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In this dissertation, the stop and pass bands (i.e. the band gaps) characteristics are 

determined for gyroscopic systems by developing an approach which is compatible with 

such class of systems which is based on the concept of Bloch wave propagation in periodic 

structures.  In this approach, the dispersion curves of the periodic gyroscopic systems are 

determined for different rotational speeds. The obtained characteristics are compared with 

non-rotating systems in an attempt to quantify the effect of the gyroscopic forces on the 

“band gap” characteristics.  The developed approach is illustrated by a new class of drill 

strings with passive periodic inserts. These inserts are utilized to filter out the vibration 

transmission along the drill string.  Such mechanical filtering capabilities allow the 

vibrations to propagate along the periodic drill string only within specific frequency bands 

called the ‘pass bands’ and completely block it within other frequency bands called the 

‘stop bands’.  The inserts introduce impedance mismatch zones along the vibration 

transmission path to impede the propagation of vibration along the drill string.  The design 

and the location of the inserts are optimized to confine the dominant modes of vibration of 

the drill string within the stop bands generated by the periodic arrangement of the inserts 

in order to completely block the propagation of the vibrations.   

A finite element model (FEM) that simulates the operation of this new class of drill 

strings is developed to describe the complex nature of the vibration encountered during 

drilling operations.  The FEM is used to extract the dispersion characteristics of the 

gyroscopic unit cell of the drill string in order to determine its stop and pass band 

characteristics.  Experimental prototype of the passive periodic drill string is built and 

tested to demonstrate the feasibility and effectiveness of the concept of periodic drill string 



 
 

in mitigating undesirable vibrations.  The experimental results are used to validate the 

developed theoretical model in order to develop a scalable design tool that can be used to 

predict the dynamical behavior of this new class of drill strings. 
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Chapter 1                                                                  

Introduction 

1.1 Overview 

Drilling rigs are machines used to bore holes into the earth’s crust in order to 

extract natural resources such as crude oil, natural gas, water and mineral materials.  

Typically, the main components associated with the drilling rigs are hoisting, fluid 

circulation, rotary table and drill string systems.  The hoisting system is used to support 

the drill string while the rotary table system provides the necessary torque to rotate the 

drill string.  The fluid circulation system not only provides the proper cooling and 

lubrication to the drill string but also extracts the waste of rock chips and soil from the 

drill bit to the surface.  Fig. 1.1 displays a schematic drawing of a typical drilling rig 

machine. 

1.1.1 Drill String Major Components 

Drill string system, which is the primary focus of this dissertation, is a slender 

complex structure comprises essentially of two sections, namely drill pipes and 

Bottom-Hole-Assembly (BHA).  The main function of the drill string system is to 

transmit the required torque provided at the surface by the rotary table system to the 

drill bit.  Also the drill string transfers the hydraulic fluid, known as drilling mud, to 

the drill bit.  Depending on the type of drilling applications, the drill string can extend 

several kilometers below the earth surface.  Drill string major components are presented 

in Fig. 1.4. 
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Drill pipes are hollow steel pipes joined together to form along continuous 

structure which constitutes most of the length of the drill string system.  The length of 

this section ranges between 1 to 8 kilometers long.  Therefore, the drill pipes are 

designed to operate in tension.  Typically, the pipes have outside diameter between 9 

to 15 cm and wall thickness of approximately 1 cm. 

The BHA consists of three main components, namely drill bit, drill collars and 

stabilizers.  The drill bit is a cutting mechanism attached at the bottom of the BHA 

which is capable of crushing or shearing rocks.  The drill collars are similar to the drill 

pipes except that they are larger in diameter.  The primary objective of the drill collars 

is to generate the weight necessary to bore into the earth’s crust with sufficient force.  

Such force is called Weight-On-Bit (WOB) which typically ranges from 104 to 106 N 

[1].  Therefore, the BHA is designed to operate mostly in compression with neutral 

point located at 80 to 95% of its total length for a particular WOB which allows for a 

margin of WOB overload [2].  Usually the drill collars outside diameter ranges between 

10 to 25 centimeters and the wall thickness ranges between 6 to 16 centimeters.  The 

BHA has a length of approximately 100 to 300 meters. 

Stabilizers are downhole tools placed above the drill bit and along the drill 

collars in order to hold the drill collars in the center of the borehole and to avoid 

sidetracking.  In addition, the stabilizers keep the drill bit perpendicular to the drilling 

surface thereby optimizing its performance.  The stabilizers blades are usually of the 

same diameter as that of the drill bit and the distance between the stabilizers can range 

from 5 to 50 meters. 
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Fig. 1.1  Schematic drawing of typical oil well drilling rig, California 
Department of Conservation 

A 
Check 

Fig. 1.3 
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1.1.2 Drill String Vibration Modes 

The dynamical behavior of drill strings is extremely complex problem.  The 

complexity stems from the fact that a typical drill string has a diameter-to-length ratio 

of about 10−5, which is of same order of magnitude as an average human hair.  

Furthermore, such long and slender structures are usually subjected to complex 

simultaneous vibrational phenomena which need to be adequately analyzed and 

efficaciously controlled to avoid undesirable destructive potential.  During drilling 

process, the drill strings vibration modes can be categorized as longitudinal, torsional 

and lateral according to vibrations direction.  Each vibration mode has its own 

destructive nature affecting the drill string overall performance.  Fig. 1.2 depicts drill 

string vibration modes. 

Drill string longitudinal (axial) mode creates a vibration motion parallel to its 

axis.  This mode of vibration is induced by a phenomenon known as a bit-bounce. When 

it happens, this instability causes the drill bit to lose contact with rack surface 

intermittently.  Consequently, bit bounce phenomenon strongly influences the drill 

string response to the applied Weight-On-Bit (WOB) and severely damages the drill bit 

cutting structure such as bearings and seals [3]. 

The vibration resistance to rotation results in torsional vibrations which are 

induced by virtue of the stick-slip phenomenon that make the drill bit stops rotating for 

short periods causing the drill string to periodically torque up and spin freely to reach 

speeds as high as ten times the rotary table speed [4].  The nonlinear interaction between 

the frictional torque and the angular velocity at the bit results in extensive bit wear, 

severe shock loading, fatigue and eventually equipment failure. 
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Lateral (transverse) vibration mode is side-to-side motion that generates an 

eccentric rotation of the drill string and the Bottom-Hole-Assembly (BHA) around a 

point other than their geometric center. Such a motion is known as the whirling 

phenomenon.  This vibration mode is widely recognized as the most damaging stress 

form in drilling assemblies and as a leading cause of BHA failure.  Also, transverse 

oscillations of the drill string severely damage the wellbore wall and affect the overall 

drilling operation [5].   

During drilling process, the drill string longitudinal, torsional and lateral 

vibration modes occur usually simultaneously.  The combined effects of the coupled 

drill string modes of vibration dramatically increase the complexity of drill string 

analysis.  A summary of the different modes of vibrations encountered by the drill 

strings and the associated physical mechanisms contributing to such modes is given by 

[6] and Table 1.1 lists these modes and the corresponding mechanisms as reported by 

[7]. 

Table 1.1  Drill string excitation mechanisms [7] 

Physical Mechanism Primary Excitation Secondary Excitation 

Mass Imbalance Lateral Axial-Torsional-Lateral 
Misalignment Lateral Axial 

Three-Cone Bit Axial Torsional-Lateral 
Loose Drill String Axial-Torsional-Lateral  
Rotational Walk Lateral Axial-Torsional 

Asynchronous Whirl Lateral Axial-Torsional 
Drill String Whip Lateral Axial-Torsional 

 
 
 
 
 
 



 

6 
 

 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.2  Drill string vibration modes 
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destructive effects.  These efforts include the mathematical modeling, simulation, 

and/or experimental investigation.  Examples of these efforts include the work of [6-

31]. 

In 1986, [8] presented the first theoretical and experimental investigation of the 

vibration of full-scale drilling rig.  In 1991, [9] modeled the Bottom-Hole-Assembly 

(BHA) to study the nonlinearities due to the interaction between the drill string and the 

outer shell.  [10], presented a finite element model of transverse vibration of drill strings 

under axial loading in 1995.  A linear finite element model has been developed by [11] 

in 2005 to predict the buckling loads and critical rotational speeds of the drill strings.  

In 1996 and 1997, [12] and [13] developed finite element models to study the coupled 

torsional and bending vibration as well as the axial and transverse vibrations of passive 

drill strings.  In 2000 and 2003, their models were extended to simulate the dynamics 

of drill strings with active control capabilities.  Similar attempt has been reported by 

[14] in 2003 to control the nonlinearly coupled torsional and bending vibration of drill 

string.  The effect of interaction with the bore hole has been analyzed theoretically by 

[13] and both theoretically experimentally by [15].  The effect of stick-slip and whirl 

vibrations on the stability and bifurcation of drill strings were studied by [16] using a 

two degrees-of-freedom model.  In 2006 [17] presented an extensive study of the limit 

cycles of torsional vibrations of drill strings subjected to constant input torque.  Also 

the equilibrium points are determined and related stability properties are discussed.  In 

2007, [18] extended their finite element model to study the dynamics of drill string 

system in the presence of stick-slip excitations. 
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Several attempts have been carried out to suppress passively the vibration of 

drill strings.  Distinct among these attempts are the nonlinear energy sink approach of 

[19], the magnetorheological damping method of [20], the adjustable vibration 

absorber of [21] and the anti-stalling technology (AST) and V-stab vibration reduction 

tools of [22]. 

In all the previously mentioned studies, the emphasis has been placed on 

conventional drill strings of uniform cross sections.  No attempt has been made to 

consider radically different designs such as periodic drill strings in spite of the potential 

of this class of drill strings in minimizing the vibration transmission.  It is therefore the 

purpose of this dissertation to introduce the concept of periodic drill strings, and 

demonstrate theoretically and experimentally its unique mechanical filtering 

characteristics.  Particular focus is placed on filtering out the transverse vibrations of 

the periodic drill string. 

1.3 The Concept of Passive Periodic Drill Strings 

The concept of the periodic drill strings can be best understood by considering 

the schematic drawing displayed in Fig. 1.4.  The periodic drill strings in Fig. 1.4 will 

be provided with optimally designed and placed periodic inserts which can be either 

passive or active.  The passive inserts will introduce zones of impedance mismatch 

along the vibration transmission path to impede the propagation through geometrical 

or material discontinuities.  In addition, the design and the location of the inserts can 

be optimized to confine the dominant modes of vibrations of the drill string within the 

stop bands generated by the periodic arrangement of the inserts.   
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It is important to note that the concept and filtering characteristics of periodic 

drill string is particularly suitable for mitigating and blocking the vibration over a wide 

range of drilling depths as shown in Fig. 1.3.  The figure indicates that at shallow 

drilling depth, the drill string dominant natural frequency is usually high and is bounded 

to lie inside the stop band.  However, as the drilling depth becomes deeper, the drill 

string becomes longer and softer, hence is likely to vibrate at higher amplitudes.  If the 

periodic inserts are designed properly, then the corresponding dominant natural 

frequency can still be confined within the stop band.  Thus, the expected severe 

vibrations can be completely blocked.  This is unlike the current conventional drill 

strings, which can be operated effectively at one operating condition only (either speed 

or drilling depth). 

 

 

Fig. 1.3  Vibration mitigation characteristics of conventional & periodic drill 
strings 
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Fig. 1.4  Conventional & Periodic Drill string schematic drawing (Fig. 1.1 - 
section A) 
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1.4 Scope of the Dissertation 

There is no doubt that all major oil companies are always pursuing cutting-edge 

technologies to balance the continuously rising global demand for oil with an equal 

increase in the exploration and production activities.  Such a balance can only be 

achieved through drilling technology that pushes the envelope of the state-of-the-art.  

In this work, I have attempted to present a new class of drill strings that can 

meet such future challenges and enables fast drilling with minimal down time due to 

premature failures because of excessive vibration.  The proposed concept of periodic 

drills strings can be a viable solution to mitigate the catastrophic problems that arise 

from excessive vibrations.  With such a new class of drill strings, the interaction 

between the drill collars and the bore hole can be minimized, the whirling effect can be 

reduced, and the most importantly the effect of the drill bounce can be decreased.   

The objective of this dissertation is to develop the theory governing the 

operation of this new class of drill strings to account for the simultaneous longitudinal, 

torsional and lateral vibrations.  Experimental prototype is built and tested to 

demonstrate the feasibility of the concept of periodic drill string in mitigating 

undesirable vibrations.  The experimental results are used to validate the theoretical 

model in order to develop a scalable design tool that maybe used in real life drilling 

applications to predict the dynamical behavior of this new class of drill strings.  It is 

important to note that the manufacturing of the proposed passive and active periodic 

drill string will require minimal modification of the designs of conventional drill string 

as the periodic inserts can be manufactured as an integral part of each drill pipe section. 
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The aforementioned objectives are achieved by organizing the dissertation in 

five chapters.  Chapter 1 briefly summarizes the literature review and introduces the 

concept of passive periodic drill strings.  In chapter 2, a finite element model of 

conventional drill string is developed and validated by considering four different 

simulations.  Chapter 3 presents the theory of periodic structures as well as the Bloch 

wave propagation theory, which govern the operation of passive periodic drill string.  

In addition, numerical examples of passive drill string are presented and compared with 

the conventional drill string to emphasize the potential and merit of the proposed new 

class of periodic drill string.  In chapter 4, the prediction of finite element model is 

validated against the performance of experimental prototype of both the conventional 

and periodic drill strings.  Chapter 5 summarizes the conclusions of the arrived at 

theoretical and experimental results.  Furthermore, a brief summary of the future 

extension of this dissertation is outlined.  Also, the major contributions of this 

dissertation are presented. 
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1.5 Summary 

This chapter has presented the major components and the modes of vibration of 

the drill string and a brief review of the literature of the underlying physical phenomena 

governing such complex vibration behavior of the drill strings in order to develop 

appropriate means for mitigating the resulting destructive effects.  The concept of 

passive drill string has been briefly introduced.  The significance and the objective of 

the present work have been discussed.   
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Chapter 2                                                                             

Finite Element Modeling of Conventional Drill String 

2.1 Overview 

This chapter presents the development of a finite element model (FEM) of a 

conventional drill string.  The development of the FEM model is guided by the work 

cited in references [10], [11] and [23-25].  The FEM model is a three-dimensional 

model based on Bernoulli-Euler beam theory, which accounts for simultaneous 

longitudinal, lateral, and torsional vibrations.  In addition, the gyroscopic and 

gravitational stiffening effects of the drill string are considered in the FEM model.   

Expressions for the drill string kinetic and strain energies are derived using the 

theory of finite element with appropriate interpolating functions.  The developed 

energy expressions are utilized to determine the drill string element mass, gyroscopic 

and stiffness matrices.  The equation of motion of the drill string is extracted by 

employing the Lagrange dynamics approach.  The resulting equation of motion is 

exercised to predict the drill string modal parameters, band gap characteristics and 

Campbell diagram at different rotational speeds and design parameters.  

Computational algorithm is developed using commercial software package 

such as MATALB® and validation of the performance of the developed FEM model is 

achieved by performing four different numerical simulations.  Furthermore, the transfer 

matrix and the dispersion characteristics of the periodic drill string presented in chapter 

3 are extracted utilizing the developed FEM model in order to validate the predictions 

of the band gap characteristics.   
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2.2 The Finite Element Model 

The dynamics of the drill string are modeled using theory of finite element with 

a three-dimensional beam element based on Bernoulli-Euler beam theory.  As 

displayed in Fig. 2.1(a), the FEM model divides the drill string into N finite beam 

elements. 

2.2.1 Beam Element 

Fig. 2.1(b) describes a three-dimensional beam element extending between two 

nodes.  The bounding nodes connect the element to neighboring elements.  Each node 

has six degrees of freedom defining its motions in the x-y, x-z and y-z planes.  The six 

degrees of freedom consist of three translations (𝑢𝑢, 𝑣𝑣,𝑤𝑤) and three rotations 

 (𝜃𝜃𝑥𝑥,𝜃𝜃𝑦𝑦,𝜃𝜃𝑧𝑧).  The translations degrees of freedom are two transverse displacements in 

the y & z directions and one axial displacement in the x direction while the rotations 

degrees of freedom are two bending rotations about the y & z axes and one torsional 

rotation about the x axis.  The rotations 𝜃𝜃𝑦𝑦 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

 and 𝜃𝜃𝑧𝑧 = −𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

 define the slope of 

deflection line with respect to x axis as implied by the Euler-Bernoulli material 

constraint that enforces the shear strains to vanish.  Accordingly, the nodal deflection 

vector {∆𝑒𝑒(𝑥𝑥)} of the eth element can be expressed as follows:  

 {∆𝑒𝑒(𝑥𝑥)} = �𝑢𝑢   𝑣𝑣   𝑤𝑤   𝜃𝜃𝑥𝑥   𝜃𝜃𝑦𝑦   𝜃𝜃𝑧𝑧�
𝑇𝑇
 (2.1) 

The beam element has constant area moment of inertia I, modulus of elasticity 

E and length le.  The beam element is subject to an axial compressive load P and a 

torque τ.  
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Fig. 2.1  Schematic drawing of finite element drill string, (a) Drill string finite 
element model and (b) Drill string element 

 

2.2.2 Shape Functions 

The displacements field can be expressed using the classical finite element 

cubic interpolating equation. 

 {∆𝑒𝑒(𝑥𝑥)} = [𝑁𝑁]{𝛿𝛿𝑒𝑒} (2.2) 
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where [𝑁𝑁] is the shape function matrix of the three dimensional finite element and {𝛿𝛿𝑒𝑒} 

is the element nodal displacement vector given as 

 {𝛿𝛿𝑒𝑒} = �𝑢𝑢1   𝑣𝑣1   𝑤𝑤1   𝜃𝜃𝑥𝑥1    𝜃𝜃𝑦𝑦1    𝜃𝜃𝑧𝑧1    𝑢𝑢2   𝑣𝑣2   𝑤𝑤2   𝜃𝜃𝑥𝑥2    𝜃𝜃𝑦𝑦2    𝜃𝜃𝑧𝑧2�
𝑇𝑇

 (2.3) 

The translations and rotations deformations of an element can be expressed in 

terms of shape functions respectively as 

 
 �

𝑢𝑢(𝑥𝑥)
𝑣𝑣(𝑥𝑥)
𝑤𝑤(𝑥𝑥)

� =  [𝑁𝑁𝑇𝑇]{𝛿𝛿𝑒𝑒} (2.4) 

 

 �
𝜃𝜃𝑦𝑦(𝑥𝑥)
𝜃𝜃𝑧𝑧(𝑥𝑥)� = [𝑁𝑁𝜃𝜃]{𝛿𝛿𝑒𝑒} 

(2.5) 

 
 {𝜃𝜃𝑥𝑥(𝑥𝑥)} = [𝑁𝑁𝜑𝜑]{𝛿𝛿𝑒𝑒} (2.6) 

where [𝑁𝑁𝑇𝑇], [𝑁𝑁𝜃𝜃] and [𝑁𝑁𝜑𝜑] are the translation (axial and transverse), bending rotations 

and torsional rotation shape function matrices, respectively. 

[𝑁𝑁𝑇𝑇] = 
 

�
𝑁𝑁𝑢𝑢1 0 0 0 0 0 𝑁𝑁𝑢𝑢2 0 0 0 0 0

0 𝑁𝑁𝜕𝜕1 0 0 0 𝑁𝑁𝜕𝜕2 0 𝑁𝑁𝜕𝜕3 0 0 0 𝑁𝑁𝜕𝜕4
0 0 𝑁𝑁𝜕𝜕1 0 −𝑁𝑁𝜕𝜕2 0 0 0 𝑁𝑁𝜕𝜕3 0 −𝑁𝑁𝜕𝜕4 0

� 

 
 
 

(2.7) 

 
[𝑁𝑁𝜃𝜃] = 

 

�
0 𝑁𝑁𝜃𝜃1 0 0 0 𝑁𝑁𝜃𝜃2 0 𝑁𝑁𝜃𝜃3 0 0 0 𝑁𝑁𝜃𝜃4
0 0 −𝑁𝑁𝜃𝜃1 0 𝑁𝑁𝜃𝜃2 0 0 0 −𝑁𝑁𝜃𝜃3 0 𝑁𝑁𝜃𝜃4 0 � 

 
 

(2.8) 

 
[𝑁𝑁𝜑𝜑] = [0 0 0 𝑁𝑁𝜑𝜑1 0 0 0 0 0 𝑁𝑁𝜑𝜑1 0 0] (2.9) 

The expressions of the linear shape functions with element coordinate 𝜉𝜉 =

𝑥𝑥/𝑙𝑙𝑒𝑒 are derived in [23] and [24] which are provided in Table 2.1 for the case without 

shear deformations. 
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Table 2.1  Element linear shape functions 

      𝑵𝑵𝒖𝒖𝟏𝟏 = 𝟏𝟏 − 𝝃𝝃 𝑵𝑵𝒖𝒖𝟏𝟏 = 𝝃𝝃 

      𝑵𝑵𝒗𝒗𝟏𝟏 = 𝟏𝟏 − 𝟑𝟑𝝃𝝃𝟐𝟐 + 𝟐𝟐𝝃𝝃𝟑𝟑 𝑁𝑁𝜕𝜕2 = 𝑙𝑙𝑒𝑒(𝜉𝜉 − 2𝜉𝜉2 + 𝜉𝜉3) 

      𝑵𝑵𝒗𝒗𝟑𝟑 = 𝟑𝟑𝝃𝝃𝟐𝟐 − 𝟐𝟐𝝃𝝃𝟑𝟑 𝑁𝑁𝜕𝜕4 = 𝑙𝑙𝑒𝑒(−𝜉𝜉2 + 𝜉𝜉3) 

      𝑵𝑵𝜽𝜽𝟏𝟏 = 𝟔𝟔
𝒍𝒍𝒆𝒆

(−𝝃𝝃 + 𝝃𝝃𝟐𝟐) 𝑁𝑁𝜃𝜃2 = 1 − 4𝜉𝜉 + 3𝜉𝜉2 

      𝑵𝑵𝜽𝜽𝟑𝟑 = 𝟔𝟔
𝒍𝒍𝒆𝒆

(𝝃𝝃 − 𝝃𝝃𝟐𝟐) 𝑁𝑁𝜃𝜃4 = −2𝜉𝜉 + 3𝜉𝜉2 

      𝑵𝑵𝝋𝝋𝟏𝟏 = 𝟏𝟏 − 𝝃𝝃 𝑁𝑁𝜑𝜑2 = 𝜉𝜉 

 

2.2.3 Element Kinetic Energy 

The kinetic energy of an element due to translation and rotary inertias which 

includes the gyroscopic moment can be expressed as 

 𝐾𝐾𝐾𝐾 =
1
2
� (𝐯𝐯𝑇𝑇𝑚𝑚𝐯𝐯 + 𝛚𝛚𝑇𝑇𝐈𝐈𝛚𝛚)𝑑𝑑𝑥𝑥
𝑙𝑙𝑒𝑒

0
 (2.10) 

where 𝑚𝑚 is the mass per unit length, 𝑙𝑙𝑒𝑒 is the length of the element, 𝐯𝐯 is the velocity 

vector, 𝐈𝐈 is the mass moment of inertia matrix and 𝛚𝛚 is the angular velocity vector 

 𝐯𝐯 = �
�̇�𝑢
�̇�𝑣
�̇�𝑤
�  , 𝐈𝐈 = �

𝐼𝐼𝑝𝑝 0 0
0 𝐼𝐼𝑐𝑐 0
0 0 𝐼𝐼𝑐𝑐

� ,  𝛚𝛚 = �
�̇�𝜃𝑥𝑥 − 𝜃𝜃𝑦𝑦�̇�𝜃𝑧𝑧

�̇�𝜃𝑦𝑦 cos(𝜃𝜃𝑥𝑥) − �̇�𝜃𝑧𝑧 sin(𝜃𝜃𝑥𝑥)
�̇�𝜃𝑧𝑧 cos(𝜃𝜃𝑥𝑥) + �̇�𝜃𝑦𝑦 sin(𝜃𝜃𝑥𝑥)

� 

 

(2.11) 
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In Eq. (2.11), the time derivative (𝑑𝑑/𝑑𝑑𝑑𝑑) is denoted by a superposed dot, 𝐼𝐼𝑐𝑐 is 

cross sectional mass moment of inertia and 𝐼𝐼𝑝𝑝 is polar mass moment of 

inertia �𝐼𝐼𝑝𝑝 = 2𝐼𝐼𝑐𝑐�. 

Eq. (2.10) can be simplified and expressed in a matrix form as 

 𝐾𝐾𝐾𝐾 =
1
2
�δ̇𝑒𝑒�

𝑇𝑇[𝑀𝑀𝑒𝑒]�δ̇𝑒𝑒� + Ω𝑥𝑥�δ̇𝑒𝑒�
𝑇𝑇[𝐺𝐺𝑒𝑒]{δ𝑒𝑒} (2.12) 

where Ω𝑥𝑥 = �̇�𝜃𝑥𝑥 is the angular velocity along the x-axis of the drill string beam element 

and [𝑀𝑀𝑒𝑒] = [𝑀𝑀𝑇𝑇
𝑒𝑒] + [𝑀𝑀𝜃𝜃

𝑒𝑒] + [𝑀𝑀𝜑𝜑
𝑒𝑒 ] is the augmented element mass matrix given by [𝑀𝑀𝑇𝑇

𝑒𝑒] 

as the translational, [𝑀𝑀𝜃𝜃] as the rotary inertia and [𝑀𝑀𝜑𝜑] as torsional mass matrices 

respectively.   

The aforementioned element mass matrices are defined as 

 [𝑀𝑀𝑇𝑇
𝑒𝑒] = � 𝑚𝑚[𝑁𝑁𝑇𝑇]𝑇𝑇[𝑁𝑁𝑇𝑇]

𝑙𝑙𝑒𝑒

0
𝑑𝑑𝑥𝑥 (2.13) 

 [𝑀𝑀𝜃𝜃
𝑒𝑒] = � 𝐼𝐼𝑐𝑐[𝑁𝑁𝜃𝜃]𝑇𝑇[𝑁𝑁𝜃𝜃]

𝑙𝑙𝑒𝑒

0
𝑑𝑑𝑥𝑥 (2.14) 

 [𝑀𝑀𝜑𝜑
𝑒𝑒 ] = � 𝐼𝐼𝑝𝑝[𝑁𝑁𝜑𝜑]𝑇𝑇[𝑁𝑁𝜑𝜑]

𝑙𝑙𝑒𝑒

0
𝑑𝑑𝑥𝑥 (2.15) 

while the element gyroscopic matrix [Ge] is written as 

 [𝐺𝐺𝑒𝑒] = �� 𝐼𝐼𝑝𝑝[𝑁𝑁𝜃𝜃𝑦𝑦]𝑇𝑇[𝑁𝑁𝜃𝜃𝑧𝑧]𝑑𝑑𝑥𝑥
𝑙𝑙𝑒𝑒

0
� − �� 𝐼𝐼𝑝𝑝[𝑁𝑁𝜃𝜃𝑦𝑦]𝑇𝑇[𝑁𝑁𝜃𝜃𝑧𝑧]𝑑𝑑𝑥𝑥

𝑙𝑙𝑒𝑒

0
�
𝑇𝑇

 (2.16) 

where [𝑁𝑁𝜃𝜃𝑦𝑦] and [𝑁𝑁𝜃𝜃𝑧𝑧] are the first and second row of Eq. (2.8) respectively. 

Expressions of the aforementioned element mass and gyroscopic matrices are 

provided in Tables 2.2 - 2.5. 
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Table 2.2  Element translation mass matrix 

 

[𝑀𝑀𝑇𝑇
𝑒𝑒] =

𝑚𝑚𝑙𝑙𝑒𝑒
420

 
 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
140 0 0 0 0 0 70 0 0 0 0 0

0 156 0 0 0 22𝑙𝑙𝑒𝑒 0 54 0 0 0 −13𝑙𝑙𝑒𝑒
0 0 156 0 −22𝑙𝑙𝑒𝑒 0 0 0 54 0 13𝑙𝑙𝑒𝑒 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 −22𝑙𝑙𝑒𝑒 0 4𝑙𝑙𝑒𝑒2 0 0 0 −13𝑙𝑙𝑒𝑒 0 −3𝑙𝑙𝑒𝑒2 0
0 22𝑙𝑙𝑒𝑒 0 0 0 4𝑙𝑙𝑒𝑒2 0 13𝑙𝑙𝑒𝑒 0 0 0 −3𝑙𝑙𝑒𝑒2

70 0 0 0 0 0 140 0 0 0 0 0
0 54 0 0 0 13𝑙𝑙𝑒𝑒 0 156 0 0 0 −22𝑙𝑙𝑒𝑒
0 0 54 0 −13𝑙𝑙𝑒𝑒 0 0 0 156 0 22𝑙𝑙𝑒𝑒 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 13𝑙𝑙𝑒𝑒 0 −3𝑙𝑙𝑒𝑒2 0 0 0 22𝑙𝑙𝑒𝑒 0 4𝑙𝑙𝑒𝑒2 0
0 −13𝑙𝑙𝑒𝑒 0 0 0 −3𝑙𝑙𝑒𝑒2 0 −22𝑙𝑙𝑒𝑒 0 0 0 4𝑙𝑙𝑒𝑒2 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
[𝑀𝑀𝑇𝑇

𝑒𝑒] = [𝑀𝑀𝑇𝑇
𝑒𝑒]𝑇𝑇 

 

Table 2.3  Element rotary inertia mass matrix 

 

[𝑀𝑀𝜃𝜃
𝑒𝑒] =

𝐼𝐼𝑐𝑐
30𝑙𝑙𝑒𝑒

 

 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 0 0 0 0 0 0 0 0 0 0 0
0 36 0 0 0 3𝑙𝑙𝑒𝑒 0 −36 0 0 0 3𝑙𝑙𝑒𝑒
0 0 36 0 −3𝑙𝑙𝑒𝑒 0 0 0 −36 0 −3𝑙𝑙𝑒𝑒 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 −3𝑙𝑙𝑒𝑒 0 4𝑙𝑙𝑒𝑒2 0 0 0 3𝑙𝑙𝑒𝑒 0 −𝑙𝑙𝑒𝑒2 0
0 3𝑙𝑙𝑒𝑒 0 0 0 4𝑙𝑙𝑒𝑒2 0 −3𝑙𝑙𝑒𝑒 0 0 0 −𝑙𝑙𝑒𝑒2
0 0 0 0 0 0 0 0 0 0 0 0
0 −36 0 0 0 −3𝑙𝑙𝑒𝑒 0 36 0 0 0 −3𝑙𝑙𝑒𝑒
0 0 −36 0 3𝑙𝑙𝑒𝑒 0 0 0 36 0 3𝑙𝑙𝑒𝑒 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 −3𝑙𝑙𝑒𝑒 0 −𝑙𝑙𝑒𝑒2 0 0 0 3𝑙𝑙𝑒𝑒 0 4𝑙𝑙𝑒𝑒2 0
0 3𝑙𝑙𝑒𝑒 0 0 0 −𝑙𝑙𝑒𝑒2 0 −3𝑙𝑙𝑒𝑒 0 0 0 4𝑙𝑙𝑒𝑒2 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
[𝑀𝑀𝜃𝜃

𝑒𝑒] = [𝑀𝑀𝜃𝜃
𝑒𝑒]𝑇𝑇 
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Table 2.4  Element torsional mass matrix 

[𝑴𝑴𝝋𝝋
𝒆𝒆 ] =

𝑰𝑰𝒑𝒑𝒍𝒍𝒆𝒆
𝟔𝟔

 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
[𝑀𝑀𝜑𝜑

𝑒𝑒 ] = [𝑀𝑀𝜑𝜑
𝑒𝑒 ]𝑇𝑇 

 

Table 2.5  Element gyroscopic mass matrix 

 

[𝐺𝐺𝑒𝑒] =
𝐼𝐼𝑝𝑝

30𝑙𝑙𝑒𝑒
 

 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 0 0 0 0 0 0 0 0 0 0 0
0 0 −36 0 3𝑙𝑙𝑒𝑒 0 0 0 36 0 3𝑙𝑙𝑒𝑒 0
0 36 0 0 0 3𝑙𝑙𝑒𝑒 0 −36 0 0 0 3𝑙𝑙𝑒𝑒
0 0 0 0 0 0 0 0 0 0 0 0
0 −3𝑙𝑙𝑒𝑒 0 0 0 −4𝑙𝑙𝑒𝑒2 0 3𝑙𝑙𝑒𝑒 0 0 0 𝑙𝑙𝑒𝑒2

0 0 −3𝑙𝑙𝑒𝑒 0 4𝑙𝑙𝑒𝑒2 0 0 0 3𝑙𝑙𝑒𝑒 0 −𝑙𝑙𝑒𝑒2 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 36 0 −3𝑙𝑙𝑒𝑒 0 0 0 −36 0 −3𝑙𝑙𝑒𝑒 0
0 −36 0 0 0 −3𝑙𝑙𝑒𝑒 0 36 0 0 0 −3𝑙𝑙𝑒𝑒
0 0 0 0 0 0 0 0 0 0 0 0
0 −3𝑙𝑙𝑒𝑒 0 0 0 𝑙𝑙𝑒𝑒2 0 3𝑙𝑙𝑒𝑒 0 0 0 −4𝑙𝑙𝑒𝑒2

0 0 −3𝑙𝑙𝑒𝑒 0 −𝑙𝑙𝑒𝑒2 0 0 0 3𝑙𝑙𝑒𝑒 0 4𝑙𝑙𝑒𝑒2 0 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
[𝐺𝐺𝑒𝑒] = −[𝐺𝐺𝑒𝑒]𝑇𝑇 
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2.2.4 Element Strain Energy 

The strain energy of an element is given by  

 𝑈𝑈 =
1
2
� {𝜀𝜀}𝑇𝑇{𝜎𝜎}𝑑𝑑𝑑𝑑
𝑉𝑉

 (2.17) 

where 𝜀𝜀 and 𝜎𝜎 denote the strain and stress respectively. 

The relationship between the stress 𝜎𝜎 and 𝜀𝜀 strain for linearly elastic material is 

defined as 

 {𝜎𝜎} = [𝐾𝐾]{𝜀𝜀} (2.18) 

where 𝐾𝐾 is the modulus of elasticity. 

Substituting Eq. (2.18) into Eq. (2.17) yields 

 𝑈𝑈 =
1
2
� {𝜀𝜀}𝑇𝑇[𝐾𝐾]{𝜀𝜀}𝑑𝑑𝑑𝑑
𝑉𝑉

 (2.19) 

The elastic strain energy due to axial, torsional and bending deformations 

respectively is expressed as 

 𝑈𝑈𝑎𝑎 =
1
2
� 𝐾𝐾𝐸𝐸 �

𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥
�
2

𝑑𝑑𝑥𝑥
𝑙𝑙𝑒𝑒

0
 (2.20) 

 𝑈𝑈𝜑𝜑 =
1
2
� 𝐺𝐺𝐺𝐺 �

𝜕𝜕𝜃𝜃𝑥𝑥
𝜕𝜕𝑥𝑥

�
2

𝑑𝑑𝑥𝑥
𝑙𝑙𝑒𝑒

0
 (2.21) 

 𝑈𝑈𝑏𝑏 =
1
2
� 𝐾𝐾𝐼𝐼𝑦𝑦 �

𝜕𝜕𝜃𝜃𝑦𝑦
𝜕𝜕𝑥𝑥

�
2

𝑑𝑑𝑥𝑥 +
1
2
� 𝐾𝐾𝐼𝐼𝑧𝑧 �

𝜕𝜕𝜃𝜃𝑧𝑧
𝜕𝜕𝑥𝑥

�
2

𝑑𝑑𝑥𝑥
𝑙𝑙𝑒𝑒

0

𝑙𝑙𝑒𝑒

0
 (2.22) 

where 𝐸𝐸 is the cross sectional area, 𝐺𝐺 is the shear modulus, 𝐼𝐼𝑦𝑦 and 𝐼𝐼𝑧𝑧 are the area of 

moment of inertia around the y & z axes and 𝐺𝐺 polar area moment of inertia. 
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Due to cross section symmetry 𝐼𝐼𝑦𝑦 = 𝐼𝐼𝑧𝑧 = 𝐼𝐼, Eq. (2.22) can be simplified as  

 𝑈𝑈𝑏𝑏 =
1
2
� 𝐾𝐾𝐼𝐼 ��

𝜕𝜕𝜃𝜃𝑦𝑦
𝜕𝜕𝑥𝑥

�
2

+ �
𝜕𝜕𝜃𝜃𝑧𝑧
𝜕𝜕𝑥𝑥

�
2

� 𝑑𝑑𝑥𝑥
𝑙𝑙𝑒𝑒

0
 (2.23) 

Also, the geometric stiffening strain energy due to gravitational field is given 

by  

 𝑈𝑈𝑔𝑔 =
1
2
� 𝐹𝐹𝑔𝑔(𝑥𝑥) ��

𝜕𝜕𝑣𝑣
𝜕𝜕𝑥𝑥
�
2

+ �
𝜕𝜕𝑤𝑤
𝜕𝜕𝑥𝑥
�
2

� 𝑑𝑑𝑥𝑥
𝑙𝑙𝑒𝑒

0
 (2.24) 

where 𝐹𝐹𝑔𝑔(𝑥𝑥) is gravitational force acting along the axis of the drill string element.  

Hence, the total element strain energy becomes 

 𝑈𝑈 = 𝑈𝑈𝑎𝑎 + 𝑈𝑈𝜑𝜑 + 𝑈𝑈𝑏𝑏 + 𝑈𝑈𝑔𝑔  

 

𝑈𝑈 =
1
2
� 𝐾𝐾𝐸𝐸 �

𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥
�
2

𝑑𝑑𝑥𝑥
𝑙𝑙𝑒𝑒

0
+

1
2
� 𝐺𝐺𝐺𝐺 �

𝜕𝜕𝜃𝜃𝑥𝑥
𝜕𝜕𝑥𝑥

�
2

𝑑𝑑𝑥𝑥
𝑙𝑙𝑒𝑒

0

+
1
2
� 𝐾𝐾𝐼𝐼 ��

𝜕𝜕𝜃𝜃𝑦𝑦
𝜕𝜕𝑥𝑥

�
2

+ �
𝜕𝜕𝜃𝜃𝑧𝑧
𝜕𝜕𝑥𝑥

�
2

� 𝑑𝑑𝑥𝑥
𝑙𝑙𝑒𝑒

0

+
1
2
� 𝐹𝐹𝑔𝑔(𝑥𝑥) ��

𝜕𝜕𝑣𝑣
𝜕𝜕𝑥𝑥
�
2

+ �
𝜕𝜕𝑤𝑤
𝜕𝜕𝑥𝑥
�
2

� 𝑑𝑑𝑥𝑥
𝑙𝑙𝑒𝑒

0
 

(2.25) 

In a compact matrix form, Eq. (2.25) can be written as 

 𝑈𝑈 =
1
2

{δ𝑒𝑒}𝑇𝑇[𝐾𝐾𝑒𝑒]{δ𝑒𝑒} (2.26) 

where [𝐾𝐾𝑒𝑒] = [𝐾𝐾𝑎𝑎𝑒𝑒] + [𝐾𝐾𝜑𝜑𝑒𝑒] + [𝐾𝐾𝑏𝑏𝑒𝑒] + [𝐾𝐾𝑔𝑔𝑒𝑒] is the augmented element stiffness matrix 

given by [𝐾𝐾𝑎𝑎𝑒𝑒] as the axial, [𝐾𝐾𝜑𝜑𝑒𝑒] as torsional, [𝐾𝐾𝑏𝑏𝑒𝑒] as bending and [𝐾𝐾𝑔𝑔𝑒𝑒] as geometric 

stiffness matrices respectively. 
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The aforementioned element stiffness matrices are defined as 

 [𝐾𝐾𝑎𝑎𝑒𝑒] = � 𝐾𝐾𝐸𝐸
𝜕𝜕[𝑁𝑁𝑢𝑢]𝑇𝑇

𝜕𝜕𝑥𝑥
𝜕𝜕[𝑁𝑁𝑢𝑢]
𝜕𝜕𝑥𝑥

𝑙𝑙𝑒𝑒

0
𝑑𝑑𝑥𝑥 (2.27) 

 [𝐾𝐾𝜑𝜑𝑒𝑒] = � 𝐺𝐺𝐺𝐺
𝜕𝜕[𝑁𝑁𝜑𝜑]𝑇𝑇

𝜕𝜕𝑥𝑥
𝜕𝜕[𝑁𝑁𝜑𝜑]
𝜕𝜕𝑥𝑥

𝑑𝑑𝑥𝑥
𝑙𝑙𝑒𝑒

0
 (2.28) 

 [𝐾𝐾𝑏𝑏𝑒𝑒] = � 𝐾𝐾𝐼𝐼 �
𝜕𝜕�𝑁𝑁𝜃𝜃𝑦𝑦�

𝑇𝑇

𝜕𝜕𝑥𝑥
𝜕𝜕�𝑁𝑁𝜃𝜃𝑦𝑦�
𝜕𝜕𝑥𝑥

𝑙𝑙𝑒𝑒

0
+
𝜕𝜕�𝑁𝑁𝜃𝜃𝑧𝑧�

𝑇𝑇

𝜕𝜕𝑥𝑥
𝜕𝜕�𝑁𝑁𝜃𝜃𝑧𝑧�
𝜕𝜕𝑥𝑥

�𝑑𝑑𝑥𝑥 (2.29) 

 [𝐾𝐾𝑔𝑔𝑒𝑒] = � 𝐹𝐹𝑔𝑔(𝑥𝑥) �
𝜕𝜕[𝑁𝑁𝜕𝜕]𝑇𝑇

𝜕𝜕𝑥𝑥
𝜕𝜕[𝑁𝑁𝜕𝜕]
𝜕𝜕𝑥𝑥

𝑙𝑙𝑒𝑒

0
+
𝜕𝜕[𝑁𝑁𝜕𝜕]𝑇𝑇

𝜕𝜕𝑥𝑥
𝜕𝜕[𝑁𝑁𝜕𝜕]
𝜕𝜕𝑥𝑥

� 𝑑𝑑𝑥𝑥 (2.30) 

where [𝑁𝑁𝑢𝑢], [𝑁𝑁𝜕𝜕] and [𝑁𝑁𝜕𝜕] are the first, second and third row of Eq. (2.7) respectively.   

The neutral point is defined as the point having zero longitudinal force which 

separates the tension (drill pipes) and compression (drill collars) fields of the drill 

string.  Therefore, the gravitational force 𝐹𝐹𝑔𝑔(𝑥𝑥) in Eq. (2.30) is expressed by [11] in the 

tension and compression fields respectively as 

 𝐹𝐹𝑔𝑔𝑡𝑡(𝑥𝑥) = −𝜌𝜌𝜌𝜌𝐸𝐸[𝐿𝐿𝑡𝑡 + (𝑙𝑙𝑒𝑒 − 𝑥𝑥)] (2.31) 

 𝐹𝐹𝑔𝑔𝑐𝑐(𝑥𝑥) = 𝜌𝜌𝜌𝜌𝐸𝐸[𝐿𝐿𝑐𝑐 + 𝑥𝑥] (2.32) 

where 𝜌𝜌 is the density, 𝜌𝜌 is the gravitational acceleration constant, 𝐿𝐿𝑡𝑡 is the sum of 

elements length under tension and 𝐿𝐿𝑐𝑐 is the sum of elements length under compression.  

Fig. 2.2 illustrates the drill string longitudinal force distribution.  

Substituting Eqs. (2.31) and (2.32) into Eq. (2.30), the geometric stiffness 

matrices for elements in the tension and compression fields, respectively can be written 

as 

 



 

25 
 

[𝐾𝐾𝑔𝑔𝑡𝑡
𝑒𝑒 ] = � −𝜌𝜌𝜌𝜌𝐸𝐸[𝐿𝐿𝑡𝑡 + (𝑙𝑙𝑒𝑒 − 𝑥𝑥)] �

𝜕𝜕[𝑁𝑁𝜕𝜕]𝑇𝑇

𝜕𝜕𝑥𝑥
𝜕𝜕[𝑁𝑁𝜕𝜕]
𝜕𝜕𝑥𝑥

𝑙𝑙𝑒𝑒

0
+
𝜕𝜕[𝑁𝑁𝜕𝜕]𝑇𝑇

𝜕𝜕𝑥𝑥
𝜕𝜕[𝑁𝑁𝜕𝜕]
𝜕𝜕𝑥𝑥

� 𝑑𝑑𝑥𝑥 (2.33) 

[𝐾𝐾𝑔𝑔𝑐𝑐
𝑒𝑒 ] = � 𝜌𝜌𝜌𝜌𝐸𝐸[𝐿𝐿𝑐𝑐 + 𝑥𝑥] �

𝜕𝜕[𝑁𝑁𝜕𝜕]𝑇𝑇

𝜕𝜕𝑥𝑥
𝜕𝜕[𝑁𝑁𝜕𝜕]
𝜕𝜕𝑥𝑥

𝑙𝑙𝑒𝑒

0
+
𝜕𝜕[𝑁𝑁𝜕𝜕]𝑇𝑇

𝜕𝜕𝑥𝑥
𝜕𝜕[𝑁𝑁𝜕𝜕]
𝜕𝜕𝑥𝑥

�𝑑𝑑𝑥𝑥 (2.34) 

Expressions of the aforementioned element stiffness matrices are given in 

Tables 2.6 - 2.10. 

Table 2.6  Element axial stiffness matrix 

 

[𝐾𝐾𝑎𝑎𝑒𝑒] =
𝐾𝐾𝐸𝐸
𝑙𝑙𝑒𝑒

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
[𝐾𝐾𝑎𝑎𝑒𝑒] = [𝐾𝐾𝑎𝑎𝑒𝑒]𝑇𝑇 
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Table 2.7  Element torsional stiffness matrix 

 

[𝐾𝐾𝜑𝜑𝑒𝑒] =
𝐺𝐺𝐺𝐺
𝑙𝑙𝑒𝑒

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
[𝐾𝐾𝜑𝜑𝑒𝑒] = [𝐾𝐾𝜑𝜑𝑒𝑒]𝑇𝑇 

 
 

Table 2.8  Element bending stiffness matrix 

 

[𝐾𝐾𝑏𝑏𝑒𝑒] =
𝐾𝐾𝐼𝐼
𝑙𝑙𝑒𝑒3

 

 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 0 0 0 0 0 0 0 0 0 0 0
0 12 0 0 0 6𝑙𝑙𝑒𝑒 0 −12 0 0 0 6𝑙𝑙𝑒𝑒
0 0 12 0 −6𝑙𝑙𝑒𝑒 0 0 0 −12 0 −6𝑙𝑙𝑒𝑒 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 −6𝑙𝑙𝑒𝑒 0 4𝑙𝑙𝑒𝑒2 0 0 0 6𝑙𝑙𝑒𝑒 0 2𝑙𝑙𝑒𝑒2 0
0 6𝑙𝑙𝑒𝑒 0 0 0 4𝑙𝑙𝑒𝑒2 0 −6𝑙𝑙𝑒𝑒 0 0 0 2𝑙𝑙𝑒𝑒2
0 0 0 0 0 0 0 0 0 0 0 0
0 −12 0 0 0 −6𝑙𝑙𝑒𝑒 0 12 0 0 0 −6𝑙𝑙𝑒𝑒
0 0 −12 0 6𝑙𝑙𝑒𝑒 0 0 0 12 0 6𝑙𝑙𝑒𝑒 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 −6𝑙𝑙𝑒𝑒 0 2𝑙𝑙𝑒𝑒2 0 0 0 6𝑙𝑙𝑒𝑒 0 4𝑙𝑙𝑒𝑒2 0
0 6𝑙𝑙𝑒𝑒 0 0 0 2𝑙𝑙𝑒𝑒2 0 −6𝑙𝑙𝑒𝑒 0 0 0 4𝑙𝑙𝑒𝑒2 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
[𝐾𝐾𝑏𝑏𝑒𝑒] = [𝐾𝐾𝑏𝑏𝑒𝑒]𝑇𝑇 
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Table 2.9  Element geometric stiffness matrix for tension field 

 

�𝐾𝐾𝑔𝑔𝑡𝑡
𝑒𝑒 � =

𝜌𝜌𝜌𝜌𝐸𝐸
60

 
 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 0 0 0 0 0 0 0 0 0 0 0
0 36𝑑𝑑1 0 0 0 6𝐿𝐿𝑡𝑡 0 −36𝑑𝑑1 0 0 0 6𝑑𝑑3
0 0 36𝑑𝑑1 0 −6𝐿𝐿𝑡𝑡 0 0 0 −36𝑑𝑑1 0 −6𝑑𝑑3 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 −6𝐿𝐿𝑡𝑡 0 2𝑙𝑙𝑒𝑒𝑑𝑑4 0 0 0 6𝐿𝐿𝑡𝑡 0 −𝑙𝑙𝑒𝑒𝑑𝑑2 0
0 6𝐿𝐿𝑡𝑡 0 0 0 2𝑙𝑙𝑒𝑒𝑑𝑑4 0 −6𝐿𝐿𝑡𝑡 0 0 0 −𝑙𝑙𝑒𝑒𝑑𝑑2
0 0 0 0 0 0 0 0 0 0 0 0
0 −36𝑑𝑑1 0 0 0 −6𝐿𝐿𝑡𝑡 0 36𝑑𝑑1  0 0 0 −6𝑑𝑑3
0 0 −36𝑑𝑑1 0 6𝐿𝐿𝑡𝑡 0 0 0 36𝑑𝑑1 0 6𝑑𝑑3 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 −6𝑑𝑑3 0 −𝑙𝑙𝑒𝑒𝑑𝑑2 0 0 0 6𝑑𝑑3 0 2𝑙𝑙𝑒𝑒𝑑𝑑5 0
0 6𝑑𝑑3 0 0 0 −𝑙𝑙𝑒𝑒𝑑𝑑2 0 −6𝑑𝑑3 0 0 0 2𝑙𝑙𝑒𝑒𝑑𝑑5 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
      𝑑𝑑1 = 𝑑𝑑2/𝑙𝑙𝑒𝑒                                      𝑑𝑑2 = (2𝐿𝐿𝑡𝑡 + 𝑙𝑙𝑒𝑒)                                  𝑑𝑑3 = (𝐿𝐿𝑡𝑡 + 𝑙𝑙𝑒𝑒) 
 
      𝑑𝑑4 = (4𝐿𝐿𝑡𝑡 + 3𝑙𝑙𝑒𝑒)                          𝑑𝑑5 = (4𝐿𝐿𝑡𝑡 + 𝑙𝑙𝑒𝑒) 
 

�𝐾𝐾𝑔𝑔𝑡𝑡
𝑒𝑒 � = �𝐾𝐾𝑔𝑔𝑡𝑡

𝑒𝑒 �
𝑇𝑇

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

28 
 

Table 2.10  Element geometric stiffness matrix for compression field 

 

�𝐾𝐾𝑔𝑔𝑐𝑐
𝑒𝑒 � =

𝜌𝜌𝜌𝜌𝐸𝐸
60

 
 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 0 0 0 0 0 0 0 0 0 0 0
0 36𝑐𝑐1 0 0 0 6𝑐𝑐3 0 −36𝑐𝑐1 0 0 0 6𝐿𝐿𝑐𝑐
0 0 36𝑐𝑐1 0 −6𝑐𝑐3 0 0 0 −36𝑐𝑐1 0 −6𝐿𝐿𝑐𝑐 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 −6𝑐𝑐3 0 2𝑙𝑙𝑒𝑒𝑐𝑐4 0 0 0 6𝑐𝑐3 0 −𝑙𝑙𝑒𝑒𝑐𝑐2 0
0 6𝑐𝑐3 0 0 0 2𝑙𝑙𝑒𝑒𝑐𝑐4 0 −6𝑐𝑐3 0 0 0 −𝑙𝑙𝑒𝑒𝑐𝑐2
0 0 0 0 0 0 0 0 0 0 0 0
0 −36𝑐𝑐1 0 0 0 −6𝑐𝑐3 0 36𝑐𝑐1  0 0 0 −6𝐿𝐿𝑐𝑐
0 0 −36𝑐𝑐1 0 6𝑐𝑐3 0 0 0 36𝑐𝑐1 0 6𝐿𝐿𝑐𝑐 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 −6𝐿𝐿𝑐𝑐 0 −𝑙𝑙𝑒𝑒𝑐𝑐2 0 0 0 6𝐿𝐿𝑐𝑐 0 2𝑙𝑙𝑒𝑒𝑐𝑐5 0
0 6𝐿𝐿𝑐𝑐 0 0 0 −𝑙𝑙𝑒𝑒𝑐𝑐2 0 −6𝐿𝐿𝑐𝑐 0 0 0 2𝑙𝑙𝑒𝑒𝑐𝑐5 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
        𝑐𝑐1 = 𝑐𝑐2/𝑙𝑙𝑒𝑒                                𝑐𝑐2 = (2𝐿𝐿𝑐𝑐 + 𝑙𝑙𝑒𝑒)                                        𝑐𝑐3 = (𝐿𝐿𝑐𝑐 + 𝑙𝑙𝑒𝑒) 
 
        𝑐𝑐4 = (4𝐿𝐿𝑐𝑐 + 𝑙𝑙𝑒𝑒)                      𝑐𝑐5 = (4𝐿𝐿𝑐𝑐 + 3𝑙𝑙𝑒𝑒) 
 

�𝐾𝐾𝑔𝑔𝑐𝑐
𝑒𝑒 � = �𝐾𝐾𝑔𝑔𝑐𝑐

𝑒𝑒 �
𝑇𝑇
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Fig. 2.2  Drill string longitudinal force distribution 
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2.2.5 Element Equation of Motion 

Let 𝑳𝑳 denotes the Lagrangian of the drill string beam element, then 𝑳𝑳 is defined 

as 

 𝑳𝑳 = 𝐾𝐾𝐾𝐾 − 𝑈𝑈 (2.35) 

The equation of motion of the drill string beam element is given by 

 
𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝜕𝜕𝑳𝑳
𝜕𝜕{δ̇𝑒𝑒}

� −
𝜕𝜕𝑳𝑳
𝜕𝜕{δ𝑒𝑒} = {𝑄𝑄𝑒𝑒} (2.36) 

where {𝑄𝑄𝑒𝑒} is the vector of generalized forces acting on the beam element such as 

external loads and moments. 

Substituting Eqs. (2.12), (2.26) and (2.35) into Eq. (2.36), the element Eq. of 

motion becomes 

 [𝑀𝑀𝑒𝑒]{δ̈𝑒𝑒} + Ω𝑥𝑥[𝐺𝐺𝑒𝑒]{δ̇𝑒𝑒} + [𝐾𝐾𝑒𝑒]{δ𝑒𝑒} = {𝑄𝑄𝑒𝑒} (2.37) 

2.2.6 Element Matrices Assembly 

Assembly of the mass, gyroscopic and stiffness matrices of the individual beam 

elements aims at forming the global matrices of the entire undamped drill string.  

During such a process, the compatibility of the deflections of the neighboring elements 

at the common nodes connecting them must be ensured.  In addition, the equilibrium 

conditions of the forces and moments acting at the nodes must be guaranteed. 

Let the vector of nodal deflections of the entire drill string be  

{𝛿𝛿} = �𝑢𝑢1  𝑣𝑣1  𝑤𝑤1  𝜃𝜃𝑥𝑥1  𝜃𝜃𝑦𝑦1   𝜃𝜃𝑧𝑧1   𝑢𝑢2  𝑣𝑣2  𝑤𝑤2  𝜃𝜃𝑥𝑥2   𝜃𝜃𝑦𝑦2   𝜃𝜃𝑧𝑧2 . . .𝑢𝑢𝑁𝑁    𝑣𝑣𝑁𝑁   𝑤𝑤𝑁𝑁   𝜃𝜃𝑥𝑥𝑁𝑁    𝜃𝜃𝑦𝑦𝑁𝑁    𝜃𝜃𝑧𝑧𝑁𝑁  �𝑇𝑇 

with N denoting number of nodal points.  Then, the compatibility and equilibrium 

conditions require that 
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 �[𝑀𝑀𝑒𝑒]{δ̈𝑒𝑒}
𝑛𝑛

𝑒𝑒=1

+ �Ω𝑥𝑥[𝐺𝐺𝑒𝑒]{δ̇𝑒𝑒}
𝑛𝑛

𝑒𝑒=1

+ �[𝐾𝐾𝑒𝑒]{δ𝑒𝑒}
𝑛𝑛

𝑒𝑒=1

= �{𝑄𝑄𝑒𝑒}
𝑛𝑛

𝑒𝑒=1

 (2.38) 

Thus, the global drill string system equation of motion can be expressed as  

 [𝑀𝑀]{�̈�𝛿} + Ω𝑥𝑥[𝐺𝐺]{�̇�𝛿} + [𝐾𝐾]{𝛿𝛿} = {𝑄𝑄} (2.39) 

where 𝑛𝑛 is the number of elements and {𝑄𝑄} is the vector of global forces and moments 

acting on the drill string.  Also [𝑀𝑀], [𝐺𝐺] and [𝐾𝐾] are the global mass, gyroscopic and 

stiffness matrices of the drill string respectively.  One should note that the global mass 

[𝑀𝑀] and stiffness [𝐾𝐾] matrices are symmetric while the gyroscopic [𝐺𝐺] matrix is a skew 

symmetric.  The assembled matrices are given by 
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 (2.40) 

 
 
 
 
 

  

 

 
 
 
 
 (2.41) 

 
 
 
 
 

  

 

 
 
 
 
 (2.42) 

 
 

 
 
 
 

 
 
 
 

 

2.2.7 Boundary Conditions 

The final equation of motion of the rotating drill string is obtained by imposing 

the boundary conditions on Eq. (2.39).  This is achieved by eliminating the columns 

and rows of the mass, gyroscopic and stiffness matrices corresponding to any restrained 

degree of freedom [24].  The resulting equation of motion becomes 

 [𝑀𝑀𝑜𝑜]{𝛿𝛿�̈�𝑜} + Ω𝑥𝑥[𝐺𝐺𝑜𝑜]{𝛿𝛿�̇�𝑜} + [𝐾𝐾𝑜𝑜]{𝛿𝛿𝑜𝑜} = {𝑄𝑄𝑜𝑜} (2.43) 

[𝑀𝑀] = 

[𝑀𝑀𝑒𝑒1] 

[𝑀𝑀𝑒𝑒2] 

[𝑀𝑀𝑒𝑒𝑁𝑁] 

⋱ 

0 

0 

[𝐺𝐺] = 

[𝐺𝐺𝑒𝑒1] 

[𝐺𝐺𝑒𝑒2] 

[𝐺𝐺𝑒𝑒𝑁𝑁] 

⋱ 

0 

0 

[𝐾𝐾] = 

[𝐾𝐾𝑒𝑒1] 

[𝐾𝐾𝑒𝑒2] 

[𝐾𝐾𝑒𝑒𝑁𝑁] 

⋱ 

0 

0 
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where [𝑀𝑀𝑜𝑜], [𝐺𝐺𝑜𝑜] and [𝐾𝐾𝑜𝑜] are the overall mass, gyroscopic and stiffness matrices.  In 

addition, {𝛿𝛿𝑜𝑜} and {𝑄𝑄𝑜𝑜} denote the overall deflection vector of unrestrained degrees of 

freedom and the corresponding loads and moments vector. 

2.3 Model Verification 

Based on the presented FEM formulations, a computational algorithm is 

developed using commercial software package such as MATALB®.  Fig. 2.3 describes 

the flow chart of the developed MATALB® program. 

2.3.1 Model Analysis 

Let {Χ} and {𝐹𝐹} denote the state and force vectors, respectively and are defined 

as 

 {Χ} = �
{𝛿𝛿𝑜𝑜}
{𝛿𝛿�̇�𝑜}�       &      {𝐹𝐹} = �

{ 0 }
{𝑄𝑄𝑜𝑜}� (2.44) 

Then, Eq. (2.43) can be represented in a state space [25] form such as 

 [𝑀𝑀∗]{Χ̇} + [𝐺𝐺∗]{Χ} = {𝐹𝐹} (2.45) 

where [𝑀𝑀∗] and [𝐺𝐺∗] are symmetric coefficient matrices given by 

 [𝑀𝑀∗] = � 
[ 𝐾𝐾𝑜𝑜]   [  0  ] 
[  0  ]  [ 𝑀𝑀𝑜𝑜]  �      &    [𝐺𝐺∗] = � 

[  0  ]   −[ 𝐾𝐾 𝑜𝑜]
[ 𝐾𝐾𝑜𝑜] Ω𝑥𝑥[ 𝐺𝐺𝑜𝑜 ]  � (2.46) 

Matrices [𝑀𝑀𝑜𝑜], [𝐺𝐺𝑜𝑜] and [𝐾𝐾𝑜𝑜] have dimensions (6𝑛𝑛 × 6𝑛𝑛) while matrices [𝑀𝑀∗] and [𝐺𝐺∗] 

have dimensions (12𝑛𝑛 × 12𝑛𝑛) where 𝑛𝑛 is the number of nodes. 

The vibration characteristics of the drill string, namely, the natural frequencies 

and mode shapes can be obtained by reducing Eq. (2.45) to its corresponding 
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eigenvalue problem for the case of free vibrations with {𝐹𝐹} = 0.  Thus, Eq. (2.45) 

becomes 

 [𝐷𝐷]{ψ} = 𝜔𝜔𝑛𝑛2{ψ} (2.47) 

where 𝜔𝜔𝑛𝑛 and {ψ} are the drill string eigenvalues (natural frequencies) and the 

eigenvectors (mode shapes), respectively.  The matrix [𝐷𝐷] is given by 

 [𝐷𝐷] = �[𝑀𝑀∗]−1[𝐾𝐾∗]� (2.48) 

where [𝐾𝐾∗] = [𝐺𝐺∗]𝑇𝑇[𝑀𝑀∗]−1[𝐺𝐺∗] is a symmetric matrix [39]. 

For a non-rotating drill string (Ω𝑥𝑥 = 0), Eq. (2.43) reduces to its corresponding 

standard eigenvalue problem for the case of free vibrations with {𝑄𝑄𝑜𝑜} = 0 as 

 [𝐷𝐷�]{ψ} = 𝜔𝜔𝑛𝑛2{ψ} (2.49) 

where [𝐷𝐷�] is given by 

 [𝐷𝐷�] = [𝑀𝑀𝑜𝑜]−1[𝐾𝐾𝑜𝑜] (2.50) 
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Fig. 2.3  MATALB® program flow chart 
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2.3.2 Numerical Simulations 

To examine the capabilities of the developed computational algorithm on 

performing modal analysis of 3D-beam type structures, four numerical simulations are 

considered.  

2.3.2.1 Simulation (A) 

The effect of number of elements on the natural frequencies of a cantilever 

beam is investigated in this simulation.  The cantilever beam example schematic 

drawing and specifications are displayed in Figure 2.4 and Table 2.11 respectively.   

Table 2.11  Cantilever beam specifications 

Geometric Properties Value 

Beam length, 𝑳𝑳 1492  mm 
Beam Diameter, 𝑫𝑫 6.35   mm 

Material Properties  

Mass density, 𝝆𝝆 8000  kg/m3 
Modulus of Elasticity, 𝑬𝑬 193    GPa 

 

Fig. 2.4  Schematic drawing of cantilever beam 

 

𝐿𝐿 
 

𝑥𝑥 
 

𝑦𝑦 
 

𝑥𝑥 
 

𝛳𝛳𝜕𝜕 
 

𝑤𝑤 
 

𝐷𝐷 
 



 

37 
 

The cantilever beam is discretized into “n” number of elements where “n” is 

varied between 1 and 14.  Each element has two degrees of freedom at each node which 

comprises of a transverse displacement (𝑤𝑤) in the y-direction and a bending rotation 

(𝜃𝜃𝜕𝜕) about the y-axis.  The beam model natural frequencies are determined using the 

developed MATALB® program.  The obtained results are compared with the exact 

solution outlined, for example, in [26].  A summary of the obtained results is provided 

in Table 2.12.   

In the exact solution, the natural frequencies are given by  

 𝜔𝜔𝑛𝑛 = 𝜇𝜇2�𝐾𝐾𝐼𝐼/𝑚𝑚𝐿𝐿4 (2.51) 

where  𝜇𝜇 = 1.875, 4.694, 7.855 and 10.996, for  𝑛𝑛 = 1 𝑑𝑑𝑡𝑡 4.  For 𝑛𝑛 > 4,   

𝜇𝜇 = (2𝑛𝑛 − 1)𝜋𝜋/2. 

Table 2.12 shows that increasing the number of finite elements, used to model 

the beam dynamics makes the natural frequencies of the models converge 

monotonically to the exact solutions.  In addition, the predictions of the FEM are 

always higher than the exact solutions.  However, the difference between the predicted 

and the exact frequencies decreases as the number of elements increases.  Such a 

difference is relatively large for higher order modes and is much smaller for the low 

order modes.  These statements are emphasized by considering the plots shown in 

Figure 2.5. 

It is also evident that if one is to accurately predict the first mode only, then one 

finite beam element is more than adequate.  Hence, it is essential to use the lowest order 

of FEM, which can accurately predict the beam dynamics over the frequency range of 
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interest.  Higher order models will unnecessarily complicate the design of the 

appropriate controllers.   

Table 2.12  Effect of number of elements on natural frequencies (Hz) 

Mode 
Infinite 

(Exact) 

Number of Elements 

14 12 10 8 6 4 2 1 

1 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.97 

2 12.28 12.28 12.28 12.28 12.28 12.28 12.29 12.38 19.40 

3 34.39 34.39 34.39 34.39 34.40 34.44 34.65 41.88  

4 67.38 67.39 67.40 67.44 67.52 67.81 68.35 121.54  

5 111.38 111.44 111.51 111.65 112.01 113.04 127.12   

6 166.38 166.60 166.80 167.25 168.33 169.12 204.14   

7 232.39 232.99 233.52 234.64 236.94 260.76 323.60   

8 309.39 310.82 311.99 314.33 314.75 358.12 530.73   

9 397.39 400.37 402.66 406.39 442.48 489.32    

10 496.40 502.04 505.94 505.15 561.18 661.78    
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Fig. 2.5  Effect of number of elements on convergence of natural frequencies 

2.3.2.2 Simulation (B) 

The effect of gravity load on the natural frequencies of a suspended beam is 

studied in this simulation.  The example of free vibration characteristics of vertically 

hanging uniform beam under the influence of gravity in [27] is adopted.  The numerical 

data of the beam is provided in Table 2.13.  The hanging cantilever beam is discretized 

with 20 elements of equal length.  Each element has two degrees of freedom at each 

node, which comprises of a transverse displacement (𝑤𝑤) in the y-direction and a 

bending rotation (𝜃𝜃𝜕𝜕) about the y-axis.  Figure 2.6 is a schematic drawing of the 

vertically hanging cantilever beam.  The first ten bending natural frequencies of the 

beam are computed using the developed algorithm and compared to the results of [27] 

in Table 2.14. 
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Table 2.13  Hanging cantilever beam specifications [27] 

Geometric Properties Value 
Beam length, 𝑳𝑳 2.9      m 
Beam width, 𝒃𝒃 0.1      m 
Beam thickness, 𝒕𝒕 0.001  m 
Material Properties  
Mass density, 𝝆𝝆 8000   kg/m3 

Poisson’s ratio, 𝝂𝝂 0.3 
Young’s Modulus, 𝑬𝑬 175.6  GPa 
Number of Elements 20 

 

Table 2.14  Bending natural frequencies of hanging cantilever beam (Hz) 

 [27] Alsaffar 

Mode  Exact 
(w/o gravity) 

FEM 
(w. gravity) 

FEM 
(w/o gravity) 

FEM 
(w. gravity) 

1 0.09 0.37 0.089 0.373 
2 0.56 1.02 0.564 1.020 
3 1.58 2.14 1.579 2.136 
4 3.09 3.73 3.095 3.727 
5 5.12 5.80 5.116 5.796 
6 7.64 8.35 7.644 8.355 
7 10.67 11.41 10.681 11.413 
8 14.21 14.97 14.227 14.975 
9 18.25 19.05 18.289 19.047 
10 22.80 23.64 22.870 23.637 
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Fig. 2.6  Schematic drawing of vertically hanging cantilever beam 

2.3.2.3 Simulation (C) 

In this demonstration, the influence of the neutral point location on the natural 

frequencies of the drill string is evaluated.  The specifications of the drill string in [11] 

are selected and provided in Table 2.15.  The boundary conditions of the drill string are 

assumed to be clamped (𝑢𝑢1 = 𝑣𝑣1 = 𝑤𝑤1 = 𝜃𝜃𝑥𝑥1 = 𝜃𝜃𝑦𝑦1 = 𝜃𝜃𝑧𝑧1 = 0) at the top to the rotary 

table and pinned (𝑣𝑣21 = 𝑤𝑤21 = 𝑣𝑣25 = 𝑤𝑤25 = 0) at the stabilizers locations (1000 and 

1200 m).  The drill string is divided into 24 elements of equal length.  Figure 2.7 

displays a schematic drawing of the drill string. 

The axial, torsional and bending natural frequencies of the drill string are 

computed by the developed MATALB® program for the neutral point location at 800, 

1000 and 1200 meters.  Table 2.16 presents the comparison between the natural 

𝑦𝑦 
 

𝑥𝑥 
 

𝛳𝛳𝜕𝜕 
 𝑤𝑤 

 
𝒈𝒈 
 

𝐿𝐿 
 

𝑏𝑏 
 

𝑑𝑑 
 



 

42 
 

frequencies obtained by the developed algorithm and [11] for the case of non-rotating 

drill string. 

Table 2.15  Drill string specifications [11] 

Drill Pipe Geometric Properties Value 
Drill Pipe Length, 𝑳𝑳𝒑𝒑 1000    m 
Drill Pipe Outer Diameter, 𝑫𝑫𝒐𝒐 0.127   m 
Drill Pipe Inner Diameter, 𝑫𝑫𝒊𝒊 0.095   m 
Drill Collar Geometric Properties  
Drill Collar Length, 𝑳𝑳𝒄𝒄 200      m 
Drill Collar Outer Diameter, 𝑫𝑫𝒐𝒐 0.2286 m 
Drill Collar Inner Diameter, 𝑫𝑫𝒊𝒊 0.095   m 
Material Properties  

Mass density, 𝝆𝝆 7850    kg/m3 
Modulus of Elasticity, 𝑬𝑬 210      GPa 
Shear Modulus, 𝑮𝑮 76.923 GPa 
Number of elements 24 
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Fig. 2.7  Schematic drawing of full scale drill string 
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Table 2.16  Natural frequencies of drill string (rad/sec) 

Mode 
[11] Alsaffar 

Neutral Point Location 
800 m 1000 m 1200 m 800 m 1000 m 1200 m 

Lateral 0.1534 0.1694 0.2415 0.15338 0.16938 0.24154 
Lateral 0.2955 0.3488 0.4230 0.29550 0.34884 0.42298 
Lateral 0.3863 0.4272 0.4867 0.38634 0.42724 0.48666 
Lateral 0.5344 0.5327 0.7310 0.53441 0.53265 0.73096 
Lateral 0.6825 0.7134 0.9422 0.68247 0.71341 0.94216 

Torsional 1.7050 1.7050 1.7050 1.70504 1.70504 1.70504 
Torsional 10.1197 10.1197 10.1197 10.11974 10.11974 10.11974 
Torsional 19.8168 19.8168 19.8168 19.81679 19.81679 19.81679 
Torsional 29.7083 29.7083 29.7083 29.70832 29.70832 29.70832 
Torsional 39.6990 39.6990 39.6990 39.69902 39.69902 39.69902 

Axial 4.0076 4.0076 4.0076 4.00764 4.00764 4.00764 
Axial 17.2617 17.2617 17.2617 17.26171 17.26171 17.26171 
Axial 32.8832 32.8832 32.8832 32.88319 32.88319 32.88319 
Axial 48.9437 48.9437 48.9437 48.94365 48.94365 48.94365 
Axial 65.0280 65.0280 65.0280 65.02805 65.02805 65.02805 

 

2.3.2.4 Simulation (D) 

The gyroscopic effect on rotating shaft natural frequencies is demonstrated in 

this simulation.  ANSYS® (Mechanical APDL 15.0, example 8.5) simulation of simply 

supported shaft spinning at 30,000 rad/sec is adopted.  Table 2.17 shows the shaft 

material and geometric properties.  The shaft is modeled with beam element having 

four degrees of freedom at each node.  The four degrees of freedom consist of two 

translations (𝑣𝑣,𝑤𝑤) and two rotations (𝜃𝜃𝑦𝑦,𝜃𝜃𝑧𝑧).  The translations degrees of freedom are 

two transverse displacements in the y & z directions while the rotations degrees of 

freedom are two bending rotations about the y & z axes as shown in Figure 2.8.  The 

shaft is discretized with eight elements of equal length.  The boundary conditions of 

the shaft are assumed to be pinned at both ends (𝑣𝑣1 = 𝑤𝑤1 = 𝑣𝑣9 = 𝑤𝑤9 = 0).  Using the 
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developed MATALB® program the bending natural frequencies of the shaft are 

determined for the case of non-rotating (Ω𝑥𝑥 = 0) and rotating (Ω𝑥𝑥 = 30,000 𝑟𝑟𝑟𝑟𝑑𝑑/𝑠𝑠𝑠𝑠𝑐𝑐) 

shaft.  The obtained bending natural frequencies are compared to results in Table 2.18.  

In addition, a Campbell diagram is generated for shaft rotational speeds ranging from 

0 to 30,000 rad/sec as shown in Figure 2.9. 

Table 2.17  Simply supported shaft specifications [ANSYS® - Example 8.5] 

Geometric Properties Value 
Shaft length, 𝑳𝑳 8         m 
Shaft Diameter, 𝑫𝑫 0.2      m 
Material Properties  
Mass density, 𝝆𝝆 7800   kg/m3 

Poisson’s ratio, 𝝂𝝂 0.3 
Young’s Modulus, 𝑬𝑬 200     GPa 
Number of Elements 8 

 

Fig. 2.8  Simply supported shaft (ANSYS® - Example 8.5) 
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Table 2.18  Shaft bending natural frequencies (Hz) 

Mode 
𝛀𝛀𝒙𝒙 = 𝟎𝟎  rad/sec 𝛀𝛀𝒙𝒙 = 𝟑𝟑𝟎𝟎,𝟎𝟎𝟎𝟎𝟎𝟎  rad/sec 

ANSYS® 
APDL 

ANSYS® 
Workbench Alsaffar ANSYS® 

APDL 
ANSYS® 

Workbench Alsaffar 

1 BW 6.207 6.206 6.213 4.639 4.637  4.639 
FW 6.207 6.206 6.213 8.305 8.304  8.319 

2 BW 24.750 24.783 24.844 18.547 18.549 18.557 
FW 24.750 24.783 24.844 33.027 33.112 33.26 

3 BW 55.461 55.712 55.902 41.735 41.800 41.778 
FW 55.461 55.712 55.902 73.701 74.225 74.447 

 
 

 

Fig. 2.9  Campbell diagram of simply supported rotating shaft 
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2.4 Summary 

This chapter has presented the development of finite element model of 

conventional drill string based on Bernoulli-Euler beam theory.  Torsional, lateral and 

longitudinal vibrations along with the gyroscopic and gravitational effects are 

considered in the developed model.  The developed finite element formulations are 

integrated into a computational algorithm to obtain the drill string vibration 

characteristics.  The validation of the generated MATALB® routine is achieved by 

performing four various numerical demonstrations. 
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Chapter 3                                                                           

Passive Periodic Drill String 

3.1 Overview 

Periodic structures, whether passive or active, are structures that consist of 

identical substructures, or cells, connected in an identical manner. The periodicity can 

be introduced either by geometrical or material discontinuities as shown in Fig. 3.1.  

Because of such periodicity, these periodic structures exhibit unique dynamic 

characteristics stemming from their ability of acting as mechanical filters for wave 

propagation.  As a result, waves propagate along the periodic structures only within 

specific frequency bands called the ‘‘Pass Bands’’, while these waves are completely 

blocked within other frequency bands called the ‘‘Stop Bands”.  With such unique 

filtering characteristics, it would be possible to passively or actively control the wave 

propagation both in spectral and spatial domains in an attempt to stop or confine the 

propagation of undesirable external disturbances.   

The development of periodic structure theory was originally intended for solid 

state applications [28] and extended, in the early 1970s, to the design of mechanical 

structures [29] and [30].  Since then, the theory has been applied to a wide variety of 

structures such as discrete spring-mass systems [31], continuous periodic beams [29], 

[32] and [33], stiffened plates [34], [35] and [36], ribbed shells [37] and space 

structures. 

In this chapter, the theory of periodic structures is presented and applied to the 

conventional drill string with passive periodic inserts in an attempt to passively 
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generate and control the zones of stop bands.  Numerical examples of passive periodic 

drill string are provided and compared with conventional drill string in order to 

emphasize the potential and merits of the proposed approach.   

In addition, the stop and pass bands characteristics of gyroscopic periodic drill 

string are determined by developing a novel approach which is compatible with 

gyroscopic systems while maintain the concept of Bloch wave propagation in periodic 

structures.  The dispersion curves of the gyroscopic periodic drill string are obtained 

for different rotational speeds and compared with non-rotating periodic drill string in 

an attempt to quantify the effect of the gyroscopic forces on the band gap 

characteristics.  Numerical simulations are provided and compared with Campbell 

diagram as well as with structural frequency responses generated by the theory of finite 

element presented in chapter two.  

 

Fig. 3.1  Types of passive periodic structures, (a) Geometrical discontinuity and 
(b) Material discontinuity 

(b) 

(a) 

Material “a” Material “b” Cell 

Cell Geometry “a” Geometry “b” 
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3.2 Modeling of Non-Rotating Passive Periodic Drill String 

3.2.1 Overview 

The dynamics of non-rotating passive periodic drill string are determined using 

the transfer matrix method as described by [38].  The methodologies for determining 

the pass and stop bands, the natural frequencies, the mode shapes and the frequency 

response of the periodic drill string are introduced.  Illustrating example is given and 

compared with the theory of finite element presented in chapter two.   

3.2.2 Transfer Matrix Method 

The drill pipes section of the proposed periodic drill string shown in Fig. 1.4 is 

divided into identical periodic cells.  Fig. 3.2 shows the dynamics of two adjacent 

periodic cells.  For a given cell 𝑘𝑘, the vector {𝛿𝛿𝑒𝑒} defines the deflection vector 

described in Eq. (2.3) and the vector {𝐹𝐹𝑒𝑒} defines the force vector with subscripts 𝑑𝑑𝑘𝑘 

and 𝑏𝑏𝑘𝑘 denoting the top and bottom sides of the 𝑘𝑘𝑡𝑡ℎ cell respectively.    

For a non-rotating drill string (Ω𝑥𝑥 = 0), the dynamics of the 𝑘𝑘𝑡𝑡ℎ cell are 

determined from the finite element expression [38]: 

 [𝑀𝑀𝑒𝑒]{�̈�𝛿𝑒𝑒}𝑘𝑘 + [𝐾𝐾𝑒𝑒]{𝛿𝛿𝑒𝑒}𝑘𝑘 = {𝐹𝐹𝑒𝑒}𝑘𝑘 (3.1) 

or,  

�
[𝑀𝑀𝑡𝑡𝑡𝑡

𝑒𝑒 ] [𝑀𝑀𝑡𝑡𝑏𝑏
𝑒𝑒 ]

[𝑀𝑀𝑏𝑏𝑡𝑡
𝑒𝑒 ] [𝑀𝑀𝑏𝑏𝑏𝑏

𝑒𝑒 ]� �
 {�̈�𝛿𝑒𝑒}𝑡𝑡
 {�̈�𝛿𝑒𝑒}𝑏𝑏

�
𝑘𝑘

+ �
[𝐾𝐾𝑡𝑡𝑡𝑡𝑒𝑒 ] [𝐾𝐾𝑡𝑡𝑏𝑏𝑒𝑒 ]
[𝐾𝐾𝑏𝑏𝑡𝑡𝑒𝑒 ] [𝐾𝐾𝑏𝑏𝑏𝑏𝑒𝑒 ]� �

 {𝛿𝛿𝑒𝑒}𝑡𝑡
 {𝛿𝛿𝑒𝑒}𝑏𝑏

�
𝑘𝑘

= �  {𝐹𝐹𝑒𝑒}𝑡𝑡
  {𝐹𝐹𝑒𝑒}𝑏𝑏

�
𝑘𝑘

 (3.2) 

where �𝑀𝑀𝑖𝑖𝑖𝑖
𝑒𝑒 �

𝑐𝑐
 and �𝐾𝐾𝑖𝑖𝑖𝑖𝑒𝑒 �

𝑐𝑐
 are the cell’s mass and stiffness matrices that can be 

appropriately assembled from the augmented element mass and stiffness matrices 

derived in Eqs. (2.12) and (2.26) respectively.  Also, {𝛿𝛿𝑒𝑒}𝑘𝑘 defines the cell’s deflection 
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vector with {𝛿𝛿𝑒𝑒}𝑘𝑘 = { {𝛿𝛿𝑒𝑒}𝑡𝑡    {𝛿𝛿𝑒𝑒}𝑏𝑏}𝑘𝑘
𝑇𝑇 while {𝐹𝐹𝑒𝑒}𝑘𝑘 defines the cell’s force vector 

with{𝐹𝐹𝑒𝑒}𝑘𝑘 = { {𝐹𝐹𝑒𝑒}𝑡𝑡    {𝐹𝐹𝑒𝑒}𝑏𝑏}𝑘𝑘
𝑇𝑇. 

For a sinusoidal excitation at a frequency 𝜔𝜔, Eq. (3.2) can be written as 

�
[𝐾𝐾𝑡𝑡𝑡𝑡𝑒𝑒 ] − 𝜔𝜔2[𝑀𝑀𝑡𝑡𝑡𝑡

𝑒𝑒 ] [𝐾𝐾𝑡𝑡𝑏𝑏𝑒𝑒 ] − 𝜔𝜔2[𝑀𝑀𝑡𝑡𝑏𝑏
𝑒𝑒 ]

[𝐾𝐾𝑏𝑏𝑡𝑡𝑒𝑒 ] − 𝜔𝜔2[𝑀𝑀𝑏𝑏𝑡𝑡
𝑒𝑒 ] [𝐾𝐾𝑏𝑏𝑏𝑏𝑒𝑒 ] − 𝜔𝜔2[𝑀𝑀𝑏𝑏𝑏𝑏

𝑒𝑒 ]� �
 {𝛿𝛿𝑒𝑒}𝑡𝑡
 {𝛿𝛿𝑒𝑒}𝑏𝑏

�
𝑘𝑘

= �  {𝐹𝐹𝑒𝑒}𝑡𝑡
  {𝐹𝐹𝑒𝑒}𝑏𝑏

�
𝑘𝑘

 (3.3) 

or, 

�
�𝐾𝐾𝑑𝑑𝑡𝑡𝑡𝑡� �𝐾𝐾𝑑𝑑𝑡𝑡𝑡𝑡�
�𝐾𝐾𝑑𝑑𝑡𝑡𝑡𝑡� �𝐾𝐾𝑑𝑑𝑡𝑡𝑡𝑡�

� � {𝛿𝛿𝑒𝑒}𝑡𝑡
 {𝛿𝛿𝑒𝑒}𝑏𝑏

�
𝑘𝑘

= �  {𝐹𝐹𝑒𝑒}𝑡𝑡
  {𝐹𝐹𝑒𝑒}𝑏𝑏

�
𝑘𝑘

 (3.4) 

where [𝐾𝐾𝑑𝑑] is the cell dynamic stiffness matrix. 

Consequently, Eq. (3.4) can be rearranged and written as 

�
{𝛿𝛿𝑒𝑒}𝑏𝑏
{𝐹𝐹𝑒𝑒}𝑏𝑏

�
𝑘𝑘

= �
−�𝐾𝐾𝑑𝑑𝑡𝑡𝑡𝑡�

−1
�𝐾𝐾𝑑𝑑𝑡𝑡𝑡𝑡� �𝐾𝐾𝑑𝑑𝑡𝑡𝑡𝑡�

−1

−�𝐾𝐾𝑑𝑑𝑡𝑡𝑡𝑡��𝐾𝐾𝑑𝑑𝑡𝑡𝑡𝑡�
−1
�𝐾𝐾𝑑𝑑𝑡𝑡𝑡𝑡� + �𝐾𝐾𝑑𝑑𝑡𝑡𝑡𝑡� �𝐾𝐾𝑑𝑑𝑡𝑡𝑡𝑡��𝐾𝐾𝑑𝑑𝑡𝑡𝑡𝑡�

−1� �
{𝛿𝛿𝑒𝑒}𝑡𝑡
{𝐹𝐹𝑒𝑒}𝑡𝑡

�
𝑘𝑘

 (3.5) 

Considering the compatibility and equilibrium conditions at the interface 

between 𝑘𝑘𝑡𝑡ℎ and 𝑘𝑘 + 1𝑡𝑡ℎ cells, yields the following constraint 

 �
{𝛿𝛿𝑒𝑒}𝑏𝑏
{𝐹𝐹𝑒𝑒}𝑏𝑏

�
𝑘𝑘

= �1 0
0 −1� �

{𝛿𝛿𝑒𝑒}𝑡𝑡
{𝐹𝐹𝑒𝑒}𝑡𝑡

�
𝑘𝑘+1

 (3.6) 

Substituting Eq. (3.6) into Eq. (3.5) yields 

�
{𝛿𝛿𝑒𝑒}𝑡𝑡
{𝐹𝐹𝑒𝑒}𝑡𝑡

�
𝑘𝑘+1

= �
−�𝐾𝐾𝑑𝑑𝑡𝑡𝑡𝑡�

−1
�𝐾𝐾𝑑𝑑𝑡𝑡𝑡𝑡� �𝐾𝐾𝑑𝑑𝑡𝑡𝑡𝑡�

−1

�𝐾𝐾𝑑𝑑𝑡𝑡𝑡𝑡��𝐾𝐾𝑑𝑑𝑡𝑡𝑡𝑡�
−1
�𝐾𝐾𝑑𝑑𝑡𝑡𝑡𝑡� − �𝐾𝐾𝑑𝑑𝑡𝑡𝑡𝑡� −�𝐾𝐾𝑑𝑑𝑡𝑡𝑡𝑡��𝐾𝐾𝑑𝑑𝑡𝑡𝑡𝑡�

−1� �
{𝛿𝛿𝑒𝑒}𝑡𝑡
{𝐹𝐹𝑒𝑒}𝑡𝑡

�
𝑘𝑘

 

(3.7) 

 

or, �
{𝛿𝛿𝑒𝑒}𝑡𝑡
{𝐹𝐹𝑒𝑒}𝑡𝑡

�
𝑘𝑘+1

= [𝑇𝑇𝑘𝑘] �
{𝛿𝛿𝑒𝑒}𝑡𝑡
{𝐹𝐹𝑒𝑒}𝑡𝑡

�
𝑘𝑘

 (3.8) 
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where [𝑇𝑇𝑘𝑘] is the transfer matrix that relates the state vector { {𝛿𝛿𝑒𝑒}𝑡𝑡   {𝐹𝐹𝑒𝑒}𝑡𝑡}𝑇𝑇 at the top 

end of the 𝑘𝑘 + 1𝑡𝑡ℎ cell to that at the top end of the 𝑘𝑘𝑡𝑡ℎ cell.  

 For identical cells along the drill string, [𝑇𝑇𝑘𝑘] is the same for all the cells and 

Eq. (3.8) reduces to  

 �
{𝛿𝛿𝑒𝑒}𝑡𝑡
{𝐹𝐹𝑒𝑒}𝑡𝑡

�
𝑘𝑘+1

= [𝑇𝑇] �
{𝛿𝛿𝑒𝑒}𝑡𝑡
{𝐹𝐹𝑒𝑒}𝑡𝑡

�
𝑘𝑘

 (3.9) 

In a more compact form, Eq. (3.9) can be written as 

 𝑆𝑆𝑘𝑘+1 = [𝑇𝑇]𝑆𝑆𝑘𝑘 (3.10) 

where 𝑆𝑆𝑘𝑘 and [𝑇𝑇] denote the state vector  {{𝛿𝛿𝑒𝑒}𝑡𝑡  {𝐹𝐹𝑒𝑒}𝑡𝑡}𝑘𝑘
𝑇𝑇 and the cell transfer matrix 

of the drill string respectively.   

The band gap characteristics of the drill string are determined by using the 

transfer matrix [𝑇𝑇] described in Eq. (3.10). 

The transfer matrix [𝑇𝑇] has the following eigenvalue expression 

 [𝑇𝑇]𝑆𝑆𝑘𝑘+1 = 𝜆𝜆𝑆𝑆𝑘𝑘+1 (3.11) 

where 𝜆𝜆 denotes the eigenvalues of the transfer matrix [𝑇𝑇] and can be written as 

 𝜆𝜆 = 𝑠𝑠𝜇𝜇 = 𝑠𝑠𝛼𝛼+𝑖𝑖𝑖𝑖 (3.12) 

where 𝜇𝜇 is defined as the cell’s propagation constant.  The real part of the propagation 

constant 𝛼𝛼 represents the logarithmic decay of the state vector from one cell to the 

subsequent, while the imaginary part 𝛽𝛽 defines the phase difference between the 

adjacent cells.  A zero 𝛼𝛼 (i.e. when 𝜇𝜇 is purely imaginary), a pass band condition is 

established as the wave propagates through the periodic cells with no amplitude 

attenuation.  A non-zero 𝛼𝛼 represents a condition equivalent to a “stop” or 

“attenuation” band where the wave propagation is attenuated from one cell to the 
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adjacent one.  In this case, the purely elastic passive periodic drill string acts as if it is 

a damped structure that stops rather than attenuates the structural vibration.  For such 

unique behavior, the passive periodic drill string can be very effective in impeding the 

propagation of undesirable destructive vibration as shown in section 3.2.3.   

 

Fig. 3.2  Interaction between two neighboring periodic drill string cells 

 
For a passive periodic unit cell of the drill string shown in Fig. 3.3, the dynamic 

characteristics of the individual substructures, “a” and “b” can be described by the 

transfer matrices [𝑇𝑇𝑎𝑎] and  [𝑇𝑇𝑏𝑏], which can be obtained from Eq. (3.8).  Combining the 
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transfer matrices of the substructures “a” and “b”, yields the transfer matrix [𝑇𝑇] for the 

unit cell as follows 

 [𝑇𝑇] = [𝑇𝑇𝑏𝑏][𝑇𝑇𝑎𝑎] (3.13) 

The pass and stop bands characteristics of the passive periodic drill string can 

then be determined by investigating the eigenvalues of the transfer matrix [𝑇𝑇] described 

in Eq. (3.10) for different combinations of longitudinal rigidities and physical 

properties of segments “a” and “b”. 

 
 

Fig. 3.3  Unit cells of passive periodic drill string 

3.2.3 Band Gap Characteristics of Non-Rotating Periodic Drill String 

In this section, the methodologies for determining the band gap characteristics 

of non-rotating passive periodic structures are introduced.  Illustrating example is 

provided to demonstrate the application of these methodologies to passive periodic drill 

string. 
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Consider the suspended passive periodic drill string shown in Fig. 3.4, which has 

geometrical specifications and material properties provided in Table 3.1.  The drill 

string is assumed to be fixed at its upper end and simply supported at its lower end (𝐿𝐿 −

𝐿𝐿𝑖𝑖𝑛𝑛) by a one inch long sleeve bearing.  The drill string is made of assemblies of 

periodic cells.  Each of these unit cells consists of two substructures, “Drill String 

Shaft” and “Insert”, which have the same material with different cross sections.  

The dynamic characteristics of the individual substructure can be described by 

its transfer matrix [𝑇𝑇𝑠𝑠ℎ] and [𝑇𝑇𝑖𝑖𝑛𝑛], as defined by Eq. (3.8).  Combining the transfer 

matrices of the substructures “Drill String Shaft” and “Insert”, yields the transfer matrix 

[𝑇𝑇] = [𝑇𝑇𝑖𝑖𝑛𝑛][𝑇𝑇𝑠𝑠ℎ] for the unit cell 𝑘𝑘. 

The band gap characteristics of the non-rotating passive periodic drill string is 

determined by investigating the eigenvalues of the transfer matrix [𝑇𝑇].  Using a set of 

five periodic inserts, the stop and pass bands for the lateral, longitudinal and torsional 

vibration modes of the considered example are generated by the theory of periodic 

structures as shown in Fig. 3.5 (c), Fig. 3.6 (c) and Fig. 3.7 (c). 
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Fig. 3.4  Passive periodic drill string 
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To validate the band gap characteristics of the considered passive periodic drill 

string example, the structure is subjected to a combination of torsional moment, axial 

and bending forces at its bottom end.  Non-Collocated dynamic responses near the root 

of the drill string are generated by the method of finite element described in chapter 

two.  Fig. 3.5 (a), Fig. 3.6 (a) and Fig. 3.7 (a) show the lateral, longitudinal and torsional 

frequency responses for conventional drill string while Fig. 3.5 (b), Fig. 3.6 (b) and 

Fig. 3.7 (b) show the lateral, longitudinal and torsional frequency responses for the 

passive periodic drill string respectively.  

From the set of Fig. 3.5 to Fig. 3.7, it is evident that the periodic drill string 

exhibits stop band zones where the system natural frequencies were completely 

eliminated.  Therefore, it is advantageous to operate the periodic drill string in the stop 

band zones without experiencing high vibration amplitudes. 
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Table 3.1  Passive periodic drill string specifications 

Geometric Properties Value 

Drill String Total Length, 𝑳𝑳 1771.65 mm 

Drill String Shaft Diameter, 𝑫𝑫𝒔𝒔𝒔𝒔 3.175     mm 

Periodic Inserts Length, 𝑳𝑳𝒊𝒊𝒊𝒊 6.35       mm 

Periodic Inserts Outer diameter, 𝑫𝑫𝒊𝒊𝒊𝒊
𝒐𝒐  50.80     mm 

Periodic Inserts Inner diameter, 𝑫𝑫𝒊𝒊𝒊𝒊
𝒊𝒊  3.175     mm 

Material Properties  

Mass density, 𝝆𝝆 8000      kg/m3 

Modulus of Elasticity, 𝑬𝑬 193        GPa 

Shear Modulus, 𝑮𝑮 77.2       GPa 
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Fig. 3.5  (a) Lateral frequency response of passive conventional drill string, (b) 
Lateral frequency response of passive periodic drill string & (c) Lateral band 

gap characteristics of passive periodic drill string 
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Fig. 3.6  (a) Longitudinal frequency response of passive conventional drill string, 
(b) Longitudinal frequency response of passive periodic drill string & (c) 

Longitudinal band gap characteristics of passive periodic drill string 
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Fig. 3.7  (a) Torsional frequency response of passive conventional drill string, (b) 
Torsional frequency response of passive periodic drill string & (c) Torsional 

band gap characteristics of passive periodic drill string 
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3.3 Modeling of Gyroscopic Passive Periodic Drill String 

3.3.1 Overview 

The dynamic characteristics for a non-rotating passive periodic drill string are 

presented in section 3.2.2.  In this section, the stop and pass bands of the passive 

periodic drill string are determined using a novel approach which is compatible with 

gyroscopic systems while maintaining the concept of Bloch wave propagation in 

periodic structures.  In this approach, the dispersion curves of the periodic drill string 

are determined based on complex wavenumbers versus real frequencies.  The obtained 

characteristics would relate to wave propagation admitting spatial attenuation due 

energy redistribution.  

 In this approach, the dispersion curves of the passive periodic gyroscopic drill 

string are determined for different rotational speeds. The obtained characteristics are 

compared with non-rotating passive periodic drill string in an attempt to quantify the 

effect of the gyroscopic forces on the band gap characteristics.  

The developed approach has not been considered before in the literature 

particularly for gyroscopic systems.  Illustrating numerical example of passive periodic 

drill string is provided and compared with conventional drill string in order to 

emphasize the potential and merits of the proposed approach. 
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3.3.2 Bloch Wave Propagation Theory 

The drill pipes section of the proposed periodic drill string shown in Fig. 1.4 is 

divided into identical periodic cells.  Fig. 3.8 shows the degrees of freedom of a passive 

unit cell.  For a given unit cell, the vector {𝛿𝛿𝑒𝑒} defines the nodal deflection vector 

described in Eq. (2.3) and the vector {𝐹𝐹𝑒𝑒} defines the generalized forcing function 

acting on the unit cell such as external loads and moments.   

 

Fig. 3.8  Passive unit cell degrees of freedom of periodic drill string 

For a gyroscopic passive periodic drill string, the finite element model for a unit 

cell can be written as 

 [𝑀𝑀]𝑐𝑐{�̈�𝛿}𝑐𝑐 + Ω𝑥𝑥[𝐺𝐺]𝑐𝑐{�̇�𝛿}𝑐𝑐 + [𝐾𝐾]𝑐𝑐{𝛿𝛿}𝑐𝑐 = {𝐹𝐹}𝑐𝑐 (3.14) 

where [𝑀𝑀]𝑐𝑐, [𝐺𝐺]𝑐𝑐 and [𝐾𝐾]𝑐𝑐 are the cell’s mass, gyroscopic and stiffness matrices that 

can be appropriately assembled from the augmented element mass, gyroscopic and 
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stiffness matrices derived in Eqs. (2.12) and (2.26) respectively with superscript 𝑐𝑐 

denoting the gyroscopic unit cell.    

 The nodal deflection vector of a unit cell {𝛿𝛿}𝑐𝑐 is defined as 

 {𝛿𝛿}𝑐𝑐 = �{𝛿𝛿𝑈𝑈𝑒𝑒} {𝛿𝛿𝐼𝐼𝑒𝑒} {𝛿𝛿𝐿𝐿𝑒𝑒}�
𝑇𝑇

   (3.15) 

where {𝛿𝛿𝑈𝑈𝑒𝑒}, {𝛿𝛿𝐼𝐼𝑒𝑒} and {𝛿𝛿𝐿𝐿𝑒𝑒} denote the upper, internal and lower deflection vectors. 

Eq. (3.15) is condensed to support Block wave propagation.  Hence, the 

displacements at the boundaries are related as 

 {𝛿𝛿𝐿𝐿𝑒𝑒} = 𝑠𝑠−𝑖𝑖𝑘𝑘𝐿𝐿{𝛿𝛿𝑈𝑈𝑒𝑒}  (3.16) 

where 𝑘𝑘 and 𝐿𝐿 denote the wave number and the length of the unit cell, respectively. 

 Hence, {𝛿𝛿̅}𝑐𝑐 is defined as an independent nodal deflection vector such that 

 {𝛿𝛿̅}𝑐𝑐 = �{𝛿𝛿𝑈𝑈𝑒𝑒} {𝛿𝛿𝐼𝐼𝑒𝑒}�
𝑇𝑇

   (3.17) 

The deflection vectors {𝛿𝛿}𝑐𝑐 and {𝛿𝛿̅}𝑐𝑐are related as  

 {𝛿𝛿}𝑐𝑐  = 𝑇𝑇{𝛿𝛿̅}𝑐𝑐   (3.18) 

where 𝑇𝑇 is a transformation matrix described as 

 𝑇𝑇 = �𝐼𝐼 0 𝐼𝐼𝑠𝑠−𝑖𝑖𝑘𝑘𝐿𝐿
0 𝐼𝐼 0

�
𝑇𝑇

   (3.19) 

 Substituting Eqs. (3.18) and (3.19) into Eq. (3.14) , the finite element model for 

a gyroscopic unit cell reduces to 

 [𝑀𝑀�]𝑐𝑐{𝛿𝛿̅̈}𝑐𝑐 + Ω𝑥𝑥[�̅�𝐺]𝑐𝑐{𝛿𝛿̅̇}𝑐𝑐 + [𝐾𝐾�]𝑐𝑐{𝛿𝛿̅}𝑐𝑐 = {𝐹𝐹�}𝑐𝑐 (3.20) 

where  

  [𝑀𝑀�]𝑐𝑐 = 𝑇𝑇𝑇𝑇 [𝑀𝑀]𝑐𝑐 𝑇𝑇                  [�̅�𝐺]𝑐𝑐 = 𝑇𝑇𝑇𝑇 [𝐺𝐺]𝑐𝑐 𝑇𝑇 

[𝐾𝐾�]𝑐𝑐 = 𝑇𝑇𝑇𝑇 [𝐾𝐾]𝑐𝑐 𝑇𝑇                    {𝐹𝐹�}𝑐𝑐 = 𝑇𝑇𝑇𝑇 {𝐹𝐹}𝑐𝑐 
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Eq. (3.20) can be represented in a state space form [39] such as 

 � 
[𝐾𝐾�]𝑐𝑐 0

0  [𝑀𝑀�]𝑐𝑐�
{𝑦𝑦�̇}𝑐𝑐 + � 0      −[𝐾𝐾�]𝑐𝑐

[𝐾𝐾�]𝑐𝑐    Ω𝑥𝑥[�̅�𝐺]𝑐𝑐  � {𝑦𝑦�}𝑐𝑐 = � 0
  {𝐹𝐹�}𝑐𝑐� (3.21) 

where {𝑦𝑦�}𝑐𝑐 = �{𝛿𝛿̅}𝑐𝑐 {𝛿𝛿̅̇}𝑐𝑐�
𝑇𝑇
 

 Let the state space solution be assumed as 

 {𝑦𝑦�}𝑐𝑐 = 𝑠𝑠𝜆𝜆𝑡𝑡{𝑦𝑦�}𝑐𝑐 (3.22) 

where {𝑦𝑦�}𝑐𝑐 = { {𝑥𝑥} + 𝑖𝑖{𝑧𝑧} }𝑐𝑐 and 𝜆𝜆 = ±𝑖𝑖𝜔𝜔 

 Eq. (3.22) leads to the following eigenvalue problem 

 �𝑖𝑖𝜔𝜔 � 
[𝐾𝐾�]𝑐𝑐 0

0  [𝑀𝑀�]𝑐𝑐� + � 0      −[𝐾𝐾�]𝑐𝑐
[𝐾𝐾�]𝑐𝑐    Ω𝑥𝑥[�̅�𝐺]𝑐𝑐  �� { {𝑥𝑥} + 𝑖𝑖{𝑧𝑧} }𝑐𝑐 = � 00 � (3.23) 

 In a compact form, Eq. (3.23) reduces to  

 [ 𝑖𝑖𝜔𝜔[𝑀𝑀∗]𝑐𝑐 + [𝐺𝐺∗]𝑐𝑐 ] { {𝑥𝑥} + 𝑖𝑖{𝑧𝑧} }𝑐𝑐 = 0 (3.24) 

where 

[𝑀𝑀∗]𝑐𝑐 = � 
[𝐾𝐾�]𝑐𝑐 0

0  [𝑀𝑀�]𝑐𝑐�         and         [𝐺𝐺∗]𝑐𝑐 = � 0      −[𝐾𝐾�]𝑐𝑐
[𝐾𝐾�]𝑐𝑐    Ω𝑥𝑥[�̅�𝐺]𝑐𝑐  � 

 Equating the real and imaginary coefficients in Eq. (3.24) yields 

Real: [𝐺𝐺∗]𝑐𝑐{𝑥𝑥}𝑐𝑐 = 𝜔𝜔[𝑀𝑀∗]𝑐𝑐{𝑧𝑧}𝑐𝑐 (3.25) 

Imaginary: −[𝐺𝐺∗]𝑐𝑐{𝑧𝑧}𝑐𝑐 = 𝜔𝜔[𝑀𝑀∗]𝑐𝑐{𝑥𝑥}𝑐𝑐 (3.26) 

 Eqs. (3.25) and (3.26) can be rewritten in compact and standard eigenvalue 

problem form such that 

 [𝐸𝐸]𝑐𝑐{𝑧𝑧}𝑐𝑐 = 𝜔𝜔2{𝑧𝑧}𝑐𝑐 (3.27) 

where  

[𝐸𝐸]𝑐𝑐 = [𝑀𝑀∗]𝑐𝑐−1 � [𝐺𝐺∗]𝑐𝑐[𝑀𝑀∗]𝑐𝑐−1[𝐺𝐺∗]𝑐𝑐 � 
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Note that all the entries of the matrix [𝐸𝐸]𝑐𝑐 are function of the dimensionless wave 

number 𝑘𝑘𝐿𝐿.  Therefore, the eigenvalues of the matrix [𝐸𝐸]𝑐𝑐 can be determined for 

different values of the wave number 𝑘𝑘𝐿𝐿. 

 The eigenvalues 𝜆𝜆𝑠𝑠 are given by 

 𝜆𝜆𝑠𝑠(𝑘𝑘𝐿𝐿) = 𝜔𝜔𝑠𝑠 (3.28) 

where 𝑠𝑠 = 1 to 𝑛𝑛 

 The dispersion characteristics of the gyroscopic unit cell of the passive periodic 

drill string are constructed by plotting the resonant frequency 𝜔𝜔𝑠𝑠 against the wave 

number 𝑘𝑘𝐿𝐿.  The resulted dispersion curves further define the zones of stop and pass 

bands of the periodic drill string as illustrated in section 3.3.3. 

3.3.3 Band Gap Characteristics of Gyroscopic Periodic Drill String 

The considered numerical example in section 3.2.3 is used to demonstrate the 

generation of the dispersion characteristics of the gyroscopic unit cell of the passive 

periodic drill string.  Using a set of five periodic inserts, the drill string dispersion 

characteristics are generated using only one single cell for the drill string rotational 

speeds of zero and 1920 RPM (32 Hz) as illustrated in Figs. 3.9 and 3.10.  The 

numerical values of Figs. 3.9 and 3.10 are tabulated in Table 3.2.  The unit cell finite 

element model computations are performed by dividing the periodic insert and the shaft 

into two and fifty elements respectively. 
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Fig. 3.9  Dispersion characteristics of a unit cell of passive periodic drill string at 
rotational speed of zero RPM – (zero Hz) 

 

Fig. 3.10  Dispersion characteristics of a unit cell of passive periodic drill string 
at rotational speed of 1920 RPM – (32 Hz), (BW = Backward Whirl & FW = 

Forward Whirl) 
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In Fig. 3.10, the effect of the gyroscopic forces manifest themselves by splitting 

the modes of vibration to forward (FW) and backward (BW) modes. The vibrational 

modes that travel along an orbit in the direction of the drill string's rotation are denoted 

forward whirling modes whereas those traveling in the opposite direction are denoted 

as backward whirling modes.  In particular, the gyroscopic forces contribute to 

changing the stiffness of the drill string system and hence its frequency.  The stiffness 

is enhanced during forward whirling and degrades during backward whirling.  Such an 

effect is magnified as the rotational speed increases as demonstrated in the frequency 

map shown in Fig. 3.11.   

Table 3.2  Band gap limits numerical values of Figs. 3.9 and 3.10, (BW = 

Backward Whirl & FW = Forward Whirl) 

Stop Bands 
Hz 

Rotational Speed - RPM 
0 1920 

Zone 1 
15.63 15.63 BW 

15.63 FW 

46.06 42.65 BW 
49.56 FW 

Zone 2 
122.30 122.30 BW 

122.30 FW 

155.60 143.00 BW 
168.50 FW 

Zone 3 
278.70 260.40 BW 

299.00 FW 

324.30 324.30 BW 
324.30 FW 

Zone 4 
433.40 419.90 BW 

449.30 FW 

627.80 627.80 BW 
627.80 FW 
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To validate the obtained gyroscopic band gap characteristics of the passive 

periodic drill string, Campbell diagram is generated using the finite element method 

described in chapter two.  Campbell diagram is named after the Wilfred Campbell who 

introduced the concept in 1924.  The diagram displays the evolution of the natural 

frequencies corresponding to the different mode of vibration as a function of the 

rotational speed of the shaft.  Fig. 3.11 shows the Campbell diagram of the periodic 

drill string with shaft rotational speeds ranging from zero to 1920 RPM. 

Besides Campbell diagram validation, the periodic drill string is subjected to 

bending force at its bottom at shaft rotational speeds of zero and 1920 RPM.  Non-

Collocated dynamic response near the root of the drill string are obtained by the method 

of the finite element described in chapter two.  Fig. 3.12 displays Non-collocated lateral 

frequency response of the periodic drill string at shaft rotational speeds of zero and 

1920 RPM respectively. 

It is evident in Figs. 3.9-3.12 that the periodic drill string exhibits stop band 

zones where the system natural frequencies are completely eliminated.  Therefore, it is 

advantageous to operate the periodic drill string in the stop band zones without 

experiencing high vibration amplitudes.  Also, due to the gyroscopic forces effect the 

non-rotating stop band zones range splits into backward and forward stop band zones 

as the drill string starts to rotate.  The range of the rotating stop band zones decreases 

as the speed of the drill string increases.  This fact is illustrated experimentally in Fig. 

4.10. 
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Fig. 3.11  Campbell diagram of passive periodic drill string at 1920 RPM (32 Hz), 
(BW = Backward Whirl & FW = Forward Whirl) 

 

Fig. 3.12  Non-collocated lateral frequency response of passive periodic drill 
string at rotational speeds of zero and 1920 RPM, (BW = Backward Whirl & FW 

= Forward Whirl) 
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3.4 Full Scale Model Simulation 

In order to establish a practical comparison between conventional drill string 

and the proposed design of periodic drill string with passive periodic inserts, the drill 

string full scale model of the parameters adopted in [11] and listed in Table 3.3 is 

considered.   

The dynamic characteristics of the conventional and periodic drill string is 

investigated by subjecting the structure to a combination of torsional moment, axial 

and bending forces near the lower end and monitoring the vibration near the root of the 

structure.  The design of periodic drill string is accomplished by dividing the drill pipe 

section into 300 periodic cells.  The drill pipe section of the considered model is divided 

into 1800 elements while the drill collar section is divided into 200 elements.  The 

boundary conditions of the considered drill string are assumed to be fixed at both ends 

of the drill string.  

Fig. 3.13 displays comparison between the frequency response characteristics 

of the conventional drill string and the periodic drill string with 300 passive periodic 

inserts.  The periodic inserts specifications are listed in Table 3.3.  It should be noted 

that the size of the outer diameter of the drill collar in the considered model is slightly 

modified to accommodate for the size of the periodic inserts.   

It is observed that the periodic drill string with passive periodic inserts generates 

stop band zones in the transverse direction only at low-frequency range extended 

between 25 – 35 Hz.  However, the periodic inserts are not effective in mitigating the 

vibration for the axial and torsional directions in the considered range. 
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Fig. 3.14 displays the effect of the gyroscopic forces on the pass and stop band 

characteristics of the drill string when it is rotating at 1800 RPM (30 Hz) as compared 

with the non-rotating drill string.  The 1800 RPM (30 Hz) is selected as a typical 

operating speed of the drill string.  It can be seen that there is no significant gyroscopic 

effect on the spectral width of the stop band. 

Table 3.3  Drill string and periodic insert specifications for the considered model 

in [11] 

Drill Pipe Geometric Properties    Value 

Drill Pipe Length, 𝑳𝑳𝒑𝒑 1000    m 
Drill Pipe Outer Diameter, 𝑫𝑫𝒐𝒐 0.127   m 
Drill Pipe Inner Diameter, 𝑫𝑫𝒊𝒊 0.095   m 

Drill Collar Geometric Properties  

Drill Collar Length, 𝑳𝑳𝒄𝒄 200      m 
Drill Collar Outer Diameter, 𝑫𝑫𝒐𝒐 0.2286 m 
Drill Collar Inner Diameter, 𝑫𝑫𝒊𝒊 0.095   m 

Periodic Insert Geometric Properties  

Length, 𝑳𝑳𝒊𝒊 0.25     m 
Outer Diameter, 𝑫𝑫𝒐𝒐𝒊𝒊 0.2355 m 
Inner Diameter, 𝑫𝑫𝒊𝒊𝒊𝒊 0.095   m 

Material Properties  

Mass density, 𝝆𝝆 7850    kg/m3 
Modulus of Elasticity, 𝑬𝑬 210      GPa 
Shear Modulus, 𝑮𝑮 76.923 GPa 
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Fig. 3.13  Non-collocated frequency response comparison between conventional 
and periodic drill strings with 300 passive periodic inserts 

Pass Band 

0 10 20 30 40 50 60

Frequency - Hz

10 -15

10 -10

A
xi

al
 - 

m

Conventional
Periodic

Pass Band 

Stop Band 



 

74 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.14  Periodic drill string with 300 passive periodic inserts comparison 
between rotational velocity of zero and 1800 RPM (30 Hz)  
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3.5 Summary 

The dynamic characteristics of passive periodic drill string are presented in this 

chapter.  For a non-rotating periodic drill string, the periodic theory is implemented to 

extract the transfer matrix of the unit cell to determine its stop and pass band 

characteristics.   For a gyroscopic periodic drills string, the “band gap” characteristics 

are determined by developing a novel approach, which is based on the concept of Bloch 

wave propagation theory in periodic structures.  In this approach, the dispersion curves 

of the periodic gyroscopic systems are determined for different rotational speeds. The 

obtained characteristics are compared with non-rotating systems in an attempt to 

quantify the effect of the gyroscopic forces on the “band gap” characteristics.  

Numerical simulations are performed to illustrate the merit of the developed approach 

on passive periodic drill string.  
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Chapter 4                                                                      

Experimental Results 

4.1 Overview 

This chapter presents the different experiments carried out for conventional and 

passive periodic drill string using a laboratory scale model in attempts to validate the 

theoretical predictions of chapters two and three.  The laboratory experimental setup 

along with a detailed description is provided.  The experimental dynamic 

characteristics of conventional and periodic drill string are compared with those 

obtained previously from periodic structures and the Bloch waves propagation theories 

based on the finite element model described in chapter two.  It should be noted that the 

focus of this experimental work is placed on monitoring the effect of the periodic 

inserts on filtering out the transverse vibration of the drill string. 

4.2 Experimental Set-up 

The experimental arrangement construction along with the equipment used is 

described in this section.  Using a laboratory scale model, the experimental setup of the 

proposed concept of periodic drill string is displayed photographically in Fig. 4.1.  A 

support system consists of frame system (80/20) and a one-inch thick plywood sheet is 

built and firmly attached to the laboratory wall.  An inverted lathe machine from JET 

(Model JWL-1221VS) is fixed to the wall support system.  The speed of the lathe 

ranges between 60 to 3600 RPM controlled by electronic variable speed dial which 

facilitates the selection of the desired operating speed of the drill string.   



 

77 
 

The periodic drill string used in this experiment is  assembled by using stainless 

steel solid shaft and periodic inserts.  The drill string boundary conditions are assumed 

to be fixed at its upper end and simply supported at its lower end (𝐿𝐿 − 𝐿𝐿𝑖𝑖𝑛𝑛) where it is 

connected to a one-inch long sleeve bearing.  The periodic drill string is excited using 

an electromagnetic shaker connected to the drill string through a carbon fiber stinger 

located approximately at (𝐿𝐿 − 3).  The drill string material and geometric properties 

are presented in Table 3.1. 

 

Fig. 4.1  Photograph of the periodic drill string experimental setup 
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The electromagnetic shaker is connected to a power amplifier.  The 

specifications of the electromagnetic shaker (V408, from LDS Test and Measurement 

LLC, Middleton, WI) are listed in Table 4.1.  Table 4.2 lists the specifications of the 

power amplifier of the shaker (PA100E, from LDS Test and Measurement LLC, 

Middleton, WI). 

Table 4.1  Electromagnetic shaker specifications (V408 – LDS Test and 
Measurement LLC, Middleton, WI) 

Shaker Properties Value 
System sine force peak (naturally cooled) 98           N 
System sine force peak (forced cooling) 196         N 
Shaker max random force rms 89           N 
Max acceleration sine peak 100         g 
System velocity sine peak 1.78        m/s 
System continuous displacement (pk-pk) 17.6        mm 
Moving element mass 0.2          kg 
Usable frequency rang 5-9,000   Hz 
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Table 4.2  Shaker power amplifier specifications, (PA100E – LDS Test and 
Measurement LLC, Middleton, WI) 

Power Amplifier Properties Value 
Rated sinusoidal power output matched 147          W 
Resistive load 2.9           Ω  
Max. continuons sinusoidal VA output, 0.5pf 147          VA 
Frequency range at rated power 10 Hz–10 kHz 
Total harmonic distortion at rated output 20Hz-10kHz Type 0.5  % 
Max. output voltage 20            Vrms 
Max. no load voltage 32            Vrms 
Voltage regulations 3              % 
Output current at rated VA 7A           rms 
Random output 14 A        pk 
Over-current trip level 10A         rms 
Input sensitivity for max output (4kHz) 1 V          rms 
Signal to noise ratio >75          dB 
Amplifier efficiency   58          % 

 

Two displacement laser sensors, LM 200 (ANL2535REC) are installed 90 

degrees apart at a location 3.5 inches down from the drill string upper end.  Fig. 4.2 

shows photography the laser sensor arrangement.  The sensor is usable over a 

measurable range of 44 - 56 𝑚𝑚𝑚𝑚 with an accuracy of 4.5 𝜇𝜇𝑚𝑚 over a frequency range   

0 - 30 𝑘𝑘𝑘𝑘𝑧𝑧. 

The displacement laser sensors are connected to a dynamic signal analyzer, 

Stanford Research System (Model SR780) where the experimental data are acquired.    
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Fig. 4.2  Photograph of the displacement sensors arrangement 
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drill string upper end as indicated in Fig. 4.2.  The sensor is connected to the dynamic 

signal analyzer where the experimental data are acquired. 

4.3.1 Predictions of Resonant Frequencies   

The experimentally measured values of the bending natural frequencies of the 

conventional drill string with the effect of the shaker excitation along with those 

predicted by the developed FEM MATALB® algorithm and ANSYS® are listed in Table 

4.3.   

It can be seen that the experimental values are in excellent agreement with the 

predictions of the finite element model and ANSYS®.   

The vibration mode shapes corresponding to the first four natural frequencies 

of conventional drill string are presented in Fig. 4.3. 
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Fig. 4.3  Conventional drill string first four modes of vibration 
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Table 4.3  Conventional drill string bending natural frequencies comparison 
between experimental, FEM MATALB® and ANSYS® 

Mode 
Experiment 

(Hz) 
MATLAB® 

(Hz) 
Error 
(%) 

ANSYS® 
(Hz) 

Error 
(%) 

1 4.97 4.77 4.02 4.81 3.31 
2 13.08 13.15 0.54 13.25 1.28 
3 25.16 25.78 2.46 25.97 3.22 
4 41.39 42.60 2.92 42.93 3.71 
5 64.30 63.66 1.00 64.12 0.28 

 

4.3.2 Performance in Frequency Domain 

Fig. 4.4 shows a Non-collocated frequency response comparison between the 

experimental results and the finite element model predictions when the conventional 

drill string is excited by a swept sinusoidal excitation. 

 

Fig. 4.4  Conventional drill string non-collocated frequency response comparison 
between the experimental results and FEM model 
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It is obvious from Fig. 4.4 that the predictions are in good agreement with the 

experimental results at the resonant frequencies.  The conventional drill string in Fig. 

4.4 experiences continuous vibration over the considered frequency band from 0 - 80 

Hz.  This band represents a continuous “Pass Band”. 

4.4 Performance of Non-Rotating Passive Periodic Drill String 

A total of five stainless steel periodic inserts, shown in Fig. 4.1 and described 

in Table 3.1, are inserted into the conventional drill string to form the periodic drill 

string.  To ensure structure periodicity, the periodic inserts are equally spaced along the 

drill string.  The dynamic characteristics of the periodic drill string are measured with 

the same techniques used for conventional drill string, as previously described in 

section 4.3. 

4.4.1 Predictions of Resonant Frequencies 

Table 4.4 lists the bending natural frequencies of the non-rotating periodic drill 

string, with the effect of the shaker excitation, as predicted by the developed FEM 

MATALB® algorithm and ANSYS® in comparison with the experimentally measured 

values. 

  It can be seen that the experimental values are in excellent agreement with the 

predictions of the finite element model and ANSYS®. 
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4.4.2 Performance in Frequency Domain 

A Non-collocated frequency response comparison between the experimental 

results and the finite element model predictions, when the non-rotating periodic drill 

string is excited by a swept sinusoidal excitation, is shown in Fig. 4.5. 

It can be seen from Fig. 4.5 that the response exhibits a very wide “stop band” 

over the frequency range 15 – 46 Hz as predicted theoretically in Table 3.2. This fact 

clearly prove the effectiveness of the proposed concept in mitigating the vibration 

experienced by the drill string, particularly when excited within the stop band.  In 

addition, the stop band range obtained experimentally is in excellent agreement with 

the one predicted by the Bloch waves propagation theory previously presented in 

section 3.3.3. 

Fig. 4.6 shows a comparison between the experimental frequency response 

characteristics of the non-rotating periodic and the conventional drill strings.  The 

figure displays clearly the effect of the concept of the periodic drill string in introducing 

a significant “stop band” characteristics. 
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Table 4.4  Non-rotating periodic drill string bending natural frequencies 
comparison between experiment, FEM MATALB® and ANSYS® 

 
 

 

Fig. 4.5  Non-rotating periodic drill string frequency response comparison 
between the experimental results and FEM model  
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Fig. 4.6  Experimental results comparison between conventional drill string vs 
non-rotating periodic drill string  
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It can be seen that the experimental values are in excellent agreement with the 

predictions of the finite element model. 

Table 4.5  Periodic drill string bending natural frequencies comparison between 
experiment, FEM and MATALB® at 1200 RPM (20 Hz),  

Mode 
Experiment 

(Hz) 
MATLAB® 

(Hz) 
Error 
(%) 

1 
BW 2.08 1.95 6.25 
FW 2.08 2.03 2.40 

2 BW 5.51 5.35 2.90 
FW 5.51 5.59 1.45 

3 BW 10.20 10.10 0.98 
FW 10.20 10.55 3.43 

4 BW 14.34 14.32 0.14 
FW 14.34 14.76 2.93 

5 BW 51.31 50.73 1.13 
FW 55.82 54.97 1.52 

6 BW 65.74 66.54 1.22 
FW 71.15 71.03 0.17 

Table 4.6  Periodic drill string bending natural frequencies comparison between 
experiment, FEM and MATALB® at 1920 RPM (32 Hz) 

Mode Experiment 
(Hz) 

MATLAB® 
(Hz) 

Error 
(%) 

1 BW 2.08 1.95 6.25 
FW 2.08 2.03 2.40 

2 BW 5.51 5.34 3.09 
FW 5.51 5.60 1.63 

3 BW 10.20 10.09 1.08 
FW 10.20 10.55 3.43 

4 BW 14.34 14.32 0.14 
FW 14.34 14.76 2.93 

5 BW 50.41 49.47 1.86 
FW 56.90 56.24 1.16 

6 BW 64.66 65.30 0.99 
FW 71.87 72.20 0.46 
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Table 4.7  Periodic drill string bending natural frequencies comparison between 
experiment, FEM and MATALB® at 2640 RPM (44 Hz) 

Mode 
Experiment 

(Hz) 
MATLAB® 

(Hz) 
Error 
(%) 

1 
BW 2.08 1.94 6.73 
FW 2.08 2.04 1.92 

2 BW 5.51 5.33 3.27 
FW 5.51 5.61 1.81 

3 
BW 10.20 10.07 1.27 
FW 10.20 10.56 3.53 

4 BW 14.34 14.32 0.14 
FW 14.34 14.76 2.93 

5 BW 49.15 48.24 1.85 
FW 58.16 57.49 1.15 

6 BW 63.57 64.00 0.68 
FW 72.59 73.39 1.10 

 

4.5.2 Performance in Frequency Domain 

Non-Collocated frequency responses comparison between the experimental 

results and the finite element model predictions, when the rotating periodic drill string 

is excited by a swept sinusoidal excitation, are shown in Figs. 4.7-4.10. 

It is evident in Figs. 4.7-4.10 that the gyroscopic responses still exhibit a very 

wide “stop band” when compared to non-rotating response.  However, the gyroscopic 

stop band range splits into backward and forward stop band range as the speed of the 

drill string increases due to the gyroscopic forces effect.  The range of the backward 

stop band decreases as the speed of the drill string increases while the range of the 

forward stop band increases as the drill string speed increases.  This fact clearly prove 

the effectiveness of the proposed concept in mitigating the vibration experienced by 

the gyroscopic drill string, particularly when excited within the stop band.  In addition, 
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the stop band range obtained experimentally is in excellent agreement with the one 

predicted by the Bloch waves propagation theory previously presented in section 3.3.3. 

 

 

Fig. 4.7  Periodic drill string non-collocated frequency response comparison 
between the experimental results and FEM model at 1200 RPM (20 Hz) 
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Fig. 4.8  Periodic drill string non-collocated frequency response comparison 
between the experimental results and FEM model at 1920 RPM (32 Hz) 

 

Fig. 4.9  Periodic drill string non-collocated frequency response comparison 
between the experimental results and FEM model at 2640 RPM (44 Hz) 
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Fig. 4.10  Experimental results comparisons between periodic drill string 
rotational speeds of zero, 1200, 1920 and 2640 RPM (20, 32 and 44 Hz) 
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4.6 Summary 

This chapter has presented an experimental realization of the proposed concept 

of passive periodic drill string.  The experimental dynamic performance characteristics 

of a laboratory prototype of passive periodic drill string are determined.  These 

characteristics are utilized to validate the predictions of the theoretical finite element 

model.  Furthermore, the experimental results are determined also for conventional drill 

sting in order to provide basis for establishing the merits and effectiveness of periodic 

drill string in attenuating the structural vibration. 

It has been demonstrated through the set of experimental results obtained by 

using prototype of the proposed concept of passive periodic drill string that periodic 

drill string exhibits a very wide “stop band” range while the conventional drill string 

exhibits a continues “pass band” range.  In addition, it has been found that the model 

is capable of predicting the resonant frequencies as well as the frequency responses of 

both the conventional and periodic drill strings very accurately. 
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Chapter 5                                                                           

Conclusions and Recommendations 

5.1 Overview 

This chapter summarizes the conclusions arrived at during the course of this 

research work.  Presented also some recommended ideas which may be needed to 

expand the utility of the concepts proposed in this dissertation.  Finally, the major 

contributions of the dissertation in relation to the current state-of-the-art in the field of 

vibration mitigation of drill strings are outlined.  

5.2 Conclusions 

This dissertation has presented an approach for determining the stop and pass 

bands (i.e. the “band gaps”) characteristics of periodic gyroscopic systems using Bloch 

wave propagation theory.  In this approach, the dispersion curves of the periodic 

gyroscopic systems are determined for different rotational speeds.  The obtained 

characteristics are compared with non-rotating systems in an attempt to quantify the 

effect of the gyroscopic forces on the band gap characteristics.  The developed 

approach is illustrated by a new class design of drill strings with passive periodic inserts 

whereby optimally designed and placed periodic inserts are utilized to filter out the 

vibration transmission along the drill strings.  The comprehensive theoretical and 

experimental demonstration emphasize the effectiveness of the concept of drill strings 

with passive periodic inserts in mitigating the low-frequency vibrations of the drill 

string.   
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The dynamics and vibrations of such a class of structure are described by 

developing a finite element model (FEM).  The developed FEM model is exercised to 

generate the dispersion characteristics of the gyroscopic unit cell of the passive periodic 

drill string.  The experimental demonstration of the proposed class of periodic drill 

string exhibits a very wide “stop band” extending from 15 – 46 Hz.  This stop band 

range splits into backward and forward range as the speed of the drill string increases 

due to the gyroscopic forces effect.  This demonstration enhances the ability of this 

class of periodic drill string to operate over frequency bands that are wider than those 

possible with conventional drill strings.  

5.3 Recommendations 

This dissertation has attempted to establish the fundamentals governing the 

operation of a new class of passive periodic drill strings, and during this process has 

opened the door for a slew of unanswered questions that need to be addressed in future 

studies.  Distinct among these issues is the need to model the interactions between the 

rock formation and the drill string in order to realistically account for these interactions 

in the finite element model.  Hence, it would be possible to study the vibrations of the 

drill string which are caused by the resulting forces and moments.  Experimental 

demonstration of these interactions would be essential to the validation of the 

developed finite element models. 

Investigation of the interaction forces and moments on the stick-slip 

characteristics of the drill string, its stability as well as on its orbits is essential to the 
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understanding of the effect of the periodic inserts in improving the drill string 

performance as compared to conventional systems. 

More work is needed to optimize the dimensions and the location of the passive 

periodic inserts in order to make the design of the new class of drill string minimum in 

weight, effective in controlling the vibration over a broad frequency band, and 

appealing to the oil industry. 

Another natural extension of this work would be to provide the drill string with 

the active periodic inserts in order to tune the spectral characteristics of the stop bands 

according to the drilling depth and other operating parameters.  During this process, it 

is essential to develop robust control strategy for the active periodic drill string to 

accommodate any uncertainty and reject the effect of the external disturbances acting 

on the drill string. 

5.4 Major Contributions 

This dissertation has presented the concept of drill strings with passive periodic 

inserts along with their performance characteristics.  The comprehensive presentation 

of the passive periodic drill strings through mathematical modeling and experimental 

realization and evaluation emphasizes the following major contributions of the work to 

the current state-of-the-art of vibration mitigation of drill strings: 

First, the concept of drill strings with passive periodic inserts is original and has 

not been considered at all in the open-literature for application to drill strings. 
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Second, the developed approach based on Bloch wave propagation theory for 

determining the stop and pass bands (i.e. the “band gaps”) characteristics for periodic 

gyroscopic systems is pioneer in the field of periodic structures.  

Last, the comprehensive theoretical and experimental demonstration of the 

effectiveness of the concept of drill strings with passive periodic inserts in mitigating 

the low-frequency vibrations of drill strings is another major contribution of this 

dissertation. 
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5.5 Summary 

This chapter has presented a brief summary of the conclusions arrived at and 

the recommendations for the potential directions of extending the current work.  In 

addition, the major contributions for this research work has been presented. 

  



 

99 
 

References 

 
[1]  L. V. d. Steen, "Suppressing Stick-Slip-Induced Drillstring Oscillations: A 

Hyperstability Approach," Ph.D. Dissertation, Netherlands: University of 
Twente, 1997. 

[2]  D. W. Dareing, "Drill Collar Length is a Major Factor in Vibration Control," 
Journal of Petroleum Technology, vol. 36, no. 4, pp. 637-644, 1984.  

[3]  P. D. Spanos, A. K. Sengupta, R. A. Cunningham and P. R. Paslay, "Modeling of 
Roller Cone Bit Lift-Off Dynamics in Rotary Drilling," Journal of Energy 
Resources Technology, vol. 117, no. 3, pp. 197-207, 1995.  

[4]  J. D. Jansen and L. Van Den Steen, "Active Damping of Self-Excited Torsional 
Vibrations in Oil Well Drillstrings," Journal of Sound and Vibration, vol. 179, 
no. 4, pp. 647-668, 1995.  

[5]  K. K. Millheim and M. C. Apostal, "The Effect of Bottomhole Assembly 
Dynamics on the Trajectory of a Bit," Journal of Petroleum Technology, vol. 33, 
no. 12, pp. 2323-2338, 1981.  

[6]  P. D. Spanos, A. M. Chevallier, N. P. Politis and M. L. Payne, "Oil and Gas Well 
Drilling: A Vibrations Perspective," Journal of The Shock and Vibration Digest, 
vol. 35, no. 2, pp. 85-103, 2003.  

[7]  A. A. Besaisow and M. L. Payne, "A Study of Excitation Mechanisms and 
Resonances Inducing Bottomhole-Assembly Vibrations," SPE Drilling 
Engineering, vol. 3, no. 1, pp. 93-101, 1988.  

[8]  T. V. Aarrestad, H. A. Tonnesen and A. Kyllingstad, "Drillstring Vibrations: 
Comparison Between Theory and Experiments on a Full-Scale Research Drilling 
Rig," in SPE/IADC Drilling Conference, Dallas, TX, Feb 9-12, 1986.  

[9]  J. D. Jansen, "Non-Linear Rotor Dynamics as Applied to Oilwell Drillstring 
Vibrations," Journal of Sound and Vibration, vol. 147, no. 1, pp. 115-135, 1991.  

[10]  S. L. Chen and M. Geradin, "An Improved Transfer Matrix Technique as Applied 
to BHA Lateral Vibration Analysis," Journal of Sound and Vibration, vol. 185, 
no. 1, pp. 93-106, 1995.  

[11]  Y. A. Khulief and H. Al-Naser, "Finite Element Dynamic Analysis of 
Drillstrings," Finite Elements in Analysis and Design, vol. 41, no. 13, pp. 1270-
1288, 2005.  

[12]  A. S. Yigit and A. P. Christoforou, "Coupled Axial and Transverse Vibrations of 
Oil Well Drillstrings," Journal of Sound and Vibration, vol. 195, no. 4, pp. 617-
627, 1996.  



 

100 
 

[13]  A. P. Christoforou and A. S. Yigit, "Dynamic Modelling of Rotating Drillstrings 
with Borehole Interactions," Journal of Sound and Vibration, vol. 206, no. 2, pp. 
243-260, 1997.  

[14]  S. A. Al-Hiddabi, B. Samanta and A. Seibi, "Non-Linear Control of Torsional 
and Bending Vibrations of Oilwell Drillstrings," Journal of Sound and Vibration, 
vol. 265, no. 2, pp. 401-415, 2003.  

[15]  H. Melakhessou, A. Berlioz and G. Ferraris, "A Nonlinear Well-Drillstring 
Interaction Model," Sound and Vibration, vol. 125, no. 1, pp. 46-52, 2003.  

[16]  R. I. Leine and D. H. van Campen, "Stick-Slip Whirl Interaction in Drillstring 
Dynamics," Journal of Vibration and Acoustics, vol. 124, pp. 209-220, 2002.  

[17]  N. Mihajlovic, N. van de Wouw, M. P. M. Hendriks and H. Nijmeijer, "Friction-
Induced Limit Cycling in Flexible Rotor Systems: An Experimental Drillstring 
Set-Up," Nonlinear Dynamics, vol. 46, no. 3, pp. 273-291, 2006.  

[18]  Y. A. Khulief, F. A. Al-Sulaiman and S. Bashmal, "Vibration Analysis of 
Drillstrings with Self-Excited Stick-Slip Oscillations," Sound and Vibration, vol. 
299, no. 3, pp. 540-558, 2007.  

[19]  Z. N. Ahmadabadi and S. E. Khadem, "Self-Excited Oscillation Attenuation of 
Drill-String System Using Nonlinear Energy Sink," Proceedings of the Institution 
of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 
vol. 227, no. 2, pp. 230-245, 2013.  

[20]  X. Zhu and C. Lai, "Design and Performance Analysis of a Magnetorheological 
Fluid Damper for Drillstring," International Journal of Applied Electromagnetics 
and Mechanics, vol. 40, no. 1, pp. 67-83, 2012.  

[21]  H. Moradi, F. Bakhtiari-Nejad and M. Sadighi, "Suppression of the Bending 
Vibration of Drill Strings via an Adjustable Vibraiton Absorber," International 
Journal of Acoustics and Vibration, vol. 17, no. 3, pp. 155-163, 2012.  

[22]  S. A. Aldushaishi, "Investigation of Drillstring Vibration Reduction Tools," 
Master Thesis, University of Science and Technology, Missouri, USA, 2012. 

[23]  H. D. Nelson, "A Finite Rotating Shaft Element Using Timoshenko Beam 
Theory," Journal of Mechanical Design, vol. 102, no. 4, pp. 793-803, 1980.  

[24]  J. N. Reddy, An Introduction to Finite Element Method, 3rd Edition, New York: 
McGraw Hill, Inc., 2006.  

[25]  L. Meirovitch, "A New Method of Solution of the Eigenvalue Problem for 
Gyroscopic Systems," AIAA, vol. 12, no. 10, pp. 1337-1342, 1974.  

[26]  L. Meirovitch, Principles & Techniques of Vibrations, New Jersey: Prentice-Hall, 
1997.  



 

101 
 

[27]  T. Yokoyama, "Vibrations of a Hanging Timoshenko Beam Under Gravity," 
Journal of Sound and Vibration, vol. 141, no. 2, pp. 245-258, 1990.  

[28]  L. Brillouin, Wave Propatation in Periodic Structures, 2nd Edition, Dover, 1946.  
[29]  D. J. Mead, "Free Wave Propagation in Periodically Supported Infinite Beams," 

Jouranl of Sound and Vibration, vol. 11, no. 2, pp. 181-197, 1970.  
[30]  L. Cremer, M. Heckel and E. Ungar, Structure-Borne Sound, New York: 

Springer-Verlag Berlin Heidelberg, 1988.  
[31]  M. Faulkner and D. Hong, "Free Vibrations of a Mono-Coupled Periodic 

System," Journal of Sound and Vibration, vol. 99, no. 1, pp. 29-42, 1985.  
[32]  D. J. Mead, "Wave Propagation and Natural Modes in Periodic System: I. Mono-

Coupled Systems," Journal of Sound and Vibration, vol. 40, no. 1, pp. 1-18, 1975.  
[33]  D. J. Mead and S. Markus, "Coupled Flexural-Longitudinal Wave Motion in a 

Periodic Beam," Journal of Sound and Vibration, vol. 90, no. 1, pp. 1-24, 1983.  
[34]  D. J. Mead, "Vibration Response and Wave Propagation in Periodic Structures," 

ASME Journal of Engineering for Industry, vol. 93, no. 1, pp. 783-792, 1971.  
[35]  D. J. Mead and Y. Yaman, "The Harmonic Response of Rectangular Sandwich 

Plates with Multiple Stiffening: A Flexural Wave Analysis," Journal of Sound 
and Vibration, vol. 145, no. 3, pp. 409-428, 1991.  

[36]  G. S. Gupta, "Natural Flexural Waves and the Normal Modes of Periodically-
Supported Beams and Plates," Journal of Sound and Vibration, vol. 13, no. 1, pp. 
89-111, 1970.  

[37]  Z. Liu, C. T. Chan and P. Sheng, "Analytic Model of Phononic Crystals with 
Local Resonances," Physical Review B, vol. 71, no. 1, p. 014103, 2005.  

[38]  M. Nouh, O. Aldraihem and A. Baz, "Vibration Characteristics of Metamaterial 
Beams with Periodic Local Resonances," Journal of Vibration and Acoustics, vol. 
136, no. 6, p. 061012, 2014.  

[39]  L. Meirovitch, Fundamentals of Vibration, Long Grove, IL: Waveland, 2010.  
[40]  A. S. Yigit and A. P. Christoforou, "Coupled Torsional and Bending Vibrations 

Actively Controlled Drillstrings," Journal of Sound and Vibration, vol. 234, no. 
1, pp. 67-83, 2000.  

[41]  A. P. Christoforou and A. S. Yigit, "Fully Coupled Vibrations of Actively 
Controlled Drillstrings," Journal of Sound and Vibration, vol. 267, no. 5, pp. 
1029-1045, 2003.  

[42]  N. Mihajlovic, "Torsional and Lateral Vibrations in Flexible Rotor Systems with 
Friction," Ph.D. Dissertation, Eindhoven: Technische Universiteit Eindhoven, 
2005. 



 

102 
 

[43]  B. Hoie, "Drillstring Oscillations During Connections When Drilling From a 
Semi-Submersible Platform," Master Thesis, Stavanger University, Stavanger, 
Norway, 2012. 

[44]  A. Esmaeili, B. Elahifar, R. K. Fruhwirth and G. Thonhauser, "Axial Vibration 
Monitoring in Laboratory Scale Using CDC MiniRig and Vibration Sensor Sub," 
in Instrumentation and Measurement Technology Conference, Graz, Austria, 
May 13-16, 2012.  

[45]  I. Boussaada, H. Mounier, S. I. Niculescu and A. Cela, "Analysis of Drilling 
Vibrations: a Time-Delay System Approach," in Control and Automation (MED), 
20th Mediterranean Conference, Barcelona, Spain, July 3-6, 2012.  

[46]  A. Ghasemloonia, D. G. Rideout and S. D. Butt, "Coupled Transverse Vibration 
Modeling of Drillstrings Subjected to Torque and Spatially Varying Axial Load," 
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of 
Mechanical Engineering Science, vol. 227, no. 5, pp. 946-960, 2013.  

[47]  Y. A. Khulief, F. A. Al-Sulaiman and S. Bashmal, "Laboratory Investigation of 
Drillstring Vibrations," Proceedings of the Institution of Mechanical Engineers, 
Part C: Journal of Mechanical Engineering Science, vol. 223, no. 1, pp. 2249-
2262, 2009.  

[48]  Y. A. Khulief, F. A. Al-Sulaiman and S. Bashmal, "Vibration Analysis of 
Drillstrings with String-Borehole Interaction," Proceedings of the Institution of 
Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 
222, no. 1, pp. 2099-2110, 2008.  

[49]  T. G. Ritto, C. Soize and R. Sampaio, "Non-Linear Dynamics of a Drill-String 
with Uncertain model of the Bit-Rock Interaction," International Journal of Non-
Linear Mechanics, vol. 44, no. 8, pp. 865-876, 2009.  

[50]  A. Bazoune and Y. A. Khulief, "Shape Functions of the Three-Dimensional 
Timoshenko Beam Element," Journal of Sound and Vibration, vol. 259, no. 2, 
pp. 473-480, 2002.  

[51]  S. H. Choi, C. Pierre and A. G. Ulsoy, "Consistent Modeling of Rotating 
Timoshenko Shafts Subject to Axial Loads," ASME Journal of Vibration and 
Acoustics, vol. 114, no. 2, pp. 249-259, 1992.  

[52]  ANSI/IEEE Std 176-1987, Standard on Piezoelectricity.  
[53]  Karkoub, M.; Zribi, M.; Elchaar, L.; Lamont, L.;, "Robust mu-Synthesis 

Controllers for Suppressing Stick-Slip induced Vibrations in Oil Well 
Drillstrings," Multibody System Dynamics, vol. 23, pp. 191-207, 2010.  

[54]  L. Li, Q. Zhang and N. Rasol, "Time Varying Sliding Mode Adaptive Control for 
Rotary Drilling System," Journal of Computers, vol. 6, no. 3, pp. 564-570, 2011.  



 

103 
 

[55]  G. Downton, "Challenges of Modeling Drilling Systems for the Purposes of 
Automation and Control," in IFAC Workshop on Automatic Control in Offshore 
Oil and Gas Production, Norwegian University of Science and Technology, 
Trondheim, Norway, May 31 - June 1, 2012.  

[56]  V. Utkin, Sliding Modes in Control Optimization, Berlin: Springer-Verlag, 1992.  
 
 


	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1                                                                  Introduction
	1.1 Overview
	1.1.1 Drill String Major Components
	1.1.2 Drill String Vibration Modes

	1.2 Literature Review
	1.3 The Concept of Passive Periodic Drill Strings
	1.4 Scope of the Dissertation
	1.5 Summary

	Chapter 2                                                                             Finite Element Modeling of Conventional Drill String
	1
	2
	2.1 Overview
	2.2 The Finite Element Model
	2.2.1 Beam Element
	2.2.2 Shape Functions
	2.2.3 Element Kinetic Energy
	2.2.4 Element Strain Energy
	2.2.5 Element Equation of Motion
	2.2.6 Element Matrices Assembly
	2.2.7 Boundary Conditions

	2.3 Model Verification
	2.3.1 Model Analysis
	2.3.2 Numerical Simulations
	2.3.2.1 Simulation (A)

	2.3.1
	2.3.2
	2.3.2.2 Simulation (B)
	2.3.2.3 Simulation (C)
	2.3.2.4 Simulation (D)


	2.4 Summary

	Chapter 3                                                                           Passive Periodic Drill String
	3.1 Overview
	3.2 Modeling of Non-Rotating Passive Periodic Drill String
	3.2.1 Overview
	3.2.2 Transfer Matrix Method
	3.2.3 Band Gap Characteristics of Non-Rotating Periodic Drill String

	3.3 Modeling of Gyroscopic Passive Periodic Drill String
	3.3.1 Overview
	3.3.2 Bloch Wave Propagation Theory
	3.3.3 Band Gap Characteristics of Gyroscopic Periodic Drill String

	3.4 Full Scale Model Simulation
	3.5 Summary
	1
	2
	3

	Chapter 4                                                                      Experimental Results
	3
	4
	4
	4.1 Overview
	4.2 Experimental Set-up
	4.3 Performance of Conventional Drill String
	4.3.1 Predictions of Resonant Frequencies
	4.3.2 Performance in Frequency Domain

	4.4 Performance of Non-Rotating Passive Periodic Drill String
	4.4.1 Predictions of Resonant Frequencies
	4.4.2 Performance in Frequency Domain

	4.5 Performance of Gyroscopic Passive Periodic Drill String
	4.5.1 Predictions of Resonant Frequencies
	4.5.2 Performance in Frequency Domain

	4.6 Summary

	Chapter 5                                                                           Conclusions and Recommendations
	5
	5.1 Overview
	5.2 Conclusions
	5.3 Recommendations
	5.4 Major Contributions
	5.5 Summary

	5
	References

