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Face Analysis has long been a crucial component of many security applications.

In this work, we shall propose and explore some face analysis algorithms which are

applicable to two different security problems, namely Active Authentication and

Image Tampering Detection. In the first section, we propose two algorithms, “Deep

Feature based Face Detection for Mobile Devices” and “DeepSegFace” that are

useful in detecting partial faces such as those seem in typical Active Authentication

scenarios. In the second section, we propose an algorithm to detect discrepancies

in illumination conditions given two face images, and use that as an indication to

decide if an image has been tampered by transplanting faces. We also extend the

illumination detection algorithm by proposing an adversarial data augmentation

scheme. We show the efficacy of the proposed algorithms by evaluating them on

multiple datasets.
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Chapter 1: Introduction

Face detection and analysis is a well studied problem in recent Computer

Vision research. Advances in Deep Learning techniques have enabled leaps in per-

formance in both low and high level vision tasks relating to facial analysis such

as

• Low level tasks: Face Detection, Pose and Fiducial Detection and Facial At-

tribute Detection

• High level tasks: Face Recognition and Face Verification

Face analysis is often a crucial part of many security applications such as Active

Authentication (AA) and image tampering detection. In this work, we focus on the

problem of detecting partial faces in AA scenarios, finding illumination conditions

of a facial image and leveraging that information to detect if an image has been

possibly forged.

1.1 Partial Single Face Detection for Active Authentication

The first step in the facial analysis pipeline is Face Detection. Due to the

release of many public, large-scale face datasets [2] [3] [4], many state-of-the-art
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face detectors [5] [6] [7] have been proposed and developed, which approach human

performance in detecting faces even in cluttered environments. However, consider

the domain of Active Authentication (AA), where one is interested in developing

algorithms that continuously verify if the correct user is using a mobile device.

Verification of users using their front camera captures is significant part of many

proposed AA systems. Detecting faces from front cameras captures comes with a

unique set of challenges and advantages, compared to detecting faces in a general

setting. Some of the challenges of detecting faces in the AA setting are:

• Partial Visibility: In many cases, the user’s face captured by the front camera

is only partially visible.

• Running on phone GPU: The face detector should be light-weight enough to

run on a phone’s GPU.

However, there are some mitigating circumstances that make the task simpler, such

as:

• Single Face: Since mobile devices are used by single users at a time, there is

only one face to be detected. Also users are present close to the phone, hence

we can assume a fairly large face is to be detected.

• Pose: When users interact with mobile devices, usually frontal images are

captured. Extreme pose variations are rare.

Thus, in this work, we focus on developing face detectors that take the above men-

tioned factors into consideration, to perform well in the task of detecting single, but
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partially visible faces.

1.2 Tampering Detection using Face Illumination Discrepancies

Image tampering detection is an area where facial analysis has recently gained

traction. Consider the case where a face has been digitally doctored into an image.

The transplanted face image is under a certain lighting condition, depending on the

illumination of the image it is originally from. There is a significant chance that

the image it is being pasted into has a different illumination condition. Thus, if we

check the illumination conditions of faces in a given image and find discrepancies,

it is indicative that one of the faces has been transplanted.

In this work, we explore a method of identifying the illumination conditions of

a 2D face crop, and then extend that into a verification framework that is trained

to directly predict if two faces have the same illumination condition.
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Chapter 2: Related Work

In this chapter, we shall review some of the relevant related works in the fields

of Active Authentication and Face Detection and the datasets used in the various

methods described later.

2.1 Active Authentication Datasets

Active Authentication (AA) is an active field of research. Many methods have

been proposed based on different individual modalities and their fusion such as:

• Facial images [8] [9]

• Touch/swipe signature [10]

• Gait recognition [11]

• Device movement and accelerometer patterns [12] [13]

• Multi-modal fusion [14]

In this work, we focus mostly on face detection for AA. While there are many

large-scale face detection datasets, they are not suited for face detection in the AA

setting. The main characteristics of an ideal AA face detection dataset are:
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• Device: The image should have been captured by mobile device or a webcam.

• User awareness: While the user is informed of the data collection process

beforehand, it must be ensured that during the process itself, the user is not

made conscious that he or she is being recorded and should be left free to

perform actions naturally.

• Dataset size: The dataset should be large and varied enough to be able to

train complex machine learning models.

• Usability: The dataset should be annotated and available publicly.

A few relevant AA datasets are described below:

2.1.1 MOBIO: Constrained mobile dataset

The MOBIO dataset [15] contains 61 hours of audio-visual data from a NOKIA

N93i phone (and a 2008 Mac-book laptop) with 12 distinct sessions of 150 partici-

pants spread over several weeks. However, it is a constrained dataset, where subjects

were required to position their head inside an elliptical region within the scene while

capturing the data. Therefore it does not represent real-life acquisition scenarios.

2.1.2 Abacus and Move: Private datasets

Google’s Project Abacus dataset is a 27.62 TB collection of smartphone us-

age data of 1500 users for six months on Nexus5 phones [16]. It contains multi-

ple modalities, such as front-facing camera, touchscreen and keyboard, gyroscope,
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accelerometer, magnetometer, ambient light sensor, GPS, Bluetooth, WiFi, cell an-

tennae, app usage and on time statistics. Google also collected the 114GB Project

Move dataset, which consists of smartphone inertial signals collected from 80 volun-

teers over two months on LG3, Nexus5, and Nexus6 phones. While these datasets

are unconstrained, they are not available publicly for the research community.

2.1.3 AA-01 and UMDAA-02: Publicly available unconstrained mo-

bile datasets

The AA-01 dataset [14] is a challenging dataset for front-camera face detection

task which contains the front-facing camera face videos and swipe information for 43

male and 7 female IPhone users under three different ambient lighting conditions.

A subset of this dataset, AA-01-FD, contains 8036 frames annotated with a face

bounding box. AA-01-FD, contains 1607 frames without faces and 6429 frames with

faces [1], [17]. The training split consists of 5202 images, while the rest are used as

test images. The images in this are semi-constrained as the subjects perform a set

task during the data collection period. However they are not required or encouraged

to maintain a certain posture, hence the dataset is sufficiently challenging due to

pose variations, occlusions and partial faces.

The UMDAA-02 dataset is an unconstrained dataset containing 141.14 GB of

smartphone usage collected from 48 subjects using Nexus 5 phones over a 2 month

period. All modalities described in Google’s Abacus dataset are collected. A subset

UMDAA-02-FD was created with 33, 209 images, which was annotated with facial
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bounding box information.

2.2 Face Detection

In this section we shall briefly review different face detection methods by cat-

egorizing them under 3 subsections.

2.2.1 Traditional methods

Face detection is one of the earliest applications of computer vision dating back

several decades [18] [19]. However, most methods before 2004 performed poorly in

unconstrained conditions, and therefore were not applicable in real-world settings

[20]. Viola and Jones’s seminal work on boosted cascaded classification-based face

detection [21] was the first algorithm that made face detection feasible in real-world

applications. The method, however, works reasonably well only for well illuminated,

near-frontal faces without occlusion [22]. Extensions of the boosted architecture for

multi-view face detection were proposed [23] [24], but these detectors are difficult

to train, and do not perform well because of inaccuracies introduced by viewpoint

estimation and quantization [22].

The next step in the evolution of face detectors was the introduction of geo-

metric modeling. Using facial components or parts to construct a deformable part

model (DPM) of a face, a robust face detector was proposed in [5]. Similar ap-

proaches are found in [25] [26]. In [27], the authors introduced an examplar-based

face detection method that does not require multi-scale shifting windows.
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A popular face detection paradigm was using some combination of a robust

image features like SURF, local binary pattern (LFP) histogram of oriented gradient

(HoG) or their variants, along with a classifier, especially support vector machines

(SVMs), in a sliding window fashion. Researchers proposed different combinations

of features with SVM for robust face detection as surveyed in [20].

Some noteworthy, high performance traditional, non-deep methods are dis-

cussed below. In [28] the authors improved the performance of the DPM-based

method and also introduced Headhunter, a new face detector that uses Integral

Channel Features (ICF) with boosting to achieve state-of-the-art performance in

face detection in the wild. A fast face detector that uses the scale invariant and

bounded Normalized Pixel Difference (NPD) features is proposed in [29] that uses a

single soft-cascade classifier to handle unconstrained face detection. The method is

claimed to achieve state-of-the-arts performance on FDDB, GENKI, and CMU-MIT

datasets.

2.2.2 Deep learning-based methods

The performance break-through observed after the introduction of Deep Con-

volutional Neural Networks (DCNN) can be attributed to the availability of large

labeled datasets, availability of GPUs, the hierarchical nature of the deep networks

and regularization techniques such as dropout and batch normalization [20].

Some of the earliest methods that introduced deep features to the space of face

detection relied on transfer learning. Instead of training a full deep network, [30] used
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features from alexnet [31] and then trained SVM on those deep features to detect

faces. Full, end-to-end trainable deep networks for face detection appeared in [32]

[33]. Since then there have been a proliferation of deep learning based algorithms

for face detection.

Among recent works, HyperFace [7] and All-in-one network [6] are a deep

multi-task learning framework that perform face detection, landmark localization,

pose Estimation, and gender recognition among other tasks. These methods exploits

the synergy among related tasks by fusing the intermediate layers of a deep CNN

using a separate CNN and thereby boosting their individual performances.

2.2.3 Methods tailored for active authentication

Continuous authentication of mobile devices requires partially visible face de-

tection and verification to operate reliably [34]. In [1], the authors introduced a

face detection method based on facial segments to detect partial faces on images

captured for AA with smartphones. The algorithm first produces face proposals

by employing a number of weak Adaboost facial segment detectors on each image

and then clustering them. After filtering out overlapping proposals and then form-

ing subsets of facial segments from each cluster, statistical features from the face

proposals were used to train a support vector machine classifier for face detection.

The method worked well on AA-01-FD [14] and UMDAA-02-FD [34] mobile face

detection datasets compared to other non-CNN methods [34].

Among deep learning methods that consider face parts, [35] achieves state-
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of-the-arts performance on the FDDB, PASCAL and AFW datasets by learning

to identify parts of the face such as hair, eyes, nose, mouth and beard and then

combining those proposals into a face detection.

2.3 Illumination and tampering

Detecting tampering in images usually rely on low level features, such as de-

tecting discrepancies in statistical features of global and local image noise [36]. An-

other possible indicator is double JPEG compression artifacts that was explored

in [37]. Steganalysis feature-based methods [38] [39] have also been used to extract

low level information to detect tampering. However, these methods rely on low level

features of the image signal, rather than on higher level understanding of the scene.

Some algorithms like [40], rely on higher level image understanding since they

seek to detect inconsistencies in illumination and shadows. However, this method is

not automatic and requires user interaction.

Deep learning-based methods like [41] have recently been proposed for this

problem. In [41], the authors propose a two stream network, where the first stream

is used to detect if a face is tampered or not, while the second stream is used to

classify each patch of the image as real or fake. The results are combined to produce

the final decision.
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Chapter 3: Deep Feature based Face Detection for Mobile Devices

Face Detection from mobile front camera captures, which are of importance in

domains like Active Authentication (AA), is the primary focus of this section. As

mentioned in 1.1, this problem has its own set of challenges and advantages. It is

an important problem, because reliable face detection is a necessary condition for

further processing like face recognition and authentication.

3.1 Challenges and Advantages

• Partial Visibility: When user’s use a mobile phone, they might not be directly

looking into it. As shown in Fig. 3.7, there are many cases, when only a

partial face is visible.

• Running on phone GPU: While modern mobile devices usually have a GPU,

they are not usually Nvidia GPUs. Hence usual CUDA based frameworks like

Caffe cannot run on mobile phones. However, OpenCL is an open standard

that runs on both Nvidia and non-Nvidia GPUs. For Android phones Render-

Script is another alternative for programming GPUs. Thus for the algorithm

to run on a mobile platform, it must be reasonably less computationally in-

tensive and be implementable using OpenCL or RenderScript.
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Some of the inherent advantages in the task of detecting partial, single faces

from front camera captures are as follows:

• Single Face: Usually, a single person uses a mobile at any given time. There-

fore, we can focus on detecting a single large face, and can ignore small back-

ground faces. Also, one can assume that the user is not very close to the

phone. This assumption is checked by plotting a 2D histogram of face height

and width, as shown in Fig. 3.1. Analysing the distribution of face sizes, we

find that the height of faces vary from around 350 to 700 and the width varies

from 300 to 600, which indicates that we can focus on detecting faces in this

typical range only.

• Pose: Extreme pose variations are rare since when users tend to interact with

mobile devices, usually frontal images are captured.

3.2 Proposed Method

In this section we shall delineate the proposed algorithm, Deep Features based

Face Detection on Mobiles (DFFDM) and discuss the motivation for the design

choices and its salient features.

3.2.1 Introduction

Transferred learning is an effective way to incorporate deep networks. The

first step of the DFFDM algorithm is to extract deep features using the first 5 layers

of Alexnet. Different sized sliding windows are considered to account for faces of
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Figure 3.1: Histogram showing distribution of bounding box widths and heights in

the training set of the AA-01 dataset

different sizes and an SVM is trained for each window size to detect faces of that

particular size. Then detections from all the SVMs are pooled together and some

candidates are suppressed based on a overlap criteria. Finally a single bounding box

is output by the detector. In the following subsections, the details of the algorithm

and model training are provided.
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3.2.2 Deep Features Computation

For training 5202 images from the UMDAA-01 database is used. As shown

in Fig. 3.1, the 2D histogram of face heights and widths, the height of faces vary

from around 350 to 700 and the width varies from 300 to 600. The original videos of

the AA-01 dataset are captured at 720p resolution. But since that resolution is too

high for our purpose, we resize it to half the resolution, that is 640× 360. Therefore

typical faces range from 175 to 350 rows and 150 to 300 columns in this reduced

resolution.

First we extract deep features from these resized images by forwarding them

through AlexNet [42]. We tap the network at the 5th convolutional layer (after the

max-pooling). The standard AlexNet reduces an image by a factor of 16 in both

dimensions. Thus if the input image is of size p × q, the output is of dimensions

fr × fc × 256, where 3.1

fr = dp/16e , fc = dq/16e (3.1)

The 3rd dimension is 256 because the 5th layer uses 256 filters. Given the

typical face dimensions in the last paragraph, they are reduced by a factor of 16 in

the feature space to a heights ranging from 10 to 22 and widths ranging from 9 to

19 approximately.
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3.2.3 Training SVM

Once the features have been extracted, we turn to training SVMs to detect the

presence of faces. Obviously a single sized sliding window cannot account for these

varying sizes, therefore we consider windows of width starting from 8 and increasing

to 20 in steps of 2, and height starting from 9 and increasing in steps of 2 to 23. In

total we get 56 different window sizes for which we need to train 56 different SVMs.

We denote a window by Wij, where i denotes its window height and j denotes its

window width.

Let wk and hk denote the width and height of the deep feature for the face in

the kth training image. The face from the kth training image is used as a positive

sample for the SVM Wij, if we have 3.2

|i− hk| ≤ tp & |j − wk| ≤ tp (3.2)

for some threshold for selecting positive samples tp. That is, we select those faces

for Wij whose sizes are comparable and close to the window’s dimensions.

For negative samples, we extract random patches of size i × j from those

training samples which have no faces. If the kth training sample has a face of size

wkxhk, and for a particular window Wij, if we have 3.3

|i− hk| > tn & |j − wk| > tn (3.3)

for some threshold for selecting negative samples tn, then we extract a few

random patches from the kth training sample that act as negative samples for Wij.
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That is, if the face in an image is of a very different size from the current window

Wij under consideration, we extract negative samples from it, so that Wij gives a

negative response of faces of different size. Finally, since the UMDAA-01 database

does not have many images with no faces, we extract some random negative patches

from images of the UPenn Natural Image Database.

Once we have extracted the positive and negative samples for each window

size, we discard those window sizes which do not have enough positive examples.

Then we flatten the three dimensional deep feature patches into a single dimensional

feature vector. Thus forWij, we get a feature vector of length i×j×256. We estimate

the mean and standard deviation of features from each window, which are used to

normalize the features.

Next we train linear SVMs for each window. Since we get a very long feature

vector, it is difficult to train an SVM with all positive and negative samples together.

To make the training tractable, we divide the samples into batches and train over

many cycles. Specifically let pij be the number of positive samples for Wij. Then

we choose a small number of negative samples say nij and train the SVM. After

that we find the scores of the nij negative training samples using the weights we get

after training and retain only those that are close to the separating hyperplane and

discard the rest. We refill the negative samples batch with new negative samples

and continue this cycle multiple times. This procedure is repeated for each SVM.
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3.2.4 Full Face Detection Pipeline

After the SVMs are trained, we can scan the deep feature extracted from the

given image in a sliding window fashion for each SVM. Specifically for an image of

size p × q, the deep feature is of fr rows and fc columns as given by 3.1 and 256

depth. Therefore for Wij, we can slide the window from position (1, 1), which is the

top left, to (fr − i, fc − j). Let (rij, cij) denote the position where the SVM yields

highest score. Then we say that a bounding box, whose top left is at 16 ∗ (rij, cij)

and has width 16 × j and height 16 × i is the prediction from Wij. Note that we

multiply 16, because the feature space is approximately 16 times smaller than the

original image.

Now that we have 1 prediction from each of the 56 SVMs we need to combine

them to get a single prediction. A modified version of the non maximal suppression

scheme used by Girshick et al. [43] is used for this purpose. First we sort the 56

proposals by their scores and then pick the candidate with highest score. Boxes

that overlap significantly with it and have a considerably lower score than it are

ignored. This is continued for the next highest scoring candidate in the list, till

all boxes are checked. After this we sort the remaining candidates by size. If a

larger box significantly overlaps a smaller box, but the larger box has a slightly

lower score than the smaller box, we suppress the smaller box. This is useful in the

following scenario: A smaller SVM may give a strong response for part of a full face,

while the larger SVM responsible for detecting faces of that size may give a slightly

lower response. But clearly the larger SVM is making the correct prediction, so we
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Figure 3.2: Overview of the deep feature based face detection algorithm for mobile

devices.

need to suppress the overlapping smaller SVM’s candidate. After performing these

suppressions, we pick the SVM’s candidate that has the highest score. We then

choose a suitable threshold, and if final candidate’s score is larger than that, we

declare a face is present at that location, else declare that there is no face present.

3.2.5 Design Choices and Salient Features

In this section, we discuss some of the design choices that were made for

DFFDM.

Transferred Learning : The DFFDM algorithm seeks to focus on images typical

in the AA case, for which AA-01 is a publicly available dataset. The dataset is

very challenging, as can be seen from the samples shown in Fig. 3.7, hence it

is clear that a deep network based method must be used to achieve acceptably
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good performance. While the AA-01 dataset has a large numbered of unannotated

frames it only has 8036 images with facial bounding boxes annotated by hand.

Given current dataset sizes, it is a small number, and perhaps not enough to train a

deep network. One possible solution to this dilemma, is to use transferred learning.

As studied in [44], deep features extracted from deep networks trained on large

datasets are often transferable to new domains, with a little fine-tuning. With that

in mind, we choose to follow this path to address the conflicting requirement of a

deep network based method, but on a small training set.

Sliding Window : Sliding window approaches usually work on the principle of

extracting appropriate features and then sliding a window and deciding if an object

is present in that window or not. This is a very common technique. For example,

the classic algorithm on pedestrian detection using HOG features [45] works on this

principle. In the proposed algorithm, DFFDM can be thought of as using DCNs to

extract the features for the sliding window approach.

Scale Invariance and Robustness to Occlusion : However to make the sliding

window approach work for detecting objects of varying scales, we need to extract

features across scaled versions of the input image. The approach followed by Ranjan

et al. in [30] is based on extracting deep features at multiple resolutions of the image

and then training a single SVM to detect faces. Clearly extracting deep features is a

very costly operation because of the sheer number of convolutions involved. Passing

the image at multiple resolutions through the network increases the workload even

more. Therefore the proposed algorithm passes the image through the DCN only

once, but trains SVMs of different sizes to achieve scale invariance. Also the different
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SVM sizes helps detect partial faces. For example a tall and thin windowed SVMs

are usually trained with left half or right half faces, while short and fat windowed

SVMs are trained for top half of faces. SVMs whose aspect ratio match a normal

face’s aspect ratio are trained on full faces. Thus different sized windows help in

scale invariance as well as in detecting partial faces.

Number of Parameters : The Alexnet deep feature extractor has 2,334,080

parameters and the 56 SVMs have 3,211,264 parameters, making the total 5,545,344

parameters.

3.3 Implementation

Popular deep learning platforms include Caffe, Theano and Torch. Although

these platforms have a CPU only version, they are significantly slower than the

GPU enabled versions. These platforms have a CUDA based backend that offloads

the heavy, but parallelizable, computations involved in a convolutional deep net-

work to an Nvidia GPU. Thus, although there are multiple platforms in the deep

learning ecosystem, the computational backend is dominated by CUDA based code

and Nvidia GPUs. Unfortunately, CUDA is proprietary and works only for Nvidias

CUDA enabled GPUs. Current mobile devices have GPUs that are predominantly

provided by Adreno, Mali and PowerVR. Therefore existing deep learning frame-

works are difficult to port on to GPUs made by other vendors.

OpenCL [46] is an open standard, developed by Khronos Group, to support

multiple vendors and facilitate cross platform heterogeneous and parallel computing.
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All major vendors like Qualcomm, Samsung, Apple, Nvidia, Intel and ARM conform

to the OpenCL standard. Thus OpenCL is a portable option or implementing

convolutional networks in GPUs other than those made by Nvidia. Recently though,

Google has developed RenderScript to facilitate heterogeneous computing on the

Android platform.

Mobile devices are obviously not an ideal platform to perform training on

massive datasets. But once the model has been trained, we can hope to run the

forward pass on mobile platforms. Thus to harness GPUs of mobile devices to

perform the convolution heavy forward pass, we have implemented OpenCL and

RenderScript based libraries. The OpenCL library is general and should work on any

GPU, while the RenderScript library is specifically tailored for Android. An Android

specific example is the use of Schraudolp’s fast exponentiation [47] to approximately

but quickly compute the normalization layer in AlexNet. Full exponentiation takes

a significant amount of time and can become bottlenecks in weaker mobile GPUs.

The primary ingredients for a basic convolutional deep network are convolution

and activation layers, max pooling layers and normalization layers, each of which

can be parallelized on GPUs. By appropriately stacking up these layers in the

correct combination and initializing the network with pre-trained weights we can

build a CNN easily. For our purpose we have implemented the AlexNet network as

described earlier. For an image of size 360× 640, a single forward pass, running on

a machine with 4th generation Intel Core i7 and Nvidia GeForce GTX 850M GPU,

takes about 1 second for the OpenCL implementation. For an image of the same

size, on the Renderscript implementation running on different phones, we summarize

21



Phone Runtime GPU CPU

Moto G 36.7 s Adreno

305

Qualcomm Snapdragon

400

HTC One (M7) 31.2 s Adreno

320

Qualcomm Snapdragon

600

Samsung Galaxy

S4

28.0 s Adreno

320

Qualcomm Snapdragon

600

Nexus 5 11.9 s Adreno

330

Qualcomm Snapdragon

800

LG G3 10.3 s Adreno

330

Qualcomm Snapdragon

801

Nexus 6 5.7 s Adreno

420

Qualcomm Snapdragon

805

Table 3.1: Run times of DFFDM on different mobile platforms
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the run time results in Table 3.1. Only about 10% or less of this run time is due to

max-pooling layer, normalization layer and SVMs. The rest of the time is due to the

heavy computations of the convolutional layers. Continuously running the algorithm

drains the battery at 0.42% per minute, while leaving the phone undisturbed drains

the battery at around 0.16% per minute.

3.4 Evaluation and Results

For evaluation, we consider common metrics like Precision-Recall plots, F1

scores and Accuracy. We compare the performance of our algorithm on the AA-

01 [48] and MOBIO [49] [50] datasets with Deep Pyramid Deformable Part Model

(DP2MFD) [30], which is among the state-of-the-art algorithms for some challenging

datasets like AFW [51] and FDDB [2], deformable part model for face detection

(DPM) [52] and Viola Jones detector (VJ) [53].

We compute detections based on 50% intersection over union criteria. Let d

be the detected bounding box, g be the ground truth box and s be the associated

score of the detected box d. Then for declaring a detection to be valid, we need Eq.

(3.4) to be satisfied for some threshold t

area(d ∩ g)

area(d ∪ g)
> 0.5 & s ≥ t. (3.4)

3.4.1 AA-01 Dataset

Results on AA-01 dataset are summarized in Table 3.2.
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Metric DFFDM DP2MFD DPM VJ

Max F1 92.8% 89.0% 84.1% 67.7%

Max Accuracy 88.0% 82.3% 76.4% 58.0%

Recall at 95%

precision

85.7% 81.7% 72.6% -

Table 3.2: Comparision of different metrics for various detectors on UMD-AA

database

To check the robustness of the detector, we vary the intersection-over-union

threshold as defined in Eq. (3.4) from 0.1 to 0.9 and plot the resulting F1 score in

Figure 3.5 and accuracy in Figure 3.6. We see that the DFFDM algorithm gives

better performance at higher overlap thresholds too.

A few example positive and negative detections are shown in Fig. 3.7. The

detections are marked in red, while the ground truth is in yellow. The first row

shows a few examples of positive detections with partial faces and the second row

shows positive detections with pose variations. The third row shows some false

detections, or detections with score lesser than 1. The detector is quite robust to

illumination change and is able to detect partial or extremely posed faces.

3.4.2 MOBIO Dataset

Results on MOBIO dataset are summarized in Table 3.3. The MOBIO dataset

has full frontal faces only, therefore we get very high performance. DP2MFD beats
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Figure 3.3: Precision Recall plot corresponding to the AA-01 dataset.

our algorithm for this dataset, which can be attributed to the fact that DP2MFD

is one of the best algorithms, trained on a large, varied dataset, and for full frontal

faces it has near perfect performance over multiple scales. For DFFDM, SVMs

of different sizes were trained, based on the typical size of faces captured by the

front camera. But sometimes for very large or small faces, the training dataset

of UMD-AA may not have enough samples, therefore for extremely scaled faces,

DFFMD may fail. This can be remedied by training on a larger database, and also

by training SVMs on more scales. A few example positive and negative detections

are shown in Figure 3.7. The first row shows positive detections while the second

row shows failures. As the examples show, there are some false detections for really

large faces, of which we did not have many examples in the AA-01 training dataset

on which DFFDM was trained.

25



Figure 3.4: Examples of positive (1st row) and negative (2nd row) detections on

MOBIO. The detector's output is in red, while ground truth is in yellow.

Metric DFFDM DP2MFD DPM VJ

Max F1 97.9% 99.7% 97.8% 92.6%

Max Accu-

racy

96.0% 99.3% 95.8% 86.3%

Table 3.3: Comparision of different metrics for various detectors on MOBIO

database
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Figure 3.5: Plot showing variation of F1 score with respect to overlap threshold

corresponding to the AA-01 dataset.
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Figure 3.6: Plot showing variation of accuracy with respect to overlap threshold

corresponding to the AA-01 dataset.
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Figure 3.7: Examples of positive detections (with pose variations and occlusion) and

examples of negative detections (due to insufficient overlap or small score) in the

AA-01 dataset. The detector’s output is in red, while ground truth is in yellow.
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Chapter 4: DeepSegFace: Pooling Facial Segments to Detect Partial

Faces

In this section, we shall introduce DeepSegFace, a deep convolutional neural

network (DCNN) that is designed to detect partial faces, by pooling together features

from facial segments.

4.1 Proposed Algorithm

In this section we shall propose the DeepSegFace algorithm and look at its

relation to other associated methods.

4.1.1 Introduction

DeepSegFace consists of 2 stages, a proposal generation stage, followed by a

classification stage. A ’proposal’ in this context is a collection of bounding boxes of

facial segments (like left half, upper half etc), which might constitute a whole face.

In the proposal generation phase, weak, fast classifiers detects facial segments, and

comes to a consensus if a face is present. Then these detected segments are sent to

a DCNN classifier, which outputs a single probability value about the presence or

absence of a face.
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Figure 4.1: Facial segments as proposed in [1]

4.1.2 Proposal generation

In our proposal generation scheme, 9 parts are used, namely: nose (Nose), eye-

pair (Eye), upper-left three-fourth (UL34), upper-right three-fourth (UR34), upper-

half (U12), left three-fourth (L34), upper-left-half (UL12), right-half (R12) and left-

half (L12. They are shown in Fig. 4.1. These 9 parts are chosen based on the

analysis in selecting the best combination Cbest for detecting faces in [1].

The set of facial segments is denoted by S = {ak | k = 1, 2, . . .M}, where

M = 9 is the number of segments under consideration and ak is a particular facial

segment. M = 9 weak Adaboost facial segment detectors are trained to detect each

of the segments in S. Following the method described in [1], first we estimate the

face centers given a detected segment by simple geometrical considerations. For

example, for the U12 segment, the face center is estimated to lie at the center of the
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last row of the detected segment.

Close estimates of face centers are considered to belong to the same face pro-

posal. Once the face centers are estimated, they are clustered into clusters CLj,

j = {1, 2, . . . cI} as discussed in [1]. Here, cI is the number of clusters formed for

image I. A bounding box for the whole face BCLj
is calculated based on the con-

stituent segments. The proposals are winnowed by deleting clusters that give rise

to the exact same full face bounding box proposal.

Consider a cluster composed of segments S. Denoting the power set by P ,

possible non-empty sets of segments are SP ∈ P(S) − {∅} and P . A proposal P

can be the full face estimate computed from any of these sets SP . However, we only

consider those sets which have a atleast c segments, so that it is ensured we get a

robust estimate. We set c = 2, a low value, so that it does not miss out any face

(high recall), at the cost of generating lots of false positives (low precision). This

lets one generate a large number of proposals, so that any face is not missed in this

stage. However since the number of subsets can be very large, since it is exponential

in the number of segments, we choose at most ζ = 10 face proposals from each

cluster by selecting random subsets of face segments constituting that cluster.

4.1.3 Proposal Classification

DeepSegFace integrates deep CNNs and segments-based face detection from

proposals such as [1]. DeepSegFace, accepts as inputs, subsets of the M = 9 face

parts as discussed earlier, for each image. DeepSegFace is then trained to calculate
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Figure 4.2: Block diagram showing DeepSegFace architecture.

the probability values of the proposal being a face. Finally, a re-ranking step adjusts

the probability values from the network. The proposal with the maximum re-ranked

score is deemed as the detection for that image.

The architecture of DeepSegFace is arranged according to the classic paradigm

in pattern recognition: feature extraction, dimensionality reduction followed by a

classifier. A block diagram of the architecture is shown in Fig. 4.2. Different

components of the figure are discussed here.

Convolutional Feature Extraction: There are nine convolutional network columns,

structurally similar to VGG16 [54] and initialized with its pretrained weights, for

each of the nine segments. Thus each network has thirteen convolution layers ar-

ranged in five blocks. Each segment in the proposal is resized to standard dimensions

for that segment, then the VGG mean value is subtracted from each channel. If a

segment is absent in the proposal, zero-input is fed into the network input corre-

sponding to that segment, as shown for the Nose segment in the figure.
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Dimensionality reduction: The last convolutional feature map has 512 chan-

nels, hence naively concatenating them results in a very large 65, 536-D feature

vector. Hence, a randomly initialized convolutional layer with filter size 1 × 1 and

50 feature maps is appended to provide a learnable dimension reduction, which

reduces the feature size to 6400 only, as shown in Table 4.1.

Classifier : The classifier receives a 6400 dimensional feature vector from the

dimensionality reduction block as shown in Table 4.1. That is passed through a fully

connected layer of 250 nodes, followed by a softmax layer of two nodes (both ran-

domly initialized). The two outputs of the softmax layer sum to one and correspond

to the probability of the presence or absence of a face.

Re-ranking : The DeepSegFace network outputs the face detection probabilities

for each proposal in an image, which can be used to rank the proposals and then

declare the highest probability proposal as the face in that image. We only consider

the highest score proposal the face, because in the AA scenario, we assume that

there is only one face present in the image. However there is some prior knowledge

that some segments are more effective at detecting the presence of faces than others.

After computing the prior probabilities of detecting a face given that a segment was

present in the proposal, we multiply the score from the DeepSegFace network with

the mean of the priors.
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Table 4.1: Structure of DeepSegFace’s Convolutional layers (feature extraction and

dimensionality reduction)

Segment Input Feature Dim. Reduce Flatten

Nose 3× 69× 81 512× 2× 2 50× 2× 2 200

Eye 3× 54× 162 512× 1× 5 50× 1× 5 250

UL34 3× 147× 147 512× 4× 4 50× 4× 4 800

UR34 3× 147× 147 512× 4× 4 50× 4× 4 800

U12 3× 99× 192 512× 3× 6 50× 3× 6 900

L34 3× 192× 147 512× 6× 4 50× 6× 4 1200

UL12 3× 99× 99 512× 3× 3 50× 3× 3 450

R12 3× 192× 99 512× 6× 3 50× 6× 3 900

L12 3× 192× 99 512× 6× 3 50× 6× 3 900
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4.1.4 Segment Drop-out for Regularization and Data Augmentation

As mentioned in the proposal generation scheme, subsets of face segments in a

cluster are used to generate new proposals. For example, if a cluster of face segments

contains n segments and each proposal must contain atleast c segments, then it is

possible to generate
n∑

k=t

(
n
k

)
proposals. However, all the nine parts are redundant for

detecting a face, because of significant overlaps and often many segments are not

detected by the weak segment detectors.

To make the network robust to missing segment detections, generalize better

and also to effectively perform data augmentation, we use segment drop-out when

training, i.e. some of the input signals are randomly missing and set to zero. Around

sixteen proposals are generated per image. Many of these proposals are actually

training the network to detect the same face using different combination of segments.

4.1.5 Comparision with related methods

Table 4.2 shows a comparision between DeepSegFace and two related meth-

ods, namely FSFD and SegFace. FSFD introduced the proposal generation scheme

described above and SegFace extends it in [55].
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Table 4.2: Comparison of the proposed methods

Component FSFD SegFace DeepSegFace

Proposal

Generation

Clustering detections

from cascade classi-

fiers for facial seg-

ments

Clustering detections

from cascade classi-

fiers for facial seg-

ments

Clustering detections

from cascade classi-

fiers for facial seg-

ments

Low level fea-

tures

Prior probabilities HoG and Priors Deep CNN features

Intermediate

stage

none SVM for segment i

outputs a score on

HoG features of seg-

ment i

Dimension reduction

and concatenation to

single 6400D vector

Final classi-

fier

SVM trained on priors SVM trained on scores

from part SVMs and

priors

Fully connected layer,

followed by a softmax

layer

Using priors Used as features in the

final SVM

Used as features in the

final SVM

Used for re-ranking of

face probabilities in

post processing

Trade offs Very fast but less ac-

curate

Fast but less accurate Slower but more accu-

rate
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4.2 Experimental Results

4.2.1 Experimental Setup

The proposal generator used in FSFD, which was used in trained on LFW, is

used as the proposal generator for DeepSegFace. The DeepSegFace DCNN is trained

on the training set of UMDAA-02-FD dataset.

For testing DeepSegFace, experimental results on the AA-01-FD and UMDAA-

02-FD datasets are compared with a) Normalized Pixel Difference (NPD)-based

detector [29], b) Hyperface detector [7], c) Deep Pyramid Deformable Part Model

detector [56], d) DPM baseline detector [28], and e) Facial Segment-based Face De-

tector (FSFD) [1]. Both SegFace and DeepSegFace are trained on 3964 images from

AA-01-FD and trained models are validated using 1238 images. The data augmen-

tation process produces 57, 756 proposals from the training set, that is around 14.5

proposals per image. The remaining 2835 images of AA-01-FD are used for testing.

For UMDAA-02-FD, 32, 642 images are used for testing. In all experiments with

SegFace and DeepSegFace, c = 2 and ζ = 10 is considered.

Some samples detections can be seen in Fig. 4.7. The quantitative results are

evaluated by comparing the ROC curve and precision-recall curves of these detectors

since all of them return a confidence score for detection. The goal is to achieve high

True Acceptance Rate (TAR) at a very low False Acceptance Rate (FAR) and also

a high recall at a very high precision. Hence, numerically, the value of TAR at 1%

FPR and recall achieved by a detector at 99% precision are the two metrics that
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Table 4.3: Comparison at 50% overlap on AA-01-FD and UMDAA-02-FD datasets

Methods
AA-01 UMDAA-02

TAR at Recall at TAR at Recall at

1% FAR 99% Prec. 1% FAR 99% Prec.

NPD [29] 29.51 11.0 33.49 26.79

DPMBaseline [28] 85.08 83.25 78.48 72.79

DeepPyramid [56] 66.17 42.35 71.19 66.07

HyperFace [7] 90.52 90.32 73.01 71.14

FSFD Cbest [1] 59.06 55.65 55.74 26.88

SegFace 67.12 63.09 66.44 61.47

DeepSegFace 87.16 86.49 82.26 76.28

are used to compare different methods.

In table 4.3, the performance of SegFace and DeepSegFace are compared with

state-of-the-arts methods for both datasets. From the measures on the AA-01-FD

dataset, it can be seen that SegFace, in spite of being a traditional feature based algo-

rithm, outperforms several algorithms like FSFD and even DCNN based algorithms

such as NPD and DeepPyramid. On the other hand, DeepSegFace outperforms all

the other methods except HyperFace in terms of the two evaluation measures on

the AA-01-FD dataset. Hyperface is a state-of-the-art algorithm that is trained on

over 20, 000 images, compared to only 5202 images used to train DeepSegFace. Also
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Figure 4.3: Images without even one good proposal returned by the proposal gen-

eration mechanism. This bottleneck can be removed by using better proposal gen-

eration schemes.

Figure 4.4: (a) for 57756 Train Proposals from AA-01-FD Dataset, (b) 39168 Test

Proposals from AA-01-FD Dataset, and (c) 410138 Test Proposals from UMDAA-

02-FD dataset. In all cases c = 2 and ζ = 10.

Hyperface uses R-CNN to generate face proposals, compared to the fast weak clas-

sifiers used by DeepSegFace. Furthur analysis reveals that one of the bottlenecks

of DeepSegFace’s performance is the proposal generation phase, thus its perfor-

mance can increase if it uses a more powerful proposal generation scheme, such as

R-CNN [57].

In Fig. 4.3, some images are shown for which the proposal generator did not

return any proposals or returned proposals without sufficient overlap, even though

there are somewhat good, visible faces or facial segments in them. The percentage

of true faces that are represented by at least one proposal in the list of proposals for
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the training and test sets are counted. The result of this analysis is shown in Fig.

4.4. The bar graphs denote the percentage of positive samples and negative samples

present in the proposal list generated for a certain overlap ratio. For example, out of

the 55, 756 proposals generated for training, there are approximately 62% positive

samples and 35% negative samples at an overlap ratio of 50%. Considering the

overlap ratio fixed to 50% for this experiment, it can be seen from the line plot in

Fig. 4.4(b), corresponding to the AA-01-FD test set, that the proposal generator

actually represent 89.18% of the true faces successfully and fails to generate a single

good proposal for the rest of the images. Hence, the performance of the proposed

detectors are upper-bounded by this number on this dataset, a constraint that can be

mitigated by using advanced proposal schemes like R-CNN which generates around

2000 proposals per image for Hyperface, compared to just around sixteen proposals

that are generated by the fast proposal generator employed by DeepSegFace.

However, when considering the UMDAA-02-FD test set, which is completely

unconstrained and has almost ten times more images than AA-01-FD test set, this

upper bound might not be so bad. From Fig. 4.4(c) it can be seen that the upper

bound for UMDAA-02-FD is 87.57% true positive value. Now, in Fig. 4.5, the ROC

for this dataset is shown. It can be seen that the DeepSegFace method outperforms

all the other methods, including HyperFace, with a large margin even with the

upper bound (the curve flattens around 87.5%). This is because all the traditional

methods suffer so much more when detecting mobile faces in truly unconstrained

settings that a true acceptance rate of even 87% is hard to achieve. It is to be

noted that the data collection process for AA-01-FD was task-based [14] and hence,
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Figure 4.5: ROC curve for comparison of different face detection methods on the

UMDAA-02 dataset

Figure 4.6: Precision-Recall curve for comparison of different face detection methods

on the UMDAA-02 dataset.

supervised, while UMDAA-02-FD was collected in a completely natural setting [34].

The precision-recall curve for UMDAA-02-FD dataset is shown in Fig. 4.6. It can

be seen that the DeepSegFace method has much better recall at 99% precision than

any other method. In both figures, the performance of SegFace is found satisfactory

given its dependency on traditional features. In fact, the curves are not too far off

from the DeepPyramid method, which is DCNN-based.

The proposals for both test sets are analyzed to reveal that on an average only

three segments per proposal are present for both datasets. Thus, while there are

nine convolutional networks in the architecture, only three of them need to fire on
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an average for generating scores from the proposals. When forwarding proposals in

batch sizes of 256, DeepSegFace takes around 0.02 seconds per proposal on a GTX

Titan-X GPU. SegFace takes around 0.49 seconds when running on a Intel Xeon

CPU E-2623 v4 (2.604 GHz) machine with 32GB Memory without multi-threading,

hence it is possible to optimize it to run on mobile devices in reasonable time without

specialized hardware.
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Figure 4.7: Sample face detection outcome of the proposed DeepSegFace method

on the UMDAA-02-FD dataset. The first three rows show correct detections at

different illumination, pose and partial visibility scenarios, while the last row shows

some incorrect detections. Red boxes denote DeepSegFace detection, while green

boxes denote ground truth
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Chapter 5: Face Illumination Detection and its Applications in Tam-

pering Detection

In this section we shall look at techniques of determining the illumination

conditions of a face and use that information to determine if an image has been

tampered. Specifically, we hope to identify cases when a face is taken from one

image and transplanted into another.

5.1 Introduction

In this section we shall establish some preliminary concepts before diving into

details in the next section.

In this work, we assume a single point source light. As such, it can be charac-

terized by 2 numbers, namely, elevation and azimuth angles. It is enough to consider

an elevation angle in the range [0, π] and an azimuth in the range [−π/2, π/2], when

considering faces. Another possible way of characterizing illumination is by using

Spherical Harmonic Lighting [58]. As input to the system, we assume that we al-

ready have a face bounding box from a face detector. Thus a 2D face crop is input

to the system, which outputs the elevation and azimuth angles of the illumination.

When discussing about tampered images, we focus on a particular case of
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tampering: One where a face or a person has been cropped from a source image

and been pasted into a new target or tampered or spoofed image.

To detect tampering, we basically wish to perform some sort of illumination

verification where we ask the question if two faces have the same or different illumi-

nations. This is analogous to the problem of face verification, where we ask if two

face images belong to the same person. We can adopt two strategies:

• Compute and Compare: In this approach, we train a network to compute the

illumination and then compare them. The comparision can be done using a

simple metric like euclidean distance or by learning a more discriminative met-

ric. This is analogous to face verification by first performing face recognition.

• Direct Verification: Here, we train a network that focuses on learning if two

illumination conditions are same, rather than trying to predict the actual

illumination conditions. This is analogous to face verification by Siamese net-

works.

5.2 Proposed Method

As mentioned in the previous section 5.1, there are 2 methods of performing

verification. However, one can also combine both, that is attempt to predict the

actual illumination as well as learn to predict if two illuminations are the same. The

proposed solution, IllumNet is described below.
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Figure 5.1: Network Architecture of IllumNet, showing the main identical classifiers

C0 and C1 arranged in Siamese style.

5.2.1 Network Architecture

5.2.1.1 Inputs and Outputs

Firstly, the Hyperface [7] face detector is run on the images, to get face bound-

ing boxes. These crops are then normalized to lie in the range [−0.5, 0.5]. The faces

crops are resized to 224× 224.

We consider the elevation angle to be in the range [0, π] and an azimuth in

the range [−π/2, π/2]. These ranges are enough to cover light sources lying on a

hemisphere in front of the face. Also, instead of trying to predict the exact angles,

we focus on predicting an approximate location by considering that there are 13

linearly spaced divisions dividing the π radians considered in the range. Discretizing

the space allows us to treat the problem as a classification problem, rather than a

regression.
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5.2.1.2 Illumination Classifier

Our proposed method consists of a pair of identical networks C0 and C1. Both

Ci networks are classification networks, which have a common trunk that is made

of resnet blocks. At the end of the common trunk, the network branches into 2

subnetworks that each produce 13 probabilities, one number each for the 13 classes

of elevation and azimuth angles. The two classifier networks are in blue in Fig. 5.1

5.2.1.3 Siamese Network for Illumination Verification

While directly attempting to predict and compare the illumination to deter-

mine if two illuminations are the same might work, it might be a simpler task to

answer the question if they are the same. Therefore to bake in verification, along

with classification, a Siamese network like arrangement is proposed. As shown in

green in Fig. 5.1, convolutional side channel networks Sk
0 and Sk

1 tap into interme-

diate layers of the main classifiers C0 and C1. Outputs of the side channel networks

S and the outputs of the main classifiers C are concatenated to create an intermedi-

ate verification feature vector. These feature vectors are passed through some fully

connected layers F0 and F1 to yield the final verification feature v0 and v1. The fully

connected layers F act as a learnt metric, to produce well separated verification

feature vectors.
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5.2.2 Losses

The main classifiers are trained with categorical crossentropy losses. Thus

losses LA
0 , L

E
0 , L

A
1 , L

E
1 , shown in Fig. 5.1 are all crossentropy losses. LA

0 and LA
1 are

losses for the azimuth prediction, while LE
0 and LE

1 penalize the azimuth prediction.

To train the network as a verifier, a contrastive loss LC is used. The contrastive loss

is defined as follows:

LC = 0.5(‖v0 − v1‖(1− Y ) +max(0, 1− ‖v0 − v1‖)Y ) (5.1)

where Y is an indicator variable that is 0 when the two illuminations are similar,

and 1 otherwise.

5.2.3 Training and Testing Data

Datasets with illumination conditions are rare indeed. One such dataset is

the CMU Multi-PIE Face Dataset [59]. It contains subjects faces captured under

multiple illuminations and viewpoints. While it has sufficient variations in illumina-

tion azimuth, it does not have a lot of variation in elevation. From this dataset, we

choose 34, 211 training images, 1, 925 validation images and 5, 362 testing images.

Generating synthetic face images is one way to get around this paucity of

labelled data. To that end, we use the Basel Face 3D Morphable Face Model [60]

(BFM). The BFM geometry consists of 53, 490 3D vertices connected by 160, 470

mesh triangles. This basic model can be varied by using different linear combinations

of 199 principal components that control shape and texture. Random coefficients
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for the principal components were generated to render faces under random lighting

conditions. This was used to create a synthetic dataset of 17, 000 training images,

1, 000 validation images and 4, 223 test images.

Finally, only for testing illumination verification performance we consider two

more datasets: AFW and Portraits. AFW is a well known face detection dataset.

We consider all the images in AFW that have 5 or less faces. We leave out other

images with more than 5 faces, because those faces wold be too small to correctly

deduce illumination conditions from. These chosen images yield 230 pairs of faces

that belong to the same images, and of the many possible pairs of faces that belong

to different images, we randomly choose 230, to keep the dataset balanced. The

idea is to create a dataset of pairs of faces from the same or different images.

Portraits dataset was developed at the University of Maryland to study image

tampering detection. It consists of pairs of faces that come from tampered and

non-tampered images, along with labels indicating if they have been tampered.

5.2.4 Experimental Setup

First, we train the network on the training split of Multi-PIE and then test it

on the test split. The ROC of the test results are shown in Fig. 5.2. The solid lines

show the verification performance of IllumNet when using the verification features

vi, while the dotted lines show the verification results when directly comparing the

illumination predictions from the main classifiers C0 and C1. This graph indicates

that training in a Siamese fashion helps with verification.
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Figure 5.2: ROC of test split of Multi-PIE from a IllumNet trained on Multi-PIE

train set. We observe that the adding the siamese style verification network given

better performance, compared to just using classification results for verification.

Next, consider the pairs constructed from the AFW dataset and the Portraits

dataset as described in section 5.2.3. The ROC plots for these 2 datasets are shown

in Fig. 5.3. The histograms of the euclidean distances of the verification features

of both datasets are shown in Fig. 5.4. The histograms clearly show that simi-

lar illumination conditions create verification feature vectors that produce smaller

euclidean distance, compared to dissimilar pairs.

5.3 Adversarial Training

As mentioned in the last section, there is a scarcity of data with annotated

ground truth illumination. While synthetic data can be generated, networks trained
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Figure 5.3: Verification ROC of AFW and Portraits datasets

on that cannot be expected to perform as well on real data. Hence we must turn to

intelligent data augmentation techniques. We propose the intelligent data augmen-

tation for training an illumination classifier.

5.3.1 Proposed Method

Consider the setup shown in Fig. 5.7. It shows 2 networks A and I lined

up serially. For this consider I to be the main classifier C of IllumNet. The other

network A is an adversarial network, that tries to generate occlusions that cause

network I to produce incorrect classifications. However, it is desirable that net-

work A introduces very small occlusions to fool network I, otherwise without that

constraint network A might occlude the whole image.
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Figure 5.4: Score histograms of similar and dissimilar pairs of AFW and Portraits

datasets, showing a clear separation of scores between tampered and non-tampered

pairs

5.3.2 Adversarial Occlusion Generation

First we shall discuss Binary Stochastic Neurons, then the architecture of the

adversarial network, its losses and other training details.

5.3.2.1 Adversarial Occlusion Generation

Before delving into the adversarial network, let us discuss the use of the Binary

Stochastic Neuron (BSN) briefly here. The adversarial network A is being used to

generate a binary mask of 1 and 0. To do so it produces a probability. But to

generate the actual mask, we need to threshold the probability. However, it is

well known that a thresholding function is non-differentiable and thus makes back

propagation difficult. To get around this difficulty, we can use Binary Stochastic
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Figure 5.5: Samples from the AFW dataset. The first column contains face pairs

from the same images, while the second column contains face pairs from different

images. The first row contains face pairs which were predicted to be in the same

image, while the second row contains pairs predicted to be in different images

Neurons (BSN). BSNs allow us to simulate a hard threshold activation. The forward

pass of BSN is a simple thresholding given by eq. 5.2.

BSN(x) = 1z<sigm(x), z ∼ U [0, 1] (5.2)

There are two varieties of BSN: Straight-through and REINFORCE. The for-

ward equation for both variants is simple thresholding and is given by eq. 5.2.

However, they differ in the estimators they use for the gradient during back propa-

gation.

For the straight-through variant, we simply use 1 instead of 0 as the derivative.
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Figure 5.6: Architecture of the adversarial network. Its inputs are a 100-D noise

vector and the face crop image, while its output is a binary mask. The green sections

are convolutional blocks while the yellow sections are deconvolutional blocks.

Another possibility is to use the derivative of the sigmoid function, along with slope-

annealing [61]. The REINFORCE estimator was proposed in [62] and estimates the

gradient of the loss L as shown in eq. 5.3.

E
[
∂L

∂x

]
= E[(BSN(x)− sigm(x))(L− c)], c =

E[(BSN(x)− sigm(x))2L]

E[(BSN(x)− sigm(x))2]
(5.3)

5.3.2.2 Adversarial Network Architecture

We want to train an adversarial network A accepts an input face image and

produces a binary mask of the same size. Pixels that have corresponding mask value

1 are allowed to pass through, while pixels with mask value 0 are suppressed.

To do so, we create an adversarial network, which accepts the image and a 100

dimensional noise vector as input. The image is passed through convolutional layers
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while the noise is passed through deconvolutional layers. They are then concatenated

and passed through more convolutional and deconvolutional layers. Finally, the last

deconvolutional layer outputs a 56× 56× 1 tensor, which is passed through a BSN

layer. The architecture is summarized in fig. 5.6.

Once the 56× 56 thresholded map is obtained, it is upsampled by a factor of

4 to yield a 224 × 224 occlusion map. This is multiplied pointwise with the input

image to produce the occluded image.

5.3.3 Training and Losses

The training proceeds as follows: We train the illumination network I with one

batch of data, while keeping the adversarial network A fixed, then we train network

A while keeping network I fixed. The loss for network I is simply categorical cross

entropy loss LE, since we model the illumination detection as a classification problem

rather than a regression.

To ensure we get certain desirable properties in the generated occlusion masks,

we employ the following losses listed below:

• Misclassifiation Loss LM : First and foremost, the occlusion should be success-

ful in inducing an incorrect classification in network I. Let NC be the number

of classes, the network predicts class p, while the ground truth is class c. If

|c− p| is large, then LM should be small. This is achieved by defining defining

LM according to eq. 5.4.

• Distortion Loss LD: The occluded area should be as small. We define this
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Figure 5.7: Network architecture, training scheme and losses of the proposed adver-

sarial training scheme. In each training iteration, first network A trains with affinity

loss LA, distortion loss LD and misclassification loss LM , then network I trains with

categorical crossentropy loss LE.

loss as LD = R(P (mask) − 0.2). R represents the ReLU function, while P

represents the percentage of masked pixels. This loss allows 20% of the pixels

to be modified without any loss, and after that the loss scales linearly.

• Affinity Loss LA: The occluded area should be clustered together. If it is

spread out randomly, the mask will look like random noise and not an occlu-

sion. A tightly clustered occluded area is useful in simulating real life occlu-

sions. To compute this loss, we find the absolute difference of each element of

the mask with its 4 connected neighbours, and then add their averages.
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LM = 1− |c− p|
NC − 1

(5.4)

The total loss for the adversarial network A is a weighted sum of the losses

discussed above and is given by equation 5.5

LA = LA + 2LM + LD (5.5)

The training process of altering between training network A and network I

and their corresponding losses are summarized in fig. 5.7.

5.3.4 Experimental Results

Fig. 5.8 shows the effect of adversarial occlusion for some images from the

Multi-PIE and synthetic datasets. We observe that the occlusions are well-clustered,

occupy only a small region of the image and seem to focus on the cheek region.

Cheeks are smooth, reflective regions on the face, which are useful in inferring the

source of illumination. By choosing to occlude the cheeks, the adversarial occluder

A, makes the job of the illumination network more difficult. The adversarial mask

also gives us an indication of the parts of the face that the illumination network I

considers important for inferring illumination.

For training, we use both CGI and Multi-PIE datasets as described in the

last section. We evaluate by reporting the test set accuracy. When trained with-

out adversary, we get 71.45% accuracy, while on training with adversarial network,

we get 73.93% accuracy. Thus this data augmentation scheme, seems to help in
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Figure 5.8: Some sample images from Multi-PIE and synthetic datasets that have

been adversarially occluded.

generalizing better.
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Chapter 6: Conclusion

In this work, we looked at two problems relating to security applications using

face analysis.

The first problem we address is detecting faces in the Active Authentication

(AA) setting, where we tackle partial face detection. We first propose a transfer

learning-based solution to the problem DFFDM, and then a deep learning-based

solution, DeepSegFace. Extensive experiments on AA datasets such as AA-01 and

UMDAA-02 show that the methods are very effecting in the AA setting.

The second problem addressed is using illumination information to decide if

a face image has been transplanted into an image. Under the assumption that

faces in the same image should have similar illumination, we propose an algorithm

that detects illumination discrepancies as an indicator of tampering. We extend the

proposed method by implementing an adversarial data augmentation scheme.

Future directions include incorporating network compression methods into the

face detection algorithms that will allow them to run faster on mobile platforms.

Another possible extension would be to develop an algorithm that detects tampering

by finding inconsistencies in illumination of general objects, and not just faces.
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