The following lemma is immediate from the quantifier elimination in the expanded

language discussed above:

Lemma 3.14.3. Let M |= TCas and let C ⊆M be algebraically closed. Write C = A∗∪B∗

where A∗ = C ∩ PM and B∗ = C ∩QM . As notation let Qω denote Q\
⋃
nQn.

(I) For each n < ω, there is a unique nonalgebraic type p(x) over C with Qn(x) ∈ p(x).

It is isolated by the formulas Qn(x) together with ¬R(a, x) for each a ∈ A∗.

(II) For each A ⊆ A∗ let pA(x) be the partial type over C that says Qω(x) holds, x 6= b

for each b ∈ B∗, and finally for each a ∈ A∗, R(a, x) holds if and only if a ∈ A.

Then pA(x) generates a complete type over C that does not fork over ∅. Moreover,

all nonalgebraic complete types over M extending {Q(x)}∪
⋃
n{¬Qn(x)} are of this

form.
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(III) Suppose B ⊆ B∗ is such that each |B ∩ QMn | ≤ n. Let pB(x) be the type over C∗

that says P (x) holds, and x 6= a for each a ∈ A∗, and for each b ∈ B∗, R(x, b) holds

if and only if b ∈ B. Then pB(x) generates a complete type over C, and moreover

every complete nonalgebraic type over C extending P (x) is of this form. Further,

given C0 ⊆ C, we have that p(x) does not fork over C0 if and only if for each n < ω,

B ∩QMn ∩ C0 = B ∩QMn .

We now introduce the relevant patterns.

Definition 3.14.4. Given I ⊆ ω\{0} infinite, let ∆I(FDP ) be the pattern on I × ω

defined by: s ∈ ∆(FDP ) if s ∈ {m} × [ω]≤m for some m ∈ I. Let ∆∗I(FDP ) be the

pattern on I × ω, defined to be all s with each |s ∩ {m} × ω| ≤ m.

Write ∆(FDP ) = ∆ω\{0}(FDP ).

The following is then straightforward. On the other hand, one would like to know

which ∆ we actually need to check.

Lemma 3.14.5. Suppose ϕ(x, y) is a formula of T . Then ϕ(x, y) has the finite divid-

ing property if and only if for some infinite I ⊆ ω\{0}, ϕ(x, y) admits some ∆ with

∆I(FDP ) ⊆ ∆ ⊆ ∆∗I(FDP ). Hence T has the finite dividing property if and only if T

admits some such ∆.

Proof. Suppose ϕ(x, y) admits some such ∆, via (am,n : (m,n) ∈ I × ω). Then by

compactness and Ramsey’s theorem, for each m ∈ I we get an indiscernible sequence

(bm,n : n < ω) such that {ϕ(x, bm,n) : n < ω} is m-consistent but m + 1-inconsistent.

Hence ϕ(x, y) has the finite dividing property.

Conversely, suppose ϕ(x, y) has the finite dividing property; choose I ⊆ ω infinite,

and indiscernible sequences ((b
m
n : n < ω) : m ∈ I) witnessing this, so each {ϕ(x, b

m
n ) :
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m ∈ I} is m-consistent but m+ 1-inconsistent. Let ∆ be the set of all s ∈ [ω×ω]<ℵ0 such

that {ϕ(x, b
m
n ) : (m,n) ∈ s} is consistent. Clearly, ∆I(FDP ) ⊆ ∆ ⊆ ∆∗I(FDP ).

We now wish to compare the various λV̂ (∆I(FDP )), λV̂ (∆∗I(FDP )). The following

holds unconditionally:

Lemma 3.14.6. Suppose V is a transitive model of ZFC−, and j : V � V̂ is ω-

nonstandard. Suppose I ⊆ ω is infinite, and ∆I(FDP ) ⊆ ∆ ⊆ ∆∗I(FDP ) satisfies ∆ ∈ V .

If λ < λV̂ (∆), then for every m̂∗ < n̂∗ < ω̂ with m̂∗ nonstandard, and for every X ⊆ n̂∗

of cardinality at most λ, there is X̂ ∈ [n̂∗]
≤m̂∗ in V̂ with X ⊆ X̂. If ∆ = ∆I(FDP ), then

the converse is true as well.

Proof. Suppose first λ < λV̂ (∆), and m̂∗ < n̂∗, X are as above. By decreasing m̂∗, we can

suppose m̂∗ ∈ j(I) while keeping m̂∗ nonstandard. Write Y = {(m̂∗, n̂) : n̂ ∈ X}. Since

m̂∗ is nonstandard we have [Y ]<ℵ0 ⊆ j(∆), thus we can find Ŷ ∈ j(∆) with Y ⊆ Ŷ . Let

X̂ = {n̂ < n̂∗ : (m̂∗, n̂) ∈ Ŷ }; then X̂ ∈ [n̂∗]
≤m̂∗ with X ⊆ X̂.

Next, suppose ∆ = ∆I(FDP ) let Y ⊆ n̂∗ × n̂∗ be of size at most λ with [Y ]<ℵ0 ⊆

j(∆I(FDP )). Then Y ⊆ {m̂∗}×n̂∗ for some m̂∗ < n̂∗ with m̂∗ ∈ j(I), so let X = {n̂ < n̂∗ :

(m̂∗, n̂) ∈ Y }. By hypothesis we can find X̂ ⊇ X with X̂ ∈ [n̂∗]
≤m̂∗ . Then Ŷ = {m̂∗}× X̂

is as desired.

Remark 3.14.7. It follows that for all ∆I(FDP ) ⊆ ∆ ⊆ ∆∗I(FDP ), λV̂ (∆) ≤ λV̂ (∆I(FDP )),

and λV̂ (∆I(FDP )) = λV̂ (∆(FDP )). Also, we easily get that λV̂ (∆(TP2)) ≤ λV̂ (∆(FDP )) ≤

µV̂ .

Under the additional assumption that λ < lcfV̂ (ω), we get more. We use Theo-

rem 3.17.1, which is proved later, in Section 3.17. There is no circularity, in fact the proof

of Theorem 3.17.1 can be read now.
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Lemma 3.14.8. Suppose V is a transitive model of ZFC−, and j : V � V̂ is ω-

nonstandard. Suppose λ < lcfV̂ (ω). Then for every infinite I ⊆ ω, λ < λV̂ (∆(FDP )) if

and only if λ < λV̂ (∆∗I(FDP )).

Proof. Suppose λ < λV̂ (∆(FDP )); it suffices to show λ < λV̂ (∆∗I(FDP )). Suppose

X ⊆ n̂∗ × n̂∗ has size at most λ, and [X]<ℵ0 ⊆ j(∆∗I(FDP )). For each m̂ ∈ j(I) ∩ n̂∗,

let Xm̂ = {n̂ < n̂∗ : (m̂, n̂) ∈ X}. Our hypothesis on X just says that for each m ∈ I,

|Xm| ≤ m.

Let Y = X\
⋃
m∈I Xm. First we handle Y . Define Ym̂ = {n̂ < n̂∗ : (m̂, n̂) ∈ Y } for

each m̂ < n̂∗; so Ym̂ = Xm̂ for m̂ ∈ j(I) nonstandard, and for all other m̂, Ym̂ = ∅.

Let Z = {m̂ < n̂∗ : Ym̂ 6= ∅}, so Z ⊆ j(I)\ω. Since λ < lcfV̂ (ω), Z is not cofinal

above ω, so we can find m̂∗ nonstandard with m̂ ≥ m̂∗ for each m̂ ∈ Z. By decreasing m̂∗,

we can suppose m̂∗ ∈ j(I), while keeping m̂∗ nonstandard. We can choose Ŷ ∈ [n̂∗×n̂∗]≤m̂∗

with Y ⊆ Ŷ , by hypothesis and Lemma 3.14.6 (and using a pairing function ω̂ × ω̂ → ω̂).

We can suppose Ŷ ∩ m̂∗ × n̂∗ = ∅, and so Ŷ ∈ j(∆∗I(FDP )).

So we have found Ŷ ∈ j(∆∗I(FDP )) with Y ⊆ Ŷ . We need to find some X̂ ∈

j(∆∗I(FDP )) with X ⊆ X̂.

Note that since λ < lcfV̂ (ω), we in particular have that lcfV̂ (ω) ≥ ℵ1. By Theo-

rem 3.17.1, (ℵ0,ℵ0) 6∈ CV̂ ; thus pV̂ ≥ ℵ1. Thus, by Theorem 3.9.7, countable pseudofinite

partial types over V̂ are realized, so we can find X̂ ∈ j(∆∗I(FDP )) with X̂∩[m̂∗, n̂∗)×n̂∗ =

Ŷ ∩ [m̂∗, n̂∗)× n̂∗, and with Xm ⊆ X̂ for all m ∈ I. Then X̂ is as desired.

The corresponding invariants for ultrafilters have been studied under various guises.

λ-OK was first defined by Kunen [46], and λ-flexibility was first defined by Malliaris in [52].

Previously these definitions were made only in the case of B = P(λ).
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Definition 3.14.9. • The ultrafilter U on the complete Boolean algebra B is λ-OK if

whenever A is a λ-distribution in U such that for all s, t ∈ [λ]n, A(s) = A(t), then

A has a multiplicative refinement in U . (Note in this case that A is determined by

the descending sequence (A(n) : n < ω).)

• The ultrafilter U on B is λ-flexible if U is ℵ1-incomplete and, for every U-nonstandard

n ∈ (ω,<)B/U , there is some multiplicative λ-distribution B in U , such that for all

s ∈ [λ]n, B(s) ≤ ‖n ≥ n‖(ω,<)B .

So obviously, if U is ℵ1-complete, then U is λ-OK for all λ.

We first remark that this definition of λ-flexibility coincides with the one given by

Malliaris. In the case B = P(λ) (which is the only case in which λ-flexibility was previously

defined), strong λ-regularity coincides with λ-regularity, which is easier to verify. To get

strongness, we adapt Mansfield’s argument in Theorem 4.1 of [62].

Theorem 3.14.10. Suppose U is an ultrafilter on B, and [n]U ∈ (ω,<)B/U is nonstandard,

and B is a multiplicative λ-distribution in U . Then the following are equivalent:

(A) For every s ∈ [λ]n, B(s) ≤ ‖n ≥ n‖(ω,<)B .

(B) B is strongly λ-regular, and for every c ∈ B, if c decides B(s) for each s ∈ [λ]<ℵ0

(or equivalently, c decides B({α}) for each α < λ) and if we write n := |{α < λ :

c ≤ B({α})|, then c ≤ ‖n ≥ m‖(ω,<)B .

In particular, if U is λ-flexible, then U is strongly λ-regular.

Proof. (A) implies (B): recall that B is strongly λ-regular if and only if (B({α}) : α < λ)

is a strongly λ-regular sequence, and this implies (B(s) : s ∈ [λ]<ℵ0) is a strongly [λ]<ℵ0-

regular sequence (this holds for all distributions, although for multiplicative distributions
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it is trivial). We show that for every c ∈ B nonzero, there is c′ ≤ c nonzero such

that c′ decides each B({α}), and there is m∗ < ω such that c′ ≤ ‖n = m∗‖(ω,<)B and

|{α < λ : c ≤ B({α})}| ≤ m∗. This clearly suffices.

So let c ∈ B be nonzero. Choose c0 < c nonzero, such that there is some m∗ < ω

with c0 ≤ ‖m = m∗‖(ω,<)B . Try to find, by induction on m ≤ m∗ + 1, a descending

sequence (cm : m ≤ m∗ + 1) such that for each m, |{α < λ : cm ≤ B({α})}| ≥ m. There

must be some stage m < m∗ + 1 at which we cannot continue, since for any s ∈ [λ]m∗+1,

c0 ∧B(s) = 0 (since B(s) ≤ ‖n > m∗‖(ω,<)B). So we get some m < m∗ + 1 such that if

we set s = {α < λ : cm ≤ B({α})}, then for all α 6∈ s, cm ≤ ¬B({α}). So cm is desired.

(B) implies (A): given s ∈ [λ]n, choose c ≤ B(s) nonzero such that c decides each

B({α}). Necessarily then c ≤ ‖n ≥ n‖(ω,<)B .

We have the following theorem connecting all of these notions. It is a translation of

Observation 9.9 of [55] into our terminology.

Theorem 3.14.11. Suppose U is an ultrafilter on the complete Boolean algebra B. Then

λU (∆(FDP )) is the least λ such that U is not λ-OK. Additionally, if U is ℵ1-incomplete,

then this is the least λ such that U is not λ-flexible.

Proof. Choose some transitive V |= ZFC−, and some i : V � V with V λ+-saturated.

Write V̂ = V/U and let j : V � V̂ be the usual embedding.

Suppose first that λ < λU (∆(FDP )), and A is a λ-distribution with A(s) = A(t)

for all |s| = |t|. Then A is a (λ,∆(FDP ))-distribution, so by hypothesis A has a mult-

plicative refinement in U ; thus U is λ-OK. Conversely, suppose U is λ-OK; we show

λ < λV̂ (∆(FDP )). Indeed, suppose m∗,n∗ ∈ i(ω) and {nα : α < λ} ⊆ i(ω) are given

with [m∗]U nonstandard and [m∗]U < [n∗]U , and each [nα]U < [n∗]U . We can suppose each
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‖m∗ < n∗‖V, ‖nα < n∗‖V = 1. Define a λ-distribution A in U , via A(s) = ‖m ≥ n‖V

for each s ∈ [λ]n. By λ-OK-ness we can find a multiplicative refinement B of A in U . By

λ+-saturation of V, we can find X ∈ [n∗]
≤m∗ (i.e. X ∈ V and ‖X ∈ [n∗]

≤m∗‖V = 1) so

that for all α < λ, ‖nα ∈ X‖V = B({α}). Then X̂ := [X]U is as desired.

Suppose next that U is λ-flexible. Suppose A is a distribution in U such that for all

s, t ∈ [λ]n, A(s) = A(t). If
∧
n A(n) = a ∈ U then obviously the constant distribution with

value a is a refinement in U . Otherwise, we can suppose
∧
n A(n) = 0 (by intersecting each

A(s) with ¬a). Define m ∈ (ω,<)B via m(n) = A(n)∧¬A(n+1). Then since
∧
n A(n) = 0

and since A(0) = A(∅) = 1 (by definition of distribution), we really have m ∈ (ω,<)B. m

is U-nonstandard since each ‖m ≥ n‖(ω,<)B = A(n) ∈ U . Thus we can find a multiplicative

distribution B in U , such that for all s ∈ [λ]n, B(s) ≤ ‖m ≥ n‖ = A(n).

Finally, suppose U is λ-OK and ℵ1-incomplete, and let [m]U be a U-nonstandard

element of (ω,<)B/U . Define A(s) = ‖m ≥ n‖(ω,<)B for each s ∈ [λ]n and let B be a

multiplicative refinement of A in U .

Remark 3.14.12. It follows then that if U is λ-OK, then µU > λ, and so U λ+-saturates

every stable theory. In the case B = P(λ) this was proved similarly by Malliaris and

Shelah in [60]. We see then that if U is ℵ1-complete, then U λ+-saturates every stable

theory, for every λ.

We can now wrap up the proof that TCas is a minimal nonlow theory. (B) implies

(C) is due to Malliaris [52] in the context of regular ultrafilters on P(λ); (C) implies (A)

is from [87].

Theorem 3.14.13. Suppose V |= ZFC− is transitive, j : V � V̂ with V̂ ω-nonstandard,

and suppose λ is given. Then the following are equivalent:
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(A) V̂ λ+-pseudosaturates TCas.

(B) V̂ λ+-pseudosaturates some nonlow theory.

(C) λ < λV̂ (∆(IP )) and λ < λV̂ (∆(FDP )).

Proof. (A) implies (B) is trivial.

(B) implies (C): suppose T ∈ V is nonlow; (B) is equivalent to λ < λT (V̂ ). Now

T is unstable, so λV̂ (T ) ≤ λV̂ (∆(IP )). If T is unsimple, then λV̂ (T ) ≤ λV̂ (∆(TP2)) ≤

λV̂ (∆(FDP )), and if T has the finite dividing property then λV̂ (T ) ≤ λV̂ (∆(FDP )) by

Lemma 3.14.6. Hence λV̂ (T ) ≤ λV̂ (∆(FDP )) in any case, and (C) holds.

(C) implies (A): suppose λ < λV̂ (∆(IP )) and λ < λV̂ (∆(FDP )), and let M |= TCas

have universe ω (say), with M ∈ V . Write M = (ω,R, P,Q,Qn : n < ω) and write

j(M) = (ω̂, R̂, P̂ , Q̂, Q̂n̂ : n̂ < ω̂) (so jstd(M) = (ω̂, R̂, P̂ , Q̂, Q̂n : n < ω)). We show that

jstd(M) is λ+-pseudosaturated.

So let p(x) be a pseudofinite partial type over jstd(M) of cardinality at most λ. I

first of all claim that we can suppose p(x) is a type over an algebraically closed set (this

is a general fact, in fact we could arrange over a model). Indeed, choose n̂0 < ω̂ such

that p(x) is over n̂0; we can suppose n̂0 is nonstandard. In V̂ , choose (n̂m̂ : m̂ ≤ n̂0)

such that for all m̂ < n̂0 we have: for all n̂ < n̂0 and for all â < n̂m̂ with â ∈ P̂ ,

{b̂ ∈ Q̂n̂ : R̂(â, b̂)} ⊆ n̂ ˆm+1. Then clearly n̂∗ := n̂n̂0 is algebraically closed (in jstd(M)).

Thus we can find some algebraically closed set C ⊆ n̂∗ of cardinality at most λ, and

suppose that p(x) is a complete type over C.

We can suppose p(x) is nonalgebraic. Then p(x) must be in one of the forms from

Lemma 3.14.3. Write A∗ = C ∩ PM and B∗ = C ∩QM .

If p(x) is of form (I), then clearly any b̂ ∈ Q̂n with b̂ ≥ n̂∗ realizes p(x); and if p(x)
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is of form (II), use that λ < λV̂ (∆(IP )).

So we can suppose p(x) is of form (III), say p(x) = pB(x) for some B ⊆ B∗ with

each |B ∩ Q̂n| ≤ n. Let X be the set of all pairs (m̂, b̂) such that m̂ < ω̂ and b̂ ∈ Q̂m̂

and R(x, b̂) ∈ p(x). By possibly increasing n̂∗ we can suppose X ⊆ n̂∗ × n̂∗. Clearly

[X]<ℵ0 ⊆ j(∆∗ω\{0}(FDP )). Also, since λ < λV̂ (∆(IP )) ≤ lcfV̂ (ω) (by Theorems 3.10.5

and 3.12.5), we can apply Lemma 3.14.8 to find some X̂ ∈ j(∆∗ω\{0}(FDP )) with X ⊆ X̂.

Also, since λ < λV̂ (∆(IP )), we can find disjoint X̂0, X̂1 ⊆ n̂∗ such that B ⊆ X̂0 and

B∗\B ⊆ X̂1.

Let q̂(x) be the partial type over n̂∗ defined in V̂ , as follows:

• P (x) ∈ q̂(x);

• For every b̂ < n̂∗, if for some m̂ < ω̂, (m̂, b̂) ∈ X̂ and b̂ ∈ X̂0 ∩ Q̂m̂, then put

R(x, b̂) ∈ q̂(x);

• For every b̂ < n̂∗, if b̂ ∈ Q̂ω̂ (i.e. b̂ ∈ Q̂m̂ for each m̂ < ω̂), and if b̂ ∈ X̂0, then put

R(x, b̂) ∈ q̂(x);

• For every b̂ ∈ Q̂ ∩ X̂1, put ¬R(x, b̂) ∈ q̂(x).

Clearly V̂ believes q̂(x) is a consistent finite type, and so it must have a realization

â. But p(x) ⊆ q̂(x) so we are done.

We immediately get the following corollaries.

Corollary 3.14.14. TCas is a minimal nonlow theory in E×1 , and hence also in E×κ for

any κ, and in E.

Corollary 3.14.15. Suppose U is an ultrafilter on B and λ is given. Then the following

are equivalent:
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(A) U λ+-saturates TCas;

(B) U λ+-saturates some nonlow theory;

(C) U λ+-saturates Trg and U is λ-OK.

We can finally state the following theorem, which was promised earlier. It follows

immediately from Corollary 3.14.15 and Theorem 3.14.11.

Theorem 3.14.16. Suppose U is an ℵ1-incomplete ultrafilter on B. If U λ+-saturates

some nonlow theory, then U is strongly λ-regular; thus for any M |= T , U λ+-saturates T

if and only if MB/U is λ+-saturated.

3.15 The Chain Condition and Saturation

In this section, we prove two theorems relating the chain condition on B with the

existence of ultrafilters U on B which λ+-saturate various T .

The following is a generalization of Claim 5.11 of [57]. There, only the case of

B = Bλµθ was considered (so c.c.(B) = (µ<θ)+), and the conclusion of their theorem held

only for ultrafilters extending a special filter D.

Theorem 3.15.1. Suppose B is a complete Boolean algebra; write λ = c.c.(B). Suppose

U is a nonprincipal ultrafilter on B. Then U does not λ+-saturate any nonsimple theory. In

fact, we can find a (λ,∆(TP2))-distribution A in U , such that if B is a complete subalgebra

of B∗ where B∗ has the λ-c.c., then A has no multiplicative refinement in B∗.

Proof. It suffices to show the second claim. Note that λ > ℵ0, as otherwise B would be

finite by Corollary 2.1.8, and so would not admit any nonprincipal ultrafilters. Thus, λ is

regular by Theorem 2.1.5.
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Let σ be the completeness of U ; so by Lemma 2.2.1, σ < λ, and we can find

an antichain C of B of size σ such that for every X ∈ [C]<σ,
∨
X 6∈ U . Enumerate

C = (cγ : γ < σ).

Let S ⊆ λ be the set of all α < λ with cof(α) = σ, so S is stationary in λ. For

each α ∈ S, let Lα : σ → α be a cofinal, increasing map, and let δα ∈ (λ,<)B be the

element such that for all γ < σ, ‖δα = Lα(γ)‖(λ,<)B = cγ . This determines δα, since C is

a maximal antichain. In particular, we have that ‖δα < α‖(λ,<)B = 1, and for all β < α,

‖δα > β‖(λ,<)B ∈ U . In particular, for all α < β both in S, ‖δα < δβ‖(λ,<)B ∈ U .

For each s ∈ [λ]<ℵ0 , put A(s) =
∧
α 6=β∈s ‖δα 6= δβ‖(λ,<)B ; so A is a (λ,∆(TP2))-

distribution in U . Suppose B is a complete subalgebra of B∗ where B∗ has the λ-c.c.

We show that A has no multiplicative refinement in B∗, i.e. there is no multiplicative

λ-distribution B in B∗ such that for all α < β, B({α, β}) ≤ ‖δα 6= δβ‖(λ,<)B .

Suppose there were. For each α < λ there is some f(α) < σ with B({α}) ∧ cf(α)

nonzero, i.e. with B({α})∧‖δα = Lα(f(α))‖(λ,<)B/U nonzero. Write g(α) = Lα(f(α)) < α.

By Fodor’s Lemma (using that λ is regular), we can find a stationary set S′ ⊆ S on which

g is constant, say with value γ. Since B∗ has λ-c.c., (B({α}) ∧ ‖δα = γ‖(λ,<)B/U : α ∈ S′)

is not an antichain, so we can choose α < β both in S′ such that B({α}) ∧ B({β}) ∧

‖δα = γ‖(λ,<)B/U ∧ ‖δβ = γ‖(λ,<)B/U is nonzero. But B({α, β}) ≤ ‖δα 6= δβ‖(λ,<)B/U , a

contradiction.

We remark that Malliaris and Shelah have shown in [57] that if there is a supercom-

pact cardinal, then Theorem 3.15.1 is sharp. That is, we can find B with the λ-c.c., and

an ultrafilter U on B, which λ+-saturates every simple theory. In particular, simplicity is

a principal dividing line in Keisler’s order. We give a streamlined proof of this in the next

chapter.
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A special case of the following theorem is proved by Malliaris and Shelah in [56]

(namely, the special case when B is of the form B2λµθ).

Theorem 3.15.2. Suppose B is a complete Boolean algebra; write λ = c.c.(B). Suppose

U is an ℵ1-incomplete ultrafilter on B. Then U does not λ+-saturate any nonlow theory.

In fact, there is a (λ,∆(FDP ))-distribution A in U such that if B is a complete subalgebra

of B∗ and B∗ has the λ-c.c., then A has no multiplicative refinement in B∗.

Proof. It suffices to show the second claim. Note that λ > ℵ0, as otherwise B would be

finite by Corollary 2.1.8, and so would not admit any nonprincipal ultrafilters.

Let U be an ℵ1-incomplete ultrafilter on B; then we can choose a descending sequence

(cn : n < ω) from U such that c0 = 1 and
∧
n cn = 0. Let A be the distribution in U ,

defined by A(s) = c|s|. Then A is a (λ,∆(FDP ))-distribution. Suppose B∗ has the λ-c.c.

and B is a complete subalgebra of B∗. If A has a multiplicative refinement B in U , then

by the proof of Theorem 3.14.10, B would be a strongly λ-regular distribution. But this

is impossible since B∗ has the λ-c.c.

Thus we see that if we wish to construct an ultrafilter on a complete Boolean al-

gebra B with the λ-c.c. which λ+-saturates some nonlow theory, then we need at least a

measurable cardinal. Generally, if we wish to construct an ultrafilter U on any B which

λ+-saturates some nonlow theories but not every theory, then we need U to be λ-OK and

we need U to λ+-saturate Trg, and we need U to not be λ+-good. It is open if this can be

done in ZFC, even if we drop the requirement that U λ+-saturate Trg.

On a related note, we remark that Malliaris and Shelah construct in [55] an ultrafilter

U on P(λ) which is λ-OK, but does not λ+-saturate Trg, starting with a measurable

cardinal.

130



We remark that we have shown in [87] that Theorem 3.15.2 is sharp. That is, we

can find a complete Boolean algebra B with the λ-c.c., and an ℵ1-incomplete ultrafilter

U on B, which λ+-saturates every low theory. We give a streamlined proof of this in the

next chapter.

Finally, for context we remark on the following theorem, which we will prove later

(Corollary 3.16.18). Kunen proved the special case of B = P(λ) in [45].

Theorem 3.15.3. Suppose B is a complete Boolean algebra with an antichain of size λ.

Then there is a strongly λ-regular, λ+-good ultrafilter on B.

Thus, Theorems 3.15.1 and 3.15.2 are also sharp with respect to B.

3.16 Ultrafilter Pullbacks

Suppose B0,B1 are complete Boolean algebras, and U1 is an ultrafilter on B1. When

can we find B0, an ultrafilter on U0, which λ+-saturates the same theories as U1? The

following is the best we know currently:

Theorem 3.16.1. Suppose B0,B1 are complete Boolean algebras such that c.c.(B0) > λ

(i.e. B0 has an antichain of size λ) and 2<c.c.(B1) ≤ 2λ. Suppose U1 is an ultrafilter on B1.

Then there is a strongly λ-regular ultrafilter U0 on B0 such that for all complete countable

theories T , U0 λ
+-saturates T if and only if U1 does.

Remark 3.16.2. Note that, for instance, if B1 has the λ+-c.c., or if |B1| ≤ 2λ, then B1

satisfies the hypothesis of the theorem.

Theorem 3.15.1 shows that the hypothesis on B0 is necessary, but possibly the chain

condition hypothesis on B1 can be dropped.

In the next two subsections, we will prove two theorems of Malliaris and Shelah,

131



which we overview now, and which together handle the case when |B1| ≤ 2λ. In the third

subsection, we wrap up the proof of Theorem 3.16.1.

First of all, we want some definitions:

Definition 3.16.3. Let LB = (0, 1,≤,∧,∨,¬) be the language of Boolean algebras (so

the operations ∧,∨ are binary).

If B0,B1 are complete Boolean algebras, then a Boolean algebra homomorphism

j : B0 → B1 is a homomorphism of LB-structures; we do not require it preserve infinite

meets and joins.

A filter D on B is λ+-good if every λ-distribution in D has a multiplicative refinement

in D. D is strongly λ-regular if D contains a strongly λ-regular sequence. (This generalizes

the definitions of λ+-good and strongly λ-regular ultrafilters.)

In Section 3.16.1, prove the following theorem of Malliaris and Shelah; it is essentially

Theorem 5.11 of [56], and they term it “Separation of Variables.” (In addition to differences

in terminology, Malliaris and Shelah introduce a notion of λ+-excellence, and use it in place

of λ+-good. But they then prove it is equivalent to λ+-goodness, and we avoid the extra

notion. Also, Malliaris and Shelah just prove the case where B0 = P(λ), and the case

when D is λ-regular, but the general case is the same.)

Theorem 3.16.4. Suppose B0,B1 are complete Boolean algebras, and j : B0 → B1 is a

surjective homomorphism. Write D = j−1(1B1); suppose D is λ+-good. Suppose U1 is an

ultrafilter on B1; let U0 = j−1(U1), so U0 is an ultrafilter extending D. Then for every

complete countable theory T , U0 λ
+-saturates T if and only if U1 λ

+-saturates T .

In Section 3.16.2, we show that the setup described in Theorem 3.16.4 can occur,

and moreover we can arrange D to be strongly λ-regular. Malliaris and Shelah call this
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the Existence Theorem; it is Theorem 7.1 of [56] (it was also Excercise VI.3.11(2) of [75]).

They just consider the special case where B0 = P(λ) and B1 has the λ+-c.c., but the

general case is the same.

Theorem 3.16.5. Suppose B0,B1 are complete Boolean algebras, such that B0 has an an-

tichain of size λ, and |B1| ≤ 2λ. Then there is a surjective Boolean algebra homomorphism

j : B0 → B1, such that j−1(1B1) is λ+-good and strongly λ-regular.

3.16.1 Separation of Variables

We establish some very useful terminology.

Definition 3.16.6. If D is a filter on the complete Boolean algebra B, then by B/D we

mean the Boolean algebra whose elements are equivalence classes of =D, where a =D b

if ¬(a4b) ∈ D. (Here a4b = (a ∧ (¬b)) ∨ ((¬a) ∧ b) is symmetric difference.) Thus

if j : B0 → B1 is a surjective homomorphism, then B0/j
−1(1B1) ∼= B1. (It would be

more algebraically natural to mod out by an ideal; however, since we are concerned with

ultrafilters instead of maximal ideals, we use this notation, following Malliaris and Shelah

[56].)

If ϕ(xi : i < n) is a quantifier-free LB-formula, and D is a filter on B, then say that

ϕ(ai : i < n) holds mod D if ϕ([a0/D], . . . , [an−1/D]) holds in B/D.

In the rest of the subsection we prove Theorem 3.16.4, following [56]. We fix the

setup: suppose B0,B1 are complete Boolean algebras, and j : B0 → B1 is a surjective

homomorphism. Write D = j−1(1B1); suppose D is λ+-good. Suppose U1 is an ultrafilter

on B1; let U0 = j−1(U1), so U0 is an ultrafilter extending D. We wish to show that for

every complete, countable T , U0 λ
+-saturates T if and only if U1 does.
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We will prove three lemmas, after which we will essentially be done via Theo-

rem 3.5.14.

Lemma 3.16.7. Suppose A0 is a λ-distribution in B0; write A1 = j◦A0, a λ-distribution

in B1. Suppose T is a complete countable theory. Then A0 is a (λ, T )- Loś map if and

only if A1 is a (λ, T )- Loś map.

Proof. In this lemma, we actually won’t need the hypothesis that D is λ+-good.

Let ϕ = (ϕα(x, yα) : α < λ) be a sequence of formulas. It suffices to show that A0

is a (λ, T, ϕ)- Loś map if and only if A1 is a (λ, T, ϕ)- Loś map.

We apply Theorem 3.5.12, using characterization (C).

First suppose A0 is a (λ, T, ϕ)-possibility. Let s ∈ [λ]<ℵ0 , and let c1 ∈ B1 be

nonzero, such that c1 decides A1(t) for all t ⊆ s. Let J = {t ⊆ s : c1 ≤ A1(t)}, and

let c0 =
∧
t∈J A0(t) ∧

∧
t∈P(s)\J ¬A0(t). Then since j is a homomorphism and each

j(A0(t)) = A1(t) we get that j(c0) ≥ c1. In particular c0 is nonzero. Since A0 is a

(λ, T, ϕ)- Loś map, we can find M |= T and (aα : α ∈ s) from M , such that for each t ⊆ s,

∃x
∧
α∈t ϕα(x, aα) is consistent if and only if t ∈ J , as desired.

Next, suppose A1 is a (λ, T, ϕ)- Loś map. Let s ∈ [λ]<ℵ0 , and let c0 ∈ B0 be nonzero,

such that c0 decides A0(t) for all t ⊆ s. Let c1 = j(c0). Then c1 is nonzero, and c1 decides

each A1(t), in the same way that c0 decides A0(t). Thus, since A1 is a (λ, T, ϕ)- Loś map,

we conclude as above.

The next two lemmas say that distributions in U0 correspond to distributions in U1,

in a way that preserves the existence of multiplicative refinements.

Lemma 3.16.8. Suppose A0 is a λ-distribution in U0, so A1 := j ◦A0 is a multiplicative

refinement in U1. Then: A0 has a multiplicative refinement in U0 if and only if A1 has a

134



multiplicative refinement in U1.

Proof. Clearly, if B0 is a multiplicative refinement of A0 in U0, then j◦B0 is a multiplicative

refinement of A1 in U1.

So suppose B1 is a multiplicative refinement of A1 in U1. For each α < λ, choose

B′0({α}) ∈ B0 such that j(B′0({α})) = B1({α}); for each s ∈ [λ]<ℵ0 , define B′0(s) =∧
α∈s B′0({α}). Note that B′0 is a multiplicative λ-distribution in U0, and for all s ∈ [λ]<ℵ0 ,

A0(s) ≤ B′0(s) mod D.

For each s ∈ [λ]<ℵ0 , let C(s) =
∧
t⊆s(¬A0(t) ∨ B′0(t)), so C is a λ-distribution in

D, and we can think of it as measuring where B′0 is a refinement of A0. Let D be a

multiplicative refinement of C in D, possible by λ+-goodness of D. For each s ∈ [λ]<ℵ0 ,

define B0(s) = B′0(s)∧D(s). Clearly B0 is a multiplicative λ-distribution in U0; but since

D refines C, we clearly get that B0 refines A0.

Lemma 3.16.9. Suppose A1 is a λ-distribution in U1. Then there is a λ-distribution A0

in U0 such that j ◦A0 = A1.

Proof. Choose A′0 : [λ]<ℵ0 → B0 such that j ◦A′0 = A1 (possible since j is surjective). We

have that each A′0(s) ∈ U0, and further, for all t ⊆ s ∈ [λ]<ℵ0 , A0(s) ≤ A0(t) mod D.

Define C(s) =
∧
t⊆t′⊆s A′0(t) ∨ (¬A′0(t′)) ∈ D; this is a λ-distribution in D, and we

can think of it as measuring where A′0 is a distribution. Let D(s) be a multiplicative

refinement of C(s) in D, and define A0(s) = A′0(s) ∧D(s) for each s ∈ [λ]<ℵ0 . Clearly

j ◦A0 = A1 still, and so A0(s) ∈ U0 for all s. But also, since D refines C, we get easily

that A0 is a distribution, i.e. t ⊆ s implies A0(t) ⊆ A0(s). Thus A0 works.

We can now finish the proof of Theorem 3.16.4 by chasing implications. Indeed,

suppose first that U0 λ+-saturates T , and let A1 be a (λ, T )- Loś map in U1. Choose
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a λ-distribution A0 in U0 with j ◦ A0 = A1, by Lemma 3.16.9. Then A0 is a (λ, T )-

 Loś map by Lemma 3.16.7, so we can find a multiplicative refinement B0 of A0 in U0.

Then B1 := j ◦A1 is a multiplicative refinement of A1 in U1, by the trivial direction of

Lemma 3.16.8.

Conversely, suppose U1 λ
+-saturates T , and let A0 be a (λ, T )- Loś map in U0. Then

A1 := j ◦A0 is a (λ, T )- Loś map in U1, by Lemma 3.16.7, so we can find a multiplicative

refinement A1 in U1. Thus we can find a mulitplicative refinement of A0 in U0, by the

nontrivial direction of Lemma 3.16.8.

3.16.2 The Existence Theorem

In this subsection, we prove Theorem 3.16.5. So let B0 be a complete Boolean algebra

with an antichain of size λ, and let B1 be a complete Boolean algebra with |B1| ≤ 2λ. We

aim to find a surjective homomorphism j : B0 → B1, such that j−1(1B1) is λ+-good and

strongly λ-regular. Write µ = c.c.(B1), so µ is regular and 2<µ ≤ 2λ.

The history of this proof is long; previously only the case where B0 = P(λ) and

where B1 has the λ+-c.c. have been considered. The first iteration was due to Keisler [34],

who proved that if 2λ = λ+ then P(λ) admits a λ-regular, λ+-good ultrafilter; this is the

special case of the Existence Theorem where B1 = {0, 1}. Next, Kunen [45] removed the

hypothesis that 2λ = λ+, replacing it with the notion of independent families of functions

(which for us, will be independent families of maximal antichains). Then Shelah listed the

general case as Exercise VI.3.11(2) of [75], but in the absence of Separation of Variables,

its significance was unclear. Finally, the Existence Theorem is proved as Theorem 7.1

of [56]. We follow their proof; the generalizations to any B0 with an antichain of size λ,

and any B1 with |B1| ≤ 2λ, both require only minor adjustments.
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By Theorem 2.5.4, we can choose an independent family C∗ of 2λ-many maximal

antichains of B0 , such that each C ∈ C∗ has size λ. Write C∗ as the disjoint union of C−1

and C′, each having size 2λ. Enumerate C′ = (Cα : α < 2λ), and choose cα ∈ Cα for each

α. Replace Cα with {cα,¬cα}; note that C∗ is still independent. Also, let (c′α : α < 2λ)

be an enumeration of B1, with repetitions if necessary.

j will be our eventual surjective homomorphism j : B0 → B1. We plan to arrange

that j(cα) = c′α for all α < 2λ. Subject to this condition, note that j is determined by

D = j−1(1B1), since necessarily we must have that for all a ∈ B0, there is some α < 2λ

with a = cα mod D, and so j(a) = c′α. Thus our problem has turned into constructing a

filter D on B0. In fact, we can conveniently describe what properties we need D to have:

Lemma 3.16.10. Suppose D is a filter on B0 satisfying the following:

(A) For every a ∈ B0, there is some α < 2λ such that a = cα mod D;

(B) For every LB-term τ(xi : i < n) and for every α0 < . . . < αn−1 from 2λ, τ(c′αi : i <

n) = 1B1 if and only if τ(cαi : i < n) ∈ D.

Define j : B0 → B1 via j(a) = c′α, for some or every α < 2λ such that a = cα mod

D. Then j is a well-defined surjective homomorphism from B0 to B1, with j−1(1B1) = D.

Proof. j is trivially well-defined. (Such α must exist by (A); the choice of α does not

matter by (B).) Also trivially, j is surjective.

We check that j−1(1B1) = D. Choose α < 2λ so that c′α = 1B1 . Then cα ∈ j−1(1B1).

But since c′α = 1B1 , we get by (B) that cα = 1B0 mod D, i.e. cα ∈ D. Thus, given a ∈ B0,

j(a) = 1B1 if and only if a = cα mod D if and only if a ∈ D.

Next we show that j(¬a) = ¬j(a) for all a ∈ B1. Choose α0, α1 such that a = cα0

mod D and ¬a = cα1 mod D. Then cα0 ∨ (¬cα1) and (¬cα0) ∨ cα1 are both in D, thus
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c′α0
∨ (¬c′α1

) and (¬c′α0
) ∨ c′α1

are both 1B1 , thus j(¬a) = c′α1
= ¬c′α0

= ¬j(a) as desired.

In particular, j(0B0) = ¬j(1B0) = 0B1 , so it suffices (by De Morgan’s laws) to show

that j(a ∧ b) = j(a) ∧ j(b) for all a,b ∈ B0. Choose α0, α1, α2 such that a = cα0 mod

D and b = cα1 mod D and a ∧ b = cα2 mod D. Then reasoning as above gives that

c′α0
∧ c′α1

= c′α2
, as desired.

Thus, it suffices to find a λ-regular, λ+-good filter D on B0 which satisfies conditions

(A) and (B) of Lemma 3.16.10.

As some convenient notation, let Σ be the set of all LB-terms σ(x) in the variables

x = (xα : α < 2λ) (so of course σ(x) only uses finitely much of x). Let Σ1 be the set of all

of σ(x) ∈ Σ such that σ(c′) = 1B1 , and let Σ+ be the set of all σ(x) ∈ Σ such that σ(c′)

is nonzero.

Then Condition (B) of Lemma 3.16.10 can be reformulated as: for all σ(x) ∈ Σ1,

σ(c) ∈ D, and for all σ(x) ∈ Σ+, σ(c) is nonzero mod D.

We will be approximating our desired filter D as a union of filters (Dα : α < 2λ).

To make sure we don’t run out of space, at each stage α < 2λ we will also have a large

subset Cα of C−1 which is independent mod Dα, in the strong sense described below.

We describe the requirements we will place each (Dα,Cα):

Definition 3.16.11. Given C ⊆ C−1, let PC be the set of all functions f , such that dom(f)

is a finite subset of C, and f is a choice function on dom(f). Let xf =
∧

C∈dom(f) f(C).

Suppose C ⊆ C−1 has size 2λ and D is a filter on B0. Then say that (D,C) is

a pre-good pair the following two conditions hold: first, for each σ(x) ∈ Σ1, σ(c) ∈ D.

Second, for each f ∈ PC and for each σ(x) ∈ Σ+, xf ∧ σ(c) is nonzero.

Say that (D,C) is a good pair if D is maximal subject to the condition that (D,C)

138



is a pre-good pair; i.e. (D,C) is a pre-good pair, but whenever D′ properly extends D

then (D′,C) is not.

Our plan then is to build a sequence (Dα, Cα : α < 2λ) where each (Dα, Cα) is a

good pair; D :=
⋃
αDα will be our desired filter.

Note that it is clear that if (D,C) is a pre-good pair, we can find D′ extending D

such that (D′,C) is a good pair, since the conditions involved are finitary.

Lemma 3.16.12. There is a filter D−1 such that (D−1, C−1) is a good pair.

Proof. First, let D′−1 be the filter generated by {σ(c) : σ(x) ∈ Σ1}. We want to show

(D′−1,C−1) is a pre-good pair; that is for every f ∈ PC−1 and for every τ(x) ∈ Σ+,

xf ∧ τ(c) is nonzero mod D′−1 (in particular D′−1 is in fact a filter, i.e. is proper).

So let σ0(x), . . . , σn−1(x) ∈ Σ1, let f ∈ PC−1 and let τ(x) ∈ Σ+. We want to check

that σ0(c) ∧ . . . ∧ σn−1(c) ∩ τ(c) ∩ cf is nonzero.

To see this, let σ(x) be σ0(x) ∧ . . . ∧ σ(x) ∧ σ(x) in disjunctive normal form (so as

a disjoint of conjunctions of x±1
α ’s). Note that σ(c′) = τ(c′) 6= 0B. Hence we can choose a

conjunct σ∗(x) = xi0α0
∩ . . . ∩ xim−1

αm−1 of σ(x), such that σ∗(c′) 6= 0B. (Here, each ij ∈ 2; for

i = 1 we let xi = x and for i = 0 we let xi = ¬x.) Since C∗ = C−1 ∪C′ is independent, we

have that xf ∧
∧
j<m c

ij
αj 6= 0.

Now choose an extension D−1 of D′−1 such that (D−1,C−1) is a good pair.

We now handle strong λ-regularity, once and for all.

Lemma 3.16.13. There is a good pair (D0,C0) with D−1 ⊆ D0, such that D0 is strongly

λ-regular.

Proof. Pick C ∈ C−1 and let C0 = C−1\{C}. Enumerate C = (as : s ∈ [λ]<ℵ0), and for

each α < λ let bα =
∨
{as : α ∈ s ∈ [λ]<ℵ0}. As in Lemma 3.6.2, (bα : α < λ) is a
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strongly λ-regular sequence. Let D′0 be the filter generated by D−1 and (bα : α < λ).

I claim that (D′0,C0) is a pre-good pair, which suffices, since then we can extend it to

a good pair (D0,C0). So suppose f ∈ PC0 and σ(x) ∈ Σ+; it suffices to show that xf ∧σ(c)

is nonzero mod D′0. But given s ∈ [λ]<ℵ0 , we have that as∧xf ∧σ(c) is nonzero mod D−1

since (D−1,C−1) is a good pair (applied to the function g = f ∪ {(C,as)} ∈ PC−1). Since

as ≤
∧
α∈s bα we conclude.

The following lemma is a key property of good pairs.

Lemma 3.16.14. If (D,C) is a good pair and a ∈ B0 is nonzero mod D, then there is

some f ∈ PC and some σ(x) ∈ Σ+ such that xf ∧σ(c) ≤ a mod D. In fact, we can choose

σ(x) to be of the form xα for some α < 2λ (necessarily with c′α 6= 0).

Hence, |B0/D| ≤ 2λ.

Proof. If there were no such f, σ(x), then let D′ be the filter generated by D and ¬a; we

are exactly assuming that (D′,C) is a pre-good pair, contradicting the maximality of D.

We can arrange σ(x) to be of the form xα for some α, because we can choose α < 2λ with

c′α = σ(c′); then cα = σ(c) mod D, so this works.

For the hence claim: let {(fγ , αγ) : γ < κ} satisfy:

• Each fγ ∈ PC, and each αγ < 2λ satisfies c′αγ 6= 0;

• Each xfγ ∧ cαγ ≤ a mod D;

• For γ 6= γ′, (xfγ ∧ cαγ ) ∧ (xfγ′ ∧ cαγ′ ) = 0 mod D;

• {(fγ , αγ) : γ < κ} is maximal subject to the preceding conditions.

I claim that [a/D] =
∨
γ<κ[xfγ ∧ cαγ/D] in B0/D (note B0/D is not necessarily complete,

so the join on the right-hand-side is not required to exist in general). Clearly [a/D] is an
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upper bound to {[xfγ ∧ cαγ/D] : γ < κ}. If it were not the least upper bound, then we

could find b ≤ a mod D with b nonzero mod D, such that each b∧xfγ ∧ cαγ = 0 mod D.

But then choose f, α with xf ∧ cα ≤ b mod D, contradicting maximality.

Thus it suffices to show that 2κ ≤ 2λ, since then there are only |PC|κ · |B1|κ ≤ 2λ-

many possibilities for {(fγ , αγ) : γ < κ} and this determines a mod D.

We can suppose κ > λ; then it suffices to show that B1 has an antichain of size κ.

By Theorem 2.3.5, it suffices to show that B1 has an antichain of size µ, for every regular

µ ≤ κ.

By the ∆-system lemma we can find I ∈ [κ]µ such that for all γ, γ′ ∈ I, fγ and fγ′

are compatible. Then I claim that (c′αγ : γ ∈ I) is an antichain of B1, as desired. Indeed,

suppose we had γ < γ′ both in I, with c′αγ ∧ c′αγ′ 6= 0. We know that (xfγ ∧ cαγ )∧ (xfγ′ ∧

cαγ′ ) = 0 mod D. But this contradicts that (D,C) is a good pair, since xαγ ∧ xαγ′ ∈ Σ+

and xfγ ∧ xfγ′ = xfγ∪fγ′ , where fγ ∪ fγ′ ∈ PC.

Let X ⊆ B0 be a choice of representatives for B0/D0; so by Lemma 3.16.14, |X| ≤ 2λ.

The following lemma describes our strategy for finishing:

Lemma 3.16.15. It suffices to find good pairs ((Dα,Cα) : α < 2λ) such that:

1. (D0,C0) is as already defined;

2. For α < β < 2λ, Dα ⊆ Dβ and Cβ ⊆ Cα;

3. If A is a λ-distribution in Dα, then for some β > α, A has a multiplicative refinement

in Dβ;

4. For each a ∈ X, there are some α, β < 2λ such that a = cβ mod Dα.

Proof. Write D =
⋃
α<2λ Dα. Since D0 is strongly λ-regular, so is D. By condition (3),
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D is λ+-good. By condition (4) and the definition of X, D satisfies condition (A) of

Lemma 3.16.10. Since each Dα satisfies condition (B) of Lemma 3.16.10, so does D.

Note that there are only 2λ many λ-distributions in B; since |X| ≤ 2λ, there are

only 2λ-many challenges we have to handle in total. Thus, it suffices to show that we

can handle each challenge individually, without using up to much of C0. Formally, the

following two lemmas will finish. Recall that µ = c.c.(B1) ≤ 2λ is regular, so in the

terminology of Lemma 3.16.15, if each Cα\Cα+1 has size less than µ, then at limit stages

δ we can set Cδ =
⋂
α<δ Cα and still have |Cδ| ≥ 2λ.

Lemma 3.16.16. Suppose (E ,D) is a good pair, and suppose a ∈ X. Then there is a

good pair (E ′,D′) with E ⊆ E ′, D′ ⊆ D and |D\D′| < µ, and such that there is some

α∗ < 2λ with a = cα∗ mod D′.

Proof. We will try to define by induction on γ < µ filters Eα ⊇ E , subsets Dα ⊆ D, and

ordinals αγ < 2λ such that:

(a) Each (Eγ ,Dγ) is a good pair, and each c′αγ is nonzero.

(b) (E0,D0) = (E ,D), and γ < γ′ implies Eγ ⊆ Eγ′ and Dγ ⊇ Dγ′ and c′αγ ∧ c′αγ′ = 0B1 .

(c) For limit δ < µ+, Dδ =
⋂
γ<δ Dγ .

(d) For each γ, Dγ\Dγ+1 is finite.

(e) For each γ, either cαγ ≤ a mod Eγ+1 or else cαγ ∧ a = 0B0 mod Eγ+1.

Since B1 has the µ-c.c. we must eventually reach a stage at which we cannot

continue. Clearly this must happen at a successor stage, i.e. for some γ∗ < µ, we have

constructed (Eγ ,Dγ : γ ≤ γ∗) and (αγ : γ < γ∗), and we cannot find (Eγ∗+1,Dγ∗+1, αγ∗).
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Let

c′ =
∨
{c′αγ : γ < γ∗ and cαγ ≤ a mod Eγ∗}.

(We define that the empty join is 0B1 .)

Choose α with c′ = c′α. There are three cases a priori, but only the first will be

possible:

Case 1: a = cα mod Eγ∗ . Then we are done, with E ′ = Eγ∗ , D′ = Dγ∗ , and α∗ = α.

Case 2: a ∧ (¬cα) is nonzero mod Eγ∗ . By Lemma 3.16.14 we can choose f ∈ PDγ∗

and αγ∗ < 2λ so that c′αγ∗ is nonzero and xf ∩ cαγ∗ ≤ a ∧ (¬cα) mod Eγ∗ . Let Dγ∗+1 =

Dγ∗\dom(f), and let E ′γ∗+1 be the filter generated by Eγ∗ and xf . Then (E ′γ∗+1,Dγ∗+1) is

a pre-good pair so we can choose Eγ∗+1 ⊇ Eγ∗+1 such that (Eγ∗+1,Gγ∗+1) is a good pair.

Then Eγ∗+1,Dγ∗+1, γα contradicts that we could not continue.

Case 3: cα ∧ (¬a) is nonzero mod Eγ∗ . Choose f ∈ PDγ∗ and αγ∗ < 2λ with

xf ∩ cαγ∗ ≤ cα ∧ (¬a) mod Eγ∗ and proceed as in Case 2 to get a contradiction.

We have saved the crux of the argument until the end:

Lemma 3.16.17. Suppose (E ,D) is a good pair, and suppose A is a λ-distribution in E .

Then there is a good pair (E ′,D′) with E ⊆ E ′, D′ ⊆ D and |D\D′| = 1, and such that A

has a multiplicative refinement in E ′.

Proof. Pick D ∈ D and let D′ = D\{D}. Enumerate D = {ds : s ∈ [λ]<ℵ0}. For each

s ∈ [λ]<ℵ0 , let B(s) :=
∨
{A(t) ∧ dt : s ⊆ t ∈ [λ]<ℵ0}. Clearly this is a λ-distribution in

B0, refining A.

I claim that B is multiplicative; let s ∈ [λ]<ℵ0 . Suppose towards a contradict e :=(∧
α∈s B{α}

)
∧ (¬B(s)) were nonzero. Then we can find e′ ≤ e nonzero, and (sα : α ∈ s)

a sequence from [λ]<ℵ0 , such that each α ∈ sα, and such that e′ ≤ A(sα) ∧ dsα for each
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α ∈ s. Since D is an antichain this implies sα = sα′ = t say, for all α, α′ ∈ s. Visibly then

s ⊆ t, and so e′ ≤ A(t) ∧ dt, contradicting that e′ ∧B(s) = 0.

Let E ′0 be the filter generated by E and (B(s) : s ∈ [λ]<ℵ0). I claim that (E ′0,D′) is

pre-good, which suffices. So suppose towards a contradiction it were not; then we could

find f ∈ PD′ and σ(x) ∈ Σ+ such that xf ∧ σ(c) = 0 mod E ′0. Then we can find s ∈ [λ]<ℵ0

such that xf ∧ σ(c)∧B(s) = 0 mod E . Thus xf ∧ σ(c)∧A(s)∧ ds = 0 mod E . But since

A(s) ∈ E , if we set g = f ∪ {(D,ds)} ∈ PD, then this implies that xg ∧ σ(c) = 0 mod E ,

contradicting that (E ,D) is a good pair.

As mentioned above, using Lemmas 3.16.16 , 3.16.17 it is now straightforward to

meet the requirements of Lemma 3.16.15; thus this finishes the proof of Theorem 3.16.5.

We remark on the following consequence of what we have done so far. As mentioned

above, Kunen proved this in the special case of B0 = P(λ) in [45].

Corollary 3.16.18. Suppose B0 is a complete Boolean algebra with an antichain of size

λ. Then there is a strongly λ-regular, λ+-good ultrafilter on B0.

Proof. Apply Theorems 3.16.5 to the special case where B0 = P(λ), B1 = {0, 1}, and U1 is

the unique ultrafilter on {0, 1} (which is in particular λ+-good). To see that the obtained

U0 is λ+-good, apply Theorem 3.7.2 and Theorem 3.16.4.

3.16.3 Downward Löwenheim-Skolem for Saturation

We now finish the proof of Theorem 3.16.1.

The following is the only genuinely new piece of the proof:

Theorem 3.16.19. Suppose λ is a cardinal, B is a complete Boolean algebra such that

2<c.c.(B) ≤ 2λ. Suppose U is an ultrafilter on B. Then there is a complete subalgebra B∗
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of B with |B∗| ≤ 2λ, such that U ∩ B∗ λ+-saturates exactly the same theories as U .

Proof. We use the characterization of λ+-saturation given by Theorem 3.5.14.

Write µ = c.c.(B). Note that cof(2λ) ≥ µ: to see this, consider three cases. First, if

2<µ < 2λ, then necessarily µ ≤ λ, so conclude by König’s theorem (always cof(2λ) > λ).

If for all κ < µ, 2κ < 2λ, then visibly (2κ : κ < µ) is a cofinal sequence in 2λ, and since

µ is regular we conclude cof(2λ) ≥ µ. Finally, suppose there is some κ < µ with 2κ = 2λ.

Then for all κ′ with κ ≤ κ′ < µ, 2κ
′

= 2λ; thus for each such κ′, cof(2λ) = cof(2κ
′
) > κ′;

thus cof(2λ) ≥ µ.

Note that for every X ⊆ B with |X| ≤ 2λ, if we let B(X) be the complete subalgebra

of B generated by X, then |B(X)| ≤ |X|<µ ≤ 2λ. Also, since cof(2λ) ≥ µ, whenever

(Bα : α < 2λ) is an increasing sequence of complete subalgebras of B, we have that⋃
α<2λ Bα is a complete subalgebra of B.

Choose X0 ⊆ B with |X0| ≤ 2λ such that for every complete theory T in a countable

language, if U does not λ+-saturate T , then there is some (λ, T )- Loś map A in U with no

multiplicative refinement in U , such that im(A) ⊆ X0. Then choose an increasing sequence

(Bα : α < 2λ) of complete subalgebras of B, such that X0 ⊆ B0, and each |Bα| ≤ 2λ, and

for each α < 2λ and each λ-distribution A in U∩Bα, if A has a multiplicative refinement in

U then it has one in U ∩Bα+1. (There are only |Bα|λ ≤ 2λ-many distributions to handle.)

Write B∗ =
⋃
α<2λ Bα. Then B∗ is a complete subalgebra of B and and |B∗| ≤ 2λ.

Write U∗ = U ∩B∗. Since X0 ⊆ B∗, we get that if U does not λ+-saturate T , then neither

does U∗. Suppose on the other hand that U λ+-saturates T , and that A is a (λ, T )- Loś

map in U∗. Then A is in some U ∩ Bα for some α < 2λ, since cof(2λ) > λ. Thus A has a

multiplicative refinement in U ∩ Bα+1 ⊆ U∗.

Note then that Theorem 3.16.1 follows immediately from Theorems 3.16.4, 3.16.5

145



and 3.16.19.

As a corollary, we get the following:

Corollary 3.16.20. Let λ be a cardinal and let T0, T1 be theories. The following are

equivalent:

(A) For every λ-regular ultrafilter on P(λ), if U λ+-saturates T1 then U λ+-saturates T0.

(B) There is a complete Boolean algebra B with an antichain of size λ, such that for

every strongly λ-regular ultrafilter U on B, if U λ+-saturates T1 then U λ+-saturates

T0.

(C) For every complete Boolean algebra B with 2<c.c.(B) ≤ 2λ, and for every ultrafilter

U on B, if U λ+-saturates T1 then U λ+-saturates T0;

(D) For every complete Boolean algebra B with the λ+-c.c., and for every ultrafilter U

on B, if U λ+-saturates T1 then U λ+-saturates T0.

Note that (A) is the definition of Eλ, so Theorem 3.5.5 holds as promised.

3.17 Cuts and Treetops

In this section, we will survey the key theorem of Malliaris and Shelah from [54]. In

particular, we will show that for all ω-nonstandard V̂ |= ZFC−, pV̂ = tV̂ ; then we will

discuss combinatorial characteristics of the continuum, and prove that p = t.

3.17.1 pV̂ = tV̂

Fix, for the entirety of this subsection, some ω-nonstandard V̂ |= ZFC−. We aim

to show pV̂ = tV̂ .

We begin with the following theorem; it corresponds to Theorem 3.1 of [54].
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Theorem 3.17.1. Suppose κ < min(p+

V̂
, tV̂ ) is regular. Then there is a unique regular

cardinal λ with (κ, λ) ∈ CV̂ ; moreover this λ is also unique with the property that (λ, κ) ∈

CV̂ .

Note that if κ < pV̂ then necessarily λ ≥ pV̂ .

Proof. We first show that there exist λ0, λ1 regular cardinals with (κ, λ0) ∈ CV̂ and

(λ1, κ) ∈ CV̂ . We will then show that λ0 = λ1, which suffices to prove the theorem.

For λ0: pick n̂∗ nonstandard, and note that by Lemma 3.9.5 applied to the tree

(n̂∗, <̂) we can choose (n̂α : α < κ) a strictly increasing sequence below n̂∗. Let (m̂β : β <

β∗) be any strictly decreasing sequence in (n̂∗, <̂), cofinal above (n̂α : α < κ), and then

discard elements to replace β∗ by cof(β∗) =: λ0.

For λ1: I claim that we can define (n̂′α : α < κ), a strictly decreasing sequence of

nonstandard numbers from ω̂. To see that we can do this: first let n̂′0 be an arbitrary

nonstandard natural number. Having defined n̂′α, let n̂′α+1 = n̂′α − 1. Having defined n̂′α

for all α < δ where δ < κ is a limit, consider the pre-cut (n : n < ω), (n̂′α : α < δ). Since

ω + δ < κ ≤ pV̂ this cannot be a cut, so choose n̂′δ in the gap. Having constructed n̂′α

for each α < κ, we can as in the previous paragraph choose a regular λ1 and a strictly

increasing sequence (m̂′γ : γ < λ1), cofinal below (n̂′α : α < κ).

Now to show λ0 = λ1: first, by possibly increasing n̂∗, we can suppose n̂∗ > n̂′0, and

thus each n̂α, n̂
′
α, m̂β, m̂

′
β < n̂∗. Let (T̂ , <̂) be the tree of all sequences s ∈ (n̂∗ × n̂∗)<n̂∗ ,

such that that for all n̂ < m̂ < l̂g(s), s(n̂)(0) < s(m̂)(0) < s(m̂)(1) < s(n̂)(0).

We now choose a strictly increasing sequence (sα : α < κ) from T̂ such that for each

α < κ, if we set âα = l̂g(sα), then sα(âα − 1) = (n̂α, n̂
′
α). Let s0 = ∅; having defined sα,

let sα+1 = sα
_(n̂α+1, n̂

′
α+1). Finally, having defined sα for each α < δ for δ < κ limit,

since |δ| < tV̂ we can choose s+ an upper bound for (sα : α < δ). Let n̂ be greatest so
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that s+(n̂)(0) < n̂δ and s+(n̂)(1) > n̂′δ; let sδ = s+ �n̂ _(n̂δ, n̂
′
δ).

Since κ < tV̂ we can choose s an upper bound on (sα : α < κ). Let b̂0 = l̂g(s),

and choose λ regular and (b̂i : i < λ) a strictly decreasing sequence from ω̂, cofinal above

(âα : α < κ).

Then the sequences (m̂α : α < λ0) and (s(b̂i, 0) : i < λ) are cofinal in each other, so

λ0 = λ; and the sequences (m̂′α : α < λ0) and (s(b̂i, 1) : i < λ) are cofinal in each other, so

λ1 = λ.

For the following definition, we will eventually be proving that min(p+

V̂
, tV̂ ) = pV̂ =

tV̂ .

Definition 3.17.2. For κ < min(p+

V̂
, tV̂ ) regular, define lcfV̂ (κ) to be the unique regular

λ with (κ, λ) ∈ CV̂ (which is also the unique regular λ with (λ, κ) ∈ CV̂ ).

We can now describe our strategy for showing pV̂ = tV̂ . Namely, we will show that

whenever κ ≤ pV̂ < tV̂ , then (κ, pV̂ ) 6∈ C(ω̂, V̂ ). This will suffice for a contradiction since

if pV̂ < tV̂ then necessarily κ = lcfV̂ (pV̂ ) ≤ pV̂ and (κ, pV̂ ) ∈ CV̂ .

The following easy case corresponds to Lemma 6.1 of [54].

Lemma 3.17.3. Suppose pV̂ < tV̂ . Write κ = pV̂ . Then (κ, κ) 6∈ CV̂ .

Proof. Suppose it were, say via (âα : α < κ), (b̂α : α < κ). Write n̂∗ = b̂0 + 1. Let

(T̂ , <̂) be the tree of all sequences s in (n̂∗ × n̂∗)<n̂∗ such that for all n̂ < m̂ < l̂g(s),

s(n̂)(0) < s(n̂)(1) < s(m̂)(1) < s(m̂)(0). Using the techniques of the previous proofs it is

easy to define (sα : α < κ) an increasing sequence from T̂ such that if we set n̂α = l̂g(sα),

then sα(n̂α − 1) = (âα, b̂α). Then since κ < tV̂ is regular we can choose an upper bound

s for (sα : α < κ). Then s(l̂g(s) − 1)(0) is in the gap (âα : α < κ), (b̂α : α < κ); but this

was supposed to be a cut.
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It will be helpful if we articulate the following lemma.

Lemma 3.17.4. Suppose γ∗ < pV̂ , and (nγ : γ < γ̂∗) is a sequence of distinct elements

from ω̂. Suppose ê is an element of ω̂. Suppose D̂ ⊆ ω̂ is finite in V̂ , with each n̂γ ∈ D̂,

and suppose ĝ : [D̂]2 → ω̂ is such that for all γ < γ′ < γ∗, ĝ(n̂γ , n̂γ′) < ê.

Then there is some D̂′ ⊆̂ D̂ such that each n̂γ ∈ D̂′, and for all n̂ < m̂ < D̂′,

ĝ(n̂, m̂) < ê.

Proof. By Theorem 3.9.6, applied to X = P(D̂).

The following simple remark is Fact 8.4 of [54].

Lemma 3.17.5. For each κ, there is a function g : [κ+]2 → κ, such that whenever X ⊂ κ+

is unbounded, the image of [X]2 under g is unbounded in κ.

Proof. For each α < κ+ let gα : α → |α| be a bijection; for α′ < α < κ+ let g(α′, α) =

gα(α′).

Finally we show that whenever κ < λ = pV̂ < tV̂ , then (κ, λ) 6∈ CV̂ . This is Theorem

8.1 of [54].

Lemma 3.17.6. Suppose pV̂ < tV̂ . Write λ = pV̂ and suppose κ < λ. Then (κ, λ) is not

in CV̂ .

Proof. Let (âα : α < κ), (b̂β : β < λ) be a (κ, λ)-cut. Also, choose g : [κ+]2 → κ as in

Lemma 3.17.5. Let N̂∗ = b̂0 + 1, and choose a sequence of distinct elements (n̂γ : γ < κ+)

below N̂∗.

We define a special tree T̂ .

First let Q̂ be the set of all triples (ê, D̂, ĝ) satisfying:

• ê < N̂∗;
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• D̂ ⊆ N̂∗;

• ĝ : [D̂]2 → ê.

So Q̂ is finite in V̂ . Let T̂ be the subtree of Q̂<N̂∗ consisting of all s such that, if we

set n̂∗ = l̂g(s), and if we set s(n̂) = (ên̂, D̂n̂, ĝn̂) for n̂ < n̂∗, then:

• For all n̂ < m̂ < n̂∗, êm̂ < ên̂;

• if n̂+ 1 < n̂∗, and if â < b̂ are both in D̂n̂ ∩ D̂n̂+1, then gn̂(â, b̂) = gn̂+1(â, b̂).

We now break into two cases, depending on whether κ+ = λ. The first case can be

viewed as a warm-up to the second case.

Case 1. κ+ < λ.

We choose an increasing sequence (sβ : β < λ) from T̂ such that if we set d̂β = l̂g(sβ)

and if, for n̂ < d̂β, we set sβ(n̂) = (ên̂, D̂n̂, ĝn̂) (which doesn’t depend on the choice of β),

then:

• For all β < λ, êd̂β−1 = b̂β;

• For all β < λ and for all n̂ < d̂β and for all γ < κ+, n̂γ ∈ D̂n̂;

• For all β < λ and for all n̂ < d̂β and for all γ < γ′ < κ+, ĝn̂(n̂γ , n̂
′
γ) = âg(γ,γ′).

For β = 0: by Theorem 3.9.6 we can choose some D̂, ĝ such that D̂ ⊆ N̂∗ with each

n̂γ ∈ D̂, and ĝ : [D̂]2 → b̂0, and for each γ < γ′ < κ+, ĝ(n̂γ , n̂γ′) = âg(γ,γ′). Let s0 be the

sequence of length 1 with s0(1) = (b̂0, D̂, ĝ).

Suppose we have defined sβ; write sβ(d̂β − 1) = (b̂β, D̂, ĝ). Apply Lemma 3.17.4

to get D̂′⊆̂D̂ so that if we set ĝ′ := ĝ �[D̂′]2 , then ĝ′ : [D̂′]2 → b̂β+1. Let sβ+1 =

sβ
_(âβ+1, D̂

′, ĝ′).
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Suppose we have defined sβ for all β < δ, δ limit; since |δ| < tV̂ we can choose

an upper bound s for (sβ : β < δ). For n̂ < l̂g(s) write s(n̂) = (ên̂, D̂n̂, ĝn̂). Using that

pV̂ > κ+ we can arrange that for all n̂ < l̂g(s), ên̂ > b̂δ and for all n̂ < l̂g(s), for all γ < κ+,

n̂γ ∈ D̂n̂. Let n̂ = l̂g(s)− 1; it follows by induction in V̂ that ĝn̂ takes on the right values

on n̂γ : γ < κ+. So we can now proceed as in the successor case.

Case 2. κ+ = λ.

We choose an increasing sequence (sβ : β < λ) from T̂ such that if we set d̂β = l̂g(sβ)

and if, for n̂ < d̂β, we set sβ(n̂) = (ên̂, D̂n̂, ĝn̂) (which doesn’t depend on the choice of β),

then:

• For all β < λ, êd̂β−1 = b̂β;

• For all β < λ and for all n̂ < d̂β and for all γ < λ, if n̂ ≥ d̂γ − 1 then n̂γ ∈ D̂n̂;

• For all β < λ and for all n̂ < d̂β and for all γ < γ′ < λ, if n̂ ≥ d̂γ′ − 1 then

ĝn̂(n̂γ , n̂
′
γ) = âg(γ,γ′).

Getting this sequence is essentially the same as in Case 1. For instance, in the

successor case: suppose we have defined sβ. Write sβ(d̂β − 1) = (b̂β, D̂, ĝ). We can

suppose n̂β+1 is not in D, since if n̂β+1 is in D̂ then we can just revise our choice of sβ

so that sβ(d̂β − 1) = (b̂β, D̂\{n̂β+1}, ĝ �[D̂\{n̂β+1}]2). Then let D̂′ = D̂ ∪ {n̂β+1}; we can

choose ĝ′ : [D̂′]2 → b̂β with the correct values on [{n̂γ : γ ≤ β + 1}]2 by Theorem 3.9.6,

and then we can proceed as in the successor case of Case 1.

The cases now rejoin (really we could have done it in one case, but this seems

clearer); we have defined (sα : α < λ) so that if we set d̂β = l̂g(sβ) and if, for n̂ < d̂β, we

set sβ(n̂) = (ên̂, D̂n̂, ĝn̂), then:

• For all β < λ, êd̂β−1 = b̂β;
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• For all β < λ and for all n̂ < d̂β and for all γ < κ+, if n̂ ≥ d̂γ − 1 then n̂γ ∈ D̂n̂;

• For all β < λ and for all n̂ < d̂β and for all γ < γ′ < κ+, if n̂ ≥ d̂γ′ − 1 then

ĝn̂(n̂γ , n̂
′
γ) = âg(γ,γ′).

By λ-tree-tops we can choose an upper bound s ∈ T̂ for (sα : α < λ). Let k̂0 =

l̂g(s) and for n̂ < k̂0 write s(n̂) = (ên̂, D̂n̂, ĝn̂) (this doesn’t conflict with the previous

definitions).

Choose a decreasing sequence (k̂α : α < κ) from N̂∗ so that (d̂β : β < λ), (k̂α : α < κ)

is a cut; this is possible by uniqueness of lcfV̂ (λ) = κ. For each α < κ, let Γα be the set

of all γ < κ+ such that for every n̂ < k̂α with n̂ ≥ d̂γ − 1, n̂γ ∈ D̂n̂. Then Γα : α < κ is

an increasing sequence of subsets of κ+ with union κ+; hence there must be some α < κ

with |Γα| = κ+. Let α′ < κ be large enough so that êk̂α ≤ âα′ (if there were no such α′

then (âα : α < κ), (b̂β : β < λ) wouldn’t be a cut).

Now by choice of g, there are γ < γ′ ∈ Γα with g(γ, γ′) ≥ α′. But then ĝk̂α(n̂γ , n̂γ′) =

âg(γ,γ′) ≥ âα′ ≥ êk̂α , a contradiction.

This concludes the proof that pV̂ = tV̂ , and hence of Theorem 3.9.9.

3.17.2 p = t

In [54], Malliaris and Shelah apply their results on cofinality spectrum problems

to solve the oldest open problem on cardinal invariants of the continuum; namely, they

showed that p = t. We give their argument now; we streamline matters slightly so as to

avoid reference to a hard theorem of Shelah [76].

We begin with the relevant definitions:

Definition 3.17.7. • Given f, g ∈ ωω say that f ≤∗ g if {n : f(n) ≤ g(n)} is cofinite
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and say that f <∗ g if {n : f(n) < g(n)} is cofinite. Warning: f <∗ g is stronger

than saying f ≤∗ g and g 6≤∗ f , although in the arguments below this will not

matter.

• Let b be the least cardinality of a <∗-unbounded subset of ωω (which is the same as

the least cardinality of a ≤∗-unbounded subset of ωω).

• Given X,Y ⊂ ω, say that X ⊆∗ Y if X\Y is finite.

• Given B = {Bα : α < κ} say that B has the strong finite intersection property

if the intersection of finitely many elements from B is infinite. Say that B has a

pseudo-intersection if there is some infinite X ⊂ ω with X ⊆∗ Bα for each α < κ.

• Let p be the least cardinality of a familiy B of subsets of ω with the strong finite

intersection property but without an infinite pseudo-intersection.

• Say that (Xα : α < κ) is a tower if α < β < κ implies Xα ⊇∗ Xβ.

• Let t be the least cardinality of a tower with no pseudo-intersection.

Obviously p ≤ t; and it is well-known that t ≤ b. See [90] for a survey on the

classical theory.

We will want the following definition.

Definition 3.17.8. Suppose V̂ |= ZFC− is ω-nonstandard. Then let bV̂ be the least

cardinality of a unbounded subset of ω̂ (or equivalently, of a strictly increasing cofinal

sequence in ω̂; thus bV̂ is regular).

The following is the connection between b and bV̂ .

Lemma 3.17.9. Suppose U is a nonprincipal ultrafilter on ω and suppose V |= ZFC− is

transitive; let V̂ = V ω/U . Then b ≤ bV̂ . Hence t ≤ bV̂ .
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Proof. Suppose λ < b and {[fα]D : α < λ} is a sequence from ω̂. Choose a <∗-upper

bound f ∈ ωω for {fα : α < λ}. Then clearly [fα]U < [f ]U for each α < λ.

The latter part follows since t ≤ b; see [90].

To begin making connections with the previous section we observe the following

lemma.

Lemma 3.17.10. Suppose V̂ |= ZFC− is ω-nonstandard. Then the following are equiv-

alent:

(A) λ < pV̂ .

(B) λ < tV̂ .

(C) Whenever n̂ < ω̂ and (âα : α < λ) is a family from P(n̂) with the finite intersection

property (i.e. given α0, . . . , αn−1 ∈ λ, âα0∩̂ . . . ∩̂âαn−1 is nonempty), if each |âα| is

nonstandard, then there is â ⊆ n̂ with |â| nonstandard, such that â ⊆ âα for each

α < λ.

(D) Whenever (âα : α < λ) is a descending sequence of nonempty sets from [ω̂]<ℵ̂0 , there

is some m̂ < ω̂ such that m̂ ∈ âα for each α < λ.

Proof. (A) and (B) are equivalent by Theorem 3.9.9, and they imply the other items by

Theorem 3.9.6. Also, clearly (C) implies (D). So it suffices to show that (D) implies (B).

Suppose (sα : α < λ) is an increasing sequence from n̂<n̂. Let âα = {s ∈ n̂n̂−1 : sα ⊆

s}. Then by (D) (and applying an injection from n̂n̂−1 to n̂′ for large enough n̂′) we can

choose s ∈ n̂n̂ with s ∈ âα for each α < λ. Then s is an upper bound on (sα : α < λ).

We need one more lemma.
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Definition 3.17.11. Suppose f, g : ω → [ω]<ℵ0 and A ⊆ ω is infinite. Then say that

f ≤A g if {n ∈ A : f(n) 6⊆ g(n)} is finite.

Lemma 3.17.12. Suppose λ < t is an infinite cardinal and A ⊆ ω is infinite and (fα : α <

λ) is a sequence from ([ω]<ℵ0)ω with fα ≥A fβ for all α < β < λ. Suppose further that

for each α < λ, {m ∈ A : fα(m) = ∅} is finite. Then there is some infinite B ⊆∗ A and

some f : ω → [ω]<ℵ0 such that f ≤B fα for each α < λ, and further {m ∈ B : f(m) = ∅}

is finite.

Proof. For each α < λ define Xα := {〈m,n〉 : m ∈ A and n ∈ fα(m)}; so Xα is an infinite

subset of ω×ω. Suppose α < β; then there is m∗ so that for all m ∈ A\m∗, fα(m) ⊆ fβ(m).

Hence Xα\Xβ ⊆
⋃
m∈A∩m∗ fα(m) is finite, so Xα ⊇∗ Xβ. Hence (Xα : α < λ) is a tower;

by hypothesis on λ we can choose an infinite X ⊆ ω × ω such that X ⊆∗ Xα for each

α < λ. Define f : ω → [ω]<ℵ0 by f(m) = {n : 〈m,n〉 ∈ X}. (Each f(m) is finite because

X ⊆∗ X0.) Let B = {m : f(m) 6= ∅}. Clearly this works.

Theorem 3.17.13. p = t.

Proof. We know that p ≤ t; suppose towards a contradiction that p < t. We can suppose

that t = 2ℵ0 = 2<t since if we force by the Levy collapse of 2<t to t, this adds no new

sequences of reals of length less than t, and so does not affect the values of p and t. So

henceforth we assume this. I switch between the symbols t or 2ℵ0 depending on the role

they are playing.

Our aim is to build a special ultrafilter U on ω, such that if we set V̂ = V ω/U for

some or any countable transitive V |= ZFC−, then pV̂ ≤ p and tV̂ = 2ℵ0 . In view of

pV̂ = tV̂ this clearly suffices to show p = 2ℵ0 = t, a contradiction.

Enumerate P(ω) = (Yγ : γ < 2ℵ0). Enumerate (([ω]<ℵ0)ω)<t = (f
γ

: γ < 2ℵ0),
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where f
γ

= (fγα : α < λγ) for some λγ < t, so that each sequence occurs cofinally often.

Inductively choose a tower (Aγ : γ < 2ℵ0) so that:

(1) (This is the definition of tower) Each Aγ is infinite and γ < γ′ < 2ℵ0 implies

Aγ′ ⊆∗ Aγ .

(2) For each γ < 2ℵ0 , either Aγ+1 ⊆ Xγ or else Aγ+1 ∩Xγ = ∅.

(3) Suppose for every α < β < λγ , fγα ≥Aγ f
γ
β , and for every α < λγ , {m ∈ Aγ : fγα(m) =

∅} is finite. Then there is some f : ω → [ω]<ℵ0 such that {m ∈ Aγ+1 : f(m) = ∅} is

finite and f ≤Aγ+1 fα for each α < λγ .

This is straightforward, using Lemma 3.17.12 at successor steps, and using t = 2ℵ0

at limit stages. Let U be the set of all A ⊂ ω such that Aγ ⊆∗ A for some γ < 2ℵ0 . Then

U is a nonprincipal ultrafilter, by (1) and (2). Let V be a countable transitive model of

ZFC− and let V̂ = V ω/U . Note that |V̂ | = 2ℵ0 , so in particular we have pV̂ , tV̂ , bV̂ ≤ 2ℵ0 .

Also, we know t ≤ bV̂ by Lemma 3.17.9, so bV̂ = 2ℵ0 .

Claim 1. pV̂ ≤ p.

Proof of Claim 1. Suppose λ < pV̂ ; we show λ < p. Note that λ < bV̂ since bV̂ = 2ℵ0 ≥ pV̂ ,

as remarked above. Let {Bα : α < λ} be a family of subsets of ω with the strong finite

intersection property. Define fα : ω → [ω]<ℵ0 by fα(m) = Bα∩m; let âα = [fα]U . So each

âα ∈ [ω̂]<ℵ̂0 . Since λ < bV̂ , we can choose n̂ such that each âα ⊆ n̂. Then {âα : α < λ}

satisfies the hypothesis of Lemma 3.17.10 part (C); since λ < pV̂ there is â ⊆ n̂ with |â|

nonstandard, and â ⊆ âα for each α < ω.

Write â = [f ]U . For each α < λ there is some γ < 2ℵ0 such that f ≤Aγ fα. Since

2ℵ0 = t is regular, we can choose γ∗ large enough so that f ≤Aγ∗ fα for each α < λ.

Define B ⊆ ω by B =
⋃
m∈Aγ∗ f(m). B is infinite since {m ∈ Aγ∗ : |f(m)| ≥ n} ∈ D
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for each n < ω. Also, suppose α < λ; choose m∗ large enough so that f(m) ⊆ fα(m)

for every m ∈ Aγ∗\m∗.Then B\Bα ⊆
⋃
m∈Aγ∗∩m∗ f(m) is finite, so B ⊆∗ Bα. This shows

that λ < p, concluding the proof of the claim.

Claim 2. tV̂ = 2ℵ0 .

Proof of Claim 2. We know tV̂ ≤ 2ℵ0 . Let λ < 2ℵ0 be given; we show λ < tV̂ . Note

that λ < 2ℵ0 = bV̂ as remarked above. So it suffices to show (D) from Lemma 3.17.10

holds. So let (âα : α < λ) be a descending sequence of nonempty sets from [ω̂]<ℵ̂0 ; write

âα = [fα]U .

Note that for each α < β < λ there is some γ with fα ≥Aγ fβ, and for each α < λ

there is some γ with {m ∈ Aγ : fα(m) = ∅} finite. Since 2ℵ0 is regular we can choose γ∗

large enough so that fα ≥Aγ∗ fβ for all α < β < 2ℵ0 , and such that {m ∈ Aγ∗ : fα(m) = ∅}

is finite for each α < λ.

Choose γ ≥ γ∗ so that λγ = λ and fγα = fα for each α < λ. By item (3) of the

construction we can choose f : ω → [ω]<ℵ0 such that {m ∈ Aγ+1 : f(m) = ∅} is finite

and f ≤Aγ+1 fα for each α < λ. Let â = [f ]U ; then â is nonempty, so any m̂ ∈ â is as

desired.

3.18 E∗λκ and pseudosaturation

In this section, we connect E∗λκ with pseudosaturation.

We will want a different definition of bV̂ than in Section 3.17:

Definition 3.18.1. Suppose V̂ |= ZFC−. Then let b∗
V̂

be the least cardinality of a

non-pseudofinite subset of V̂ .

So of course, b∗
V̂
≤ bV̂ . The following is easy after the results of Section 3.10.
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Lemma 3.18.2. Suppose V |= ZFC− is transitive and j : V � V̂ , and suppose b∗
V̂
≥

λV̂ (∆(IP )). Suppose T ∈ V is a complete countable unstable theory. Then for every

M |= T with M ∈ V , and for every cardinal λ, the following are equivalent:

(A) V̂ λ+-pseudosaturates T ;

(B) jstd(M) is λ+-saturated.

Proof. If λ < b∗
V̂

then this is clear, since every partial type over M of cardinality at

most λ is pseudofinite. So suppose λ ≥ b∗
V̂

; then λ ≥ λV̂ (∆(IP )), so (A) is false by

Theorem 3.10.5. So (B) is also false.

Further, by the results in Section 3.10, we know exactly what the situation is for

stable T , provided that V̂ is ℵ1-saturated.

Thus we are led to consider the relationship between b∗
V̂

and λV̂ (∆(IP )) in models

V̂ |= ZFC−. In general we do not know how to prove an inequality, but under some

hypotheses on V̂ , we can. The arguments here are inspired by Malliaris and Shelah’s

proof in [61] that Trg is the E∗1-minimal unstable theory.

Definition 3.18.3. Let L∗ = {∈, I, F} where I is a unary relation symbol and F is a

unary function symbol. Let ZFC−∗ be the L∗ theory, such that (V̂ , ∈̂, I V̂ , F V̂ ) |= ZFC−∗

if:

• (V̂ , ∈̂) |= ZFC−;

• I V̂ is a bounded subset of (ω)V̂ ;

• F V̂ is a bijection from I V̂ onto V̂ , and for every n̂ ∈ I V̂ , F V̂ � {m̂ ∈ I V̂ : m̂ ≤ n̂} ∈ V̂ ;

• For every â ∈ V̂ , either {n̂ ∈ I V̂ : n̂ ∈̂ â} is bounded in I V̂ , or its complement is.
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Given V̂ |= ZFC−, say that V̂ |= ZFC−pre if V̂ can be expanded to a model

(V̂ , I V̂ , F V̂ ) of ZFC−∗ . In particular this implies V̂ is ω-nonstandard.

Lemma 3.18.4. Suppose V |= ZFC− is transitive. Then there is some j : V � V̂ with

V̂ |= ZFC−pre.

Proof. We can suppose, by compactness, that V is countable. Let j : V � V̂ with V̂

ω-nonstandard and countable. We show that V̂ |= ZFC−pre, that is, we find an expansion

to a model of ZFC−∗ .

Enumerate V̂ = {am : m < ω} and let U be a nonprincipal ultrafilter on ω. For each

m < ω, let Ym be either {n ∈ ω : n ∈ am} or else {n ∈ ω : n 6∈ am}, whichever is in U .

Define (bn : n < ω) inductively on n; having defined bn : n < n′, note that
⋂
n≤n′ Yn ∈ U

is infinite, so we can find bn′ ∈
⋂
n≤n′ Yn, such that bn′ > bn for all n < n′.

Define I V̂ := {bn : n < ω}, an infinite subset of ω ⊆ ω̂. Choose a bijection

F V̂ : I V̂ → V̂ . Then (V̂ , I V̂ , F V̂ ) works (using that [V̂ ]<ℵ0 ⊆ V̂ to see that V̂ contains

the initial approximations to F V̂ ).

The definition of ZFC−∗ was rigged to make the following work.

Theorem 3.18.5. Suppose V |= ZFC− is transitive and suppose j : V � V̂ |= ZFC−pre.

Then b∗
V̂
≥ λV̂ (∆(IP )).

Proof. Let (V̂ , I V̂ , F V̂ ) be an expansion of V̂ to a model of ZFC−∗ .

Suppose X ⊆ V̂ is not pseudofinite; it suffices to show that |X| ≥ λV̂ (∆(IP )). Look

at Y := (F V̂ )−1(X); since X is not pseudofinite, Y must be unbounded in I V̂ . Thus it

suffices to show that whenever (n̂α : α < λ) is a strictly increasing, cofinal sequence in I V̂ ,

then λ ≥ λV̂ (∆(IP )).

Let I0, I1 be two unbounded, disjoint subsets of λ each of size λ; for instance, we
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could let I0 = {2α : α < λ} and I1 = {2α + 1 : α < λ}. Write Xi = {n̂α : α ∈ Ii}. Note

that whenever X̂0 ∈ V̂ contains X0, we must have that X̂0 contains an end segment of I V̂ ,

by definition of ZFC−∗ ; in particular X̂0 contains elements of X1. Thus (X0, X1) witness

that λ ≥ λV̂ (∆(IP )).

On a related note, the following theorem is the key observation in showing that E∗1

and E∗ℵ1
coincide on unstable theories.

Theorem 3.18.6. Suppose V |= ZFC−, and T ∈ V is unstable. Suppose j : V � V̂ |=

ZFC−pre. If V̂ ℵ1-pseudosaturates T , then V̂ is ℵ1-saturated.

Proof. Choose M |= T with M ∈ V . We know jstd(M) is not lcfV̂ (ω)+-pseudosaturated,

by Theorem 3.10.5, so lcfV̂ (ω) ≥ ℵ1. By Theorem 3.17.1, (ℵ0,ℵ0) 6∈ CV̂ ; thus pV̂ ≥ ℵ1.

Now also by Theorem 3.18.5 (and Theorem 3.12.5), we have that b∗
V̂
≥ ℵ1. Thus by

Theorem 3.9.7, V̂ is ℵ1-saturated.

We can now get several corollaries. First of all, we have the promised characteriza-

tions of E∗λκ in terms of pseudosaturation:

Corollary 3.18.7. Suppose T0, T1 are complete countable theories, suppose κ is infinite

or 1. If either T0 or T1 is unstable, then the following are equivalent:

(A) T0 E∗λκ T1;

(B) There is some countable transitive V |= ZFC− with T0, T1 ∈ V , such that whenever

j : V � V̂ |= ZFC−pre with V̂ κ-saturated, if V̂ λ-pseudosaturates T1, then it λ-

pseudosaturates T0.

In particular, E×κ⊆E∗κ, except perhaps on pairs of stable theories.
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Proof. We break into cases. Note that if T1 is stable and T0 is not, then (A) and (B) both

fail by Corollary 3.10.11 and Theorem 3.10.12. So we can suppose T1 is unstable.

(B) implies (A): choose an embedding j0 : V � V̂0 |= ZFC−pre with V̂0 countable,

and let (V̂0, I
V̂0 , F V̂0) be an expansion of V̂0 to a model of ZFC−∗ . Choose Mi |= Ti with

Mi ∈ V .

I claim that this setup witnesses Lemma 3.8.6(C) holds, and hence that T0 E∗λκ T1.

Indeed, suppose j1 : (V̂0, I
V̂0 , F V̂0) � (V̂ , I V̂ , F V̂ ), with (V̂ , I V̂ , F V̂ ) being κ-saturated.

Write j = j1 ◦ j0. Then in particular, V̂ is κ-saturated and V̂ |= ZFC−pre. Suppose jstd(M1)

is λ+-saturated. Then in particular jstd(M1) is λ+-pseudosaturated, hence jstd(M0) is λ+-

pseudosaturated. Since T1 is unstable, we also get that λ < λV̂ (∆(IP )); hence λ < b∗
V̂

by

Theorem 3.18.5. Thus jstd(M0) is λ+-saturated.

(A) implies (B): Suppose first that T0 is unstable; choose some transitive countable

V |= ZFC− and Mi |= Ti with Mi ∈ V , as in Lemma 3.8.6(B). Now suppose j : V �

V̂ |= ZFC−pre satisfies that V̂ is κ-saturated, and jstd(M1) is λ+-pseudosaturated. Then by

Lemma 3.18.2 and Theorem 3.18.5, jstd(M1) is λ+-saturated, so jstd(M0) is λ+-saturated,

in particular it is λ+-pseudosaturated.

Finally, suppose T0 is stable; we show that (B) holds (in fact, we won’t need (A).)

let V |= ZFC− be countable with T0, T1 ∈ V , and suppose j : V � V̂ |= ZFC−pre with V̂ ω-

nonstandard. Suppose V̂ λ+-pseudosaturates T1. This implies by Theorem 3.18.6 that V̂

is ℵ1-saturated. Note µV̂ ≥ lcfV̂ (ω) > λ; thus by Theorem 3.10.6, V̂ λ+-pseudosaturates

T0.

We can replace the condition on T0, T1 by a condition on κ:

Corollary 3.18.8. Suppose T0, T1 are complete countable theories, suppose κ ≥ ℵ1. Then

the following are equivalent:
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(A) T0 E∗λκ T1;

(B) There is some countable transitive V |= ZFC− with T0, T1 ∈ V , such that whenever

j : V � V̂ |= ZFC−pre with V̂ κ-saturated, if V̂ λ-pseudosaturates T1, then it λ-

pseudosaturates T0.

In particular, E×κ⊆E∗κ.

Proof. By Corollary 3.18.7, it suffices to consider the case where T0, T1 are both stable.

If T0 is stable without the finite cover property and T1 is stable with the finite cover

property, then (A) and (B) fail by Corollary 3.10.11 and Theorem 3.10.12. So it suffices

to consider the case where if T0 fails the finite cover property, then so does T1. But by

Theorems 3.10.6 and 3.10.7, in these cases both (A) and (B) hold.

As mentioned before, Malliaris and Shelah prove in [61] that E∗1 properly refines

E∗ℵ1
on the stable theories, and promise in forthcoming work to show that E∗1 has exactly

six classes on the stable theories. Depending on whether this goes through for E×1 as well,

perhaps κ = 1 in Corollary 3.18.8 is also true.

We have the following further consequence of Theorem 3.18.6, which shows that the

stable theories are the only theories on which E∗1 and E∗ℵ1
differ:

Corollary 3.18.9. Suppose T0, T1 are complete countable theories, not both stable. Then

T0 E∗λ1 T1 if and only if T0 E∗λℵ1
T1; thus T0 E∗1 T1 if and only if T0 E∗ℵ1

T1. In other

words, E∗1 and E∗ℵ1
coincide on pairs of theories which are not both stable.

This immediately gives some new results on E∗ℵ1
:

Corollary 3.18.10. NSOP2 theories are nonmaximal inE∗ℵ1
, assuming instances of GCH.

Simplicity is a dividing line in E∗ℵ1
(even without a supercompact cardinal).
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Proof. This is because of the corresponding statements for E∗1. Nonmaximality of NSOP2

in E∗1 is proved in [8] and [80]; the dividing line for simple theories in E∗1 is constructed

in [61].
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Chapter 4: Amalgamation Properties and Keisler’s Order

In [57], Mallairis and Shelah show that if there is a supercompact cardinal, then

simplicity is a dividing line in Keisler’s order. In [58], they use similar arguments to

show (in ZFC) that Keisler’s order has infinitely many classes, and in [87], I use similar

arguments to show that lowness is a dividing line in Keisler’s order.

In this chapter, we give a uniform treatment of these ultrafilter constructions, and

we investigate the model-theoretic properties detected by the ultrafilters of [58].

The fundamental examples at play here are the hypergraph examples Tn,k: namely,

for n > k ≥ 2, Tn,k is the random k-ary n-clique free hypergraph. These were introduced

by Hrushovksi in [26], and used by Malliaris and Shelah in [58] to show that Keisler’s

order has infinitely many classes. (They subtract 1 from both indices in Tn,k.) Each Tn,2

has SOP2, and thus is maximal in E; so we are only really interested in the case k ≥ 3.

Also, it suffices for our present needs to consider the case n = k + 1.

In Section 4.2, we define a pattern ∆k, and prove that Tk+1,k is the E-minimal

theory admitting ∆k. Thus, if T admits ∆k, then Tk+1,k E T . However, to conclude

Tk+1,k 6E T , we presently need stronger hypotheses than not admitting ∆k. We discuss a

large class of amalgamation properties along these lines, by trying to abstract properties

that Tk+1,k fails.

Here is one property of Tk+1,k that seems key: let k ≥ 3, and consider Tk+1,k. Let

T ∀k+1,k be the universal theory of Tk+1,k, i.e. the theory of (not necessarily random) k-ary
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k + 1-clique free hypergraphs. Suppose (Au : u ( n) is a system of models of T ∀k+1,k, not

necessarily in any monster model, such that each Au ∩Av = Au∩v. If n ≤ k, then we can

always find some A |= T ∀k+1,k with each Au ⊆ A. This is because we cannot have created

a k + 1-clique, and so we can define A by not putting in any new relations. However,

if n > k, then this may fail, since there may be ai ∈ A{i} for each i ≤ k, such that

Au |= R((ai : i ∈ u)) for each u ∈ [k + 1]k.

This generalized amalgamation seems like a promising property to study. Indeed,

in [39], Kim, Kolesnikov and Tsuboi introduced the notion of n-simplicity for each n ≥ 1,

building off of work of Kolesnikov in [40]. For example, Tk+1,k is k−2-simple but not k−1-

simple; 1-simplicity is the same as simplicity. Skipping some technicalities, n-simplicity

says that independent systems of types of boundedly closed sets (pu(xu) : u ( n + 2)

have solutions. The hypotheses of independence and bounded closures are necessary to

avoid certain trivial amalgamation failures. See [37] for a definition of bounded closure,

although it will not be used in what we do.

However, n-simplicity cannot be the right definition for Keisler’s order: in [39], the

authors give an example of a theory Un for each even n ≥ 4, which in particular is not

n−1-simple. But it is easily checked that Un is bi-interpretable with the random graph Trg,

and so Un is Keisler-equivalent to Trg. Even worse, in [18], Goodrick, Kim and Kolesnikov

give examples of totally categorical theories which are not 2-simple.

These problems are solved if we replace boundedly closed sets by models. In par-

ticular, we make the following definition in Section 4.4, where P−(k) denotes the proper

subsets of k: T has P−(k) amalgamation models if every independent system of models

(Mu : u ( k) can be amalgamated. As examples, Tk+1,k has P−(k)-amalgamation of

models but not P−(k + 1)-amalgamation of models, and Trg has P−(k)-amalgamation of
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models for all k, as does each Un, and every stable theory.

We also define the property of having Λk-type amalgamation, for each k ≥ 3. This

is somewhat more technical than having P−(k)-amalgamation of models, but it is more

finely tuned to Keisler’s order. These were first studied in [81], joint with Shelah, with

the aim of analyzing ≤SP .

We now discuss our ultrafilter construction. The idea is as follows: we will have,

by various means, a class P of forcing notions, which is closed under < θ-support forcing

iterations, and such that each P ∈ P has the λ+-c.c. We are not actually interested

in forcing with elements of P; rather, we are interested in building ultrafilters on their

Boolean algebra completions. Nonetheless, the combinatorics of building these ultrafilters

turns out to be intertwined with combinatorics in the associated forcing extensions.

The class of forcing notions P will be controlled by a sequence of cardinals (λ, κ, θ, σ),

which satisfy the following constraints (similarly to the situation in [57]):

Definition 4.0.1. (λ, κ, θ, σ) is a suitable sequence of cardinals if:

• ℵ0 ≤ σ ≤ θ < κ ≤ λ;

• θ, κ are regular, and for all µ < κ, µ<θ < κ;

• σ is either ℵ0 or else supercompact.

In Section 4.6, given a suitable sequence of cardinals s, and given an amalgamation

parameter 3 ≤ k ≤ θ, we define the class of forcing notions Ps,k. Every P ∈ Ps,k has the

κ-c.c. and is θ-closed, and Ps,k is closed under < θ-support forcing iterations. σ indicates

the completeness of the ultrafilters we will be constructing, and λ is the level of saturation

we are interested in.

In Section 4.7, for every suitable sequence s and for every 3 ≤ k ≤ θ, we define
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two properties of theories, namely: the Ps,k-amalgamation property, and the smooth Ps,k-

amalgamation property. These detect some sort of k-dimensional type amalgamation prop-

erties. In Theorem 4.7.8, we show that there is some P ∈ Ps,k and some σ-complete ultrafil-

ter U on B(P ), such that U λ+-saturates every theory with the smooth Ps,k-amalgamation

property, and does not λ+-saturate any theory without the Ps,k-amalgamation property.

In the subsequent sections, we give model-theoretic necessary and sufficient con-

ditions for a theory T to have the (smooth) Ps,k-amalgamation property: suppose s =

(λ, κ, θ, σ) is a suitable sequence of cardinals, and 3 ≤ k < ω. Then as described in

Section 4.10, we show the following:

(A) If T is unsimple, or if T is nonlow and σ = ℵ0, then T will fail the Ps,k-amalgamation

property;

(B) If T admits ∆k′ for some k′ < k, and if λ ≥ κ+ω, then T will fail the Ps,k-

amalgamation property;

(C) If T has Λk′ type-amalgamation for all k′ < k, and either T is low or else T is simple

and σ > ℵ0, and finally if θ > ℵ0, then T satisfies the smooth Ps,k-amalgamation.

Collectively, these results uniformize many of the recent ultrafilter constructions for

Keisler’s order. In particular, we will get that if there is a supercompact cardinal σ, then

simplicity is a dividing line, with θ = σ, κ = σ+, λ = κ+ω, and k = 3; this was first proved

by Malliaris and Shelah [57]. Also, we will get that low is a dividing line with σ = ℵ0,

θ = ℵ1, κ = (2ℵ0)+, λ = κ+ω and k = 3; this was first proved by myself in [87].

Finally, by varying k, we will get that there is a principal dividing line in E between

the theories with Λk′-type amalgamation for all k′ < k, and the theories which admit ∆k′

for some k′ < k. In particular, for all k < k′, Tk+1,k 6E Tk′+1,k′ . This improves the theorem
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Malliaris and Shelah in [58], stating that for k < k′ − 1, Tk+1,k 6E Tk′+1,k′ .

We now have many notions of k-dimensional amalgamation; possibly they are all

equivalent, but we can prove this only in rather special cases. In Section 4.11, we introduce

the well-behaved simple theories. As examples, each Tn,k is well-behaved, as is Trg, or any

stable theory. The following is a partial list of the equivalences proved in Theorem 4.11.12:

Theorem 4.0.2. Suppose T is a well-behaved simple theory and k ≥ 3. Then the following

are equivalent:

(A) T does not admit ∆k′ for any k′ < k;

(B) T has P−(k)-amalgamation of models;

(C) T has Λk′-type amalgamation for all k′ < k.

As far as we know, every simple theory is well-behaved, and so perhaps this theorem

holds for all simple theories. In any case, the following is an immediate corollary:

Corollary 4.0.3. P−(k)-amalgamation of models is a principal dividing line in Keisler’s

order among well-behaved low theories. If there is a supercompact cardinal, then this is

also a principal dividing line among well-behaved simple theories.

4.1 A Characterization of Low Theories

In this technical section, we prove a key theorem about low theories, which says

that forking is type-definable in a strong way.

Recall that by a theorem of Kim [36], in any simple theory T , forking is the same

as dividing; that is, ϕ(x, a) forks over A if and only if it divides over A. We thus use the

terms forking and dividing interchangeably.
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We give the following equivalents for T being low. (C) is Buechler’s original def-

inition of lowness from [5]; equivalently it states that for every formula ϕ(x, y), D(x =

x, ϕ(x, y)) < ω, where D is the D-rank for low theories; in the same paper he proved the

equivalence of that with our definition in terms of dividing. Thus (A) if and only if (C) is

already known.

Theorem 4.1.1. Suppose T is simple. Then the following are equivalent:

(A) T is low.

(B) Suppose ϕ(x, b) does not fork over A. Then there is some c ∈ A and some ψ(y, z) ∈

tp(b, c) such that whenever (b
′
, c′) |= ψ(y, z), then ϕ(x, b

′
) does not fork over c′.

(C) For every formula ϕ(x, y), there is some k such that there is no sequence (bi : i < k)

such that
∧
i<k ϕ(x, bi) is consistent, and such that for each i < k, ϕ(x, bi) forks over

{bj : j < i}.

Proof. (A) implies (B): Choose k such that if ϕ(x, b
′
) does not k-divide over ∅ then it does

not divide over ∅. It follows that if A′ is any set and ϕ(x, b
′
) does not k-divide over A′

then ϕ(x, b
′
) does not divide over A′. Since ϕ(x, b) does not divide over A, ϕ(x, b) does not

k-divide over A; by a compactness argument we can choose c ∈ A and ψ(y, z) ∈ tp(b, c)

such that whenever |= ψ(b
′
, c′) then ϕ(x, b

′
) does not k-divide over c′. But then by choice

of k, ϕ(x, b
′
) does not divide over c′.

(B) implies (C): Suppose (C) holds, and let ϕ(x, y) be given. Let Γ be the partial

type in the variables (yα : α < ω1) asserting:

• For each s ∈ [ω1]<ω, ∃x
∧
α∈s ϕ(x, yα);

• For each α < ω1, ϕ(x, yα) forks over (yβ : β < α).
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The second item is possible to express by hypothesis.

Suppose towards a contradiction that Γ were consistent; choose (bα : α < ω1) a

realization of Γ. Let p(x) be the type over (bα : α < ω1) asserting that ϕ(x, bα) holds for

each α < ω1. Then p(x) is consistent but forks over every countable subset of its domain,

contradicting simplicity of T .

Thus Γ is inconsistent; by symmetry we can choose n such that Γ �(yi:i<n) is incon-

sistent. This just says that (C) holds.

(C) implies (A): let ϕ(x, y) be given, and let k be as in (C). We claim that if ϕ(x, b)

does not k+ 1-divide over ∅ then ϕ(x, b) does not divide over ∅. Indeed, suppose towards

a contradiction that we had an indiscernible sequence (bi : i < ω) such that ϕ(x, bi) were

k-consistent but k+ 1-inconsistent. Then (bi : i < k) is a counterexample to the choice of

k.

The following is the major application of Theorem 4.1.1. First we need some defi-

nitions.

Definition 4.1.2. Suppose T is simple, and M |=B T (recall this means M is a full B-

valued model of T ) and A ⊆ M. Then say that p(x) does not U-fork over A if [p(x)]U

does not fork over [A]U .

Suppose M |=B T . Let V[G] be a forcing extension by B+. Then G is an ultrafilter

on B in V[G]; now B is typically not complete in V[G], but the definition of specializations

did not require completeness, and so we can still form the specialization (M/G, [·]G).

Thus, in V, M̌/Ġ is a B-name for a model of T , and [·]Ġ is a name for a surjection from

M̌ → M̌/Ġ. We have that for every ϕ(a) ∈ L(M), ‖ϕ(a)‖M = ‖M̌/Ġ |= ϕ([a]Ġ)‖B. We

call (M̌/Ġ, [·]Ġ) the generic specialization of M.
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Theorem 4.1.3. Suppose B is a complete Boolean algebra, and T is low. Suppose M |=B

T , M0 �M is countable, and ϕ(x) is a formula over M. Suppose U is an ultrafilter on B.

If ϕ(x) does not U-fork over M0, then ‖ϕ(x) does not fork over M̌0/Ġ in M̌/Ġ‖B ∈ U .

Proof. Let U be an ultrafilter on B such that ϕ(x) does not U-fork over M0. Suppose ϕ(x)

is over a ∈M<ω. Choose ψϕ(a, a0) such that a0 ∈M0 and M/U |= ψϕ([a]U , [a0]U ), such

that whenever C |= ψϕ(b, b0), then ϕ(x, b, b0) does not fork over b0. Put c = ‖ψϕ(a, a0)‖M.

Then c ∈ U , but clearly c ≤ ‖ϕ(x) does not fork over M̌0/Ġ in M̌/Ġ‖B.

This is false for nonlow theories; in general, we need to restrict to ℵ1-complete

ultrafilters.

Theorem 4.1.4. Suppose B is a complete Boolean algebra, and T is simple. Suppose

M |=B T , M0 � M is countable, and ϕ(x) is a formula over M. Suppose U is an ℵ1-

complete ultrafilter on B. If ϕ(x) does not U-fork over M0, then ‖ϕ(x) does not fork over

M̌0/Ġ in M̌/Ġ‖B ∈ U .

Proof. Let U be an ℵ1-complete ultrafilter on B such that ϕ(x) does not U-fork over

M0. Suppose ϕ(x) is over a ∈ M<ω. Let c =
∧
{‖ψ(a, a0)‖M : a0 ∈ M0 and M/U |=

ψ([a]U , [a0]U )}. Then c ∈ U , but clearly c ≤ ‖ϕ(x) does not fork over M̌0/Ġ in M̌/Ġ‖B.

4.2 Patterns and Hypergraphs Omitting Cliques

In this section, we introduce the major class of examples of simple theories with

interesting amalgamation properties.

Definition 4.2.1. For each 2 ≤ k < n < ω, let Tn,k be the theory of the random k-ary,

n-clique free hypergraph.
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These were introduced by Hrushovksi [26], who proved that each Tn,2 is unsimple,

in fact it has SOP2 and so is maximal in Keisler’s order. We shall mainly be interested in

the case Tn,k for k ≥ 3; these are simple, with forking given by equality. In fact, we will

only be interested in the case n = k + 1.

The following are the relevant patterns:

Definition 4.2.2. Suppose R ⊆ [I]k for some k. Then let ∆(R) be the pattern on [I]k−1,

consisting of all s ∈ [[I]k−1]<ℵ0 such that there is no v ∈ R with [v]k−1 ⊆ s.

Clearly, then, if R ⊆ [I]k is k + 1-clique free, then R(x, y) admits ∆(R) in Tn,k.

To relate the various λV̂ (∆(R))’s, we need the following fact.

Definition 4.2.3. Suppose ∆ is a pattern on I. For each n < ω, let ∆n be the pattern

on [I]≤n consisting of all s ∈ [[I]≤n]<ℵ0 such that
⋃
s ∈ ∆.

Theorem 4.2.4. Suppose ∆ is a pattern on I and n < ω.

1. If T is a complete countable theory, then T admits ∆ if and only if T admits ∆n.

2. If V |= ZFC− is transitive and j : V � V̂ with V̂ not ω-standard, then λV̂ (∆) =

λV̂ (∆n).

3. If U is an ultrafilter on B, then λU (∆) = λU (∆n).

Proof. (1): Note that ∆ is an instance of ∆n (using [I]1 ⊆ [I]≤n), so it suffices to show

that if T admits ∆ then T admits ∆n. Suppose ϕ(x, y) admits ∆ (really x, y could be

tuples). Let y = (yi : i < n) and let ψ(x, y) =
∧
i<n ϕ(x, yi). Easily then ψ(x, y) admits

∆n.

(2), (3): Similar.
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The following lemma clearly remains true if we replace ω by an infinite set X, by

compactness.

Lemma 4.2.5. Suppose k ≥ 2. Let R be any k-ary graph on ω and let R∗ be a random

k-ary k + 1-clique free graph on ω. Then ∆(R) is an instance of ∆(R∗)
k.

Proof. Let R′ be the k-ary graph on k×ω consisting of the graphs of increasing functions

from k to ω whose range is in R. Since R′ is k + 1-clique free, it suffices to show that

∆(R) is an instance of ∆(R′)k. In fact, we will embed all of ∆(R) into ∆(R′)k at once.

Indeed, given v ∈ [ω]k−1, define F (v) ∈ [[k × ω]k−1]k to be the set of all order-

preserving bijections from u to v, for some u ∈ [k]k−1. Easily, then, for every s ⊆ [ω]k−1

finite, s ∈ ∆(R) if and only if F [s] ∈ ∆(R′)k, i.e.
⋃
F [s] ∈ ∆(R′).

We now specialize to the situation we are really interested in.

Definition 4.2.6. For each k ≥ 2, let Rk be a random k-ary graph on ω, and let ∆k =

∆(Rk).

So each Tk+1,k admits ∆k. Admitting ∆k is a strong way of failing k-dimensional

type amalgamation. Note that admitting ∆2 in particular implies SOP2, hence maximality

in Keisler’s order. So the main case of interest is in k ≥ 3, although the k = 2 case fits

into our theorems without problems.

We now aim to prove that Tk+1,k is the E-minimal theory admitting ∆k. As a

preliminary case, we have to show that if T admits ∆k then T is unstable:

Lemma 4.2.7. Suppose k ≥ 2. Then ∆(IP ) is an instance of (∆k)
k−1.

Proof. Let u∗ be a k − 2 element set (so u∗ = k − 2 works, but this would confuse the

notation).
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Let R be the k-ary graph on ω × 2 ∪ u∗ consisting of all w ∈ [(ω × 2) ∪ u∗]k of the

form u∗ ∪ {(n, 0), (n, 1)}, for some n < ω. Then ∆(R) is an instance of ∆k, so it suffices

to show that ∆(IP ) is an instance of ∆(R)k−1.

Given (n, i) ∈ ω × 2, define F (n, i) to be the set of all v ∈ [u∗ ∪ {(n, 0), (n, 1)}]k−1

other than u∗ ∪ {(n, i)}. Then clearly, for any s ⊆ ω × 2 finite, s ∈ ∆(IP ) if and only if

F [s] ∈ ∆(R)k−1.

Thus we get the following:

Theorem 4.2.8. Suppose 3 ≤ k < ω, suppose V |= ZFC− is transitive, and suppose

j : V � V̂ . Then V̂ λ+-pseudosaturates Tk+1,k if and only if λ < λV̂ (∆k). In particular,

Tk+1,k is a E×1 -minimal theory admitting ∆k (so this is also true for E×κ and E).

Proof. Obviously if V̂ λ+-pseudosaturates Tk+1,k then λ < λV̂ (∆k).

So suppose λ < λV̂ (∆k). Let M |= Tk+1,k have universe ω, and let p(x) be a

pseudofinite partial type over jstd(M) of cardinality at most λ, say p(x) is over n̂ < ω̂.

Write M = (ω,R), write jstd(M) = j(M) = (ω̂, R̂). (We also use R for the symbol in the

language.)

Let X0 = {a ∈ n̂k−1 : R(x, a) ∈ p(x)} and let X1 = {a ∈ n̂k−1 : ¬R(x, a) ∈ p(x)}.

Since [X0]<ℵ0 ⊆ j(∆(R)) we can find X̂ ′0 ∈ j(∆(R)) with X0 ⊆ X̂ ′0. By Lemma 4.2.7 we

can find disjoint X̂0, X̂1 ⊆ n̂ with X0 ⊆ X̂0 and X1 ⊆ X̂1; we can suppose X̂0 ⊆ X̂ ′0.

Let q(x) ∈ V̂ be the pseudofinite partial type, defined in V̂ via: q(x) = {R(x, a) :

a ∈ X̂0} ∪ {¬R(x, a) : a ∈ X̂1}. Clearly p(x) ⊆ q(x) and V̂ believes q(x) is consistent, so

we are done.

174



4.3 Independent Systems

This technical section is as in [81] (joint with Shelah), with a few minor strength-

enings. We define what we mean by independent systems of sets and models, and prove

some facts we will need later.

The following definition is similar to the definition of stable system in Shelah [75]

for stable theories, see Section XII.2. In fact we are modeling our definition after Fact

2.5 there (we cannot take the definition from [75] because we allow P to contain infinite

subsets of I).

Alert: in the context of independent systems and amalgamation properties, we do

not always work within the monster model C. We may say that a model M |= T is floating

if it is not an elementary substructure of C.

Definition 4.3.1. Let T be simple.

Suppose ∆ ⊆ P(I) is closed under finite intersections, and suppose M |= T . Say

that (As : s ∈ ∆) is a system of subsets of M if each As ⊆M and s ⊆ t implies As ⊆ At,

and each As ∩ At = As∩t. Say that (As : s ∈ ∆) is an independent system if for all

si : i < n, t ∈ ∆,
⋃
i<nAsi is free from At over

⋃
i<nAsi∩t. If each As is an elementary

submodel of M , we say that (As : s ∈ ∆) is a system of submodels of M .

Say that (Ms : s ∈ ∆) is a system of models if each Ms |= T (possibly floating)

and for each s ∈ I, (Mt : t ∈ ∆, t ⊆ s) is a system of submodels of Ms, and for all

s, t ∈ ∆, Ms ∩Mt = Ms∩t. Say that (Ms : s ∈ ∆) is independent if for each s ∈ P ,

(Mt : t ∈ ∆, t ⊆ s) is independent. Finally, say that M is a solution to (Ms : s ∈ ∆) if M

is a model of T and (Ms : s ∈ ∆) is an independent system of submodels of M .

If (Ms : s ∈ ∆) is a system of models, but not necessarily submodels of some model
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M , then sometimes for emphasis we say that (Ms : s ∈ ∆) is a floating system of models.

The terminology “non-forking diagrams” is used in [81], but we prefer “independent

systems” to align with [39]. Typically we will deal with the case where ∆ is closed

under subsets, i.e. is a pattern; the general case is harder, and we manage to avoid it in

applications. We proceed in generality for now.

We need some technical lemmas.

Note the following has a corresponding statement for floating systems of models:

Lemma 4.3.2. Suppose (As : s ∈ ∆) is a system of subsets of M , where ∆ ⊆ P(I) is

closed under finite intersections. Then the following are equivalent:

(A) For all downward-closed subsets ∆0,∆1 ⊆ ∆,
⋃
s∈∆0

As is free from
⋃
s∈∆2

As over⋃
s∈∆0∩∆1

As.

(B) For all si : i < n, tj : j < m from ∆,
⋃
i<nAsi is free from

⋃
j<mAtj over⋃

i<n,j<mAsi∩tj .

(C) (As : s ∈ ∆) is independent.

Proof. (A) implies (B) implies (C) is trivial. For (B) implies (A), use local character of

nonforking and monotonicity.

We show (C) implies (B). So suppose (As : s ∈ ∆) is non-forking. By induction

on m, we show that for all n, if si : i < n, tj : j < m are from ∆, then
⋃
i<nAsi is free

from
⋃
j<mAsj over

⋃
i<n,j<mAsi∩tj . m = 1 is the definition of non-forking diagrams.

Suppose true for all m′ ≤ m and we show it holds at m+ 1; so we have si : i < n, tj : j <

m + 1. Let A∗ =
⋃
i<nAsi and let B∗ =

⋃
j<mAtj . By inductive hypothesis applies at

(si : i < n, tm), (tj : j < m), we get that A∗∪Atm is free from B∗ over (A∗∪Atm)∩B∗. By
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monotonicity, A∗ is free from B∗ ∪Atm over (A∗ ∩B∗)∪Atm . By the inductive hypothesis

applied at (si : i < n), tm, we get that A∗ is free from Atm over A∗∩Atm , so by monotonicity

we get that A∗ is free from (A∗ ∩B∗) ∪Atm over A∗ ∩ (B∗ ∪Atm).

The following says that to find a solution to an amalgamation problem of models,

it is enough to look at finite subproblems.

Lemma 4.3.3. Suppose ∆ ⊆ P(I) is closed under finite intersections, and suppose (Ms :

s ∈ ∆) is an independent system of (floating) models. Suppose for every finite ∆′ ⊆ ∆

closed under finite intersections, (Ms : s ∈ ∆′) has a solution. Then (Ms : s ∈ ∆) has a

solution.

Proof. Let F be the set of all tuples ((si : i < n), t, (ϕi(ai, b) : i < n)) where for some

n < ω, each si, t ∈ ∆, and b ∈ Mt, and each ai ∈ Msi , and
∧
i<n ϕi(xi, b) forks over⋃

i<nMt∩si . Let Γ be the following theory, where we allow the elements of the various

Ms as constants: assert the elementary diagram of each Ms, and for each ((si : i <

n), t, (ϕi(ai, b) : i < n)) ∈ F , put in
∨
i<n ¬ϕi(ai, b). By hypothesis, Γ is finitely satisfiable,

and thus Γ is satisfiable. But this just means (Ms : s ∈ ∆) has a solution.

The following lemma is similar to Lemma 2.3 from [75] Section XII.2.

Lemma 4.3.4. Suppose ∆ ⊆ P(I) is closed under finite intersections, M |= T , and

(As : s ∈ ∆) is a system of subsets of M . Suppose there is a well-ordering <∗ of
⋃
sAs such

that for all a ∈
⋃
sAs, and for all s∗ ∈ ∆ with a ∈ As∗ , a is free from {b ∈

⋃
sAs : b <∗ a}

over {b ∈ As∗ : b <∗ a}. Then (As : s ∈ ∆) is independent.

Proof. Let (aα : α < α∗) be the <∗-increasing enumeration of
⋃
sAs. For each α ≤ α∗ and

for each s ∈ ∆ let As,α = As∩{aβ : β < α}. We show by induction on α that (As,α : s ∈ ∆)

is independent. In fact we show (B) holds of Lemma 4.3.2 (due to symmetry it is easier).
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Limit stages are clear. So suppose we have shown (As,α : s ∈ ∆) is independent.

Let (si : i < n), (tj : j < m) ∈ ∆ be given. We wish to show that
⋃
i<nAsi,α+1 is free

from
⋃
j<mAtj∩α+1 over

⋃
i<n,j<nAsi∩tj ,α+1. If aα 6∈ si and aα 6∈ tj for each i < n then

we conclude by the inductive hypothesis. Finally, suppose aα ∈ si∗ ∩ tj∗ for some i∗ < n,

j∗ < m, then we conclude by the inductive hypothesis and the fact that aα is free from⋃
i<nAsi,α ∪

⋃
j<mAtj ,α over Asi∗∩tj∗ ,α, since aα ∈ Asi∗∩tj∗ . If aα ∈ si for some i < n

and aα 6∈ tj for any j < m, then reindex so that there is 0 < i∗ ≤ n so that aα ∈ si if

and only if i < i∗. Now aα is free from {aβ : β < α} over
⋃
i<nAsi,α, so by monotonicity,⋃

i<nAsi,α+1 is free from
⋃
j<mAsj ,α+1 over

⋃
i<nAsi,α; use transitivity and the inductive

hypothesis to finish.

And the following is a tweak (with the same proof). Note that such wellorderings

<∗ exist exactly when (∆,⊆) is well-founded, for example, ∆ ⊆ [I]<ℵ0 .

Lemma 4.3.5. Suppose ∆ ⊆ P(I) is closed under finite intersections, M |= T , and

(As : s ∈ ∆) is a system of subsets of M . Suppose there is a well-ordering <∗ of ∆ such

that for all for all s ⊆ t ∈ ∆, s ≤∗ t. Suppose for every s ∈ ∆, As is free from
⋃
t<∗s

At

over
⋃
t<∗s

At∩s =
⋃
t(sAt. Then (As : s ∈ ∆) is independent.

In the supersimple case, we would always be able to restrict to considering ∆ ⊆

[I]<ℵ0 . For general simple theories we cannot, but we can still get similar behavior:

Definition 4.3.6. Suppose A ⊆ P(I). Then say that A is a frame if A is closed under

finite unions, and (A,⊆) is well-founded, and for every s ⊆ λ, there are at most |s|+ ℵ0-

many t ∈ A with t ⊆ s.

For example, [I]<ℵ0 is a frame. Frames will be useful for various inductive construc-
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tions, for instance:

Lemma 4.3.7. Suppose ∆ is a pattern on I, M |= T and (As : s ∈ ∆) is an independent

system of subsets of ∆. Suppose there is a frame A such that for every s ∈ P , As =⋃
{At : t ⊆ s, t ∈ A}. If M is sufficiently saturated, then we can find an independent

system (Ms : s ∈ [∆]≤ℵ0) of submodels of M such that:

• For all s ∈ [∆]≤ℵ0 , Ms =
⋃
{Mt : t ∈ A, t ⊆ s};

• For all s ∈ [∆]≤ℵ0 , As ⊆Ms and |Ms| = |As|+ ℵ0;

• If for some s ∈ [∆]≤ℵ0 , we have that At �M for all t ⊆ s with t ∈ A (in particular

each such At |= T ), then Ms = Mt.

Proof. Note that we can suppose ∆ = [I]≤ℵ0 , since we can define As =
⋃
{At : t ⊆ s, t ∈

A ∩ P} for all s ∈ [I]≤ℵ0 .

Let <∗ be a well-ordering of A such that for all s, t ∈ A, if s ⊆ t then s <∗ t. Now

by induction on <∗, choose models (Ms : s ∈ A) so that Ms ⊇ As and such that Ms is

free from
⋃
t∈∆At ∪

⋃
{Mt : t ∈ A, t <∗ s} over As ∪

⋃
{Mt : t ∈ A, t ( s}. Note that

we can choose Ms ≤ |As| + ℵ0, and if At � M for all t ⊆ s with t ∈ A, inductively we

will have Mt = At for each t ⊆ s with t ∈ A, and so we can choose Ms = As. Finally,

given s ∈ [I]≤ℵ0 , let Ms :=
⋃
{Mt : t ∈ A, t ⊆ s}. This is an elementary submodel of M ,

since it is a direct limit of elementary submodels of M , since A is closed under unions.

By Lemma 4.3.4, (Ms : s ∈ [λ]≤ℵ0) is independent.

Corollary 4.3.8. Suppose ∆ is a pattern on the finite index set I, M |= T and (Ms :

s ∈ ∆) is an independent system of (countable) submodels of M . If M is sufficiently

saturated, then we can extend (Ms : s ∈ ∆) to an independent system (Ms : s ⊆ I) of

(countable) submodels of M .
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Theorem 4.3.9. Suppose T is a simple theory in a countable language, and suppose

M∗ |= T is sufficiently saturated, and suppose A∗ ⊆ M∗ has size at most λ. Then we

can find an independent system of countable submodels (Ms : s ∈ [λ]≤ℵ0) of M∗, with

A∗ ⊆
⋃
sMs. Further, we can find a frame A ⊆ [λ]≤ℵ0 such that for all s ∈ [λ]≤ℵ0 ,

Ms =
⋃
{Mt : t ∈ A, t ⊆ s}.

For example, if T is supersimple then we could take A = [λ]<ℵ0 , by the same proof.

Proof. Enumerate A∗ = (aα : α < λ).

We define (cl({α}) : α < λ) inductively as follows, where each cl({α}) is a countable

subset α + 1 with α ∈ cl({α}). Suppose we have defined (cl({β}) : β < α). Choose a

countable set Γ ⊆ α such that aα is free from {aβ : β < α} over
⋃
β∈Γ aβ; put cl({α}) =

{α} ∪
⋃
β∈Γ cl({β}).

Now, for each s ⊆ λ, let cl(s) :=
⋃
α∈s cl({α}). Say that A ⊆ λ is closed if cl(A) = A;

this satisfies the usual properties of a set-theoretic closure operation, that is cl(A) ⊇ A,

and A ⊆ B implies cl(A) ⊆ cl(B), and cl2(A) = cl(A), and cl is finitary: in fact cl(A) =⋃
α∈A cl({α}), which is even stronger. Finally, |cl(A)| ≤ |A|+ ℵ0.

For each s ∈ [λ]≤ω, let As = {aα : α < λ and cl({α}) ⊆ s}. Since each aα ∈ Acl({α}),

clearly
⋃
sAs = A∗. I claim that (As : s ∈ [λ]≤ω) is an independent system of subsets

of M∗. But this follows from Lemma 4.3.4, since each aα is free from {aβ : β < α} over

Acl({α}) ∩ {aβ : β < α}.

Write A = {cl(s) : s ∈ [λ]<ℵ0}. Note that for all s ∈ [λ]≤ℵ0 , As =
⋃
{At : t ⊆ s, t ∈

A}. So by Lemma 4.3.7 it suffices to show that A is a frame. Clearly, for all s ⊆ λ, there

are at most |s<ℵ0 | ≤ |s|+ ℵ0-many t ⊆ s with t ∈ A.

For each α ≤ λ, let Aα = {cl(s) : s ∈ [α]<ω}; so Aλ = A. I show by induction on

α ≤ λ that (Aα,⊂) is well-founded. Since Aα is an end extension of Aβ for α > β, the
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limit stage is clear. So suppose we have shown (Aα,⊂) is well-founded.

Write X = cl({α}) ∩ α; note that cl(X) = X. Now suppose s, t ∈ [α]<ω. I claim

that cl(s ∪ {α}) ⊆ cl(t ∪ {α}) if and only if cl(s ∪X) ⊆ cl(t ∪X). But this is clear, since

cl(s∪{α}) = cl(s)∪X ∪{α}, and cl(t∪{α}) = cl(t)∪X ∪{α}, and cl(s∪X) = cl(s)∪X,

and cl(t ∪X) = cl(t) ∪X.

Thus it follows from the inductive hypothesis that ({cl(s ∪ {α}) : s ∈ [α]<ω},⊂) is

well-founded, and hence that Aα+1 is well-founded; hence A is well-founded.

4.4 Amalgamation properties

Suppose T is a simple theory in a countable language. We introduce a slew of k-ary

amalgamation properties for T . In Section 4.11, we will show that if T is well-behaved

then they are all equivalent; conjecturally, every simple theory is well-behaved.

Definition 4.4.1. Let ∆ be the class of all finite patterns (i.e. patterns on finite index

sets).

Given ∆ ∈ ∆, say that T has ∆-amalgamation of models if every independent

system of models (Ms : s ∈ ∆) has a solution.

If X is a set then let P−(X) be the set of proper subsets of X.

Note that in determining whether or not T has ∆-amalgamation of models, it is

enough to consider just countable models. Also, we warn the reader that there is no

connection between whether or not T admits ∆, and whether or not T has ∆-amalgamation

of models; indeed, every theory T admits every finite pattern.

Example 4.4.2. Trg, the theory of the random graph, has ∆-amalgamation of models

for all ∆ ∈ ∆. For each 3 ≤ k < n, T`,k has P−(k)-amalgamation of models but not

181



P−(k + 1)-amalgamation of models. (If k = 2 then T`,k is not simple.) Every simple

theory has P−(3)-amalgamation of models.

Example 4.4.3. It follows from Conclusion XII.2.12 of [75] that every stable theory has

∆-amalgamation of models for all ∆ ∈∆.

Lemma 4.4.4. Suppose k < k′, and T has P−(k′)-amalgamation of models. Then T has

P−(k)-amalgamation of models.

Proof. Suppose (Mu : u ( k) is an independent system of models with no solution. For

each u ( k′, define Nu = M∅ if k′\k 6⊆ u, and otherwise Nu = Mu∩k. Easily this works.

We give two measures of complexity of patterns ∆ ∈∆.

Definition 4.4.5. Suppose ∆ ∈ ∆. Then let dim(∆) be the largest ` so that there is

some t ∈ [n]`\∆ with P−(t) ⊆ ∆. Let dim∗(∆) be the number of maximal elements of ∆.

Example 4.4.6. Each dim(P−(k)) = dim∗(P−(k)) = dim([N ]<k) = k, but dim∗([N ]<k)

is large.

The following amalgamation notion was first introduced in [81]. It is hand-tailored to

the ≤SP -ordering, and in fact this amounts to being hand-tailored to the Keisler ordering

as well. Given natural numbers n,m, we write nm for the set of functions from n to m,

to avoid ambiguity with exponentiation mn.

Definition 4.4.7. Given Λ ⊆ nm, let ∆Λ be the set of all partial functions from n to m

which can be extended to an element of Λ; so ∆Λ is a pattern on n×m, and Λ is the set

of maximal elements of ∆λ.

By a Λ-array, we mean an independent system (Ns : s ∈ ∆Λ) of submodels of C (or

generally, any model M ; the point is, not floating), together with maps (πη,η′ : η, η′ ∈ PΛ)

such that:

182



• Each πηη′ : Nη → Nη′ is an isomorphism,

• For all η, η′, η′′, πη′,η′′ ◦ πη′,η = πη,η′′ ;

• For all η, η′, if we put u = {i < n : η(i) = η(i′)}, and if we put s = η �u= η′ �u, then

πη,η′ �Ns is the identity.

If (N, π) is a Λ-array, then p(x) = (pη(x) : η ∈ Λ) is a coherent system of types over

(N, π) if each pη(x) is a type over Nη which does not fork over N0, and each πηη′ [pη(x)] =

pη′(x).

Definition 4.4.8. Suppose Λ ⊆ nm. Then T has Λ-type amalgamation if, whenever

(Ns : s ∈ ∆Λ), (πη,η′ : η, η′ ∈ Λ) is a Λ-array, and (pη(x) : η ∈ Λ) is a coherent system of

types over (N, π), then
⋃
η∈Λ pη(x) does not fork over N0 (as computed in C).

Let Λ be the set of all Λ ⊆ nm, for varying n,m < ω.

For each 2 ≤ k < ω, let Λk ⊆ k2 be the set of all η : k → 2 such that there is exactly

one i < k with η(i) = 1.

The following lemma is straightforward.

Lemma 4.4.9. Suppose Λ ⊆ nm. Then in the definition of Λ-type amalgamation, the

following changes would not matter:

(A) We could restrict to just countable models Ns.

(B) We could allow pη(x) to be any partial type, or insist it is a single formula. Also,

we could replace x by a tuple x of arbitrary cardinality.

Example 4.4.10. If |Λ| ≤ 2, then every simple theory has Λ-type amalgamation. Trg has

Λ-type amalgamation for all Λ ∈ Λ.
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Example 4.4.11. Suppose ` > k ≥ 3. Then T`,k has Λ-type amalgamation for all |Λ| < k,

but fails Λk-type amalgamation.

Proof. This will follow from the fact that T`,k is well-behaved, and T`,k has P−(k′)-

amalgamation of models if and only if k′ ≤ k; see Example 4.11.2 and Theorem 4.11.12.

Example 4.4.12. Easily, every stable theory has Λ-type amalgamation for all Λ, since

each pη(x) is the unique nonforking extension of pη(x) �N∅ .

The following fact is the only unconditional implication we can prove between ∆-

amalgamation of models and Λ-type amalgamation, although Theorem 4.11.12 suggests

that there is more to say.

Theorem 4.4.13. If T has ∆-amalgamation of models for all ∆ ∈ ∆ with dim∗(∆) ≤

k + 1 (dim(∆) ≤ k + 1), then T has Λ-type amalgamation for all Λ ∈ Λ with |Λ| ≤ k

(dim(∆Λ) ≤ k).

Proof. Suppose Λ ∈ Λ is such that T failed Λ-type amalgamation, say via (Ns : s ∈

∆Λ), (πη,η′ : η, η′ ∈ Λ), (pη(x) : η ∈ Λ). We find ∆ ∈∆∗ such that dim(∆) = dim(∆Λ)+1,

and dim∗(∆) = |Λ|+ 1, and such that T fails ∆-amalgamation of models; this suffices.

Pick some η ∈ Λ, and extend (Ns : s ⊆ η) to an independent system Ns : s ⊆ η∪{∗}

such that some element of N{∗} realizes p(x). Let ∆ = P(n ×m) ∪ {s ∪ {∗} : s ∈ ∆Λ},

a pattern on n ×m ∪ {∗}. Then it it not hard to find a floating independent system of

models (Ns : s ∈ ∆) extending (Ns : s ∈ ∆Λ) and (Ns : s ⊆ η ∪ {∗}), such that moreover

the isomorphisms πη,η′ lift to maps τη,η′ such that:

• Each πηη′ : Nη∪{∗} → Nη′∪{∗} is an isomorphism,

• For all η, η′, η′′, πη′,η′′ ◦ πη′,η = πη,η′′ ;
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• For all η, η′, if we put u = {i < n : η(i) = η(i′)}, and if we put s = η �u= η′ �u, then

πη,η′ �Ns∪{∗} is the identity.

Note that clearly, dim∗(∆) = |Λ| + 1 (the maximal elements are {η ∪ {∗} : η ∈ Λ}

together with n × m). Also, easily dim(∆) ≥ dim(∆Λ) + 1 (this is the unimportant

direction).

We show dim(∆) ≤ dim(∆Λ) + 1. Suppose ` ≤ dim(∆). Then there is t ∈ [n×m ∪

{∗}]`\∆ with P−(t) ⊆ ∆. Necessarily ∗ ∈ T as otherwise we would have t ⊆ n×m and so

t ∈ ∆. Then easily t\{∗} witnesses dim(∆Λ) ≥ `−1, i.e. ` ≤ dim(∆Λ) + 1, as desired.

4.5 Forcing Iterations

In this section, we fix notation for forcing iterations and observe some basic facts

about them; essentially we follow [44]. Recall that while we are interested in building

forcing notions P , we will not be primarily interested in forcing extensions by P ; rather,

we will be interested in constructing ultrafilters on B(P ). Nonetheless, using the language

of forcing (and passing to forcing extensions) will simplify several arguments. First, a

convenient definition:

Definition 4.5.1. Suppose Ẋ is a nice P -name (see Definition 2.3.1). Then a partition

of B(P ) by Ẋ is a map Ȧ : dom(Ẋ)→ B(P ) (so Ȧ is a nice P -name) such that:

• P forces that Ȧ has a single element
⋃
Ȧ, which is in Ẋ, and

• For all ȧ ∈ dom(Ẋ), Ȧ(ȧ) = ‖
⋃
Ȧ = ȧ‖B, or equivalently for all ȧ, ḃ ∈ dom(Ẋ),

Ȧ(ȧ) ≥ Ȧ(ḃ) ∧ ‖ȧ = ḃ‖B.

Define NP (Ẋ), the set of nice names for elements of Ẋ, to be the set of all
⋃
Ȧ, for Ȧ a

partition of B(P ) by Ẋ. The point is that when considering names for elements of Ẋ, it
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is enough to consider just names in NP (Ẋ), and the latter is in particular a set.

Easily, if ȧ is a P -name such that some p ∈ P forces ȧ ∈ Ẋ, then p forces ȧ = ḃ for

some ḃ ∈ NP (Ẋ).

Definition 4.5.2. Suppose α∗ > 0 is an ordinal. By a < θ-support forcing iteration of

length α∗, we mean sequences (Pα : α ≤ α∗), (Q̇α : α < α∗), where:

• Each Pα is a forcing notion consisting of α-sequences, so P0 = {0} is the trivial

forcing notion;

• For each α < α∗, Q̇α is a nice Pα-name for a forcing notion; we can always suppose

Pα decides what 1Q̇α is;

• For each α < α∗, Pα+1 is the set of all α + 1-sequences p such that p �α∈ Pα

and p(α) ∈ NPα(Q̇α), and where p ≤Pα+1 q if p �α≤Pα q �α and p forces that

p(α) ≤Q̇α q(α).

• For all α ≤ α∗ limit, Pα is the set of all α-sequences p such that for all β < α,

p �β∈ Pβ, and further, supp(p) has cardinality less than θ, where supp(p) is {β <

α : p(β) = 1Q̇β}; put p ≤Pα q if for all β < α, p �β≤Pβ q �β.

Note that Q̇0 is really just a forcing notion in V, so we write it as Q0. In the case

α∗ = 2, we write P2 = Q0 ∗ Q̇1.

Note that under our definitions, if P,Q are forcing notions, then P ∗ Q̇ is larger

than P × Q (although they both have the same Boolean algebra completions). We also

remind the reader of our notational deceit of always identifying forcing notions with their

separative quotients. Indeed, forcing iterations P ∗ Q̇ are almost never separative, since

as long as P and Q̇ are nontrivial, then we can find p ∈ P and distinct q̇0, q̇1 ∈ NP (Q̇)
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such that p  q̇0 = q̇1. We just ignore this going forward; the concerned reader should

take separative quotients everywhere.

It is a standard fact that if each Pα forces that Q̇α is θ-closed, or < θ-distributive,

then Pα∗ is θ-closed or < θ-distributive, respectively; see [44].

If (Pα : α ≤ α∗), (Q̇α : α < α∗) is a forcing iteration, then for all α < β ≤ α∗, B(Pα)

is a complete subalgebra of B(Pβ). It turns out we get projection maps in this scenario.

These maps will be very helpful later:

Definition 4.5.3. Suppose B0 is a complete subalgebra of B1. Then define π = πB1B0 :

B1 → B0 as follows. Suppose a ∈ B1; then let π(a) be the meet of all b ∈ B0 with b ≥ a.

We now have a couple of lemmas exploring this notion.

Lemma 4.5.4. (A) Suppose B0 is a complete subalgebra of B1 and a ∈ B1. Then

π(a) ≥ a, and is the least element of B0 satisfying this.

(B) Each πB,B is the identity of B. If B0 ⊆ B1 ⊆ B2 are complete subalgebras, then

πB1B0 ◦ πB2B1 = πB2B0 .

(C) Suppose B0 is a complete subalgebra of B1, and a ∈ B1. Write π = πB1B0 . Then for

every b ∈ B0, b ∧ π(a) is nonzero if and only if b ∧ a is nonzero. This characterizes

π(a).

Proof. (A): Let X be the set of all b ∈ B0 with b ≥ a. Since a is a lower bound to X, we

get that a ≤
∧
X = π(a). The second statement is clear.

(B): Clearly, πBB is the identity. For the second part, suppose a2 ∈ B2 is given. Let

X21 be the set of all a ∈ B1 with a ≥ a2, and write a21 =
∧
X21. Similarly, let X20 be

the set of all a ∈ B0 with a ≥ a0, and write a20 =
∧
X20; and let X210 be the set of all

a ∈ B0 with a ≥ a21, and write a210 =
∧
X210. We wish to show that a210 = a20; for this
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it suffices to show that X210 = X20. That is, given a ∈ B0, we show that a ≥ a21 if and

only if a ≥ a2. By part (A) we have that a21 ≥ a2, so suppose a ≥ a2; we show a ≥ a21.

But this is clear, since a must be in X21.

(C): Since π(a) ≥ a, we have that if b ∧ a is nonzero, then so is b ∧ π(a). On the

other hand, if b ∧ a = 0, then ¬b ≥ a, so π(a) ≥ ¬b, so b ∧ π(a) = 0. Uniqueness is

clear.

We relate this to forcing:

Lemma 4.5.5. Suppose (P, Q̇) is a two-step forcing iteration. Write B1 = B(P ∗ Q̇), and

write B0 = B(P ), and write π = πB1B0 .

(A) Suppose (q, q̇) ∈ P ∗ Q̇ ⊆ B1; then π(q, q̇) = q.

(B) More generally, if a =
∨
δ<δ∗

(qδ, q̇δ) ∈ B1, then π(a) =
∨
δ<δ∗

qδ.

(C) If a ∈ B1, then π(a) is the join of all q ∈ P such that for some q̇ ∈ NP (Q̇), we have

(q, q̇) ≤ a.

(D) If a ∈ B1, and q ∈ P , then q ≤ π(a) if and only if there is some q̇ ∈ NP (Q̇) such that

(q, q̇) ≤ a. This characterizes π(a).

Proof. (A) follows from (B).

(B): Write a0 =
∨
δ<δ∗

qδ. We show that for all b ∈ B0, b∧a0 is nonzero if and only

if b∧ a is nonzero; this suffices, by Lemma 4.5.4. Suppose b∧ a0 is nonzero; then we can

find δ < δ∗ such that b∧ qδ is nonzero. Choose q ∈ P with q ≤ b∧ qδ; then (q, q̇δ) ≤ b∧a

is nonzero, as desired. Conversely, if b ∧ a0 is nonzero, then we can find δ < δ∗ such that

b∧(qδ, q̇δ) is nonzero; thus b∧q is nonzero. (We are identifying q ∈ P with (q, 0) in P ∗Q̇,

naturally.)
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(C) follows from (B) (let (qδ, q̇δ) : δ < δ∗ list all elements of P ∗ Q̇ below a).

(D): let X be the set of all q ∈ P such that there is some q̇ ∈ NP (Q̇) with (q, q̇) ≤ a.

By (C) (or (B)), π(a) =
∨
X. Thus, whenever q ∈ X then q ≤ π(a). (D) asks for the

converse. So suppose q ≤ π(a). Let C be a maximal antichain of P below q, such that

C ⊆ X (this is possible since π(a) =
∨
X). For each p ∈ C choose ṗ(p) ∈ Q̇ such that

(p, ṗ(p)) ≤ a. Let q̇ ∈ NP (Q̇) be the unique P -name for the element of Q̇, such that for

each p ∈ C, p  q̇ = ṗ(p). I claim that (q, q̇) ≤ a). It suffices to show that if (r, ṙ) ≤ (q, q̇),

then (r, ṙ) is compatible with (p, ṗ(p)) for some p ∈ C; but this is clear, since we can find

some p ∈ C such that r is compatible with p (since q =
∨
C), so choose r′ ≤ r ∧ p. Then

r′  ṗ(p) = q̇, so (ṙ, ṗ(p)) and (ṙ, q̇) are compatible (recalling our convention that we really

always work in the separative quotient). Uniqueness is clear.

4.6 Coloring Properties of Forcing Notions

This section is as in [81], a joint work with Shelah, although we change the notation

somewhat. In that paper, we are concerned with constructing dividing lines associated to

≤SP . It turns out the combinatorial questions at stake with ≤SP are deeply intertwined

with those for Keisler’s order, although we will not discuss ≤SP further in this thesis.

The following definition will be key. The main case of interest is when k < ℵ0 (and

this is the reason for the choice of letter), but nothing is gained from this assumption in

general.

Definition 4.6.1. Suppose P,R are forcing notions and k ≥ 3 is a cardinal (usually

finite). Say that f : P → R is a weak (R, k)-coloring of P if for every sequence (pi : i < i∗)

from P of length less i∗ < k, if (f(pi) : i < i∗) is compatible in R, then (pi : i < i∗) is

compatible in P . Say that P is weakly (R, k)-colorable if there there is some such f .

189



One can view this as a generalization of chromatic numbers. Specifically, given a

forcing notion P and given an integer n, one can form the hypergraph Hn := {s ∈ [P ]n :

s has no lower bound in P}. In the case when R = (µ, |) (i.e. the partial order with

domain µ in which all α, β < µ are incomparable), we have that P is weakly (R,n + 1)-

colorable if and only if χ(Hn) ≤ µ, where χ is the chromatic number.

We will mainly be interested in the following examples.

Example 4.6.2. Suppose T is a countable simple theory, M |= T has |M | ≤ λ, and

M0 � M is countable. Then let ΓθM,M0
be the forcing notion of all partial types p(x)

over M of cardinality less than θ, which do not fork over M0; we order ΓθM,M0
by reverse

inclusion.

We will be interested in when ΓθM,M0
is weakly (R, k)-colorable for various R. Note

that ΓθM,M0
is always θ-closed. Further, ΓθM,M0

has the greatest lower bounds property:

any subset of ΓθM,M0
with a lower bound has a greatest such bound (namely, take the

union).

The following will follow from Theorem 4.6.5 (and has a somewhat easier proof):

Theorem. Suppose θ is a regular cardinal, (Pα : α ≤ α∗, Q̇α : α < α∗) is a < θ-support

forcing iteration, and suppose R is a forcing notion. Suppose 3 ≤ k ≤ θ, and each Pα

forces that Q̇α is θ-closed, has the greatest lower bounds property, and is weakly (Ř, k)-

colorable. Then Pα∗ is weakly (
∏
α∗
R, k)-colorable, where

∏
α∗
R is the < θ-support

product of α∗-many copies of R.

In fact, this would be enough for our applications, but we find it unsatisfying that

the hypotheses are not fully preserved. Namely, the greatest lower bound property is

not necessarily preserved under < θ-forcing iterations. We find the following sweet spot,

intermediate between being weakly (R, k) colorable, and being weakly (R, k)-colorable and
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θ-closed and having the greatest lower bounds property.

Definition 4.6.3. Suppose P,R are forcing notions and 3 ≤ k ≤ θ. Then say that P is

(R, k)-colorable if for some dense subset P0 of P , there is some f : P0 → R, such that for

every sequence (pi : i < i∗) from P0 of length less i∗ < k, if (f(pi) : i < i∗) is compatible

in R, then (pi : i < i∗) has a greatest lower bound in P . We also say that f : (P, P0)→ R

is an (R, k)-coloring of P . Say that P is (R, k)-colorable if there exist some such P0, f .

Say that P has greatest lower bounds for < θ-chains if whenever (pα : α < α∗) is a

descending chain from P of length α∗ < θ, then (pα : α < α∗) has a greatest lower bound

in P . (In particular, this implies P is θ-closed.)

The following lemma sums up some immediate facts.

Lemma 4.6.4. Suppose θ is a regular cardinal, 3 ≤ k ≤ θ, and P,R are forcing notions.

1. If P is weakly (R, k)-colorable, then so is every dense subset of B(P )+.

2. If P is (R, k)-colorable then P is weakly (R, k)-colorable.

3. If P is (R, k)-colorable and R is weakly (R′, k)-colorable, then P is (R′, k)-colorable.

4. If P has the greatest lower bound property, then P is (R, k)-colorable if and only if

P is weakly (R, k)-colorable.

Proof. (1): Suppose Q ⊆ B(P )+ is dense, and suppose f : P → R is an (R, k)-coloring

of P . Choose a function g : Q → R so that for all q ∈ Q, there is p ≤ q with p ∈ P and

g(q) = f(p). Then g is clearly an (R, k)-coloring of P .

(2): Suppose f : (P, P0) → R is an (R, k)-coloring of P . Then clearly f is a weak

(R, k)-coloring of P ; since P0 is dense in P , we can use (1) to get a weak (R, k)-coloring

of P .
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(3): Immediate, by composing the maps.

(4): Immediate.

Now we prove that k-colorability is preserved under < θ-support forcing iterations,

if we add the requirement of greatest lower bounds for < θ-chains. The case θ > ℵ0 is

proven in [81], although the case θ = ℵ0 is strictly easier.

Theorem 4.6.5. Suppose θ is a regular cardinal, (Pα : α ≤ α∗, Q̇α : α < α∗) is a < θ-

support forcing iteration, and suppose R is a forcing notion. Suppose 3 ≤ k ≤ θ, and each

Pα forces that Q̇α has greatest lower bounds for < θ-chains, and is (Ř, k)-colorable. Then

Pα∗ has greatest lower bounds for < θ-chains, and is (
∏
α∗
R, k)-colorable, where

∏
α∗
R

is the < θ-support product of α∗-many copies of R.

Proof. Suppose (Pα : α ≤ α∗), (Q̇α : α < α∗) and R are given. We can suppose inductively

that each Pα has greatest lower bounds for < θ-chains and is (Ř, k)-colorable; in particular,

each Pα is θ-closed, and thus does not add sequences of length less than θ. Actually, we

won’t formally need this inductive hypothesis.

For each α < α∗, Pα forces there is some (Ř, k)-coloring Ḟα : (Q̇α, Q̇
0
α) → Ř of Q̇α

(so Q̇0
α is forced to be a dense subset of Q̇α, and Ḟα : Q̇0

α → Ř). We can suppose Pα

forces that Ḟα(1) = 1. Since each Q̇0
α is forced by Pα to be dense in Q̇α, the sequence

(Q̇0
α : α < α∗) induces a forcing iteration (P 0

α : α ≤ α∗), (Q̇
0
α : α < α∗), with each P 0

α

dense in Pα (so these are equivalent forcing iterations).

We now split into cases depending on whether θ = ℵ0.

Case 1. Suppose θ = ℵ0. Note then that the greatest lower bounds for < θ-chains

property is vacuous.

Let R′ =
∏
α∗
R be the finite support product of α∗-many copies of R; we show that
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Pα∗ is (R′, k)-colorable.

Let P 0 ⊆ P 0
α∗ be the set of all p such that for each α < α∗, p �α decides Ḟα(p(α)).

I claim that P 0 is dense in P 0
α∗ (and hence in Pα∗). Suppose towards a contradiction

p ∈ P 0
α∗ had no extension in P 0. Write p0 = p. Having defined pn ≤ p, let αn < α∗ be

largest so that pn �αn does not decide Ḟαn(pn(αn)) (this is possible since supp(pn) is finite).

Choose qn ≤ pn �αn in P 0
αn which decides Ḟαn(pn(αn)). Let pn+1 ∈ P 0

α∗ be defined by:

pn+1(α) = pn(α) for all α ≥ αn, and pn+1(α) = qn(α) for all α < αn. Then pn+1 < pn and

we can continue. But this will give an infinite decreasing sequence of ordinals (αn : n < ω).

Thus P 0 is dense in P 0
α∗ . We now find an (R′, k)-coloring F : (Pα∗ , P

0)→ R′. Given

p ∈ P 0 and α < α∗, let rα(p) ∈ R be such that p �α forces that Ḟα(p(α)) = řα(p̌). Let

r = (rα : α < α∗); since rα = 1 whenever α 6∈ supp(p), we have that r ∈ R′. Define

F (p) = r.

Now suppose (pi : i < i∗) is a sequence from P 0 with i∗ < k, such that (F (pi) : i < i∗)

are compatible in R′. Write Γ =
⋃
i<i∗

supp(pi).

By induction α ≤ α∗, we construct a greatest lower bound sα to (pi �α: i < i∗) in

Pα, such that supp(sα) ⊆ Γ ∩ α, and for α < α′, sα′ �α= sα.

Limit stages of the induction are clear. So suppose we have constructed sα. If

α 6∈ Γ clearly we can let sα+1 = sα
_(1Q̇α); so suppose instead α ∈ Γ. sα forces that

each Ḟα(pi(α)) = řα(p̌i), and (rα(pi) : i < i∗) are compatible in Rα, thus we can choose

q̇ ∈ NPα(Q̇α), such that sα forces q̇ is the greatest lower bound to (pi(α) : i < i∗) in Q̇α.

Let sα+1 = sα
_(q̇).

Thus the induction goes through, and sα∗ is a lower bound to (pi : i < i∗).

Case 2. Suppose θ > ℵ0.

We begin by proving the following easy claim.
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Claim. Pα∗ has greatest lower bounds for < θ-chains. In fact, suppose γ∗ < θ, and

(pγ : γ < γ∗) is a descending chain from Pα∗ ; then it has a greatest lower bound p in Pα∗ ,

such that supp(p) ⊆
⋃
γ<γ∗

supp(pγ).

Proof. By induction on α ≤ α∗, we construct (qα : α ≤ α∗) such that each qα ∈ Pα with

supp(qα) ⊆
⋃
γ<γ∗

supp(pγ) ∩ α, and for α < β ≤ α∗, qβ �α= qα, and for each α ≤ α∗,

qα is a greatest lower bound to (pγ �α: γ < γ∗) in Pα. At limit stages there is nothing

to do; so suppose we have defined qα. If α 6∈
⋃
γ<γ∗

supp(pγ) then let qα+1 = qα
_(1Q̇α).

Otherwise, since qα forces that (pγ(α) : γ < γ∗) is a descending chain from Q̇α, we can

find q̇, a Pα-name for an element of Q̇α, such that qα forces q̇ is the greatest lower bound.

Let qα+1 = qα
_(q̇).

Now, if α∗ < ℵ0, then we can finish as in Case 1 (since finite iterations are also

finite support iterations). Thus we can suppose α∗ ≥ ℵ0. Let R′ =
∏
ω×α∗ R be the finite

support product of ω × α∗-many copies of R; we show that Pα∗ is (R′, k)-colorable. (The

only reason we need α∗ ≥ ℵ0 is to get R′ ∼=
∏
α∗
R.)

Fix some p ∈ P 0
α∗ for a while. Note that supp(p) ∈ [α∗]

<θ.

It is easy to find, for each n < ω, elements qn(p) ∈ P 0
α∗ with q0(p) = p, so that for

all n < ω:

• qn+1(p) ≤ qn(p);

• For all α < α∗, qn+1(p) �α decides Ḟα(qn(α)).

For each n > 0 and for each α < α∗, we can find rn−1,α(p) ∈ R such that qn �α

forces that Ḟα(qn−1(α)) = řn−1,α(p). (Whenever α 6∈ supp(an−1), we have rn−1,α(p) = 0.)

Let qω(p) ∈ Pα∗ be the greatest lower bound of (qn(p) : n < ω); this exists by the

claim.
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Define P 0 = {qω(p) : p ∈ P 0
α∗}. For each q ∈ P 0, choose p(q) ∈ P 0

α∗ such that

q = qω(p(q)). For each n < ω, let pn(q) = qn(p(q)), and for each α < α∗, let rn,α(q) =

rn,α(p(q)).

We have arranged that for all q ∈ P 0, q is the greatest lower bound of (pn(q) : n <

ω), and for all n < ω and α < α∗, pn+1(q) �α forces that Ḟα(pn(q)(α)) = řn,α(q̌).

Define F : P 0 → R′ via F (q) = (rn,α(q) : α < α∗, n < ω). I claim that F : (P, P0)→

R′ is an (R′, k)-coloring.

So suppose (qi : i < i∗) is a sequence from P 0 with i∗ < k, such that (F (qi) : i < i∗)

are compatible. Write Γ =
⋃
i<i∗,n<ω

supp(pn(qi)).

By induction α ≤ α∗, we construct a greatest lower bound sα to (pn(qi) �α: i <

i∗, n < ω) in Pα, such that supp(sα) ⊆ Γ ∩ α, and for α < α′, sα′ �α= sα.

Limit stages of the induction are clear. So suppose we have constructed sα. If α 6∈ Γ

clearly we can let sα+1 = sα
_(1Q̇α); so suppose instead α ∈ Γ. Let n < ω be given. Then

(rn,α(qi) : i < i∗) are compatible, and sα forces that Ḟα(pn(qi)(α)) = řn,α(ři) for each

i < i∗, since pn+1(qi) �α does. Thus sα forces that (pn(qi)(α) : i < i∗) has the greatest

lower bound ṡn in Q̇α. Now sα forces that (ṡn : n < ω) is a descending chain in Q̇α, and

hence has the greatest lower bound ṡ. Let sα+1 = sα
_(ṡ).

Thus the induction goes through, and sα∗ is a greatest lower bound (qi : i < i∗) in

Pα∗ .

Definition 4.6.6. Suppose X is a set and µ = (µx : x ∈ X) is a sequence of ordinals

indexed by X (usually but not necessarily cardinals). Then let PXµθ be the set of all

partial functions f : X → κ of cardinality less than θ, such that for all x ∈ X, f(x) < µx.

Given a suitable sequence s = (λ, κ, θ, σ), let Ps,∞ be the class of all forcing notions of the

form PXµθ, for some set X and some sequence µ with each µx < κ.
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So in the special case when µ is constant with value µ < κ, then PXµθ = PXµθ, the

set of all partial functions from X to µ of cardinality less than θ.

In [56] and the sequel [57], Malliaris and Shelah obtain dividing lines in Keisler’s

order by constructing sufficiently generic ultrafilters on the Boolean-algebra completion of

P2λµθ, so they were essentially dealing with Ps,∞ (in the case where κ = µ+ is a successor

cardinal). In order to detect various amalgamation properties of theories, they varied

κ ≤ λ ≤ κ+ω. The set theory for this is delicate; working with the following class of

forcing notions allows us to avoid these difficulties and obtain sharper results.

Definition 4.6.7. Suppose 3 ≤ k ≤ θ. Then let Ps,k be the class of all forcing notions

P which have greatest lower bounds for < θ-chains, and are (R, k)-colorable for some

R ∈ Ps,∞.

We view it as unlikely that there is any model-theoretic information to be gained

by varying k ≥ ℵ0, but we cannot prove this.

We now some key properties of Ps,k.

Theorem 4.6.8. Suppose 3 ≤ k ≤ θ. Then:

(A) For every P ∈ Ps,k, P is θ-closed and has the κ-c.c.

(B) Suppose P,Q ∈ Ps,k. Then P forces that Q̌ ∈ PV[Ġ]
s,k .

(C) Suppose (Pα : α ≤ α∗), (Q̇α : α < α∗) is a < θ-support forcing iteration, such that

each Pα forces Q̇α ∈ PV[Ġα]
s,k , where Ġα is the Pα-generic name. Then Pα∗ ∈ Ps,k.

(D) Ps,k is closed under < θ-support products.

Proof. (A): P is θ-closed by definition of Ps,k. For the κ-c.c.: we can find some R ∈ Ps,k,

and some weak (R, 3)-coloring F : P → R. Now R has the κ-c.c. by the ∆-system lemma,
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so it immediately follows that P has the κ-c.c.

(B): If F : (P, P0) → R is an (R, k)-coloring, then this will continue to work in

forcing extensions, because k ≤ θ and P is θ-closed.

(C): We want to apply Theorem 4.6.5. To do so, we need to find some R ∈ Ps,∞

such that each Pα forces Q̇α is (R, k)-colorable. Let R0 = Pκµθ where µ = (µα : α < κ)

is defined by µα = |α|. Then for χ large enough, we can take R to be the < θ-support

product of χ-many copies of R0.

(D) follows immediately from (B) and (C).

4.7 The Ultrafilter Constructions

In this section, we give a streamlined construction of the perfect and optimal ultra-

filters of Malliaris and Shelah from [56], [57], using the ideas of Section 4.6.

Suppose s is a suitable sequence and 3 ≤ k ≤ θ. Our goal is to build a long forcing

iteration (Pα : α ≤ α∗, Q̇α : α < α∗) from Ps,k, then build a sufficiently generic ultrafilter

on B(Pα∗), and then check which theories it λ+-saturates. Our treatment differs from that

of Malliaris and Shelah in two respects. First, Malliaris and Shelah use Ps,∞ rather than

Ps,k; our approach allows us to circumvent some ingenious but ad-hoc coding methods (e.g.

“collision detection”) and obtain sharper bounds on our final dividing lines. Second, in our

construction of (Pα : α ≤ α∗), (Q̇α : α < α∗), we will be anticipating not only (λ, T )- Loś

maps in B(Pα), but also entire ultrafilters on B(Pα). This is a relatively minor change;

the upshot is that we get a better handle on which theories our eventual ultrafilter will

λ+-saturate. On the other hand, we lose control over the length α∗ of the forcing iteration;

Mallairis and Shelah always arranged α∗ = 2λ. In view of Theorem 3.16.19, this is not a

serious drawback; so long as our eventual Boolean algebra B has the λ+-c.c., then every
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ultrafilter on B is Keisler-equivalent to one on a complete subalgebra of B of size at most

2λ.

Looking beneath these differences, our construction is really the same as Malliaris

and Shelah’s.

The following definition will be convenient:

Definition 4.7.1. If A is a λ-distribution in B, then for S ⊆ λ, define A(S) =
∧
s∈[S]<ℵ0 A(s).

This need not be nonzero, but if A is in a σ-complete ultrafilter U and |S| < σ, then it

will be.

The following lemma describes the situation we will be interested in while building

our generic ultrafilter U on B(Pα∗).

Lemma 4.7.2. Suppose s = (λ, κ, θ, σ) is a suitable sequence, and 3 ≤ k ≤ θ, and T is a

complete first order theory. Suppose P ∈ Ps,k, and U is a σ-complete ultrafilter on B(P ),

and A is a λ-distribution in U . Then the following are equivalent:

(A) There is some Q̇ ∈ PV[Ġ]
s,k and some multiplicative refinement B of A in B(P ∗ Q̇),

such that for every S ∈ [λ]<σ, π(B(S)) ∈ U . (Here Ġ is the P -generic name, and

π = πB(P∗Q̇),B(P ) : B(P ∗ Q̇)→ B(P ) is the projection map.)

(B) There is some Q̇ ∈ PV[Ġ] and some σ-complete ultrafilter V on B(P ∗ Q̇) extending

U , such that A has a multiplicative refinement B in V.

Proof. (A) implies (B): for each S ∈ [λ]<σ, we have that π(B(S)) ∈ U . By Lemma 4.5.4(C),

it follows that U ∪{A(S) : S ∈ [λ]<σ} generates a σ-complete filter on B(P ∗ Q̇). Since ei-

ther σ = ℵ0 or else is supercompact (and in particular strongly compact), by Lemma 2.2.2

we can find a σ-complete ultrafilter V on B(P ∗ Q̇) extending U such that B is in V.

(B) implies (A): trivial.
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We turn the lemma into a definition.

Definition 4.7.3. Suppose s = (λ, κ, θ, σ) is a suitable sequence, and 3 ≤ k ≤ θ, and T is

a complete first order theory. Write P = Ps,k. Then say that (P,U ,A) is a (T,P)-problem

if P ∈ P, and U is a σ-complete ultrafilter on B(P ), and A is a (λ, T )- Loś map in U .

(P ∗ Q̇,B) is a P-solution to (P,U ,A) if Q̇ ∈ PV[Ġ], and B is a multiplicative refinement of

A in B(P ∗Q̇), and for every S ∈ [λ]<σ, π(B(S)) ∈ U . Say that T has the P-amalgamation

property if every (T,P)-problem has a P-solution.

The P-amalgamation property will be a lower bound for our eventual principal

dividing line in Keisler’s order. In fact, if σ = ℵ0 then it will exactly be a principal

dividing line in Keisler’s order—given a sufficiently generic iteration sequence (Pα : α ≤

α∗), (Q̇α : α < α∗), we will build our desired ultrafilter U on B(Pα∗) as a union of a chain

of ultrafilters Uα on B(Pα), and the P-amalgamation property for T will be exactly what

we need to arrange a multiplicative refinement for a given (λ, T )- Loś map at stage α.

For σ > ℵ0, we cannot construct σ-complete ultrafilters so näıvely, and we will need

the following technical strengthening. This is essentially the difference between perfect

and optimal ultrafilters in [57].

Definition 4.7.4. Suppose s, k,P, T are as above. Suppose (P,U ,A) is a (T,P)-problem.

Then say that (P ∗ Q̇,B) is a smooth P-solution to A if it is a P-solution to A, and for

each S ∈ [λ]<σ, π(B(S)) =
∧
s∈[S]<ℵ0 π(B(s)). Say that T has the smooth P-amalgamation

property if every (T,P)-problem has a smooth solution.

Note that if σ = ℵ0, then every solution is smooth.

Remark 4.7.5. In practice, when we know how to show T fails the P-amalgamation

property, we can actually arrange a problem (P,U ,A), such that A has no multiplicative
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refinement at all in any B(P ∗ Q̇), for Q̇ ∈ PV[Ġ].

The following example explains why we require λ ≥ κ in the definition of suitable

sequence.

Example 4.7.6. Suppose, in the definition of suitable sequences s = (λ, κ, θ, σ), we had

allowed λ < κ. Then for any such suitable sequence s, and for every 3 ≤ k ≤ θ, we would

have that every theory T has the smooth Ps,k-amalgamation property.

Proof. Write P = Ps,k. Choose P0 ∈ P that has an antichain of size λ, and let P1 be the

< θ-support product of θ-many copies of P0. Easily, P1 has an antichain of size λ<θ, and

hence of size λ<σ. Let (cs : s ∈ [λ]<σ) be a maximal antichain of P1.

We follow the proof of Theorem 3.9.13. Suppose (P,U ,A) is a (T,P)-problem for

some T . Let Q̇ = P̌1 (so we can identify P ∗ Q̇ with P × P1). For each s ∈ [λ]<ℵ0 ,

let B(s) =
∨
s⊆S∈[λ]<σ(A(S), cS) ∈ B(P ) × P1 ⊆ B(P × P1). As in Theorem 3.9.13, B

is a multiplicative refinement of A, and in fact B(S) =
∨
S⊆S′∈[λ]<σ(A(S′), cS′) for all

S ∈ [λ]<σ.

We check that each π(B(S)) = A(S), which shows that P ∗ (Q̇,B) is a smooth

solution to (P,U ,A). It suffices to show that for all a ∈ B(P ), a∧A(S) is nonzero if and

only if a∧B(S) is nonzero. Since B(s) ≤ A(s), the reverse direction is trivial, so suppose

a ∧A(S) is nonzero. Then (a ∧A(S), cS) ≤ B(S) is nonzero, as desired.

On the other hand, this never happens when λ ≥ κ. Indeed, we can establish at

once the following baselines for the P-amalgamation properties:

Theorem 4.7.7. Suppose s = (λ, κ, θ, σ) is a suitable sequence, and 3 ≤ k ≤ θ, and T is

a complete first order theory. Write P = Ps,k.
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(A) If T is nonsimple, then T fails the P-amalgamation property.

(B) If σ = ℵ0 and T is nonlow, then T fails the P-amalgamation property.

Proof. (A): Let P ∈ P have c.c.(P ) = κ. Then Theorem 3.15.1 together with Lemma 2.2.2

gives a (T ∗rg,P)-problem (P,U ,A) with no P-solution (namely, let U be a nonprincipal, σ-

complete ultrafilter on B(P ), and let A be as given in Theorem 3.15.1).

(B): Similarly, by Theorem 3.15.2.

And the following shows that we are doing is relevant. The case σ = ℵ0 is similar

to the construction of perfect ultrafilters in [57], and the case σ > ℵ0 is similar to the

construction of optimal ultrafilters there.

Theorem 4.7.8. Suppose s = (λ, κ, θ, σ) is a suitable sequence, and 3 ≤ k ≤ θ, and T is

a complete first order theory. Write P = Ps,k. Then for some P ∈ P, there is an ultrafilter

U on B(P ) which λ+-saturates every theory with the smooth P-amalgamation property,

and does not λ+-saturate any theory without the P-amalgamation property.

Proof. As a convenient abbreviation, say that (P,U ,A) is a problem if it is a (T,P)-

problem for some theory T with the smooth P-amalgamation property; and say that

(Q̇,B) is a smooth solution if it is a smooth P-solution. So trivially, every problem has a

smooth solution. Let (Tδ : δ < 2ℵ0) enumerate all complete first order theories which fail

the P-amalgamation property. For each δ < ℵ0, let (Q0,δ,U0,δ,A0,δ) be a (Tδ,P)-problem

with no P-solution. Let Q0 be the < θ-support product of (Q0,δ : δ < 2ℵ0); so Q0 ∈ P.

Let V1 be a σ-complete ultrafilter on B(Q0) extending each U0,δ.

The following setup is straightforward to arrange:

1. α∗ is an ordinal, and (χδ : δ < λ+) is a cofinal sequence of cardinals in α∗ (it follows

that α∗ is a limit cardinal of cofinality λ+);
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2. (Pα : α ≤ α∗), (Q̇α : α < α∗) is a < θ-support forcing iteration, and each Pα forces

that Q̇α ∈ P;

3. Q0 is as defined above;

4. For each 1 ≤ α < α∗, (Pβα ,Uα,Aα) is a problem, with the smooth solution (Pβα ∗

Q̇α,Bα) (in particular, Q̇α is a Pβα-name);

5. For each 1 ≤ δ < λ+, for each β ≤ χδ, and for each problem (Pβ,U ,A), there is

some α < χδ+1 such that βα = β, Uα = U and Aα = A.

By Corollary 4.6.8, each Pα ∈ P is θ-closed and has the λ+-c.c. It suffices to find

a σ-complete ultrafilter V on B(Pα∗) which λ+-saturates every theory with the smooth

P-amalgamation property, and no theory without the P-amalgamation property.

I claim that it suffices to find a σ-complete ultrafilter V on B(Pα∗) extending V1,

such that for all 1 ≤ α < α∗, if V extends Uα then Bα is in V (i.e. Bα(s) ∈ Uα for all

s ∈ [λ]<ℵ0 , or equivalently for all S ∈ [λ]<σ). Indeed, suppose V is given as such.

First suppose δ < 2ℵ0 ; we verify that V does not λ+-saturate Tδ. Suppose towards

a contradiction that B were a multiplicative refinement of A0,δ in V. Let Q̇′ be the Q0,δ-

name for the forcing iteration (Ṗα : α ≤ α∗), (Q̇
′
α : α < α∗), where Q̇0 is the < θ-support

product of (Q0,δ′ : δ′ < 2ℵ0 , δ′ 6= δ), and Q̇′α = Q̇α for α > 0. Then B(Q0,δ ∗ Q̇′) is

naturally isomorphic to B(Pα∗), and this witnesses that (Q0,δ,U0,δ,A) has a P-solution

(by Lemma 4.7.2).

Next, we show that V λ+-saturates every T with the smooth P-amalgamation prop-

erty. Indeed, suppose A is a (T,B(Pα∗), λ)-possibility in V. Since cof(α∗) = λ+ and since

B(Pα∗) has the λ+-c.c., we have that B(Pα∗) =
⋃
α<α∗

B(Pα), and so A is in Bβ for some

β < α∗. Let U = V ∩ B(Pβ), and let δ < λ+ be least with χδ ≥ β. Choose α < χδ+1 such
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that βα = β, Uα = U and Aα = A. Since V extends Uα we must have that V extends Bα,

but Bα is a multiplicative refinement to A so we are done.

So it remains to find V. If σ = ℵ0 then this is fairly trivial; having constructed V ∩

B(Pα), if V ∩B(Pα) extends Uα, then note that for all s ∈ [λ]<ℵ0 , πB(Pα+1),B(Pβα )(Bα(s)) ∈

Uα, and so (V ∩ B(Pα)) ∪ {B(s) : s ∈ [λ]<ℵ0} has the finite intersection property. So we

can find Vα+1.

Finally, suppose σ > ℵ0. We cannot adopt a straightforward construction as above,

since we cannot preserve σ-completeness through limit stages. Thus we take a different

approach. The remainder of the argument mirrors Theorem 5.9 of [57].

Let E be a normal, σ-complete ultrafilter on [H(χ)<σ] where χ is large enough. Let

Ω be the set of all N ∈ [H(χ)]<σ such that N � (H(χ),∈, . . .) where . . . is the list of

finitely many relevant parameters. Then Ω ∈ E .

Fix N ∈ Ω for a while. Let (αγ : γ < γ∗) enumerate N ∩ α∗ in the increasing order,

so γ∗ < σ. By induction on γ < γ∗ we construct (pγ : γ < γ∗) with each pγ ∈ Pαγ , such

that:

• For γ < γ′, pγ ≥ p′γ ;

• For each γ < γ∗, and for each α ∈ N ∩ α∗, pγ decides every element of B(Pαγ );

• p1 ≤
∧

(V1 ∩N);

• If pγ ≤
∧

(Uαγ ∩N) then pγ+1 ≤ Bαγ (N ∩ λ).

The base case is easy. If δ < γ∗ is a limit ordinal, then when constructing pδ we just

need to handle the first and second conditions. We can do this because Pαδ is θ-closed,

and hence σ-closed.
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The key point is the following. Suppose pγ is defined; write α = αγ . Suppose

pγ ≤
∧

(Uα ∩N). We need to show that pγ ∧Bα(N ∩λ) is nonzero. Write S = N ∩λ, and

let π = πB(Pα+1),B(Pβα ) be the projection map. It suffices to show that pγ ≤ π(Bα(S)). But

Bα(S) =
∧
s∈[S]<ℵ0 Bα(s), and each π(Bα(s)) ∈ Uα, by definition of smooth solution. But

then each π(Bα(s)) ∈ N ∩Uα, since [S]<ℵ0 ⊆ N . Thus pγ ≤ π(Bα(s)) for each s ∈ [S]<ℵ0 ,

and so we can satisfy the fourth condition above for pγ+1. The other conditions can be

gotten as in the limit case, using Pαγ+1 is σ-closed.

Let pN ∈ Pα∗ be a lower bound to (pγ : γ < γ∗). To sum up, for each N ∈ Ω, we

have defined pN ∈ Pα∗ , so that pN ≤
∧

(N ∩V1), and pN decides every element of N ∩Pα∗ ,

and for all α ∈ α∗ ∩ N , either pN ≤ Bα(N ∩ λ), or else pN contradicts some element of

Uα ∩N .

Define V to be the set of all a ∈ B(Pα∗) such that {N ∈ Ω : pN ≤ a} ∈ E . I

claim that V is as desired. V is obviously a filter. Given a ∈ B(Pα∗), we have that

{N ∈ Ω : a ∈ N} ∈ E since E is fine, thus V is an ultrafilter. Since E is σ-complete, so is

V.

Finally, suppose α < α∗; we need to show that either Bα is in V or else V does not

extend Uα. Let C1 := {N ∈ Ω : pN ≤
∧
Uα ∩N}, and let C2 = {N ∈ Ω : pN 6≤

∧
Uα ∩N}.

Either C1 ∈ E or else C2 ∈ E . Suppose first that C1 ∈ E . Then for each N ∈ C1 and for

each s ∈ [λ]<ℵ0 ∩N , pN ≤ Bα(s0); since E is fine, it follows that each Bα(s) ∈ V, so B is

in V. Next, suppose C2 ∈ E ; for each N ∈ C2, we can choose f(N) ∈ Uα ∩ N such that

pN 6≤ f(N). Since E is normal, we can find C ⊆ C2 with C ∈ E , such that f is constant

on C, say with value a ∈ Uα. Then a 6∈ V, so V does not extend Uα. Thus, in either case,

either Bα is in V or else V does not extend Uα.

Corollary 4.7.9. Suppose s = (λ, κ, θ, σ) is a suitable sequence, and 3 ≤ k ≤ θ, and T
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is a complete first order theory. Write P = Ps,k. Then there is a principal dividing line

in Keisler’s order between the P-amalgamation property and the smooth P-amalgamation

property. If σ = ℵ0 then the P-amalgamation property is itself a principal dividing line.

Proof. This follows from Theorem 4.7.8 since for every P ∈ P, B(P ) has the λ+-c.c. (in

fact, the λ-c.c.).

4.8 The Saturation Condition

In this section, we show that if s is a suitable sequence, and 3 ≤ k ≤ θ, and T is

a simple theory with Λ-type amalgamation for all |Λ| < k, then T has the smooth Ps,k-

amalgamation property (see Definition 4.7.4). The argument for this is inspired by the

saturation argument in [81].

In practice, verifying directly that some T has the smooth P-amalgamation property

may be difficult. We first describe a sufficient condition.

Definition 4.8.1. Suppose s is suitable, and 3 ≤ k ≤ θ; write P = Ps,k. Say that T has

the concrete P-amalgamation property if for every M |= T with |M | ≤ λ, and for every

M0 � M countable, ΓθM,M0
∈ P. Say that T has the absolute concrete P-amalgamation

property if for every P ∈ P, P forces that Ť has the concrete P-amalgamation property.

In the following theorem, we show that the absolute concrete P-amalgamation prop-

erty implies the smooth P-amalgamation property, except in cases where the latter fails

due to Theorem 4.7.7.

Theorem 4.8.2. Suppose s is suitable, and 3 ≤ k ≤ θ; write P = Ps,k. Suppose T is

simple, and either σ > ℵ0 or else T is low. If T has the absolute concrete P-amalgamation

property, then T has the smooth P-amalgamation property.
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Proof. Let (P,U ,A) be a (T,P)-problem. By definition of a  Loś-map, we can choose

M |=B T , and a partial type p(x) = {ϕα(x, aα) : α < λ} over M, such that for all

s ∈ [λ]<ℵ0 , ‖∃x
∧
α∈s ϕα(x, aα)‖M = A(s); we can arrange |M| ≤ λ. Choose M0 � M

countable such that p(x) does not U-fork over M0.

Let Q̇ = Γθ
M̌/Ġ,M̌0/Ġ

, so P forces that Q̇ ∈ PV[Ġ]. For each s ∈ [λ]<ℵ0 , define

C(s) =
∧
α∈s
‖ϕα(x, [aα]Ġ) does not fork over M̌0/Ġ in M̌/Ġ‖B

so C(s) ∈ U , by Theorem 4.1.3 or else Theorem 4.1.4.

For each s ∈ [λ]<ℵ0 , let B(s) = (C(s), {ϕα(x, [aα]Ġ) : α ∈ s}) ∈ B(P )∗Q̇ ⊆ B(P ∗Q̇).

Clearly B is a multiplicative refinement of A. Moreover, letting π : B(P ∗Q̇)→ B(P )

be the projection, note that whenever (c, ṗ(x)) ∈ B(P ) ∗ Q̇ we have that π(c, ṗ(x)) = c.

Hence π(B(s)) = C(s) for each s ∈ [λ]<ℵ0 . But moreover, given S ∈ [λ]<σ, B(S) =∧
s∈[S]<ℵ0 B(s) = (C(S), {ϕα(x, [aα]Ġ) : α ∈ S}), so π(B(S)) = C(S) =

∧
s∈[S]<ℵ0 C(s) =

π(B(s)) as desired.

Thus (Q̇,B) is a smooth P-solution to (P,U ,A).

We now apply this:

Theorem 4.8.3. Suppose s is suitable, and 3 ≤ k ≤ θ; write P = Ps,k. Suppose θ > ℵ0,

and T is a simple theory with Λ-type amalgamation for all |Λ| < k. Then T has the

absolute concrete P-amalgamation property.

Proof. It suffices to show T has the concrete P-amalgamation property, since the same

argument will run in any forcing extension. So suppose M |= T has |M | ≤ λ, and

M0 � M is countable. We show ΓθM,M0
∈ Ps,k. It suffices to show that ΓθM,M0

is weakly

(R, k)-colorable for some R ∈ Ps,k.
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By Theorem 4.3.9 and reindexing, we can suppose M =
⋃
s∈[λ]≤ℵ0 Ms, where (Ms :

s ∈ [λ]≤ℵ0) is an independent system of countable submodels of M (we are possibly

increasing M0). Moreover we can suppose there is a frame A ⊆ [λ]≤ℵ0 such that for all

s,Ms =
⋃
{Mt : t ⊆ s, t ∈ A}. We can further suppose that the universe of each Ms is⋃

{{t} × ω : t ⊆ s, t ∈ A}.

For each s ∈ [λ]<θ define Ms :=
⋃
t∈[s]≤ℵ0 Mt. So (Ms : s ∈ [λ]<θ) is still indepen-

dent.

Let P be the set of all p(x) ∈ ΓθM,M0
such that for some s ∈ [λ]<θ, p(x) is a complete

type over Ms; we write p(x,Ms) to indicate this. P is dense in ΓθM,M0
. Note that for every

set X, PXθθ ∈ Ps∞. Thus it suffices to find some set X and some weak (PXθθ, k)-coloring

F : P → PXθθ of P . Write X = [θ]<ω×ω∪ (λ+ 2) (which we suppose is a disjoint union).

Suppose p(x,Ms) is given. Enumerate s = {αγ : γ < γ0
∗} in the increasing order.

Also, enumerate {t ⊆ s : t ∈ A} = {tγ : γ < γ1
∗}. So γ0

∗ , γ
1
∗ < θ. Let πp : Ms → γ1

∗ × ω be

the bijection sending (tγ , i) to (γ, i). Let Np be the model with universe γ1
∗ × ω such that

πp is an isomorphism.

Let the domain of F (p) be [γ1
∗ ]
<ω × ω ∪ s ∪ {λ, λ+ 1}. Define F �<ω

[γ1
∗ ]

to encode Np

and πp[p(x)]. For each γ < γ0
∗ define F (αγ) = γ. Finally, define F (λ) = γ0

∗ , F (λ+1) = γ1
∗ .

I claim this works.

So suppose pi(x,Msi) : i < i∗ is a sequence from P where i∗ < k, such that

(F (pi) : i < i∗) is compatible in Pλθθ.

Let γ0
∗ be the order-type of some or any si. Enumerate each si = {αi,γ : γ < γ∗} in

increasing order. Let E be the equivalence relation on γ∗ defined by: γEγ′ if and only if

for all i, i′ < i∗, αi,γ = αi′,γ if and only if αi,γ′ = αi′,γ′ . Let (Ej : j < n) enumerate the

equivalence classes of E. For each i < i∗, and for each j < n, let Xi,j = {αi,γ : γ ∈ Ej}.
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Thus si is the disjoint union of Xi,j for j < n. Moreover, Xi,j ∩Xi′,j′ = ∅ unless j = j′;

and if Xi,j ∩ Xi′,j 6= ∅ then Xi,j = Xi′,j . For each j < n, enumerate {Xi,j : i < i∗} =

(Y`,j : ` < mi) without repetitions. Let m = max(mj : j < n); and for each i < i∗, define

ηi ∈ nm via: ηi(j) = the unique ` < mi with Xi,j = Y`,j .

Let Λ = {ηi : i < i∗}. For each s ∈ PΛ, let Ns = Mts where ts =
⋃

(j,`)∈s Y`,j . For

each i, i′ < i∗, let πηi,ηi′ = π−1
pi′
◦ πpi , using that Npi = Npi′ . Also, define pηi(x) = pi(x).

Then (N,π) is a Λ array, and |Λ| < k, so we are done by < k-type amalgamation.

4.9 The Nonsaturation Condition

In this section, we prove the following.

Theorem 4.9.1. Suppose s = (λ, κ, θ, σ) is a suitable sequence. Suppose 3 ≤ k∗ < ω, and

λ ≥ [κ]+(k∗−1). If T admits ∆k for some k < k∗, then T fails the (Ps,k∗ , s)-amalgamation

property.

Before we begin the proof, we will need some combinatorial lemmas. The notion →

has a long history, see [11].

Definition 4.9.2. Suppose F : [λ]k → [λ]<κ. Then w ∈ [λ]n is independent with respect

to F if for each u ∈ [w]k, F (u) ∩ w ⊆ u.

Given cardinals λ ≥ κ and numbers n > k, say that (λ, k, κ) → n if whenever

F : [λ]k → [λ]<κ, there is some w ∈ [λ]n which is independent with respect to F .

The following is Theorem 46.1 of [11]:

Theorem 4.9.3. Suppose λ ≥ κ+`. Then (λ, `, κ)→ `+ 1.

Proof. We prove by induction on ` that (κ+`, `, κ)→ `+ 1. This clearly suffices.
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If ` = 0: we have F : [κ]0 → [κ]<κ. Note that [κ]0 = {∅}. Let A = F (∅) and choose

α ∈ κ−A. Then {α} ∈ [κ]1 is independent with respect to F .

Suppose we are at case ` + 1; write λ = κ+`. We are supposing (λ, `, κ) → ` + 1.

Suppose F : [λ+]`+1 → [λ+]<κ is given. Choose A ⊆ λ+ such that |A| = λ and A is closed

under F . Pick α ∈ λ+\A and define F ′ : [A]` → [A]<κ by: F ′(u) = F (u ∪ {α}). By the

induction hypothesis we can choose w ∈ [A]`+1 which is independent with respect to F ′.

Then w ∪ {α} ∈ [λ+]`+2 is independent with respect to F .

Actually, this theorem is sharp, but we won’t have a use for the reverse direction.

We can now prove Theorem 4.9.1. This proof mirrors the proof of Claim 5.1 of [58].

Proof. Let P = P[λ]kθθ ∈ Ps,k∗ . Write B = B(P ); for each v ∈ [λ]k, write cv = {(v, 0)} ∈

P ⊆ B. Let A be the [λ]k−1-distribution in B, defined by putting A(s) =
∧
{cv : v ∈

[λ]k, [v]k−1 ⊆ s}. Easily, A is a ([λ]k−1,∆k)-distribution.

Suppose Q̇ ∈ PV[Ġ]
s,k∗

were given; it suffices to show that A has no multiplicative

refinement in B(P ∗ Q̇). Suppose towards a contradiction that there were, say B. We can

find R ∈ Ps,∞ and a B-name Ḟ such that B forces Ḟ : Q̇ → Ř is a weak (Ř, k)-coloring.

Write R = PXµθ for some set X and some sequence of cardinals (µx : x ∈ X) below κ.

For each v ∈ [λ]k choose (pv, q̇v) ∈ P ∗ Q̇ such that (pv, q̇v) ≤ B([v]k−1) and pv

decides Ḟ (q̇v), say pv forces that Ḟ (q̇v) = f̌v for some fv ∈ R.

Let B∗ be the Boolean-algebra completion of P × R. For each u ∈ [λ]k−1, let

bu be the least upper bound in B∗ of ((pv, fv) : u ⊆ v ∈ [λ]k). Since B∗ has the κ-

c.c., we can find S(u) ∈ [λ]<κ such that bu is also the greatest lower bound in B∗ of

((pv, fv) : u ⊆ v ∈ [S(u)]k). By expanding S(u), we can suppose that for all v ∈ [S(u)]k,⋃
dom(pv) ⊆ [S(u)]k.
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By Theorem 4.9.3, (λ, k − 1, κ) → k, so we can find some v ∈ [λ]k such that for

all u ∈ [v]k−1, S(u) ∩ v = u. Now (bu : u ∈ [v]k−1) has a greatest lower bound in R,

namely (pv, fv); thus we can find (vu : u ∈ [v]k−1) such that each u ⊆ vu ∈ [S(u)]k, and

((pvu , fvu) : u ∈ [w]k−1) are all compatible in P × R. Thus (pvu : u ∈ [v]k−1) are all

compatible; write p =
⋃
u∈[v]k−1 pvu ∈ P (recall P = P[λ]kθθ). Also, p forces that each

Ḟ (q̇vu) = f̂vu ; so we can choose a P -name q̇ for an element of Q̇ such that p forces q̇ is

a lower bound to (q̇vu : u ∈ [v]k−1) (this is where we use k < k∗). Then (p, q̇) is a lower

bound in P ∗ Q̇ to ((pvu , q̇vu) : u ∈ [v]k−1). Note that v 6∈ dom(p), since if v ∈ dom(pvu)

say, then v ⊆
⋃

dom(pvu) ⊆ S(u), contradicting that S(u) ∩ v = u. Thus we can choose

p′ ≤ p in P with p′(v) = 1; note than (p′, q̇) ∈ P ∗ Q̇.

Now for each u ∈ [v]k−1, (p′, q̇) ≤ (pvu , q̇vu) ≤ B([vu]k−1) ≤ B({u}). Thus, by

multiplicativity, (p′, q̇) ≤ B([v]k−1) ≤ A([v]k−1) = {(v, 0)}, contradicting the choice of

p′.

4.10 Putting It All Together

We now reel off consequences of what we have done. The following was proven by

Malliaris and Shelah in [57].

Theorem 4.10.1. Suppose there is a supercompact cardinal. Then simplicity is a prin-

cipal dividing line in Keisler’s order.

Proof. Let σ be supercompact. Write θ = σ and κ = σ+; let λ ≥ κ be arbitrary. Then

s = (λ, κ, θ, σ) is a suitable sequence. By Theorems 4.8.3 and 4.8.2, every simple theory

has the smooth Ps,3-amalgamation property, and by Theorem 4.7.7, every unsimple theory

fails the Ps,3-amalgamation property. Hence we conclude by Theorem 4.7.8.
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I proved the following in [87].

Theorem 4.10.2. Lowness is a principal dividing line in Keisler’s order.

Proof. Let σ = ℵ0, let θ = ℵ1, let κ = (2ℵ0)+, and let λ ≥ κ be arbitrary. Then

s = (λ, κ, θ, σ) is a suitable sequence. By Theorems 4.8.2 and 4.8.3, every low theory has

the smooth Ps,3-amalgamation property, and by Theorem 4.7.7, every nonlow theory fails

the Ps,3-amalgamation property. Hence we conclude by Theorem 4.7.8.

The first iteration of the following theorem was proven by Malliaris and Shelah

in [58], although the conclusion there was weaker: they only obtained that for all 3 ≤ k <

k′−1, Tk′+1,k′ 6E Tk+1,k. We eliminate this gap and get more model-theoretic information.

Theorem 4.10.3. Suppose 3 ≤ k∗ ≤ ℵ0. Then there is a principal dividing line T in

Keisler’s order, which includes every low complete countable theory T that has Λ-type

amalgamation for all Λ ∈ Λ with |Λ| < k∗, but does not include any theory which admits

∆k for some k < k∗, nor any nonlow theory. In particular, Tk′+1,k′ 6E Tk+1,k for k′ > k.

Proof. Let σ = ℵ0, let θ = ℵ1, let κ = (2ℵ0)+, and let λ ≥ κ+ω. Then s = (λ, κ, θ, σ) is

a suitable sequence. By Theorems 4.8.2 and 4.8.3, every low theory with Λ-type amal-

gamation for all Λ ∈ Λ with |Λ| < k∗ has the smooth (Ps,k∗ , s)-amalgamation property.

By Theorem 4.7.7, every nonlow theory fails the (Ps,k∗ , s)-amalgamation property, and by

Theorem 4.9.1, if T admits ∆k for some k < k∗, then T fails the (Ps,k∗ , s)-amalgamation

property. Hence we conclude by Theorem 4.7.8.

We also get the following, under the presence of a supercompact cardinal.

Theorem 4.10.4. Suppose 3 ≤ k∗ ≤ ℵ0, and suppose there is a supercompact cardinal.

Then there is a principal dividing line T in Keisler’s order, which includes every simple
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complete countable theory T that has Λ-type amalgamation for all Λ ∈ Λ with |Λ| < k∗,

but does not include any theory T which admits ∆k for some k < k∗, nor any unsimple

theory.

Proof. Let σ be supercompact. Write θ = σ and κ = σ+; and let λ ≥ κ+ω. Then s =

(λ, κ, θ, σ) is a suitable sequence. By Theorems 4.8.2 and 4.8.3, every simple theory with

Λ-type amalgamation for all Λ ∈ Λ with |Λ| < k∗ has the smooth (Ps,k∗ , s)-amalgamation

property. By Theorem 4.7.7, every nonsimple theory fails the (Ps,k∗ , s)-amalgamation

property, and by Theorem 4.9.1, if T admits ∆k for some k < k∗, then T fails the (Ps,k∗ , s)-

amalgamation property. Hence we conclude by Theorem 4.7.8.

The following corollary is close to an immediate consequence of results of Malliaris

and Shelah in [57] and [58] (the extra piece is the existence of TCas), and in fact they

were aware of the result, but did not disseminate it. I was the first to observe it in

publication [88]. Malliaris and Shelah have since recorded their independent (and morally

identical) proof in [61].

Corollary 4.10.5. If there is a supercompact cardinal, then Keisler’s order is not linear.

Proof. Compare TCas with T4,3, say. TCas has Λ-type amalgamation for all Λ ∈ Λ, but is

not low; T4,3 is low, but fails Λ3-type amalgamation. Thus we conclude by Theorems 4.10.2

and 4.10.4.

4.11 Well-behaved Simple Theories

Suppose T is a countable simple theory. We have difficulty arguing that various

versions of amalgamation are equivalent, but in the examples of which we are aware,

everything works out. The following is an ad-hoc list of principles that isolate the good
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behavior.

Definition 4.11.1. T has extendible solutions if the following holds. Suppose ∆ ∈∆, and

∆0 is the closure of the maximal elements of ∆ under intersections. Suppose (Ms : s ∈ ∆)

is an independent system of models. Then (Ms : s ∈ ∆) has a solution if and only if

(Ms : s ∈ ∆0) has a solution.

T has canonical amalgamation if, whenever ∆0 ⊆ ∆1 are both in ∆, and whenever

(Ms : s ∈ ∆0) is an independent system of models, if for every t ∈ ∆1 we have that

(Ms∩t : s ∈ ∆0) has a solution, then we can extend (Ms : s ∈ ∆0) to an independent

system of models (Mt : t ∈ ∆1).

T has a surprise amalgamation problem if for some 3 ≤ k < ω, T has P−(k)-

amalgamation of models, and there is some independent system of models (Mu : u ( k+1)

with no solution, such that if we let pu(x) = tpMu∪{k}(M{k}/Mu) for each u ( k, then⋃
u(k pu(x) does not fork over M∅, as evaluated in Mk.

T is well-behaved if T has extendible solutions, canonical amalgamation and no

surprise amalgamation problems.

Trivially, if T has ∆-amalgamation of models for all ∆ ∈∆, then T is well-behaved.

In particular, every stable theory is well-behaved.

Question 1. Is every simple theory well-behaved?

We have the following class of examples of well-behaved theories,.

Example 4.11.2. For 3 ≤ k < ω, each Tn,k is well-behaved. More generally, suppose

T is a complete countable simple theory, with forking given by equality (in particular,

supersimple of rank 1). Suppose further that T admits quantifier elimination in a relational

language L, such that the following holds: suppose M |= T and N is an L-structure with
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the same universe as M . Suppose for every relation symbol R of L of arity at least two,

RN ⊆ RM , and for every unary predicate P of L, PM = PN . Then N |= T ∀ (i.e. N can

be extended to a model of T ).

Then T is well-behaved.

Proof. T clearly has extendible solutions, since the only obstacle is that there could be

extra forking in (Ms : s ∈ ∆); but T has forking given by equality. So we check canonical

amalgamation and no surprise amalgamation problems.

We speak of systems (As : s ∈ I) of (possibly floating) models of T ∀, defined like

systems of models of T . Note that since forking for T is given by equality, independence

is always vacuous.

I first of all claim that if (As : s ∈ ∆) is a system of models of T ∀ for some

∆ ∈ ∆, then it can be extended to a system of models (Ms : s ∈ ∆) of T (i.e. with each

As ⊆ Ms); moreover, if for some s ∈ ∆ we have that At |= T for all t ⊆ s, then we can

arrange Ms = As. It suffices to show that given s ∈ ∆, we can extend (As : s ∈ ∆) to

a system (Bs : s ∈ ∆) of models of T ∀, such that At = Bt for all t with s 6⊆ t, and with

Bs |= T . Indeed, choose some Bs |= T extending As, and such that Bs ∩
⋃
t∈I At = As. It

suffices to show we can coherently define (Bt : s ⊆ t), so that each Bt is an amalgam of

At and Bs with universe |At| ∪ |Bs|. But we can just let Bt be the free amalgam, where

we add no new relations. Since models of T ∀ have disjoint amalgamation, this works.

T has canonical amalgamation: suppose ∆0 ⊆ ∆1 ∈ ∆, and (Ms : s ∈ ∆0) is an

(independent) system of models, such that for each t ∈ ∆1, (Ms∩t : s ∈ ∆0) has a solution.

For each t ∈ ∆1, let At be the structure obtained by freely amalgamating (Ms∩t : s ∈ ∆0)

(i.e., adding no new relations). Since (Ms∩t : s ∈ ∆0) has a solution, by hypothesis we get

that At ∈ T ∀. Then (At : t ∈ ∆0) is a system of models of T ∀, so by the preceding, we
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can extend it to an (independent) system of models of T without changing (Ms : s ∈ ∆0),

as desired.

T has no surprise amalgamation problems: suppose T has P−(k)-amalgamation of

models, and (Mu : u ( k+ 1) is an (independent) system of models of T . For each u ( k,

let pu(x) = tpMu∪{k}(M{k}/Mu); suppose that
⋃
u pu(x) does not fork over M∅ (i.e. is

consistent). We construct a solution to (Mu : u ( k + 1).

For each u ( k + 1, define Au as follows: let Ak = Mk, and for u 6⊆ k, let Au =

Mu∩k ∪ {Mk}. So (Au : u ( k + 1) is a system of models of T ∀, and it has a solution

by hypothesis. Let A∗ ∈ T ∀ be the free amalgam, where we add no new relations (and

where the universe of A∗ is |A∗| =
⋃
u(k+1 |Au|). Next, for each u ( k, let Bu be the free

amalgam of Mu∪{k} and A∗ over Au∪{k} = Mu ∪M{k}. Then (Bu : u ( k) is a system

of models of T ∀. By the claim at the beginning, we can extend this to an (independent)

system of models (Nu : u ( k) of T . Since T has P−(k)-amalgamation, this has a solution

N . But then N is a solution to our original problem (Mu : u ( k + 1).

We put together an omnibus theorem, showing that for well-behaved T , “everything

is equivalent.” To begin, we recap some theorems of [39] in our context.

The following is similar to Theorem 4.6 of [39].

Theorem 4.11.3. Suppose T has P−(k)-amalgamation of models and has extendible

solutions. Then whenever ∆ with dim∗(∆) ≤ k, T has ∆-amalgamation of models.

Proof. It suffices to consider the case where ∆ is a pattern on n; we proceed by induction

on n. If n ≤ 1 the claim is clear. So suppose the claim is true for all n′ < n, and suppose

{si : i < k} is given with each si ⊆ n; let ∆ be the closure of {si : i < k} under subsets.
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We check that T has ∆-amalgamation of models.

We can suppose each si ( n. For each i < k, choose ti ∈ [n]n−1 with si ⊆ ti. For

each i∗ ≤ k, let ∆i∗ be the closure of {ti : i < i∗} ∪ {si : i∗ ≤ i < k} under subsets. So

∆0 = ∆. I show by induction on i∗ ≤ k that there is an extension of (Ms : s ∈ ∆0) to an

independent system of models (Ms : s ∈ ∆i∗).

So suppose we have extended (Ms : s ∈ ∆0) to an independent system of models

(Ms : s ∈ ∆i∗) where i∗ < k. For each i < i∗, define ri = ti ∩ ti∗ ; for each i ≥ i∗, define

ri = si ∩ ti∗ . So each ri ⊆ ti∗ . Let ∆′ be the closure of {ri : i < k} under subsets. By

the inductive hypothesis, there is a solution M to (Ms : s ∈ ∆′). If we choose M to

be sufficiently saturated, then we can extend (Ms : s ∈ ∆′) to an independent system of

models (Ms : s ∈ P(ti∗)) by Corollary 4.3.8. Thus we have defined (Ms : s ∈ ∆i∗+1).

Thus we have (Ms : s ∈ ∆k), where k is the downward closure of {ti : i < k}, where

each ti ∈ [n]n−1. By discarding repetitions (and so possibly decreasing k) we can suppose

that ti 6= tj for all i 6= j < k. After relabeling, we can suppose each ti = n\{i}. Since

T has P−(k)-amalgamation of models, (Ms : n\k ⊆ s ( n) has a solution; since T has

extendible solutions, so must (Ms : s ∈ ∆).

We now proceed to prove the various implications in our omnibus theorem. Actually,

the first does not use well-behavedness at all:

Lemma 4.11.4. Suppose T is simple, and k ≥ 3, and T has ∆-amalgamation of models

for some ∆ ∈∆ with dim(∆) ≥ k. Then T has P−(k)-amalgamation of models.

Proof. We show the contrapositive. Let ∆ ∈∆ have dim(∆) ≥ k. Say ∆ ⊆ P(n). Choose

` ≥ k and t ∈ [n]`\∆ such that P−(t) ⊆ ∆. By hypothesis and Lemma 4.4.4, we can

find an independent system of models (Mu : u ( t) with no solution. For each s ∈ ∆,
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define Ns = Ms∩t; note that this is defined, since t 6∈ ∆. Clearly then, (Ns : s ∈ ∆) is an

independent system of models with no solution.

Lemma 4.11.5. Suppose T is simple with canonical amalgamation, and k ≥ 3, and T has

P−(k)-amalgamation of models. Then T has ∆-amalgamation of models for every ∆ ∈∆

with dim(∆) ≤ k.

Proof. Suppose T has P−(k)-amalgamation of models. We proceed by induction on n to

show that whenever ∆ ∈∆ has dim(∆) ≤ k and ∆ ⊆ P(n), then M has ∆-amalgamation

of models. Indeed, suppose we have verified for all n′ < n, and ∆ ⊆ P(n) is given. Choose

t∗ ∈ P(n)\∆, such that s ∈ I for all s ( t∗. Then |t∗| ≤ k. Let ∆′ be the set of all t ⊆ n

such that t∗ 6⊆ t.

Easily, for each t ∈ ∆′, if we set ∆t = {s ∩ t : s ∈ ∆}, then dim(∆t) ≤ k. Thus,

for each t ∈ ∆′, (Ms∩t : s ∈ ∆) has a solution, by the inductive hypothesis. Thus, by

canonical amalgamation, we can find an extension of (Ms : s ∈ ∆) to an independent

system of models (Ms : s ∈ ∆′). By hypothesis, (Ms : s ∈ ∆′) has a solution, which must

also be a solution to (Ms : s ∈ I).

Lemma 4.11.6. Suppose T has no surprise amalgamation problems and has extendible

solutions, and k ≥ 2, and T has Λk′-type amalgamation for all k′ ≤ k. Then T has

P−(k + 1)-amalgamation of models.

Proof. We can suppose inductively that T has P−(k)-amalgamation of models.

Suppose (Mu : u ( k+ 1) is an independent system of models with no solution. By

Theorem 4.11.3 we can find a solution M̂k+1 to (Mu : u ( k+ 1, u 6= k). Define M̂u = Mu

for each u ( k + 1 with u 6= k. If we choose M̂k+1 sufficiently saturated then we can

extend (M̂u : u ( k + 1, u 6= k) to an independent system (M̂u : u ⊆ k + 1) of submodels
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of M̂k+1, by Corollary 4.3.8.

Let 0 : k → {0} be the constant 0 function. Let ∆ ⊆ P(k × 2) be the closure of

Λk ∪ {0} under subsets (so each s ∈ ∆ is a partial function from k to 2, which is equal

to 1 in at most one coordinate). Let (Ns : s ∈ ∆) be the following system of models.

For each s ⊆ 0, Ns = Mdom(s). Suppose s 6⊆ 0. Say i < k is such that i ∈ dom(s) and

s(i) = 1. Write u = dom(s) and write u′ = u\{i}; note that Ns∩0 = Mu′ = M̂u′ . Define

Ns = M̂u′ ∪ (M̂u\M̂u′) × {i}, where Ns is made into a model of T so that the obvious

bijection between Ns and M̂u is an isomorphism. Thus, for each η ∈ Λk, (Ns : s ⊆ η) is a

copy of (M̂u : u ⊆ k).

Given η ∈ Λk, let Nη∪0 be an independent amalgam of Nη and N0 over Nη∩0.

Choosing Nη∩0 to be sufficiently saturated, we can extend (Ns : s ⊆ η or s ⊆ 0) to an

independent system (Ns : s ⊆ η ∪ {0}) of submodels of Nη∩0, by Corollary 4.3.8. We can

do this for all η ∈ Λk without introducing conflicts.

Hence we get (Nη∪0 : η ∈ Γk) (recall Γk is the set of all functions from k to 2 which

take on the value 1 at exactly one coordinate). Let Nk×2 be an independent amalgam of

(Nη∪0 : η ∈ Γk) over N0 (by the Independence Theorem for simple theories).

For each η, η′ ∈ Λk, let πη,η′ : Nη
∼= Nη′ be the canonical isomorphism, using that

both are canonically isomorphic with M̂k. Clearly this turns (Ns : s ∈ ∆Λk), (πη,η′ : η, η′ ∈

Λk) into a Λk-array.

Now, since T has no surprise amalgamation problems (and by the finite character

of nonforking), we can choose a∗ ∈ M{k} (possibly a tuple) such that if we let pu(x) =

tpMu∪{k}(a∗/Mu) for each u ( k, then
⋃
u pu(x) forks over M∅ as computed in Mk. But

by choice of M̂k,
⋃
u pu(x) does not fork over M̂∅ = M∅ as computed in M̂k. Let p(x) be

some complete extension of
⋃
u pu(x) to M̂k which does not fork over M̂∅.
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For each η ∈ Λk, let pη(x) be the canonical copy of p(x) over Nη. Then (pη(x) : η ∈

Λk) is a coherent system of types over (N, π). But for each u ∈ [k]k−1, if we let η ∈ Λk

be the unique element with η �u= 0 �u, then pu(x) ⊆ pη(x). Thus
⋃
η pη(x) forks over

N0 = M0.

Lemma 4.11.7. Suppose T has no surprise amalgamation problems. Suppose k ≥ 3 is

such that T has ∆-amalgamation of models for all ∆ ∈ ∆ with dim(∆) ≤ k, and such

that T fails P−(k + 1) amalgamation of models. Then T admits ∆k.

Proof. Let R ⊆ [ω]k be given. We show that T admits ∆(R), which suffices.

Let (Mu : u ( k+1) be an independent system with no solution, and since T has no

surprise amalgamation problems, we can choose a∗ ∈M{k} (possibly a tuple) such that if

we set pu(x) = tpMu∪{k}(a∗/Mu) for each u ( k, then
⋃
u pu(x) forks over M∅ as computed

in Mk.

For each w ∈ [ω]k, let ρw : k → w be the increasing enumeration. Also, for each

v ∈ [ω]k−1 and for each u ∈ [k]k−1, let ρvu : u→ v be the increasing enumeration.

Let ∆ be the pattern on k × ω ∪ {∗S : S ∈ ∆(R)} defined as follows: s ∈ ∆ if and

only if either s ⊆ ρw for some w ∈ R, or else s ⊆ ρvu ∪ {∗S} for some u ∈ [k]k−1, v ∈ [ω]k−1

and some S ∈ ∆(R) with v ∈ S. Note that the maximal elements ∆ are of the form ρw

for w ∈ R, or ρvu ∪ {∗S} with v ∈ S.

Note that dim(∆) ≤ k: suppose towards a contradiction we had t ∈ [k × ω ∪ {∗S :

S ∈ S}]k+1\∆ such that P−(t) ⊆ ∆. Clearly t can contain at most one ∗S (using k ≥ 3).

Write t′ = t ∩ k × ω. Clearly t′ is the graph of an increasing function from k to ω; in

particular, t\t′ = {∗S} is nonempty. Write w = t′[k] (i.e. the image of t′). Since t′ ∈ ∆ we

must have that w ∈ R. Thus there is some v ∈ [w]k−1 such that v 6∈ S. Let u = (t′)−1[v];

then ρvu ∪ {∗S} 6∈ ∆, a contradiction.
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Given s ∈ ∆ ∩ P(k × ω), we define Ns, inductively on |s|. Let N∅ = M∅. Having

defined Ns′ for all s′ ( s, let π : s → k be projection onto the first factor, and let Ns =

(
⋃
s′(sNs′)∪ (Mπ(s)\

⋃
u(π(s)Mu)× {s}; so there is an obvious bijection τs : Mπ(s) → Ns.

We turn Ns into a model of T so that τs is an isomorphism. The point is that (Ns′ : s′ ⊆ s)

will be a copy of (Mπ(s′) : s′ ⊆ s).

Now, given s ∪ {∗S} ∈ ∆, we define Ns, inductively on |s|. Having defines Ns′ for

all s′ ( s∪ {∗S}, let π : s→ k be projection onto the first factor. Let A =
⋃
s′(s∪{∗S}Ns′ ,

and let B =
⋃
u(π(s)∪{k}Mu. Define Ns∪{∗S} = A ∪ (Mπ(s)∪{k}\B)× {s ∪ {∗S}}, so there

is an obvious bijection τs∪{∗S} : Mπ(s)∪{k} → Ns∪{∗S}. We turn Ns∪{∗S} into a model of

T so that τs∪{∗S} is an isomorphism. The point is that (Ns′ : s′ ⊆ s ∪ {∗S}) is a copy of

(Mu : u ⊆ π(s) ∪ {k}).

Then (Ns : s ∈ ∆) is an independent system of models. Now dim is hereditary, in

the sense the if we take X ⊆ k × ω ∪ {∗S : S ∈ S} finite, then dim(∆ ∩ P(X)) ≤ k. In

particular, for each such X, (Ns : s ∈ ∆ ∩ P(X)) has a solution. By Lemma 4.3.3, this

implies that (Ns : s ∈ ∆) has a solution, say N .

Now, for each v ∈ [ω]k−1, and for each u ∈ [k]k−1, let qvu(x) = τρvu [pu(x)]. Let

qv(x) =
⋃
u∈[k]k−1 qvu(x).

I claim that for all S ⊆ [ω]k−1 finite,
⋃
v∈S q

v(x) forks over N0 if and only S ∈ ∆(R).

First suppose S 6∈ ∆(R), so there is some w ∈ R with [w]k−1 ⊆ S; then
⋃
v∈S q

v(x) ⊇

τρw [
⋃
u(k pu(x)] forks over τρw [M0] = N0. On the other hand, if S ∈ ∆(R), then look at

aS = τ{∗S}(a∗) ∈ M∗S ; by construction, aS realizes
⋃
v∈S q

v(x), and so we conclude by

independence of (Ns : s ∈ ∆).

Now, choose ϕu(x, bu) ∈ pu(x) for each u ∈ [k]k−1, such that
∧
u∈[k]k−1 ϕu(x, bu)

forks over M0 (as computed in Mk). Choose `∗ < ω so that
∧
u∈[k]k−1 ϕu(x, bu) `∗-divides
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over M0.

Let N` : ` < `∗ be a Morley sequence in N over N0 (we can suppose N � C). Let

σ` : N ∼= N` be isomorphisms.

Let y = (yu,` : u ∈ [k]k−1, ` < `∗). For each v ∈ [ω]k−1, for each u ∈ [k]k−1 and

for each ` < `∗, let bvu,` = σ`(τρvu(bu)). Let b
v

= (bvu,` : u ∈ [k]k−1, ` < `∗). Then clearly,

(b
v

: v ∈ [ω]k−1) witness that ψ(x, y) =
∧
u∈[k]k−1,`<`∗

ϕu(x, yu,`) admits ∆(R).

Finally, we show the following: if T is simple and has Λ-type amalgamation for all

Λ ∈ Λ with |Λ| < K, then T does not admit ∆k′ for any k′ < k (note that there is no

hypothesis of well-behavedness on T ). Our strategy is as follows: by Theorem 4.8.3, we

know that T must have the absolute concrete Ps,k amalgamation property for appropriate

s, so it will suffice to show that if T admits ∆k′ then T fails this. Note that if either T is low

or else there is a supercompact cardinal, we are done by Theorem 4.9.1 and Theorem 4.8.2.

Otherwise, we need to do some work—we will need to show that if T admits ∆k, then it

does so in a particularly nice way. The following is a first approximation to this, and is

rather general. Here, q.f.tp is quantifier-free type.

Lemma 4.11.8. Suppose T is a complete countable theory, and T admits ∆k via the

formula ϕ(x, y) (where x, y are possibly tuples). Suppose λ is a cardinal and R ⊆ [λ]k.

Then we can find (bu : u ∈ [λ]k−1) from C witnessing that T admits ∆(R), and such that

for every w,w′ ∈ [λ]<ℵ0 of the same length, if q.f.tp(λ,<,R)(w) = q.f.tp(λ,<,R)(w
′), then

tpC(bu : u ∈ [w]k−1) = tpC(bu : u ∈ [w′]k−1).

Proof. We first of all verify the following combinatorial claim.

Claim. Suppose n < ω and R ⊆ [n]k and c < ω. Then there is some n∗ ≥ n and

some R∗ ⊆ [n∗]
k such that whenever f : [n∗]

≤n → c, there is some w ∈ [n∗]
n, such that
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(w,<,R∗∩[w]k) ∼= (n,<,R), and for all u ⊆ n, if g0, g1 : (u,<,R∩[u]k)→ (w,<,R∗∩[w]k)

are embeddings, then f(g0(u)) = f(g1(u)).

Proof. A theorem of Nešitřil and Rödl [67] states that this is possible when we fix u ⊆ n.

To get the full claim, iterate their theorem 2n-times, once for each subset of n.

With the claim, the lemma follows easily, by compactness.

Thus, we can get the following equivalence of admitting ∆k.

Lemma 4.11.9. Suppose T is simple, and T admits ∆k via ϕ(x, y) (where x, y are possibly

tuples). Then for any λ and for any R ⊆ [λ]k, there is some countable M0 � C, such that

we can find (bu : u ∈ [λ]k−1), such that for every s ∈ ∆(R), {ϕ(x, bu) : u ∈ s} does not

fork over M0, and for every s ∈ [[λ]k−1]<ℵ0\∆(R), {ϕ(x, bu) : u ∈ s} is inconsistent.

Proof. Choose some R∗ ⊆ [λ]k such that:

• If we set R0 = R∗ ∩ [ω]k, then (ω,<,R0) is a random k-ary hypergraph;

• α 7→ α+ ω gives an isomorphism from (λ,<,R) to (λ\ω,<,R∗ ∩ [λ\ω]k);

• For every u ∈ R, either u ⊆ ω or else u ∩ ω = ∅.

By Lemma 4.11.8, we can find (bu : u ∈ [λ]k−1) witnessing that T admits ∆(R∗), such that

further, for every w,w′ ∈ [λ]<ℵ0 of the same length, if q.f.tp(λ,<,R∗)(w) = q.f.tp(λ,<,R∗)(w
′),

then tpC(bu : u ∈ [w]k−1) = tpC(bu : u ∈ [w′]k−1). Choose M0 � C countable such that

bu ∈M0 for each u ∈ [ω]k−1. We claim this works.

First of all, I claim that for every s ∈ ∆(R∗) with
⋃
s ∩ ω = ∅, {ϕ(x, bu) : u ∈ s}

does not fork over M0. Indeed, suppose towards a contradiction that {ϕ(x, bu) : u ∈ s}

forks over M0. Choose ` < ω such that {ϕ(x, bu) : u ∈ s} `-forks over M0. Write

w =
⋃
s ∈ [λ\ω]<ℵ0 , and choose (wi : i < ω) a sequence from [ω]|w|, such that:
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• Each max(wi) < min(wi+1);

• each q.f.tp(λ,<,R∗)(wi) = q.f.tp(λ,<,R∗)(w);

• For every u ∈ R∗, there is at most one i < ω with u ∩ wi nonempty.

This is easily possible.

For each i, let si ⊆ [wi]
k−1 be the subset corresponding to s ⊆ [w]k−1, under the

unique order-preserving bijection. Let p(x) = {ϕ(x, bu) : u ∈
⋃
i si}. Clearly, p(x) is

consistent, so there must be some i < ω such that p(x) does not `-divide over
⋃
j<i{bu :

u ∈ si}. Then {ϕ(x, bu) : u ∈ si} does not `-divide over
⋃
j<i{bu : u ∈ sj}. But this

contradicts that tpC(bu : u ∈ si/(bu : u ∈
⋃
j<i sj)) = tpC(bu : u ∈ s/(bu : u ∈

⋃
j<i sj)).

For each u ∈ [λ]k, define b′u = {bα+ω : α ∈ u}; then (b′u : u ∈ [λ]k) is as desired.

We then obtain the following:

Theorem 4.11.10. Suppose s = (λ, κ, θ, σ) is a suitable sequence. Suppose 3 ≤ k∗ < ω,

and λ ≥ [κ]+(k∗−1). If T admits ∆k for some k < k∗, then T fails the absolute concrete

(Ps,k∗ , s)-amalgamation property.

Proof. Say ϕ(x, y) admits ∆k (where possibly x, y are tuples).

Let P = P[λ]kθθ ∈ Ps,k∗ . Write B = B(P ); for each v ∈ [λ]k, write cv = {(v, 0)} ∈

P ⊆ B. Let A be the [λ]k−1-distribution in B, defined by putting A(s) =
∧
{cv : v ∈

[λ]k, [v]k−1 ⊆ s}. By the proof of Theorem 4.9.1, whenever Q̇ ∈ PV[Ġ]
s,k∗

, then A has no

multiplicative refinement in B(P ∗ Q̇).

Let G be P -generic over V; we show that T fails the concrete Ps,k∗-amalgamation

property in V[G], which suffices. Indeed, in V[G], let f : [λ]k → θ be the generic function

adding by G (so f =
⋃
G). Let R = {v ∈ [λ]k : f(v) 6= 0}. By Lemma 4.11.9, we can
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find M |= T and M0 � M countable, and (bu : u ∈ [λ]k) from C, such that for every

s ∈ ∆(R), {ϕ(x, bu) : u ∈ s} does not fork over M0, and for every s ∈ [[λ]k−1]<ℵ0\∆(R),

{ϕ(x, bu) : u ∈ s} is inconsistent.

Suppose towards a contradiction that ΓθM,M0
∈ Ps∗,k. Pull everything back to V

to get names ḟ , Ṙ, Ṁ , Ṁ0, (ḃu : u ∈ [λ]k). Then Γθ
Ṁ,Ṁ0

∈ PV[Ġ]
s,k∗

, and by the proof of

Theorem 4.8.2, this implies A has a multiplicative refinement in P ∗Γθ
Ṁ,Ṁ0

, contradiction.

Corollary 4.11.11. Suppose T is simple, and T has Λ-type for all Λ ∈ Λ with |Λ| < k.

Then T does not admit ∆k′ for any k′ < k.

Proof. Suppose T contradicted this. Let σ = ℵ0, let θ = ℵ1, let κ = (2ℵ0)+, and let λ ≥

κ+ω. Then s = (λ, κ, θ, σ) is a suitable sequence. But T would have the absolute concrete

Ps,k-amalgamation property by Theorem 4.8.3, and would also fail it by Theorem 4.11.10.

We have now proved all the required equivalences in our omnibus theorem:

Theorem 4.11.12. Suppose T is well-behaved and 3 ≤ k < ℵ0. Then the following are

all equivalent.

(A) T does not admit ∆k′ for all k′ < k.

(B) T has Λk′-type amalgamation for all k′ < k.

(C) T has Λ-type amalgamation for all Λ ∈ Λ with dim(∆Λ) < k.

(D) T has ∆-amalgamation of models for some ∆ ∈∆ with dim(∆) ≥ k.

(E) T has P−(k)-amalgamation of models.
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(F) T has ∆-amalgamation of models for every ∆ ∈∆ with dim(∆) ≤ k.

Proof. Clearly, (F) implies (E) implies (D). (D) implies (E) is by Lemma 4.11.4. (E)

implies (F) is by Lemma 4.11.5. So (D), (E), (F) are all equivalent.

(F) implies (C) is by Theorem 4.4.13. (C) implies (B) is clear. (B) implies (E) is

by Lemma 4.11.6 and Theorem 4.11.3. Thus, (B) through (F) are all equivalent.

(C) implies (A) is by Corollary 4.11.11. An easy inductive argument together with

Lemma 4.11.7 gives (A) implies (E)/(F).

By taking the conjunction of Theorem 4.11.12 over all k < ℵ0, we obtain the fol-

lowing:

Corollary 4.11.13. Suppose T is well-behaved. Then (A) through (F) are all equivalent.

(A) T does not admit ∆k for all k.

(B) T has Λk-type amalgamation for all k.

(C) T has Λ-type amalgamation for all Λ ∈ Λ.

(D) T has ∆-amalgamation of models for ∆ ∈∆ with dim(∆) arbitrarily large.

(E) T has P−(k)-amalgamation of models for all k.

(F) Every independent system of models of T has a solution.

Finally, we mention a consequence for Keisler’s order:

Corollary 4.11.14. Among well-behaved low theories, for each 3 ≤ k < ω, the property

of having P−(k)-amalgamation of models is a principal dividing line in Keisler’s order, as is

the property of having P−(k)-amalgamation of models for all k. If there is a supercompact

cardinal, we can replace low by simple.
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Proof. By Theorems 4.10.4, 4.10.3 and 4.11.12.
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Chapter 5: Borel Complexity and Potential Canonical Scott Sentences

We now move on from Keisler’s order and consider Borel complexity. The motiva-

tion here is to find interesting dividing lines for countable model theory. Here are some

important examples.

• Th(Q, <), or any other ℵ0-categorical theory.

• T := Th(Z, S), where S is the successor relation. T has countably many countable

models (up to isomorphism), namely we can say how many S-chains there are (some

number 1 ≤ n ≤ ℵ0).

• T := Th(Q, <, cr : r ∈ Q), where we add constants for the elements of Q. The

countable models of these are easy to understand. Namely, suppose M |= T is

countable. For each cut in Q (formally, a partition Q = I0 ∪ I1 where every element

of I0 is below every element of I1), we have to give the order-type isomorphism of

MI0,I1 := {a ∈: a > cr for all r ∈ I0 and a < cr for all r ∈ I1}. This is a dense

linear order, so the only possibilities are (Q, <), (Q ∪ {∞}, <), (Q ∪ {−∞}, <),

(Q ∪ {±∞}, <), ({0}, <), and ∅. (Not all of these are always possible; for instance,

if I0 contains a maximal element then (Q∪ {−∞}, <), (Q∪ {±∞}, <) and ({0}, <)

are impossible). Note that there are only finitely many possibilities for MI0,I1 up to

isomorphism, and we can code partitions (I0, I1) of Q with I0 < I1 as elements of R.

Further, there are only countably many (I0, I1) such that MI0,I1 is nonempty (since
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M is countable). Thus we can code the isomorphism class of M as a function from

a countable subset of R to ω, or equivalently as a countable subset of R.

• Recall that an abelian group (G,+) is torsion if for every a ∈ G, there is some n > 0

such that na = 0 (this is true for all groups, not just abelian groups, but nonabelian

groups would not be written additively). If p is a prime, then G is a p-group if we

can alway choose n to be a power of p. Ulm classified countable abelian p-groups

in [86], with what are now known as Ulm invariants; these are essentially elements

of 2<ω1 . Let TAG1 be the sentence of Lω1ω describing torsion abelian groups. A

countable model of TAG1 can be written uniquely as a direct sum over primes p of

abelian p-groups, and thus can also be coded by elements of 2<ω1 .

• Let Graphs be the first order theory in the language {R} of graphs (i.e. saying R

is symmetric and irreflexive). Theorem 5.5.1 of [21] states that graphs can interpret

any theory, and the proof indicates that the countable models of Graphs are as

complicated as all countable structures.

We wish to have a notion of complexity which captures our impression that Th(Q, <)

is less complicated than Th(Z, S), which is less complicated than Th(Q, <, cr : r ∈ Q) and

TAG1. Moreover, these last two theories are incomparable (since 2<ω1 seems neither larger

nor smaller than Pℵ1(R)), and both are less complicated than Graphs.

The näıve method of just counting the number of countable models of isomorphism

does work for Th(Q, <) and Th(Z, S), since these have only one countable model and

only countably many countable models, respectively (always, up to isomorphism). But

the interesting case is when there are the maximum number of countable models, namely,

continuum many; for instance Th(Q, <, cr : r ∈ Q), TAG1 and Graphs. These are not
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distinguished by straightforward counting.

But note that there is no natural bijection between the isomorphism types of count-

able models of Th(Q, <, cr : r ∈ Q) and the isomorphisms types of countable models of

TAG1 (there is no natural bijection between Pℵ1(R) and 2<ω1). In [12], Friedman and

Stanley introduce the notion of Borel complexity, with the intent of restricting to defin-

able cardinality. This turns out to do a reasonable job of capturing our intuitive notion

of complexity of countable models.

The setup is as follows. We are interested in sentences Φ ∈ Lω1ω; it turns out that

for countable model theory, first-order theories are no easier to work with. We could

actually be more general than sentences of Lω1ω. For instance, in most applications we

could allow a single second-order quantification, but Lω1ω is general enough for what we

wish to do.

Given a sentence Φ ∈ Lω1ω, we can form Mod(Φ), the set of models of Φ with

universe ω. This is naturally a standard Borel space, where the Borel sets are taken to

be solution sets to formulas of Lω1ω. In [12], Friedman and Stanley make the following

definition.

Definition 5.0.1. Suppose Φ,Ψ are sentences of Lω1ω. Then f : Φ ≤B Ψ is a Borel

reduction if f : Mod(Φ) → Mod(Ψ) is a Borel map, such that for all M,N ∈ Mod(Φ),

M ∼= N if and only if f(M) ∼= f(N). We say that Φ ≤B Ψ if there is some f : Φ ≤B Ψ.

Say that Φ ∼B Ψ (Φ and Ψ are Borel bireducible) if Φ ≤B Ψ ≤B Φ.

By a Borel map, we mean a function whose graph is Borel; this is equivalent to

requiring the preimage of a Borel set is Borel. Note that the condition that f preserve

isomorphism is equivalent to requiring that f induce an injection from Mod(Φ)/ ∼= to

Mod(Ψ)/ ∼=. Thus, if Φ ≤B Ψ then |Mod(Φ)/ ∼= | ≤ |Mod(Ψ)/ ∼= |, but moreover this
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holds via a definable injection.

There is a more general definition of Borel reductions given independently in [19] by

Harrington, Kechris and Louveau. Namely, suppose X and X ′ are standard Borel spaces,

E is an equivalence relation on X, and E′ is an equivalence relation on X ′. Then say

that f : (X,E) ≤B (X ′, E′) is a Borel reduction if f : X → X ′ is a Borel map, and for

all x, y ∈ X, xEy if and only if f(x)E′f(y). The connection to the previous definition

is as follows: suppose Φ is a sentence of Lω1ω. Let ∼=Φ be the equivalence relation of

isomorphism on Mod(Φ). Then Φ ≤B Ψ if and only if (Mod(Φ),∼=Φ) ≤B (Mod(Ψ),∼=Ψ).

It is easily checked that whenever Φ is a sentence of Lω1ω, then ∼=Φ is analytic, but

sometimes ∼=Φ is additionally Borel. Classically, most of the techniques developed for ≤B

only applied in this latter case. Note that if Φ ≤B Ψ and ∼=Ψ is Borel, so is ∼=Φ.

We describe some of the initial results on ≤B obtained by Friedman and Stanley

in [12].

First, Friedman and Stanley showed that there is a maximal class of sentences under

≤B, namely the Borel complete sentences. For example, Graphs is Borel complete, as are

the theories of groups, rings, linear orders, and trees. This notion provides a way to answer

the question “Is it possible to classify the countable models of Φ” negatively in a precise

sense: if Φ is Borel complete, then classifying the countable models of Φ is as hard as

classifying arbitrary countable structures. Friedman and Stanley also showed in [12] that

if Φ is Borel complete, then ∼=Φ is not a Borel subset of Mod(Φ)×Mod(Φ).

Also, Friedman and Stanley introduced the Friedman-Stanley tower. There are

many equivalent formulations of this; we will find a certain family (Φα : α < ω1) of

sentences of Lω1ω to be the most convenient to work with. The countable models of Φα up

to isomorphism are, in a precise sense, identifiable with HCω+α, the hereditarily countable
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sets of foundation rank less than ω + α. It is easy to see that Φα ≤B Φβ for α ≤ β; using

sophisticated methods of descriptive set theory, Friedman and Stanley show that when

α < β, then Φα <B Φβ (i.e. Φα ≤B Φβ but Φβ 6≤B Φα).

(Φα : α < ω1) is a natural heirarchy in Borel complexity: by Corollary 12.2.8 of [14],

if Φ is a sentence of Lω1ω, then ∼=Φ is Borel if and only if Φ ≤B Φα for some α < ω1. Also,

we note that Φ2 in arises naturally in many contexts, for instance, Φ2 ∼B Th(Q, <, cr :

r ∈ Q) (countable models of Φ2 can be coded by elements HCω+2, which in turn can be

coded as countable sets of reals, and conversely).

Finally, in [12], Friedman and Stanley prove that ∼=TAG1
is not Borel, and yet

nonetheless Φ2 6≤B TAG1. Thus, Th(Q, <, cr : r ∈ Q) and TAG1 are ≤B-incomparable as

desired, and neither is Borel complete. At the time, TAG1 was essentially the only example

of a sentence of Lω1ω whose isomorphism relation was non-Borel, but which was not Borel

complete; in particular there was no known first-order example of this phenomenon.

We view ≤B as a source of semantic dividing lines, and are interested if we can find

syntactic equivalents. There are few results in this direction so far, the main difficulty

being that it is difficult to compute ≤B at all. In particular, it is difficult to show non-

reducibilities Φ 6≤B Ψ, especially when ∼=Ψ is non-Borel. Our main contribution is the

introduction of some machinery for doing this, namely the machinery of potential canonical

Scott sentences.

5.1 Chapter Overview

In the rest of this chapter, we include the results of [89], joint work with Richard

Rast and Chris Laskowski, although we make some small changes to notation.

One of the central ideas of [89] is the following. Given a structure M , let css(M)
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denote its canonical Scott sentence; this is a canonical sentence of L|M |+ω characterizing

M up to back-and-forth equivalence. In particular, if M is countable, then css(M) ∈ Lω1ω

characterizes M up to isomorphism. Given Φ ∈ Lω1,ω, let CSS(Φ) ⊆ HC denote the set

{css(M) : M ∈ Mod(Φ)}. Then any Borel map f : Mod(Φ) → Mod(Ψ) induces an HC-

definable injection f∗ : CSS(Φ)→ CSS(Ψ). This leads us to the investigation of definable

subclasses of HC and definable maps between them. We begin by restricting our notion of

classes to those definable by HC-forcing invariant formulas (see Definition 5.2.1). Three

straightforward consequences of the Product Forcing Lemma show that these classes are

well-behaved. It is noteworthy that we do not define HC-forcing invariant formulas syn-

tactically. Whereas it is true that every Σ1-formula is HC-forcing invariant, determining

precisely which classes are HC-forcing invariant depends on our choice of V.

The second ingredient of the development in [89] is that every set A in V is potentially

in HC, i.e., there is a forcing extension V[G] of V (indeed a Levy collapse suffices) such that

A ∈ HCV[G]. Given an HC-forcing invariant ϕ(x), we define ϕptl – that is, the potential

solutions to ϕ – to be those A ∈ V for which (HCV[G],∈) |= ϕ(A) whenever A ∈ HCV[G].

The definition of HC-forcing invariance makes this notion well-defined. Thus, given a

sentence Φ, one can define CSS(Φ)ptl, which should be read as the class of ‘potential

canonical Scott sentences of Φ.’ This is the class of all ϕ ∈ L∞,ω such that in some forcing

extension V[G], ϕ is the canonical Scott sentence of some countable model of Φ. We define

Φ to be short if CSS(Φ)ptl is a set as opposed to a proper class and define the potential

cardinality of Φ, denoted ‖Φ‖, to be the (usual) cardinality of CSS(Φ)ptl if Φ is short, or

∞ otherwise.

Putting these two notions together, we get a reducibility notion ≤HC on sentences

of Lω1ω, which coarsens ≤B. Namely, put Φ ≤HC Ψ if there is some HC-forcing invariant
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formula ϕ(x) which, in every forcing extension V[G], defines an injection from CSS(Φ)V[G]

to CSS(Ψ)V[G]. By tracing all of this through, we see that with if f : Φ ≤B Ψ, then this

induces some f∗ : Φ ≤HC Ψ, which in turn induces an injection (f∗)ptl : CSS(Φ)ptl →

CSS(Ψ)ptl. This is the content of Theorem 5.3.11:

If ‖Ψ‖ < ‖Φ‖, then Φ 6≤HC Ψ, and thus Φ 6≤B Ψ.

The advantage of this is that the potential cardinality ‖Φ‖ is, in applications, some-

thing we can calculate; thus, this gives an important new method for proving nonreducibil-

ities.

As a particular example: we define the Friedman-Stanley tower (Φα : α < ω1) in

Section 5.3.4 (handling the limit case slightly differently than in [89]), and show that each

‖Φα‖ = iα. This gives a much simpler proof that Φα <B Φβ for α < β than the one

in [12].

Another issue raised in [89] is a comparison of the class the potential canonical Scott

sentences CSS(Φ)ptl with the class CSS(Φ)sat, consisting of all sentences of L∞,ω that are

canonical Scott sentences of some model M |= Φ with M ∈ V. Clearly, the latter class is

contained in the former, and we call Φ grounded (see Definition 5.3.9) if equality holds.

We show that the incomplete theory REF of refining equivalence relations is grounded. By

contrast, the theory TK, defined in Section 5.6, is a complete, ω-stable theory for which

|CSS(TK)sat| = i2, while CSS(TK)ptl is a proper class.

This machinery is applied in [89] as follows. Section 5.4 discusses continuous actions

by compact groups on Polish spaces, proving a key theorem to be used in Section 5.6.

Sections 5.5 and 5.6 discuss four complete first-order theories that are not very complicated

stability-theoretically, yet the isomorphism relation is properly analytic in each case. In

particular, we obtain the following:
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REF(inf) is the theory of ‘infinitely splitting, refining equivalence relations’. Its

language is L = {En : n ∈ ω}. It asserts that each En is an equivalence relation, E0 con-

sists of a single class, each En+1 refines En, and each En-class is partitioned into infinitely

many En+1-classes. REF(inf) is one of the standard examples of a stable, unsuperstable

theory. We show that REF(inf) is Borel complete, in fact, it is λ-Borel complete for

all infinite λ (see Definition 5.3.17). On the other hand, we also show that REF(inf) is

grounded, i.e., CSS(REF(inf))sat = CSS(REF(inf))ptl.

REF(bin) is the theory of ‘binary splitting, refining equivalence relations’. The

language is also L = {En : n ∈ ω}. The axioms of REF(bin) assert that each En is an

equivalence relation, E0 is trivial, each En+1 refines En, and each En-class is partitioned

into exactly two En+1-classes. REF(bin) is superstable (in fact, weakly minimal) but is not

ω-stable. We show that Φ2 ≤B REF(bin), but ‖REF(bin)‖ = i2. In particular, REF(bin)

is short, and Φ3 6≤B REF(bin). On the other hand, we show that REF(bin) does not

have Borel isomorphism relation, in particular, we have produced a non-Borel complete

first order theory whose isomorphism relation is not Borel. We also show REF(bin) is

grounded.

K is the Koerwien theory, originating in [42] and defined in Section 5.6. Koerwien

proved that K is complete, ω-stable, eni-NDOP, and of eni-depth 2. Koerwien proved

K does not have Borel isomorphism relation, but left open whether or not K is Borel

complete. We show that ‖K‖ = i2. Thus K is short, and Φ3 6≤B K (in particular, K is

not Borel complete). Whether K is grounded or not remains open.

TK is a ‘tweaked version of K’ and is also defined in Section 5.6. TK is also

complete, ω-stable, eni-NDOP, of eni-depth 2, and so is very much like the theory K;

however, the automorphism groups of models of TK induce a more complicated group
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of elementary permutations of acl(∅) than do the automorphism groups of models of K.

We show that TK is Borel complete, hence not short, hence its isomorphism relation is

not Borel. On the other hand, TK is not grounded; in fact CSS(TK)ptl is a proper class,

whereas |CSS(TK)sat| = i2.

The ideas for HC-forcing invariant formulas and potential canonical Scott sentences

came from absolutely ∆1
2-formulas in Chapter 9 of [22]. An alternative approach to canon-

ical Scott sentences would be to use ‘pinned names’ as surveyed in e.g., [30], although for

sentences of Lω1ω, canonical Scott sentences are much more convenient. The whole of [89]

was written independently of the development there.

5.2 A notion of cardinality for HC-forcing invariant sets

We develop a reducibility notion on well-behaved definable subsets of HC. Behind

the scenes, we rely heavily on the fact that all sets A in V are ‘potentially’ elements of HC,

the set of hereditarily countable sets. For example, if κ is the cardinality of the transitive

closure of A and we take P be the Levy collapsing poset Coll(κ+, ω1) that collapses κ+ to

ω1, then for any choice G of a generic filter, A ∈ HCV[G].

5.2.1 HC-forcing invariant formulas

We begin with our principal definitions.

Definition 5.2.1. Suppose ϕ(x) is any formula of set theory, possibly with a hidden

parameter from HC.

• ϕ(HC) = {a ∈ HC : (HC,∈) |= ϕ(a)}.

• If V[G] is a forcing extension of V, then ϕ(HC)V[G] = {a ∈ HCV[G] : V[G] |=
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‘a ∈ ϕ(HC)’}.

• ϕ(x) is HC-forcing invariant if, for every twice-iterated forcing extension V[G][G′],

ϕ(HC)V[G][G′] ∩ HCV[G] = ϕ(HC)V[G]

The reader is cautioned that when computing ϕ(HC)V[G], the quantifiers of ϕ range

over HCV[G] as opposed to the whole of V[G]. Visibly, the class of HC-forcing invariant

formulas is closed under boolean combinations. Note that by Shoenfield’s Absoluteness

Theorem, e.g., Theorem 25.20 of [27], any Σ1
2 subset of R is HC-forcing invariant. There

is also the closely related Lévy Absoluteness Principle, which has various forms (e.g.,

Theorem 9.1 of [4] or Section 4 of [29]); we give a version more convenient to us. For a

proof, see [89] (it is also standard).

Lemma 5.2.2. If V[G] is any forcing extension, and if ϕ(x) is a Σ1 formula of set theory,

then for every a ∈ HC, HC |= ϕ(a) if and only if HCV[G] |= ϕ(a). In particular, Σ1-formulas

are HC-forcing invariant.

For more complicated formulas, whether or not ϕ(x) is HC-forcing invariant or not

may well depend on the choice of set-theoretic universe. For example, consider the formula

ϕ(x) := (x = ∅) ∨ (V 6= L). Then ϕ(HC) is equal to {∅} if HC ⊆ L, and ϕ(HC) = HC

otherwise. Because ‘HC 6⊆ L’ holding in V implies that it holds in any forcing extension

V[H], it follows that the formula ϕ(x) is HC-forcing invariant if and only if HC 6⊆ L.

Before continuing, we state three set-theoretic lemmas that form the lynchpin of

our development. Lemma 5.2.3 is a simple consequence of our definitions. Lemma 5.2.4

is well-known. It is mentioned in the proof of Theorem 9.4 in [22]; a full proof is given in

the more recent [32]. Lemma 5.2.5 is just a rephrasing of Lemma 5.2.4. The key tool for

all of these lemmas is the Product Forcing Lemma, see e.g., Lemma 15.9 of [27], which
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states that given any P1 × P2-generic filter G, if G` is the projection of G onto P`, then

G = G1 × G2, each G` is P`-generic, and V[G] = V[G1][G2] = V[G2][G1] (i.e., G` meets

every dense subset of P` in V[G3−`]).

Lemma 5.2.3. Suppose P1, P2 ∈ V are notions of forcing and ϕ(x) is HC-forcing invariant

(possibly with a hidden parameter from HC). If A ∈ V and, for ` = 1, 2, H` is P`-generic

and V [H`] |= A ∈ HC, then V[H1] |= A ∈ ϕ(HC) if and only if V[H2] |= A ∈ ϕ(HC). (The

filters H1 and H2 are not assumed to be mutually generic.)

Proof. Assume this were not the case. By symmetry, choose p1 ∈ H1 such that p1  Ǎ ∈

ϕ(HC), and choose p2 ∈ H2 such that p2  Ǎ ∈ HC ∧ Ǎ 6∈ ϕ(HC). Let G be a P1 × P2-

generic filter with (p1, p2) ∈ G. Write G = G1×G2, hence V[G] = V[G1][G2] = V[G2][G1].

As p1 ∈ G1 and p2 ∈ G2, we have V[G1] |= A ∈ ϕ(HC) and V[G2] |= A ∈ HC∧A 6∈ ϕ(HC).

But applying the HC-forcing invariance of ϕ twice, we get that A ∈ ϕ(HC)V[G1] if and

only if A ∈ ϕ(HC)V[G1][G2] if and only if A ∈ ϕ(HC)V[G2], a contradiction.

Lemma 5.2.4. Suppose P1 and P2 are both notions of forcing in V. If G is a P1 × P2-

generic filter and G = G1 ×G2, then V = V[G1] ∩ V[G2].

Proof. This is Corollary 2.3 of [32].

Lemma 5.2.5. Let θ(x) be any formula of set theory, possibly with hidden parameters

from V, and let V[G] be any forcing extension of V. Suppose that there is some b ∈ V[G]

such that for every forcing extension V[G][H] of V[G],

V[G][H] |= θ(b) ∧ ∃=1xθ(x)

Then b ∈ V.
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Proof. Fix θ(x),V[G] and b as above. Let P ∈ V be the forcing notion for which G is

P -generic. Let τ be a P -name such that b = val(τ,G). Choose p ∈ G such that

p  “for all forcing notions Q,Q θ(τ̌) ∧ ∃=1xθ(x)”

Let H be P-generic over V[G] with p ∈ H. So G × H is P × P-generic over V. Let

i1, i2 : P→ P× P be the canonical injections. Then, since (p, p) ∈ G×H, we have that

V[G][H] |= θ(val(i1(τ), G×H)) ∧ θ(val(i2(τ)), G×H) ∧ ∃=1xθ(x).

Hence V[G][H] |= val(i1(τ), G×H) = val(i2(τ), G×H) and so by Lemma 5.2.4, val(i1(τ), G×

H) ∈ V. But val(i1(τ), G×H) = b so we are done.

Lemma 5.2.3 lends credence to the following definition.

Definition 5.2.6. Suppose that ϕ(x) is HC-forcing invariant. Then ϕptl is the class of

all sets A such that A ∈ V and, for some (equivalently, for every) forcing extension V[G]

of V with A ∈ HCV[G], we have A ∈ ϕ(HC)V[G].

As motivation for the notation used in the definition above, ϕptl describes the class of

all A ∈ V that are potentially in ϕ(HC). We are specifically interested in those HC-forcing

invariant ϕ for which ϕptl is a set as opposed to a proper class.

Definition 5.2.7. An HC-forcing invariant formula ϕ(x) is short if ϕptl is a set.

We list some trivial observations; for fully fleshed out proofs, see [89]. As notation,

if C is a subclass of V, then define P(C) to be all sets A in V such that every element of

A is in C. (This definition is only novel when C is a proper class.) Similarly, Pℵ1(C) is

the class of all sets A ∈ P(C) that are countable (in V!). Let δ(x) be the formula

δ(x) := ∃h[h : x→ ω is 1-1]
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Given a formula ϕ(x), let P(ϕ)(y) denote the formula ∀x(x ∈ y → ϕ(x)) and let Pℵ1(ϕ)

denote P(ϕ)(y) ∧ δ(y).

Lemma 5.2.8. 1. The ptl-operator commutes with boolean combinations, i.e., if ϕ and

ψ are both HC-forcing invariant, then (ϕ∧ψ)ptl = ϕptl∩ψptl and (¬ϕ)ptl = V\ϕptl.

2. δ(HC) = HC. In particular δ(x) is HC-forcing invariant and δptl = V.

3. If ϕ is HC-forcing invariant, then so are both P(ϕ) and Pℵ1(ϕ). Moreover, P(ϕ)(HC) =

Pℵ1(ϕ)(HC) and P(ϕptl) = (P(ϕ))ptl = (Pℵ1(ϕ))ptl.

4. Suppose s : ω → HC is any map such that for each n, ϕ(x, s(n)) is HC-forcing

invariant. (Recall that HC-forcing invariant formulas are permitted to have a pa-

rameter from HC.) Then ψ(x) := ∃n(n ∈ ω∧ϕ(x, s(n))) is HC-forcing invariant and

ψptl =
⋃
n∈ω ϕ(x, s(n))ptl.

5.2.2 HC-forcing invariant sets

We dislike dealing with formulas and prefer to deal with sets. In [89], a complicated

notion of HC-forcing invariant families was developed to get around this. We prefer to

just abuse notation and denote formulas ϕ(x) as sets X ⊆ HC, with the understanding

that we have also specified the defining formula. Thus

Convention. When we say X ⊆ HC is an HC-forcing invariant set, we mean it is a

definable subset of HC and in fact we have fixed a defining formula ϕ(x) (with parameters

from HC), such that ϕ(x) is HC-forcing invariant. If V[G] is a forcing extension, then by

XV[G] we mean (ϕ(HC))V[G]. Let Xptl = ϕ(x)ptl. Say that X is short if ϕ(x) is.

If X is HC-forcing invariant via ϕ(x), then by Pℵ1(X) be mean the subset of HC

defined either by P(ϕ)(y) or Pℵ1(ϕ)(y) (the choice does not matter).
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We enumerate several examples and easy observations that help establish our nota-

tion.

Example 5.2.9. 1. ω ⊆ HC is HC-forcing invariant via any reasonable definition (e.g.

use ω as a parameter and say “x ∈ ω”), and ωptl = ω (a similar remark holds for

any a ∈ HC). In particular, ω is short.

2. ω1 is HC-forcing invariant via any reasonable definition (e.g., “x is an ordinal”).

Then (ω1)ptl = ON , the class of all ordinals. Thus, ω1 is not short.

3. The set of reals, R = Pℵ1(ω), is HC-forcing invariant, and Rptl = P(ω) = R, hence

R is short.

4. Pℵ1(R), the set of countable sets of reals, is HC-forcing invariant and (Pℵ1(R))ptl =

P(P(ω)), hence is short.

5. More generally, if X is short, then it follows from Lemma 5.2.8(3) that Pℵ1(X)ptl =

P(Xptl) and so Pℵ1(X) is short.

6. For any α < ω1, let HCα denote the sets in HC whose foundation rank is less than

α. Then each HCα is HC-forcing invariant. Also, each (HCα)ptl = Vα, so each HCα

is short.

7. HC is HC-forcing invariant, and HCptl = V, in particular HC is not short.

The following deviates slightly from [89], in that we evaluate ψ in HCV[G] rather

than V[G].

Notation 5.2.10. Suppose that X1, . . . , Xn are HC-forcing invariant subsets of HC. Su-

pose ψ(U1, . . . , Un) is a formula of set theory with n extra unary relations U1, . . . , Un. We
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say ψ(X1, . . . , Xn) holds persistently if, for every forcing extension V[G], we have

HCV[G] |= ψ(X1
V[G], . . . , Xn

V[G]).

We list three examples of this usage in the definition below.

Definition 5.2.11. Suppose that f , X and Y are HC-forcing invariant subsets of HC.

• The notation f : X → Y persistently means that fV[G] : XV[G] → Y V[G] for all

forcing extensions V[G] of V.

• The notation f : X → Y is persistently injective means that f : X → Y persistently

and additionally, for all forcing extensions V[G] of V, fV[G] : XV[G] → Y V[G] is 1-1.

• The notion f : X → Y is persistently bijective means f−1 : X → Y is HC-forcing

invariant and both f : X → Y and f−1 : Y → X are persistently injective.

The reader is cautioned that when f : X → Y persistently (or is persistently

injective), the image of f need not be HC-forcing invariant. Indeed the “image” of an

HC-forcing invariant function is not well-behaved in many respects, including the lack of

a surjectivity statement in the following proposition.

Proposition 5.2.12. Suppose that f , X, and Y are HC-forcing invariant.

1. Suppose f : X → Y persistently. Then fptl : Xptl → Yptl, i.e., fptl is a class function

with domain Xptl and image contained in Yptl.

2. If f : X → Y is persistently injective, then fptl : Xptl → Yptl is injective as well.

3. If f : X → Y is persistently bijective, then fptl : Xptl → Yptl is bijective.

We close this subsection with a characterization of surjectivity. Its proof is simply

an unpacking of the definitions. However, f : X → Y being persistently surjective need

not imply that the induced map fptl : Xptl → Yptl is surjective.
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Lemma 5.2.13. Suppose that f , X, and Y are each HC-forcing invariant, via the HC-

forcing invariant formulas θ(x, y), ϕ(x), and γ(y), respectively and that f : X → Y

persistently. Then f : X → Y is persistently surjective if and only if the formula ρ(y) :=

∃xθ(x, y) is HC-forcing invariant and persistently equivalent to γ(y).

5.2.3 Potential Cardinality

Definition 5.2.14. Suppose X and Y are HC-forcing invariant. We say that X is HC-

reducible to Y , written X ≤HC Y , if there is an HC-forcing invariant f such that f : X → Y

is persistently injective. As notation, we write X <HC Y if X ≤HC Y but Y 6≤HC X. We

also write X ∼HC Y if X ≤HC Y and Y ≤HC X; this is weaker than X and Y being in

persistent bijection.

The following notion will be very useful for our applications, as it can often be

computed directly. With this and Proposition 5.2.16 we can prove otherwise difficult

non-embeddability results for ≤HC .

Definition 5.2.15. Suppose X is HC-forcing invariant. The potential cardinality of X,

denoted ‖X‖, refers to |Xptl| if X is short, or ∞ otherwise. By convention we say κ <∞

for any cardinal κ.

Proposition 5.2.16. Suppose X and Y are both HC-forcing invariant.

1. If Y is short and X ≤HC Y , then X is short.

2. If X ≤HC Y , then ‖X‖ ≤ ‖Y ‖.

3. If X is short, then X <HC Pℵ1(X).

Proof. (1) follows immediately from (2).
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(2) Choose an HC-forcing invariant f such that f : X → Y is persistently injective.

Then by Proposition 5.2.12(2), fptl : Xptl → Yptl is an injective class function. Thus,

|Xptl| ≤ |Yptl|.

(3) Note that for any HC-forcing invariantX, X ≤HC Pℵ1(X) is witnessed by the HC-

forcing invariant map x 7→ {x}. For the other direction, suppose by way of contradiction

that X is short, but Pℵ1(X) ≤HC X. Note (Pℵ1(X))ptl = P(Xptl) by Lemma 5.2.8(3).

Thus, by (2), we would have that |P(Xptl)| ≤ |Xptl|, which contradicts Cantor’s theorem

since Xptl is a set.

Using the fact that (HCβ)ptl = Vβ, the following Corollary is immediate.

Corollary 5.2.17. If X is HC-forcing invariant and ‖X‖ ≤ iα for some α < ω1, then

HCω+α+1 6≤HC X.

5.2.4 Quotients

We begin with the obvious definition.

Definition 5.2.18. A pair (X,E) is an HC-forcing invariant quotient if both X and E

are HC-forcing invariant and persistently, E is an equivalence relation on X.

There is an immediate way to define a reduction of two quotients:

Definition 5.2.19. Let (X,E) and (Y, F ) be HC-forcing invariant quotients. Say (X,E) ≤HC

(Y, F ) if there is an HC-forcing invariant f such that all of the following hold persistently:

• f is a subclass of X × Y .

• The E-saturation of dom(f) is X. That is, for every x ∈ X, there is an x′ ∈ X and

y′ ∈ Y where xEx′ holds and (x′, y′) ∈ f .
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• f induces a well-defined injection on equivalence classes. That is, if (x, y) and (x′, y′)

are in f , then xEx′ holds if and only if yFy′ does.

Define (X,E) <HC (Y, F ) and (X,E) ∼HC (Y, F ) in the natural way.

It is more common in reducibility theory to require that f be an actual map from

X to Y , but we will find this more convenient.

We wish to define the potential cardinality ‖(X,E)‖. It turns out that |Xptl/Eptl|

is oftentimes too small. For our purposes, we can restrict to more well-behaved quotients.

Definition 5.2.20. A representation of an HC-forcing invariant quotient (X,E) is a pair

f, Z of HC-forcing invariant sets such that f : X → Z is persistently surjective and

persistently,

∀a, b ∈ X[E(a, b)⇔ f(a) = f(b)]

We say that (X,E) is representable if it has a representation.

In the case that (X,E) is representable, the set of E-classes is HC-forcing invariant

in a sense – we equate it with the representation. For this reason we will also say Z

is a representation of (X,E). Note that if f1 : X → Z1 and f2 : X → Z2 are two

representations of (X,E), then there is a persistently bijective, HC-forcing invariant h :

Z1 → Z2. This observation implies the following definition is well-defined.

Definition 5.2.21. If (X,E) is a representable HC-forcing invariant quotient, then define

‖(X,E)‖ = ‖Z‖ for some (equivalently, for all) Z such that there is a representation

f : (X,E)→ Z.

The following lemma can be proved by a routine composition of maps.

Lemma 5.2.22. Suppose (X,E) and (Y,E′) are HC-forcing invariant quotients, with

representations f : (X,E)→ Z and g : (Y,E′)→ Z ′. Suppose h is a witness to (X,E) ≤HC
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(Y,E′). Then the induced function h∗ : Z → Z ′ is HC-forcing invariant, persistently

injective, and witnesses Z ≤HC Z
′.

We close this section with an observation about restrictions of representations.

Lemma 5.2.23. Suppose f : (X,E) → Z is a representation and Y ⊆ X is HC-forcing

invariant and persistently E-saturated. Let E′ and g = f�Y be the restrictions of E and f ,

respectively, to Y . Then the image g(Y ) is HC-forcing invariant, and so g : (Y,E′)→ g(Y )

is a representation.

All of the examples we work with will be representable, where the representations

are Scott sentences. Therefore this simple definition of ‖(X,E)‖ will suffice completely

for our purposes. In the absence of a representation, one can still define ‖(X,E)‖ using

the notion of pins; see for instance [30] for a thorough discussion.

5.3 Connecting Potential Cardinality with Borel Reducibility

The standard framework for Borel reducibility of invariant classes is the following.

Let L be a countable langauge and let XL be the set of L-structures with universe ω.

Endow XL with the usual logic topology (with clopen sets being solution sets of formulas);

then XL becomes a Polish space. Moreover, if Φ is a sentence of Lω1ω then Mod(Φ) is

a Borel subset of XL; hence Mod(Φ) is a standard Borel space. The relation ∼=Φ is the

restriction of the isomorphism relation to Mod(Φ)×Mod(Φ). When no ambiguity arises

we omit the Φ. If L′ is another countable language and Φ′ is a a sentence of L′ω1ω, then a

Borel reduction from (Mod(Φ),∼=)→ (Mod(Φ′),∼=) is a Borel map f : Mod(Φ)→ Mod(Φ′)

such that, for all M,N ∈ Mod(Φ), M ∼= N if and only if f(M) ∼= f(N).

We want to apply the machinery of the previous section to this setup. First, recall

that we are working entirely in ZFC; thus a language L is just a set with an arity function,
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and an L-structure with universe ω is just a function f : L →
⋃
n P(ωn) respecting the

arities. Since our languages are countable we can suppose that they are elements of HC.

We will presently show that for any sentence Φ of Lω1ω, (Mod(Φ),∼=) is an HC-forcing

invariant quotient. We will also show that (Mod(Φ),∼=) is representable, and that Borel

reductions are in particular HC-reductions.

5.3.1 Canonical Scott sentences

For what follows, we need the notion of a canonical Scott sentence of any infinite

L-structure, regardless of cardinality. The definition below is in both Barwise [4] and

Marker [64].

Definition 5.3.1. Suppose L is countable and M is any infinite L-structure, say of power

κ. For each α < κ+, define an Lκ+,ω formula ϕaα(x) for each finite a ∈M<ω as follows:

• ϕa0(x) :=
∧
{θ(x) : θ atomic or negated atomic and M |= θ(a)};

• ϕaα+1(x) := ϕaα(x) ∧
∧{
∃y ϕa,bα (x, y) : b ∈M

}
∧ ∀y

∨{
ϕa,bα (x, y) : b ∈M

}
;

• For α a non-zero limit, ϕaα(x) :=
∧{

ϕaβ(x) : β < α
}

.

Next, let α∗(M) < κ+ be least ordinal α such that for all finite a from M ,

∀x[ϕaα(x)→ ϕaα+1(x)].

Finally, put css(M) := ϕ∅α∗(M) ∧
∧{
∀x[ϕaα∗(M)(x)→ ϕaα∗(M)+1(x)] : a ∈M<ω

}
.

For what follows, it is crucial that the choice of css(M) really is canonical. In

particular, in the infinitary clauses forming the definition of tpaα+1(x), we consider the

conjunctions and disjunctions be taken over sets of formulas, as opposed to sequences. By
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our conventions about working wholly in ZFC, countable languages and sentences of L∞,ω

are sets, and in particular css(M) is a set.

We summarize the well-known, classical facts about canonical Scott sentences with

the following:

Fact 5.3.2. Fix a countable language L.

1. For every L-structure M , M |= css(M); and for all L-structures N , M ≡∞,ω N if

and only if css(M) = css(N) if and only if N |= css(M).

2. If M is countable, then css(M) ∈ HC.

3. css is absolute between transitive models of ZFC−. (Recall that HC |= ZFC−.)

4. If M and N are both countable, then M ∼= N if and only if css(M) = css(N) if and

only if N |= css(M).

Our primary interest in canonical Scott sentences is that they give rise to represen-

tations of classes of L-structures. The key to the representability is Karp’s Completeness

Theorem for sentences of Lω1,ω, see e.g., Theorem 3 of Keisler [35], which says that if a

sentence σ of Lω1ω is consistent, then it has a countable model. It quickly follows that if

σ is a sentence of Lω1ω, and σ has a model in a forcing extension, then σ already has a

countable model in V.

We begin by considering CSS(L), the set of all canonical Scott sentences of structures

in XL, the set of L-structures with universe ω.

Lemma 5.3.3. Fix a countable language L. Then:

1. CSS(L) is HC-forcing invariant via the formula ϕ(y) := ∃M(M ∈ XL∧css(M) = y);

2. The HC-forcing invariant function css : XL → CSS(L) is persistently surjective;
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3. css : XL → CSS(L) is a representation of the HC-forcing invariant quotient (XL,∼=).

Proof. Note that Lω1ω is HC-forcing invariant, clearly.

(1) We need to verify that ϕ(y) is HC-forcing invariant. Suppose σ ∈ HC and V[G]

is a forcing extension of V. If σ ∈ ϕ(HC)V[G], then there is some M ∈ XV[G]
L such that

css(M) = σ. Hence by the preceding discussion, σ has a countable model N ∈ (XL)V. In

V[G], N |= σ; but σ = css(M). So css(N) = σ. As this argument readily relativizes to

any forcing extension, ϕ is HC-forcing invariant.

(2) follows from (1) and Lemma 5.2.13.

(3): (XL,∼=) is an HC-forcing invariant quotient since css is HC-forcing invariant.

Thus we conclude by (2) and Fact 5.3.2(4).

In most of our applications, we are interested in HC-forcing invariant subclasses of

XL that are closed under isomorphism. For any sentence Φ of Lω1,ω, because Mod(Φ)

is a Borel subset of XL, it follows from Shoenfield’s Absoluteness Theorem that both

Mod(Φ) and the restriction of css to Mod(Φ) (also denoted by css) css : Mod(Φ) → HC

are HC-forcing invariant.

Definition 5.3.4. For Φ any sentence of Lω1,ω, CSS(Φ) = {css(M) : M ∈ Mod(Φ)} ⊆ HC.

Proposition 5.3.5. Fix any sentence Φ ∈ Lω1,ω in a countable vocabulary. Then css :

Mod(Φ) → CSS(Φ) is a representation of the quotient (Mod(Φ),∼=). In particular the

latter is HC-forcing invariant.

Proof. As Mod(Φ) is HC-forcing invariant, this follows immediately from Lemmas 5.3.3

and 5.2.23.

Thus the following definition makes sense.
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Definition 5.3.6. Suppose Φ, Ψ are sentences of Lω1ω. Then say that Φ ≤HC Ψ, or

Φ is HC-reducible to Ψ, if CSS(Φ) ≤HC CSS(Ψ), or equivalently if (Mod(Φ),∼=) ≤HC

(Mod(Ψ),∼=). Similarly, if X is an HC-forcing invariant set and Φ ∈ Lω1ω, say that

X ≤HC Φ if X ≤HC CSS(Φ), and say that Φ ≤HC X if CSS(Φ) ≤HC X.

Definition 5.3.7. Let Φ be any sentence of Lω1,ω in a countable vocabulary. We say

that Φ is short if CSS(Φ)ptl is a set (as opposed to a proper class). If Φ is short, let the

potential cardinality of Φ, denoted ‖Φ‖, be the (usual) cardinality of CSS(Φ)ptl; otherwise

let it be ∞.

It follows from Proposition 5.3.5 and Definitions 5.2.14 and 5.2.21 that

‖Φ‖ = ‖(Mod(Φ),∼=)‖ = ‖CSS(Φ)‖ = |CSS(Φ)ptl|.

In order to understand the class CSS(Φ)ptl, note that if ϕ ∈ CSS(Φ)ptl, then ϕ ∈

V and is a sentence of L∞,ω. If we choose any forcing extension V[G] of V for which

ϕ ∈ HCV[G], then V[G] |= ‘ϕ ∈ Lω1,ω’ and there is some M ∈ HCV[G] such that V [G] |=

‘M ∈ Mod(Φ) and css(M) = ϕ’. Thus, we refer to elements of CSS(Φ)ptl as being potential

canonical Scott sentences of a model of Φ. In particular, every element of CSS(Φ)ptl is

potentially satisfiable in the sense that it is satisfiable in some forcing extension V[G] of

V. There is a proof system for sentences of L∞,ω for which a sentence is consistent if and

only if it is potentially satisfiable as defined above.1 When we say ‘ϕ implies ψ’, we mean

with respect to this proof system; equivalently, in any forcing extension V[G], every model

of ϕ is a model of ψ.

1In Chapter 4 of [35], Keisler gives a proof system for Lω1ω, and shows in Theorem 3 that it is complete,

i.e. if ϕ is unprovable then ¬ϕ has a model. The natural generalization of this proof system to L∞ω works:

the proof of Theorem 3 shows that whenever ϕ is unprovable, then ¬ϕ lies in a consistency property.

Forcing on the consistency property gives a model of ¬ϕ.
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We can also ask what is the image of the class function css when restricted to the

class of models of Φ. As notation, let CSS(Φ)sat denote the class of satisfiable canonical

Scott sentences {css(M) : M ∈ V and M |= Φ}. This choice of notation is clarified by the

following easy lemma.

Lemma 5.3.8. CSS(Φ)sat ⊆ CSS(Φ)ptl.

Proof. Choose any ϕ ∈ CSS(Φ)sat and choose any M ∈ V such that M |= Φ and css(M) =

ϕ. Choose a forcing extension V[G] in which M is countable. Then, in V[G], there is

some M ′ ∈ Mod(Φ) (i.e., where the universe of M ′ is ω) such that M ′ ∼= M . Then

(css(M ′))V[G] = ϕ and so ϕ ∈ CSS(Φ)ptl.

This suggests the following property of the sentence Φ.

Definition 5.3.9. A sentence Φ ∈ Lω1,ω (or a complete first-order theory T ) is grounded

if CSS(Φ)sat = CSS(Φ)ptl, i.e., if every potential canonical Scott sentence is satisfiable.

As a trivial example, if T is ℵ0-categorical, then as all models of T are back-and-

forth equivalent, CSS(T )ptl is a singleton, hence T is grounded. In Section 5.5 we show

that both of the theories REF(bin) and REF(inf) are grounded, but in Section 5.6 we

prove that the theory TK is not grounded.

This concept was previously and independetly investigated in the language of pins

by Kaplan and Shelah [32], where they prove that not every sentence Φ is grounded.

Kaplan and Shelah ask in [32] if linear orders are grounded; this remains open.

Next, we show that a Borel reduction between invariant classes yields an HC-forcing

invariant map between the associated canonical Scott sentences.

Fact 5.3.10. Suppose Φ and Ψ are sentences of Lω1,ω. If Φ ≤B Ψ then Φ ≤HC Ψ.
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Proof. It is a standard theorem, see e.g., [33] Proposition 12.4, that the graph of f is

Borel. So f is HC-forcing invariant. By Lemma 5.2.22, it suffices to show that f :

(Mod(Φ),∼=) ≤HC (Mod(Φ′),∼=), which amounts to showing that f remains well-defined

and injective on isomorphism classes in every forcing extension. But this is a Π1
2 statement

in codes for f,Φ,Φ′, and thus is absolute to forcing extensions by Shoenfield’s Absoluteness

Theorem.

The following Theorem is simply a distillation of our previous results.

Theorem 5.3.11. Let Φ and Ψ be sentences of Lω1,ω. If ‖Ψ‖ < ‖Φ‖, then Φ 6≤HC Ψ,

hence Φ 6≤B Ψ. In particular, if Ψ is short and Φ is not, then this holds.

5.3.2 Consequences of ∼=Φ being Borel

Although our primary interest is classes Mod(Φ) where ∼=Φ is not Borel, in this brief

subsection we see the consequences of ∼=Φ being Borel.

Theorem 5.3.12. The following are equivalent for a sentence Φ ∈ Lω1,ω in countable

vocabulary.

1. The relation of ∼= on Mod(Φ) is a Borel subset of Mod(Φ)×Mod(Φ);

2. For some α < ω1, CSS(Φ) ⊆ HCα;

3. For some α < ω1, CSS(Φ) is persistently contained in HCα;

4. CSS(Φ)ptl is contained in Vα for some α < ω1.

Proof. To see the equivalence of (1) and (2), first note that in both conditions we are only

considering models of Φ with universe ω and the canonical Scott sentence of such objects.

In particular, neither condition involves passing to a forcing extension. However, it is a
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classical result (see for instance [14], Theorem 12.2.4) that ∼= is Borel if and only if the

Scott ranks of countable models are bounded below ω1, which is equivalent to stating that

there is a bound on the canonical Scott sentences in the HCα hierarchy.

For (2) implies (3), note that the formula ∃M : M |= Φ ∧ css(M) 6∈ HCα is a

Σ1 formula in the parameters Φ, α ∈ HC and so is absolute to forcing extensions by

Lemma 5.2.2.

That (3) implies (4) and (4) implies (2) follow directly from Example 5.2.9(6).

We obtain an immediate corollary to this. Let I∞,ω(Φ) denote the cardinality of

a maximal set of pairwise ≡∞,ω-inequivalent models M ∈ V (of any cardinality) with

M |= Φ. If no maximal set exists, we write I∞,ω(Φ) =∞. By Fact 5.3.2 and Lemma 5.3.8,

I∞,ω(Φ) = |CSS(Φ)sat| ≤ ‖Φ‖.

Corollary 5.3.13. Let Φ be any sentence in Lω1,ω in a countable vocabulary such that

∼= is a Borel subset of Mod(Φ)×Mod(Φ). Then

1. Φ is short; and

2. I∞,ω(Φ) < iω1 . (In fact ‖Φ‖ < iω1 .)

Proof. Assume that ∼= is a Borel subset of Mod(Φ) × Mod(Φ). By Theorem 5.3.12(3),

CSS(Φ)ptl ⊆ Vα for some α < ω1 and hence is a set. Thus, Φ is short, and I∞,ω(Φ) =

|CSS(Φ)sat| ≤ |CSS(Φ)ptl| ≤ |Vα| < iω1 .

We remark that the implication in Corollary 5.3.13 does not reverse. In Sections 5.5

and 5.6 we show that both of the complete theories REF(bin) and K have potential

cardinality i2, but on countable models of either theory, ∼= is not Borel.
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5.3.3 Maximal Complexity

In this subsection, we recall two definitions of maximality. The first, Borel com-

pleteness, is from Friedman-Stanley [12].

Definition 5.3.14. Let Φ ∈ Lω1,ω. Then Φ is Borel complete if for every Ψ ∈ Lω1ω, we

have Ψ ≤B Φ. Also, Φ is HC-complete if Ψ ≤HC Φ for all Ψ ∈ Lω1ω.

So, if Φ is Borel complete then Φ is ≤HC-complete; there is no known example of

the reverse implication failing.

Proposition 5.3.15. Φ is ≤HC-complete if and only if HC ≤HC Φ.

Proof. If HC ≤HC Φ then CSS(Ψ) ≤HC Φ for all Ψ. Conversely, it suffices to show

that HC ≤HC CSS(L), where L is the language {∈}. To see this, given a ∈ HC, let

ϕ = css(M), where M is the structure with universe tcl(a)∪{a}, and where ∈ is interpreted

naturally.

Corollary 5.3.16. If Φ is ≤HC-complete, then Φ is not short. In particular, if Φ is Borel

complete, then Φ is not short.

If one is only interested in classes of countable models, then the Borel complete

classes are clearly maximal with respect to Borel reducibility. As any invariant class of

countable structures has a natural extension to a class of uncountable structures, one

can ask for more. The following definitions from [47] generalize Borel completeness to

larger cardinals λ. To see that it is a generalization, recall that among countable struc-

tures, isomorphism is equivalent to back-and-forth equivalence, and that for structures of

size λ, ≡λ+,ω-equivalence is also equivalent to back-and-forth equivalence. Consequently,

‘Borel complete’ in the sense of Definition 5.3.14 is equivalent to ‘ℵ0-Borel complete’ in

253



Definition 5.3.17. So, ‘Φ is λ-Borel complete for all infinite λ’ implies Φ Borel complete.

However, in Section 5.6 we will see that the theory TK is Borel complete, but is not

λ-Borel complete for large λ.

Definition 5.3.17. Let Φ be a sentence of Lω1,ω.

• For λ ≥ ℵ0, let Modλ(Φ) denote the class of models of Φ with universe λ.

• Toplogize Modλ(Φ) by declaring that B := {Uθ(α) : θ(x) is quantifier free and α ∈ λ<ω}

is a sub-basis, where Uθ(α) = {M ∈ Modλ(Φ) : M |= θ(α)}.

• A set is λ-Borel if it is in the λ+-algebra generated by the sub-basis B.

• A function f : Modλ(Φ)→ Modλ(Ψ) is a λ-Borel embedding if

– the inverse image of every (sub)-basic open set is λ-Borel; and

– For M,N ∈ Modλ(Φ), M ≡∞,ω N if and only if f(M) ≡∞,ω f(N).

• (Modλ(Φ),≡∞,ω) is λ-Borel reducible to (Modλ(Ψ),≡∞,ω) if there exists a λ-Borel

embedding f : Modλ(Φ)→ Modλ(Ψ).

• Φ is λ-Borel complete if for every sentence Ψ of Lω1ω, (Modλ(Ψ),≡∞,ω) is λ-Borel

reducible to (Modλ(Φ),≡∞,ω).

For example, the class of graphs (directed or undirected) is λ-Borel complete for

all infinite λ. This is a standard coding argument. Although we are not aware of any

direct reference, Theorem 5.5.1 of [21] states that graphs can interpret any theory. It is

easily checked that the map constructed in the proof of Theorem 5.5.1 is in fact a λ-Borel

reduction for every λ.
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Also, in [47] it is proved that the class of subtrees of λ<ω is λ-Borel complete,

and more recently the second author has proved that the class of linear orders is λ-Borel

complete for all λ.

5.3.4 The Friedman-Stanley Tower

In this subsection we define the Friedman Stanley tower. There are many versions

of these in circulation; for instance the Iα in [12], the ∼=α in [25], the =α in [14], and the

Tα in [41]. In [89] we used the tower (Tα : α < ω1) from [41]. The advantage of this is

that it is a tower of complete first order theories. For this thesis we prefer to use a tower

(Φα : α < ω1) of sentences of Lω1ω. We will show that Tn ∼B Φn for each n < ω, and

Tα ∼B Φα+1 for all α ≥ ω.

The following is as defined by [12].

Definition 5.3.18. Suppose L is a countable relational language and Φ ∈ Lω1,ω. The

jump of Φ, written J(Φ), is a sentence of L′ω1ω defined as follows, where L′ = L ∪ {E}

is obtained by adding a new binary relation symbol E to L. Namely J(Φ) states that E

is an equivalence relation with infinitely many classes, each of which is a model of Φ. If

R ∈ L and x is a tuple not all from the same E-class, then R(x) is defined to be false, so

that the models are independent.

There is a corresponding notion of jump that can be defined directly on equivalence

relations: Given an equivalence relation E on X, its jump is the equivalence relation J(E)

on Xω, defined by setting (xn : n ∈ ω)J(E)(yn : n ∈ ω) if there is some σ ∈ S∞ with

xσ(n)Eyn for all n ∈ ω. Then the previous definition of the jump can be viewed as the

special case where (X,E) is (Mod(Φ),∼=).

The notion of a jump was investigated in [12], where it was shown that if E is a
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Borel equivalence relation on a Polish space X with more than one class, then E <B J(E).

We give a partial generalization of this in Corollary 5.3.22 – if Φ ∈ Lω1,ω is short, then

‖Φ‖ < ‖J(Φ)‖, so Φ <B J(Φ). Using the theory of pins, one can use essentially the same

proof to give a true generalization: if (X,E) is HC-forcing invariant, short, and has more

than one E-class, then ‖(X,E)‖ < ‖(Xω, J(E))‖, so in particular E <B J(E).

We wish to iterate the Friedman-Stanley jump. At limit stages we must explain

what we will do. In [89] we took products, but it is more natural to take disjoint unions:

Definition 5.3.19. Suppose I is a countable set and for each i, Φi is a sentence of Lω1,ω

in the countable relational language Li. The disjoint union of the Φi, denoted tiΦi, is a

sentence of Lω1ω, where L = {Ui : i ∈ I} ∪
⋃
i Li is the disjoint union of the Li’s together

with new unary predicates {Ui : i ∈ I}.

Namely tiΦi states that the Ui are disjoint and exhaustive, and that exactly one Ui

is nonempty, and that this Ui forms a model of Φi when viewed as an Li-structure.

We now define the tower (Φα : α < ω1). Actually, we proceed more generally,

starting with any base theory.

Definition 5.3.20. Suppose Φ is a sentence of Lω1ω and α < ω1. Then we define the

α’th jump, Jα(Φ), of Φ as follows. Let J0(Φ) = Φ. Having defined Jα(Φ), let Jα+1(Φ) =

J(Jα(Φ)). For limit stages, let Jδ(Φ) = tα<δJα(Φ).

Let Φα = Jα(Th(Z, S)).

Then we have the following straightforward inductive argument:

Proposition 5.3.21. Suppose Φ ∈ Lω1ω and α < ω1. Then:

• Φ is grounded if and only if Jα(Φ) is grounded.
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• If the isomorphism relation for Φ is Borel, then so is the isomorphism relation for

each Jα(Φ).

• If Φ has infinitely many countable models, then ‖Jα(Φ)‖ = iα(‖Jα(Φ)‖).

Corollary 5.3.22. Suppose Φ ∈ Lω1ω. Then for all α < β, Φα ≤B Φβ. If Φ is short with

more than one countable model, then J(Φ) 6≤HC Φ. Thus for all α < β, Φβ 6≤HC Φα.

We now relate this to complete first order theories. We remark that by the proof of

this proposition, each Tα ∼B Φα+1, where (Tα : α < ω1) is the tower from [89]. So in [89]

we are skipping the limit stages.

Theorem 5.3.23. Suppose T is a first order theory, and α < ω1. Then there is a first

order theory Sα such that Sα ∼B Jα(T ). If α is not a limit ordinal, and if T is complete,

then we can arrange Sα to be complete.

Proof. First of all, note we can suppose T has infinitely many countable models. Indeed,

if T has only one countable model, then Jn(T ) ∼B T for each n < ω, and Jω(T ) ∼B

Th(Z, S). Also, if T has finitely many but more than one countable model, then J(T ) ∼B

Th(Z, S).

We show the first claim.

Note that if α is a such that we have found a first-order theory Sα with Sα ∼B Jα(T ),

then we can set Sα+1 = J(Sα). Thus it suffices to show the following: suppose δ is a limit,

and for all α < δ, we have found Sα ∼B Jα(T ). Then we can find Sδ ∼B Jδ(T ). Note

that Jδ(T ) ∼B tα<δSα, so it suffices to find Sδ ∼B tα<δSα.

We let Sδ be the theory in the same language as tα<δSα, i.e. the disjoint union

of the languages of Sα for α < δ; let Sδ assert that at most one Uα is nonempty, and

if Uα is nonempty then everything is in Uα. Then Sδ is first order, and a weakening
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of tα<δSα. Further, there is up to isomorphism only one countable (infinite) model of

Sδ which is not a model of tα<δSα, namely the model with infinitely many unsorted

elements. So trivially tα<δSα ≤B Sδ; for the reverse, let (Mn : n < ω) be infinitely many

pairwise-nonisomorphic models in Mod(tα<δSα). Given M ∈ Mod(Sδ), if M is the model

where each Uα is empty then let f(M) = M0. If M ∼= Mn for some n < ω, then let

f(M) = Mn+1 (this is a Borel condition, because the isomorphism class of any structure

is Borel). Otherwise, let f(M) = M .

The second claim is proved by a separate induction on α.

Note that if α is a such that we have found a complete first-order theory Sα with

Sα ∼B Jα(T ), then we can set Sα+1 = J(Sα). Thus it suffices to show the following:

suppose δ is a limit, and for all α < δ non-limit, we have found Sα ∼B Jα(T ). Then we

can find Sδ+1 ∼B Jδ+1(T ). Write I = {α < δ : α is not a limit}.

We let Sδ+1 =
∏
α∈I Sα; that is, there is a sort Uα for each α ∈ I, and Sδ+1 says

each Uα |= Sα. Thus we can view models of Sδ+1 as sequences (X,Mα : α ∈ I), where X

is the set of unsorted elements (i.e. any elements not in any Uα). Note that there is no

structure on X, so all we need to know about it is its cardinality (finite or ℵ0). It is easily

checked that Sδ+1 is a complete first order theory.

We wish to show Sδ+1 ∼B Jδ+1(T ). To do this, note first that if we let T∗ =∏
α∈I J

α(T ), then easily T∗ ∼B Sδ+1 (since each Sα ∼B Jδ+1(T )), so it suffices to show

that T∗ ∼B Jδ+1(T ) = J(tα<δJα(T )).

First we informally describe the reduction g : T∗ ≤B Jδ+1(T ). Given (X,Mα : α ∈

I) |= T∗ (so each Mα |= Jα(T ), define (Nα : α ∈ I) via Nα = Mα for α > 0, and for

α = 0, Mα is a model of Th(Z, S) with n-many S-chains, where n encodes (|X|,m), where

m is the number of S-chains in M0. Then each Nα can be naturally viewed as a model
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of tα<δJα(T ), so (Nα : α ∈ I) can be viewed as a model of Jδ+1(T ), after fixing some

bijection between α and ω (which will not affect the isomorphism type).

Next, we describe the reduction f : Jδ+1(T ) ≤B T∗. First, for each α < δ, let

Nα,k : k < ω be infinitely many pairwise nonisomorphic models of Jα(T ). Now, suppose

we are given (Mn : n ∈ I) |= Jδ+1(T ). For each n < ω, let αn < δ be such that

Mn |= Jαn(T ). Let M∗n = Mn if Mn is not isomorphic to any Nαn,k, otherwise let let kn

be the unique k < ω with Mn
∼= Nαn,k, and let M∗n = Nαn,kn+1. (This can be done in

a Borel fashion, since the isomorphism class of any structure is always Borel.) Now, for

each α < δ, let Rα |= J(Φα) be (Mn : n ∈ ω, αn = α), along with infinitely many copies

of Nα,0. Let R0 = (Z, S). Then f(Mn : n < ω) := (Rα : α < δ) works.

We also remark on the following nice viewpoint of Φα.

Proposition 5.3.24. For all α < ω1, Φα ∼HC HCω+α.

Proof. That HCω+α ≤HC Φα is a routine inductive argument. To show that Φα ≤HC

HCω+α we need to handle multiplicities; for this we need to show that HCω+α × ω ≤HC

HCω+α. For each n < ω, define fn : HCω+α → HCω+α inductively. First, if a ∈ HCω, then

define fn(a) to be the ordered pair (a, n). Next, having defined fn(b) for all b ∈ HCω+β,

where β < α, and given a of rank β, define fn(a) = {fn(b) : b ∈ a}.

Then we can define our pairing function as (a, n) 7→ fn(a).

5.4 Compact group actions

In this section we use the technology of canonical Scott sentences and representabil-

ity to analyze the effect of a continuous action of a compact group on a Polish space

X. In particular, we show that the quotient of Pℵ1(X) by the diagonal action of G is
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representable. We also show that if the group is abelian, we can bound the potential

cardinality of the representation. In Section 5.6 we use these results to analyze the models

of the theory K and to contrast K with TK.

Suppose we have a Polish group G acting on a Polish space X. To apply our

machinery to this situation we need to say what it means for the objects involved to be

HC-forcing invariant:

Definition 5.4.1. • an HC-forcing invariant Polish space is a sequence (X, d,D, i) of

HC-forcing invariant sets, where persistently: d is a complete metric on X, D ⊂ X

is dense and i : ω → D is a bijection.

• an HC-forcing invariant Polish group is a sequence (G, d′, D′, i′,×) where (G, d′, D′, i′)

is an HC-forcing invariant Polish space and persistently, × is a compatable group

operation on G.

• Suppose (G, d′, D′, i′,×) is an HC-forcing invariant Polish group, (X, d,D, i) is an

HC-forcing invariant Polish space. Then an HC-forcing invariant continuous action

of G on X is an HC-forcing invariant set · such that persistently, · ⊂ G×X ×X is

a continuous action of G on X.

Throughout this subsection, we fix an HC-forcing invariant Polish space (X, d,D, i),

an HC-forcing invariant, persistently compact Polish group (G, d′, D′, i′,×), and an HC-

forcing invariant continuous action · of G on X.

We also fix HC-forcing invariant sets

Bn = {Uni : i ∈ ω}

such that persistently, each Bn is a basis for the topology on Xn. (For instance, take B1
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to be the balls with rational radius and center in D, using the enumeration of D given by

i.)

The action of G on X naturally gives diagonal actions on both Xn and P(X) defined

by g · a = 〈g · a : a ∈ a〉 and g · A = {g · a : a ∈ A}, respectively. Clearly, the diagonal

action of G takes countable subsets of X to countable subsets. For all of these spaces, let

∼G be the equivalence relation induced by G.

In order to understand the quotient (Pℵ1(X),∼G), we begin with one easy lemma

that uses the fact that G is compact. This lemma is the motivation for the language we

define below.

Lemma 5.4.2. If A,B ∈ Pℵ1(X), then A ∼G B if and only if there is a bijection σ : A→

B satisfying a ∼G h(a) for all a ∈ A<ω.

Proof. If g · A = B, then σ := g�A is as desired. For the converse, fix such a σ; we will

show there is g ∈ G inducing σ. Let {an : n ∈ ω} be an enumeration of A, and for each n,

let an be the tuple a0 . . . an−1 and let Cn ⊆ G be the set of all g ∈ G with g · an = σ(an).

Cn is closed since the action is continuous and Cn is nonempty by hypothesis. Since G is

compact, C =
⋂
nCn is nonempty, and clearly any g ∈ C has g ·A = B.

We define a language L and a class of L-structures that encode this information.

Put L := {Rni : i ∈ ω, n ≥ 1}, where each Rni is an n-ary relation. Let MX be the

L-structure with universe all of X, with each Rni interpreted by

MX |= Rni (a) if and only if G · a ∩ Uni = ∅

As notation, let qfn(a) denote the quantifier-free type of a ∈ Xn. It is easily seen that to

specify qfn(a) it is enough to specify the set of i ∈ ω such that MX |= Rni (a). Also,

qfn(a) = qfn(b) if and only if G · a = G · b
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As well, note that every g ∈ G induces an L-automorphism of MX given by a 7→ g·a. These

two observations imply thatMX has a certain homogeneity – For a, b ∈ Xn, qfn(a) = qfn(b)

if and only if there is an automorphism of MX taking a to b.

For a, b ∈ Xn the relation a ∼G b is absolute between V and any forcing extension

V[H]. To see this, note that it suffices to check that qfn is absolute; and in turn it suffices

to check that each Rni is absolute. But a ∈ Rni if and only if for some or any sequence

(dm : m ∈ ω) from Dn converging to a, we have that for large enough m, D′ ·dm∩Uni = ∅.

It is not hard to check that the range of qfn is analytic (Γ(x) is in the range of qfn if

and only if there is a convergent sequence (dm : m < ω) from Dn satisfying various Borel

properties). Hence by Shoenfield Absoluteness, the range of qfn is absolute.

As notation, call an L-structure N ∈ HC nice if it is isomorphic to a substructure

of MX . Let W consist of all nice L-structures.

Lemma 5.4.3. An L-structure N ∈ HC is nice if and only if for every n ≥ 1, every

quantifier-free n-type realized in N is realized in MX .

Proof. Left to right is obvious. For the converse, choose any N ∈ HC for which every

quantifier-free n type realized in N is realized in MX . We construct an L-embedding

of N into MX via a “forth” construction using the homogeneity of MX . Enumerate the

universe of N = {an : n ∈ ω} and let an denote 〈ai : i < n〉. Assuming fn : an → MX

has been defined, choose any b ∈ Xn+1 such that qfn+1(an+1) = qfn+1(b). Write b as bnb
∗.

As qfn(bn) = qfn(fn(an)), there is an automorphism σ of MX with σ(bn) = fn(an). Then

define fn+1 to extend fn and satisfy fn+1(an) = σ(b∗).

Define a map f : Pℵ1(X)→W by A 7→MA, the substructure of MX with universe

A.
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Our first goal is the following Theorem.

Theorem 5.4.1. Suppose (X, d,D, i) is an HC-forcing invariant Polish space, (G, d′, D′, i′,×)

is an HC-forcing invariant, persistently compact Polish group, and · is an HC-forcing in-

variant continuous action of G on X. Then:

1. Both W and f are HC-forcing invariant;

2. Persistently, for all A,B ∈ Pℵ1(X), A ∼G B if and only if f(A) ∼= f(B);

3. The canonical Scott sentence map css : (W,∼=) → CSS(W) is a representation,

where CSS(W) = {css(N) : N ∈ W};

4. The quotient (Pℵ1(X),∼G) is representable via the composition map css ◦ f that

takes A 7→ css(MA).

Proof. (1) It is obvious that f is HC-forcing invariant.

That W is HC-forcing invariant follows from Lemma 5.4.3 and the absoluteness

results mentioned above. In particular, for any L-structure N ∈ HC that is not nice, there

is some n and a ∈ Nn such that Γ := qfn(a) is not realized in MX . But then, in any

forcing extension V[H], (MX)V[H] does not realize Γ, so N is not nice in V[H]. As this

argument relativizes to any forcing extension, W is HC-forcing invariant.

For (2), if A ∼G B, then any g ∈ G that satisfies g · A = B induces a bijection

between A and B such that a ∼G g · a for all a ∈ A<ω. As this implies G · a = G · (g · a),

qfn(a) in MA is equal to qfn(g ·a) in MB. Thus, the action by g induces an isomorphism of

the L-structures MA and MB. Conversely, suppose σ : MA → MB is an L-isomorphism.

Then σ(a) ∼G a for every a ∈ A<ω, so A ∼G B by Lemma 5.4.2.

(3) As W is HC-forcing invariant, this follows immediately from Lemmas 5.3.3 and

5.2.23.
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(4) follows immediately from (1), (2), and (3).

As a consequence of Theorem 5.4.1, ‖(Pℵ1(X),∼G)‖ is defined. For an arbitrary

compact group action, this quotient need not be short. Indeed, Theorem 5.6.4 gives an

example where it is not. However, if we additionally assume that G is abelian, then we

will see below that ‖(Pℵ1(X),∼G)‖ ≤ i2. The reason for this stark discrepancy is due

to the comparative simplicity of abelian group actions. In particular, if an abelian group

G acts transitively on a set S, then S is essentially an affine copy of G/Stab(a), where

Stab(a) is the subgroup of G stabilizing any particular a ∈ S. The following Lemma is

really a restatement of this observation.

Lemma 5.4.4. Suppose that an abelian group G acts on a set X. Then for every n ≥ 1,

if three n-tuples a, b, c ∈ Xn satisfy a ∼G b ∼G c and ab ∼G ac, then b = c.

Proof. Let g ∈ G be such that ga = b. Choose h ∈ G such that h(ab) = ac. Then in

particular, ha = a and hb = c. From this, gha = b and hga = c. But gh = hg, so b = c,

as desired.

We will show that ‖(W,∼=)‖ ≤ i2 by showing that each Scott sentence in the

representation is from Li+
1 ω

, and then using the fact that there are at most i2 such

sentences. We will accomplish this complexity bound by a type-counting argument; here

is the notion of type we will use.

Definition 5.4.5. If ϕ is a canonical Scott sentence – that is, ϕ ∈ CSS(L)ptl – then let

Sn∞(ϕ) be the set of all canonical Scott sentences in the language L′ = L ∪ {c0, . . . , cn−1}

which imply ϕ. We will refer to elements of Sn∞(ϕ) as types – infinitary formulas with free

variables x0, . . . , xn−1, resulting from replacing each ci with a new variable xi not otherwise
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appearing in the formula. It is equivalent to define Sn∞(ϕ) by forcing – if V[H] makes ϕ

hereditarily countable and M ∈ V[H] is the unique countable model of ϕ, then Sn∞(ϕ) is

the set {css(M,a) : a ∈ Mn}. Evidently this set depends only on the isomorphism class

of M , so by the usual argument with Lemma 5.2.5, this set is in V.

Suppose ϕ is a potential canonical Scott sentence; we use the precise syntactic def-

inition of Scott formulas from Definition 5.3.1. For a moment, pass to a forcing extension

V[G] in which ϕ is hereditarily countable, and let M be its unique countable model. For

each ordinal α, let Snα(ϕ) be the set {ϕaα(x) : a ∈ Mn}. By Lemma 5.2.5, Snα(ϕ) is in

V and depends only on ϕ. Moreover, there is a natural surjection πnα : Sn∞(ϕ) → Snα(ϕ)

taking css(M,a) to ϕaα(x); each πnα is in V. (If there is possible ambiguity, we will write

πnα,ϕ.)

Define the Scott rank of ϕ to be the Scott rank of M . Again, this is invariant

under isomorphism, so depends only on ϕ. Write this ordinal as α∗. For any two distinct

sentences ψ, τ ∈ Sn∞(ϕ), let d(ψ, τ) be the least α < α∗ where πnα+1(ψ) 6= πnα+1(τ). If

ψ = τ then let d(ψ, τ) = α∗. d depends only on ϕ, so by Lemma 5.2.5, d ∈ V. (If there is

ambiguity we will write dϕ.)

Proposition 5.4.6. Suppose ϕ is a canonical Scott sentence in a language of size at most

κ, and for all n, |Sn∞(ϕ)| ≤ κ, where κ is an infinite cardinal. Then ϕ is a sentence of

Lκ+ω.

Proof. Let α∗ be the Scott rank of ϕ. Note that it is immediate from the construction of

Scott formulas that if α ≤ α∗, there is some n and some pair ψ, τ from Sn∞(ϕ), such that

d(ψ, τ) = α; hence d :
⋃
n(Sn∞(ϕ))2 → α∗ + 1 is surjective.

Since |Sn∞(ϕ)| ≤ κ and πnα : Sn∞(ϕ) → Snα(ϕ) is surjective, |Snα(ϕ)| ≤ κ for all α

(in particular, for all α ≤ α∗). Similarly, since d :
⋃
n(Sn∞(ϕ))2 → α∗ + 1 is surjective,
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|α∗ + 1| ≤ κ. By induction we show that for all α ≤ α∗ + 1, Snα(ϕ) ⊆ Lκ+ω.

The base case is trivial, since there are only κ atomic formulas. The step follows

from the fact that |Snα(ϕ)| ≤ κ, and the limit follows from the fact that α∗ < κ+, so in

both cases we need only take conjunctions and disjunctions of κ formulas at a time.

Observe that ϕ is precisely the following:

π0
α∗(ϕ) ∧

∧{
∀x
(
πnα∗(ϕ

∗)(x)→ πnα∗+1(ϕ∗)(x)
)

: n ∈ ω, ϕ∗ ∈ Sn∞(ϕ)
}

Since Snα(ϕ) ⊆ Lκ+ω for all α and n, and since they all have size at most κ, ϕ is in

Lκ+ω, as desired.

The following holds by a straightforward induction on the complexity of formulas:

Lemma 5.4.7. For all infinite cardinals κ and languages L of size at most κ, there are

exactly 2κ different Lκ+ω formulas (up to relabeling variables).

Now we can prove our theorem. Recall that ∼G is the diagonal equivalence relation

on Pℵ1(X), induced by the diagonal action of G.

Theorem 5.4.8. Let X be an HC-forcing invariant Polish space, let G be an HC-forcing

invariant, persistently compact abelian group, and suppose · is an HC-forcing invariant

continuous action of G on X. Suppose all this holds persistently. Then ‖(Pℵ1(X),∼G)‖ ≤

i2.

Proof. We use Proposition 5.4.6 to show that CSS(W)ptl ⊆ Li+
1 ω

; then by Lemma 5.4.7,

we have that |CSS(W)ptl| ≤ i2, as desired. So let ϕ ∈ CSS(W)ptl be arbitrary; it is

enough to show that |S∞n (ϕ)| ≤ i1.

For each n, let qfn(ϕ) be the set of quantifier-free n-types which are consistent with

ϕ. We have a surjective map πn : S∞n (ϕ) → qfn(ϕ) sending ψ(x) to the set of quantifier-

free formulas in x which it implies. For any p ∈ qfn(ϕ), let S∞n (ϕ, p) be π−1(p), the set
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of ψ ∈ S∞n (ϕ) where πn(ψ) = p. (All of these definitions have taken place in V.) Since

the language is countable, |qfn(ϕ)| ≤ i1. Thus it is sufficient to show that for all p,

|S∞n (ϕ, p)| ≤ i1.

Now we take advantage of the fact that G is abelian:

Claim: Suppose p∗ ∈ qf2n(ϕ) is such that p∗�[0,n) = p∗�[n,2n) = p. Suppose that ψ∗, τ∗ ∈

S∞2n(ϕ) both complete p∗. Further, suppose ψ∗�[0,n) = τ∗�[0,n). Then ψ∗ = τ∗.

Proof: Pass to a forcing extension V[H] in which ϕ is hereditarily countable, and let M

be its unique countable model. By Theorem 5.4.1, we may assume M = MA for some

A ∈ Pℵ1(X)V[H]. Choose some tuples (a0a1) and (b0b1) from M2n where css(M,a0a1) = ψ∗

and css(M, b0b1) = τ∗. By assumption css(M,a0) = css(M, b0), so we may assume a0 = b0.

Since all of the tuples b0, a1, and b1 have the same quantifier-free type, they are in the

same G-orbit, and similarly with b0a1 and b0b1. Thus Lemma 5.4.4 applies directly to the

triple (b0, b1, a1), so in particular b1 = a1. Thus ψ∗ = css(M, b0a1) = css(M, b0b1) = τ∗,

as desired. �

Fix some ψ ∈ S∞n (ϕ, p), and define Γ(ψ) to be the set of all p∗ ∈ qf2n(ϕ) such that

p∗�[0,n) = p∗�[n,2n) = p and such that for some ψ∗ ∈ S∞2n(ϕ, p∗), ψ∗�[0,n) = ψ.

By the Claim, if p∗ ∈ Γ(ψ), there is a unique ψ∗ ∈ S∞2n(ϕ) where π2n(ψ∗) = p∗ and

ψ∗�[0,n) = ψ. So define F (p∗) to be ψ∗�[n,2n). Evidently |Γ(ψ)| ≤ i1, so it is enough to

show that F : Γ(ψ)→ S∞n (ϕ, p) is surjective.

But this is almost immediate. Fix any τ ∈ S∞n (ϕ, p) and let V[H] be a forcing

extension in which ϕ is hereditarily countable, and let M be its unique countable model;

as before, we may assume M = MA for some A ∈ Pℵ1(X)V[H]. Choose any a ∈ An where

css(M,a) = ψ and any b ∈ An where css(M,a) = τ . Finally, let p∗ be the quantifier-free

type of ab in M . Clearly p∗ ∈ Γ(ψ) and F (p∗) = τ .
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This theorem will be crucial in Section 5.6.

5.5 Refining Equivalence Relations

We begin by defining an incomplete first-order theory REF. Its language is L =

{En : n ∈ ω} and its axioms posit:

• Each En is an equivalence relation;

• E0 has a single equivalence class;

• For all n, En+1 refines En; that is, every En-class is a union of En+1-classes.

The theory REF is very weak, which makes the generality of the following proposition

surprising.

Proposition 5.5.1. REF is grounded.

Proof. We begin with an analysis of an arbitrary model M of REF. As notation, for any

a ∈M and n ∈ ω, let [a]n denote the equivalence class of a, i.e., {b ∈M : M |= En(a, b)}.

As the equivalence relations refine each other, the classes T (M) = {[a]n : a ∈ M,n ∈ ω}

form an ω-tree, ordered by [a]n ≤ [b]m if and only if n ≤ m and [b]m ⊆ [an]. Next, let E∞ be

the equivalence relation given by E∞(a, b) if and only if En(a, b) for every n ∈ ω. Let [a]∞

be the E∞-class of a. Then M/E∞ can be construed as a subset of the branches [T (M)]

of T (M). As we are interested in determining models up to back-and-forth equivalence

(as opposed to isomorphism), the following definition is natural.

For each a ∈M , let the color of a, c(a) ∈ (ω + 1) \ {0} be given by

c(a) =


|[a]∞| if [a]∞ is finite

ω if [a]∞ is infinite
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Next, we describe some expansions of M to larger languages. For each n ∈ ω, let

Ln = L∪{Ui : i ≤ n}, where the Ui’s are distinct unary predicates. Given any M |= REF,

n ∈ ω, and a ∈ M , let Mn(a) denote the Ln-structure (M, [a]0, . . . , [a]n), i.e., where each

predicate Ui is interpreted as [a]i.

We now exhibit some invariants, which we term the data of M , written D(M) which

we will see only depend on the ≡∞,ω-equivalence class of M .

For each n ∈ ω, let

In(M) = {css(Mn(a)) : a ∈M}.

We combine the sets In(M) into a tree (I(M),≤) where I(M) =
⋃
n∈ω In(M) and, for

σn ∈ In(M) and ψm ∈ Im(M), we say σn ≤ ψm if and only if n ≤ m and ψm ` σn. That

is, if in any forcing extension the reduct of any model of ψm to Ln is a model of σn. Then

clearly (I(M),≤) is an ω-tree.

Continuing, for each n > 0 and σn ∈ In(M), let the multiplicity of σn, multM (σn) ∈

(ω+1)\{0}, be given by: multM (σn) = k < ω if k is maximal such that there are elements

{bi : i < k} ⊆M such that

∧
i<j<k

[
En−1(bi, bj) ∧ ¬En(bi, bj)

]
∧
∧
i<k

css(Mn(bi)) = σn

and let multM (σn) = ω if there is an infinite family {bi : i < ω} as above.

Now, each a ∈ M induces a canonical sequence SeqM (a) := 〈css(Mn(a)) : n ∈ ω〉,

which is clearly a branch through the tree I(M), and depends only on css(M,a). Let

Seq(M) = {SeqM (a) : a ∈M}. So Seq(M) ⊆ [I(M)], the set of branches of I(M). Finally,

for any s ∈ Seq(M), we define the color spectrum of s as SpM (s) := {c(a) : SeqM (a) = s}.

Thus, each SpM (s) is a non-empty subset of (ω + 1) \ {0}.

Define the data of M , D(M) := 〈(I(M),≤),multM , Seq(M), SpM 〉.
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Claim 1: For any M,N |= REF, M ≡∞,ω N if and only if D(M) = D(N).

Proof: First, note that if D(M) = D(N), then as the trees (I(M),≤) and (I(N),≤) are

equal, they have the same root, so css(M0(a)) = css(N0(b)) for some/every a ∈M, b ∈ N .

So M ≡∞,ω N .

For the forward direction, it is easy to check that D(M) only depends on the

isomorphism type of M , and also that D is absolute to forcing extensions. Hence if

M ≡∞ω N , then pass to a forcing extension V[G] in which M ∼= N ; then we get

(D(M))V = (D(M))V[G] = (D(N))V[G] = (D(N))V. �

To begin the proof of groundedness, choose any σ ∈ CSS(REF)ptl. Choose any

forcing extension V[G] of V in which σ ∈ HCV[G] and hence σ ∈ CSS(REF)V[G]. Choose

any model M ∈ V[G] with css(M) = σ. Working in V[G], compute D(M), the data of M .

However, in light of Claim 1, D(M) only depends on σ, and so by Lemma 5.2.5 D(M) ∈ V.

As σ is fixed, for the remainder of the argument we write

D = 〈(I,≤),mult, Seq, Sp〉.

To complete the proof of the Proposition, we work in V and ‘unpack’ the data D

to construct an L-structure N ∈ V such that in V[G], M ≡∞,ω N . Once we have this, as

σ = css(M), it follows that N |= σ and so N witnesses that σ ∈ CSS(REF)sat. That is,

the proof of groundedness will be finished once we establish the following Claim.

Claim 2: There is an L-structure N ∈ V such that V[G] |= ‘N ≡∞,ω M ’.

Proof: Before beginning the ‘unpacking’ of D, we note some connections between M

and D that are not part of the data. First, there is a surjective tree homomorphism

h : T (M) ∪M/E∞ → I ∪ Seq given by h([a]n) = css(Mn(a)) for n ∈ ω and h([a]∞) =

〈css(Mn(a)) : n ∈ ω〉. Note that for each s ∈ Seq and each k ∈ Sp(s), {[a]∞ : h(a) =
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s and c(a) = k} is dense in h−1(s). The following relationship between M and h follows

quickly:

(?)M,h: For every n ≥ 1, s ∈ Seq, k ∈ Sp(s), and a ∈ M such that

h([a]n−1) = s(n−1), there are pairwise En-inequivalent {di : i < mult(s(n))} ⊆

M such that

∧
i<mult(s(n))

En−1(di, a) ∧ h([di]∞) = s ∧ c(di) = k

We also identify two species of elements of Seq. Call s ∈ Seq of isolated type if

there is n ∈ ω such that mult(s(m)) = 1 for every m ≥ n and of perfect type otherwise.

The latter name is apt, as h−1(s) is perfect (has no isolated points) whenever s is not

of isolated type. We argue that if s ∈ Seq is of isolated type, then Sp(s) is a singleton.

Indeed, choose n such that mult(s(m)) = 1 for every m ≥ n and choose a, b ∈ M such

that h([a]∞) = h([b]∞) = s. We will show that c(a) = c(b). To see this, by applying

(?)M,h at level n + 1 with k = c(b), get d ∈ M such that En(a, d), h([d]∞) = s, and

c(d) = c(b). But now, as h([a]∞) = h([d]∞) = s, the choice of n implies that E∞(a, d).

Thus, c(a) = c(d) = c(b) as required.

We begin ‘unpacking’ D by inductively constructing an ω-tree (J,≤) and a surjective

tree homomorphism h′ : (J,≤) → (I,≤). Begin the construction of J =
⋃
n∈ω Jn by

taking J0 = {ρ0} to be a singleton and defining h′(ρ0) = σ. Suppose the nth level Jn

has been defined, together with h′ :
⋃
j≤n Jj →

⋃
j≤n Ij . For each ρn ∈ Jn, we define

its immediate successors SuccJ(ρn) as follows. Look at SuccI(h
′(ρn)) ⊆ In+1. For each

σn+1 ∈ SuccI(h′(ρn)), choose a set An+1(σn+1) of cardinality mult(σn+1) ∈ (ω + 1) \ {0}

such that the sets An+1(σn+1) are pairwise disjoint. Let

SuccJ(ρn) :=
⋃
{An+1(σn+1) : σn+1 ∈ SuccI(h(ρn))}
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and put Jn+1 :=
⋃
{SuccJ(ρn) : ρn ∈ Jn}. We extend h′ by h′(ρ) = σn+1 for every

ρ ∈ An+1(σn+1).

Now, having completed the construction of (J,≤) and the tree homomorphism h′ :

(J,≤)→ (I,≤), there is a unique extension (which we also call h′) h′ : [J ]→ [I] from the

branches of J to the branches of I such that h′(η) = s if and only if h′(η�n) = s(n − 1)

for every n ∈ ω.

The universe of the L-structure N we are building will be a subset of (h′)−1(Seq)×

(ω + 1) and for (η, i), (ν, j) ∈ N , we will interpret En by

En((η, i), (ν, j)) if and only if η�n = ν�n.

In particular, we will have [(η, i)]∞ = {(η, j) : (η, j) ∈ N}. To finish our description of N ,

we must assign a ‘color’ to the elements of (h′)−1(s), for each s ∈ Seq. Fix s ∈ Seq. First,

if s is of isolated type, then from above, we know that Sp(s) = {k} for a single color k ≤ ω.

Accordingly, put elements {(η, i) : i < k} into the universe of N for every η satisfying

h′(η) = s. For each s ∈ Seq that is not of isolated type, note that (h′)−1(s) has no isolated

points. Thus, we can choose a partition (h′)−1(s) =
⋃
Dk(s) into disjoint dense subsets

indexed by colors k ∈ Sp(s). Then, for each η ∈ Dk(s) put elements {(η, i) : i < k} into

the universe of N . This completes our construction of the L-structure N ∈ V, and it is

easily verified that this construction entails (?)N,h′ .

We now work in V[G] and demonstrate that M ≡∞,ω N . Indeed, all that we need

for this is that in V[G], both (?)M,h and (?)N,h′ hold. Let F consist of all (a, b) such that

lg(a) = lg(b), a from M , and b from N that satisfy for each i < lg(a), c(ai) = c(bi) and

h([ai]∞) = h′([bi]∞); and for each n ∈ ω, i < j < lg(a), M |= En(ai, aj) if and only if

N |= En(bi, bj) and ai = aj if and only if bi = bj .

To see that F is a back-and-forth system, choose any (a, b) ∈ F and choose any
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a∗ ∈ M . We will find b∗ ∈ N such that (aa∗, bb∗) ∈ F , and the argument in the other

direction is symmetric. If lg(a) = 0, or if a∗ ∈ a, it is obvious what to do, so assume this

is not the case. If E∞(a∗, ai) for some i, then as c(ai) = c(bi), we can find b∗ 6∈ b such

that E∞(b∗, bi) which suffices.

Now assume that ¬E∞(a∗, ai) holds for each i. Let k = c(a∗) and s = h([a∗]∞).

Let n > 0 be least such that ¬En(a∗, ai) for all i. Let A1 = {ai : En−1(a∗, ai)} and let

B1 be the associated subset of b. By the axioms of REF it suffices to find b∗ ∈ N such

that c(b∗) = k, h′([b∗]∞) = s, En−1(b∗, b) for some/every b ∈ B1, but ¬En(b∗, b) for every

b ∈ B1. To find such an element, let

A2 = {a ∈ A1 : there is some a′ ∈ [a]n such that c(a′) = k and h([a′]∞) = s}

Let A3 ⊆ A2 be any maximal, pairwise En-inequivalent subset of A2 and let ` = |A3|.

The set {a∗} ∪ A3 witnesses that mult(s(n)) > `. [More precisely, for each a ∈ A3,

choose a′ ∈ [a]n with c(a′) = k and h([a′]∞) = s. Then {a∗} ∪ {a′ : a ∈ A3} witnesses

mult(s(n)) > `.] Let B3 be the associated subset of b; so |Bs| = `.

Choose ai ∈ A1. Then by (?)N,h′ , applied at bi (noting that [bi]n−1 = s(n − 1)),

choose a family {di : i < mult(s(n))} as there. By pigeon-hole choose an i∗ < mult(s(n))

such that ¬En(di∗ , b) holds for all b ∈ B3. It is easily checked that di∗ is a possible choice

for b∗. As noted above, this completes the proof of the Claim. �

In particular, N |= σ, establishing groundedness.

We now turn our attention to two classical complete theories extending REF. These

are often given as first examples in stability theory. We denote them by REF(inf) and

REF(bin), respectively. REF(bin) is the extension of REF asserting that for every n, En+1

partitions each En-class into two En+1-classes, while REF(inf) asserts that for all n, En+1
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partitions each En-class into infinitely many En+1-classes.

The following facts are well known.

Fact 5.5.2. Both REF(bin) and REF(inf) are complete theories that admit quantifier

elimination.

• REF(bin) is superstable but not ω-stable; and

• REF(inf) is stable, but not superstable.

These examples are similar in that the isomorphism relation ∼= is not Borel on either

of them. However, it turns out that REF(inf) is Borel complete, and indeed, is λ-Borel

complete for every λ. On the other hand, ‖REF(bin)‖ = i2, and hence is far from being

Borel complete.

5.5.1 Finite Branching

In this subsection we show that Φ2 ≤B REF(bin), and ‖REF(bin)‖ = i2, and the

isomorphism relation of REF(bin) is not Borel.

For the following, it would be inconvenient to work with Φ2 directly. Instead, let

F2 be the equivalence relation on (2ω)ω defined by: (xn : n ∈ ω)F2(yn : n ∈ ω) if and only

if {xn : n ∈ ω} = {yn : n ∈ ω}. Then the quotient (2ω)ω/F2 is in natural bijection with

Pℵ1(2ω)\{∅}, so we think of F2 as representing countable sets of reals. It is not hard to

check that (Mod(Φ2),∼=) is Borel bireducible with ((2ω)ω, F2). So for Φ ∈ Lω1ω, showing

that Φ2 ≤B Φ is the same thing as showing F2 ≤B Φ.

Theorem 5.5.1. Φ2 ≤B REF(bin), i.e. F2 ≤B Φ.

Proof. Begin by building a special countable model M of REF(bin). Let S be the set of

sequences from 2ω which are eventually zero, and fix a bijection c : S → N. Let M be the
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set of all (η, n) where η ∈ S and n < c(η). As usual, say (η1, n1)Em(η2, n2) holds if and

only if η1 and η2 agree on the first m places. Clearly M is a model of REF(bin), and the

color of (η, n) is exactly c(η); observe that no element has color ℵ0. (Recall that the color

of a is the cardinality of [a]∞.) We will construct our models as superstructures of M ,

whose new elements all have color ℵ0 and are not E∞-equivalent to any element of M .

Let X ⊆ (2ω)ω be the set of all (xn : n ∈ ω) such that each xn 6∈ S. Then

(X,F2 �X) ∼=B ((2ω)ω, F2), via any Borel bijection between 2ω and 2ω\S. (By Corollary

13.4 and Theorem 4.6 of [33], any two uncountable Borel sets are in Borel bijection.) So

it suffices to show that (X,F2 �X) ≤B REF(bin). Given I ⊆ 2ω\S countable, let MI be

the L-structure extending M with universe M ∪ (I × ω), where again, (η1, n1)Em(η2, n2)

holds if and only if η1�m = η2�m.

It is not hard to check that one can define a Borel map f : X → Mod(REF(bin)),

such that for all x = (xn : n ∈ ω) ∈ X, f(x) ∼= M{xn:n∈ω}. Given that, it suffices to show

that for all distinct I, J ⊆ 2ω\S countable, MI 6∼= MJ .

So suppose MI
∼= MJ , say via g : MI →MJ . I aim to show that for all (η, n) ∈MI ,

g(η, n) = (η, n′) for some n′ < ω. This suffices to show I = J , since then I = {η :

(η, n) ∈ MI for all n} = {η : (η, n) ∈ MJ for all n} = J . So let (η, n) ∈ MI ; write

g(η, n) = (τ, n′). I show for each m < ω that η �m= τ �m. Indeed, pick ν ∈ S such that

ν �m= η �m. Then g(ν, 0) = (ν, k) for some k < c(τ), since g([(ν, 0)]∞) is the unique

E∞-class of MJ of size c(ν). Then since ((η, n)Em(τ, 0))MI , we have ((τ, n′)Em(ν, k))MJ .

Hence τ �m= ν �m= η �m.

We now proceed to show ‖REF(bin)‖ = i2. Actually we show more: let REF(fin)

denote the sentence of Lω1,ω extending REF, asserting additionally that every En-class is

partitioned into finitely many En+1-classes.
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Lemma 5.5.3. Every model M of REF(fin) has an ≡∞ω-equivalent submodel N ⊆M of

size at most i1.

Proof. For each E∞-class [a]∞ ⊆M , let

B([a]∞) =


[a]∞ if [a]∞ is countable

any countably infinite subset of [a]∞ if [a]∞ is uncountable

and let N be the substructure of M with universe
⋃
{B([a]∞) : a ∈ M}. It is easily seen

that N ≡∞,ω M . That N has size at most continuum follows from the finite splitting at

each level.

Combined with groundedness, this gives us the nonembedding result we wanted:

Theorem 5.5.2. ‖REF(bin)‖ = ‖REF(fin)‖ = I∞,ω(REF(bin)) = I∞,ω(REF(fin)) = i2.

In particular, both REF(bin) and REF(fin) are short and Φ3 6≤HC REF(bin),REF(fin).

Proof. Recall that each ‖Φα‖ = iα. Since Φ2 ≤B REF(bin), i2 = ‖Φ2‖ ≤ ‖REF(bin)‖.

On the other hand, since REF is grounded, ‖REF(fin)‖ = I∞,ω(REF(fin)) but the latter

cardinal is bounded above by i2 by Lemma 5.5.3. Thus, all four cardinals are equal

to i2. So, by definition, both REF(bin) and REF(fin) are short. As ‖Φ3‖ = i3, the

nonembeddability of Φ3 into either class follows from Theorem 5.3.11(2).

Finally, we show that isomorphism for REF(bin) is not Borel.

Theorem 5.5.3. Isomorphism on REF(bin) is not Borel.

Proof. It is commonly known – see for example Theorem 12.2.4 of [14] – that the iso-

morphism relation of a sentence Φ ∈ Lω1ω is Borel if and only if, for some α < ω1, ≡α

is sufficient to decide isomorphism on models of Φ (the ≡α’s are defined shortly). Since
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≡0 is implied by ≡ and REF(bin) is a complete theory with more than one countable

model, ≡0 does not decide isomorphism. We proceed by induction with a combined step

and limit induction step. So suppose α0 ≤ α1 ≤ · · · are such that each ≡αn does not

decide isomorphism. That is, for each n, there is a pair An, Bn of countable models of

REF(bin) which are nonisomorphic but where An ≡αn Bn. Let α = sup{αn + 1 : n ∈ ω}.

We will construct a pair (indeed, a large family) of countable models of REF(bin) that

are pairwise ≡α-equivalent but not isomorphic. This is sufficient.

Recall that among countable models M of REF(bin), the color of an element a ∈M

is the size of its E∞-class [a]∞. By adding an element to each finite E∞ class occurring

in An, Bn, respectively, we can suppose the color “1” does not occur in any of the An’s,

Bn’s.

Let C |= REF(bin) be the model with universe 2ω×ω, where as usual (η, n)Ek(τ,m)

if η �k= τ �k. C will serve as a ‘monster model’ of sorts; in particular we can suppose each

An, Bn are (elementary) substructures of C.

We begin by forming a single countable model M � C that encodes all of the com-

plexity of the models An, Bn. For s ∈ 2<ω, let (An)s be a ‘shift’ of An by s. Formally,

(An)s = {(s_ η, j) : (η, j) ∈ An} and we define (Bn)s analogously. Whereas the substruc-

tures An and (An)s of C are certainly not elementarily equivalent, the relationships between

An and Bn are maintained. That is, if lg(s) = lg(t), then for any n, (An)s ≡αn (Bn)t, but

because An 6∼= Bn, there is no elementary bijection f : (An)s → (Bn)t.

As notation, for i ∈ {0, 1} and n ∈ ω, let Sin be the subset of 22n+2 satisfying

• s(j) = 0 for every odd j < 2n;

• s(2n) = i; and
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• s(2n+ 1) = 1.

Note that not only are the sets Sin disjoint, but in fact, S∗ :=
⋃
{Sin : i ∈ {0, 1}, n ∈ ω} is

a maximal antichain of (2<ω,⊆) (with respect to incomparability). Let

M :=
⋃

n<ω,s∈S0
n

(An)s ∪
⋃

n<ω,s∈S1
n

(Bn)s

It is readily checked that M � C. Because every element of every An, Bn has color

distinct from 1, no element of M has color 1 either. As notation, we refer to the subsets

(An)s and (Bn)s as the s-bubbles of M . Obviously, for a specific choice of s, M contains

only one of (An)s or (Bn)s. We write M(s) for this s-bubble.

For each x ∈ 2ω, let x∗ ∈ 2ω be defined by x∗(j) = 0 if j is odd and x∗(j) = x(j/2)

if j is even. For each countable, dense subset X ⊆ 2ω, let

MX = M ∪ {(x∗, 0) : x ∈ X} and let S∗X = S∗ ∪ {x∗ : x ∈ X}

Clearly, M � MX � C and an element c ∈ MX has color 1 if and only if c 6∈ M . Write

MX(s) = M(s) for s ∈ Sin.

Claim 1: Let X,Y ⊂ 2ω be countable and dense. Then MX
∼= MY if and only if X = Y .

Proof: If X = Y then MX = MY . On the other hand, suppose X and Y are dense and

f : MX
∼= MY . We claim that for all η ∈ X, f(η∗, 0) = (η∗, 0). This suffices, since then

X = {η : (η∗, n) ∈ MX iff n = 0} ⊆ {η : (η∗, n) ∈ MY iff n = 0} = Y and by symmetry

Y ⊆ X.

So fix η ∈ X and write f(η∗, 0) = (τ∗, 0) where τ ∈ Y (f(η∗, 0) must be of this

form since it is of color 1 in MY ). Suppose towards a contradiction that η 6= τ ; let n be

least such that η(n) 6= τ(n). Let s = η∗ �2n+1
_(1) and let t = τ∗ �2n+1

_(1). Then our

purported isomorphism f would induce an elementary bijection between (An)s and (Bn)t

(or between (An)t and (Bn)s), which is impossible since An 6∼= Bn.
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By contrast, we have:

Claim 2: Let X,Y ⊂ 2ω be countable and dense. Then MX ≡α MY .

Proof: We recall that MX ≡α MY if and only if Player II has a winning strategy in the

following game G(MX ,MY , α):

Players I and II alternate moves. On Player I’s n-th turn, he either plays a pair

(an, βn) where an ∈ MX and βn is an ordinal with α > β0 > . . . > βn, or else he plays a

pair (bn, βn), where bn ∈MY and βn is an ordinal with α > β0 > . . . > βn. (Really Player

I should also specify which of MX , MY he is playing in, but we suppress this). On Player

II’s n-th turn, she plays either bn ∈ MY or an ∈ MX , depending on Player I’s move; she

is required to make sure that (a0, . . . , an) 7→ (b0, . . . , bn) is partial elementary from MX to

MY . This specifies the game, since Player I cannot survive indefinitely (in other words,

the first person to have no legal moves loses).

Now for each n < ω, we are assuming that An ≡αn Bn, where (αn : n < ω) is

increasing (possibly not strictly), and α = sup{αn + 1 : n < ω}. Fix a winning strategy

Γn for Player II in the game G(An, Bn, αn). Given s ∈ S0
n, t ∈ S1

n, let Γs,t = Γt,s be the

corresponding strategy for the game G((An)s, (Bn)t, αn). For s, t ∈ S0
n, (An)s ∼= (An)t; use

this to get Γs,t, a winning strategy for Player II in the game G((An)s, (An)t,∞). Similarly

define Γs,t for s, t ∈ S1
n.

We now describe a winning strategy Γ for Player II in the game G(MX ,MY , α).

Case 1: suppose Player I plays (a0, β0) where a0 = (η∗, 0) for some η ∈ X. Choose

n large enough so that αn ≥ β0. By back-and-forth, we can choose a tree isomorphism

F : (2<ω ∪X,⊆) ∼= (2<ω ∪ Y,⊆) such that F is the identity on 2n. Note that F induces a

tree isomorphism F ∗ : S∗X → S∗Y defined by F ∗(s∗) = F (s)∗. On the first move, Player II
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plays (F ∗(η∗), 0).

On subsequent moves:

If Player I plays ((ν∗, 0), β) where ν ∈ X, then Player II plays (F ∗(ν∗), 0).

If Player I plays ((ν∗, 0), β) where ν ∈ Y , then Player II plays ((F ∗)−1(ν∗), 0).

If Player I plays ((ν, k), β), where (ν, k) ∈MX(s) for some s ∈ S0
m∪S1

m, then Player

II plays according to Γs,F ∗(s), where we take as input all the previous moves that took

place in MX(s) and MY (F ∗(s)). This will be valid, since either m ≤ n, in which case

Γs,F ∗(s) actually describes an isomorphism, or else m > n, and so the ordinals involved in

the relevant previous moves will all be less than β0 ≤ αn.

If Player I plays ((ν, k), β), where (ν, k) ∈MY (s) for some s ∈ S0
n ∪ S1

n, then Player

II plays according to Γ(F ∗)−1(s),s, where we take as input all the previous moves that took

place in MX((F ∗)−1(s)) and MY (s).

Case 2: Suppose Player I plays (a0, β0) where a0 ∈ MX(s) for some s ∈ S0
N ∪ S1

N .

Choose n ≥ N such that αn ≥ β0. By back-and-forth, we can choose a tree isomorphism

F : (2<ω ∪ X,⊆) ∼= (2<ω ∪ Y,⊆) such that F is the identity on 2n. From F we obtain

F ∗ : S∗X → S∗Y as in Case 1. On the first move, Player II plays according to Γs,s, and

afterwards plays as in Case 1.

The remaining cases where Player I starts in MY are the same, just interchange the

roles of X and Y . �

With both claims finished, let X ⊂ 2ω be the set of sequences which are eventually

zero, and Y ⊂ 2ω be the set of sequences which are eventually one. Then MX ≡α MY

and MX 6∼= MY . This completes the induction and the proof.

This gives the first known example of the following behavior:
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Corollary 5.5.4. There is a complete first-order theory for whom isomorphism is neither

Borel nor Borel complete.

Here, the example is REF(bin), the paradigmatic example of a superstable, non-ω-

stable theory. Thus we might informally expect this behavior to be extremely common

for such theories. Since isomorphism is not Borel, we cannot truly consider REF(bin) to

be especially tame. However, the theory is relatively simple in the sense that it cannot

code much infinitary behavior. We end with the following class of examples which follow

naturally from this one:

Corollary 5.5.5. For any ordinal α with 2 ≤ α < ω1, there is a first-order theory Sα

whose isomorphism relation is not Borel, and where Φβ ≤B Sα if and only if β ≤ α. If α

is not a limit ordinal, we can arrange that Sα is complete.

For α not a limit ordinal, each of these theories is grounded, superstable, but not

ω-stable.

Proof. By Theorem 5.3.23 (and the proof, noting what we get is grounded, superstable

but not ω-stable).

In [89], the following question was asked:

Question 2. Let α be 0 or 1. Is there a first-order theory Sα whose isomorphism relation

is not Borel, and where Tβ ≤B Sα if and only if β ≤ α?

The instance of the above question for α = 0 is precisely Vaught’s conjecture for

first-order theories. (A theory T has a perfect set of nonisomorphic models if and only

if T1 ≤B T .) For α = 1, abelian p-groups are an infinitary counterexample. Soon after

the publication of [89], Mathew Harrison-Trainor answered the question positively [20] by

giving a first-order presentation of abelian p-groups.

281



5.5.2 Infinite Branching

We now turn our attention to REF(inf) specifically, and prove the following theorem:

Theorem 5.5.4. REF(inf) is Borel complete. Indeed, for each infinite cardinal λ, REF(inf)

is λ-Borel complete.

Proof. Let Φ be the Lω1ω sentence in the language {≤} describing ω-trees. By Theo-

rem 3.11 of [47], Φ is λ-Borel complete for each λ, so it is enough to produce a λ-Borel

reduction f from Modλ(Φ) to Modλ(REF(inf)).

Call a subtree S ⊂ λ<ω is reasonable if for every element s ∈ S, {α < λ : s_(α) 6∈ S}

is infinite. We describe an operation S 7→ MS sending reasonable subtrees of λ<ω of size

λ, to models of REF(inf) of size λ, such that S ≡∞ω S′ if and only if MS ≡∞ω MS′ . It will

then be routine to define a λ-Borel map f : Modλ(Φ)→ Modλ(REF(inf)), such that given

S′ ∈ Modλ(Φ) there is some subtree S ⊂ λ<ω reasonable with S ∼= S′ and f(S′) ∼= MS .

Then f will be the desired reduction.

Let I ⊂ λω be the set of all ω-sequences from λ which are eventually zero. For any

set M satisfying

I × {0} ⊆M ⊆ I × {0, 1}

if we construe M as an L = {En : n ∈ ω}-structure by the rule En((η, i), (ν, j)) if and

only if η�n = ν�n, then M is a model of REF(inf).

So, given a reasonable subtree S ⊂ λ<ω of size λ, let MS be the L-structure whose

universe is

(I × {0}) ∪ {(η, 1) : t _ (1) ⊂ η for some t ∈ λ<ω \ S}

We check that the mapping S 7→MS works.
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To see this, we describe an inverse operation. Given any L-structure M whose

universe satisfies I × {0} ⊆M ⊆ I × {0, 1}, let

Tr(M) = {s ∈ λ<ω : ∀α < λ∃η ∈ λω [s _ (α) ⊂ η and (η, 1) 6∈M ]}

We first argue that for any subtree S ⊆ λ<ω, we have Tr(MS) = S. Indeed, suppose

s ∈ S. Choose α ∈ λ arbitrarily. Then the element η := s _ (α) _ 0 of I witnesses that

s ∈ Tr(MS). Conversely, if s 6∈ S then as (η, 1) ∈MS for every η ⊃ s _ (1), s 6∈ Tr(MS).

Thus, in particular, Tr(MS) is a subtree of λ<ω whenever S is.

Claim: For any subtrees S, T of λ<ω, if the L-structures MS ≡∞,ω MT , then (S,⊆) ≡∞,ω

(T,⊆).

Proof: Assume MS ≡∞,ω MT . Pass to a forcing extension V[G] in which λV is count-

able. Choose an L-isomorphism f : MS → MT . This induces a tree isomorphism

f∗ : (Tr(MS),⊆) → (Tr(MT ),⊆). Combined with the computation above, (S,⊆) and

(T,⊆) are isomorphic in V[G], so they are back-and-forth equivalent in V. �

To complete the proof, suppose two reasonable subtrees satisfy (S,⊆) ≡∞ω (T,⊆).

Pass to a forcing extension wherein λ is countable, so that S ∼= T . Then, since S and T

are reasonable, we can choose a tree automorphism f : (λ<ω,⊆) ∼= (λ<ω,⊆) that carries

S to T . Then clearly f induces an L-isomorphism from MS to MT . This implies that the

L-structures MS and MT are back-and-forth equivalent in the ground model.

The following Corollary follows immediately from Corollary 5.3.16, Proposition 5.5.1,

and Theorem 5.5.4.

Corollary 5.5.6. REF(inf) is not short. Indeed, REF(inf) has class-many≡∞ω-inequivalent

models in V.
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5.6 ω-Stable Examples

Here we discuss two more first-order theories whose isomorphism relations are not

Borel, but where one is Borel complete, and the other does not embed Φ3. Interestingly,

both are extremely similar model-theoretically. Both are ω-stable with quantifier elim-

ination, and have ENI-NDOP and eni-depth 2, which together give a strong structure

theorem in terms of stability theory.2

Let us define the theories. The first, K, is due to Koerwien and constructed in [42].

The language has unary sorts U , Vi, and Ci, as well as unary functions Si and πji for i ∈ ω

and j ≤ i+ 1. The axioms are as follows:

• The sorts U , Vi, and Ci are all disjoint. U and each of the Vi are infinite, but each

Ci has size 2.

• πi+1
i is a function from Vi to U ; πji is a function from Vi to Cj when j ≤ i.

• For each tuple c = (c0, . . . , ci) and each u ∈ U , π−1
i (c, u) is nonempty. Here πi refers

to the product map π0
i × · · · × π

i+1
i : Vi → C0 × · · ·Ci × U .

• Si is a unary successor function from Vi to itself, and πi ◦ Si = πi.

We have a few remarks. Typically we will drop the subscript on πi and Si if it is

clear from context. There is a slight ambiguity about the sorts, whether one works in

traditional first-order logic (and thus there may be “unsorted” elements) or in multisorted

2In [47], an attempt is made to characterize which first-order ω-stable theories are Borel complete, using

the dividing lines: ENI-DOP vs ENI-NDOP, and eni-deep vs eni-shallow. In particular, it is shown that

any ω-stable theory which either has ENI-DOP or is eni-deep is Borel complete; and if an ω-stable theory

has both ENI-NDOP and is eni-shallow, then it has fewer then iω1 -many models up to back-and-forth

equivalence.
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logic (where there will not be). Since the unsorted elements never have any effect other

than to complicate notation, we work in multisorted logic.

The properties of K have been well studied by Koerwien in [42]; we summarize his

findings here:

Theorem 5.6.1. K is complete with quantifier elimination. It is ω-stable, has ENI-NDOP,

and is eni-shallow of eni-depth 2. Furthermore, the isomorphism relation for K is not Borel.

The proof in [42] that isomorphism for K is not Borel is rather involved, but one

can imitate Theorem 5.5.3 to give a much simpler proof.

Our other theory is a tweak of K, so we call it TK (T is for “tweaked”). The

language is slightly different; we have unary sorts U , Vi, and Ci as before, but have unary

functions Si, π
0
i , π

1
i , and τi+1 for i ∈ ω. The axioms are as follows:

• The sorts U , Vi, and Ci are all disjoint. U and each of the Vi are infinite, but each

Ci has size 2i.

• τi+1 is a surjection from Ci+1 to Ci where, for all c ∈ Ci, |τ−1
i+1(c)| = 2.

• π1
i is a function from Vi to U ; π0

i is a function from Vi to Ci.

• For each tuple c ∈ Ci and each u ∈ U , π−1
i (c, u) is nonempty. Here πi refers to the

product map π0
i × π1

i : Vi → Ci × U .

• Si is a unary successor function from Vi to itself, and πi ◦ Si = πi.

The preceding notes also apply to K. The behavior is extremely similar, and essen-

tially the same proofs of basic properties of K apply to TK. We summarize this now:

Theorem 5.6.2. TK is complete with quantifier elimination. It is ω-stable, has ENI-NDOP,

and is eni-shallow of eni-depth 2.
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We can easily see that both K and TK have relatively few models up to back-and-

forth equivalence:

Proposition 5.6.1. I∞,ω(K) = I∞,ω(TK) = i2.

Indeed, every model M of either theory has a submodel N where M ≡∞ω N and

|N | ≤ i1.

Proof. Let T be either K or TK. For the proof of the proposition we can restrict attention

to models of T with a fixed algebraic closure of the empty set
⋃
iCi. If T = K, then let

C be all finite sequences (aj : j < i) with i > 0 and with each aj ∈ Cj ; if T = TK then

let C =
⋃
iCi.

We first show I∞,ω(T ) ≥ i2. For each η ∈ 2ω, let uη be some element which will

eventually be part of U in some model of T . For any n ∈ ω and any c ∈ C where π−1
n (c, uη)

is nonempty, we insist the Sn-dimension of π−1
n (c, uη) be infinite if η(n) = 1, or equal to

one otherwise. (If T = K, then π−1
n (c, uη) is nonempty if and only if lg(c) = n; if T = TK

then π−1
n (c, uη) is nonempty if and only if c ∈ Cn.) For any infinite X ⊆ 2ω, define MX

to have UMX = {uη : η ∈ X} with the described behavior of the Vi and Si. Evidently

if Y ⊆ 2ω is infinite and X 6= Y , then for any η ∈ X \ Y , there is no ν ∈ Y where

(MX , uη) ≡∞ω (MY , uν), and symmetrically. Thus, MX 6≡∞ω MY . Since there are i2

infinite subsets of 2ω, I∞ω(T ) ≥ i2.

That I∞ω(T ) ≤ i2 follows immediately from the second claim. So let M be some

model of T , of any particular cardinality. We begin by stripping down the Vi. For every

u ∈ U and c ∈ C, if π−1(c, u) is uncountable, drop all but a countable S-closed subset

of infinite S-dimension. Do this for all pairs (c, u). The result is ≡∞ω-equivalent to the

original by an easy argument, and π−1(c, u) is now always countable.

Next we need only ensure that U has size at most continuum. So put an equivalence
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relation E on U , where we say uEu′ holds if and only if, for all c ∈ C, the dimensions of

π−1(c, u) and π−1(c, u′) are equal. If any E-class is uncountable, drop all but a countably

infinite subset; the resulting structure is ≡∞ω-equivalent to the original again. Further,

each E-class is now countable, and there are only |Cω| = i1 possible E-classes, so the

structure now has size at most i1. This completes the proof.

Any additional complexity of either theory comes from elementary permutations of

the algebraic closure of the empty set. In any model M of either K or TK, aclM (∅) =⋃
i∈ω Ci(M). In models M of TK, the projection functions {τi} naturally induce a tree

structure, so we think of aclM (∅) as being a copy of (2<ω,≤). In models M of K, as

each Ci(M) has exactly two elements, so one can think of aclM (∅) as being indexed by

2 × ω. Note, however, there is some freedom with all this; for our purposes, aclM (∅)

could equally well be viewed as any subset of aclMeq(∅) whose definable closure contains

aclM (∅) (here M eq is the result of eliminating imaginaries from M). In the case M |= K

it is most convenient to say that aclM (∅) is all finite sequences 〈aj : j < i〉, where each

aj ∈ Cj(M). These finite sequences, when ordered by initial segment, also give a natural

correspondence of aclM (∅) with the tree (2<ω,≤). Henceforth, when discussing models M

of either K or TK, we will view aclM (∅) as being indexed by the tree (2<ω,≤).

Next, we discuss the group G of elementary permutations of aclM (∅) (which only

depends on the theory). For K, the relevant group is (2ω,⊕), the direct product of ω

copies of the two-element group. Indeed, in any model of K, any elementary permuation

of aclM (∅) is determined by the sequence of permutations of Ci(M). In TK, as elemen-

tary permutations just have to respect the τi structure, the relevant group of elementary

permutations is Aut(2<ω,≤). Both of these groups are compact (in fact this is true for all

first order theories), but only the group for K is abelian. It turns out that being abelian
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is enough to produce relative simplicity, while being nonabelian leaves enough room to

allow TK to be Borel complete.

For the next proposition we need some setup.

Let X be the Polish space of all f : 2<ω → (ω + 1\{∅}). Let T be either K or

TK, and let G be either (2ω,⊕) or Aut(2<ω,≤), respectively. G acts on 2<ω naturally:

if G = (2ω,⊕), then g · σ = g�|σ| ⊕ σ. If G = Aut(2<ω,≤), then g · σ = g(σ). From this

we get an action of G on X: namely for f ∈ X, g ∈ G, (g · f)(σ) = f(g−1 · σ). This is

an HC-forcing invariant, continuous action in the sense of Definition 5.4.1. Let EG be the

equivalence relation on X induced by the action, as well as the equivalence relation on

Pℵ1(X) induced by the diagonal action.

Now G acts diagonally on Xω also; this action commutes with the permuation action

of S∞ on Xω. So G × S∞ acts naturally on Xω; let EG×S∞ be the equivalence relation

induced by this action.

Proposition 5.6.2. Let T be either K or TK. Then:

• (Mod(T ),∼=) ∼B (Xω, EG×S∞).

• (Mod(T ),∼=) ∼HC (Pℵ1(X), EG).

Proof. For the various codings below, fix a pairing function 〈·, ·〉 : (ω+ 1\∅)2 → (ω+ 1\∅).

Note that one difference between K and TK that frequently affects the coding is: π−1(∅, u)

is only nonempty for models of TK.

To show (Mod(T ),∼=) ≤B (Xω, EG×S∞), first let M ∈ Mod(T ) be arbitrary. We

may choose an indexing of aclM (∅) by 2<ω , and of UM by ω, using the original indexing

of the universe of M by ω. Then each element u ∈ UM induces a function cu ∈ X, where

cu(σ) is the S-dimension of π−1(σ, u). (In the case of T = K, define cu(∅) = 1.) Then
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take M to the sequence (cun : n ∈ ω), where un is the n-th element of U . It is clear that

this works.

To show (Xω, EG×S∞) ≤B (Mod(T ),∼=), fix a sequence x = (xn : n ∈ ω). We

describe the case for the theory K. We define Mx to have UMx = {4n : n ∈ ω}, and have

CMx
i = {4i + 1, 4i + 2}. Then, using the infinitely many remaining elements, we arrange

that for each σ ∈ 2<ω\∅ and each n < ω, the S-dimension of π−1(σ∗, 4n) is 〈xn(σ), xn(∅)〉,

where σ∗ = (4i+ 1 + σ(i) : i < lg(σ)). The case for TK is similar.

We have shown that (Mod(T ),∼=) ∼B (Xω, EG×S∞). It follows that they are

≤HC-biembeddable; so to conclude the proof of the proposition it suffices to show that

(Xω, EG×S∞) ∼HC (Pℵ1(X), EG).

To show (Xω, EG×S∞) ≤HC (Pℵ1(X), EG), we just need to handle multiplicities. So

fix x = (xn : n ∈ ω) ∈ Xω, and for each n, define mx(n) to be |{m : xm = xn}|. For each

n ∈ ω let yn ∈ X be defined by: yn(σ) = 〈xn(σ),mx(n)〉. Then x 7→ {yn : n < ω} works.

We define a reverse embedding f : (Pℵ1(X), EG) ≤HC (Xω, EG×S∞) as follows (where

recall that we do not require f to be single-valued). Namely, given A ⊂ X countable and

given x ∈ Xω, put (A, x) ∈ f whenever x is an infinite-to-one enumeration of A. Also put

(∅, x) ∈ f for some fixed injective x ∈ Xω.

5.6.1 Koerwien’s Example

For this subsection, we show that Φ2 ≤B K, and that ‖Φ2‖ptl = i2. The former is

quite straightforward:

Proposition 5.6.3. Φ2 ≤B K, i.e. F2 ≤B K.

Proof. Let X ⊂ 2ω be countable; we describe a model MX |= K from which X can be

easily recovered. Let U be the set A ∪ X, where A is some countable infinite set which

289



is disjoint from X. Let Ci = {ci0, ci1}. For each tuple (a, c) with a ∈ A, arrange that

π−1(a, c) has S-dimension 1. For each tuple (x, c) with x ∈ X, arrange that π−1(x, c) has

S-dimension x(|c|) + 2. Clearly MX
∼= MY if and only if X = Y .

Now it is not hard, given x = (xn : n ∈ ω) ∈ (2ω)ω, to produce in a Borel fashion

a model Mx |= K with universe ω, such that Mx
∼= M{xn:n∈ω}. This gives a Borel

reduction from ((2ω)ω, F2) to (Mod(K),∼=), which suffices (see the discussion preceding

Theorem 5.5.1).

Theorem 5.6.3. ‖K‖ = i2. Therefore, K is not Borel complete; indeed, there is no Borel

embedding of Φ3 into Mod(K).

Proof. That ‖K‖ ≥ i2 follows immediately from Proposition 5.6.1. Since G = (2ω,⊕) is

compact and abelian, ‖(Pℵ1(X), EG)‖ ≤ i2 by Theorem 5.4.8. As ‖K‖ = ‖(Pℵ1(X), EG)‖

by Proposition 5.6.2, we conclude that ‖K‖ = i2. That there is no Borel embedding of

Φ3 into Mod(K) is immediate from Theorem 5.3.11(2) and Proposition 5.3.21.

Once we have one such example, we can apply the usual constructions to get a large

class of ω-stable examples:

Corollary 5.6.4. For each non-limit ordinal α with 2 ≤ α < ω1, there is an ω-stable

theory Sα whose isomorphism relation is not Borel and where Tβ ≤B Sα if and only if

β ≤ α.

Proof. By Theorem 5.3.23 (and its proof).

There is no such example when α = 0, since Vaught’s Conjecture holds for ω-stable

theories. (T has a perfect set of nonisomorphic models if and only if T1 ≤B T , and so

whenever T is ω-stable, either T ≤B T0 or T1 ≤B T .) It is open if there is an example

when α = 1 (the example provided by Harrison-Trainor in [20] is not ω-stable).
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5.6.2 A New ω-Stable Theory

We now consider TK, with the aim of showing it is Borel complete. Indeed with

Proposition 5.6.2 we have already shown (Mod(TK),∼=) is Borel equivalent to (Xω, EG×S∞),

where X is the space of all c : 2<ω → ω. (We are replacing ω+ 1\∅ with ω, which is harm-

less.) Recall that G = Aut(2<ω,≤) acts on X by permuting the fibers; that is, for any

c : 2<ω → ω, any g ∈ G, and any σ ∈ 2<ω, (g · c)(σ) = c(g−1 · σ). Then G acts on Xω

diagonally, while S∞ acts on Xω by permuting the fibers, so these actions commute with

one another and induce an action of the product group G× S∞.

Thus, to show TK is Borel complete, it is enough to show (Xω, EG×S∞) is Borel

complete, which we do directly.

Theorem 5.6.4. (Graphs,∼=) ≤B (Xω, EG×S∞).

Proof. To simplify notation, for the whole of this proof we write E in place of EG×S∞ .

We need some setup first. Observe that G naturally acts on 2ω, the set of branches of

(2<ω,≤), by g · σ =
⋃
n g · σ�n; this is a well-defined sequence precisely because g is a tree

automorphism. Let {Di : i ∈ ω} be a countable set of dense, disjoint, countable subsets

of 2ω, and let D =
⋃
iDi. We need one claim, where we use the relative complexity of G

(it would not go through if we replaced TK with K):

Claim: For any σ ∈ S∞, there is some g ∈ G where for all i ∈ ω, g ·Di = Dσ(i) as sets.

Proof: We construct g by a back-and-forth argument. So let F be the set of finite partial

functions from D to itself, satisfying all the following:

• For each f ∈ F and each η ∈ dom(f), if η ∈ Di, then f(η) ∈ Dσ(i).

• For each f ∈ F and each η, ν ∈ dom(f), lg(η ∧ ν) = lg(f(η) ∧ f(ν)), where η ∧ ν

denotes the longest common initial segment of η and ν.
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• The previous conditions, but with f−1 and σ−1 instead of f and σ.

Suppose we have established that F is a back-and-forth system, then F defines

g ∈ G with the desired property. Choose a bijection f : D → D such that the finite

restrictions of f all lie in F . If s ∈ 2n, let g(s) be f(η)�n for any η extending s; because of

the consistency properties of F , and because D is dense, this is well-defined. Then clearly

g ∈ G has the desired property with respect to σ.

So we need only show that F is a back-and-forth system. Of course the empty

function is in F . So say f ∈ F and η ∈ 2ω; we want f ′ ⊃ f in F with η ∈ dom(f ′). The case

where f is empty is easy, so suppose f is nonempty. We also assume η 6∈ dom(f) already.

Let n be maximal among {lg(η ∧ ν) : ν ∈ dom(f)}, and let ν ∈ dom(f) be such that

lg(η ∧ ν) = n. We then pick an element f(η) of 2ω which extends f(ν)�n _ (1− f(ν)(n)).

That is, f(η) agrees with f(ν) before stage n, but disagrees with it at n. If η ∈ Di, choose

this element from Dσ(i), which is possible by density. This clearly satisfies the desired

properties, and the other direction is symmetric, proving the claim. �

Given η, τ ∈ 2ω and k ∈ {1, 2, 3}, let ckη,τ : 2<ω → ω be the coloring which sends

s ∈ 2<ω to k, if s ⊂ η or s ⊂ τ , or 0 otherwise. Also, fix a bijection ρ : ω →
⋃
i≤j Di×Dj .

We have now fixed enough notation and can describe our map f : Graphs→ Xω.

Let R be a graph on ω – that is, R is a binary relation on ω which is symmetric and

irreflexive. For each n ∈ ω, ρ(n) is a pair (η, τ) ∈ Di ×Dj for some i ≤ j. If i = j, define

cn = c1
η,τ . If i < j and {i, j} ∈ R, then let cn = c2

η,τ . Otherwise let cn = c3
η,τ . Then put

f(R) := (cn : n ∈ ω). f(R) is a visibly element of Xω, and clearly f is Borel. Note also

that f is injective.

Suppose σ : (ω,R) ∼= (ω,R′) is a graph isomorphism. We show that f(R)Ef(R′).

By the claim, there is a g ∈ G where for all i ∈ ω, g ·Di = Dσ(i). Let A be the range of
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f(R) and let A′ be the range of f(R′). We show that g · A = A′ setwise. First suppose

c1
η,τ ∈ A. Let i be such that η, τ ∈ Di, so g(η), g(τ) ∈ Dσ(i). Then g · c1

η,τ = c1
g(η),g(τ) ∈ A

′.

Similarly if c2
η,τ ∈ A, there is some i < j where η ∈ Di, τ ∈ Dj , and {i, j} ∈ R. Since

σ : (ω,R)→ (ω,R′) is a graph isomorphism, {σ(i), σ(j)} ∈ R′, so c2
g(η),g(τ) ∈ A

′ (this uses

c2
g(η),g(τ) = c2

g(τ),g(η)). The case c3
η,τ ∈ A is the same. Thus g · A ⊂ A′; by a symmetric

argument g ·A = A′. Since g · f(R) and f(R′) are both injective and they have the same

range, some permutation of g · f(R) is equal to f(R′), i.e. f(R)Ef(R′).

It only remains to show that if f(R)Ef(R′), then (ω,R) ∼= (ω,R′). So suppose

f(R)Ef(R′). Let A be the range of f(R) and let A′ be the range of f(R′), and choose

g ∈ G such that g · A = A′. Let i < ω; then since for all η, τ ∈ Di, c
1
g(η),g(τ) ∈ A

′, we

have that g ·Di = Dσ(i) for some σ(i) < ω. I claim that σ : (ω,R) ∼= (ω,R′). Indeed, for

i < j, (i, j) ∈ R if and only if there are η ∈ Di, τ ∈ Dj with c2
η,τ ∈ A, which is the case if

and only if there are η ∈ Dσ(i), τ ∈ Dσ(j) with c2
η,τ ∈ A′, which is the case if and only if

(i, j) ∈ R′.

We have now shown:

Theorem 5.6.5. TK is Borel complete.

Proof. By Theorem 5.6.4, together with the fact that graphs are Borel complete.

This resolves a few open questions, raised in [47]:

Corollary 5.6.5. The ω-stable theory TK is Borel complete, but does not have ENI-DOP

and is not eni-deep. Indeed TK is not λ-Borel complete for any λ with 2λ > i2, as

|CSS(TK)sat| = i2.
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Chapter 6: Borel Complexity, Thickness, and the Schröder-Bernstein Property

One limitation of potential cardinality is that there exist sentences Φ which are not

short (i.e. ‖Φ‖ = ∞) and yet Φ is not Borel complete. For example, let TAG1 ∈ Lω1ω

describe torsion abelian groups. Using Ulm’s classification of countable torsion abelian

groups [86], we can identify CSS(TAG1)ptl with P(ON) (the class of all sets of ordinals).

In particular TAG1 is not short. But as mentioned above, Friedman and Stanley showed

in [12] that TAG1 is not Borel complete, and in fact that Φ2 6≤B TAG1.

We can identify CSS(Φ2)ptl with P(R) (i.e., with P(P(ω))). We wish to be able to

apply a counting argument based to see that Φ2 6≤B TAG1. The motivating idea is that

|P(R)∩Vω1 | = i2, but |P(ON)∩Vω1 | = i1, and we should be able to conclude something

from this.

The need for this becomes more pressing if we consider the Friedman-Stanley jumps

of TAG1. Namely, in Section 5.3.4 (of the previous chapter), for any sentence Φ of Lω1ω

and for any α < ω1, we defined the tower of Friedman-Stanley jump Jα(Φ); the special

case where Φ = Th(Z, S) gives the Friedman-Stanley tower (Φα : α < ω1). In general,

provided Φ has infinitely many countable models, we can identify CSS(Jα(Φ))ptl with

Pα(CSS(Φ))ptl, where Pα is the powerset operation iterated α-many times, taking unions

at limits.

In particular, for each α < ω1, we can identify CSS(Φα)ptl with Pα(ω). Let

TAG1+α = Jα(TAG1) for each α; then we can identify each CSS(TAGα)ptl with Pα(ON).
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Note that for α ≥ 1, |Pα(ω)∩Vω1 | = |Pα(ON)∩Vω1 | = iα, so we are led to suspect that

Φα+1 6≤B TAGα for all α < ω1. The proof in [12] that Φ2 6≤B TAG1 does not generalize,

and it seems that a counting argument is the most natural way to proceed.

In this chapter, I introduce a new invariant called thickness that captures these

counting arguments. Namely, for each sentence Φ ∈ Lω1ω, we get the thickness spectrum

τ(Φ, ·) of Φ, a function from cardinals to cardinals; τ(Φ, ·) is closely related to |CSS(Φ)ptl∩

Vλ+ |, but might be slightly smaller. It follows immediately from the definition that for

every λ, τ(Φ, λ) ≤ |CSS(Φ)ptl ∩ Vλ+ | ≤ iλ+ , and τ(Φ, ·) is monotonically increasing, and

limλ→∞ τ(Φ, λ) = ‖Φ‖.

Recall that if T is a complete countable theory, then I(T, ·) is the spectrum of T ,

where I(T, λ) is the number of models of T of size λ, up to isomorphism. For classification

theory of uncountable models, this turns out to be a very fruitful source of dividing lines,

as exposed by Shelah in [75]. We view τ(Φ, ·) as an analogue of this for countable model

theory.

The definition of thickness is arranged so that it is a Borel-reducibility invariant:

Theorem 6.0.1. Suppose Φ ≤B Ψ. Then for every cardinal λ, τ(Φ, λ) ≤ τ(Ψ, λ).

Thickness is not necessarily an ≤HC-reducibility invariant; we could have modified

the definition of τ to make this so, but this would introduce technical complications at

various stages. It is more convenient to refine ≤HC slightly. In Section 6.1, we introduce

a large family of reducibility notions between ≤B and ≤HC. These will be parametrized

by robust Γ; these are countable subsets of the elementary diagram of (HC,∈) with some

additional nice properties. In particular, if Γ is robust then Γ extends ZFC−. Given some

robust Γ, we will say that Φ ≤Γ Ψ if there is some HC-definable injection f : CSS(Φ) →

CSS(Ψ) which is absolute to countable transitive models of Γ. Now, Borel reductions are

295



absolute to transitive models of ZFC−, and hence if Φ ≤B Ψ then Φ ≤ZFC− Ψ, and thus

Φ ≤Γ Ψ for all robust Γ. Further, it is easy to check that each ≤Γ⊆≤HC. The definition

of thickness is arranged so that if Φ ≤Γ Ψ for some robust Γ, then for every cardinal κ,

τ(Φ, λ) ≤ τ(Ψ, λ).

In fact, there is another important notion of reducibility along these lines, namely

absolute ∆1
2-reducibility, as first discussed in Chapter 9 of [22]. We will also have that if

Φ ≤a∆1
2

Ψ, then for every cardinal λ, τ(Φ, λ) ≤ τ(Ψ, λ).

As a first application of the definition of thickness, I show the following in Section 6.5

(using technical lemmas from Sections 6.3 and 6.4):

(I) For every α < ω1 and for every cardinal λ, τ(Φα, λ) = iα;

(II) For every α < ω1 and for every regular strong limit λ, τ(TAGα, λ) = iα(λ);

(III) For every Borel complete Φ and for every regular strong limit λ, τ(Φ, λ) = iλ+ ;

(IV) Moreover, (II) and (III) can be arranged to hold at every regular cardinal λ in a

class-forcing extension of V, without adding any reals.

Note that a regular strong limit cardinal is either ℵ0 or inaccessible. In particular,

τ(Φα,ℵ0) = τ(TAGα,ℵ0) = iα; thus, we obtain that Φα+1 6≤B TAGα for all α < ω1,

generalizing the theorem of Friedman and Stanley in [12] that Φ2 6≤B TAG1.

We present another application of the thickness machinery, namely to the Schröder-

Bernstein property:

Say that a complete first order theory T has the Schröder-Bernstein property in the

class of all models if whenever M,N |= T are elementarily bi-embeddable, then they are

isomorphic. This notion was originally introduced by Nurmagambetov [69], [68] (without

the phrase “in the class of all models”), and further studied by Goodrick in several papers,
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including his thesis [17]. There, he proves that if T has the Schröder-Bernstein property,

then T is classifiable of depth 1, i.e. I(T,ℵα) ≤ |α+ ω|2ℵ0 for all α.

We deviate from this set-up in two ways. First, we are interested in Schröder-

Bernstein properties for countable structures (or generally for potential canonical Scott

sentences). Second, it is convenient in applications to use the following notion of embed-

ding.

Definition 6.0.2. Suppose L is a language, and M,N are L-structures. Then say that

f : M ≤ N is an embedding if it is a homomorphism; that is, f commutes with the

function symbols, and if R is an n-ary relation, then f [RM ] ⊆ RN .

This allows the most freedom. If one wanted to look at elementary embedding, then

just Morleyize; generally, we can pass to Lω1ω-definable expansions to get whatever notion

we wanted.

Definition 6.0.3. Say that Φ has the Schröder-Bernstein property if for all M,N |= Ψ

countable, if M ∼ N then M ∼= N .

Note that this is rather sensitive to the choice of language.

Some initial properties of the Schröder-Bernstein property are developed in Sec-

tion 6.6.

In Section 6.7, we prove the following. κ(ω), the ω’th Erdös cardinal, be the least

cardinal satisfying κ→ (ω)<ω2 ; κ(ω) cannot be proven to exist in ZFC, but it is relatively

low in the hierarchy of large cardinal axioms.

Theorem 6.0.4. Assume κ(ω) exists, and suppose Φ has the Schröder-Bernstein property.

Then for every cardinal λ, τ(Φ, λ) ≤ λ<κ(ω), so in particular TAG1 6≤B Φ.
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We view this as a striking analogy to Goodrick’s theorem, that if T has the Schröder-

Bernstein property in the class of all models, then for all κ, I(T,ℵα) ≤ |α+ ω|2ℵ0 .

In fact, in Section 6.6, we introduce the α-ary Schröder-Bernstein property for a

given ordinal α, where the 0-ary Schröder-Bernstein property is the same as the Schröder-

Bernstein property. In Section 6.7, we actually prove the following:

Theorem 6.0.5. Assume κ(ω) exists, and suppose Φ has the α-ary Schröder-Bernstein

property. Then for every cardinal λ, τ(Φ, λ) ≤ iα(λ<κ(ω)). Thus, if α < ω1, then

TAGα+1 6≤B Φ.

Motivated by this, we formulate the following conjecture. It is analogous to Shelah’s

Main Gap theorem for complete countable theories, which says that for all T , either

I(T, λ) = 2λ for all λ, or else there is α < ω1 such that always I(T,ℵβ) ≤ iα(|β|).

Conjecture. Suppose there are sufficient large cardinals; for example, suppose there is

a supercompact cardinal σ. Suppose Φ is a sentence of Lω1ω. Then the following are

equivalent:

1. There is some α < ω1 such that for every cardinal λ, τ(Φ, λ) ≤ iα(λ<σ);

2. There is some α < ω1 such that τ(Φ, σ) ≤ iα(σ);

3. τ(Φ, σ) < iσ+ ;

4. There is some inaccessible cardinal λ such that τ(Φ, λ) < iλ+ ;

5. Φ is not Borel complete.

We have shown all of the downward implications (i.e. 1 → 2 → 3 → 4 → 5) but

none of the upward implications.
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The overall strategy of Shelah’s proof of the Main Gap theorem was to find a syntac-

tic equivalent to having I(T, λ) = 2λ for all λ; at present, we lack a syntactic understanding

of any of the above conditions, and this seems to be the current barrier to progress.

6.1 A Plethora of Reducibility Notions

HC refers to the hereditarily countable sets. When speaking of definability prop-

erties of subsets of HC, it is customary practice of descriptive set theory to work in the

codes. That is, we would fix a canonical coding of HC by the reals (i.e. a surjection

from HC onto R), and then say that a subset of HC is absolutely ∆1
2 in the codes if its

preimage under the coding operation is absolutely ∆1
2. However, we will find it much more

convenient to stay in HC.

We have seen one way of approaching this, with ≤HC-reducibility, as in [89] (see

Chapter 5). In this chapter, we will be using somewhat more delicate arguments, for

which ≤HC is too general. We thus introduce a family of reducibility notions intermediate

between ≤B and ≤HC, which are a priori better behaved. Actually, we have no examples

of sentences Φ,Ψ of Lω1ω witnessing a distinction between any of these notions.

Given a cardinal κ, recall that H(κ) denotes the set of sets of hereditary cardinality

less than κ; so HC = H(ℵ1).

Definition 6.1.1. Suppose Γ is a countable set of formulas of set theory with parameters

from HC. Then Γ is robust if:

(I) For every regular cardinal κ, H(κ) |= Γ;

(II) Whenever V |= Γ is transitive and P ∈ V is a forcing notion, then P forces V [Ġ] |= Γ;

(III) Whenever V |= Γ is transitive and κ ∈ V is regular in V , then (H(κ))V |= Γ;
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(IV) ZFC− ⊆ Γ.

For example, ZFC− is robust. Also, note that if V |= ZFC−, then either (HC)V =

V , or else ωV1 exists and is regular and (HC)V = (H(ωV1 ))V ; so using (III), we have that

in any case (HC)V |= Γ.

It would be slightly nicer if we could replace (I) by V |= Γ; but this causes problems

with definability of truth.

We now prove several lemmas about robustness. First of all, we need the following:

Lemma 6.1.2. Suppose λ is a regular cardinal and P ∈ H(λ) is a forcing notion. Suppose

G is P -generic over V. Then H(λ)[G] = H(λ)V[G].

Proof. Clearly, H(λ)[G] ⊆ H(λ)V[G]. Conversely, suppose a ∈ H(λ)V[G]; we need to find

a name for a in H(λ). Let b be the transitive closure of a ∪ {a}. Let rnk be foundation

rank. Let γ∗ = rnk(b) < λ+, and choose a surjection f : γ∗ × λ → b, such that for all

(γ, α) ∈ γ∗ × λ, rnk(f(γ, α)) ≤ γ.

Choose nice P -names ȧ, ḃ, ḟ (not necessarily in H(λ)) such that val(ȧ, G) = a,

val(ḃ, G) = b, and val(ḟ , G) = f , and such that P forces the preceding holds.

The remainder of the argument takes place in V. Note that we can construe B(P )

as a subset of the powerset of P , and hence as a subset of H(λ).

By induction on γ < γ∗, define nice P -names (ċα,γ : α < λ) in H(λ). Namely, ċα,γ

has domain {ċβ,γ′ : β < λ, γ′ < γ}, and each ċα,γ(ċβ,γ′) = ‖ḟ(β, γ′) ∈ ḟ(α, γ)‖B(P ), an

element of B(P ).Then P  ċγ∗,0 = ȧ, and ċγ∗,0 ∈ H(λ), so we are done.

Lemma 6.1.3. Suppose Γ is robust and V[G] is a forcing extension. Then Γ remains

robust in V[G].

Proof. Say V[G] is a forcing extension by P .
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We verify (I) holds in V[G]: suppose κ is a regular cardinal in V[G]. Choose

λ > κ regular, such that P ∈ H(λ). Then H(λ) |= Γ, so H(λ)[G] |= Γ. Also,

H(λ)[G] = H(λ)V[G], by Lemma 6.1.2. Finally κ is regular in V[G], hence also in H(λ)[G],

so (H(κ))H(λ)[G] = (H(κ))V[G] |= Γ.

(II), (III): for both, by downward Lowenheim-Skolem it is enough to check countable

transitive models V , and so we can use Levy’s absoluteness principle.

The following key proposition follows immediately.

Proposition 6.1.4. Suppose Γ is robust. Then whenever V[G] is a forcing extension of

V, we have that (HC)V[G] |= Γ.

Proof. Let P be a forcing notion, let V[G] be a forcing extension of V by P . Then by

Lemma 6.1.3, (I) in the definition of robustness holds in V[G], so (HC)V[G] |= Γ.

Our plan for the rest of the section is to define, for every robust Γ, a reducibility

notion ≤Γ on sentences of Lω1ω. ≤Γ will refine ≤HC and it will coarsen ≤B. This notion

will be particularly well-suited to the technology we develop. Our development will be

highly analogous to the development of ≤HC.

Definition 6.1.5. Suppose X ⊆ HC is definable and Γ is robust. Then say that X is Γ-

absolute if there is some formula ϕ(x, a) defining X, such that whenever V is a countable

transitive model of Γ with a ∈ V , then ϕ(V, a) = X ∩ V . We say that ϕ(x, a) witnesses

that X is Γ-absolute.

Example 6.1.6. Suppose X is Γ-absolute, say via ϕ(x, a). Then Pℵ1(X) is Γ-absolute,

via ψ(y, a) := “∀x ∈ y(ϕ(x, a)).” The formula ψ′(y, a) := “y is countable and ψ(y, a)”

does not necessarily work, since there may be V |= Γ countable and transitive, such that

V does not believe every subset of ϕ(V, a) is countable.
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With this caveat, all of the examples in Section 5.2.2 go through for ≤Γ, where Γ is

robust.

Lemma 6.1.7. Suppose Γ is robust, and suppose X ⊆ HC is Γ-absolute via ϕ(x, a), and

V[G] is a forcing extension of V. Then in V[G]: ϕ(HCV[G], a) is Γ-absolute in V[G], and

ϕ(HCV[G], a) ∩ HCV = X. Moreover (back in V), suppose Γ′ is robust, and X is also Γ′-

absolute via ψ(x, b). Then for every forcing extension V[G], ϕ(HCV[G], a) = ψ(HCV[G], b).

The moreover clause is convenient notationally, as contrasted with the situation for

≤HC; it allows us to literally deal with Γ-absolute sets rather than formulas, without any

ambiguity.

Proof. Let V[G][G′] be a further forcing extension in which HCV[G] is countable. Note that

in V[G][G′], we have that for all countable transitive models a ∈ V ⊆ V ′ of Γ, we have

that ϕ(a, V ) = ϕ(a, V ′) ∩ V , by Lévy’s absoluteness principle. Applied to V ′ = HCV[G]

and V ⊆ V ′ yields that ϕ(HCV[G], a) is Γ-absolute in V[G], and the special case where

V = HCV[G] yields ϕ(HCV[G], a) ∩HCV = X.

Finally, suppose ψ(x, b) witnesses that X is Γ′-absolute. Then again by Lévy’s

absoluteness principle, in V[G][G′], for every countable transitive V |= ZFC−, and for

every V0, V1 ⊆ V with a ∈ V0 |= Γ and b ∈ V1 |= Γ′, and for every x ∈ V0 ∩ V1, we have

that ϕ(a, x)V0 holds if and only if ψ(b, x)V1 holds; apply this to V = HCV[G].

In light of Lemma 6.1.7 the following definition makes sense.

Definition 6.1.8. Suppose Γ is robust, and X ⊆ HC is Γ-absolute.

If A is a set, then we say that X is Γ-definable over A if there is some ϕ(x, a)

witnessing that X is Γ-absolute, such that a ∈ A (so necessarily a ∈ HC).
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Suppose V is a transitive model of Γ, possibly in a forcing extension, and suppose

X is Γ-definable over V . Then define (X)V = {a ∈ V : V |= ϕ(a, a0)}, for some or any

ϕ(x, a0) witnessing X is Γ-definable over V .

Thus for all V ⊆ V ′ both models of Γ, if X is Γ-definable over V , then (X)V
′ ∩V =

(X)V .

We now define what we mean by persistence; this is analogous to the definition of

persistence in [89].

Definition 6.1.9. Suppose Xi : i < n are Γ-absolute and ψ(Ui : i < n) is a sentence of

set theory with n new unary predicates, and possibly with parameters from HC. Then say

that ψ(Xi : i < n) holds Γ-persistently if there is some a ∈ HC containing the parameters

for ψ, such that whenever V is a countable transitive model of Γ with a ∈ V , if each Xi

is Γ-definable over V , then (V, (Xi)
V : i < n) |= ψ.

By an argument similar to Lemma 6.1.7 we get that if ψ(Xi : i < n) holds Γ-

persistently and V[G] is a forcing extension, then ψ(X
V[G]
i : i < n) still holds persistently.

We can now define ≤Γ. As for ≤HC, we do not require that the reduction f is itself

a function, but rather just that it induces a function on equivalence classes.

Definition 6.1.10. A Γ-quotient space is a pair (X,E) of Γ-absolute subsets of HC, such

that persistently, E is an equivalence relation on X. Given Γ-quotient spaces (X,E) and

(X ′, E′), say that f : (X,E) ≤Γ (X ′, E′) (f is a Γ-reduction) if f ⊆ X × Y is Γ-absolute

and persistently, f induces an injection from X/E to X ′/E′. (That is, persistently: for

every x ∈ X there are x′ ∈ X, y ∈ Y such that xEx′ and (x′, y) ∈ f , and moreover

whenever xEx′ and (x′, y′) ∈ f , and xEx′′ and (x′′, y′′) ∈ f , then y′Ey′′.)

If (Xi, Ei) are Γ-absolute quotient spaces, say that (X1, E1) ∼Γ (X2, E2) if (X1, E1) ≤Γ
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(X2, E2) and (X2, E2) ≤Γ (X1, E1). Also, say that f : (X1, E1) ∼=Γ (X2, E2) if Γ-

persistently, f induces a bijection from X1/E1 to X2/E2 (in which case (X1, E1) ∼Γ

(X2, E2)).

Note that whenever X is Γ-absolute, then (X,=) is a Γ-quotient space; in this case

we omit =. Note then that X ≤Γ Y if and only if there is some Γ-persistent injection

f : X → Y .

We will also want the following definition.

Definition 6.1.11. By a Γ-absolute complete separable metric space P we mean a struc-

ture (X, d,D, i) where X, d,D, i are Γ-absolute, and Γ-persistently: (X, d) is a complete

separable metric space, D ⊆ X is dense and i : ω → D is a bijection. (We want D and i

so that the various theorems from descriptive set theory hold Γ-persistently.)

X is a Γ-absolute standard Borel space if X is the Borel σ-algebra of a Γ-absolute

complete separable metric space. All Borel spaces one normally deals with are of this form

(provided the elements of X are hereditarily countable; otherwise we just need to code

e.g. closed sets by reals.)

We are mainly interested in Γ-quotients that are either of the form (X,=) for some

arbitrary X, or else of the form (X,E) where X is a Γ-standard Borel space.

As an example, note that if X is a Γ-absolute standard Borel space and Y ⊆ X is

analytic or co-analytic, then Y is Γ-absolute. In particular, if Φ is a sentence of Lω1ω, then

the isomorphism relation on Mod(Φ) (being analytic) is Γ-absolute. Thus (Mod(Φ),∼=) is

a Γ-quotient space.

Lemma 6.1.12. Suppose (X1, E1), (X2, E2) are Γ-quotient spaces, such that additionally

each Xi is a Γ-absolute standard Borel space. Suppose f : (X1, E1) ≤B (X2, E2). Then
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f : (X1, E1) ≤Γ (X2, E2), so in particular ≤Γ coarsens ≤B.

Proof. We can suppose X1, X2 = 2ω. For each n < ω let Bn be the Borel set of all x ∈ 2ω

such that x(n) = 0. Suppose V is a countable transitive model of Γ containing codes for

all the relevant parameters (including a code for the sequence (Bn : n < ω)). We want to

check that (f : (X1, E1) ≤B (X2, E2))V . Note that fV is a function from X1 to X2, since

if x ∈ (2ω)V , then f(x) is definable in V via f(x)(n) = 0 if and only if x ∈ Bn. Further,

fV = f �V , since Borel sets are absolute to transitive models of ZFC−. Finally, since

each Ei is absolute to V , we have that for all x, y ∈ X1, xEV1 y if and only if xE1y if and

only if f(x)E2f(y) if and only if fV (x)EV2 f
V (y), as desired.

We now turn to countable model theory, the main source of examples we are inter-

ested in. Note that if Γ is robust, and Φ is a sentence of Lω1ω, then CSS(Φ) is Γ-absolute,

and css : (Mod(Φ),∼=) ≤Γ CSS(Φ), although there is rarely a reduction in the other

direction.

Definition 6.1.13. Suppose Γ is robust. and Φ,Ψ are sentences of Lω1ω. Then define

Φ ≤Γ Ψ to mean CSS(Φ) ≤Γ CSS(Ψ).

The following is a key consequence of robustness (note that up until now, we have

not used all of the definition of robustness—instead we have just used Proposition 6.1.4).

We will use this equivalence of Φ ≤Γ Ψ interchangeably with the above definition.

Theorem 6.1.14. Suppose Γ is robust, and Φ, Ψ are sentences of Lω1ω. Then Φ ≤Γ Ψ if

and only if (Mod(Φ),∼=) ≤Γ (Mod(Ψ),∼=).

Hence, if Φ ≤B Ψ then Φ ≤Γ Ψ.

Proof. Clearly CSS(Φ) is ZFC−-absolute, and the map css : Mod(Φ)→ CSS(Φ) is ZFC−-

persistently an injection. Hence (since Γ ⊇ ZFC−), the theorem makes sense.
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Given f : (Mod(Φ),∼=) ≤Γ (Mod(Ψ),∼=), define f∗ : CSS(Φ) ≤Γ CSS(Ψ) via the

following formula: f∗(ϕ) = ψ if and only if in some or any forcing extension V[G] in

which ϕ,ψ become hereditarily countable, and for some or any M ∈ Mod(Φ)V[G], N ∈

Mod(Ψ)V[G] with (M,N) ∈ (f)V[G], if css(M) = ϕ then css(N) = ψ.

Given f : CSS(Φ) ≤Γ CSS(Ψ), define f∗ : (Mod(Φ),∼=) ≤Γ (Mod(Ψ),∼=) via

(M,N) ∈ f∗ if and only if f(css(M)) = css(N). Note that, working in a model V |= Γ,

we have that for all M ∈ Mod(Φ)V , f(css(M)) ∈ (HC)V , since (HC)V |= Γ. Thus f∗

works.

Now we relate the various ≤Γ to the previously studied ≤a∆1
2
. This notion (read:

absolute ∆1
2-reduction) was introduced by Hjorth in [22].

Definition 6.1.15. Suppose Φ,Ψ are sentences of Lω1ω. Say that Φ ≤a∆1
2

Ψ if there is

some function f : Mod(Φ) → Mod(Ψ) with ∆1
2 graph, such that for all M,N ∈ Mod(Φ),

M ∼= N if and only if f(M) ∼= f(N), and such that further, this continues to hold in

any forcing extension. Explicitly, we require that f has a Π1
2-definition σ(x, y), and a

Σ1
2-definition τ(x, y), such that if V[G] is any forcing extension, then σ(x, y) and τ(x, y)

coincide on Mod(Φ)V[G]×Mod(Ψ)V[G] and define the graph of a function fV[G], such that

for all M,N ∈ Mod(Φ)V[G], M ∼= N if and only if fV[G](M) ∼= fV[G](N).

For context, we will also want to make the following definition:

Definition 6.1.16. Define Φ ≤∗
a∆1

2
Ψ in the same way as Φ ≤a∆1

2
Ψ, except we just

require that f ⊆ Mod(Φ)×Mod(Ψ) induces an injection from Mod(Φ)/ ∼= to Mod(Ψ)/ ∼=,

i.e.: for all M,M ′ ∈ Mod(Φ) and for all N,N ′ ∈ Mod(Ψ), if (M,N) and (M ′, N ′) are in

f then M ∼= M ′ if and only if N ∼= N ′; and for all M ∈ Mod(Φ) there is M ′ ∈ Mod(Φ)

sand N ∈ Mod(Ψ) such that M ∼= M ′ and (M ′, N) ∈ f .
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Clearly then, ≤∗
a∆1

2
is a coarsening of ≤a∆1

2
. The following is why we care about

≤∗
a∆1

2
:

Theorem 6.1.17. Suppose Φ,Ψ are sentences of Lω1ω. Then Φ ≤∗
a∆1

2
Ψ if and only if

Φ ≤Γ Ψ for some robust Γ. In particular, if Φ ≤a∆1
2

Ψ then Φ ≤Γ Ψ for some robust Γ.

Proof. Clearly if Φ ≤Γ Ψ for some robust Γ, then Φ ≤∗
a∆1

2
Ψ.

Conversely, suppose f ⊆ Mod(Φ) ×Mod(Ψ) witnesses that Φ ≤∗
a∆1

2
Ψ. Let ϕ(x, y)

be the Σ1
2-definition of f and let ψ(x, y) be the Π1

2-definition of f , witnessing that f

is absolutely ∆1
2. Let σ be the formula of set theory (with parameters Φ,Ψ, and the

parameter for f) asserting that ϕ(x, y), ψ(x, y) describe the same subset f of Mod(Φ) ×

Mod(Ψ), and f induces an injection from Mod(Φ)/ ∼= to Mod(Ψ)/ ∼=. By hypothesis,

HCV[G] |= σ, for every forcing extension V[G] of V.

Let Γ assert that ZFC− holds, and in every forcing extension V[G], HCV[G] |= σ.

We must check that Γ is robust.

Axiom (I): suppose κ is a regular cardinal and P ∈ H(κ) is a forcing notion. Then

H(κ) |= ZFC−. Let G be P -generic over V. Then H(κ)[G] = H(κ)V[G] by Lemma 6.1.2,

so (HC)H(κ)[G] = (HC)V[G]; also, (HC)V[G] |= σ. Thus H(κ) |= Γ.

Axiom (II): suppose V |= Γ is transitive. Suppose V [G] is a forcing extension of V ;

then V [G] |= ZFC−. Also, every forcing extension V [G][G′] of V [G] is a forcing extension

of V , and hence (HC)V [G][G′] |= σ, so V [G] |= Γ.

Axiom (III): suppose V |= Γ is transitive and κ ∈ V is regular in V . Write V ′ =

(H(κ))V . Then V ′ |= ZFC−. Suppose P ∈ V ′ and V ′[G] is a P -generic forcing extension;

it suffices (by definability of forcing) to consider the case where G is also P -generic over

V . But then, V ′[G] = H(κ)V [G] by Lemma 6.1.2, so (HC)V
′[G] = (HC)V [G] |= σ.

Axiom (IV): by fiat, Γ extends ZFC−.
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Now we finish, by showing f : (Mod(Φ),∼=) ≤Γ (Mod(Ψ),∼=).

Let ϕ∗(x, y) be the formula of set theory (over the relevant parameters) asserting:

x ∈ Mod(Φ) and y ∈ Mod(Ψ), Mod(Φ)×Mod(Ψ) |= ϕ(x, y), and similarly define ψ∗(x, y).

I claim that f is Γ-absolute, as witnessed by ϕ∗(x, y) (or ψ∗(x, y)). Suppose V |= Γ is

a countable transitive model containing the relevant parameters, and choose (M,N) ∈

(Mod(Φ) × Mod(Ψ))V . If V |= ϕ∗(M,N), then HC |= ϕ∗(M,N) and so (M,N) ∈ f ,

using that Σ1
2-sentences are upwards absolute between transitive models of ZFC−. If

HC |= ϕ∗(M,N), then HC |= ψ∗(M,N), so V |= ψ∗(M,N), so V |= ϕ∗(M,N).

Finally, the following trivial observation relates what we have done to ≤HC:

Theorem 6.1.18. Suppose Γ is robust.

• Suppose X ⊆ HC is Γ-absolute. Then X is HC-forcing invariant, via any definition

of X witnessing X is Γ-absolute. (Recall that HC-forcing invariant subsets of HC

must come equipped with a defining formula.)

• Suppose Xi : i < n are Γ-absolute and ψ(Xi : i < n) holds Γ-persistently. Then

ψ(Xi : i < n) holds persistently.

• Suppose (Xi, Ei) : i < 2 are Γ-quotient spaces and (X0, E0) ≤Γ (X1, E1). Then

(X0, E0) ≤HC (X1, E1).

• Suppose Φ,Ψ are sentences of Lω1ω. If Φ ≤Γ Ψ then Φ ≤HC Ψ.

6.2 Thickness

In this section we define the key technical concept of the paper.

First, we discuss potential cardinality in the context of Γ-absoluteness. Note that
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by Theorem 6.1.18, if Γ is robust and X ⊆ HC is Γ-absolute, then Xptl and ‖X‖ make

sense, and if X ≤Γ Y then ‖X‖ ≤ ‖Y ‖; and this also holds for sentences of Lω1ω.

In fact, in the context of Γ-absoluteness, we have a nicer characterization of Xptl:

Theorem 6.2.1. Suppose Γ is robust, and X ⊆ HC is Γ-absolute. Suppose V is a

transitive model of Γ. Then Xptl ∩ V = (X)V .

Proof. Choose κ regular such that V ∈ H(κ), and let V[G] be the a forcing extension

collapsing κ to ω1. By Theorem 6.1.7, we are done.

If we wanted to define (X,E)ptl for general Γ-absolute quotients we should use the

notion of pins (developed in [30] previously to but independently of [89]), and much of

what we could do could generalize.

We would like to use counting arguments to characterize ≤Γ-completeness, i.e., to

characterize which sentences Φ are ≤Γ-maximal. Potential cardinality is not enough: there

are examples of relatively nice Φ that are not short, so potential cardinality says nothing

about them. For instance, note that TAG1 ∼ZFC− Pℵ1(ω1) by Ulm invariants [86], so

we can identify CSS(TAG1)ptl with P(ON). Now ‖TAG1‖ = ∞, so this gives no upper

bounds on the complexity of TAG1, but we note that P(ON) still seems much thinner

than V, so a counting argument seems reasonable. More specifically note that for each

cardinal λ, |CSS(TAG1)ptl ∩ Vλ+ | = 2λ which is much less than the maximum possible

value of iλ+ .

Actually, in [12], Friedman and Stanley give a fairly simple proof that TAG1 is not

Borel complete (and the same proof shows it is not HC-complete.) The need for a counting

argument is more acute when we consider the jumps of TAG1. We recall their definition

from the introduction:
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Definition 6.2.2. For each α < ω1, write TAG1+α = J α(TAG1), the α’th jump of torsion

abelian groups.

If X ⊆ HC, and α < ω1, then let Pαℵ1
(X) be the countable powerset operation

iterated α-many times on X, where we take unions at limit stages. If X is any class and

α is any ordinal, let Pα(X) be the powerset operation iterated α-many times on X, where

we take unions at limit stages. Here, the powerset of a proper class X is the class of all

subsets of X.

Note that whenever X is Γ-absolute or HC-forcing invariant, so is Pαℵ1
(X); and

(Pαℵ1
(X))ptl = Pα(Xptl).

Now, for all α ≥ 1, TAGα ∼ZFC− Pαℵ1
(ω1), so (TAGα)ptl = Pα(ON), which again

seems much thinner than V. However, the simple proof that TAG1 is not Borel complete

does not carry through here, and as far as we know the machinery we develop is necessary

to show this.

Our first attempt at capturing this notion with counting would be to directly count

CSS(Φ)ptl ∩ Vλ+ for various cardinals λ. However, we would need to show this is a ≤B-

reducibility invariant; while we have no counterexample to this, the following example

prevents any straightforward proof:

Example 6.2.3. Let L0 = {R0} and let L1 = {R0, R1}, where R0, R1 are binary relation

symbols. Let f : Mod(L1) → Mod(L0) be the reduct map. Let f∗ : CSS(L1) → CSS(L0)

be the induced map on Scott sentences. Then for every cardinal λ and for every κ < iλ+ ,

there is some ϕ ∈ CSS(L1)ptl ∩ Vλ+ , such that (f∗)ptl 6∈ Vκ—in particular (choosing

κ = λ+), we can arrange (f∗)ptl 6∈ Vλ+ .

Proof. Choose α < λ+ such that κ+ < iα. We define an L1-structure (M,RM0 , RM1 ) as

follows: let (M,RM1 ) = (Vα,∈), and let RM0 be a well-ordering of Vα. Note that (Vα,∈) is
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rigid and has Scott rank approximately α, so css(M,RM0 , RM1 ) ∈ Vλ+ . On the other hand,

(M,RM0 ) is a well-ordering of length longer than κ+, and so its canonical Scott sentence

cannot be in Vκ.

The idea for getting around this is to count |CSS(Φ)ptl ∩ A| for sufficiently closed

A ∈ Vλ+ , instead of all of |CSS(Φ)ptl ∩ Vλ+ |.

Definition 6.2.4. Suppose Γ is robust. Then let FΓ be the set of all Γ-absolute f such

that Γ-persistently, f : HC→ HC. Let F =
⋃

Γ FΓ.

Suppose f = (fi : i < n) ∈ F<ω. Then say that A is f -closed if A is a transitive

set with A<ω ⊆ A, and for each i < n (fi)ptl[A] ⊆ A. We do not require A |= Γ or any

reasonable fragment of set theory, or that (fi)ptl be definable within A in any way.

If f is a Γ-persistent map defined on some Γ-absolute X ⊆ HC, we identify f with

f ′ ∈ FΓ which is defined to be ∅ off of X.

The following simple lemma will be used implicitly henceforth:

Lemma 6.2.5. Suppose fi : i < n is any sequence from F. Define f : HC → HC to be∏
i<n fi, that is f(a) = (fi(a) : i < n). Then f ∈ F, and for every set A, then A is f -closed

if and only if A is f -closed.

Proof. First, we check that f ∈ F. For each i < n, choose some robust Γi with f ∈ Γi.

Then Γ =
⋃
i Γi is robust and f ∈ FΓ.

To finish, since we are requiring A to be transitive and A = A<ω, we have that

(fi(a) : i < n) ∈ A if and only if each fi(a) ∈ A.

The following fundamental observation will be the motivation for our definition of

thickness:
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Theorem 6.2.6. Suppose Γ is robust. Suppose X,Y are Γ-absolute, such that for every

f ∈ FΓ, there is an f -closed set A with |Xptl ∩A| > |Yptl ∩A|. Then X 6≤Γ Y .

Proof. We prove the contrapositive. Suppose f : X ≤Γ Y . As just mentioned, we can

view f ∈ F by defining f(a) = ∅ for a 6∈ X. Suppose A is f -closed. Then fptl clearly

witnesses that |Xptl ∩A| ≤ |Yptl ∩A|.

We could view all of our results on thickness through these lens. We find it conve-

nient to introduce a cardinal invariant capturing much of the information available.

Definition 6.2.7. Suppose X is Γ-absolute, for some robust Γ. Suppose λ is a cardinal.

Then define τ(X,λ), the thickness of X at λ, to be the least cardinal κ such that

there is some f ∈ F, such that whenever A ∈ Vλ+ is f -closed, we have |Xptl ∩ A| ≤ κ.

Alternatively, we have that τ(X,λ) > κ if and only if for every f ∈ F, there is some

f -closed A ∈ Vλ+ with |Xptl ∩A| > κ.

If Φ is a sentence of Lω1ω then define τ(Φ, λ) = τ(CSS(Φ), λ).

The reader may wonder why we define τ(X,λ) in terms of λ+ rather than λ, and

why we insist that |Xptl ∩ A| ≤ κ rather than < κ. This is for cosmetic reasons; we

believe our results are more readable this way. We do not seem to be losing any important

information.

Some simple observations: τ(X,λ) ≤ |Xptl ∩ Vλ+ | ≤ iλ+ , and τ(X,λ) is monotone

in λ, with limλ→∞ τ(X,λ) = ‖X‖.

The following theorem is a simple twist to the idea of Theorem 6.2.6, just packaged

in terms of the τ function.

Theorem 6.2.8. If X1 ≤Γ X2 for some robust Γ, then τ(X1, λ) ≤ τ(X2, λ) for every

cardinal λ.
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Proof. Choose f : X1 ≤Γ X2. Let λ be given. Suppose towards a contradiction that

τ(X1, λ) > τ(X2, λ) = κ. Choose g ∈ F witnessing that τ(X2, λ) = κ, that is, whenever

A ∈ Vλ+ is f -closed, we have |(X2)ptl ∩A| ≤ κ.

By hypothesis (and Lemma 6.2.5), we can find some (f, g)-closed A ∈ Vλ+ such that

|(X1)ptl ∩ A| > κ; by choice of g, |(X2)ptl ∩ A| ≤ κ. But since A is also f -closed, we have

that fptl restricts to an injection from (X1)ptl ∩A to (X2)ptl ∩A, a contradiction.

The following theorem is also straightforward.

Theorem 6.2.9. For all Φ, λ, α, if Φ has infinitely many countable models, then τ(J α(Φ), λ) ≤

iα(τ(Φ, λ)).

Proof. Write κ = τ(Φ, λ); choose f ∈ F such that whenever A ∈ Vλ+ is f -closed, then

|CSS(Φ)ptl ∩A| ≤ κ. Then clearly also |CSS(J α(Φ))ptl ∩A| ≤ iα(κ) as desired.

We do not now how to prove the reverse inequality in general, although we suspect

that at least for λ = ℵ0, it should be true. Instead we focus on special cases, where Φ is

either some Φα or some TAGα. Our task boils down to constructing thick transitive sets

in Vλ+ , as the following proposition indicates.

Proposition 6.2.10. There is some f ∈ F, such that for every f -closedA, |CSS(Graphs)ptl∩

A| = |A|, and for every α < ω1, |CSS(Φα)ptl∩A| = |Pα(ω)∩A|, and |CSS(TAGα)ptl∩A| =

|Pα(ON) ∩A|.

Proof. I claim we can choose f ∈ FZFC− so as to encode ZFC−-reductions between

Graphs and HC, between Φα and Pαℵ1
(ω) for each α < ω1, and between TAGα and

Pαℵ1
(ω1) for each α < ω1; and finally, the map sending a to the foundation rank rnk(a).

Finding f is not hard; note, for instance, that we can find some f0 ∈ FZFC− such that
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ZFC−-persistently, for all α < ω1, f0 �{α}×CSS(Φα) induces a ZFC−-reduction from Φα

to Pαℵ1
(ω). f will be a product of several such fi’s.

Then it is straightforward to see that f works. For instance, suppose A is f -closed,

and either CSS(Φα)ptl ∩ A or else Pα(ω) ∩ A is nonempty. Then α ∈ A since A is closed

under rnk, so A will be (g, h)-closed, where g, h are the ZFC−-reductions between Φα and

Pα(ω) coded by f .

The following definition is motivated by this proposition.

Definition 6.2.11. The infinite cardinal λ admits thick sets if for every α < λ+, and for

every f ∈ F, there is some f -closed A ∈ Vλ+ , such that |Pα(λ) ∩A| = iα(λ).

In Section 6.5 we prove the following (note that a regular strong limit is equivalently

either ℵ0 or inaccessible).

Theorem 6.2.12. Every regular strong limit cardinal admits thick sets. Further, it is

consistent with ZFC that every regular cardinal admits thick sets; this can be achieved

in a proper-class forcing extension which adds no reals.

This immediately gives the following corollaries:

Corollary 6.2.13. Suppose λ admits thick sets. Then for every α < ω1, τ(Φα, λ) = iα,

and τ(TAGα, λ) = iα(λ). Also, if Φ is Borel complete then τ(Φ, λ) = iλ+ . In particular,

this happens whenever λ is a regular strong limit, and consistently can happen for all

regular λ.

Proof. Choose f as in Proposition 6.2.10.

For Φα, we will not actually need that λ admits thick sets: note that ℵ0 is a regular

strong limit, and hence admits thick sets. Then f witnesses that τ(Φα,ℵ0) = iα: suppose
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A ∈ Vℵ1 is f -closed. Then |CSS(Φα)ptl ∩ A| = |Pα(ω) ∩ A|. This is always at most iα,

but since ℵ0 admits thick sets, for every g ∈ F we can also arrange that A is g-closed and

|Pα(ω) ∩A| = iα.

The rest is similar.

We should note that for the purposes of descriptive set theory, passing to a forcing

extension without adding any reals is free: if it is convenient to assume every regular

cardinal admits thick sets, then we may do so without loss of generality.

We have the following immediate consequence; the case α = 1 was proved by Fried-

man and Stanley in [12], but for α > 1, it is new that TAGα is not Borel complete.

Theorem 6.2.14. For all 1 ≤ α < ω1, Φα+1 6≤B TAGα (in fact Φα+1 6≤∗a∆1
2

TAGα).

Proof. This is because τ(Φα+1,ℵ0) = iα+1 > iα = τ(TAGα,ℵ0).

6.3 Density and Independence Lemmas

This is the first of two technical sections, in which we prove needed facts for Theo-

rem 6.2.12. In this section we will obtain strengthenings of Theorem 2.5.1.

We first recall some notions from Section 2.5.

Definition 6.3.1. Suppose Y ⊆ P(X). By a finite boolean combination from Y we mean

a set of the form a0∩. . .∩an−1∩(X\b0)∩. . .∩(X\bm−1), for some a0, . . . , an−1, b0, . . . , bm−1

from Y with each ai 6= Yj . Y is independent over X if and only if each finite boolean

combination from Y is nonempty.

The following is a special case of Theorem 2.5.4, a theorem of Engleking and Kar-

lowicz [10].
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Lemma 6.3.2. Suppose κ is an infinite cardinal. Then there is Y ⊆ P(κ) which is

independent over κ with |Y | = 2κ.

Proof. Choose D ⊆ 22κ of size κ such that for each s ∈ [κ]<ℵ0 and each f : 2s → 2, there

is some F ∈ D such that for all g ∈ 2κ, F (g) = f(g �s) (actually this determines F ).

Write D = {Fα : α < κ}. For each f ∈ 2κ put Yf = {α < κ : Fα(f) = 1} ⊆ κ. Let

Y = {Yf : f ∈ 2κ}. I claim this works; clearly |Y | = 2κ. Moreover, given (fi : i < i∗), (gj :

j < j∗) sequences of distinct elements from 2κ with i∗, j∗ < ω, we can choose s ∈ [κ]<ℵ0

such that fi �s, gj �s are all distinct. Then choose f : 2s → 2 so that each f(fi �s) = 1,

each f(gj �s) = 0. By choice of D applied to f , there is some α < κ such that Fα(fi) = 1

and Fα(gj) = 0 for i < i∗, j < j∗; i.e. α ∈ Yfi for i < i∗ and α 6∈ Ygj for j < j∗. This

suffices to show independence.

We now wish to strengthen this, in the case whereX has a topology. Some definitions

will explain what we want:

Definition 6.3.3. • Suppose X is a topological space. Then X is κ-nice if X has a

basis of cardinality (at most) κ, and every nonempty open subset of X has size κ.

(In particular, |X| = κ.)

• If X is a topological space and D ⊆ X, then say that D is κ-dense in X if whenever

O ⊆ X is open nonempty, then |D ∩ O| ≥ κ.

• Suppose X is a topological space and Y ⊆ P(X). Then Y is densely independent

if every finite Boolean combination from Y is dense in X. Equivalently, for each

nonempty open subset O of X, every finite boolean combination from Y intersects

O.
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A routine diagonalizing argument shows that if X is κ-nice, then we can write X as

the disjoint union of (Xα : α < κ), where each Xα is dense in X and κ-nice.

Now we massage Lemma 6.3.2.

Lemma 6.3.4. Suppose X is κ-nice. Then there is Y ⊆ P(X) which is densely indepen-

dent over X, |Y | = 2κ.

Proof. Write X as the disjoint union of Xα : α < κ, where each Xα is κ-nice, and dense

in X. Let (Oα : α < κ) be a basis of X. For each α < κ let Yα ⊆ P(Xα ∩ Oα) be

independent over Xα ∩ Oα, with |Yα| = 2κ. Write Yα = (bαγ : γ < 2κ); for each γ < 2κ

let bγ =
⋃
{bαγ : α < κ}. Then Y := {bγ : γ < 2κ} works, since if a is a finite Boolean

combination from Y , and α < κ, then a ∩Xα ∩ Oα is nonempty.

And we massage again to obtain the form we will use:

Theorem 6.3.5. Suppose X is κ-nice. Then there is a sequence (Yδ : δ < 2κ) of disjoint

subsets of P(X) such that each |Yδ| = 2κ, each Yδ is 2κ-dense in P(X) (with finite support

topology), and
⋃
δ Yδ is densely independent over X.

Proof. Choose an independent set Z ⊆ P(κ) with |Z| = 2κ.

Enumerate Z = (Iδ,δ′ : δ, δ′ < 2κ). Also write X as the disjoint union (Xα : α < κ),

where each Xα is κ-nice, and dense in X. For each α < κ choose Y ′α ⊆ P(Xα) densely

independent over Xα, with |Y ′α| = 2κ. Enumerate Y ′α = {bγα : γ < 2κ}. For each δ, δ′, γ <

2κ let cδ,δ′,γ ⊆ X be defined by cδ,δ′,γ ∩Xα = ∅ if α 6∈ Iδ,δ′ , and cδ,δ′,γ ∩Xα = bγα if α ∈ Iδ,δ′ .

Let Yδ,δ′ ⊆ P(X) be the set of all c such that for some γ < 2κ, {α < κ : c∩Xα 6= cδ,δ′,γ∩Xα}

is finite. Let Yδ =
⋃
δ′ Yδ,δ′ . Then I claim (Yδ : δ < 2κ) works.

I claim (Yδ,δ′ : δ, δ′ < 2κ) is disjoint. Indeed, suppose c ∈ Yδ,δ′ and c ∈ Yδ,δ′ with

(δ, δ′) 6= (δ, δ
′
). Choose γ < 2κ such that E = {α < κ : c ∩ Xα 6= cδ,δ′,γ ∩ Xα} is finite;
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similarly choose γ,E. Since Z is independent, there are infinitely many α ∈ Iδ,δ′\Iδ,δ′ ;

choose some such α with α 6∈ E ∪E. Then c∩Xα = cδ,δ′,γ ∩Xα and c∩Xα = c
δ,δ
′
,γ′
∩Xα.

Now cδ,δ′,γ ∩Xα = bγα (since α ∈ Iδ,δ′) and c
δ,δ
′
,γ′
∩Xα = ∅ (since α 6∈ I

δ,δ
′ . Since bγα 6= ∅

we conclude c 6= c¿

Also, each Yδ,δ′ is dense in P(X), since it is closed under finite differences. Thus

(Yδ : δ < 2κ) is disjoint, and each Yδ is 2κ-dense in P(X). So it suffices to show Y =
⋃
δ Yδ

is densely independent over X.

So suppose a is a finite boolean combination from Y ; say a =
⋂
i<i∗

d±1
i , for some

i∗ < ω. For each i < i∗, choose δi, δ
′
i with di ∈ Yδi,δ′i , and choose γi such that {α <

κ : di ∩ Xα 6= cδi,δ′i,γi ∩ Xα} is finite; call this set Ei. Let E =
⋃
i<i∗

Ei. Since Z is

independent,
⋂
i<i∗

Iδi,δ′i is infinite, so we can choose α ∈
⋂
i<i∗

Iδi,δ′i\E. Note that each

di ∩Xα = cδiδ′iγi , since α 6∈ E; and cδiδ′iγi ∩Xα = bγiα since α ∈ Iδi,δ′i . Let O be an open

subset of X; since (Bγ
α : γ < κ) is densely independent,

⋂
i<i∗

(bγiα )±1 ∩ O 6= ∅.

6.4 A Tower of ℵ0-Categorical Sentences

While the tower (Φα : α < ω1) (or other choices which are Borel equivalent) have

been the historical choice of benchmarks, it turns out that for α ≥ 3 they begin to exhibit

pathologies.

Recall that F2 is the equivalence relation on (2ω)ω defined by ηF2τ if {ηn : n < ω} =

{τn : n < ω}; so F2 ∼B Φ2. We like F2 a lot; the reason for this is the following Theorem

6.24 of Kanovei, Sabok and Zapletal [31]:

Theorem 6.4.1. Let E be an analytic equivalence relation on (2ω)ω with E ⊇ F2. Then

either E has a comeager equivalence class or else for every Borel nonmeager C ⊆ (2ω)ω,
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F2 ≤B E �C .

In particular (taking E = F2), if C ⊆ (2ω)ω is nonmeager then F2 ≤B F2 �C .

We get the following corollary:

Definition 6.4.2. If Φ is a sentence of Lω1ω and α is a countable ordinal, then let

Φ �α∈ Lω1ω describe the models of Φ of Scott rank less than α.

Corollary 6.4.3. Suppose Φ is a sentence of Lω1ω. Then Φ2 ≤B Φ if and only if Φ2 ≤B

Φ �α for some α < ω1. Hence whether or not Φ2 ≤B Φ is absolute to forcing extensions.

Proof. For the first part, suppose f : ((2ω)ω, F2) ≤B (Mod(Φ),∼=). For each α < ω1, let

Cα = f−1(Mod(Φ �α)), a Borel subset of (2ω)ω. Since
⋃
αCα = (2ω)ω, we must have that

Cα is nonmeager for some α < ω1. (Choose a countable transitive model V of ZFC−

containing the relevant codes, and look at x ∈ (2ω)ω Cohen over V . Then x ∈ Cα for

some α less than the height of V [x], but then V contains a code for Cα, hence Cα must

be non-meager.) Hence, By Theorem 6.4.1 (with E = F2) we get that for this choice of α,

F2 ≤B F2 �Cα . This gives an embedding of Cα into Φ �α.

For the second part, note that Φ2 ≤B Φ if and only if there is a countable transitive

model V of ZFC− containing Φ which believes Φ2 ≤B Φ �α for some countable ordinal α;

so we conclude by Levy Absoluteness.

For α > 2 this is all much more problematic. For one thing, Theorem 6.4.1 fails

outright, in the following strong way:

Example 6.4.4. Let F3 be the equivalence relation defined on ((2ω)ω)ω, via ηF3τ if

{η(n) : n < ω}F2{τ(n) : n < ω}. Let C be the comeager subset of ((2ω)ω)ω, consisting

of all η, such that for all (n,m), (n′,m′) ∈ ω × ω distinct, η(n)(m) 6= τ(n′)(m′) (these are

two elements of 2ω).
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It is easy to see that F3 ∼B Φ3, but I claim that F3 �C ∼B F2. The interesting

direction is that F3�C ≤B F2, to see this, given η ∈ C, define f(η) ∈ (2ω)ω so as to list

{η(n)(m) : n,m < ω}, as well as {η(n)(m) ⊕ η(n)(m′) : n,m,m′ < ω}, where η ⊕ τ is

obtained by interweaving the digits.

This is a serious pathology, and circumventing is a large difficulty in proving Theo-

rem 6.2.12. Our main technical tool for doing this is a tower (Ψα : α ≥ 1) of sentences of

L∞ω.

Definition 6.4.5. Suppose α∗ ≥ 1 is an ordinal. Then let Ωα∗ be the set of all pairs

(β, δ) where β < δ < α∗, and δ is a limit ordinal, and β > 0. Let Ω′α∗ = Ωα∗ ∪{(β, β+ 1) :

β + 1 < α∗}.

Let the language of Ψα∗ consist of sorts (Uα : α < α∗), binary relations Rβ,α ⊆

Uβ × Uα for each (β, α) ∈ Ω′α∗ and binary relations Eβ,δ ⊆ Uδ × Uδ for each (β, δ) ∈ Ωα∗ .

Let Ψα∗ be the sentence of L|α∗|+ω asserting:

• (Uα : α < α∗) are disjoint and partition the universe, and each Uα is infinite:

• For all (β, δ) ∈ Ωα∗ and for all a, b ∈ Uδ, aEβ,δb if and only if for every c ∈ Uβ:

cRβ,δa if and only if cRβ,δb.

• For all δ < α∗ limit and for all a, b ∈ Uδ distinct, there is some (β, δ) ∈ Ωα∗ such

that a¬Eβδb.

• (Everything that can happen, happens, part 1.) Suppose α < α∗, β
i
j : i < 2, j < m

are given with each (βij , α) ∈ Ω′α∗ , and (γij : i < 2, j < n) are given with each

(α, γij) ∈ Ω′α∗ . Suppose bij ∈ Uβij
for each i < 2, j < m, and cij ∈ Uγij

for each

i < 2, j < n. Then there are infinitely many a ∈ Uα such that b0jRβ0
j ,α
a for each
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j < m, and b1j¬Rβ1
j ,α
a for each j < m, and aRα,γ0

j
c0
j for each j < n, and a¬Rα,γ1

j
c1
j

for each j < n.

• (Everything that can happen, happens, part 2.) Suppose δ < α∗ is a limit, βj : j < m

are distinct with each (βj , δ) ∈ Ω′α∗, and (γij : i < 2, j < n) are given with each

(α, γij) ∈ Ω′α∗ . Suppose dj ∈ Uδ for each j < m, and cij ∈ Uγij for each i < 2, j < n.

Then there are infinitely many d ∈ Uδ such that dEβjdj for each j < m, and dRγ0
j
c0
j

for each j < n, and d¬Rγ1
j
c1
j for each j < n.

We will presently prove that each Ψα is consistent, and for α < ω1, Ψα is ℵ0-

categorical. In particular, the Ψα’s are trivial with respect to Borel complexity. For a

better Friedman-Stanley tower, we could proceed as follows: let Φ′α to be the expansion

of Ψα, where we add infinitely many unary predicates Vn : n < ω, and assert that each

Vn ⊆ U0, and for all a 6= b ∈ U0, there is some n such that a ∈ Vn if and only if b 6∈ Vn.

Then (Φ′α : 1 ≤ α < ω1) turns out to be a smoother version of the tower (Φα : α < ω1)

(we have each Φ′α ≤B Φα+1 easily, although I don’t know about the reverse inequality).

For what we do we will not have to explicitly deal with the Φ′α’s, and in fact they will not

be mentioned again; nonetheless, we will be using similar constructions.

We are really interested in the following special models of Ψα∗ :

Definition 6.4.6. Say that M is a standard model of Ψα∗ if:

• M |= Ψα∗ ;

• For all a, b ∈ UM0 , a 6∈ b;

• If α > 0 and a ∈ Uα, then:

a = {b ∈M : there is some β < α with (β, α) ∈ Ω′α∗ and b ∈ Uβ and bRβ,α a}.
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Note that if M is a standard model of Ψα∗ , then M is determined by its domain.

Also, if N |= Ψα∗ satisfies that for all a, b ∈ UN0 , a 6∈ b, then there is a unique standard

M with UM0 = UN0 and M ∼=UN0
N .

There are two important facts we need about Ψα∗ :

Theorem 6.4.7. Suppose α∗ ≥ 1. Then Ψα∗ is consistent. In fact, suppose λ is a given

cardinal cardinal with λ<λ = λ and with α∗ < λ+; give P(λ) the < λ-support product

topology. Suppose U0 is 2λ-dense in P(λ), and each a ∈ U0 has |a| = λ. Let τ0 be the

subset topology on U0.

Then we can find some standard standard M = (Uα, Rβ,α, Eβ,δ : α < α∗, (β, α) ∈

Ω′α∗ , (β, δ) ∈ Ωα∗) |= Ψα∗ , such that each |Uα| = iα+1(λ), and such that U1 is densely

independent over U0.

Proof. Write Ω′ = Ω′α∗ , write Ω = Ωα∗ .

Note that (U0, τ0) is 2λ-nice, i.e. U0 has a basis of size at most 2λ (in fact, we can

find one of size λ), and each nonempty open subset of U0 has size 2λ.

I claim we can find M = (Uβ, Bβ,α, τβ : β < α∗, (β, α) ∈ Ω′) such that:

• Each Uβ ⊆ Pβ(λ) is a set of size iβ+1(λ), and τβ is a topology on Aβ which makes

it iβ+1(λ)-nice;

• (Uβ : β < α∗) are pairwise disjoint, and in fact, for every a ∈ Uβ, rnk(a) = λ+ β;

• Each Bβ,α ⊆ P(Uβ) , and given β < α∗, (Bβ,α : (β, α) ∈ Ω′) are pairwise disjoint;

• Each Uβ+1 = Bβ,β+1, and for limit δ, Uδ is the set of sets a ⊆
⋃

(β,δ)∈Ω Uβ, such that

each aβ ∩ Uβ ∈ Bβ,δ;

• For each β + 1 < α∗, τβ+1 is the topology on Uβ+1 from considering it a subset of
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P(Uβ), where P(Uβ) is given the finite support product topology;

• For each (β, δ) ∈ Ω with δ < α∗, Eβ,δ is defined as required by Ψα∗ . Give Uδ

the topology τδ consisting of finite intersections of equivalence classes of the various

Eβ,δ’s;

• For each β < α∗,
⋃

(β,α)∈Ω′ Bβ,α is densely independent over Uβ in the τβ-topology,

and each Bβ,α iβ+2(λ)-dense in P(Uβ), where the latter has the finite support

product topology.

By induction on α < α∗ we construct (Uβ, Bβ,γ , τβ : β < α, (β, γ) ∈ Ω′). Indeed,

suppose we are given (Uβ, Bβ,γ , τβ : 1 ≤ β < α, (β, γ) ∈ Ω′). Let Uα, τα be defined as

required by the clauses (three cases: for α = 0, α = β + 1, and α limit). In each of these

cases, it is easy to check that |Uα| = iα+1(λ) and in fact Uα is iα+1(λ)-nice under τα (for

α limit, since (Uβ : β < α) are all disjoint, we get that Uα ∼=
∏

(β,α)∈ΩBβ,α). Also, in each

of the three cases it is easy to check that for all a ∈ Uα, rnk(a) = λ + α. From this it

follows that Uα is disjoint from each Uβ, for β < α.

Write κ = iα+1. Thus we can choose (Yi : i < 2κ) as in Theorem 6.3.5, where we take

X = Uα; that is, each Yi is 2κ-dense in P(Uα) under the finite support product topology,

and
⋃
i Yi is densely independent over Uα. Choose an injection F : {γ : (α, γ) ∈ Ω′} → 2κ.

For each (α, γ) ∈ Ω′, define Bα,γ = YF (γ).

Let M =
⋃
β<α∗

Uβ. Easily, M is (the domain of) a standard model of Ψα∗ , and is

as required.

We also will want the following easy observation (it is the reason we include the

definable equivalence relations Eβ,δ in the language):
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Theorem 6.4.8. Suppose M,N |= Ψα∗ . Then M ≡∞ω N ; in fact, the set of all finite

partial isomorphisms from M to N is a back-and-forth system. In particular, for α∗ < ω1,

Ψα∗ is ℵ0-categorical.

6.5 Constructing Thick Sets

We aim to prove Theorem 6.2.12. The idea is the following: let λ be a cardinal

satisfying certain hypotheses, to be specified; let α∗ < λ+, and let f∗ ∈ F. We want to

find some f∗-closed A ∈ Vλ+ such that |Pα∗(λ) ∩A| = iα∗(λ).

Choose some robust Γ such that each f∗ ∈ FΓ. Choose a∗ ∈ HC containing param-

eters for f∗ and Γ. We will start with some transitive V � H(λ+) with a∗, α∗, [λ]<λ ∈ V .

Note then that V |= Γ. We will want to construct a special set M ∈ Pα∗+1(λ), such that

|M | = iα∗(λ). Namely, M will be a standard model of Ψα∗ with UM0 ⊆ P(λ), as given by

Theorem 6.4.7. With a careful choice of UM0 , it will follow that there is a forcing extension

V[G] of V, and a forcing notion Q ∈ V , and an V -generic filter H over Q in V[G], such

that M ∈ V [H]. Note then that V [H] |= Γ. Then, working in either V [H] or V, we can

close M off under transitive closure, pairing and and (f∗)ptl. This produces an f∗-closed

set A ∈ Vλ+ with M ∈ A; it follows |Pα∗(λ) ∩A| ≥ iα∗(λ).

Constructing UM0 will require some hypotheses on λ, which are met whenever λ is

a regular strong limit, and can also be forced to hold for all regular λ. We describe these

conditions now.

Suppose λ is a cardinal and V is a transitive model of ZFC− with [λ]<λ ∈ V

(possibly V is an inner model). If S is a set and λ is a cardinal, then recall PS2λ is the

set of all partial functions from S to 2 of cardinality less than λ. We view PS2λ as adding

a λ-Cohen a ⊆ P(S) (identifying 2S ∼= P(S)). Note that Pλ2λ ∈ V , so it makes sense to
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say when a ∈ P(S) is λ-Cohen over V . We also view each (PS2λ)n = PS×n 2λ.

Definition 6.5.1. With λ, V as above, say X ⊆ P(λ) is V -symmetric if: X is 2λ-dense

in P(λ) (with the < λ-support product topology), and for each injective finite sequence

a ∈ Xn, a is λ-Cohen over V .

Lemma 6.5.2. Suppose λ is a regular strong limit. Then for every robust Γ, for every

a∗ ∈ HC, and for every α∗ < λ+, there some transitive V |= Γ with a∗, α∗, [λ]<λ ∈ V

and |V | ≤ λ, such that there is some V -symmetric X ⊆ P(λ). Furthermore, there is a

proper-class forcing extension which does not add any reals, in which the preceding holds

for all regular λ.

Proof. First suppose λ is a regular strong limit. We mimic the argument for Theorem 6.4.1

from [31]. Namely, choose some transitive V � H(λ+) with |V | = λ and a ∈ V . Note that

V |= Γ, since H(λ+) does. It is easy to construct h : 2λ → 2λ×λ continuous, so that for all

a ∈ (2λ)<ω injective, h(a) is λ-Cohen over V . For each γ < λ define hγ : 2λ → P(λ) by:

ν ∈ hγ(f) if and only if h(f)(ν, γ) = 1. Note that each {hγ(f) : γ < λ} is dense in P(λ).

Define X =
⋃
f∈2λ,γ<λ hγ(f). Clearly this works.

For the second claim, we can supposeGCH holds (since this can be arranged without

adding any reals). Pass to an Easton forcing extension V[G] where we add λ+ = 2λ-many

λ-Cohens for every regular cardinal λ > ℵ0. Then I claim this works. The remainder of

the argument takes place in V[G]. Note that R = (R)V since the forcing notion is ω-closed

(since we just added λ-Cohens for uncountable λ).

Suppose λ is regular, Γ is robust, a∗ ∈ HC, and α∗ < λ∗. We must find some

transitive V |= Γ with a∗, α∗, [λ]<λ ∈ V and |V | ≤ λ, such that there is some V -symmetric

X ⊆ P(λ).

We can do λ = ℵ0 by the first part.
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Suppose λ > ℵ0 is regular. Let V[Gλ] be the intermediate forcing extension, where

we add 2λ
′
-many λ′-Cohens for every regular cardinal ℵ0 < λ′ < λ. Note that [λ]<λ ∈

V[Gλ], since adding λ′-Cohens for regular λ′ ≥ λ is < λ-closed. Also, HC ⊆ V[Gλ],

since HC = (HC)V. Also there is some Y ⊆ 2λ which is λ-Cohen over V[Gλ]. Choose

a transitive V � (H(λ+))V[Gλ] with |V | = λ and a∗, α∗, [λ]<λ ∈ V . Note that V |= Γ,

since (H(λ+))V[Gλ] does. For each β < 2λ let xβ = {γ < λ : 2λ · β + γ ∈ Y } and let

X = {xβ : β < 2λ}. Clearly this works.

See, for instance, [45] Chapter VIII for a reference on Easton forcing.

Thus, to prove Theorem 6.2.12, it suffices to show the following.

Theorem 6.5.3. Suppose λ is a regular cardinal, such that for every robust Γ, for every

a∗ ∈ HC, and for every α∗ < λ+, there is some transitive V |= Γ with a∗, α∗, [λ]<λ ∈ V

and |V | ≤ λ, such that there is some V -symmetric X ⊆ P(λ). Then λ admits thick sets.

Fix some such λ for the rest of the section (note that it follows from the hypothesis

that λ = λ<λ). Suppose α∗ < λ+ and f∗ ∈ F; we need to find some f∗-closed A ∈ Vλ+

with |(Pα∗(λ)) ∩A| = iα∗(λ).

Choose some robust Γ such that f∗ ∈ FΓ; choose a∗ ∈ HC containing parameters

for f∗,Γ. Write Ω = Ωα∗ , Ω′ = Ω′α∗ . Choose V |= Γ transitive with |V | = λ and

α∗, a∗, [λ]<λ ∈ V , such that there is some V -symmetric X ⊆ P(λ). By Theorem 6.4.7, we

can find some standard M |= Ψα∗ , such that UM0 = X and each |UMα | = iα+1(λ).

If we can find some f∗-closed A ∈ Vλ+ with M ∈ A, then we are done: first of all,

note by induction on β < α∗ that each UMβ ⊆ Pβ+1(λ). Since A is transitive, also each

UMβ ⊆ A. If α∗ = α+1 for some α, then UMα witnesses |Pα∗(λ)∩A| = iα∗(λ). Otherwise,⋃
α<α∗

UMα witnesses that |Pα∗(λ) ∩A| = iα∗(λ).
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So we aim to find some such A.

Choose some N |= Ψα∗ with N ∈ V (so |N | ≤ λ). Let P be the set of all finite partial

isomorphisms from N to M . By Theorem 6.4.8, P adds an isomorphism σ̇ : Ň ∼= M̌ .

We identify 2λ with P(λ), and so view UM0 ⊆ 2λ. Let Q =
∏
UN0

Pλ2λ with finite

supports, so Q ∈ V . Let ġ be the P -name for σ̇ �
UŇ0

, a function from U Ň0 to (2λ)V̌.

Lemma 6.5.4. P forces that ġ is Q̌-generic over V̌ .

Proof. Suppose D is a dense subset of Q in V and σ : N → M is a finite partial isomor-

phism. It suffices to show that we can find some τ extending σ, so that τ �UN0 extends an

element of D.

Let u = dom(σ) ∩ UN0 , a finite subset of UN0 . By choice of UM0 , we have that

s := σ �u is P uλ,2,λ-generic over V . We have the obvious restriction map π : Q → Pλ,2,λ

(recall Q is the finite support product
∏
UN0

Pλ,2,λ).

I claim that π[D] is dense in P uλ2λ. Indeed, given t0 ∈ P uλ2λ, choose t ≤ t0 in D, then

π(t) ≤ t0 is in π(D).

Thus we can find t0 ∈ π[D] such that t0 ⊆ s. Choose t ∈ D such that π(t) = t0. We

wish to show we can find some τ ∈ P extending σ and t.

Enumerate dom(t)\dom(t0) = {ai : i < n}. For each i < n, let Oi be the basic

open subset of 2λ determined by t(ai) (where t(ai) is a partial function from λ to 2 of

cardinality less than λ), namely Oi is the set of extensions of t(ai) to 2λ. By extending

t, we can suppose (Oi : i < n) are pairwise disjoint, and that for each i < n and for each

a ∈ u, σ(a) 6∈ Oi.

For each i < n, since UM1 is densely independent over UM0 , we can find some τ(ai) ∈

UM0 such that for each b ∈ UN1 ∩ dom(σ), τ(ai) ∈ τ(b) if and only if aiR
N
0,1b. Define

τ(a) = σ(a) for all a ∈ dom(σ). Then τ ∈ P extends σ and t, so works.
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Now we finish. Working in V, let A be the least f∗-closed set with M ∈ A (we just

need A to be transitive, closed under (f∗)ptl, and closed under finite sequences). We need

to show that A ∈ Vλ+ .

Let V[G] be a P -generic forcing extension of V, let σ = val(σ̇, G). Write g = σ �UN0 ;

by Lemma 6.5.4, g is Q-generic over V , hence V [g] is a forcing extension of V . But then

M ∈ V [g]: it can be recovered as the unique standard model of Ψα∗ with UM0 = g[UN0 ],

such that g extends to an isomorphism from N to M . Thus V [g] |= Γ and M ∈ V [g],

hence V [g] correctly computes A (since (f∗)
V [g] �V [g]∩V= (f∗)ptl �V [g]∩V). Hence A ∈ V [g],

so rnk(A) < rnk(V [g]) = rnk(V ).

Back in V, this means A ∈ Vλ+ .

6.6 Schröder-Bernstein Properties

In this section, we define various Schröder-Bernstein properties of sentences Φ ∈

Lω1ω. In the next section, we apply the thickness machinery to show that these properties

imply a bound on the complexity of countable models of Φ, assuming large cardinals. The

major example we have in mind for this is that of torsion-free abelian groups, as discussed

in Chapter 7.

Say that a complete first order theory T has the Schröder-Bernstein property in the

class of all models if whenever M,N |= T are elementarily bi-embeddable, then they are

isomorphic. This notion was originally introduced by Nurmagambetov [69], [68] (without

the phrase “in the class of all models”), and further studied by Goodrick in several papers,

including his thesis [17], wherein he proves that if T has the Schröder-Bernstein property

that T is classifiable of depth 1, i.e. I(T,ℵα) ≤ |α+ ω|2ℵ0 for all α.

We are interested in studying this phenomenon in countable model theory. To do so,

328



we deviate from the above set-up in two ways. First, we interested in Schröder-Bernstein

properties for countable structures (or generally for potential canonical Scott sentences).

Second, it is convenient in applications to use the following notion of embedding.

Definition 6.6.1. Suppose L is a language, and M,N are L-structures. Then say that

f : M ≤ N is an embedding if it is a homomorphism; that is, f commutes with the

function symbols, and if R is an n-ary relation, then f [RM ] ⊆ RN .

This allows the most freedom. If one wanted to look at elementary embedding, then

just Morleyize; generally, we can pass to Lω1ω-definable expansions to get whatever notion

we wanted.

Definition 6.6.2. Say that Φ has the Schröder-Bernstein property if for all M,N |= Ψ

countable, if M ∼ N then M ∼= N .

We will eventually show that if Φ has the Schröder-Bernstein property, and if certain

large cardinals hold, then this puts a bound on the thickness spectrum of Φ. In fact

we show more. We will presently define the α-ary Schröder-Bernstein property for every

ordinal α, and show that under large cardinals, any of these puts a bound on the thickness

spectrum of Φ.

Definition 6.6.3. Suppose M,N are L-structures and a ∈ M , b ∈ N are tuples of the

same length. We define what it means for (M,a) ∼SBα (N, b) by induction on α. Say that

(M,a) ∼SB0 (N, b) if there are f : M ≤ N and g : N ≤M such that f(a) = b and g(b) = a.

Say that (M,a) ∼SBα+1 (N, b) if for every a ∈ M there is b ∈ M with (M,aa) ∼SBα (N, b),

and vice versa. For δ limit, say that (M,a) ∼SBδ (N, b) if (M,a) ∼SBβ (N, b) for every

β < δ. Finally say that M ∼SBα N if (M, ∅) ∼SBα (N, ∅).

Suppose Φ,Ψ ∈ CSS(L)ptl. Then define Φ ∼SBα Ψ if for some or any forcing ex-
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tension V[G] in which Φ,Ψ become hereditarily countable, and for some or any M ∈

Mod(Φ)V[G], N ∈ Mod(Ψ)V[G], we have (M ∼SBα N)V[G]. Clearly this does not depend on

the choice of forcing extension or the models.

If Φ ∈ Lω1ω, then say that Φ has the α-ary Schröder-Bernstein property if for all

ϕ,ψ ∈ CSS(Φ)ptl, if ϕ ∼SBα ψ then ϕ = ψ.

Note that the relation ∼SBα is highly nonabsolute on uncountable models; we will

typically only be interested in evaluating it on countable models (possibly in forcing ex-

tensions).

We want a more explicit characterization of what it means for a pair of potential

canonical Scott sentences Φ,Ψ to have Φ ∼SBα Ψ. For this, it is helpful to consider colored

trees.

Definition 6.6.4. A colored tree is a structure T = (T,≤T , 0T , cT ) where (T,≤T , 0T )

is a tree of height at most ω with root 0T , and cT : T → ω is a coloring. Let CT ∈

(Lct)ω1ω describe colored trees (formally, the language Lct includes unary predicates Un

representing c−1(n), for each n < ω)). Note that f : T ≤ T ′ is an embedding if f(0T ) =

0T ′ , and for all s, t ∈ T , s ≤T t implies f(s) ≤T ′ f(t), and for all s ∈ T , cT (s) = cT ′(f(s)).

If T is a colored tree and s ∈ T , let T≥s be the colored tree with root 0T≥s = s,

consisting of all elements of T extending s.

We will not be too interested in the ∼SBα -relations on colored trees; instead we want

the following very special relations.

Definition 6.6.5. Suppose T , T ′ are colored trees. We define what it means for T ≤ct
α T ′

by induction on α. Put T ≤ct
0 T ′ if cT (0T ) = cT ′(0T ′). For δ limit, put T ≤ct

δ T ′ if

T ≤ct
α T ′ for all α < δ. Finally, put T ≤ct

α+1 T ′ if for all s ∈ T an immediate successor
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of 0T , there is s′ ∈ T ′ an immediate successor of 0T ′ , such that T≥s ∼ct
α T ′≥s′ . Note that

T ≤ T ′ if T ≤ct
α T ′ for all α.

Next we define what it means for T ∼ct
α T ′ by induction on α. Put T ∼ct

0 T ′ if

T ∼ T ′. For δ limit, put T ∼ct
δ T ′ if T ∼ct

α T ′ for all α < δ. Finally, put T ∼ct
α+1 T ′ if for

all s ∈ T an immediate successor of 0T , there is s′ ∈ T ′ an immediate successor of 0T ′ ,

such that T≥s ∼ct
α T ′≥s′ , and vice versa.

The following lemma is very special to colored trees. For instance, the embeddability

relation on uncountable dense linear orders is very complicated, even though DLO is ℵ0-

categorical.

Theorem 6.6.6. Suppose V is a transitive model of ZFC−, and T , T ′ ∈ V are colored

trees. Then for R ∈ {≤,≤ct
α ,∼ct

α : α ∈ V }, we have that T R T ′ if and only if (T R T ′)V .

Proof. First, an easy induction on α ∈ V shows that for all T , T ′ ∈ V , T ≤ct
α T ′ if and

only if (T ≤ct
α T ′)V .

Now, if T ≤ T ′, then in particular T ≤ct
α T ′ for all α ∈ V , so (T ≤ T ′)V . For the

converse, suppose (T ≤ T ′)V and suppose towards a contradiction that T 6≤ T ′. Then

there is some ordinal α such that T 6≤ct
α T ′. Choose (T , T ′) so as to minimize α. Note

that α 6∈ V , so in particular α 6= 0; also α cannot be a limit ordinal by minimality of α.

So we can write α = β + 1 for some β. Choose s ∈ T an immediate successor of 0T such

that for every s′ ∈ T ′ an immediate successor of 0T ′ , T≥s 6≤ct
β T ′≥s′ . Since (T ≤ T ′)V ,

we can find some s′ ∈ T ′ an immediate successor of 0T ′ such that (T≥s ≤ T ′≥s′)V . This

contradicts the minimality of α.

Hence we get the claim for R = ≤; another easy induction on α gets the claim for

∼ct
α .
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The following theorem, combined with Theorem 6.6.6, explains why embedding on

colored trees is useful for us. As notation, if Φ is a sentence of Lω1ω then let ModHC(Φ)

be the set of hereditarily countable models of Φ. We will only use this in the case where

Φ = CT.

Theorem 6.6.7. Suppose Φ ∈ Lω1ω. Then there is a ZFC−-absolute map f : CSS(Φ)→

ModHC(CT), such that ZFC−-persistently, the following holds: for all ϕ,ψ ∈ CSS(Φ)ptl

and for all ordinals α, ϕ ∼SBα ψ if and only if fptl(ϕ) ∼ct
α fptl(ψ).

Proof. We can suppose the language L is relational. Enumerate L = (Rn : n < ω), where

each Rn is mn-ary. Also, it suffices to consider the case where ϕ,ψ ∈ CSS(Φ) (i.e., are

countable), since then the same argument will run in any forcing extension.

Suppose ϕ ∈ CSS(Φ); we describe how to construct f(ϕ) = (Sϕ,≤ϕ, cϕ). For

each n < ω, let Sn∞(ϕ) be as defined in Definition 5.4.5. Then S<ω∞ (ϕ) =
⋃
n S

n
∞(ϕ)

naturally forms a tree whose n’th level is Sn∞(ϕ). Define a tree extension Sϕ ⊇ S<ω∞ (ϕ)

as follows: for each σ(x) ∈ Sn∞(ϕ), for each n′ ≤ n, and for each s ∈ nmn′ such that

Rn′(xs(i) : i < mn′) ∈ σ(x), let tσ,n′,s be an immediate successor of σ(x) (and these are

the only elements we add). Define cϕ �S<ω∞ (ϕ) to be constantly 0, say, and define each

cϕ(tσ,n′,s) so as to encode (n′, s).

Then it is clear this works.

Since the notion of α-ary Schröder-Bernstein property highly depends on the choice

of language, we cannot hope that it is a dividing line in countable model theory. The

following is an abstract consequence of the α-ary Schröder-Bernstein property, which is a

better candidate for this.

Definition 6.6.8. Suppose α is an ordinal. Then say thatX ⊆ HC admits α-ary Schröder-
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Bernstein invariants if, for some robust Γ: X is Γ-absolute, and there is a Γ-absolute map

f : X → ModHC(CT), such that for all ϕ,ψ ∈ CSS(Φ)ptl distinct, fptl(ϕ) 6∼ct
α fptl(ψ).

Say that Φ admits α-ary Schröder-Bernstein invariants if CSS(Φ) does.

Thus, if Φ has the α-ary Schröder-Bernstein property, then Φ admits α-ary Schröder-

Bernstein invariants, by Theorem 6.6.7. Actually, it is enough for Φ to have an Lω1ω-

definable expansion with the α-ary Schröder-Bernstein property.

We remark on the following downward Lowenheim-Skolem result.

Theorem 6.6.9. Suppose Φ ∈ Lω1ω, and α is an ordinal. Write λ = |α|. Then:

(A) Φ has the α-ary Schröder-Bernstein property if and only if for all ϕ,ψ ∈ CSS(Φ)ptl∩

H(λ+), if ϕ ∼SBα ψ then ϕ = ψ.

(B) Φ admits α-ary Schröder-Bernstein invariants if and only if for some robust Γ, and

some Γ-absolute f : CSS(Φ)→ ModHC(CT), we have that for all ϕ,ψ ∈ CSS(Φ)ptl∩

H(λ+), if ϕ 6= ψ then fptl(ϕ) 6∼ct
α fptl(ψ).

Proof. To prove both (A) and (B), it suffices to show the following: suppose Γ is robust,

and f : CSS(Φ)→ ModHC(CT) is Γ-absolute. Suppose for all ϕ,ψ ∈ CSS(Φ)ptl ∩H(λ+),

if ϕ 6= ψ then fptl(ϕ) 6∼ct
α fptl(ψ). Then for all ϕ,ψ ∈ CSS(Φ)ptl, if ϕ 6= ψ then fptl(ϕ) 6∼ct

α

fptl(ψ).

We prove the contrapositive; so suppose some ϕ 6= ψ ∈ CSS(Φ)ptl with fptl(ϕ) ∼ct
α

fptl(ψ). Choose κ regular so that ϕ,ψ ∈ H(κ). Choose V0 � H(κ) with |V0| ≤ λ

so that α ⊆∈ V0 and ϕ,ψ ∈ V0 and V0 contains parameters for f , and let V be the

transitive collapse of V0. Let ϕ′, ψ′ be the image of ϕ,ψ under the transitive collapse.

Then (fptl(ϕ
′) ∼ct

α fptl(ψ
′))V , but by Theorem 6.6.7, this means fptl(ϕ

′) ∼ct
α fptl(ψ

′).

Since ϕ′, ψ′ ∈ V ∈ H(λ+) we conclude.
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Corollary 6.6.10. Suppose Φ ∈ Lω1ω, and α < ω1. Then Φ has the α-ary Schröder-

Bernstein property if and only if for all countable M,N |= Φ, if M ∼SBα N then M ∼= N ;

moreover, this will continue to hold in every forcing extension. Φ admits α-ary Schröder-

Bernstein invariants if and only if there is some robust Γ and some f : CSS(Φ) →

ModHC(CT), such that for all ϕ,ψ ∈ CSS(Φ), if ϕ 6= ψ then fptl(ϕ) 6∼ct
α fptl(ψ); moreover,

this will hold Γ-persistently.

Proof. This follows immediately from Theorem 6.6.9, except for the two moreover clauses;

these follow from Lévy’s Absoluteness Principle (it suffices to check that the statement

holds in every countable transitive model of ZFC− or Γ, respectively).

6.7 Counting Colored Trees up to Biembeddability

In this section, we show that if Φ has the α-ary Schröder Bernstein property, then

Φ is not Borel complete, assuming a certain large cardinal. Specifically, we will need the

Erdös cardinals:

Definition 6.7.1. Suppose α is an ordinal (we will only use the case α = ω). Then

let κ(α) be the least cardinal κ with κ → (α)<ω2 (if it exists). (Recall that this means:

whenever F : [κ(α)]<ω → 2, there is some X ⊆ κ(ω) of ordertype α, such that F �[X]n is

constant for each n < ω.)

κ(ω) is a large cardinal: it is always inaccessible and has the tree property. On

the other hand, it is absolute to V = L, and well below the consistency strength of a

measurable cardinal. See [28] for a description of these results.

The following is a theorem of Shelah [73]. As notation, given Φ ∈ Lω1ω, let ModV(Φ)

denote the class of all models of Φ. Also, in the following theorem, the term “antichain” is
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used in the sense of well-quasi-ordering theory (rather than in the sense of forcing theory),

so A is an antichain of for all a, b ∈ A, a 6≤ b and b 6≤ a.

Theorem 6.7.2. Suppose κ(ω) <∞. Then (ModV(CT ),≤) is a κ(ω)-well-quasi-order (in

fact a κ(ω)-better-quasi-order). In other words, it has no descending chains nor antichains

of size κ(ω).

This theorem is a fundamental constraint on the complexity of biembeddability

relations, and will allow us to bound the complexity of sentences with the α-ary Schröder-

Bernstein property.

Before proceeding, we want the following definition and technical lemma from [73]

(see the proof of Theorem 5.3 there). These allow us to replace general colored trees by

well-founded colored trees.

Definition 6.7.3. Suppose T is a colored tree and α is an ordinal. Then let T ×α denote

the colored tree of all pairs (s, β), where s ∈ T is of height n, and β = (β0, . . . , βn−1) is a

strictly decreasing sequence of ordinals with β0 < α. We define cT ×α(s, β) = cT (s).

Lemma 6.7.4. Suppose T , T ′ are colored trees. Then for all ordinals α, T ×α ≤ct
α T ′×α

if and only if T ≤ct
α T ′ if and only if T × α ≤ T ′ × α.

Proof. We verify by induction on α that T × α ≤ct
α T ′ × α implies T ≤ct

α T ′ implies

T × α ≤ T ′ × α (the remaining implication is trivial). α = 0 is immediate.

Successor stage first implication: suppose T × (α + 1) ≤ct
α+1 T ′ × (α + 1), and let

s ∈ T be an immediate successor of 0T . Let (s′, β) ∈ T ′ × (α + 1) be an immediate

successor of 0T ′×(α+1) such that (T × (α + 1))≥(s,α) ≤ct
α (T ′ × (α + 1))(s′,β). This means

that (T≥s) × α ≤ct
α (T ′≥s) × β (since the corresponding trees are isomorphic). But easily

(T ′≥s)× β ≤ct (T ′≥s)× α, so we get that (T≥s)× α ≤ct
α (T ′≥s)× α. Thus, by the inductive
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hypothesis T≥s ≤ct
α T ′≥s′ .

Successor stage, second implication: suppose T ≤ct
α+1 T ′; given (s, (β)) ∈ T ×(α+1)

an immediate successor of 0T ×(α+1), choose s′ ∈ T ′ an immediate successor of 0T such that

T≥s ≤ct
β T ′≥s′ , and note by the inductive hypothesis that (T × (α+ 1))≥(s,(β))

∼= T≥s× β ≤

T ′≥s′ × β ∼= (T ′ × (α+ 1))≥(s′,(β)).

Limit stage, first implication: suppose T × δ ≤ct
δ T ′ × δ. Thus, for all α < δ,

T × δ ≤ct
α T ′ × δ. By the inductive hypothesis, this implies that for all α < δ, (T ×

δ) × α) ≤ct
α (T ′ × δ) × α, but always (S × γ0) × γ1 ∼ S × min(γ0, γ1), so we get that

(T × α) ≤ct
α (T ′ × α), hence by the inductive hypothesis again T ≤ct

α T ′. This holds for

all α < δ so T ≤ct
δ T ′.

Limit stage, second implication: suppose T ≤ct
δ T ′. Then by definition of ≤ct

δ and

the inductive hypothesis, we get that T × α ≤ T ′ × α for all α < δ. Since T ′ × α ≤ T × δ

and T × δ =
⋃
α<δ T × α, we get that T × δ ≤ T ′ × δ.

We can now prove the following. To fix notation, if T is a colored tree and t ∈ T ,

then inductively define rnk(T , t) = sup{rnk(T , s) + 1 : s an immediate predecessor of t}.

Define rnk(T ) = rnk(T , 0T ). So T is well-founded if and only if rnk(T ) <∞.

Lemma 6.7.5. Suppose κ(ω) exists. Suppose α is a nonzero ordinal. Then there are at

most |α|<κ(ω) colored trees T with rnk(T ) < α, up to biembeddability.

Proof. We proceed by induction on α ≥ 1. For α = 1, note that colored trees of rank 1 are

determined up to biembeddability by the color of 0T and, for each n < ω, whether or not

0T has an (immediate) successor of color n. There are only 2ℵ0 < κ(ω) = 1<κ(ω)-many

possibilities.
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The case α limit is trivial, since
∑

β<α |β|<κ(ω) ≤ |α|<κ(ω).

Suppose we are at stage α+1. Write κ = |α|. Let S be a choice of representatives for

well-founded colored trees of rank < α up to biembeddability; so |S| ≤ κ<κ(ω). Suppose

T = (T,<, c) is given of rank α. Let XT be the set of all S ∈ S such that there is

some t ∈ T of height 1 such that S embeds into the colored tree T≥t. Note that T is

biembeddable with the tree (T ′, <′, c′), which is defined by: c′(0T ′) = c(0T ), and then we

put a copy of each S ∈ XT above 0T ′ . Thus, T / ∼ is determined by the pair (XT , c(0T )),

where XT is a downward-closed subset of S (ordered by embeddability ≤).

Thus, it suffices to show there are only κ<κ(ω)-many downward closed subsets of S.

Suppose X ⊆ S is downward closed. Let T be the tree (of infinite height) S<λ where

λ is large (say λ = |S|+). Then inductively it is easy to find a subtree S of T such that:

• Whenever (Sβ : β < α) ∈ S, then for all β < β′ < α, Sβ > Sβ′ , and each Sβ 6∈ X;

• For each S = (Sβ : β < α) ∈ S, the set of all S ∈ S such that SS ∈ S forms a

maximal antichain in {S ∈ S\X:S < Sβ for all β < α}.

Since (S,≤) has no descending chains of length κ(ω), S is of height at most κ(ω)

and has no branches of length κ(ω). Further, since κ(ω) is inaccessible and (S,≤) has no

antichains of size κ(ω), each level of S must have size less than κ(ω). Thus, since κ(ω)

has the tree property, S must be of height less than κ(ω); thus |S| < κ(ω). Thus, it

suffices to show that X is determined by S (since |S|<κ(ω) ≤ κ<κ(ω)). Define Y = {S ∈ S :

there is no (Sβ : β ≤ α) ∈ S with Sα ≤ S}; it suffices to show that X = Y .

It follows from immediately from the construction of S that X ⊆ Y ; so it suffices

to show that Y ⊆ X. So suppose S 6∈ X; we show S 6∈ Y . Define a chain (Sβ : β < β∗)

through S inductively, so that each S < Sβ, for as long as possible. This process must
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stop, say we cannot find Sβ∗. If β∗ = β + 1 then this means every immediate successor of

Sβ is either incomparable with or below S; by maximality of the antichain, there must be

some Sβ∗ ≤ S with (Sβ : β ≤ β∗) ∈ S, as desired. The limit case is similar.

This allows us to prove the following:

Theorem 6.7.6. Suppose κ(ω) exists, α is an ordinal, and Φ admits α-ary Schröder-

Bernstein invariants. Then for all λ, τ(Φ, λ) ≤ iα(λ<κ(ω)). In particular, τ(Φ, κ(ω)) ≤

iα(κ(ω)).

Proof. Let f : CSS(Φ) → ModHC(CT) witness that Φ admits α-ary Schröder-Bernstein

invariants. Define g : ModHC(CT) ×ModHC(CT) → ω1 via g(T , T ′) = 0 if T ≤ T ′, and

otherwise g(T , T ′) = the least α such that T 6≤ct
α T ′. By Theorem 6.6.7, g is ZFC−-

absolute (via the given definition). Define h : ModHC(CT) × HC → ModHC(CT) via:

h(T , s) = T≥s if s ∈ T , otherwise h(T , s) is some fixed T0.

Write f∗ = f×g×h. I claim that f∗ witnesses that for every λ, τ(Φ, λ) ≤ iα(λ<κ(ω)).

Indeed, suppose A ∈ Vλ+ is f∗-closed, i.e. f -closed, g-closed and h-closed, and let α∗ =

A ∩ON, so α∗ < λ+.

I claim that A contains at most λ<κ(ω)-many colored trees up to biembeddability.

Indeed, note that for all T , T ′ ∈ A with T 6≤ T ′, we have that T 6≤ct
α∗ T

′, since A is

g-closed. Hence T × α∗ 6≤ T ′ × α∗, by Lemma 6.7.4. Hence we conclude by Lemma 6.7.5.

I claim that for every ordinal β, A contains at most iβ(λ<κ(ω))-many colored trees

up to∼ct
β . We have just proved β = 0. Suppose we have verified β; then note that T / ∼ct

β+1

is determined by cT (0T ) along with {T≥s/ ∼ct
β : s an immediate successor of 0T }. Since

A is h-closed, if T ∈ A then each T≥s ∈ A so we conclude by the inductive hypothesis.

Similarly, if β is limit, then T / ∼ct
β+1 is determined by cT (0T ) along with {T≥s/ ∼β′ :
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s an immediate successor of 0T , β
′ < β}.

Since A is f -closed, it follows that |CSS(Φ)ptl ∩A| ≤ iα(λ<κ(ω)) as desired.

Corollary 6.7.7. Assume κ(ω) exists. Suppose Φ admits α-ary Schröder-Bernstein in-

variants for some ordinal α. Then Φ is not ≤∗
a∆1

2
-complete (and hence not Borel complete).

If α < ω1, then TAGα+1 6≤∗a∆1
2

Φ (and hence TAGα+1 6≤B Φ).

Proof. Choose λ > α, κ(ω) regular. We can choose an |α|+-closed forcing extension V[G]

of V, such that in V[G], λ = λ<λ admits thick sets (first collapse λ<κ to λ, and then

add 2λ-many λ-Cohens, and apply Theorem 6.5.3 and the proof of Lemma 6.5.2). Since

H(|α|+) is unchanged, we get that Φ still admits α-ary Schröder-Bernstein invariants in

V[G] by Theorem 6.6.9. Working in V[G], we see that τ(Φ, λ) ≤ iα(λ) < iλ+ , and thus Φ

cannot be ≤∗
a∆1

2
-complete. If α < ω1 then since τ(TAGα+1, λ) = iα+1(λ), we get in fact

that TAGα+1 6≤∗a∆1
2

Φ.

We give a concrete example.

Corollary 6.7.8. Assume κ(ω) exists. Then there is no Borel reduction from torsion

abelian groups to colored trees, which takes nonisomorphic groups to non-biembeddable

trees.
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Chapter 7: Borel Complexity of Torsion-Free Abelian Groups

In this chapter, we describe the results of [82], joint with Shelah.

In [12], Friedman and Stanley leverage the Ulm analysis [86] to show that torsion

abelian groups are far from Borel complete. They then pose the following question:

Question. Let TFAG be the theory of torsion-free abelian groups. Is TFAG Borel

complete?

This has attracted considerable attention, but has nonetheless remained open. The

following theorem of Hjorth [23] is the best known so far:

Theorem 7.0.1. Φα ≤B TFAG for every α < ω1.

This means that if TFAG is not Borel complete, then it represents a very new

phenomenon. In fact, in [12], Friedman and Stanley separately described the following

question as one of the basic open problems of the general theory: if Φ is a sentence of

Lω1ω and if Φα ≤B Φ for each α < ω1, must Φ be Borel complete?

In Sections 7.1, we give a uniform treatment of the main techniques of coding infor-

mation into abelian groups. The basic idea for these codings is old, dating at least to [23]

and [9]; namely, we start with a free abelian group, and then tag various subgroups by

making the elements infinitely divisible by particular primes. However, to make the cod-

ing more robust we adopt an idea of [16], replacing the use of primes by an algebraically

independent sequence of p-adic integers for a fixed prime p. As a first application, we
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show the following, where AG is the theory of abelian groups:

Theorem 7.0.2. TFAG ∼B AG. Further, if R is any countable ring, then R-mod, the

theory of left R-modules, has R-mod ≤B AG.

In Section 7.2, we expand on Hjorth’s proof of Theorem 7.0.1.

In Section 7.2, using the basic idea of Theorem 7.0.1, we prove the following:

Theorem 7.0.3. Suppose there is no transitive model of ZFC− + κ(ω) exists. Then

Graphs ≤ZFC− TFAG.

Corollary 7.0.4. It is consistent with ZFC that Graphs ≤ZFC− TFAG, and hence that

TFAG is ≤ZFC−-complete.

The proofs suggest that maybe TFAG has some α-ary Schröder-Bernstein property.

The α = 0 case has already been investigated: the Schröder-Bernstein property for TFAG

fails, as first proved by Goodrick [17] (in fact, the failure was with elementary embedding).

Recently, Calderoni and Thomas have shown in [85] that the relation of biembeddability

on countable models of TFAG is Σ1
1-complete, which is as bad as possible.

In Section 7.3, we prove the following (where we use injective group homomorphisms

as our notion of embedding):

Theorem 7.0.5. For every α < κ(ω), TFAG fails the α-ary Schröder-Bernstein property.

The construction breaks down at κ(ω), so the following remains open:

Question. Does TFAG have the κ(ω)-ary Schröder-Bernstein property?

If the answer is yes, then this would imply (under the presence of κ(ω) that TFAG

is not Borel complete.
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7.1 Some Bireducibilities with TFAG

In this section, we prove in particular that AG (the theory of abelian groups) is

Borel equivalent to TFAG (the theory of torsion-free abelian groups).

We set up some notation. If X is a set and G is a group we let ⊕XG denote the

group of functions from X to G with finite support; so we consider ⊕XG ≤ GX . For p

a prime, Z[1
p ] is the subring of Q generated by 1

p ; and similarly for sets of primes. Z(p)

(read: Z localized at the ideal (p)) is Z[1
q : q 6= p]. Let Zp denote the p-adic integers, i.e.

the completion of Z(p) under the p-adic metric. Let Qp be the field completion of Zp.

Given G ≤ H groups, say that G is a pure subgroup of H is for every n < ω,

nH ∩ G = nG. If p is a prime, say that G is a p-pure subgroup of H if for every n < ω,

pnH ∩G = pnG.

The following is a generalization of Hjorth’s notion of “eplag.”

Definition 7.1.1. Suppose I and J are countable index sets. Then let LI,J be the

language extending the language of abelian groups, with a unary predicate symbol Gi for

each i ∈ I, and a unary function symbol ϕj for each j ∈ J (we will allow ϕj to be a partial

function).

Let ΩI,J be the infinitary LF -sentence such that (G,+, Gi : i ∈ I, ϕj : j ∈ J) |=

ΩI,J if the following all hold:

• (G,+) ≡∞ω ⊕ωZ;

• Each Gi is a subgroup of G;

• Each dom(ϕj) is either equal to all of G, or else to some Gi;

• Each ϕj : dom(ϕj)→ G is a homomorphism.
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Let Ωp
I,J assert additionally that each Gi is a pure subgroup of G.

Some important examples: the countable models of Ω{0},0 are of the form (G,H)

where G is free abelian of infinite rank and H is a subgroup of G. The countable models

of Ω0,{0} are of the form (G,ϕ) where G is free abelian of infinite rank and ϕ : G→ G is

a homomorphism. The countable models of Ωω,0 are of the form (G,Gn : n < ω), where

G is free abelian of infinite rank and each Gn is a subgroup of G.

We aim to prove the following. Let AG denote the theory of abelian groups.

Theorem 7.1.2. Suppose I,J are countable index sets, not both empty. Then Ωp
I,J ∼B

ΩI,J ∼B TFAG ∼B AG.

The proof will be via many lemmas.

Lemma 7.1.3. TFAG ≤B Ωp
{0},0 and AG ≤B Ω{0},0.

Proof. We describe the essential features of the construction, leaving it to the reader to

check that it is Borel when formulated as an operation on Polish spaces. Suppose G is

an (infinite) countable abelian group. Define ϕ :
∑

G Z → G to be the augmentation

map, that is given a ∈
∑

G Z, let ϕ(a) =
∑

n∈G, a(b)b. Let K be the kernel of ϕ. Thus

G 7→ (
∑

G Z,K) works, using G ∼=
∑

G Z/K. This shows AG ≤B Ω{0},0; but note that if

G is torsion-free, then K will be pure, so we also get TFAG ≤B Ωp
{0},0.

Lemma 7.1.4. Ω{0},0 ≤B Ω0,{0}. Hence, whenever I,J are not both empty, Ω{0},0 ≤B

ΩI,J and Ωp
{0},0 ≤B Ωp

I,J .

Proof. Suppose (G,H) |= Ω{0},0 is a given countable model; so G is free abelian of infinite

rank and H is a subgroup of G. Write G′ = G × H ′; where H ′ ∼= H; note that H ′ and

hence G′ is free abelian, since subgroups of free abelian groups are free. Define ϕ : G′ → G′
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via ϕ �G= 0 and ϕ �H′ : H ′ ∼= H. Then (G,H) 7→ (G′, ϕ) works, using G = ker(ϕ) and

H = im(ϕ).

The second claim follows trivially (note Ωp
0,{0} = Ω0,{0}).

Lemma 7.1.5. For any countable index sets I,J , ΩI,J ≤B Ωω,0 and Ωp
I,J ≤B Ωp

ω,0.

Proof. Write I ′ = I ∪ J ∪ {∗0, ∗1} (we suppose this is a disjoint union). We show that

ΩI,J ≤B ΩI′,0 and Ωp
I,J ≤B Ωp

I′,0.

Suppose (G,Gi : i ∈ I, ϕj : j ∈ J ) |= ΩI,J . Define G′ = G × G; for each i ∈ I,

define G′i to be the copy of Gi in the first factor of G′; for each j ∈ J , define G′j to be the

graph of ϕj ; define G′∗0 = G× 0; and finally let G′∗1 be the graph of the identify function

idG : G→ G. Then (G′, G′i : i ∈ I ′) |= ΩI′,0 works. Also note that if each Gi is pure, then

so is each G′i′ ; this is because the graph of a partial homomorphism is pure if and only if

its domain is pure.

Lemma 7.1.6. Ωω,0 ≤B Ωp
ω,0.

Proof. By the preceding lemma, it suffices to find index sets I,J such that Ωω,0 ≤B Ωp
I,J .

Write I = ω ∪ {∗}, write J = ω.

Suppose (G,Gn : n < ω) |= Ωω,0. We define G′ = G × ⊕n<ω
∑

Gn
Z. For each

n < ω let G′n = ⊕GnZ; let G′∗ = G. Finally, define ϕn : G′n → G′ to be the augmentation

map ⊕GnZ 7→ Gn. Then clearly (G′, G′i : i ∈ I, ϕj : j ∈ J ) works (G = G′∗ and each

Gn = Im(ϕn)).

Note that to finish the proof of Theorem 7.1.2, it suffices to show that Ωp
ω,0 ≤B

TFAG. Indeed, we would then have that for any countable index sets I,J not both

empty, TFAG ≤B Ωp
{0},0 ≤B Ωp

I,J ≤B Ωp
ω,0 ≤B TFAG, and thus these are all equivalent;

and similarly, AG ≤B ΩI,J ≤B Ωω,0 ≤B Ωp
ω,0 ≤B AG, and so these are also all equivalent.
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This remaining reduction is more involved than the others; the basic idea for it is

due to Goodrick [16]. To begin, we need the following lemma. The point is that if G is a

p-pure subgroup of ⊕ωZp, then the isomorphism type of (Zp(G), G) depends only on the

isomorphism type of G.

Lemma 7.1.7. Suppose G is a p-pure subgroup of ⊕ωZp. Then there is a Zp-module

isomorphism ϕ : (Zp⊗G)/(p∞(Zp⊗G))→ ZpG which is the identity on G, where Zp⊗G

is the tensor product (over Z), and where ZpG is the Zp-submodule of ⊕ωZp generated by

G.

Proof. Define ψ(γ, a) = γa, going from Zp ×G to ZpG. ψ is clearly a Z-bilinear map, so

it induces a group homomorphism ϕ0 : Zp ⊗G→ ZpG. Clearly ϕ0 is 0 on p∞(Zp ⊗G) so

this induces a map ϕ : (Zp⊗G)/(p∞(Zp⊗G))→ ZpG. We check this works. Clearly ϕ is

surjective and the identity on G, and preserves the Zp-action. So it suffices to check the

kernel of ϕ0 is p∞(Zp ⊗G).

Given γ ∈ Zp and n < ω, let γ �n∈ {0, . . . , pn − 1} be the unique element with

γ − γ �n∈ pnZp (recall that Zp is the completion of Z in the p-adic metric; so choose

(km : m < ω) a sequence from Z converging to γ and note that km mod pn must eventually

be constant).

Suppose
∑

i<n γiai = 0; we want to show
∑

i<n γi⊗ ai ∈ p∞(Zp⊗G). Note that for

each m,
∑

i<n γiai ∈ pm(⊕ωZp). Hence, for each m, bm :=
∑

i<n γi �m ai ∈ pmG, using

that G is p-pure. Note that in Zp ⊗ G,
∑

i<n γi �m ⊗ai = 1 ⊗ bm, since we can move all

the γi �m’s to the right-hand side. Thus 1⊗ bm−
∑

i<n γi⊗ai ∈ (pmZp)⊗G, as it is equal

to
∑

i<n(γi �m −γi)⊗ ai. Thus
∑

i<n γi ⊗ ai ∈ pm(Zp ⊗G) for all m, as desired.

Finally:
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Lemma 7.1.8. Ωp
ω,0 ≤B TFAG.

Proof. Let p be a prime.

Let (γn : 1 ≤ n < ω) be a sequence of algebraically-independent elements of Zp over

Q, such that each γn is a unit of Zp (in particular is not divisible by p). Write γ0 = 1.

Note then that (γn : n < ω) is linearly independent over Q.

Let (⊕ωZ, Gn : n < ω) |= Ωp
ω,0; we can suppose G0 = G1 = ⊕ωZ. Let G be

the p-pure subgroup of ⊕ωZp generated by
⋃
n<ω γnGn (that is, close off under addition,

inverses, and division by p within ⊕ωZp). We want to check that the map G 7→ G works.

First, suppose (⊕ωZ, Gn : n < ω) ∼= (⊕ωZ, G′n : n < ω); we want to verify that

the corresponding groups G,G′ are isomorphic. Let ϕ be the isomorphism. Then ϕ lifts

canonically to an isomorphism ϕ∗ : ⊕ωZp ∼= ⊕ωZp (let (ei : i < ω) be the standard basis

of ⊕ωZ, define ϕ∗(
∑

i γiei) =
∑

i γiϕ(ei), where (ei : i < ω) is the standard basis of ⊕ωZ;

more abstractly, ϕ∗ = 1⊗ ϕ where we view ⊕ωZp = Zp ⊗⊕ωZ). Then clearly ϕ∗ �G is an

isomorphism onto G′.

For the reverse it suffices, by Lemma 7.1.7, to show we can canonically recover each

Gn from (ZpG,G).

Note that every a ∈ G can be written as
∑

n<ω γnp
k(n)bn, for some k(n) ∈ Z, bn ∈ Gn

with all but finitely many bn = 0, and k(n) = 0 whenever bn = 0. (Not all such sums are

in G; G contains such sums which are additionally in ⊕ωZp.) We call this a representation

of a if each p 6 |bn. Then representations are unique: for suppose
∑

n<ω γnp
k(n)bn =∑

n<ω γnp
k′(n)b′n. Let i ∈ ω; then we have

∑
n<ω

(
pk(n)bn(i)− pk′(n)b′n(i)

)
γn = 0. By

linear independence of (γn : n < ω) this implies each pk(n)bn(i) = pk
′(n)b′n(i). Since this

holds for each i we have each pk(n)bn = pk
′(n)b′n. Then by divisibility assumptions we have

that each bn = b′n and so each k(n) = k′(n).
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Suppose f ∈ ZpG and let 1 ≤ m < ω. It suffices to show that a ∈ Gm if and only

if a ∈ G and γma ∈ G: left to right follows from our assumption that γ0 = 1. For right

to left: let
∑

n<ω γnp
k(n)bn be the representation of a, and let

∑
n<ω γnp

k′(n)b′n be the

representation of γma. Let i ∈ ω. Then
∑

n<ω γmγnp
k(n)bn(i) =

∑
n<ω γnp

k′(n)b′n(i). Note

that the only time γmγn = γk is when n = 0, k = m. Thus by linear independence of

(γn : n < ω)_ (γmγn : 1 ≤ n < ω) we have that bn = 0 for all n 6= 0, and b′n = 0 for all

n 6= m. In particular, a = pkb for some b ∈ Gm. Since ⊕ωZ is p-pure in ⊕ωZp and since

Gm is p-pure in ⊕ωZ, we have that a ∈ Gm.

Remark 7.1.9. It is easy to add to the list in Theorem 7.1.2. For instance, we can

additionally insist that each ϕj is a pure embedding, i.e. preserves the divisibility relations.

A much stronger condition is the following: let Ω∗I,J be ΩI,J together with the

second-order assertion saying, given (G,Gi : i ∈ I, ϕj : j ∈ J), that there is a basis B of G

(as a Z-module) such that each Gi is spanned by basis elements of B and each ϕj takes

basis elements to basis elements. All of the known complexity of TFAG is also present in

Ω∗ω,{0}; see the next section.

Finally, we aim towards showing that whenever R is a countable ring, then R-mod

(the theory of left R-modules) is Borel reducible to AG. This will not be used in the

remainder of the chapter.

Definition 7.1.10. Suppose I,J are countable index sets. Let Ω−I,J be the LI,J -theory

such that (G,+, Gi, ϕj : i ∈ I, j ∈ J ) |= Ω−I,J if:

• (G,+) is an abelian group;

• Each Gi is a subgroup of G;

• Each dom(ϕj) is either all of G or else some Gi;
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• Each ϕj : dom(ϕj)→ G is a homomorphism.

So the only difference with ΩI,J is that we are no longer requiring G ≡∞ω ⊕ωZ.

Theorem 7.1.11. For all countable index sets I,J , we have Ω−I,J ∼B AG.

Proof. Clearly AG ≤B Ω−I,J . (Given G |= AG, let each Gi = G and let each ϕj be

the identity of G.) Also, we have by exactly the same argument as before that each

Ω−I,J ≤B Ω−ω,0. So it suffices to show that Ω−ω,0 ≤B Ωω∪{∗},0.

Given (G,Gn : n < ω) |= Ω−ω,0 (that is, G is an abelian group and each Gn is a

subgroup of G), write G′ = ⊕GZ; let G′∗ be the kernel of the augmentation map G′ → G;

and let G′n = G′∗ + ⊕GnZ. Then (G′, G′n : n < ω,G′∗) works, using G ∼= G′/G∗ via an

isomorphism that takes each Gn to G′n/G∗.

Corollary 7.1.12. Suppose R is a countable ring. Then R-mod ≤B AG.

Proof. An R-module (M,+, ·r : r ∈ R) can be viewed as a model of Ω−0,R, and this gives

a reduction R-mod ≤B Ω−0,R.

7.2 Embedding Graphs into TFAG

In this section, we prove Theorem 7.0.3: if there is no transitive model of ZFC− +

κ(ω) exists, then Graphs ≤ZFC− TFAG.

We will split the proof of Theorem 7.0.3 into two main subtheorems.

Theorem 7.2.1. There is a Borel map f : Mod(CT) → Mod(TFAG) such that for all

T , T ′ ∈ Mod(CT): if T ∼= T ′ then f(T ) ∼= f(T ′), and if f(T ) ∼= f(T ′) then T ∼ T ′. (In

fact, we will get that for every t ∈ T , there is t′ ∈ T ′ of the same height with T≥t ∼ T ′≥t′ ,

and conversely.)
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Theorem 7.2.2. Suppose there is no transitive model of ZFC− + κ(ω) exists. Then

graphs admit 0-ary Schröder-Bernstein invariants; in fact, we can choose the witnessing

reduction to be ZFC−-absolute.

We are essentially following Hjorth’s proof of Theorem 7.0.1 in [23], although The-

orem 7.1.2 will make our life easier. Recall from Corollary 6.7.8 that if κ(ω) exists, then

the conclusion of Theorem 7.2.2 fails.

Also, note that to prove Theorem 7.0.3, it suffices to establish Theorem 7.2.1 and

Theorem 7.2.2.

Proof of Theorem 7.2.1.

Suppose T = (T,<T , cT ) |= CT. We define a model T ⊗ Z of Ωω×ω,{0}. (f will

be the function T 7→ T ⊗ Z.) Let the underlying group of T ⊗ Z be ⊕TZ (which we

suppose is infinite); define the group homomorphism πT : ⊕TZ → ⊕TZ by πT (a)(t) =∑
s∈succT (t) a(s). Viewing T ⊆ ⊕TZ in the obvious way, note that πT (0T ) = 0, and for

all s 6= 0T , πT (s) is the immediate predecessor of s. For each n, i < ω write GT ,n,i = ⊕tZ,

where the sum is over all t ∈ T with ht(t) = n and cT (t) = i. Let T ⊗ Z be the structure

(⊕T Z, GT ,n,i, πT : n, i < ω).

Let CT⊗Z be the Σ1
1-sentence describing the closure under isomorphism of {T ⊗Z :

T |= CT}. Clearly, if T1
∼= T2 then T1 ⊗ Z ∼= T2 ⊗ Z.

Fix some countable T |= CT. We perform some analysis on T ⊗Z; write G = ⊕TZ.

For each i = (im : m < n + 1) ∈ ωn+1, let GT ,i be the subgroup of all a ∈ G

such that for each m ≤ n, πm(a) ∈ GT ,in−m . Also let GT ,∅ = 0. Note that π takes GT ,i

to GT ,i�n ; also, G is the direct sum of the various GT ,i’s. Further, GT ,i is spanned by

{t ∈ T : ht(t) = n, cT (t) = i}, where cT (t) = (cT (t �0), cT (t �1), . . . , cT (t)).

For each a ∈ GT ,i nonzero, let T ∗a denote the set of all b such that for some i ⊆ j,
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b ∈ GT ,j and π
lg(j)−lg(i)
T (b) = a. If we define c∗a(b) = j(lg(j)−1), and if we let b ≤f b′ if and

only if some πm(b′) = b, then (T ∗a ,≤a, c∗a) = T ∗a is a colored tree. We wish to understand

T ∗a / ∼ in terms of T . The following definition will be relevant:

Definition 7.2.3. If (Sk : k < k∗) are colored trees, then the product
∏
k<k∗

Sk is the

colored tree whose elements are all sequences (sk : k < k∗), where for some n < ω, each sk

has height n, and for some (im : m ≤ n) ∈ ωn+1, we have for all m ≤ n, cSk(sk �m) = im.

Then we define the color of (sk : k < k∗) to be in. Clearly,
∏
k<k∗

Sk ≤ Sk′ for each

k′ < k∗, via projection onto the k′-factor. In fact, T ≤
∏
k<k∗

Sk if and only if T ≤ Sk for

each k < k∗. This is because if T ≤
∏
k<k∗

Sk, then we can compose with the projection

maps to get T ≤ct Sk for each k; and if fk : T ≤ct Sk for each k < k∗, we can define

f : T ≤ct ∏
k<k∗

Sk via f(t) = (fk(t) : k < k∗).

Claim 1. Suppose a ∈ GT ,i is nonzero; enumerate supp(a) = {tk : k < k∗}. Then

T ∗a ∼
∏
k<k∗

T≥tk .

Proof. First we will define an embedding f : T ∗a ≤ct ∏
k<k∗

T≥tk . We will define f(b)

inductively on the height of b ∈ T ∗a ; our inductive hypothesis will be that f(b) = (tk : k <

k∗) is a sequence from supp(b), and if we let i be such that b ∈ GT ,i, then each cT (tk) = i.

So we are given b and f(b) = (tk : k < k∗). Suppose i < ω and c ∈ GT ,ii satisfies

that πT (c) = b. Then πT [supp(c)] ⊇ supp(b), so for each k < k∗ we can find sk ∈ supp(c)

with πT (sk) = tk. Clearly then we can define f(c) = (sk : k < k∗), and continue.

For the reverse embedding
∏
k<k∗

T≥tk ≤ct T ∗a , write a =
∑

k<k∗
λktk, and send

(sk : k < k∗) ∈
∏
k<k∗

T≥tk to
∑

k<k∗
λksk ∈ T ∗a .

Given an ω-labeled tree S, let GT ,i,S be the set of all a ∈ GT ,i such that S ≤ct T ∗a ,

along with a = 0. From the preceding claim it is clear that GT ,i,S is a subgroup of GT ,i.
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Also, let GT ,i,>S =
∑
S<S′ GT ,i,S′ , where the sum is over all colored trees S ′ such that

S ≤ S ′ but not reversely.

Note that if a ∈ GT ,i, then always a ∈ GT ,i,T ∗a , but sometimes also a ∈ GT ,i,>T ∗a .

Say that a is good if this is not the case, i.e. a ∈ GT ,i,T ∗a \GT ,i,>T ∗a .

Claim 2. Suppose a ∈ GT ,i. Then a is good if and only if a is nonzero, and there is some

t ∈ supp(a) such that T ∗a ∼ T≥t.

Proof. Enumerate supp(a) = {tk : k < k∗}, and write a =
∑

k<k∗
λktk. Then by Claim 1,

T ∗a ≤
∏
k<k∗

T≥tk , so T ∗a ≤ T≥tk for each k < k∗.

If a is good, then we cannot have each T ∗a < T≥tk , so some T≥tk ∼ T ∗a as desired. For

the converse, suppose t ∈ supp(a) satisfies that T ∗a ∼ T≥t . Suppose we write a =
∑

i<i∗
bi.

Then t ∈ supp(bi) for some i < i∗. By Claim 1, T ∗bi ≤ T≥t, and thus T ∗bi 6> T≥t ∼ T
∗
a .

In particular, if a ∈ GT ,i is good, then T ∗a ∼ T≥t for some t ∈ c−1
T (i), and so we can

recover {T≥t/ ∼: t ∈ T, ht(t) = n} from the isomorphism class of T ⊗ Z, for each n. This

concludes the proof of Theorem 7.2.1.

Before continuing on to the proof of Theorem 7.2.2, we need some set-theoretic

observations.

First, we note that various familiar facts about κ(ω) continue to hold when the

ambient set theory is just ZFC− (less suffices as well).

Say that a cardinal κ (in a model of ZFC) is totally indescribable if for every n, for

every sentence ϕ in the language of set theory with an extra relation symbol, and for every

R ⊆ Vκ with (Vκ+n,∈, R) |= ϕ, there is an α < κ such that (Vα+n,∈, R ∩ Vα) |= ϕ. This

is a large cardinal notion; it implies that κ is weakly compact. In fact, weak compactness

is equivalent to this condition when restricted to n = 1. This is due to Hanf and Scott;

351



see Theorem 6.4 of Kanamori [28].

Lemma 7.2.4. Work in ZFC−.

(A) Suppose κ→ (ω)<ω2 and N is a transitive model of ZFC− containing κ (possible a

proper class). Then (κ→ (ω)<ω2 )N .

(B) If V = L (we really just need global choice), and if κ(ω) exists, then κ(ω) is inac-

cessible (i.e., κ(ω) is a regular cardinal, and for all α < κ(ω), 2|α| exists and is less

than κ(ω)). In particular Lκ(ω) = Vκ(ω) |= ZFC.

(C) If V = L and if κ(ω) exists, then Vκ(ω) |= “There exist totally indescribable cardi-

nals.”

(D) If V = L, then κ(ω) is the least cardinal κ such that whenever f : [κ]<ω → 2, there

is an increasing sequence (αn : n < ω) from κ such that for all n, f(α0, . . . , αn−1) =

f(α1, . . . , αn).

(E) If V = L, then κ(ω) is the least cardinal κ such that there is no antichain (Tα :

α < κ(ω)) of ω-colored trees; by an antichain I mean that for all α < β < κ(ω),

Tα 6≤ct Tβ and Tβ 6≤ct Tα. (If κ(ω) does not exist then we just mean that for every

cardinal κ, there is an antichain of length κ.)

Note that Corollary 7.0.4 follows from Theorem 7.0.3 and (B). (C) provides a

strengthening: it is consistent with ZFC+“There is a totally indescribable cardinal” that

Graphs ≤ZFC− TFAG.

Proof. All of these are routine modifications of the case where the ambient set theory is

ZFC; (A) and (D) are due to Silver [83]. (B) is also due to Silver [84], or see Corollary
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7.6 of Kanamori [28]. (C) is due to Silver and Reinhardt, see Exercise 9.18 of [28]. (E) is

due to Shelah [73]; for the reader’s convenience we provide a proof.

First suppose κ < κ(ω). Choose some f : [κ]<ω → 2 failing (D). For each α < κ,

we define a colored tree Tα as follows. Namely, let Tα be all finite increasing sequences of

ordinals from κ whose first term is α; let <Tα be initial segment. Let cTα(s) = f(s). Let

Sα be Tα together with the tree of descending sequences from α, with the new elements

all colored 2.

Note that for all α0 < α1 < κ, Tα0 6≤ Tα1 , as given an embedding ρ : Tα ≤ct Tβ, we

can inductively find αn : n < ω such that for all n, ρ(αi : i < n) = (αi : 1 ≤ i ≤ n + 1);

but this clearly contradicts the hypothesized property of f . From this it follows that

(Sα : α < κ) is the desired antichain.

In the other direction, suppose (Tα : α < κ(ω)) is a sequence of colored trees. Write

κ = κ(ω); choose an elementary substructure H ≤ (Vκ, . . .) (using <L) such that H is the

Skolem hull of an infinite set of indiscernible ordinals {αn : n < ω}. Then it is easy to

check that Tα0 ≤ Tα1 .

We can now finish.

Proof of Theorem 7.2.2.

Suppose A is a hereditarily countable set. We describe a colored tree TA = (TA, <A

, cA), and then show that whenever A 6= A′, we have that TA 6∼ TA′ . Moreover, the

operation A 7→ TA will be ZFC−-absolute.

Having done this, ϕ 7→ Tϕ : CSS(Graphs) → ModHC(CT) will witness that Graphs

admits 0-ary Schröder-Bernstein invariants via a ZFC−-absolute reduction.

So it is enough to define A 7→ TA. Let A be given, and let α = rnk(A), where rnk

is foundation rank. Let (Sβ : β ≤ α) be the <L-least antichain of colored trees indexed
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by α + 1. This is computed correctly in any transitive model of ZFC−, since if M is

any transitive model of ZFC− with α ∈ M , then LM does not believe that κ(ω) exists,

and so LM can find a <LM -least sequence (Sβ : β ≤ α) such that LM |= (Sβ : β ≤ α) is

an antichain. But the property of being an antichain of colored trees of length α + 1 is

absolute to models of ZFC−; thus (Sβ : β ≤ α) is the <L-least antichain of colored trees

indexed by α+ 1.

We define a preliminary colored tree T0,A = (T0,A, <0,A, c0,A). Let (T0,A, <0,A) be

the tree of all nonempty finite sequences (a0, . . . , an) from tcl(A ∪ {A}) such that a0 = A

and rnk(a0) > rnk(a1) > . . . > rnk(an). Given (a0, . . . , an) ∈ T0,A, let c0,A(a0, . . . , an) = 0

if an−1 ∈ an, and c0,A(a0, . . . , an) = 1 otherwise. Let TA be obtained from T0,A as follows:

above each (a0, . . . , an) ∈ T0,A, put a copy of (Sβ, <Sβ ), where β is the foundation rank of

an; given t ∈ Sβ, let the color of the copy of t above (a0, . . . , an) be cSβ (t) + 2.

Suppose TA ∼ TA′ . Let α = rnk(A) and let α′ = rnk(A′). Choose f : TA ≤ TA′ and

f ′ : TA′ ≤ TA witnessing that TA ∼ TA′ . Note that f �TA,0 and f ′ �TA′,0 witness that TA,0

and TA′,0 are biembeddable; since TA,0 is well-founded of rank α, and TA′,0 is well-founded

of rank α′, this implies α = α′. Let (Sβ : β ≤ α) be as above.

Now, consider the embedding h := f ′ ◦ f : TA ≤ TA. I claim that h �T0,A must be

the identity. This suffices, since it implies T0,A
∼= T0,A′ and hence A = A′.

Suppose (a0, . . . , an) ∈ T0,A; write β = rnk(an) and write h(a0, . . . , an) = (b0, . . . , bn).

We show by induction on β that an = bn; this suffices. Note that Sβ ≤ Srnk(bn), and hence

rnk(bn) = β also (this is the key point!).

If β = 0, then an = bn = ∅. Suppose we have verified the claim for all γ < β. We

show that for every a ∈ tcl(A ∪ {A}) with rnk(a) < β, we have that a ∈ an if and only if

a ∈ bn. Indeed, suppose a is given. Write h(a0, . . . , an, a) = (b0, . . . , bn, b). By construction
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of the coloring, we have that a ∈ an if and only if b ∈ bn; but by the inductive hypothesis,

we have that a = b.

7.3 Schröder-Bernstein Properties for TFAG

In this section, we prove Theorem 7.3, namely: for every α < κ(ω), TFAG fails

the α-ary Schröder-Bernstein property. The construction breaks down at κ(ω), so the

following remains open:

Question. Does TFAG have the κ(ω)-ary Schröder-Bernstein property?

The remainder of this section is a proof of Theorem 7.3. Throughout, we abbreviate

∼SBα to ∼α. Also, for our notion of embedding ≤ on TFAG, we want to take injective

group homorphisms; to align with the terminology of Chapter 6, we should add a unary

predicate for {(a, b) : a 6= b}, although we suppress this.

We remark on the following easy lemma.

Lemma 7.3.1. Suppose Φ is a sentence of Lω1ω, and α is an ordinal. Suppose there are

M,N |= Φ such that M ∼α N but M 6≡∞ω N . Then Φ fails the α-ary Schröder-Bernstein

property.

Proof. Clearly css(M) ∼α css(N) but css(M) 6= css(N).

In the remainder of this section, we prove the following:

Theorem 7.3.2. Suppose κ(ω) does not exist. Then for every ordinal α, TFAG fails the

α-ary Schröder-Bernstein property.

Note that Theorem 7.0.5 follows: for every α < κ(ω), TFAG fails the α-ary Schröder-

Bernstein property. This is because we can always apply Theorem 7.3.2 in Vκ(ω).
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So, in the remainder of this section, suppose κ(ω) does not exist; equivalently, for

every cardinal λ, there is an antichain of colored trees of length λ.

First of all, we note the following lemma:

Lemma 7.3.3. Suppose I,J are countable index sets, not both empty; let F : Ωp
I,J ≤B

TFAG be the Borel reduction from the proof of Theorem 7.1.2 (that is, the composition of

the reductions from Lemma 7.1.5 and Lemma 7.1.8). Suppose G
0
, G

1 ∈ Mod(ΩI,J ) and

α < ω1. If G
0 ∼2·(ω·α) G

1
, then F (G

0
) ∼α F (G

1
).

Hence, if Ωp
I,J fails the α-ary Schröder-Bernstein property for every ordinal α <

κ(ω), then so does TFAG.

Proof. The final claim follows, since the first part continues to hold in forcing extensions.

Write I ′ = I ∪ J ∪ {∗0, ∗1} (we suppose this is a disjoint union).

Let F0 : Ωp
I,J ≤B Ωp

I′,0 be as in Lemma 7.1.5 and let F1 : Ωp
ω,0 ≤B TFAG be as in

Lemma 7.1.8.

First we look at F0. We recap the definition of F0, for the reader’s convenience.

Suppose G = (G,Gi : i ∈ I, ϕj : j ∈ J ) |= Ωp
I,J is countable. Define G′ = G × G; for

each i ∈ I, define G′i to be the copy of Gi in the first factor of G′; for each j ∈ J , define

G′j to be the graph of ϕj ; define G′∗0 = G × 0; and finally let G′∗1 be the graph of the

identify function idG : G→ G. Then F (G,Gi : i ∈ I, ϕj : j ∈ J) is G
′
= (G′, G′i′ : i′ ∈ I ′)

(suppressing the coding that arranges everything to have universe ω).

Suppose G0, G1 |= Ωp
I,J are countable, and define G

′
0, G

′
1 as above. Then it is easy

to check that for all ((a0
i , a

1
i ) : i < i∗) from G

′
0 and all (b0i , b

1
i ) : i < i∗) from G

′
1, if

f : (G0, (a
j
i : i < i∗, j < 2)) ≤ (G1, (b

j
i : i < i∗, j < 2), then f × f : (G

′
0, ((a

0
i , a

1
i ) :

i < i∗)) ≤ (G
′
1, ((b

0
i , b

1
i ) : i < i∗)). From this it follows by an easy inductive argument

that for all β < ω1, if (G0, (a
j
i : i < i∗, j < 2)) ∼2·β (G1, (b

j
i : i < i∗, j < 2), then
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(G
′
0, ((a

0
i , a

1
i ) : i < i∗)) ∼β (G

′
1, ((b

0
i , b

1
i ) : i < i∗)).

Next we look at F1. Let (γn : 1 ≤ n < ω) be as in Lemma 7.1.8, i.e. a sequence of

algebraically independent units of Qp; and let γ0 = 1. Let G = (⊕ωZ, Gn : n < ω) be a

countable model of Ωp
ω,0; we only consider the case where G0 = G1 = ⊕ωZ, without loss

of generality. Then recall F1(G) is (isomorphic to) G, where G is the p-pure subgroup

of ⊕ωZp generated by
⋃
n γnGn. Recall that every a ∈ G can be written as a sum a =∑

n<ω γnp
k(n)bn, where each k(n) ∈ Z, bn ∈ Gn and all but finitely many k(n), bn are 0.

Say that this is a weak representation of a (it may not be a full representation; we don’t

require that p 6 |bn in Gn.)

Suppose G
j

= (⊕ωZ, Gjn : n < ω) are countable models of Ωp
ω,0 for j < 2; let G0, G1

be defined from G
0
, G

1
as above. Suppose f : G

0 ≤ G
1
. Define f∗ : ⊕ωZp → ⊕ωZp

via f∗(
∑

n γnen) =
∑

n γnf(en), where (en : n < ω) is the standard basis. Moreover,

f∗ �G0 : G0 ≤ G1, since f∗ preserves the action of Zp.

Suppose (ai : i < i∗) is a sequence from ⊕ωZ, and suppose (a′i : i < i∗) is a sequence

from ⊕ωZ. Suppose for each i < i∗, ai =
∑

n∈Γi
γnp

ki(n)bi,n is a weak representation with

respect to G
0
, and a′i =

∑
n∈Γi

γnp
ki(n)b′i,n is a weak representation with respect to G

1
,

for finite sets Γi ⊂ ω. Suppose finally that f : (G
0
, (bi,n : n ∈ Γi, i < i∗)) ≤ (G

1
, (b′i,n : n ∈

Γi, i < i∗)). Then note that each f∗(p
ki(n)bi,n) = pki(n)b′i,n, hence each f∗(ai) = a′i, hence

f∗ : (G0, (ai : i < i∗)) ≤ (G1, (a′i : i < i∗)).

From this, an easy inductive argument shows that if (G
0
, (bi,n : n ∈ Γi, i < i∗)) ∼ω·α

(G
1
, (b′i,n : n ∈ Γi, i < i∗)), then (G0, (ai : i < i∗)) ∼α (G1, (a′i : i < i∗)).

Thus it suffices to show that some Ωp
I,J fails the α-ary Schröder-Bernstein property

for all α.
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For the next lemma, we make the obvious definitions for Ωp
I,J in the case where the

index sets are possibly uncountable.

Lemma 7.3.4. Suppose κ(ω) does not exist. Suppose I,J are index sets, and suppose

G
0
, G

1 |= ΩI,J . Then we can find F(G
0
),F(G

1
) |= Ωp

ω×ω∪{0,1},{0,1}, such that G
0 ≡∞ω G

1

if and only if F(G
0
) ≡∞ω F(G

1
), and for every ordinal β, if G

0 ∼β G
1

then F(G
0
) ∼β

F(G
1
).

Proof. We can suppose J = ∅, by applying the construction from Lemma 7.1.5.

Choose λ large enough so that I, G0
, G

1
all are of size at most λ. We can suppose

I = λ.

Let (Tγ : γ < λ) be a family of pairwise-non-biembeddable colored trees. Let T be

the colored tree such that cT (0) = 0 (say), and for each γ < λ, there are λ-many t ∈ T

of height 1 such that T≥t ∼= Tγ , and for each t ∈ T of height 1, T≥t is isomorphic to some

such Tγ .

Recall the definition of T ⊗ Z = (GT , GT ,n,i, π : n, i < ω) |= Ωp
ω×ω,{0} from Theo-

rem 7.2.1. For each γ < λ, let Eγ be the set of all t ∈ T of height 1 such that T≥t ∼= Tγ . Let

ĜT ,γ denote the subgroup of GT spanned by Eγ . Note that each ĜT ,γ is L∞ω-definable,

since (Tγ : γ < λ) is an antichain, and so g ∈ ĜT ,γ if and only if g = 0 or else Tγ embeds

into T ∗g .

Let F(G
`
) = (GT ⊕ G`, GT ,n,i, H0, H1, π, ψ` : n, i < ω) |= Ωp

ω×ω∪{0,1},{0,1}, where

H0 = T ⊗ Z, H1 = G`, and where ψ` : GT → G` satisfies:

• ψ`(t) = 0 for all t ∈ T not of height 1,

• For every γ < λ, ψ �Eγ : Eγ → G`γ is λ-to-one.

It is easy to check that this works.
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Thus, to finish it suffices to verify the following:

Lemma 7.3.5. Suppose κ(ω) does not exist. Suppose α∗ < κ(ω). Then for some index

set I, there are G
0
∗, G

1
∗ |= Ωp

I,{0}, with G
0
∗ ∼α∗ G

1
∗ yet G

0
∗ 6≡∞ω G

1
∗.

Our idea is the following: given G = (G,Gi : i ∈ I, ϕ) |= Ωp
I,{0}, define XG :=

G\
⋃
iGi and define ≤G to be the partial order of XG given by: a ≤G b if and only if

ϕn(a) = b for some n < ω, satisfying further that for all m < n, ϕm(a) ∈ XG. Then we

will arrange that (XG
0
∗ ,≤G

0
∗) is ill-founded, but (XG

1
∗ ,≤G

1
∗) is well-founded. It turns out

we can make G
0
∗ ∼α∗ G

1
∗ without upsetting this.

We will be approximating G
0
∗ and G

1
∗ as a union of chains. To control the eventual

behavior of (XG
i
∗ ,≤G

i
∗), we will be defining upper bounds to the rank function at each

stage. The following are the approximations we will be using:

Definition 7.3.6. Given an index set I, let ΓI denote all tuples (G,B, ρ) where:

• G = (G,Gi, ϕ : i ∈ I) |= Ωp
I,{0};

• G is free abelian (this is not redundant, since Ωp
I,{0} only asserts that G ≡∞ω ⊕ωZ)

and B is a basis of G;

• ϕ : G→ G;

• ρ : XG → ON ∪ {∞} satisfies: for all a, b ∈ XG, if ϕ(b) = a and ρ(b) < ∞ then

ρ(a) < ρ(b). Hence ρ(a) ≥ rnk(a) where rnk is the rank function for (XG,≤G).

• For all a ∈ X and for all n ∈ Z nonzero, ρ(a) = ρ(na).

When we write G,G
′
, G

`
, etc., then we will always have G = (G,Gi, ϕ : i ∈ I),

G
′
= (G′, G′i, ϕ

′ : i ∈ I), G
`

= (G`, G`i , ϕ
` : i ∈ I), etc.
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Definition 7.3.7. Suppose I, I ′ are index sets with I ⊆ I ′. Suppose (G,B, ρ) ∈ ΓI and

(G
′
,B′, ρ′) ∈ ΓI′ . Then say that (G

′
,B′, ρ′) extends (G,B, ρ) if:

• G ⊆ G′ and B ⊆ B′;

• For each i ∈ I, G′i ∩G = Gi;

• For each i ∈ I ′\I, G′i ∩G = 0;

• ϕ′ �Gi= ϕ;

• ρ′ �
XG= ρ.

The following lemma is immediate.

Lemma 7.3.8. Suppose δ < λ+ is a limit ordinal, (Iγ : γ < δ) is an increasing chain

of index sets, and ((G
γ
,Bγ , ργ) : γ < δ) is a sequence satisfying each (G

γ
,Bγ , ργ) ∈ ΓIγ

and for γ < γ′, (G
γ′
,Bγ′ , ργ′) extends (G

γ
,Bγ , ργ). Then the natural union of the chain

(G,B, ρ) extends each (G
γ
,Bγ , ργ).

The final set of definitions describe the embeddings we will use to arrange G
0
∗ ∼α∗

G
1
∗.

Definition 7.3.9. If (G,B, ρ) ∈ ΓI , then say that H is a basic subgroup of G if H is

spanned by H ∩ B. By G �H we mean (H,Gi ∩H,ϕ �H : i ∈ I) |= Ωp
I,{0}. By (G,B, ρ) �H

we mean (G �H ,B ∩H, ρ �XG�H
).

Suppose (G,B, ρ), (G
′
,B′, ρ′) ∈ ΓI . Then by a −1-embedding from (G,B, ρ) into

(G
′
,B′, ρ′), we mean a map f where f : G ≤ G

′
is an embedding and f [B] ⊆ B′. For an

ordinal α ≥ 0, say that f is an α-embedding if additionally: f [XG] ⊆ XG
′
, and for all

a ∈ XG, if ρ(a) < ω · α, then ρ(a) = ρ′(f(a)).
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For all α ≥ −1, say that f is a partial α-embeddding from (G,B, ρ) into (G
′
,B′, ρ′)

if for some basic subgroup D of G, f is an an α-embedding from (G,B, ρ) �D to (G
′
,B′, ρ′).

Finally, we describe the construction of G
0
∗, G

1
∗. We will build them as a union of

chains. In the outer layer, we will construct, by induction on n < ω, index sets In, and,

for each ` < 2, (G
`,n
,B`,n, ρ`,n) ∈ ΓIn with a privileged element en ∈ G0,n for n > 0, and

for each ` < 2 a set F `,n, satisfying various constraints. The goal is that (en : n < ω) will

witness that XG
0,n

is ill-founded, and F `,n will be a set of partial embeddings from G
`,n

to G
1−`,n

, which will be used to arrange that G
0
∗ ∼α∗ G

1
∗. Formally, we need the following

requirements:

1. For n < m < ω, (G
`,m
,B`,m, ρ`,m) extends (G

`,n
,B`,n, ρ`,n);

2. For each n > 0, en ∈ XG
0,n

, and ϕ0,n+1(en+1) = en (so necessarily each ρ0,n(en) =

∞).

3. For all a ∈ XG
1,n

, ρ1,n(a) <∞.

4. For all n, `, (ϕ`,n)n = 0 (i.e. ϕ`,n iterated n-many times is 0);

5. Each F `,n is a set of tuples (α,D,R, f), where −1 ≤ α ≤ α∗, and f is a partial

α-embedding from (G
`,n
,B`,n, ρ`,n) to (G

1−`,n
,B1−`,n, ρ1−`,n) with domain D and

range R;

6. For each n < m, and for each ` < 2, F `,n ⊆ F `,m;

7. If (α,D,R, f) ∈ F `,n and α ≥ 0, then (α,R,D, f−1) ∈ F1−`,n (in particular f−1 is

a partial α-embedding);

8. Suppose (α,D,R, f) ∈ F `,n, and suppose either β < α or else β = −1. Then for
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every a ∈ G`,n+1, there is some D′ ⊇ D ∪ {a}, R′ ⊇ R, and f ′ ⊇ f such that

(β,D′, R′, f ′) ∈ F `,n+1;

9. G0,0 = G1,0 = 0 (this determines each (G
`,0
,B`,0, ρ`,0)), and (α∗, 0, 0, 0) ∈ F0,0.

Having done this, let (G
`
∗,B`∗, ρ`∗) be the union of the chain ((G

`,m
,B`,m, ρ`,m) : m <

ω), as promised by Lemma 7.3.8. Then G
0
∗ 6≡∞ω G

1
∗, since (XG

0
∗ ,≤G

0
∗) is ill-founded (by

condition (2)) while (XG
1
∗ ,≤G

1
∗) is well-founded (by condition (3). On the other hand, it

is clear that for all n < ω, for all (α,D,R, f) ∈ F `,n with α ≥ 0, and for all finite tuples

a ∈ D, we have (G
`
∗, a) ∼α (G

1−`
∗ , f(a)) (by condition (8)). Thus G

0
∗ ∼α∗ G

1
∗.

So it remains to show this construction is possible. This will mostly be achieved

by the following two lemmas, which will allow us to handle the key condition (8) without

disturbing any of the other hypotheses:

Lemma 7.3.10. Suppose (G
`
,B`, ρ`) ∈ ΓI for each ` < 2. Suppose f is a partial −1-

embedding from (G
0
,B0, ρ0) to (G

1
,B1, ρ1). Finally, suppose each (ϕi)n+1 = 0. Then we

can find an index set I ′, and an extension (G
2
,B2, ρ2) of (G

1
,B1, ρ1) in ΓI′ , such that

XG2 = XG1 , and f extends to a −1-embedding h from (G
0
,B0, ρ0) to (G

2
,B2, ρ2), and

finally (ϕ2)n+1 = 0.

Proof. Let D be the domain of f and let R be its range. Recall that we require D and R

to be basic subgroup of G, that is, B ∩D spans D. Let I ′ ⊇ I be large enough.

Write A = B0\(B ∩ D). Let G2 = G1 × ⊕AZ. Write H = 0 × ⊕AZ, and let

g : spanG0(A) ∼= H be the natural isomorphism. Let B2 be B1 ∪ g[A]. Define h : G0 → G2

via h �D= f and h �span(A)= g.

Define ϕ2 : G2 → G2 via: ϕ2 �G1= ϕ1, and ϕ2 �H= g ◦ ϕ0 ◦ g−1. For each i ∈ I, let

G2
i = G1

i .
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Let G2
i : i ∈ I ′\I enumerate all singly generated pure subgroups of G2 which are

not contained in G1. Note then that XG
2

= XG
1

so we must let ρ2 = ρ1 and then clearly

we are done.

Lemma 7.3.11. Suppose (G
`
,B`, ρ`) ∈ ΓI for each ` < 2. Suppose 0 ≤ β < α, and f

is a partial α-embedding from (G
0
,B0, ρ0) to (G

1
,B1, ρ1) such that f−1 is also a partial

α-embedding. Finally, suppose each (ϕi)n+1 = 0. Then we can find an index set I ′, and

an extension (G
2
,B2, ρ2) of (G

1
,B1, ρ1) in ΓI′ , such that:

• f extends to an β-embedding h from (G
0
,B0, ρ0) to (G

2
,B2, ρ2);

• h−1 is a partial β-embedding from (G
2
,B2, ρ2) to (G

0
,B0, ρ0);

• For all a ∈ XG
2

\XG
1

, ρ2(a) < ω · α;

• (ϕ2)n+1 = 0.

Proof. Let D be the domain of f and let R be its range. Let I ′ ⊇ I be large enough.

Write B0 = (B ∩ D) ∪ A. Let G2 = G1 × ⊕AZ. Write H = 0 × ⊕AZ, and let

g : spanG0(A) ∼= H be the natural isomorphism. Let B2 be B1 ∪ g[A]. Define h : G0 → G2

via h �D= f and h �span(A)= g.

Define ϕ2 : G2 → G2 via: ϕ2 �G1= ϕ1, and ϕ2 �H= g ◦ ϕ0 ◦ g−1. For each i ∈ I, let

G2
i = G1

i . It remains to define G2
i for i ∈ I ′\I, and then to define ρ2.

Let G2
i : i ∈ I ′\I enumerate all singly generated pure subgroups of G2 which are

not contained in G1 and which are not contained in R + H. Note then that XG
2

=

XG
1

∪ h[XG
0

]. We define ρ2 as follows: suppose a ∈ XG
2

. If a ∈ XG
1

then we must

let ρ2(a) = ρ1(a). Suppose instead a ∈ h[XG
0

]\XG
1

; write a = h(a′). If ρ0(a) < ω · β
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then let ρ2(a) = ρ0(a). Otherwise, let k be largest such that there is c′ ∈ XG
0

such

that (ϕ0)k(c′) = a′, and for all k′ < k, (ϕ0)k
′
(c′) ∈ XG

0

, and finally ρ0(c′) ≥ ω · β; let

ρ2(a) = ω · β + k. Note that k ≤ n since (ϕ0)n+1 = 0.

Now I claim this works. First of all:

Claim. Suppose a ∈ h[XG
0

]\XG
1

; write h(a′) = a. Then ρ0(a′) ≥ ρ2(a).

Proof. This is immediate if ρ0(a′) < ω · β, so suppose instead ρ0(a′) ≥ ω · β; let c′, k be as

in the definition of ρ2(a). Then ρ0(a′) = ρ0((ϕ0)k(c′)) ≥ ρ0(c′)+k ≥ ω ·β+k = ρ2(a).

We show (G
2
,B2, ρ2) ∈ ΓI′ . We must check that for all a, b ∈ XG

2

with ϕ2(b) = a

and with ρ2(a) < ∞, we have that ρ2(b) < ρ2(a). If b ∈ XG
1

, then a ∈ XG
1

and this is

clear. Suppose b ∈ h[XG
0

]\XG
1

, and a ∈ XG
1

; note that a ∈ f [XG
0

] ⊆ h[XG
0

]; write

a = f(a′) and write b = h(b′). We consider two further subcases. If ρ0(a′) = ρ1(a), then

ρ2(a) = ρ0(a′) > ρ0(b′) ≥ ρ2(b), using the claim. If ρ0(a′) 6= ρ1(a), then since f, f−1 are

both α-embeddings we must have ρ0(a′), ρ1(a) ≥ ω · α. Hence ρ2(a) = ρ1(a) ≥ ω · α >

ω · β + n ≥ ρ2(b). Finally, suppose both a, b ∈ h[XG
0

]\XG
1

. Write a = h(a′), b = h(b′). If

ρ0(a′) < ω ·β then ρ2(a) = ρ0(a′) > ρ0(b′) ≥ ρ2(b). If ρ0(a′) ≥ ω ·β and ρ0(b′) < ω ·β, then

ρ2(a) ≥ ω ·β > ρ0(b′) = ρ2(b). Finally, if ρ0(a′) and ρ0(b′) are both ≥ ω ·β, then let k be as

in the definition of ρ2(b), i.e. so that ρ2(b) = ω ·β+ k; clearly then ρ2(a) ≥ ω ·β+ (k+ 1).

To finish, it is clear that for all a′ ∈ G0
, if either ρ0(a′) < ω·β or else ρ2(h(a′)) < ω·β,

then ρ0(a′) = ρ2(h(a′)); hence h is a β-embedding and h−1 is a partial β-embedding.

Now, suppose we are given (G
`,n
,B`,n, ρ`,n), F `,n, and en satisfying (1) through (9).

We explain how to get (G
`,n+1

,B`,n+1, ρ`,n+1), F `,n+1, and en+1.

Define G0 = G0,n × Z, let en+1 = (0, 1) ∈ G0. Let I ⊇ In be sufficiently large. For

each i ∈ In let G0
i = G0,n

i . Choose (G0
i : i ∈ I\In) so as to enumerate the singly-generated
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pure subgroups of G0 which are not contained in G0,n and which do not contain en+1.

Define ϕ0 via ϕ0 �G0,n= ϕ0,n and ϕ0(en+1) = en (or, if n = 0 then let ϕ0(e1) = 0). We

have defined G
0 |= Ωp

I,{0}, an extension of G
0,n

. Note that XG
0

= XG
n,0

∪ {men+1 : m ∈

Z,m 6= 0}. Let B0 = B0,n ∪ {en+1}, and define each ρ0(men+1) =∞.

Define G1 = G1,n; for each i ∈ In, let G1
i = G1, and for each i ∈ I\In, and let

G1
i = 0; let ϕ1 = ϕ1,n. Finally, let F ` = F `,n for each ` < 2.

The only thing left to do is arrange (8) to hold. For this, apply Lemmas 7.3.10 and

7.3.11 repeatedly, using Lemma 7.3.8 at limit stages.

This concludes the proof of Theorem 7.3.2, and hence of Theorem 7.0.5.
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[67] J. Nešitřil, V. Rödl. Ramsey Classes of Set Systems. Journal of Combinatorial Set
Theory 34 (1983) 183-201.

[68] T. Nurmagambetov, Characterization of ω-stable theories with a bounded number of
dimensions, Algebra i Logika 28, 5 (1989), 388396.

[69] T. Nurmagambetov, The mutual embeddability of models, Theory of Algebraic Struc-
tures (in Russian), Karagand. Gos. Univ., 1985, 109115.

[70] H. Rasiowa, R. Sikorski. Algebraic treatment of the notion of satisfiability. Fund.
Math. 40, 1 (1953) 62-95.

[71] H. Rasiowa, R. Sikorski. A proof of the completeness theorem of Gödel. Fund. Math.
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