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This dissertation describes research to coherently control quantum states of su-

perconducting devices. In the first project, the state of an 8 GHz 3D superconducting

Al cavity at 20 mK was manipulated to add a quantum of excitation. Preparing a

harmonic resonator in a state with a well-defined number of excitations (Fock states) is

not possible using one external classical drive. I generated Fock states by transferring

a single excitation from a 5.5 GHz transmon qubit to a cavity using Stimulated Raman

Adiabatic Passage (STIRAP). I also extended the STIRAP technique to put the cavity in

higher Fock states, superpositions of Fock states, and Bell states between the qubit and

the cavity. Master-equation simulations of the system’s density matrix were in good

agreement with the data, and I obtained estimated fidelities of 89%, 68% and 43% for

the first three Fock states, respectively.

The second project involved implementing an entangling gate between two Al/AlOx/Al

transmon qubits that were mounted in an Al cavity and cooled to 20 mK. Pertinent



system frequencies were as follows: one qubit was at 6.0 GHz, the other qubit at

6.8 GHz, the cavity at 7.7 GHz, and the qubit-qubit dispersive shift was −1 MHz. By

applying a specially-shaped pulse of duration τg = 907ns, I implemented a generalized

CNOT gate using an all-microwave technique known as Speeding up Waveforms by
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device characterization, measurement techniques, and extensive modeling of device

behavior are presented, along with χ-matrix characterization of single-qubit gates and

SWIPHT gates.
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CHAPTER 1

Introduction

1.1 Superseding Classical Computation

In 1936–1937, Church [1] and Turing [2] independently formalized the notion

of computability. These ideas laid the foundation for the subsequent development

of classical computers in the twentieth century. The Strong Church–Turing Thesis

captures the essence of using an algorithm to compute a function [3, 4]: Every finitely

realizable physical system can be perfectly simulated by a universal Turing machine by

finite means. However, this definition was incompatible with the paradigm of classical

computation upon which virtually all modern computers are currently built.

Classical computing relies on an inherently discrete digital system. Since many

physical systems are continuous, and governed by quantum mechanics rather than

classical physics, it is not possible to efficiently simulate all realizable physical sys-

tems with classical computation. Quantum computation offers a potential solution.

Universal Quantum Computing is compatible with the Strong Church–Turing thesis

and also had properties not reproducible by any Turing machine [4]. Following the
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initial ideas of Feynman [5], Benioff [6], and Albert [7] in the 1980s, Deutsch [4]

introduced the concept of a fully quantum model for computation. This model had

the potential to supersede classical computation when solving certain classical and

many quantum problems. In principle, a quantum computer Q would be capable

of efficiently simulating every finite realizable physical system. With arbitrarily high

accuracy, it could simulate zero temperature systems, all instances of quantum com-

puters, and quantum simulators. Furthermore, unlike a Universal Turing machine T ,

Deutsch’s machine Q could simulate any finite classical discrete stochastic process (i.e.

randomized algorithms) also efficiently [4].

In 1994, Shor [8] described a quantum algorithm that was vastly superior to any

known classical algorithm for resolving a composite number into its prime factors.

This caused a burst of excitement and stimulated activity that continues to this day

to realize actual working quantum computers. Following demonstrations of primitive

quantum computing systems, DiVincenzo [9] put forth a set of criteria that a universal

quantum computer needed to satisfy,

• A scalable physical system with well-characterized qubits

• Ability to initialize the state of the qubits to a simple fiducial state

• Qubit coherence times that are much longer than gate operation times

• A universal set of quantum gates

• A reliable technique to measure the state of the qubits with high fidelity

Since Shor’s proposal, researchers worldwide have pursued building quantum

2
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computers using many different types of quantum systems. Initially, well-understood

naturally ocurring systems such as atoms [10], ions [11], and nuclear spins [12] showed

the most promise as qubits. However, as interest in quantum computing spread, more

sophisticated, carefully engineered, and unconventional solid-state quantum systems

such as quantum dots [13] and superconducting devices [14]were pursued. In addition

to these examples, so many other systems have been used to demonstrate quantum

coherence and quantum operations over the past 20 years, that a comprehensive review

would be far too long for this dissertation.

1.2 Coherent Control of Quantum Systems

A formidable difficulty in building a functioning and useful quantum computer

is the problem of decoherence. Universal Quantum computation requires quantum

entanglement and the use of superpositions of different states. However, excited states

eventually relax back to the ground state and superposition states dephase; both effects

can be described as a loss of information to the environment. While decoherence can

be suppressed by reducing the coupling of a quantum system to the environment, it

is impossible to completely isolate a system and eliminate decoherence. In particular,

any deliberate operations we perform on the system will necessitate some type of

interaction with the system, and this will result in the introduction of decay channels

[15]. Imperfections in carrying out quantum operations is another difficulty in building

quantum computers. In general, quantum operations span a continuous space (e.g.
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rotations by arbitrary angles on the Bloch sphere). In the real world, carrying out

operations to arbitrary precision is impossible – and operations will inevitably have

errors associated with them [15]. These are serious issues and a major breakthrough

was the development of quantum error correcting codes and related techniques [16].

Much of the foundation for superconducting quantum computing was actually

developed in the 1980s. Key work included discovery of macroscopic quantum tun-

neling [17, 18] and quantum energy levels in Josephson devices [19], as well as the

development of single-electron devices [20], the Cooper-pair box [21], and the search

for macroscopic quantum coherent oscillations in the rf superconducting quantum in-

terference device (SQUID) [22, 23]. The field of superconducting quantum computing

truly began with the seminal work by Nakamura et al. [14] in which a Cooper-pair-box

(CPB) [24] was found to undergo coherent quantum oscillations. A CPB works on the

principle that the excess number of Cooper pairs on a tiny superconducting island is

a sensitive function of the reduced gate charge [24]. The state of the device can be

measured using a sensitive single electron transistor (SET) or by coupling the device

to a resonator. Unfortunately, charge qubits are sensitive to quasiparticles and 1/ f

charge noise [25], and severely limited the coherence time of the quantum states [26].

The direct susceptibility of a CPB to charge noise was “remedied” by Koch et al.

[27], by making the electrostatic charging energy EC = e2/2CΣ much smaller than the

Josephson energy EJ. This remedy also removed the sensitivity of the device to applied

gate voltage, and pushed it out of the charge qubit limit and into the phase qubit limit.

The reduction in EC was accomplished by adding a shunting capacitance across the

junction to increase the total capacitance to CΣ. The new device was christened a
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“transmon,” which stood for transmission line plasma oscillation qubit [27]; it was not

quite a phase qubit, since it lacks a bias current and required a specific range of EC to

achieve a useful anharmonicity.

At present, superconducting qubits are leading candidates for building scalable

quantum computers. They now have reasonably high coherence times, fast gate times,

and are relatively easy to fabricate in large numbers using fairly standard lithographic

techniques. However, fabricating qubits with precisely chosen frequencies is still a

major challenge for scaling up to systems with a large number of superconducting

qubits. The largest superconducting quantum computer at present appears to be a

20-qubit system at IBM [28]. Ongoing work to develop systems with 50 or more qubits

has also been reported [29–31]. As many government and private entities continue

to invest in building a useful quantum computer, I expect many more systems will be

reported that satisfy all five of DiVincenzo’s criteria. A major goal of such efforts in

the next few years is the demonstration of quantum supremacy [32], i.e. showing a

quantum computer can outperform the fastest classical computer, for some specific

computation.

Quantum computing is a computing paradigm that has some significant poten-

tial advantages over classical computing for certain problems. While the power and

advantages of quantum computing have been proven theoretically, realizing an effi-

cient, accurate, and large quantum computer remains a daunting challenge. Many

difficulties must be overcome and novel techniques developed before efficient quantum

computation becomes a practical alternative to classical computers.
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1.3 Overview of the Dissertation

In this dissertation, I discuss how I used superconducting qubits to realize coherent

control over a three-dimensional microwave resonator by generating Fock states, and

to generate entanglement between two qubits using a generalized CNOT gate. The

qubits I fabricated and measured were fixed-frequency transmons. The transmons

were mounted in three-dimensional superconducting cavities to allow measurement of

the qubit state and to provide isolation of the qubit from the surrounding environment.

In Chapter 2, I describe the theory behind the transmon and circuit quantum-

electrodynamics (cQED), which paved the way for many key developments in super-

conducting quantum computing. I also describe the master equation formalism that

I used to simulate quantum interactions and model the behavior of my devices. In

Chapter 3, I discuss the design and fabrication of the cavities and transmons. This

chapter explains how I went from a set of experimental design parameters to an actual

device.

Chapter 4 describes the experimental setup I used to acquire data. I discuss the

instruments I used and present circuit schematics for the different measurement setups.

In Chapter 5, I discuss the process I used to systematically determine the cavity and

qubit characteristics. I also elaborate on why the qubit calibration is not a sequential

process, but rather an iterative process that required multiple runs to fine-tune the

parameters.

Chapter 6 describes my work on using Stimulated Raman Adiabatic Passage (STI-

6
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RAP) to transfer an excitation from a transmon to a superconducting microwave cavity

[33]. I found good agreement between my results and simulations for the generation

of the first three Fock states, and I verified the generation of the first two Fock states

using Rabi oscillations. The coherence of the technique was also demonstrated by

performing STIRAP on various prepared superposition states. I discuss the distinct

interference patterns I observed and compare them to master equation simulations.

In Chapter 7, I describe my implementation of a generalized CNOT gate between

two superconducting qubits using a technique known as Speeding up Waveforms

by Inducing Phases to Harmful Transitions (SWIPHT). For this project, I repackaged

two transmons into a single cavity to create a two-qubit device that was suitable for

implementing SWIPHT. My gating results were in good agreement with master-equation

simulations. I also verified the performance of the gate by using quantum process

tomography, which I describe in detail. I conclude the dissertation in Chapter 8, where

I summarize the main results from my research and discuss possible avenues for further

investigation.
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CHAPTER 2

Theory

2.1 Theory of the Transmon

2.1.1 Physics of the Josephson Junction

The Josephson effect is one of the most remarkable phenomena associated with

superconductors [34]. In a seminal article, Josephson [35] predicted that two super-

conductors separated by a sufficiently thin barrier (insulator or a superconducting

weak link) would permit a current to flow with a zero voltage difference between

the two superconducting electrodes (see Fig. 2.1). This “supercurrent” is due to the

quantum tunneling of Cooper pairs [36]. Furthermore, if a constant voltage difference

V is maintained between the two electrodes, the difference in the phases of the two

order parameters associated with the two superconducting regions was predicted to

oscillate at a well-defined frequency f = 2eV/h [34, 35, 37].

The phenomenon of a supercurrent Is at zero voltage bias is called the DC Josephson

effect, and the phenomenon of an alternating superconductor phase resulting from

8
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a fixed voltage bias is called the AC Josephson effect. The equations describing the

effect are

Is = Ic sin∆φ (2.1)

d(∆φ)
dt

=
2eVJ

ħh
(2.2)

where Ic is the “critical current” or the maximum supercurrent that can flow through

the junction, ∆φ and VJ are the difference in the superconducting phase and voltage,

between the superconducting electrodes, respectively [34, 37]. Combining the two

Josephson relations (Eq. (2.1) and Eq. (2.2)), one finds that a Josephson junction

consisting of two superconducting electrodes separated by a thin insulating barrier

obeys:

VJ = ±

�

ħh
2e

1
Æ

I2
c − I2

s

�

dIs

dt
. (2.3)

For an inductor, the voltage drop across the inductor is related to the rate of change

of the current by VJ = LJ
dIs
dt . Comparing this to Eq. (2.3) one sees that a Josephson

𝜙0 𝜙0 + Δ𝜙

S SI

Fig. 2.1 Schematic of a Josephson junction. Two superconducting electrodes (yellow) are
separated by a thin insulating barrier (striped red). The superconducting phase difference
between the two electrodes is ∆φ.
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junction behaves as a non-linear inductor with the Josephson inductance LJ given by,

LJ = ±
ħh
2e

1
Æ

I2
c − I2

s

=
Φ0

2πIc cos∆φ
(2.4)

where Φ0 = h/2e is the flux quantum. By integrating IsVJ with respect to time, the

total work done on the junction U can be shown to be

U = −EJ cosφ, (2.5)

where the Josephson energy EJ is,

EJ ≡
IcΦ0

2π
. (2.6)

2.1.2 Physics of the Transmon

The Hamiltonian for the transmon is the same as that for an un-biased phase qubit,

and can be obtained from that of a charge qubit as

HCPB = 4EC

�

n̂− ng

�2
− EJ cos φ̂, (2.7)

where n̂ is the operator for the excess number of Cooper pairs that tunnels onto the

CPB island, φ̂ is the operator for the Josephson phase difference across the junction,

ng = CgVg/e is the reduced gate charge, and Vg is the gate voltage applied across the

gate capacitor Cg to the island [26]. Since n̂ and φ̂ are conjugate operators, Eq. (2.7)

10
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can be written [26] in either the charge basis as

Hcq =
∑

n

�

4EC

�

n̂− ng

�2
|n〉 〈n| −

EJ

2
(|n〉 〈n+ 1|+ |n+ 1〉 〈n|)

�

, (2.8)

or in the phase basis as

Hcq = 4EC

�

1
i
∂

∂ φ̂
− ng

�2

− EJ cos φ̂. (2.9)

In the phase basis, the Hamiltonian (Eq. (2.9)) has exact solutions [38] that can be

written in terms of the Mathieu functions [27], and the eigenenergies are given by

Em(ng) = ECa2[ng+k(m,ng)]

�

−
EJ

2EC

�

, (2.10)

where aν(q) is the characteristic value for the νth Mathieu cosine function and k
�

m, ng

�

is a sorting function for eigenvalues. The sorting function k is given by,

k
�

m, ng

�

=
∑

l=±1

�

int
�

2ng +
l
2

�

mod 2
�

�

int
�

ng

�

+ l(−1)m [(m+ 1) div 2]
	

(2.11)

where int(x) is a function rounding x to the nearest integer, and (x div y) gives the

integer quotient of x and y [27].

By solving Eq. (2.10) for various EJ/EC ratios, we can see that higher values of EJ/EC

flatten the energy levels as a function of ng, at the expense of reduced anharmonicity

(see Fig. 2.2). Nevertheless, one finds that for EJ > EC, the anharmonicity only

decreases as a weak power law of EJ/EC, while the charge dispersion (variation in Em
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(a) (b) (c)𝐸J/𝐸C = 1 𝐸J/𝐸C = 10 𝐸J/𝐸C = 100

Fig. 2.2 (a) Eigenenergies of a charge qubit versus reduced gate charge ng for energy levels
m= 0 (black), m= 1 (blue), m= 2 (red), m= 3 (green), and m= 4 (orange) with EJ/EC = 1
(the Cooper-pair-box regime), (b) EJ/EC = 10, and (c) EJ/EC = 100 (the transmon regime).
For all the plots, the zero of energy has been defined as the value for E0(0). Furthermore,
the level structure has been normalized with the quantity E01 = E1(0.5)− E0(0.5) for ease in
comparison.

with ng) is suppressed exponentially with EJ/EC [27], as expected for a device that

is in the phase regime. By setting EJ/EC ∼ 100 excellent charge noise suppression is

obtained, along with an anharmonicity equal to ∼ EC, which can be made sufficiently

large to allow for reasonably-fast qubit operations, without driving upper levels of the

system.

2.2 Circuit Quantum Electrodynamics

Cavity quantum electrodynamics (QED) involves the interaction between atoms and

photons in high-quality-factor cavities, often in the few photon limit where quantum
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effects prevail [39]. Cavity QED studies have long been carried out in both the optical

regime and the microwave regime, and many striking results have been obtained

[39–41].

Both the ideas of cavity QED and the work in the field of microwave kinetic induc-

tance detectors (MKIDs) eventually led to circuit quantum electrodynamics (cQED)

[42–45]. In cQED, superconducting devices are coupled to a microwave resonator.

This simple arrangement produces several benefits [42],

• The resonator can be used to isolate the qubit from the external electromagnetic

environment

• The resonator enables a quantum non-demolition readout method for the state

of the qubit

• Coupling to the qubit enables techniques for manipulating the microwave cavity

states

• The resonator can act as a quantum bus [46] for entangling qubits

In this section, I describe the theory for the components in my cQED experiments and

the Hamiltonian for the combined qubit-cavity system.

2.2.1 The Quantum Harmonic Oscillator

The simple harmonic oscillator (SHO) is one of the most well understood quantum

systems in physics. Some physicists even still claim that the SHO might be the only
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thing that is understood, or that most of the physical world can be constructed from

approximations that are based on the SHO. Although both claims are incorrect, under-

standing the harmonic oscillator is critical for understanding cQED and many other

systems [47].

The classical equation of motion for an undriven LC SHO is given by CΦ̈+Φ/L = 0,

where Φ is the flux, C is the capacitance, and L is the inductance [48]. Comparing this

equation to that of a SHO, one can see the Φ will oscillate freely at resonance frequency

ωr = 1/
p

LC . The Hamiltonian for the system can then be written as

H =
Q2

2C
+
Φ2

2L
, (2.12)

where Q is the charge on one plate of the capacitor. This equation from classical physics

can be directly converted to the Hamiltonian for a quantum harmonic oscillator (QHO),

Ĥ =
Q̂2

2C
+
Φ̂2

2L
(2.13)

where Q̂ and Φ̂ are Hermitian operators. The non-Hermitian raising and lowering

operators can be constructed as

â =

√

√Cωr

2ħh

�

Φ̂+
iQ̂

Cωr

�

(2.14)

â† =

√

√Cωr

2ħh

�

Φ̂−
iQ̂

Cωr

�

, (2.15)

where â is the “annihilation” operator and â† is the “creation” operator. The Hamilto-
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nian for the harmonic oscillator (or resonator) can then be written as

Hres = ħhωr

�

â†â+
1
2

�

= ħhωr

�

N̂ +
1
2

�

, (2.16)

where N̂ = â†â is the photon number operator [47].

2.2.2 The Transmon Hamiltonian

In Sec. 2.1.2 I gave exact expressions for the energy of the nth transmon level in

terms of characteristic values of the Mathieu functions. These expressions are not

transparent. Instead, perturbation theory can be used to find simpler approximate

results when EC/EJ� 1. The general asymptotic expressions for transmon eigenen-

ergies Em, absolute anharmonicity αabs = (Em+2 − Em+1) − (Em+1 − Em), and relative

anharmonicity αrel = αabs/E0 can then be obtained as [27, 49],

Em = −EJ +
p

8EJEC

�

m+
1
2

�

−
EC

4

�

2m2 + 2m+ 1
�

(2.17)

αabs = −EC (2.18)

αrel = −
√

√ EC

8EJ
. (2.19)

In the limit EJ � EC, the transmon Hamiltonian reduces to a slightly anharmonic

oscillator,

Htrans = ħhωp

�

b† b+
1
2

�

−
EC

4

�

2b† bb† b+ 2b† b+ 1
�

− EJ, (2.20)
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where ωp =
p

8EJEC/ħh is the plasma frequency of the transmon, while b and b† are

annhilation and creation operators for the transmon, analogous to those of a resonator.

Alternatively, if we define the transition frequency for the mth level as ωm = Em/ħh (see

Eq. (2.17)), then the transmon Hamiltonian can be written simply in terms of the

eigenkets |m〉 as,

Htrans =
∞
∑

m=0

ħhωm |m〉 〈m| . (2.21)

2.2.3 The Jaynes-Cummings Hamiltonian

When a qubit or a two-level system (TLS) with transition frequency ωq is coupled

to a single-mode cavity, the total system may be described by the Jaynes-Cummings

Hamiltonian [48–50],

HJC = ħhωr

�

a†a+
1
2

�

+
1
2
ħhωqσz +ħhg

�

aσ+ + a†σ−
�

. (2.22)

Here, ħhg quantifies the coupling strength between the qubit and the resonator. In

particular, if ωq =ωr and one excitation is placed in the system, then the excitation

will be exchanged between the qubit and the cavity at a rate g.

Equation (2.22) can be extended to describe a resonator interacting with a multi-

level system. The resulting generalized Jaynes-Cummings Hamiltonian can be written
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as

H (gen)
JC = ħhωra

†a+
∑

j

ħhω j | j〉 〈 j|+ħhgge

�

ab† + a† b
�

(2.23)

= ħhωra
†a+

∑

j

ħhω j | j〉 〈 j|+
∑

j

ħhg j, j+1

�

a | j + 1〉 〈 j|+ a† | j〉 〈 j + 1|
�

, (2.24)

where j ≥ 2. Here, I use the notation of Bishop [49] and define gn,n+1 ' gge
p

n as

the coupling strength for the n-photon manifold in the transmon-cavity system. In

Eq. (2.23) and Eq. (2.24), the zero-point energy for the cavity and multi-level system

was eliminated. To clearly distinguish the cavity levels from the levels of the transmon,

throughout the dissertation, I will use {g, e, f, h, . . . } to indicate transmon levels.

When the transition frequency ωge =ωe −ωg is far detuned from the resonance of

the cavity ωr compared to the coupling strength gge, i.e. gge� |ωr −ωge|, the system

is said to be in the “dispersive regime”. In this regime, Eq. (2.24) can be approximately

diagonalized and the transmon truncated to the lowest two levels (qubit levels) [48,

49]. For convenience, I can define the transition frequencies ω j, j+1, detunings ∆ j, j+1,

and dispersive shifts χ j, j+1 as

ω j, j+1 ≡ω j+1 −ω j (2.25)

∆ j, j+1 ≡ω j, j+1 −ωr (2.26)

χ j, j+1 ≡
g2

j, j+1

∆ j, j+1
. (2.27)

Truncating Eq. (2.24) to the two lowest transmon levels (|g〉 and |e〉) and taking

the dispersive limit then yields a Jaynes-Cummings Hamiltonian with the following
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−𝜒

𝜔𝜔r ෥𝜔r

−𝜒ge

−1
2𝜒ef

Fig. 2.3 Dispersive shift of the resonator.

convenient form [49, 51],

H (disp)
JC = ħhω̃ra

†a+
1
2
ħhω̃geσz +ħhχa†aσz, (2.28)

where χ = χge −χef/2, ω̃ge =ωge +χge, ω̃r =ωr −χef/2, and χge, χef are as defined

by Eq. (2.27) (see Table 5.1 for detailed device parameters).

If we assume ωge <ωr it is easy to see that χge < 0 and χef < 0. Then for typical

couplings and detunings between the resonator and the transmon, the dispersive shifts

of the resonator are qualitatively shown in Fig. 2.3. In particular, when the qubit is in

the ground state, the bare cavity frequency ωr (solid black) shifts higher to the dressed

frequency ω̃r (dashed black). When the transmon is occupying |g〉, the resonator is

shifted to ω̃(|g〉)r = ω̃r −χ =ωr −χge (red), and when the transmon is occupying |e〉,

the resonator is shifted to ω̃(|e〉)r = ω̃r +χ =ωr +χge −χef (blue).
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2.2.4 Hamiltonian of the Driven System

Using Eq. (2.28) to describe the undriven Hamiltonian for the dressed cavity qubit

system, I next consider adding a term to the Hamiltonian to describe the microwave

drive. Following the method of Steck [52], I consider the interaction term between a

microwave electric field and a charged TLS. The electric field is given by

~E(t) = ~εE0 cosωd t ≡
1
2
~εE0

�

eiωd t + e−iωd t
�

, (2.29)

where ~ε is the polarization vector for the field, E0 is the amplitude of the electric field

of the drive, and ωd is the drive frequency.

I now assume that the TLS has an electric dipole moment operator ~d, which can be

rewritten in the following form [52],

~̂d = 〈g| ~d |e〉 (|g〉 〈e|+ |e〉 〈g|)≡ 〈g| ~d |e〉
�

σ− +σ+
�

. (2.30)

The drive Hamiltonian can then be written as

Hint = − ~̂d · ~E (2.31)

=
E0

2
〈g| ~ε · ~d |e〉

�

σ− +σ+
� �

eiωd t + e−iωd t
�

(2.32)

'
E0

2
〈g| ~ε · ~d |e〉

�

σ−eiωd t +σ+e−iωd t
�

, (2.33)

where in going from Eq. (2.32) to Eq. (2.33) the rotating wave approximation (RWA)

has been applied, allowing the fast, counter-rotating, terms to be eliminated [52]. The
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Rabi frequency for the atom interacting with the field can then be defined as

Ωq = −
E0

ħh
〈g| ~ε · ~d |e〉 . (2.34)

With this definition, the interaction Hamiltonian for a charged TLS interacting with a

classical electromagnetic drive can be written as,

Hint =
ħhΩq

2

�

σ−eiωd t +σ+e−iωd t
�

. (2.35)

The drive Hamiltonian for a resonator can be obtained by replacing the qubit

operators in Eq. (2.35) with the corresponding ladder operators for a resonator [49]:

H (res)
int =

ħhΩr

2

�

aeiωd t + a†e−iωd t
�

, (2.36)

where Ωr is the effective Rabi drive frequency for the resonator. The driven dispersive

Jaynes-Cummings HamiltonianH =H (disp)
JC +Hint can then be written as,

H̃ = ħhω̃ra
†a+
ħh
2

�

ω̃ge + 2χa†a
�

σz

+
ħhΩq

2

�

σ−eiωd t +σ+e−iωd t
�

+
ħhΩr

2

�

aeiωd t + a†e−iωd t
�

. (2.37)

Following the method of Bishop [49], one can apply an appropriate unitary transfor-

mation to remove the time dependence in Eq. (2.37) and move into the rotating frame

of the drive. This yields the following time-independent driven Jaynes-Cummings
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Hamiltonian [48, 49],

H = ħh∆ra
†a+
ħh
2

�

∆ge + 2χa†a
�

σz +
ħhΩq

2

�

σ− +σ+
�

+
ħhΩr

2

�

a+ a†
�

, (2.38)

where ∆r = ω̃r −ωd and ∆ge = ω̃ge −ωd.

2.3 Density Matrix and Master Equation Formalism

2.3.1 The Bloch Sphere Representation

Using Dirac notation, any physically distinct pure quantum state of a qubit can be

written in the form

|ψ〉= cos
θ

2
|g〉+ eiφ sin

θ

2
|e〉 . (2.39)

One implication of Eq. (2.39) is that any superposition state of a single qubit can be

specified using two independent variables θ and φ.

As I discuss next in Sec. 2.3.2 on the density operator formalism, one needs three

independent parameters to describe the mixed states of an ensemble of qubits. One

way to visualize the state of a qubit ensemble is by using the three expectation values

〈σ̂x〉,



σ̂y

�

, and 〈σ̂z〉 to specify the components of a vector. The resulting “Bloch vector”
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can be written as [52]

σBloch = 〈σ̂x〉 î+



σ̂y

�

ĵ+ 〈σ̂z〉 k̂. (2.40)

If the ensemble is in a pure state, the density matrix will be represented by |ψ〉 〈ψ| and

only two parameters are needed to fully specify the state of the ensemble; in this case,

σBloch will be a unit vector. When the ensemble is in a mixed state, the length of the

vector is less than 1, and it will be proportional to the degree of purity. In all cases,

σBloch will lie within a unit sphere, which is known as the “Bloch sphere” (see Fig. 2.4).

The angles θ and φ in Eq. (2.39) represent the angular spherical coordinates of the

qubit state on the Bloch sphere.

2.3.2 The Density Matrix

The density operator ρ̂ is very useful for understanding quantum mechanical

behavior of real systems [47]. The density operator naturally allows one to treat a

statistical ensemble of quantum systems that may be in different states – a so-called

“mixed ensemble”, with the “density matrix” representing the “mixed state” of the

system. A simple example is when we have an ensemble of systems each in a pure

state |αi〉 with a fractional population pi such that
∑

i pi = 1. In this case, the density

operator ρ̂ can be defined as

ρ̂ ≡
∑

i

pi |αi〉 〈αi| . (2.41)
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|g〉

|e〉

1

2
g + 𝑖 e1

2
g + e

Fig. 2.4 The Bloch sphere with different states labelled. Points on the equator correspond to
equal superpositions between |g〉 and |e〉 with different phases. Points on the surface of the
sphere correspond to pure states of the qubit, while points within the sphere indicate mixed
states of the qubit.

If the operator Ô is an observable of the system, then the “ensemble average” of Ô is,




Ô
�

= tr
�

ρ̂Ô
�

. (2.42)

In general, the density operator ρ̂ must satisfy the following properties:

• ρ = ρ† (Hermiticity)

• ρ j j ≥ 0 (non-negative diagonal elements)

• tr (ρ) = 1 (unit trace)

Given that the elements of an ensemble are not interacting with each other, it is

possible to obtain an equation of motion for the density matrix. For an isolated system,
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the state will evolve in time according to the Schrödinger equation [47], and one can

show that the evolution of ρ is then given by

iħh
∂ ρ

∂ t
= − [ρ,H ] =H ρ −ρH (2.43)

where [ρ,H ] is the commutator of the density matrix ρ and the HamiltonianH .

2.3.3 The Lindblad-Kossakowski Master Equation

Equation (2.43) describes the evolution of the density matrix of an isolated system

under a unitary operation. However, real systems are not completely isolated from

their environment. Dissipation and decoherence are inevitable in non-isolated systems

and these processes must be included for realistic simulations of a quantum system.

The quantum master equation approach involves modifying Eq. (2.43) to include terms

corresponding to decoherence channels, which cause non-unitary evolution of the

states. The idea is to treat the system of interest as a “small system” that is coupled to

a “large reservoir”. If the reservoir is sufficiently large, it should undergo little change

due to its interaction with the small system and can be assumed to remain in thermal

equilibrium.

To formulate a master equation for our cQED system, I will assume that the reservoir

is Markovian – i.e. the reservoir has no memory of its interactions with the small system.

In this case, the reservoir component of the density matrix can be traced out to obtain

the reduced density matrix for the small system [53]. Since I am only interested in the
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evolution of the small system, and not the reservoir, this master equation approach is

appropriate.

The above set of assumptions lead to the Lindblad-Kossakowski master equation

[54, 55]:

iħh
∂ ρ

∂ t
= − [ρ,H ] +L [ρ] , (2.44)

where L [ρ] is the Liouvillian describing the non-Hermitian evolution of the small

system [53]. The Liouvillian is given by

L [ρ] =
∑

i

Γi D [Ai]ρ =
∑

i

Γi

�

AiρA
†
i −

1
2
A †

i Aiρ −
1
2
ρA †

i Ai

�

(2.45)

where D are dissipators, Γi is the decoherence rate, andAi is the ‘Lindblad operator’

or ‘jump operator’ corresponding to the ith decoherence channel [49, 53].

The master equation for the coupled transmon-cavity system is thus,

iħh
∂ ρ

∂ t
= − [ρ,H ] + κ D [a]ρ + Γ D

�

σ−
�

ρ +
γ

2
D [σz]ρ (2.46)

where H is the driven transmon-cavity Hamiltonian (Eq. (2.38)), κ is the total re-

laxation rate of the cavity, Γ is the relaxation rate of the transmon and γ is the pure

dephasing rate of the transmon [49]. Here, I have only included three well-known

decoherence channels: relaxation of the cavity, relaxation of the resonator, and de-

phasing of the transmon. On the other hand, I have assumed that the system is at

temperature T = 0K, so there is not rate for thermal excitations to be generated in the
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qubit or the cavity [56, 57].

2.4 Quantum Tomography

2.4.1 Quantum State Tomography

The cQED readout method I used yields 〈σ̂z〉 for a qubit state (see Sec. 5.2.1 and

Sec. 5.2.2). However, as I discussed in Sec. 2.3.1, three quantities need to be determined

to fully characterize a qubit that is in a mixed state. It should be emphasized that is

not possible to completely determine the state of a qubit when given just a single copy

[3, 58, 59]. However, when multiple copies of the same unknown qubit state can be

generated, it is possible to reconstruct the density matrix for the system [3, 58, 59].

This method is referred to as Quantum State Tomography (QST). Tomos is Greek for

“to cut” or “slice”, and the method involves reconstructing the qubit state from multiple

slices or projections. In some sense, the purpose of quantum state tomography (QST) is

to determine 〈σ̂x〉 and 〈σ̂y〉, which can then be used with 〈σ̂z〉 to construct the density

matrix for the qubit [60].

At this point, it is helpful to understand the precise relationship between ρ and

�

〈σ̂x〉 , 〈σ̂y〉, 〈σ̂z〉
	

. The relationship is closely related to orthographic projections.

Orthographic projection is commonly used in engineering drawings to render a 3D

object on a 2D surface. Typically three such orthogonal projections are used to represent

a 3D object, corresponding to visualizing the object from three different viewpoints.
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This is analogous to QST, in that the Bloch sphere is measured in three orthogonal

directions. However, unlike in technical drawings, in QST the Bloch vector is rotated in

three particular directions and the average result obtained from repeated application

of the same projective measurement. This is equivalent to taking three orthogonal

measurements with the Bloch vector held fixed. For single qubit tomography, the three

measurements are [60],

• A projective measurement yielding the probability pz for the system to be in the

excited state |e〉,

• a Rπ/2x operation on the qubit followed by a projection yielding a probability px

that the system was in the state |g〉+i|e〉p
2

,

• a Rπ/2y operation on the qubit followed by a projection yielding a probability py

that the system was in the state |g〉+|e〉p
2

.

These three measurements can be inverted to obtain the Stokes parameters [61], which

are the {x , y, z} components of the Bloch vector [60]:

〈σ̂x〉= 2py − 1 (2.47)




σ̂y

�

= 2px − 1 (2.48)

〈σ̂z〉= 1− 2pz, (2.49)
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and the density matrix for the qubit [60],

ρ =







ρg,g ρg,e

ρe,g ρe,e






=







1− pz py − ipx −
1
2(1− i)

py + ipx −
1
2(1+ i) pz






. (2.50)

2.4.2 Maximum Likelihood Estimation

The method described in Sec. 2.4.1 for reconstructing the density matrix is conve-

nient and relatively straightforward. However, it is prone to errors when applied to

real data, i.e. results obtained from experimental measurements. In particular, errors

associated with the measurements or state preparation, including rotations of the Bloch

vector during QST, will induce errors in the values of px , py , and pz. The resulting

density matrix can even be unphysical, as manifested by the loss of one or more of

the density matrix properties listed in Sec. 2.3.2. To prevent the reconstruction of an

unphysical density matrix, I used a Maximum Likelihood Estimation (MLE) technique

restricted to physically constrained matrices [62].

The method I describe below is based on the method described by James et al. [63],

and I adapt it to perform quantum state tomography on our two-qubit system. I start

with an explicitly “physical” matrix which will be constrained to have unit trace, be

Hermitian and have positive eigenvalues. It can be proven that any matrix ρ̂ of the

form

ρ̂ =
T̂ † T̂

Tr
�

T̂ † T̂
� (2.51)

28



2.4. QUANTUM TOMOGRAPHY

will satisfy all the requirements for a density matrix [63]. Since an arbitrary density

matrix for a two-qubit system will have 15 independent parameters, it is convenient to

choose a tridiagonal form for T̂ [63],

T̂ =























t1 0 0 0

t5 + i t6 t2 0 0

t11 + i t12 t7 + i t8 t3 0

t15 + i t16 t13 + i t14 t9 + i t10 t4























. (2.52)

Using this form for T̂ , I write the density matrix using Eq. (2.51) and parameterize it

with the 16 real variables t i (the unit trace condition will set the number of independent

variables to 15).

For clarity, I assume that this system is measured using a joint-qubit readout scheme

(see Chapter 7). In such a scheme, the measurement signal mi will have weighted

contributions from populations from all four eigenstates of the two-qubit system. If

the system’s density matrix is given by ρ, then the outcome of the measurement is

m=
4
∑

i=1

ciρii (2.53)

where ci indicates the output if the system was in the ith eigenstate. Each measurement

will have an associated uncertainty which can be written in terms of the uncertainties

εi in a corresponding measurement of ci. Now, following James et al. [63], I define the
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likelihood function

L (t1, t2, . . . , t16) =
N
∑

j=1

�

m j −
∑4

i=1 ci

�

Ĝ jρ̂Ĝ†
j

�

ii

�2

∑4
i=1

�

εi

�

Ĝ jρ̂Ĝ†
j

�

ii

�2 (2.54)

where the Ĝ j are two-qubit operators which form a complete set of orthogonal tomo-

graphic operations when N = 15. The numerator of each term in L quantifies the

closeness of the matrix ρ̂ to the measurements. The sum in the denominator is the

estimated uncertainty in the measurement m j. For N > 15, one has an overcomplete

set of tomographic operations, and this allows the optimization routine to find the

most likely physical state with higher precision. An example of a complete set of

tomographic operations for two-qubit state tomography is given in Table 2.1 [64].

By simultaneously minimizing the likelihood function L with respect to all the

parameters tk, it is possible to determine the best estimate for {t1, t2, . . . t16}. These

values can then be used to reconstruct the most likely density matrix for the system,

by substituting into Eq. (2.51). In practice, to expedite the search for the minimum,

it can be helpful to initialize the variables with the expected ideal values for tk. The

ideal values for tk can be obtained by performing a Cholesky decomposition on the

ideal density matrix, expected from either theory or simulations.

2.4.3 Quantum Process Tomography

The QST analysis I discussed in Sec. 2.4.1 can be used for the reconstruction of

a density matrix for an unknown state. Although this gives the most likely density
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Table 2.1 A complete set of orthogonal tomography operators [65, 66] used for two-qubit
QST.

Operator Two-qubit gate representation

Ĝ1 I ⊗ I
Ĝ2 I ⊗ Rπ/2x
Ĝ3 I ⊗ Rπ/2y

Ĝ4 I ⊗ Rπx
Ĝ5 Rπ/2x ⊗ I
Ĝ6 Rπ/2x ⊗ Rπ/2x
Ĝ7 Rπ/2x ⊗ Rπ/2y

Ĝ8 Rπ/2x ⊗ Rπx
Ĝ9 Rπ/2y ⊗ I
Ĝ10 Rπ/2y ⊗ Rπ/2x

Ĝ11 Rπ/2y ⊗ Rπ/2y

Ĝ12 Rπ/2y ⊗ Rπx
Ĝ13 Rπx ⊗ I
Ĝ14 Rπx ⊗ Rπ/2x
Ĝ15 Rπx ⊗ Rπ/2y

matrix for a specific quantum operation on a specific starting state, it does not provide

complete information regarding the operation itself. To fully characterize the operation,

we need to perform the same operation on a complete set of initial states [3], and

then perform QST on the resulting output states. This technique for characterizing a

quantum operation or process is known as quantum process tomography (QPT). The

essence of QPT is to prepare a complete set [66] of initial states, perform the desired

operation on each state, and then do QST on all the resulting states to quantify the

performance of the gate [3] (see Fig. 2.5).

A quantum operation or quantum process can be thought of as a mapping between

input and output density matrices. Given an input state described byρin, and a quantum
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process E , the density matrix ρout for the output state is

ρout = E (ρin) . (2.55)

Given a set of ρin and ρout, the goal is to find an explicit form for E . Thus, the objective

e

e

⋮

Unknown 

Quantum 

Process

ℰ

QST

g

e

g + e

2

g + 𝑖 e

2

Fig. 2.5 Illustration of quantum process tomography (QPT). The quantum operation is repre-
sented as a black box. A complete set of initial states for a two-qubit system are sent in, one at
a time. Each output state is then analyzed with QST. By studying the input state to output state
transformation, a complete description of the operation (E) can be determined.
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is to find a set of operators Ôi, such that

ρout = E (ρin) =
∑

i

ÔiρinÔ†
i (2.56)

is satisfied for an every possible input density matrix ρin [3].

To proceed, we write the constituent operators Ôi in terms of the chosen basis

operators Â j as

Ôi =
∑

j

qi jÂ j, (2.57)

where qi j are complex numbers representing the relative weights of basis operators.

We can then write Eq. (2.56) using the basis operators as

E (ρin) =
∑

j,k

χ jkÂ jρinÂ†
k, (2.58)

where χ jk =
∑

m qmjq
∗
mk are matrix elements of the “process matrix” or “χ-matrix” which

completely and uniquely describes the quantum operation E [3]. The dimensionality of

the process matrix will be d4× d4 where d is the number of qubits. Since the χ-matrix

needs to satisfy positivity and Hermiticity [3, 67], I can use Cholesky decomposition as

described in Sec. 2.4.1 and Sec. 2.4.2 to constrain the matrix and write:

χ = T̂ † T̂ , (2.59)

where T̂ has the appropriate tridiagonal form with a dimensionality of d4. In addition,
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any real process has to be trace-preserving [3, 67], and this implies:

Î =
∑

i

ÔiÔ
†
i =

∑

j,k

χ jkÂ jÂ
†
k. (2.60)

I enforce this completeness condition by introducing a cost function

Ξ=
∑

j,k

¦

�

Re(Z jk)− I jk

�2
+
�

Im(Z jk)
�2©

, (2.61)

where Z =
∑

j,k χ jkÂ jÂ
†
k.

To apply this method to measurement, I follow O’Brien et al. [67], and implicitly

define the quantum process as

ρ(σ)out =
∑

j,k

χ jkÂ jρ
(σ)
in Â†

k, (2.62)

where ρ(σ)in is the input density matrix and ρ(σ)out is the output density matrix corre-

sponding to the initial state σ. By using a complete set of initial states, one can use

a maximum likelihood estimation technique to extract the best estimation for χ. For

QPT, I used the following likelihood function:

L (t i,λ) =
∑

σ

∑

τ

�

mσ,τ −
∑4

i=1 ci

�

Ĝτρ
(σ)
out Ĝ†

τ

�

ii

�2

∑4
i=1

�

εi

�

Ĝτρ
(σ)
out Ĝ†

τ

�

ii

�2 +λΞ, (2.63)

where τ is the index for the tomographic operators Ĝτ, λ is a Lagrange multiplier

[67], and the final term in Eq. (2.63) is used to enforce the completeness relation

in Eq. (2.61). By minimizing the likelihood function with respect to the variables t i

34



2.4. QUANTUM TOMOGRAPHY

and λ, the most likely quantum process matrix χ giving rise to the mapping will be

determined.

As in QST, by using an overcomplete set of tomographic operations and initial states,

the accuracy of this technique can be improved. For example, in Chapter 7 I describe

QPT on a two-qubit system where I used an overcomplete set of 36 initial states.
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CHAPTER 3

Device Design and Fabrication

Proper design of the quantum system is essential to obtain reliable and repeatable

results in many solid state quantum computing experiments. The original proposal for

a circuit quantum electrodynamics (cQED) platform was based on planar resonators

and Cooper-pair box qubits [42, 43, 68]. Using 3D cavities instead of lumped-element

or distributed-element resonators decreased the electric field energy stored in the

interfaces of the materials [69]. The first use of such cavities in superconducting

quantum computing resulted in significantly longer transmon lifetimes and larger

internal quality factors of resonators. Since then, fabrication methods and designs

for planar geometries have improved and lifetimes for 2D and 3D structures are now

comparable [70, 71]. Nevertheless, I chose to use a 3D cavity for its simplicity and ease

of use, which allowed me to focus on improving the control of the qubit and cavity.

In this chapter I will discuss how I designed the transmon and the cavity following

the groundwork laid by Dr. Sergey Novikov [72] in our research group. I will then

explain how I used finite-element-method microwave simulations in conjunction with

Black Box Quantization to determine suitable system parameters, depending on the
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experimental requirements. I will conclude the chapter by explaining how the trans-

mon and cavity were fabricated, and how the device was packaged and prepared for

cooldown.

3.1 Transmon Design

The concept of the transmon [27] is quite simple – fabricate a small Josephson

junction with an appropriate shunting capacitor. However, there are a few important

design considerations when incorporating such a device in a 3D cavity so that it can

perform quantum operations. In addition to decreasing the charging energy EC, the

pads of the capacitor also serve as an antenna and set the transmon-cavity coupling.

Wang et al. [73] examined different physical designs to obtain optimal performance

for the 3D transmons and studied the effect of various interfaces. They found that

certain interfaces resulting from processing and fabrication contributed the most to

dissipation.

My design for the transmon was largely based on a design by Novikov [72], which

is very similar to the original 3D transmon design of Paik et al. [69]. In my transmon

design (see Fig. 3.1), the shunting capacitor had two 650µm × 500µm pads on a

sapphire substrate. The two pads were adjacent to each other on their shorter side,

with a separation of 150µm. Although the electric field of the capacitor is dispersed in

the substrate, vacuum, and interfaces, with this design most (∼ 90%) of the energy

stored in the electric field is in the substrate, which has low dielectric loss and relatively
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(a) (b)

2 mm 0.5 mm

Fig. 3.1 (a) Front view and (b) 3D perspective wireframe view of the qubit chip for 3D
microwave simulations. The capacitor was designed in Inventor along with the leads that contact
the Josephson junction. The junction itself was not part of the 3D microwave simulations.

high permittivity.

3.2 Cavity Design

The cavities for my cQED experiments were also based on cavities used by Novikov

[72]. All of my cavities were designed to have a TE101 mode frequency close to

8 GHz. The 1 GHz to 10 GHz frequency range is well suited for experiments due to

the availability of compatible commercial instruments. This frequency range is also

well suited for QC experiments since thermal populations can be suppressed at the

milliKelvin temperatures achievable using a dilution refrigerator. In particular, this

allowed me to initialize the system in a well-defined ground state by simply waiting

long enough for the system to dissipate energy. I also chose the cavity resonance to

be at a higher frequency than the qubit, as this enhances the lifetime of the qubit, by
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(a) (b)

2 cm

FRONT

BOTTOM

RIGHT

Fig. 3.2 The cavity design for microwave simulations. (a) Orthographic projections and (b)
3D perspective wireframe view of the designed cavity with the transmon shunting capacitor.

reducing contributions to loss from the Purcell effect from higher modes [74].

For microwave simulations, I drew a rectangular cavity within Autodesk Inventor,

with length l = 35 mm, width w = 20.5 mm, and depth h = 5mm (see Fig. 3.2 for a

schematic and Fig. 3.11 for a photograph). I also included a 5 mm× 6.5mm× 450µm

sapphire chip and the transmon shunting capacitor (see Fig. 3.1) to mimic a transmon.

The sapphire chip decreases the fundamental mode frequency of the cavity to just below

8 GHz. The input and output coupling ports were included as perfectly conducting

pins that protruded into the cavity. I then imported the CAD design into the microwave

simulation software Ansys HFSS (High Frequency Structure Simulator) as a SAT file

[75]. Although HFSS has its own design capability, I preferred laying out the cavity

geometry using Inventor because it was easier to use and had superior capabilities.

39



3.3. MICROWAVE SIMULATIONS

3.3 Microwave Simulations

After importing the CAD layout for the chip and cavity into HFSS, I next designated

the materials for the different regions. The bulk of the cavity and the coupling pins

were set to be perfect electrical conductors, the empty space was set as vacuum and the

chip material was set to be sapphire with relative permittivity εr = 10. The material

for pads of the shunting capacitor and the leads to the capacitor pads were also set to

be perfect electrical conductors.

Since HFSS is a finite-element solver [75], it is important to have sufficiently fine

meshing on the surfaces in order to obtain accurate solutions. This means that I had to

restrict the maximum length of meshing elements (see Fig. 3.3). For initial simulations,

I usually set the maximum length to be 5–10% of the shortest non-zero dimension of

the object. For example, the capacitor pads had an initial maximum meshing restriction

of 50µm. Of course this ignored the much smaller thickness (∼ 80 nm) of the pads.

Since my main interest was about the behavior of the transmon, I manually set the

meshing for the leads to the capacitor pads, the capacitor pads, and the sapphire chip.

The remaining regions used an automatically generated mesh.

To perform an HFSS microwave simulation in the “driven modal” method, I set up

ports #1 and #2 to couple microwaves in to and out of the cavity. To represent the

ports, I drew two circles each starting from the center of the coupling pin and ending on

the surface of cavity, as shown in green and yellow in Fig. 3.4. I assigned each circle on

the cavity wall as Waveports with an impedance of 50Ω (see Fig. 3.4). The integration
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1 mm

y

x

z

Fig. 3.3 Mesh for the substrate and capacitor pads after restricting the maximum length of
elements. Picture taken from HFSS.

line for the excitation was radially directed from the center of the circle (the pin) to

the edge of the circle (the cavity wall). This ensured that the ports were generating

the microwave signals correctly. To represent the junction, I drew a rectangle between

the two capacitor leads. This rectangle was designated as a lumped port (#3) with an

impedance of 10 GΩ. I discuss how I used this lumped port in Sec. 3.4, to extract the

cavity transmission simulation results and to determine the required parameters for

the junction. After setting up the ports, I set the frequency range for the sweep and

ran HFSS to find the transmission S21 through the cavity to confirm that the resonance

was close to 8 GHz and the waveports were set up correctly.
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1 cm

y

xz

Fig. 3.4 Waveports for coupling microwaves in (green port) and out (yellow port) of the
microwave cavity, as depicted in HFSS. Both waveports are set to have an impedance of 50Ω
and a radial excitation.

3.4 Black Box Quantization

Black Box Quantization (BBQ) is a semi-classical method that was developed to

determine the approximate energy level structure of coupled transmon-cavity systems

[76]. In this method, microwave simulations are used to model the electromagnetic

environment around the JJ, including the capacitor pads, chip and cavity.

To perform BBQ analysis of my device, I extracted the self admittance versus

frequency data Y33(ω) for the lumped port (#3) from the HFSS output results (see

Sec. 3.3). The discrete data of Y33(ω) was interpolated using Mathematica to obtain a

smooth analytic function [72]. From the 100 nm × 125 nm area of the JJ, I estimated

the capacitance of the junction by itself to be Cj = 4 fF [77]. Since Cj is much less than
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the shunting capacitance from the pads, which dominates the charging energy EC, this

rough estimate for the junction capacitance is sufficient for design purposes. As part

of the BBQ analysis, the JJ is treated as a simple linear inductor with inductance LJ0.

Accordingly, I set LJ0 between 3 nH to 15 nH depending on the target characteristic

frequency for the transmon. I then analytically combined the admittance contribution

from the JJ capacitance and inductance, with Y33(ω) from the simulation to obtain the

total admittance:

Ytot(ω) = Y33(ω) +
1

iωLJ0
+ iωCj. (3.1)

From Im [Ytot(ω)], I used BBQ to obtain the transmon characteristic frequency, the

expected dispersive shifts, the anharmonicity in the system, and other pertinent param-

eters [76]. An example for BBQ analysis is shown in Fig. 3.5 where Y33(ω) extracted

from HFSS results and Ytot(ω) calculated through Mathematica are shown. The two

poles of Ytot represent the characteristic frequencies of the qubit and cavity. When I

set LJ0 = 4.5nH, the analysis predited the qubit frequency to be at ωq ≈ 5.9 GHz (see

Fig. 3.5).

From Re [Y (ω)], I note that I also used the BBQ analysis to estimate the lifetimes

of the transmons from Purcell coupling to the external 50Ω environment or bulk

dielectric loss of the substrate. My simulations did not include lossy surface layers

or lossy residue that could be left from the fabrication process, due to the very small

meshing that would be required. BBQ also cannot incorporate other loss mechanisms

such as non-equilibrium quasiparticles. Thus, it was only possible to obtain an upper
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Fig. 3.5 Blackbox quantization results for simulating the transmon SPP-v1-Q7. I set LJ0 =
4.5nH to obtain the qubit frequency ωq ≈ 5.9 GHz and the cavity frequency ωr ≈ 7.6 GHz.

bound for the lifetime.

It should be noted that Solgun et al. [78] have developed a more advanced and ac-

curate method to perform quantization of superconducting quantum circuits. However,

the relative simplicity of BBQ makes it particularly useful for design work, and I found

that the resulting simulated parameters for my single-transmon and two-transmon

devices were accurate to within a few percent. For these reasons, I continued using

the original BBQ method developed by Nigg et al. [76].
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3.5 Transmon Fabrication

My transmons were fabricated in the LPS cleanroom using electon-beam lithography,

and double-angle evaporation, with both the Josephson junction and the shunting

capacitor pads deposited at the same time. I first cleaned a 3” c–plane oriented polished

sapphire wafer [79] using acetone, methanol, and isopropyl alcohol (IPA). I then spun

on a 900 nm layer of MMA(8.5)MAA EL11 [80] at 1000 rpm for 60 s, and baked the

wafer in an oven for 5 min at 180 ◦C. After letting the wafer cool down, I spun a

100 nm layer of ZEP520A DR2.3 [81], and baked the wafer for the second time in

an oven for 5 min at 180 ◦C. The wafer was then hard baked for 30 min at 180 ◦C. I

then used a thermal evaporator to deposit a 10 nm thick Al layer over the ZEP, to act

as an anti-charging layer during e-beam writing. Here, I used a thermal evaporator,

to ensure that there was no stray ultraviolet or x-ray exposure of the e-beam resist

layers, as one would get with an electron-beam evaporator. I next spun on a 5µm thick

coating of FSC-M resist [82] at 2000 rpm for 60 s, to protect the lower layers of the

wafer during dicing. The wafer was finally baked at 120 ◦C for 3.5 min to evaporate

any remaining solvents. After the protective layer was applied, I diced the wafer into

5 mm × 7 mm chips using a Dicing Blade Technology Type CA-010-270-080H blade

[83] in a Disco DAD3220 dicing saw [84]. Individual chips were cleaned, patterned

and processed when I had to fabricate a device. This completed the initial processing

of the sapphire wafer, and I note that this process was nominally identical to that used

by Suri [48] and Novikov [72].
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10 μm100 μm 5 μm

Fig. 3.6 The computer aided design (CAD) of the transmon for the electron beam writing.
Three different magnifications are depicted to successively show the details from the shunting
capacitor pads to the Josephson junction region.

Prior to e-beam patterning of a chip, I removed the protective FSC-M layer using

successive 40 s dips in Acetone, Methanol and IPA. I then used a JEOL JSM-6500F

scanning electron microscope (SEM) at LPS to write the pattern (see Fig. 3.6). The

blue and red regions in Fig. 3.6 were written at a magnfication of 500x while the green

capacitor pads were written at a 70x magnification. For the fine red regions, I used a

dosage of 175µC cm−2, while the green/blue regions were written with a dosage of

100µC cm−2. The horizontal red line had a pattern width of 100 nm and the vertical

red line had a pattern width of 125 nm. The two red regions were separated by 200 nm

to form the suspended bridge [85] for the double-angle evaporation of the JJ. I note
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that the smaller features were written at a beam current of ∼ 30pA while the pads

were written at a current of ∼ 2.5nA.

After the e-beam writing, I removed the anti-charging layer by first agitating the

chip in a beaker of OPD 4262 [86] for 60 s, then agitating the chip in a beaker of

de-ionized water for 60 s, followed by a quick 3 s dip in IPA, and finally blow drying

with nitrogen.

I next developed the ZEP by agitating the chip in a beaker of Amyl Acetate [87]

for 2 min, followed by a 1 min agitation in a beaker of IPA, and completed this step

with blow drying using nitrogen. After developing the ZEP, I imaged the chip with a

Keyence confocal laser microscope to obtain optical micrographs as shown in Fig. 3.7.

After imaging the chip, I developed the MMA by first agitating the chip in a 5:1 volume

ratio solution of IPA:DI for 260 s, followed by a 60 s agitation in de-ionized water, and

finally blow drying. Following MMA development, I imaged the chip again with the

Keyence microscope to obtain micrographs as shown in Fig. 3.8.

I performed the two imaging steps after development to ensure that there were

no problems with the developed patterns. When the process was successful, the

micrographs after ZEP development clearly showed the existence of the bridge region

(see Fig. 3.7), and the micrographs obtained after MMA development allowed me to

confirm that the undercut was as expected (see Fig. 3.8).

After development, the chip was placed in a thermal evaporator dedicated for Al

deposition. The evaporator had a custom-built chamber with commercial vacuum

components. This evaporator was pumped to < 1× 10−6 torr over 12 h using a Varian

turbomolecular pump. Aluminum was deposited at two angles from the normal to
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(a)

(b)

10 μm

200 μm

Fig. 3.7 (a) 10x and (b) 150x magnification photomicrographs of the resist layers after
developing ZEP.

the chip, following the double-angle evaporation technique introduced by Dolan [85].

The first Al layer had a thickness of 30 nm and was deposited at an angle 12.5° to

the normal. I then oxidized the Al surface to create the insulating barrier for the JJ;
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(a)

(b)

10 μm

200 μm

Fig. 3.8 (a) 10x and (b) 150x magnification photomicrographs of the resist layers after
developing MMA.

typically at an O2 pressure of ∼ 16 Pa for ∼ 5 min. The chamber was evacuated again,

and I deposited the second Al layer with a thickness of 50 nm at an angle −12.5°.

Finally a passivation step was performed by oxidizing the device for ∼ 20min at an O2
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pressure of ∼ 33Pa.

When fabricating the JJ, the duration of the oxidation was the primary factor

I used to control the tunnel barrier thickness. To determine a good value for the

duration, I built multiple test junctions simultaneously and measured their resistance,

to obtain statistics for the JJ characteristics. These resistances were compared to the

target value for RJ, that I found using my designed value for EJ (see Sec. 3.4) and the

Ambegaokar-Baratoff formula [34, 88],

RJ =
h
e2

∆Al

8EJ
. (3.2)

I used∆Al/e ≈ 210µeV as the superconducting energy gap for thin-film Al. Bulk Al has

a superconducting energy gap of 170µeV [89], but the value used here is slightly larger

because thin superconducting films of Al are well-known to have a larger gap [89–94].

Since I typically wanted EC/h ≈ 200MHz and EJ/h ≈ 20 GHz so that EJ/EC ≈ 100,

Eq. (3.2) yielded a target value of RJ ≈ 8kΩ.

To complete the fabrication of a transmon, I had to lift-off the remaining unexposed

resist. I used a modified version of the lift-off recipes developed by Novikov [72] and

Suri [48]. First, I set a hotplate to 125 ◦C, and used it to heat two crystallizing beakers

each with 125 ml of Microposit-1165 for ∼ 1h; the liquids reached a steady-state

temperature of ≈ 80 ◦C. The processed chip was then placed in the first beaker for

60 min and agitated every 8 min. Next, I transferred the chip to the second beaker and

agitated every 3 min. After 15 min, the chip was thoroughly cleaned using IPA and

DI water, and blown dry. I placed completed chips in a plastic container which itself
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Fig. 3.9 Summary of the transmon fabrication process. (a) Spinning the dual-resist layer
on sapphire, (b) depositing the Al anti-charging layer and dicing the wafer into chips, (c)
electron-beam exposure in SEM, (d) development of the resists, (e) 30 nm deposition of Al at
θi = 12.5° to normal, (f) oxidation of Al, (g) completed oxidation (h) 50 nm deposition of Al
at θ f = −12.5° to normal, and (i) lift-off for MMA resist.

was encased in a static shielding bag, to prevent destruction when handling. The full

fabrication process is depicted in Fig. 3.9.

3.6 Cavity Fabrication

Using the electromagnetic simulations discussed in Sec. 3.3, I designed a cavity

with suitable dimensions (see Fig. 3.10), and had the LPS machine shop build several
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Fig. 3.10 (a) Orthographic projections and 3D perspective view for base and (b) lid of the
microwave cavity.

from 6063 Al alloy. This is a corrosion-resistant, non-magnetic, hardened alloy. The

cavities were made of superconducting Aluminum to minimize resistive losses from

the cavity surfaces.

3.6.1 Cavity Cleaning and Preparation

After machining, I had to do some additional preparation work on the cavity to

achieve a relatively high internal quality factor Q i. First, it was necessary to clean

debris from the small scratches and crevices that were created during machining. In

particular, the blind tapped holes would tend to collect loose metal fragments and

lubricants from the machining. I used dental picks and tweezers to dislodge, break

apart, and extract the debris. Although the tools might seem unconventional in a
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physics laboratory, their strength, reach, and maneuverability made them well-suited

for my purpose. Of course these tools were designed to work with cavities, although

not those made of Aluminum.

After the debris was removed, I thoroughly degreased, cleaned, and etched the two

pieces of the cavity according to the following steps:

1. Degreasing by ultrasonication in successive baths of acetone, methanol, IPA, and

de-ionized (DI) water for ≈ 10min each.

2. Cleaning in a 50 ◦C heated Alconox detergent bath for 10 min with a magnetic

stirrer.

3. Etching in two successive baths of Avantor Aluminum Etch 80-15-3-2 at 50 ◦C

for 60 min each. A magnetic stirrer was used for agitation, along with periodic

rotation of pieces to remove attached gas bubbles.

4. Thorough rinsing of pieces with DI water spray.

5. Cleaning in a 50 ◦C heated Alconox detergent bath for 1.5 h with a magnetic

stirrer to neutralize any remaining acid.

6. Thorough rinsing with DI water spray, followed by immediate drying with com-

pressed nitrogen.

7. Drying the cavity pieces on a hotplate at 150 ◦C for 1.5 min to evaporate residual

chemicals.

Etching removes material, and makes holes and slots larger. This effect is more
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pronounced for smaller features, and it is necessary to take this into account during

the design phase.

3.6.2 Cavity Tuning and Packaging

I coupled microwaves into and out of the cavity using SubMiniature version A

(SMA) feedthroughs. The flange of the connector was secured to the outer surface

of the cavity and a pin connected to the inner conductor protruded into the cavity

space. The coupling of the pin to a cavity mode will depend on the physical position

of the pin, the length of the pin, and the mode. For example, with pins located as in

Fig. 3.2, we would expect the coupling to the TE101 mode to be lower than for the

TE102 mode since the pins are further from the single anti-node of the electric field of

the TE101 mode than they are from the antinodes of the TE102 mode; the proximity

of the coupling pins to the anti-nodes of the electric field determine the strength of

capacitive coupling to the pins. Conversely, the proximity of the coupling pins to the

anti-nodes of the magnetic field would determine the strength of inductive coupling to

a coil shaped termination of the line.

The strength of coupling between the coaxial line and the cavity for a given cavity

mode is primarily adjusted by changing the length of the center conductor pin of

the SMA jack. In general, as the pin protrudes further into the cavity the coupling

will increase. However, it should be noted that beyond a certain critical length, the

coupling decreases. This is due to the metal in the pin causing a large distortion of the

cavity modes, which can essentially be shorted out by the pin. This critical length for
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the protrusion of the pin was observed to be ≈ 1 mm when measured from the inner

surface. My procedure for tuning the SMA port couplings of the cavity was as follows:

1. I placed a sapphire chip with a test device in the cavity lid slot for the qubit.

Then, using an Indium gasket around the lip of the lid, sealed the cavity and

secured it using screws.

2. I attached two identical unmodified non-magnetic EZ Form #705615-801 SMA

feedthroughs to the cavity. Obtained the parameter S21(ω) and fit it using the

method described in Appendix A. From this fit, I determined the coupling quality

factors (Qin and Qout) for the input and output generic ports (Qin =Qout ∼ 106).

3. I removed the generic SMA output feedthrough. The remaining input port had

known coupling Qin. To achieve the best results, I input the desired coupling

values and calculate the target values for S22 and S21 at resonance as well as the

total Q for the desired cavity mode.

4. I next made a modified output port by extending the center pin of another SMA

connector. To do this, I used a short piece of Coax Company SC-219/50-SC

low-loss semi-rigid coaxial cable with a silver-plated copper center conductor.

I removed the outer conductor and the teflon jacket to obtain just the center

conductor. After snipping off a≈ 6 mm piece, I soldered it to the center conductor

of a generic SMA feedthrough. This ensured that the pin was reaching well into

the cavity. I obtained VNA measurements of S22 and S21 versus frequency and fit

this data, to determine the coupling Qout for the modified port. If the coupling
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Q was too low, I removed the connector, trimmed the pin’s length, reattached,

and re-measured the coupling Q. The procedure was repeated until the desired

coupling Q was obtained for the given port. Typically I wanted Qin ∼ 105 and

Qout ∼ 104. The actual cavity Q values used in experiments are listed in Sec. 5.9.

5. After the first pin was adjusted as desired, I replaced the connector with another

SMA jack with an elongated center pin. The trimming and fitting process was

repeated until that port was properly set up as well. This method was suitable

for setting up couplers with Q ∼ 103–106. After both pins were set, I removed

the control port and replaced it with the first modified port.

6. I unsealed the cavity, replaced the test chip with the actual transmon chip, placed

In pieces between the chip and the slot, and secured the chip. I next applied a

fresh In seal around the lip of the cavity lid, and sealed the cavity using McMaster-

Carr non-magnetic Al screws. Finally, I note that I had to take proper precautions

against electrostatic discharge while mounting the transmon chip in the cavity.

3.6.3 Details of Fabricated Cavities

For my experiments, I had the LPS machine shop build four nominally identical

cavities based on my design, using 6063 Al from the supplier McMaster-Carr. After

receiving the cavities, I prepared them as described in Sec. 3.6.1. A few details on the

cavities are given in Table 3.1. Figure 3.11 shows a photograph of the cavity 6D. A

summary of parameters for microwave cavities used in experiments is listed in Sec. 5.9.
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Table 3.1 List of fabricated cavities

Fabrication date Cavity Name Note

7/1/2014 6C Initial Machining
7/1/2014 6D Initial Machining
4/8/2015 6F Initial Machining
4/8/2015 6G Initial Machining

9/26/2017 6G Modification to have
two chip slots

10 mm

Fig. 3.11 Photograph of cavity 6D
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CHAPTER 4

Experimental Setup for Controlling and Measuring

Qubits

Superconducting quantum integrated circuits are currently one of the leading

candidates for building a scalable quantum computer. Given that superconducting

circuits can be fabricated with a wide range of parameters, there is a very large phase

space of possible device parameters. This space is greatly reduced due to technological

and practical considerations [95]. For superconducting qubits, I will assume that we

need to satisfy:

kBT � ħhωq� 2∆ (4.1)

where T is the operating temperature of the environment that is coupled to the qubit,

ωq/2π is the qubit transition frequency, and ∆ is the energy gap of the superconductor

[95]. The first inequality in Eq. (4.1) allows a qubit to be initialized in its ground

state by simply waiting much longer than the relaxation time T1, and it also minimizes

thermal excitation. The second inequality in Eq. (4.1) must be satisfied to minimize
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thermal generation of quasiparticles by breaking Cooper pairs. Both requirements

can be satisfied by using a superconductor with Tc > 1 K and keeping characteristic

transition frequencies in the 5 GHz to 10 GHz range [95]. The qubits I fabricated were

made from thin films of Al (Tc ' 1.2 K) and had ωq/2π in the range 5 GHz to 6 GHz,

while the Al cavity had a resonance frequency ωr/2π≈ 8 GHz.

4.1 The Dilution Refrigerator Setup

Since I designed my devices to have characteristic frequencies between 5 GHz and

10 GHz, I needed to cool them down to well below 1 K. In practice, for thin film

Al devices we find loss from thermally generated quasiparticles to be significant for

T ≥ 150mK. Keeping T ∼ 20 mK also ensures that the Boltzmann factor e−ħhωq/kT <

10−6, resulting in minimal thermal excitations of the qubit or cavity. The most popular

method for cooling superconducting qubits is the 3He-4He dilution refrigerator [96].

Dilution refrigerators offer continuous operation at temperatures as low as a few mK,

which is ideal for satisfying Eq. (4.1) [97].

All my experiments were conducted in a Leiden CF-450 cryogen-free dilution

refrigerator [98]. This apparatus had a nominal cooling power of ∼ 450µW at a

mixing chamber temperature of 120 mK. The first two stages of the Leiden refrigerator

were cooled by a two-stage pulse tube cryocooler to 50 K and 3 K, respectively. The

qubit or qubits were mounted in an Al cavity that was thermally anchored to the

mixing chamber stage, which had a base temperature of 15 mK. The operation of this

59



4.1. THE DILUTION REFRIGERATOR SETUP

Fig. 4.1 Photograph of the CF-450 Dilution refrigerator with two Cu mounting posts. The
thermal shields and cryoperm shields have been removed.
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Fig. 4.2 Input/Output microwave lines in the dilution refrigerator.

refrigerator, and details of the apparatus, are described extensively by Novikov [72].

Figure 4.1 shows a photograph of our CF-450 dilution refrigerator.

While the refrigerator cools to 15 mK, it is very challenging to ensure that the

microwave signals propagating to the device are well-thermalized to a low temperature.

Thermal noise on the input or output lines can produce unwanted excitation of the

qubit and cavity, and lead to relaxation and dephasing [56, 57, 99, 100]. To block

external RF interference, and to ensure thermalization of noise on the input signal

61



4.1. THE DILUTION REFRIGERATOR SETUP

line to the device-under-test (DUT), broadband attenuators are placed strategically

at various cooling stages in the dilution refrigerator (see Fig. 4.2). Although these

attenuators filter out high-frequency blackbody noise emanating from the 300 K stage

electronics, they also generate blackbody radiation corresponding to their operating

temperature. The refrigerator I used had an input line with 70 dB of attenuation

from lumped element components and further attenuation contributed by cupro-nickel

coaxial cables used for some sections (see Fig. 4.2). This yielded a noise temperature

≤ 50mK for signals reaching the DUT [57]; this was significantly higher than the base

temperature of the refrigerator, for reasons that are still not well-understood. The

30 dB and 20 dB attenuators at the cold plate and mixing chamber stages (see Fig. 4.2)

were custom-made by Dr. Jen-Hao Yeh to have high cooling-power and low noise

temperature at cryogenic temperatures [57].

The output line from the cavity had 60 dB of directional isolation provided by

two Pamtech CWJ1015-K3 isolators and one Quinstar QCI-075900X000 isolator (see

Fig. 4.2). The input and the output lines to the device also had K&L 11L250-12000/T20000

low-pass filters (LPFs) with a 12 GHz cutoff to block noise that could cause excitations

of higher modes of the cavity. The output signal from the cavity was amplified at 3 K by

a Caltech CITCRYO 4-12A high-electron-mobility-transistor (HEMT) amplifier which

had a nominal noise temperature Tn < 5 K [101].

The DUT was enclosed in two Amuneal Manufacturing Amumetal 4K cryoperm

shields [102] to protect the device from low-frequency magnetic fields. These shields

were attached to the mixing chamber stage. The mixing chamber stage (at 15 mK)

had no dedicated shield, but both the cold plate stage (at 80 mK) and the still stage
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(at < 1 K) had Au-plated Cu shields. The 3 K, 50 K, and 300 K stages all had Al shields.

The 3 K and 50 K shields were wrapped in blankets of Aluminized Mylar. The 300 K

and 50 K stages composed the outer vacuum chamber (OVC), while the stages at 3 K

and below composed the inner vacuum chamber (IVC). There were no other magnetic

shields used at room temperature. The entire dilution refrigerator was housed in a

grounded Cu shielded room to reduce electromagnetic interference.

4.2 Vector Network Analyzer

A vector network analyzer (VNA) is a powerful instrument for characterizing a

microwave network based on its scattering parameters (S-parameters) [103]. The

S-parameters are obtained by measuring the amplitude and the phase of reflected and

transmitted signal components with respect to a DUT. The Agilent 5071C VNA I used

has an internal microwave source that can sweep the frequency while simultaneously

measuring the two-port S-parameters, making it very useful for microwave spectroscopy

of qubits and cavities. I used the VNA to accurately measure the loaded quality factor

of the cavity at 15 mK, and at room temperature to tune the cavity coupling ports as

described in Sec. 3.6.2.

I mainly used the Agilent E5071C VNA for preliminary characterization of our

devices. After a device was cooled to 15 mK, I first measured transmission through

the cavity as a function of frequency. Although the cavity was designed to have pre-

determined spectra, due to imperfections during machining, chemical processing and
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variations in mounting the qubit chip, its frequency would inevitably vary slightly from

the design value. Furthermore, due to thermal contraction and changes in the London

penetration depth, the frequency changes when cooling the device from 300 K to 15 mK;

the room temperature value was a good starting guess. This simple measurement also

allowed me to determine if there was a serious problem with the qubit.

It is known that the cavity transmission at high power (average cavity photon

number n̄cav ∼ 106), is insensitive to the state of the qubit and the cavity resonance

frequency will be at the bare frequency ω(bare)
r [104]. However, when a low power is

used (n̄cav ≤ 10), the dressed cavity resonance ω̃r depends on the state of the qubit

(see Fig. 2.3). By sweeping the output signal power from the VNA during spectroscopy,

I examined these two regimes and checked that the qubit had a well-behaved response

(see Fig. 5.2). Furthermore, measuring the shift χge = ω(bare)
r − ω̃(|g〉)r allowed me to

estimate the dispersive shift between the cavity and the transmon qubit.

4.3 Heterodyne Pulsed Measurement System

Most of the qubit gate operations I used were accomplished by applying one or

more discrete microwave pulses. Since qubits have a limited lifetime, it was also

necessary to perform qubit measurement using a pulsed measurement system. Most of

my measurements and control operations were carried out using a pulsed control and

measurement setup (see Chapter 5). Although the VNA offered exquisite measurement

capability for continuous-wave applications, for gating and qubit state measurements,
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I used the customized setup depicted in Fig. 4.3. The qubit state was interrogated by

measuring the transmission of pulsed signals through the cavity. The apparatus was

set up for signal detection at either the bare or dressed cavity frequency, depending on

whether I used a high-power or low-power readout technique (see Sec. 5.2).

To perform digital signal processing on the data, an analog-to-digital converter

was used to convert the high frequency microwave signals from the cavity output

line to a digital record (see Fig. 4.3). The two most commonly used methods for

radio-frequency (RF) signal down-conversion are “homodyne” and “heterodyne” [105].

Homodyne detection is also known as direct-conversion, since the original RF signal

is mixed with a local oscillator (LO) signal which is operated at the same frequency,

i.e. ωLO =ωRF, to yield a zero-frequency measurement signal. By using an IQ mixer

which mixes the sine and cosine components separately, it is possible to perform a

quadrature measurement of the RF signal. Although homodyne detection has fewer

components such as synthesized signal generators, it can be difficult to correct and

compensate for non-idealities present in the IQ mixer. These non-idealities can depend

on the frequency and amplitude of the LO, harmonic distortions, as well as DC offsets

[105].

As an alternative, heterodyne detection involves down-conversion to an interme-

diate frequency (IF) using a heterodyne receiver. With this type of receiver ωIF =

ωLO −ωRF, and an IF frequency ωIF ∼ 1 MHz to 10 MHz was suitable for my cQED

applications. The in-phase and quadrature (I/Q) components of the RF signal were ex-

tracted from the measured amplitude and phase of the IF signal. For high-performance

detection, it is also possible to use a superheterodyne receiver which performs double
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Fig. 4.3 Heterodyne setup for measuring reference signal and the output signal from the DUT.

down-conversion with two different LO and IF frequencies. Double-conversion or an

image reject mixer can be used to prevent image noise fold-over [106, 107]. Although

a heterodyne detection system has more complex circuitry and also requires a separate

LO signal generator, it is insensitive to harmonic distortion and DC offsets, and does

not require calibration for accurate I/Q measurements [105].

All my pulsed qubit measurements were performed with a single-conversion het-

erodyne detector shown schematically in Fig. 4.3. The input signal to the DUT was

separated into two branches using a 20 dB directional coupler and the LO signal was

separated into two branches using a 6 dB directional coupler. One branch of the input

signal was mixed with the filtered LO signal and used as the reference waveform for

the digitizer. The other branch of the input signal was sent to the DUT. The output

signal from the DUT was mixed with the second branch of the LO signal, filtered, and
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amplified, before being sent to the second input channel on the digitizer. The I/Q

demodulation was performed using software in LabVIEW. In my measurements, I set

IF = 10 MHz and used 1000 onboard averages of the voltage using the Agilent Acqiris

1082A digitizer board to perform measurements efficiently.

To ensure phase matching during acquisition and averaging, the RF signal generator

and the digitizer were triggered by the same source, which was an Agilent 33250A

arbitrary waveform generator locked to a Rb atomic clock (see Fig. 4.4).

4.4 Microwave Signal Generators

4.4.1 Synthesized Signal Generators

For signal generation, I used Agilent E8257D/E8267D synthesized signal generators

(SSGs) that output a highly coherent continuous analog tone at a set frequency (300 kHz

to 20 GHz). By triggering the SSG output signal, I generated pulsed wave trains with

high accuracy and precision. The time between the trigger reception and pulse output

had a minimum duration of 70 ns for the Agilent SSGs. When timing pulses from

different SSGs with respect to each other, this delay had to be properly accounted

for. Unfortunately, it is not possible to have in-phase and quadrature (I/Q) control

solely using a triggered SSG. Hence, I used these instruments for preliminary qubit

characterization, and to perform measurements which did not require I/Q control such

as Rabi oscillations and Ramsey oscillations (see Chapter 5).
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4.4.2 Arbitrary Waveform Generators

I used arbitrary waveform generators (AWGs) capable of digitally generating arbi-

trary waveforms, as signal sources for my experiments. With these complex instruments,

a user can program any desired waveform as a series of voltage values versus time

(waypoints), and the AWG will generate the specific waveform, within its bandwidth

and voltage resolution limitations. The output of AWGs are limited in their frequency

range by the sampling rate, in their voltage resolution, and the maximum length of

pulses.

The Tektronix AWG70002A that I used for device control had a sampling rate of

25 GSa/s, while the microwave signals used in our experiments had frequencies in

the range 4 GHz to 8 GHz. Based on the sampling theorem attributed to numerous

scientists and engineers [108–110], real-world AWGs can faithfully generate analog

signals up to 40% of its sampling rate [111]. Since the device frequencies in our system

were < 10GHz, the Tektronix AWG70002A had the capability to directly generate the

required pulses for qubit and cavity control. For my experiments, I fixed the sampling

rate at 25 GSa/s and made any change in signal frequency directly by adjusting the

waypoints.

For all programmed waveforms, the instrument had a minimum waveform length

of 2400 samples and a maximum waveform length of 8× 109 samples per channel,

limited by the AWG memory of 16 GB. At 25 GSa/s, the shortest pulse corresponded

to a minimum length of 96 ns and the longest pulse corresponded to a maximum

length of 320 ms. Although most of the waveforms I programmed into the AWG had
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lengths > 96ns, to simplify programming, all the waveforms I created had a 100 ns

length zero-voltage buffer-zone at the beginning. Each pulse train was designed in

LabVIEW and uploaded as a text file to the AWG via an ethernet connection. The

text file consisted of a discrete set of voltage values at the maximum sampling rate of

the instrument. Following upload, each text file was read using the AWG’s internal

software and stored in its native format in the AWG memory. The experiments were

then carried out by loading the waveforms sequentially into the AWG70002A and using

an Agilent 33250A AWG to trigger qubit or cavity pulses (see Fig. 4.4).

4.5 Device Control and Measurement

The essential components of the device control and measurement network have

been described in previous sections. Here, I take a holistic approach and trace the path

of microwave signals from generation to detection (see Fig. 4.4).

For preliminary characterization, all the signal generators shown in Fig. 4.4 are

disconnected, and the E5071C VNA is used both as the signal source and the detector.

In this configuration, the output signal from the top of the refrigerator is amplified by

a single MITEQ amplifier before being fed into the VNA input.

For pulsed qubit control and heterodyne measurements, the Agilent 33250A cavity

AWG was set up with the proper timing, to trigger its counterpart Agilent 33250A

qubit AWG, and the cavity SSG E8267D. The qubit AWG was in turn used to trigger the

qubit signal generator (either Tektronix AWG70002A or Agilent E8257D). A third SSG
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E8257D was used to apply a third tone, if necessary. The latter SSG could either be set

in continuous mode or triggered mode. The signals from the three signal generators

are routed through a Weinschel programmable atttenuator and combined using two

6 dB MAC attenuators (see Fig. 4.4). The combined microwave drive signal passed

through a DC block at the wall of the shielded enclosure and entered the input line at

the top of the dilution refrigerator.

As the drive signal passed through the cold stages, it was progressively attenuated in

the cupro-nickel cables (from 300 K to 0.08 K) and lumped element attenuators (70 dB

total attenuation). A Nb cable was used at the 80 mK stage to limit the conduction

of heat from higher temperature stages. The heavily attenuated signal was further

filtered with a LPF at the mixing chamber stage before being fed to the input pin of the

cavity.

The output signal from the DUT then passes through another LPF and three iso-

lators. The isolators and the LPF work in conjunction to prevent thermal noise from

propagating down the output line from the 3 K stage to the cavity output pin. The

output signal was amplified at 3 K with a Caltech HEMT amplifier [101] and further

amplified at room temperature with a MITEQ low-noise amplifier [112]. This signal

was then mixed to a lower IF using the heterodyne system before being digitized by

the Agilent 1082A digitizer. All the signal generators were synchronized with a single

Stanford Research Systems FS725/2 Rubidium frequency standard, to prevent drift.
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CHAPTER 5

System Characterization

Device characterization is an essential component in quantum computing, especially

so in superconducting qubits. Due to the propensity for the transition frequencies,

couplings, and other qubit parameters to vary somewhat from one cooldown to the next,

it is important to properly characterize the devices at the beginning of each experiment

run. Parameters can also drift slightly during a run, and occasional calibration checks

are a good idea. This helps to ensure that quantum gating operations are performed

accurately. The basic physics of Rabi oscillations, relaxation time measurements,

Ramsey oscillations (Ramsey fringes), and spin-echo measurements are described in

detail by Meystre and Sargent III [53] and in many other places. In this chapter, I will

focus on the experimental approach to characterize my transmons.
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5.1 Cavity Spectroscopy

I began the characterization process by performing spectroscopy near the cavity

frequency versus drive power. This revealed the quality factor of the cavity and let me

determine a good pulse length for reading out the transmon state. The spectroscopic

measurements also allowed me to determine a preliminary power bias point for the

high-power qubit readout. As mentioned in Sec. 4.2, it was particularly convenient to

perform this spectroscopy using the VNA.

Figure 5.1 shows an example where I did cavity spectroscopy at high power and

low power. The two traces show |S21| versus frequency f for input powers of −67 dBm

(black) and −117 dBm (red). The resonance at high-power occurs at the bare cavity

resonance frequency, and the resonance at low-power occurs at the dressed cavity
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Fig. 5.1 High-power (−67 dBm, black) and low-power (−117 dBm, red) spectroscopy showing
|S21| versus frequency f of cavity 6D during Measurement Run #1.

73



5.1. CAVITY SPECTROSCOPY

resonance frequency, where average stored photon number n̄cav ∼ 1. It is the dressed

cavity resonance frequency that depends on the state of the qubit (see Sec. 2.2.3). In

this case, since the qubit was not excited, the resonance at ωr/2π = 7.7968GHz is

the bare resonance, while the dressed resonance is at ω̃(|g〉)r /2π = 7.8524 GHz, and

this yields a shift of χge/2π= −56 MHz. I note that the effective quality factor of the

resonance also varied, as indicated by the different peak heights and widths.

Seeing the shift of the resonance as in Fig. 5.1 gave me the confirmation that the

qubit had survived the mounting and cooldown. I next completed a more compre-

hensive measurement of the spectrum as a function of power. An example of such

a measurement is shown in Fig. 5.2. This false color plot shows |S21|
2 of the cavity

resonance versus frequency f and drive power P. Note in particular the rich structure

in the intermediate powers. Examination of this structure is beyond the scope of this

work, but Mavrogordatos et al. [113] conducted an extensive analysis of the behavior.

Figure 5.2 shows the steady-state measured |S21|
2 versus applied frequency and

power; that allowed me to pick an initial bias point for transmon readout as discussed

next in Sec. 5.2. Using this spectroscopy, I picked the initial bias point suitable for

the non-linear high-power readout (see Sec. 5.2.2) at frequency ωr/2π = 7.9227 GHz

with an applied power of P = −57 dBm. This was a good preliminary bias point since

at powers > −57 dBm the cavity exhibits good transmission and at powers < −57 dBm

the cavity exhibits low transmission. By biasing the cavity at −57 dBm I expected the

cavity transmission to increase dramatically when the qubit was in an excited state

(see Sec. 5.2.2 for further details).

Following preliminary qubit characterization, I revisited cavity spectroscopy to
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obtain the cavity transmission with the transmon in state |e〉 (see Fig. 5.3(a)). The

difference in the cavity transmission between state |e〉 and |g〉 is shown in Fig. 5.3(b).

The latter plot allowed me to verify the optimum position for biasing the cavity in

order to read out the transmon state efficiently. As is evident from Fig. 5.3(b), the

optimum bias point was at the bare cavity frequency with a bias power of −58 dBm.
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Fig. 5.2 |S21|
2 versus frequency f and drive power P for the cavity 6D, during Measurement

Run #5. Bare cavity resonanceωr/2π = 7.9227GHz and the dressed cavity resonance with the
transmon in |g〉 is at ω̃(|g〉)r /2π= 7.9430 GHz. The preliminary qubit readout point is depicted
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Fig. 5.3 (a) |S21|
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transmission |S21|
2 when the transmon state changes from |e〉 to |g〉.

5.2 Transmon Readout

5.2.1 Dispersive Readout

Dispersive readout was initially proposed by Blais et al. [42] and demonstrated by

Wallraff et al. [43] for reading out Cooper-pair box qubits in a circuit QED architecture.

The specific readout method they proposed involved probing the transmission properties

of the cavity with a low-powered pulse, typically at the dressed cavity frequency

ω̃(|g〉)r = ω̃r−χ with the qubit in state |g〉. From Eq. (2.28), we see that high transmission

of the microwave pulse is indicative that the transmon was in the ground state, and low

transmission is indicative that the transmon was in an excited state. For example, the

76



5.2. TRANSMON READOUT

dispersive readout could have been used in device SPP-v2-Q2 by probing the 6D cavity

at a power of −117 dBm (see Fig. 5.1). A “low” |S21|
2 signal would have indicated

the transmon was in an excited state, while a “high” |S21|
2 would indicate that the

transmon was in an excited state.

This low-power method had the advantage of being a quantum non-demolition

readout and being a weak measurement of the system [42]. However, due to the low

power used during the measurement, the output signal was weak as well. Without the

use of a quantum-limited amplifier, the signal must be averaged over many shots in

order to obtain a good signal-to-noise ratio.

In fact, most of my devices showed a low-power resonance (see Fig. 5.2), that

was somewhat distorted and weak in strength compared to the bare resonance at

high-power. Hence, I chose to employ a high-power readout technique, as described in

the next section.

5.2.2 The Non-linear High-power Readout

An alternative method of reading out the state of a transmon was demonstrated by

Reed et al. [104]. This method realized a projective strong measurement by applying a

high-power microwave pulse at the bare cavity frequency ωr. By mapping the cavity

transmission S21 as a function of the pulse power P and the transmon state, suitable

bias powers can be found which give good discrimination between the transmon

|g〉 and |e〉 states [104]. In general, occupying higher transmon levels will yield a

higher transmission at a lower pulse power [33]. This non-linear high-power readout
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technique was used exclusively in all my measurements since it showed better stability

and signal-to-noise ratio, compared to the dispersive readout for my devices.

The non-linear high-power readout was calibrated by measuring the cavity trans-

mission S21 at the bare cavity frequency as a function of pulse power P. I started this

calibration process by choosing the length of the cavity transmission measurement

pulse. Most of my cavities had lifetimes of 50 ns to 100 ns. For such cavities, I chose

the length of the cavity pulse to be 1µs so that the cavity had ample time to ring-up.

For my Fock state measurements [33], the cavity had a lifetime of ∼ 2µs and, in that

case, I chose the pulse length to be 3µs.

After fixing the pulse length, I applied the pulse sequence shown in Fig. 5.4 1000

times repeatedly, and averaged the amplitude of the transmitted signal separately in

two batches using the digitizer’s onboard averaging capability. The first set of mea-

surements (background) consisted of applying no operations for an idle time tidle ∼

100µs to 400µs, followed by performing a cavity transmission S21 measurement with

a pulse of duration tRO ∼ 1µs to 3µs. The second set of measurements (qubit) con-

sisted of applying the desired set of transmon operations and then applying the cavity

Cavity 𝑆21
Measurement

Transmon

Operations

𝑇

Cavity 𝑆21
Measurement

𝑡idle 𝑡idle 𝑡RO

bg meas

Fig. 5.4 Pulse sequence to obtain cavity switching curves. tidle is the time between cavity
measurement pulses, used to ensure the system returns to a ground state. tRO is the length
of the readout pulse, sufficiently long to calculate the relative transmission depending on
the transmon state. The background measurement (bg) and signal measurement (meas) are
obtained without and with transmon operations, respectively.
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measurement pulse. I chose tidle to be over five times the lifetime of the longest-lived

component, to ensure the system always started in the ground state. The background

and qubit measurement pulses were interleaved, to allow me to detect random vari-

ations in the system, or systematic effects such as heating; these would show up as

variations in the background measurements. Given these measurement signals, I then

constructed (∆V/V )meas and the background signal (∆V/V )bg, where ∆V and V are

the demodulated in-phase voltage components at the “Signal” and “Reference” inputs

to the digitizer in Fig. 4.3, respectively. In most of my data plots, I actually report the

fractional difference signal

�

∆V
V

�

=
�

∆V
V

�

meas
−
�

∆V
V

�

bg
. (5.1)

The phase of the reference pulse after digitization, was also adjusted through LabVIEW

software, in order to report all the signal information in the in-phase (I) component

for each Measurement Run. This meant that the information relating to the qubit state

was strictly visible as a difference in the detected amplitude and not in phase.

I initialized the transmon in various states using microwave drives and performed

the pulse sequence represented in Fig. 5.4 to obtain the “switching curves,” (∆V/V )

versus P, for the transmon-cavity system with the qubit prepared in different initial

states. These switching curves served as the roadmap that I used to determine the

optimum power P0 for the cavity transmission measurement pulse for the high-power

readout. Unfortunately, there were a few devices where the cavity measurement when

the transmon state was in |e〉 was not easy to distinguish, from that produced when
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Fig. 5.5 Switching curves of the cavity 6D during Measurement Run #2. The black curve
was obtained using the background measurement for different input powers P of the cavity
measurement pulse. The red, blue, and green curves were obtained in similar fashion after
initializing the transmon in the states |e〉, |f〉, and |h〉 respectively.

the transmon was in the state |g〉.

For example, Fig. 5.5 shows switching curves I obtained for device SPP-v1-Q7

prepared in states |g〉, |e〉, |f〉, and |h〉. It is evident that there is relatively poor discrim-

ination between the black (|g〉) and red (|e〉) curves for any power from −69 dBm to

−56 dBm. In contrast, the maximum possible signal value of ∆V/V ≈ 0.1, is found

at the peak of the green curve. The peak of the blue curve near −64 dBm also shows

excellent contrast between the |g〉 state and |f〉 state signals. In a situation such as

this, I found it highly advantageous to map the population |e〉 ⇒ |f〉 to increase the

contrast between the states during a measurement. This technique allowed me to

efficiently measure the state of the transmon with fewer false counts. Of course there

was a higher chance for the transmon state to decay during measurement, but this

was a price that was worth paying. After determining a good cavity bias power for the
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high-power readout, I proceeded with characterizing the transmon, as described in the

next sections.

5.3 Transmon Spectroscopy

I used transmon spectroscopy to find the allowed transition frequencies of the

transmon. In all the transmons I measured, I did not know the Josephson energy EJ

prior to the cooldown. In fact, to minimize the possibility of destroying the junction

through electrostatic discharge, I deliberately did not measure the room temperature

resistance of live devices. Although I had a good idea of the transmon capacitance CΣ,

not knowing EJ meant I did not know the characteristic frequency of the transmon

until I measured it through spectroscopy.

I performed transmon spectroscopy after first selecting a preliminary cavity bias

power. For example, for the map shown in Fig. 5.2, suitable preliminary bias points

are at {7.9227 GHz,−57dBm}, or at {7.9430GHz,−100 dBm}.

After setting a preliminary cavity power bias point, I performed the pulsed mea-

surement sequence depicted in Fig. 5.4 using a long pulse to excite the transmon. The

frequency of the pulse was incremented to perform spectroscopy, as shown in Fig. 5.6.

Since I was not initially sure of the power and length of a pulse required to excite the

transmon (i.e. power and length of a π-pulse), I started by using a high-power, long

saturation pulse to locate the transition frequency of the transmon. The saturation

pulse was typically ∼ 100µs for my transmons which had lifetimes ∼ 20µs.

81



5.3. TRANSMON SPECTROSCOPY

Although the preliminary cavity power bias point found from visual inspection

was not optimal, it usually had sufficient contrast to allow me to find the transmon’s

g ↔ e transition frequency. After finding this frequency, I was able to find a better

cavity power bias point and iteratively optimize the system for qubit measurements.

Figure 5.7 shows an example of a spectrum for device SPP-v1-Q6, after all measurement

parameters have been optimized; I used a saturation pulse of power −111dBm and

length tsat = 200µs to obtain the transmon spectrum.

A transmon transition spectrum such as Fig. 5.7 reveals a wealth of information

about the device. For example, the |g〉 → |e〉 transition frequency is ωge/2π = f1 =

6.3312GHz. The peaks at f2 and f3 are due to two-photon and three-photon transitions,

respectively, from the ground state to the second and third excited states; from there

I obtain ωgf/4π = f2 = 6.2335GHz, and ωgh/6π = f3 = 6.1295 GHz. From these

frequencies of the higher excited states, I determined the charging energy using EC/h≈

2( f1− f2) = 195MHz. However, as the higher energy levels are prone to Stark shifting

and power broadening, this value is close to but only approximately equal to EC.

When there was a doubt regarding the identity of a transition, I was able to check

that a spectral peak corresponded to single-photon, or multi-photon transitions by

Cavity 

Measurement

Transmon Transition 

Saturation

𝑇

𝑡sat 𝑡RO

Fig. 5.6 Pulses for transmon spectroscopy.
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Fig. 5.7 Transmon spectroscopy for transmon SPP-v1-Q6 during Measurement Run #6. The
three peaks have frequencies at f1 = 6.3312 GHz, f2 = 6.2335GHz, and f3 = 6.1295GHz.
The saturation pulses had length tsat = 200µs and an input power of −111 dBm. The cavity
measurement pulse had a power −81.5 dBm and a length tRO = 3µs.

measuring the width and amplitude of the spectroscopy versus power and examining

the power broadening that occurs in systems with anharmonicity [114]. At each

power, I fit the peak to a Lorentzian distribution and then plotted the widths versus

power [115]. The power dependence of the widths reveals the order of the transition.

Figure 5.8 shows an example for a two-photon transition between the |g〉 and |f〉 levels

of the transmon.

5.4 Rabi Oscillations

Rabi oscillations are central to many implementations of gates in quantum com-

puting. A Rabi oscillation describes the behavior of the state of a two-level system
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Fig. 5.8 (a) The |g〉↔ |f〉 two-photon process spectroscopy for transmon SPP-v1-Q7 during
Measurement Run #5. ∆V/V was measured versus frequency f and applied power P. (b) Plot
of full-width at half-maximum log10(FWHM) versus rms applied voltage log10 (Vrms). The fit
(red line) to data (black points) has a gradient of 1.93 confirming that this is a two-photon
process.
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that is driven for a time t by a sinusoidal oscillating applied field [47, 53]. When the

two-level system is driven on-resonance, it is possible to obtain a simple analytical

solution using the rotating wave approximation. Ignoring dissipation and dephasing,

driving a qubit at its |g〉↔ |e〉 transition frequency will cause the state of the system

to oscillate sinusoidally between the two levels [53]. These oscillations are known as

Rabi oscillations after Isidor Rabi who studied them in the field of nuclear magnetic

resonance [116].

In cQED, Rabi oscillations are generated by driving the transmon with a microwave

signal on resonance at the |g〉 → |e〉 transition frequency (see Fig. 5.9). With the

system passively cooled, the transmon starts in state |g〉. Applying a microwave drive

at frequency ωge induces stimulated transition oscillations between levels |g〉 and

|e〉. It is not possible to observe the full oscillation in a single experiment; instead

these measurements were performed by applying a Rabi drive for a time tRabi, before

measuring the qubit state using a high-powered cavity measurement. I typically

repeated this procedure 1000 times to obtain a single averaged data point ∆V/V , and

used this to find the population at time t. I repeated this averaged measurement with

different Rabi lengths tRabi. Figure 5.10 shows an example of a Rabi oscillation in

Cavity 

Measurement
𝜔ge

𝑇

𝑡Rabi

Fig. 5.9 Pulse sequence for Rabi oscillations. The time tRabi is varied for the measurement.
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Fig. 5.10 Rabi Oscillations in transmon SPP-v1-Q7 during Measurement Run #5. Microwaves at
5.96339 GHz were delivered to the cavity input with power−70 dBm to induce Rabi oscillations
of frequency fRabi ≈ 11.7MHz. Data (black points) are overlaid with a decaying sinusoidal fit
(red curve).

device SPP-v1-Q7.

In an ideal but unrealistic system, the Rabi oscillations would persist indefinitely, as

long as the drive was applied. However, real qubits do not exist in isolation. Dissipation

and dephasing are always present and will cause the amplitude of oscillations to decay,

leaving the system in a mixed state between the |g〉 and |e〉 states. This condition is

referred to as saturation. Assuming a frequency independent loss, the decay time of

the Rabi envelope T ′, is related to the relaxation time T1 and the coherence time T2 of

the qubit by [48]

1
T ′
=

1
2T1
+

1
2T2

. (5.2)

In the special case where there is no dephasing, it turns out that T2 = 2T1 and Eq. (5.2)
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then gives T ′ = 4T1/3. The experimental method that I used to determine T1 and T2

are discussed below.

5.4.1 Qubit Population Calibration

By measuring a complete Rabi oscillation (see Fig. 5.10) I was able to extract a few

important parameters and calibrate the qubit drive. The fitting function I used for the

Rabi oscillations was,

�

∆V
V

�

Rabi
= Ae−t/T ′ sin(Ωt +φ) + B (5.3)

where A is the amplitude, T ′ is the envelope decay time, Ω/2π is the Rabi frequency,

φ ≈ −π/2 is the phase offset, and B is an overall offset. Note that this is not the

correct functional form for a Rabi oscillation, but a convenient form that was similar

enough at high drive power. Since a Rabi oscillation causes the state of the qubit to

vary sinusoidally, and I assume the system starts in the ground state, I can now relate

the maximum excited population to the detected signal. When the system is prepared

in the ground state |g〉 at t = 0, Eq. (5.3) will give

�

∆V
V

�

g
= Asinφ + B ' −A+ B. (5.4)
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On the other hand, if the system is prepared in the excited state at time t = 0, then

one finds

�

∆V
V

�

e
= Asin(π+φ) + B ' A+ B. (5.5)

Thus the general expression for converting a detected signal to the corresponding qubit

excited population Pe is,

Pe =

�

∆V
V

�

−
�

∆V
V

�

g
�

∆V
V

�

e
−
�

∆V
V

�

g

. (5.6)

Note that this depends crucially on the assumption that the system was initialized in

the ground state. In reality, this cannot be done perfectly, and application of Eq. (5.6)

will yield some systematic errors.

5.4.2 Qubit Pulse Calibration

With the signal calibrated in terms of the qubit population, I can now find the pulse

lengths corresponding to two basic operations: the bit-flip and the Hadamard gate.

When I program the AWG to apply the drive tone for a Rabi oscillation, I explicitly

set the phase of the drive as φd = 0°. This sets the reference x-axis with respect to the

Bloch sphere (see Chapter 2). The bit-flip operation which I perform is equivalent to

the Rπx gate, which yields a half-cycle-rotation of the Bloch vector around the x-axis. We

refer to this pulse as a π-pulse or a Xπ-pulse. I determine the duration tπ of this pulse

by applying the microwave drive on resonance and finding the time which maximizes
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the output signal∆V/V (see Fig. 5.11). I note that this bit-flip operation can be written

equivalently as

Rπx ≡ σx = |0〉 〈1|+ |1〉 〈0|=







0 1

1 0






(5.7)

The Hadamard gate can be described in terms of two rotations on the Bloch sphere:

a π-rotation around the x-axis followed by a π/2-rotation around the y-axis. The

length for the π/2 rotation pulse is tπ/2, which is the time required to perform a

quarter-cycle rotation on resonance. We refer to such a pulse as a π/2-pulse. The
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Fig. 5.11 Rabi Oscillations for the transmon SPP-v1-Q7 during Measurement Run #5. The
π-pulse length was tπ ' 122 ns and the π/2-pulse length was tπ/2 ' 61ns. The transmon
|g〉 → |e〉 transition was driven on resonance with a power −79 dBm to obtain fRabi = 4.1MHz.
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Dirac representation of the Hadamard gate H is

H=
�

|0〉+ |1〉
p

2

�

〈0|+
�

|0〉 − |1〉
p

2

�

〈1|=
1
p

2







1 1

1 −1






(5.8)

Figure 5.11 shows an example for transmon SPP-v1-Q7 when I extracted the tπ

and tπ/2 times from a Rabi oscillation curve; with a microwave drive power giving

fRabi = 4.1MHz Rabi oscillations, I obtained tπ ' 122 ns and tπ/2 ' 61 ns.

5.4.3 Off-resonant Rabi drives

If the microwave drive is applied with a frequency detuning ∆ from the |g〉↔ |e〉

transition frequency, the two-level system will still undergo oscillations with a smaller

amplitude and larger Rabi frequency. These are known as generalized Rabi oscillations.

In the presence of relaxation and dephasing, there is no analytical form for the resulting

Rabi oscillations. Nevertheless, the generalized Rabi frequency and amplitude are

approximately given by [52]

Ωgen '
p

Ω2 +∆2 (5.9)

Agen '
Ω2

Ω2 +∆2
, (5.10)

where Ω is the Rabi frequency observed on resonance. Note that Agen is less than

unity for ∆ 6= 0, indicating that it is not possible to fully excite the system with an

off-resonant drive.
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5.4.4 The Rabi Coupling

Figure 5.10 shows Rabi oscillations in a transmon using microwave power set to

a single value. I repeated this measurement at different powers to obtain a series of

Rabi oscillations with different Rabi frequencies. As I discussed in Chapter 2, the Rabi

frequency fRabi ≡ Ω/2π at sufficiently high drive power is proportional to the amplitude

of the drive. By measuring the variation of fRabi with the applied qubit drive voltage, I

obtained the coupling strength Υ (in units HzV−1) of the drive to the transmon.
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Fig. 5.12 Rabi coupling measurement for transmon SPP-v1-Q7 during Measurement Run
#5. Microwaves at a frequency 5.96339 GHz were delivered to the cavity input with power
−84 dBm to −64 dBm to induce Rabi oscillations. The resulting data was fitted using Eq. (5.3)
to extract fRabi for each input voltage Vin (black points), and plotted versus the input rms
voltage. A linear fit to the data (red line) yields the slope or the Rabi coupling strength to be
Υ = 37kHz µV−1 for the device.
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5.5 Relaxation Time Measurements

The relaxation time T1 determines the lifetime of the excited state |e〉 of the qubit.

To measure T1, I applied a calibrated π-pulse as described in Sec. 5.4.2. I then waited a

time trel and performed a cavity measurement which I used to obtain the probability of

being in the excited statePe at time trel. Averaging 1000 such measurements completed

a single averaged measurement at time trel. These steps were repeated for varied trel, as

illustrated by the pulse sequence in Fig. 5.13. I fitted the obtained data to the formula

Pe = Ae−trel/T1 + B (5.11)

where A ' 1 and B ' 0. Figure 5.14 shows an an example T1 measurement in

transmon SPP-v1-Q6. This device had a stable lifetime of 6.71µs as verified by multiple

measurements on successive days.

I note that it was important to know T1 for many reasons. For example, for

properly calibrated quantum operations and measurements, the reset time tidle between

Cavity 
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𝑅𝑥
𝜋
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Fig. 5.13 Pulse sequence for T1 measurement. The time trel is varied for the measurement.
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Fig. 5.14 Relaxation time measurement of transmon SPP-v1-Q6 during Measurement Run
#6. Data (black points) are overlaid with an exponential decay fit (red curve). (inset) T1
measurement on a semilog plot.

measurements must be long enough to ensure that the qubit has sufficient time to

relax back to the ground state. I ensured this by setting tidle > 5T1, which will give

Pe < 0.7% if the qubit started in state |e〉. This step is one of many, required to optimize

and fine-tune the measurement process described in Sec. 5.2.

5.6 Ramsey Oscillations

The Ramsey method is a crucial technique in atomic timekeeping and provides

interesting information about a qubit [52]. Norman Ramsey was a former student

of Isidor Rabi who extended molecular beam methods to develop a highly accurate

method of atomic interferometry [117]. Ramsey’s method (see Fig. 5.15) involved

first applying a π/2-pulse to put an atom into an equal superposition of the |g〉 and
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Fig. 5.15 Pulse sequence for Ramsey oscillation measurement. The time tRamsey is varied for
the measurement.

|e〉 states. The atom was then allowed to evolve freely for a time tRamsey. Another

π/2-pulse was then applied and the state of the system measured.

Depending on the magnitude of the accumulated phase of the superposition state,

the final measured population would differ. As tRamsey is varied in a given experiment,

this accumulated phase can vary from 0 to π to 2π resulting in complete oscillations.

For ωd 6=ωge, the frequency of these Ramsey oscillations depends on the detuning ∆

between the applied drive frequency ωd and the qubit transition frequency ωge.

Steck [52] provides an informative analogy for the Ramsey interference fringes: the

Ramsey method is similar to Young’s double-slit experiment where the two π/2-pulses

act as two slits separated in the time domain, resulting in interference fringes which

appear as a function of the frequency or detuning. Ramsey interferometry samples

the integrated noise that impacts the transmon, and hence is a sensitive metric of the

coherence.
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Fig. 5.16 Ramsey oscillations for transmon SPP-v1-Q6 during Measurement Run #7. I obtained
the two Ramsey oscillation traces by applying the π/2-pulses at frequencies of 6.7520 GHz
(black), and 6.7527 GHz (red). The resulting Ramsey frequencies fRamsey were 2.247 MHz and
1.549 MHz, respectively.

5.6.1 Precise Determination of Qubit Frequency

Figure 5.16 shows two examples of Ramsey oscillations I observed in transmon

SPP-v1-Q6. I fit those Ramsey oscillations to damped sinusoidal functions with an

average decay time of T ∗2 = 6.1µs and frequency which depends on the detuning. For

a frequency independent loss mechanism, Ramsey decay time T ∗2 obeys

1
T ∗2
=

1
2T1
+

1
Tφ
+

1
T †
=

1
T2
+

1
T †

, (5.12)

where Tφ is the pure dephasing time and T † is a time constant characterizing inhomo-

geneous broadening (see next section).

During Measurement Run #3, I was able to obtain Ramsey oscillations with detun-
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Fig. 5.17 Plot of drive frequencyωd/2π versus Ramsey frequency fRamsey for transmon SPP-v1-
Q7 during Measurement Run #3. The drive frequency of π/2-pulses was varied from 5.52 GHz
to 5.54 GHz. The data (black) are overlaid with the linear fit (red), and the y-intercept value
from the fit is taken to be the precise qubit frequency.

ings ∆ in the range −10 MHz to 10 MHz for transmon SPP-v1-Q7. By plotting the drive

frequency ωd versus the resulting Ramsey frequencies fRamsey, I obtained the |g〉 → |e〉

transition frequency with a high precision (see Fig. 5.17). By using the y-intercept of

a linear fit to the data, I extracted the qubit frequency precisely to be 5.529 72 GHz.

It should be noted that when ∆ ≈ 0, long traces have to be obtained to precisely

determine the frequency. Given the relatively short coherence times this is often not

possible, as was evident with the two data points for ωd ≈ 5.529GHz in Fig. 5.17.
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5.7 Spin-Echo Measurements

The method of spin-echo was developed by Erwin Hahn [118] to decrease, to first

order, effects of inhomogeneous broadening when studying the coherence of a spin

ensemble. Inhomogeneous broadening means different atoms in an ensemble have

slightly different transition frequencies due to local effects such as variations in the local

magnetic field, or a spread in velocities for a train of atoms/ions [52]. When a Ramsey

experiment is performed on such an ensemble, some atoms will be accumulating phases

faster than others, after the first π/2-pulse. When the second π/2-pulse is applied

and the ensemble is measured, this differential phase accumulation will reduce the

resulting coherent signal, much like pure dephasing. A spin-echo measurement (Hahn

echo) involves applying a π-pulse around an orthogonal axis, halfway between the

two π/2-pulses as illustrated in Fig. 5.18. The π-pulse causes the spins to evolve in a

time-reversed fashion, allowing the slow parts and fast parts to refocus. The spin-echo

technique has become commonplace in other applications as well, and can be used to
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Fig. 5.18 Pulse sequence for spin-echo measurement. The time techo is varied for the mea-
surement.
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Fig. 5.19 Spin-echo measurement showing probabilityPe to be in the excited state versus time
techo for transmon SPP-v1-Q6 during Measurement Run #7. Data (black points) are overlaid
with fit to an exponential decay (red curve) with time constant 6.23µs and offset ≈ 0.5.

eliminate the effects of unwanted interactions by applying corrective pulses [119].

Note that if the local effects do not vary in time, at least during the timescale of

evolution, the ensemble constituents will be refocused just prior to the application of

the second π/2-pulse. Thus the echo removes effects of inhomogeneous broadening.

Of course, this does not remove effects from Tφ and T1, and the resulting echo decays

exponentially. When this technique was applied in optical systems [120], the system

itself would emit a light pulse akin to the original excitation, producing an optical

“echo” pulse.

Figure 5.19 shows an example of a spin-echo measurement I took on transmon

SPP-v1-Q6. By fitting the data to an exponential decay with an offset as in Eq. (5.11),

I obtained the T2 coherence time; this device had a relaxation time of T1 = 3.47µs

and a coherence time of T2 = 6.23µs. In this case, the coherence time T2 was close to
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2T1 = 6.94µs, implying that the dephasing time was much longer than T1. In general,

for frequency independent loss mechanisms, T2 is related to T1 by the relation,

1
T2
=

1
2T1
+

1
Tφ

. (5.13)

5.8 Photon Number Splitting

The cQED systems I examined were composed of a cavity as well as one or two

transmons. I needed to characterize certain aspects of the cavity as well, as it interacted

with the qubits. Here I discuss the coupling of an applied field to the cavity. Unlike

the case of the Rabi coupling to a qubit (see Sec. 5.4), it is not so straightforward to

measure this coupling.

In the dispersive limit, at sufficiently low photon numbers, the dressed cavity is

a slightly anharmonic system, due to the high-order Kerr nonlinearity arising from

the interaction with the transmon [121]. Thus, a sufficiently strong drive field will

yield a coherent state with multiple photons in the cavity, rather than causing coherent

Cavity 

Measurement

Transmon Transition 

Saturation

𝑇

𝑡sat 𝑡RO

Cavity saturation (weak drive)

Fig. 5.20 Pulse sequence for photon number splitting. The long pulses are applied to ensure
the steady-state of the cavity and the transmon.
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Fig. 5.21 Measurement of photon number splitting spectrum for transmon SPP-v1-Q7 in the
cavity 6D during Measurement Run #2. Data (black points) are overlaid with a fit to five
Lorentzians (red curve). The drive power at the cavity input was Pcav ≈ −112 dBm and the
calculated mean photon number was 〈n〉 ≈ 1.6. The qubit spectroscopic peaks correspond to
different cavity photon numbers, as labeled.

oscillations between the two lowest levels. Depending on the intensity of the drive and

the decay time of the resonator, the driven cavity will reach a steady coherent state

with a photon population following a Poisson distribution [122].

The strength of the coupling of the cavity to the input drive line can be found by

measuring the average photon number corresponding to a given drive strength. In

my cQED system, I used the transmon as a sensitive detector of the average photon

occupation in the cavity; in the low photon number limit, each additional photon in

the cavity causes a shift in the qubit frequency an amount 2χ (see Sec. 2.2.3).

Figure 5.20 shows an example where I measured the transition spectrum while

applying a weak continuous cavity tone. The cavity photon distribution is “imprinted”
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as a series of peaks in the qubit spectrum, with each peak corresponding to the qubit

transition with a specific number of photons in the cavity; this technique is known

as measuring the photon number splitting spectrum [123]. By extracting the relative

heights of the peaks, I determined the average number of photons in the cavity [124],

and the strength of the coupling between the input pin and the cavity. I note that

this approach only works well if the system is in the strong dispersive regime where

2χ > {κ, 1/T2} (κ is the decay rate for the cavity and T2 is the coherence time for the

qubit), and if the qubit and the cavity are driven lightly to ensure that the individual

photon number peaks are well-resolved.

5.8.1 Determining the Cavity Coupling to the Input Drive

By measuring the number splitting spectrum as a function of the microwave input

drive strength, I obtained the average cavity photon occupation 〈n〉 versus the drive

voltage Vrms. Naively, this relationship should be quadratic in the low-power limit, i.e.

〈n〉 ∝ V 2
rms. It is also possible to restate this relationship in terms of the effective cavity

drive strength Ωcav [48, 123, 125],

〈n〉=
Ω2

cav

2π
QE

QL

1
(κ/2)2 +χ2

, (5.14)

where QL and QE are the loaded and external coupling quality factors of the cavity,

respectively.

Figure 5.22 shows an example where I measured the photon number splitting
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Fig. 5.22 Photon number splitting spectrum versus drive power for transmon SPP-v1-Q7 in the
cavity 6D during Measurement Run #2. The transmon spectrum was measured while applying
a weak cavity drive at frequency 7.94683 GHz with different powers Pcav.

spectrum versus cavity drive power. At low powers Pcav < −145dBm, only the peak

corresponding to zero cavity photons is visible. Above −145 dBm other cavity photon

number peaks appear, following a Poisson distribution. For powers Pcav > −115 dBm

the series of peaks shift to the left, indicating significant Stark shifting. In this case I

found Ωcav/2π > 3MHz.
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5.9 Summary of Measured Parameters of the Devices

Table 5.1 gives a summary of the parameters for the devices I fabricated and

measured for this dissertation. I determined the input and output quality factors for

the cavity (Qinput and Qoutput) by measuring S21, S22, and S11 at room temperature. The

loaded quality factor of the cavity Qloaded was measured after cooling the cavity to

20 mK. I obtained the cavity lifetime Tcav either using a ringdown measurement (Tcav =

Tringdown/2) or from the loaded quality factor (Tcav =Qloaded/ωr). The charging energy

EC and the Josephson energy EJ of the transmons were extracted from spectroscopic

measurements. I used the effective dispersive shift χeff to calculate the effective qubit-

cavity coupling geff =
p

χeff∆ge. The Rabi coupling Υ was measured as described

in Sec. 5.4.4. The attenuation values at the qubit frequency for the input line were

estimated based on S21 measurements on the line at room temperature.

All SPP-v1 transmons were fabricated on sapphire substrates. The SPP-v2 transmon

was fabricated on a silicon substrated that was not treated with HF. Both cavities 6D

and 6G were machined from 6063 Al. Except for the final cooldown in 2017, all

other devices listed were packaged in 2015. SPP-v2-Q2 was replaced with SPP-v1-Q7

on June 22, 2015. Subsequent to this repackaging, the two halves of the cavities

were not opened during the rest of 2015 and 2016; nevertheless the coupling quality

factors were adjusted by simply removing and reattaching modified SMA ports. For the

cooldown in 2017, the cavity 6G was opened, machined to have two slots equidistant

from the center, and repackaged with both qubits SPP-v1-Q6 and SPP-v1-Q7 inside. The
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original center slot was closed off with Indium to ensure boundary integrity.
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CHAPTER 6

Fock State Generation using Stimulated Raman

Adiabatic Passage

6.1 Introduction

Quantum states with a well defined number of quanta, or Fock states [126], have

many roles in quantum information processing including quantum key distribution

[127], quantum memory [128], generation of identical photons for remote entangle-

ment [129] and universal control of quantum elements [130]. Following proposals

for generating Fock states in AMO-based cavity QED systems [131, 132], the first

experimental demonstration involved exchanging an excitation between a Rydberg

atom and a cavity [133].

Fock states were first generated in a circuit quantum electrodynamics (cQED) system

by coupling a tunable superconducting qubit to a microwave resonator [134, 135].

In those experiments, the excited state of the superconducting qubit was tuned to be

resonant with the resonator and the excitation from the qubit was then transferred to
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the resonator by vacuum Rabi oscillations. An advantage of this technique was that

the transfer could be performed in a relatively fast time of 25ns; sufficiently short that

dephasing was not an issue. More recently, arbitrary Fock states were generated using

selective number dependent arbitrary phase (SNAP) gates on a fixed-frequency qubit-

cavity system [130, 136]. The SNAP approach took advantage of a highly coherent

qubit-cavity system to generate the desired states in a time of 1µs.

STIRAP involves the transfer of population from an initial state |0〉 to a final state

|2〉 via an intermediate state |1〉 by applying two Gaussian coherent Raman pulses that

overlap in time. The pulse sequence is counter-intuitive, in that the initial pulse is on

the |1〉 to |2〉 transition, and the second pulse is on the |0〉 to |1〉 transition [137, 138].

STIRAP is an interesting technique because it can overcome a forbidden transition (for

example |0〉 to |2〉 to first order), while never occupying the intermediate state, and is

robust against slight variations in the drive parameters [137]. Previous proposals and

demonstrations of STIRAP using superconducting quantum devices involved transfer

of populations between the three lowest levels of the device [139–141]. Such qutrit

levels can have a relatively high anharmonicity and this simplifies the implementation.

In contrast, I employed STIRAP to operate on composite cavity-qubit states, a system

which has a relatively small anharmonicity. Using a STIRAP protocol with the third

excited state of the qubit-cavity system as the intermediate state, I transferred the first

excited state population of the qubit to the cavity, and thereby created a single photon

Fock state.

In this chapter, I describe the use of a two-photon Stimulated Raman Adiabatic

Passage (STIRAP) protocol, to transfer the excitation from a fixed-frequency transmon
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6.2. THE DEVICE AND THE EXPERIMENTAL SETUP

qubit to a microwave cavity Fock state in 354 ns. By performing driven coherent manip-

ulations on the generated state, and comparing the results to multi-level simulations, I

determined the fidelity for the n= 1 Fock state to be ≥ 85%, a value similar to other

initial demonstrations of Fock states [134–136]. In Sec. 6.2, I describe the device I

used, and the experimental setup. Section 6.3 will describe how I modeled the system,

and how I implemented the master-equation simulations. In Sec. 6.4, I describe how

I extended the process to create the second and third Fock states, with simulated

fidelities of 68% and 43%, respectively. These fidelities were limited by the decay rate

of the cavity relative to the adiabatic process duration. In Sec. 6.5, I demonstrate how

this protocol can be used to create a superposition of Fock states. In Sec. 6.6, I describe

reversal of STIRAP. I describe how I generated entanglement between the cavity and

the qubit in Sec. 6.7. I will conclude this chapter by summarizing the main results in

Sec. 6.8.

6.2 The Device and the Experimental Setup

The cQED system used in my experiment consisted of the transmon SPP-v1-Q7

embedded in the three-dimensional superconducting Al cavity 6D (see Fig. 6.1(a))

[27, 69]. The cavity-transmon system was attached to the mixing chamber of a Leiden

Cryogenics CF-450 dilution refrigerator that operated at a temperature of 15 mK. The

transmon [27] had a transition frequency ofωq/2π = 5.5297 GHz between the ground

and excited state. I fabricated the transmon on a sapphire substrate (see Chapter 3)
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(a) (b)

10 mm

(b)

0.5 mm

Fig. 6.1 The transmon-cavity system. (a) Photograph of transmon chip in the top of opened
3D Al cavity. (b) Optical micrograph of transmon SPP-v1-Q7 on sapphire chip.

and it had a single Al/AlOx/Al Josephson junction capacitively shunted by two large

500µm×650µm Al pads which reduced its charging energy (see Fig. 6.1(b)). The large

pads also provided coupling with strength g/2π = 69.8 MHz to the TE101 fundamental

mode of the cavity with a resonance frequency ωc/2π = 7.9350GHz. All the results in

this chapter were obtained during Measurement Run #3 (see Sec. 5.9).

The input line to the cavity had an attenuation of 77 dB and the output had more

than 60 dB of directional isolation at the cavity and qubit frequencies (see Sec. 4.1). To

drive the transmon-cavity system, microwaves were delivered to the input port of the

cavity with a coupling Qin ∼ 400, 000 (adjusted and measured at room temperature).

The state of the system was interrogated using a high-power cavity transmission

measurement that was sensitive to the transmon state [104]. The output port had

coupling Qout ∼ 200, 000 (adjusted and measured at room temperature) and sent the
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transmitted microwaves to a low noise HEMT amplifier at 3 K [101]. The output signal

was further amplified at room temperature with a low-noise amplifier (see Fig. 4.4).

The signal was then mixed down to an intermediate frequency of 10 MHz, digitized

and analyzed. The experimental setup is described in detail in Chapter 4 (see Fig. 4.4)

and is similar to that described by Novikov et al. [142, 143].

The generation of Gaussian pulses was carried out by programming a Tektronix

AWG70002A arbitrary waveform generator (AWG). The maximum sampling rate for

the instrument was 25 GSa/s with 10 bits of resolution for voltage. The output from

the AWG was amplified at room temperature with a Mini-Circuits ZVA-183-S+ amplifier

before being sent into the dilution refrigerator.

6.3 Modeling and Characterizing the System

In my setup, the coupling strength g ∼ 70MHz is much smaller than the qubit-

cavity detuning ∆ =ωc−ωq = 2.4 GHz. In this limit, the undriven qubit-cavity system

can be well described by the dispersive Jaynes-Cummings Hamiltonian [50]:

HJC =
1
2
ħhωqσz +ħh(ωc +χσz)N̂ (6.1)

where N̂ is the photon number operator for the cavity, σz is the Pauli-Z operator,

and χ/2π = −2.0 MHz is the effective frequency dispersive shift resulting from the

cavity-qubit coupling.
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⋮
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|g1〉

|g2〉

|e0〉

|e1〉

|e2〉
(a) (b)

|g1〉 |e0〉

|e1〉

𝜔s1, Ωs 𝜔p1, Ωp

(c) Amplitude
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g1 → |e1〉

e0 → |e1〉

𝛿1

0 100 200 300

Fig. 6.2 STIRAP in a transmon-cavity system. (a) Level structure (not to scale) for the
transmon-cavity system. Letters and numbers within kets denote qubit and cavity photon-like
states, respectively. (b) Levels used for the generation of |g1〉 Fock state with the Stokes (red)
and pump (blue) tones with frequencies {ωs1, ωp1} and drive strengths {Ωs, Ωp}, respectively.
δ1 is the common detuning for both drives from |e1〉. (c) Pulse envelopes for the Stokes (red)
and pump (blue) tones.

The Hamiltonian HJC gives an energy level structure that has two ladders. One

ladder is for all states that have the qubit in the ground state |g〉, while the second

ladder is for the excited state |e〉 (see Fig. 6.2(a)). The rungs of each ladder correspond

to a different integer number of cavity photons. My state measurement technique

allowed me to find the total probability Pe to find the system in the |e〉 ladder, by

averaging repeated measurements.

The transmon had a characteristic relaxation time of T1 = 24µs and a Ramsey

decay time T ∗2 = 22µs. The cavity had a lifetime κ−1 = 2.5µs, set by Qout to allow for

relatively fast measurements. I note that my device operated in the strong dispersive

regime of circuit QED since 2χ �
¦

κ, 1
T1

, 1
T ∗2

©

[124].

111



6.3. MODELING AND CHARACTERIZING THE SYSTEM

For my numerical simulations, the master equation for the density matrix ρ was

solved in the time domain. The Jaynes-Cummings ladders were truncated to a max-

imum of 11 levels in the |g〉 ladder and 10 levels in the |e〉 ladder. Denoting the

cavity and qubit microwave drive strengths Ωc(t) and Ωq(t), respectively, the drive

Hamiltonian can be written as (see Sec. 2.2.4)

Hint = ħhΩc(t)(a+ a†) +ħhΩq(t) (|g〉 〈e|+ |e〉 〈g|) (6.2)

where a and a† represent the annihilation and creation operators for the cavity, respec-

tively.

Cavity and qubit dissipation was incorporated through the Lindblad-Kossakowski

formalism [54, 55]. The driven system Hamiltonian can then be written as, H =

HJC +Hint and the resulting master equation for the density matrix ρ can be written

as,

∂ ρ

∂ t
=

1
iħh
[H ,ρ] +

∑

j

Γ j

�

A jρA†
j −

1
2

A†
jA jρ −

1
2
ρA†

jA j

�

. (6.3)

Here, the index j runs through the various decoherence channels (cavity relaxation,

qubit relaxation, qubit dephasing) and Γ j represents the decoherence rate for each

channel. A j are the Lindblad operators corresponding to each channel. The qubit and

cavity relaxation Lindblad operators can be given in the form Aqdec = σ− and Acdec = a,

respectively, and the qubit dephasing can be represented by the Lindblad operator

Aqdph = σz.
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Fidelity between any two states (for example realized state φ and target state ψ)

described by density matrices ρ and σ, can be defined as

F(ρ,σ) = Tr
Æp

ρσ
p
ρ. (6.4)

The above definition simplifies considerably when one of the states is a pure state (e.g.

|g1〉, or |g0〉+ |g2〉) [3]. As I was trying to generate pure states, I instead used

F (ρ, |ψ〉) = [F(ρ, |ψ〉)]2 = 〈ψ|ρ|ψ〉 (6.5)

where |ψ〉 is the target pure state and ρ is the density matrix for the generated state.

Equation (6.5) is more intuitive than Eq. (6.4), since it is just the probability of finding

the system in state ψ.

6.4 Generating Fock States n= 1, 2,3

The process I used to generate the single-photon Fock state |g1〉 involved use of

the four lowest levels in the system: |g0〉, |e0〉, |g1〉, and |e1〉 (see Fig. 6.2(a)). After

passively cooling the system to the |g0〉 state, a 32 ns duration πg0→e0 pulse at the qubit

frequency ωq was sent to add one excitation to the qubit and obtain the state |e0〉.

To transfer population from |e0〉 to |g1〉, which is a first order forbidden transition,

STIRAP was used via the intermediate level |e1〉 (Fig. 6.2(b)). In this protocol, I first

applied a Stokes tone at frequency ωs1 =ωq+ 2χ −δ1, slightly detuned by an amount
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δ1 from the |g1〉 to |e1〉 transition frequency and with a Gaussian envelope for the

amplitude. I then applied a slightly delayed Gaussian-shaped pump tone pulse that

overlapped with the Stokes pulse. The pump pulse had a frequencyωp1 =ωc+2χ−δ1,

which included the same detuning δ1 as the Stokes tone.

For a conventional three-level system undergoing STIRAP, process fidelity does not

depend heavily on the detuning from the intermediate level. However, my system has

a multi-level transmon coupled to a multi-level cavity. I found that a negative detuning

from level |e1〉 (i.e. −δ1 < 0) was beneficial to minimize leakage to higher levels, and

I optimized δ1 through simulations. The counter-intuitive profile for the Stokes and

pump pulses was

Ω(t) = Ωs exp

�

−
(t − ts)2

2σ2

�

sin [ωs1 t +φs] + Ωp exp

�

−
(t − tp)2

2σ2

�

sin [ωp1 t +φp],

(6.6)

where Ωs and Ωp were the peak amplitudes of the Stokes and pump tones respectively,

σ was the width of the Gaussian envelope for both pulses, ts and tp were the times

when the Stokes and pump envelopes were at their maximum, and φs and φp were

offset phases in the Stokes and pump carrier tones respectively.

To determine the initial choices for STIRAP parameters, density matrix simulations

were performed at the outset of the experiment. I solved the master equation in the

laboratory frame, while applying the time dependent STIRAP protocol. Following

initial experiments, the model was refined using a total of 11 cavity levels in the

|g〉-ladder and 10 cavity levels in the |e〉-ladder. The programmed waveforms used for
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the experiment were used in the numerical simulations (see Table 6.1).

Figure 6.3 shows the measured probabilities Pe (filled points) of the qubit being

in its excited state versus time t during generation of the first, second and third Fock

states using the STIRAP protocol. For comparison, results from the simulations are
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Fig. 6.3 Generation of the first three Fock states. (a) Pulse sequence for generating Fock states
|g1〉 , |g2〉 and |g3〉. The π-pulses (yellow) transfer |g0〉 → |e0〉 , |g1〉 → |e1〉 and |g2〉 → |e2〉.
The Stokes (red) and pump (blue) pulses transfer |e0〉 → |g1〉 , |e1〉 → |g2〉 and |e2〉 → |g3〉.
(b) State probabilities P versus time t for |g1〉 , |g2〉 and |g3〉 Fock state generation protocol
shown in (a). Measured data are total qubit excited state populationsPe (black dots). Solid red
curve shows the correspondingPe from density matrix simulations. Dashed/dotted curves show
simulated evolution of the populations of Fock states |g0〉 , |g1〉 , |g2〉 and |g3〉 corresponding
to 0, 1, 2, and 3 photons in the cavity respectively.
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Table 6.1 Parameter values used in STIRAP pulses. The drive phases φp1 and φs1 had no
effect on the generation of the Fock states and for simplicity were set to zero.

Parameter Symbol Value

Stokes drive strength (qubit-like) Ωs/2π 9.6 MHz
Pump drive strength (cavity-like) Ωp/2π 26.2 MHz
Stokes-pump pulse separation tsep 14 ns
Standard deviation of Gaussian pulses σ 70.8 ns
Total length of each truncated Gaussian pulse tlen 340 ns
Common detuning for Stokes/pump drives from |e1〉 δ1 8.1 MHz
Common detuning for Stokes/pump drives from |e2〉 δ2 9.7 MHz
Common detuning for Stokes/pump drives from |e3〉 δ3 11.3 MHz
|g1〉 → |e1〉 Stokes frequency ωs1/2π 5.5176 GHz
|e0〉 → |e1〉 Pump frequency ωp1/2π 7.9248 GHz
|g2〉 → |e2〉 Stokes frequency ωs2/2π 5.5119 GHz
|e1〉 → |e2〉 Pump frequency ωp2/2π 7.9233 GHz
|g3〉 → |e3〉 Stokes frequency ωs3/2π 5.5063 GHz
|e2〉 → |e3〉 Pump frequency ωp3/2π 7.9217 GHz

shown as curves. To collect each point at time t in this plot, execution of the protocol

was halted at time t, and a high-power cavity pulse applied to destructively measure

the probability of the qubit being in the excited state. The protocol was started again

from the beginning and repeated 1000 times to obtain the average probability to be

in the excited state Pe. For the first 32ns, a πg0→e0 was sent to the device and upon

completion Pe > 96% (confidence level obtained from evaluating false counts during

single shot measurements). After placing the system in |e0〉, the Stokes and pump

STIRAP pulses were sent to the device using the parameters listed in Table 6.1. The

total duration to complete STIRAP was 354ns. Comparing the data to the simulations,

I found that the fidelity upon completion was Fg1 = 89%, limited by photon leakage

out of the cavity.

Due to the relatively small photon anharmonicity and the relatively short lifetime of
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photons in the cavity, Wigner tomography [144] could not be performed in my system.

Instead, I examined the fidelity of the Fock state by performing Rabi oscillations

immediately following the STIRAP protocol (see Appendix B). The Rabi oscillations

were performed by driving at both the |g1〉 → |e1〉 transition frequency ωg1→e1, and

at the |g0〉 → |e0〉 transition frequency ωq, for a range of drive amplitudes. For small

drive amplitudes Vdrive, the oscillations when driven at ωq (Fig. 6.4(a)) show a larger

Rabi frequency fRabi and lower Pe amplitude, consistent with the drive frequency being

detuned from the |g1〉 → |e1〉 transition. Each Rabi oscillation was fit to the sum of

two oscillatory functions to extract the frequency fRabi and the amplitude ARabi of each

component. The amplitude of the resonant component is a metric for the fidelity with

which the STIRAP process generated the desired state |g1〉.

Figure 6.4(b) shows the four extracted Rabi frequencies when the system was

driven at the two drive frequencies ωg1→e1 and ωq. Two of the data sets are linear with

drive voltage and extrapolate to a zero Rabi frequency at zero drive voltages, consistent

with a resonant drive process. The other pair of Rabi frequencies extrapolates, at small

drive voltages, to a frequency of approximately 4 MHz, consistent with a non-resonant

process with detuning 2χ (Fig. 6.2(a)). The fidelity of the |g1〉 Fock state can be

determined from the amplitude of the Rabi oscillations, as shown in Fig. 6.4(c). At

small drive voltages, the amplitude for the resonant component when driving atωg1→e1

yielded a fidelity of Fg1 ≥ 85%.

Following generation of |g1〉, the second (|g2〉) and third (|g3〉) Fock states were

produced in a similar manner (see Fig. 6.3). When generating the higher Fock states, I

tuned the parameters through simulations, to optimize the fidelity of the desired state
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Fig. 6.4 Verification of |g1〉 Fock state: (a) Driven Rabi oscillations at ωg1→e1 (blue) and ωq
(red) frequencies, at a relatively small drive amplitude of Vdrive = 53 µVrms. (b) Extracted Rabi
frequencies fRabi versus drive amplitude Vdrive following generation of |g1〉 through STIRAP.
Dashed and dotted lines depict expected frequencies for a two-level system subjected to an on-
resonant and 4.04 MHz detuned off-resonant drives, respectively. (c) Extracted Rabi amplitude
oscillations. Dashed and dotted lines depict expected behavior for a two-level system after
setting up the cavity in a Fock state with Fg1 = 89%.
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Table 6.2 Optimized cavity and qubit pulse parameters used in simulating Fock state genera-
tion.

Parameter Symbol Value

Number of transmon levels nq 2
Maximum number of cavity excitations nex 10

Non-dressed cavity frequency ω̃c/2π 7.934 97 GHz
Non-dressed qubit frequency ω̃q/2π 5.531 75 GHz
Effective cavity-qubit coupling g/2π 69.8 MHz

|g0〉 → |e0〉 π-pulse frequency ωg0→e0/2π 5.5297 GHz
|g1〉 → |e1〉 π-pulse frequency ωg1→e1/2π 5.5257 GHz
|g2〉 → |e2〉 π-pulse frequency ωg2→e2/2π 5.5216 GHz
|g0〉 → |e0〉 π-pulse strength Ωg0→e0/2π 17.0 MHz
|g1〉 → |e1〉 π-pulse strength Ωg1→e1/2π 15.4 MHz
|g2〉 → |e2〉 π-pulse strength Ωg2→e2/2π 14.7 MHz
|g0〉 → |e0〉 π-pulse time tg0→e0 32 ns
|g1〉 → |e1〉 π-pulse time tg1→e1 34 ns
|g2〉 → |e2〉 π-pulse time tg2→e2 32 ns

(see Table 6.2 for the general system parameters used in simulations). |g2〉 was created

by adding another excitation to the system: a πg1→e1 pulse was followed by another

STIRAP protocol taking the system to |g2〉, with a comparison to the simulations

yielding a fidelity Fg2 = 68% (see Fig. B.4). A similar process was implemented to

generate |g3〉, with a comparison to the simulations yielding a fidelity Fg3 = 43%. As

with |g1〉, simulations revealed that Fg2 and Fg3 were limited by κ.

For comparison, the red curve in Fig. 6.3 shows the simulated results for the excited

state probability using the optimized parameters in Table 6.1 and Table 6.2. Except

for some small, fine-scale oscillatory behaviour found in the simulation during the

|g2〉 and |g3〉 STIRAP protocol, there is good agreement with the experiment. The

dashed and dotted curves show the simulation of the expected populations of the
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various Fock states in the cavity, which I could not measure directly. The rotating wave

approximation was not employed in the simulations, and the 21 level simulation for

|g1〉 generation was also checked against a simulation performed with 51 levels in the

two-ladder system, which did not yield significant differences.

I note that Bergmann et al. have derived both local and global criteria for adiabatic

following in a system, to verify that a system is truly undergoing a STIRAP process [137].

The local adiabaticity criterion addresses the instantaneous non-adiabatic coupling

possible with various pulse shapes. As my experiment employed smooth Gaussian

pulses, the local adiabaticity criterion was naturally satisfied. The global adiabaticity

criterion addresses adiabaticity for the entire process, and for STIRAP is given by

Ωeff∆τ > 10 (6.7)

where Ωeff =
q

Ω2
p +Ω2

s is the root-mean-square (rms) Rabi frequency and ∆τ is the

total overlap time for the two pulses [137]. Using Eq. (6.6) and my parameters for

generating |g1〉, I found
∫

Ωeff dt ∼ 30, satisfying global adiabaticity Eq. (6.7). The

relative insensitivity of the STIRAP protocol to parameter fluctuations was verified

through simulations (see Table 6.3). Examining the table, one sees that a ±10%

variation in the parameters resulted in significantly smaller reductions in fidelity, with

the exception of increase in Ωp or decrease in δ.
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Table 6.3 Sensitivity of process fidelity to STIRAP parameters: Simulated loss of fidelity in
|g1〉 generation due to varying the STIRAP parameters by 10% from the predetermined optimal
values.

Process Parameter
Loss of fidelity from parameter adjustment

Decrease of 10% Increase of 10%

Stokes drive strength (Ωs) 3.2% 6.4%
Pump drive strength (Ωp) 2.9% 10.3%
Pulse truncate length (tlen) 1.2% 3.5%
Standard deviation of pulse (σ) 0.4% 5.6%
Separation between pulses (tsep) 0.5% 0.5%
Common detuning from |e1〉 (δ) 16.9% 1.8%
π-pulse length (tg→e) 2.3% 2.5%

6.5 Generating Fock State Superpositions

STIRAP can also be used to create superpositions of Fock states. To generate a

superposition of |g0〉 and |g1〉, I replaced the initial πg0→e0 pulse for the Fock state

creation with a 16 ns (π/2)g0→e0 pulse to create the superposition state (|g0〉+|e0〉)/
p

2.

Next I used the |e0〉 → |g1〉 STIRAP protocol to coherently transfer the population in

|e0〉 to |g1〉 (see Fig. 6.5(a)). Following the 370ns total execution time, I observed

Pe ≈ 0 and simulations showed that the state was an equal superposition of |g0〉 and

|g1〉.

During this STIRAP process, I found that Pe exceeded 0.5 and displayed an oscilla-

tory pattern (see Fig. 6.5(a)). To understand this aspect of the data, I measured the

behavior when the phase of each microwave drive was independently varied. I found

that the oscillations depended strongly on the phase φπ/2 of the initial π/2 pulse and

the phase φs of the Stokes tone but not the phase φp of the pump tone (see Fig. 6.6).
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Fig. 6.5 Generation of Fock state superpositions with STIRAP. (a) Equal superposition between
|g0〉 and |g1〉 generated using STIRAP after a π/2 initialization pulse. All phases for the drives
and the initialization were set to zero (φπ/2 = φs = φp = 0). (b) STIRAP performed on the
system after driving to a mixed steady state with a 150µs long pulse at frequency ωq. t ′ = 0
corresponds to the end of the saturation pulse. Experimental data points (black circles) and
simulated pooled populations (solid red curve) are shown.
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Fig. 6.6 Fock state superpositions’ variations with STIRAP phases. Equal superpositions
between |g0〉 and |g1〉 are generated using a π/2 initialization pulse. (a) The phases φ of
π/2 initialization, (b) Stokes and (c) pump pulses were changed while the other phases were
held constant at zero. The experimental data points for phases 0◦ (black), 90◦ (red), 180◦

(magenta) and 270◦ (blue) as well as the respective simulated evolutions of Pe (solid curves)
are shown. The phase of the initialization and Stokes pulses exhibit complementary behavior
in modifying the oscillatory features during the generation of (|g0〉+ |g1〉)/

p
2. The phase φp

of the pump pulse has no impact on the oscillatory features.
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This phase dependence, and the fact that Pe exceeds 0.5, during execution suggests

that the population in |g0〉 in the initial state plays a pivotal role when turning on the

Stokes tone. Comparing the data to the simulations again revealed good agreement

(see solid curves in Fig. 6.6). The simulations also implied that the final state was

prepared with a fidelity of approximately 93%, limited by the decay rate κ of the cavity.

To further examine the dependence on the initial state, STIRAP was performed

after the qubit was driven to a mixed steady-state, removing qubit phase coherence.

This resulted in the disappearance of oscillations observed previously (see Fig. 6.5(b)).

I inferred that the oscillations were the direct result of coherent interference within

the system when undergoing STIRAP. I believe the four lowest levels |g0〉 , |e0〉 , |g1〉

and |e1〉 set up a suitable system for observing quantum interference between differ-

ence excitation pathways [145], though confirming the source of this interference

was beyond the scope of this work. The existence of oscillations during the STIRAP

process demonstrates the coherent nature of the behavior as well as the preservation

of coherence during execution.

6.6 STIRAP Reversal

I discussed in Sec. 6.4 and Sec. 6.5, the use of STIRAP for the transfer |e0〉 → |g1〉.

The reverse process |g1〉 → |e0〉 can also be accomplished simply by reversing the order

of pulses. When performing the reversal immediately after |g1〉 Fock state generation,

the recovered population is ≈ 80%; consistent with the significantly longer time to
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Fig. 6.7 Reverse STIRAP and measurement of cavity decay rate. (a) Pulse sequence to generate
|g1〉 and map back with a time-delay ∆t. (b) Data from reversing STIRAP (black points) and
simulated evolution (solid red curve) for ∆t = 0. Dashed lines show simulated evolution of
lowest Jaynes-Cummings levels. (c) Recovered populations from reversals performed with
various ∆t time-delays (black points) along with the exponential-decay fit (solid red) with
decay constant τ= 2.51µs.
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complete this two step process (see Fig. 6.7(a),(b)).

A delay can be introduced prior to the reversal pulses to investigate the |g1〉 decay

which occurs with rate κ. By varying the delay time ∆t and plotting versus the re-

covered population P (rec)
e , I was able to obtain the cavity decay time (see Fig. 6.7(c)).

For longer delays, a lower population is available for the reverse mapping, and even-

tually (∆t = 6µs) most of the population has decayed to |g0〉, and there is little

population to be transferred back to |e0〉. Fitting yielded an exponential decay time of

τcav = κ−1 = 2.51µs, which was in excellent agreement with independent measure-

ments of cavity lifetime.

6.7 Fractional STIRAP

In the previous sections, STIRAP was employed as a SWAP operation to transfer

any population in the excited state of the qubit to the first excited state of the cavity,

or vice versa. In contrast, Vitanov et al. [146] described a technique by which it

was possible to create superpositions of states by performing a partial transfer, which

they termed f-STIRAP (fractional STIRAP). They achieved this by allowing the Stokes

pulse to precede the pump pulse as in conventional STIRAP, but letting them vanish

simultaneously at the end. By adjusting the synchronization time, the superposition

components could be adjusted [146].

In my system, I implemented f-STIRAP by decreasing the Stokes and pump ampli-
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Fig. 6.8 Cavity-qubit entangled state preparation. (a) Plot showing Pe versus t for different
Stokes and pump drive attenuation factors β . The data points and pooled excited populations
from simulations (solid curves) with colors corresponding to the value of β are shown. (b)
Generation of the coherent superposition between |g1〉 (orange dashed) and |e0〉 (blue dash-
dotted) occurs for β = 1.5. Data points (black) and simulated excited population (red curve)
are shown.
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tudes by the same attenuation factor β from the optimal STIRAP values so that

Ω′s = Ωs/β

Ω′p = Ωp/β .
(6.8)

By varying β , partial transfers were performed from the qubit to the cavity, as verified

by the residual population in the qubit |e〉 state (see Fig. 6.8(a)). When β = 1.5,

comparing the simulations to the data gave final populations for |g1〉 and |e0〉 as

0.43 and 0.52, respectively (see Fig. 6.8(b)). The resultant state was approximately

0.723 |e0〉+ (0.563− 0.324i) |g1〉 with a 6% probability for being in other states. This

was consistent with the generation of a highly entangled state between the qubit and

the cavity.

6.8 Summary

In summary, a STIRAP-based protocol for coherently transferring the population

from a superconducting qubit to n = 1, 2, and 3 Fock states in a superconducting

microwave cavity was demonstrated. The protocol required 3n drives to move the

system from the ground state, to the nth Fock state.

Based on my simulations, increasing the lifetime of the cavity by a factor of ten

[147] would improve the fidelity for generation of the first Fock state from the present

value of 89% to 95%. An increased lifetime would also allow the application of more

sophisticated measurement analysis techniques on the generated states [136], which
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were not viable in the present system due to the relatively low anharmonicity. Further

improvements in the Fock state fidelity would require increasing the width of the

STIRAP Gaussian pulses (σ). Alternatively, increasing the dispersive shift χ would

enable the use of stronger drives and shorter STIRAP times, as increased anharmonicity

reduces leakage to other states. Implementing adiabatic shortcuts [148–150] is another

approach which could potentially speed up the transfer process. I note that if the cavity

lifetime is much shorter than the qubit lifetime, STIRAP can be used to reset the qubit

by transferring population from the |e〉 ladder to the |g〉 ladder and using the short

cavity lifetime to initialize to |g0〉.

I note that the STIRAP approach also works in the reverse direction; if the order of

the Stokes and probe pulses are reversed, then the population will be transferred from

the cavity to the qubit. In fact, I used this technique to measure the lifetime of the first

Fock state and found it to be 2.51µs, in good agreement with the decay rate of the

cavity. This protocol could be used for single-shot detection of itinerant microwave

photons with noise limited only by the fidelity of the qubit readout. Such a high-fidelity

single-microwave-photon detector may allow measurements of the Bell state between

the qubit and the cavity, including violation of Bell’s inequality [151].
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CHAPTER 7

A Generalized CNOT Gate

7.1 Introduction

Entanglement is at the core of quantum computing, as can be seen from the require-

ment that we must be able to do arbitrary single-qubit rotations and an entangling

two-qubit gate in order to form a universal quantum gate set [3, 152]. Different types

of entangling gates have performance that is facilitated or hindered depending on the

computer architecture, and a wide variety of such gates have been examined using

trapped ions [11], semiconductor quantum dots [153], and nitrogen-vacancy centers

in diamond [154]. For superconducting qubits, entangling gates can be broadly cate-

gorized into those based on flux-tunability & parametric control, and all-microwave

control [155, 156]. Understanding the trade-offs and performance of gates for quan-

tum computing applications is an active area of research, with scalability, ease of use,

gate speed and gate fidelity being important factors in determining the suitability of a

gate for a particular quantum system.

In cQED [42] based systems, flux-tunable elements allow fast and efficient gates
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at the expense of more control lines and shorter coherence times, mostly attributed

to flux-noise and operating the qubits off the sweet spot [157]. Examples of such

gates include the dynamically tuned C-Phase gate [158–160], the iSWAP gate [161],

and the direct-resonance
p
iSWAP gate [162, 163]. Gates utilizing all-microwave

controls are slower in general, require fewer control lines but enable longer qubit

lifetimes. Examples include the cross-resonance (CR) gate [164, 165], resonator-

sideband-induced
p
iSWAP gate [166], the microwave-activated C-Phase gate [167],

and the resonator-induced-phase (RIP) gate [46, 168]. A major limitation of the CR

gate is the requirement of positioning qubit frequencies within a narrow window, which

proves cumbersome when scaling to many qubits, due to frequency crowding issues

[169]. The CR gate also requires the qubits to be addressed through individual input

drive lines, which is a potential limitation. On the other hand, the RIP gate is able to

operate with a common qubit drive through a bus cavity and with a large frequency

detuning. However, the interaction between the qubits is directly mediated through

the cavity and exposes the system to significant losses via the cavity, especially if one

wants to use a strongly coupled cavity for high-speed readout.

In this chapter, I present my results from an experimental implemention of an

all-microwave generalized CNOT gate, using the technique Speeding up Waveforms by

Inducing Phases to Harmful Transitions (SWIPHT) [170, 171]. The SWIPHT gate has a

few potential advantages compared to the CR gate, including that the detuning between

qubits is not as critical for gate performance, and individual qubit addressability is not

required. Furthermore, as the interaction between qubits is indirectly mediated by the

cavity, the SWIPHT gate is not as susceptible to decoherence from the cavity as the RIP
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gate is. Our cavity was very short-lived by-design to allow a rapid readout, but this had

no apparent effect on gate performance, as verified by master equation simulations.

As I discuss below, I found that my results were in good agreement with the master

equation simulations and that the gate fidelity was primarily limited by the gate time,

the lifetime of the qubits, and SPAM errors.

7.2 The Device and the Experimental Setup

7.2.1 Details of the cQED System

The cQED system I used in this experiment consisted of the two transmons SPP-v1-Q6

and SPP-v1-Q7 on separate chips mounted in the single three-dimensional supercon-

ducting Al cavity 6G. The device was cooled on the mixing chamber of the Leiden

CF-450 dilution refrigerator, nominally to a base temperature of 20 mK [27, 69]. The

cavity 6G, which originally only had a single slot in the center of the lid, was modified

by machining two slots for the transmons, with each slot being 3 mm equidistant from

the center of the lid (see Fig. 7.1). Each transmon had a single Al/AlOx/Al Josephson

junction and two large 500µm× 650µm Al pads capacitively shunting the junction.

All the results I report in this chapter were obtained during Measurement Run #7.

The transition frequencies between the two lowest levels (|g〉 and |e〉) of the trans-

mons were ωL/2π = 6.07135 GHz for qubit L (QL), and ωH/2π = 6.754 27GHz for

qubit H (QH). The direct capacitive coupling between the transmons, combined with
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Fig. 7.1 Computer generated model of two transmons and the two sections of the 3D Al cavity.

the indirect coupling through the 7.7463 GHz cavity resonance, resulted in a qubit-qubit

dispersive shift [172] of 2χqq/2π= −1.04MHz. The detailed system parameters are

given in Table 7.1. I determined the system parameters such as the bare frequencies of

the components, and the couplings between components by diagonalizing the coupled

Hamiltonian for the system (see next Section).

7.2.2 The System Hamiltonian

The effective Hamiltonian for the coupled system can be written as,

H̃0 = ħh
∑

j=L , H

�

ω̃ ja
†
j a j +

E( j)C

2
a†

j a j

�

a†
j a j − 1

�

+ g j

�

a†
Ra j + aRa†

j

�

�

+ħhω̃Ra†
RaR +ħhJ

�

a†
LaH + aLa†

H

�

, (7.1)
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Table 7.1 Device parameters for the two qubits coupled to the cavity. Values were obtained
by extracting eigenstates for the Hamiltonian Eq. (7.1) and comparing the resulting transition
frequencies to the measured spectrum.

System parameter Symbol Value

Bare frequency of transmon L ωL/2π 6.10322 GHz
Bare frequency of transmon H ωH/2π 6.79943 GHz
Bare frequency of cavity ωR/2π 7.66927 GHz
Charging energy of transmon L E(L)

C /h 206.5 MHz
Charging energy of transmon H E(H)

C /h 192.6 MHz
Transmon-transmon direct coupling J/2π 14.3 MHz
Cavity-transmon coupling (L) gL/2π 224.6 MHz
Cavity-transmon coupling (H) gH/2π 207.5 MHz
Cavity-transmon dispersive shift (L) χL/2π −3.3 MHz
Cavity-transmon dispersive shift (H) χH/2π −7.2 MHz
Qubit-qubit dispersive shift χqq/2π −1.04 MHz
Cavity lifetime 1/κ 50 ns
Relaxation time of transmon L T1L 9.0µs
Relaxation time of transmon H T1H 3.5µs
Spin-echo time of transmon L T2L 14.6µs
Spin-echo time of transmon H T2H 6.2µs

where a and a† are the annihilation and creation operators, and the subscripts L, H,

or R identifies whether the operation is on QL, QH, or the resonator state. Since the

gates I perform do not involve occupation of excited states of the cavity or transmon

levels higher than |e〉 (i.e. |f〉 , |h〉 , . . . ), for simplicity, I restrict consideration to the

computational two-qubit subspace of the system spanned by {|gg〉 , |ge〉 , |eg〉 , |ee〉},

where the labels within kets represent the states of QL and QH, respectively. In this

case, the undriven system can be described by the Hamiltonian:

H0 =
ħh
2

�

ωL +χqq

�

σ(L)
z +
ħh
2

�

ωH +χqq

�

σ(H)
z +
ħhχqq

2
σ(L)

z σ
(H)
z , (7.2)
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where σ(L)
z and σ(H)

z are the Pauli-Z operators for the qubits L and H, respectively.

The two-qubit system was driven using the SWIPHT protocol (described in Sec. 7.3),

with qubit L as the control, and qubit H as the target [170]. The drive Hamiltonian

can be expressed as:

Hd =
ħhΩ(t)

2

�

σ−H ei(ωd t+φd) +σ+H e−i(ωd t+φd)
�

, (7.3)

where Ω(t) is the envelope of the drive pulse, σ+H is the raising operator for qubit H,

σ−H is the lowering operator for qubit H, φd is the drive phase and ωd is the drive

frequency for the gate pulse. The full system Hamiltonian for the two-qubit subspace

can then be written as,

H =H0 +Hd. (7.4)

7.2.3 Joint Qubit State Readout

Since the two qubits were coupled to a single readout cavity, I had to develop

a method to read out the state of both qubits. This was not the standard situation

where a single transmon was coupled to a cavity, and the cavity can be probed at

its bare frequency with a high-power pulse to destructively measure the qubit state

[104]. For the single qubit case, optimization of the pulse power allows maximum

discrimination between the |g〉 and |e〉 states of the qubit, and pumping to higher

states of the transmon can be used to achieve a higher degree of discrimination [33]. I
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Fig. 7.2 Two-transmon S-curves. Cavity S21 measurements of ∆V/V versus Pbias averaged
over 1000 shots taken for 10 different two-qubit state initializations.

extended this standard approach to perform joint-state-readout of the two-transmon

system by judicious choice of measurement power and mappings to higher transmon

levels.

To set up the joint-readout, I first initialized the two-transmon system in each of

the nine states |gg〉 , |eg〉 , |ge〉 , |fg〉 , |ee〉 , |gf〉 , |fe〉 , |ef〉 , |gh〉 , |eh〉. After each

state initialization, a 2µs long pulse was applied on resonance with the bare cavity

frequency, and the resulting transmission ∆V/V averaged over 1000 shots. I did these

measurements as a function of cavity power Pcav, to obtain the switching curves ∆V/V

versus Pcav for each of the transmon states (see Fig. 7.2).

The vertical dashed lines in Fig. 7.3 show the seven bias powers P1–P7 that I selected

for joint qubit-state readout. I chose |e〉 → |f〉 or |e〉 → |f〉 → |h〉 mappings based on
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their ability to discriminate between the eigenstates |gg〉 , |ge〉 , |eg〉 , and |ee〉. The

bias powers were hand-picked to maximize the amount of information extracted using

a minimal number of measurements. For example, at power P4, the |gh〉 and |eh〉

signals were nearly identical (∼ 0.21), and the |gg〉 and |eg〉 signals were also close to

each other (∼ 0.01). Thus, if the excited state of qubit H was mapped |e〉 → |f〉 → |h〉,

P4 would be an ideal bias point to measure the state of transmon H, irrespective of the

state of transmon L. In contrast, if qubit H were only mapped |e〉 → |f〉, the resulting

signals for |gf〉 and |ef〉 would be further apart. Similarly, if qubit L was mapped

|e〉 → |f〉, the resulting signal is not as large (0.08–0.12) and provides less contrast

(see Fig. 7.3). Furthermore, I preferred to use points on Fig. 7.2 where the curves had

smaller slopes, to reduce the uncertainty in measured values. Table 7.2 summarizes

the resulting bias points and mappings that I used.

Figure 7.4 shows the joint measurement procedure; after gating operations on

the qubits were finished, one or two state maps were applied, followed by a cavity

measurement pulse. For a given initial state, the application of a mapping β followed

by a measurement pulse at cavity bias power Pβ resulted in an average transmission

signal

Mβ =C (β)gg Pgg +C (β)eg Peg +C (β)ge Pge +C (β)ee Pee, (7.5)

wherePi j is the probability of finding the system in the state |i j〉, andC (β)
ν

is the output

when the system is in state ν and power Pβ is applied (see Eq. (7.6)). To determine the

Pi j for an unknown state, I determined the average values ofMβ for β = {1, . . . , 7} by
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Fig. 7.3 Cavity powers chosen for joint qubit readout. Plot of pulsed cavity transmission
measurements ∆V/V , averaged over 1000 shots, versus cavity bias power Pbias for different
initial two-qubit states. The measurement was performed at the bare cavity frequencyωR/2π =
7.680438 GHz. Dashed lines show powers P1–P7 chosen for joint-qubit readout. Each power
Pi has four associated symbols, corresponding to the system being prepared in |gg〉 (black),
|eg〉 (red), |ge〉 (blue), or |ee〉 (green), and then mapped to a higher level in some cases (see
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Fig. 7.4 Pulse train for joint qubit readout. The pulses used for the joint qubit readout are
depicted. Following qubit manipulation (red), one or two mapping pulses (yellow and gold)
are applied, and then the cavity measurement pulse (black) is applied at the corresponding
power Pβ (as listed in Table 7.2).

completing ∼ 1000 repeated preparations, mappings, and measurements of the same

state. Finally, to find the best fit values for the probabilities
�

Pgg, Pge, Peg, Pee

	

, χ2
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Table 7.2 Parameters for joint-qubit readout shown in Fig. 7.4. Seven different cavity input
bias powers Pβ between −75.4dBm and −69.5 dBm were used for joint qubit measurements.
Note that in all cases, the |e〉 state of transmon L or transmon H was mapped to the |f〉 or |h〉
state before applying the cavity readout pulse. Also Map 2 was only used for β = 4, 6, and 7,
to map |f〉 → |h〉 for QH.

β Pβ (dBm)
Map 1 Map 2

QL QH QH

1 −75.4 — e→ f —
2 −73.9 — e→ f —
3 −72.7 e→ f — —
4 −72.4 — e→ f f→ h
5 −71.3 e→ f — —
6 −70.5 — e→ f f→ h
7 −69.5 — e→ f f→ h

minimization was performed on Eq. (7.5) as discussed further in Sec. 7.4.

I did separate measurements to determine the calibration data matrix C and the

corresponding error matrix E for the seven cavity powers Pβ , for each of the initialized

eigenstates. The C (β)
ν

values can be directly read off of Fig. 7.3. Expressed as a matrix,

I found:

C = 10−2



















0.554 3.69 0.724 11.6
0.657 16.35 0.943 19.86
0.836 5.88 9.62 21.35
1.05 21.40 2.13 22.46
2.4 18.06 21.23 23.405

4.02 23.42 18.24 24.003
15.06 23.959 23.44 24.367



















. (7.6)
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The corresponding matrix of uncertainties for C was found to be

E = 10−2



















0.033 0.60 0.065 2.6
0.052 0.92 0.099 0.25
0.082 0.41 1.80 0.20
0.11 0.22 0.18 0.16
0.2 0.51 0.24 0.086
0.27 0.13 0.45 0.065
0.42 0.081 0.14 0.025



















. (7.7)

I obtained these statistics by repeating the 1000 shot measurements 1000 times, for

each of the data points in Fig. 7.3. For each set of 1000 shots, I found the mean value;

let C (β)ν, j be the mean for the jth set. I then found C (β)
ν

by averaging together the 1000

values of C (β)ν, j , and took the standard deviation of the C (β)ν, j to get E (β)
ν

. Thus E (β)
ν

is

the uncertainty in C (β)
ν

.

The expression for Mβ given in Eq. (7.5) corresponds to a measurement that

returns an average value C (β)
ν

when the system is in eigenstate ν and power Pβ is

applied. A more complete model takes into account the noise in the readout electronics

and the bifurcating nature of the non-linear readout [104]. In this case, each single-

shot measurement is randomly drawn from a distribution that I will assume has the

following simple form [173]

dp(β)
ν

dV
= K







�

1−K (β)
ν

�

σ
(β ,ν)
low

p
2π

exp



−

�

V − V (β ,ν)
low

�2

2
�

σ
(β ,ν)
low

�2



+

�

K (β)
ν

�

σ
(β ,ν)
high

p
2π

exp



−

�

V − V (β ,ν)
high

�2

2
�

σ
(β ,ν)
high

�2











,

(7.8)

where

�

dp(β)
ν

dV

�

dV is the probability of a single-shot measurement producing an output

between V and V + δV , where V ≡ ∆V/V , and K is a normalizing constant; here
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K = 1 since
∫ � dp

dV

�

dV = 1. K (β)
ν

and
�

1−K (β)
ν

�

are probabilities that the cavity

bifurcates to the “high” and “low” transmission states when measured, respectively.

V (β ,ν)
low and σ(β ,ν)

low are the mean and standard deviation of the cavity signal ∆V/V when

it bifurcates to the “low” transmission state, respectively. V (β ,ν)
high and σ(β ,ν)

high are the mean

and standard deviation of the cavity signal ∆V/V when it bifurcates to the “high”

transmission state, respectively. Note that the underlying distributions corresponding

to “high” and “low” transmission states are assumed to be normal distributions as

one would expect for simple added noise, and all the preceding listed quantities are

expressed with the measurement performed at a power Pβ with the system prepared

in the eigenstate ν. Full analysis of the results using this model of measurement is in

progress.

7.3 The SWIPHT Gate

The SWIPHT gate is based on a theoretical method that implements a desired

evolution on a driven two-level system [174, 175]. The method provides a general

framework to implement a multitude of operations on a two-level system. Economou

and Barnes [170] applied this method to a system of two transmons coupled to a single

cavity. In particular, they provided an analytical solution to implement a generalized

CNOT gate as well as a generalized CZ gate. I used their SWIPHT technique to implement

a generalized CNOT gate which I will call the SWIPHT gate.

An interesting feature of Economou and Barnes [170] implementation of the
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SWIPHT gate is that the control pulse shape is entirely determined by the qubit-qubit

dispersive shift χqq. The duration of the pulse is

τg =
5.87

2
�

�χqq

�

�

, (7.9)

and the pulse shape can be written as

Ω(t) =
γ̈

q

χ2
qq − γ̇2

− 2
q

χ2
qq − γ̇2 cot (2γ), (7.10)

where

γ(t) = 138.9

�

t
τg

�4�

1−
t
τg

�4

+
π

4
. (7.11)

From Eq. (7.9) and Eq. (7.10) it can be shown that the maximum amplitude of the

pulse is

Ωmax = 0.887× 2
�

�χqq

�

� . (7.12)

The SWIPHT gate operates on the principle of applying a π-rotation on a desired

transition (bit-flip), and simultaneously applying a 2π-rotation (no bit-flip) on an

undesired transition within the computational subspace. The resonator plays a minimal

role, allowing the use of a cavity with a strongly coupled output port for a fast qubit

readout. The generalized CNOT gate implemented by the SWIPHT gate can be written
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as

SWIPHT=







0 eiϕd 0 0
e−iϕd 0 0 0

0 0 eiξ 0
0 0 0 eiζ






, (7.13)

with ϕd = 0, ξ ≈ 1.16 rad, and ζ ≈ 1.98 rad (note ξ+ ζ = π). As with a standard

CNOT operation, the target qubit is flipped depending on the control qubit. However,

this is a generalized CNOT gate since the control qubit also acquires extra z-rotations

(represented by ξ and ζ) due to the non-trivial 2π-rotation imposed on the harmful

transition, as discussed next.

The numerical values in Eqs. 7.9 and 7.11 are determined by the boundary con-

ditions for the desired |gg〉 ↔ |ge〉 transition at frequency ωH to complete a π-

rotation, and the undesired |eg〉↔ |ee〉 transition at frequency ωH + 2χqq to complete

a 2π-rotation. For our experiment, ωd/2π = 6.75427 GHz, Ωmax/2π = 913kHz,

τg = 907ns, and the resulting control pulse envelope is shown in Fig. 7.5. The re-

quired SWIPHT pulse was generated using a 25 GSa/s Tektronix AWG70002A arbitrary

waveform generator. Since an AWG performs digital signal processing, it has a limited

sampling rate and voltage resolution, resulting in minor distortions of the output

waveform compared to an ideal waveform.
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Fig. 7.5 SWIPHT pulse shape Ω/2π versus time t. The analytically derived SWIPHT pulse
envelope Ω(t) used in the experiment has a peak amplitude of Ωmax = 913 kHz and a duration
of τp = 907 ns.

7.4 Quantum State Tomography

I used the method outlined in Sec. 7.2.3 to determine the diagonal elements

(i.e. populations) ρii of the density matrix. In this section, I discuss how I also

obtained the off-diagonal elements (i.e. coherences) of the density matrix by using

quantum state tomography (QST). This involved applying rotations to the system just

prior to measurement [64, 176]. By performing these rotations before measurement,

partial information of the state was obtained. The partial information was then used

to reconstruct the complete density matrix using a maximum likelihood estimation

technique [63] as described next.

144



7.4. QUANTUM STATE TOMOGRAPHY

Table 7.3 List of tomographic maps. Overcomplete set of tomographic operations applied
prior to the measurement protocol.

Gate Tomographic
name map

G1 I ⊗ I
G2 I ⊗ Rπ/2x
G3 I ⊗ Rπ/2y

G4 Rπ/2x ⊗ I
G5 Rπ/2y ⊗ I
G6 Rπ/2x ⊗ Rπ/2x
G7 Rπ/2x ⊗ Rπ/2y

G8 Rπ/2y ⊗ Rπ/2x

G9 Rπ/2y ⊗ Rπ/2y

Gate Tomographic
name map

G10 I ⊗ R−π/2x
G11 I ⊗ R−π/2y

G12 R−π/2x ⊗ I
G13 R−π/2y ⊗ I
G14 R−π/2x ⊗ R−π/2x
G15 R−π/2x ⊗ R−π/2y

G16 R−π/2y ⊗ R−π/2x

G17 R−π/2y ⊗ R−π/2y

7.4.1 Constructing the Likelihood Function

To determine the density matrix from my tomographic data, I constructed a likeli-

hood function L that characterized the closeness of the density matrix to the data. To

ensure that I extracted a physically meaningful density matrix, even if there were state

preparation and measurement (SPAM) errors, I used an explicitly “physical” represen-

tation of the density matrix (described in detail in Sec. 2.4.2), then varied the free

parameters in ρ to find the most probable representation of the state of the system

[63]. In this analysis, I used the 17 tomographic pulse combinations (see Table 7.3)

for each cavity measurement power Pβ to get an overcomplete set of measurements

Mβ ,τ [64].
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The likelihood function L is given by

L =
17
∑

τ=1

7
∑

β=1

�

Mβ ,τ −
∑

ν

�

C (β)
ν

�

Gτρ̂G†
τ

�

νν

�	2

∑

ν

�

E (β)ν
�

Gτρ̂G†
τ

�

νν

�2 , (7.14)

where ρ̂ is the parameterized, explicitly-physical density matrix [63]. Here τ is the in-

dex for applied tomographic gates, β is the index for cavity mapping and measurement

power Pβ , ν is the index for system eigenstates {|gg〉 , |ge〉 , |eg〉 , |ee〉}, and Gτ are the

tomographic gates used for QST (see Table 7.3). The numerator of L quantifies the

closeness of measured signalsMβ ,τ to those expected from ρ̂. In general the different

measurementsMβ ,τ will have different uncertainties associated with them. Thus, the

closeness is weighed by using the estimated square of the uncertainty inMβ ,τ in the

denominator of L . By minimizing L with respect to the 16 free parameters in ρ̂ (see

Appendix D), the most probable physical density matrix ρ was extracted.
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Fig. 7.6 Pulse train used during QST. Following qubit manipulation (red), tomographic pulses
G(L)
τ on qubit L (green) and G(H)

τ on qubit H (blue) were applied. As in Fig. 7.4, up to two
mapping pulses (yellow and gold) were then applied and finally the cavity measurement pulse
(black) was applied.
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7.4.2 QST During SWIPHT Evolution

To verify that the system was evolving properly during the SWIPHT gate, the

SWIPHT pulse was started at t = 0, but stopped at times nδt < τg for n = 0 to

n = 181, and δt = 5ns; QST was performed for each timestep. For the measurements,

I first initialized the system in the desired state (|gg〉, |ge〉, |eg〉, or |ee〉), applied the

part of the SWIPHT pulse from time t = 0 to nδt, applied tomographic pulses G(L)
τ

and G(H)
τ

, and finally performed a measurement (see Fig. 7.6). At each 5 ns timestep,

this process was repeated for each of the seven cavity powers Pβ for 1000 single-shot

averages, to obtainMβ ,τ.

The points in Fig. 7.7 show the measured probabilities (Pgg, Pge, Peg, and Pee)

versus t, with the system initialized in the |gg〉 state (Fig. 7.7(a)) and in the |ge〉 state

(Fig. 7.7(b)). The curves in Fig. 7.7 show reasonably good agreement between the

data and master equation simulations (as discussed below), provided I include a drive

phase φd = 245◦. Note that when qubit L is not excited, e.g. |gg〉, a bit-flip operation

takes place and when qubit L is excited, e.g. |eg〉, the bit-flip operation is suppressed. I

note that the maximum eigenstate population at the end of the operations is not 100%,

and the master equation simulations suggest that most of this loss can be attributed to

qubit relaxation.

The master equation simulations only included the relaxation rates of the two qubits,

since the devices were mostly T1 limited. The example code for QST in Appendix D

show the procedure for the full SWIPHT pulse length. For the case of simulating the

evolutions in Fig. 7.7, I executed the program and extracted the density matrix for all
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times t < 908ns.
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Fig. 7.7 (a) Evolution of populations during partial SWIPHT gate lasting time t, after initializing
the system in state |gg〉 and then performing QST. Discrete points are experimental data and the
solid curves are obtained using master equation simulations of the two-qubit system. This data
was obtained with a SWIPHT drive phase φd = 245◦. (b) Corresponding population evolution
during partial SWIPHT pulse lasting time t, when system was prepared in state |eg〉.
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7.4.3 Verification of Coherence and Phase Control

To verify that the phase ϕd of the SWIPHT gate (see Eq. (7.13)) is set by the phase of

the drive, I variedφd of the drive from−2π rad to +2π rad while generating a Bell state

between the two qubits. To do this, I initialized qubit L in one of four superposition

states
�

R±π/2x ,y ⊗ I
�

|gg〉, where I is the identity operator, and R is the rotation operator

on qubit L with a given axis (x or y) and phase (±π/2). I then applied, the SWIPHT gate

and performed QST. Since the initial state was an equal superposition of the control

qubit’s |g〉 and |e〉 states, applying the generalized CNOT gate generated a Bell state

between the two qubits. Figure 7.8 shows the resulting dependence of the off-diagonal

term ρge,eg in the density matrix versus φd. The plots showed a clear oscillating pattern

with a period 2π in φd, an average amplitude of 0.41. The master equation simulations
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Fig. 7.8 Plot of Im
�

ρge,eg

�

versus the phase φd of the SWIPHT pulse, for four different initial

superposition states of qubit L
�

R±π/2x ,y ⊗ I
�

|gg〉. Points are from QST measurements and the
solid curves are from master equation simulations of ρ with a fixed added phase offset of 245°.
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Fig. 7.9 Pulse train for QPT. The two qubits were initialized in one of the states given by
{I , Rπx , R±π/2x ,y }

⊗2 |gg〉 (green and blue striped pulses for qubit L and qubit H, respectively). The
SWIPHT gate was then applied (red), followed by the tomographic pulses (green and blue solid
pulses), mappings to higher levels (yellow and gold), and the measurement pulse (black).

of ρge,eg (curves) show good agreement with data, provided I include a phase offset of

245°. This offset is likely due to the phase shift along the heavily-attenuated > 2 m

long input line.

7.5 Quantum Process Tomography

To provide a more complete characterization of the SWIPHT gate, I also performed

quantum process tomography (QPT) [67, 177]. The essential idea of QPT is to prepare

a complete set of initial states and then to perform QST on all the resulting states

to quantify the performance of the gate. I adopted the method discussed in O’Brien

et al. [67], in which a χ-matrix is used to characterize a quantum gate. An equivalent

method for characterizing quantum processes using the Pauli transfer matrix has been

discussed by Chow et al. [177].

Similar to QST, I needed to ensure that the χ-matrix I extracted from my measure-

ments was not un-physical. I used the 16 two-qubit Pauli operators {Âm} = { Î Î , Î X̂ , Î Ŷ ,

Î Ẑ , X̂ Î , X̂ X̂ , X̂ Ŷ , X̂ Ẑ , Ŷ Î , Ŷ X̂ , Ŷ Ŷ , Ŷ Ẑ , Ẑ Î , Ẑ X̂ , Ẑ Ŷ , Ẑ Ẑ} as a basis, where the index
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i = 1, . . . , 16 denotes the operator number. χ was then a 16× 16 matrix. Now, I can

write an ideal CNOT gate as

CNOT =
1
2

Î Î +
1
2

Î X̂ −
1
2

Ẑ Î +
1
2

Ẑ X̂ . (7.15)

Similarly the SWIPHT operation can be written as

SWIPHT = i0.4577 Î Î +
1
2

Î X̂ − i0.4577 Ẑ Î +
1
2

Ẑ X̂ + 0.2012 Î Ẑ − 0.2012 Ẑ Ẑ ,

(7.16)

where contributions to the norm smaller than 10−4 have been neglected in the real

components of the coefficients for Î Î and Ẑ Î , and the imaginary components of the

coefficients for Î Ẑ and Ẑ Ẑ . The resulting χ-matrix has 36 non-zero elements, 20 of

which are real and 16 which are imaginary. The visual representation of the χ-matrix

can serve as a gate diagnostic tool, with discrepancies between ideal and experimental

χ-matrices providing insight into sources of systematic errors and possible remedies

[3].

To ensure thatχ represents a trace-preserving process, the constraint
∑

mnχmnÂ†
nÂm =

I must be met [67]. To enforce this constraint, I introduced a Lagrange multiplier λ

and a cost function:

Ξ=
16
∑

i, j=1

¦

�

Re(Zi j)− Ii j

�2
+
�

Im(Zi j)
�2©

, (7.17)
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where Z =
∑

mnχmnÂ†
nÂm. I then defined a likelihood function

L̃ =
36
∑

σ=1

17
∑

τ=1

7
∑

β=1

¦

M (σ)
β ,τ −

∑

ν

�

C (β)
ν

�

Gτρ
(σ)
out G†

τ

�

νν

�

©2

∑

ν

�

E (β)ν
�

Gτρ
(σ)
out G†

τ

�

νν

�2 +λΞ, (7.18)

whereσ is an index for the overcomplete set of 36 initial states given by {I , Rπx , R±π/2x ,y }
⊗2 |gg〉

(see Fig. 7.9). In this expression, ρ(σ)out denotes an explicitly physical output density

matrix for a given initial state obtained using the χ-matrix as,

ρ(σ)out =
16
∑

m,n=1

χmnÂmρ
(σ)
in Â†

n, (7.19)

where ρ(σ)in is the density matrix corresponding to the initial state index σ.

Minimizing L̃ with respect to each complex quantity χmn and λ yields χ̃, the

maximum-likelihood estimate for the χ-matrix that describes the underlying process.

Figure 7.10(a) shows χ̃ I extracted from the measurements of the SWIPHT gate. Fig-

ure 7.10(b) and Fig. 7.10(c) show, respectively, the χ-matrices I obtained from master

equation simulations of the SWIPHT gate incorporating decoherence (χsim), and the

ideal decoherence-free case (χSW). The effects of decoherence can be seen by compar-

ing χsim to the ideal χSW; for example all the non-zero components in χSW are slightly

smaller in magnitude in χsim. The presence of some additional non-zero components

in χ̃ and χsim, that do not occur in χSW, indicate the presence of coherent errors [16].

For example, the real part of χ̃ and χsim have non-zero contributions from (I I , IX ) and

(IX , I I), while the contributions vanish in the ideal χSW. In addition, by comparing

χ̃ with χsim, I infer that additional coherent z-rotations are present in χ̃. I note that I
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Fig. 7.10 Process matrices from QPT. Real and imaginary parts of experimental (χ̃) , simulated
(χsim) and ideal (χSW) process matrices for the SWIPHT operation with qubit L as the control.
The maximum theoretical magnitude for any element is 0.25.

also observed extra z-rotations using QPT on single qubit gates (see Appendix E).

To compare the extracted χ̃ to the expected χSW from the ideal decoherence-free

SWIPHT operation, I computed the process fidelity

Fp = Tr (χ̃χSW) , (7.20)
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Table 7.4 Gate times τgate and measured QPT performance metrics Fp, Fg, and Tr (ρ2) for
several gates. For the four SWIPHT gates at the bottom of the table, the subscript denotes the
control qubit, and the superscript denotes the phase φd of the drive.

Gate τgate (ns) Fp Fg Tr (ρ2)

I ⊗ I 0 0.94 0.95 0.97
I ⊗ Rπx 37 0.93 0.94 0.97
I ⊗ Rπy 37 0.91 0.93 0.95
I ⊗ Rπ/2x 37 0.91 0.93 0.96
I ⊗ Rπ/2y 37 0.90 0.92 0.95
I ⊗ R−π/2x 37 0.90 0.92 0.96
I ⊗ R−π/2y 37 0.90 0.92 0.95
Rπx ⊗ I 72 0.89 0.92 0.95
Rπy ⊗ I 72 0.87 0.90 0.93
Rπ/2x ⊗ I 72 0.86 0.89 0.93
Rπ/2y ⊗ I 72 0.85 0.88 0.93
R−π/2x ⊗ I 72 0.82 0.85 0.94
R−π/2y ⊗ I 72 0.84 0.88 0.95
SWIPHT0

L 907 0.76 0.81 0.72
SWIPHT0

H 907 0.75 0.80 0.73
SWIPHT49π/36

L 907 0.77 0.82 0.72
SWIPHT7π/12

H 907 0.77 0.82 0.74

and the mean gate fidelity

Fg =
Fpd + 1

d + 1
, (7.21)

where d = 4 is the dimensionality of the two-qubit system [67, 178, 179]. I found that

Fp = 0.76,Fg = 0.81, and the average purity of the gate Tr (ρ2) =
�

d Tr
�

χ̃2
�

+ 1
�

/(d+

1) = 0.72 [67]. Average purity is a metric for the degree of mixture introduced by a

gate and indicates how much the process was affected by incoherent errors [178].

To understand if the SWIPHT gate was significantly limited by decoherence in the
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qubits, I performed QPT for master equation simulations; i.e. I performed QPT on

a complete set of simulated results (see Appendix D). Since the simulated results

only possessed relatively small numerical errors from the limited precision of the

numerical calculation, I ignored the denominator of the first term in Eq. (7.18) during

the minimization to calculate the simulated process matrix χsim. I observed that the

SWIPHT performance metrics from the simulations were Fp = 0.84, Fg = 0.87, and

Tr (ρ2) = 0.77. These were significantly better (5%) than the experimental results, but

otherwise showed reasonable agreement with the experiment, and revealed that the

main reason for infidelity as relaxation in the qubits.

To understand why the SWIPHT gate gave somewhat lower fidelity than found in

the simulation, I also performed QPT on other gates, including three simple variations

on the SWIPHT gate (see Table 7.4 and Appendix E). All the single qubit gates had

relatively high purity due to fast gate times, while all the SWIPHT gates showed lower

purity, in part due to qubit relaxation during the longer gate times. Of particular note

was the I ⊗ I gate, which I set up to be a zero-length operation undergoing QPT. For

this simple null gate, I found Fg = 0.95, supporting that there were ∼ 5% errors

introduced due to SPAM during QPT. I note that the I ⊗ I operation had the highest

performing metrics, compared to all other gates (see Table 7.4).
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7.6 Summary

In this chapter, I discussed my results on the SWIPHT gate, a generalized CNOT op-

eration between two fixed-frequency transmon qubits [170, 171]. Four different

implementations of SWIPHT yielded gate fidelities Fg ' 80− 82%, similar to initial

demonstrations of other all-microwave gates [165, 167, 180]. Overall, I found good

agreement between the data and master equation simulations that incorporated deco-

herence. In the presence of decoherence, the maximum theoretical gate fidelity was

Fg = 86%, while experimental fidelities were about 5% lower, likely due to SPAM. The

relatively rapid decay of the cavity with a lifetime 1/κ= 50 ns, directly affected the

qubit lifetimes due to the Purcell effect, but otherwise had a minimal impact on the

fidelity of the SWIPHT gate.

As described by Deng et al. [171], the gate time τg could be significantly reduced

by using qubits with |g〉 ↔ |e〉 frequencies that were closer together, similar to the

situation for CR gates [164, 165]. I should also emphasize that all the gate fidelities

I reported were obtained through QPT, and not corrected for state preparation and

measurement (SPAM) associated errors. Detection and measurement of the two-

qubit states was performed using a joint-readout technique, which could be further

optimized, or superseded by a more efficient dispersive readout [64]. I also note

that the single-qubit gate fidelities (see Table 7.4) could have been improved by

derivative pulse-shaping techniques [181], and this would have possibly given overall

higher SWIPHT fidelities, as process tomography is sensitive to SPAM errors in the
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state initialization and tomography pulses. Finally, I found that adjusting the drive

phase allowed excellent control of the phase of the target qubit, and that the phase

accumulation on the control qubit could be corrected through single qubit rotations.
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CHAPTER 8

Conclusion

8.1 Summary of Main Results

In this dissertation, I described my research on superconducting qubits. This work

included the design, fabrication, characterization, measurement and simulation of

transmons and cavities. All of the major results I presented were taken using the two

transmons SPP-v1-Q6 and SPP-v1-Q7, and the two cavities 6D and 6G. Depending on

the set of parameters I needed, the couplings to the cavities were modified between

different measurement runs. When not using the devices, I stored them in a dry-

box. Nevertheless, there were also some run-to-run variations and variations in the

transmons due to aging, which I had little control over.

8.1.1 Fock State Generation

In Chapter 6, I described my work on generating Fock states in a superconducting

microwave cavity. I used the STIRAP (Stimulated Raman Adiabatic Passage) technique,
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to generate the Fock states by transferring an excitation from the transmon to the cavity.

I was able to perform this transfer successively to generate Fock states up to n = 3.

The results showed good agreement with master-equation simulations I performed

using MATLAB (see Appendix C).

To confirm that the correct states were being generated, Wigner tomography [144]

would have been the method of choice. However, given the relatively short lifetime

of our cavity (κ−1 = 2.4µs), and the relatively short anharmonicity in the cavity,

performing Wigner tomography would have been challenging. Instead, I verified the

generation of the Fock states by performing Rabi oscillations on the states generated

by STIRAP. This was sensitive enough to reveal the change in cavity frequency due to

the dispersive shift. I was also able to generate superpositions between cavity Fock

states, as well as Bell states involving the transmon and the cavity.

8.1.2 A Generalized CNOT Gate

In Chapter 7, I presented my results on implementing a generalized CNOT gate

using the SWIPHT (Speeding up Waveforms by Inducing Phases to Harmful Transitions)

technique. I repackaged two qubits, which I had measured previously into a single

cavity that I had modified to hold two chips. The output coupling Q of the cavity was

set low (Qoutput ∼ 3000) to obtain a fast readout time. I initially expected this setup to

only serve as a test-bed for me to learn how to characterize two qubits, and develop

two-qubit control and measurement techniques. To my surprise, the results I obtained

far exceeded my expectations.
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One of the major issues I faced was reading out the qubit states. The qubits had

transition frequencies that were relatively close to the cavity frequency, and the coupling

g of each qubit to the cavity was not too different from the single-qubit cases I had

worked with previously. I found that the high-power-readout (see Sec. 5.2.2) worked

well for the readout of individual qubit readout for the individual qubit QH. However,

to read out both qubits efficiently I had to develop a least-squares joint-state-detection-

method, which involved measuring at multiple cavity powers and mapping the qubit

states to higher transmon levels.

The results from the SWIPHT experiment showed good agreement with the master-

equation simulations I performed using Mathematica. To fully characterize the SWIPHT gates,

I used quantum process tomography with maximum-likelihood-estimation. The con-

struction and numerical search for the minimum of the likelihood function, which

contained 257 parameters and 4284 individual terms, proved difficult using Mathe-

matica. I therefore apportioned the likelihood function for the 36 initial states, used

MATLAB to generate those 36 components in parallel, and finally imported the grand

likelihood function function into Mathematica for numerical minimization. With this

approach, I was able to complete QPT characterization of gates in a timely manner.
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8.2 Possible Improvements

8.2.1 Improving Fock State Generation

The major limitation in my experiment to generate Fock states was the lifetime of

the cavity. Having a longer lifetime would have resulted in higher fidelities, as well as

improved detection and verification methods. As I discussed in Chapter 6, I set the

cavity quality factor to ensure a reasonably fast readout time (∼ 3µs). Unfortunately,

this relatively short time was detrimental to the STIRAP transfer of the excitation; the

photons suffered significant loss since they were stored in the same cavity that I used

to read out the qubit state.

One way to improve the process would be to use two cavities — a storage cavity

for storing the generated Fock states and a measurement cavity for reading out the

transmon state. Two possible geometries for such an approach have been discussed by

Reagor et al. [147] and Axline et al. [182]. In both cases, they used a high-quality-factor

seamless cylindrical cavity as the storage cavity, while the readout cavity was another

3D cavity or 2D resonator, respectively.

Having a larger qubit-cavity dispersive shift would also facilitate a faster operation

time; the STIRAP pulses were limited in Rabi drive strength by the limited anhar-

monicity. For the parameters of my device, more intense pulses would have resulted in

unwanted excitations into other cavity states. By increasing the coupling of the qubit

to the cavity, or decreasing the qubit-cavity detuning, a larger qubit-cavity dispersive

shift would be generated. This allows the use of stronger drives with shorter durations.
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8.2.2 Improving the SWIPHT gate

There are many possible avenues for improving the generalized CNOT gate that I

implemented using the SWIPHT technique. As I discussed in Chapter 7, a major limiting

factor in the gate time was the small qubit-qubit dispersive shift χqq. This quantity can

be increased by reducing the qubit-qubit detuning, and also by having the |g〉↔ |e〉

of one qubit close in frequency to the |e〉↔ |f〉 transition of the second qubit [171].

However, having a higher χqq would significantly affect the operation of single-qubit

gates, since this is a fixed coupling term. It would then be necessary to implement

special techniques to perform single-qubit gates [183], or engineer a SWIPHT-like pulse

to perform identical operations on both transitions.

I should note, that the technique introduced by Economou and Barnes [170] is fairly

general, and applies to any two transitions which are close in frequency. Thus, the exact

mechanism which lifts the degeneracy between the two close transitions is irrelevant.

When the degeneracy is lifted, it is possible to appropriately address the system using

SWIPHT to execute a CNOT gate. The speed and performance in SWIPHT however seems

to come at the cost of the simplicity of single-qubit gates. Examination of the trade-offs

of different parameter choices would be an interesting topic for further investigation.
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APPENDIX A

Experimental Determination of Quality Factors for a

Bandpass Cavity

A.1 Modeling the Cavity

A bandpass cavity having two ports can be modeled using a simplified lumped

element circuit. This allows for analytical expressions that can be used to extract the

scattering parameters (S-parameters).

C L R

1 : p q : 1

V2V1

Fig. A.1 Simplified effective circuit model for a bandpass resonator.
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A.2. ABCD MATRIX ANALYSIS FOR THE MODEL

I used inductive coupling in Fig. A.1 to model the input and output coupling from

the transmission lines to the cavity. This simplifies the analysis considerably. L, C ,

R are the effective inductance, capacitance and resistance of the fundamental mode

of the cavity. G0 is the characteristic admittance of the transmission lines. p and q

represent the ratios of the turns of the input and output transformers, respectively.

The internal, input, output, loaded, and external quality factors can be defined

respectively as [184]

Q0 = R

√

√C
L
=

R
ω0 L

(A.1)

Qin =
p2

G0

√

√C
L
=

p2

ω0 LG0
(A.2)

Qout =
q2

G0

√

√C
L
=

q2

ω0 LG0
(A.3)

1
QL
=

1
Q0
+

1
Qin
+

1
Qout

(A.4)

1
QE
=

1
Qin
+

1
Qout

. (A.5)

A.2 ABCD Matrix Analysis for the Model

ABCD matrices are a convenient method to model circuits with many different

components [103]. The ABCD matrices for the circuit in Fig. A.1 are, from left to right,

K=







1
p 0

0 p






, M=







1 0

1
R 1






, N=







1 0

1
iωL 1






, P=







1 0

iωC 1






, Q=







q 0

0 1
q






.
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A.3. OBTAINING THE S-PARAMETERS

The total ABCD matrix for the complete circuit is obtained by multiplying the matrices

for individual components, preserving the order, and one finds:

U= K ·M ·N · P ·Q=







q
p 0

pq
�

1
R −

i
Lω + iCω

� p
q






.

A.3 Obtaining the S-parameters

The S-parameters can be found from the ABCD matrix [103] using the following

relations:

S11 =
A+ BG0 −

C
G0
− D

A+ BG0 +
C
G0
+ D

= −1+
2
�

QL
Qin

�

1+ i QL
ωω0
(ω2 −ω2

0)

= −1−
2iQ0Qoutωω0

Q0QinQout(ω2 −ω2
0)− i (QinQout +Q0Qout +Q0Qin)ωω0

(A.6)

S22 =
−A+ BG0 −

C
G0
+ D

A+ BG0 +
C
G0
+ D

= −1+
2
�

QL
Qout

�

1+ i QL
ωω0
(ω2 −ω2

0)

= −1−
2iQ0Qinωω0

Q0QinQout(ω2 −ω2
0)− i (QinQout +Q0Qout +Q0Qin)ωω0

(A.7)

S21 =
2

A+ BG0 +
C
G0
+ D

=
2
�

QLp
QinQout

�

1+ i QL
ωω0
(ω2 −ω2

0)

=
2Q0ωω0

p

QinQout

(QinQout +Q0Qout +Q0Qin)ωω0 + iQ0QinQout(ω2 −ω2
0)

. (A.8)
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A.4. APPROXIMATIONS FOR CALCULATION OF QUALITY FACTORS

In obtaining the above expressions, I have made the following substitutions and

simplified to eliminate the variables p, q, L, C , R and G0.

R=ω0 LQ0

C =
1
ω2

0 L

p =
p

ω0 LG0Qin

q =
p

ω0 LG0Qout

A.4 Approximations for Calculation of Quality Factors

A.4.1 Qout =Qin = 2QE

With the assumption Qout = Qin = 2QE, I obtain the following formula for S21

(Eq. (A.8))

S21 =

�

QL
QE

�

1+ i QL
ωω0
(ω2 −ω2

0)
. (A.9)

This reduces to the following simplified formula under the approximation ω ≈

ω0 +∆,

S21 =

�

QL
QE

�

1+ 2iQL
ω−ω0
ω0

. (A.10)
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A.4.2 ω=ω0

For the case ω =ω0, the formulas for the S-parameters are considerably simplified

allowing for back of the envelope calculations of Qin and Qout. One finds:

S(ω=ω0)
11 =

2QL

Qin
− 1 (A.11)

S(ω=ω0)
22 =

2QL

Qout
− 1 (A.12)

S(ω=ω0)
21 =

2QL
p

QinQout

. (A.13)
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APPENDIX B

Rabi Oscillations after FSG

Rabi oscillations were performed immediately after |g1〉 and |g2〉 generation. The

amplitude and frequency of the resulting oscillations allowed me to verify that the

correct state was generated. I compare the resulting oscillations to master equation

simulations, and observe good agreement.
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Fig. B.1 Rabi oscillations performed after |g1〉 generation. Immediately following |g1〉 gener-
ation, Rabi oscillations were performed with microwave drives of frequency ωq and ωg1→e1.
Different drive amplitudes were used, resulting in resonant oscillations when driven at ωg1→e1
(black) and off-resonant oscillations when driven at ωq (red) as expected. The oscillations
from driving at ωg1→e1 can be easily distinguished from higher-frequency and lower-amplitude
oscillations produced by driving at ωq. The nominal strengths for the Rabi drives are (a)
1.5 MHz (b) 3.1 MHz (c) 4.6 MHz (d) 6.2 MHz (e) 7.7 MHz and (f) 9.2 MHz.
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Fig. B.2 Rabi oscillations performed after |g1〉 generation under ωg1→e1 drive. Data (black
points) are overlaid with simulated evolution (solid red). Examination of these curves reveals
that the oscillations contain components at two different frequencies: a majority corresponding
to resonant Rabi oscillations and a minority component at the off-resonant Rabi frequency. The
nominal strengths for the Rabi drives are (a) 1.5 MHz (b) 3.1 MHz (c) 4.6 MHz (d) 6.2 MHz
(e) 7.7 MHz (f) 9.2 MHz (g) 10.8 MHz (h) 13.8 MHz.
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Fig. B.3 Rabi oscillations performed after |g1〉 generation under ωq drive. Data black points)
are overlaid with simulated evolution (solid red). Examination of these curves reveals that
the oscillations contain components at two different frequencies: a majority corresponding to
resonant Rabi oscillations and a minority component at the off-resonant Rabi frequency. The
nominal strengths for the Rabi drives are (a) 1.5 MHz (b) 3.1 MHz (c) 4.6 MHz (d) 6.2 MHz
(e) 7.7 MHz (f) 9.2 MHz (g) 10.8 MHz (h) 13.8 MHz.
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Fig. B.4 Rabi oscillations performed after |g2〉 generation under ωg2→e2 drive. Following |g2〉
generation, a limited number of Rabi oscillations were performed at various drive strengths to
verify the generated state. Data from experiments (black points) are overlaid with simulated
evolution (solid red). The nominal strengths for the Rabi drives are (a) 1.5 MHz (b) 3.1 MHz
(c) 7.7 MHz and (d) 15.4 MHz.
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APPENDIX C

MATLAB Code for STIRAP Master Equation Simulations

C.1 The Main Program for Simulating FSG upto n= 3

1 clear all;
2

3 %% System Parameters
4

5 ncav = 25; % number of cavity levels
6 ntot = 2*ncav + 1; % total number of levels
7 pi2= 2*pi;
8 wC = pi2*7.934971E9;
9 wQ = pi2*5.5317455E9;

10 g = pi2*69.8E6;
11

12 piAmp = pi2/(59E-9); %59 seemed without any interference
13 piAmp2 = pi2/(65E-9); %65 seemed without any interference
14 piAmp3 = pi2/(65E-9); %65 seemed without any interference
15 rabiAmp = 0*pi2/(60E-9);
16

17 qubAmp = pi2*9.6E6;
18 cavAmp= pi2*26.2E6;
19 driveAmp=cavAmp;
20 a=qubAmp/cavAmp;
21

22 pulseLength = 340.01E-9;
23 stDevFraction = 4.8;
24 pulseSeparation = 14E-9;
25

26 delta1 = pi2*8.1E6; % detuning
27 delta2 = pi2*9.7E6;
28 delta3 = pi2*11.3E6;
29

30 piLength= 32.01E-9;
31 piLength2= 34.01E-9;
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C.1. THE MAIN PROGRAM FOR SIMULATING FSG UPTO N = 3

32 piLength3= 32.01E-9;
33 rabiLength= 0*500.01E-9;
34

35 tRed = pulseLength/2 + piLength; % center of first pulse
36 tBlue = tRed + pulseSeparation; % center of second pulse
37

38 tmax = pulseLength + pulseSeparation + piLength;
39 tmax2 = pulseLength + pulseSeparation + piLength2;
40 tmax3 = pulseLength + pulseSeparation + piLength3;
41

42 stDev = pulseLength/stDevFraction; % st.dev of pulses
43 timeStep = 40E-12;
44 finalTime = tmax+tmax2+tmax3 + rabiLength;
45

46 Qdec = 1/(24E-6); % Qubit Decay rate
47 Cdec = 1/(2.5E-6); % Cavity Decay rate
48 Qdph = 1/(41E-6); % Qubit Dephasing Rate
49

50 %% The Bare Hamiltonian
51

52 H0 = zeros(ntot);
53

54 for i = 1:ncav
55 H0(2*i+1,2*i+1)=i*wC;
56 H0(2*i,2*i)=(i-1)*wC+wQ;
57

58 H0(2*i,2*i+1)=sqrt(i)*g;
59 H0(2*i+1,2*i)=sqrt(i)*g;
60 end
61

62 %Obtaining the drive frequencies
63

64 [e_vecs, e_vals] = eig(H0);
65

66 wg0xe0 = e_vals(2,2);
67 wg1xe1 = (e_vals(4,4)-e_vals(3,3));
68 wg2xe2 = (e_vals(6,6)-e_vals(5,5));
69 wg3xe3 = (e_vals(8,8)-e_vals(7,7));
70

71 wRed = (e_vals(4,4)-e_vals(3,3)-delta1);
72 wBlue = (e_vals(4,4)-e_vals(2,2)-delta1);
73 wRed2 = (e_vals(6,6)-e_vals(5,5)-delta2);
74 wBlue2 = (e_vals(6,6)-e_vals(4,4)-delta2);
75 wRed3 = (e_vals(8,8)-e_vals(7,7)-delta3);
76 wBlue3 = (e_vals(8,8)-e_vals(6,6)-delta3);
77

78 H0=e_vals;
79

80 %% Dissipation (Defining Jump Operators)
81

82 Aqub = zeros(ntot);
83 Acav = zeros(ntot);
84 Adph = zeros(ntot);
85
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86 for i = 1:ncav
87 Aqub(2*i-1,2*i) = 1;
88 Acav(2*i-1,2*i+1) = sqrt(i);
89 % Acav(2*i+1,2*i-1) = sqrt(0.04*i);
90 Adph(2*i-1, 2*i-1) = 1;
91 Adph(2*i, 2*i) = -1;
92 end
93

94 for i = 1:ncav-1
95 Acav(2*i,2*i+2) = sqrt(i);
96 % Acav(2*i+2,2*i) = sqrt(0.04*i);
97 end
98

99 AcAc = 0.5*(Acav)’*Acav;
100 AqAq = 0.5*(Aqub)’*Aqub;
101 AdAd = 0.5*(Adph)’*Adph;
102

103 %% Initial state for solving the differential equations
104

105 initConditions = zeros(ntot^2,1);
106 initConditions(1)=0.995;
107 initConditions(ntot*2+3)=0.005;
108

109 %% Bare Driving Matrix
110

111 V = zeros(ntot,ntot);
112 for i = 1:ncav
113 V(2*i-1,2*i) = 1;
114 V(2*i,2*i-1) = 1;
115 V(2*i-1,2*i+1) = sqrt(i);
116 V(2*i+1,2*i-1) = sqrt(i);
117 end
118

119 for i = 1:ncav-1
120 V(2*i,2*i+2) = sqrt(i);
121 V(2*i+2,2*i) = sqrt(i);
122 end
123

124 %% Complete Hamiltonian and creating the set of differential equations
125

126 tspan = 0:0.04E-9:finalTime;
127 [tspanM, tspanN] = size(tspan);
128

129 [T, R] = ode45(@(t,rho)myode_Dph_FullPulses_FS3_rabis(t, rho, H0, V, piAmp, piAmp2,
piAmp3, rabiAmp, qubAmp, cavAmp, Acav, AcAc, Aqub, AqAq, Adph, AdAd, Cdec, Qdec,
Qdph, piLength, piLength2, piLength3, rabiLength, tRed, tBlue, tmax, tmax2,
tmax3, stDev, wRed, wBlue, wRed2, wBlue2, wRed3, wBlue3, wg0xe0, wg1xe1, wg2xe2,
wg3xe3), tspan, transpose(initConditions));

130

131 %% Plotting the obtained data
132

133 %converting output data to reals
134 RR = real(R);
135 II=imag(R);
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136

137 g0Data = RR(:,1);
138 e0Data = RR(:,ntot+2);
139 g1Data = RR(:,ntot*2+3);
140 e1Data = RR(:,ntot*3+4);
141 g2Data = RR(:,ntot*4+5);
142 e2Data = RR(:,ntot*5+6);
143 g3Data = RR(:,ntot*6+7);
144 e3Data = RR(:,ntot*7+8);
145 eData = RR(:,ntot+2)+RR(:,ntot*3+4)+RR(:,ntot*5+6)+RR(:,ntot*7+8)+RR(:,ntot*9+10)+RR

(:,ntot*11+12);
146

147 eData = RR(:,ntot+2)+RR(:,ntot*3+4)+RR(:,ntot*5+6)+RR(:,ntot*7+8)+RR(:,ntot*9+10)+RR
(:,ntot*11+12)+RR(:,ntot*13+14)+RR(:,ntot*15+16);

148 diagonalelements = RR(:,[1,ntot+2,2*ntot+3,3*ntot+4,4*ntot+5,5*ntot+6,6*ntot+7,7*
ntot+8,8*ntot+9,9*ntot+10,10*ntot+11,11*ntot+12,12*ntot+13,13*ntot+14,14*ntot
+15,15*ntot+16,16*ntot+17,17*ntot+18,18*ntot+19]);

149 diagonalFullelements = RR(:,[1,ntot+2,2*ntot+3,3*ntot+4,4*ntot+5,5*ntot+6,6*ntot
+7,7*ntot+8,8*ntot+9,9*ntot+10,10*ntot+11,11*ntot+12,12*ntot+13,13*ntot+14,14*
ntot+15,15*ntot+16,16*ntot+17,17*ntot+18,18*ntot+19,...

150 19*ntot+20,20*ntot+21,21*ntot+22,22*ntot+23,23*ntot+24,24*ntot+25,25*ntot+26,26*
ntot+27,27*ntot+28,28*ntot+29,29*ntot+30,30*ntot+31,31*ntot+32,32*ntot
+33,33*ntot+34]);

151

152 figure();
153 plot(T,g0Data, T,e0Data, T,g1Data, T,e1Data,T,g2Data, T,e2Data, ’LineWidth’,2);
154 legend(’g0’,’e0’,’g1’,’e1’,’g2’,’e2’);
155 xlabel(’Evolution time (s)’);
156 ylabel(’Population’);
157

158 figure();
159 plot(T,eData, ’LineWidth’,2);
160 legend(’e’);
161 xlabel(’Evolution time (s)’);
162 ylabel(’Population’);
163

164 % dlmwrite(’rr.csv’,RR)
165 % dlmwrite(’ii.csv’,II)
166

167 % dlmwrite(’g0.csv’,g0Data)
168 % dlmwrite(’e0.csv’,e0Data)
169 % dlmwrite(’e1.csv’,e1Data)
170 % dlmwrite(’g1.csv’,g1Data)
171 % dlmwrite(’e2.csv’,e2Data)
172 % dlmwrite(’g2.csv’,g2Data)
173 % dlmwrite(’e3.csv’,e3Data)
174 % dlmwrite(’g3.csv’,g3Data)
175 % dlmwrite(’e.csv’,eData)
176 % dlmwrite(’t.csv’,T)
177 % dlmwrite(’diagonals.csv’,diagonalelements)
178 % dlmwrite(’diagonalsFull.csv’,diagonalFullelements)
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C.2. SUBPROGRAM FOR THE LINDBLAD MASTER EQUATION

C.2 Subprogram for the Lindblad Master Equation

1 %% Creating the Gaussian Pulses
2

3 function drhodt = myode_Dph_FullPulses_FS3_rabis(t, rho, H0, V, piAmp, piAmp2,
piAmp3, rabiAmp, QdriveAmp, CdriveAmp, Acav, AcAc, Aqub, AqAq, Adph, AdAd, Cdec,
Qdec, Qdph, piLength, piLength2, piLength3, rabiLength, tRed, tBlue, tmax,
tmax2, tmax3, stDev, wRed, wBlue, wRed2, wBlue2, wRed3, wBlue3, wg0xe0, wg1xe1,
wg2xe2, wg3xe3)

4

5 %% Dissipation Operators
6

7 rho = reshape (rho,size(H0));
8

9 % forcing a first operation to set the size of rho
10 Acavrho = Acav*rho;
11 Aqubrho = Aqub*rho;
12 Adphrho = Adph*rho;
13

14 Lcav = Acavrho*Acav’ - AcAc*rho - rho*AcAc;
15 Lqub = Aqubrho*Aqub’ - AqAq*rho - rho*AqAq;
16 Ldph = Adphrho*Adph’ - AdAd*rho - rho*AdAd;
17

18 %% Drive Matrix
19

20 pSep = tBlue - tRed;
21

22 tnow=floor(t/40E-12)*40E-12;
23

24 piPulse1 = heaviside(piLength-tnow).*sin(wg0xe0*tnow);
25 qubPulse1 = heaviside((tnow-piLength).*(tmax-pSep-tnow)).*round(exp(-(tnow-tRed)

.^2/(2*stDev.^2))*sin(wRed*tnow-piLength)*0.58/0.0009765625)*0.0009765625/0.58;
26 cavPulse1 = heaviside((tnow-piLength-pSep).*(tmax-tnow)).*round(exp(-(tnow-tBlue)

.^2/(2*stDev.^2))*sin(wBlue*tnow-piLength-pSep)*0.0455/0.0009765625)

*0.0009765625/0.0455;
27

28 piPulse2 = heaviside((tnow-tmax).*(tmax+piLength2-tnow)).*sin(wg1xe1*tnow-tmax);
29 qubPulse2 = heaviside((tnow-piLength2-tmax).*(tmax+tmax2-pSep -tnow)).*round(exp(-(

tnow-tRed-tmax).^2/(2*stDev.^2))*sin(wRed2*tnow-tmax-piLength2)

*0.58/0.0009765625)*0.0009765625/0.58;
30 cavPulse2 = heaviside((tnow-piLength2-tmax-pSep).*(tmax+tmax2 -tnow)).*round(exp(-(

tnow-tBlue-tmax).^2/(2*stDev.^2))*sin(wBlue2*tnow-tmax-piLength2-pSep)

*0.0455/0.0009765625)*0.0009765625/0.0455;
31

32 piPulse3 = heaviside((tnow-tmax-tmax2).*(tmax+tmax2+piLength3-tnow)).*sin(wg2xe2*
tnow-tmax-tmax2);

33 qubPulse3 = heaviside((tnow-piLength3-tmax-tmax2).*(tmax+tmax2+tmax3-pSep -tnow)).*
round(exp(-(tnow-tRed-tmax-tmax2).^2/(2*stDev.^2))*sin(wRed3*tnow-tmax-tmax2-
piLength3)*0.58/0.0009765625)*0.0009765625/0.58;

34 cavPulse3 = heaviside((tnow-piLength3-tmax-tmax2-pSep).*(tmax+tmax2+tmax3 -tnow)).*
round(exp(-(tnow-tBlue-tmax-tmax2).^2/(2*stDev.^2))*sin(wBlue3*tnow-tmax-tmax2-
piLength3-pSep)*0.0455/0.0009765625)*0.0009765625/0.0455;

35
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36 rabiPulse = heaviside((tnow-tmax-tmax2-tmax3).*(tmax+tmax2+tmax3 + rabiLength -tnow)
).*sin(wg3xe3*tnow);

37

38 pulses = piAmp*piPulse1 + QdriveAmp*qubPulse1 + CdriveAmp*cavPulse1 + piAmp2*
piPulse2 + QdriveAmp*qubPulse2 + CdriveAmp*cavPulse2 + piAmp3*piPulse3 +
QdriveAmp*qubPulse3 + CdriveAmp*cavPulse3 + rabiAmp*rabiPulse;

39

40 V = pulses*V;
41 Htot = H0+V;
42

43 %% Final output Density matrix
44

45 drhodt = (Qdph/2)*Ldph + Cdec*Lcav + Qdec*Lqub + 1j*rho*Htot - 1j*Htot*rho;
46 drhodt=drhodt(:);
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APPENDIX D

Code for Quantum Tomography

D.1 Mathematica Program for Performing Quantum State

Tomography

Preparation---------------------------------------------------------------------------------------------------

ClearAll["`*"]; Clear["Global`*"]; ClearSystemCache[]; $HistoryLength = 0;

SetDirectory[NotebookDirectory[]];

ket2dm[M_] := M.M;

$Assumptions = {t1 ∈ Reals, t2 ∈ Reals, t3 ∈ Reals, t4 ∈ Reals, t5 ∈ Reals, t6 ∈ Reals, t7 ∈ Reals,

t8 ∈ Reals, t9 ∈ Reals, t10 ∈ Reals, t11 ∈ Reals, t12 ∈ Reals, t13 ∈ Reals, t14 ∈ Reals, t15 ∈ Reals,

t16 ∈ Reals};

Importing Data-----------------------------------------------------------------------------------------------

cavBiases = {14.6, 16.1, 17.3, 17.6, 18.7, 19.5, 20.5};

dataSets = {allData146, allData161, allData173, allData176, allData187, allData195, allData205};

dataSets =

Import /@

("SWIPHT_LAmp=0.495_HAmp=0.000_cPwr=" <> ToString[NumberForm[#, {4, 2}]] <>

"dBm_LAngle=0deg_HAngle=0deg.dat" & /@ cavBiases);

For[i = 1, i <= Length[dataSets], i++, dataSets[[i]] = dataSets[[i, 1 ;; 17]]];

{allData146, allData161, allData173, allData176, allData187, allData195, allData205} = dataSets;

S146 = allData146[[All, 2]]; S161 = allData161[[All, 2]];

S173 = allData173[[All, 2]]; S176 = allData176[[All, 2]];

S187 = allData187[[All, 2]]; S195 = allData195[[All, 2]];

S205 = allData205[[All, 2]];
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TOMOGRAPHY

Calibration values-------------------------------------------------------------------------------------------

(*The following set of equations contains the weights from S-curves used during MLE*)

{b0MLE, a0MLE} = CoefficientArrays[{

0.00554* gg + 0.00724* eg + 0.0369* ge + 0.116* ee ⩵ S146,

0.00657* gg + 0.00943* eg + 0.1635* ge + 0.1986* ee ⩵ S161,

0.00836* gg + 0.0962* eg + 0.0588* ge + 0.2135* ee ⩵ S173,

0.0105* gg + 0.02129* eg + 0.2140* ge + 0.2246* ee ⩵ S176,

0.0240* gg + 0.2123* eg + 0.1806* ge + 0.23405* ee ⩵ S187,

0.0402* gg + 0.1824* eg + 0.2342* ge + 0.24003* ee ⩵ S195,

0.1506* gg + 0.2344* eg + 0.23959* ge + 0.24367* ee ⩵ S205},

{gg, ge, eg, ee}];

(*The following set of equations will contain the errors associated with each of the measurements*)

{b0Errors, a0Errors} = CoefficientArrays[{

0.00033* gg + 0.00065* eg + 0.0060* ge + 0.026* ee ⩵ 0,

0.00052* gg + 0.00099* eg + 0.0092* ge + 0.0025* ee ⩵ 0,

0.00082* gg + 0.018* eg + 0.0041* ge + 0.0020* ee ⩵ 0,

0.0011* gg + 0.0018* eg + 0.0022* ge + 0.0016* ee ⩵ 0,

0.0020* gg + 0.0024* eg + 0.0051* ge + 0.00086* ee ⩵ 0,

0.0027* gg + 0.0045* eg + 0.0013* ge + 0.00065* ee ⩵ 0,

0.0042* gg + 0.0014* eg + 0.00081* ge + 0.00025* ee ⩵ 0},

{gg, ge, eg, ee}];

System Parameters------------------------------------------------------------------------------------------

Ee = 2 π 6.75427; (*target qubit frequency*)

δ = 2 π 0.00103; (*qubit-qubit shift*)

ϵ = 2 π 6.07135 -
δ

2
;

ωp = Ee; (*Drive frequency*)

Γ1 = 1/ 3500; Γ2 = 1/ 9030; (*target and control qubit decay rates*)

A = 138.9; Δ = δ;

τp =
5.87

Abs[Δ]
; (*Length of SWIPHT pulse*)

Gate Definitions----------------------------------------------------------------------------------------------

θ = π/ 2; θ1 = -π/ 2;

identity = IdentityMatrix[2];

sigmax = {{0, 1}, {1, 0}}; sigmay = {{0, -I}, {I, 0}}; sigmaz = {{1, 0}, {0, -1}};

id = ArrayFlatten[identity⊗identity];

sx = ArrayFlatten[sigmax⊗identity]; sy = ArrayFlatten[sigmay⊗identity];

sz = ArrayFlatten[sigmaz⊗identity];

tx = ArrayFlatten[identity⊗sigmax]; ty = ArrayFlatten[identity⊗sigmay];

tz = ArrayFlatten[identity⊗sigmaz];

sx2 = Cos[θ/ 2] id - I Sin[θ/ 2] sx; sy2 = Cos[θ/ 2] id - I Sin[θ/ 2] sy;

sz2 = Cos[θ/ 2] id - I Sin[θ/ 2] sz;

tx2 = Cos[θ/ 2] id - I Sin[θ/ 2] tx; ty2 = Cos[θ/ 2] id - I Sin[θ/ 2] ty;

tz2 = Cos[θ/ 2] id - I Sin[θ/ 2] tz;

snx2 = Cos[θ1/ 2] id - I Sin[θ1/ 2] sx;

sny2 = Cos[θ1/ 2] id - I Sin[θ1/ 2] sy;

tnx2 = Cos[θ1/ 2] id - I Sin[θ1/ 2] tx;

tny2 = Cos[θ1/ 2] id - I Sin[θ1/ 2] ty;
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Initial Conditions---------------------------------------------------------------------------------------------

ξ = (245 - 0) Degree; (*Adjustment phase for the SWIPHT pulse*)

initialState = N@Flatten@ket2dmsx2.

1
0
0
0

;

Initial Definitions---------------------------------------------------------------------------------------------

H0 =

0 0 0 0
0 Ee 0 0

0 0 δ

2
+ ϵ 0

0 0 0 Ee - δ

2
+ ϵ

;

H0RWA =

0 0 0 0
0 ωp 0 0
0 0 ωp 0
0 0 0 2 ωp

;

V =

0 Ω [t] ⅇⅈ (ωp t+ξ) 0 0

Ω [t] ⅇ-ⅈ (ωp t+ξ) 0 0 0

0 0 0 Ω [t] ⅇⅈ (ωp t+ξ)

0 0 Ω [t] ⅇ-ⅈ (ωp t+ξ) 0

;

(Htot = H0 + V) // MatrixForm;

(U = MatrixExp[I H0 t]) // MatrixForm;

(Hrot = Chop@FullSimplify[U.Htot.Inverse[U] + I D[U, t].Inverse[U]]) // MatrixForm;

ρ =

ρ0x0[t] ρ0x1[t] ρ0x2[t] ρ0x3[t]
ρ1x0[t] ρ1x1[t] ρ1x2[t] ρ1x3[t]
ρ2x0[t] ρ2x1[t] ρ2x2[t] ρ2x3[t]
ρ3x0[t] ρ3x1[t] ρ3x2[t] ρ3x3[t]

;

assume = Flatten[ρ /. t → 0];

For[i = 1, i ≤ Length[assume], i++,

assume[[i]] = ToExpression[ToString[assume[[i]]] <> "==" <> ToString@initialState[[i]]];]

[A_, ρ_] := A.ρ.A -
1

2
A.A.ρ -

1

2
ρ.A.A; (*Lindblad operator definition*)

(*Creating the jump operators*)

Aq1 =

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

; Aq2 =

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

;

Creating the SWIPHT Pulses-------------------------------------------------------------------------------

χχ[t_] = A
t

τp

4
1 -

t

τp

4
+

π

4
;

Ω[t_] =
D[χχ[t], {t, 2}]

2 Δ2

4
- D[χχ[t], t]2

-
Δ2

4
- D[χχ[t], t]2 Cot[2 χχ[t]] ;

maxRabiDrive =
Ω[τp/ 2]

2 π
* 106;
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The complete Hamiltonian--------------------------------------------------------------------------------

equationsR = (I*(ρ.Hrot - Hrot.ρ)) + Γ1*[Aq1, ρ] + Γ2*[Aq2, ρ];

equationsL = D[ρ, t];

Solving the system of equations--------------------------------------------------------------------------

solutions = NDSolve[Join[Flatten[Table[equationsL[[i, j]]⩵ equationsR[[i, j]], {i, 1, 4}, {j, 1, 4}]],

assume], Flatten[ρ], {t, 0, τp}, MaxSteps → Infinity];

thyρ = Chop[({ρ /. solutions} /. t → τp)[[1, 1, All]]];

thyPlotMatrix = Partition[Join[Riffle[Flatten[thyρ], 0, 5], {0, 0, 0, 0, 0, 0}], 5];

ℱ = (Tr[MatrixPower[MatrixPower[thyρ, 0.5].expρ.MatrixPower[thyρ, 0.5], 0.5]])2;

Maximum Likelihood Estimation-------------------------------------------------------------------------

T =

t1 0 0 0
t5 + I t6 t2 0 0
t11 + I t12 t7 + I t8 t3 0
t15 + I t16 t13 + I t14 t9 + I t10 t4

;

ρp = FullSimplify@
T.T

Tr[T.T]
;

(* List of gates = II, IY, YI, IX, XI, XX, YY, YX, XY *)

tomoMeasures[i_] := Transpose@{{

ρp[[i, i]],

(ty2.ρp.ty2)[[i, i]], (sy2.ρp.sy2)[[i, i]],

(tx2.ρp.tx2)[[i, i]], (sx2.ρp.sx2)[[i, i]],

(sx2.tx2.ρp.tx2.sx2)[[i, i]], (sy2.ty2.ρp.ty2.sy2)[[i, i]],

(sy2.tx2.ρp.tx2.sy2)[[i, i]], (sx2.ty2.ρp.ty2.sx2)[[i, i]],

(tny2.ρp.tny2)[[i, i]], (sny2.ρp.sny2)[[i, i]],

(tnx2.ρp.tnx2)[[i, i]], (snx2.ρp.snx2)[[i, i]],

(snx2.tnx2.ρp.tnx2.snx2)[[i, i]], (sny2.tny2.ρp.tny2.sny2)[[i, i]],

(sny2.tnx2.ρp.tnx2.sny2)[[i, i]], (snx2.tny2.ρp.tny2.snx2)[[i, i]]}};

likelihood = 0;

Fork = 1, k <= Length[cavBiases], k++,

sumForAGivenBias = Sum[a0MLE[[k, j]]* tomoMeasures[j], {j, 1, 4}];

differenceForAGivenBias = sumForAGivenBias - dataSets[[k, All, 2]];

measurementError = Sum(a0Errors[[k, j]]* a0MLE[[k, j]]* tomoMeasures[j])2, {j, 1, 4};

likelihood +=
differenceForAGivenBias2

measurementError
;;

likelihood = Total@Flatten@likelihood;

noiseTriangle =

RandomReal[{-1, 1}] 0 0 0
RandomComplex[{-1, 1}] RandomReal[{-1, 1}] 0 0
RandomComplex[{-1, 1}] RandomComplex[{-1, 1}] RandomReal[{-1, 1}] 0
RandomComplex[{-1, 1}] RandomComplex[{-1, 1}] RandomComplex[{-1, 1}] RandomReal[{-1, 1}]

;

noise =
1

1000
FullSimplify@

noiseTriangle.noiseTriangle

Tr[noiseTriangle.noiseTriangle]
// MatrixForm;

(guess = thyρ) // MatrixForm;

cleanSample = guess + noise;
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Constructing the Initialization for the T - Matrix------------------------------------------------------

level1Minors = Map[Reverse, Minors[cleanSample], {0, 1}];

level2Minors = Map[Reverse, Minors[cleanSample, 2], {0, 1}];

TInitializingData = IfDet[cleanSample] ≠ 0,
Det[cleanSample]

level1Minors〚1, 1〛
, 0, 0, 0, 0,

Iflevel1Minors〚1, 2〛 ≠ 0,
level1Minors〚1, 2〛

level1Minors〚1, 1〛 level2Minors〚1, 1〛

, 0,

Iflevel1Minors〚1, 1〛 ≠ 0,
level1Minors〚1, 1〛

level2Minors〚1, 1〛
, 0, 0, 0,

Iflevel2Minors〚1, 4〛 ≠ 0,
level2Minors〚1, 4〛

cleanSample〚4, 4〛 level2Minors〚1, 1〛

, 0,

Iflevel2Minors〚1, 2〛 ≠ 0,
level2Minors〚1, 2〛

cleanSample〚4, 4〛 level2Minors〚1, 1〛

, 0,

Iflevel2Minors〚1, 1〛 ≠ 0,
level2Minors〚1, 1〛

cleanSample〚4, 4〛
, 0, 0,

IfcleanSample〚4, 1〛 ≠ 0,
cleanSample〚4, 1〛

cleanSample〚4, 4〛
, 0, IfcleanSample〚4, 2〛 ≠ 0,

cleanSample〚4, 2〛

cleanSample〚4, 4〛
, 0,

IfcleanSample〚4, 3〛 ≠ 0,
cleanSample〚4, 3〛

cleanSample〚4, 4〛
, 0, cleanSample〚4, 4〛 ;

TInitializingData = Chop[TInitializingData - I* DiagonalMatrix[Im@Diagonal[TInitializingData]]];

TInitializingData.TInitializingData

Tr[TInitializingData.TInitializingData]
// MatrixForm;

Results of MLE------------------------------------------------------------------------------------------------

initializeParameters =

Union[Partition[Riffle[FullSimplify@Re@Flatten[T], FullSimplify@Re@Flatten[TInitializingData]], 2],

Partition[Riffle[FullSimplify@Im@Flatten[T], FullSimplify@Im@Flatten[TInitializingData]], 2]][[

2 ;; -1]];

sol = FindMinimum[likelihood, initializeParameters, MaxIterations → Infinity];

(sss = ρp /. sol[[2]]) // MatrixForm; expρ = sss;

ℱ = (Tr[MatrixPower[MatrixPower[thyρ, 0.5].expρ.MatrixPower[thyρ, 0.5], 0.5]])2;

Experimental matrix and Result from Master - equation Simulations-------------------------

thyPlotMatrix = Partition[Join[Riffle[Flatten[thyρ], 0, 5], {0, 0, 0, 0, 0, 0}], 5];

expPlotMatrix = Partition[Join[Riffle[Flatten[expρ], 0, 5], {0, 0, 0, 0, 0, 0}], 5];

colorTheme = "Rainbow"; plotHeightRange = {-0.6, 0.6};

thyPlot = ListPlot3D[Re@thyPlotMatrix, InterpolationOrder → 0, Mesh → None, Filling → Axis,

ImageSize → 500, PlotRange → plotHeightRange, ColorFunction → ColorData[{colorTheme, plotHeightRange}],

ColorFunctionScaling → False];

expPlot = ListPlot3D[Re@expPlotMatrix, InterpolationOrder → 0, Mesh → None, Filling → Axis, ImageSize → 500,

PlotRange → plotHeightRange, ColorFunction → ColorData[{colorTheme, plotHeightRange}],

ColorFunctionScaling → False];

thyPlotIm = ListPlot3D[Im@thyPlotMatrix, InterpolationOrder → 0, Mesh → None, Filling → Axis,

ImageSize → 500, PlotRange → plotHeightRange, ColorFunction → ColorData[{colorTheme, plotHeightRange}],

ColorFunctionScaling → False];

expPlotIm = ListPlot3D[Im@expPlotMatrix, InterpolationOrder → 0, Mesh → None, Filling → Axis,

ImageSize → 500, PlotRange → plotHeightRange, ColorFunction → ColorData[{colorTheme, plotHeightRange}],

ColorFunctionScaling → False];

Show[GraphicsGrid[{{thyPlot, expPlot, thyPlotIm, expPlotIm, BarLegend[{colorTheme, plotHeightRange}]}}],

ImageSize → 2500];
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Ideal SWIPHT Results---------------------------------------------------------------------------------------

equationsRPerfect = (I*(ρ.Hrot - Hrot.ρ));

solutionsPerfect =

NDSolve[Join[Flatten[Table[equationsL[[i, j]] ⩵ equationsRPerfect[[i, j]], {i, 1, 4}, {j, 1, 4}]],

assume], Flatten[ρ], {t, 0, τp}, MaxSteps → Infinity];

perfectρ = Chop[({ρ /. solutionsPerfect} /. t → τp)[[1, 1, All]]];

perfectℱ = (Tr[MatrixPower[MatrixPower[perfectρ, 0.5].expρ.MatrixPower[perfectρ, 0.5], 0.5]])2;

(perfectPlotMatrix = Partition[Join[Riffle[Flatten[perfectρ], 0, 5], {0, 0, 0, 0, 0, 0}], 5]) // MatrixForm;

perfectPlotRe = ListPlot3D[Re@perfectPlotMatrix, InterpolationOrder → 0, Mesh → None,

Filling → Axis, ImageSize → 500, PlotRange → plotHeightRange,

ColorFunction → ColorData[{colorTheme, plotHeightRange}], ColorFunctionScaling → False];

perfectPlotIm = ListPlot3D[Im@perfectPlotMatrix, InterpolationOrder → 0, Mesh → None,

Filling → Axis, ImageSize → 500, PlotRange → plotHeightRange,

ColorFunction → ColorData[{colorTheme, plotHeightRange}], ColorFunctionScaling → False];

Show[GraphicsGrid[{{perfectPlotRe, perfectPlotIm}}], ImageSize → 1000];

Generalized CNOT Results---------------------------------------------------------------------------------

ζ = (245) Degree; ι1 = (113.67) Degree; ι2 = (66.21) Degree;

cnotphase =

0 EI ζ 0 0

E-I ζ 0 0 0

0 0 EI ι2 0

0 0 0 EI ι1

; cnotρ = ket2dmcnotphase.sx2.

1
0
0
0

;

cnotℱ = (Tr[MatrixPower[MatrixPower[cnotρ, 0.5].expρ.MatrixPower[cnotρ, 0.5], 0.5]])2;

cnotperfectℱ = (Tr[MatrixPower[MatrixPower[cnotρ, 0.5].perfectρ.MatrixPower[cnotρ, 0.5], 0.5]])2;

TrDistance = 0.5* Tr[MatrixPower[(cnotρ - perfectρ).(cnotρ - perfectρ), 0.5]];

N@(cnotPlotMatrix = Partition[Join[Riffle[Flatten[cnotρ], 0, 5], {0, 0, 0, 0, 0, 0}], 5]) // MatrixForm;

cnotPlotRe = ListPlot3D[Re@cnotPlotMatrix, InterpolationOrder → 0, Mesh → None, Filling → Axis,

ImageSize → 500, PlotRange → plotHeightRange, ColorFunction → ColorData[{colorTheme, plotHeightRange}],

ColorFunctionScaling → False];

cnotPlotIm = ListPlot3D[Im@cnotPlotMatrix, InterpolationOrder → 0, Mesh → None, Filling → Axis,

ImageSize → 500, PlotRange → plotHeightRange, ColorFunction → ColorData[{colorTheme, plotHeightRange}],

ColorFunctionScaling → False];

Show[GraphicsGrid[{{cnotPlotRe, cnotPlotIm}}], ImageSize → 1000];
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D.2 MATLAB Programs for Constructing the Likelihood Func-

tion

D.2.1 MATLAB Function to Import the Raw Data Files

1 function VarName2 = importfile(filename, startRow, endRow)
2 %% Initialize variables.
3 delimiter = ’\t’;
4 if nargin<=2
5 startRow = 1;
6 endRow = 17;
7 end
8 %% Format string for each line of text:
9 formatSpec = ’%*s%f%*s%*s%*s%[^\n\r]’;

10

11 %% Open the text file.
12 fileID = fopen(filename,’r’);
13 %% Read columns of data according to format string.
14 dataArray = textscan(fileID, formatSpec, endRow(1)-startRow(1)+1, ’Delimiter’,

delimiter, ’HeaderLines’, startRow(1)-1, ’ReturnOnError’, false);
15 for block=2:length(startRow)
16 frewind(fileID);
17 dataArrayBlock = textscan(fileID, formatSpec, endRow(block)-startRow(block)+1, ’

Delimiter’, delimiter, ’HeaderLines’, startRow(block)-1, ’ReturnOnError’,
false);

18 dataArray{1} = [dataArray{1};dataArrayBlock{1}];
19 end
20 %% Close the text file.
21 fclose(fileID);
22 %% Allocate imported array to column variable names
23 VarName2 = dataArray{:, 1};

D.2.2 MATLAB Function to Obtain the Density Matrix of a Ket

1 function f = ket2dm(vec)
2

3 resultingDM = vec * ctranspose(vec);
4

5 if size(vec) ==[4 1]
6 f = vec * ctranspose(vec);
7 else if size(vec) ==[1 4]
8 f = ctranspose(vec) * vec;
9 end

10 end
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D.2.3 MATLAB Function to Construct a Single Term of the Likelihood
Function

1 function f = mle_multiLoad (loadVars)
2

3 %loadVars = [1, 0, 0, 0, 0]; % for testing purposes
4

5 %% Tomography Gate Definitions
6

7 theta = pi()/2;
8

9 sigma0 = eye(2);
10 sigmax = [0 1; 1 0];
11 sigmay = [0 -1j; 1j 0];
12 sigmaz = [1 0; 0 -1];
13

14 id = kron(sigma0, sigma0);
15 sx = kron(sigmax, sigma0);
16 sy = kron(sigmay, sigma0);
17 sz = kron(sigmaz, sigma0);
18

19 tx = kron(sigma0, sigmax);
20 ty = kron(sigma0, sigmay);
21 tz = kron(sigma0, sigmaz);
22

23 sx2 = cos(theta/2) * id - 1j*sin(theta/2) * sx;
24 sy2 = cos(theta/2) * id - 1j*sin(theta/2) * sy;
25 tx2 = cos(theta/2) * id - 1j*sin(theta/2) * tx;
26 ty2 = cos(theta/2) * id - 1j*sin(theta/2) * ty;
27

28 thetaN = -pi()/2;
29

30 snx2 = cos(thetaN/2) * id - 1j*sin(thetaN/2) * sx;
31 sny2 = cos(thetaN/2) * id - 1j*sin(thetaN/2) * sy;
32 tnx2 = cos(thetaN/2) * id - 1j*sin(thetaN/2) * tx;
33 tny2 = cos(thetaN/2) * id - 1j*sin(thetaN/2) * ty;
34

35 %% Tomography Gate Definitions
36

37 initialStates = cell(1,36);
38

39 initialStates{1} = id*id;
40 initialStates{2} = id*sx;
41 initialStates{3} = id*sx2;
42 initialStates{4} = id*sy2;
43 initialStates{5} = id*snx2;
44 initialStates{6} = id*sny2;
45 initialStates{7} = tx*id;
46 initialStates{8} = tx*sx;
47 initialStates{9} = tx*sx2;
48 initialStates{10} = tx*sy2;
49 initialStates{11} = tx*snx2;
50 initialStates{12} = tx*sny2;
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51 initialStates{13} = tx2*id;
52 initialStates{14} = tx2*sx;
53 initialStates{15} = tx2*sx2;
54 initialStates{16} = tx2*sy2;
55 initialStates{17} = tx2*snx2;
56 initialStates{18} = tx2*sny2;
57 initialStates{19} = ty2*id;
58 initialStates{20} = ty2*sx;
59 initialStates{21} = ty2*sx2;
60 initialStates{22} = ty2*sy2;
61 initialStates{23} = ty2*snx2;
62 initialStates{24} = ty2*sny2;
63 initialStates{25} = tnx2*id;
64 initialStates{26} = tnx2*sx;
65 initialStates{27} = tnx2*sx2;
66 initialStates{28} = tnx2*sy2;
67 initialStates{29} = tnx2*snx2;
68 initialStates{30} = tnx2*sny2;
69 initialStates{31} = tny2*id;
70 initialStates{32} = tny2*sx;
71 initialStates{33} = tny2*sx2;
72 initialStates{34} = tny2*sy2;
73 initialStates{35} = tny2*snx2;
74 initialStates{36} = tny2*sny2;
75

76 %% QPT Basis Operators Definitions
77

78 qptG = kron(sigma0, sigma0);
79 qptG(:, :, 2) = kron(sigma0, sigmax);
80 qptG(:, :, 3) = kron(sigma0, sigmay);
81 qptG(:, :, 4) = kron(sigma0, sigmaz);
82

83 qptG(:, :, 5) = kron(sigmax, sigma0);
84 qptG(:, :, 6) = kron(sigmax, sigmax);
85 qptG(:, :, 7) = kron(sigmax, sigmay);
86 qptG(:, :, 8) = kron(sigmax, sigmaz);
87

88 qptG(:, :, 9) = kron(sigmay, sigma0);
89 qptG(:, :, 10) = kron(sigmay, sigmax);
90 qptG(:, :, 11) = kron(sigmay, sigmay);
91 qptG(:, :, 12) = kron(sigmay, sigmaz);
92

93 qptG(:, :, 13) = kron(sigmaz, sigma0);
94 qptG(:, :, 14) = kron(sigmaz, sigmax);
95 qptG(:, :, 15) = kron(sigmaz, sigmay);
96 qptG(:, :, 16) = kron(sigmaz, sigmaz);
97

98 %% Import files
99

100 cavBiases = [14.6, 16.1, 17.3, 17.6, 18.7, 19.5, 20.5];
101 nBiases = length(cavBiases);
102

103 startRow = 1;
104 endRow = 17;
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105 myData = cell(1,nBiases);
106

107 for fileNum = 1:nBiases
108 fileName = sprintf(’SWIPHT_LAmp=%.3f_HAmp=%.3f_cPwr=%.2fdBm_LAngle=%ddeg_HAngle

=%ddeg.dat’,loadVars(2), loadVars(3), cavBiases(fileNum), loadVars(4),
loadVars(5));

109 myData{fileNum} = importfile(fileName,startRow,endRow);
110 end
111

112 initialGate = initialStates{int8(loadVars(1))};
113 filename2 = sprintf(’outputMLE%d.txt’,loadVars(1));
114

115 %% Calibration Data
116

117 % calibData = [0.00554372, 0.00656907, 0.00836246, 0.0104682, 0.0240326, 0.0402416,
0.150597;

118 % 0.036941, 0.163517, 0.0588138, 0.214049, 0.180645, 0.234204, 0.239586;
119 % 0.00723601, 0.0094296, 0.0961728, 0.0212939, 0.212308, 0.182376, 0.234367;
120 % 0.116254, 0.198568, 0.2135, 0.224613, 0.234051, 0.240033, 0.243667];
121 %
122 % calibErrors = [0.000329402, 0.000525341, 0.000825815, 0.00108812, 0.00201983,

0.00268108, 0.00422894;
123 % 0.00603975, 0.00921869, 0.00413449, 0.00225383, 0.00506191, 0.00131298,

0.000811017;
124 % 0.00065282, 0.000993634, 0.0177775, 0.00182644, 0.00243249, 0.00447199,

0.00135528;
125 % 0.0257651, 0.00252809, 0.00197846, 0.00155931, 0.000863653, 0.000648532,

0.000252292];
126

127 calibData = [0.00554, 0.00657, 0.00836, 0.0105, 0.0240, 0.0402, 0.1506;
128 0.0369, 0.1635, 0.0588, 0.2140, 0.1806, 0.2342, 0.23959;
129 0.00724, 0.00943, 0.0962, 0.02129, 0.2123, 0.1824, 0.2344;
130 0.116, 0.1986, 0.2135, 0.2246, 0.23405, 0.24003, 0.24367];
131

132 calibErrors = [0.00033, 0.00052, 0.00082, 0.0011, 0.0020, 0.0027, 0.0042;
133 0.0060, 0.0092, 0.0041, 0.0022, 0.0051, 0.0013, 0.00081;
134 0.00065, 0.00099, 0.018, 0.0018, 0.0024, 0.0045, 0.0014;
135 0.026, 0.0025, 0.0020, 0.0016, 0.00086, 0.00065, 0.00025];
136

137 %% Define the Chi Matrix
138

139 % for r2017b processing
140 % T1 = sym(’t’, [16 16], ’real’); % creating the real portion
141 % T2 = sym(’s’, [16 16], ’real’); % creating the imag portion
142

143 T1 = sym(’t’, [16 16]); % creating the real portion
144 T2 = sym(’s’, [16 16]); % creating the imag portion
145 T1 = sym(T1, ’real’);
146 T2 = sym(T2, ’real’);
147

148

149 T3 = diag(diag(T2)); % removing the imag portion from diagonal
150 T = triu(T1 + 1j*T2 - 1j*T3); % final T matrix
151
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152 Chi = ctranspose(T)*T;
153

154 %% MLE function construction
155

156 rho_p = 0;
157 for m = 1:16
158 for n = 1:16
159 rho_p = rho_p + (Chi(m,n) * qptG(:,:,m) * ket2dm(initialGate * [1 0 0 0]’) *

qptG(:,:,n));
160 end
161 end
162

163 tomoMeasures{1} = rho_p;
164 tomoMeasures{2} = (ty2*rho_p*ty2’);
165 tomoMeasures{3} = (sy2*rho_p*sy2’);
166 tomoMeasures{4} = (tx2*rho_p*tx2’);
167 tomoMeasures{5} = (sx2*rho_p*sx2’);
168 tomoMeasures{6} = (sx2*tx2*rho_p*tx2’*sx2’);
169 tomoMeasures{7} = (sy2*ty2*rho_p*ty2’*sy2’);
170 tomoMeasures{8} = (sy2*tx2*rho_p*tx2’*sy2’);
171 tomoMeasures{9} = (sx2*ty2*rho_p*ty2’*sx2’);
172 tomoMeasures{10} = (tny2*rho_p*tny2’);
173 tomoMeasures{11} = (sny2*rho_p*sny2’);
174 tomoMeasures{12} = (tnx2*rho_p*tnx2’);
175 tomoMeasures{13} = (snx2*rho_p*snx2’);
176 tomoMeasures{14} = (snx2*tnx2*rho_p*tnx2’*snx2’);
177 tomoMeasures{15} = (sny2*tny2*rho_p*tny2’*sny2’);
178 tomoMeasures{16} = (sny2*tnx2*rho_p*tnx2’*sny2’);
179 tomoMeasures{17} = (snx2*tny2*rho_p*tny2’*snx2’);
180

181 %% Simplifying all the diagonal components for easier processing later
182

183 for tomoMap=1:17
184 for pop=1:4
185 tomoMeasures{tomoMap}(pop,pop) = simplify(tomoMeasures{tomoMap}(pop,pop));
186 end
187 end
188

189 %% Likelihood construction
190

191 likelihood = 0;
192 for bias=1:nBiases
193 differenceForABias = 0;
194 for tomoMap=1:17
195 sumForABias = 0;
196 measurementError = 0;
197 for pop=1:4
198 sumForABias = sumForABias + (calibData(pop,bias) * tomoMeasures{tomoMap

}(pop,pop));
199 measurementError = measurementError + ((calibErrors(pop,bias) *

tomoMeasures{tomoMap}(pop,pop))^2);
200 end
201 %dataTable = table2array(myData{bias}); % for R2014b processing
202 dataTable = myData{bias};
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203 differenceForABias = differenceForABias + (sumForABias - dataTable(tomoMap))
^2 / measurementError;

204 end
205 likelihood = likelihood + differenceForABias;
206 end
207

208 %% Saving the Data for Likelihood function
209

210 if (exist(filename2))
211 delete(filename2);
212 end
213

214 f_sym2 = fopen(filename2, ’wt’);
215 fprintf(f_sym2, ’%s’, char((likelihood)));
216 fclose(f_sym2);
217

218 f = int16(loadVars(1));
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D.2.4 MATLAB Program for Parallel Construction of All the Terms of
the Likelihood Function

1 clc
2 clear all;
3

4 grandTable = [ 1, 0, 0, 0, 0
5 2, 1, 0, 0, 0
6 3, 0.495, 0, 0, 0
7 4, 0.495, 0, -90,0
8 5, 0.495, 0, 180,0
9 6, 0.495, 0, 90, 0

10 7, 0, 0.635, 0, 0
11 8, 1, 0.635, 0, 0
12 9, 0.495, 0.635, 0, 0
13 10, 0.495, 0.635, -90,0
14 11, 0.495, 0.635, 180,0
15 12, 0.495, 0.635, 90, 0
16 13, 0, 0.316, 0, 0
17 14, 1, 0.316, 0, 0
18 15, 0.495, 0.316, 0, 0
19 16, 0.495, 0.316, -90,0
20 17, 0.495, 0.316, 180,0
21 18, 0.495, 0.316, 90, 0
22 19, 0, 0.316, 0, -90
23 20, 1, 0.316, 0, -90
24 21, 0.495, 0.316, 0, -90
25 22, 0.495, 0.316, -90,-90
26 23, 0.495, 0.316, 180,-90
27 24, 0.495, 0.316, 90, -90
28 25, 0, 0.316, 0, 180
29 26, 1, 0.316, 0, 180
30 27, 0.495, 0.316, 0, 180
31 28, 0.495, 0.316, -90,180
32 29, 0.495, 0.316, 180,180
33 30, 0.495, 0.316, 90, 180
34 31, 0, 0.316, 0, 90
35 32, 1, 0.316, 0, 90
36 33, 0.495, 0.316, 0, 90
37 34, 0.495, 0.316, -90,90
38 35, 0.495, 0.316, 180,90
39 36, 0.495, 0.316, 90, 90];
40

41 parfor tomos=1:36
42 mle_multiLoad(grandTable(tomos,:));
43 end
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D.2.5 MATLAB Program to Construct the Expression for the Complete-
ness Relation

1 %% Tomography Gate Definitions
2

3 theta = pi()/2;
4

5 sigma0 = eye(2);
6 sigmax = [0 1; 1 0];
7 sigmay = [0 -1j; 1j 0];
8 sigmaz = [1 0; 0 -1];
9

10 id = kron(sigma0, sigma0);
11 sx = kron(sigmax, sigma0);
12 sy = kron(sigmay, sigma0);
13 sz = kron(sigmaz, sigma0);
14

15 tx = kron(sigma0, sigmax);
16 ty = kron(sigma0, sigmay);
17 tz = kron(sigma0, sigmaz);
18

19 sx2 = cos(theta/2) * id - 1j*sin(theta/2) * sx;
20 sy2 = cos(theta/2) * id - 1j*sin(theta/2) * sy;
21 tx2 = cos(theta/2) * id - 1j*sin(theta/2) * tx;
22 ty2 = cos(theta/2) * id - 1j*sin(theta/2) * ty;
23

24 thetaN = -pi()/2;
25

26 snx2 = cos(thetaN/2) * id - 1j*sin(thetaN/2) * sx;
27 sny2 = cos(thetaN/2) * id - 1j*sin(thetaN/2) * sy;
28 tnx2 = cos(thetaN/2) * id - 1j*sin(thetaN/2) * tx;
29 tny2 = cos(thetaN/2) * id - 1j*sin(thetaN/2) * ty;
30

31 %% Tomography Gate Definitions
32

33 initialStates = cell(1,16);
34

35 initialStates{1} = id*id;
36 initialStates{2} = id*sx;
37 initialStates{3} = id*sx2;
38 initialStates{4} = id*sy2;
39 initialStates{5} = tx*id;
40 initialStates{6} = tx*sx;
41 initialStates{7} = tx*sx2;
42 initialStates{8} = tx*sy2;
43 initialStates{9} = tx2*id;
44 initialStates{10} = tx2*sx;
45 initialStates{11} = tx2*sx2;
46 initialStates{12} = tx2*sy2;
47 initialStates{13} = ty2*id;
48 initialStates{14} = ty2*sx;
49 initialStates{15} = ty2*sx2;
50 initialStates{16} = ty2*sy2;

192



D.2. MATLAB PROGRAMS FOR CONSTRUCTING THE LIKELIHOOD FUNCTION

51

52 %% QPT Basis Operators Definitions
53

54 qptG = kron(sigma0, sigma0);
55 qptG(:, :, 2) = kron(sigma0, sigmax);
56 qptG(:, :, 3) = kron(sigma0, sigmay);
57 qptG(:, :, 4) = kron(sigma0, sigmaz);
58

59 qptG(:, :, 5) = kron(sigmax, sigma0);
60 qptG(:, :, 6) = kron(sigmax, sigmax);
61 qptG(:, :, 7) = kron(sigmax, sigmay);
62 qptG(:, :, 8) = kron(sigmax, sigmaz);
63

64 qptG(:, :, 9) = kron(sigmay, sigma0);
65 qptG(:, :, 10) = kron(sigmay, sigmax);
66 qptG(:, :, 11) = kron(sigmay, sigmay);
67 qptG(:, :, 12) = kron(sigmay, sigmaz);
68

69 qptG(:, :, 13) = kron(sigmaz, sigma0);
70 qptG(:, :, 14) = kron(sigmaz, sigmax);
71 qptG(:, :, 15) = kron(sigmaz, sigmay);
72 qptG(:, :, 16) = kron(sigmaz, sigmaz);
73

74 %% Define the Chi Matrix
75

76 % for r2017b processing
77 T1 = sym(’t’, [16 16], ’real’); % creating the real portion
78 T2 = sym(’s’, [16 16], ’real’); % creating the imag portion
79

80 % T1 = sym(’t’, [16 16]); % creating the real portion
81 % T2 = sym(’s’, [16 16]); % creating the imag portion
82 % T1 = sym(T1, ’real’);
83 % T2 = sym(T2, ’real’);
84

85

86 T3 = diag(diag(T2)); % removing the imag portion from diagonal
87 T = triu(T1 + 1j*T2 - 1j*T3); % final T matrix
88

89 Chi = ctranspose(T)*T;
90

91 %% Completeness relation with Lagrange multiplier
92

93 constructedIdentity = 0 * eye(4);
94 finalLagrange = 0;
95

96 id4 = eye(4);
97

98 for m=1:16
99 for n=1:16

100 constructedIdentity = constructedIdentity + Chi(m,n) * qptG(:,:,m) * qptG
(:,:,n);

101 end
102 end
103
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104 for m=1:4
105 for n=1:4
106 finalLagrange = finalLagrange + (real(constructedIdentity(m,n)) - id4(m,n))

^2 + (imag(constructedIdentity(m,n)))^2;
107 end
108 end
109

110 lag = finalLagrange;
111

112 %% Saving the Data for Lagrange Multipler function
113

114 filename1 = ’outputCorrectedLagrange_Manual.txt’;
115 if (exist(filename1))
116 delete(filename1);
117 end
118

119 f_sym1 = fopen(filename1, ’wt’);
120 fprintf(f_sym1, ’%s’, char((lag)));
121 fclose(f_sym1);
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D.3 Mathematica Program to Perform Quantum State To-

mography

This program reads the files generated from the previous MATLAB code and per-

forms the maximum likelihood estimation.

Preparation------------------------------------------------------------------------------------------------------

ClearAll["`*"]; Clear["Global`*"]; ClearSystemCache[]; $HistoryLength = 0;

SetDirectory[NotebookDirectory[]];

ket2dm[M_] := M.M;

$Assumptions =

Union[Flatten@Table[ToExpression["t" <> ToString[i] <> "x" <> ToString[j]] ∈ Reals, {i, 16}, {j, 16}],

Flatten@Table[ToExpression["s" <> ToString[i] <> "x" <> ToString[j]] ∈ Reals, {i, 16}, {j, 16}],

{λ ∈ Reals}];

StartingLambdaValue = 1;

NumberOfInitialStatesToFit = 36;

Gate Definitions----------------------------------------------------------------------------------------------

θ = π/ 2; θ1 = -π/ 2;

identity = IdentityMatrix[2];

sigmax = {{0, 1}, {1, 0}}; sigmay = {{0, -I}, {I, 0}}; sigmaz = {{1, 0}, {0, -1}};

id = ArrayFlatten[identity⊗identity];

sx = ArrayFlatten[sigmax⊗identity]; sy = ArrayFlatten[sigmay⊗identity];

sz = ArrayFlatten[sigmaz⊗identity];

tx = ArrayFlatten[identity⊗sigmax]; ty = ArrayFlatten[identity⊗sigmay];

tz = ArrayFlatten[identity⊗sigmaz];

sx2 = Cos[θ/ 2] id - I Sin[θ/ 2] sx; sy2 = Cos[θ/ 2] id - I Sin[θ/ 2] sy;

sz2 = Cos[θ/ 2] id - I Sin[θ/ 2] sz;

tx2 = Cos[θ/ 2] id - I Sin[θ/ 2] tx; ty2 = Cos[θ/ 2] id - I Sin[θ/ 2] ty;

tz2 = Cos[θ/ 2] id - I Sin[θ/ 2] tz;

snx2 = Cos[θ1/ 2] id - I Sin[θ1/ 2] sx; sny2 = Cos[θ1/ 2] id - I Sin[θ1/ 2] sy;

tnx2 = Cos[θ1/ 2] id - I Sin[θ1/ 2] tx; tny2 = Cos[θ1/ 2] id - I Sin[θ1/ 2] ty;

ζ = (0) Degree; ι1 = (113.67) Degree; ι2 = (66.21) Degree;

cnotHFq =

0 EI ζ 0 0

E-I ζ 0 0 0

0 0 EI ι2 0

0 0 0 EI ι1

;
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QPT Gate Definitions----------------------------------------------------------------------------------------

g[1] = ArrayFlatten[identity⊗identity];

g[2] = ArrayFlatten[identity⊗sigmax];

g[3] = ArrayFlatten[identity⊗sigmay];

g[4] = ArrayFlatten[identity⊗sigmaz];

g[5] = ArrayFlatten[sigmax⊗identity];

g[6] = ArrayFlatten[sigmax⊗sigmax];

g[7] = ArrayFlatten[sigmax⊗sigmay];

g[8] = ArrayFlatten[sigmax⊗sigmaz];

g[9] = ArrayFlatten[sigmay⊗identity];

g[10] = ArrayFlatten[sigmay⊗sigmax];

g[11] = ArrayFlatten[sigmay⊗sigmay];

g[12] = ArrayFlatten[sigmay⊗sigmaz];

g[13] = ArrayFlatten[sigmaz⊗identity];

g[14] = ArrayFlatten[sigmaz⊗sigmax];

g[15] = ArrayFlatten[sigmaz⊗sigmay];

g[16] = ArrayFlatten[sigmaz⊗sigmaz];

Χ Matrix definitions-----------------------------------------------------------------------------------------

(T = Table[

If[j > i,

ToExpression["t" <> ToString[i] <> "x" <> ToString[j]] +

I* ToExpression["s" <> ToString[i] <> "x" <> ToString[j]],

If[j ⩵ i,

ToExpression["t" <> ToString[i] <> "x" <> ToString[j]],

0]

], {i, 16}, {j, 16}]) // MatrixForm;

Χ = Simplify[T.T];

numberOfOptimizeParameters = Length@Variables@Χ;

Long Expressions from MATLAB--------------------------------------------------------------------------

replacementRules = {"_" → "x", "i" → "I", "\\\\\\r\\n" → "", "ans" → "", "=" → ""};

lag = ToExpression@StringReplace[Import["outputCorrectedLagrange_Manual.txt"], replacementRules];

mleTable = Table[p, {p, 1, NumberOfInitialStatesToFit}];

mleTable = ParallelTable[

ToExpression["mle" <> ToString[i] <> "=N@ToExpression@StringReplace[Import[\"outputMLE" <>

ToString[i] <> ".txt\"],{\"_\"→\"x\",\"i\"→\"I\"}];"];

ToExpression["mle" <> ToString[i]], {i, 1, NumberOfInitialStatesToFit}];
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Previous Solution from Solving with fixed error values

solFromFixedErrors = {s10x11 → -3.180632401243754`*^-6, s10x12 → 1.5717033020302681`*^-6, s10x13 → -1.985864803342644`*^-6,

s10x14 → -8.70597476376936`*^-6, s10x15 → -7.015277546201579`*^-6, s10x16 → 8.03579007129929`*^-6, s11x12 → 7.902315010450201`*^-7,

s11x13 → -2.313010267819399`*^-6, s11x14 → 3.5523334486568762`*^-6, s11x15 → 8.559337298326189`*^-6, s11x16 → -8.424292815519581`*^-7,

s12x13 → -4.8659487769431544`*^-6, s12x14 → 6.744456083265854`*^-6, s12x15 → -1.8090534596306031`*^-6,

s12x16 → -0.000012517691801958891`, s13x14 → 2.3635897371426607`*^-6, s13x15 → -2.4085192457268895`*^-6,

s13x16 → -5.358615401493727`*^-6, s14x15 → 3.21281320875445`*^-8, s14x16 → 6.176667949931038`*^-7, s15x16 → -1.1756970713920815`*^-7,

s1x10 → -0.030386382899871507`, s1x11 → -0.0072859559104510915`, s1x12 → -0.004099443802838109`, s1x13 → -0.011048153937148477`,

s1x14 → 0.46848713252793117`, s1x15 → 0.00434478213768275`, s1x16 → -0.15813881802845414`, s1x2 → 0.3597941547787879`,

s1x3 → 0.018112562315437734`, s1x4 → 0.04064076815966765`, s1x5 → 0.01388032343903583`, s1x6 → 0.04088597361073039`,

s1x7 → -0.007279327188886423`, s1x8 → -0.002630058905841912`, s1x9 → -0.010554993141885162`, s2x10 → 0.047072265752757615`,

s2x11 → -0.01439299853769621`, s2x12 → -0.014416816140697791`, s2x13 → 0.17106348373601338`, s2x14 → -0.06079399846284322`,

s2x15 → 0.013868449667682865`, s2x16 → -0.011671106718647913`, s2x3 → -0.07835065692790183`, s2x4 → 0.009492694609180622`,

s2x5 → 0.04589415876152599`, s2x6 → 0.023973365947912717`, s2x7 → -0.0014945263090628865`, s2x8 → 0.010783047518953032`,

s2x9 → -0.02393148144235894`, s3x10 → -0.01659570028058219`, s3x11 → 0.009623437284876881`, s3x12 → -0.008096676064083135`,

s3x13 → 0.007853438543292832`, s3x14 → -0.06994323748948496`, s3x15 → -0.03859156639756375`, s3x16 → 0.08372978810262696`,

s3x4 → 0.045817995890217386`, s3x5 → 0.019726938193452028`, s3x6 → 0.07400512093971533`, s3x7 → 0.0058917882368699085`,

s3x8 → 0.0062418834034440665`, s3x9 → 0.0292523781455762`, s4x10 → 0.003650003599150931`, s4x11 → 0.016124051502015995`,

s4x12 → -0.009792836049848418`, s4x13 → 0.07696600830171209`, s4x14 → -0.031685314323363016`, s4x15 → -0.11978139139931596`,

s4x16 → 0.013156354911674729`, s4x5 → -0.0038321011787662666`, s4x6 → 0.003921021954274655`, s4x7 → -0.0366800014774593`,

s4x8 → 0.009679911598268797`, s4x9 → 0.00789992439062912`, s5x10 → -0.004989231572985889`, s5x11 → -0.031078287066359952`,

s5x12 → 0.022897284233992288`, s5x13 → 0.056871172684400936`, s5x14 → -0.049921380623654615`, s5x15 → -0.014000058851073355`,

s5x16 → 0.03191537657598426`, s5x6 → 0.008136186694297928`, s5x7 → -0.010190310638605246`, s5x8 → 0.011589805816033269`,

s5x9 → 0.007102305213028081`, s6x10 → -0.06493538423658389`, s6x11 → 0.04084058142850362`, s6x12 → 0.013914650621046649`,

s6x13 → 0.09969464839575685`, s6x14 → 0.026695843480954946`, s6x15 → -0.007297326450360799`, s6x16 → -0.028855182002890955`,

s6x7 → 0.008365689351621242`, s6x8 → -0.026521964849484138`, s6x9 → 0.004373350963886727`, s7x10 → 0.049889365686499404`,

s7x11 → 0.005502335156934873`, s7x12 → -0.00015761184198197426`, s7x13 → -0.02474734922446878`, s7x14 → 0.013456484985130523`,

s7x15 → -0.023812043608892514`, s7x16 → 0.008326784975590636`, s7x8 → -0.05933279633430603`, s7x9 → -0.027770093938137244`,

s8x10 → 0.00001509930476478091`, s8x11 → 8.743438381268404`*^-6, s8x12 → 0.000014306766041176888`, s8x13 → -0.00003955182782154372`,

s8x14 → 0.00004701977550031877`, s8x15 → 0.00001961016422254961`, s8x16 → 0.00003073421420383619`, s8x9 → -0.000012979393306402807`,

s9x10 → 8.724721411402268`*^-7, s9x11 → -6.453967804318006`*^-7, s9x12 → 8.55797575058384`*^-6, s9x13 → 0.00002279597596375431`,

s9x14 → -0.000017811635537823194`, s9x15 → -6.36366049221097`*^-7, s9x16 → 0.000046748762690409574`, t10x10 → 0.000010051222168127104`,

t10x11 → 2.3601730769493393`*^-6, t10x12 → -1.0826560104012013`*^-6, t10x13 → -4.463281160968165`*^-6, t10x14 → 8.879996243868553`*^-6,

t10x15 → -9.83637335546199`*^-6, t10x16 → 5.407587280696072`*^-6, t11x11 → 2.263493305603312`*^-6, t11x12 → -1.5804094220319702`*^-6,

t11x13 → -1.2177923919132947`*^-6, t11x14 → -0.00001204947082487085`, t11x15 → 5.374892523770293`*^-6, t11x16 → -3.1301225173929968`*^-6,

t12x12 → 8.758157176503663`*^-7, t12x13 → -0.000016025647392165917`, t12x14 → 1.833102899755931`*^-6, t12x15 → 3.620001672544921`*^-6,

t12x16 → 0.000012625663202869616`, t13x13 → -5.89258311365452`*^-6, t13x14 → 9.321430061639383`*^-7, t13x15 → 3.179539239060188`*^-6,

t13x16 → 4.0794119310035225`*^-7, t14x14 → -3.059086620535822`*^-7, t14x15 → -1.6180377822754913`*^-7,

t14x16 → -3.8360668080826245`*^-7, t15x15 → -2.267751061044066`*^-7, t15x16 → 1.165434280170037`*^-7, t16x16 → -7.130681387741039`*^-7,

t1x1 → 0.4520056784424777`, t1x10 → 0.032855610932619454`, t1x11 → -0.010491355614836374`, t1x12 → -0.00045780779738405496`,

t1x13 → -0.36065219804740467`, t1x14 → 0.06149111164588601`, t1x15 → -0.0033441877550340012`, t1x16 → -0.013781046439125692`,

t1x2 → 0.11189259581340696`, t1x3 → -0.007611132384967747`, t1x4 → 0.027667875974598015`, t1x5 → 0.006068817874611381`,

t1x6 → 0.0018307333453984216`, t1x7 → 0.004551101301021993`, t1x8 → 0.0030938487777466216`, t1x9 → 0.00587849103787447`,

t2x10 → 0.016551430387472064`, t2x11 → 0.01689134955311564`, t2x12 → 0.0013655463564095206`, t2x13 → -0.00491060692516438`,

t2x14 → 0.09963853941653038`, t2x15 → -0.013968755489482738`, t2x16 → -0.008277819649521755`, t2x2 → 0.20675291589002223`,

t2x3 → 0.024473623276398213`, t2x4 → -0.012984785348195116`, t2x5 → -0.019475995891286565`, t2x6 → -0.08761131192286652`,

t2x7 → 0.011862473470855514`, t2x8 → -0.0006027646200330583`, t2x9 → -0.018396572935144292`, t3x10 → 0.05181036942555026`,

t3x11 → 0.0010005967379380358`, t3x12 → -0.009332895400415223`, t3x13 → -0.06314978247310223`, t3x14 → 0.032292925910217304`,

t3x15 → -0.027926927427953368`, t3x16 → -0.04568204057542694`, t3x3 → 0.1140933551891964`, t3x4 → -0.00783943659532157`,

t3x5 → 0.022117301328291778`, t3x6 → 0.032497847366940835`, t3x7 → -0.019254072066010267`, t3x8 → 0.019501480048439056`,

t3x9 → -0.009631503580975004`, t4x10 → 0.02728274109325494`, t4x11 → -0.03567138147318772`, t4x12 → 0.006327640570904986`,

t4x13 → -0.003768407685949619`, t4x14 → 0.032941280052333086`, t4x15 → -0.05410110051569517`, t4x16 → -0.04932832767311707`,

t4x4 → 0.08978999085438892`, t4x5 → 0.0008695001721608258`, t4x6 → 0.030178141075760594`, t4x7 → -0.004144349805012477`,

t4x8 → 0.01295463593375814`, t4x9 → 0.013517207422038454`, t5x10 → 0.010419683741640172`, t5x11 → -0.020515952677066875`,

t5x12 → 0.0193284572963544`, t5x13 → 0.03124446885900001`, t5x14 → 0.027421864497525646`, t5x15 → -0.04402575160068402`,

t5x16 → -0.05070910411928882`, t5x5 → -0.03085005976258049`, t5x6 → -0.02774509473577938`, t5x7 → 0.029677969270593615`,

t5x8 → -0.014384801668604244`, t5x9 → -0.004830618674772696`, t6x10 → -0.013610600244055132`, t6x11 → 0.0036647168025693527`,

t6x12 → -0.021260806565221568`, t6x13 → -0.027782183617720523`, t6x14 → -0.031457351788257336`, t6x15 → 0.02945779274621918`,

t6x16 → -0.0908492543365194`, t6x6 → 0.05682234758918807`, t6x7 → -0.0470978338208259`, t6x8 → -0.0013043977933188211`,

t6x9 → 0.010768747203304093`, t7x10 → 0.01851152092767361`, t7x11 → 0.021378990386469274`, t7x12 → -0.06721680342679641`,

t7x13 → -0.017096589855427804`, t7x14 → 0.004120644311313835`, t7x15 → 0.013939069731345476`, t7x16 → -0.0329688211008503`,

t7x7 → 0.024877272203204345`, t7x8 → 0.011099412971450593`, t7x9 → 0.010134326719652989`, t8x10 → -0.000015929311418535354`,

t8x11 → 3.056122912571834`*^-6, t8x12 → 0.000020017801952870493`, t8x13 → 0.00002438499618030268`, t8x14 → -0.000017782381445035978`,

t8x15 → 0.00004959725896256022`, t8x16 → 0.000025047550843188218`, t8x8 → -0.000017740229131132805`, t8x9 → -5.254137747332628`*^-6,

t9x10 → -6.135350972472073`*^-6, t9x11 → -1.3775789882811224`*^-6, t9x12 → 2.4299661311338643`*^-6, t9x13 → 0.00004299742909713805`,

t9x14 → -9.822767043607417`*^-7, t9x15 → -0.000025568992419941192`, t9x16 → -0.0000311654251224982`, t9x9 → 3.387685695088347`*^-6,

λ → 2.239146262972046`};
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D.3. MATHEMATICA PROGRAM TO PERFORM QUANTUM STATE TOMOGRAPHY

Sum of Operators and Finding the correct Initialization-------------------------------------------

decompositionOSR =

NSolve[

cnotHFq == (a[1] g[1] + a[2] g[2] + a[3] g[3] + a[4] g[4] + a[5] g[5] + a[6] g[6] + a[7] g[7] +

a[8] g[8] + a[9] g[9] + a[10] g[10] + a[11] g[11] + a[12] g[12] + a[13] g[13] + a[14] g[14] +

a[15] g[15] + a[16] g[16]), {a[1], a[2], a[3], a[4], a[5], a[6], a[7], a[8], a[9], a[10],

a[11], a[12], a[13], a[14], a[15], a[16]}];

OSRCoefficients =

Transpose@

({a[1], a[2], a[3], a[4], a[5], a[6], a[7], a[8], a[9], a[10], a[11], a[12], a[13], a[14],

a[15], a[16]} /. decompositionOSR);

decomposedOperator = OSRCoefficients;

(IdealΧ = decomposedOperator.decomposedOperator);

χInitializingData = Chop@CholeskyDecomposition@(Χ /. solFromFixedErrors);

initializeParameters =

Union[Partition[Riffle[FullSimplify@Re@Flatten[T], FullSimplify@Re@Flatten[χInitializingData]], 2],

Partition[Riffle[FullSimplify@Im@Flatten[T], FullSimplify@Im@Flatten[χInitializingData]], 2]][[

-numberOfOptimizeParameters ;; -1]];

fullInitializeParameters = Union[initializeParameters, {{λ, StartingLambdaValue}}];

ReplaceRulesForInitializeParameters =

Flatten@

ToExpression@StringReplace[StringReplace[ToString@initializeParameters,

{"}, {" → ";", "," → "->"}], {";" → ","}];

MLE Initialization--------------------------------------------------------------------------------------------

MLECombined = Nλ2
* lag + Total@mleTable;

Performing MLE----------------------------------------------------------------------------------------------

startTime = AbsoluteTime[];

Block{c = 0},

sol = FindMinimumRe@MLECombined, fullInitializeParameters, MaxIterations → 4000,

StepMonitor ⧴ IfMod[c, 100] ⩵ 0,

Print"step = " <> ToString[c++] <> ", value = " <> ToString
Re@MLECombined

1000


, c++;



, c

Print["time elapsed = " <> ToString[AbsoluteTime[] - startTime]];

NotebookSave[];
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D.4. MATHEMATICA PROGRAM TO GENERATE THE SIMULATION DATA FOR QPT

D.4 Mathematica Program to Generate the Simulation Data

for QPT

ClearAll["`*"]; Clear["Global`*"]; ClearSystemCache[]; $HistoryLength = 0;

SetDirectory[NotebookDirectory[]];

ParallelEvaluate[

$Assumptions = {t1 ∈ Reals, t2 ∈ Reals, t3 ∈ Reals, t4 ∈ Reals, t5 ∈ Reals, t6 ∈ Reals, t7 ∈ Reals, t8 ∈ Reals, t9 ∈ Reals,

t10 ∈ Reals, t11 ∈ Reals, t12 ∈ Reals, t13 ∈ Reals, t14 ∈ Reals, t15 ∈ Reals, t16 ∈ Reals};];

ParallelDo

ket2dm[M_] := M.M;

listOfInitializations =

Flatten@{{"id.id"}, {"id.sx"}, {"id.sx2"}, {"id.sy2"}, {"tx.id"}, {"tx.sx"}, {"tx.sx2"}, {"tx.sy2"}, {"tx2.id"},

{"tx2.sx"}, {"tx2.sx2"}, {"tx2.sy2"}, {"ty2.id"}, {"ty2.sx"}, {"ty2.sx2"}, {"ty2.sy2"}};

identity = IdentityMatrix[2]; sigmax = {{0, 1}, {1, 0}}; sigmay = {{0, -I}, {I, 0}}; sigmaz = {{1, 0}, {0, -1}};

θ = π/ 2; θ1 = -π/ 2; id = ArrayFlatten[identity⊗identity];

sx = ArrayFlatten[sigmax⊗identity]; sy = ArrayFlatten[sigmay⊗identity]; sz = ArrayFlatten[sigmaz⊗identity];

tx = ArrayFlatten[identity⊗sigmax]; ty = ArrayFlatten[identity⊗sigmay]; tz = ArrayFlatten[identity⊗sigmaz];

sx2 = Cos[θ/ 2] id - I Sin[θ/ 2] sx; sy2 = Cos[θ/ 2] id - I Sin[θ/ 2] sy; sz2 = Cos[θ/ 2] id - I Sin[θ/ 2] sz;

tx2 = Cos[θ/ 2] id - I Sin[θ/ 2] tx; ty2 = Cos[θ/ 2] id - I Sin[θ/ 2] ty; tz2 = Cos[θ/ 2] id - I Sin[θ/ 2] tz;

snx2 = Cos[θ1/ 2] id - I Sin[θ1/ 2] sx; sny2 = Cos[θ1/ 2] id - I Sin[θ1/ 2] sy;

tnx2 = Cos[θ1/ 2] id - I Sin[θ1/ 2] tx; tny2 = Cos[θ1/ 2] id - I Sin[θ1/ 2] ty;

initialState = N@Flatten@ket2dm[ToExpression@(listOfInitializations[[initialStIndex]]).{{1}, {0}, {0}, {0}}];

H0 = {0, 0, 0, 0}, {0, Ee, 0, 0}, 0, 0,
δ

2
+ ϵ, 0, 0, 0, 0, Ee -

δ

2
+ ϵ;

V = 0, ⅇ
ⅈ ξ+t ωp

Ω[t], 0, 0, ⅇ
-ⅈ ξ+t ωp

Ω[t], 0, 0, 0, 0, 0, 0, ⅇ
ⅈ ξ+t ωp

Ω[t], 0, 0, ⅇ
-ⅈ ξ+t ωp

Ω[t], 0;

(Htot = H0 + V) // MatrixForm; (U = MatrixExp[I H0 t]) // MatrixForm;

(Hrot = Chop@FullSimplify[U.Htot.Inverse[U] + I D[U, t].Inverse[U]]) // MatrixForm;

ρ = {{ρ0x0[t], ρ0x1[t], ρ0x2[t], ρ0x3[t]}, {ρ1x0[t], ρ1x1[t], ρ1x2[t], ρ1x3[t]}, {ρ2x0[t], ρ2x1[t], ρ2x2[t], ρ2x3[t]},

{ρ3x0[t], ρ3x1[t], ρ3x2[t], ρ3x3[t]}};

assume = Flatten[ρ /. t → 0];

For[assumeIndex = 1, assumeIndex ≤ Length[assume], assumeIndex++, assume[[assumeIndex]] = ToExpression[

ToString[assume[[assumeIndex]]] <> "==" <> ToString@initialState[[assumeIndex]]];];

[A_, ρ_] := A.ρ.A -
1

2
A.A.ρ -

1

2
ρ.A.A; (*Lindblad operator definition*)

Aq1 = {{0, 1, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 1}, {0, 0, 0, 0}};

Aq2 = {{0, 0, 1, 0}, {0, 0, 0, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}}; (*Creating the jump operators*)

χχ[t_] = A
t

τp

4
1 -

t

τp

4
+

π

4
; Ω[t_] =

D[χχ[t], {t, 2}]

2 Δ2

4
- D[χχ[t], t]2

-
Δ2

4
- D[χχ[t], t]2 Cot[2 χχ[t]] ;

ξ = (0 - 0) Degree; (*Adjustment phase for the SWIPHT pulse*)

Ee = 2 π 6.75427; (*target qubit frequency*) δ = 2 π 0.00103; (*qubit-qubit shift*) ϵ = 2 π 6.07135 -
δ

2
;

Γ1 = 1/ 3400; Γ2 = 1/ 9030; (*qubits' decay rate*)

A = 138.9; Δ = δ;

ωp = Ee; (*Drive frequency*)

τp =
5.87

Abs[Δ]
; (*Length of SWIPHT pulse*)

equationsR = (I*(ρ.Hrot - Hrot.ρ)) + Γ1*[Aq1, ρ] + Γ2*[Aq2, ρ]; equationsL = D[ρ, t];

solutions = NDSolve[Join[Flatten[Table[equationsL[[i, j]] ⩵ equationsR[[i, j]], {i, 1, 4}, {j, 1, 4}]], assume],

Flatten[ρ], {t, 0, τp}, MaxSteps → Infinity];

thyρ = Chop[({ρ /. solutions} /. t → τp)[[1, 1, All]]];

{initialStIndex, listOfInitializations[[initialStIndex]], thyρ};

Export[ToString@initialStIndex <> ".dat", thyρ];

, {initialStIndex, 1, 16}
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APPENDIX E

QPT Process Matrices for Implementing SWIPHT

E.1 QPT Process Matrices for SWIPHT Gates

The figures below show real and imaginary parts of χ-matrices obtained from

the experiment, master-equation simulations and decoherence-free ideal gates when

implementing the SWIPHT protocol. The plots include results for qubit QH or QL as the

control and two values of φd. The maximum theoretical magnitude for any element is

0.25.
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E.1. QPT PROCESS MATRICES FOR SWIPHT GATES
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Fig. E.1 χ-matrix for SWIPHT49π/36
L . Qubit L is the control and φd = 49π/36.
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Fig. E.2 χ-matrix for SWIPHT0
H. Qubit H is the control and φd = 0.
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Fig. E.3 χ-matrix for SWIPHT7π/12
H . Qubit H is the control and φd = 7π/12.
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E.2. QPT PROCESS MATRICES FOR SINGLE-QUBIT GATES

E.2 QPT Process Matrices for Single-Qubit Gates

In the figures below, I show the real and imaginary parts of χ-matrices obtained

from the experiment for single-qubit gates. In each case, I also show the χ-matrices

for the and decoherence-free ideal gates for comparison. The maximum theoretical

magnitude for any element is 1.0 for Rπ gates and 0.5 for Rπ/2 gates.
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Fig. E.4 χ-matrix for I ⊗ I .
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Fig. E.5 χ-matrix for I ⊗ Rπx .
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Fig. E.6 χ-matrix for I ⊗ Rπy .
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Fig. E.7 χ-matrix for Rπx ⊗ I .
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