
ABSTRACT

Title of dissertation: GENOME ASSEMBLY AND VARIANT DETECTION
USING EMERGING SEQUENCING TECHNOLOGIES
AND GRAPH BASED METHODS

Jay Ghurye
Doctor of Philosophy, 2018

Dissertation directed by: Professor Mihai Pop
Department of Computer Science

The increased availability of genomic data and the increased ease and lower costs

of DNA sequencing have revolutionized biomedical research. One of the critical steps

in most bioinformatics analyses is the assembly of the genome sequence of an organ-

ism using the data generated from the sequencing machines. Despite the long length of

sequences generated by third-generation sequencing technologies (tens of thousands of

basepairs), the automated reconstruction of entire genomes continues to be a formidable

computational task. Although long read technologies help in resolving highly repetitive

regions, the contigs generated from long read assembly do not always span a complete

chromosome or even an arm of the chromosome. Recently, new genomic technologies

have been developed that can “bridge” across repeats or other genomic regions that are

difficult to sequence or assemble and improve genome assemblies by “scaffolding” to-

gether large segments of the genome. The problem of scaffolding is vital in the context of

both single genome assembly of large eukaryotic genomes and in metagenomics where

the goal is to assemble multiple bacterial genomes in a sample simultaneously.

First, we describe SALSA2, a method we developed to use interaction frequency

between any two loci in the genome obtained using Hi-C technology to scaffold frag-

mented eukaryotic genome assemblies into chromosomes. SALSA2 can be used with

either short or long read assembly to generate highly contiguous and accurate chromo-

some level assemblies. Hi-C data are known to introduce small inversion errors in the

assembly, so we included the assembly graph in the scaffolding process and used the

sequence overlap information to correct the orientation errors.

Next, we present our contributions to metagenomics. We developed a scaffolding

and variant detection method “MetaCarvel” for metagenomic datasets. Several factors

such as the presence of inter-genomic repeats, coverage ambiguities, and polymorphic

regions in the genomes complicate the task of scaffolding metagenomes. Variant detec-

tion is also tricky in metagenomes because the different genomes within these complex

samples are not known beforehand. We showed that MetaCarvel was able to generate

accurate scaffolds and find genome-wide variations de novo in metagenomic datasets.

Finally, we present EDIT, a tool for clustering millions of DNA sequence fragments

originating from the highly conserved 16s rRNA gene in bacteria. We extended classi-

cal Four Russians’ speed up to banded sequence alignment and showed that our method

clusters highly similar sequences efficiently. This method can also be used to remove

duplicates or near duplicate sequences from a dataset.

With the increasing data being generated in different genomic and metagenomic

studies using emerging sequencing technologies, our software tools and algorithms are

well timed with the need of the community.

GENOME ASSEMBLY AND VARIANT DETECTION USING
EMERGING SEQUENCING TECHNOLOGIES AND GRAPH BASED

METHODS

by

Jay Ghurye

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2018

Advisory Committee:
Professor Mihai Pop, Chair/Advisor
Dr. Adam M. Phillippy,
Professor Héctor Corrada Bravo,
Professor Aravind Srinivasan,
Professor Max Leiserson,
Professor Michael Cummings, Dean’s Representative

c© Copyright by
Jay Ghurye

2018

Preface

The algorithms, software, and results in this dissertation have either been published

in peer-reviewed journals and conferences or are currently under preparation for submis-

sion. At the time of this writing, Chapters 2, 4, 5, and 7 have already been published or

submitted for publication and are reformatted here. Chapter 3 and 6 are under preparation

for submission. I am indebted to my co-authors on these projects - their dedication and

knowledge in the areas of computer science, statistics, and biology have resulted in much

stronger scientific papers.

• Chapter 1

- Jay Ghurye, Victoria Cepeda-Espinoza, and Mihai Pop. “Focus: Microbiome:

Metagenomic Assembly: Overview, Challenges and Applications.” The Yale jour-

nal of biology and medicine 89.3 (2016): 353.

My contributions to these works include (1) surveying the literature for recent and

seminal results, and (2) writing the manuscripts.

• Chapter 2

- Jay Ghurye and Mihai Pop. “Algorithms and technologies for uncovering genome

structure,” Under review.

My contributions to these works include (1) surveying the literature for recent and

seminal results, and (2) writing the manuscripts.

• Chapter 3

- Jay Ghurye, Mihai Pop, Sergey Koren, Derek Bickhart, and Chen-Shan Chin.

ii

“Scaffolding of long read assemblies using long range contact information.” BMC

genomics 18, no. 1 (2017): 527.

- Jay Ghurye, Arang Rhie, Brian P. Walenz, Anthony Schmitt, Siddarth Selvaraj,

Mihai Pop, Adam M. Phillippy, and Sergey Koren. “Integrating Hi-C links with

assembly graphs for chromosome-scale assembly.” bioRxiv (2018): 261149.

My contributions to these works include (1) design and implementation of the al-

gorithm, (2) doing software evaluation, and (3) writing the manuscript.

• Chapter 4

- Jay Ghurye, Sergey Koren, Arang Rhie, Brian Walenz, Siddarth Selvaraj, An-

thony Schmitt and Adam Phillippy “Effect of different Hi-C library preparation on

eukaryotic genome scaffolding”, Under preparation

My contributions to these works include (1) designing and running experiments, (2)

writing the manuscript.

• Chapter 5

- Jay Ghurye, and Mihai Pop. “Better Identification of Repeats in Metagenomic

Scaffolding.” In International Workshop on Algorithms in Bioinformatics, pp. 174-

184. Springer, Cham, 2016.

My contributions to these works include (1) design and implementation of the al-

gorithm, (2) doing software evaluation, (3) writing the manuscript.

• Chapter 6

- Jay Ghurye, Todd Treangen, Sergey Koren, Marcus Fedarko, W. Judson Hervey

iii

IV and Mihai Pop “MetaCarvel: linking assembly graph motifs to biological vari-

ants”, Under preparation.

My contributions to these works include (1) design and implementation of the al-

gorithm, (2) doing software evaluation, and (3) writing the manuscript.

• Chapter 7

- Brian Brubach∗, Jay Ghurye∗, Mihai Pop and Aravind Srinivasan, 2017. “Bet-

ter Greedy Sequence Clustering with Fast Banded Alignment”. In LIPIcs-Leibniz

International Proceedings in Informatics (Vol. 88). Schloss Dagstuhl-Leibniz-

Zentrum fuer Informatik. (∗ denotes equal contribution)

My contributions to these works include (1) design and implementation of the al-

gorithm, (2) doing software evaluation, and (3) writing the manuscript.

Here is the list of other publications I have been involved, either as a first author or

a contributing author.

• Jay Ghurye, Gautier Krings and Vanessa Frias-Martinez, 2016, June. “A Frame-

work to Model Human Behavior at Large Scale during Natural Disasters”. In Mo-

bile Data Management (MDM), 2016 17th IEEE International Conference on (Vol.

1, pp. 18-27). IEEE.

• Brian Brubach∗, Jay Ghurye∗, 2018. “A Succinct Four Russian’s Speedup for

Edit Distance Computation and One-against-many Banded Alignment”. In LIPIcs-

Leibniz International Proceedings in Informatics (Vol. 105). Schloss Dagstuhl-

Leibniz-Zentrum fuer Informatik (∗ denotes equal contribution).

iv

• Jay Ghurye, Sergey Koren, Scott Small, Adam Phillippy, and Nora Besansky. “De

novo assembly of Anopheles funestus genome”. (Under preparation)

• - Marcus Fedarko, Jay Ghurye, Todd Treagen, and Mihai Pop. “MetagenomeScope:

Web-Based Hierarchical Visualization of Metagenome Assembly Graphs.” (2017):

630-632. (Under submission)

• Nathan D. Olson, Todd J. Treangen, Christopher M. Hill, Victoria Cepeda-Espinoza,

Jay Ghurye, Sergey Koren, and Mihai Pop. “Metagenomic assembly through

the lens of validation: recent advances in assessing and improving the quality of

genomes assembled from metagenomes.” Briefings in bioinformatics (2017).

• Seth Commichaux, Nidhi Shah, Alexander Stoppel, Jay Ghurye, Michael Cum-

mings and Mihai Pop. “A Critical Analysis of the Integrated Gene Catalog,” (Under

preparation)

v

Dedication

To my parents for their unconditional love and support

vi

Acknowledgments

I owe my gratitude to all the people who have made this thesis possible and because

of whom my graduate experience has been the one that I will cherish forever.

First, I would like to thank my advisor, Professor Mihai Pop for giving me an in-

valuable opportunity to work on challenging and exciting projects. It has been a pleasure

to work with and learn from such an extraordinary individual. His advice has always

helped me at various stages in the graduate program and helped me grow as a researcher

and better person.

I would also like to thank all of my other committee members - Michael Cum-

mings, Aravind Srinivasan, Héctor Corrada Bravo, Max Leiserson, and Adam Phillippy

for being interested in my research. Your feedback has been instrumental in shaping this

dissertation.

I would like to thank all my collaborators who contributed to the work described

in this dissertation. Primarily, I would want to thank Adam Phillippy for giving me an

opportunity to work on exciting projects with his group at NIH. A special thank you

to Sergey Koren and Arang Rhie for continuous guidance regarding genome assembly

related concepts. I also especially want to thank Jason Chin, who was my mentor at

Pacific Biosciences during my internship. Working with all of you has broadened my

interest and knowledge in the area of Bioinformatics and Computational Biology.

I am very grateful to Professor Rajiv Gandhi without whom I would not have even

considered pursuing a Ph.D. Because of his guidance, I felt confident to apply for graduate

programs after my undergrad.

vii

My colleagues at the Pop lab have enriched my graduate life in several ways. I

am thankful to Victoria Cepeda, Brian Brubach, Nidhi Shah, Brook Stacy, Kiran Javkar,

Jackie Meisel, Dan Nasko, Todd Treangen, Marcus Fedarko, Nate Olson, and Jeremy

Selengut. I will miss the discussions we had over the lab lunches and in the offices. I am

grateful to CBCB coordinators Christine Maria Bogan and Barbara Lewis for taking care

of all the logistics related to conference travel. Also, I am thankful to UMIACS staff for

providing and supporting excellent compute infrastructure.

I would like to thank my friends Yogarshi, Karthik, Jaideep, Suraj, Pallabi, Sudha,

Mary, and many others for making my non-academic life enjoyable and memorable.

Finally, special thanks must go to my parents Vaibhavi and Shrirang, my sister

Shruti, and my girlfriend Nidhi for their love and support. I appreciate it more than I can

say.

It is impossible to remember everyone, so I apologize to anyone who may have

been left out. If I forgot you, let me know, and I will happily buy you lunch.

viii

Table of Contents

Preface ii

Dedication vi

Acknowledgements vii

List of Tables xiii

List of Figures xiv

List of Abbreviations xvi

1 Introduction 1
1.1 Genome assembly . 3
1.2 Genome scaffolding . 7
1.3 Metagenomics . 8

1.3.1 Marker gene analysis . 10
1.3.2 Whole metagenome sequencing 11

1.4 Contributions . 12

2 Related work 14
2.1 Source of information for genome scaffolding 14

2.1.1 Physical mapping technologies 15
2.1.2 Paired-read technologies . 18
2.1.3 Chromosomal contact data . 21
2.1.4 Subcloning . 24
2.1.5 Conservation of synteny . 26
2.1.6 Scaffolding based on long reads 27

2.2 Gap filling . 28
2.3 Hybrid scaffolding . 29
2.4 Haplotype phasing . 30
2.5 Conclusion . 31

ix

3 Scaffolding large eukaryotic genomes with HiC data 33
3.1 Introduction . 33
3.2 Methods . 37

3.2.1 Hi-C library preparation . 39
3.2.2 Read alignment . 39
3.2.3 Unitig correction . 41
3.2.4 Assembly graph construction . 41
3.2.5 Scaffold graph construction . 42
3.2.6 Unitig layout . 44
3.2.7 Iterative mis-join correction . 45

3.3 Results . 46
3.3.1 Dataset description . 46
3.3.2 Contact probability of Hi-C data 49
3.3.3 Scoring effectiveness . 50
3.3.4 Evaluation on simulated unitigs 51

3.3.4.1 Assembly correction 51
3.3.4.2 Scaffold mis-join validation 51
3.3.4.3 Scaffold accuracy . 53

3.3.5 Evaluation on NA12878 . 54
3.3.6 Robustness to input library . 59

3.4 Conclusion . 60

4 Tuning Hi-C library preparation for accurate scaffolding 62
4.1 Introduction . 62
4.2 Methods . 63

4.2.1 Hi-C libraries and read Mapping 63
4.2.2 Scaffolding with HiC data . 64
4.2.3 Haplotype phasing . 64

4.3 Results . 65
4.3.1 Library characteristics . 65
4.3.2 Scaffolding accuracy with different libraries 67
4.3.3 Polishing accuracy . 68
4.3.4 Accuracy of haplotype phasing 69

4.4 Conclusion . 70

5 Better identification of repeats in metagenomic scaffolding 72
5.1 Introduction . 72
5.2 Related work . 75

5.2.1 Repeat detection in scaffolding 75
5.2.2 Betweenness centrality . 75

5.3 Methods . 76
5.3.1 Construction of scaffold graph 76
5.3.2 Orienting the bidirected scaffold graph 77
5.3.3 Repeat detection through betweenness centrality 78
5.3.4 Repeat detection with an expanded feature set 78

x

5.4 Results . 79
5.4.1 Dataset and assembly . 79
5.4.2 Extended feature set improves repeat detection 80
5.4.3 Important parameters in determining repeats 80
5.4.4 Comparison of incorrectly oriented pair of contigs 83
5.4.5 Comparison of runtime with bambus 2 83

5.5 Discussion and conclusion . 84

6 MetaCarvel: linking assembly graph motifs to biological variants 86
6.1 Introduction . 86
6.2 Methods . 89

6.2.1 Contig graph construction . 89
6.2.2 Repeat detection . 90
6.2.3 Orientation . 91
6.2.4 Bubble collapsing . 92
6.2.5 Linear scaffold generation . 94

6.3 Results . 95
6.3.1 Effect of microbial mixtures on scaffolding 95
6.3.2 Accuracy of detection insertions and deletions 98
6.3.3 Detection of regions with high sequence variation 99
6.3.4 Effectiveness in detecting repeats 100
6.3.5 Evaluation of scaffold quality using synthetic datasets 101
6.3.6 Evaluation using real metagenomics data 102

6.4 Scaffolding all samples from Human Microbiome Project (HMP) 104
6.5 Discussion and conclusion . 107

7 Better greedy sequence clustering with fast banded alignment 109
7.1 Introduction . 109

7.1.1 Related Work . 110
7.1.2 Preliminaries . 112

7.1.2.1 Distance metric . 113
7.1.2.2 Intervals . 113
7.1.2.3 Greedy clustering . 114

7.1.3 Our Contributions . 115
7.2 Recruiting algorithm . 116

7.2.1 Banded Four Russians’ approach 116
7.2.1.1 Warm-up: classic Four Russians’ speedup 116
7.2.1.2 Our approach to the Four Russians’ speedup 119
7.2.1.3 Theoretical bound on the running time of our approach 120

7.2.2 The Edit Distance Interval Trie (EDIT) 122
7.2.3 Recruiting to a center . 122

7.3 Experimental results . 123
7.3.1 Properties of our recruitment algorithm and data structure 123
7.3.2 Comparison with UCLUST . 126

7.3.2.1 Running time analysis 126

xi

7.3.2.2 Evaluation of clusters 127
7.4 Conclusion and future directions . 130

8 Other contributions 132
8.1 A critical analysis of the Integrated Gene Catalog 132
8.2 A succinct four Russians’ speedup for edit distance computation and one-

against-many banded alignment . 133
8.3 Hierarchically visualizing metagenome assembly graphs with

metagenomeScope . 134
8.4 A chromosome-scale assembly of Anopheles funestus 135
8.5 Framework to model human behavior at large ccale during natural disasters136

9 Conclusion 138

Bibliography 141

xii

List of Tables

1.1 Overview of different sequencing technologies 3

3.1 Assembly scaffold and correctness statistics for NA12878 assemblies scaf-
folded with different Hi-C libraries . 56

4.1 Alighment statistics of Hi-C and Prime libraries when aligned to Human
and Chicken reference genomes. 65

4.2 Assembly scaffold and correctness statistics for Human and Chicken genome
assemblies when scaffolded with Hi-C and Prime libraries. 68

4.3 Accuracy of haplotype phasing using Prime and Hi-C data in NA12878
human genome . 69

5.1 Number of correctly and incorrectly oriented links in scaffold graph using
various repeat removal strategies . 84

6.1 Comparison of the accuracy of repeat detection in MetaCarvel and OPERA-
LG on different datasets. 100

6.2 Comparison of reference based assembly statistics for synthetic metage-
nomic dataset. 101

6.3 Comparison of reference free assembly statistics for real metagenomic
datasets. 104

6.4 Graph and sample statistics for HMP2 samples 107

xiii

List of Figures

1.1 Overview of the genome assembly process 2
1.2 Different algorithms for de novo genome assembly 6
1.3 Typical whole metagenomic analysis pipeline 8

2.1 The linkage information provided by different sequencing technologies . 15
2.2 Alignment/Mapping based scaffolding approaches 16
2.3 Using pairwise linking information for scaffolding 19

3.1 Overview of the SALSA2 scaffolding algorithm 38
3.2 An example of mis-assembly detection algorithm in SALSA2 40
3.3 The probability of contact calculated based on read mapping to GRCh38

reference. 48
3.4 Precision at different cutoffs for Hi-C links 49
3.5 Comparison of orientation, ordering, and chimeric errors in the scaffolds

produced by SALSA2 and 3D-DNA on the simulated data 50
3.6 Distribution of the distance between the predicted misassembly location

to the actual misassembly location in the simulated data 52
3.7 Scaffold statistics comparison on simulated data 52
3.8 Contiguity and FRC plots for different Hi-C datasets 55
3.9 Chromosome ideogram generated to observe gain in contiguity 56
3.10 Contact map of Hi-C interactions on Chromosome 3 58

4.1 Density plots for Hi-C and Prime library per-base coverage for human
and chicken genomes when aligned to the reference genome. 66

5.1 Assembly graph of a simulated community consisting of 200 Kbp subsets
of Escherichia coli str. K-12 MG1655 and Staphylococcus aureus 74

5.2 Plot for comparison of Random Forest classifier with the coverage and
centrality approach . 81

5.3 Importance of features used in Building Random Forest classifier 82

6.1 Overview of MetaCarvel pipeline . 89
6.2 Different types of motifs detected by MetaCarvel 94
6.3 Scaffold statistics for Acinetobacter baumannii strain mixtures 97

xiv

6.4 Variants detected in one of the components of Acinetobacter baumanii
scaffold graph . 98

6.5 A component in the scaffold graph for HMP stool sample 104
6.6 Scaffold statistics for HMP samples grouped by different body sites . . . 106

7.1 An example of how a string is divided in overlapping substrings called
intervals . 114

7.2 Example of classic Four Russians’ . 117
7.3 Example of our approach to the Four Russians’ speedup 120
7.4 Example illustrating the steps of Algorithm 3 with d = 1 and k = 5. . . . 123
7.5 Average number of nodes explored in the tree 124
7.6 The probability of backtracking at a particular level 126
7.7 Running time comparison of EDIT and UCLUST 126
7.8 Evaluation at similarity threshold of 99%. All the plots are log scaled. . . 127
7.9 Evaluation at similarity threshold of 97%. All the plots are log scaled. . . 128
7.10 Cluster size at 97% and 99% similarity threshold. All the plots are log

scaled. 129

xv

List of Abbreviations

WGS Whole Genome Sequencing
HMP Human Microbiome Project
VGP Vertebrate Genome Project
NGS Next Generation Sequencing
FRC Feature Response Curve
DNA Deoxyribonucleic Acid
OTU Operational Taxonomic Unit
STS Sequence Tagged Sites
FISH Fluorescent in situ hybridization
C3 Chromosomal Conformation Capture
BAC Bacterial Artificial Chromosome
TSLR TruSeq Synthetic Long-Read
TAD Topologically Associated Domains
PCR Polymerase Chain Reaction
GFA Graphical Fragment Assembly
PCR Polymerase Chain Reaction

xvi

Chapter 1: Introduction

The genome sequence of an organism is a blueprint to build that organism. It is a

starting point that allows researchers to study an organism’s evolutionary history and link

its genomic features to phenotypic features and more. The invention of DNA sequencing

technologies has revolutionized genome analysis. In 2001, by using sequencing data and

sophisticated computational algorithms, the first draft sequences of the human genome

were made publicly available [1, 2]. Owing to the fast-paced development of sequencing

technologies and data analysis algorithms, the human genome has undergone at least a

dozen revisions. Also, due to ease of genome sequencing, different plant and animal

species are being sequenced to understand the biology of different species on the planet

better.

The data generated by sequencing machines is fragmented and usually contains se-

quencing errors. Thus, significant computational efforts are involved in correcting the

data and assembling it into a complete genome sequence. This need of computational

methods has given rise to a whole new branch of bioinformatics called “genome assem-

bly,” where the goal is to develop computational methods to obtain complete genome

sequences of an organism by using a combination of different sequencing technologies.

Although the problem of genome assembly has been studied for about 40 years [3], it is

1

Sequencing Machine

>Sequence1
AATTAACCCGG
>Sequence2
CAATTAAGAAA
>Sequence3
GCCAACCTAA
………
………

Reads

Genome Assembler

Assembly!!!

Genetic Material

Figure 1.1: Overview of the genome assembly process. First, genetic material is se-
quenced, generating a collection of sequenced fragments (reads). These reads are pro-
cessed by a computer program called an assembler which merges the reads based on their
overlap to construct larger contiguous segments of the genome (contigs). Contigs are
then oriented and ordered with respect to each other with a computer program called a
scaffolder, relying on a variety of sources of linkage information. The scaffolds provide
information about the long-range structure of the genome without specifying the actual
DNA sequence within the gaps between contigs. The size of the gaps can also only be
approximately estimated.

not yet completely solved. Also, newer sequencing technologies provide different kinds

of information which facilitate the genome assembly process. Hence new algorithms need

to be developed to accommodate such information.

In this chapter, we provide an overview of the genome assembly process and dif-

ferent paradigms used to solve the genome assembly problem. We then discuss metage-

nomics, where the goal is to understand the genomic sequence of multiple organisms

simultaneously. We conclude the chapter with the outline of original contributions pre-

sented in the dissertation.

2

Technology Read Length Accuracy Time per run Bases per run

Single Molecule Real-Time Sequencing 5 kbp to 50 kbp 87% (Low) 30 minutes to 4 hours 5 10 Gb

Oxford Nanopore MinION Sequencing 5 kbp to 2000 kbp 70% to 90% (Low) 1 to 2 days 500 Mb

Ion Semiconductor Up to 400 bp 98% (Medium) 2 hours 10Gb

Sequencing by synthesis (Illumina) 50-300bp 99.9% (High) 1 to 11 days 300 Gb

Sequencing by ligation 75 bp 99.9% (High) 1 to 2 weeks 3 Gb

Pyrosequencing (454) 700 bp 98% (Medium) 24 hours 400 Mb

Chain termination sequencing 400 to 900 bp 99.9% (High) 20 mins to 3 hours 50 - 100 Kb

Table 1.1: Overview of different sequencing technologies

1.1 Genome assembly

Genome assembly [4] (Figure 1.1) is the reconstruction of genomes from the smaller

DNA segments, called reads, which are generated by a sequencing experiment. Various

sequencing technologies have been developed in the past couple of decades that would

help generate contiguous and accurate genome assemblies (see Table 1.1 for a summary

of various sequencing technologies along with their properties). In many cases, reads are

paired-end or mate-paired, which means that pairs of reads are sequenced from the ends

of the same DNA fragment. The distance between the reads in each pair and their relative

orientation are approximately known. This information is used to resolve ambiguities

caused by repetitive sequences during assembly [5] as well as to order and orient the as-

sembled contigs, the fragments of the genome that could be stitched together from the

set of reads [6]. Below, we detail most commonly used approaches to solve the genome

assembly problem.

Greedy: This is the most intuitive and straightforward method of assembly. In this

method, individual reads are joined together into contigs in an iterative manner starting

with the reads that overlap best and ending once no more reads or contigs can be merged.

3

This approach is simple to implement and useful in many practical settings and was used

in several of the early genome assemblers such as TIGR [7], phrap [8], and VCAKE

[9]. This simple greedy method, however, has some severe drawbacks. The choices

made during the merging of reads/contigs are locally optimal and do not consider global

relationships between reads. As a result, the approach can get stuck or can result in

incorrect assemblies within repetitive sequences.

Overlap-Layout-Consensus: This three-step approach begins with a calculation

of pairwise overlaps between all pairs of reads. The overlaps are computed with a vari-

ant of a dynamic programming-based alignment algorithm, making assembly possible

even if the reads contain sequencing errors. This pairwise overlap information is used

to construct an overlap graph where nodes are reads and edges denote overlaps between

them. The layout stage consists of a simplification of the overlap graph to help identify

a path that corresponds to the sequence of the genome. More precisely, a path through

the overlap graph implies a ‘layout’ of the reads along the genome. In the consensus

stage, a layout is used to construct a multiple alignment of the reads and to infer the

likely sequence of the genome. Many assemblers used this assembly paradigm, including

Celera Assembler [1], which was used to reconstruct the human genome, and Arachne

assembler [10] used in many of the genome projects at the Broad Institute. The overlap-

layout-consensus approach has also re-emerged recently as the primary paradigm used in

assembling long reads with high error rates, such as those produced by the technologies

from Pacific Biosciences and Oxford Nanopore.

De Bruijn graph: The de Bruijn graph assembly paradigm focuses on the relation-

ship between substrings of fixed length k (k-mers) derived from the reads. The k-mers are

4

organized in a graph structure where the nodes correspond to the k-1 prefixes and suffixes

of k-mers, connected by edges that represent the k-mers (Figure 1.2.) In this approach

reads are not explicitly aligned with each other, rather their overlaps can be inferred from

the fact that they share k-mers. With this graph, the assembly problem is reduced to find-

ing a Eulerian path, a path through the graph that visits each edge once. The de Bruijn

graph paradigm is affected by errors in the reads much more than the Overlap-Layout-

Consensus paradigm as reads introduce false k-mers (false nodes and edges) in the graph.

An assembler must eliminate these errors before identifying a Eulerian path in the graph.

All practical de Bruijn assemblers include many heuristic strategies for eliminating errors

from the reads and the graph. This paradigm has been widely used since the introduction

of high throughput and relatively low-error sequencing technologies, in part because it is

easy to implement and efficient even in the high depth of coverage settings. Some notable

and widely used assemblers include: Velvet [11], SOAPdenovo2 [12], ALLPATHS [13],

and SPADES [14].

Tradeoffs between different assembly methods: None of the methods described

above is universally applicable; instead, each method has specific strengths and weak-

nesses depending on the characteristic of the data being assembled. The greedy method

is easy to implement and is useful when the data contain no or only short repeats. The

Overlap-Layout-Consensus approach is effective even at high error rates; however, its ef-

ficiency rapidly degrades with the depth of coverage and the number of sequences as it

starts by computing all-versus-all overlaps. The de-Bruijn graph approach is computa-

tionally efficient even at high depths of coverage; however, it is affected by errors in the

data and is, thus, most appropriate for relatively clean datasets.

5

Greedy Assembler

Iterative merge contigs with
maximum overlap

Overlap-Layout-Consensus

Find pairwise overlaps between all the
reads

Merge reads into contigs using
consensus and extend contigs

using mate-pairs

Generate final DNA sequence by
merging contigs

…..AATGCTCCGTAGAACTAA....

De-Bruijn Graph

Reads and 4-mers

R1: AATGCATTCAGAT
 AATG
 ATGC
 TGCA
 GCAT
 ……….

Graph and
Eulerian walk

Contigs Generated from Walk
…….AATTCGAATT……….

….TTTGCAGGGCATTT……..

….GACCGCTATATTGATAT…….

R1: ATAACGAATA R2:TAACGAATAG

 R3: AACGAATAGA R4: ACGAATAGAC

 R5: CGAATAGACT R6: GAATAGACTA

Overlap Graph

R
1

R
2

R
3

R
4

R
5

R
6

Reads Contigs

R2: AATGCATAGG

 AATG
 ATGC
 TGCA
 GCAT
 ……….

Shared k-mers Unique k-mers

ATAACGAATA
 TAACGAATAG

 AACGAATAGA
 ACGAATAGAC

 CGAATAGACT
 GAATAGACTA

 ATAACGAATAGACTA

Aligned
reads

Consensus contig

contig 1 contig 2

Figure 1.2: Overview of different de novo assembly paradigms. Schematic representation
of the three main paradigms for genome assembly Greedy, Overlap-Layout-Consensus,
and de Bruijn. Greedy assemblers merge reads with maximum overlaps are iteratively
into contigs. In Overlap-Layout-Consensus approach, a graph is constructed by finding
overlaps between all pairs of reads. This graph is further simplified, and contigs are
constructed by finding branch-less paths in the graph and taking the consensus sequence
of the overlapping reads implied by the corresponding paths. Contigs are further orga-
nized and extended using mate-pair information. In de Bruijn graph assemblers, reads
are chopped into short overlapping segments (k-mers) which are organized in a de Bruijn
graph structure based on their co-occurrence across reads. The graph is simplified to
remove artifacts due to sequencing errors, and branch-less paths are reported as contigs.

6

1.2 Genome scaffolding

Despite the long length of sequences generated by third-generation sequencing

technologies (tens of thousands of basepairs), the automated reconstruction of the entire

genomes is difficult, mainly due to genomic repeats, ubiquitous features of both prokary-

otic and eukaryotic genomes. These DNA segments that occur in two or more nearly-

identical copies within genomes induce ambiguity in the reconstruction of a genome. The

information contained in the reads alone cannot resolve this ambiguity. Furthermore,

genomes also contain regions with unusual base-pair composition that are difficult to se-

quence. As a result, typical genome assemblies are highly fragmented, comprising tens to

hundreds of thousands of contigs, without any knowledge of assignment of contigs to the

chromosomes. Scientists recognized this fact from the early days of genomics, and have

developed techniques that can generate information complementary to that contained in

the reads. The assembly of the first living organism to be sequenced (Haemophilus in-

fluenzae [15]) relied on paired-read data that linked together relatively distant segments

of the genome, allowing the assembled contigs to be ordered and oriented into a “scaf-

fold” of the H. influenzae main chromosome. Depending on the information used to

link contigs, the distance between adjacent contigs in the scaffold can also be estimated.

Recently, new genomic technologies have been developed that can “bridge” across even

longer repeats or other genomic regions that are difficult to sequence or assemble. These

technologies are increasingly used to help improve genome assemblies by “scaffolding”

together large segments of the genome. In Chapter 2, we review some of the technologies

and algorithms used for genome scaffolding in detail.

7

Figure 1.3: Metagenomic assembly pipeline: Multiple bacterial genomes within a com-
munity are represented as circles of different colors indicating multiple individuals from
the same organism. Note the different levels of sequencing coverage for the individual
organisms’ genomes, due to the different abundance of the organisms in the original sam-
ple. The reads are then assembled into contigs, and they are classified using k-mers and
coverage statistics. Contigs in each group are then binned to form draft genome sequences
for organisms within the population.

1.3 Metagenomics

Metagenomics is a fairly new research field focused on the analysis of sequencing

data derived from mixtures of organisms. It also provides a means to study unculturable

organisms that are otherwise difficult or impossible to analyze. Metagenomic data con-

sists of a mixture of DNA from different organisms and may comprise viral, bacterial, or

eukaryotic organisms. The different organisms present in a mixture may have widely dif-

8

ferent levels of abundance, as well as different levels of relatedness with each other. These

characteristics complicate the assembly process. As we described above, one of the main

challenges to the assembly of single organisms is due to repetitive DNA segments within

an organism’s genome. For a single organism, assuming a uniform sequencing process,

such repeats can be detected simply as anomalies in the depth of coverage (a two-copy

repeat would contain twice as many reads as expected). Due to the uneven (and unknown)

representation of the different organisms within a metagenomic mixture, simple coverage

statistics (such as flagging contigs with coverage higher than twice the average assembly

coverage or A-stat [16]) can no longer be used to detect the repeats. The confounding

effect of repeats on the assembly process is further exacerbated by the fact that unrelated

genomes may contain nearly-identical DNA (inter-genomic repeats) representing, for ex-

ample, mobile genetic elements. At the other extreme, the multiple individuals from

the same species may harbor small genetic differences (strain variants). The decision of

whether such differences can be ignored when reconstructing the corresponding genome,

or whether it is appropriate to reconstruct individual-specific genomes is not only compu-

tationally difficult but also ill-defined from a biological point of view. Furthermore, dis-

tinguishing true biological differences from sequencing errors becomes nearly impossible

in a metagenomic setting. Depending on the nature of the study, metagenomic analysis

falls into two different categories as follows.

9

1.3.1 Marker gene analysis

Certain genes in bacterial and fungal genomes are conserved across different species

and typically contain a highly variable region which is flanked by highly conserved re-

gions. These are called marker genes. Some examples of marker genes are 16s rRNA and

18s rRNA in bacteria and internal transcribed spacer (ITS) in fungi. These highly con-

served flanking regions in marker genes provide binding sites for PCR primers. Marker

gene amplification and sequencing are fast and cost-effective methods to obtain a low-

resolution composition of the microbial community. This approach works well for sam-

ples with host DNA contamination. The typical 16s rRNA analysis pipeline starts with

using primers designed to amplify and sequence one or a few hypervariable regions of the

16S rRNA gene. These sequences are then binned into groups called “Operational Taxo-

nomic Units” (OTUs) based upon sequence similarity [17, 18]. From each OTU cluster,

a single sequence is selected as a representative sequence. The representative sequence

is then annotated using a 16s rRNA gene classification method [19], and all sequences

within the OTU inherit that same annotation. Several pipelines [20, 21] have been de-

veloped to perform 16S rRNA gene analysis from end to end. Marker gene sequencing

usually correlates well with genomic content [22, 23]. Although this method provides a

quick, simple, and inexpensive way of preparing and analyzing samples [20, 24], there

are certain drawbacks. Marker gene analysis is typically subjected to amplification bi-

ases [25]. Since a part of the entire genome is sequenced (typically one or a few genes),

the resolution of the composition of a community is limited to a genus level at best. One

more drawback of 16s rRNA gene analysis is that some families of bacteria possess a

10

very similar 16s rRNA variable region, despite being genotypically and phenotypically

divergent. Because of this, the functional profiling of such bacterial communities may

not be accurate by using only marker gene data [26, 27].

1.3.2 Whole metagenome sequencing

Whole metagenome sequencing aims to sequence all genomes within a sample and

hence has a potential to provide better genomic information and taxonomic resolution

than marker gene sequencing. Contrary to marker gene analysis, whole metagenome

sequencing can profile functional characteristics of an entire community at the gene

level [28]. However, it is relatively expensive to prepare, sequence, and analyze a whole

metagenome sample. Whole metagenome sequencing also captures all DNA in the sam-

ple, including viral and eukaryotic DNA. By sequencing samples at adequate sequencing

depth, taxonomic resolution up to species or strain level can be achieved [29] using just

the reads. In some cases, reads are assembled to generate longer contig sequences which

can simplify bioinformatics analysis compared to unassembled short reads. These contigs

are then binned into separate putative genomes based on metrics such as coverage statis-

tics, GC content, and k-mers composition [30, 31]. Figure 1.3 shows a typical pipeline

to obtain binned metagenomes starting from sequenced reads. With a fragmented but

high-quality metagenome assembly, the genetic repertoire of a microbial community can

be identified using genome characterization tools. These include a gene identification

step [32, 33], followed by functional annotation pipelines [34, 35] commonly used for

characterizing genome assemblies. Some of the largest whole metagenome sequencing

11

projects [36] have used metagenomic assemblies to construct the microbial gene catalog

for human [37], mouse [38], and dog [39] gut metagenomes. Thus, whole metagenome

sequencing and analyses provide valuable insights into the microbial organisms that biol-

ogists are unable to culture in a lab due to lack of knowledge about the required growth

conditions.

1.4 Contributions

In Chapter 2, we review both historical and contemporary sequencing technologies

and scaffolding algorithms that are being used for assembling large genomes. We also

survey some of the recent sequencing projects which used these data to generate accurate

and contiguous assemblies of different species.

In Chapter 3, we present a novel method, SALSA2, that utilizes the chromosomal

contact information obtained from Hi-C data along with a genome assembly overlap graph

to improve the continuity and accuracy of the genome assembly. Placing contigs of large

eukaryotic genomes into chromosomes when in most cases the number of chromosomes

is often not known, is an essential step in genome assembly, and we have provided a

software tool which can be easily used to perform this task.

In Chapter 4, we explore different types of Hi-C library preparation which can be

useful in multiple steps of genome finishing. Traditionally, Hi-C data has only been used

for placing contigs along chromosomes. We explore the possibility of devising a Hi-C

library that can be used for scaffolding, base level polishing, and haplotype phasing of

genomes. We demonstrate the utility of such library on the human and chicken genomes.

12

In Chapter 5, we explore one of the critical issues in metagenome scaffolding: de-

tecting repeats. The nature of repeats in metagenomes differs from that of single genomes

because of non-uniform sequencing coverage and the presence of closely related species

in the sample. We devise a method to utilize features derived from scaffold graph topol-

ogy to identify repetitive sequences that complicate the scaffolding process.

In Chapter 6, we propose a new scaffolding pipeline, MetaCarvel, that can scaffold

large and complex metagenomic datasets correctly. We have devised a variant detection

method that preserves the variation between species in a sample when generating scaf-

folds. We show the accuracy of our approach on three different kinds of variants and

confirm that the scaffolds generated by MetaCarvel agree the most with underlying se-

quencing data.

In Chapter 7, we develop a novel method based on Four Russians’ speedup for

dynamic programming to cluster sequences from 16s rRNA metagenomic studies. We

exploit the similarity between the sequences to develop a trie-like data structure to facil-

itate the fast similarity search. We show that our method runs exponentially faster than

the existing method while clustering millions of sequences from a single study at high

similarity threshold to generate species-level OTUs.

13

Chapter 2: Related work

In this chapter, we survey recent advances in this field, placed in the historical

context of the technologies and algorithms that have been used for scaffolding throughout

the entire genomic revolution. This chapter would provide the background for the later

part of the dissertation.

2.1 Source of information for genome scaffolding

Any genomic information that hints at the relative location of genomic segments

along a genome can be used to drive the scaffolding process. In most cases, the infor-

mation used derives from genomic technologies specifically designed to interrogate the

structure of genomes, though indirect inferences based on evolutionary arguments have

also been used effectively in genome scaffolding. Figure 2.1 shows the extent to which

different sequencing technologies can provide the linkage information for scaffolding.

This linkage information can span anywhere from several hundred to thousands of base-

pairs (Illumina and Pacific Biosciences) to hundreds of thousands of basepairs (Linked

Reads and Optical Maps) to millions of basepairs (Chicago and Hi-C). We organize these

approaches into broad categories defined by their key characteristics.

14

0e+00

1e+05

2e+05

3e+05

200 400 600
Distance (bp)

In
te

ra
ct

io
n

Fr
eq

ue
nc

y

0e+00

2e+05

4e+05

6e+05

0 10000 20000 30000 40000
Distance (bp)

In
te

ra
ct

io
n

Fr
eq

ue
nc

y

10

1000

0 5 10 15 20
Distance (Kbp)

Lo
g(

In
te

ra
ct

io
n

Fr
eq

ue
nc

y)

10

1000

0 10 20 30
Distance (Mbp)

Lo
g(

In
te

ra
ct

io
n

Fr
eq

ue
nc

y)

1e+01

1e+03

1e+05

0 50 100 150 200 250
Distance (Mbp)

Lo
g(

In
te

ra
ct

io
n

Fr
eq

ue
nc

y)

Illumina Pacbio Optical Maps

ChicagoLinked Reads HiC

10

1000

0 100 200 300
Distance(Kbp)

Lo
g(

In
te

ra
ct

io
n

Fr
eq

ue
nc

y)

Figure 2.1: The genomic separation for pairwise linkage information provided by differ-
ent sequencing technologies for NA12878 human genome sequencing data when mapped
to the GRCh38 human reference genome. Illumina, Linked Reads, Chicago and Hi-C
reads were aligned using BWA-MEM program. Optical maps were aligned using Re-
fAligner program. Pacbio long reads were aligned using BLASR program. The distribu-
tions for Optical maps, Linked Reads, Chicago and HiC are in log scale to accommodate
the large variance in the linking distance.

2.1.1 Physical mapping technologies

Physical mapping attempts to estimate the location of specific loci along genomic

chromosomes. The loci can be short DNA segments that are unique within the genome, as

in the case of Sequence-Tagged Sites (STS) [40], or the recognition sequence of a restric-

tion enzyme, as in the case of restriction mapping and optical mapping. Fluorescent in situ

hybridization (FISH) [41] locates the position of markers by hybridizing fluorescently la-

beled probes to intact chromosomes. Radiation Hybrid mapping (RH mapping) [42] uses

the random breakage of chromosomes by X-rays to determine the distance between DNA

markers, along with their order on the chromosome. Restriction maps [43] measure the

15

(a)

(b)

Figure 2.2: Mapping-based scaffolding approaches. Contigs are aligned to a reference
genome to infer their relative order and orientation. The alignment can be based on the
actual nucleotide sequence (a) when the reference is a (partially) sequenced genome, or
a physical map (b) when only a sparse map of the reference genome is available. In the
latter case, an in silico map is constructed from the sequenced contigs before alignment.

16

distances between endonuclease recognition sites within a DNA molecule. The origi-

nal use of restriction enzymes to map chromosomes resulted in unordered information -

simply the list of sizes of the restriction fragments generated from the molecule. Optical

maps are an enhancement of restriction mapping which provides the fragment order in ad-

dition to their size [44]. Optical map experiments start with high molecular weight DNA

molecules which are immobilized on a surface or passed through a nanochannel [45] (the

latter technology is called nanocoding). The DNA is digested/nicked with one or more

restriction enzymes and colored with a fluorescent dye. The distance between cuts is

detected by imaging the DNA and integrating the fluorescence intensity. The resulting

data is an ordered series of fragment sizes estimated from the machine imaging of the

distances between restriction cuts.

The use of physical maps in ordering genomic contigs along a chromosome has

been extensively studied since the early days of genomics [46–48]. Broadly, experimen-

tally derived maps are compared to theoretical maps generated from the sequenced contigs

in order to determine the location of the contigs along a chromosome (Figure 2.2.) This

process is easiest when the landmarks being compared are distinguishable from each other

(as is the case for STS and radiation hybrid maps) and substantially more complex and

error-prone for restriction maps where all the landmarks are identical in sequence [49].

The experimental maps themselves are often the result of assembling a collection of

DNA fragments (clones) that have been mapped separately, leading to similar analytical

challenges as those encountered in genome assembly [50]. In the case of unordered re-

striction maps, the assembly process is guided by the probability that two clones overlap,

the probability that is computed by taking into account the number of restriction frag-

17

ments shared by the clones [51]. The pairwise overlap probabilities are used to assemble

the clones into a chromosome-wide structure using a heuristic assembly algorithm (FPC)

which also allows for manual intervention to inspect and correct the resulting layout. Or-

dered restriction maps, as generated by optical or nanocoding mapping, can be aligned

using variants of dynamic programming alignment algorithms [52, 53]. In SOMA [54]

fragment sizing errors are penalized through a chi-squared scoring function, and a variant

of a scheduling algorithm is used to determine the layout of contigs with ambiguous map-

pings. The running time of the alignment algorithm used in SOMA scales with the fourth

power of the number of fragments, making the approach impractical for large genomes.

Two recent approaches address this limitation. TWIN [55] relies on an extension of the

FM-Index [56] to speed up the alignment process, while Maligner [57] indexes the refer-

ence map by simulating the effect of common mapping errors such as false cuts or missed

restriction sites.

2.1.2 Paired-read technologies

Some sequencing technologies can provide additional information about the rela-

tive placement of reads along the genome being sequenced. The most widely used in-

formation links together pairs of reads whose distance and relative orientation along a

chromosome can be estimated through the sequencing experiment. Most commonly, this

information is derived by carefully controlling DNA shearing before sequencing in order

to obtain fragments of uniform sizes, and by tracking the link between DNA sequences

“read” from the same fragment. Multiple protocols have been developed over the years to

18

Genome

Paired-end reads

Alignment of reads
to contigs

Orienting and
Ordering contigs
based on alignments

(a)

(b)

(c)

Figure 2.3: Use of pairwise linkage information for scaffolding. (a) Paired-end reads
are sequenced from the genome. Depending on the technology, the approximate distance
and/or relative orientation of the paired reads may not be known. (b) The reads are aligned
to contigs. Reads with their ends aligned to two different contigs provide linkage informa-
tion useful for scaffolding. (c) Linkage information is used to orient and order the contigs
into scaffolds. Usually, not all constraints can be preserved, and algorithms attempt to
minimize inconsistencies (marked with X).

19

generate read pairing information, and different names are commonly used to reflect the

experimental source: paired-end reads (pairings natively generated by Illumina sequenc-

ing instruments, usually short-range 300-500bp), mate-pair or jumping libraries (pairing

information derived with the help of additional experimental assays, usually spanning

thousands to tens of thousands of base-pairs). Throughout this dissertation, we will use

these terms interchangeably as the information being generated is the same - pairs of

reads with an approximately known relative distance and orientation. The information

provided by mate pairs can be used to link the contigs and produce scaffolds [58]. Mate

pairs can also be used to resolve repeats in the genome assembly process. The algorithms

for using mate-pair data in scaffolding genomes all follow a similar workflow. First, mate

pairs whose ends map to different contigs are used to link together the corresponding

contigs. Second, the pairwise linkage information is used to orient and order contigs with

respect to each other. Third, the size of the gap between adjacent contigs is estimated

from the experimentally determined size of the mate-pairs, and a linear layout of the con-

tigs along a scaffold is generated (Figure 2.3). Since contig orientation and ordering are

NP-Hard problems, scaffolders implement different greedy heuristics. Scaffolders such as

MIP [59], SOPRA [60] and SCARPA [61] use integer programming to find the optimal

orientation and ordering of contigs. Bambus [62] and SSPACE [63] hierarchically use

multiple libraries to perform scaffolding, starting from libraries with smaller insert size

(which are more accurate and yield a simpler problem), and progressively expanding scaf-

folds using libraries with larger insert sizes. OPERA-LG [64] uses a branch and bound

search to determine the relative placement of contigs along the chromosome. The authors

show that the size of the search space is bounded by the ratio between the library and

20

contig size, implying that the branch and bound heuristic is efficient for the data typically

encountered in practical applications despite a theoretically exponential complexity.

Paired-end reads have also been extensively used to resolve repeats. The orientation

and distance constraints imposed by paired reads limit the number of possible traversals

of the graph through a repeat region and can link together the unique genomic regions

surrounding each instance of a repeat. Assemblers such as Velvet [11], Abyss [65] and

IDBA-UD [66] use paired-end information to guide the walk through the assembly graph.

SPAdes [14] and metaSPAdes [67] assemblers use the ratio of expected to the observed

number of mate pairs connecting two nodes [68] in the de Bruijn graph to check if the

path traverses through a repetitive region. Wetzel et al. [69] explored the extent to which

mate pairs can be used to resolve repetitive regions in prokaryotic genomes and showed

that mate pair libraries are most effective if tuned to the structure of the assembly graph.

2.1.3 Chromosomal contact data

Several techniques have been developed recently to study the three-dimensional

structure of chromosomes inside a cell [70]. These techniques are collectively referred to

as chromosomal conformation capture (C3). The two most widely used variants rely on

DNA sequencing and generate pairwise linking information between reads that originate

from genomic regions that are physically adjacent in a cell. Unlike the standard mate-pair

data, the distance and the relative orientation between the paired reads is not known a

priori.

The two most commonly used protocols for capturing chromosome conformation

21

are Hi-C [70] and Chicago [71]. In the Hi-C protocol, DNA in the cell nucleus is

crosslinked and cut with a restriction enzyme. This process generates fragments of DNA

which are distally located but physically associated with each other. The sticky ends of

these fragments are biotinylated and then ligated to each other to form a chimeric circle.

These biotinylated circles are sheared and processed into sequencing libraries in which

individual templates are chimeras of the physically associated DNA molecules. The

Chicago protocol from Dovetail Genomics starts not with cells but with purified DNA

so that any biologically associated chromosomal interactions are eliminated. Artificial

nucleosomes with random specificity are then used to condense the DNA into chromatin,

which is then processed through the standard Hi-C protocol. The result is a collection of

fragments which is enriched for sets of paired reads that capture long-range interactions

between segments of DNA that were in contact within the artificial chromatin.

Since Hi-C and Chicago protocols do not provide good estimates of the distance

between the paired reads, the data can only be used to estimate the relative order and

orientation of contigs accurately. The scaffolding process starts by filtering the data to

eliminate artifacts such as reads aligning to multiple locations or chimeric reads derived

from the ligation junctions. Several tools have been developed for this purpose, includ-

ing HiCUP [72], HiCPro [73], Juicer [74], Juicebox [75] and HiFive [76] . These tools

align reads to the assembly using standard alignment programs [77–79], and filter the

alignments to remove experimental artifacts, yielding the ‘true’ alignments which imply

the contact information. The number of paired reads linking two genomic regions (con-

tact frequency) correlates with the one-dimensional distance between the corresponding

regions, thereby yielding an estimate of the relative placement of these segments within

22

a genome. Furthermore, the contact frequency is much higher within a chromosome

than across chromosomes, making it possible to infer chromosome structure directly

from the genome assembly. Most of the algorithms developed to use Hi-C data for scaf-

folding use these properties to group contigs into chromosome-specific bins, then orient

and order the contigs within each chromosome by maximizing the concordance with the

experimentally-derived contact frequencies.

DNATri [80] and LACHESIS [81] were the earliest methods developed to use Hi-C

datasets for scaffolding. DNATri relies on a limited-memory Broyden-Fletcher-Goldfarb-

Shanno (L-BFGS) optimization algorithm [82] to identify the placement of contigs that

best matches the contact frequencies derived from the Hi-C data. LACHESIS first clus-

ters the contigs into chromosome groups using hierarchical clustering, matching a user-

specified number of chromosomes. Then, it orders and orients contigs in each chro-

mosome group/cluster separately by formulating the problem as identifying the “trunk”

of a minimum spanning tree of the graph that encodes the Hi-C links between contigs.

GRAAL [83] models the Hi-C data by distinguishing between cis- contacts (occurring

within the same molecule) and trans- contacts (occurring across molecules). The contact

frequency for the former is distance dependent, while the latter are drawn from a uniform

probability distribution. The contigs are ordered and oriented to maximize the fit with this

modeled data using a Metropolis optimization algorithm [84]. SALSA [85] relies on Hi-C

data to correct misassemblies in the input contigs and then orients and orders the contigs

using a maximal matching algorithm. 3D-DNA [86] also corrects the errors in the input

assembly and then iteratively orients and orders unitigs into a single megascaffold. This

megascaffold is then broken into a user-specified number of chromosomes, identifying

23

chromosomal ends based the on Hi-C contact map. Putnam et al. [71] proposed a method

called Hi-Rise that was specifically designed for handling Chicago libraries (based on ar-

tificial chromatin). They rely on a likelihood function that matches the characteristics of

these data and use dynamic programming to identify a layout of contigs that maximizes

the fit with the experimental data.

2.1.4 Subcloning

Subcloning involves breaking up the genome into large fragments that are then

sequenced separately, retaining the connection between the sequencing reads generated

from the same subclone. The assembly process can then be run for each subclone sep-

arately, and the resulting assemblies merged to reconstruct the full genome sequence.

Initially, subcloning relied on Bacterial Artificial Chromosome (BAC) cloning, yielding

fragments in the range of 100 kbp in length. The two ends of each BAC clone were

sequenced first in order to construct a clone map [87] representing the relative relation-

ship between individual clones along the genome. From this information, a minimal tiling

path was identified in order to decide which clones would be fully sequenced. Researchers

used this strategy in the early days of genomics, most notably during the public effort to

sequence the human genome [2].

The BAC cloning process involved growing the fragments in an Escherichia coli

culture, and it was, thus, highly expensive and labor intensive. Recently, several groups

are developing new technologies that perform the subcloning process in vitro. The tech-

nology from 10x Genomics partitions large DNA fragments into droplets, and the DNA

24

is sheared, and sequencing libraries are constructed within the droplets. The DNA within

each droplet is tagged with a droplet-specific barcode, and these barcoded DNA molecules

then undergo sequencing and a post-processing algorithm parses the barcodes to group the

reads originating from a same large DNA fragment [88].

Illumina commercializes similar technology under the name TruSeq Synthetic Long-

Read (TSLR) [89]. This technology fragments DNA into large segments of about 10 kb

in size and distributes into pools such that each pool contains a relatively small number

of fragments (about 200-300). Each pool is processed separately and barcoded with a

unique barcode before sequencing.

When the original fragments have been sequenced deeply enough (which is usually

the case for the TSLR technology), the pooled reads can be assembled in order to cre-

ate complete reconstructions of the individual fragments, effectively generating long and

highly accurate sequencing reads. Several approaches have also been developed that rely

on the unassembled pooled reads to guide the scaffolding process, approaches that can be

effective even at low depths of sequencing coverage. Fragscaff [90], a method which was

initially designed for contiguity-preserving transposition sequencing data creates links

between the ends of contigs which are represented in the set of reads from the same pool.

Within the resulting graph, Fragscaff then identifies a minimum spanning tree by treating

edge weights as the number of pools shared between contigs and the longest path within

this tree is selected as the scaffold backbone. In Supernova, Weisenfeld et al. [91] use

the mate-pair information to span short gaps and construct an initial set of scaffolds, af-

ter which the pool-specific barcodes are used to construct an adjacency graph where the

nodes are the initial set of scaffolds and edges denote the number of pool-specific bar-

25

codes shared between scaffolds. In this graph, it then finds linear paths consistent with

the links provided by barcodes. For each linear path, Supernova lists all the alternative

linear paths which are sharing a large number of barcodes. By scoring the orientation

and orderings of all these paths, the path with the highest score is chosen to scaffold the

contigs.

2.1.5 Conservation of synteny

Synteny refers to the co-localization of genes or genomic loci along a chromosome.

In many cases, while the DNA sequence itself may diverge significantly during evolution,

related organisms often preserve synteny and gene order. The conservation of synteny

can, thus, be used to help order contigs along a chromosome by inferring their placement

based on the location within a related genome of the orthologs of the genes found in the

contigs.

Synteny-based methods first map contigs onto the reference genomes using a whole

genome aligner [92, 93]. The orientation and ordering of contigs are then inferred from

the alignment data (Figure 2.2). Methods such as OSLay [94], ABACAS [95], Mauve

Aligner [96], fillScaffolds [97], r2cat [98] and CAR [99] use only one reference genome

for scaffolding draft assemblies. They are primarily based on mapping the assembly to a

complete or incomplete reference genome and attempt to identify the ordering and orien-

tation of contigs that is most consistent with the reference genome. The main challenges

involve reconciling true differences with the reference genome as well as handling incom-

plete reference genomes. Such approaches may lead to mistakes if the reference genome

26

is re-arranged with respect to the genome being assembled, or if the two genomes are too

distant in phylogenetic terms. MeDuSa [100] and Ragout [101] use multiple reference

genomes along with the phylogenetic tree of these genomes as a reference to scaffold con-

tigs. MeDuSa models the problem of using multiple reference genomes for scaffolding

as an instance of maximum weight path cover problem [102] which is known to be NP-

hard, and propose a greedy heuristic to find solution close to the optimal solution. Ragout

represents the target and reference genomes as a multi-colored breakpoint graph [103]

with nodes representing the conserved synteny blocks and edges representing the adja-

cency of these blocks. In this graph, Ragout finds the missing adjacencies by solving a

half-breakpoint state parsimony problem on the given phylogenetic tree [104] and then

orients and orders synteny blocks to reconstruct the target genome. Multi-CAR [105]

starts by processing each reference genome separately using CAR. Multi-CAR then rec-

onciles the different contig orderings by constructing a graph where nodes are contigs

and edges are the adjacencies given by different reference genomes. A maximal weight

perfect matching within this graph defines the final set of scaffolds.

2.1.6 Scaffolding based on long reads

Sequencing technologies that generate long sequencing reads, such as Pacific Bio-

science [106] and Oxford Nanopore [107], as well as the above-mentioned in vitro sub-

cloning approaches, have tremendously matured over the past few years and have con-

tributed dramatically to genome assembly. To achieve high-quality assemblies with only

long read data, however, the genome needs to be sequenced at considerably high cover-

27

age, incurring significant costs. A more cost-effective strategy involves supplementing a

short-read assembly with a relatively low coverage long read data. SSPACE-LongRead

[108] was one of the earliest methods able to leverage long reads for scaffolding (Pa-

cific Bioscience’s RS, in this case). It aligns long reads to pre-assembled contigs using

BLASR [109] in a local alignment mode and uses the alignment coordinates to infer ori-

entation, ordering and the distance between contigs. LINKS [110] is an alignment-free

approach designed to use data generated by Oxford Nanopore’s MinION sequencer. It

extracts pairs of k-mers from long reads which are separated by a pre-defined distance,

then treats these as if they were mate-pairs and uses a traditional scaffolding algorithm to

order and orient the genomic contigs.

2.2 Gap filling

The scaffolds obtained with pairwise linkage information often contain gaps sepa-

rating adjacent contigs. Mate pairs which have one end aligned to a contig and the other

positioned within the gap can be used to infer the unassembled sequence within the gap.

GapFiller [111] and SOAPdenovo GapCloser [12] are standalone methods which imple-

ment this approach. Sealer [112] uses a succinct representation of de Bruijn graphs using

Bloom filters [113] to reduce the memory requirement, thereby enabling gap filling in

large draft genomes. Assemblers such as ABySS [65], ALLPATHS-LG [13] and EU-

LER [114] implement built-in gap filling modules which use mate-pair data in a similar

way. The PBJelly [115] method uses flanking read sequences obtained from the mapping

of PacBio long reads to assemblies to fill the gaps. GMCloser [116] uses both paired-end

28

reads and long reads to close the gaps. It first aligns contigs to long reads and extracts

all end-to-end alignments between them. It then finds a significant end to end alignments

using a likelihood ratio test based on the alignment of paired-end reads to both contigs

and long reads.

2.3 Hybrid scaffolding

The data used for scaffolding can contain errors and other artifacts. For mate pairs,

incorrect insert size estimates can lead to ordering and gap estimation errors in the scaf-

folds [117]. Hi-C data cannot provide accurate orientation information at small genomic

distances, yielding small inversions within the scaffolds [118]. Optical mapping data have

relatively low resolution and contain many errors such as incorrect estimates of fragment

sizes and missed or spurious restriction cuts [119]. A combination of multiple comple-

mentary technologies can be used to reduce the impact of errors. Pendleton et al. [120]

used Pacific Biosciences long read assemblies to assemble the NA12878 human genome

and scaffolded these assemblies with BioNano Genomics optical map data. Mostoyov

et al. [88] used Illumina short reads to perform contig assembly and used 10x Genomics

linked-read data along with optical map data to get high quality, haplotype-phased de novo

assembly of the human genome. Bickhart et al. [118] used Pacific Biosciences’ PacBio

RSII long read data to assemble the domestic goat genome. After the assembly, they used

BioNano Genomics optical mapping data to scaffold the contig assembly and correct the

assembly errors. These optical map scaffolds are further scaffolded with Hi-C data to

group scaffolds into chromosomes. Seo et al. [121] used Pacific Biosciences RSII long

29

read data along with BioNano Genomics optical maps and 10x Genomics linked read data

to generate a high quality phased assembly of the genome of an individual. Multiple se-

quencing technologies have also been used to assemble more complicated plant genomes.

Mascher et al. [122] used a combination of optical maps and Hi-C data to get a chromo-

some level assembly of the barley genome. Du et al. [123] used a combination of long

insert size libraries and optical maps to assemble the indica rice genome. Jiao et al. [124]

combined optical map and Hi-C data to produce assemblies of relatives of Arabidopsis

thaliana.

2.4 Haplotype phasing

Humans are diploid organisms and have two copies of each chromosome (except

the sex chromosomes). The two “haplotypes” represent the complete information on

DNA variation in an individual. Reconstructing individual haplotypes is extremely for

understanding human genetic variation, linking variants to disease, and reconstructing

human population history [125–128]. Haplotypes for an individual genome at known het-

erozygous variants can be directly reconstructed by aligning sequenced reads to the ref-

erence genome. Reads that are long enough to cover multiple heterozygous variants pro-

vide partial haplotype information. Using overlaps between such haplotype-informative

reads, long-range haplotypes can be inferred. Different computational methods have

been developed to use new types of sequencing data such as PacBio, 10x Genomics

linked reads, and Hi-C reads to generated chromosome-sized phased haplotypes of large

genomes [129–132].

30

2.5 Conclusion

In this chapter, we reviewed some of the historical and contemporary advances

in the sequencing technologies and their impact on the development of computational

methods. These emerging long read sequencing and mapping technologies, coupled with

new algorithms have started to produce reference genomes of unprecedented quality.

The high-quality genome assemblies have been achieved with the longest possible reads,

complemented by the longest possible mapping information provided by 10X Genomics

linked reads, Hi-C, or BioNano Genomics data for scaffolding. As these technologies

mature, both regarding cost and quality, it is likely that many projects will begin with

fully assembled genomes rather than just the variants obtained by aligning reads to the

reference genomes. Hence, our contributions in the area of long-range scaffolding with

Hi-C data are useful for a broader research community.

Repetitive sequences remain a challenge even for single genomes and their effect

in metagenomic data is further amplified by the presence of cross-organismal repeats and

uneven levels of representation of organisms within a sample. New sequencing technolo-

gies such as PacBio and Oxford Nanopore that provide long but error-prone reads can

overcome some of the challenges posed by repeats; however, these approaches are still

too expensive to be applied in a metagenomic data. Algorithms for long read assembly

will need further development before it can be used effectively in a metagenomic setting.

Because of this, short paired-end reads remain the primary source of data for metage-

nomic assemblies. Our contributions in using paired-end read data for repeat detection,

variant detection, and variation-aware scaffolding address some of the challenges specific

31

to metagenomic datasets. Furthermore, targeted studies based on the 16S rRNA gene have

already generated a wealth of data about microbial communities, primarily restricted to

information about the taxonomic origin of organisms. Our contributions in 16S rRNA

data clustering provide a computationally efficient way to analyze these datasets.

32

Chapter 3: Scaffolding large eukaryotic genomes with HiC data

3.1 Introduction

Genome assembly is the process of reconstructing a complete genome sequence

from significantly shorter sequencing reads. Most genome projects rely on whole genome

shotgun sequencing which yields an oversampling of each genomic locus. Reads origi-

nating from the same locus are identified using assembly software, which can use these

overlaps to reconstruct the genome sequence [133, 134]. Most approaches are based on

either a de Bruijn [114] or a string graph [135] formulation. Repetitive sequences ex-

ceeding the sequencing read length [136] introduce ambiguity and prevent complete re-

construction. Unambiguous reconstructions of the sequence are output as “unitigs” (or

often “contigs”.) Ambiguous reconstructions are output as edges linking unitigs. Scaf-

folding utilizes long-range linking information such as BAC or fosmid clones [81, 137],

optical maps [43, 138, 139], linked reads [91, 140, 141], or chromosomal conformation

capture [142] to order and orient unitigs. If the linking information spans large distances

on the chromosome, the resulting scaffolds can span entire chromosomes or chromosome

arms.

Hi-C is a sequencing-based assay originally designed to interrogate the 3D structure

of the genome inside a cell nucleus by measuring the contact frequency between all pairs

33

of loci in the genome [70]. The contact frequency between a pair of loci strongly corre-

lates with the one-dimensional distance between them. In the data generated by the Hi-C

protocol, the intrachromosomal contact probability is on average much higher than the in-

terchromosomal contact probability. Regions separated by several hundred megabases on

the same chromosome are more likely to interact than regions on different chromosomes,

though it is important to note that the interaction probability rapidly decays with increas-

ing genomic distance. The main advantage of Hi-C over previous methods is the ability

to capture interactions over much larger genomic distances thereby producing scaffolds

which can span a whole arm of the chromosome. Hi-C data can provide linkage infor-

mation across a variety of length scales, spanning tens of megabases. As a result, Hi-C

data can be used for genome scaffolding. Shortly after its introduction, Hi-C was used to

generate chromosome-scale scaffolds [80, 83, 86, 118, 143].

LACHESIS [143] is an early method for Hi-C scaffolding. LACHESIS uses the

Hi-C reads alignments to contigs to cluster contigs into one cluster per chromosome with

hierarchical clustering. To order the contigs in each cluster, it first finds the maximum

spanning tree for the graph corresponding to each cluster. It then finds the longest path in

the spanning tree which represents the initial contig ordering. After this, it reinserts con-

tigs which are not part of the initial ordering into the longest path yielding the final contig

ordering for each cluster. Once the ordering is computed, it constructs a weighted directed

acyclic graph (WDAG) encoding all possible ways in which contigs can be oriented, with

the score assigned to each orientation. Finally, it finds the heaviest path through this

WDAG describing the optimal orientation assigned to the ordered contigs in each clus-

ter. The primary drawback of LACHESIS is that it needs the number of clusters to be

34

pre-specified. This method can not be applied to scaffold the contigs of genomes when

the number of chromosomes in the organisms are unknown. Kaplan et al. [80] developed

a method for scaffolding based on statistical techniques. Their method uses the hierar-

chical clustering method similar to LACHESIS, but it predicts the number of clusters.

The major drawback of their method is that they do not orient the contigs in each clus-

ter, thereby not providing complete information needed for scaffolding. Also, most of

the experiments performed using their method used simulated contigs of equal size, ex-

cept for the scaffolding of chromosome 14. Due to this, it is unclear how their method

would perform in the case of long read assemblies where contig lengths can have a large

variance. Since both of these methods rely on hierarchical clustering, it is expensive to

compute all vs. all link scores for all the contigs, causing scalability issues. The original

SALSA1 [85] method first corrects the input assembly, using a lack of Hi-C coverage as

evidence of error. It then orients and orders the corrected unitigs to generate scaffolds.

Recently, the 3D-DNA [86] method was introduced and demonstrated on a draft assembly

of the Aedes aegypti genome. 3D-DNA also corrects the errors in the input assembly and

then iteratively orients and orders unitigs into a single megascaffold. This megascaffold

is then broken into a user-specified number of chromosomes, identifying chromosomal

ends based the on Hi-C contact map.

There are several shortcomings common across currently available tools. They re-

quire the user to specify the number of chromosomes a priori. This can be challenging

in novel genomes where no karyotype is available. An incorrect guess often leads to

mis-joins that fuse chromosomes. They are also sensitive to input assembly contiguity

and Hi-C library variations and require tuning of parameters for each dataset. Inver-

35

sions are common when the input unitigs are short, as scaffolders determine orientation

by maximizing the interaction frequency between unitig ends across all possible orienta-

tions [143]. When unitigs are long, few interactions are spanning the full length of the

unitig, making the correct orientation apparent from the higher weight of links. However,

in the case of short unitigs, interactions are spanning the full length of the unitig, making

the correct orientation have a similar weight to incorrect orientations. Biological factors,

such as topologically associated domains (TADs) also confound this analysis [144].

SALSA1 [85], addressed some of these challenges, such as not requiring the ex-

pected number of chromosomes beforehand and correcting assemblies before scaffolding

them with Hi-C data. We showed that SALSA1 worked better than the most widely used

method, LACHESIS [143]. However, SALSA1 often did not generate chromosome-sized

scaffolds. The contiguity and correctness of the scaffolds depended on the coverage of

Hi-C data and required manual data-dependent parameter tuning. Building on this work,

SALSA2 does not require manual parameter tuning and can utilize all the contact infor-

mation from the Hi-C data to generate near optimally sized scaffolds permitted by the

data using a novel iterative scaffolding method. In addition to this, SALSA2 enables the

use of an assembly graph to guide scaffolding, thereby minimizing errors, particularly

orientation errors.

In this work, we introduce SALSA2 - an open source software that combines Hi-C

linkage information with the ambiguous-edge information from a genome assembly graph

to better resolve unitig orientations. We also propose a novel stopping condition, which

does not require an a priori estimate of chromosome count, as it naturally stops when the

Hi-C information is exhausted. We show that SALSA2 has a fewer number of orienta-

36

tion, ordering, and chimeric errors across a wide range of assembly contiguities. We also

demonstrate robustness to different Hi-C libraries with varying intra-chromosomal con-

tact frequencies. When compared to 3D-DNA, SALSA2 generates more accurate scaf-

folds across all conditions tested. To our knowledge, this is the first method to leverage

assembly graph information for scaffolding Hi-C data.

3.2 Methods

Figure 3.1 (A) shows the overview of the SALSA2 pipeline. SALSA2 begins with

a draft assembly is generated from long reads such as Pacific Biosciences [145] or Oxford

Nanopore [107]. SALSA2 requires the unitig sequences and, optionally, a GFA-format

graph [146] representing the ambiguous reconstructions. Hi-C reads are aligned to the

unitig sequences, and unitigs are optionally split in regions lacking Hi-C coverage. A

hybrid scaffold graph is constructed using both ambiguous edges from the GFA and edges

from the Hi-C reads, scoring edges according to a “best buddy” scheme. Scaffolds are

iteratively constructed from this graph using a greedy weighted maximum matching. A

mis-join detection step is performed after each iteration to check if any of the joins made

during this round are incorrect. Incorrect joins are broken and the edges blacklisted during

subsequent iterations. This process continues until the majority of joins made in the prior

iteration are incorrect. This provides a natural stopping condition when accurate Hi-C

links have been exhausted. Below, we describe each of the steps in detail.

37

B

E

B

E B

E

E

B B

B

B

E

E

B

B

B

B

E

E

B

E

E

Hi-C Read
Alignment

Graph
Construction

and Link
Scoring

Scaffold
Construction

Misjoin
detection and

Correction

Final
Scaffolds

(B) (C)

(D)

(E)

(F)

Until most of the joins are
wrongLong read

assembly

Unitigs

GFA

(A)

Figure 3.1: (A) Overview of the SALSA2 scaffolding algorithm. (B) Linkage information
obtained from the alignment of Hi-C reads to the assembly. (C) The assembly graph
obtained from the assembler. (D) A hybrid scaffold graph constructed from the links
obtained from the Hi-C read alignments and the overlap graph. Solid edges indicate the
linkages between different unitigs and dotted edges indicate the links between the ends of
the same unitig. (E) Maximal matching obtained from the graph using a greedy weighted
maximum matching algorithm. (F) Edges between the ends of same unitigs are added
back to the matching.

38

3.2.1 Hi-C library preparation

In the Arima-HiC methodology, a sample (cells or tissues) is first crosslinked to pre-

serve the genome conformation. The crosslinked DNA is then digested using restriction

enzymes (in this case GATC and GANTC). The single-stranded 5’-overhangs are then

filled in causing digested ends to be labeled with a biotinylated nucleotide. Next, spa-

tially proximal digested ends of DNA are ligated, preserving both short- and long-range

DNA contiguity. The DNA is then purified and sheared to a size appropriate for Illumina

short-read sequencing. After shearing, the biotinylated fragments are enriched to assure

that only fragments originating from ligation events are sequenced in paired-end mode

via Illumina sequencers to inform DNA contiguity.

3.2.2 Read alignment

Hi-C paired-end reads are aligned to unitigs using the BWA-MEM aligner [78](pa-

rameters: -t 12 -B 8) as single-end reads. Reads which align across ligation junctions are

chimeric and are trimmed to retain only the start of the read which aligns before the liga-

tion junction. After filtering the chimeric reads, the pairing information is restored. Any

PCR duplicates in the paired-end alignments are removed using Picard tools [147]. Read

pairs aligned to different unitigs are used to construct the initial scaffold graph. The sug-

gested mapping pipeline is available at http://github.com/ArimaGenomics/mapping pipeline.

39

http://github.com/ArimaGenomics/mapping_pipeline

Suspicious intervals
for different cutoffs

C
utoffs

Split mis-assembled unitig

Figure 3.2: Example of the mis-assembly detection algorithm in SALSA2. The plot
shows the position on the x-axis and the physical coverage on the y-axis. The dotted hor-
izontal lines show the different thresholds tested to find low physical coverage intervals.
The lines at the bottom show the suspicious intervals identified by the algorithm. The
dotted line through the intervals shows the maximal clique. The smallest interval (purple)
in the clique is identified as mis-assembly, and the unitig is broken in three parts at its
boundaries.

40

3.2.3 Unitig correction

As any assembly is likely to contain mis-assembled sequences, SALSA2 uses the

physical coverage of Hi-C pairs to identify suspicious regions and break the sequence at

the likely point of mis-assembly. We define the physical coverage of a Hi-C read pair

as the region on the unitig spanned by the start of the leftmost fragment and the end of

the rightmost fragment. A drop in physical coverage indicates a likely assembly error.

We extend the mis-assembly detection algorithm from SALSA which split a unitig when

a fixed minimum coverage threshold was not met. A drawback of this approach is that

coverage can vary, both due to sequencing depth and variation in Hi-C link density.

Figure 3.2 sketches the new unitig correction algorithm implemented in SALSA2.

Instead of a single coverage threshold used in SALSA1, a set of suspicious intervals is

found with a sweep of thresholds. Using the collection of intervals as an interval graph,

we find the maximal clique. This can be done in O(NlogN) time, where N is the number

of intervals. For any clique of a minimum size, the region between the start and end of

the smallest interval in the clique is flagged as a mis-assembly, and the unitig is split into

three pieces — the sequence to the left of the region, the junction region itself, and the

sequence to the right of the region.

3.2.4 Assembly graph construction

For our experiments, we use the unitig assembly graph produced by Canu [148]

(Figure 3.1(C)), as this is the more conservative graph output. SALSA2 requires only

a GFA format [146] representation of the assembly. Since most long read genome as-

41

semblers such as FALCON [149], miniasm [146], Canu [148], and Flye [150] provide

assembly graphs in GFA format, their output is compatible with SALSA2 for scaffolding.

3.2.5 Scaffold graph construction

The scaffold graph is defined as G(V,E), where nodes V are the ends of unitigs

and edges E are derived from the Hi-C read mapping (Figure 3.1B). The idea of using

unitig ends as nodes is similar to that used by the string graph formulation [135].

Modeling each unitig as two nodes allow a pair of unitigs to have multiple edges in

any of the four possible orientations (forward-forward, forward-reverse, reverse-forward,

and reverse-reverse). The graph then contains two edge types - one explicitly connects

two different unitigs based on Hi-C data, while the other implicitly connects the two ends

of the same unitig.

As in SALSA1, we normalize the Hi-C read counts by the frequency of restriction

enzyme cut sites in each unitig. This normalization reduces the bias in the number of

shared read pairs due to the unitig length as the number of Hi-C reads sequenced from

a particular region are proportional to the number of restriction enzyme cut sites in that

region. For each unitig, we denote the number of times a cut site appears as C(V). We

define edges weights of G as:

W (u, v) =
N(u, v)

C(u) + C(v)

where N(u, v) is the number of Hi-C read pairs mapped to the ends of the unitigs u and

v.

42

We observed that the globally highest edge weight does not always capture the cor-

rect orientation and ordering information due to variations in Hi-C interaction frequencies

within a genome. To address this, we defined a modified edge ratio, similar to the one

described in [86], which captures the relative weights of all the adjacent edges for a par-

ticular node.

The best buddy weight BB(u, v) is the weight W (u, v) divided by the maximal

weight of any edge incident upon nodes u or v, excluding the (u, v) edge itself. Comput-

ing best buddy weight naively would takeO(|E|2) time and is computationally prohibitive

since the graph,G, is usually dense. If the maximum weighted edge incident on each node

is stored with the node, the running time for the computation becomes O(|E|). We retain

only edges where BB(u, v) > 1. This keeps only the edges which are the best incident

edge on both u and v. Once used, the edges are removed from subsequent iterations.

Thus, the most confident edges are used first, but initially, low scoring edges can become

best in subsequent iterations.

For the assembly graph, we define a similar ratio. Since the edge weights are op-

tional in the GFA specification and do not directly relate to the proximity of two unitigs

on the chromosome, we use the graph topology to establish this relationship. Let ū de-

note the reverse complement of the unitig u. Let σ(u, v) denote the length of shortest

path between u and v. For each edge (u, v) in the scaffold graph, we find the shortest path

between unitigs u and v in every possible orientation, that is, σ(u, v), σ(u, v̄), σ(ū, v) and

σ(ū, v̄). With this, the score for a pair of unitigs is defined as follows:

43

Score(u, v) =

min
x′∈{u,ū}−{x},y′∈{v,v̄}−{y}

σ(x′, y′)

min
x∈{u,ū},y∈{v,v̄}

σ(x, y)

where x and y are the orientations in which u and v are connected by the shortest

path in the assembly graph. Essentially, Score(u, v) is the ratio of the length of the second

shortest path to the length of the shortest path in all possible orientations. Once again,

we retain edges where Score(u, v) > 1. If the orientation implied by the assembly graph

differs from the orientation implied by the Hi-C data, we remove the Hi-C edge and retain

the assembly graph edge (Figure 3.1D). Computing the score graph requires |E| shortest

path queries, yielding total runtime of O(|E| ∗ (|V |+ |E|)) since we do not use the edge

weights.

3.2.6 Unitig layout

Once we have the hybrid graph, we lay out the unitigs to generate scaffolds. Since

there are implicit edges in the graph G between the beginning and end of each unitig, the

problem of computing a scaffold layout can be modeled as finding a weighted maximum

matching in a general graph, with edge weights being our ratio weights. If we find the

weighted maximum matching of the non-implicit edges (that is, edges between different

unitigs) in the graph, adding the implicit edges to this matching would yield a complete

traversal. However, adding implicit edges to the matching can introduce a cycle. Such

cycles are removed by removing the lowest weight non-implicit edge. Computing a max-

imal matching takes O(|E||V |2) time [151]. We iteratively find a maximum matching in

the graph by removing nodes found in the previous iteration. Using the optimal maximum

44

matching algorithm, this would takeO(|E||V |3) time, which would be extremely slow for

large graphs. Instead, we use a greedy maximal matching algorithm which is guaranteed

to find a matching within 1/2-approximation of the optimum [152]. The greedy matching

algorithm takes O(|E|) time, thereby making the total runtime O(|V ||E|). The algorithm

for unitig layout is sketched in Algorithm 1. Figure 3.1(D - F) show the layout on an

example graph. Contigs which were not scaffolded are inserted in the large scaffolds with

the method used in SALSA1.

Algorithm 1 Unitig Layout Algorithm
E : Edges sorted by the best buddy weight
M : Set to store maximal matchings
G : The scaffold graph
while all nodes in G are not matched do
M∗ = {}
for e ∈ E sorted by best buddy weights do

if e can be added to M∗ then
M∗ = M∗ ∪ e

end if
end for
M = M ∪M∗

Remove nodes and edges which are part of M∗ from G
end while

3.2.7 Iterative mis-join correction

Since the unitig layout is greedy, it can introduce errors by selecting a false Hi-C

link which was not eliminated by our ratio scoring. These errors propagate downstream,

causing large chimeric scaffolds and chromosomal fusions. We examine each join made

within all the scaffolds in the last iteration for correctness. Any join with low spanning

Hi-C support relative to the rest of the scaffold is broken, and the links are blacklisted for

further iterations.

45

We compute the physical coverage spanned by all read pairs aligned in a window of

size w around each join. For each window, w, we create an auxiliary array, which stores

−1 at position i if the physical coverage is higher than some cutoff δ and 1, otherwise. We

then find the maximum sum subarray in this auxiliary array, since it captures the longest

stretch of low physical coverage. If the position being tested for mis-join lies within

the region spanned by the maximal clique generated with the maximum sum subarray

intervals for different cutoffs (Figure 3.2), the join is marked as incorrect. The physical

coverage can be computed in O(w + N) time, where N is the number of read pairs

aligned in window w. The maximum sum subarray computation takes O(w) time. If K

is the number of cutoffs(δ) tested for the suspicious join finding, then the total runtime

of mis-assembly detection becomes O(K(N + 2 ∗ w)). The parameter K controls the

specificity of the mis-assembly detection, thereby avoiding false positives. The algorithm

for mis-join detection is sketched in Algorithm 2. When the majority of joins made in a

particular iteration are flagged as incorrect by the algorithm, SASLA2 stops scaffolding

and reports the scaffolds generated in the penultimate iteration as the final result.

3.3 Results

3.3.1 Dataset description

We created artificial assemblies, each containing unitigs of the same size, by split-

ting the GRCh38 [153] reference into fixed sized unitigs of 200 to 900 kbp. This gave

us eight assemblies. The assembly graph for each input is built by adding edges for any

adjacent unitigs in the genome.

46

Algorithm 2 Misjoin detection and correction algorithm
Cov : Physical coverage array for a window size w around a scaffold join at position p
on a scaffold
A : Auxiliary array
I : Maximum sum subarray intervals
for δ ∈ {min coverage, max coverage} do

if Cov[i] ≤ δ then
A[i] = 1

else
A[i] = −1

end if
sδ, eδ = maximum sum subarray(A)
I = I ∪ {sδ, eδ}

end for
s, e =maximal clique interval(I)
if p ∈ {s, e} then

Break the scaffold at position p
end if

For real data, we use the recently published NA12878 human dataset sequenced

with Oxford Nanopore [154] and assembled with Canu [148]. We use a Hi-C library

from Arima Genomics (Arima Genomics, San Diego, CA) sequenced to 40x coverage

(SRX3651893). We compare results with the original SALSA

(https://github.com/machinegun/SALSA/tree/833fb11), SALSA2 with and without the

assembly graph input

(https://github.com/machinegun/SALSA/tree/eb9aeec), and 3D-DNA

(https://github.com/theaidenlab/3d-dna/tree/745779b). We did not compare our results

with LACHESIS because it is no longer supported and is outperformed by 3D-DNA [86].

SALSA2 was run using default parameters, except for graph incorporation, as listed. For

3D-DNA, alignments were generated using the Juicer alignment pipeline [74] with de-

faults (-m haploid -t 15000 -s 2), except for mis-assembly detection, as listed. The chro-

mosome number was set to 23 for all experiments. The genome size of 3.2 Gbp was used

47

ch
r1

ch
r2

ch
r3

ch
r4

ch
r5

ch
r6

ch
r7

ch
r8

ch
r9

ch
r1

0

ch
r1

1

ch
r1

2

ch
r1

3

ch
r1

4

ch
r1

5

ch
r1

6

ch
r1

7

ch
r1

8

ch
r1

9

ch
r2

0

ch
r2

1

ch
r2

2
ch

rX
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
ro

b
a
b
ili

ty
 o

f
C

o
n
ta

ct

Same Chromosome

Different Chromosome

Figure 3.3: The probability of contact calculated based on read mapping to GRCh38
reference.

for contiguity statistics for all assemblies.

For evaluation, we also used the GRCh38 reference to define a set of true and false

links from the Hi-C graph. We mapped the assembly to the reference with MUMmer3.23

(nucmer -c 500 -l 20) [155] and generated a tiling using MUMmer’s show-tiling utility.

For this “true link” dataset, any link joining unitigs in the same chromosome in the cor-

rect orientation was marked as true. This also gives the true unitig position, orientation,

and chromosome assignment. We masked sequences in GRCh38 which matched known

structural variants from a previous assembly of NA12878 [120] to avoid counting true

variations as scaffolding errors.

48

BestBuddy Counts

0 1 2 3 4 0 500 1000 1500
0.00

0.25

0.50

0.75

1.00

Cutoff

P
re

ci
si

on

Dataset

0.25*ALL

0.5*ALL

0.75*ALL

ALL

Figure 3.4: Precision at different cutoffs for Hi-C links. The plot on the left shows the
curve for the SALSA2 best buddy weight cutoffs and the plot on the right shows the curve
for a fixed Hi-C pair count cutoff, used in SALSA1, across changing coverage.

3.3.2 Contact probability of Hi-C data

We aligned Hi-C reads from NA12878, a human genome used in the 1000 Genomes

project [156], to the GRCh38 human reference genome [153] using BWA-MEM (version -

0.7.13) [78] with default parameters. If both mates in the read pair align to the same chro-

mosome, it implies an intrachromosomal contact. For each chromosome, we count how

many read pairs have both mates mapped to that chromosome and how many reads have

just one of the mates mapped to that chromosome. Using this information, we compute

the intrachromosomal and interchromosomal contact probability for each chromosome.

It can be seen from Figure 3.3 that the probability of intrachromosomal contact is much

higher than that of interchromosomal contact.

49

Chimeric Errors Ordering Errors Orientation Errors

20
0K

30
0K

40
0K

50
0K

60
0K

70
0K

80
0K

90
0K

20
0K

30
0K

40
0K

50
0K

60
0K

70
0K

80
0K

90
0K

20
0K

30
0K

40
0K

50
0K

60
0K

70
0K

80
0K

90
0K

0

100

200

300

400

500

0

100

200

300

0

100

200

Input Unitig Size

N
um

be
r

of
 E

rr
or

s

Tool

3D−DNA

SALSA2

SALSA2_Graph

Figure 3.5: Comparison of orientation, ordering, and chimeric errors in the scaffolds
produced by SALSA2 and 3D-DNA on the simulated data. As expected, the number
of errors for all error types decrease with increasing input unitig size. Incorporating the
assembly graph reduces error across all categories and most assembly sizes, with the
largest decrease seen in orientation errors. SALSA2 utilizing the graph has 2-4 fold fewer
errors than 3D-DNA.

3.3.3 Scoring effectiveness

For correct scaffolding, we want to filter false edges and retain only the correct

linkage information between pairs of unitigs. Our previous algorithm used a fixed, user-

defined minimum for edges connecting a pair of unitigs. The drawback of a fixed cutoff

is that it cannot handle variations in coverage within the assembly and varies between

any pair of sequencing datasets. To compare the scoring methods, we down-sample the

alignments into three different sets with 0.25, 0.5 and 0.75 of the original coverage and

computed the precision of filtering based on the ratio score and a fixed threshold. The pre-

cision remained almost constant for the ratio cutoff on all datasets, whereas the precision

changes rapidly for different coverages and a fixed threshold (Figure 3.4).

50

3.3.4 Evaluation on simulated unitigs

3.3.4.1 Assembly correction

We simulated assembly error by randomly joining 200 pairs of unitigs from each

simulated assembly. All erroneous joins were made between unitigs that are more than

10 Mbp apart or were assigned to different chromosomes in the reference. The remaining

unitigs were unaltered. We then aligned the Arima-HiC data and ran our assembly cor-

rection algorithm. When the algorithm marked a mis-join within 20 kbp of a true error we

called it a true positive; otherwise, we called it a false positive. Any unmarked error was

called a false negative. The average sensitivity overall simulated assemblies was 77.62%

and the specificity was 86.13%. The sensitivity was highest for larger unitigs (50% for

200 kbp versus >90% for untigs greater than 500 kbp) implying that our algorithm can

accurately identify errors in large unitigs, which can have a negative impact on the final

scaffolds if not corrected. Although we used a cutoff of 20kbp to evaluate sensitivity and

specificity, most of the predicted locations of misassembly were within 5kbp from the

true misassembly location (Figure 3.6).

3.3.4.2 Scaffold mis-join validation

As before, we simulated erroneous scaffolds by joining unitigs which were not

within 10 Mbp in the reference or were assigned to different chromosomes. Rather than

pairs of unitigs, each erroneous scaffold joined ten unitigs, and we generated 200 such

erroneous scaffolds. The remaining unitigs were correctly scaffolded (ten unitigs per

51

0e+00

1e−04

2e−04

3e−04

0 10000 20000 30000 40000 50000
Distance from the misassembly location (bp)

D
en

si
ty

Figure 3.6: Distribution of the distance between the predicted misassembly location to
the actual misassembly location in the simulated data.

(A) (B)

0

50

100

200k 300k 400k 500k 600k 700k 800k 900k
Contig Size

N
G

A5
0(

M
b) Method

3d DNA

SALSA2

SALSA2_Graph

0

50

100

150

200

200k 300k 400k 500k 600k 700k 800k 900k
Contig Size

La
rg

es
t E

rro
r−

Fr
ee

 A
lig

ne
d

Bl
oc

k(
M

b)

Method
3d DNA

SALSA2

SALSA2_Graph

Figure 3.7: (A) NGA50 statistic for different input unitig sizes and (B) The length of
longest error-free block for different input unitig sizes. Once again, the assembly graph
typically increases both the NGA50 and the largest correct block.

52

scaffold) based on their location in the reference. The average sensitivity was 68.89% and

specificity was 100% (no correct scaffolds were broken). Most of the un-flagged joins

occurred near the ends of scaffolds and could be captured by decreasing the window size.

Similar to assembly correction, we observed that sensitivity was highest with larger input

unitigs. This evaluation highlights the accuracy of the mis-join detection algorithm to

avoid over-scaffolding and provide a suitable stopping condition.

3.3.4.3 Scaffold accuracy

We evaluated scaffolds across three categories of error: orientation, order, and

chimera. An orientation error occurs whenever the orientation of a unitig in a scaffold

differs from that of the scaffold in the reference. An ordering error occurs when a set of

three unitigs adjacent in a scaffold have non-monotonic coordinates in the reference. A

chimera error occurs when any pair of unitigs adjacent in a scaffold align to different chro-

mosomes in the reference. We broke the assembly at these errors and computed corrected

scaffold lengths and NGA50 (analogous to the NGA50 defined by Salzberg et al. [157]).

This statistic corrects for large but incorrect scaffolds which have a high NG50 but are

not useful for downstream analysis because of errors. We did not include SALSA1 in the

comparison because for small contig sizes (200 kbp to 500 kbp), none of the scaffolds

contained more than two contigs. For larger sizes (600 kbp to 900 kbp), the contigu-

ity widely varied depending upon the minimum confidence parameter for accepting links

between contigs.

Hi-C scaffolding errors, particularly orientation errors, increased with decreasing

53

assembly contiguity. We evaluated scaffolding methods across a variety of simulated

unitig sizes. Figure 3.5 shows the comparison of these errors for 3D-DNA, SALSA2

without the assembly graph, and SALSA2 with the graph. SALSA2 produced fewer er-

rors than 3D-DNA across all error types and input sizes. The number of correctly oriented

unitigs increased significantly when assembly graph information was integrated with the

scaffolding, particularly for lower input unitig sizes (Figure 3.5). For example, at 400

kbp, the orientation errors with the graph were comparable to the orientation errors of the

graph-less approach at 900 kbp. The NGA50 for SALSA2 also increased when assembly

graph information was included (Figure 3.7). This highlights the power of the assembly

graph to improve scaffolding and correct errors, especially on lower contiguity assem-

blies. This also indicates that generating a conservative assembly, rather than maximizing

contiguity, can be preferable for input to Hi-C scaffolding.

3.3.5 Evaluation on NA12878

Table 3.1 lists the metrics for NA12878 scaffolds. We include an idealized scenario,

using only reference-filtered Hi-C edges for comparison. As expected, the scaffolds gen-

erated using only true links had the highest NGA50 value and longest error-free scaffold

block. SALSA2 scaffolds were more accurate and contiguous than the scaffolds gener-

ated by SALSA1 and 3D-DNA, even without the use of the assembly graph. The addition

of the graph further improved the NGA50 and longest error-free scaffold length.

We also evaluated the assemblies using Feature Response Curves (FRC) based on

scaffolding errors [158]. An assembly can have a high raw error count but still be of high

54

0

50

100

150

200

N
GA

5
N

GA
10

N
GA

15
N

GA
20

N
GA

25
N

GA
30

N
GA

35
N

GA
40

N
GA

45
N

GA
50

N
GA

55
N

GA
60

N
GA

65
N

GA
70

N
GA

75
N

GA
80

N
GA

85

Le
ng

th
 (M

bp
)

Arima-HiC

SALSA2_Graph 3D-DNA

SALSA2_NoGraph SALSA2 True Links Only

SALSA1

0
20
40
60
80

100
120

N
GA

5
N

GA
10

N
GA

15
N

GA
20

N
GA

25
N

GA
30

N
GA

35
N

GA
40

N
GA

45
N

GA
50

N
GA

55
N

GA
60

N
GA

65
N

GA
70

N
GA

75
N

GA
80

Le
ng

th
 (M

bp
)

Mitotic Hi-C

SALSA2 with breaking 3D-DNA without Breaking

3D-DNA with Breaking SALSA1

0

5

10

15

20

25

N
GA

5

N
GA

10

N
GA

15

N
GA

20

N
GA

25

N
GA

30

N
GA

35

N
GA

40

N
GA

45

N
GA

50

N
GA

55

N
GA

60

N
GA

65

N
GA

70

N
GA

75

N
GA

80

Le
ng

th
 (M

bp
)

Chicago (L1)

SALSA2 with Breaking 3D-DNA with Breaking

3D-DNA without Breaking SALSA1

(A) (B) (C)

(D) (E) (F)

Figure 3.8: Contiguity plot for scaffolds generated with (A) standard Arima-HiC data (B)
mitotic Hi-C data and (C) Chicago data. The X-axis denotes the NGAX statistic, and the
Y-axis denotes the corrected block length to reach the NGAX value. SALSA2 results were
generated using the assembly graph unless otherwise noted. Feature Response Curve for
(D) assemblies obtained from unitigs as input (E) assemblies obtained from mitotic Hi-C
data and (F) assemblies obtained using Dovetail Chicago data. The best assemblies lie
near the top left of the plot, with the largest area under the curve. The FRC for 3D-DNA
scaffolds with Chicago input is a straight line because 3D-DNA generated a single 2.7
Gbp super-scaffold which contained the majority of the genome sequence.

55

Dataset Method NG50(Mbp) NGA50(Mbp) Longest Chunk (Mbp) Orientation Errors Ordering Errors Chimeric Errors

Arima-HiC SALSA2 true links 83.31 79.48 172.19 78 101 0
SALSA2 w graph 125.34 57.20 165.11 156 289 142

SALSA2 wo graph 101.96 56.84 155.68 168 302 152
3D-DNA 137.88 28.61 130.88 233 405 178
SALSA1 19.09 14.81 73.14 99 176 96

Mitotic Hi-C SALSA2 w graph 69.23 26.46 145.53 117 98 58
SALSA1 27.88 15.62 85.71 142 78 120

3D-DNA w correction 16.34 0.064 0.96 12017 11687 7217
3D-DNA wo correction 141.18 21.47 84.00 345 320 163

Chicago SALSA2 w graph 6.15 4.63 34.60 56 72 128
SALSA1 5.21 3.94 34.60 83 21 187

3D-DNA w correction 2641.31 2.62 12.76 244 186 1550
3D-DNA wo correction 1684.92 4.52 34.60 119 100 711

Illumina Assembly SALSA2 w graph 90.26 9.04 31.84 1484 2348 615
SALSA2 wo graph 89.12 4.06 26.22 2196 2318 723

3D-DNA w correction 134.65 8.12 48.33 1545 2126 529
3D-DNA wo correction 137.86 9.53 42.63 1363 2002 308

Table 3.1: Assembly scaffold and correctness statistics for NA12878 assemblies scaf-
folded with different Hi-C libraries. The NG50 of human reference GRCh38 is 145 Mbp.
The ratio between NG50 and NGA50 represents how many erroneous joins affect large
scaffolds in the assembly. A high ratio between NGA50 and NG50 indicates a more ac-
curate assembly. We observe that 3D-DNA mis-assembly detections shears the input with
both the mitotic Hi-C and Chicago data so we include results both with and without this
assembly correction. In case of Chicago data, 3D-DNA generates a large super-scaffold
containing more than 50% of the genome, giving a very high NG50 but a poor NGA50
and ratio.

1 2 3 4 5 6 7 8 9 10 1112

13 14 15 16 1718 19 20 2122 X

1 2 3 4 5 6 7 8 9 10 1112

13 14 15 16 1718 19 20 2122 X

Figure 3.9: Chromosome ideogram generated using the coloredChromosomes package.
Each color switch denotes a change in the aligned sequence, either due to large structural
error or the end of a unitig/scaffold. Left: input unitigs aligned to the GRCh38 reference
genome. Right: SALSA2 scaffolds aligned to the GRCh38 reference genome. More than
ten chromosomes are in a single scaffold. Chromosomes 1 and 7 are more fragmented
due to scaffolding errors which break the alignment.

56

quality if the errors are restricted to only short scaffolds. FRC captures this by show-

ing how quickly error is accumulated, starting from the largest scaffolds. Figure 3.8(D)

shows the FRC for different assemblies, where the X-axis denotes the cumulative % of

assembly errors, and the Y-axis denotes the cumulative assembly size. The assemblies

with more area under the curve accumulate fewer errors in larger scaffolds and hence are

more accurate. SALSA2 scaffolds with and without the graph have similar areas under

the curve and closely match the curve of the assembly using only true links. The 3D-DNA

scaffolds have the lowest area under the curve, implying that most errors in the assem-

bly occur in the long scaffolds. The lower NGA50 value confirms this for the 3D-DNA

assembly (Table 3.1).

Apart from the correctness, SALSA2 scaffolds were highly contiguous and reached

an NG50 of 125 Mbp (cf. GRCh38 NG50 of 145 Mbp). Figure 3.9 shows the alignment

ideogram for the input unitigs as well as the SALSA2 assembly. Every color change

indicates an alignment break, either due to error or due to the end of a sequence. The

input unitigs are fragmented with multiple unitigs aligning to the same chromosome,

while the SALSA2 scaffolds are highly contiguous and span entire chromosomes in many

cases. Figure 3.8(A) shows the contiguity plot with corrected NG stats. As expected, the

assembly generated with only true links has the highest values for all NGA stats. The

curve for SALSA2 assemblies with and without the assembly graph closely matches this

curve, implying that the scaffolds generated with SALSA2 are approaching the optimal

assembly of this Arima-HiC data.

We also evaluated the ability of scaffolding short read assemblies for both 3D-

DNA and SALSA2. We did not include SALSA1 in this comparison because it is not

57

(A) (B) (C)

Figure 3.10: Contact map of Hi-C interactions on Chromosome 3 generated by the Juice-
box software [75]. The cells sequenced in (A) normal conditions, (B) during mitosis, and
(C) Dovetail Chicago

designed to scaffold short read assemblies. We observed that adding assembly graph to

scaffolding significantly reduced the number of orientation errors for SALSA2, increasing

the scaffold NG50 almost two-fold. When compared to 3D-DNA with or without input

assembly correction, SALSA2 with the assembly graph generates scaffolds of comparable

sizes with a similar number of errors as 3D-DNA.

To understand the computational requirements of SALSA2 and 3D-DNA, we com-

puted the CPU runtime and memory usage for both the methods while scaffolding long

and short read assemblies with Arima-HiC data. While scaffolding the long-read assem-

bly SALSA2 required 11.44 CPU hours and 21.43 Gb peak memory, 3D-DNA required

318 CPU hours and 64.66 Gb peak memory. While scaffolding the short-read assembly,

SALSA2 required 36.8 CPU hours and 61.8 Gb peak memory compared to 2080 CPU

hours and 48.04 Gb peak memory needed by 3D-DNA.

58

3.3.6 Robustness to input library

We next tested scaffolding using two libraries with different Hi-C contact patterns.

The first, from [159], is sequenced during mitosis. This removes the topological domains

and generates fewer off-diagonal interactions. The other library was from [71], are in

vitro chromatin sequencing library (Chicago) generated by Dovetail Genomics (L1). It

also removes off-diagonal matches but has shorter-range interactions, limited by the size

of the input molecules. As seen from the contact map in Supplementary Figure S2, both

the mitotic Hi-C and Chicago libraries follow different interaction distributions than the

standard Hi-C (Arima-HiC in this case). We ran SALSA2 with defaults, and 3D-DNA

with both the assembly correction turned on and off.

For mitotic Hi-C data, we observed that the 3D-DNA mis-assembly correction al-

gorithm sheared the input assembly into small pieces, which resulted in more than 12,000

errors and more than half of the unitigs incorrectly oriented or ordered. Without mis-

assembly correction, the 3D-DNA assembly has a higher number of orientation (345 vs.

117) and ordering (320 vs. 98) errors compared to SALSA2. The feature response curve

for the 3D-DNA assembly with breaking is almost a diagonal (Figure 3.8(E)) because

the sheared unitigs appeared to be randomly joined. SALSA2 scaffolds contain long

stretches of correct scaffolds compared to 3D-DNA with and without mis-assembly cor-

rection (Figure 3.8(B)). SALSA1 scaffolds had a similar error count to SALSA2 but were

less contiguous.

For the Chicago libraries, 3D-DNA mis-assembly detection once again sheared the

input unitigs. It generated a single 2.7 Gbp scaffold and was unable to split it into the

59

requested number of chromosomes. 3D-DNA uses signatures of chromosome ends [86]

to identify break positions which are not present in Chicago data. As a result, it gen-

erated more chimeric joins compared to SALSA2 (1,550 vs. 128 errors). However, the

number of order and orientation errors was similar across the methods. Even in the sin-

gle large scaffold generated by 3D-DNA, the sizes of the correctly oriented and ordered

blocks were smaller than SALSA2 (Figure 3.8(C)). Since Chicago libraries do not provide

chromosome-spanning contact information for scaffolding, the NG50 value for SALSA2

is 6.15 Mbp, comparable to the equivalent coverage assembly (50% L1+L2) in [71] but

much smaller than Hi-C libraries. Interestingly, SALSA1 was able to generate scaffolds

of similar contiguity to SALSA2, which can be attributed to the lack of long-range con-

tact information in the library. SALSA2 is robust to changing contact distributions. In the

case of Chicago data, it produced a less contiguous assembly due to the shorter interac-

tion distance. However, it avoids introducing false joins, unlike 3D-DNA, which appears

tuned for a specific contact model.

3.4 Conclusion

In this work, we present the first Hi-C scaffolding method that integrates an assem-

bly graph to produce high-accuracy, chromosome-scale assemblies. Since long read as-

semblies were used, most of the issues cause by repeats were solved. Our experiments on

both simulated and real sequencing data for the human genome demonstrate the benefits

of using an assembly graph to guide scaffolding. We also show that SALSA2 outperforms

alternative Hi-C scaffolding tools on assemblies of varied contiguity, using multiple Hi-C

60

library preparations.

Hi-C scaffolding has been historically prone to inversion errors when the input as-

sembly is highly fragmented. The integration of the assembly graph with the scaffolding

process can overcome this limitation. Orientation errors introduced in the assembly and

scaffolding process can lead to incorrect identification of structural variations. On simu-

lated data, more than 50% of errors were due to inversions, and integrating the assembly

graph reduced these by as much as 3 to 4 fold. We did not observe as much improvement

with the NA12878 test dataset because the contig NG50 was much higher than in the

simulation. However, it is not always possible to assemble multi-megabase contigs. In

such cases, the assembly graph is useful for limiting Hi-C errors.

Existing Hi-C scaffolding methods also require an estimate for the number of chro-

mosomes for a genome. This is implicitly taken to be the desired number of scaffolds

to output. However, as demonstrated by the Chicago, mitotic, and replicate [160] Hi-C

libraries, the library, as well as the genome, influences the maximum correct scaffold size.

It can be impractical to sweep over hundreds of chromosome values to select a “best” as-

sembly. Since SALSA2’s mis-join correction algorithm stops scaffolding after the useful

linking information in a dataset is exhausted, no chromosome count is needed as input.

As the Genome10K consortium [161] and independent scientists begin to sequence novel

lineages in the tree of life, it may be impractical to generate physical or genetics maps for

every organism. Thus, Hi-C sequencing combined with SALSA2 presents an economical

alternative for the reconstruction of chromosome-scale assemblies.

61

Chapter 4: Tuning Hi-C library preparation for accurate scaffolding

4.1 Introduction

In the previous chapter, we demonstrated the utility of using Hi-C data to obtain

chromosome scale assemblies of large genomes. Hi-C technology was initially devel-

oped to interrogate the 3D architecture of the genome inside the cell nucleus. After the

invention of Hi-C, researchers realized its potential as a tool for scaffolding because of

the long-range contacts present in the Hi-C library. However, along with the signal corre-

sponding to the proximity of genomic loci, Hi-C library also contains some confounding

biological signal resulting from telomeric clustering or chromatin loopings. Thus, not

all the contacts implied by the Hi-C data are useful for chromosome scale scaffolding

and may cause scaffolding errors. Figuring out which of the long-range contacts are use-

ful for scaffolding is challenging from a computational point of view. Thus, developing

a library that would strictly imply the proximity of genomic loci is highly desired for

accurate chromosome-scale assembly. Such a library will be specially tuned for the scaf-

folding purpose. Another reason for exploring the possibility of tuning the Hi-C library

for scaffolding is the cost of sequencing. In large-scale genome sequencing projects, to

obtain ‘gold standard’ genome assemblies, usually, data from different sequencing tech-

nologies are used, incurring significant sequencing costs. If a single sequencing library

62

can help at multiple steps of genome assembly, it would bring down sequencing cost. In

this project, we explored the feasibility of a one-pot library which would have uniform

sequencing coverage: a property essential for base level polishing of an assembly, along

with yielding accurate chromosome scale scaffolds. We specifically evaluated Hi-C li-

braries for different metrics, namely, scaffolding accuracy, base level polishing accuracy

and haplotype phasing accuracy on the Human and Chicken genomes and showed that

such a modified Hi-C library could provide benefit at different stages of genome finishing

process.

4.2 Methods

4.2.1 Hi-C libraries and read Mapping

We obtained two types of Hi-C libraries for Human and Chicken genome sam-

ples from Arima Genomics, San Diego. One library referred to as Hi-C henceforth was

prepared using the standard Hi-C library preparation [162]. The other library referred

to as Prime henceforth was prepared using a proprietary library preparation by Arima

Genomics that aims to reduce the fraction of interchromosomal interactions and increase

coverage uniformity. Different Hi-C scaffolding methods require Hi-C read alignments to

the assembly in different formats. To generate a Hi-C contact map as input to 3D-DNA,

we used Juicer’s alignment pipeline, by providing appropriate restriction enzyme as an

input. To generate alignments for SALSA2, we used Arima’s Mapping pipeline. This

pipeline first maps reads to the assembly using BWA-MEM and then filters out align-

ments for Hi-C experimental artifacts such as fragment size, digestion and ligation effi-

63

ciency, mappability, sequencing coverage, GC content, and restriction site density. The

final output is then converted to bed format.

4.2.2 Scaffolding with HiC data

Once the alignments were generated, the assemblies were scaffolded using 3D-

DNA and SALSA2. To run 3D-DNA, we turned the input assembly correction option

off as it is tuned to a specific Hi-C contact distribution. We ran SALSA2 with default

parameters. We then converted the scaffolds obtained by both the methods into an AGP

format to interpret the orientation and ordering of contigs along scaffolds. We then used

this AGP file to compute scaffolding errors. We quantified the accuracy of scaffolds based

on orientation, ordering, and chimeric errors by comparing the orientation and ordering of

contigs generated by each scaffolding method to the orientation and ordering of contigs

implied by aligning them to the reference.

4.2.3 Haplotype phasing

We first aligned reads from each library (Hi-C, Prime, and Illumina) to GRCh38

reference genome using BWA-MEM. With these alignments, variants were called us-

ing FreeBayes [163] in diploid mode. These variants were then phased using the Hap-

CUT2 [130] phasing algorithm. We used different combinations of variants and linking

information for phasing. We used 1) Illumina variants with Hi-C alignments, 2) Illumina

variants with Prime alignments, 3) Hi-C variants with Hi-C alignments and 4) Prime vari-

ants with Prime alignments. Once the phasing was obtained, phased haplotypes were

64

compared with true haplotypes to evaluate the phasing accuracy.

4.3 Results

4.3.1 Library characteristics

Organisms Library Intrachromosomal Interchromosomal Short Range Long Range Sequence Coverage

Human HiC 84.25% 15.74% 39% 61% 96.34%
Prime 88.08% 11.91% 60.43% 39.56% 96.45%

Chicken HiC 82.51% 17.84% 42.89% 57.10% 95.26%
Prime 90.03% 10.07% 71.98% 28.01% 97.77%

Table 4.1: Alighment statistics of Hi-C and Prime libraries when aligned to Human and
Chicken reference genomes.

To understand the difference between the type of contact information provided

by both the libraries, we aligned them to the respective reference genomes and ana-

lyzed the alignment patterns. We observed that the Prime libraries provide more intra-

chromosomal contacts compared to Hi-C library (88.08% vs. 84.25% for human and

90.03% vs. 82.51% for chicken)(Table 4.1). This property is useful for scaffolding since

inter-chromosomal contacts confound the scaffolding algorithm into joining contigs be-

longing to different chromosomes. To further understand the extent of intra-chromosomal

interactions, we calculated the distance between the reads in each pair aligned to the same

chromosome. We call an interaction short if the distance is less than 20 kbp and long,

otherwise. We observed that for both human and chicken libraries, Prime had more short-

range interactions compared to Hi-C. This seems counterintuitive since we would desire

more long-range interactions for long-range scaffolding. We show in the next section

that fewer long-range interactions do not hurt scaffold contiguity and we obtain similar

65

contiguity with Prime and Hi-C libraries.

Human Chicken

Figure 4.1: Density plots for Hi-C and Prime library per-base coverage for human and
chicken genomes when aligned to the reference genome.

One more important library property of the libraries we quantified is the number

of bases covered with the Hi-C and Prime library reads when aligned to the reference

genomes. This is particularly useful because higher and more uniform the per-base cov-

erage of a library is, better base-level polishing accuracy is obtained with that library.

When we counted just the percentage of bases with non-zero sequencing coverage, it was

very similar for both Hi-C and Prime libraries. However, when we checked the distribu-

tion of coverage values at each base in the reference, the distributions look very different

for both the libraries (Figure 4.1). For both the genomes, Prime library coverage fol-

lows a normal distribution; implying that all bases in the reference genomes have similar

sequencing coverage which is beneficial for base level polishing. On the contrary, the

Hi-C library has an exponential distribution implying that bases in the reference genomes

have extremely variable coverage. This means that although both the libraries have sim-

ilar physical coverage, the sequence coverage is not uniform in the Hi-C library than the

66

Prime library. In results, we show that how this difference in the sequencing coverage

affects the polishing accuracy.

4.3.2 Scaffolding accuracy with different libraries

We scaffolded contig assemblies of human and chicken genome with both Prime

and Hi-C libraries. The human contig assembly was generated with Oxford Nanopore

long read data. The chicken contig assembly was generated with PacBio long read data.

We assembled both the genomes with Canu assembler. Table 4.2 shows various metrics

for scaffolds generated with different libraries. We used two different scaffolding algo-

rithms to generate scaffolds to make sure we are not biasing any library with the method

used for scaffolding. For the human genome scaffolds, both SALSA2 and 3D-DNA had

similar NG50 for Prime and Hi-C libraries. However, for SALSA2, the NGA50 (analo-

gous to the NGA50 defined by Salzberg et al. [157]) was higher for the Prime library than

Hi-C (50.31 Mbp vs. 40.10 Mbp). For 3D-DNA the NGA50 was similar for scaffolds

with both the libraries. This implied that the Prime library does not hurt the contiguity

for human genome scaffolding although it has much more short-range interactions than

Hi-C library. For the chicken genome scaffolding, the NG50 was much higher with Hi-C

library for both SALSA2 and 3D-DNA. However, for SALSA2, the NGA50 was compa-

rable with both the libraries. For scaffolding with 3D-DNA, we observed that the NGA50

was significantly lower with Prime libraries. This can be attributed to the fact that 3D-

DNA is tuned for a particular Hi-C contact distribution which expects more long-range

interactions than what Prime library provides. For all the scaffolds, we observed that the

67

number of chimeric errors was fewer when scaffolded with Prime libraries because of the

fewer inter-chromosomal interactions present in the Prime library. Also in all cases, the

length of longest error-free chink was equal or more for scaffolds with Prime library than

Hi-C.

Organisms Method Library NG50(Mbp) NGA50(Mbp) Largest error free chunk Orientation Errors Ordering errors Chimeric errors

Human SALSA2 HiC 101.05 40.10 155.87 129 121 137
Prime 97.92 50.31 169.33 112 119 129

3D-DNA HiC 83.93 21.87 128.04 171 133 125
Prime 90.32 19.15 127.90 184 136 119

Chicken SALSA2 HiC 68.53 24.19 95.16 60 61 109
Prime 57.12 23.06 103.89 53 46 58

3D-DNA HiC 90.19 22.07 98.73 150 138 295
Prime 45.17 12.09 110.54 133 125 298

Table 4.2: Assembly scaffold and correctness statistics for Human and Chicken genome
assemblies when scaffolded with Hi-C and Prime libraries.

4.3.3 Polishing accuracy

Usually, genomes assembled with long reads have higher rates of short insertions

and deletions due to limitations in sequencing accuracy and basecalling algorithmic lim-

itations. To overcome this, high accuracy Illumina data is typically used to ‘polish’ the

assembly which essentially tests the correctness of each base in the assembly using the

pileup of the Illumina reads and corrects the base if it does not agree with the consensus

implied by the read pileup. Since Prime libraries provide more uniform sequence cover-

age, the hypothesis is that it would also yield better base level accuracy after polishing.

To test this, we aligned both the libraries to the respective scaffolds and used Pilon [164]

in the paired-end mode to polish the assemblies based on these alignments. To obtain

the base level accuracy of the assembly, we aligned it to the reference genome using the

nucmer tool in the MUMmer program [155] and extracted the percent identity of all one-

to-one alignments. The assembly of NA12878 was generated with Oxford Nanopore data

68

and had very low consensus accuracy of 95.20% when compared to the human reference

genome. When this assembly was polished with previously generated Illumina WGS data

(SRA: ERP001229), the consensus accuracy was increased to 99.29%. This serves as an

upper bound to the maximum accuracy obtained by polishing with both Hi-C libraries.

When polished with Prime and Hi-C library, the consensus accuracy was increased to

98.17% and 97.74% respectively. The chicken genome assembly was done with PacBio

long read data; thus the consensus accuracy was high (99.86%). When polished with Illu-

mina WGS data, the accuracy was increased to 99.90%. Thus, we observe in this case that

polishing does not increase the consensus accuracy by the large amount. When polished

with Prime library, the accuracy was 99.89%, very close to what we had obtained by pol-

ishing with Illumina library. When polished with a Hi-C library, the consensus accuracy

was decreased to 99.84%. Hence, on these two genomes, the Prime library provides more

accurate polishing than standard HiC libraries. This difference in the consensus quality

can be attributed to the more uniform coverage provided by the Prime library.

Variants Linking Data Total Phased Variants Correctly Phased variants % Correctly Phased Variants Switch error

Illumina Prime 1366821 1361906 99.64% 0.0027

Hi-C 1177153 1172170 99.57% 0.0033

Prime Prime 1335292 1330751 99.65% 0.0026

Hi-C Hi-C 1173218 1179232 99.49% 0.0036

Table 4.3: Accuracy of haplotype phasing using Prime and Hi-C data in NA12878 human
genome

4.3.4 Accuracy of haplotype phasing

Next, we assessed the accuracy of haplotype phasing using both the libraries on the

NA12878 human genome. We ran HapCUT2 to phase haplotypes and compared them

69

against the gold standard variant calls for NA12878 human genome released by Genome

In A Bottle (GIAB) consortium [165]. We could not do this analysis on the chicken

genome because correct phasing information is not available for that genome. Table 4.3

shows the statistics of haplotype phasing using different combinations of variants called

with different technologies and linked using Prime and Hi-C data. We observed that the

haplotype switch error was lesser while using Prime data than Hi-C. Also, the number

of variants phased when the Prime variants used for phasing was comparable to when

Illumina variants were used for phasing. This analysis shows that just a single library can

be used for both calling variants and linking distant variants to produce accurate phasing.

4.4 Conclusion

In this work, we explored the possibility of having a single sequencing library for

scaffolding, polishing, and haplotype phasing large eukaryotic genomes. We used a mod-

ified Hi-C library called Prime, developed by Arima Genomics to evaluate the scaffold-

ing, polishing, and phasing accuracy on Human and Chicken genome. We observed that

Prime library had fewer inter-chromosomal contacts and more uniform sequencing cover-

age than the Hi-C library and hence facilitates better scaffolding and polishing accuracy.

Also, for the human genome, phasing accuracy was higher with Prime library than Hi-C.

Thus, just scaffolding and polishing contig assemblies only with Prime libraries can yield

almost gold standard assemblies for large genomes. Because of this, generating Prime

libraries along with long read sequencing data can significantly bring down the cost of

genome sequencing project.

70

Our experiments and observations were based on the Prime libraries obtained from

only two genomes, whereas Hi-C libraries have been used to scaffold variety of genomes,

including various animal and plant genomes. The universal applicability of the Prime

library for various aspects of genome assembly is the area of future research, and the

data from different species need to be generated for extensive validation. Since the Prime

library has fewer inter-chromosomal contacts at the cost of fewer long-range interac-

tions, understanding the effect of this tradeoff on scaffolding contiguity and accuracy in

different genomes is the immediate next step. Once the utility of the Prime library for

scaffolding is established, a scaffolding method specifically designed to work with this

data can be developed to produce even better chromosome-scale assemblies. We tested

the accuracy of haplotype phasing only in the human genome which has low heterozy-

gosity (about 0.1%). For the genomes with high heterozygosity, it is unclear how the

phasing accuracy would vary when using the Prime library. More validation needs to be

performed in order to generalize the use of the Prime library for haplotype phasing to

different genomes. Also, HapCUT2, the only phasing method which uses Hi-C data to

link distant variants, is specially tuned to the properties of Hi-C data and may yield sub-

optimal results with Prime data. Hence, new algorithms for haplotype phasing need to be

devised to accommodate the information provided by Prime library. The benefit of Prime

data for base level polishing of the assembly is a clear benefit over Hi-C data as Hi-C data

has non-uniform sequencing coverage. We believe at this point, Prime data cannot be a

drop-in replacement for Hi-C data, but more experimental and computational validation

can make a strong case for Prime data to be used routinely in genome sequencing projects.

71

Chapter 5: Better identification of repeats in metagenomic scaffolding

5.1 Introduction

Genomic repeats are the most critical challenge in genomic assembly even to iso-

late genomes. When reads are shorter than the repeats (a common situation until the

recent development of long read sequencing technologies) it can be shown that the num-

ber of genome reconstructions consistent with the read data grows exponentially with the

number of repeats [69]. The use of additional information to constrain the one genome

reconstruction representing the actual genome being assembled leads to computationally

intractable problems. In other words, when reads are shorter than repeats the correct and

complete reconstruction of a genome is impossible. In the case of isolate genomes, long

read technologies have primarily addressed this challenge, at least for bacteria where the

majority of genomic repeats fall within the range of achievable read lengths [166]. In

metagenomics, however, the problem is compounded by the fact that microbial mixtures

often include multiple closely-related genomes differing in just a few locations. The

genomic segments shared by closely related organisms – inter-genomic repeats – are sub-

stantially larger than intra-genomic repeats and cannot be fully resolved even if long read

data were available. Instead, the best hope is to identify and flag these repeats in order to

avoid mis-assemblies that incorrectly span across genomes.

72

To date, most approaches for repeat detection have been based on the basic ob-

servation that repetitive segments have unusual coverage depth, the fact which is usually

ascertained through simple statistical tests. These approaches, however, fail in the context

of metagenomic data as well as in other settings (e.g., single-cell genomics) that violate

the assumption of uniform depth of coverage within the genome, the assumption that is

critical for the correctness of statistical tests. Furthermore, the challenges posed by re-

peats to assembly algorithms are not directly related to the depth of sequencing coverage

within contigs; instead, they result from the fact that repeats “tangle” the assembly graph.

More specifically, the correct genomic sequence (whether of a single genome or mixture

of genomes) can be represented as one or more linear sub-paths of the graph. Repeats

induce links within the graph that are inconsistent with this linear structure, making it

difficult for algorithms to reconstruct the true genomic structure. We, therefore propose

an operational definition of genomic repeats as those nodes in the graph that induce in-

consistencies. This definition is orthogonal to the depth of coverage considerations - high

coverage contigs that do not “tangle” the graph do not impact assembly algorithms, while

contigs that confuse the assembly need to be removed whether or not they can be conclu-

sively labeled as “high coverage.”

We have previously proposed an operational definition of repeats regarding be-

tweenness centrality. Bambus 2 [167] scaffolder implemented this approach and is a

critical component of the MetAMOS metagenomic assembly pipeline [168]. An example

of the effectiveness of this approach in a simple community composed of two genomes

is shown in Fig. 5.1. The full implementation of betweenness centrality, however, re-

quires an all-pairs shortest path computation which is computationally too intensive for

73

Figure 5.1: Assembly graph of a simulated community consisting of 200 Kbp subsets of
Escherichia coli str. K-12 MG1655 and Staphylococcus aureus. Nodes are colored and
sized based on their relative betweenness centrality with larger, green nodes indicating a
higher centrality. The highlighted nodes are inter-genomic repeats whose deletion would
separate the graph. Note that the betweenness centrality measure correctly identifies these
nodes.

typical metagenomic datasets. In Bambus 2, for example, repeat finding in a typical stool

sample requires days of computation. To overcome this limitation, we demonstrate here

that substantial speed-ups can be obtained through the use of approximate betweenness

centrality algorithms without sacrificing accuracy. We further extend this operational def-

inition of repeats by integrating a broader set of graph properties to construct an efficient

and accurate repeat detection strategy.

74

5.2 Related work

5.2.1 Repeat detection in scaffolding

Scaffolding involves using the connectivity information from mate pairs to orient

and order pre-assembled contigs obtained from an assembler to reconstruct a genome.

This problem of orienting and ordering contigs was shown to be NP-Hard [6]. Various

scaffolding methods have been designed based on different heuristics to obtain approx-

imate solutions to the problem. However, all of these methods face difficulties when

dealing with contigs originating from repetitive regions in the genome. A common strat-

egy for handling repeats is to identify and remove them from the graph before the scaf-

folding process, then re-introduce them after the contigs have been properly ordered and

oriented. Most of the existing scaffolders use depth of coverage information to classify

a contig as a repeat. For example, Opera [169] and SOPRA [60] filter out as repetitive

contigs with coverage 1.5 and 2.5 times more than average coverage, respectively. The

MIP scaffolder [59] uses high coverage (greater than 2.5 times average) as well as a high

degree (≥ 50) of nodes within the scaffold graph to determine repeats. Bambus 2 [167]

– a scaffolder specifically designed for metagenomic data – uses a notion of betweenness

centrality [170] along with global coverage information to find out repeats.

5.2.2 Betweenness centrality

In network analysis, metrics of centrality are used to identify the most important

nodes within a graph. Several metrics to measure centrality have been proposed, but in

75

this work, we use betweenness centrality. The betweenness centrality of a particular node

is equal to the number of shortest paths from all nodes to all others that pass through

that node. Intuitively, a node that is frequently found on paths connecting other nodes is

a potential repeat, as along a simple path all nodes should have roughly the same cen-

trality value. The algorithm for computing exact centrality [170] takes Θ(mn) time on

a graph with m nodes and n edges. Several solutions were proposed to overcome this

computational cost of computing network centrality, including an exact massively par-

allel implementation [171], and an approximate solution based on sampling a subset of

the nodes [172]. Recently, a better parallel approximation algorithm was proposed by

Riondato et al. [173] which uses a strategy for sampling from among the shortest paths in

the graph to compute betweenness centrality. The size of the chosen sample of paths can

provide provable bounds on the accuracy of the centrality value given by the algorithm.

The sample size is determined as a function of an approximation factor ε and the diameter

of the graph.

5.3 Methods

5.3.1 Construction of scaffold graph

A scaffold graph is defined as a graph G(V,E), where V is set of all the contigs.

The edges represent links between the contigs inferred from read pairing information –

if the opposite ends of a read pair map to different contigs we can infer the possible

adjacency of these contigs within the genome. Since most genome assemblers do not

report the location of reads within contigs, we infer this information by mapping using

76

bowtie2 [77]. Experimental library size estimates are often incorrect, and we re-estimate

here the distance between the paired reads from pairs of reads mapped to the same contig.

We record the average insert size l and standard deviation σ(l) within a library. For

each pair of contigs, we retain the maximal set of links that are consistent regarding the

implied distance between the contigs for each implied relative placement of the contigs.

Since contigs can be oriented in forward or reverse direction depending on the orientation

implied by mapped mate pairs, there exist four possible orientations of adjacent contigs

(forward-forward, forward-reverse, reverse-forward and reverse-reverse). For each of the

possible relative orientation, we need to find a maximal set of consistent links implying

that orientation. This set can be identified in O(nlogn) time using an algorithm to find

maximal clique in an interval graph [62]. The distance between the contigs implied by the

resulting “bundle” of links has mean l(e) =
∑ l

σ(l)∑ 1
σ(l)2

and standard deviation σ(l) = 1
1

σ(l)2
,

as suggested by Huson et al. [58].

5.3.2 Orienting the bidirected scaffold graph

The scaffold graph derived from the process outlined above is bidirected [174]. It

can be converted into a directed graph by assigning an orientation to each node, reflect-

ing the strand of the DNA molecule that is represented by the corresponding contig. In

computational terms, we need to embed a bipartite graph (the two sets corresponding to

the two strands of DNA being reconstructed) within the scaffold graph. In the general

case, such an embedding is not possible without removing edges in order to break all

odd-length cycles in the original graph. Finding such a minimum set of edges is NP-

77

Hard [175]. We use here a greedy heuristic proposed by Kececioglu and Myers [6] which

achieves a 2−approximation and runs in O(V + E) time.

5.3.3 Repeat detection through betweenness centrality

We start by calculating centrality values for all the nodes in the graph using either

an exact or approximate centrality algorithm as outlined in the introduction. Let µ be

the mean and σ be the standard deviation of the resulting centrality values. A contig is

marked as a repeat if its centrality value is greater than µ+ 3 ∗ σ. This cutoff criterion is

the same as the one used in Bambus 2. We have also experimented with other definitions

of outliers (such as interquartile range); however, the original definition used in Bambus

2 performed better than the interquartile range cutoff (data not shown).

5.3.4 Repeat detection with an expanded feature set

Centrality is just one of the possible signatures that a node in the graph “tangles” the

graph structure, making it harder to identify a correct genomic reconstruction. At a high

level, one can view centrality to relate to difficulties in ordering genomic contigs along a

chromosome. The orientation procedure outlined above provides potential insights into

contigs that may prevent the correct orientation of contigs – contigs adjacent to a large

number of edges invalidated by the orientation procedure are possible repeats. Other

potential signatures we consider include the degree of graph nodes (highly connected

nodes are potential repeats) as well as abrupt changes in coverage between adjacent nodes.

The latter information is defined as follows. For each contig, we capture the distribution

78

of read coverage values. We then use a Kolmogorov-Smirnov test [176] to identify pairs

of contigs that have statistically different distributions of coverage values. We flag all

edges that exceed a pre-defined p-value cutoff (in the results presented here we use 0.05).

We combine these different measures (contig length, centrality, node degree, a fraction

of the number of edges invalidated by the orientation routine that are adjacent to a node,

fraction of number of edges with abrupt changes in coverage, and the ratio of contig

coverage to average coverage) within a Random Forest classifier [177].

To generate training information for the classifier, we aligned the contigs to an

appropriate set of reference genomes using MUMmer [92] dependent on the data being

assembled, and flagged as repetitive all contigs that had more than one match with greater

than 95% identity over 90% of the length within the reference collection.

5.4 Results

5.4.1 Dataset and assembly

To test our methods, we used a synthetic metagenomic community dataset (S1)

by Shakya et al. [178] that was derived from a mixture of cells from 83 organisms with

known genomes. Reads in the datasets were cleaned and trimmed using Sickle [179].

Assembly was performed using IDBA-UD [66] with default parameters. The assembly

of S1 yielded 47,767 contigs.

79

5.4.2 Extended feature set improves repeat detection

We trained a Random Forest classifier that takes into account the various measures

outlined above as follows. We simulated a low coverage (10x) dataset using a read sim-

ulator provided with the IDBA assembler from the set of 40 genomes downloaded from

NCBI 1. We constructed contigs from the simulated reads and mapped them to reference

sequences to identify which contigs are repetitive (have ambiguous placement in the refer-

ence set). We used this information to train the classifier, then used the resulting classifier

to predict repeats within the synthetic community S1 described above. As can be seen

in Figure 5.2 the accuracy of the classifier based on multiple graph properties is higher

than that of approaches that rely on just coverage as a criterion to classify a contig as a

repeat. Classification of repeats using approximate centrality provides higher specificity

compared to the coverage approach at the cost of slightly lower sensitivity. The Random

Forest approach leverages the advantage of high sensitivity from the coverage approach

and high specificity from the centrality approach along with some additional features to

provide better overall classification.

5.4.3 Important parameters in determining repeats

We further explored the features of the data that contribute to the better perfor-

mance of the classifier. In Figure 5.3 we show the contribution of each feature to the

classifier. The length of contigs, a factor not usually taken into account when detecting

repeats, appears to have the most significant influence. This is perhaps unsurprising as

1ftp://ftp.ncbi.nlm.nih.gov/genomes/bacteria/all.fna.tar.gz

80

Figure 5.2: Plot for comparison of Random Forest classifier with the coverage and central-
ity approach. The red circle in the plot indicates the sensitivity and specificity obtained by
using the Random Forest approach. The black square in the plot indicates the sensitivity
and specificity obtained by using Bambus 2.

81

co
nti

g l
en

gth
s

ske
wed

 lin
ks

ce
ntr

ali
ty

co
ve

rag
e

de
gre

e

inv
ali

da
ted

 lin
ks

Features

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Im
po

rt
an

ce

Important Features Used In Classifier

Figure 5.3: Importance of features used in Building Random Forest classifier

repeats confuse the assembly process as well, fragmenting the assembly. In other words,

longer contigs are less likely to represent repetitive sequences. The second most essential

features are the fraction of edges adjacent to a contig that indicate an abrupt change in

coverage. Contigs with unusual coverage in comparison to their neighbors can also be

reasonably assumed to be repetitive. Centrality was the third most important factor, as

expected. Perhaps surprising, the overall depth of coverage or node degree are not as im-

portant as features despite these measures being among the most widely used signatures

of “repetitiveness” by existing tools.

82

5.4.4 Comparison of incorrectly oriented pair of contigs

Beyond testing the simple classification power of different approaches, we also

evaluated the different methods regarding whether the removal of nodes marked as repeats

makes the scaffolding process more accurate. Specifically, we explored how different

repeat removal strategies affect the contig orientation process. The scaffold graph for

the S1 dataset had 21,950 nodes and 31,059 edges. We removed the repeats reported by

the different methods from this graph and oriented the resulting graph. We then tracked

the accuracy of the results regarding the number of edges that imply a different relative

orientation of the adjacent nodes than the correct one, inferred by mapping the contigs to

the reference genomes. Here the relative orientation can either be same if both the contigs

on edge have the same orientation (forward-forward and reverse-reverse) and different

if the contigs on edge different orientations (forward-reverse and reverse-forward). The

results are shown in Table 5.1. The centrality-based methods and the Random Forest

classifier based methods resulted in lower error rates and retained a higher percentage of

the edges in the original graph than coverage based methods.

5.4.5 Comparison of runtime with bambus 2

The results above show that Bambus 2 has, unsurprisingly, a similar level of ac-

curacy with the approximate centrality approach. We have already mentioned, however,

that Bambus 2 is inefficient on large datasets. To explore the efficiency of the approxi-

mate centrality approach, we used a real metagenomic dataset (SRX024329 from NCBI)

representing sequencing data from the tongue dorsum of a female patient. Assembly of

83

Method Correct Wrong % Correct % Wrong

Bambus 2 12042 867 38.77 % 4.11%

Approximate Betweenness Centrality 12336 917 39.71% 3.94%

Coverage (MIP, SOPRA) 3840 315 17.49% 4.72%

Coverage (Opera) 2007 165 6.46% 5.62%

Random Forest 12255 807 39.45% 3.52 %

Table 5.1: Number of correctly and incorrectly oriented links in scaffold graph using
various repeat removal strategies. The % correct column represents the percentage of
correctly oriented links as a function of the total number of edges in the original scaffold
graph. % wrong column represents the percentage of incorrectly oriented links in the
graph obtained by removing repeats.

these reads was performed using IDBA yielding 106,380 contigs in total. The scaffold

graph constructed from these contigs had 112,502 edges. The ‘MarkRepeats’ module of

Bambus 2 took almost 2 hours to detect repeats, whereas the approximate betweenness

centrality algorithm found repeats in approximately 5 minutes, a substantial improvement

in speed without a loss of accuracy as shown above. To compare the runtime with training

of Random Forest classifier, we trained the classifier on contigs in this dataset. Since we

did not have reference sequences for this dataset, we randomly marked a subset of contigs

as repeats and performed training. It took about 20 minutes to calculate features and fit a

classifier which was still faster than the time taken by Bambus 2.

5.5 Discussion and conclusion

Our prior work had introduced the use of network centrality as an approach for de-

tecting repeats in metagenomic assembly, a setting where coverage-based approaches are

often ineffective. This approach, implemented in the scaffolder Bambus 2, was, however,

inefficient for large datasets, the fact that has limited its use. Here we extend our original

84

approach by incorporating multiple features of the scaffold graph (including centrality)

that may be signatures of repetitive sequences within a Random Forest classifier. We also

show that an approximate calculation of network centrality based on the random sam-

pling of paths obtains similar accuracy as the full centrality computation at a fraction of

computational time.

Our results demonstrate that methods that directly capture the effect of repeats on

the assembly graph are more effective at detecting repeats than indirect measures such

as depth of coverage, particularly in the context of the metagenomic assembly. Our new

approach improves in both accuracy and efficiency over existing methods for repeat detec-

tion, and we plan to incorporate it within the MetAMOS metagenomic assembly pipeline

as a replacement for the existing code within Bambus 2. We note that the classification

accuracy was surprisingly high even though the classifier was trained on purely simulated

data yet applied to the real dataset. This validation underscores the robustness of the

feature set we have identified. At the same time, the graph features that we have iden-

tified as useful in detecting repeats are just a first step towards a better understanding of

the features of the data that most influence the ability of assembly algorithms to accu-

rately reconstruct metagenomic sequences. Also, classifiers like Random Forest can be

implemented in parallel [180] which can provide significant runtime speedups for large

metagenomic datasets. We plan in future work to further explore both the feature set and

the approaches used to build and train the classifier to increase accuracy and ultimately

improve the quality of metagenomic reconstructions.

85

Chapter 6: MetaCarvel: linking assembly graph motifs to biological vari-

ants

6.1 Introduction

Sequencing of DNA directly extracted from microbial communities (metagenomics),

has emerged as a key tool in the exploration of the role microbes play in human and

environmental health. Large-scale studies enabled by metagenomic methods, such as

MetaHIT [36] and the Human Microbiome Project (HMP) [181] have cataloged the com-

plex microbial communities associated with the human body and have demonstrated their

importance to human health. By eliminating the need for culturing, metagenomic se-

quencing has made it possible to explore a broader range of the microbes inhabiting our

world and has led to the discovery of novel organisms and genes from complex sam-

ples [182–185].

Despite promising initial results, the reconstruction of entire or even partial organ-

isms from complex microbial mixtures remains a tremendous challenge. The assembly

of metagenomic sequences is confounded by several factors: (i) uneven abundance of

the different organisms found in a sample, (ii) genomic variation between closely re-

lated organisms, (iii) conserved genomic regions shared by distantly related genomes

86

(inter-genomic repeats), and (iv) repetitive DNA within a single genome (intra-genomic

repeats). All but the latter challenges are unique to metagenomic data and have not been

the target of research until very recently.

Several genome assembly tools designed explicitly for metagenomic data have

been developed in recent years. Among the most widely used are metaSPAdes [67] and

MEGAHIT [186], however many other tools have been developed including MetaVel-

vet [187], IDBA-UD [66], Ray Meta [188], and Omega [189]. These tools effectively

address the uneven coverage of metagenomic datasets, but virtually all of them “smooth

out” small differences between co-occurring strains of organisms in order to enable the

reconstruction of longer genomic segments from the mixture. Furthermore, the output of

the assemblers is simply a collection of linear segments (contigs) that lacks the connec-

tion between the segments originating from the same organism. As a result, additional

analyses are necessary to discover information about the adjacency of genomic segments

(e.g., operon structure in bacteria), or large-scale genomic variants between co-occurring

microbial strains. The latter information is of particular research interest in microbial

ecology, for example in the context of the lateral gene transfer [190] or understanding

how genomic heterogeneity contributes to the stability of microbial communities [191].

The study of genomic variants in microbial communities is of considerable inter-

est, and a number of computational tools have been developed to discover this informa-

tion. The approaches are primarily based on read alignments to either complete genomes,

as performed for example by metaSNV [192] and MIDAS [193], or against conserved

genes, as performed by ConStrain [194] and StrainPhlan [195]. Strain variants can also

be discovered directly from the output of the assembler, as done, for example, for diploid

87

genomes through a colored de Bruijn graph approach [196], or in metagenomic data

through the use of the SPQR tree data structure [197].

The discovery of genomic variants from assembly relies on the information con-

tained in an assembly graph - a representation of the ambiguity in the reconstruction of

the genome or metagenome. While many assemblers can output this information, an as-

sembly graph can also be constructed post-assembly by linking together genomic contigs

through the information provided by paired reads or other sources of information, using a

computational process called scaffolding. While most existing genome and metagenome

assemblers [12, 67, 198] contain dedicated scaffolding [134] modules, the output of these

tools comprises linear paths that ignore the presence of genomic variants. An exception

are stand-alone scaffolders such as Bambus 2 [167] or Marygold [197] that explicitly

retain ambiguity in the assembly graph and use graph analyses to characterize specific

genome variants.

Here we describe a new metagenomic scaffolding package called MetaCarvel (Fig-

ure 6.1), a tool that substantially improves upon the algorithms implemented in Bambus 2

and MaryGold. We show that MetaCarvel generates more contiguous and accurate scaf-

folds than one of the best performing stand-alone scaffolders (OPERA-LG) [64,199], and

that it can accurately detect a number of genomic variants, including regions with diver-

gent sequence, insertion-deletion events, and interspersed repeats. MetaCarvel is released

under MIT open source license and is available at https://github.com/marbl/MetaCarvel.

88

MetaCarvel Scaffolding and Variant Detection Pipeline

Assembled Contigs

Reads

Alignment Link Construction
and Bundling Repeat Detection

Repeat RemovalContig Orientation

Cleaned Scaffold Graph

Contig Layout Variant Detection

Final Scaffolds

Figure 6.1: Overview of MetaCarvel pipeline: First, reads are aligned to assembled con-
tigs. Using these alignments, a scaffold graph is constructed by bundling the link implying
same contig orientation. In this graph, repeats are identified and removed. After the graph
is cleaned, variants are identified and collapsed. In this simplified graph, the scaffolds are
generated by traversing linear paths.

6.2 Methods

6.2.1 Contig graph construction

MetaCarvel begins by aligning paired-end reads to assembled contigs using a stan-

dard short read aligner such as BWA [78] or bowtie2 [77]. The reads are aligned in single

end mode to avoid biasing alignments based on the library insert size specifications. Us-

ing the alignments of reads to contigs, a contig graph is created where the nodes are contig

89

sequence and edges are the linking information provided by the paired-end reads where

each read in the pair is aligned to different contigs. We first re-estimate the library size

(mean and standard deviation) by considering a set reads where both reads in the pair are

aligned to the same contig. For a pair of contigs, different read pairs can imply vastly

different distance between those contigs. To avoid this issue, we first compute the max-

imal set of links that are consistent to each other and imply similar distance (anywhere

between µ − 3 ∗ σ and µ + 3 ∗ σ, where µ and σ are the mean and standard deviation

of the input paired-end library) between two contigs. Finding such set of consistent links

is similar to finding a maximal clique in an interval graph. In this case, intervals can be

imagined as the read pair and the position of that interval is dictated by the alignment

coordinates. With this formulation, the maximal set of consistent links can be computed

in O(NLog(N)) time, where N is the number of total read pairs aligned to contigs [62].

Once the set of mutually consistent links is identified, they are “bundled” into a single

representative link. The mean and standard deviation for this link is computed using a

method described in Huson et al. [58]. The weight of this link is given by the number of

link which were bundled while constructing the link.

6.2.2 Repeat detection

To avoid the ambiguities caused by genomic repeats during scaffolding, we first

identify repetitive contigs and remove them from the contig graph along with all the edges

incident on them. We use different signatures for finding repetitive contigs that could

confound the scaffolding process [200]. First, we calculate the sequencing coverage and

90

degree for all the contigs in the graph. Then, we assign a unique orientation to each

contig in the contig graph using an algorithm described in more detail in the next section.

This algorithm removes edges from the graph that prevent the assignment of a consistent

orientation to contigs. For each contig, we count the number of edges such removed. We

also flag links in the contig graph that connect contigs with significantly different depths

of coverage. We track how many such “skewed” links are incident on each contig.

For each of the features described above (depth of coverage, node degree, incident

edges invalidated during the orientation phase, skewed edges), we flag the contigs that

occur within the upper quartile of all contigs. Any contig that is flagged according to

most of (at least 3) the criteria listed above is marked as a repeat and removed. After

removing these contigs, we also remove contigs with a high betweenness centrality [170]

measure (the number of shortest paths passing through a node in a graph) - specifically

the contigs that have a betweenness centrality higher by more than 3 standard deviations

from the mean betweenness centrality for the assembly graph. Since the computation of

betweenness centrality is computationally expensive (O(N3) for N contigs), we use an

approximation algorithm [173] which runs in linear time.

6.2.3 Orientation

The contig graph is bidirected because each contig in the graph can originate from

either forward or reverse DNA strand. To make this graph directed, we need to assign

a unique orientation to each contig. The edges in the graph are of two types: “same”

when adjacent contigs have same orientation and “different”, otherwise. If the graph

91

has an odd length cycle of “different” edges, then it is impossible to assign a consistent

orientation to contigs in that cycle without discarding at least one edge from the cycle.

Our objective is to minimize the number of edges to be removed from the graph in order

to allow a consistent orientation for all contigs. Finding such minimum set is equivalent

to finding a maximal bipartite subgraph - an NP-Hard problem [175]. We use the greedy

algorithm described in Kelecioglu et al. [6] that achieves a 2-factor approximation and

runs in O(V + E) time (V - the number of contigs, E - the number of edges connecting

these contigs). Briefly, we assign an arbitrary orientation (forward or reverse) to a starting

contig, then proceed to orient all contigs adjacent to it. While assigning an orientation to

a contig, we pick an orientation in such a way that it agrees with the majority of its

already oriented neighbors (in terms of edge weights supporting that orientation). Once

we assign an orientation to a contig, we invalidate any links that disagree with the chosen

orientation. We continue in a breadth-first manner and assign an orientation to all the

contigs.

6.2.4 Bubble collapsing

A typical metagenomic sample contains closely related genomes or closely related

strains of same organism which result in complex bubble-like pattern in the graph. Identi-

fying complex bubbles in the graph takes exponential time in the number of nodes, thereby

making bubble identification extremely slow on large and complex metagenomics sam-

ples. To identify bubbles in the graph efficiently, we first decompose the oriented contig

graph into its biconnected components using Hopcroft-Tarjan algorithm [201]. This takes

92

O(|V |+ |E|) time. We further decompose each biconnected component into triconnected

components by computing an SPQR tree data structures [202,203]. SPQR tree for a graph

denotes a hierarchical decomposition of biconnected components of a graph into its tri-

connected components and each tree node corresponds to a triconnected component in the

original graph. Using this tree, we extract separation pairs (a pair of nodes when removed

from a connected component make it disconnected) in the graph. We used the implemen-

tation of SPQR trees provided in Open Graph Drawing Framework (OGDF) [204] which

runs in linear time O(|V | + |E|). We then test if a separation pair is a valid source-sink

pair in the assembly graph so that it can span a bubble using an algorithm used in Mary-

gold. Briefly, we check if all the paths starting at the source of the bubble end at the sink

of that bubble and invalidate all the separation pair for which this condition does not hold.

Once valid source-sink pairs and bubbles are identified, each bubble is collapsed into a

supernode. The incoming and outgoing edges from the source and sink respectively for

the bubbles are assigned to its supernode. This simplifies the graph structure by large

extent thereby masking the complexities caused by the variants in the sample

The graph components we identify are also reported by MetaCarvel as putative

strain variants, allowing further analysis. From among the patterns identified we have

focused the analysis in this paper on three simple patterns (refer to Figure 6.2).

Three bubbles: Three node bubbles in the graph correspond to putative gene gain-

loss events in the genome, hence, are important from the biological point of view. These

bubbles can be easily found from the validated bubbles of size 3.

Four bubbles: Four node bubbles correspond to putative variation between the genomes

of related strains within a sample. Like three bubbles, they can also be easily character-

93

(A) Three node bubble (B) Four node bubble (C) Interspersed Repeats

Figure 6.2: Different types of motifs detected by MetaCarvel. (A) Three node bubbles
potentially represent gene gain/loss events and horizontal gene transfers. They are formed
due to the insertion or deletion of chunks between two otherwise similar genomes. (B)
Four node bubbles denote the variation between very similar sequences. They can result
in the graph due to the species with very high sequence similarity. (C) Interspersed repeats
in the graph are denoted by the nodes with high centrality and usually tangle the graph.

ized within the validated bubbles obtained during the bubble collapsing step.

Interspersed Repeats: Interspersed repeats are natively detected and flagged by the re-

peat detection procedure described above.

6.2.5 Linear scaffold generation

Once we simplify the graph by collapsing bubbles into supernodes, we generate the

scaffold sequences through a linear traversal of the graph. We first create an auxiliary

graph G′(V ′, E ′) from the original graph G(V,E), as follows. We create two nodes for

each contig, one for the 5′ end and one for the 3′ end, connected by an edge that matches

the orientation of the corresponding contig. The edge weights for E ′ is the bundle sizes

(number of mate pairs supporting that edge). The edges between the 5′ and 3′ ends of same

contigs are not added at this stage. We then compute a weighted maximal matching [205]

in G′. After we compute a weighted maximal matching, we remove nodes and edges

present in that matching and repeat the matching process on the remaining nodes and

94

edges until all nodes inG′ are matched. In each maximal matching, we add edges between

the 5′ and 3′ ends of each contig present in that matching. This defines a unique linear

path in G′ and spells out a scaffold. We note that supernodes (collapsed regions of strain

variation) can be part of the linear path constructed from the scaffold graph. Since each

bubble is a directed acyclic graph (DAG), we compute the highest weighted path from

source to sink within each supernode using a dynamic programming algorithm. This

path is then merged within the global linear path to define the linearized scaffold. For

each supernode, we also output additional source to sink paths as alternate variants by

iteratively removing edges that were previously reported.

6.3 Results

6.3.1 Effect of microbial mixtures on scaffolding

We compared the performance of MetaCarvel to that of OPERA-LG [64], using

both single genomes and an increasingly complex mixture of genomes. We used reads

from five different strains of Acinetobacter baumanii (NCBI Short Read Archive acces-

sions SRR1008889, SRR1030406, SRR1019232, SRR1030403, and SRR1030473) and

assembled them using both MEGAHIT and metaSPAdes. To simulate the impact on

scaffolding performance of increasing levels of genome heterogeneity among closely re-

lated organisms, we created increasingly complex mixtures comprising from one to five

genomes. We aligned the paired reads to the resulting assemblies and used MetaCarvel

and OPERA-LG to perform scaffolding. As more genomes are added to the mixture

the quality of the assembly degrades and so does the quality of the resulting scaffolds

95

for MEGAHIT assembly (Figure 6.3(A)). However for metaSPAdes contigs and result-

ing scaffolds, the contiguity increases as more genomes are added to the mixture because

metaSPAdes aggressively tries to assemble genomes without preserving much variation in

the assembly (Figure 6.3(B)). Even in the case of the assembly of a single genome, scaf-

folding with MetaCarvel improves contiguity, albeit by only a small amount (13.31 kbp

contig NG50 vs.18.51 kbp scaffold NG50 using MEGAHIT and 16.96 kbp contig NG50

vs. 18.99 kbp scaffold NG50 using metaSPAdes). The contiguity (sum of lengths of con-

tigs on a linear path in the graph) of the scaffolds generated by MetaCarvel substantially

improves over the original assembly for the more complex samples. When compared to

metaSPAdes scaffolds (generated using the scaffolding module built within this assem-

bler), MetaCarvel’s scaffold contiguity was at least as good as metaSPAdes scaffolds for

all mixtures (Figure 6.3(B)). The contiguity of the scaffolds degrades slower than that of

the scaffolds generated by OPERA-LG even as the contiguity of the underlying contigs

created by MEGAHIT and metaSPAdes degrades rapidly as the complexity of the mixture

increases.

To measure the correctness of the assemblies, we computed the number of mate-

pairs mapped concordantly, that is, the mate pairs whose two ends are properly oriented

with respect to each other and the distance between the paired reads is within the insert

size limit implied by the library. This measure is correlated with assembly quality as

mis-assemblies, or fragmented contigs and scaffolds result in unmapped reads and dis-

concordant mate-pairs. For all the mixtures and both assemblers, MetaCarvel scaffolds

had the highest number of concordant mate pairs (Figure 6.3(D) and (E)).

As the number of genomes in a mixture increased so did the number of genomic

96

0

5

10

15

Two Three Four Five

N
G5

0
(k

bp
)

MEGAHIT MetaCarvel OPERA-LG

0

10

20

30

40

50

Two Three Four Five

N
G5

0
(k

bp
)

metaSPAdes metaSPAdes(S)
MetaCarvel OPERA-LG

0

50

100

150

200

Two Three Four Five

Bu
bb

le
 C

ou
nt

Bubbles

MEGAHIT metaSPAdes

88

90

92

94

96

Two Three Four Five

%
 co

nc
or

da
nt

 re
ad

s

MEGAHIT MetaCarvel OPERA-LG

90

91

92

93

94

95

Two Three Four Five

%
 co

nc
or

da
nt

 re
ad

s

metaSPAdes metaSPAdes(S)

MetaCarvel OPERA-LG

(A) (B)

(C) (D) (E)

Figure 6.3: Scaffold statistics for Acinetobacter baumannii strain mixtures:(A) NG50
statistics when MEGAHIT contig assembly was used as an input for scaffolding meth-
ods. (B) NG50 statistics when metaSPAdes contig assembly was used as in input for
scaffolding methods. metaSPAdes(S) denotes the scaffolds generated by inbuilt scaffold-
ing module of metaSPAdes. (C) Number of bubbles detected by MetaCarvel for different
input assemblies. The percentage of reads aligned concordantly when (D) MEGAHIT
assembly was used as an input and when (E) metaSPAdes assembly was used as in input.

variants detected by MetaCarvel (Figure 6.3(C)). A sample pattern is shown in Figure 6.4.

In this example, the parallel contigs differed by about 3% nucleotide identity, a value

larger than the amount of error tolerated by the assemblers. We observed that the number

of variants/bubbles detected by MetaCarvel was much higher with MEGAHIT assemblies

compared to metaSPAdes. However, the contiguity of scaffolds generated with metaS-

PAdes was much higher than the scaffolds generated with MEGAHIT contigs. This high-

lights the fact that preserving variation in the assembly affects the contiguity. If assembler

doesn’t smooth out the variations in the genome, it would provide much contiguous as-

sembly at the cost of hidden variation.

97

Figure 6.4: Variants detected in one of the components of Acinetobacter baumanii scaf-
fold graph. In this component, we find all the non-terminal nodes in a bubble are more
than 97% identical to each other and originate from two different strains of Acinetobacter
baumannii genome.

6.3.2 Accuracy of detection insertions and deletions

To verify the accuracy of detecting insertion and deletions, we used MEGAHIT

to co-assemble reads from two strains of Escherichia coli for which fully complete ref-

erence sequences are available: Escherichia coli K12 (NCBI sequence read archive ac-

cession: ERR022075) and Escherichia coli O83:H1 (NCBI sequence read archive acces-

sion: SRR6512538). We scaffolded the resulting assembly using MetaCarvel and flagged

as predicted insertion/deletion event the three node bubbles (see Figure 6.2(A)) found

within the resulting scaffolds. To flag insertion and deletion events between these two

Escherichia coli genomes, we aligned them with each other using NUCmer and extracted

the regions flagged as “GAP” by the dnadiff utility from the MUMmer package [155].

We determined that a three node bubble represented a true insertion/deletion event if the

middle contig aligned within one of these regions. Of 126 three-node bubbles detected

by MetaCarvel, 81 were found concordant with the insertion/deletion events identified by

MUMmer (64.28% precision). A total of 194 contigs aligned to gap regions within the

E. coli genomes, implying a specificity of 73.14%. Some of the false negatives (32) were

due to the parameters used in MetaCarvel to eliminate low quality graph, while 12 other

false negatives were due to the fact that the insertion/deletion event coincided with other

98

genomic phenomena, leading to a graph motif that was inconsistent with our definition of

a three node bubble.

6.3.3 Detection of regions with high sequence variation

To evaluate the accuracy of sequence variants detected by MetaCarvel, we used

reads from two fairly distant strains of Acinetobacter baumannii genome (SRR1171982

and SRR1200567) [206]. We selected Acinetobacter baumannii for this analysis because

the variation between different strains is associated to their antibiotic resistance. We

co-assembled the reads with MEGAHIT and ran MetaCarvel’s variant detection on the

resulting assembly. We aligned the contigs to the Acinetobacter baumannii 1656-2 ref-

erence genome sequence (NCBI ID: NC 017162). The contigs which aligned at a same

position in the reference genome were likely to have originated from the true variants

(Figure 6.2(B)). MetaCarvel detected 191 variants in this graph, among which 184 over-

lapped with variants identified by alignment to the reference genome. In the remaining

7 variants which could not be validated using the strain 1656-2, the contigs from these

variants were perfectly aligned to Acinetobacter baumannii strain AR 0078, Acinetobac-

ter baumannii strain XH731, Acinetobacter baumannii strain 15A34. For the remaining

bubbles, the contigs in those bubbles did not align to any known strain of Acinetobac-

ter baumannii with high identity, suggesting possible misassemblies. We also performed

a similar analysis on a mixture of Escherichia coli K12 and Escherichia coli O83:H1

genomes. In this case, to flag a true variation, we check if contigs in a bubble are aligned

to both the strains with high identity over at least 95% of their length. With this defini-

99

tion, 28 of 31 bubbles found by MetaCarvel matched actual variants, implying 90.32%

precision.

Dataset Method True Repeats Predicted Repeats True Positives False Positives True Negatives False Negatives Sensitivity Specificity
Yersinia pestis OPERA-LG 46 353 31 322 904 15 67.39% 73.79%

MetaCarvel 46 222 33 189 1037 13 71.73% 84.58%

JGI Mock OPERA-LG 532 771 356 415 21,215 176 66.91% 98.01%

MetaCarvel 532 454 438 16 21,614 94 82.33% 99.92%

Table 6.1: Comparison of the accuracy of repeat detection in MetaCarvel and OPERA-LG
on different datasets.

6.3.4 Effectiveness in detecting repeats

To determine the accuracy of interspersed repeat detection (Figure 6.2(C)), we used

reads from Yersinia pestis CO92 genome (Genebank ID: AL590842.1) as this genome

has well characterized interspersed repeats [207]. We assembled the reads (SRR069183)

using MEGAHIT and then scaffolded the assembly with MetaCarvel. To define a ground

truth, we aligned the contigs to the Yersinia pestis genome using NUCmer (with –maxmatch

option) [155] and flagged as repeats all contigs aligned at more than one location with at

least 95% identity and 95% alignment length. The sensitivity and specificity of MetaCarvel’s

repeat detection algorithm was 71.86% and 83.19% respectively. We compare this result

to the algorithm used in OPERA-LG which detects repeats using sequence coverage alone

(contigs with 1.5 times the average coverage of the genome are flagged as repeats). Within

the same assembly of Yersinia pestis, OPERA-LG’s repeat finding approach has sensitiv-

ity and specificity of 67.39% and 73.79%, respectively (Table 6.1). Further, we assessed

MetaCarvel’s repeat detection accuracy on a synthetic metagenomic dataset described in

Singer et al. [208]. We assembled the reads using MEGAHIT, and the resulting con-

tigs were aligned to the reference genomes using NUCmer (with –maxmatch option). In

100

this case the sensitivity and specificity of MetaCarvel’s repeat detection was 82.33% and

99.93% compared to 66.91% and 98.01% of OPERA-LG (Table 6.1). Overall, OPERA-

LG found fewer repeats than MetaCarvel, incurring higher number of false positives. The

repeats missed by MetaCarvel had inconsistent read alignments and hence were not part

of the scaffold graph. Of the 16 false positives obtained from MetaCarvel, 8 of them were

marked with ‘high coverage node’ as one of the features and 3 of them were marked based

on high betweenness centrality.

Assembler Method Scaffolds Total Assembly Size % reference covered Misassemblies Largest Scaffold (bp) Length at 1 Mbp Length at 10 Mbp Length at 50 Mbp
MEGAHIT OPERA-LG 22,597 87,540,947 87.19% 207 47,3251 319,244 97,007 2,340

MetaCarvel 19,879 88,092,845 88.09% 99 287,352 287,352 154,353 9,127

metaSPAdes OPERA-LG 4,931 98,714,003 91.25% 148 2,331,214 2,055,240 944,070 177,154
metaSPAdes(S) 5,333 98,302,677 91.12% 55 1,991,282 1,810,249 158,300 199,401

MetaCarvel 5,137 99,831,110 91.29% 68 1,991,282 1,810,249 199,409 158,308

Table 6.2: Comparison of reference based assembly statistics for synthetic metagenomic
dataset. We used MEGAHIT and metaSPAdes assembly as the input for OPERA-LG and
MetaCarvel. metaSPAdes(S) denotes the scaffolds generated by metaSPAdes assembler.

6.3.5 Evaluation of scaffold quality using synthetic datasets

We evaluated MetaCarvel on a synthetic dataset generated by Singer et al. [208].

This dataset consists of a mixture of 23 bacterial and three archaeal stains, across 10

different phyla and 14 classes, as well as a wide range of GC and repeat content. Due

to the high depth of sequencing coverage and relatively low complexity of the mixture,

the assembly of the full dataset resulted in large contigs and few opportunities for scaf-

folding algorithms to improve contiguity. Only 0.051% of mate-pairs spanned the gap

between contigs, thereby not providing linking information for scaffolding. To provide

a more challenging situation, we downsampled the total number of reads 1000-fold. We

assembled the downsampled data using MEGAHIT with default parameters. To derive

101

linkages between contigs based on mate-pair information, we aligned the reads to the as-

sembled contigs using bowtie2 (with parameters -end-to-end -p 12) [77]. We then used

MetaCarvel and OPERA-LG to scaffold these assemblies. Since we know the reference

genome sequences for this dataset, we could use metaQUAST [209] to assess the accu-

racy of the resulting scaffolds. As seen in Table 6.2, MetaCarvel had fewer misassemblies

and better contiguity than OPERA-LG, even in this relatively simple community.

We also assembled the data using metaSPAdes (with default parameters), an as-

sembler specifically developed for metagenomic data that also includes a scaffolding

module. We scaffolded metaSPAdes contigs with MetaCarvel and OPERA-LG and used

metaQUAST to evaluate scaffold accuracy. As seen in Table 6.2, the number of misassem-

blies in MetaCarvel scaffolds was less than OPERA-LG but more than metaSPAdes scaf-

folds. MetaSPAdes scaffolds had fewer misassemblies because their scaffolding module

is tightly coupled with the assembly module, hence uses more information obtained from

the assembly graph to generate scaffolds compared to both OPERA-LG or MetaCarvel.

However, the contiguity of MetaCarvel scaffolds was better than both metaSPAdes and

OPERA-LG scaffolds.

6.3.6 Evaluation using real metagenomics data

We tested the effectiveness of MetaCarvel on four samples from the Human Mi-

crobiome Project (HMP). We chose two stool samples (SRS020233, SRS049959), one

supragingival plaque sample (SRR2241598), and a posterior fornix sample (SRS024310).

The stool samples represent complex communities and high depths of sequencing cov-

102

erage, the plaque sample has lower complexity but relatively high coverage, while the

posterior fornix has a lower depth of coverage due to the high level of host contamina-

tion (more than 80% human DNA) [181]. Table 6.3 shows the comparison of different

scaffolding approaches on these samples. Since the composition of these samples is un-

known, we could not use reference-based methods to evaluate scaffold accuracy. Instead,

as a proxy, we computed the number of mate pairs that map concordantly to the resulting

scaffold. We say a mate pair is concordant with the scaffold if the two ends are properly

oriented with respect to each other and the distance between the paired reads is within the

insert size limit implied by the library. For all the samples, MetaCarvel had a higher num-

ber of concordant mate pairs compared to OPERA-LG when the MEGAHIT assembly

was used. Even when scaffolding metaSPAdes assemblies, MetaCarvel had the high-

est number of concordant mate pairs. Also, the total number of concordant mate pairs

was higher for both OPERA-LG and MetaCarvel scaffolds when using the MEGAHIT

assembly compared to the metaSPAdes assembly as an input. To assess the contiguity

scaffolds, we sorted the scaffolds in the decreasing order of their lengths and summed the

length of the scaffolds until a particular length was reached (1 Mbp, 10 Mbp, and 50 Mbp

in our case). In most cases, MetaCarvel scaffolds had the highest contiguity. Particularly,

metaSPAdes contigs scaffolded with MetaCarvel had the highest contiguity. The high

contiguity and the high number of concordant mate pairs in MetaCarvel scaffolds can be

attributed to its ability resolve the bubbles in the connected components and generate the

scaffolds which pass through the bubbles, whereas OPERA-LG broke the scaffolds where

there was a boundary between a variant and a linear path (Figure 6.5). Because of this, the

concordant mate pairs which aligned at these junctions are not explained by OPERA-LG

103

scaffolds.

Concordant Mate Pairs

Figure 6.5: A component in the scaffold graph for HMP stool sample. The highlighted
nodes in the graph denote the path taken by OPERA-LG to generate the scaffold in this
component. It can be observed that while finding a linear path in the graph, other al-
ternative paths are not considered, thereby not using the information provided by the
paired-end reads implying these alternative paths.

Dataset Method Scaffolds Total Scaffold Size Scaffolds ≥ 50kbp Largest Scaffold Length at 1 Mbp Length at 10 Mbp Length at 50 Mbp Concordant mate pairs
SRS049959 OPERA-LG 198,206 273,240,062 473 530,144 258,645 126,280 38,928 82.15%

MetaCarvel 108,437 277,078,571 487 518,223 356,683 154,138 39,543 85.49%
metaSPAdes(S) 98,318 268,262,456 489 476,465 422,765 164,159 44,768 80.05%

OPERA-LG(M) 97,486 267,725,432 518 476,468 405,096 162,164 47,000 80.08%
MetaCarvel(M) 98,073 268,106,764 492 868,827 749,803 211,022 47,631 80.32%

SRS020233 OPERA-LG 128,250 279,763,220 393 381,589 286,553 139,736 35,387 84.91%
MetaCarvel 141,438 282,496,357 421 430,164 356,683 154,277 37,775 86.88%

metaSPAdes(S) 122,613 279,572,129 437 573,824 351,867 163,997 40,899 85.91%
OPERA-LG(M) 122,143 279,890,224 459 573,824 372,121 158,298 42,441 85.32%
MetaCarvel(M) 122,776 280,784,810 471 587,255 584,705 187,147 44,721 85.34%

SRS2241511 OPERA-LG 631 2,844,262 5 96,286 19,320 NA NA 83.93%
MetaCarvel 533 2,859,066 6 126,186 27,739 NA NA 84.24%

metaSPAdes(S) 774 3,344,834 4 57,030 20,567 NA NA 91.05%
OPERA-LG(M) 733 3,343,583 6 124,860 20,978 NA NA 85.64%
MetaCarvel(M) 652 3,353,933 11 126,270 37,747 NA NA 85.87%

SRR2241598 OPERA-LG 60,601 117,644,162 75 217,394 148,289 35,125 41,142 51.59%
MetaCarvel 56,503 119,165,496 100 319,252 184,177 46,572 5,680 54%

metaSPAdes(S) 48,403 113,646,647 102 417,398 206,871 46,504 6,223 45.17%
OPERA-LG(M) 43,908 109,372,182 105 282,943 206,871 47,953 6,613 45.10%
MetaCarvel(M) 42,927 110,223,597 190 417,398 336,724 97,486 8,703 45.49%

Table 6.3: Comparison of reference free assembly statistics for real metagenomic
datasets. (M) denotes the scaffolds generated using metaSPAdes assembly as an input.
metaSPAdes(S) denotes the scaffolds generated by metaSPAdes assembler.

6.4 Scaffolding all samples from Human Microbiome Project (HMP)

To observe the impact of MetaCarvel on the real metagenomic datasets, we ran it

on over 2000 samples from the Human Microbiome Project (HMP). We grouped the sam-

ples into four main body sites as follows: Oral, Skin, Stool, and Vaginal. We used the

assemblies generated using IDBA-UD assembler [66] by HMP consortium. We aligned

104

reads to the assemblies with bowtie2 with default parameters and scaffolded them using

MetaCarvel. Figure 6.6 shows different statistics computed over all the assemblies. The

average contig size for scaffolds generated by MetaCarvel was slightly better than the

assembles. However, the maximum contig size was much higher for MetaCarvel, espe-

cially for stool, oral and vaginal samples. We also computed the contig size at 1 Mbp

length of the assembly. It can be observed that for stool samples, the size at 1 Mbp for

MetaCarvel scaffolds is much higher than that for IDBA-UD assemblies. However, for

skin samples none of the statistics show significant improvements over the assembly. This

can be explained by the coverage of the reads for skin samples. From Table 6.4, it can be

observed that the scaffold graph for skin samples is much sparser compared to all other

samples (less than one edge per node on an average). This results in the lack of infor-

mation essential for scaffolding. Since all other samples have more than one edge per

node on an average, we saw the improvement in the contiguity after scaffolding. This

evaluation highlights the usefulness of scaffolding in getting contiguous scaffolds in the

real complex metagenomics samples.

105

0
20

0
40

0
60

0
80

0
10

00
12

00

HMP2(S) MC(S) HMP2(O) MC(O) HMP2(Sk) MC(Sk) HMP2(V) MC(V)

Comparison by body site

Co
nt

ig
 s

ize
 a

t 1
 M

b
(K

p)
0

20
0

40
0

60
0

80
0

10
00

12
00

HMP2(S) MC(S) HMP2(O) MC(O) HMP2(Sk) MC(Sk) HMP2(V) MC(V)

Comparison by body site

M
ax

im
um

 C
on

tig
 S

ize
 (K

p)

(A)

(B)

(C)

0.
5

1.
0

2.
0

5.
0

10
.0

20
.0

50
.0

HMP2(S) MC(S) HMP2(O) MC(O) HMP2(Sk) MC(Sk) HMP2(V) MC(V)

Comparison by body site

Av
er

ag
e

Co
nt

ig
 S

ize
 (K

p)
Co

nt
ig

Si
ze

 a
t 1

 M
bp

(K
bp

)
M

ax
im

um
 C

on
ig

Si
ze

 (K
bp

)
Av

er
ag

e
Co

nt
ig

Si
ze

(K
bp

)

Figure 6.6: Scaffold statistics for HMP samples grouped by different body sites.(A) Con-
tig size at 1 Mbp, (B) Maximum contig size, and (C) Average contig size.

106

Dataset Samples Scaffolds Average Coverage Nodes in graph Edges in graph Edges per node

HMP2 Stool 427 63813.86 17.09 11820.07 14980.72 1.26

HMP2 Skin 182 13689.73 7.37 390.42 372.46 0.95

HMP2 Oral 1107 56206.90 19.96 19193.04 29265.51 1.52

HMP2 Vaginal 158 20575.69 7.81 974.20 1416.91 1.45

Table 6.4: Graph and sample statistics for HMP2 samples

6.5 Discussion and conclusion

We developed a standalone metagenomics variant detection and scaffolding method

MetaCarvel and showed its effectiveness on synthetic and real metagenomics datasets of

varying complexity. Unlike most of the existing scaffolders which only output linearized

sequences of scaffolds, MetaCarvel outputs a list of variants along with the graph used to

call variants. This can help biologists to look at the interesting graph patterns and contig

sequences in the assembly and dig down deeper in the biological question related only to

the sequences of interest.

We focused our discussion and validation on simple types of genomic variants. Our

method is also able to detect more complex variants, which are, however, difficult to val-

idate in an automated fashion. This functionality sets MetaCarvel apart from other tools

available for identifying strain variants in microbial communities, tools which primar-

ily rely on reference genomes or conserved genes to characterize microbial strains. The

approach taken by MetaCarvel is complementary to approaches based on marker genes,

such as StrainPhlAn [195]. The combination of the two approaches represents a promis-

ing direction for future research, leading to effective approaches for characterizing novel

genomic fragments while placing them within the context of the fine grained taxonomic

information derived from marker genes.

107

The effectiveness of the approach implemented in MetaCarvel critically depends

on the data available to the scaffolding module. MetaCarvel can only detect variants if

the corresponding contigs are covered at high enough depth and if mate pairs or other

information provide links between adjacent contigs. The analysis is also greatly im-

proved if the underlying assembly is conservative - assemblers that aggressively attempt

to “smooth out” genomic variants in order to obtain long genomic contigs, end up remov-

ing exactly the information that MetaCarvel is designed to detect. We, thus, suggest that

scientists interested in strain variation explore multiple assemblies of data sets, using dif-

ferent metagenomic assemblers run with different parameter choices, rather than relying

on published assemblies or using the most popular assembler run with default parameters.

In closing, we would like to stress that the study of strain variation within microbial

communities is in its infancy, in no small part due to the relative dearth of appropriate

data sets and analytic tools. Tools such as MetaCarvel, StrainPhlAn, and others, are just a

first step towards the development of an effective toolkit for the discovery and character-

ization of genomic variants. Of particular interest will be the development of approaches

able to infer the functional implications of strain variants, ultimately leading to a better

understanding of the principles underlying microbial adaptation and community structure.

108

Chapter 7: Better greedy sequence clustering with fast banded alignment

7.1 Introduction

The problem of comparing a string against a large set of sequences is of central im-

portance in domains such as computational biology, information retrieval, and databases.

Solving this problem is a critical subroutine in many greedy clustering heuristics, wherein

we iteratively choose a cluster center and form a cluster by recruiting all strings which

are similar to the center. In computational biology, sequence similarity search is used to

group biological sequences that are closely related. We will use this domain as a motivat-

ing example throughout the paper.

Traditionally, clustering 16S rRNA gene [210] sequences involved building a mul-

tiple sequence alignment of all sequences, computing a pairwise distance matrix of se-

quences based on the multiple sequence alignment, and clustering this matrix [211]. How-

ever, finding the best multiple sequence alignment is computationally intractable and be-

longs to the class of NP-hard problems [212]. Another naive way of clustering sequences

is to perform an all-versus-all comparison to compute a similarity metric such as edit dis-

tance and perform hierarchical clustering to merge closely related sequences. However,

the resulting running time is at least quadratic in the total number of sequences. With the

development of faster and cheaper DNA sequencing technologies, metagenomic sequenc-

109

ing datasets can contain over 1 billion short reads [213]. At this scale, both strategies can

prove to be very expensive and take months to generate clusters. Heuristic-based meth-

ods like greedy clustering are used to counter these computational challenges. While

these methods can have worst case quadratic running time, they can run faster in prac-

tice [17, 18, 214].

Here, we show a new method for reducing that worst case quadratic running time

in practice when the distance metric is the Levenshtein distance [215] and a maximum

distance of d determines the similarity. Our algorithm improves the speed of the recruit-

ment step wherein we seek all strings within d distance of a chosen center. In addition

to promising experimental results, we give slightly weaker, but provable, guarantees for

our techniques while many existing methods do not. Finally, we analyze the quality of

the clusters output by our method in comparison to the popular greedy clustering tool

UCLUST. We show that the clusters we generate can be both tighter and larger.

7.1.1 Related Work

The problem of comparing a query string against a large string database has been

widely studied for at least the past twenty years. For similarity metrics like the edit dis-

tance, a dynamic programming algorithm [216] can be used to compare two sequences

in O(m2) time, where m is the length of the sequences. When we only wish to identify

strings which are at most edit distance d apart, the running time for each comparison can

be reduced to O(md) [217] using a modified version of the standard dynamic program-

ming algorithm. This type of sequence alignment is referred to as banded alignment in the

110

literature since we only need to consider a diagonal “band” through the dynamic program-

ming table. The simple dynamic programming approach can also be sped up by using the

Four Russians’ method [218, 219], which divides the alignment matrix into small square

blocks and uses a lookup table to perform the alignment quickly within each block. This

brings the running time down to O(m2 log(log(m))/ log(m)) and O(m2/ logm) for ar-

bitrary and finite alphabets, respectively. Myers [220] considered the similar problem of

finding all locations at which a query string of length m matches a substring of a text of

length M with at most d differences. They used the bit vector parallelism in hardware to

achieve a running time of O(mM/w) where w is the machine word size. However, when

used for clustering sequences, these methods need to perform a pairwise comparison of

all sequences, thereby incurring the high computational cost ofO(n2) comparisons where

n is the total number of sequences.

Sequence search against a database is a basic subroutine in sequence clustering in

general and greedy clustering in particular. In greedy approaches, we choose some se-

quences to be cluster centers and clusters are formed by recruiting other sequences which

are similar to the centers. Depending on the approach, we may compare a sequence

to recruit against a set of cluster centers or compare a single cluster center against all

other sequences, recruiting those within some specified distance. The comparison can

be made using any of the methods mentioned above, but in the worst case, existing al-

gorithms may need to perform all pairs banded alignment resulting in O(n2md) running

time on arbitrary input data. However, the interesting property of sequencing data is that

most of the sequences generated by the experiments are highly similar to each other. To

exploit sequence similarity and reduce the computation performed in dynamic program-

111

ming, the DNACLUST [18] algorithm lexicographically sorts the sequences and com-

pares sequences against the center sequence in sorted order. Since the adjacent sequences

in sorted order share a long prefix, the part of the dynamic programming table corre-

sponding to their longest common prefix remains unchanged, allowing the “free” reuse

of that part of the table for further alignments. This method fails when two sequences

differ at the start but are otherwise similar. In this case, the entire dynamic programming

table needs to be recomputed. The UCLUST [17] algorithm uses the USEARCH [17]

algorithm to compare a query sequence against a database of cluster centers. However,

the algorithm used by UCLUST makes several heuristic choices in order to speed up the

calculation of clusters and thus, the resulting clusters are not guaranteed to satisfy any

specific requirement. For example, the distances between sequences assigned to the same

cluster should ideally satisfy triangle inequality (ensuring that the cluster diameter is at

most twice the radius) and the cluster diameters should be both relatively uniform and

within the bounds specified by the user.

7.1.2 Preliminaries

Let the multiset S be the set of n sequences to be clustered. Let m be the maximum

length of any sequence in S. For simplicity of exposition and analysis, we will assume

throughout most of this paper that all sequences have length exactly m. We also assume

m is much smaller than n.

112

7.1.2.1 Distance metric

We use the same edit distance-based similarity metric as DNACLUST [18], namely

similarity = 1− edit distance
length of the shorter sequence

Here, we define edit distance to be Levenshtein distance with uniform penalties for in-

sertions, deletions, and substitutions. The “length of the shorter sequence” refers to the

original sequences’ lengths without considering gaps inserted by the alignment. We say

that two sequences are similar if their alignment meets or exceeds a given similarity

threshold. Let d be the maximum edit distance between two sequences aligned to the

same cluster. This distance is usually computed from a similarity threshold provided by

the user, e.g., 97%. Both of our algorithms will be performing banded alignment with

d as the maximum allowable distance. In this case, if we determine that two sequences

have a distance greater than d, we need not report their actual distance.

7.1.2.2 Intervals

Our algorithm involves dividing each sequence into overlapping substrings of length

k at regular intervals. We formalize the definition of an interval as follows. Given a pe-

riod length p such that k = p + d + 1, we divide each sequence into bm/pc intervals of

length k. For i ∈ {0, 1, . . . , bm/pc − 1}, the ith interval starts at index ip inclusive and

extends to index ip + k exclusive. We will see that we must choose p to be at least d.

However, choosing a larger p may give a better speedup when dealing with highly similar

113

A T A C T A A T G G A C T A T T T C

A T A C T A A T

A A T G G A C T

A C T A T T T C

0 .. 7

5 .. 12

10 .. 17

Figure 7.1: An example of how a string is divided in overlapping substrings called inter-
vals. In this case, the length of each substring (k) is 8. Since the substrings must overlap
by d+ 1 characters, which in this case is 3, the period length (p) is 5.

sequences. Further, for an interval i, we define bi to be the number of distinct substrings

for interval i over all sequences in S and we define b = maxi bi. We will show that

when b is much smaller than n we get some theoretical improvement on the running time.

Figure 7.1 shows an example of how a sequence is partitioned into a set of overlapping

substrings. We store these intervals in a data structure we call an Edit Distance Interval

Trie (EDIT) which is described in detail in Section 7.2.2.

7.1.2.3 Greedy clustering

The greedy clustering approach (similar to CD-HIT [214], UCLUST, and DNA-

CLUST) can be described at a high level as follows. De-replicate the multiset S to get

the set U of distinct sequences. Optionally, impose some order on U . Then, iteratively

remove the top sequence from U to form a new cluster center sc. Recruit all sequences

s ∈ U that are within d distance from sc. When we recruit a sequence s, we remove it

from U and add it to the cluster centered at sc. If sc does not recruit any sequences, we

call it a singleton and add it to a list of singletons, rather than clusters. We continue this

process until U is empty.

114

We order the sequences of U in decreasing order of their abundance/multiplicity in

S. This is also the default ordering used by UCLUST. Alternatively, DNACLUST uses

a decreasing order of sequence length. The reason for ordering by abundance is that as-

suming a random error model, the abundant sequences should be more likely to be “true”

centers of a cluster. The reason for DNACLUST ordering by length is to preserve triangle

inequality among sequences in a cluster when performing semi-global alignment allowing

gaps at the end with no penalty. Semi-global alignment is necessary for comparing reads

generated by specific sequencing technologies such as 454. However, since we perform

global alignment, triangle inequality is guaranteed regardless of the ordering and thus,

ordering by abundance is preferred.

7.1.3 Our Contributions

We developed a method for recruiting in exact greedy clustering inspired by the

classical Four Russians’ speed up. In Section 7.2, we describe our algorithm and prove

that the worst case theoretical running time is better than naive all-versus-all banded

alignment under realistic assumptions on the sequencing data used for clustering. In

section 7.3, we present experimental results from using our method to cluster a real 16S

rRNA gene dataset containing about 2 million distinct sequences. We show that on real

data the asymptotic running time of the algorithm grows linearly with the size of the input

data. We also evaluated the quality of the clusters generated by our method and compared

it with UCLUST, which is one of the widely used methods. We show that our method gen-

erates tighter and larger clusters at 99% similarity both when considering edit distance and

115

evolutionary distance. At 97% similarity, we show that our method produces clusters with

a much tighter edit distance diameter compared to UCLUST. While UCLUST runs faster

at similarities 97% and less, our approach is faster at higher similarities. In particular, we

highlight that UCLUST does not scale linearly at the 99% similarity threshold while our

approach does.

7.2 Recruiting algorithm

We show two ways in which the classical Four Russians’ speedup can be adapted

to banded alignment. Then, we describe a trie-like data structure for storing sequences.

Finally, we use this data structure to recruit similar sequences to a given center sequence

using our Four Russians’ method.

7.2.1 Banded Four Russians’ approach

We present two ways to extend the Four Russians’ speedup of edit distance com-

putation to banded alignment. The first is a very natural extension of the classical Four

Russians’ speed up. The second is useful for tailoring our algorithm to meet the needs

of 16S rRNA gene clustering. Specifically, we exploit the fact that the strings are similar

and the maximum edit distance is small.

7.2.1.1 Warm-up: classic Four Russians’ speedup

In the classical Four Russians’ speedup of edit distance computation due to to [218,

219], the dynamic programming table is broken up into square blocks as shown in the

116

1 1 0 1
1
0
1
1 -1 -1 1 1,-1

0
0
1

A T T G A
G
C
A
T
T

1 1 0 1
1
0
1
1 -1 -1 1 1,-1

0
0
1

. . . A T T G A . . .

.

.

.
G
C
A
T
T
.
.
.

Figure 7.2: Example of classic Four Russians’. Left: a single block. Notice that for
any input in the upper left corner, we can sum that value with one path along the edges
of the block to recover the value in the lower right corner. Note that the offset value in
the lower right corner may be different for the row and column vectors overlapping at
that cell. In this case, the lower right cell is one more than its left neighbor and one less
than its above neighbor. Center: the full dynamic programming table divided into nine
5× 5 blocks. Note that the offset values in the example block may not correspond to the
optimal alignment of the two substrings shown since they depend on the global alignment
between the two full-length strings. Right: blocks covering only the diagonal band in the
context of banded alignment.

center of Fig. 7.2. These blocks are tiled such that they overlap by one column/row

on each side (for a thorough description of this technique see [221]). When computing

banded alignment, we only need to tile the area within the band as in the right hand of

Fig. 7.2. Let the maximum edit distance be d and the string lengths be m. Then our block

size k can be as small as d+ 1, and we require roughly 2m/k blocks in total.

The high-level idea of the Four Russians’ speedup is to precompute all possible

solutions to a block function and store them in a lookup table (In our implementation we

use lazy computation and store the lookups in a hash table instead of precomputing for

all inputs). The block function takes as input the two substrings to be compared in that

block and the first row and column of the block itself in the dynamic programming table.

It outputs the last row and column of the block. We can see in the Fig. 7.2 that given the

two strings and the first row and column of the table, such a function could be applied

117

repeatedly to compute the lower right cell of the table and therefore, the edit distance.

Note that cells outside the band will not be used since any alignment visiting those cells

must have distance larger than d.

Several tricks reduce the number of inputs to the block function to bound the time

and space requirements of the lookup table. For example, the input row and column for

each block can be reduced to vectors in {−1, 0, 1}d. These offset vectors encode only the

difference between one cell and the next (see Fig. 7.2) which is known to be at most 1

in the edit distance table. It has also been shown that the upper left corner does not need

to be included in the offset vectors. This bounds the number of possible row and column

inputs at 3d each [218].

Notice that for the banded alignment problem, this may not provide any speedup for

comparing just two strings of length m. Indeed, building and querying the lookup table

may take more time than simply running the classical dynamic programming algorithm

restricted to the band of width 2d+ 1. However, our final algorithm will make many such

comparisons between different pairs of strings using the same lookup table. In practice,

we also populate the lookup table as needed rather than pre-computing it. This technique,

known as lazy computation, allows us to avoid adding unnecessary entries for compar-

isons that don’t appear in our dataset. Additionally, decomposing sequences into blocks

will be a crucial step in building the data structure in Section 7.2.2.

118

7.2.1.2 Our approach to the Four Russians’ speedup

Notice that the previous approach will not offer many benefits in practice when

d is small (e.g., d = 2). The overhead of looking up block functions and stitching them

together may even be slower than just running dynamic programming on a block. Further,

our dataset may not require us to build a lookup table comparing all possible strings of

length k.

Here we consider a different block function. This function is designed for situations

in which we wish to use a block size k that is larger than d + 1. The blocks now overlap

on a square of size d + 1 at the upper left and lower right corners. We will call these

overlapping regions overlap squares. Our block function now takes as input the two

substrings to be compared and the first row and column of the upper left overlap square. It

outputs the first row and column of the lower right overlap square as well as the difference

between the upper left corners of the two overlap squares.

Thus, we can move directly from one block to the next, storing a sum of the differ-

ences between the upper left corners. In this case, reaching the final lower right cell of

the table requires an additional O(d2) operation to fill in the last overlap square, but this

adds only a negligible factor to the running time.

This approach succeeds when some properties of the dataset limit the number of

possible substring inputs to the block function as opposed to an absolute theoretical upper

bound such as O(|σ|k) based on the number of possible strings of length k for an alphabet

σ. Rather than computing and storing all possible inputs, we store the inputs encountered

by our algorithm. The advantage is that a larger block size reduces the number of lookups

119

0 1
-1
-1

1 1
-1
0

δ

A A C T G T C C
T
G
A
A
T
T
G
C

0 1
-1
-1

1 1
-1
0

δ

. . . A A C T G T C C . . .

.

.

.
T
G
A
A
T
T
G
C
.
.
.

Figure 7.3: Example of our approach to the Four Russians’ speed up. Left: a block for
maximum edit distance d = 2. The output δ represents the offset from the upper left
corner of the current block to the upper left corner of the next block. Note that we only
need to consider a diagonal band of the block itself. Right: using these blocks to cover
the diagonal band of the dynamic programming table in the context of banded alignment.

needed to compare two strings which is m/(k − d − 1) for this approach. Naturally,

the same tricks such as offset encoding of the input rows and columns as some vector in

{−1, 0, 1}d can be applied in this case.

Another benefit of this approach is that it is more straightforward to implement in

practice. Each block depends on the full output of one previous block. In contrast, the

classical approach requires combining partial input from two previous blocks and also

sending output to two separate blocks.

7.2.1.3 Theoretical bound on the running time of our approach

To give some intuition, we prove a theoretical bound on the running time under the

assumption of at most b distinct substrings per interval in the dataset. This is a reasonable

assumption for specific application in computational biology. For example, the 16s rRNA

gene is highly conserved, and thus b is much smaller than n for such datasets. While

standard banded alignment takes O(n2md), we show that for small enough b this can be

120

reduced to O(n2m). We prove this bound for our approach to using the Four Russians’

speedup for banded alignment, but it extends to the classical approach as well.

Theorem 1. If b ≤ n
3d
√
d
, we can find all pairs of distance at most d in O(n2m) time.

Proof. To simplify, we will assume the lookup table is pre-computed. Then, we must

show that if b ≤ n
3d
√
d
, then building the lookup table and doing the actual string com-

parisons can each be done in O(n2m) time. We further assume k ≈ 2d (in practice we

choose a larger k).

First, we show that there are at most m
k−db

232d entries in the lookup table. There

are at most m
k−d intervals and since each interval has at most b distinct strings, there are at

most b2 relevant string comparisons. Each distinct string comparison must be computed

for all 32d offset vector inputs. The cost of generating each lookup entry is simply the

cost of computing banded alignment on a block, kd. Thus, the lookup table can be built

in time m
k−db

232dkd. Keeping our goal in mind we see that

m

k − d
b232dkd ≤ n2m is true when b ≤ n

3d
√
d

since k ≈ 2d

To bound the running time of the string comparisons, notice that comparing two

strings requires computing m
k−d block functions. The time spent at each block will be

O(k + d) to look up the output of the block function and update our sum for the next

corner. Thus, building the lookup table and computing the edit distance between all pairs

using the lookup table each takes O(n2m) time.

121

7.2.2 The Edit Distance Interval Trie (EDIT)

To facilitate the crucial step of identifying all strings within edit distance d of a

chosen cluster center, we construct a trie-like data structure on the intervals. This struc-

ture will be built during a pre-processing stage. Then, during recruitment, any recruited

sequences will be deleted from the structure. The procedure for building this structure is

summarized in Algorithm 3 and illustrated in Figure 7.4. The main benefit of this data

structure, like any trie, is that it exploits prefix similarity to avoid duplicating work.

The mapping in step 2 of Algorithm 3 is a one-to-one mapping to integers from one

to the number of distinct substrings. Here, it serves to reduce the size of the data structure

since the number of distinct substrings will typically be much less than all possible length

k strings on the given alphabet. This mapping also speeds up calls to the lookup table

during the recruitment subroutine summarized in the next section.

Algorithm 3 BUILD-EDIT
Partition each sequence into overlapping intervals of length k, such that each interval
overlaps on exactly d+ 1 characters.
Map each distinct substring of length k appearing in our list of interval strings to an
integer.
Assign an integer vector signature to each sequence by replacing each block with its
corresponding integer value.
Insert these signatures into a trie with the leaves being pointers to the original sequences.

7.2.3 Recruiting to a center

Given a center sequence sc, we can recruit all sequences of distance at most d from

sc by simply traversing the trie in depth-first search order and querying the block function

of each node we encounter. The input to each block function is the substring of that node

122

Figure 7.4: Example illustrating the steps of Algorithm 3 with d = 1 and k = 5.

(1) s1:A C T G G A C A G T T
s2:A C T G G A C A A A C
s3:A C T G G T C A G T T

(2) A C T G G 1
G G A C A 2
C A G T T 3
C A A A C 4
G G T C A 5

(3) s1: 1, 2, 3
s2: 1, 2, 4
s3: 1, 5, 3

(4)

Root 1
2

5

3

4

3

s1

s2

s3

in the trie, the substring at the same depth within the signature of sc, and the offset vectors

output by the previous block function. As we traverse a path from the root toward a leaf,

we store a sum of the edit distance as provided by the output of each block function. If

this sum ever exceeds the maximum distance d, we stop exploring that path and backtrack.

Whenever we reach a leaf `, we retrieve its corresponding sequence s`. Then, we align the

remaining suffixes and compute the true similarity threshold d′ ≤ d based on the length

of the shorter sequence. If the final edit distance is less than d′, we add s` to the cluster

centered at sc and prune/remove any nodes in the trie corresponding only to s`.

7.3 Experimental results

7.3.1 Properties of our recruitment algorithm and data structure

In this section, we highlight some key features of our recruitment algorithm and

the EDIT data structure. To evaluate our method, we used a dataset consisting of about

57 million 16S rRNA amplicon sequencing reads with 2.7 million distinct sequences. To

understand the impact of the number of input sequences to cluster on the average number

123

Figure 7.5: Plots for the average number of nodes explored in the tree while recruiting
sequences to a cluster center.

of comparisons in each recruitment step, we ran our algorithm on different input sizes at

different similarity thresholds. We counted the average number of tree nodes explored

while recruiting a particular center sequence and used it as a quantitative representation

of the number of comparisons made since all nodes represent a substring of fixed length

k. Figure 7.5 shows the plots for the average number of tree nodes explored for different

similarity thresholds. For the 95% and 97% similarity thresholds, the average number

of nodes explored decreases as more sequences are clustered. This happens because al-

though more sequences are clustered, due to the lower similarity threshold a large number

of sequences get clustered in each traversal of the tree. For 99% similarity threshold, the

average number of nodes explored increases initially with the number of sequences but

becomes uniform after about 100, 000 sequences. The high similarity threshold can ex-

plain the strict increase in the number of nodes. However, in all cases, the number of

nodes explored by each center does not increase linearly with the number of input se-

quences. Thus the total number of comparisons made for given dataset is observed to be

increasing as a function of n rather than the worst case n2.

To understand the likelihood of backtracking at each level of the tree, we clustered

124

a sample of 1.07 million distinct sequences at three different similarity thresholds (95%,

97%, and 99%). The backtracking probability for a given node was calculated as the ratio

of the number of times we stopped exploring a path at that node to the total number of

times that node was explored. We aggregated this probability for all of the nodes belong-

ing to the same level of the tree. Figure 7.6 shows this likelihood for all levels of the

tree at the different similarity thresholds. As we define block size based on the similar-

ity, there are a different number of levels in the tree corresponding to different similarity

thresholds. For all three similarity thresholds, the probability of backtracking decreases

as we go deeper into the tree except a couple of sharp peaks at intermediate levels. These

peaks can be attributed to the sequencing artifacts. The 16S rRNA gene reads are se-

quenced using the Illumina paired-end sequencing protocol. These paired reads are then

merged to make a single read which we use for clustering. The reads contain sequencing

errors concentrated near their ends. Due to such sudden errors along the sequence, while

recruiting, the edit distance can easily go above the threshold, and backtracking needs to

be performed. Since we are using lazy computation, our first encounter with a particular

input to the block function requires us to explicitly perform the dynamic programming

for that block and store it in the lookup table. However, we observed that this explicit

dynamic programming computation is rare and most block functions can be computed by

simply querying the lookup table (data not shown).

125

Figure 7.6: Plots for the probability of backtracking at a particular level in the tree. Note
that the number of levels is different for different similarity thresholds since our substring
length k is dependent on the maximum distance d.

Figure 7.7: Running time comparison of EDIT and UCLUST as a function of similarity
threshold and number of sequences.

7.3.2 Comparison with UCLUST

Here, we evaluate EDIT against UCLUST, a highly used tool for analyzing 16S

rRNA gene datasets.

7.3.2.1 Running time analysis

We compared the running time of EDIT and UCLUST on a subsample 1.07 million

distinct sequences at different similarity thresholds. Figure 7.7 shows the plot for running

126

Similarity = 99% Similarity = 99% Similarity = 99%

Figure 7.8: Evaluation at similarity threshold of 99%. All the plots are log scaled.

time at different similarity thresholds. We observed that the running time of EDIT stays

relatively constant at different similarity thresholds whereas the running time of UCLUST

was very low for lower similarity thresholds, but increased non-linearly at higher similar-

ity thresholds. Notably, between 98.5% to 99%, the running time of UCLUST grows five

folds. We did further analysis of running time at 99% similarity threshold using different

sample sizes as input. Figure 7.7 shows the running time comparison of UCLUST and

EDIT. It can be observed that the running time of UCLUST on large sample sizes (> 1

million) grows much faster than the running time of EDIT, which scales almost linearly.

For the largest sample of 2.7 million sequences, UCLUST running time was ten times

greater than EDIT running time. This evaluation implies that higher similarity thresh-

olds (> 98%), EDIT was faster compared to UCLUST. Also, the running time of EDIT

showed low variance compared to UCLUST for different similarity thresholds.

7.3.2.2 Evaluation of clusters

We subsampled 135,880 distinct sequences from the entire dataset and ran both

methods at the 97% and 99% similarity thresholds. We then compared the outputs of both

methods using three metrics: the cluster size, the cluster diameter based on the sequence

127

Similarity = 97% Similarity = 97% Similarity = 97%

Figure 7.9: Evaluation at similarity threshold of 97%. All the plots are log scaled.

similarity, and the cluster diameter based on the evolutionary distance. To compute the

cluster diameter based on sequence similarity, we computed the maximum edit distance

between any two sequences in each cluster. To compute the cluster diameter based on evo-

lutionary distance, we first performed a multiple sequence alignment of the sequences in

each cluster using clustalW [222]. Once the multiple sequence alignment was computed,

we used the DNADIST program from the phylip [223] package to compute a pairwise

evolutionary distance matrix. The maximum distance between any pair of sequences is

defined as the DNADIST diameter. Using two orthogonal notions of cluster diameter

helps to define the “tightness” of clusters. Figures 7.8 and 7.9 show violin plots for

different comparison metrics at the 99% and 97% similarity thresholds, respectively.

At the 99% similarity threshold, EDIT can produce larger clusters compared to

UCLUST. The edit distance diameters for the clusters generated by EDIT is reason-

ably well constrained. However, the edit distance diameters for the clusters generated

by UCLUST had a significant variance, implying that several different sequences may be

getting clustered together. The DNADIST diameter for both methods was comparable.

At the 97% similarity threshold, both EDIT and UCLUST generated similar sized clus-

128

97% 99%

Figure 7.10: Cluster size at 97% and 99% similarity threshold. All the plots are log
scaled.

ters. Even in this case, the edit distance diameter for UCLUST clusters showed a larger

variance compared to the edit distance diameter for EDIT clusters. The DNADIST diam-

eter for UCLUST has slightly more variance compared to that of EDIT clusters, implying

some of the clusters generated by UCLUST had sequences with a considerable evolution-

ary distance between them. This validation confirms that the sequences in the clusters

produced by EDIT at different similarity thresholds are highly similar to each other.

At the 99% similarity threshold, we observed a stark difference between the cluster

sizes of EDIT and UCLUST(Figure 7.10). For example, the two largest clusters produced

by EDIT had sizes 7,978 and 3,383 respectively whereas the two largest clusters produced

by UCLUST were of sizes 249 and 233, which is almost 30 times smaller than the largest

EDIT cluster. To investigate this further, we used BLAST [224] to align all clusters of

UCLUST against the top two largest clusters of EDIT. We only considered the alignments

with 100% alignment identity and alignment coverage. We observed that 765 distinct

UCLUST clusters had all of their sequences aligned to the largest EDIT cluster and 837

129

distinct clusters had at least 80% of their sequences aligned to the largest EDIT cluster.

Only 82 UCLUST clusters out of 16,968 total (not including singletons) had less than

80% of their sequences mapped to the largest EDIT cluster. Those 82 clusters accounted

for only 255 sequences, roughly 30 times fewer than the number of the sequences in the

largest EDIT cluster alone. As far as singletons (the clusters with only one sequence) are

concerned, EDIT generated 22,318 singleton clusters whereas UCLUST generated 33,519

singleton clusters. For the size of the sample considered in this analysis, this difference

is very significant. This evaluation implies that at a high similarity threshold, heuristic-

based methods like UCLUST tend to produce fragmented clusters whereas EDIT was

able to capture a higher number of similar sequences in a single cluster.

7.4 Conclusion and future directions

The datasets analyzed by biologists are rapidly increasing in size due to the ad-

vancements in sequencing technologies, and efficient clustering is needed to analyze these

datasets in reasonable memory and running time. In this paper, we proposed the first step

towards this goal by designing a novel data structure to perform banded sequence align-

ment. We extended the traditional Four Russians’ method to perform banded alignment

of highly similar sequences and use that to perform greedy clustering of 16S rRNA ampli-

con sequencing reads. We compared our method to UCLUST and showed that our method

generates tight clusters at different similarity thresholds when both string similarity and

evolutionary distance are considered. We focused our discussion of results around high

similarity clustering (≥ 97%) because no fixed threshold can create biologically mean-

130

ingful clusters. Our method can generate mathematically well-defined and tight clusters,

which can serve as representative clusters from the original data and thus can be used to

perform the downstream computationally intensive analysis.

Although we use clustering as a motivating example throughout the paper, our al-

gorithm could be used in a variety of different contexts where highly similar sequences

need to be identified from the data. We plan to extend our algorithm to make it paral-

lelized by performing the traversal of each tree branch in parallel. Sequences which end

up becoming singletons explore most the tree and this dominated the running time. We

plan to explore different methods such as k-mer filters and locality sensitive hashing to

flag singletons and exclude them from the recruiting process.

131

Chapter 8: Other contributions

8.1 A critical analysis of the Integrated Gene Catalog

A reliable catalog of reference genes can significantly facilitate metagenomic anal-

yses of the human gut microbiota. The Integrated Gene Catalog (IGC), described by Li et

al. [37], sought to provide an annotated database representing the complete gene content

of the human gut microbiome. Designed to be non-redundant and near-comprehensive,

the gene catalog contains 9,879,896 gene clusters primarily derived from human stool mi-

crobial communities. The authors calculated that the IGC includes close-to-complete sets

of genes for most gut microbes and near the saturated coverage of core gene content and

functions for the human gut microbiome. The IGC is intended for quantitative characteri-

zation of gut microbiota, genes, and gene functions via read mapping and abundance pro-

filing for metagenomic, metatranscriptomic, and metaproteomic human gut microbiome

datasets.

In this project, we critically evaluate these claims, highlighting important issues

concerning the methodology used to develop the IGC and the gene catalog itself, and how

these issues may affect downstream analyses. To do so, we analyzed the data made freely

available by the authors of the IGC [37]. This critique is especially relevant considering

that the IGC is highly cited and many high-profile studies have used the IGC directly or

132

the MOCAT pipeline [225], which was used to create the IGC. This includes work as

diverse as the Human Microbiome Project [226], research on the structure and function

of the ocean microbiome [227], investigating treatments for epithelial tumors [228], work

on the correlations between the gut microbiome and diabetes [229, 230] or overall health

[231], as well as looking for signs of fecal contamination in water samples from a river

[232].

8.2 A succinct four Russians’ speedup for edit distance computation and

one-against-many banded alignment

The classical Four Russians’ speedup for computing edit distance (a.k.a. Leven-

shtein distance), due to Masek and Paterson [218], involves partitioning the dynamic pro-

gramming table into k-by-k square blocks and generating a lookup table inO(ψ2kk2|Σ|2k)

time and O(ψ2kk|Σ|2k) space for block size k, where ψ depends on the cost function (for

unit costs ψ = 3) and |Σ| is the size of the alphabet. We show that the O(ψ2kk2) and

O(ψ2kk) factors can be improved to O(k2 lg k) time and O(k2) space. Thus, we improve

the time and space complexity of that aspect compared to Masek and Paterson [218] and

remove the dependence on ψ.

We further show that for certain problems the O(|Σ|2k) factor can also be reduced.

Using this technique, we show a new algorithm for the fundamental problem of one-

against-many banded alignment. In particular, comparing one string of length m to

n other strings of length m with maximum distance d can be performed in O(nm +

md2 lg d + nd3) time. When d is reasonably small, this approaches or meets the current

133

best theoretic result of O(nm + nd2) achieved by using the best known pairwise algo-

rithm running inO(m+d2) time [233,234] while potentially being more practical. It also

improves on the standard practical approach which requires O(nmd) time to iteratively

run a O(md) time pairwise banded alignment algorithm.

Regarding pairwise comparison, we extend the classic result of Masek and Pater-

son [218] which computes the edit distance between two strings in O(m2/ logm) time to

remove the dependence on ψ even when edits have arbitrary costs from a penalty matrix.

Crochemore, Landau, and Ziv-Ukelson [235] achieved a similar result, also allowing for

unrestricted scoring matrices, but with variable-sized blocks. In practical applications of

the Four Russians’ speedup wherein space efficiency is essential and smaller block sizes

k is used (notably k < |Σ|), Kim, Na, Park, and Sim [236] showed how to remove the

dependence on the alphabet size for the unit cost version, generating a lookup table in

O(32k(2k)!k2) time andO(32k(2k)!k) space. Combining their work with our result yields

an improvement to O((2k)!k2 lg k) time and O((2k)!k2) space.

8.3 Hierarchically visualizing metagenome assembly graphs with

metagenomeScope

Manual inspection of sequence assembly graphs can be useful not only as a debug-

ging tool when developing assembly software but also as a way to uncover interesting

biological patterns, such as structural differences between the two or more haplotypes

being analyzed in a genomic or metagenomic experiment. Current tools for visualizing

these graphs [237–239], however, emphasize a high-level representation, based on force-

134

directed layouts [240], aimed at revealing the broad level quality of an assembly rather

than its small-scale structure. As a result, it is difficult for users to piece together a uni-

fied understanding of both the high-level structure of the assembly graph and the detailed

patterns found within these graphs. We present a new strategy for displaying genome

assembly graphs that emphasizes the expected linear structure of genome assemblies and

allows a multi-level exploration of the structure of the graph [241]. This approach is

implemented in MetagenomeScope, an interactive web-based tool. We detail the novel

layout algorithm employed by MetagenomeScope and provide a qualitative comparison

with the main tools currently used to explore genome assembly graphs. We demonstrate

that MetagenomeScope provides a set of unique capabilities that enable the effective vi-

sual exploration of assembly graphs in the context of several common workflows, such as

genome finishing or the discovery of structural variants within assemblies.

8.4 A chromosome-scale assembly of Anopheles funestus

Many insect genomes remain a challenge to assemble, and mosquito genomes have

proven particularly difficult due to their repeat content and structurally dynamic genomes.

These issues are compounded by the requirements of emerging, long-read sequencing

technologies that typically require >10 µg of DNA for library construction. As a re-

sult, it is often impossible to construct a sequencing library from a single individual.

Instead, sequencing a pool of individuals from an inbred population is required [242].

For species that are amenable to extensive inbreeding, this approach has led to reference-

grade genomes directly from the assembler [243]. However, when inbreeding is not pos-

135

sible, the sequenced pool of individuals can carry population variation that can fragment

the resulting assembly. Instead of assembling a single genome, the assembler must re-

construct some unknown number of varying genomes. In this work, we generated the

chromosome-scale assembly of Anopheles funestus mosquito using long read sequencing

and Hi-C data. Our assembly is 140 times more contiguous than the existing reference

genome for Anopheles funestus.

8.5 Framework to model human behavior at large ccale during natural

disasters

Natural disasters such as hurricanes, floods or tornadoes affect millions of individu-

als every year. As a result, governments spend millions of dollars in emergency response

allocating resources to mitigate the damages. Effective resource allocation requires a deep

understanding of how humans react when a disaster takes place. However, gathering hu-

man behaviors at a large scale during a disaster is not trivial. For example, some natural

disasters like floods might generate temporary displacements or permanent relocations.

Drawing a complete picture of such population mobility patterns is extremely difficult.

Generally, emergency responders in the field gather data by interviewing affected indi-

viduals, but the coverage of these interviews can be pretty limited.

The widespread use of cell phones worldwide has allowed modeling human be-

haviors at a large scale through the use of Call Detail Records (CDR) [244]. CDRs are

collected by cell phone companies for billing purposes every time a phone call is made

or received. Each CDR contains information regarding the phone numbers involved in

136

the communication, date, time and the location (as a pair of latitude and longitude) of the

cellular towers that gave coverage to the service. As previous research has shown, CDRs

can offer a detailed picture of how humans move and interact with each other [245–248].

In this paper, we propose a novel framework to automatically extract large-scale models

of human behavior during disasters using CDRs. The primary objective is to allow emer-

gency responders to understand how humans react to a disaster. The resulting behavioral

models will provide valuable information not only to allocate resources once a disaster

happens critically but also to enhance emergency planning and prevention.

The proposed framework uses a combination of data mining, n-th order Markov

Chain models and statistical analyses to infer normal mobility patterns and social network

behaviors from CDR data and to automatically quantify behavioral changes regarding

displacements and communication patterns when a disaster happens. Unlike previous

work [249], our approach uses CDR data which is sparser (both temporally and spatially)

than GPS data and thus more challenging regarding accurate mobility inference. More

importantly, it offers the advantage that the framework will be useful in emerging regions

with minimal resources where GPS cell phones, let alone GPS collection systems, are

a rarity; and where the high penetration rates of cell phones offer the opportunity of

modeling mobility at large scale.

137

Chapter 9: Conclusion

Genome assembly is a critical step in most bioinformatics analysis. Despite tremen-

dous advances in DNA sequencing technologies, the fully automated reconstruction of

complete genomes from sequencing data alone remains a distant dream. Not only is it

currently challenging to reconstruct entire chromosome arms, but even grouping together

genomic contigs belonging to a single chromosome is a significant challenge. The most

significant advance towards this goal has been the development of technologies that can

capture information about chromosome conformation. Coupled with new long-read se-

quencing data, chromosome conformation data has resulted in dramatic increases in the

size of the genomic segments that can be reconstructed, in some cases comprising entire

chromosome arms. It has been suggested that de novo assembly might be better than read

mapping approaches for uncovering large structural variants, even in the cases where a

reference genome is available [250]. This is extremely important for understanding the

genetic variations in cancer genomes and other diseases such as autism that frequently

contain events such as gene fusion, copy number aberrations, and other large structural

variants [251, 252]. Hence, we believe that higher quality genome assemblies can posi-

tively impact a wide range of disciplines.

Large-scale genome projects such as the Vertebrate Genome Project (VGP) [161]

138

aim to generate error-free-reference-quality genome assemblies for 66,000 genomes with

minimal manual efforts. Our method SALSA2 has been used for scaffolding genomes

with Hi-C data in phase 1 of the project and has provided promising results. The im-

mediate next step in improving SALSA2 is to use different scaffolding information si-

multaneously along with the assembly graph to generate accurate scaffolds. Since data

from different sequencing technologies are generated for each genome in VGP and other

genome sequencing projects in general, having such an integrated scaffolding method is

highly desired. One more extension to SALSA2 is adding support for haplotype-aware

scaffolding to generate complete haplotype assembly of each copy of the chromosome. In

the realm of metagenomics, researchers have been analyzing strains in a sample by man-

ual inspection of the contig assembly graph [253–255]. With the methods proposed in this

dissertation, such an analysis can be automated and applied to even larger and complex

communities. Recently, the human metagenome or the “other human genome” has been

sequenced in projects such as the Human Microbiome Project (HMP) [181] with the goal

of furthering the understanding of how the microbiome impacts human health and dis-

ease. With the amount of both 16s rRNA and whole genome sequencing data generated

in these projects, we believe our tools EDIT and MetaCarvel can provide useful insights

into these data. Since not all the microbes in these metagenomic samples are well char-

acterized, MetaCarvel’s ability to find variants de novo in metagenomic samples can shed

light on the nature of variation across different samples and body sites.

It is conceivable that in the very near future further developments in genomic tech-

nologies will make the automatic reconstruction of mammalian genomes possible. Rather

than the end of a road, such developments will enable scientists to tackle even harder

139

challenges. One such problem is the complete reconstruction of individual haplotypes,

particularly in the context of heterogeneous mixtures such as tumors or microbial mix-

tures and polyploid genomes. The solution to such complex problems will require further

developments in both genomic technologies and algorithms. For biologists interested in

understanding and analyzing novel genomes and microbial mixtures, our contributions

comprise a valuable toolset.

140

Bibliography

[1] J Craig Venter, Mark D Adams, Eugene W Myers, Peter W Li, Richard J Mural,
Granger G Sutton, Hamilton O Smith, Mark Yandell, Cheryl A Evans, Robert A
Holt, et al. The sequence of the human genome. science, 291(5507):1304–1351,
2001.

[2] International Human Genome Sequencing Consortium et al. Initial sequencing and
analysis of the human genome. Nature, 409(6822):860, 2001.

[3] Rodger Staden. A strategy of dna sequencing employing computer programs. Nu-
cleic acids research, 6(7):2601–2610, 1979.

[4] Jens G Reich, Heinz Drabsch, and Astrid Däumler. On the statistical assessment
of similarities in dna sequences. Nucleic acids research, 12(13):5529–5543, 1984.

[5] Todd J Treangen and Steven L Salzberg. Repetitive dna and next-generation
sequencing: computational challenges and solutions. Nature Reviews Genetics,
13(1):36, 2012.

[6] John D Kececioglu and Eugene W Myers. Combinatorial algorithms for dna se-
quence assembly. Algorithmica, 13(1-2):7, 1995.

[7] Granger G Sutton, Owen White, Mark D Adams, and Anthony R Kerlavage. Tigr
assembler: A new tool for assembling large shotgun sequencing projects. Genome
Science and Technology, 1(1):9–19, 1995.

[8] Melissa de la Bastide and W Richard McCombie. Assembling genomic dna se-
quences with phrap. Current Protocols in Bioinformatics, 17(1):11–4, 2007.

[9] William R Jeck, Josephine A Reinhardt, David A Baltrus, Matthew T Hick-
enbotham, Vincent Magrini, Elaine R Mardis, Jeffery L Dangl, and Corbin D
Jones. Extending assembly of short dna sequences to handle error. Bioinformatics,
23(21):2942–2944, 2007.

141

[10] Serafim Batzoglou, David B Jaffe, Ken Stanley, Jonathan Butler, Sante Gnerre,
Evan Mauceli, Bonnie Berger, Jill P Mesirov, and Eric S Lander. Arachne: a
whole-genome shotgun assembler. Genome research, 12(1):177–189, 2002.

[11] Daniel R Zerbino and Ewan Birney. Velvet: algorithms for de novo short read
assembly using de bruijn graphs. Genome research, 18(5):821–829, 2008.

[12] Ruibang Luo, Binghang Liu, Yinlong Xie, Zhenyu Li, Weihua Huang, Jianying
Yuan, Guangzhu He, Yanxiang Chen, Qi Pan, Yunjie Liu, et al. Soapdenovo2:
an empirically improved memory-efficient short-read de novo assembler. Giga-
science, 1(1):18, 2012.

[13] Jonathan Butler, Iain MacCallum, Michael Kleber, Ilya A Shlyakhter, Matthew K
Belmonte, Eric S Lander, Chad Nusbaum, and David B Jaffe. Allpaths: de novo
assembly of whole-genome shotgun microreads. Genome research, 18(5):810–
820, 2008.

[14] Anton Bankevich, Sergey Nurk, Dmitry Antipov, Alexey A Gurevich, Mikhail
Dvorkin, Alexander S Kulikov, Valery M Lesin, Sergey I Nikolenko, Son Pham,
Andrey D Prjibelski, et al. Spades: a new genome assembly algorithm and its ap-
plications to single-cell sequencing. Journal of computational biology, 19(5):455–
477, 2012.

[15] Robert D Fleischmann, Mark D Adams, Owen White, Rebecca A Clayton, Ewen F
Kirkness, Anthony R Kerlavage, Carol J Bult, Jean-Francois Tomb, Brian A
Dougherty, Joseph M Merrick, et al. Whole-genome random sequencing and as-
sembly of haemophilus influenzae rd. Science, 269(5223):496–512, 1995.

[16] Eugene W Myers. Toward simplifying and accurately formulating fragment as-
sembly. Journal of Computational Biology, 2(2):275–290, 1995.

[17] Robert C Edgar. Search and clustering orders of magnitude faster than BLAST.
Bioinformatics, 26(19):2460–2461, 2010.

[18] Mohammadreza Ghodsi, Bo Liu, and Mihai Pop. DNACLUST: accurate and ef-
ficient clustering of phylogenetic marker genes. BMC bioinformatics, 12(1):271,
2011.

[19] Qiong Wang, George M Garrity, James M Tiedje, and James R Cole. Naive
bayesian classifier for rapid assignment of rrna sequences into the new bacterial
taxonomy. Applied and environmental microbiology, 73(16):5261–5267, 2007.

[20] J Gregory Caporaso, Justin Kuczynski, Jesse Stombaugh, Kyle Bittinger, Fred-
eric D Bushman, Elizabeth K Costello, Noah Fierer, Antonio Gonzalez Pena, Ju-
lia K Goodrich, Jeffrey I Gordon, et al. Qiime allows analysis of high-throughput
community sequencing data. Nature methods, 7(5):335, 2010.

142

[21] Patrick D Schloss, Sarah L Westcott, Thomas Ryabin, Justine R Hall, Martin
Hartmann, Emily B Hollister, Ryan A Lesniewski, Brian B Oakley, Donovan H
Parks, Courtney J Robinson, et al. Introducing mothur: open-source, platform-
independent, community-supported software for describing and comparing micro-
bial communities. Applied and environmental microbiology, 75(23):7537–7541,
2009.

[22] Jesse R Zaneveld, Catherine Lozupone, Jeffrey I Gordon, and Rob Knight. Ribo-
somal rna diversity predicts genome diversity in gut bacteria and their relatives.
Nucleic acids research, 38(12):3869–3879, 2010.

[23] Shujiro Okuda, Yuki Tsuchiya, Chiho Kiriyama, Masumi Itoh, and Hisao Morisaki.
Virtual metagenome reconstruction from 16s rrna gene sequences. Nature commu-
nications, 3:1203, 2012.

[24] Luke R Thompson, Jon G Sanders, Daniel McDonald, Amnon Amir, Joshua
Ladau, Kenneth J Locey, Robert J Prill, Anupriya Tripathi, Sean M Gibbons, Gail
Ackermann, et al. A communal catalogue reveals earth?s multiscale microbial
diversity. Nature, 551(7681), 2017.

[25] Régis Bonnet, Antonia Suau, Joël Doré, Glenn R Gibson, and Matthew D Collins.
Differences in rdna libraries of faecal bacteria derived from 10-and 25-cycle pcrs.
International journal of systematic and evolutionary microbiology, 52(3):757–763,
2002.

[26] Morgan GI Langille, Jesse Zaneveld, J Gregory Caporaso, Daniel McDonald, Dan
Knights, Joshua A Reyes, Jose C Clemente, Deron E Burkepile, Rebecca L Vega
Thurber, Rob Knight, et al. Predictive functional profiling of microbial commu-
nities using 16s rrna marker gene sequences. Nature biotechnology, 31(9):814,
2013.

[27] Kathrin P Aßhauer, Bernd Wemheuer, Rolf Daniel, and Peter Meinicke. Tax4fun:
predicting functional profiles from metagenomic 16s rrna data. Bioinformatics,
31(17):2882–2884, 2015.

[28] Sahar Abubucker, Nicola Segata, Johannes Goll, Alyxandria M Schubert, Jacques
Izard, Brandi L Cantarel, Beltran Rodriguez-Mueller, Jeremy Zucker, Mathangi
Thiagarajan, Bernard Henrissat, et al. Metabolic reconstruction for metagenomic
data and its application to the human microbiome. PLoS computational biology,
8(6):e1002358, 2012.

[29] Matthias Scholz, Doyle V Ward, Edoardo Pasolli, Thomas Tolio, Moreno Zolfo,
Francesco Asnicar, Duy Tin Truong, Adrian Tett, Ardythe L Morrow, and Nicola
Segata. Strain-level microbial epidemiology and population genomics from shot-
gun metagenomics. Nature methods, 13(5):435, 2016.

143

[30] Johannes Alneberg, Brynjar Smári Bjarnason, Ino de Bruijn, Melanie Schirmer,
Joshua Quick, Umer Z Ijaz, Nicholas J Loman, Anders F Andersson, and Christo-
pher Quince. Concoct: clustering contigs on coverage and composition. arXiv
preprint arXiv:1312.4038, 2013.

[31] Johannes Alneberg, Brynjar Smári Bjarnason, Ino De Bruijn, Melanie Schirmer,
Joshua Quick, Umer Z Ijaz, Leo Lahti, Nicholas J Loman, Anders F Andersson,
and Christopher Quince. Binning metagenomic contigs by coverage and composi-
tion. Nature methods, 11(11):1144, 2014.

[32] Steven L Salzberg, Arthur L Delcher, Simon Kasif, and Owen White. Micro-
bial gene identification using interpolated markov models. Nucleic acids research,
26(2):544–548, 1998.

[33] Alexander V Lukashin and Mark Borodovsky. Genemark. hmm: new solutions for
gene finding. Nucleic acids research, 26(4):1107–1115, 1998.

[34] Stefan Götz, Juan Miguel Garcı́a-Gómez, Javier Terol, Tim D Williams, Shiv-
ashankar H Nagaraj, Marı́a José Nueda, Montserrat Robles, Manuel Talón, Joaquı́n
Dopazo, and Ana Conesa. High-throughput functional annotation and data mining
with the blast2go suite. Nucleic acids research, 36(10):3420–3435, 2008.

[35] Yaniv Loewenstein, Domenico Raimondo, Oliver C Redfern, James Watson,
Dmitrij Frishman, Michal Linial, Christine Orengo, Janet Thornton, and Anna
Tramontano. Protein function annotation by homology-based inference. Genome
biology, 10(2):207, 2009.

[36] Junjie Qin, Ruiqiang Li, Jeroen Raes, Manimozhiyan Arumugam, Kristof-
fer Solvsten Burgdorf, Chaysavanh Manichanh, Trine Nielsen, Nicolas Pons, Flo-
rence Levenez, Takuji Yamada, et al. A human gut microbial gene catalogue es-
tablished by metagenomic sequencing. nature, 464(7285):59, 2010.

[37] Junhua Li, Huijue Jia, Xianghang Cai, Huanzi Zhong, Qiang Feng, Shinichi Suna-
gawa, Manimozhiyan Arumugam, Jens Roat Kultima, Edi Prifti, Trine Nielsen,
et al. An integrated catalog of reference genes in the human gut microbiome. Na-
ture biotechnology, 32(8):834, 2014.

[38] Liang Xiao, Qiang Feng, Suisha Liang, Si Brask Sonne, Zhongkui Xia, Xinmin
Qiu, Xiaoping Li, Hua Long, Jianfeng Zhang, Dongya Zhang, et al. A catalog of
the mouse gut metagenome. Nature biotechnology, 33(10):1103, 2015.

[39] Luis Pedro Coelho, Jens Roat Kultima, Paul Igor Costea, Coralie Fournier, Yuan-
long Pan, Gail Czarnecki-Maulden, Matthew Robert Hayward, Sofia K Forslund,
Thomas Sebastian Benedikt Schmidt, Patrick Descombes, et al. Similarity of the
dog and human gut microbiomes in gene content and response to diet. Microbiome,
6(1):72, 2018.

144

[40] BD Williams, B Schrank, C Huynh, R Shownkeen, and RH Waterston. A genetic
mapping system in caenorhabditis elegans based on polymorphic sequence-tagged
sites. Genetics, 131(3):609–624, 1992.

[41] Rina Wu and ZR Shi. Comparison of chromogenic in situ hybridization, fluores-
cence in situ hybridization, and immunohistochemistry. Handbook of IHC and ISH
of Human Carcinomas: Molecular Genetics, pages 13–21, 2004.

[42] S Lawrence, NE Morton, and DR Cox. Radiation hybrid mapping. Proceedings of
the National Academy of Sciences, 88(17):7477–7480, 1991.

[43] David C Schwartz, Xiaojun Li, Luis I Hernandez, Satyadarshan P Ramnarain, Ed-
ward J Huff, and Yu-Ker Wang. Ordered restriction maps of saccharomyces cere-
visiae chromosomes constructed by optical mapping. Science, 262(5130):110–114,
1993.

[44] David C Schwartz. Microbial genome program report: Optical approaches for
physical mapping and sequence assembly of the deinococcus radiodurans chromo-
some. Technical report, New York Univ.(US), 1999.

[45] Ernest T Lam, Alex Hastie, Chin Lin, Dean Ehrlich, Somes K Das, Michael D
Austin, Paru Deshpande, Han Cao, Niranjan Nagarajan, Ming Xiao, et al. Genome
mapping on nanochannel arrays for structural variation analysis and sequence as-
sembly. Nature biotechnology, 30(8):771, 2012.

[46] James W Fickett and Michael J Cinkosky. A genetic algorithm for assembling chro-
mosome physical maps. In Bioinformatics, Supercomputing and Complex Genome
Analysis, pages 273–285. World Scientific, 1993.

[47] Will Gillett, Jim Daues, Liz Hanks, and Rob Capra. Fragment collapsing and split-
ting while assembling high-resolution restriction maps. Journal of Computational
Biology, 2(2):185–205, 1995.

[48] Yuji Kohara, Kiyotaka Akiyama, and Katsumi Isono. The physical map of the
whole e. coli chromosome: application of a new strategy for rapid analysis and
sorting of a large genomic library. Cell, 50(3):495–508, 1987.

[49] Friedrich W Engler, James Hatfield, William Nelson, and Carol A Soderlund. Lo-
cating sequence on fpc maps and selecting a minimal tiling path. Genome Re-
search, 13(9):2152–2163, 2003.

[50] Martin Charles Golumbic, Haim Kaplan, and Ron Shamir. On the complexity of
dna physical mapping. Advances in Applied Mathematics, 15(3):251–261, 1994.

[51] Carol Soderlund, Ian Longden, and Richard Mott. Fpc: a system for building con-
tigs from restriction fingerprinted clones. Bioinformatics, 13(5):523–535, 1997.

145

[52] Thomas S Anantharaman, Bud Mishra, and David C Schwartz. Genomics via
optical mapping ii: Ordered restriction maps. Journal of Computational Biology,
4(2):91–118, 1997.

[53] Anton Valouev, David C Schwartz, Shiguo Zhou, and Michael S Waterman. An
algorithm for assembly of ordered restriction maps from single dna molecules.
Proceedings of the National Academy of Sciences, 103(43):15770–15775, 2006.

[54] Niranjan Nagarajan, Timothy D Read, and Mihai Pop. Scaffolding and validation
of bacterial genome assemblies using optical restriction maps. Bioinformatics,
24(10):1229–1235, 2008.

[55] Martin D Muggli, Simon J Puglisi, and Christina Boucher. Efficient indexed align-
ment of contigs to optical maps. In International Workshop on Algorithms in Bioin-
formatics, pages 68–81. Springer, 2014.

[56] Paolo Ferragina and Giovanni Manzini. Opportunistic data structures with appli-
cations. In Foundations of Computer Science, 2000. Proceedings. 41st Annual
Symposium on, pages 390–398. IEEE, 2000.

[57] Lee M Mendelowitz, David C Schwartz, and Mihai Pop. Maligner: a fast ordered
restriction map aligner. Bioinformatics, 32(7):1016–1022, 2015.

[58] Daniel H Huson, Knut Reinert, and Eugene W Myers. The greedy path-merging
algorithm for contig scaffolding. Journal of the ACM (JACM), 49(5):603–615,
2002.

[59] Leena Salmela, Veli Mäkinen, Niko Välimäki, Johannes Ylinen, and Esko Ukko-
nen. Fast scaffolding with small independent mixed integer programs. Bioinfor-
matics, 27(23):3259–3265, 2011.

[60] Adel Dayarian, Todd P Michael, and Anirvan M Sengupta. Sopra: Scaffold-
ing algorithm for paired reads via statistical optimization. BMC bioinformatics,
11(1):345, 2010.

[61] Nilgun Donmez and Michael Brudno. Scarpa: scaffolding reads with practical
algorithms. Bioinformatics, 29(4):428–434, 2012.

[62] Mihai Pop, Daniel S Kosack, and Steven L Salzberg. Hierarchical scaffolding with
bambus. Genome research, 14(1):149–159, 2004.

[63] Marten Boetzer, Christiaan V Henkel, Hans J Jansen, Derek Butler, and Wal-
ter Pirovano. Scaffolding pre-assembled contigs using sspace. Bioinformatics,
27(4):578–579, 2010.

[64] Song Gao, Denis Bertrand, Burton KH Chia, and Niranjan Nagarajan. Opera-
lg: efficient and exact scaffolding of large, repeat-rich eukaryotic genomes with
performance guarantees. Genome biology, 17(1):102, 2016.

146

[65] Jared T Simpson, Kim Wong, Shaun D Jackman, Jacqueline E Schein, Steven JM
Jones, and Inanç Birol. Abyss: a parallel assembler for short read sequence data.
Genome research, 19(6):1117–1123, 2009.

[66] Yu Peng, Henry CM Leung, Siu-Ming Yiu, and Francis YL Chin. Idba-ud: a
de novo assembler for single-cell and metagenomic sequencing data with highly
uneven depth. Bioinformatics, 28(11):1420–1428, 2012.

[67] Sergey Nurk, Dmitry Meleshko, Anton Korobeynikov, and Pavel A Pevzner.
metaspades: a new versatile metagenomic assembler. Genome research,
27(5):824–834, 2017.

[68] Andrey D Prjibelski, Irina Vasilinetc, Anton Bankevich, Alexey Gurevich, Tatiana
Krivosheeva, Sergey Nurk, Son Pham, Anton Korobeynikov, Alla Lapidus, and
Pavel A Pevzner. Exspander: a universal repeat resolver for dna fragment assembly.
Bioinformatics, 30(12):i293–i301, 2014.

[69] Joshua Wetzel, Carl Kingsford, and Mihai Pop. Assessing the benefits of using
mate-pairs to resolve repeats in de novo short-read prokaryotic assemblies. BMC
bioinformatics, 12(1):95, 2011.

[70] Erez Lieberman-Aiden, Nynke L Van Berkum, Louise Williams, Maxim Imakaev,
Tobias Ragoczy, Agnes Telling, Ido Amit, Bryan R Lajoie, Peter J Sabo, Michael O
Dorschner, et al. Comprehensive mapping of long-range interactions reveals fold-
ing principles of the human genome. science, 326(5950):289–293, 2009.

[71] Nicholas H Putnam, Brendan L O’Connell, Jonathan C Stites, Brandon J Rice,
et al. Chromosome-scale shotgun assembly using an in vitro method for long-
range linkage. Genome research, 26(3):342–350, 2016.

[72] Steven Wingett, Philip Ewels, Mayra Furlan-Magaril, Takashi Nagano, Stefan
Schoenfelder, Peter Fraser, and Simon Andrews. Hicup: pipeline for mapping
and processing hi-c data. F1000Research, 4, 2015.

[73] Nicolas Servant, Nelle Varoquaux, Bryan R Lajoie, Eric Viara, Chong-Jian Chen,
Jean-Philippe Vert, Edith Heard, Job Dekker, and Emmanuel Barillot. Hic-pro:
an optimized and flexible pipeline for hi-c data processing. Genome biology,
16(1):259, 2015.

[74] Neva C Durand, Muhammad S Shamim, et al. Juicer provides a one-click system
for analyzing loop-resolution hi-c experiments. Cell systems, 3(1):95–98, 2016.

[75] Neva C Durand, James T Robinson, Muhammad S Shamim, et al. Juicebox pro-
vides a visualization system for hi-c contact maps with unlimited zoom. Cell sys-
tems, 3(1):99–101, 2016.

[76] Michael EG Sauria, Jennifer E Phillips-Cremins, Victor G Corces, and James Tay-
lor. Hifive: a tool suite for easy and efficient hic and 5c data analysis. Genome
biology, 16(1):237, 2015.

147

[77] Ben Langmead and Steven L Salzberg. Fast gapped-read alignment with bowtie 2.
Nature methods, 9(4):357, 2012.

[78] Heng Li and Richard Durbin. Fast and accurate short read alignment with burrows–
wheeler transform. Bioinformatics, 25(14):1754–1760, 2009.

[79] Matei Zaharia, William J Bolosky, Kristal Curtis, Armando Fox, David Patterson,
Scott Shenker, Ion Stoica, Richard M Karp, and Taylor Sittler. Faster and more
accurate sequence alignment with snap. arXiv preprint arXiv:1111.5572, 2011.

[80] Noam Kaplan and Job Dekker. High-throughput genome scaffolding from in vivo
dna interaction frequency. Nature biotechnology, 31(12):1143–1147, 2013.

[81] Sante Gnerre, Iain MacCallum, Dariusz Przybylski, Filipe J Ribeiro, Joshua N Bur-
ton, Bruce J Walker, Ted Sharpe, Giles Hall, Terrance P Shea, Sean Sykes, et al.
High-quality draft assemblies of mammalian genomes from massively parallel se-
quence data. Proceedings of the National Academy of Sciences, 108(4):1513–1518,
2011.

[82] John D Head and Michael C Zerner. A broydenfletchergoldfarbshanno optimiza-
tion procedure for molecular geometries. Chemical physics letters, 122(3):264–
270, 1985.

[83] Hervé Marie-Nelly, Martial Marbouty, Axel Cournac, Jean-François Flot, Gi-
anni Liti, Dante Poggi Parodi, Sylvie Syan, Nancy Guillén, Antoine Margeot,
Christophe Zimmer, et al. High-quality genome (re) assembly using chromoso-
mal contact data. Nature communications, 5:5695, 2014.

[84] Siddhartha Chib and Edward Greenberg. Understanding the metropolis-hastings
algorithm. The american statistician, 49(4):327–335, 1995.

[85] Jay Ghurye, Mihai Pop, Sergey Koren, Derek Bickhart, and Chen-Shan Chin. Scaf-
folding of long read assemblies using long range contact information. BMC ge-
nomics, 18(1):527, 2017.

[86] Olga Dudchenko, Sanjit S Batra, Arina D Omer, et al. De novo assembly of the
aedes aegypti genome using hi-c yields chromosome-length scaffolds. Science,
356(6333):92–95, 2017.

[87] Dirk Holste, Ivo Grosse, and Hanspeter Herzel. Statistical analysis of the dna
sequence of human chromosome 22. Physical Review E, 64(4):041917, 2001.

[88] Yulia Mostovoy, Michal Levy-Sakin, Jessica Lam, Ernest T Lam, Alex R Hastie,
Patrick Marks, Joyce Lee, Catherine Chu, Chin Lin, Željko Džakula, et al. A hybrid
approach for de novo human genome sequence assembly and phasing. Nature
methods, 13(7):587, 2016.

[89] Anton Bankevich and Pavel A Pevzner. Truspades: barcode assembly of truseq
synthetic long reads. Nature methods, 13(3):248, 2016.

148

[90] Andrew Adey, Jacob O Kitzman, Joshua N Burton, Riza Daza, Akash Kumar,
Lena Christiansen, Mostafa Ronaghi, Sasan Amini, Kevin L Gunderson, Frank J
Steemers, et al. In vitro, long-range sequence information for de novo genome
assembly via transposase contiguity. Genome research, 24(12):2041–2049, 2014.

[91] Neil I Weisenfeld, Vijay Kumar, Preyas Shah, Deanna M Church, and David B
Jaffe. Direct determination of diploid genome sequences. Genome research,
27(5):757–767, 2017.

[92] Arthur L Delcher, Steven L Salzberg, and Adam M Phillippy. Using mummer to
identify similar regions in large sequence sets. Current Protocols in Bioinformat-
ics, pages 10–3, 2003.

[93] Amir-Mohammad Rahmani, Pasi Liljeberg, Juha Plosila, and Hannu Tenhunen.
Lastz: An ultra optimized 3d networks-on-chip architecture. In Digital System
Design (DSD), 2011 14th Euromicro Conference on, pages 173–180. IEEE, 2011.

[94] Daniel C Richter, Stephan C Schuster, and Daniel H Huson. Oslay: optimal syn-
tenic layout of unfinished assemblies. Bioinformatics, 23(13):1573–1579, 2007.

[95] Samuel Assefa, Thomas M Keane, Thomas D Otto, Chris Newbold, and Matthew
Berriman. Abacas: algorithm-based automatic contiguation of assembled se-
quences. Bioinformatics, 25(15):1968–1969, 2009.

[96] Anna I Rissman, Bob Mau, Bryan S Biehl, Aaron E Darling, Jeremy D Glasner,
and Nicole T Perna. Reordering contigs of draft genomes using the mauve aligner.
Bioinformatics, 25(16):2071–2073, 2009.

[97] Chi-Long Li, Kun-Tze Chen, and Chin Lung Lu. Assembling contigs in draft
genomes using reversals and block-interchanges. In BMC bioinformatics, vol-
ume 14, page S9. BioMed Central, 2013.

[98] Peter Husemann and Jens Stoye. r2cat: synteny plots and comparative assembly.
Bioinformatics, 26(4):570–571, 2009.

[99] Chin Lung Lu, Kun-Tze Chen, Shih-Yuan Huang, and Hsien-Tai Chiu. Car: contig
assembly of prokaryotic draft genomes using rearrangements. BMC bioinformat-
ics, 15(1):381, 2014.

[100] Emanuele Bosi, Beatrice Donati, Marco Galardini, Sara Brunetti, Marie-France
Sagot, Pietro Lió, Pierluigi Crescenzi, Renato Fani, and Marco Fondi. Medusa: a
multi-draft based scaffolder. Bioinformatics, 31(15):2443–2451, 2015.

[101] Mikhail Kolmogorov, Brian Raney, Benedict Paten, and Son Pham. Ragouta
reference-assisted assembly tool for bacterial genomes. Bioinformatics,
30(12):i302–i309, 2014.

149

[102] Feng Zeng, Lan Yao, Zhigang Chen, and Huamei Qi. A distributed and shortest-
path-based algorithm for maximum cover sets problem in wireless sensor net-
works. In Trust, Security and Privacy in Computing and Communications (Trust-
Com), 2011 IEEE 10th International Conference on, pages 1224–1228. IEEE,
2011.

[103] Max Alekseyev and Pavel A Pevzner. Breakpoint graphs and ancestral genome
reconstructions. Genome research, pages gr–082784, 2009.

[104] Tandy Warnow. Computational phylogenetics: An introduction to designing meth-
ods for phylogeny estimation. Cambridge University Press, 2017.

[105] Kun-Tze Chen, Cheih-Jung Chen, Hsin-Ting Shen, Chia-Liang Liu, Shang-Hao
Huang, and Chin Lung Lu. Multi-car: a tool of contig scaffolding using multiple
references. BMC bioinformatics, 17(17):469, 2016.

[106] Michael J Levene, Jonas Korlach, Stephen W Turner, Mathieu Foquet, Harold G
Craighead, and Watt W Webb. Zero-mode waveguides for single-molecule analysis
at high concentrations. science, 299(5607):682–686, 2003.

[107] Miten Jain, Hugh E Olsen, Benedict Paten, and Mark Akeson. The oxford
nanopore minion: delivery of nanopore sequencing to the genomics community.
Genome biology, 17(1):239, 2016.

[108] Marten Boetzer and Walter Pirovano. Sspace-longread: scaffolding bacterial draft
genomes using long read sequence information. BMC bioinformatics, 15(1):211,
2014.

[109] Mark J Chaisson and Glenn Tesler. Mapping single molecule sequencing reads
using basic local alignment with successive refinement (blasr): application and
theory. BMC bioinformatics, 13(1):238, 2012.

[110] René L Warren, Chen Yang, Benjamin P Vandervalk, Bahar Behsaz, Albert Lag-
man, Steven JM Jones, and Inanç Birol. Links: Scalable, alignment-free scaffold-
ing of draft genomes with long reads. GigaScience, 4(1):35, 2015.

[111] Marten Boetzer and Walter Pirovano. Toward almost closed genomes with gap-
filler. Genome biology, 13(6):R56, 2012.

[112] Daniel Paulino, René L Warren, Benjamin P Vandervalk, Anthony Raymond,
Shaun D Jackman, and Inanç Birol. Sealer: a scalable gap-closing application
for finishing draft genomes. BMC bioinformatics, 16(1):230, 2015.

[113] Andrei Broder and Michael Mitzenmacher. Network applications of bloom filters:
A survey. Internet mathematics, 1(4):485–509, 2004.

[114] Pavel A Pevzner, Haixu Tang, and Michael S Waterman. An eulerian path ap-
proach to dna fragment assembly. Proceedings of the National Academy of Sci-
ences, 98(17):9748–9753, 2001.

150

[115] Adam C English, Stephen Richards, Yi Han, Min Wang, Vanesa Vee, Jiaxin Qu,
Xiang Qin, Donna M Muzny, Jeffrey G Reid, Kim C Worley, et al. Mind the gap:
upgrading genomes with pacific biosciences rs long-read sequencing technology.
PloS one, 7(11):e47768, 2012.

[116] Shunichi Kosugi, Hideki Hirakawa, and Satoshi Tabata. Gmcloser: closing gaps
in assemblies accurately with a likelihood-based selection of contig or long-read
alignments. Bioinformatics, 31(23):3733–3741, 2015.

[117] Rebecca R Murphy, Jared OConnell, Anthony J Cox, and Ole Schulz-Trieglaff.
Nxrepair: error correction in de novo sequence assembly using nextera mate pairs.
PeerJ, 3:e996, 2015.

[118] Derek M Bickhart, Benjamin D Rosen, Sergey Koren, et al. Single-molecule se-
quencing and chromatin conformation capture enable de novo reference assembly
of the domestic goat genome. Nature Genetics, 49(4):643–650, 2017.

[119] Lee Mendelowitz and Mihai Pop. Computational methods for optical mapping.
GigaScience, 3(1):33, 2014.

[120] Matthew Pendleton, Robert Sebra, Andy Wing Chun Pang, et al. Assembly and
diploid architecture of an individual human genome via single-molecule technolo-
gies. Nature methods, 2015.

[121] Jeong-Sun Seo, Arang Rhie, Junsoo Kim, Sangjin Lee, Min-Hwan Sohn, Chang-
Uk Kim, Alex Hastie, Han Cao, Ji-Young Yun, Jihye Kim, et al. De novo assembly
and phasing of a korean human genome. Nature, 538(7624):243, 2016.

[122] Martin Mascher, Heidrun Gundlach, Axel Himmelbach, Sebastian Beier, Sven O
Twardziok, Thomas Wicker, Volodymyr Radchuk, Christoph Dockter, Pete E Hed-
ley, Joanne Russell, et al. A chromosome conformation capture ordered sequence
of the barley genome. Nature, 544(7651):427, 2017.

[123] Huilong Du, Ying Yu, Yanfei Ma, Qiang Gao, Yinghao Cao, Zhuo Chen, Bin Ma,
Ming Qi, Yan Li, Xianfeng Zhao, et al. Sequencing and de novo assembly of a
near complete indica rice genome. Nature communications, 8:15324, 2017.

[124] Wen-Biao Jiao, Gonzalo Garcia Accinelli, Benjamin Hartwig, Christiane Kiefer,
David Baker, Edouard Severing, Eva-Maria Willing, Mathieu Piednoel, Stefan
Woetzel, Eva Madrid-Herrero, et al. Improving and correcting the contiguity of
long-read genome assemblies of three plant species using optical mapping and
chromosome conformation capture data. Genome research, 27(5):778–786, 2017.

[125] Ryan Tewhey, Vikas Bansal, Ali Torkamani, Eric J Topol, and Nicholas J Schork.
The importance of phase information for human genomics. Nature Reviews Genet-
ics, 12(3):215, 2011.

[126] Gustavo Glusman, Hannah C Cox, and Jared C Roach. Whole-genome haplotyping
approaches and genomic medicine. Genome medicine, 6(9):73, 2014.

151

[127] Stephan Schiffels and Richard Durbin. Inferring human population size and sepa-
ration history from multiple genome sequences. Nature genetics, 46(8):919, 2014.

[128] Matthew W Snyder, Andrew Adey, Jacob O Kitzman, and Jay Shendure.
Haplotype-resolved genome sequencing: experimental methods and applications.
Nature Reviews Genetics, 16(6):344, 2015.

[129] Sharon R Browning and Brian L Browning. Haplotype phasing: existing methods
and new developments. Nature Reviews Genetics, 12(10):703, 2011.

[130] Peter Edge, Vineet Bafna, and Vikas Bansal. Hapcut2: robust and accurate hap-
lotype assembly for diverse sequencing technologies. Genome research, pages
gr–213462, 2016.

[131] Stefano Beretta, Murray D Patterson, Simone Zaccaria, Gianluca Della Vedova,
and Paola Bonizzoni. Hapchat: Adaptive haplotype assembly for efficiently lever-
aging high coverage in long reads. BMC bioinformatics, 19(1):252, 2018.

[132] Jana Ebler, Marina Haukness, Trevor Pesout, Tobias Marschall, and Benedict
Paten. Haplotype-aware genotyping from noisy long reads. bioRxiv, page 293944,
2018.

[133] Niranjan Nagarajan and Mihai Pop. Sequence assembly demystified. Nature Re-
views Genetics, 14(3):157–167, 2013.

[134] Jason R Miller, Sergey Koren, and Granger Sutton. Assembly algorithms for next-
generation sequencing data. Genomics, 95(6):315–327, 2010.

[135] Eugene W Myers. The fragment assembly string graph. Bioinformatics, 21(suppl
2):ii79–ii85, 2005.

[136] Niranjan Nagarajan and Mihai Pop. Parametric complexity of sequence assembly:
theory and applications to next generation sequencing. Journal of computational
biology, 16(7):897–908, 2009.

[137] J Craig Venter, Hamilton O Smith, and Leroy Hood. A new strategy for genome
sequencing. Nature, 381(6581):364, 1996.

[138] Yang Dong, Min Xie, Yu Jiang, Nianqing Xiao, Xiaoyong Du, Wenguang Zhang,
Gwenola Tosser-Klopp, Jinhuan Wang, Shuang Yang, Jie Liang, et al. Sequencing
and automated whole-genome optical mapping of the genome of a domestic goat
(capra hircus). Nature biotechnology, 31(2):135–141, 2013.

[139] Jennifer M Shelton, Michelle C Coleman, Nic Herndon, Nanyan Lu, Ernest T Lam,
Thomas Anantharaman, Palak Sheth, and Susan J Brown. Tools and pipelines for
bionano data: molecule assembly pipeline and fasta super scaffolding tool. BMC
genomics, 16(1):734, 2015.

152

[140] Grace XY Zheng, Billy T Lau, Michael Schnall-Levin, Mirna Jarosz, John M
Bell, Christopher M Hindson, Sofia Kyriazopoulou-Panagiotopoulou, Donald A
Masquelier, Landon Merrill, Jessica M Terry, et al. Haplotyping germline and can-
cer genomes with high-throughput linked-read sequencing. Nature biotechnology,
2016.

[141] Sarah Yeo, Lauren Coombe, René L Warren, Justin Chu, and Inanç Birol. Arcs:
Scaffolding genome drafts with linked reads. Bioinformatics, 2017.

[142] Marieke Simonis, Petra Klous, Erik Splinter, Yuri Moshkin, Rob Willemsen, Elzo
De Wit, Bas Van Steensel, and Wouter De Laat. Nuclear organization of active and
inactive chromatin domains uncovered by chromosome conformation capture–on-
chip (4c). Nature genetics, 38(11):1348–1354, 2006.

[143] Joshua N Burton, Andrew Adey, et al. Chromosome-scale scaffolding of de
novo genome assemblies based on chromatin interactions. Nature biotechnology,
31(12):1119–1125, 2013.

[144] Jesse R Dixon, Siddarth Selvaraj, Feng Yue, Audrey Kim, Yan Li, Yin Shen, Ming
Hu, Jun S Liu, and Bing Ren. Topological domains in mammalian genomes iden-
tified by analysis of chromatin interactions. Nature, 485(7398):376–380, 2012.

[145] John Eid, Adrian Fehr, Jeremy Gray, Khai Luong, John Lyle, Geoff Otto, Paul
Peluso, David Rank, Primo Baybayan, Brad Bettman, et al. Real-time dna se-
quencing from single polymerase molecules. Science, 323(5910):133–138, 2009.

[146] Heng Li. Minimap and miniasm: fast mapping and de novo assembly for noisy
long sequences. Bioinformatics, 32(14):2103–2110, 2016.

[147] Alec Wysoker, Kathleen Tibbetts, and Tim Fennell. Picard tools version 1.90, April
2013.

[148] Sergey Koren, Brian P Walenz, Konstantin Berlin, et al. Canu: scalable and ac-
curate long-read assembly via adaptive k-mer weighting and repeat separation.
Genome research, 27(5):722–736, 2017.

[149] Chen-Shan Chin, Paul Peluso, Fritz J. Sedlazeck, Maria Nattestad, Gregory T.
Concepcion, Alicia Clum, Christopher Dunn, Ronan O’Malley, Rosa Figueroa-
Balderas, Abraham Morales-Cruz, Grant R. Cramer, Massimo Delledonne,
Chongyuan Luo, Joseph R. Ecker, Dario Cantu, David R. Rank, and Michael C.
Schatz. Phased diploid genome assembly with single molecule real-time sequenc-
ing. bioRxiv, 2016.

[150] Mikhail Kolmogorov, Jeffrey Yuan, Yu Lin, and Pavel Pevzner. Assembly of long
error-prone reads using repeat graphs. bioRxiv, 2018.

[151] Jack Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics,
17(3):449–467, 1965.

153

[152] Matthias Poloczek and Mario Szegedy. Randomized greedy algorithms for the
maximum matching problem with new analysis. In Foundations of Computer Sci-
ence (FOCS), 2012 IEEE 53rd Annual Symposium on, pages 708–717. IEEE, 2012.

[153] Valerie A Schneider, Tina Graves-Lindsay, Kerstin Howe, Nathan Bouk, Hsiu-
Chuan Chen, Paul A Kitts, Terence D Murphy, Kim D Pruitt, Françoise Thibaud-
Nissen, Derek Albracht, et al. Evaluation of grch38 and de novo haploid genome
assemblies demonstrates the enduring quality of the reference assembly. Genome
research, 27(5):849–864, 2017.

[154] Miten Jain, Sergey Koren, Josh Quick, Arthur C Rand, et al. Nanopore sequencing
and assembly of a human genome with ultra-long reads. bioRxiv, page 128835,
2017.

[155] Stefan Kurtz, Adam Phillippy, Arthur L Delcher, Michael Smoot, Martin
Shumway, Corina Antonescu, and Steven L Salzberg. Versatile and open software
for comparing large genomes. Genome biology, 5(2):R12, 2004.

[156] Nayanah Siva. 1000 genomes project, 2008.

[157] Steven L Salzberg, Adam M Phillippy, Aleksey Zimin, Daniela Puiu, Tanja Magoc,
Sergey Koren, Todd J Treangen, Michael C Schatz, Arthur L Delcher, Michael
Roberts, et al. Gage: A critical evaluation of genome assemblies and assembly
algorithms. Genome research, 22(3):557–567, 2012.

[158] Francesco Vezzi, Giuseppe Narzisi, and Bud Mishra. Feature-by-feature–
evaluating de novo sequence assembly. PloS one, 7(2):e31002, 2012.

[159] Natalia Naumova, Maxim Imakaev, Geoffrey Fudenberg, et al. Organization of the
mitotic chromosome. Science, 342(6161):948–953, 2013.

[160] Kipper Fletez-Brant, Yunjiang Qiu, David U Gorkin, Ming Hu, and Kasper D
Hansen. Removing unwanted variation between samples in hi-c experiments.
bioRxiv, 2017.

[161] Klaus-Peter Koepfli, Benedict Paten, Genome 10K Community of Scientists, and
Stephen J O?Brien. The genome 10k project: a way forward. Annu. Rev. Anim.
Biosci., 3(1):57–111, 2015.

[162] Nynke L Van Berkum, Erez Lieberman-Aiden, Louise Williams, Maxim Imakaev,
Andreas Gnirke, Leonid A Mirny, Job Dekker, and Eric S Lander. Hi-c: a method
to study the three-dimensional architecture of genomes. Journal of visualized ex-
periments: JoVE, (39), 2010.

[163] Erik Garrison and Gabor Marth. Haplotype-based variant detection from short-read
sequencing. arXiv preprint arXiv:1207.3907, 2012.

154

[164] Bruce J Walker, Thomas Abeel, Terrance Shea, Margaret Priest, Amr Abouelliel,
Sharadha Sakthikumar, Christina A Cuomo, Qiandong Zeng, Jennifer Wortman,
Sarah K Young, et al. Pilon: an integrated tool for comprehensive microbial variant
detection and genome assembly improvement. PloS one, 9(11):e112963, 2014.

[165] Justin Zook. Genome in a bottle. 2012.

[166] Sergey Koren and Adam M Phillippy. One chromosome, one contig: complete
microbial genomes from long-read sequencing and assembly. Current opinion in
microbiology, 23:110–120, 2015.

[167] Sergey Koren, Todd J Treangen, and Mihai Pop. Bambus 2: scaffolding
metagenomes. Bioinformatics, 27(21):2964–2971, 2011.

[168] Todd J Treangen, Sergey Koren, Daniel D Sommer, Bo Liu, Irina Astrovskaya,
Brian Ondov, Aaron E Darling, Adam M Phillippy, and Mihai Pop. Metamos: a
modular and open source metagenomic assembly and analysis pipeline. Genome
biology, 14(1):R2, 2013.

[169] Song Gao, Wing-Kin Sung, and Niranjan Nagarajan. Opera: reconstructing op-
timal genomic scaffolds with high-throughput paired-end sequences. Journal of
Computational Biology, 18(11):1681–1691, 2011.

[170] Ulrik Brandes. A faster algorithm for betweenness centrality. Journal of mathe-
matical sociology, 25(2):163–177, 2001.

[171] Kamesh Madduri, David Ediger, Karl Jiang, David A Bader, and Daniel Chavarria-
Miranda. A faster parallel algorithm and efficient multithreaded implementations
for evaluating betweenness centrality on massive datasets. In Parallel & Dis-
tributed Processing, 2009. IPDPS 2009. IEEE International Symposium on, pages
1–8. IEEE, 2009.

[172] Robert Geisberger, Peter Sanders, and Dominik Schultes. Better approximation of
betweenness centrality. In Proceedings of the Meeting on Algorithm Engineering
& Expermiments, pages 90–100. Society for Industrial and Applied Mathematics,
2008.

[173] Matteo Riondato and Evgenios M Kornaropoulos. Fast approximation of be-
tweenness centrality through sampling. Data Mining and Knowledge Discovery,
30(2):438–475, 2016.

[174] Paul Medvedev, Konstantinos Georgiou, Gene Myers, and Michael Brudno. Com-
putability of models for sequence assembly. In International Workshop on Algo-
rithms in Bioinformatics, pages 289–301. Springer, 2007.

[175] Michael R Garey and David S Johnson. Computers and intractability, volume 29.
wh freeman New York, 2002.

155

[176] Hubert W Lilliefors. On the kolmogorov-smirnov test for normality with mean and
variance unknown. Journal of the American statistical Association, 62(318):399–
402, 1967.

[177] Andy Liaw, Matthew Wiener, et al. Classification and regression by randomforest.
R news, 2(3):18–22, 2002.

[178] Migun Shakya, Christopher Quince, James H Campbell, Zamin K Yang, Christo-
pher W Schadt, and Mircea Podar. Comparative metagenomic and rrna microbial
diversity characterization using archaeal and bacterial synthetic communities. En-
vironmental microbiology, 15(6):1882–1899, 2013.

[179] NA Joshi, JN Fass, et al. Sickle: A sliding-window, adaptive, quality-based trim-
ming tool for fastq files (version 1.33)[software], 2011.

[180] Lawrence Mitchell, Terence M Sloan, Muriel Mewissen, Peter Ghazal, Thorsten
Forster, Michal Piotrowski, and Arthur S Trew. A parallel random forest classifier
for r. In Proceedings of the second international workshop on Emerging computa-
tional methods for the life sciences, pages 1–6. ACM, 2011.

[181] Barbara A Methé, Karen E Nelson, Mihai Pop, Heather H Creasy, Michelle G
Giglio, Curtis Huttenhower, Dirk Gevers, Joseph F Petrosino, Sahar Abubucker,
Jonathan H Badger, et al. A framework for human microbiome research. Nature,
486(7402):215, 2012.

[182] Matthias Hess, Alexander Sczyrba, Rob Egan, Tae-Wan Kim, Harshal
Chokhawala, Gary Schroth, Shujun Luo, Douglas S Clark, Feng Chen, Tao Zhang,
et al. Metagenomic discovery of biomass-degrading genes and genomes from cow
rumen. Science, 331(6016):463–467, 2011.

[183] Kenneth H Nealson and J Craig Venter. Metagenomics and the global ocean survey:
what’s in it for us, and why should we care? The ISME Journal, 1(3):185, 2007.

[184] Rachel Mackelprang, Mark P Waldrop, Kristen M DeAngelis, Maude M David,
Krystle L Chavarria, Steven J Blazewicz, Edward M Rubin, and Janet K Jans-
son. Metagenomic analysis of a permafrost microbial community reveals a rapid
response to thaw. Nature, 480(7377):368, 2011.

[185] Rolf Daniel. The metagenomics of soil. Nature Reviews Microbiology, 3(6):470,
2005.

[186] Dinghua Li, Chi-Man Liu, Ruibang Luo, Kunihiko Sadakane, and Tak-Wah Lam.
Megahit: an ultra-fast single-node solution for large and complex metagenomics
assembly via succinct de bruijn graph. Bioinformatics, 31(10):1674–1676, 2015.

[187] Toshiaki Namiki, Tsuyoshi Hachiya, Hideaki Tanaka, and Yasubumi Sakakibara.
Metavelvet: an extension of velvet assembler to de novo metagenome assembly
from short sequence reads. Nucleic acids research, 40(20):e155–e155, 2012.

156

[188] Sébastien Boisvert, Frédéric Raymond, Élénie Godzaridis, François Laviolette, and
Jacques Corbeil. Ray meta: scalable de novo metagenome assembly and profiling.
Genome biology, 13(12):R122, 2012.

[189] Bahlul Haider, Tae-Hyuk Ahn, Brian Bushnell, Juanjuan Chai, Alex Copeland,
and Chongle Pan. Omega: an overlap-graph de novo assembler for metagenomics.
Bioinformatics, 30(19):2717–2722, 2014.

[190] Howard Ochman, Jeffrey G Lawrence, and Eduardo A Groisman. Lateral gene
transfer and the nature of bacterial innovation. nature, 405(6784):299, 2000.

[191] Pedro Gómez, Steve Paterson, Luc De Meester, Xuan Liu, Luca Lenzi,
MD Sharma, Kerensa McElroy, and Angus Buckling. Local adaptation of a bac-
terium is as important as its presence in structuring a natural microbial community.
Nature communications, 7:12453, 2016.

[192] Paul Igor Costea, Robin Munch, Luis Pedro Coelho, Lucas Paoli, Shinichi Suna-
gawa, and Peer Bork. metasnv: a tool for metagenomic strain level analysis. PLoS
One, 12(7):e0182392, 2017.

[193] Stephen Nayfach, Beltran Rodriguez-Mueller, Nandita Garud, and Katherine S
Pollard. An integrated metagenomics pipeline for strain profiling reveals novel
patterns of bacterial transmission and biogeography. Genome research, 2016.

[194] Chengwei Luo, Rob Knight, Heli Siljander, Mikael Knip, Ramnik J Xavier, and
Dirk Gevers. Constrains identifies microbial strains in metagenomic datasets. Na-
ture biotechnology, 33(10):1045, 2015.

[195] Duy Tin Truong, Adrian Tett, Edoardo Pasolli, Curtis Huttenhower, and Nicola
Segata. Microbial strain-level population structure and genetic diversity from
metagenomes. Genome research, 2017.

[196] Zamin Iqbal, Mario Caccamo, Isaac Turner, Paul Flicek, and Gil McVean. De
novo assembly and genotyping of variants using colored de bruijn graphs. Nature
genetics, 44(2):226, 2012.

[197] Jurgen F Nijkamp, Mihai Pop, Marcel JT Reinders, and Dick de Ridder. Exploring
variation-aware contig graphs for (comparative) metagenomics using marygold.
Bioinformatics, 29(22):2826–2834, 2013.

[198] Yu Peng, Henry CM Leung, Siu-Ming Yiu, and Francis YL Chin. Idba–a practical
iterative de bruijn graph de novo assembler. In Annual international conference on
research in computational molecular biology, pages 426–440. Springer, 2010.

[199] Igor Mandric, Sergey Knyazev, Alex Zelikovsky, and Bonnie Berger. Repeat-aware
evaluation of scaffolding tools. Bioinformatics, 1:8, 2018.

157

[200] Jay Ghurye and Mihai Pop. Better identification of repeats in metagenomic scaf-
folding. In International Workshop on Algorithms in Bioinformatics, pages 174–
184. Springer, 2016.

[201] John Hopcroft and Robert Tarjan. Algorithm 447: efficient algorithms for graph
manipulation. Communications of the ACM, 16(6):372–378, 1973.

[202] Giuseppe Di Battista and Roberto Tamassia. On-line maintenance of triconnected
components with spqr-trees. Algorithmica, 15(4):302–318, 1996.

[203] Carsten Gutwenger and Petra Mutzel. A linear time implementation of spqr-trees.
In International Symposium on Graph Drawing, pages 77–90. Springer, 2000.

[204] Markus Chimani, Carsten Gutwenger, Michael Jünger, Gunnar W Klau, Karsten
Klein, and Petra Mutzel. The open graph drawing framework (ogdf). Handbook of
Graph Drawing and Visualization, 2011:543–569, 2013.

[205] Zvi Galil, Silvio Micali, and Harold Gabow. AnO(EV logV) algorithm for finding
a maximal weighted matching in general graphs. SIAM Journal on Computing,
15(1):120–130, 1986.

[206] Lalena Wallace, Sean C Daugherty, Sushma Nagaraj, J Kristie Johnson, Anthony D
Harris, and David A Rasko. The use of comparative genomics to characterize the
diversity of acinetobacter baumannii surveillance isolates in a health care institu-
tion. Antimicrobial agents and chemotherapy, pages AAC–00477, 2016.

[207] Eliana De Gregorio, Giustina Silvestro, Mauro Petrillo, Maria Stella Carlomagno,
and Pier Paolo Di Nocera. Enterobacterial repetitive intergenic consensus sequence
repeats in yersiniae: genomic organization and functional properties. Journal of
bacteriology, 187(23):7945–7954, 2005.

[208] Esther Singer, Bill Andreopoulos, Robert M Bowers, Janey Lee, Shweta Desh-
pande, Jennifer Chiniquy, Doina Ciobanu, Hans-Peter Klenk, Matthew Zane,
Christopher Daum, et al. Next generation sequencing data of a defined microbial
mock community. Scientific data, 3:160081, 2016.

[209] Alla Mikheenko, Vladislav Saveliev, and Alexey Gurevich. Metaquast: evaluation
of metagenome assemblies. Bioinformatics, 32(7):1088–1090, 2015.

[210] Gerard Muyzer, Ellen C De Waal, and Andre G Uitterlinden. Profiling of com-
plex microbial populations by denaturing gradient gel electrophoresis analysis of
polymerase chain reaction-amplified genes coding for 16s rrna. Applied and envi-
ronmental microbiology, 59(3):695–700, 1993.

[211] James R White, Saket Navlakha, Niranjan Nagarajan, Mohammad-Reza Ghodsi,
Carl Kingsford, and Mihai Pop. Alignment and clustering of phylogenetic markers-
implications for microbial diversity studies. BMC bioinformatics, 11(1):152, 2010.

158

[212] Lusheng Wang and Tao Jiang. On the complexity of multiple sequence alignment.
Journal of computational biology, 1(4):337–348, 1994.

[213] J Gregory Caporaso, Christian L Lauber, William A Walters, Donna Berg-Lyons,
James Huntley, Noah Fierer, Sarah M Owens, Jason Betley, Louise Fraser, Markus
Bauer, et al. Ultra-high-throughput microbial community analysis on the illumina
hiseq and miseq platforms. The ISME journal, 6(8):1621–1624, 2012.

[214] Weizhong Li and Adam Godzik. Cd-hit: a fast program for clustering and com-
paring large sets of protein or nucleotide sequences. Bioinformatics, 22(13):1658–
1659, 2006.

[215] Vladimir I Levenshtein. Binary codes capable of correcting deletions, insertions,
and reversals. In Soviet physics doklady, volume 10, pages 707–710, 1966.

[216] Temple F Smith and Michael S Waterman. Identification of common molecular
subsequences. Journal of molecular biology, 147(1):195–197, 1981.

[217] Eugene W Myers. An O (ND) difference algorithm and its variations. Algorith-
mica, 1(1):251–266, 1986.

[218] William J. Masek and Mike Paterson. A faster algorithm computing string edit
distances. J. Comput. Syst. Sci., 20(1):18–31, 1980.

[219] William J. Masek and Michael S. Paterson. How to compute string-edit distances
quickly. pages 337–349, 1983.

[220] Gene Myers. A fast bit-vector algorithm for approximate string matching based on
dynamic programming. Journal of the ACM (JACM), 46(3):395–415, 1999.

[221] Dan Gusfield. Algorithms on strings, trees and sequences: computer science and
computational biology. Cambridge university press, 1997.

[222] Julie D Thompson, Toby Gibson, Des G Higgins, et al. Multiple sequence align-
ment using clustalw and clustalx. Current protocols in bioinformatics, pages 2–3,
2002.

[223] DOTREE Plotree and DOTGRAM Plotgram. Phylip-phylogeny inference package
(version 3.2). cladistics, 5(163):6, 1989.

[224] Stephen F Altschul, Warren Gish, Webb Miller, Eugene W Myers, and David J Lip-
man. Basic local alignment search tool. Journal of molecular biology, 215(3):403–
410, 1990.

[225] Jens Roat Kultima, Shinichi Sunagawa, Junhua Li, Weineng Chen, Hua Chen,
Daniel R Mende, Manimozhiyan Arumugam, Qi Pan, Binghang Liu, Junjie Qin,
et al. Mocat: a metagenomics assembly and gene prediction toolkit. PloS one,
7(10):e47656, 2012.

159

[226] Peter J Turnbaugh, Ruth E Ley, Micah Hamady, Claire M Fraser-Liggett, Rob
Knight, and Jeffrey I Gordon. The human microbiome project. Nature,
449(7164):804, 2007.

[227] Shinichi Sunagawa, Luis Pedro Coelho, Samuel Chaffron, Jens Roat Kultima,
Karine Labadie, Guillem Salazar, Bardya Djahanschiri, Georg Zeller, Daniel R
Mende, Adriana Alberti, et al. Structure and function of the global ocean micro-
biome. Science, 348(6237):1261359, 2015.

[228] Bertrand Routy, Emmanuelle Le Chatelier, Lisa Derosa, Connie PM Duong,
Maryam Tidjani Alou, Romain Daillère, Aurélie Fluckiger, Meriem Messaoudene,
Conrad Rauber, Maria P Roberti, et al. Gut microbiome influences efficacy of
pd-1–based immunotherapy against epithelial tumors. Science, 359(6371):91–97,
2018.

[229] Kristoffer Forslund, Falk Hildebrand, Trine Nielsen, Gwen Falony, Emmanuelle
Le Chatelier, Shinichi Sunagawa, Edi Prifti, Sara Vieira-Silva, Valborg Gudmunds-
dottir, Helle Krogh Pedersen, et al. Disentangling type 2 diabetes and metformin
treatment signatures in the human gut microbiota. Nature, 528(7581):262, 2015.

[230] Junjie Qin, Yingrui Li, Zhiming Cai, Shenghui Li, Jianfeng Zhu, Fan Zhang, Su-
isha Liang, Wenwei Zhang, Yuanlin Guan, Dongqian Shen, et al. A metagenome-
wide association study of gut microbiota in type 2 diabetes. Nature, 490(7418):55,
2012.

[231] Emmanuelle Le Chatelier, Trine Nielsen, Junjie Qin, Edi Prifti, Falk Hildebrand,
Gwen Falony, Mathieu Almeida, Manimozhiyan Arumugam, Jean-Michel Batto,
Sean Kennedy, et al. Richness of human gut microbiome correlates with metabolic
markers. Nature, 500(7464):541, 2013.

[232] Alexandra Meziti, Despina Tsementzi, Konstantinos Ar. Kormas, Hera Karayanni,
and Konstantinos T Konstantinidis. Anthropogenic effects on bacterial diversity
and function along a river-to-estuary gradient in northwest greece revealed by
metagenomics. Environmental microbiology, 18(12):4640–4652, 2016.

[233] Eugene W. Myers. An O(ND) difference algorithm and its variations. Algorith-
mica, 1(1):251–266, Nov 1986.

[234] Esko Ukkonen. Algorithms for approximate string matching. Inf. Control, 64(1-
3):100–118, March 1985.

[235] Maxime Crochemore, Gad M. Landau, and Michal Ziv-Ukelson. A subquadratic
sequence alignment algorithm for unrestricted scoring matrices. SIAM J. Comput.,
32(6):1654–1673, June 2003.

[236] Youngho Kim, Joong Chae Na, Heejin Park, and Jeong Seop Sim. A space-
efficient alphabet-independent four-russians’ lookup table and a multithreaded
four-russians’ edit distance algorithm. Theor. Comput. Sci., 656:173–179, 2016.

160

[237] Ryan R. Wick, Mark B. Schultz, Justin Zobel, and Kathryn E. Holt. Bandage: inter-
active visualization of de novo genome assemblies. Bioinformatics, 31(20):3350,
2015.

[238] C. B. Nielsen, S. D. Jackman, I. Birol, and S. J. M. Jones. Abyss-explorer: Vi-
sualizing genome sequence assemblies. IEEE Transactions on Visualization and
Computer Graphics, 15(6):881–888, Nov 2009.

[239] Michael C Schatz, Adam M Phillippy, Ben Shneiderman, and Steven L Salzberg.
Hawkeye: an interactive visual analytics tool for genome assemblies. Genome
biology, 8(3):R34, 2007.

[240] Thomas MJ Fruchterman and Edward M Reingold. Graph drawing by force-
directed placement. Software: Practice and experience, 21(11):1129–1164, 1991.

[241] Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North, and Kiem phong Vo.
A technique for drawing directed graphs. IEEE TRANSACTIONS ON SOFTWARE
ENGINEERING, 19(3):214–230, 1993.

[242] Kristi E Kim, Paul Peluso, Primo Babayan, P Jane Yeadon, Charles Yu, William W
Fisher, Chen-Shan Chin, Nicole A Rapicavoli, David R Rank, Joachim Li, et al.
Long-read, whole-genome shotgun sequence data for five model organisms. Sci-
entific data, 1:140045, 2014.

[243] Konstantin Berlin, Sergey Koren, Chen-Shan Chin, James P Drake, Jane M Lan-
dolin, and Adam M Phillippy. Assembling large genomes with single-molecule
sequencing and locality-sensitive hashing. Nature biotechnology, 33(6):623–630,
2015.

[244] Sibren Isaacman, Richard Becker, Ramon Caceres, Margaret Martonosi, James
Rowland, Alexander Varshavsky, and Walter Willinger. Human Mobility Modeling
at Metropolitan Scales. 10th ACM International Conference on Mobile Systems,
Applications and Services (MobiSys 2012), 2012.

[245] Richard Becker, Ramon Caceres, Karrie Hanson, Ji Loh, Simon Urbanek, Alexan-
der Varshavsky, and Christopher Volinsky. A Tale of One City: Using Cellular
Network Data for Urban Planning. IEEE Pervasive Computing , 2010.

[246] Vanessa Frias-Martinez, Cristina Soguero-Ruiz, Enrique Frias-Martinez, and
Malvina Josephidou. Forecasting socioeconomic trends with cell phone records.
In Proceedings of the 3rd ACM Symposium on Computing for Development, ACM
DEV ’13, 2013.

[247] R. Lambiotte, V Blondel, Kerchove C., Huens E., Prieur C., Smoreda Z., and
P. Dooren. Geographical dispersal of mobile communications networks. Phys-
ica A: Statistical Mechanics and its Applications, 387(21):5317–5325, 2008.

161

[248] R. Ahas, A. Aasa, Y. Yuan, M. Raubal, Z. Smoreda, Y. Liu, C. Ziemlicki, M. Tiru,
and M. Zook. Everyday spacetime geographies: using mobile phone-based sensor
data to monitor urban activity in harbin, paris, and tallinn. International Journal of
Geographical Information Science, 29(11):2017–2039, 2015.

[249] Xuan Song, Quanshi Zhang, Yoshihide Sekimoto, and Ryosuke Shibasaki. In-
telligent system for urban emergency management during large-scale disaster. In
Twenty-Eighth AAAI Conference on Artificial Intelligence, 2014.

[250] Yingrui Li, Hancheng Zheng, Ruibang Luo, Honglong Wu, Hongmei Zhu,
Ruiqiang Li, Hongzhi Cao, Boxin Wu, Shujia Huang, Haojing Shao, et al. Struc-
tural variation in two human genomes mapped at single-nucleotide resolution by
whole genome de novo assembly. Nature biotechnology, 29(8):723, 2011.

[251] Lars Feuk, Andrew R Carson, and Stephen W Scherer. Structural variation in the
human genome. Nature Reviews Genetics, 7(2):85, 2006.

[252] Jonathan Sebat, B Lakshmi, Dheeraj Malhotra, Jennifer Troge, Christa Lese-
Martin, Tom Walsh, Boris Yamrom, Seungtai Yoon, Alex Krasnitz, Jude Kendall,
et al. Strong association of de novo copy number mutations with autism. Science,
2007.

[253] Michael J Morowitz, Vincent J Denef, Elizabeth K Costello, Brian C Thomas, Va-
leriy Poroyko, David A Relman, and Jillian F Banfield. Strain-resolved community
genomic analysis of gut microbial colonization in a premature infant. Proceedings
of the National Academy of Sciences, 108(3):1128–1133, 2011.

[254] Ian Lo, Vincent J Denef, Nathan C VerBerkmoes, Manesh B Shah, Daniela Golts-
man, Genevieve DiBartolo, Gene W Tyson, Eric E Allen, Rachna J Ram, J Chris
Detter, et al. Strain-resolved community proteomics reveals recombining genomes
of acidophilic bacteria. Nature, 446(7135):537, 2007.

[255] Itai Sharon, Michael J Morowitz, Brian C Thomas, Elizabeth K Costello, David A
Relman, and Jillian F Banfield. Time series community genomics analysis reveals
rapid shifts in bacterial species, strains, and phage during infant gut colonization.
Genome research, 23(1):111–120, 2013.

162

	Preface
	Dedication
	Acknowledgements
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Genome assembly
	Genome scaffolding
	Metagenomics
	Marker gene analysis
	Whole metagenome sequencing

	Contributions

	Related work
	Source of information for genome scaffolding
	Physical mapping technologies
	Paired-read technologies
	Chromosomal contact data
	Subcloning
	Conservation of synteny
	Scaffolding based on long reads

	Gap filling
	Hybrid scaffolding
	Haplotype phasing
	Conclusion

	Scaffolding large eukaryotic genomes with HiC data
	Introduction
	Methods
	Hi-C library preparation
	Read alignment
	Unitig correction
	Assembly graph construction
	Scaffold graph construction
	Unitig layout
	Iterative mis-join correction

	Results
	Dataset description
	Contact probability of Hi-C data
	Scoring effectiveness
	Evaluation on simulated unitigs
	Evaluation on NA12878
	Robustness to input library

	Conclusion

	Tuning Hi-C library preparation for accurate scaffolding
	Introduction
	Methods
	Hi-C libraries and read Mapping
	Scaffolding with HiC data
	Haplotype phasing

	Results
	Library characteristics
	Scaffolding accuracy with different libraries
	Polishing accuracy
	Accuracy of haplotype phasing

	Conclusion

	Better identification of repeats in metagenomic scaffolding
	Introduction
	Related work
	Repeat detection in scaffolding
	Betweenness centrality

	Methods
	Construction of scaffold graph
	Orienting the bidirected scaffold graph
	Repeat detection through betweenness centrality
	Repeat detection with an expanded feature set

	Results
	Dataset and assembly
	Extended feature set improves repeat detection
	Important parameters in determining repeats
	Comparison of incorrectly oriented pair of contigs
	Comparison of runtime with bambus 2

	Discussion and conclusion

	MetaCarvel: linking assembly graph motifs to biological variants
	Introduction
	Methods
	Contig graph construction
	Repeat detection
	Orientation
	Bubble collapsing
	Linear scaffold generation

	Results
	Effect of microbial mixtures on scaffolding
	Accuracy of detection insertions and deletions
	Detection of regions with high sequence variation
	Effectiveness in detecting repeats
	Evaluation of scaffold quality using synthetic datasets
	Evaluation using real metagenomics data

	Scaffolding all samples from Human Microbiome Project (HMP)
	Discussion and conclusion

	Better greedy sequence clustering with fast banded alignment
	Introduction
	Related Work
	Preliminaries
	Our Contributions

	Recruiting algorithm
	Banded Four Russians' approach
	The Edit Distance Interval Trie (EDIT)
	Recruiting to a center

	Experimental results
	Properties of our recruitment algorithm and data structure
	Comparison with UCLUST

	Conclusion and future directions

	Other contributions
	A critical analysis of the Integrated Gene Catalog
	A succinct four Russians' speedup for edit distance computation and one-against-many banded alignment
	Hierarchically visualizing metagenome assembly graphs with metagenomeScope
	A chromosome-scale assembly of Anopheles funestus
	Framework to model human behavior at large ccale during natural disasters

	Conclusion
	Bibliography

