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Locally recoverable (LRC) codes have the property that erased coordinates can be re-

covered by retrieving a small amount of the information contained in the entire codeword.

An LRC code achieves this by making each coordinate a function of a small number of

other coordinates. Since some algebraic constructions of LRC codes require that n ď q,

where n is the length and q is the size of the field, it is natural to ask whether we can gen-

erate codes over a small field from a code over an extension. Trace codes achieve this by

taking the field trace of every coordinate of a code. In this thesis, we give necessary and

sufficient conditions for when the local recoverability property is retained when taking

the trace of certain LRC codes.

This thesis also explores a subfamily of LRC codes with hierarchical locality (H-LRC)

which have tiers of recoverability. We provide a general construction of codes with 2

levels of hierarchy from maps between algebraic curves and present several families from



quotients of curves by a subgroup of automorphisms. We consider specific examples from

rational, elliptic, Kummer, and Artin-Schrier curves and examples of asymptotically good

families of H-LRC codes from curves related to the Garcia-Stichtenoth tower.
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Chapter 0: Introduction

Digital data transmitted over communication channels or recorded in storage devices is

naturally subjected to noise that alters or erases parts of the contents. The need to recover

data from noise motivates the main problems of mathematical coding theory. We assume

that the data is encoded using a finite field alphabet, and parity checks are added to it to

enable recovery from distortions of various kind. The main focus of coding theory is on

constructions involving linear encoding of the data which accounts for both rich structure

and feasibility of practical implementations.

The focus of this thesis is on problems motivated by applications in distributed storage

systems wherein large volumes of data are written on multiple storage drives (nodes). The

temporary failure of one or several of these nodes is common and renders the information

stored there unavailable for its users. Accordingly, the main usage of coding in such

systems is related to combating erasures. At the same time, classical code constructions

are designed to correct a large number of erasures, and their use in distributed storage

systems leads to a large amount of communication between the storage nodes, which is

undesirable. This motivates the problem of designing codes that support recovery of one

erasure by reading a small portion of the encoding, while also being able to correct many

erasures in the case of massive node failure.
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Let Fq be a finite field and consider an n-dimensional linear space Fnq . Define the Ham-

ming metric on Fnq by setting dpx, yq :“ |ti : xi ‰ yiu|. A linear code C of length n and

dimension k is defined as an image of an injective linear map Fkq Ñ Fnq , i.e., a linear k-

dimensional subspace of Fnq . Elements of C are called codewords. The minimum distance

of C is the smallest distance between a pair of distinct codewords. Let d be the minimum

distance of C. If a number of coordinates of the codeword are erased, it is possible to

recover the entire codeword as long as the remaining part of the codeword identifies it

uniquely. Since projecting on any n ´ pd ´ 1q coordinates is an injective map, the code

corrects up to d ´ 1 erasures. One prominent example of this construction is given by

the classic family of Reed-Solomon codes, which also serve a starting point for a number

of constructions in this thesis. The power of this approach is related to the fact that the

remaining (non-erased) coordinates enable us to identify the entire codeword; at the same

time, correcting just one erasure can conceivably be done more efficiently.

Locally recoverable codes provide a solution to the above problem. In a locally recov-

erable code, introduced in [13], each coordinate is a function of a small number r other

coordinates. This means that when a failure at a single node occurs, the user can recover

the missing data without accessing all the remaining nodes of the encoding. Naturally,

the additional dependencies among the coordinates of the code entail the reduction of the

dimension of such a code relative to the other parameters. In [35], families of optimal

locally recoverable codes of length ď q were constructed that are an extension of Reed-

Solomon codes. In [6], this was further extended to n ą q using codes generated from

maps between algebraic curves.
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In this thesis we explore a few problems related to the situation described above. In

Chapter 1 of this thesis we cover the necessary background material in more detail. This

includes a discussion of linear codes and their parameters and an introduction to some of

the main constructions that are important to the later chapters, including Reed-Solomon

codes and classical algebraic geometry codes. In Chapter 2 we study a problem in the

field of locally recoverable codes that are defined over non-prime finite fields. For a given

extension of finite fields, trace codes are codes over the base field that are obtained by

taking the trace of every codeword of a code in the extended field. If the original code

happened to be locally recoverable it is natural to ask if there is a similar recoverability

structure on the resultant trace code. In this chapter we present original results on char-

acterizing when the recoverability is preserved when the LRC code is generated using a

certain algebraic geometry construction. In Chapter 3 we examine an extension of locally

recoverable codes to codes with hierarchical locality. Briefly, hierarchical codes have

multiple levels of recoverability in a tiered structure. We present a new construction that

is an extension of the locally recoverable construction on curves. We also construct sev-

eral code families with hierarchical locality on algebraic curves, including families that

have asymptotically good parameters. These results were published in [2] and form the

contents of the preprint [3].

0.1 Summary of Results

The results of this thesis are broken up into two main parts, Chapter 2 and Chapter 3,

both of which answer questions related to locally recoverable codes. Contained here is
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a detailed list of original results presented in this thesis. The results of Chapter 3 were

previously published in [2, 3].

Chapter 2 This chapter answers questions related to locally recoverable trace codes.

Since many algebraic construction of locally recoverable codes have bounds on the length

that depend on the size of the field of definition, it is natural to ask how to generate longer

codes by using codes originally defined over some field extension. One way to accom-

plish this is trace codes which uses the entry-wise field trace. In this chapter we present

the following original results:

• Given a covering of the projective line, we prove necessary and sufficient conditions

for the local recoverability of the corresponding code to be preserved under the trace

map. The characterization of when this happens depends on the covering curve to

consist of ”good fibers”. In this chapter we give a systematic method for generating

sets of good fibers.

• We construct an example of an algebraic geometry code that is generated from a

curve with good fibers. For this example we compute the resulting paramters of the

corresponding trace code.

Chapter 3 This chapter is devoted to a generalization of LRC codes to codes with hi-

erarchical locality. These codes attempt to further approve the efficiency in the repair of

failed nodes in distributed storage systems. Codes with hierarchical locality have multiple

levels of recoverability, small recovering sets to recover simple node failures efficiently

and larger recovering sets to efficiently repair small numbers of concurrent failures. In
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Chapter 3, we give new constructions of such codes from maps between algebraic curves

and prove some related results:

• We present a generalization of a construction of locally recoverable codes from

maps between curves to generate codes with hierarchical locality.

• We give a family of examples of q-ary codes with length n ď q and optimal param-

eters constructed by taking quotients of rational function fields.

• We give an extension of the above example to length q` 1 that requires an adjusted

construction.

• We also construct codes of length close to q ` 2
?
q constructed from quotients of

elliptic curves.

• We construct examples from maps between curves extracted from the Garcia-Stichtenoth

tower and inspired by the limitations of the codes generated from the this tower, we

generate a class of examples from quotients of Kummer curves that have good pa-

rameters.

• Finally, the Garcia-Stichtenoth tower gives rise to several asymptotic results that

result in asymptotically good codes with hierarchical locality.
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Chapter 1: Background

1.1 Introduction to Coding Theory

We begin by introducing some of the basic definitions required to discuss the theory of

codes. We focus on the notions that relate directly to the results of this thesis, in particular

the ideas necessary to introduce algebraic geometry codes. We touch on the ideas of

classical coding for background, and the problems of interest in the algebraic geometry

code setting are introduced in Section 1.3. For more background on coding theory and

algebraic geometry codes, see [27], [34], and [38]. This chapter does not contain new

results, and references are given for the most important of the cited statements.

1.1.1 Basic Definitions

Let Fq denote a finite field with q elements and Fnq denote the n-dimensional vector space

over Fq. For a vector x P Fnq we denote by xi the ith coordinate of the vector x.

Definition 1.1.1 (Linear code). An rn.ks linear code C over the finite field Fq is a k-

dimensional sub-space of the vector space Fnq .

The vectors that appear in a code C are called codewords of C. The parameter n in the

definition above is referred to as the length of the code. The parameter k is referred to as
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the dimension of the code. This definition is often extended to a more general definition

of codes to include subsets of Fnq that are not necessarily linear subspaces. In this thesis

all codes are assumed to be linear. There are a few reasons why it is common in the

literature to restrict to the class of linear codes. The most important reason is that the

linear structure allows for efficient algorithms for using the code.

Definition 1.1.2 (Hamming weight/distance). Given a vector x P Fnq the Hamming weight

of x is defined to be

wtpxq “ #ti|xi ‰ 0u.

Given two vectors x, y P Fnq , we define the Hamming distance between x and y to be

dpx, yq “ wtpx´ yq “ #ti|xi ‰ yiu.

This definition of distance induces a metric on the vector space Fnq and is vital to measur-

ing the performance of error-correcting codes.

Definition 1.1.3 (Dual code). Given an rn, k, ds code C, define CK as follows

CK “ tx P Fnq |x ¨ y “ 0 @y P Cu.

It is clear from the definition that the dual code of an rn, ks code is an rn, n ´ ks code.

In later chapters we make use of the fact that a nonzero vector, x in CK gives a linear

relationship among the coordinates of every codeword c in C called a parity check and

given by the equation x ¨ c “ 0.
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Definition 1.1.4 (Minimum distance). The minimum distance of an rn, ks code C is de-

fined to be

dminpCq :“ mintdpx, yq|x, y P C, x ‰ yu

and C is said to be an rn, k, ds code.

For a fixed value of the code length n, the minimum distance and dimension of the code

are competing parameters. This means that codes with large dimension necessarily have

low minimum distance and vice versa. Naturally, one might ask how large we can make

one parameter while the other is fixed. For a fixed code length and dimension, the follow-

ing theorem gives an upper bound for the minimum distance.

Theorem 1.1.5 (Singleton bound). Let C be an rn, k, ds code, then

d ď n´ k ` 1.

Proof. Since the minimum distance is d, the mapping from C Ñ Fn´pd´1qq given by

removing the last d´ 1 coordinates from each codeword is injective. This implies

k ď n´ pd´ 1q.

Codes that meet the Singleton bound are referred to as maximum distance separable

(MDS) codes. MDS codes do not exist for n ě 2q and are only known to exist for

n ď q ` 1. In Section 1.1.3 we present a naturally occurring class of MDS codes that are
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central to this thesis.

1.1.2 Error Correction/Detection

In this section, we introduce the classical problems in information theory that inspire

the definitions given in the previous section. In this section we present the problems that

arise in the classical setting of error correction/detection. However, it is the erasure model

given at the end of this section that is the focus of the rest of this thesis. For simplicity, we

consider transmissions consisting of only 4 possible messages: tA,B,C,Du. Note that

choosing an rn.ks linear code is equivalent to choosing an embedding Fkq Ñ Fnq called

the encoding mapping. In the remainder of this section, we consider three choices of the

encoding mapping for the alphabet above.

The Naive Approach - The most obvious choice of encoding is given by

A ÞÑ p00q

B ÞÑ p10q

C ÞÑ p01q

D ÞÑ p11q.

While this choice is efficient in keeping messages as short as possible we find that it is not

resilient to the natural noise that occurs when transmitting message. For example, if we

were to transmit the message CAB by encoding it as (010010) and there is noise in the

transmission causing one of the bits to flip. At the receiver end of the communication line,
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the message reads as (010011) which decodes to CAD. The receiver receives a corrupted

message and, equally important, the receiver is unaware that an error has occurred.

Error Detection - One solution to the error detection problem is to add a check digit to

the end of the ecoding of each letter. Consider the following choice of encoding for the

same alphabet.

A ÞÑ p000q

B ÞÑ p101q

C ÞÑ p011q

D ÞÑ p110q.

Now, to transmit the same message as before, CAB, we encode the message as

p011000101q. If noise in the transmission were to again flip one of the digits such as

p011001101q, the receiver will now be unable to decode the message since the middle

letter p001q is not a valid letter in our alphabet. The receiver can now request a re-

transmission in an attempt to receive a valid version of the message. In this example

we chose a r3, 2, 2s code to encode our message compared to the r2, 2, 1s code chosen in

the naive approach. The important difference between these examples is that the mini-

mum distance in the second one is greater than 1. Using such a code ensures that any

two codewords differ in at least two entries. More generally if we choose a code with

minimum distance d, the receiver will detect up to d´ 1 errors in the transmission.

The consequence for adding check digits to obtain error-detecting codes is a drop in trans-
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mission rate and overall efficiency. Not only are the codewords longer but if an error is

detected the receiver needs to request a re-transmission of the corrupted codewords. It

would be more efficient if the receiver could fix locally any errors that occur.

Error Correction - To allow for local error correction we need even greater separation

between the vectors in our code. By increasing the minimum distance even more than we

did in the previous example, not only can we ensure that errors are detected but we can

recover the original message. Continuing with the examples from above, let us choose

our encoding mapping in the following way.

A ÞÑ p000000q

B ÞÑ p111000q

C ÞÑ p000111q

D ÞÑ p111111q.

The choices above result in a r6, 2, 3s code. Once again we consider the situation in

which a message is transmitted through a noisy channel that results in a single error in the

message. For example, our previous message CAB (000111000000111000) may become

(000111000000111001). The receiver will detect an error in the last character of the

transmitted message and additionally predict that the original character was a B since

that is the closest vector with respect to the Hamming distance. This model assumes that

errors occur with a low probability so the closest vector is the most likely candidate for

the origninal message.
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In the example above, if two errors were to occur the receiver may not have be able

to correctly decode the message using this method. In general, a code with minimum

distance d is able to correct td´1
2

u errors in the transmission.

The Erasure Model - There is another model of the above problem that is important for

this thesis. In the examples of this section, we assume the model in which errors in trans-

mission result in elements of the message being changed. An alternative model instead

assumes that message corruption results in erasures of data at the corrupted coordinates.

Erasures are errors with a known location. We call a particular choice or erasure locations

an erasure pattern and we say that an erasure pattern is correctable if the codeword can

be identified by its remaining coordinates. This occurs when the erasure mapping that

takes every codeword and erases the coordinates in the chosen pattern is injective. For

linear codes this occurs as long as the erasure mapping applied to any non-zero codeword

does not result in the zero vector, i.e., if the number of erasures is less than d ´ 1. This

implies, a minimum distance d code can correct any d ´ 1 erasures. To illustrate this let

us consider the same example from above.

A ÞÑ p000000q

B ÞÑ p111000q

C ÞÑ p000111q

D ÞÑ p111111q.

Now if the message CAB (000111000000111000) is transmitted and two erasures occur,
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this may result in the receipt of (0001110000001110 - - ). It is still clear at this point that

the last character is a B but if one additional erasure occurred at the third to last entry

then it is no longer clear whether or not the last character is B or D.

1.1.3 Reed-Solomon Codes

In this section, a class of MDS codes called Reed-Solomon codes is introduced. Algebraic

geometry codes are a direct generalization of Reed-Solomon codes which makes them

central to understanding their construction. The following construction takes advantage

of a very important property of linear codes. Since the code is linear, the entry-wise

difference of two codewords results in another codeword. This implies that

dminpCq “ mintdpx, yq|x, y P Cu

“ mintwtpx´ yq|x, y P Cu

“ mintwtpcq|c P Cu.

This means that the problem of maximizing the minimum distance of an rn, ks is equiv-

alent to minimizing the number of zeroes that can occur in a non-zero codeword. We

achieve this by taking advantage of the fact that low-degree polynomials have a limited

number of zeros.

Definition 1.1.6 (Reed-Solomon Code). Let Ω “ tP1, . . . , Pnu be a set of elements

(points) of Fq and choose k such that 1 ď k ď n. Let V “ spantxi|i “ 0, . . . , k ´ 1u be
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the k-dimensional Fq-linear space of polynomials of degree less than or equal to k ´ 1

over Fq. The rn, ks Reed-Solomon code C is defined to be the image of the map

ev : V Ñ Fnq

fpxq ÞÑ pfpP1q, . . . , fpPnqq.

Proposition 1.1.7. An rn, ks Reed-Solomon code is MDS and therefore has minimum

distance n´ k ` 1.

Proof. To find the minimum distance of a Reed-Solomon code we take advantage of

the fact that for linear codes, finding the minimum distance is equivalent to finding the

smallest Hamming weight of a non-zero vector in our code (i.e the non-zero vector with as

many zeros as possible). Since our codewords are constructed by evaluating a polynomial

of degree less than or equal to k´1, t here can be at most k´1 zeros in any given non-zero

codeword. This implies that the weight of a non-zero codeword is at least n´ pk ´ 1q “

n´ k ` 1.

The MDS property of Reed-Solomon codes make them ideal candidates for error correc-

tion but there are some restrictions on the parameters of a Reed-Solomon code. Since we

are selecting values from the field Fq on which to evaluate the vector space of polynomi-

als, we necessarily have n ď q. This limitation motivates the introduction of algebraic

geometric codes (i.e., codes on algebraic varieties) in the upcoming sections of this thesis.

We focus in algebraic geometry codes from algebraic curves and in this setting the idea

is that instead of selecting points on the affine line Fq we select evaluation points on a
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general algebraic curve of higher genus, thus allowing for longer codes.

1.1.4 Relative Parameters

In this section, we examine the following question: How do we compare codes of different

lengths to one another? In Section 1.1.1 we introduced two parameter important to the

performance of a code, the dimension and minimum distance. If we wish to compare

codes of different length we can normalize these parameters relative to the length of the

code. This results in the following definition.

Definition 1.1.8 (Relative parameters). The relative minimum distance is

δpCq :“ dminpCq{n

and the transmission rate RpCq is

RpCq :“ k{n.

As before, these are naturally competing parameters so it is natural to ask, for a fixed

value of δpCq, how large can we make the transmission rate RpCq? Equivalently for a

fixed transmission rate how large can we make the relative minimum distance?

We can generalize this by looking at sequences of codes Ci Ď Fniq of increasing length

ni such that limiÑ8RpCiq “ R and limiÑ8 δpCiq “ δ both exist. We denote by U the

subset of all pairs pR, δq that arise this way.
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Theorem 1.1.9 ( [28], [1]). There exists a continuous function R “ αpδq on the interval

r0, 1s such that

U “ tpR, δq|0 ď R ď αpδqu.

The above problem of maximizing a given parameter is equivalent to determining this

curve αpδq. While there are a few theoretical upper bounds for this curve, we focus on

lower bounds. Finding a lower bound entails finding families of codes with asymptotic

parameters that are as large as possible. The following argument uses a naive ‘sphere

packing’ approach to generate a lower bound for the curve. Surprisingly, this bound

remained the best known asymptotic bound for many years.

The Gilbert-Varshamov Bound is based on asymptotic estimates of the volume of balls

of a specified radius. We include this result since it is often considered a benchmark for

asymptotic results of coding theory. Let Volqpn, dq denote the number of points within a

ball of Hamming distance d in Fnq . Fix p P r0, 1´1{qs and let d “ np (here n is increasing

and p remains fixed).

Proposition 1.1.10 ( [38], p. 56). Define the q-ary entropy function as follows:

hqpxq “ x logqpq ´ 1q ´ x logq x´ p1´ xq logqp1´ xq.

Then

lim
nÑ8

logq Volqpn, dq

nhqpρq
“ 1.

Thus, for d ď npq ´ 1q{q we have Volqpn, dq « qnhqpd{nq. Given a choice of m “ qk
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codewords in our code, we can add another codeword not contained in any of the balls

of radius d around the previously chosen codewords as long as mqnhqpd{nq ď qn. More

precisely, we need k` nhqpd{nq ď n. A bound is then attained when k` nhqpd{nq “ n.

Dividing through by n gives us

R ` hqpδq “ 1.

The previous few statements show that the graph of 1´ hqpδq lies entirely in U . In other

words, αpδq is bounded below by the function 1´ hqpδq. This bound held for a very long

time and was believed to be the best possible bound until Goppa introduced algebraic

geometry codes [14] which led to an improvement of this bound for q ě 49 ( [38]). In the

upcoming sections, we introduce algebraic geometry codes and show the aforementioned

improvement upon the Gilbert-Varshamov bound.

1.2 Algebraic Geometry Codes

In this section we examine a construction of codes from algebraic curves that is a gener-

alization of the Reed Solomon codes generated in Section 1.1.3. All curves considered in

this section are projective, smooth, and absolutely irreducible over a fixed finite field Fq.

1.2.1 The L-Construction

Let X be a curve as described above and let Ω Ď XpFqq with |Ω| “ n, where XpFqq

denotes the set of Fq rational points on X . Choose a positive divisor D such that

SupppDq
Ş

Ω “ H.
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Definition 1.2.1. Consider the map

∆ : LpDq Ñ Fnq

f ÞÑ pfpP1q, fpP2q, ¨ ¨ ¨ , fpPnqq

where Ω “ tP1, . . . , Pnu. We define CLpX,P,Dq :“ imagep∆q.

The resulting code is an rn, ks code where k “ dimpLpDqq. To get a better idea of the

relationship between n, k, and d we mention the following well-known results.

Theorem 1.2.2. (Riemann-Roch Theorem)

Let X be a curve over the field Fq and D be a divisor on X . Then, dimLpDq ě degD`

1 ´ g where g is the genus of X . Moreover, if degD ą 2g ´ 2, then dimLpDq “

degD ` 1´ g.

Proposition 1.2.3. Let X be a curve over the field Fq and D be a divisor on X . Given

f P LpDq, f has at most degD zeros on X .

Proof. Suppose that f in fact had t “ degD ` 1 zeros on X at the points P1, . . . , Pt.

Then f would be a non-trivial function in LpD´P1´ ¨ ¨ ¨´Ptq. However, the dimension

of LpD ´ P1 ´ ¨ ¨ ¨ ´ Ptq must be zero since degpD ´ P1 ´ ¨ ¨ ¨ ´ Ptq ă 0. Therefore, f

can have at most degD zeros on X .

Proposition 1.2.3 says that the minimum distance of the resulting code CpX,Ω, DqL sat-

isfies d ě n´ degD. The Riemann-Roch Theorem implies that

k ´ 1` g ě n´ d
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or in terms of relative parameters,

R ´
1

n
`
g

n
ě 1´ δ. (1.1)

The above construction is generally used with the choices Ω equal to all affine points on

the curve X and D equal to some multiple of the point above infinity.

Reed-Solomon Codes Revisited - As mentioned before, the construction presented above

is a direct generalization of Reed-Solomon codes. We can construct Reed-Solomon codes

from the choices X “ P1 and D “ pk ´ 1q8.

1.2.2 The AG Bound

In this section we revisit the idea of asymptotic families of codes. The problem of coming

up with asymptotically good families of codes, and therefore better bounds for αpδq,

initially put algebraic geometry codes on the map. To understand the connection we first

present the following proposition.

Proposition 1.2.4. Let Xi be a sequence of curves over Fq such that gi, the genus of Xi,

and ni, the number of affine points on Xi, both go to infinity and gi{ni converges to some

value α, then R ` δ “ 1´ α is entirely in U .

Proof. This follows immediately from (1.1) and taking the limit as n goes to infinity.

Example: Modular Curves.([39]) Let l ‰ p be a rational prime and let Γ0plq be the

standard congruence subgroup of SL2pZq defined by
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Γ0plq “

ˆˆ

a b
c d

˙ˇ

ˇ

ˇ

ˇ

c ” 0 mod l
˙

.

We define the modular curve X0plq as the upper-half plane modulo the action of Γ0plq,

i.e.

X0plq “ H{Γ0plq.

Next, we state a result in the field of modular curves that will be useful for calculating the

asymptotic parameters of the codes generated from these curves modulo Fp2 .

Lemma 1.2.5. Asymptotically, as l Ñ 8, X0plq{Fp2 satisfies

NpX0plq{Fp2q « gpp´ 1q,

where g is the genus of X0plq{Fp2 and NpXq is the number of affine points on X .

If we take this sequence of curvesX0plq{Fp2 as l Ñ 8 and apply proposition 1.2.4, we get

that the curve R` δ “ 1´ 1{pp´ 1q is in U . This improves upon the Gilbert-Varshamov

bound for certain values of the transmission rate R.

1.3 Locally Recoverable Codes

Locally recoverable (LRC) codes form a family of codes motivated by applications in

distributed storage that support repair of a failed coordinate by contacting a small number

of other coordinates in the code. This is achieved by making each coordinate a function of

the values at few other coordinate. The general idea is that using the entire codeword for
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a single erasure, which are very common in storage systems, is not efficient enough. We

formalize this idea in the following sections and provide some examples of constructions

of such codes.

1.3.1 Definitions

Definition 1.3.1 (LRC codes, [13]). A code C Ă Fnq is locally recoverable with locality r

if for every i P t1, 2, . . . , nu there exists an r-element subset Ii Ă t1, 2, . . . , nuztiu and a

function φi : Frq Ñ Fq such that for every codeword x P C we have

xi “ φipxj1 , . . . , xjrq, (1.2)

where j1 ă j2 ă ¨ ¨ ¨ ă jr are the elements of Ii.

For a given coordinate i P t1, . . . , nu the set Ii is called the recovering set of i. We denote

by C|tiuYIi the restriction of the code C to the coordinates in tiu Y Ii by Ci, and we call

the set tiu Y Ii a repair group. Note that the length of Ci is r ` 1.

In this thesis we study only linear LRC codes. For them the above definition can be

phrased as follows: For every i P t1, 2, . . . , nu there exists a punctured code Ci :“

C|tiuYIi such that dimpCiq ď r and distance dpCiq ě 2. Since Ci corrects one erasure,

every coordinate in the repair group tiu Y Ii can be locally recovered.

In this form, the definition of LRC codes is easily extended to local correction of more

than one erasure. Following [20], we say that a linear code has locality pr, ρq if for every

i P t1, 2, . . . , nu there exists a subset Ii Ă t1, . . . , nuztiu such that the code Ci “ C|iYIi

has dimension dimpCiq ď r and distance dpCiq ě ρ. In this case any ρ ´ 1 erasures can
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be locally corrected, and we again refer to the set tiu Y I as a repair group. Although

this is not needed in this definition, earlier works assumed that |Ii| “ r ` ρ, and that

dimpCiq “ r, dpCiq “ ρ`1, i.e., that the code Ci is maximum distance separable (MDS);

see for instance [6, 35].

Theorem 1.3.2. [13] Let C be an rn, k, ds code with locality r. The minimum distance

of C is bounded above as follows:

d ď n´ k ` 2´ rk{rs. (1.3)

For the correction of ρ´ 1 erasures locally this bound becomes [20]:

d ď n´ k ` 1´
´Qk

r

U

´ 1
¯

pρ´ 1q. (1.4)

We say that C is an optimal locally recoverable code if its parameters meet the bound

(1.3)-(1.4) with equality.

1.3.2 Tamo-Barg Codes

In this section we give a construction of optimal LRC codes first introduced in [35]. They

are a direct generalization of the MDS Reed-Solomon codes presented in Section 1.1.3.

The codes in [35] are, like Reed-Solomon codes, constructed as evaluations of functions

from a k-dimensional linear space V Ă Fqrxs.

Definition 1.3.3. Let Ω “ tP1, . . . , Pnu be a collection of n “ pr ` 1qm values in Fq

equipped with a partition into subsets of size r ` 1. Let k be such that r|k and let V be
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the k-dimensional subspace of Fqrxs given by

spantφjxi, j “ 0, 1, . . . , k{r ´ 1, i “ 0, 1, . . . , r ´ 1u,

where φ P Fqrxs is a polynomial of degree r` 1 that is constant on each of the partitions

of Ω. Then, the Reed-Solomon code is the image of

ev : V Ñ Fnq .

The Reed-Solomon codes constructed above are optimal in the sense that they meet the

bound (1.3). Indeed, the maximum degree of a polynomial in V is pk
r
´1qpr`1q`pr´1q “

k r`1
r
´ 2, and therefore, dminpCq ě n ´ k r`1

r
` 2. Moreover, increasing the degree of

φ from r ` 1 to r ` ρ ´ 1, ρ ě 2 and using the same construction as above with repair

groups of size r ` ρ´ 1, we obtain a class of LRC codes whose repair groups can repair

up to ρ´ 1 erasures. For a chosen value of ρ ě 2 and for pr ` ρ´ 1q|n the parameters of

these codes meet the bound in (1.4) with equality.

1.3.3 LRC Codes on Curves

The following construction of LRC codes from covering maps of algebraic curves was

introduced in [6] and is based on the approach in [35]. Let φ : X Ñ Y be a rational

separable map of smooth projective absolutely irreducible curves of degree r ` 1 over a

finite field k and let φ˚ : kpY q Ñ kpXq be the corresponding map on function fields.

Since φ is separable, the primitive element theorem implies that there exists a function
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x P kpXq such that kpXq “ kpY qpxq. Let Ω “ tP1, . . . , Psu be a set of K-rational

points on Y and let D be a positive divisor whose support is disjoint from Ω (typically

we choose supppDq Ă π´1p8q for a projection π : Y Ñ P1
K). For each i, let tPiju be the

collection of points on X in the preimage of Pi, i.e. tPiju “ φ´1pPiq. We assume that

each Pi splits completely in the function field kpXq, and therefore |φ´1pPiq| “ r ` 1 for

some fixed integer r and all i “ 1, . . . , s. Finally, define the set of points

D “

s
ď

i“1

tPij, j “ 1, . . . , r ` 1u Ă Xpkq

that will serve the evaluation points of the code that we are constructing.

Let tf1, . . . , fmu be a basis of the linear space LpQ8q. These functions can be thought of

as functions in kpXq by the embedding of function fields φ˚, and each of these functions

is constant on the fibers of φ. Let V be the subspace of kpXq of dimension rm spanned

over k by the functions

tfjx
i, i “ 0, . . . , r ´ 1, j “ 1, . . . ,mu. (1.5)

The code CpD,φq is defined as the image of the map

evD :V Ñ k
pr`1qs

f ÞÑ pfpPijq, i “ 1, . . . , s, j “ 1, . . . , r ` 1q.

(1.6)

The code CpD,φq is locally recoverable with recovering sets of size r. Denote by cij the

coordinate in the codeword that corresponds to the point Pij . The recovering set for cij
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is formed by the r positions given by the points tPil, l ‰ ju and proceeds by polynomial

interpolation. Properties of the codes generated by this construction are well-studied and

for more information about their parameters and basic examples of such codes we once

again refer the reader to [6].
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Chapter 2: Locally Recoverable Trace Codes

2.1 Introduction

Let C Ď pFqmqn be a linear code. Recall from Section 1.3 that C is locally recoverable

with recovering set size r if for each index i “ 1, . . . , n, the entry at the ith coordinate

of any codeword can be recovered from the values at r other coordinates, independent of

the codeword. One method for constructing locally recoverable codes, demonstrated in

Section 1.3.3, uses techniques of algebraic geometry: we construct the vector subspace

C by evaluating a particular subspace of the function field of a projective curve at certain

Fqm-points of the curve. For this construction it is convenient to have many points of the

curve defined, meaning that we are tempted to use a larger field of definition. It is then

natural to ask how we can obtain codes defined over smaller fields from these codes; for

example, it is desirable for applications in computer science to be able to produce codes

defined over F2 from codes defined over larger fields of characteristic 2. In this chapter

we examine one method for doing so, namely by taking the image of C under the trace

map tr : pFqmqn Ñ pFqqn, and we seek to answer the natural question of whether the local

recoverability of C is preserved under this map. We determine a specific, easily verifiable
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condition on the Fqm-points contained in each recovering set that determines whether the

recoverability is preserved in the trace code, and we present examples of curves for which

the trace code is locally recoverable.

The Recovering Process

With the setup established in Section 1.3.3, let v P V be a function onX . Collecting terms

with like powers in x, we can write v “
ř

ip
ř

j aijfjqx
i. Without loss of generality, let

us fix the coordinate of the erasure at position P1,r`1. On the fiber containing this point,

the fj’s are constant (since they are in the image of KpY q ãÑ KpXq), so restricted to this

fiber v becomes v1 “
ř

cix
i for some constants ci P K. To recover the missing coordinate

of the codeword we only need to determine the value of the ci’s and then evaluate the

polynomial at the missing coordinate. Since by the construction of V the degree of v as a

polynomial in x is at most r ´ 1, finding the coefficients is possible through polynomial

interpolation and therefore we can always recover the missing coordinate.

Let us view this process through a slightly different lens. Finding the missing coordinate

through polynomial interpolation is equivalent to finding the unique value br`1 for which

the augmented matrix below has a solution:
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¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 xpP1,1q x2pP1,1q ... xr´1pP1,1q b1 :“ vpP1,1q

. .

. ... .

. .

1 xpP1,rq x2pP1,rq ... xr´1pP1,rq br :“ vpP1,rq

1 xpP1,r`1q x2pP1,r`1q ... xr´1pP1,r`1q br`1 :“ vpP1,r`1q

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

This system is overdetermined, so there is some linear combination of rows that eliminates

the last row of the system and that linear combination is independent of the ci’s. This

means that, independent of the choice of function that gives us the codeword, the entries

of the codeword along a particular recovering set satisfy some linear relationship. Once

this relationship is known for a particular recovering set, the recovering process is simply

to use the relationship to evaluate the missing coordinate.

2.2 Trace Codes

There are two natural ways of changing the field of definition of a code, both of which

have been studied thoroughly: subfield subcodes and trace codes. The former is a rather

naive approach in which we throw away all codewords which have any coordinates that

are not already in the basefield. The latter, the construction that we will study, involves

applying the standard field trace map to every coordinate of every codeword and looking
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at the image of this process. We do not discuss in detail the effects of such processes on

the parameters of the code and refer the reader to Chapter 9 of [34] for more details. For

now, we review the basic notion of the field trace map.

For an extension of finite fields Fqm{Fq the trace of an element α P Fqm with respect to

this extension is defined as

Trpαq “ α ` αq ` . . .` αq
m´1

.

We can also define the trace of a vector in Fnqm as

Trppα1, . . . , αnqq “ pTrpα1q, . . . ,Trpαnqq.

Given a code C the trace code TrpCq is defined as tTrpCq|C P Cu. Since Tr is an Fq-linear

map, it is easy to see that TrpCq Ď pFqqn is a vector subspace.

Let’s examine briefly what happens when the trace is applied to the codes generated in

the previous section. On a particular recovering set, the entries in the codeword prior to

the trace being applied satisfy some linear relationship. However, it would be prudent to

acknowledge that this is a Fqn-linear relationship that is satisfied. The trace map is not

multiplicative and therefore there is no obvious or straightforward approach to how one

would find a similar relationship among the entries of the resultant trace codeword.
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2.3 Recoverability of the Trace Code

Good fibers

Having described the mechanism by which local recoverablity operates in algebraic ge-

ometry codes, and having defined the trace code, we are now ready to embark upon the

primary quest of this chapter. As discussed in the introduction, we wish to answer, as

completely as possible, the following main question:

Question: Given an LRC code C Ď pFqmqn arising from a map g : X Ñ Y of projective

curves as described above, is the trace code TrpCq over Fq also locally recoverable?

For concreteness, we focus here on the case that g : X Ñ P1
Fqm is a projection map.

Specifically, we fix the following notation: X is a smooth, projective, absolutely irre-

ducible curve over Fqm , and we fix an affine chart, so that we may identify an open

subset U Ă X with the affine variety SpecFqmrx, ys{pfq Ă A2
Fqm , where f is an irre-

ducible polynomial. Restricted to U , g is simply the restriction of the projection map

pr2 : A2 Ñ A1. Denote this restriction by g̃ : U Ñ A1. We pick distinct elements

y1, . . . , ys P Fqm such that g̃´1pyiq “ tpxij, yiqu for j “ 1, . . . , r ` 1 (in other words, all

of the fibers are of size r ` 1 for fixed r). The condition we impose in order to guarantee

recoverability of the trace code is a condition on the sets txiju for each j.

Before describing that condition, let us be precise about how our code is constructed in

this particular setup. The function field FqmpXq is the field of fractions of Fqmrx, ys{pfq,
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which we wish to think of as an extension of the function field Fqmpyq of A1 by adjoining

the primitive element x satisfying minimal polynomial f P Fqmpyqrxs. Let ι : A1 Ñ P1

take y ÞÑ r1 : ys, so that restricted to U we have g “ ι ˝ g̃, and set Q8 “ r0 : 1s P P1.

Pick a positive integer t and set D “ tQ8. Then we have

LpDq “ SpanFqmt1, y, . . . , y
t
u.

The vector space of functions that we use to define our code, then, is given by

V “ SpanFqmtx
iyj | 0 ď i ď r ´ 1, 0 ď j ď tu Ă Fqmpyqrxs{pfq “ FqmpXq.

Letting Pij “ pxij, yiq P U for i “ 1, . . . , s, j “ 1, . . . , r ` 1, we get our code CpD, gq as

the image of the evaulation map

∆ : V Ñ pFqmqspr`1q

given by evaluating a function F P V at each point Pij .

Let S “ tyiu denote the set of y-values that we have chosen. For a fixed index i, write

Si for the set txij P Fqm | pxij, yiq P g̃´1pyiqu. It is on these sets of x-values that we now

focus. The following definition describes the property that we will impose on these sets

Si in order to ensure recoverability of the trace code.

Definition 2.3.1. Let S “ ta1, . . . , aku Ď Fqm . We call S a good fiber over Fq if there
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exist coefficients c1, ¨ ¨ ¨ , ck P Fˆq such that

k
ÿ

i“1

cia
j
i “ 0 for all 0 ď j ď k ´ 2.

Intuitively, this definition arises out of the fact that recoverability on a given fiber comes

down to row reducing a matrix of powers of the elements of the fiber over Fqm; if we are

in fact able to perform that row reduction over the base field Fq, then the recoverability is

preserved by the trace map.

In the general setting, in which the base curve is not necessarily the projective line, there

is a similar description of the fibers. The only difference in the code construction is that in

place of the recovering coordinate in the polynomials on which we interpolate, we place

the image of each point under the primitive element.

Definition 2.3.2. Let g : X Ñ Y be a map of curves over Fq as described above with

primitive element x. For any Fq-rational point y on Y we call the fiber Si :“ g´1pyiq a

good fiber if xpSiq is a good fiber in the previous sense.

It is important to note here that we are abusing notation by writing xpSiq. We do not mean

the image of the set Si in the traditional sense; if the image of multiple elements of Si

match we consider them separate elements of xpSiq.

Theorem 2.3.3. Let C Ď Fqm be a locally recoverable code of recovering set size r arising

from the map g : X Ñ Y as described above. Then the trace code TrpCq Ď Fq is a locally

recoverable code with recovering set size r if and only if each of the sets Si is a good fiber.
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Proof. One direction of this theorem is immediate since the trace map is Fq linear and

therefore if the linear relationships that are satisfied are defined over Fq, the same linear

relationships are satisfied for every trace codeword along the same recovering sets.

The reverse direction is a little more involved. We use the fact that a code fails to be

recoverable if and only if there exists two codewords that agree on a recovering set but

do not agree on the position that is to be recovered. In our notation above, if we have a

set of evaluation points S1, ..., Sr`1 and two functions f1 and f2 and an index i0 such that

f1pSiq “ f2pSiq for all i ‰ i0 and f1pSi0q ‰ f2pSi0q then the code fails to be recoverable.

Now let’s assume that one of the sets Si is not a good fiber. Without loss in generality

let’s assume it is the fiber S1 which consists of the points P1, .., Pr`1. Let c1, ..., cr`1 be

the coefficients such that
ř

cifpSiq “ 0 for all f in V . Without loss in generality we

can assume that we can scale c2 to be 1, and since this fiber is not a good fiber, we can

assume c1 is not in the basefield. If we let f1 “ 0 then the codeword associated to f1

will be zero along this recovering set in the original codeword and in the resuting trace

codeword. Since functions in V restricted to each recovering set include all polynomials

up to degree r ´ 1, we can extract a function f2 that is zero on xpP3q, .., xpPr`1q and

scaled so that f2pxpP2qq is some non-zero element of Fqm that is trace zero. The functions

f1 and f2 are now rigged so that they agree on P2, ..Pr`1 and we need to show that they

do not agree at P1. We know that
ř

cif2pxpPiqq “ 0 but because of how we chose f2 this

means c1f2pxpP1qq`f2pxpP2qq “ 0 or that f2pxpP1qq “ ´c
´1
2 f2pxpP2qq. This means that

Trpf2pxpP1qqq “ Trp´c´11 f2pxpP2qqq. Since we scaled f2 to make f2pxpP2qq an arbitrary

trace zero element it turns out that the trace code could only be recoverable if ´c´11 fixed
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the set of trace zero elements under multiplication.

The last step will be to show that the only elements in Fqm that fix the trace zero elements

are in the base field. Then, we know that Trpf2pP1qq is non-zero and the trace code is not

recoverable. To prove this step, we let W “ tx P Fqm |Trpxq “ 0u, which we think of

as a m ´ 1 dimensional Fq vector space of Fqm and consider the non-degenerate bilinear

form px, yq Ñ Trpxyq. WK must be 1 dimensional and it is easy to show that Fq Ď WK,

therefore WK “ Fq. In other words the only elements of Fqm that fix the trace zero

elements are in the base field.

2.4 Constructions and Examples

Generating Good Fibers

In order for this characterization of good fibers to be of practical use, we wish to in-

vestigate two related questions: can we create an exhaustive list of all good fibers living

inside Fqm , and can we produce curves with desirable geometric properties that have good

fibers? The answer to the first of these is that we have not been able to give an algorithm

for generating all good fibers, but we have identified methods of producing large classes

of them, described below. The answer to the second is that certain classes of curves,

for example trace-norm curves are promising places to look for codes with good fibers

( [11]); these are discussed further in the next section.

Let k ď q be a positive integer, and let v P Fkq be a vector such that all coordinates vi of v
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are distinct. By an egregious abuse of notation, write vs for the vector pvsi q P pFqqk, and

let

V “ spanFqtv
s
|0 ď s ď k ´ 2u.

The vectors vs for s “ 0, . . . , k´ 2 are linearly independent, for a linear relation between

them would amount to a degree k ´ 2 polynomial over Fq satisfied by all the vi, which

constitute k distinct values. Hence dimV “ k ´ 1. Let W “ V K, the orthogonal

complement with respect to the normal dot product.

Proposition 2.4.1. Let m be a positive integer, v,W be as defined above, and further

assume that there exists a vector w P W such that w has all non-zero entries. Then the

set S “ tα ` βvi|α, β P Fqm , 0 ď i ď ku is a good fiber in Fqm .

Proof. The proof is straightforward linear algebra. Let w “ pciq P W be a vector with all

nonzero entries. Let 0 ď s ď k ´ 2. Consider the sum

σs “
k
ÿ

i“1

cipα ` βviq
s.

We need to show this sum is zero. For s “ 0 this is clear since c is orthogonal to the

all-ones vector v0. Inductively assume σj “ 0 for j ă s. Expanding the polynomials then

gives that σs “ 0 if and only if
k
ÿ

i“1

cipviq
s
“ 0,

which it does since c P W .
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Classes of Curves With Good Fibers

The Hermitian Curve

The Hermitian curve is a natural place to start when it comes to working out examples.

The example is worked out fully for the LRC example in [5]. The affine equation for the

Hermitian curve over Fq20 is given by xq0 ` x “ yq0`1. If we use the projection map onto

the y coordinate then for each fixed y value the fibers of this map are fibers of the trace

map from Fq20 to Fq0 and these fibers are good fibers in the sense above with coefficient

vector of all ones. The resulting code is an LRC code over Fq20 with locality r “ q0 ´ 1

and length q30

Let q0 be 3 and D be the sum of all the affine points in F9 and Q8 be the positive divisor

consisting of the single point at infinity. We let t vary over the values 1 to 3 to get a

general idea of how trace affects the parameters of these Hermitian codes. We calculate

the parameters of the Hermitian codes using the GAP algebra system ( [9]) and get the

following table:

r “ 2 C, q “ 9 TrpCq, q “ 3

t=1 [27,2,23] [27,3,15]

t=2 [27,4,20] [27,7,12]

t=3 [27,6,17] [27,11,8]

To get an idea of how the recovery works, let’s examine a few particular codewords in the
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t “ 2 case before and after trace is applied. To generate some codewords we need to pick

a function that is in our evaluation space, and for this example we use fpx, yq “ xy´y`x.

This codeword starts as follows:

pα6, α2, 0, 0, 1, 2, ...q.

The minimal polynomial of the α here is α2´α´1 and the first three values were obtained

by evaluating f at the fiber over 0 and the next three values by evaluating f at the fiber

over α. As expected, these values add to zero on each fiber (α6 ` α2 “ 0) since the

coefficient vector is the vector of all ones. This means that this recovery process should

pass to the trace code as well. The trace of the above codeword yields:

p0, 0, 0, 0, 2, 1...q.

Now the same relationship holds on these fibers; each group of three adds to zero.

This process works because every fiber of the projection map from the Hermitian curve

to P1 is a good fiber. The same will be true for the more general family of norm-trace

curves whose fibers under the projection map are fibers of linear maps on the underlying

fields.

Evaluating the gap the above codes have with the bound 1.3, we see that the trace codes

appear to stray further from being optimal than the original codes. However, the literature

suggests that this is to be expected. In [8, 15] that the existence of optimal LRC codes of
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very long length relative to q are not possible (mirroring the case for traditional coding

and possible lengths of MDS codes). This suggests that in certain cases optimal LRC

codes over a field extension may necessarily need to become non-optimal after taking the

trace.

2.5 Further Questions

One of the biggest hurdles in generating an even greater set of examples is that there is

little known about the parameters of trace codes in general. We would like to apply the

above results to families of examples from curves that we know consist of good fibers but

we would not be able to say much about the minimum distance of the resulting family

over the base field. Additionally, there are many more constructions for LRC codes that

could potentially lead to good trace codes over the base field. The above results only apply

to the classical algebraic geometry construction. There may be a similar description of

the repair groups that is needed for the resulting trace codes to be recoverable.
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Chapter 3: Codes with Hierarchical Locality

3.1 Introduction

In this chapter we again examine the problem of local recovery and present an original

construction and related results that give a natural extension to locally recoverable codes.

While it is common for erasures to occur one at a time, occasionally there may be a need

to recover the data from several concurrent coordinate failures. Addressing this prob-

lem, several papers have constructed families of LRC codes that locally correct multiple

erasures [20, 35]. In this chapter we consider the intermediate situation when the code

corrects a single erasure by contacting a small number r2 of helper nodes, while at the

same time supporting local recovery of multiple erasures. This gives rise to LRC codes

with hierarchy (H-LRC codes), originally defined in [31]. We observe that the hierarchi-

cal locality property arises naturally in constructions of algebraic geometric LRC codes,

leading to a general construction of such codes from covering maps in towers of algebraic

curves.

Paper [31] obtained an upper bound on the distance of H-LRC codes in terms of the

dimension and locality parameters. Codes that meet this bound with equality are called
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(distance)-optimal. Optimal H-LRC codes with 2-level locality over Fq of length n ď

q ´ 1 were constructed in [31], extending the construction of Reed-Solomon subcodes

in [35]. Another generalization of the construction in [35] builds upon a geometric view of

these codes, and expands it to locally recoverable codes obtained from covering maps of

algebraic curves [6]. Using that approach, several follow-up papers constructed a number

of families of LRC codes on curves [4, 17, 19, 22, 23]. In this chapter we further extend

the basic construction of LRC codes on curves to construct LRC codes with hierarchy.

Our main result is a general construction of such codes from covering maps, and we use

it to obtain families of H-LRC codes based on quotient curves and other well-known

towers of curves, including quotients of elliptic, Kummer, and Artin-Schreier curves.

We also construct H-LRC codes of unbounded length from curves related to the Garcia-

Stichtenoth tower [10], observing that they yield an asymptotically good family of codes.

Finally, we briefly consider H-LRC codes with multiple recovering sets, addressing the

so-called availability problem [30, 35] in the hierarchical setting.

A preliminary version of the work in this chapter was presented at the 2018 IEEE Inter-

national Symposium on Information Theory [2]. The final version of the study of H-LRC

codes, presented in [3], expands [2] by including the material in Sections 3.5-3.7.

3.2 Definitions

In the following definition, due to [31], we introduce linear codes with hierarchical local-

ity, which form the main subject of our paper.

40



Definition 3.2.1 (H-LRC codes [31]). Let ρ2 ă ρ1 and r2 ď r1. A linear codeC is H-LRC

with parameters ppr1, ρ1q, pr2, ρ2qq if for every i P t1, . . . , nu there is a punctured code Ci

such that

1. dimpCiq ď r1,

2. dpCiq ě ρ1, and

3. Ci is an pr2, ρ2q LRC code.

The intuition behind this definition is that any ρ2 ´ 1 erasures can be recovered using the

local correction procedure of the code Ci (i.e., using recovering sets of size r2 within the

support supppCiq), and any larger number of erasures up to ρ1´1 can be recovered using

the entire set of coordinates of the code Ci. Below we call the codes Ci the middle codes

and denote their length by ν. Thus, Ci is a rν, r1, ρ1s LRC code with locality r2, and in all

our constructions ρ2 “ 2 which corresponds to local correction of a single erasure (but see

Proposition 3.3.3 and the related discussion). In all of our constructions the coordinate

set rns will be partitioned into disjoint groups of size ν, and thus, the codes Ci coincide

for all i within each of the groups, and have disjoint supports otherwise. For the purposes

of this chapter, we could incorporate this property into the definition of the H-LRC code.

This definition can be extended by induction to any number of levels of hierarchy in an

obvious way, and we denote the set of parameters of a τ -level H-LRC code by pri, ρiq, i “

1, . . . , τ. A bound on the distance of a τ -level H-LRC code that extends (1.4) to all τ ě 1,
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takes the following form [31]:

d ď n´ k ` 1´
´Q k

rτ

U

´ 1
¯

pρτ ´ 1q ´
τ´1
ÿ

j“1

´Q k

rj

U

´ 1
¯

pρj ´ ρj`1q. (3.1)

An H-LRC code whose parameters meet this bound with equality will be called optimal

throughout. In this work we extend constructions of optimal LRC codes in the sense of

(1.4)-(1.3) to the hierarchical case. There are several constructions of optimal LRC codes

in the literature [18, 20, 24, 26, 32, 35, 37]. Among them we single out the construction

of [35] which isolates certain subcodes of Reed-Solomon (RS) codes that have the locality

property. This code family relies on an algebraic structure of LRC codes that affords an

extension to codes on algebraic curves. The theory of algebraic geometric codes with

locality, introduced in [6] and further developed in [4, 19, 23] provides a framework for

our study here, and we describe it in the next section.

3.3 H-LRC codes on algebraic curves

In this section we present a natural extension of the construction from Section 1.3.3 that

gives rise to LRC codes with hierarchy. Let X, Y, and Z be smooth projective absolutely

irreducible curves over a finite field k. Consider the following sequence of maps:

X
φ2
ÝÑ Y

φ1
ÝÑ Z, (3.2)
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where φ1 and φ2 are rational separable maps of degree s`1 and r2`1, respectively, where

s ě 2, r2 ě 1. Define ψ :“ φ1 ˝ φ2. Let φ˚2 : kpY q Ñ kpXq and φ˚1 : kpZq Ñ kpY q be

the corresponding maps of the function fields. Let x P kpXq and y P kpY q be primitive

elements of their respective algebraic extensions, i.e., suppose that kpXq “ kpY qpxq and

kpY q “ kpZqpyq. Let S “ tP1, . . . , Pmu be a collection of points on Zpkq that split

completely on X , i.e., |ψ´1pPiq| “ pr2 ` 1qps ` 1q. Let D “
Ťm
i“1 ψ

´1pPiq, n :“ |D|,

and let Q8 be a positive divisor on Z with support disjoint from S. We assume that

suppppyq8q X φ´12 pSq “ H and suppppxq8q X ψ´1pSq “ H, where p¨q8 is the polar

divisor.

As before, let tf1, ¨ ¨ ¨ , ftu be a basis for the space LpQ8q. Let V be the vector space of

functions over k spanned by

tfiy
jxk|1 ď i ď t, 0 ď j ď s´ 1, 0 ď k ď r2 ´ 1u. (3.3)

Let ν :“ ps`1qpr2`1q and note that n “ mν. As in (1.6), define the codeCpD, tφ1, φ2uq

as the image of the evaluation map

evD :V Ñ k
n

f ÞÑ pfpP q, P P Dq.

(3.4)

Recall that [6] assumed that the function x is injective on the fibers tPij, j “ 1, . . . , r`1u

(see Sec. 1.3.3), and that this assumption holds in all the examples considered there. In

our setting here, x may not be injective on fibers of the map ψ :“ φ1 ˝ φ2. Let degψpxq
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be the maximum multiplicity of values of x when restricted to a fiber of ψ and let degpxq

and degpyq be the degrees of the maps x : X Ñ P1 and y : Y Ñ P1.

Proposition 3.3.1. The code C “ CpD, tφ1, φ2uq is a 2-level H-LRC code of length

n “ mν with parameters ppr1, ρ1q, pr2, ρ2 “ 2qq, where the middle codes are of length

ν “ ps` 1qpr2 ` 1q, dimension r1 “ r2s, and distance

ρ1 ě maxp2pr2 ` 1q ´ degψpxqpr2 ´ 1q, 4q. (3.5)

We also have

dimpCq “ tr2s ě r1pdegpQ8q ´ gZ ` 1q (3.6)

dminpCq ě n´ pdegpQ8qps` 1q ` degpyqps´ 1qqpr2 ` 1q ´ degpxqpr2 ´ 1q, (3.7)

where gZ is the genus of Z.

Proof. The set D of n points is naturally partitioned into subsets of size ν, given by the

fibers of the covering map ψ and each of them supports a code Cα, α “ 1, . . . , n{ν of

length ν. The support of each of the codes Cα is further partitioned into repair groups

of size r2 ` 1 each of which is formed of the coordinates contained in a particular fiber

of the map φ2. Restricted to such a fiber, the functions f1, . . . , ft and y are constant, and

any function in V becomes a polynomial in x of degree ď r ´ 1. Therefore, C restricted

to a fiber of φ2 is an r2-dimensional code with minimum distance ρ2 determined by the

maximum degree of such a polynomial in x, which is r2 ´ 1. The length of the restricted
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code is r2, so it is a single parity check code with distance ρ2 “ 2. Furthermore, this

implies that each of the codes Cα (i.e., C restricted to the fibers of ψ) is an LRC code

with parameters pr2, 2q.

It remains to determine the parameters of the codes Cα. First note that the functions

f1, . . . , ft are constant on these fibers, and therefore, V restricted to each of them becomes

an r1-dimensional space of functions spanned by

tyjxk, j “ 0, 1, . . . , s´ 1; k “ 0, 1, . . . , r2u.

The minimum distance of Cα is determined by the maximum number of zeros of a non-

zero function in V, restricted to a fiber of ψ :

ρ1 ě ν ´ ps´ 1qpr2 ` 1q ´ degψpxqpr2 ´ 1q,

which gives the first term in (3.5). To show that ρ1 ě 4, note that the code Cα corrects any

three erasures. Indeed, if they are located in different repair groups of size r2`1, they can

be recovered using the LRC properties of Cα. If at least two of them fall in the same repair

group, then the function f in (3.4) can be recovered by Lagrange interpolation across the

s groups each of which contains at most one erasure.

Finally, the bounds in (3.6)-(3.7) are obtained by the same arguments applied to the code

C in its entirety.
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3.3.1 A family of optimal RS-like H-LRC codes

Using the above ideas, we show how the construction of RS-like codes in [35] can be

extended to yield optimal two-level H-LRC codes. Let k “ Fq and let r2, r1, and n ď q

be such that r1 “ sr2 and ν|n.

To construct the code we start with choosing a subset D of n points in k and partition

it into disjoint subsets Dα of size ν each. Each of the subsets Dα will support an LRC

code of dimension r1 and distance r2 ` 3. The repair groups of this LRC code are of size

r2`1.Assume that there is a polynomial φ2 P krxs of degree r2`1 such that it is constant

on these repair groups. Further, we choose a polynomial φ1 P krxs of degree ν that is

constant on each of the subsets Dα.

For a positive integer t, let V Ď krxs be the tr1-dimensional space spanned by

tφk1φ
j
2x

i, i “ 0, . . . , r2 ´ 1, j “ 0, . . . , s´ 1, k “ 0, . . . , t´ 1u. (3.8)

Let us construct a code C by evaluating these functions at the points in D as described

in (3.4). The function φ1 is constant on each of the sets Dα, and therefore, the functions

in V restricted to each of these sets have degree at most ps ´ 1qpr2 ` 1q ` r2 ´ 1. This

implies that the distance of Cα is at least

dminpCαq ě ν ´ ps´ 1qpr2 ` 1q ´ r2 ` 1

“ r2 ` 3,
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which meets the bound (1.3) with equality.

The dimension of the code C is dimpV q “ tr1 and the distance is found by counting the

maximum degree of a function in V, and is bounded below as

dminpCq ě n´ tpr1 ` r2 ` 1` sq ` r2 ` 3

meeting the upper bound in (3.1). We conclude with the following proposition.

Proposition 3.3.2. Let n ď q, t ě 1 and let r1, r2 be such that r1 “ sr2 for some s ą 1

and ν|n. The parameters of the code C are rn, tr1, dmin “ n´ tpr1 ` r2 ` 1` sq ` r2 `

3s. Furthermore, C is an optimal H-LRC code with two levels of hierarchy and locality

parameters pr1, r2`3q, pr2, 2q. The middle codesCα are optimal rν, r1, r2`3s LRC codes.

The code family in this proposition is originally due to [31], where it was obtained as

an extension of [35], with no connection to the geometric interpretation. Making this

connection enables us to increase the code length to n “ q ` 1 in the next section.

By increasing the degree of the map φ2 we can increase the distance ρ2 from 2 to larger

values so that each small repair group is resilient to more than one erasure. More specif-

ically, let ρ2 ě 2, and let r1, r2 be such that r1 “ sr2 and pps ` 1qpr2 ` ρ2 ´ 1qq|n.

Let φ1, φ2 P krxs be polynomials constant on their respective repair groups, and let

degpφ2q “ r2 ` ρ2 ´ 1 and degpφ1q “ pr2 ` ρ2 ´ 1qps ` 1q. Define the set of func-

tions V “ span
k
pφk1φ

j
2x

iq where the indices vary as in (3.8). Finally, construct the code

C as the set of evaluations of the functions in V on the points in D. The properties of C

are summarized in the following proposition which is proved above.

47



Proposition 3.3.3. The code C has length n, dimension tr1 and distance

dminpCq “ n´ tr1 ` 1´ pt´ 1qpr2 ` ρ2 ´ 1q ´ pts´ 1qpρ2 ´ 1q.

It is an optimal H-LRC code with two levels of hierarchy and locality parameters pr1, r2`

2ρ2´1q, pr2, ρ2q. The middle codes Cα are optimal rps`1qpr2`ρ2´1q, r1, r2`2ρ2´1s

LRC codes.

It is also possible to increase the degree of the map φ1 thereby increasing the distance of

the codes Cα while still keeping the distance ρ2 “ 2. Finally, it is possible to increase the

degrees of both the maps φ1, φ2, thereby increasing both ρ1 and ρ2. As is easily checked,

the resulting codes still retain the optimality properties.

3.4 H-LRC codes from automorphisms of curves

While the previous section introduced a general construction of H-LRC codes on alge-

braic curves, so far we gave only one concrete example that relies on maps between

projective lines. To construct a class of examples, we develop the ideas put forward in a

series of recent works in [19, 23], constructing towers of curves in the form of (3.2) from

automorphism groups of curves. Let G be a subgroup of AutpXq with subgroup H such

that |H| “ r2 ` 1 and |G| “ ν. Let kpXqH be the set of H-invariant functions in kpXq

and let kpXqG be the same for G. Consider the following tower of function fields:

kpXq
φ˚
2
ÐÝ kpXqH

φ˚
1
ÐÝ kpXqG, (3.9)
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where φ˚1 , φ
˚
2 are the embedding maps of the function fields. Let g1 and g2 be primi-

tive elements of the extensions kpXqH{kpXqG and kpXq{kpXqH , respectively. Choose

places Q “ tQ1, . . . , Qmu of kpXqG that split completely in kpXq (i.e., there are ν “

ps ` 1qpr2 ` 1q places in kpXq above each Qi), and let Q8 be a positive divisor with

support disjoint from Q. Let D be the collection of places in kpXq above the places in Q.

Since (3.9) is a particular case of (3.2), the general construction in (3.4) applies. Using

it, we obtain a code CpD, tφ1, φ2uq with parameters rn, k, ds determined by Proposition

3.3.1. Specifically,

n “ mν, k “ r2st, t :“ dimpLpQ8qq ě 1, (3.10)

the distance d is bounded in (3.7), and the locality parameters equal psr2, ρ1q, pr2, 2q,

where ρ1 is given in (3.5).

In what follows we give some specific examples.

3.4.1 Automorphisms of rational function fields

Let kpXq “ kpxq be a rational function field. Let us assume that r2 and s are such that

there exists a subgroup G of AutpXq “ PGL2pqq of order pr2 ` 1qps ` 1q. We apply the

construction (3.9) above to get a tower of rational curves

X
φ2
ÝÑ Y

φ1
ÝÑ Z. (3.11)
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By construction, both the degrees of x and y are 1. We obtain an H-LRC code C with

parameters ppr2s, ρ1q, pr2, 2qq where on account of (3.5),

ρ1 ě ν ´ ps´ 1qpr2 ` 1q ´ pr2 ´ 1q “ r2 ` 3,

Note that this is in fact an exact equality because of the upper bound (1.4). Moreover, as

is easily checked, the code C as a whole meets the upper bound (3.1) with equality. We

obtain:

Proposition 3.4.1. Let n ď q be a multiple of pr2`1qps`1q.Using construction (3.9) for

the subgroups of the automorphism group of the rational function field, we obtain optimal

rn, k, ds H-LRC codes with parameters ppsr2, r2 ` 3q, pr2, 2qq.

These codes are in fact from the same family as the codes constructed in Prop. 3.3.2.

However, we can extend this construction to optimal H-LRC codes of length q`1 relying

in part on the ideas in [19]. Assume that G ă PGL2pqq, |G| “ ν|pq` 1q, then there exists

a subset S of m :“ pq ` 1q{ν rational places of kpXqG that split completely in kpXq.

Let S “ pQ1, . . . , Qmq Ă Zpkq and let H ă G, |H| “ r2 ` 1. Let P8 be the infinite

place in kpXq. W.l.o.g. we can assume that P8|Q1. Let pyq8 be the polar divisor of y

and assume that suppppyq8q X φ´12 pSq “ H. As above, let the set of evaluation points be

D “ Ymi“1ψ
´1pQiq, and let the fiber above Q1 be P11 “ P8, P12, . . . , P1,ν . The code C is

constructed by evaluating the functions in (3.3) at the points in D. Specifically, C is the
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image of the following map:

f P V ÞÑ ppx´r2`1fqpP11q, fpP12q, . . . , fpPmνqq P k
q`1.

The idea of constructing codes on curves whose set of evaluation points D includes the

support of Q8 (by multiplying by an appropriate degree of the uniformizing parameters)

has appeared in the literature, e.g., [38, p.194].

Proposition 3.4.2. The locality parameters of the codeC are psr2, r2`3q, pr2, 2q, making

it into an optimal 2-level q-ary H-LRC code of length q ` 1.

Proof. We only need to check that the small (size-pr2 ` 1q) recovering set that con-

tains P11 supports local correction. If the erased coordinate is P11, then its value can

be found by regular polynomial interpolation. Otherwise, observe that the function f

on this set has the form fpxq “
řr2´1
k“0 akx

k, where ak’s are constants. Observe that

ar2´1 “ px´r2`1fqpP11q. The remaining r2 ´ 1 coefficients of f can be found by La-

grange interpolation from the other r2 ´ 1 evaluations of f in this set.

For instance, one can take n “ q ` 1 “ 28, obtaining an optimal r28, 6t, d “ 37 ´

14ts H-LRC code over F33 with locality parameters pr1 “ 6, ρ1 “ 9q, pr2 “ 6, ρ2 “

2q. Nontrivial examples arise when t “ 1, 2, and we obtain codes with the parameters

r28, 6, 23s, r28, 12, 9s that meet the bound (3.1).
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3.5 H-LRC Codes of Length n ą q ` 1 constructed from elliptic curves

3.5.1 LRC codes from quotients of elliptic curves

Li et al. [23] introduced a construction of optimal LRC codes on elliptic curves obtained

from quotients of the elliptic curve by subgroups of automorphisms. We present this

construction in this section and extend to H-LRC codes in the next one.

Let E be an elliptic curve over k “ Fq and let G be a subgroup of the automorphism

group AutpEq. Note that the automorphism group is the largest for charpFqq “ 2, 3, and

therefore examples given in [23] are given for these cases. In the H-LRC case, since two

levels of hierarchy are required, most useful examples arise in the characteristic 2 case

when the automorphism group is of size 24 [33].

Let us assume that |G| “ r ` 1 “ 2s. Denote the coordinate functions of the automor-

phisms in G by σippx, yqq “ pfipx, yq, gipx, yqq. Assume that the set of x-coordinate

functions fi has size s (in the case of odd characteristic this can be achieved by including

in G the negation map on y, i.e., the automorphism σ : px, yq Ñ px,´yq). Let us index

the automorphisms G “ tσ1, ¨ ¨ ¨ , σr`1u so that to ensure that fi`spx, yq “ fipx, yq. Fi-

nally, let us assume that there is a point P “ pa, bq on E such that the points Pi “ σipP q

are distinct, i.e., P is contained in a totally split fiber of the covering map φ : E Ñ E{G.

Let us define a function

zpx, yq “
s
ź

i“1

1

fipx, yq ´ a
.
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First we note that σipzq “ z for all 1 ď i ď r ` 1. This means that z can be thought

of as a function in kpE{Gq. More importantly, this implies that z is constant on fibers

of the covering map φ. Powers of the function z will take the place of the functions in

the Riemann-Roch space LpDq in the general construction of Sec. 3.3. Also note that the

divisor of z is

pzq “ pr ` 1q8 ´ P1 ¨ ¨ ¨ ´ Pr`1.

Define functions w0 “ 1 and wi, i “ 1, . . . , r ´ 1 in Li “ LpP1 ` ¨ ¨ ¨ ` Pi`1q such

that Li “ spant1, w1, ¨ ¨ ¨ , wiu for 1 ď i ď r ´ 1. Such a choice is always possible by

the Riemann-Roch theorem. Define the space of functions used to construct the code as

follows:

V “ spantpzt, wizjq | i “ 1, . . . , r ´ 1, 0 ď j ď t´ 1u.

Let Q “ tQ1, . . . , Qnu be a union of totally split fibers of the covering map φ that does

include the fiber formed by the points Pi. The LRC code is obtained from the evaluation

map

ev :V Ñ kn

f ÞÑ pfpQ1q, . . . , fpQnqq.

As shown in [23], the resulting codes are optimal with respect to (1.3). The recovering

sets of the code are coordinates contained in the same fiber of φ. Restricted to a fiber of φ,

a function in V becomes just a linear combination of the r linearly independent functions

wi, enabling one to recover the missing coordinate.
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Remark: Even though [23] did not go beyond the genus 1 case, the above construction

can be extended to curves of genus 2 with a only few changes to the definition of the

wi’s. Namely, take w0 “ 1 as before and let wi to be a nontrivial function in Li “

LpP1 ` ¨ ¨ ¨ ` Pi`2q such that Li “ spantw0, . . . , wiu The advantage in applying this

construction to genus 2 curves is that they can have larger automorphism groups and more

rational points, allowing greater flexibility in choices of the parameters. In particular,

paper [23] gives examples of the above construction for maximal elliptic curves that result

in optimal LRC codes of length close to q ` 2
?
q. With genus two curves we can easily

construct optimal LRC codes of length n close to q ` 4
?
q, which constitute a family of

optimal LRC codes of length larger than reported in the literature (apart from the case of

d “ 3, 4 in [25]). At the same time, so far we have not been able to extend this observation

to the case of H-LRC codes.

3.5.2 H-LRC Codes from quotients of elliptic curves

Let E, G, tPiu, tQiu and z be as above. Additionally choose a subgroup H ď G of order

r2` 1. Let P̄i be the point on E{H below Pi. Let m` 1 :“ pr` 1q{pr2` 1q and suppose

the Pi are enumerated such that P̄1, . . . , P̄m`1 are all distinct.

If E{H is of genus 1, we take w0 “ 1 and wi to be a function in L̄i “ LpP̄1` ¨ ¨ ¨ ` P̄i`1q

for 1 ď i ď m ´ 1 such that L̄i “ spant1, w1, . . . , wiu as before. Otherwise, if the

genus of E{H is 0, we take w0 “ 1 and wi to be a function in L̄i “ LpP̄1 ` ¨ ¨ ¨ ` P̄i`1q

for 1 ď i ď m ´ 1 such that L̄i “ spant1, w1, . . . , wi, w
1
iu, where w1i is any additional
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linearly independent function in the Riemann-Roch space L̄i. Note that none of the wi’s

have poles at P̄m`1.

Let Pm`1,1, . . . , Pm`1,r2`1 be the points on E above P̄m`1. Take y0 “ 1 and yi to be a

function in Li “ LpPm`1,1 ` ¨ ¨ ¨ ` Pm`1,i`1q such that Li “ spant1, y1, . . . , yiu. For

clarity, we define the space of functions in two steps. Define V 1 and V as follows:

V 1 “ spantwm´1, wjyk|0 ď j ď m´ 2, 0 ď k ď r2 ´ 1u

V “ spantzt, zig|0 ď i ď t´ 1, g P V 1u.

Once again the code C is obtained by evaluating the points in Q at all the functions in

V . Construct the code C evaluating the functions in V at the points in Q (cf. (3.4)). This

results in the following proposition which is proved above.

Proposition 3.5.1. The codeC constructed above is an rn, k, dsH-LRC code with locality

parameters ppr1, ρ1q, pr2, ρ2 “ 2qq where

r1 “ r2pm´ 1q ` 1

r2 ` 1 ď ρ1 ď 2r2 ` 2

k “ tpr2pm´ 1q ` 1q ` 1

d ě n´ ptpm` 1qpr2 ` 1q ´ pr2 ` 1qq.

Proof. The middle codes have length ν “ pm`1qpr2`1q and dimension r1 “ dimpV 1q “

r2pm´1q`1 since the function z is constant on the fibers ofE Ñ E{H . Also, restricted to
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a fiber, the functions in V 1 are contained in LpP̄1`¨ ¨ ¨`P̄mqYLpP̄1`¨ ¨ ¨`P̄m´1`P̄m`1q.

This implies that the minimum distance of the middle codes satisfies ρ1 ě ν´mpr2`1q “

r2 ` 1. The upper bound on ρ1 follows from the Singleton bound (1.3).

The value of the dimension k follows directly from the construction. Finally, since V Ď

LptpP1 ` ¨ ¨ ¨ ` Pr`1q ´ P̄m`1q Y LptpP1 ` ¨ ¨ ¨ ` Pr`1q ´ P̄mq we have

d ą n´ ptpm` 1qpr2 ` 1q ´ pr2 ` 1qq.

3.5.3 Examples:

For any even m there exists γ P F2m such that the elliptic curve E : y2 ` y “ x3 ` γ

is maximal in the sense that the number of rational points on E meets the Hasse-Weil

bound [23, Lemma 3.3]. The automorphism group of E is of order 24, which is also

maximal since an elliptic curve can have at most 24 automorphisms. The automorphisms

are given by the following coordinate functions:

σxpx, yq “ u2x` s, σypx, yq “ y ` u2sx` t,

where u3 “ 1, s4`s “ 0, t2` t`s6 “ 0. The subgroup G of AutpEq given by restricting

s to be 0 or 1 is order 12 and we take H to be the order 4 subgroup of G given by further
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restricting u to be 1. By the Riemann-Hurwitz [33, p.37] formula we have

2gpEq ´ 2 ě 2gpE{Gq ´ 2`
ÿ

PPEpKq

peP ´ 1q,

where gpEq and gpE{Gq are the genus of E and of E{G, respectively, and eP is the

ramification index of the point P . Note that we use the Riemann-Hurwitz formula in

the inequality form because in characteristic 2 some of the points are wildly ramified.

For instance, let us take q “ 64. Since the point at infinity is totally ramified, the above

equation implies that in the worst case there are 13 additional ramified affine points on

E and therefore, there are at least 67 unramified points. Since the order of G is 12, this

implies that there are in fact at least 72 unramified points. This results in at least 60

evaluation points on E. The general code construction in this case gives an rn “ 60, k “

4t` 1, ds H-LRC code with locality parameters pp4, ρ1q, p3, 2qq where 4 ď ρ1 ď 7 and

d ě n´ 12t` 4, 1 ď t ď 5.

Note that we do not have enough information to determine the distance of the “middle”

codes C1, making it difficult to compare the value of d with the upper bound (3.1). Sub-

stituting ρ1 “ 4, we obtain

t k d

1 5 52 ď d ď 53

2 9 40 ď d ď 46

3 13 28 ď d ď 38.
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To obtain examples of length n ą q, we should take a larger-size field, for instance

let us take F256. Applying the same arguments as above, we obtain H-LRC codes with

parameters r264, 4t` 1, ds and locality pp4, ρ1q, p3, 2qq where 4 ď ρ1 ď 7 and

d ě n´ 12t` 4, 1 ď t ď 22.

3.6 Some families of curves and associated H-LRC codes

While Proposition 3.3.1 gives a general approach to constructing H-LRC codes, estimat-

ing the parameters for a given curve is a difficult question, in particular because control-

ling the multiplicity degψpxq in (3.5) is not immediate. The largest distance ρ1 is obtained

if the function x is injective on the fibers of ψ, i.e., if degψpxq “ 1. In this section we

present two general constructions that make this possible using properties of the auto-

morphism groups of curves. Thus, all the H-LRC code families constructed below in this

section share the property of having distance-optimal middle codes.

3.6.1 Kummer curves

The simplest and at the same time rather broad class of examples arises when G ă

AutpXq is a cyclic group of order not divisible by the characteristic, i.e., when X is a

Kummer curve.
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Recall that a Kummer curve X over Fq is defined by the equation

ym “ fpxq, (3.12)

where m|pq ´ 1q and fpxq P K :“ Fqpxq [34, pp.122ff.], [38, p.168]. The field L :“

Fqpx, yq is a degree m cyclic extension of K, and any cyclic extension of degree m can

be written in this form. The following examples of Kummer curves are maximal and lead

to H-LRC codes with good parameters.

1. The Hermitian curve X : yq0`1 “ xq0 ` x over the field Fq, q “ q20 is a maximal

Kummer curve.

2. The Giulietti-Korchmáros curves [12] are given by the affine equation

yq
3
0`1 “ xq

3
0 ` x´ pxq0 ` xqq

2
0´q0`1,

and have genus g “ 1
2
pq30 ` 1qpq20 ´ 2q ` 1. They are maximal over Fq for q “ q60 .

3. (The Moisio curves [29]) Let h P t0, . . . , lu, let m|pql0` 1q and let q “ qn0 . Let L be

an Fq0-subspace of dimension h in Fq and suppose that

ź

αPL

px´ αq “
h
ÿ

i“0

aix
qi0 .

Let

Rpxq “
h
ÿ

i“0

a
q2n´i
0
i xq

h´i
0 .
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Then the curve given by ym “ Rpxq is maximal over Fq2 of genus pm´1qpqh0´1q{2,

so

|XpFqq| “ q2l0 ` pm´ 1qpql`h0 ´ ql0q ` 1.

Let G0 “ GalpL{Kq be the cyclic group of order m. The action of G0 on the curve X

is given by px, yq ÞÑ px, αyq, where α P Fq, αm “ 1. If m is well-decomposable, say

m “ pa ` 1qpb ` 1qc, then one can easily find subgroups H ă G ă G0 Ď AutpXq with

desirable properties. Indeed, let m be as above and let α be a generator of G0. Then we

can take G “ xαcy, H “ xαpb`1qcy, |G| “ pa` 1qpb` 1q, |H| “ a` 1. It is clear that the

invariants of any subgroup of G0 are generated by powers of y, for instance, from (3.12),

ya`1 is unmoved by any power of αpb`1qc, etc.

Specializing the construction (3.9), we obtain

kpXq “ kpx, yq Ðâ kpXqH “ kpx, ya`1q Ðâ kpXqG “ kpx, ypa`1qpb`1qq.

Now it is clear that the primitive element y is injective on the fibers of φ : X Ñ X{G,

and we can use the general code construction with degψpyq “ 1.

Using the general construction of Proposition 3.3.1 for the curves listed above, we obtain

several families of H-LRC codes. The case of Hermitian curves is analyzed below in

Section 3.7 in the context of power maps (see Example 3.7.3).

Turning to the Giulietti-Korchmáros curves, we observe that the total number of rational

points on the curve |XpFqq| equals q80 ´ q
6
0 ` q

5
0 ` 1 (which meets the Hasse-Weil bound
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NpXq ď q` 1` 2
?
qg). Setting aside the point at infinity, we observe that the projection

map on x is ramified in at most q30 places, leaving n ě q80´q
6
0`q

5
0´q

3
0 totally split places

which form the evaluation set D. Now we use Proposition 3.3.1 to claim the existence of

H-LRC codes with the following parameters:

n ě pq50 ´ q
3
0qpq

3
0 ` 1q, k “ dimpLpQ8qqab

d ě n´ degpQ8qpa` 1qpb` 1q ´ q30pab` b´ 2q

r2 “ a, ρ2 “ 2

r1 “ ab, ρ1 “ a` 3

(note that degpyq “ q30). To obtain specific examples, we may take q0 “ 4, getting

a “ 4, b “ 12, c “ 1 or q0 “ 17, in which case the decomposition q30 ` 1 “ 2 ¨ 27 ¨ 7 ¨ 13

leaves multiple options for the localities of the codes, etc. We note that the distance of the

middle codes is the largest possible, meeting the bound (1.4) with equality.

For the Moisio curves, the size of the ramification set is at most qh0 , leaving at least q2l0 `

pm´1qpql`h0 ´ql0q´q
h
0 points for the evaluation setD. The codes from the Moisio curves

are constructed over Fq2 and have the following parameters:

n ě q2l0 ` pm´ 1qpql`h0 ´ ql0q ´ q
h
0 , k “ dimpLpQ8qqab

d ě n´ degpQ8qpa` 1qpb` 1q ´ qh0 pab` b´ 2q

r2 “ a, ρ2 “ 2

r1 “ ab, ρ1 “ a` 3.
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For instance, we can take q0 “ 2, l “ 5, and then taking m “ ql0 ` 1, we obtain H-LRC

codes with localities r1 “ 10, r2 “ 20, etc.

3.6.2 Artin-Schreier curves

Let q “ qe0 for some e P N. A curve with the affine equation

yq0 ´ y “ fpxq (3.13)

for fpxq “ Fqpxq is called an Artin-Schreier curve [34, pp.127ff.], [38, p.173]. More

generally, a generalized Artin-Schreier curve is given by the equation

P pyq “ fpxq, (3.14)

where P pyq “ auy
qu0`au´1y

qu´1
0 `¨ ¨ ¨`a0y, a0 ‰ 0 is a linearized polynomial whose roots

form a linear subspace of Fq. Such a curve X forms a Galois covering of the projective

line with the Galois group G0 :“ GalpX{P1q – LpP q where LpP q is a linear space of

roots of P pyq in Fq0 (thus, for coverings of the form (3.13), G0 – F`qu0 ). The groupG0 acts

on the points of X by px, yq ÞÑ px, y ` αq for α P G0. Artin-Schreier covers give many

examples of curves that are either maximal or close to maximal. Examples of maximal

curves include the following families.

1. The Hermitian curves given by the equation yq ` y “ xq`1 over Fq2 ,

2. The Moisio curves (to see that they are Artin-Schreier, interchange x and y in their
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definition).

These examples are maximal in the sense that they attain the Hasse-Weil bound on the

number of points.

(3) The Suzuki curves given by

Sq : yq ` y “ xq0pxq ` xq

where q0 “ 2n, q “ 22n`1 [16]. The genus gpSqq “ q0pq ´ 1q and the number of

Fq-points is NpSqq :“ |X{Fq| “ q2 ` 1 (i.e., they fill the entire affine plane over

Fq). The Suzuki curves are maximal because NpSqq meets the Oesterlé bound for

their genus. The full group AutpSqq is the Suzuki group (hence the name), and it

contains a subgroup isomorphic to F`q which acts as before by y ÞÑ y ` α.

In each of the cases (1)-(3) above we have

AutpXq Ě G – pZ{pZqe2 Ą H – pZ{pZqe1 (3.15)

for q “ pe ě 9 and some exponents e, e1, e2.

Determining the primitive elements of the extensions in (3.9) with the above choice of G

and H is generally not an easy question. We limit ourselves to two simple examples.

1. Let

X : yq ´ y “ fpxq (3.16)
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where q “ r2, r “ pm ě 3, and let G – pZ{pZq2m, H – pZ{pZqm. In this case G

acts on kpx, yq by fixing kpxq, i.e., we have Z “ P1 in (3.2) or kpx, yqG “ kpxq in

(3.9). Let H be a copy of pZ{pZqm in F`q with the property that αr “ ´α for all

α P H. In other words, G – F`r ‘ αF`r , H – αF`r , where αr “ ´α. Further, let

z “ yr ` y, then z is invariant under the action y ÞÑ y ` α :

py ` αqr ` py ` αq “ yr ` y “ z.

Further,

zr ´ z “ pyr ` yqr ´ pyr ` yq “ yq ´ y “ fpxq,

and thus, kpx, yqH “ kpx, zq, and (3.9) takes the form kpx, yq Ą kpx, zq Ą kpxq.

On account of (3.10), we obtain a family of 2-level rn, k, ds H-LRC codes, where

n “ mν, k “ r2st, and ν “ r2, r2 “ s “ r ´ 1, r1 “ pr ´ 1q2, ρ1 “ r ` 2, ρ2 “ 2.

2. Let us again take X in the form (3.16) where this time q “ r3, r “ pm ě 3, and

let G – pZ{pZq3m, H – pZ{pZqm. Let z “ yr ´ y and note that z is fixed by the

action of H on kpx, yq, and thus kpx, yqH “ kpx, zq. Further,

zr
2

` zr ` z “ yq ´ y “ fpxq.

The tower (3.9) has the form kpx, yq Ą kpx, zq Ą kpxq since G fixes the rational

function field in kpx, yq.

On account of (3.10), we obtain a family of 2-level rn, k, ds H-LRC codes, where
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n “ mν, k “ r2st, and ν “ r3, r2 “ r´1, s “ r2´1, r1 “ sr2, ρ1 “ r`1, ρ2 “ 2.

This example can be further generalized to the curve X of the form (3.16), where

q “ rh, r “ pm and G – F`q , H – F`r . The tower (3.9) that gives rise to the code

family, has the form kpx, yq Ą kpx, zq Ą kpxq, where z “ yr ´ y and

zr
h

` zr
h´1

` ¨ ¨ ¨ ` z “ yq ´ y “ fpxq

We obtain a family of 2-level H-LRC codes with the parameters ν “ rh, s “ rh´1´

1, r2 “ r ´ 1, r1 “ sr2, ρ1 “ r ` 2, ρ2 “ 2.

Remark 3.6.1. One can consider “mixed” Artin-Schreier–Kummer curves of the form

P pymq “ fpxq over Fq where m is a linearized polynomial and m|pq ´ 1q, and apply

arguments similar to the above. However, we are not aware of good examples of such

curves although is it likely that they exist.

Remark 3.6.2. It is also clear that the above construction can be generalized to more

than two levels of hierarchy. Accomplishing this depends on the factorization of q ´ 1

for the Kummer case and does not require new algebraic ideas. A similar observation

applies to the Artin-Schreier case.

3.7 H-LRC codes from the Garcia-Stichtenoth tower

In this section we use the general construction of H-LRC codes for curves in the GS tower.

We begin by directly applying the idea of Section 3.3 and consider mappings between the
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curves two levels apart in the tower, viz. (3.2). This approach meets a complication in that

it is not easy to find the multiplicity degψpxq. We circumvent this difficulty using power

maps in Section 3.7.2, which are related to the constructions from Kummer covers in the

previous section.

3.7.1 Naive construction

Let q “ q20 be a square and k “ Fq. For any l ě 2 define the curve Xl inductively as

follows:

x0 :“ 1, X1 “ P1,kpX1q “ kpx1q;

Xl : zq0l ` zl “ xq0`1l´1 , where for l ě 3

xl´1 :“ zl´1

xl´2
.

,

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

-

(3.17)

The curves Xl, l ě 2 form a tower of asymptotically maximal curves [10].

The authors of [6] constructed LRC codes from covering maps between consecutive

curves in this tower. Similarly, we construct H-LRC codes with 2-fold hierarchy by ex-

tracting sub-towers of 3 curves from the full tower. Let φl : Xl Ñ Xl´1 be the natural

projection on the coordinates xi, i “ 1, . . . , l ´ 1. Consider the following subtower of

curves with their projection maps:

Xj`2
φj`2
ÝÝÝÑ Xj`1

φj`1
ÝÝÝÑ Xj. (3.18)

Let x “ xj`2 and y “ xj`1 be primitive elements such that kpXj`2q “ kpXj`1qpxq and

kpXj`1q “ kpXjqpyq (see (3.2)). In this case degpyq “ qj0 and degpxq “ qj`10 are the
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degrees of the maps Xj`i Ñ P1, i “ 1, 2, respectively. Let S be formed of all the affine

points of Xjpkq that map to k˚ under the map φ1 ˝ ¨ ¨ ¨ ˝ φj. Let nj “ qj´10 pq20 ´ 1q be the

size of S, i.e., number of points above k˚ on Xj, j “ 1, 2, . . . . Let Q8,j to be the point at

infinity on Xj and let t “ dimpLp`Q8,jqq, where gj ď ` ď nj and gj is the genus of Xj.

Finally, denote ψj`2 “ φj`1 ˝ φj`2.

Using the general construction of Sec. 3.3 for the tower of curves described in (3.18), it

is possible to obtain a family of linear H-LRC codes with two levels of hierarchy.

Proposition 3.7.1. For any j ě 1 there exists a family of H-LRC codes with the parame-

ters rn, k, ds and locality pr1, ρ1q, pr2, ρ2 “ 2q, where

n “ qj`10 pq20 ´ 1q

k “ tpq0 ´ 1q2 ě p`´ gj ` 1qpq0 ´ 1q2

d ě n´ `q20 ´ 2qj`10 pq0 ´ 2q

and r1 “ pq0 ´ 1q2, r2 “ q0 ´ 1,

ρ1 ě maxp2q0 ´ degψj`2
pxqpq0 ´ 2q, 4q.

Proof. Apply the construction of Proposition 3.3.1 to the curves in Eq. (3.18). The length

of the obtained code equals the size of the evaluation setD, which is taken to be |XpFqq|´

1´ qj`10 , accounting for removing the point at infinity as well as the qj`10 ramified points

above 0 P P1 on X. All the other parameters are found directly from Proposition 3.3.1.
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The shortcoming of the above construction is that it is unclear how to choose the primitive

element x such that degψj`2
pxq is small enough to guarantee a large value of the minimum

distance of the middle code ρ1. It would be preferable if we could limit degψj`2
to 1 since

this would force the middle code to be an optimal LRC code by itself.

3.7.2 H-LRC codes from power maps

To overcome the shortcomings of the previous construction, in this section we present

a construction of H-LRC codes from the curves in the GS-tower for which the primitive

element x of the map constructed is naturally injective on the fibers of the map ψ : X Ñ Z

where X “ Xj is a GS curve and Z is a quotient curve that we are going to construct.

Define the curve Xj,c by its function field

kpXj,cq “ kpxc1, x2, . . . , xjq,

where the variables xi are defined as above in (3.17). Now let a, b ě 2 be positive integers

such that pa` 1qpb` 1q|pq0 ` 1q. Consider a tower of curves

Xj
φ2
ÝÑ Xj,a`1

φ1
ÝÑ Xj,pa`1qpb`1q.

Applying the construction of Section 3.3 with x1 and xa`11 as the primitive elements of φ1

and φ2 respectively, we obtain the following result, proved directly from Proposition 3.3.1.

We again rely on the notation t “ dimpLp`Q8,jqq, where gj´1 ď ` ď nj´1.
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Proposition 3.7.2. For any j ě 1 there exists a family of H-LRC codes with parameters

rn, k, ds and locality pr1, ρ1q, pr2, ρ2 “ 2q, where n “ qj´10 pq20 ´ 1q, k “ tab

d ě n´ degpQ8qpa` 1qpb` 1q ´ qj´10 pab` b´ 2q

r2 “ a, ρ2 “ 2

r1 “ ab, ρ1 “ a` 3.

Note that the middle codes in this construction are optimal LRC codes, something that

was not attainable with the construction of Prop. 3.7.1. Further, taking j “ 1 in this

proposition, we recover codes constructed of Prop. 3.4.1, where n is taken to be q ´ 1.

Example 3.7.3. Let q “ q20 where q0 is a prime power and let X be the Hermitian plane

curve of genus g0 “ q0pq0 ´ 1q{2 with the affine equation:

X : xq0 ` x “ yq0`1.

Note that this curve coincides with the curve X2 from the Garcia-Stichtenoth tower. The

size of the evaluation set equals q30´q0 which corresponds to removing the q0 points above

0 P P1 on the curve. Applying the above power map construction to the case q0 “ 8 and

a “ b “ 3 gives a Hermitian H-LRC code defined over F64. We obtain a family of codes

with parameters rn “ 504, k “ 9t, ds H-LRC code and locality p9, 6q, p3, 2q where:

d ě n´ 16t´ 80, 1 ď t ď 26.
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In particular, we obtain codes with the following parameters:

t k d

1 9 408 ď d ď 494

2 18 392 ď d ď 478

3 27 376 ď d ď 462

. . .

11 99 248 ď d ď 334

12 108 232 ď d ď 318

. . .

where the upper bound on d is found from (3.1).

3.7.3 H-LRC codes from fiber products

The result of Prop. 3.7.2 affords a generalization based on fiber products of curves. Let

us recall the definition of the fiber product of curves X and Y over a curve Z. Suppose

that φ : X Ñ Z and ψ : Y Ñ Z are k-covering maps. The set X ˆZ Y :“ tpx, yq P

X ˆ Y |φpxq “ φpyqu is called a fiber product of X and Y . In general this set does not

always form a smooth algebraic curve, but we assume this in our discussion below.

Consider a tower of projective smooth absolutely irreducible curves over a finite field k

X
φ2
ÝÑ Y

φ1
ÝÑ Z
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where as before degpφ2q “ ab and degpφ1q “ b. Let us also assume that kpXq “ kpZqpxq

for some primitive element x P kpXq that is injective on fibers of φ1 ˝φ2. Choose a curve

C that forms a k-cover of Z and such that X ˆZ C and Y ˆZ C are both smooth and

absolutely irreducible curves. Then x is injective on the fibers of

X ˆZ C Ñ Cp– Z ˆZ Cq

Applying the construction of Section 3.3, we obtain the following result.

Proposition 3.7.4. Consider codes constructed using the tower

X ˆZ C
φ2
ÝÑ Y ˆZ C

φ1
ÝÑ C.

The parameters of the codes are rn, k, ds, where n is determined by the number of totally

split points on X ˆZ C and the distance d satisfies the same condition as in Prop. 3.7.2.

The locality parameters are pr1, ρ1q, pr2, ρ2 “ 2q, where

r2 “ a, ρ2 “ 2

r1 “ ab, ρ1 “ a` 3.

The middle code has the length pa ` 1qpb ` 1q and is an optimal LRC code with respect

to the bound (1.3).

This construction specializes to Proposition 3.7.2 with the choices X, Y and Z such that

kpXq “ kpx1q, kpY q “ kpxa`11 q and kpZq “ kpx
pa`1qpb`1q
1 q, and C “ Xj,pa`1qpb`1q.
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Fiber products of Artin-Schreier curves, developed in [40], look especially promising for

constructing H-LRC codes because they give curves with many points, including many

maximal curves.

3.7.4 H-LRC Codes with availability

In this section we consider a generalization of codes with locality wherein local correction

of erasures can be performed by accessing several disjoint groups of codeword’s coordi-

nates. In the literature on LRC codes (without hierarchical structure) this generalization

is called the availability problem [6, 17, 30, 35]. Let us first define an LRC code with the

availability property (and no hierarchy of recovering sets).

Definition 3.7.5. A linear code C is LRC with locality pr, ρq and availability τ if for every

i P t1, . . . , nu there are τ punctured codes Ci,1, . . . , Ci,τ such that

1. dimpCi,jq ď r for j “ 1, . . . , τ ,

2. dpCi,jq ě ρ for j “ 1, . . . , τ ,

3.
ˇ

ˇsupppCi,jqz
Ť

kPrτ s
k‰j

supppCi,kq
ˇ

ˇ ě r

Let us define H-LRC codes with availability.

Definition 3.7.6. Let ρ2 ă ρ1 and r2 ď r1. A linear code C is H-LRC and parame-

ters ppr1, ρ1q, pr2, ρ2qq and availability τ1, τ2 if it has locality pr1, ρ1q and availability τ1,

and each of the codes Ci,j, i P rns, j P rτ1s is an LRC code with locality pr2, ρ2q and

availability τ2.
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This definition can be specialized to the case when availability is required only for local

recovery at the level of the entire code C (in this case τ2 “ 1), or only at the level of the

middle codes (in this case τ1 “ 1).

To generate H-LRC codes with availability we use a construction inspired by the LRC

codes with availability introduced in [6] and developed in [17]. We focus on the example

where the availability on both levels of hierarchy is τ1 “ τ2 “ 2, but the construction

below can be easily extended to arbitrary availability on either level. Consider the diagram

of curves given below where we assume that all the arrows correspond to separable maps

between projective curves over a fixed finite field k.

X “ X1 ˆY X2

X1 X2

Y “ Y1 ˆZ Y2

Y1 Y2

Z

ψX1 ψX2

ψY1 ψY2

The curve Y is constructed from the fiber product of two curves of degree s ` 1 over

Z and the curve X is constructed as the fiber product of two curves of degree r2 ` 1

over Y . Choose a collection of c totally split fibers of the extension X{Z and let D be

the set of n points in those fibers on X . The size of D equals n “ cpr2 ` 1q2ps ` 1q2.
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Choose a positive divisor Q8 of degree t on Z with LpQ8q “ span tf1, . . . , fmu and

choose primitive elements x1, x2, y1, and y2 such that kpXiq “ kpY qpxiq and kpYiq “

kpZqpyiq, i “ 1, 2. Assume that the degrees of x1, x2 considered as maps from X to

P1 are hx :“ degpx1q “ degpx2q and the degrees of y1, y2 as maps from Y to P1 are

hy :“ degpy1q “ degpy2q. Define h1x to be the largest multiplicity xi can take on a

fiber of either of the maps X Ñ Yi, i “ 1, 2 (this is similar to degψpxq defined before

Proposition 3.3.1). Let V be the space of functions given by

V “ spantfix
j1
1 x

j2
2 y

k1
1 y

k2
2 | i “ 1, . . . ,m; j1, j2 “ 0, . . . , r2 ´ 1; k1, k2 “ 0, . . . , s´ 1u.

Define the code C as the image of the evaluation map

ev:V Ñ Kn

f ÞÑ pfpPiq|Pi P Dq.

The properties of the code C are collected in the following proposition which follows

directly from the construction.

Proposition 3.7.7. Assume that Z is an absolutely irreducible smooth curve. The code C

is an rn, k, ds H-LRC code with parameters

n “ cpr2 ` 1q2ps` 1q2

k “ ms2r22

d ě n´ tps` 1q2pr2 ` 1q2 ´ 2hyps´ 1qpr2 ` 1q2 ´ 2hxpr2 ´ 1q,
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availability 2, and locality

r1 “ r22s

ρ1 ě maxtpr2 ` 1q2ps` 1q ´ ps´ 1qpr2 ` 1q2 ´ 2h1xpr2 ´ 1q, 8u. (3.19)

A middle code in this construction is obtained by restricting C to a fiber of either of

X Ñ Yi, i “ 1, 2 and is itself an H-LRC(2) code with locality parameters pr2, 2q.

3.7.5 Example: an H-LRC code with availability τ1 “ τ2 “ 2

Let k “ Fq be a finite field and let s,m be such that ps ` 1qm “ q ´ 1. Let Z “

P1
k

with function field kpzq and let Y1, . . . , Y4 be curves over k with function fields

kpz, y1q, . . . ,kpz, y4q respectively, where

ys`1i “ z, i “ 1, . . . , 4.

Let Y “ Y1 ˆZ Y2 and let X1 “ Y ˆZ Y3, X2 “ Y ˆZ Y4, and X “ X1 ˆY X2. These

objects fit the diagram above with all the arrows being the natural separable projections.

We apply the above construction to this set of curves with Q8 “ t8Z and D equal to the

mps ` 1q4 points in Xpkq above the m values in k that are ps ` 1qst powers. This gives

the following result.

Proposition 3.7.8. There exist H-LRC codes over k “ Fq with availability τ1 “ τ2 “ 2
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and code parameters

n “ mps` 1q4

k “ tps´ 1q4

d ě n´ tps` 1q4 ´ 4ps´ 1qps` 1q2

and locality parameters ps3, 8q, ps, 2q.

All the parameters in this proposition are found directly from Proposition 3.7.7. We note

that the bound on the distance ρ1 is 8 because h1x is ps ` 1q2, and the first term under the

maximum in (3.19) trivializes.

3.8 Asymptotic parameters

In this section we consider asymptotic parameters of H-LRC codes. In the setting that we

adopt, the code length nÑ 8, and we call the codes asymptotically good if the limits of

the rate R :“ p1{nq logq |C| and relative distance δ :“ d{n both are bounded away from 0

as n Ñ 8. The parameters of the middle code rν, r1, ρ1s are constant and do not depend

on n.
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3.8.1 Asymptotically good families of H-LRC codes

Let us compute the asymptotics of the code parameters in Prop. 3.7.1. Recall that gj ď

nj
q0´1

[10]. We have

d

n
`
k

n

q20
pq0 ´ 1q2

“ 1´
2pq0 ´ 2q

q20 ´ 1
´
q20gj
n
`
q20
n

ě 1´
3

q0 ` 1
`
q20
n
. (3.20)

We obtain the following code family.

Proposition 3.8.1. Let q “ q20. There exists a family of linear q-ary 2-level H-LRC codes

with locality pppq0´1q2, ρ1q, pq0´1, 2qq, where ρ1 satisfies the bound of Proposition 3.7.1,

and such that the rate and relative distance satisfy the inequality

R ě
´q0 ´ 1

q0

¯2´

1´ δ ´
3

q0 ` 1

¯

. (3.21)

The bound (3.21) is obtained by letting j Ñ 8 and passing to the limit in (3.20).

To add flexibility to the parameters of the code family, we can decrease the maximum

degrees of x, y in the functions in (3.3) from s ´ 1 to s1 ´ 1 and from r2 ´ 1 to r12 ´ 1,

where 2 ď s1, r12 ď q0 ´ 1. This gives the following extension of Proposition 3.8.1.

Proposition 3.8.2. There exists a family of linear q-ary 2-level H-LRC codes with locality

ppr1 “ r2s, ρ1q, pr2, ρ2 “ q0 ` 1´ r2qq, 2 ď s, r2 ď q0 ´ 1

77



and

R ě
sr2
q20

´

1´ δ ´
q0 ` s` r2 ´ 1

q20 ´ 1

¯

.

Observe that, while the code families in the previous two propositions are asymptotically

good, the distance of the middle codes ρ1 does not have an explicit expression. This can

be remedied by using the code family of Proposition 3.7.2, and performing a calculation

similar to (3.20). We obtain the following theorem which gives a fully explicit set of

parameters for an asymptotically good family of H-LRC codes.

Theorem 3.8.3. Let q “ q20 and suppose that ν :“ pa ` 1qpb ` 1q|pq0 ` 1q. There exists

a family of linear q-ary 2-level H-LRC codes with locality pr1 “ ab, ρ1 “ a ` 3q, pr2 “

a, ρ2 “ 2qq and the rate and relative distance satisfying the asymptotic bound

R ě
ab

pa` 1qpb` 1q

´

1´ δ ´
q0 ` ab` b´ 1

q20 ´ 1

¯

. (3.22)

The rν, r1, ρ1s middle codes in the construction are distance-optimal in that they satisfy

the bound (1.4) with equality.

Proof. From Proposition 3.7.2 we obtain:

d

n
`
k

n

pa` 1qpb` 1q

ab
ě 1´

ab` b´ 2

q20 ´ 1
´
pgZ ´ 1qpa` 1qpb` 1q

n
(3.23)

where gZ is the genus of the curve Xj,pa`1qpb`1q. Recalling the Riemann-Hurwitz formula
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[38, p.102], we obtain the relation gj ě 1` pa` 1qpb` 1qpgZ ´ 1q, which gives

pgZ ´ 1qpa` 1qpb` 1q

n
ď
gj ´ 1

n

Substituting this (3.23), we continue as follows:

d

n
`
k

n

pa` 1qpb` 1q

ab
ě 1´

ab` b´ 2

q20 ´ 1
´
gj ´ 1

n

Since gj
n
Ñ 1

q0´1
, we obtain (3.22) upon rearranging.

To get an idea of the bound (3.22), assume that a “ b « q0. Assuming large q0 and

ignoring small terms, we find that the right-hand side of (3.22) is approximately 1´δ´ 2
?
q

and is in fact better than the bound (3.21).

3.8.2 A random coding argument

As in [6], let us also compute a bound on the set of achievable pairs pR, δq obtained by a

random coding argument, calling it a Gilbert-Varshamov (GV) type bound. Consider a se-

quence of q-ary H-LRC codes Cpiq of length ni with locality ppr1, ρ1q, pr2, ρ2qq. Suppose

that di is the distance of the code Cpiq and let di
ni
Ñ δ as iÑ 8.

Proposition 3.8.4. (GV BOUND) Assume that there exists a q-ary rν, r1, ρ1s linear LRC

code D with locality pr2, ρ2q and let BDpsq be the weight enumerator of the code D. For
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any R ą 0, δ ą 0 that satisfy the inequality

R ă
r1
ν
´min

są0

´1

ν
logq BDpsq ´ δ logq s

¯

, (3.24)

there exists a sequence of H-LRC codes with asymptotic rate R and relative distance δ.

Proof. The ideas in the following calculation extend the approach to a Gilbert-Varshamov

bound for LRC codes derived in [6, 36], so we only outline the argument. Let C be an

rn, k “ Rn, d “ δns linear H-LRC code with locality parameters r “ ppr1, ρ1q, pr2, ρ2qq

as given in Def. 3.2.1. Its parity-check matrix can be taken in the form H “ pH1|H0q
T ,

where the submatrices are as follows. The part H1 is a block-diagonal matrix with blocks

given by the parity-check matrix of the code D. The matrix H0 is formed of random

uniform independent elements of the field Fq chosen independently of each other. The

matrix H1 contains npν ´ r1q{ν rows and the matrix H0 contains n r1
ν
´ k rows.

The number of vectors of weight w “ 1, . . . , n in the null space of H1 is given by

minsą0 s
´wBDpsq

n{ν , and the probability that each of them is also in the null space of

H0 is q´np
r1
ν
´Rq. By the union bound,

P pdminpCq ď δnq “ δnq´np
r1
ν
´Rq min

są0
s´wBDpsq

n{ν .

If this probability is less than one, there exist codes with distance dmin ě δn. Upon taking

logarithms, we now obtain (3.24).

Numerical comparison of the bounds obtained above, including (3.22) and (3.21), with
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the GV bound is difficult because (3.24) is not easy to compute. Indeed, we need to

find the weight distribution of the code D (for instance, a code in the family constructed

in [35], see Sec. 1.3.2); however this is not easy even for moderate values of q0. It is

possible to replace (3.24) with a weaker bound by observing that the codes of [35] are

subcodes of certain Reed-Solomon codes (more specifically, a q-ary rν, r1, ρ1s code D is

a subcode of the rν, ν ´ ρ1` 1, ρ1s RS code), and therefore, their weight distributions are

bounded above by the weight distribution of RS codes for which an explicit expression is

available. Thus, we can use this expression to evaluate a lower estimate for the right-hand

side of (3.24). Following this route, we have computed numerical examples, observing

that (3.22) indeed improves upon this version of the GV bound. One such example is as

follows.

Let q0 “ 19, a “ 3, b “ 4, then ν “ 20, r1 “ 12, ρ1 “ 6. Using the weight numerator

of the r20, 15, 6s RS code over F192 on the right-hand side of (3.24), we find that rate

R “ 0.198 is attainable for the relative distance δ “ 0.5. For the same δ the bound (3.22)

produces a higher value R ě 0.243.

We note again that this example does not imply that the bound (3.22) improves upon the

actual GV bound which even for the above parameters is not easily computable.

3.9 Further Questions

In this chapter we applied the new general construction from Section 3.3 to several situa-

tions that result in maps between curves that fit the diagram in Equation 3.2. This includes
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quotients of curves by subgroups of automorphisms and projection maps between curves

in the Garcia-Stichtenoth tower. There are several directions to go from where this chapter

leaves off.

• For the examples generated from quotients of Kummer curves, we are taking a

quotient by very specific subgroups of automorphisms that come from the Galois

action on the curves. For some of these curves, especially in the Suzuki case, the

automorphism groups are much larger leaving the opportunity for various quotients

of the these curve as possibilities.

• The construction discussed in this chapter comes with strict divisibility require-

ments for both k and n in that we have r2 ` 1|n and r1|k, r2|k. Similar restrictions

existed for algebraic construction of LRC codes as well. Paper [21] gives alternate

constructions of LRC codes which are optimal and no longer require a divisibility

requirement on n. It is natural to ask whether the divisibility requirements can be

lifted in the HLRC codes.

• Similarly to the previous problem, it is also natural to ask how long optimal HLRC

codes can possibly be. We know MDS codes cannot be longer than 2q, as shown

in [15], they show that for LRC codes the maximum length of the code is bound by

roughly Opdq3q.

• For additional asymptotic results, there are many candidates for other infinite towers

of curves that could be examined for asymptotically good H-LRC codes. In [7],

techniques are given for obtaining good towers of function fields.
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