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This dissertation focuses on the optimal flight-to-gate assignment in cases of

schedule disruptions with a focus on transfer passengers. Disruptions result from

increased passenger demand, combined with tight scheduling and limited infrastruc-

ture capacity. The critical role of gate assignment, combined with the scarcity of

models and algorithms to handle passenger connections, is the main motivation for

this study.

Our first task is to develop a generalizable multidimensional assignment model

that considers the location of gates and the required connection time to assess the

success of passenger transfers. The results demonstrate that considering gate loca-

tion is critical for assessing of the success of a connection, since transfer passengers

contribute significantly to total cost.

We then explore the mathematical programming formulation of the problem.

First, we compare different state-of-art mathematical formulations, and identify



their underlying assumptions. Then, we strengthen our time-index formulation by

introducing valid inequalities. Afterwards, we express the cost of passenger connec-

tions using an aggregating formulation, which outperforms the quadratic formulation

and is consistently more efficient than network flow formulations when the cost of

successful connections is considered.

In the last part of the dissertation, we embed the formulation in an MIP-based

metaheuristic framework using Variable Neighborhood Search with Local Branching

(VNS-LB). We explore the key notion of a solution neighborhood in the context of

gate assignment, given that transfer passengers are our main consideration. Our

implementation produces near-optimal results in a low amount of time and responds

reasonably to sensitivity analysis in operating parameters and external conditions.

Furthermore, VNS-LB is shown to outperform the Local Branching heuristic in

terms of solution quality. Finally, we propose a set of extensions to the algorithm

which are shown to improve the quality of the final solution, as well as the progress

of the optimization procedure as a whole.

This dissertation aspires to develop a versatile tool that can be adapted to the

objectives and priorities of practitioners, and to provide researchers with an insight

of how the features of a solution are reflected in the mathematical formulation. Every

idea relying on these principles should be a promising path for future research.
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Chapter 1

Introduction

Chapter Overview

Airport and airline operators deal with a variety of interconnected problems when

planning and scheduling their operations. However, a variety of factors such as ad-

verse weather conditions and unexpected incidents disrupt the smoothness of daily

operations. The increase in air transport demand over the past years, combined

with tight operation scheduling, increase the severity and duration of the disrup-

tions by propagating the initial delay across the whole network. To restore normal

operating conditions and prevent the propagation of delays, recovery procedures are

developed. The assignment of flights to airport gates is a typical example of an

operation which can be disrupted. Therefore, developing a new assignment that

minimizes the impact of disruptions is of critical importance for airport, airlines,

and passengers. In particular, transfer passengers, who comprise one of the most

important but also vulnerable portion of airport users, are an indispensable part of
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schedule recovery procedures. Also, from the perspective of mathematical modeling,

passenger connections present a significant computational challenge. The optimal

assignment of flights to airport gates, given the special characteristics of transfer

passengers, is the main focus of this dissertation.

Keywords: gate reassignment; delays; transfer passengers

1.1 Delays in Air Transportation

The airline industry is experiencing continuously growing passenger demand

over the years. According to the World Bank (World Bank, 2016), the total travel

demand for air transport in 2015 was 3.441 billion passengers, compared to 1.97

billion passengers in 2005; in other words, the total number of passengers carried

by airlines increased by 75% in a decade, with the increasing trend obvious in both

international and domestic air travel. Regarding international markets, the sched-

uled passenger traffic measured in RPKs (revenue passenger kilometers) increased

by 8% from 2016 to 2017, according to ICAO (2018). Europe is the region with

the largest international market share (37%), followed by Asia/Pacific (29%), North

America (13%), Latin America and the Caribbean (4%) and Africa (3%). It is inter-

esting to note that all regions experienced individual growth in their international

market, with Latin America and Caribbean exhibiting the largest increase (10%)

between 2016 and 2017. The growth rate for each region can be seen in Figure 1.1.

Meanwhile, domestic markets also increased by 7% in total in 2017 (ICAO, 2018).
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Figure 1.1: Growth rate in total airline passenger demand from 2016 to 2017 for
different regions. Source: ICAO, 2018.

Not surprisingly, air travel demand and the respective provided capacity is ex-

pected to increase further, with the International Air Transport Association (IATA,

2018) estimating that the airline industry will serve 7.8 billion passengers in 2036,

based on an estimated annual growth rate of 3.6%. The Asia-Pacific region is ex-

pected to be the major contributor to this increase, supplying more than 50% of the

total demand. Although the value of the estimated growth rate can be decreased

under conservative assumptions (e.g., trade protectionism and travel restrictions, as

opposed to market liberalization and visa facilitation), the expected growth rate still

remains positive, approximately equal to 2.7% per year (IATA, 2018). Predictions

of passenger demand until the year 2036 can be seen in Figure 1.2.

However, largely due to the increase in travel demand, airlines experience re-

current flight delays. As a result, moderate disruptions are now part of travelers’

normal routine, while more intense disruptions due to extreme weather conditions,

strikes, and congestion, are also observed in the Eastern and Western United States,
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Figure 1.2: Prediction for global airline passenger demand for three alternative
scenarios. Source: IATA, 2018.

Europe, China and other areas worldwide (Bendinelli et al., 2016). Statistics from

both the US and Europe have quantified the average number of delayed flights, as

well as the average delay duration, as follows: By default, a flight is considered

delayed “if it arrived at (or departed) the gate 15 minutes or more after the sched-

uled arrival (departure) time as reflected in the Computerized Reservation System”

(BTS, 2018). Regarding Europe, Eurocontrol (2018) identified a decrease in flight

punctuality in 2017, since the percentage of flights arriving on time was 80%, as

opposed to 81% in 2016. Similarly, the average departure time delays increased

by 9.6%. The ADD index (average delay per delayed flight) was estimated as 28

and 29.9 minutes for departing and arriving flights, respectively. A similar trend

was observed for the United States, with 18.57% of arriving flights and 17.79% of

departing flights experiencing delays.
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Delays are exacerbated by the combination of large travel demand and re-

source scarcity, which in turn make airports and airlines rely on tight scheduling

to maximize their efficiency. To help us understand air transport delays, the para-

graphs that follow (1.1.1 - 1.1.5) explain their fundamental causes and their most

significant effects.

1.1.1 Causes of Delays

A detailed explanation of how air transport delays are generated is a com-

plicated issue. For the purpose of this dissertation, we will present the reported

causes of delays based on the classification provided by the Bureau of Transporta-

tion Statistics (BTS, 2018):

a) Air Carrier causes. This category includes factors that are within the airlines

control, such as crew problems and delays in cleaning, maintenance, refueling

and baggage handling (BTS, 2018).

b) Extreme Weather. This category includes actual or forecasted meteorological

conditions, such as tornadoes, blizzards, and hurricanes, that may delay or

prevent a flight.

c) National Aviation System (NAS). This category includes “a broad set of condi-

tions, such as non-extreme weather conditions, airport operations, heavy traf-

fic volume, and air traffic control” BTS (2018), as well as all weather-related

causes that might delay operations but do not prevent flying and therefore

cannot be classified as extreme. Such conditions include convective weather,
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ceiling and visibility, turbulence, temperature, humidity, in-flight icing, ground

de-icing, etc. (Maharjan, 2010). In 2017, weather accounted for 63.3% of NAS

delays, equivalent to 25.1% of total delays in that year.

d) Late-arriving aircraft. When the same aircraft serves two consecutive flights,

i.e., an inbound flight to an airport followed by an outbound flight from that

airport, and the inbound flight is delayed, then the delay is propagated to the

outbound flight as well.

e) Security. Security causes include “evacuation of a terminal or concourse, re-

boarding of aircraft because of security breach, inoperative screening equip-

ment and/or long lines in excess of 29 minutes at screening areas” BTS (2018).

1.1.2 Congestion

Congestion is the result of heavy traffic volumes combined with limited in-

frastructure capacity. The types of congestion that affect air transport are airspace

congestion and airport congestion, resulting from resource scarcity in the Air Traffic

Management System and in the airport infrastructure, respectively.

On the one hand, airspace congestion exists when the available airspace is

occupied by more aircraft than the ones allowed by its capacity. To relieve airspace

congestion, flight trajectories are shifted in time (slot re-allocation) or in space

(route reallocation). For more details, the reader shall refer to Nosedal et al. (2014),

who classify congestion mitigation strategies in categories, including general route-

time allocation, collaborative en-route resource allocation modeling, conflict risk
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assessment, slot allocation problems focused on controllers’ workload, multi-sector

complexity planning, and others.

Airport congestion, on the other hand, exists when the number of aircraft in

the airport is larger than the airport’s capacity, as determined by the capacity of

the airside (e.g., runways, taxiways, apron) and of the landside (e.g., terminal build-

ings). In certain airports, such shortages might be present only during during peak

hours (morning, noon and evening), while others, like London/Heathrow, Frankfurt,

Paris/de Gaulle and New York/La Guardia Gelhausen et al. (2013), operate at or

near capacity for many hours along the day. Congestion is strongly related to dense

spacing of arrival and departure operations in hub-and-spoke systems (Santos and

Robin, 2010), where airlines tend to use a small number of hub airports where the

majority of flights are concentrated. As highlighted by Baumgarten et al. (2014) and

Fageda and Flores-Fillol (2015), this concentration of operations has contributed to

an increase in airport congestion.

Frequently, the runway is the bottleneck of airport capacity. Most runways can

handle up to 30 to 50 movements/hour, resulting in 250,000 movements/runway/year,

assuming that the airport operates 18 hours/day (Roosens, 2008). However, these

values are not achieved in practice, due to operational and legal constraints. As a

result, a large amount of studies have focused on optimizing runway management,

especially for airports with more than one runway.
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1.1.3 Delay Propagation

Regardless of their cause, a key feature of delays is their ability to be propa-

gated, thus extending the temporal and spatial impact of the original delay to the

whole network. A number of studies (Abdelghany et al., 2004; Beatty et al., 1999;

Kafle and Zou, 2016; Pyrgiotis et al., 2013; Schaefer and Millner, 2001; Wong and

Tsai, 2012; Wu and Wong, 2007) have developed models to quantify propagation

patterns and propose strategies to absorb delays in the various stages of planning

procedure. Campanelli et al. (2016) modeled delay propagation in US and Euro-

pean networks, taking into account the differences in flight management strategies

between the two regions. Their results indicated that the ATFM (Air Traffic Flow

Management) system adopted in Europe results in larger delays than the first come-

first served US protocol, which is better at preventing large congestion, but requires

more intensive flight management procedures.

1.1.4 Impact of Delays

Schedule delays have significant direct and indirect impacts on airlines, airports

and passengers. A number of studies (Ball et al., 2010; Schumer and Maloney, 2008)

have provided estimates of the monetary cost of delays. Schumer and Maloney

(2008) estimated that total cost of delays in US domestic flights in 2007 as $41

billion, out of which $19 billion were additional airline operating costs for fuel,

maintenance and crew, $12 billion corresponded to lost passenger time resulting in

lower productivity and business opportunities and $10 billion were the indirect costs

8



to dependent industries like food service and public transportation. According to a

more recent estimation by Ball et al. (2010), the direct cost of US flight delays in

2007 was $32.9 billion, of which $8.3 billion were the direct costs to airlines, $16.7

billion were the costs to passengers, and $3.9 billion were the costs from lost demand.

The remaining impact on GDP was estimated as $4 billion. More recently, Cook

and Tanner (2011) estimated the direct costs of delays in Europe as e1.25 ($1.46)

billion in 2011.

Furthermore, delays have a substantial impact on schedule adherence and

therefore on the level of service provided to passengers, since they often result in

airport queues, long waiting times and, consequently, deterioration of the passenger

experience as a whole, due to discomfort and inconvenience. In a recent study, Kim

and Park (2016) used structural equation modeling to quantify the impact of service

delays on passengers emotional reactions and behavior. The results indicated that

delays can be a major source of negative emotions and anger for passengers. As a

result, they also have a negative influence on passengers’ repurchase intention and

increase the probability for negative word-of-mouth, which in turn is expected to

harm the reputation of the airline.

1.1.5 Dealing With Delays

As explained before, one of the major causes of delays is resource scarcity.

Therefore, in theory, a potential solution would be the expansion of existing infras-

tructure by constructing additional runways or building new terminals. However,
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physical constraints might not allow for such measures, while the cost and time

scale of new infrastructure planning can be excessive (Eurocontrol, 2016). In Mu-

nich Airport, for example, the costs of planning were e800 million (approximately

$930 million), while the construction of one additional terminal in London/Heathrow

required 14 years to build and e500 million (approximately $567 million) for plan-

ning, which accounted for 12% of the total investment cost. In addition, expansion

of current infrastructure may not be a feasible or efficient option because of ge-

ographic, environmental, socio-economic and political issues (Vaze and Barnhart,

2012). Apart from the fact that the expansion of the existing infrastructure is not

always possible, another factor that should be taken into account is the high degree

of interdependence among the decisions that influence the use of most resources

(flights, terminals, crews, baggage) Dorndorf et al. (2007a), which results in the

need for interventions in different stages of planning and decision making. For this

purpose, airport and airline managers collaborate to set up the base for “a complex

management system for airports and airlines of any size” (Dorndorf et al., 2007a)

that supports decisions about crews, disruptions, fleet, aircraft scheduling, ground

operations, and allocation of flights to gates.

In this context, mitigating delays involves management strategies in two phases

of decision making, i.e., the planning phase and the recovery phase.

• In the planning phase, airport and airline operations should include a certain

level of robustness to deal with unexpected occurrences (Dunbar et al., 2012)

by absorbing potential delays throughout the different steps of decision making.
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Robust scheduling accounts not only for the planned costs but also for the recovery

costs.

• Schedule recovery is the response to disruptions by modifying, delaying or cancel-

ing services in order to return to the originally planned state. Therefore, depend-

ing on the magnitude of the disruption and the type of the problem, quick and

efficient real-time modification of the original schedule is required. Gate reassign-

ment, which is the topic of this dissertation, is a typical example of a schedule

recovery operation.

1.1.6 Reassigning Flights to Gates

The Gate Assignment Problem (GAP) deals with the assignment of aircraft

activities, i.e., departure, arrival, or parking, to airport gates, for a given time

period within the day of operations. It is an important planning step which affects

the deployment of ramp personnel and equipment, as well as the available time

for transferring passengers and their baggage (Gu and Chung, 1999). GAP is a

complicated problem which deals with a variety of different resources like aircrafts,

gates and crews (Dorndorf et al., 2007a). In practice, it has to be solved both in the

planning phase, where an optimal assignment of flights to gates is determined (gate

assignment), and in the real-time phase, where the original assignment needs to be

updated based on data about delays and disruptions (real-time gate assignment).

In this study, we will be using the term “gate reassignment” instead of “recovery of

scheduled gate assignment” for simplicity.
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In the planning phase, a feasible allocation of flights to gates is determined,

given the arrival and departure time of each flight. To introduce a degree of ro-

bustness in GAP, every gate is scheduled to remain idle for some time between two

consecutive flight assignments (“idle time”). The minimum imposed idle time is of-

ten referred to as “red zone” or “buffer time” and its purpose is to absorb potential

delays to prevent a knock-on effect on other flights. However, due to the stochas-

tic nature of delays and the factors that generate them in the first place, robust

scheduling alone does not guarantee that the impact of delays is kept to a mini-

mum. In particular, airport congestion, weather conditions, machine breakdowns,

and other factors, might make the scheduled assignment infeasible or impractical.

Large airports with heavy traffic are generally more prone to such disruptions.

In the context of gate assignment, schedule disruptions cause gate conflicts: A

gate conflict refers to a situation where, because of some previous delay, two or more

flights require the same gate with a time overlap. For example, if the departure time

of an outbound flight is delayed, an inbound flight which was originally assigned to

the same gate might not be able to park because the gate is blocked by the delayed

outbound flight. In this case, the inbound flight should either wait in the apron

(i.e., ”the defined area on an airport intended to accommodate aircraft for purposes

of loading or unloading passengers or cargo, refueling, parking, or maintenance”

(FAA, 1996)) before the gate becomes available again, or use a different gate from

the scheduled one, or both. Therefore, the assignment has to be readjusted in order

to restore feasibility, minimize operation disruptions, and prevent further delays.
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During the reassignment of flights to gates, airport operators use real-time data

to introduce a combination of additional disturbances to the scheduled assignment,

so that they generate a new, feasible schedule, in a limited amount of time. The

new schedule should minimize the impact of delays and be optimal in term of the

operators’ objectives. Wang et al. (2013) identify three main types of disturbances

that the operators may introduce:

• Apron disturbances: Allocating flights to the apron (or “tarmac”).

• Gate disturbances: Allocating flights to a different gate than the one they were

originally assigned to.

• Time disturbances: Changing the original departure or arrival time of a flight.

In this dissertation, we focus particularly on the impact of gate reassignment on

connecting passengers. Therefore, before proceeding to the mathematical modeling

part of our study, it is essential to examine the types of connecting passengers,

since different passenger categories result not only in different paths within the

airport, but also in different cost factors associated with the objective function of

the problem.

1.2 Passenger Connections

De Neufville and Odoni (2003) classify passengers according to whether they

use the airport as a starting, transfer, or ending point of their trip. The different

types of passengers within an airport generate different types of flow patterns: Pas-
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sengers move from the entrance of the airport to the gate of their departing flight,

or from the gate of their arriving flight to the exit of the airport, or, in case of

connecting passengers, between different gates.

Transfer (connecting) passengers are of particular importance to airport opera-

tions, since their needs are generally different compared to the rest of the passengers.

Transfer passengers require connections that possess three main properties: Speed,

efficiency, and reliability (De Neufville and Odoni, 2003):

• Speed: Passenger transfers should be fast to ensure that the airlines are capable

of providing competitive services through their selected hub airport.

• Efficiency: Especially when the available connection time is tight, long and compli-

cated connection paths are undesirable for passengers. Ideally, direct connections

within the same terminal are desirable.

• Reliability: Apart from causing inconvenience to travelers, missed connections

or delayed baggage have both a direct and an indirect impact on the airlines.

Direct costs include expenses such as passenger compensation, possible hotel ac-

commodation, or the cost of baggage delivery to a passenger’s destination, while

indirect costs arise from passenger inconvenience and reduction in willingness to

repurchase, as shown in Kim and Park (2016).

All passengers, including the connecting ones, can be further divided in cate-

gories according to their origin/destination and their trip purpose. This classifica-

tion is of particular importance when defining the objective function of the problem
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(see Chapter 3, that might target specific passenger categories, which are associated

with different cost factors.

1.2.1 Passenger Types

Based on their origin/destination and their trip purpose, De Neufville and

Odoni (2003) classify passengers in different categories as follows:

• According to their origin or destination, passengers can be either domestic or in-

ternational. International passengers undergo passport and customs control, while

domestic passengers do not. A similar distinction can be made between Schengen

and Out-of-Schengen passengers for airports within the European Union.

• According to their trip purpose, passengers can be classified as business or leisure

passengers. Business passengers are generally willing to pay higher fares and

carry little or no checked baggage, while leisure passengers tend to travel in large

groups, occasionally with their family, and usually carry checked baggage.

1.2.2 A Realistic View: Temporal - Spatial Dependence of

Connection Success

Contrary to the majority of current studies, the framework proposed in this

dissertation relies on a fundamental assumption about passenger connections: We

assume that, whether a passenger connection will eventually be made or missed, is

a function of two parameters:
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1. The available connection time, i.e., the time between the arrival of the first flight

and the departure of the second flight.

2. The required connection time, i.e., the estimated time that a passengers needs to

move from the gate of the arriving flight to the gate of the departing flight, given

the layout of the airport, the available transportation modes, and the duration

of the mandatory procedures.

As will be explained in detail in Chapter 3, the relationship between these two time

components will determine the success or failure of each connection.

1.3 Contributions of This Dissertation

Since gate assignment is a critical link in the long chain of airport operations, it

is not surprising that GAP has attracted the attention of researchers from a variety

of fields, such as engineers, analysts, and managers. As will be shown in Chapter 2,

numerous optimization models have been developed to address the problem of the

optimal scheduled assignment of flights to gates.

However, judging from the scarcity of relevant studies, optimal real-time as-

signment has received significantly less attention in the literature. In particular,

there is a lack of mathematical models which incorporate passenger connections in

what we consider to be a realistic way, as explained in section 1.2.2.

In addition, the basis of the optimization in gate reassignment is not quite

clear. As will be shown in Chapter 2, the optimization objectives vary across dif-

ferent studies, while only few of them incorporate objectives that are related to
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passenger connections. Therefore, it is interesting to summarize and classify the

currently applied objectives from a practical and methodological point of view and

also examine whether it is justified to consider transfer passengers at the cost of

increasing the size of the problem and therefore its computational complexity.

At the same time, the major challenge when incorporating passenger connec-

tions in the optimization procedure is the intractable increase in the size of the

problem. Although researchers have developed alternative formulations for gate

assignment, the mathematical properties of these formulations, and therefore the

perspective to improve their computational efficiency, have not been sufficiently ex-

plored. As a result, most studies adopt assignment or network flow approaches

without taking advantage of the specific features of each mathematical formula-

tion. However, since real-time assignment requires the generation of optimal or

near-optimal updated schedules in a limited amount of time, strong formulations

are required to ensure that the problem in the smallest amount of time possible.

One could possibly argue that focusing on the improvement of the formulation

is of rather trivial importance, since high-quality solutions can be obtained through

heuristic methodologies. Inarguably, when modeling passenger transfers, exact opti-

mal solutions to the commonly used integer programming models cannot be achieved

within a few seconds or minutes. However, although MIP solvers might not yet able

to handle the problem as a whole, they have evolved into extremely powerful tools

in recent years. Therefore, they can be particularly useful for the development of

mathematical-programming based heuristics, which combine the mathematical for-
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mulation of the problem with sophisticated search techniques that guide the search

procedure towards promising areas of the solution space.

Our first task is to obtain a comprehensive view of state-of-art approaches on

gate assignment by reviewing the relevant literature in Chapter 2. Then, motivated

by the critical role of gate scheduling in airport recovery procedures, as well as by

the scarcity of mathematical models and algorithms that deal with the optimization

of passenger connections, in this dissertation we perform the following main tasks:

• In Chapter 3, we develop a novel time-index mathematical formulation which de-

termines the success or failure of passenger connections based on the relationship

between the available time between connecting flights and the required connec-

tion time as a function of the airport layout and the time allocated to mandatory

procedures. We then use this formulation to compare and analyze the measures

of effectiveness that are commonly used to express the objective function in gate

reassignment studies and demonstrate the necessity of considering passenger con-

nections in the optimization.

• In Chapter 4, we propose a sequence of improvements to the proposed formula-

tions in order to improve computational efficiency. Such improvements include the

addition of valid inequalities as well as complete restructuring of the formulation.

Afterwards, we compare the new, improved formulation with existing, network

flow-based gate assignment formulations, in both a theoretical and an experimen-

tal level. We also highlight the differences in their fundamental assumptions and

determine the circumstances under which each of them outperforms the others.
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• In Chapter 5, we develop a solution algorithm for the gate reassignment prob-

lem with passenger connections, which incorporates our improved formulation in

a framework that uses Variable Neighborhood Search with Local Branching, a

metaheuristic originally proposed by Hansen et al. (2006). Our methodology is

then applied to the gate reassignment problem with consideration of failed bag-

gage connections.

Finally, in Chapter 6 we summarize the main contributions of our research

and propose directions for improvement and extension of our findings.
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Chapter 2

Literature Review

Chapter Overview

In this chapter, we review the state-of-art approaches to the Gate Assignment and

Gate Reassignment problems. First, we introduce the existing studies on the planned

gate assignment problem. Then, we focus on the Gate Reassignment Problem,

which is the main topic of this dissertation. In particular, we emphasize three

elements of existing approaches: a) The objective function and constraints of the

problem, b) the mathematical formulation, and c) the solution methodology. Based

on our review, we identify the gaps that this dissertation attempts to fill: First of

all, our review of the objective function and constraints reveals the importance of

considering passenger transfers and motivates us to develop a model that handles

them in what we consider to be a realistic way (Chapter 3). Second, examining

the alternative mathematical formulations is a necessary step for proceeding to the

formulation analysis and improvement presented in Chapter 4. Finally, studying
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the existing methodological approaches to the solution procedure is a key step for

investigating the applicability of different model-based heuristics and for developing

a new metaheuristic approach that will be presented in Chapter 5.

Keywords: gate reassignment; literature review; objective function; constraints;

formulation; solution algorithms

2.1 Introduction

To better understand the state-of-art optimization approaches of the flight-

to-gate reassignment problem, we perform a thorough literature review. Since the

problem of real-time assignment is closely associated with the scheduled Gate As-

signment Problem (GAP), we first examine the existing approaches of GAP, in terms

of their objective function, constraints, and methodological approach (section 2.2).

Then, we follow up with a detailed review of gate reassignment studies (section 2.3).

2.2 The Gate Assignment Problem: Review

As explained in the Introduction (Chapter 1), the assignment of aircraft, or,

more precisely, of aircraft activities, to airport gates, is an essential decision proce-

dure for airline and airport management. The main purpose of the Gate Assignment

Problem (GAP) is to determine an assignment of flights to aircraft stands, as well

as the start and completion times for processing an aircraft at the gate it has been

assigned to. In this context, a gate can refer either to an aircraft stand at the

terminal, or to an off-pier stand on the apron (Dorndorf et al., 2007a).
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2.2.1 Model Input

To formulate and solve a gate assignment problem, information associated

with the airport, the flight schedule, and operator strategies, is required. In more

detail, the different types of information that are used as input for the optimization

model are the following:

• Flight information: The flight schedule and the properties of each flight are the

key information elements from this category. On the one hand, the flight schedule

is a timetable with the arrival and departure times of all flights. On the other

hand, flight properties include the type of flight (domestic Vs. international, or

Schengen Vs. out-of-Schengen for European countries of the Schengen Area), as

well as information about passengers (number of passengers in each flight, number

of transferring passengers, number of business and first class passengers) and aircraft

(aircraft type, wing span, consecutive arriving and departing flights served by the

same aircraft).

• Airport information: The required airport information includes the number and

location of gates, as well as the type of flights that are compatible with each gate.

Each gate is generally restricted to specific flight types, based on criteria like the

operating airline, as well as whether a flight is domestic or international.

• Information based on operator decisions: Different operators might use different

policies according to their priorities. Examples of parameters determined by the
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decision maker include the length of the assignment slot, the minimum imposed idle

time between consecutive flight assignments to the same gate, etc.

The main input for gate scheduling is a flight schedule with flight arrival and de-

parture times and additional detailed flight information, including pair-wise links

between successive flights served by the same aircraft, the type of aircraft, the num-

ber of passengers for each booking class and the origin or destination of a flight.

The information in the flight schedule defines the time frame for processing a flight

as well as the subset of gates where the flight can be assigned, based on restrictions

such as airline-specific gates, aircraft size, and access to governmental inspection

facilities for international flights.

2.2.2 GAP State-of-Art Overview

The scheduled gate assignment problem has been studied extensively in the

literature. A comprehensive study of the approaches up to 2007 can be found

in Dorndorf et al. (2007a). The authors identify three main research directions

in the area: The number of slots in the model, the types of objectives, and the

mathematical models used. Regarding solution algorithms, they identify two main

directions: Mathematical programming techniques and rule-based expert systems.

Dorndorf et al. (2007a) make a thorough presentation of the algorithms used to

solve GAP by classifying the relevant approaches in two categories, namely math-

ematical programming and rule-based expert systems approaches. In accordance

with the scope of this dissertation, which focuses on mathematical programming
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approaches for gate reassignment, we will not examine rule-based expert systems

approaches. Instead, our classification will rely on the following criteria:

• The objective function of the problem.

• The problem constraints.

• The methodological approach, i.e., the mathematical formulation and the solution

algorithm.

2.2.2.1 Objective Function

The objective function of GAP depends on the priorities of the decision maker.

Dorndorf et al. (2007a) have observed that the objectives commonly used in GAP

can be divided in two main categories: passenger-oriented and airport oriented.

Using this distinction, we can classify the objectives as follows:

Passenger-Oriented Objectives:

Passenger-oriented objectives emphasize the level of service provided to pas-

sengers. They include measures of discomfort (e.g., passenger waiting time) or

impedance when moving to and from the gates (e.g., walking distance). Such mea-

sures include:

• Passenger walking distance (Bihr, 1990; Cheng et al., 2012; Ding et al., 2004b,

2005; Genç et al., 2012; Haghani and Chen, 1998; Marinelli et al., 2015; Yan and

Chang, 1998; Yan and Huo, 2001; Yu et al., 2016).
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• Passenger transit time in terminal (Kim et al., 2013).

• Total baggage distance (i.e., the distance over which the baggage is transported

when moving between the terminal and the aircraft, or between aircraft for connect-

ing flights) (Haghani and Chen, 1998).

• Proximity to airport facilities, like customs and airline lounges (Tang and Wang,

2013).

• Passenger waiting time (Yan and Huo, 2001).

Airport and Airline-Oriented Objectives:

This category includes objectives which are directly associated with the man-

agement of the airport and airline operations. Examples of such objectives are:

• Assignments to the apron. Due to the high cost of ungated flights, assigning

flight to remote stands at the apron instead of contact gates is undesirable. This is

expressed with a number of measures, including the number (Ding et al., 2004a,b;

Marinelli et al., 2015; Tang and Wang, 2013) and duration (Genç et al., 2012) of

ungated flights.

• Flight-gate preferences (Dorndorf et al., 2007b, 2008, 2012, 2017).

• Aircraft handling procedure costs. Such objectives include the number of towing

activities (Dorndorf et al., 2007b, 2008, 2012, 2017; Guépet et al., 2015; Yu et al.,

2016) or, similarly, the number of maximization of the number of arriving flights

and subsequent departing flights assigned to the same gate, if they are served by
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the same aircraft (Tang and Wang, 2013). They also include aircraft taxi time (Kim

et al., 2013).

• Robustness measures. These include a variety of objective functions which aim

to minimize the impact of schedule disruptions by making the assignment able to

absorb potential disturbances. Such objectives include various functions of the idle

times and of gate blockage. Functions of idle times include the variance (Bolat, 2000)

and the total semi-deviation or positive semi-deviation (Şeker and Noyan, 2012) and

range (Bolat, 2000). On the other hand, typical functions of gate blockage are the

expected number (Castaing et al., 2016; Şeker and Noyan, 2012; Dorndorf et al.,

2017), duration (Castaing et al., 2016; Kim et al., 2013), cost (Yu et al., 2016)

and worst-case number (Castaing et al., 2016) of gate conflicts. Dorndorf et al.

(2012) also minimize the assignment of two flights with low buffer time to the same

gate, while they also penalize small idle times. Dorndorf et al. (2017) also used the

expected number of gate closure, shadow restrictions, and tow time restrictions, as

measures of robustness.

• Deviation from a reference schedule.

Of course, the distinction between the two types of objectives serves purposes

of analysis and classification, rather than strictly differentiating between the two

parts, i.e. passengers and operators. In fact, the benefits of passengers, airlines, and

airports are interdependent. For example, improving the level of service provided to

passengers by assigning the flights to gates that are close to the VIP lounges increase

the satisfaction levels of priority passengers and, consequently, their willingness to
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repurchase, thus increasing the market share of the respective airline. Since airlines

tend to concentrate their activities in specific airports, the latter also benefit from

the profitability of the airlines they serve. Reversely, objectives which might only

seem to concern the operators, have a more important effect on passengers than

it seems at first glance. For example, the uniform allocation of idle time among

the gates ensures a minimum level of robustness for the schedule and therefore

prevents delay propagation in case of schedule disruptions. In the opposite case,

passengers would experience additional delays and an overall negative impression of

the provided level of service.

2.2.2.2 Constraints

Regardless of the objective function or the methodological approach, the op-

timization is always subject to the following two constraints:

1. Flight constraint: Each flight is assigned to one gate (contact gate or remote gate

- apron stand).

2. Gate constraint: Each gate is occupied by at most one flight at any moment.

Although a feasible schedule always satisfies the above constraints, under certain

circumstances, they can both be relaxed during the optimization based on the ob-

jective function of the problem. On the one hand, the flight constraint can be relaxed

when non-assignment is an option. The concept of non-assignment has various in-

terpretations according to the decision maker. For example, not assigning a flight

to any gate can automatically imply the assignment of the flight to any parking
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spot in the apron. On the other hand, when the gate constraint is relaxed, the final

solution may involve two or more flights occupying the same gate at the same time.

In this case, the objective usually includes the minimization of flight conflicts. If

conflicts are included in the final solution, they can be resolved manually.

In addition, more types of constraints can be included in the model. These

can be either operational constraints, which reflect tactical or practical limitations in

the optimization, or methodological constraints, which depend on the mathematical

formulation of the problem and are added to define logical relationships between the

variables.

Operational Constraints:

Common operational constraints include the following:

• Shadow Constraints: Shadow constraints prevent flights which are both operated

by aircraft with large wing span from occupying neighboring gates at the same

time. A study which has considered such constraints is the one by Tang and Wang

(2013).

• Minimum processing time constraints: Some studies assume that the duration

of gate occupancy is not fixed for each flight, but that there exists a minimum

processing time limit, as in Dorndorf et al. (2007b).
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Methodological Constraints:

These constraints depend on the formulation of the problem and ensure fea-

sibility according to the solution representation. For example, in assignment for-

mulations, a set of constraints ensures that the main decision variables are binary,

while network flow formulations include constraints for flow conservation and arc

capacity.

2.2.2.3 Methodological Approach

We will now examine state-of-art GAP approaches based on the methodologi-

cal approach, i.e., the type of mathematical formulation and the solution algorithm.

Mathematical Formulation

We can identify three main types of mathematical formulations used for mod-

eling the problem:

1. Assignment models. In a typical assignment problem, one has to allocate agents

to tasks, usually under specific constraints. In the context of GAP, a flight is an

agent, which can be assigned to exactly one task (gate). Additional constraints

guarantee the feasibility of the problem and exclude infeasible assignments based on

flight-gate compatibility. Such models are generally formulated as Binary Integer

Programming models with generally linear LP relaxations. However, when passenger

connections are considered in the optimization (e.g., Haghani and Chen (1998)), the

most common approach involves formulating the problem as a quadratic assignment
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problem, which can be linearized with the addition of extra variables and constraints.

The assignment formulation is the most common in the literature (Bihr, 1990; Bolat,

2000; Şeker and Noyan, 2012; Ding et al., 2004b, 2005; Guépet et al., 2015; Haghani

and Chen, 1998; Kim et al., 2013; Marinelli et al., 2015; Yu et al., 2016).

2. Network flow models. Using flow networks is the second most common way to

handle GAP. In this case, GAP is usually formulated as a multi-commodity network

flow problem (Castaing et al., 2016; Cheng et al., 2012; Tang and Wang, 2013; Yan

and Chang, 1998; Yu et al., 2016). In a multi-commodity network flow formulation,

each gate corresponds to one network, where a feasible flow between the source and

the sink represents the sequence of flights that are assigned to the gate throughout

the planning horizon. A less common approach is the use of a time-space network

(Yan and Chang, 1998).

3. Graph models. More recently, Dorndorf et al. (2008, 2012) relied on a graph

representation to formulate GAP as a clique partitioning problem. In their approach,

the graph consists of n+m− 1 vertices, divided in two sets: The first set contains

n vertices corresponding to flight activities, while the second set contains m − 1

vertices which correspond to gates. The assignment of a flight activity to a gate is

indicated by selecting the edge that connects the two respective nodes, while a set

of transitivity constraints defines vertices belonging to the same clique in the final

solution. The weight of an edge connecting an activity vertex with a gate vertex is

equal to the preference value of the respective assignment (or to −∞, if the gate
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and the flight are not compatible). Finally, edges connecting two gate nodes have a

weight equal to −∞.

Solution Algorithms

Various solution approaches have been proposed for GAP. Some of them in-

volve exact methods that find the optimal solution under specific assumptions and

problem conditions. More recently, the large size of the problem has made re-

searchers focus on the development of heuristic approaches, that can produce opti-

mal or near-optimal solutions in an acceptable amount of time. Furthermore, the

adaptation of metaheuristics is another research direction which has gained increas-

ing popularity in recent years. We will examine the following categories of solution

algorithms: Exact methods, heuristics approaches, and metaheuristics.

1. Exact methods: For relevantly simple problems, using an MIP solver to apply a

typical branch-and-bound or branch-and cut approach can produce exact optimal

solutions in a small amount of time (Haghani and Chen, 1998). Before MIP solvers

evolved into the powerful tools they are today, exact solutions could be found for

formulations where the optimal solution to the LP relaxation was provably integer

under certain conditions (Bihr, 1990; Bolat, 2000)). Other studies have applied a

Lagrangian relaxation approach aided by subgradient methods (Yan and Chang,

1998) and a column generation technique (Yan and Huo, 2001).

2. Heuristics: Haghani and Chen (1998) proposed a constructive heuristic which

relies on the iterative assignment of flights to gates. Ding et al. (2004a,b) devel-
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oped a greedy heuristic, where the flights were sorted by departure time which they

proved to be optimal under certain conditions, as well as a neighborhood search ap-

proach. Dorndorf et al. (2007b) developed a truncated branch-and-bound method

which relied on two models to ensure robustness. The first model used the concept

of fault tolerant recovery paths, while the second relied on a fuzzy approach using

a membership function. The clique partitioning problem of Dorndorf et al. (2008)

was solved using an ejection chain algorithm. Dorndorf et al. (2012) proposed an

algorithm which iteratively solves the problem for multiple periods. The authors

used the ejection chain algorithm from Dorndorf et al. (2008), but they also showed

that their algorithm could be easily coupled with any heuristic that is able to im-

prove a given starting solution. More recently, a modified version of the ejection

chain algorithm was used in Dorndorf et al. (2017). Genç et al. (2012) developed

a “Big Bang-Big Crunch” method coupled with a greedy algorithm for minimiz-

ing the number of flights that are assigned to the apron, as well as a heuristic to

maximize ground time duration. The authors used the heuristics to generate good

initial solutions which they improved using stochastic search. In another study,

Guépet et al. (2015) tested a number of MIP-based heuristics for the binary inte-

ger assignment formulation, namely spatial decomposition, time decomposition, a

greedy algorithm, and an ejection chain algorithm. MIP heuristics were also the

focus of Yu et al. (2016), who adapted a diving heuristic, RINS (Relaxation Induced

Neighborhood Search), Local Branching, and VRNS (Variable Reduce Neighbor-

hood Search), in order to generate schedules which exhibit robustness to potential

disruptions.
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3. Metaheuristics: The general applicability of metaheuristics has resulted in nu-

merous adaptations for GAP in recent years. One of the first studies where a

metaheuristic technique was applied in this context is the one by Bolat (2001), who

adapted a genetic algorithm (GA) to solve the problem. To represent the solution,

each gene corresponded to a flight, while the value of the gene corresponded to the

gate where the flight was assigned. Ding et al. (2004b) adapted tabu search (TS),

while Ding et al. (2004a) proposed a hybrid simulated annealing-tabu search (SA-

TS) approach. In both studies, tabu search used three main search moves: “Insert”,

“interval exchange” and “apron exchange”. Cheng et al. (2012) used real data to

evaluate different objective functions by testing different metaheuristics, namely a

genetic algorithm (GA), tabu search (TS), simulated annealing (SA), as well as a

hybrid approach combining tabu search with simulated annealing. Tabu search was

also used by Şeker and Noyan (2012) and Kim et al. (2013). Finally, Marinelli et al.

(2015) used Bee Colony Optimization (BCO).

2.3 The Gate Reassignment Problem: Review

We can claim that the gate reassignment problem is, more or less, a “child”

problem of GAP. Similarly to its parent problem, the purpose of gate reassignment

is to determine the optimal assignment of flights to gates, as well as the starting and

ending times of gate occupancy. The structure of the mathematical formulation is

also the same for both problems. The elements that distinguish the two refer to the

optimization objectives, the inclusion (or omission) of certain constraints, as well as
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the computational time requirements. We should keep in mind that gate reassign-

ment is performed in real time, after new information on delays becomes available.

Therefore, a new assignment that minimizes the impact of delays is required, and,

most importantly, in a limited amount of time.

To gain an insight of existing studies and identify aspects of the problem that

require further investigation, we will examine the problem of gate reassignment from

three main aspects:

• The basic problem elements, i.e., objective function, constraints, methodological

approach, and measures of effectiveness (section 2.3.1).

• The problem formulation (section 2.3.2).

• The state-of-art solution approaches (section 2.3.3).

2.3.1 Basic Problem Elements

In this section, we analyze the main features of the gate reassignment problem,

such as the objective function (2.3.1.1), the constraints (2.3.1.2), the methodological

approach (2.3.1.3), and the measures of effectiveness used to evaluate the quality of

the solutions (2.3.1.4).

2.3.1.1 Objective function

Traditionally, the majority of gate reassignment studies aim to generate a

schedule that is as close as possible to the original one. In that case, the objective
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function depends on the spatial and temporal deviation from the scheduled assign-

ment. Under this reasoning, Gu and Chung (1999) and Maharjan and Matis (2011)

minimize the walking distance of passengers affected by the reassignment. The for-

mer optimize a combination of the additional delay (i.e., delay caused exclusively

by schedule adjustment) and the distance between the optimal and the reassigned

gate, while the latter minimize the total walking distance of departing and con-

necting passengers for which the assigned gate is different from the one printed on

the boarding pass. Furthermore, Yan and Tang (2007) minimize passenger waiting

times, while Yan et al. (2009) minimize the number of gate changes. Tang et al.

(2010) minimize two types of inconsistency: space inconsistency, for flights assigned

to different gates than the original ones, and time inconsistency, for flights with

altered starting time. Yan et al. (2011) use the same objective as Tang et al. (2010),

but treat flights which are further away from the decision moment as stochastic. In

a more recent study, Wang et al. (2013) classify each flight as certain (closer to the

decision-making point of time) or uncertain, and minimize three objective function

components, namely a) apron and gate disturbances for certain flights, b) apron

and gate disturbances for uncertain flights and c) total penalty for the violation

of gate constraints. Yu and Lau (2015) minimize the walking distance of connect-

ing passengers and the number of passengers who miss their connection. Dorndorf

et al. (2017) aim to keep the new assignment as close to the scheduled one as pos-

sible. Finally, Zhang and Klabjan (2017) minimize a weighted sum of delay, missed

passenger connections and passenger transfer cost.

35



2.3.1.2 Constraints

As in the Gate Assignment Problem, the flight constraint (every flight is as-

signed to exactly one gate) and the gate constraint (every gate is occupied by at

most one flight at any moment) are present in all gate reassignment approaches.

In many studies (Gu and Chung, 1999; Tang et al., 2010; Yan et al., 2011; Yu and

Lau, 2015), a gate adjacency constraint is also added, to prevent flights operated

by aircraft with a wide wingspan from being assigned to adjacent gates at the same

time. Dorndorf et al. (2017) also include “shadow restrictions” for situations where

a flight blocks its neighboring gates.

Gu and Chung (1999) define a minimum ground time, as well as a minimum

idle time between successive flight assignments to the same gate. Tang et al. (2010)

additionally consider a maximum delay time constraint, while the models of Yan

et al. (2009), Yan et al. (2011), and Maharjan and Matis (2011) can be extended

to divide flights into zones to determine feasible assignments (e.g., Schengen and

non-Schengen flights for European airports).

Wang et al. (2013) relax the gate constraint by allowing more than one un-

certain flights to occupy the same gate concurrently. Finally, Dorndorf et al. (2017)

include a towing time constraint, which ensures that the total time for towing does

not exceed the available time for parking.
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2.3.1.3 Methodological approach

The Gate Reassignment Problem is typically formulated as an integer pro-

gramming model, usually either as a network flow problem (Yan et al., 2009; Yan

and Tang, 2007) or as an assignment problem (Tang et al., 2010; Wang et al., 2013;

Yan et al., 2011; Yu and Lau, 2015; Zhang and Klabjan, 2017). Depending on the

formulation, different solution approaches have been proposed. Some studies (Tang

et al., 2010; Yan et al., 2009, 2011) use exact solution techniques, like Branch and

Bound. However, the large size of the problem, especially when passenger connec-

tions are involved, has made researchers focus on heuristic techniques (Dorndorf

et al., 2017; Yu and Lau, 2015; Zhang and Klabjan, 2017) or adapt metaheuristics

(Gu and Chung, 1999; Wang et al., 2013). The existing literature is summarized

based on the objective function and constraints in Table 2.1, and based on the

mathematical formulation and the solution methodology in Table 2.2.

2.3.1.4 Measures of Effectiveness

In the literature, the quality of flight-to-gate reassignment is evaluated based

on a variety of Measures of Effectiveness (MOEs). We can classify these MOEs

according to three criteria: The purpose of the reassignment, the “Flight Vs. Con-

nection” criterion, and the weighting factors.

A. Purpose. We identify two main purpose directions in GRAP:
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Table 2.1: Objective function and constraints of existing gate reassignment studies.

Paper Objective Constraints
Gu and Chung (1999) Extra delayed time and

walking distance
Flight, gate

Yan and Tang (2007) Passenger waiting times Flight, gate, zoning
Yan et al. (2009) Number of gate changes Flight, gate
Tang et al. (2010) Total time and space

inconsistency
Flight, gate, shadow,

zoning, maximum delay
Maharjan and Matis

(2011)
Total walking distance of
affected passengers with
boarding passes issued

before reassignment

Flight, gate, zoning

Yan et al. (2011) Total time and space
inconsistency

Flight, gate, shadow,
zoning

Wang et al. (2013) Apron and gate
disturbances, gate

constraint violation

Flight, gate, zoning

Yu and Lau (2015) Walking distance of
transferring passengers

and number of
passengers who miss

their connection

Flight, gate, shadow

Dorndorf et al. (2017) Number of flights
assigned to different

gates

Flight, gate, shadow,
towing time

Zhang and Klabjan
(2017)

Total delay, number of
missed connections,

number of gate
reassignments

Flight, gate
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Table 2.2: Methodological approaches of existing gate reassignment studies.

Paper Formulation Solution
Gu and
Chung
(1999)

- Metaheuristic (Genetic Algo-
rithm)

Yan and
Tang (2007)

Multi-commodity network flow
problem

Heuristic

Yan et al.
(2009)

Multi-commodity network flow
problem

Exact Solution

Tang et al.
(2010)

Assignment (Binary Linear) Exact Solution

Maharjan
and Matis
(2011)

Assignment (Binary Quadratic) Exact Solution

Yan et al.
(2011)

Assignment (Binary Linear) Exact Solution

Wang et al.
(2013)

Assignment (Binary Linear) Metaheuristic (Ant Colony Op-
timization)

Yu and Lau
(2015)

Assignment (Binary Linear) and
Multi-commodity network flow
problem

Heuristic

Dorndorf
et al. (2017)

Clique Partitioning Problem Modified Ejection Chain

Zhang and
Klabjan
(2017)

Multi-commodity network flow
problem

Guided diving heuristic Variable
rolling horizon
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• To minimize the deviation from the planned assignment. This category

includes objectives such as minimizing the number of gate changes or de-

layed flights, expressed as a function of the number of passengers, delay

duration (for temporal disruption), and the distance between scheduled and

reassigned gate (for spatial disruption).

• To adjust the assignment such that passenger inconvenience and delay prop-

agation is minimized. This category includes the minimization of walking

distance for connecting passengers whose flights undergo gate changes.

B. Flight Vs. Connection. MOEs may refer to successful or failed individual

flights or flight connections. A flight assignment is considered successful when,

in the final solution, the gate and time window of the flight have been deter-

mined. In most cases, a solution is considered feasible when all flights have

been assigned to gates. However, some approaches (e.g., Zhang and Klabjan

(2017)) allow ungated flights, which are assigned to the apron. Regarding

transfers, a connection is successful when there exists adequate time between

the departing and the arriving flight, while it fails if the available time is less

than the required time, or if either of the connecting flights is canceled. Based

on this classification, we identify four types of MOEs:

(a) MOEs that depend on successful flight assignments: They express the

cost of assigning a flight to a specific gate and time window.

(b) MOEs that depend on failed flight assignments: They express the cost of

failing to produce a gate assignment for a flight.
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(c) MOEs that depend on successful flight connections: They express the

combined cost of assigning a pair of connecting flights to specific gates

and time windows.

(d) MOEs that depend on failed flight connections: They express the cost of

misconnections (failed connections).

This classification is important from a methodological perspective. In assignment-

based formulations, types (a)-(b) and (c)-(d) correspond to the cost coeffi-

cients of the assignment variables and the quadratic terms respectively; in

network flow-based formulations, types (a)-(b) and (c)-(d) correspond to the

arc weights in the flight assignment and passenger connection network, respec-

tively.

C. Weighting Factors. The impact of disruptions can be quantified based on

(a) the number and type of passengers it affects, as well as (b) the temporal

and spatial deviation from the scheduled assignment:

(a) Target passenger group: The decision maker may choose to minimize

the impact of disruptions on priority passengers, i.e., business and first-

class passengers although this approach is more common in planned gate

assignment approaches.

(b) Time and space: Time and space express the magnitude of the difference

between the scheduled assignment and the reassignment. For example,
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moving a flight to a gate located next to the scheduled one is less disrup-

tive for the schedule than relocating it to a different concourse.

Table 2.3 summarizes the MOEs used in the literature, based on the relevant studies

where they can be found, as well as based on their purpose, while Table 2.4 presents

their classification based on the “flight Vs. connection” criterion, as well as based

on their weighting factors.

Table 2.3: Classification of the Measures of Effectiveness Based on Studies and
Purpose

MOE Study Purpose
Delay Time Gu and Chung (1999);

Zhang and Klabjan
(2017)

Deviation

Distance between original
and reassigned gates

Gu and Chung (1999) Inconvenience and Prop-
agation

Number of Gate Changes Dorndorf et al. (2017);
Wang et al. (2013); Yan
et al. (2009); Zhang and
Klabjan (2017)

Deviation

Total Time Inconsistency Tang et al. (2010) Deviation
Total Space Inconsis-
tency

Tang et al. (2010) Deviation

Apron Disturbances Wang et al. (2013) Deviation
Walking Distance of Con-
necting Passengers

Maharjan and Matis
(2011); Yu and Lau
(2015)

Inconvenience and Prop-
agation

Number of passengers
who miss their connec-
tion

Yu and Lau (2015) Inconvenience and Prop-
agation

Number of missed con-
nections

Zhang and Klabjan
(2017)

Inconvenience and Prop-
agation
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2.3.2 Mathematical Formulation

From a mathematical perspective, the gate reassignment problem is quite sim-

ilar to its parent problem, GAP. Therefore, the alternative formulation types used

for gate reassignment are the same as the ones used in GAP, which were presented

in section 2.3.1.3. Overall, the gate reassignment problem can be formulated:

• As an assignment model with side constraints (Maharjan and Matis, 2011; Tang

et al., 2010; Wang et al., 2013; Yan et al., 2011; Yu and Lau, 2015).

• As a network flow problem (Yu and Lau, 2015; Zhang and Klabjan, 2017).

• As a clique partitioning problem (CPP) (Dorndorf et al., 2017).

However, few studies present exact mathematical formulations for modeling passen-

ger flows between gates. This aspect of the solution has either been overlooked in

the literature or handled indirectly. The main reason is that modeling passenger

connections increases significantly the size of the problem and therefore the required

computational time. The problem is more evident in cases where the operator de-

termines not only the gate of each flight, but also the time window during which

a flight occupies a gate. In this dissertation, we will focus on the assignment and

network flow formulations, which are the most common ones.

2.3.2.1 Gate Reassignment as an Assignment Model

Formulating the problem as an assignment model with side constraints is one

of the most common approaches not only to the planned gate assignment, but to the
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Table 2.4: Classification of the Measures of Effectiveness Based on “Flight Vs.
Connection” and Weighting Factors

MOE Flight Vs.
Connection

Weighting Factors

Passengers /
Distance /

Time

Target
Passengers

Spatial /
Temporal

Delay Time Successful
Flight

Time All Temporal

Distance
between

original and
reassigned

gates

Successful Flight Distance All Spatial

Number of
Gate Changes

Successful Flight None All Spatial

Total Time
Inconsistency

Successful
Flight

Time All Temporal

Total Space
Inconsistency

Successful
Flight

Distance All Spatial

Apron
Disturbances

Successful
Flight

None All Spatial

Walking
Distance of
Connecting
Passengers

Successful
Connection

Passengers Those with
wrong gate
number on

boarding pass

Spatial

Number of
passengers who

miss their
connection

Passengers All Temporal

Number of
missed

connections

Failed
Connection

None All Temporal and
Spatial
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gate reassignment problem as well. Tang et al. (2010),Maharjan and Matis (2011),

Yan et al. (2011), Wang et al. (2013), and Yu and Lau (2015) are typical examples

of studies of this category.

However, the concept of passenger connections has not been adequately ad-

dressed in assignment formulations. The main reason behind the lack of such studies

is the increase in the size of the problem due to the introduction of quadratic con-

straints. To explain in more detail the concept of assignment formulation combined

with passenger flows, we will briefly introduce the notation and the basic variable

definitions of a typical assignment problem.

In an assignment problem, one deals with (at least) two sets of elements, I

and J , where i ∈ I represent tasks that have to be completed, and j ∈ J represent

agents, employees, or machines, where the tasks have to be assigned. In a typical

assignment formulation, the main decision variable is binary variable Xij, such that:

Xij =


1, if i ∈ I is assigned to j ∈ J

0, otherwise

(2.1)

Each potential assignment of i to j is associated with a cost, corresponding to the

coefficient Cij of variable Xij in the objective function. The objective of the problem

is to find the assignment which minimizes the total cost
∑

i∈I
∑

j∈J CijXij, such

that all tasks are assigned to some agent (
∑

j∈J Xij = 1, i ∈ I). The optimization

is usually subject to a set of side constraints: For example, in a machine scheduling
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problem, such constraints prevent the use of a machine for two or more tasks at the

same time.

In the gate assignment (or reassignment) problem, an assignment formulation

can be built based on the representation of flights as tasks i ∈ I and of gates

as machines, or agents, j ∈ J . The flight constraint requires that every flight is

assigned to one (and only one) gate, while, similar to a parallel machine scheduling

problem, the gate constraint prevents the occupancy of a gate by two or more flights

concurrently.

However, when we consider passenger connections, we examine flights, and

their respective assignments, in pairs: In this case, we deal with a modified version

of the Quadratic Assignment Problem (QAP). Introduced by Koopmans and Beck-

mann (1957), the objective of QAP is to minimize the total assignment cost where

the assignment cost of a pair of facilities j, j′ depends on the flow, but also on the

distance between them. In the original form of QAP, the number of locations is

equal to the number of facilities and the problem is formulated as follows:

Sets:

N = {1, 2, . . . , n}: Set of flights.

Sn = φ : N → N : Set of permutations.

G: Set of facilities.

T : Set of passenger connections.

Parameters:

F = (fij): A n · n matrix, where fij is the flow from facility i to facility j.

D = (dij): A n · n matrix, where dij is the distance from facility i to facility j.
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Objective Function:

Minimize
n∑
i=1

n∑
j=1

fijdφ(i)φ(j) (2.2)

When the problem was first proposed, all candidate locations where feasible for all

facilities, so every permutation represented a feasible solution. Of course, there are

significantly more constraints in a gate reassignment problem than in the traditional

QAP. However, the common element between the two problems is the calculation

of cost as a function of both location and flows, when passenger connections are

considered. De Neufville and Odoni (2003) analyze the movement of passengers

using two origin-destination matrices: The impedance matrix and the flow matrix.

The impedance matrix D defines the level of difficulty in the movement of

passengers between two locations in the airport. The impedance depends on the

physical characteristics of the building and can be expressed as walking distance

but it can also take into account the existence of transporters, people movers, or

moving walkways, which in turn affect passenger walking time. The flow matrix

F determines the passenger volume moving between every OD pair and therefore

captures the number of transferring passengers as well.

The entrywise product of the flow and the impedance matrix is the passenger-

impedance matrix, where each element Fij · Dij corresponds to the impedance of

moving between an origin i and a destination j, weighted by the number of passen-

gers who move from i to j. Among the measures of effectiveness analyzed in Table

2.3, total walking distance is such an impedance measure.
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Let us now explain how the connection of passenger impedance to the quadratic

assignment formulation of our problem. Using the decision variable Xij defined at

the beginning of this section, we also introduce the following notation:

Nii′ : Flow (number of passengers) between flights i, i′.

Djj′ : Impedance (e.g. distance or time) between gates j, j′.

The total impedance Cii′ of connecting passengers from i to i′, as a function of the

main decision variables, can be expressed as:

Cii′ = Nii′

∑
j

∑
j′

Djj′(Xij ·Xi′j′) (2.3)

and the respective total cost TC for all transfers (i, i′) ∈ T , as:

TC =
∑

(i,i′)∈T

Nii′

∑
j

∑
j′

Djj′(Xij ·Xi′j′) (2.4)

As can be seen, the total passenger impedance and, respectively, the total connection

cost, depends on the product of decision variables Xij and Xi′j′ , which, from the

perspective of the mathematical formulation, implies that the assignment problem

is now quadratic. In the literature, a study that models passenger flows directly is

the one by Maharjan and Matis (2011), who develop a quadratic model to minimize

the total walking distance of originating and connecting passengers whose boarding

passes were issued prior to gate changes.

Since the decision variables are binary, linearizing the quadratic problem is

straightforward: We simply define the product of every pair of variables Xij, Xi′j′
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as a new decision variable Ziji′j′ :

Ziji′j′ = Xij ·Xi′j′ (2.5)

such that

Ziji′j′ ≤ Xij (2.6)

Ziji′j′ ≤ Xi′j′ (2.7)

Ziji′j′ ≥ Xij +Xi′j′ − 1 (2.8)

Linearizing the problem allows us to use an LP solver to find the optimal

solution. However, at the same time, the introduction of the new variables and the

linearization constraints also makes the problem intractably large. The additional

computational challenges conflict with the requirement for fast solution procedures

in real-time assignment and are exaggerated for formulations that rely on multi-

indexed decision variables.

In this dissertation, our decisions include not only the gate to which every

flight is assigned, but also the exact time when the flight starts to occupy the gate.

We therefore adopt a time-index formulation, with our main decision variable Xijk,

such that

Xijk =


1, if gate i is assigned to gate j and time window k

0, otherwise

(2.9)
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Therefore, the quadratic decision variables are now defined as

Zijki′j′k = Xijk ·Xi′j′k′ (2.10)

while the respective linearizing constraints are modified accordingly

Zijki′j′k ≤ Xijk (2.11)

Zijki′j′k ≤ Xi′j′k′ (2.12)

Zijki′j′k ≥ Xij +Xi′j′k′ − 1 (2.13)

Inevitably, the 3-index formulation results in an even larger number of variables

and respective constraints than the 2-index formulation. A detailed estimation

of upper bounds on the number of variables and constraints for the time-indexed

quadratic formulation, as well as for different versions of the assignment formulation,

follows in Chapter 4. In summary, the multidimensional assignment formulation of

the gate reassignment problem is straightforward in its reasoning, but results in a

large increase in the size of the problem.

2.3.2.2 Gate Reassignment as a Network Flow Problem

The second most common formulation of the gate reassignment problem relies

on the use of network flows. In a typical network flow representation, one network

is created for each gate, with nodes corresponding to time windows. A feasible flow

corresponds to a sequence of flights occupying the gate throughout the planning
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horizon: Starting from the source, the order of the incident nodes of arcs with posi-

tive flow corresponds to the sequence of flights assigned to the gate, as well as their

respective time windows. The problem is then solved as a minimum cost network

flow problem. Examples of studies that rely on network flows for the solution rep-

resentation are the ones by Yan and Tang (2007), Yan et al. (2009), Yu and Lau

(2015), and Zhang and Klabjan (2017).

However, similarly to the case of the binary assignment formulation (2.3.2.1),

the multi-commodity network flow formulations also require extensions to be able

to handle passenger connections. So far, Yu and Lau (2015) and Zhang and Klabjan

(2017) are the only studies in the literature that consider passenger connections in

multi-commodity network flow formulations.

On the one hand, Yu and Lau (2015) minimize the total assignment cost

and maximize the number of passengers who miss their connecting flight. Their

formulation relies on a single multi-commodity network for the whole problem. The

planning horizon is divided in time windows. Each node of the network corresponds

to the beginning of a time window, while every arc corresponds to a single flight.

However, each flight is associated with more than one arcs, with different starting

and/or ending nodes. A positive flow in the network indicates the sequence of flights

occupying every gate. A set of flow conservation constraints ensures the feasibility

of the assignment for each gate, while a separate set of constraints ensures that

every flight is assigned to one and only one gate.

On the other hand, Zhang and Klabjan (2017) build an assignment network for

each gate, and a passenger network for each connection. Each network is associated
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with its own set of variables and constraints, while an additional set of constraints

establishes the relationship between the two networks. Among the main innovations

of this study are a) the introduction of passenger connection networks, and b) the

use of gate cliques, i.e., clusters of neighboring gates such that the distance between

any two gates is defined uniquely by the distance of the cliques where the gates

belong to.

The assignment network is very similar to the one by Yu and Lau (2015),

but in this case each gate has its own network, while feasibility is guaranteed by

using flow conservation constraints for each network. For passenger connections,

the authors create one network for each transfer. The nodes in each transfer can

be divided in two sets: The nodes on the left side of the graph refer to the arriving

(inbound) flight of the connection, while the nodes on the right side of the graph

refer to the departing (outbound) flight of the connection. Each node corresponds to

a unique combination of clique and time window where the respective flight can be

assigned to. A feasible flow in this network starts from the source, moves to a node

corresponding to the arriving flight, connects this node with a node corresponding

to the departing flight, and moves to the sink. A cycle arc is also added to ensure

flow conservation.

2.3.2.3 Gate Reassignment as a Clique Partitioning Problem

A more recent approach by Dorndorf et al. (2016) uses a clique partitioning

problem formulation. In an undirected graph, a clique is a subset of the vertices
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which are all pairwise adjacent. Consequently, when the graph is complete, every

subset of its vertices is a clique. For a complete and weighted graph, the clique

partitioning problem is to “partition the vertices into cliques such that the sum of

all edge weights within all cliques is maximized” (Dorndorf et al., 2016).

In the problem representation, each node represents either a flight activity or

a gate. A flight activity i is assigned to a gate k if nodes j and k belong to the same

clique. If there is a flight activity that does not belong to the same clique as any

gate, then the activity is assumed to be assigned to apron (“dummy gate”). The

objective of the problem is to maximize the total flight-gate preference score, thus

the weights of the edges are selected so that they reflect the assignment feasibility

and the objective function. The weight of the edges which connect vertices that

must not be in the same clique is equal to −∞. There are three types of vertex

pairs that cannot be assigned to the same clique:

• Pairs of gate vertices.

• Pairs of activity vertices which overlap in time.

• A flight activity vertex with any gate vertex if the flight is incompatible with the

gate.

The weight of every other edge is equal to the respective weighted preference value:

For a pair of activity vertices, this reflects the cost of towing operations, expected

overlaps, and shadow restrictions, while for a gate and an activity pair, it reflects

the activity-gate preference score.
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2.3.3 Solution Approaches

Using the same criteria as in 2.3.1.3, we can classify the solution approaches

to the gate reassignment problem as exact methods, heuristics approaches, and

metaheuristics.

2.3.3.1 Exact Methods

The computational power of modern commercial solvers has greatly facilitated

the solution of integer (IP) and mixed integer (MIP) programming models using

traditional MIP techniques, such as branch and bound. The solution procedure

is facilitated by a number of computational procedures which most MIP solvers

execute by default. Such procedures include presolving, cutting planes generation,

and heuristic solution search. These properties of MIP solvers make them powerful

tools for solving large problems to optimality in a few minutes or even seconds,

depending on the problem size and the strength of its mathematical formulation.

However, this does not mean that they are always fast enough so as to produce

solutions within only a few minutes, as is required in gate reassignment. Apart from

that, the user needs to provide the MIP solver with a strong problem formulation.

As will be shown in Chapter 4, the time required to solve large instances of the gate

reassignment problem can exceed the acceptable time limits, while the problem

formulation can make a tremendous difference in the resulting running time.

When passenger transfers are not considered, the gate reassignment problem

can be solved fast with exact methods, both for the assignment formulation (Tang
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et al., 2010; Yan et al., 2011) and for the network flow formulation. There are also

cases (Maharjan and Matis, 2011; Yan et al., 2009) that consider passenger transfers

and use exact methods (which are not explicitly specified) to solve an instance of the

problem to optimality within a few seconds. However, in these studies, the decision

variables include only the gate where each flight is allocated, and not the respective

time window.

2.3.3.2 Heuristics

For large and complicated problems, for which solutions are required within a

limited amount of time (as in the case of real-time assignment), the use of heuristic

techniques might be the only viable solution. As a result, many researchers have

developed heuristics to generate near-optimal solutions fast and effectively.

Yan and Tang (2007) developed a heuristic method and embedded it in a so-

lution framework to minimize the impact of flight delays under uncertainty. The

framework consists of three main components: A stochastic flight-gate assignment

model, which corresponds to the planning stage, a reassignment model, which corre-

sponds to the real-time (reassignment) stage, and two penalty adjustment methods.

In the planning stage, a planned assignment schedule is obtained based on a number

of randomly generated delay scenarios to capture the stochastic nature of delays.

In the real-time stage, a different reassignment schedule is generated for every sce-

nario, based on a specific rule process. Therefore, the reassignment is not formulated

mathematically, but is performed based on a set of flow chart rules which determine
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which aircraft should be held, or assigned to a different gates, so that the feasibility

of the original schedule is restored. Then, a penalty adjustment method is called,

which penalizes the generated recovery schedules according to constraint violation

(e.g., overlapping flights in the same gate). Using the newly adjusted penalty val-

ues, the planning stage model is solved again, and the procedure continues until a

stopping criterion is met.

Yu and Lau (2015) use a MIP heuristic to solve the gate reassignment problem

based on passenger connections. Their main idea is to divide passenger connections

in two sets of predetermined size: A hard set, which contains all transfers that are

not allowed to be missed in the final solution, and a soft set, with the transfers that

are allowed to be missed, under some objective function penalty. First, the transfers

are sorted by deceasing number of connecting passengers. Then, a predetermined

number of transfers is moved to the hard set, with the selection probability increasing

with the number of passengers, and the new problem is solved to optimality using

CPLEX.

Zhang and Klabjan (2017), who, like Yu and Lau (2015) also use a network

flow formulation to optimize for passenger connections, developed two MIP heuristic

approaches, namely a guided diving heuristic and variable rolling horizon heuristic.

In the diving heuristic, the aircraft are first sorted by increasing arrival time.

Then, the linear relaxation is solved. If the value of the flow in a flight arc is equal to

1, the flight is automatically fixed to the respective gate clique. A limited number

of flights can also be fixed to gate cliques even if the resulting decision variables

receive fractional values, based on the highest cumulative fractional values. When
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the maximum number of aircraft per iteration is fixed, the LP relaxation is solved

again and the procedure is repeated. After all aircraft have been fixed to cliques,

the MIP solver is called to solve a restricted version of the original problem.

The variable rolling horizon algorithm uses the guided diving heuristic to solve

the problem for long reassignment windows. The reassignment window is divided in

several intervals so that the passenger connections are uniformly distributed among

them. Then, a subproblem is solved for each interval, using the diving heuristic

described before.

Dorndorf et al. (2017), who used a clique partitioning problem formulation,

applied an ejection chain algorithm. The algorithm divides the set of edges into

clusters. The purpose of the algorithm is to identify the sequence (“chain”) of at

most n moves which results in the best objective function score. A move constitutes

in moving an activity vertex from one cluster to another. In every step, the move

which results in a feasible solution with the greatest improvement in the objective

function is chosen, while the respective vertex is marked as tabu and the clusters

are updated. At the end of the procedure, the value r ∈ {1, . . . , n} corresponding

to a chain of r moves is selected if it resulted in the maximum objective value found

so far. The respective solutions is marked as the new, improved solution, and the

procedure starts from the beginning. The recovery strategy proposed by the authors

also involved the manual resolution of conflicts in cases of infeasibility.
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2.3.3.3 Metaheuristics

Thanks to advantages like their “black box” applicability and their ability to

perform global search by escaping local optima, metaheuristics have been adapted

by researchers to solve different versions of the gate reassignment problem.

One of the earliest studies of this kind is by Gu and Chung (1999), who adapted

a genetic algorithm (GA) to minimize the total spatial and temporal deviation be-

tween the scheduled assignment and the reassignment. They adopt a simple solution

representation, with every solution represented as a linear chromosome, such that

the value of the gene in the nth position corresponds to the gate to which flight

n is assigned. The fitness value of each individual is a convex combination of two

normalized function values, one for temporal deviation and one for spatial deviation.

The initialization of a feasible solution is followed by the common genetic algorithm

operators, i.e. selection, crossover, and mutation. In the selection procedure, indi-

viduals with higher fitness values respectively have a larger probability to survive

and reproduce. The crossover procedure is linear: For a pair of selected parents, the

chromosomes are split in a specific location (“crossover point”) and their parts are

exchanged. In mutation, the value of each gene is changed with a given probability.

Infeasible individuals are discarded and replaced with feasible ones. The procedure

stops when a termination criterion (number of generations or fitness threshold) is

satisfied.

More recently, Wang et al. (2013) adapted Ant Colony Optimization (ACO)

to solve the problem of real time gate assignment in a hub airport. Based on the
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fact that airport managers continuously receive new information about delays, they

classify the flights as “certain” or “uncertain”. A flight is “certain” if it is expected

to arrive or depart in the near future, at some time close to the time of the decision

making. On the contrary, if the scheduled time of the flight is further away in the

future, the flight is treated as “uncertain”. The decision maker has to determine

the gate where each flight, either certain or uncertain, will be assigned; however,

for uncertain flights, the assignment time is also a decision variable. In the ACO

adaptation, each ant corresponds to a feasible solution. The ant first traverses the 2-

dimensional solution space of certain flights and then the three-dimensional solution

space of uncertain flights. While traversing the solution space, the ant consecutively

adds nodes to the solution under construction, where each node corresponds to the

assignment (i.e., a gate for certain flights, or a combination of gate and time for

uncertain flights). The node selection is based on the pheromone concentration of

the candidate nodes, as well as on the heuristic information of the nodes that follow.

At the end of each iteration, the pheromone information is updated based on the

fitness function of the new solution. The procedure is iterated until a predetermined

number of iterations is completed, i.e., until all ants have traversed the solution

space.

2.4 Conclusions: From state-of-art to this dissertation

As explained in the introduction (Chapter 1), there exist rather few studies on

the gate reassignment problem, compared to the planned assignment “parent” prob-
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lem. Even fewer of them (Maharjan and Matis, 2011; Yu and Lau, 2015; Zhang and

Klabjan, 2017), focus on the optimization of passenger transfers. After reviewing

the literature, it is clear that there is a lack of studies which incorporate passenger

connections in a realistic way.

Although the literature on gate reassignment is not vast, we observe that

studies present a large variety regarding the objective functions and constraints

which are used across the different studies. To understand the problem in more

depth, it is essential to study the currently applied objectives from a practical and

methodological point of view and also examine how the problem is affected by the

inclusion of objectives that refer to passenger connections (Chapter 3).

Another area of focus of this dissertation is the mathematical formulation of

the gate reassignment problem, when passenger connections are considered. We will

therefore study existing formulations, compare their performance, and incorporate

state-of-art knowledge about the parent problem GAP to improve the computational

efficiency of the mathematical formulation (Chapter 4).

After we have established an efficient problem formulation, we will proceed to

the adaptation of heuristic and metaheuristic techniques. As can be seen, current

metaheuristic approaches do not take advantage of the MIP formulation of the prob-

lem. In this study, we will explore the use of modern metaheuristic techniques, such

as Variable Neighborhood Search, which combine the computational capabilities of

an MIP solver with the exploration abilities of metaheuristics (Chapter 5).
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Chapter 3

A Novel Multidimensional Assignment
Model for Gate Reassignment With

Passenger Connections

Chapter Overview

In this chapter, we introduce a multidimensional assignment model for optimizing

flight-to-gate reassignment considering transfer passengers. The proposed binary

model is the first multidimensional assignment model in the literature that uses gate

location and the resulting required connection time to assess the success of passenger

transfers. We show that the model is easily generalizable, since it can be optimized

for various objective functions and can also be extended to consider apron capacity

and flight cancellations. After formulating the model, we review the measures of

effectiveness used in current gate reassignment approaches. Afterwards, we perform

a set of preliminary experiments to demonstrate the main features of the model

and verify its sensitivity to input changes. Then, we apply it in a real case study,
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where we examine the interaction of measures of effectiveness and investigate the

impact of our proposed way of modeling missed connections on the optimal solution.

Our results demonstrate the necessity of considering passenger connections in the

optimization procedure since they contribute significantly to the total solution cost.

We also show that, except for extreme cases (negligible disruptions or high delays

within the airport), considering gate location yields different results than simply

assuming that a fixed time threshold is sufficient for all connections.

Keywords: Gate reassignment; passenger connections; measures of effectiveness;

integer programming

3.1 Introduction

As explained in Chapter 1, transfer passengers often comprise a large percent-

age of airport users and generally have different needs compared to passengers who

start or end their trip at the airport (De Neufville and Odoni, 2003). Since failed

passenger connections result in high costs for airports and airlines, passenger con-

nections affect all stages of decision making. Gate assignment is a typical operation

that affects the level of service provided to transfer passengers. In this context, Ma-

harjan and Matis (2012) propose a GAP model that minimizes passenger discomfort

for rushed connections. Also, Narciso and Piera (2015) develop a GAP model where

the distances between terminals are critical for transfer connectivity when inbound

flights are late.
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However, the only studies that consider missed connections in the recovery

phase of gate assignment are the ones by Yu and Lau (2015) and Zhang and Klabjan

(2017). On the one hand, Yu and Lau (2015) assume that, as long as a predetermined

time threshold exists between two connecting flights, the connection will be made,

regardless of the location of gates. For the rest of this paper, we will refer to this

assumption as “the simple assumption”. On the other hand, the multi-commodity

network flow model by Zhang and Klabjan (2017) takes gate location into account,

but does not quantify the required connection time between gates and cannot be

generalized for cases where the cost of allowing a connection is higher than the cost of

missing it. Also, the model is solved with heuristic methods because of the problem

size, while our model is solved to optimality using branch-and-cut procedures for

small and medium-size cases.

3.1.1 Contributions of This Study

Motivated by the lack of studies that incorporate missed connections in gate

reassignment in what we consider to be a realistic way, as well as by the variation

in the MOEs used in current literature (Chapter 2), we examine the problem of

flight-to-gate reassignment from two perspectives:

First, we develop the first gate reassignment model in the literature which

combines both of the following properties: a) It is formulated as an assignment

problem, where flights are the agents that undertake specific “tasks”, i.e., combi-

nations of a gate and a time window. b) It considers distances between gates and
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respective required connection times when determining whether a connection will

be missed. Furthermore, the proposed model can be extended to account for apron

assignment and flight cancellations. Contrary to current studies (Wang et al., 2013;

Zhang and Klabjan, 2017) which assume unlimited apron capacity, our approach

considers scheduled apron occupancy (section 3.3.2.2) and can be extended to in-

clude cancellation decisions (section 3.3.2.1).

Second, we use the proposed model to analyze the different optimization ob-

jectives considered in the gate reassignment literature. In particular, we examine

how including passenger connections affects the quality of the optimal solution. We

also show how MOEs interact with each other and test their ability to replicate

actual delay cost. To quantify cost accurately, we use official guidelines and existing

studies that consider cost aspects such as the piecewise linearity of the cost-delay

function, or the impact of alternative flight availability on passenger compensation.

In the existing literature, accurate cost estimation has either been completely ig-

nored or only included in approximate solution approaches. Our model allows us to

switch between different objectives by adjusting the cost coefficients of the objective

function terms.

The generalized model and the analysis presented in this chapter have been

accepted for publication in Pternea and Haghani (2019).

The rest of the chapter is structured as follows: In section 3.2, we explain

the impact of passenger connections on decision making. In section 3.3, we present

the mathematical formulation of the model. The design and results of our experi-
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ments are discussed in section 3.5. Finally, in section 3.6, we summarize our main

conclusions and propose directions for future research.

3.2 Missed Connections

As explained in Chapter 1, our analysis is based on the idea that treating the

potential success or failure of a transfer as a function of both the required and the

available connection time is more realistic than simply assuming that a connection

will be successful as long as the available time between the connecting flights satisfies

a predetermined threshold.

3.2.1 Why Required Connection Time matters

While in planned assignment scheduled transfers satisfy a minimum connection

time, the available connection time in case of schedule disruptions might not be

sufficient for transfer passengers. The problem is more eminent in large hub airports,

as in the case of European hubs serving connecting passengers who travel from all

across Europe to a US destination.

In general, scheduled connections served by the same airline (or airlines of

the same alliance) take place in the same terminal, since airline-dedicated facilities

facilitate intra-line connections (de Barros et al., 2007; Phillips, 1987; Wu and Lee,

2014). However, this is not always the case: First, even airlines of the same alliance

might be located in different terminals. Second, some terminals might be dedicated

to specific flight categories, regardless of the operating airline (e.g., JFK’s Terminal 4
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serves international flights (John F. Kennedy International Airport official website,

2018)). Third, in the case of self-transfers, where the connecting flights do not

belong to the same alliance, passengers have to walk between terminals. Especially

when the airport consists of multiple terminals, the time required to move between

them is far from negligible, as it depends on the available transportation modes and

the existence of moving walkways, elevators, etc. Therefore, when an inbound flight

is delayed, and the distance between its gate and the gate of the departing flight is

large, transfer passengers are at risk of missing their connecting flight.

3.2.2 Estimation of Required Connection Time

Since the goal of our formulation is to incorporate the concept of passenger

connections in the most realistic way possible, we need to estimate the required

connection time in detail. The required connection time consists of two parts:

a) The time for moving between the two gates by walking and using the available

airport transportation facilities, such as people movers and moving walkways,

and

b) The time spent in mandatory procedures.

The time required for passengers to move between gates depends on the dis-

tance between them, the walking speed within the terminal, as well as on the ex-

istence of means that assist passenger mobility, like moving walkways. On the one

hand, connection time depends largely on the design of the airport; De Neufville

and Odoni (2003) identify the percentage of connecting passengers as the most im-
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portant parameter affecting the selection of terminal layout. For example, midfield

concourses, as in Chicago/O’Hare and Munich, facilitate passenger connections, in

contrast to linear buildings with one airside, or decentralized buildings, as in the

cases of Kansas City and Sydney Airport (De Neufville and Odoni, 2003). On the

other hand, moving walkways can facilitate passenger connections. Kusumaningtyas

and Lodewijks (2013) show that accelerating walkways with a minimum length of

120 meters can reduce passenger transport time significantly.

Mandatory procedures depend on the type of connecting flights as well as local

regulations and include disembarking, passport control, security check, potentially

HRF (high-risk flight) screening, and boarding (Kusumaningtyas and Lodewijks,

2013). The procedures themselves, and consecutively their duration, vary according

to the origin and destination of flights, as well as local regulations. For exam-

ple, international transfer passengers with a domestic connection flight may have

to undergo visa and passport control and then present their boarding pass or even

go through check-in if a boarding pass was not issued at the origin airport. For

European airports, the total time required for mandatory procedures ranges from

around 19 minutes (between European flights) to 30 minutes (between interconti-

nental flights) (Ashford, 1988; Competition Commission, 2002a,b; Horstmeier and

de Haan, 2013; IATA, 2004; Kusumaningtyas and Lodewijks, 2013). Meanwhile,

the required Minimum Connecting Times (MCTs) range from 40 minutes (between

European flights) to 50 minutes (from/to/between intercontinental flights). The

duration of mandatory procedures is extended in the case of self-connecting pas-

sengers, who might be required to go through a new check-in and security control
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procedure, unless the airport provides special support for self-connections, as in

Milan/Malpensa and London/Gatwick (Cattaneo et al., 2017).

The success of a connection in our model depends on the comparison between

the required and the available connection time. Let us assume that a pair i and i′

of connecting flights are allocated to gates j and j′, starting at time windows k and

k′, respectively.

The required connection time treqjj′ includes disembarking the aircraft serving

flight i, moving from gate j to gate j′, and boarding flight i′. The connection

time treqjj′ can be calculated using walking speed, moving speed of walkways, and

the estimated duration of mandatory procedures (it can be further differentiated for

every connection, if we assume that the duration of mandatory procedures varies

according to the type of flights). Meanwhile, the available time tavjj′ between the two

flights is calculated as tavjj′ = k′ − k. As a result, a connection (i, i′) will be missed

if and only if

tavjj′ < treqjj′ ⇔ k′ − k < tjj′ (3.1)

Using this condition, we form sets QA
ii′ and QF

ii′ , which contain all combinations

(j, j′, k, k′) resulting in success and failure, respectively, of each connection (i, i′).

Sets QA
ii′ and QF

ii′ are then used to define the quadratic variables in the model

(section 3.3).
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3.3 Problem Formulation

In this section, we present the Integer Programming model for the Gate Re-

assignment Problem.

3.3.1 General Case

Let us define the following notation for the mathematical formulation:
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Sets:

F : Set of flights.

G: Set of gates.

T : Set of passenger connections.

W : Set of time windows.

Gi ⊂ G: Set of gates that are compatible with flight i.

Wi ⊂ W : Set of time windows that are compatible with flight i.

FO
k : Set of flights that may occupy a gate at time window k.

FG
j : Set of flights that can be assigned to gate j.

GN
j : Set of gates adjacent to gate j.

FL: Set of flights which are served by large aircraft.

His: Set of time windows such that, if flight i is assigned to them, it occupies

its gate at time window s.

QA
ii′ : Set of allowed combinations (j, j′, k, k′) for connection (i, i′), i.e. com-

binations that result in connecting passengers catching the outbound

flight.

QF
ii′ : Set of forbidden combinations (j, j′, k, k′) for connection (i, i′), i.e.

combinations that result in connecting passengers missing the out-

bound flight.
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Parameters:

CA
k : Number of aircraft scheduled to occupy the apron at time window k.

CA: Apron capacity.

gA: Apron gate (indicates the assignment of a flight to the apron).

Costs:

CFS
ijk : Cost of assigning flight i to gate j at time window k.

CCS
ijki′j′k′ : Cost of successful passenger connection (i, i′) when assigning flight i to

gate j at time window k and flight i′ to gate j′ at time window k′.

CCF
ii′ : Cost of failed passenger connection (i, i′).

Decision Variables:

Xijk: Binary, equal to 1 if flight i is assigned to gate j at time window k, 0

otherwise.

Zijki′j′k′ : Binary, equal to 1 if flight i is assigned to gate j at time window k,

and flight i′ is assigned to gate j′ at time window k′, where (i, i′) ∈ T .

The problem is formulated as follows:

Minimize:

∑
i∈F

∑
j∈Gi

∑
k∈Wi

CFS
ijkXijk + (3.2)

∑
(i,i′)∈T

∑
(j,j′,k,k′)∈QA

ii′

CCS
ijki′j′k′Zijki′j′k′ + (3.3)

∑
(i,i′)∈T

CCF
ii′

∑
(j,j′,k,k′)∈QF

ii′

Zijki′j′k′ (3.4)
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Subject to:

∑
j∈G

∑
k∈Wi

Xijk = 1, i ∈ F (3.5)

∑
i∈FOk ∩F

G
j

∑
k∈His

Xijk ≤ 1, j ∈ G, s ∈ W (3.6)

Zijki′j′k′ ≤ Xijk, (i, i′) ∈ T, j′ ∈ Gi′ , k ∈ Wi, k
′ ∈ Wi′ (3.7)

Zijki′j′k′ ≤ Xi′j′k′ , (i, i′) ∈ T, j′ ∈ Gi′ , k ∈ Wi, k
′ ∈ Wi′ (3.8)

Zijki′j′k′ ≥ Xijk +Xi′j′k′ − 1, (i, i′) ∈ T, j′ ∈ Gi′ , k ∈ Wi, k
′ ∈ Wi′ (3.9)

Xijk ∈ 0, 1, i ∈ F, j ∈ Gi, k ∈ Wi (3.10)

Expressions 3.2 - 3.4 define the objective function, which consists of three

components, corresponding to MOE types a, c and d, described in section 2.3.1.4.

Expression 3.2 is the cost of flight assignment, expression 3.3 is the cost of successful

passenger connections, and expression 3.4 is the cost of failed passenger connections.

Equation 3.5 (“flight constraint”) forces each flight to be assigned to exactly

one gate and time window. Constraint 3.6 (“gate constraint”) defines that every

gate must be occupied by at most one flight at any given moment.

Constraints 3.7-3.9 linearize the quadratic expression

Zijki′j′k′ = Xijk Xi′j′k′ , (i, i′) ∈ T, j′ ∈ Gi′ , k ∈ Wi, k
′ ∈ Wi′ (3.11)

which is used when transfer passengers are involved in the optimization, i.e., when

terms (3.3) and (3.4) are included in the objective function. Finally, constraint
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3.10 restricts the main decision variable Xijk to be binary. Note that, because

of constraints 3.7-3.9, the respective constraint for Zijki′j′k′ need not be specified

explicitly.

When modeling passenger connections, large problem instances are generally

too time-consuming for real-time optimization regardless of the formulation type.

For real-size case studies and a relatively short reassignment windows, e.g., 2 hours,

our model can optimize exactly within a few seconds, provided that the objective

function does not include both expression 3.4 (missed connection cost) and expres-

sion 3.3 (successful connection cost). In this study, we allow sufficient time for the

problem to be solved exactly in order to study the interaction between the MOEs.

To the best of our knowledge, this is the only study that provides exact solutions for

the gate reassignment problem while including missed connections directly in the

optimization model.

3.3.2 Model Extensions

Constraints 3.5 - 3.10 define the basic formulation of the gate reassignment

problem. However, the problem can be further modified to accommodate additional

decisions, such as flight cancellation, as well as to include additional constraints that

reflect practical and operational restrictions, as will be shown in paragraphs that

follow.
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3.3.2.1 Embedding Unassigned Flights and Cancellation Decisions

We now modify the formulation to handle the case of unassigned flights. The

interpretation of an unassigned flight i differs according to the decision maker: For

example, one might assume that unassigned flights will be handled in a later step

of the optimization, or will be manually assigned to the apron. Alternatively, if

we assume that cancellation decisions can be made at this stage, an unassigned

flight is equivalent to a cancelled flight. Of course, the decision maker may always

relax some constraints, or allow for additional holding time, to generate a feasible

schedule. In this study, we examine the problem from a pure modeling perspective

to demonstrate how the mathematical model can be adapted to account for flight

cancellations. Let CFF
i be the cost of failing to assign flight i. In this case, we add

term 3.12 to the objective function:

∑
i∈F

CFF
i

(
1−

∑
j∈Gi

∑
k∈Wi

Xijk

)
(3.12)

which expresses the total cost of unassigned flights. We also relax flight constraint

(3.5): ∑
j∈G

∑
k∈Wi

Xijk ≤ 1, i ∈ F (3.13)

We should also take into account that, if the unassigned flight participates in connec-

tions, these connections will fail. Therefore, we define an additional binary variable

M c
ii′ , for every connection (i, i′) ∈ T , which is equal to 1 if the connection is missed

because of cancellation of either flight i or i′, and 0 otherwise. This is expressed by
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using the additional constraints (3.14)-(3.15):

M c
ii′ ≥ 1−

∑
j∈Gi

∑
k∈Wi

Xijk, (i, i′) ∈ T (3.14)

M c
ii′ ≥ 1−

∑
j′∈Gi′

∑
k′∈Wi′

Xi′j′k′ , (i, i′) ∈ T (3.15)

We then modify term (3.4) to include missed connections due to flight cancellations:

∑
(i,i′)∈T

CCF
ii′

M c
ii′ +

∑
(j,j′,k,k′)∈QF

ii′

Zijki′j′k′

 (3.16)

3.3.2.2 Apron Capacity

We can extend our model to account for apron occupancy by adding constraint

3.17: ∑
i∈FOk ∩F

G
j

∑
k∈His

XigAk + CA
s ≤ CA, s ∈ W (3.17)

which prevents the number of aircraft occupying the apron from exceeding the avail-

able apron static capacity at any given time.

3.3.2.3 Shadow Constraints

A shadow constraint is added to prevent aircraft with large wing span from

occupying adjacent gates at the same time and can be mathematically expressed as
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follows:

∑
k∈His

Xijk +
∑

k′∈Hi′s

Xi′j′k′ ≤ 1, i ∈ FL, i′ ∈ FL, j ∈ Gi, j
′ ∈ GN

j ∩Gi′ , s ∈ W (3.18)

3.3.2.4 Buffer Constraints

Buffer time constraints impose a minimum time limit on the required idle time

of a gate between two successive flights assignments to the gate. Buffer constraints

are generally used in planned assignment with the purpose to absorb flight delays.

However, for reasons of completeness, we will incorporate them in the formulation

of the gate reassignment problem as well. Let tidle be the minimum required idle

time for every gate, and duri the occupancy duration of flight i ∈ F , i.e., the elapsed

time from the moment the flight arrives at the gate to the moment it leaves the gate.

Mathematically, buffer constraints can be expressed as

∑
i∈FGj

Xijk +
∑
i′∈FGj

Xi′jk′ ≤ 1, j ∈ G, k,∈ W,k′ ∈ W : k′ − k − duri < tidle (3.19)

Alternatively, we can group flights according to their gate occupancy duration duri

and obtain a set D = {D1, D2, . . . Dn} containing the different values of occupancy

duration of the flights under consideration. Then we can write

∑
i∈F :

duri=Dm

Xijk +
∑
i′∈F

∑
t∈[k+Dm,k+Dm+tidle)

∩Wi′

Xi′jt ≤ 1, j ∈ G, k ∈ W,Dm ∈ D (3.20)
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3.3.2.5 Flights Served by the Same Aircraft

In many cases, an aircraft serves an arriving and a subsequent departing flight.

Upon landing, the aircraft is assigned to a gate so that the passengers boarding the

arriving flight can disembark. To avoid towing operations, especially when the

time between the arrival and the departure of the aircraft is relatively short, it is

usually required that the departing flight will occupy the same gate as the arriving

flight. However, when schedule disruptions happen, the decision maker has the

option to assign the two flights to different gates. This is also the case for long

layovers between the two flights, as in the case when the aircraft is scheduled for

maintenance procedures between the two flights. In every case, we have to take

into account that a pair of flights which are served by the same aircraft are not

independent. Therefore, we add a constraint which prevents the temporal overlap

of flight activities corresponding to the same aircraft. Let F PS be the set of all flight

pairs operated by the same aircraft. For every pair of flights i ∈ FA, i′ ∈ FD, such

that (i, i′) ∈ F PS, we create a set of time window pairs W PS(i, i′), such that every

member (k, k′) ∈ W PS(i, i′) indicates that flights i and i′ cannot both be assigned

to time windows k and k′. Mathematically, this can be written as follows:

∑
j∈Gi

Xijk +
∑
j′∈Gi′

Xi′j′k′ ≤ 1, (i, i′) ∈ F PS, (k, k′) ∈ W PS(i, i′). (3.21)
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An equivalent, but stronger formulation of constraint 3.21 can be written as follows:

∑
j∈Gi

Xijk +
∑
j′∈Gi′

∑
k′∈Wi′

(k,k′)∈WPS(i,i′)

Xi′j′k′ ≤ 1, (i, i′) ∈ F PS, k ∈ Wi (3.22)

Because of the gate constraint 3.6, equations 3.22 can be furthered strengthened as:

∑
j∈Gi

Xijk +
∑
j′∈Gi′

∑
k′∈Wi′

(k,k′)∈WPS(i,i′)

Xi′j′k′ +
∑
j∈Gi

∑
w∈Wi:
w>k

Xijk ≤ 1, (i, i′) ∈ F PS, k ∈ Wi

(3.23)

3.3.2.6 Arriving and Departing Passengers

Some measures of effectiveness, such as the total walking distance, are gener-

ally calculated for transfer passengers. However, the decision maker may also choose

to minimize the walking distance for passengers who start or end their journey at

the airport. In this case, the distance between the gate and the entrance/exit of

the airport is used as input. Let N0i (Ni0) the number of passengers who start

(end) their trip at the airport, and d0j (dj0) the distance between the gate and the

entrance (exit) of the airport. The respective flight assignment cost component is a

a type (a) MOE (Chapter 2, section 2.3.1.4) and can be calculated as:

CFS
ijk = N0id0j

∑
m∈Wi

Xijm, i ∈ F, j ∈ Gi, k ∈ Wi (3.24)
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for departing passengers, and as

CFS
ijk = Ni0dj0

∑
m∈Wi

Xijm, i ∈ F, j ∈ Gi, k ∈ Wi (3.25)

for arriving passengers.

3.4 Assumptions and Limitations

As shown in section 3.3, the model presented in this study can be generalized

to accommodate a variety of objective functions and constraints, according to the

priorities of the decision maker. To apply the model, the following assumptions are

made:

First, the model is deterministic: It provides a one-step optimization approach,

which uses the information about delays to generate the cost coefficients, as well as

the problem sets, over which the decision variables are defined. Similarly, informa-

tion regarding the required passenger connection time, which normally fluctuates

during the day, should be fixed to an appropriate value at the time of the optimiza-

tion.

Second, only decisions that are directly related to gate assignment can be

made. The output of the model provides the decision maker with the appropriate

course of action, which primarily consists of gate switching and flight holding. In

practice, however, the eventual connection cost depends not only on gate assignment,

but also on other airport operations, such as runway scheduling and apron bus

scheduling.
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3.5 Experimental Framework

In this section, we implement our model to a set of experimental cases of

various sizes and properties.

3.5.1 Description of Experiments

Our experiments are divided into two main groups, each with a different pur-

pose:

• Preliminary experiments on customized case studies (subsection 3.5.4), which

demonstrate the importance of considering gate location and verify the ability

of the model to replicate the gate reassignment procedure.

• Main experiments on a real-size case study (subsection 3.5.5), which demonstrate

the relationship between the various MOEs used in the literature and actual costs,

as well as the impact of considering the airport layout and connection time.

The experimental procedure was coded in Python 3, while Gurobi© solver

was used for the optimization.

3.5.2 Cost Functions

Overall, we can identify four sources of costs: Delay costs, gate change costs,

missed connection costs, and cancellation costs. Every objective function of the gate

reassignment problem can be captured by one of the expressions 3.2 - 3.4 and 3.12,

provided that the cost coefficients are properly defined and calculated. To determine
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the ability of each MOE to represent the actual cost of schedule disruptions, we need

to express all of their aspects in monetary terms. For our experiments, we rely on

official guidelines and existing literature to generate a realistic cost function that

captures all aspects of solution quality.

3.5.2.1 Delay Costs

As can be seen from the literature review (Chapter 2), many studies focus on

minimizing either additional delay or temporal deviation from the original schedule.

Although this approach seems reasonable, it has two drawbacks. First, it isolates the

gate reassignment procedure from the rest of the recovery management framework,

ignoring critical components like flight connections, or the availability of alternative

departing flights to which misconnected passengers can be rebooked. These com-

ponents contribute to the total cost both directly (passenger compensation) and

indirectly (level of service, passenger goodwill loss). Second, it fails to capture the

nonlinearity of delay cost. In practice, for example, assigning one unit of delay to

each of ten flights is significantly less costly that assigning ten units of delay to a

single flight.

Hansen and Zou (2013) present a piecewise linear relationship between delay

duration and cost. Initially, the cost of delay per passenger can be attributed to

airport services, rebookings, and other operating expenses, and is relatively low.

However, as delay increases, additional expenses (such as handling surcharges or

provision of snacks and meals) arise and the total cost increases. For even longer de-
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lays, passenger and crew accommodation and transportation are required, resulting

in further cost increase. Santos et al. (2017) assumed that a passenger experiencing

1-2 hours of delay receives a compensation of $10, while for delays longer than 8

hours, it costs $250 the airline to provide hotel accommodation and lounge access

to a passenger.

3.5.2.2 Gate Change Costs

Changing the gate of a flight is a source of inconvenience for passengers. Most

studies (2.3.1.4) minimize the number of gate changes or the total space inconsis-

tency. In this study, we adopt the assumptions of Zhang and Klabjan (2017), who

break down gate reassignment cost into two components:

• A fixed component for all gate changes.

• An additional component for departing flights, which depends on the time between

the reassignment decision and the departure of the flight. Zhang and Klabjan

(2017) used a step function of time; in this study, we use a piecewise linear

function (Figure 3.1).

3.5.2.3 Missed Connection Costs

The cost of a failed connection consists of the following components:

• The cost of passenger compensation: When a passenger misses a connecting flight,

he is generally booked on the next available flight to his/her destination. The
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a) Delay Cost ($/passenger) b) Reassignment Cost ($/flight)

t1 t2 t3 t1 t2 t3

c1

c2

c3

Delay Available Time

c1

c2

c3

Figure 3.1: Qualitative form of a) the delay-cost function and b) the departing flight
reassignment component function.

amount of compensation depends on the additional waiting time and may include

hotel accommodation.

• The cost of a missed crew connection: The utilization of a reserve crew increases

the total cost.

3.5.2.4 Cancellation Costs

Under extreme disruption circumstances, an airline might decide to cancel

a flight to avoid delay propagation to subsequent flight legs. Cancellations result

in direct costs for providing passengers with meals, accommodation, and possibly

transportation to their destination, as well as opportunity cost of capital, loss of

potential revenue, and additional cost when there is no available capacity for pas-

senger rebooking (Hansen and Zou, 2013). In this study, we use the values of flight

cancellation costs according to the aircraft type as provided by Eurocontrol (2013).

Specifically, the recommended value is e3,700 ($4,453) for 50-seat, narrow-body air-
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craft, e17,300 ($20,818) for 120-seat, narrow-body aircraft, and e81,000 ($97,474)

for 400-seat, wide-body aircraft. These costs include service recovery costs (pas-

senger compensation), interline costs (rebooking revenue), and loss of future value

(passenger opportunity costs), and are reduced by operational savings (fuel, crew,

on-board supplies). Table 3.1 describes the calculation of cost coefficients for each

of the MOEs used in the experiments.

The delay cost per passenger is a piecewise linear function of delay (section

4.2.1), ranging from $0 to $50 for 0-5 hours, from $50 to $200 for 5-7 hours, and

from $200 to $250 for 7-8 hours of delay. We also used the same value to calculate

passenger missed connection costs, assuming we know in advance the next available

flight where passengers are redirected. Each missed connection was also penalized

with $1000 for crew costs, similarly to the approach by Zhang and Klabjan (2017).

For gate changes, we assumed a basic operational cost of $40 for all flights and an

inconvenience cost for departing passengers which decreases from $380 to $260 for

0-1 hours notification in advance, from $260 to $120 for 1-2 hours, from $160 to

$120 for 2-3 hours, and from $120 to $80 for 4-5 hours. Assignments to the apron

gate were penalized with a $2000 operational cost. Flight cancellation costs were

based on the values recommended by Eurocontrol (2013): e3,700 ($4,366) for 50-

seat, narrow-body aircraft, e17,300 ($20,414) for 120-seat, narrow-body aircraft,

and e81,000 ($95,580) for 400-seat, wide-body aircraft.
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Table 3.1: Calculating Cost Coefficients for Different Objectives

Objective Symbol Cost Coefficient

Number of flights with gate changes OSF CFSijk =

{
1, j 6= gBi ,

0, j = gBi

Number of passengers with gate
changes

OSP CFSijk =

{
Pi, j 6= gBi ,

0, j = gBi

Total distance change from the orig-
inal schedule

OSPD CFSijk =

{
PiLjj′ , j 6= gBi i,

0, j = gBi

Number of flights assigned to re-
mote gates but originally assigned
to contact gates

ORF CFSijk =

{
1, j ∈ GRandj 6= gBi ,

0, j =/∈ GRorj 6= gBi

Number of passengers assigned to
remote gates but originally assigned
to contact gates

ORP CFSijk =

{
Pi, j ∈ GRandj 6= gBi ,

0, j =/∈ GRorj 6= gBi

Number of flights with time changes OTF CFSijk =

{
1, k 6= tBi ,

0, k = tBi
Total time deviation (hours) OTT CFSijk = |k − tBi |
Total time deviation weighted by
passengers (passengers * hours)

OTPT CFSijk = |k − tBi |Pi

Number of canceled flights OCF CFFi = 1
Number of passengers whose flight
is canceled

OCP CFFi = Pi

Total walking distance of connecting
passengers with a gate change

OW CCSijki′j′k′ = Nii′Ljj′

Number of failed connections OMF CCFii′ = 1
Number of passengers who miss
their connection

OMP CCFii′ = Nii′

Monetary cost COST CFSijk , C
FF
i , CCSijki′j′k′ , C

CF
ii′ calculated

based on monetary values.
Pi: Passengers boarding flight i.
Ljj′ : Walking distance between gates j and j′.
Nii′ : Number of connecting passengers from flight i to flight i′.
gBi : Gate where flight i was originally assigned to.
tBi : Time window when flight i becomes available after a disruption.
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3.5.3 Hierarchical Optimization

In experimental sets 2 (section 3.5.4.2), 3 (section 3.5.4.3), and A1 (sec-

tion 3.5.5.5), we apply hierarchical optimization to optimize for multiple objective

functions concurrently. Each of the n objective functions i is assigned a priority

pi ∈ 1, . . . , n such that pi 6= pj ∀ i 6= j, with 1 being the highest priority and n the

lowest. The objectives are then sorted based on decreasing priority. In each step i,

we optimize for objective i such that all constraints hold, and we additionally im-

pose the condition that none of the objectives j with a higher priority than i (j < i)

can receive a worse value than the value it received in step j. Hierarchical opti-

mization helps overcome the problem of selecting appropriate weighting coefficients

when using a weighted sum approach.

3.5.4 Preliminary Experiments: Customized Case Studies

In this section, we demonstrate the modeling capabilities of the proposed for-

mulation using the following experimental sets:

• Experimental Set 1: We show how the consideration of connection times affects

the assessment of missed connections.

• Experimental Set 2: We adopt different measures of effectiveness in the objective

function and show the impact of missed connections on total cost.

• Experimental Set 3: We test the models sensitivity to parameters controlled by

the decision maker.
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• Experimental Set 4: We modify the model to account for flight cancellations.

Each of the case studies used is defined by a unique combination of four components:

Airport, flight schedule, disruption information, and parameters. In more detail:

Airport: Using the number of gates as input, we generate airport terminals

of various shapes and layouts. The gates are divided into groups according to the

type of flights they can accommodate. Except for set 1 (section 3.5.4.1), we assume

a linear terminal with one airside, with gates evenly spaced every 50 meters.

Flight Schedule: The flight schedule contains information about the number

and scheduled arrival/departure time of flights, individual flight properties (e.g.,

arriving or departing, type of aircraft, number of passengers, and gate in the planned

assignment), and scheduled passenger connections.

Disruption: A disruption is defined as a change in the time when a flight

becomes available for gate assignment, compared to the planned schedule. Delay

patterns are generated randomly as follows: First, we distinguish between arriving

and departing flights. Occasionally, an aircraft might serve both an arriving and a

subsequent departing flight. In this case, since the delay of the departing flight de-

pends on the arriving flight, we temporarily set the departing flight aside to handle

it later. We determine the amount of delay of each of the arriving and remaining

departing flights using a statistical distribution with given parameters. Then, we

handle the departing flights which are served by the same aircraft as an arriving

flight. If the arriving flight is not disrupted, the departing one is not disrupted

either. However, if the arriving flight is disrupted, we calculate the available time
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between ta,new (when the arriving flight becomes available) and the planned depar-

ture time td,planned of the departing flight (Dt = td,planned − ta,new). We assume that

a minimum time threshold Dtreq is required between the two flights. If Dt ≥ Dtreq,

the new availability time of the departing flight is the same as before (td,new = td,old).

Otherwise, td,new = ta,new + Dtreq. In this section, we assume a binomial distribu-

tion with disruption probability p and uniformly distributed delay duration between

bounds (lb, ub).

Parameters: Parameters used for data generation and processing can be

divided into the following categories:

• Flight features, which include the ratio of arriving to departing flights, as well

as the percentage of flights per type, aircraft type and associated metrics (seat

capacity, load factor, number of passenger per class). In our experiments, we use

9 aircraft types, while gate occupancy duration is equal to 30 minutes for aircraft

with fewer than 150 seats, and 40 minutes for aircraft with at least 150 seats.

Load factors ranged between 0.5 and 1 for each flight, with connecting passengers

accounting for about 50% of total passengers.

• Tactical parameter values, which are associated with operator strategies, such as

the maximum holding time (40 minutes) or the length of each time window k

(10 minutes). These values are used for creating the sets for the definition of the

model costs, which include all cost components described in section 3.5.2.

88



• External factors, which include all parameters associated with the distributions

of delay generation and duration. In this section, we use p = 0.4, lb = 10 and

ub = 70.

We construct each case study by defining the number of flights and gates and the

planning horizon. We use random number generators to define the flight features,

as well as to generate disruptions. For example, for a given ratio of arriving and

departing flights, each flight is defined as arriving or departing with a fixed prob-

ability. When we develop multiple case studies with the same number of flights,

gates, and hours, we specify a random number generator seed for each of them (i.e.,

the starting number of the random number sequence generated).

3.5.4.1 Experimental Set 1: Considering Connection Time

This set highlights the importance of considering all factors that affect con-

nection time when assessing the success or failure of a transfer (section 3.2.2). We

consider two airports, with the same number of gates but with different layouts.

Airport #1 contains a linear terminal with one airside, while Airport #2 consists

of 4 satellite concourses, uniformly located around a central building, from which

each can be accessed using a moving walkway. We use a common flight schedule in

both cases, including identical passenger connections and schedule disruptions. We

perform gate assignment for two values of passenger processing time tPR., 30 and

70 minutes, using a weighted sum of missed connections (multiplied by a weighting

factor of 1000) and total deviation from the planned assignment as objective. To
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Table 3.2: Connection Metrics for Two Airport Layouts

Airport t̄PR

(minutes)
d̄U

(minutes)
t̄U

(minutes)
t̄W

(minutes)
% Missed
Connec-

tions

1
30

745.9
40.7 38.9 0.0%

70 80.7 79.7 7.8 %

2
30

1232.1
93.8 83.6 0.0%

70 193.8 104.2 21.9%

quantify the connection distance and time, we use a set of descriptive measures,

namely the static mean distance and time (d̄U and t̄U , respectively) which only de-

pend on the layout of the airport, as well as the passenger mean time t̄W , which

is weighted by the number of passengers and therefore depends on gate allocation.

We observe (Table 3.2) that high passenger processing time (70 minutes) results in

7.8% of connections being missed in Airport #1 and 21.9% in Airport #2. The

static mean distance d̄U of Airport #2 is 1.65 times greater than the respective of

Airport #1. As a result, after the reassignment, passenger mean time t̄W is about

twice as large in Airport #2 than in Airport #1 for tPR=30 minutes, and 1.3 times

for tPR=70 minutes. It is worth noting that all missed connections are counted as

successful under the simple assumption.

3.5.4.2 Experimental Set 2: Using Different Objective Functions

In this set, we examine the monetary cost of the optimal solution for different

objective functions. First, we optimize separately for three objectives: number of

passengers with gate changes OSF , number of delayed passengers OTF , and total

cost COST . Then, we calculate the resulting total cost of each solution. These
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experiments use 20 case studies, with 50-80 flights, 22-36 gates, and a horizon of 1-2

hours.

Our findings (Figure 3.2) demonstrate that deviation is not a representative

measure of the actual cost. In fact, using temporal or spatial deviation as the

objective can result in even 8 times higher total cost compared to using the total

cost itself. (The dot and the line inside each box represent the mean and median,

respectively. The same holds for Figures 3.3, 3.4, 3.5, and 3.6).

Objective: 
 Spatial Deviation

Objective: 
 Temporal Deviation

Objective: 
 Total Cost
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Figure 3.2: Total cost for different objective functions.

Afterwards, we perform hierarchical optimization for priority schemes 1-4 (Ta-

ble 3.3), to show that the total cost can be reduced if we consider missed connections

in the objective function. The priority schemes include three objectives: Spatial

deviation (OSPD), temporal deviation (OTPT ), and number of misconnected pas-

sengers (OMP ). Since we are interested in demonstrating the impact of missed

connections, we do not examine all (3! = 6) priority permutations, but only these

where missed connections are given most (1) or least (3) priority. Numbers 1-3 in

Table 3.3 refer to the priority given to the MOE of the respective column in the Pri-
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Table 3.3: Experimental Set 2.

Spatial
Deviation

(OSPD)

Temporal
Deviation

(OTPT )

Passengers with
Missed

Connections
(OMP )

Priority Scheme 1 1 2 3
Priority Scheme 2 2 1 3
Priority Scheme 3 2 3 1
Priority Scheme 4 3 2 1

ority Scheme of the respective row. We generate 18 case studies, with 50-70 flights,

22-32 gates, and a planning horizon of 1-2 hours.

According to the results (Figure 3.3), the lowest cost is achieved for schemes

3 and 4, where we prioritize missed connections OMP (Figure 3.3a). On the other

hand, prioritizing spatial (OSPD) and temporal (OTPT ) disruption yields poor re-

sults in terms of total costs (Figure 3.3a) and missed connections (Figure 3.3b):

Schemes 1 and 2 perform on average 256% and 263% worse, respectively, than

scheme 4.

3.5.4.3 Experimental Set 3: Testing the Decision Maker’s Strategies

In this set, we examine cases with planned schedules of various minimum idle

time requirements and holding time limits. We generate 13 case studies with 30-80

flights, 30-60 gates, and a planning horizon of 2 hours. We optimize hierarchically

for missed passenger connections OMP and total gate changes OSP . Our results

reasonably show that allowing sufficient idle time improves the performance of gate
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Figure 3.3: (a) Total cost ($) for different priority schemes and case studies. (b)
Passengers who miss their connecting flight, for different priority schemes and case
studies.

reassignment. We observe (Figure 3.4) a 32% reduction in the number of required

gate changes for a buffer time of 20 minutes, compared to the case of 0 minutes.

Next, we test the impact of the maximum holding time. We generate 28 cases

of 60-90 flights, 30-45 gates, and a horizon of 2 hours, and optimize hierarchically

for misconnected passengers OMP and gate changes OSP . The results (Figure 3.5a,

b) show that the primary objective OMP is reduced as holding time increases, with

this benefit inducing additional passenger delays (Figure 3.5c). In all cases, there
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Figure 3.4: (a) Total cost ($) for different priority schemes and case studies. (b)
Passengers who miss their connecting flight, for different priority schemes and case
studies.

was no further improvement in the objective for maximum holding time greater than

30 minutes.

3.5.4.4 Experimental Set 4: Including Flight Cancellations

Let us consider an extreme disruption case, where due to an unexpected event

(e.g., a temporary airport closure), flight departures/arrivals are collectively accu-

mulated in specific time windows. We generate six case studies of practically the

same size and different random generator seeds, each consisting of 20 gates serving

64 flights over a 2-hour horizon. In all cases, there exists no feasible solution to the
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reassignment problem since all possible allocation schemes violate gate constraint

(3.6). However, if we assume that flight cancellations are allowed in this level of

decision making, our model can always find a feasible solution. In fact, all six cases

were solved to optimality, each with 2-4 cancelled flights in the optimal solution.

3.5.5 Main Experiments: Real Case Study

To test our model in a real-size problem, we approximate the layout of Athens

International Airport Eleftherios Venizelos (IATA: ATH, ICAO: LGAV), which is

the busiest airport in Greece and served more than 20 million passengers in 2016

(AIA, 2018).

3.5.5.1 Airport Data

The airport consists of a main and a satellite terminal. The main terminal is a

linear building with one airside and two levels, i.e., upper and lower. The upper-level

gates are contact gates where jet bridges are used for boarding the aircraft, while

the lower-level gates are remote gates, involving the transportation of passengers

to the aircraft via apron buses. Gates can further be classified based on whether

they serve Schengen or Out-of-Schengen flights. To estimate the connection times,

we simulate the layout of the airport by approximating the location of the gates,

the entrance, the stairs connecting the two terminal levels, as well as the aircraft

parking spots.

95



3.5.5.2 Flight Data

We use the information provided by the Airport (AIA, 2016) for a 2-hour pe-

riod (12-2 pm) on a particular day of June 2016. A total of 74 flights (40 arriving

and 34 departing) were scheduled to be served, including 25 domestic and 49 inter-

national flights; out of all international flights, 17 (35%) are Schengen flights, while

the remaining 32 (65%) are non-Schengen flights (domestic flights are all Schengen

flights as well).

3.5.5.3 Passenger Data

Due to the lack of publicly available data, the number of passengers boarding

each flight was estimated as a function of a) the aircraft type and b) the region

connected with Athens through each flight. Based on the origins and destinations of

the flights, we assumed a total of nine different aircraft types, with capacity ranging

from 46 seats (mainly for domestic connections with the Greek islands) to 300 seats

(for long-haul flights to US and Canada or medium-haul flights to Qatar and the

United Arab Emirates). Each flight was associated with a load factor according

to its geographical area based on the classification provided by the Association of

European Airlines (2016).

3.5.5.4 Disruptions

Disruptions are generated as described in section 3.5.4. In experimental sets

A1 (section 3.5.5.5) and A2 (section 3.5.5.6), we use a binomial distribution (section
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3.5.4). For set A3, we generate two disruption patterns that will be analyzed in

section 3.5.5.7.

3.5.5.5 Experimental Set A1

This set examines the interaction among four MOEs that are generally used

as objective functions in the existing literature, as well as their impact on total

monetary cost:

• MOE 1: Additional temporal disruption (delay) due to the reassignment, OTPT .

• MOE 2: Total spatial deviation, OSPD.

• MOE 3: Number of passengers who are assigned to remote gates but were assigned

to contact gates before, ORP .

• MOE 4: Total walking distance for connecting passengers with a gate change in

(at least one) flight, OW .

We generate five different experiment groups, each corresponding to a different

disruption scenario. First, we use total cost minimization (COST ) as the objective.

Then, we perform hierarchical optimization, with missed connections OMP as the

objective with the highest priority, and each of the MOEs separately as the second

objective. Finally, we optimize for each of the four MOEs as the only objective.

Figure 3.6 shows the box-and-whisker plots for each of the hierarchical optimization

schemes, while Table 3.4 shows the average value of each MOE for all experiments.

Our main findings can be summarized as follows:
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Table 3.4: Average MOE Values for Different Objective Functions (Hierarchical
Optimization - Priority To Missed Connections.

Measures of effectiveness

MOE1 MOE2 MOE3 MOE4

SECOND
OBJECTIVE

MOE1 59670 6070749 1384 1348659

MOE2 198812 2478 0 132274

MOE3 192305 1859825 0 379947

MOE4 206370 2050869 94 1161

(BEST AVERAGE
- WORST AVERAGE)

WORST AVERAGE
-71.09% -99.96% -100.00% -99.91%

First, minimizing additional delay OTPT (MOE 1) makes the other MOEs

perform poorly. This incompatibility can be explained by the fact that OTPT is a

temporal MOE (see section 1.3.4), while the others are spatial MOEs. On the other

hand, optimizing for total spatial deviation OSPD (MOE 2) achieves a significantly

better balance in the solution in terms of the remaining MOEs, with all of them

assuming their second best value in this case.

Second, single-objective optimization results in significantly higher monetary

cost (between 2 and 30 times, Appendix Table A1) than the optimal, while hi-

erarchical optimization with priority to missed connections reduces the total cost

significantly (up to 13.7 times, as shown in Appendix Table A2) compared to single-

objective optimization. However, the obtained solution is still far from optimal in

terms of monetary cost.
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3.5.5.6 Experimental Set A2

We now investigate the tradeoffs between temporal and spatial disturbances

when used as objectives. Existing literature demonstrates different approaches:

• Gu and Chung (1999) calculate a normalized weighted sum of a time anf a space

component.

• Tang et al. (2010) assume that a gate change equals 30 minutes of temporal

disturbance.

• Yan et al. (2011) and Wang et al. (2013) add time and space inconsistency without

any weighting factor.

• Zhang and Klabjan (2017) assume a cost of $20 /minute of delay and $150 for

reassigning a flight.

As can be seen, there is neither a common ground regarding the ideal way of adding

the two types of disturbances nor a direct physical interpretation of the weighting

coefficients. It was not until recently that monetary values were used in the gate

reassignment problem (Zhang and Klabjan, 2017). In this set, we generate 6 different

disruption scenarios and minimize the weighted sum of the total temporal disruption

(passengers*minutes) and the total spatial disruption (passengers*meters), i.e.

OTPT + weq ∗OSPD. (3.26)
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Our experiments (Figure 3.7) indicate tradeoffs between the two measures for values

of weq between at least 0.02 and at most 1.8. Any values outside these bounds result

in practically the same solution.

3.5.5.7 Experimental Set A3

In this set, we compare the basic assumption of the proposed model, i.e.,

that the success of a connection depends on both the location of the gates and the

available time between connecting flights, with the simple assumption that it only

depends on the available time. We use:

a) Two disruption scenarios. In Scenario 1, delays follow a normal distribution

N(40, 10) for arriving flights and N(0, 5) for departing flights (with the mean

and standard deviation in minutes). Scenario 2 involves small disruptions, with

delays following a Gamma distribution for arriving flights (as in Dorndorf et al.

(2017)) Γ(3, 1) (where 3 and 1 are the shape and scale parameters, respectively),

and a Normal distribution N(10, 102) (with a mean and standard deviation

equal to 10 minutes) for departing flights.

b) Nine combinations of passenger processing time and connection speed between

terminals: We tested three values of passenger processing time tPR (30, 50,

and 70 minutes) and three values of connection speed sb (30, 70, and 140 me-

ters/minute).

c) Six time thresholds. More precisely, each case was optimized seven times with

the objective to minimize missed connections. For the first optimization, we use
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our own assumption, while for the remaining six, we use the simple assumption,

each time with a different threshold. For meaningful and comparable results,

the thresholds T were based on the static connection time, as a function of

passenger processing time and transportation speed. Therefore, we used as

threshold values TV the mean (t̄U), maximum (tUmax), and minimum (tUmin), as

well as the first (QTU
1 ), second (QTU

2 ) (median) and third (QTU
3 ) quantiles of

static connection time.

For the sake of comparability, we only test passenger connections that are feasible for

all models in the planned assignment. In the end, we calculate the percentage ps of

missed connections under the simple assumption, as well as the percentage pp based

on the proposed model. When appropriate, we also show the resulting values of

passenger-weighted distance and time, i.e., mean (d̄W , t̄W ), maximum (dWmax, t
W
max),

as well as the first (QDW
1 , QTW

1 ), second (QDW
2 , QTW

2 ) (median) and third (QDW
3 ,

QTW
3 ) quantiles.

Passenger processing time is a critical component in the proposed model (Ta-

ble 3.5) since an increase in processing time from 30 to 70 minutes increases the

percentage of missed connections (up to 7 times, in scenario 1). Also, the impact

of terminal connectivity is seen in scenario 1: When the connection speed increases,

the percentage of missed connections decreases (from 13% to 12%).

The results also demonstrate a significant difference in the optimal solution

between the simple assumption and our methodology (corresponding to rows with

T = “-” in Tables 3.6 - 3.9). The difference between ps and the respective pp
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ranges between -90% and 675%, and is especially significant for high thresholds

(e.g. tUmax), which overestimate the number of missed connections, and low thresh-

olds (e.g. tUmin), which underestimate it. We also observe (Tables 3.6, 3.7) that

the proposed methodology generally yields smaller values for passenger-weighted

connection metrics, compared to the simple approach. For example, the average

weighted time t̄W is minimum under our methodology in all cases, while quantiles

QTW
1 -QTW

3 are always at most 1 minute higher than their minimum value. The

two methods yield similar results in extreme cases, i.e., either when high connection

times (low speed and high processing times) result in a large percentage of missed

connections (Table 3.8), or when disruptions are negligible (Table 3.9) and con-

sequently almost all connections are made. The only exception is the conservative

approach of a high threshold tUmax in the simple assumption, as in the case of sb = 30

and T = tUmax in Table 3.9.

3.6 Summary, Conclusions, and Future Research

In this chapter, we have developed a new Binary Integer Model for flight-to-

gate reassignment. It is the first multidimensional assignment model that assesses

the success of passenger transfers as a function of gate location and the resulting

required connection time. The model can be optimized for a variety of objectives

since the objective function can be broken down into four components which capture

all possible cost factors associated both with individual flights and with passenger

connections. The formulation was extended to consider flight cancellations and
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Table 3.5: Results of the proposed model.

Scenario tPR sb tW tWmax QTW
1 QTW

2 QTW
3 pp

1

30

30 34.0 40.9 32.4 34.8 36.6 13%

70 33.8 41.2 32.4 33.6 35.7 13%

140 33.6 44.5 31.5 34.6 36.7 12%

50

30 53.4 101.3 51.1 52.8 55.5 67%

70 53.1 76.1 51.1 52.8 55.5 67%

140 54.1 66.0 51.8 53.0 56.1 67%

70

30 77.5 120.7 72.5 74.2 78.2 96%

70 75.1 95.5 72.5 74.2 78.2 96%

140 74.2 86.1 72.5 74.2 78.2 96%

2

30

30 49.7 82.7 32.6 36.0 78.2 0%

70 41.3 56.4 32.6 35.6 52.4 0%

140 37.5 46.9 32.6 35.6 42.9 0%

50

30 54.1 97.6 51.8 53.3 55.0 0%

70 57.8 75.7 51.9 54.6 58.7 0%

140 56.6 66.9 53.1 56.4 62.5 0%

70

30 74.9 118.0 72.1 73.2 75.1 0%

70 78.9 96.8 72.3 75.7 91.7 0%

140 78.4 87.0 72.3 76.4 84.9 0%
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Table 3.6: Distance And Time Metrics for Scenario 1 - Low Processing Time tPR

(30 Minutes).

sb T TV dW tW dWmax t
W
max Q

DW
1 QDW

2 QDW
3 QTW

1 QTW
2 QTW

3 ps pp

30

- - 280 34 764 41 166 336 463 32 35 37 94% 13%

tUmin 30 451 41 1706 82 169 388 567 32 36 38 3% 30%

tUmax 84 366 38 1666 81 101 234 502 31 33 37 100% 66%

tU 48 335 37 1512 79 129 270 447 32 34 36 49% 29%

QTU1 32 433 40 1616 81 134 343 567 32 35 39 19% 25%

QTU2 36 433 40 1616 81 134 343 567 32 35 39 19% 25%

QTU3 78 406 40 1678 81 174 293 567 32 34 38 99% 67%

70

- - 265 34 787 41 165 254 402 32 34 36 93% 13%

tUmin 30 451 37 1706 57 169 388 567 32 36 38 3% 25%

tUmax 58 418 37 1678 57 167 419 611 32 36 39 75% 37%

tU 40 335 35 1512 54 129 270 447 32 34 36 49% 27%

QTU1 32 433 37 1616 55 134 343 567 32 35 39 19% 23%

QTU2 36 433 37 1616 55 134 343 567 32 35 39 19% 23%

QTU3 53 418 37 1678 57 167 419 611 32 36 39 75% 37%

140

- - 283 34 1527 45 105 323 467 32 35 37 93% 12%

tUmin 30 451 36 1706 47 169 388 567 32 36 38 3% 22%

tUmax 49 335 34 1512 44 129 270 447 32 34 36 49% 26%

tU 37 433 35 1616 46 134 343 567 32 35 39 19% 22%

QTU1 32 433 35 1616 46 134 343 567 32 35 39 19% 22%

QTU2 36 433 35 1616 46 134 343 567 32 35 39 19% 22%

QTU3 43 335 34 1512 44 129 270 447 32 34 36 49% 26%
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Table 3.7: Distance And Time Metrics for Scenario 1 - Medium Processing Time
tPR (50 Minutes).

sb T TV dW tW dWmax t
W
max Q

DW
1 QDW

2 QDW
3 QTW

1 QTW
2 QTW

3 ps pp

30

- - 213 53 1054 101 80 195 387 51 53 56 93% 67%

tUmin 50 335 57 1512 99 129 270 447 52 54 56 49% 77%

tUmax 104 366 58 1666 101 101 234 502 51 53 57 100% 97%

tU 68 304 56 1447 102 161 239 417 52 53 56 93% 80%

QTU1 52 418 60 1678 102 167 419 611 52 56 59 75% 81%

QT2 U 56 418 60 1678 102 167 419 611 52 56 59 75% 81%

QTU3 98 366 58 1666 101 101 234 502 51 53 57 100% 97%

70

- - 213 53 1054 76 80 195 387 51 53 56 93% 67%

tUmin 50 335 55 1512 74 129 270 447 52 54 56 49% 77%

tUmax 78 406 56 1678 76 174 293 567 52 54 58 99% 91%

tU 60 304 55 1447 77 161 239 417 52 53 56 93% 80%

QTU1 52 418 57 1678 77 167 419 611 52 56 59 75% 81%

QTU2 56 418 57 1678 77 167 419 611 52 56 59 75% 81%

QTU3 73 406 56 1678 76 174 293 567 52 54 58 99% 91%

140

- - 316 54 1561 66 129 212 426 52 53 56 93% 67%

tUmin 50 335 54 1512 64 129 270 447 52 54 56 49% 77%

tUmax 69 304 54 1447 67 161 239 417 52 53 56 93% 80%

tU 57 418 56 1678 67 167 419 611 52 56 59 75% 80%

QTU1 52 418 56 1678 67 167 419 611 52 56 59 75% 80%

QTU2 56 418 56 1678 67 167 419 611 52 56 59 75% 80%

QTU3 63 304 54 1447 67 161 239 417 52 53 56 93% 80%
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Table 3.8: Distance And Time Metrics for Scenario 1 - High Processing Time tPR

(70 Minutes).

sb T TV dW tW dWmax t
W
max Q

DW
1 QDW

2 QDW
3 QTW

1 QTW
2 QTW

3 ps pp

30

- - 336 78 1537 121 175 297 577 73 74 78 93% 96%
tUmin 70 304 76 1447 122 161 239 417 72 73 76 93% 99%
tUmax 124 366 78 1666 121 101 234 502 71 73 77 100% 100%
tU 88 366 78 1666 121 101 234 502 71 73 77 100% 100%
QTU1 72 406 80 1678 121 174 293 567 72 74 78 99% 99%
QT2 U 76 406 80 1678 121 174 293 567 72 74 78 99% 99%
QTU3 118 366 78 1666 121 101 234 502 71 73 77 100% 100%

70

- - 336 75 1537 96 175 297 577 73 74 78 93% 96%
tUmin 70 304 75 1447 97 161 239 417 72 73 76 93% 99%
tUmax 98 366 76 1666 96 101 234 502 71 73 77 100% 100%
tU 80 366 76 1666 96 101 234 502 71 73 77 100% 100%
QTU1 72 406 76 1678 96 174 293 567 72 74 78 99% 99%
QT2 U 76 406 76 1678 96 174 293 567 72 74 78 99% 99%
QTU3 93 366 76 1666 96 101 234 502 71 73 77 100% 100%

140

- - 336 74 1537 86 175 297 577 73 74 78 93% 96%
tUmin 70 304 74 1447 87 161 239 417 72 73 76 93% 99%
tUmax 89 366 75 1666 86 101 234 502 71 73 77 100% 100%
tU 77 406 75 1678 87 174 293 567 72 74 78 99% 99%
QTU1 72 406 75 1678 87 174 293 567 72 74 78 99% 99%
QTU3 83 366 75 1666 86 101 234 502 71 73 77 100% 100%
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Table 3.9: Percentage of Missed Connections - Scenario 2 (Low Disruption level).

sb T
tPR = 30 min tPR = 50 min tPR = 70 min
TV

(min)
ps pp TV

(min)
ps pp TV

(min)
ps pp

30

- 70 4% 0% 70 0% 0% 70 0% 0%
tUmin 30 0% 3% 50 0% 10% 70 0% 14%
tUmax 83.7 0% 0% 103.7 15% 1% 123.7 83% 10%
t̄U 48.2 0% 3% 68.2 0% 7% 88.2 0% 18%
QTU

1 32.1 0% 3% 52.1 0% 10% 72.1 0% 11%
QTU

2 36.1 0% 3% 56.1 0% 10% 76.1 0% 11%
QTU

3 78.1 0% 0% 98.1 11% 7% 118.1 39% 10%

70

- 70.0 1% 0% 70.0 0% 0% 70.0 0% 0%
tUmin 30.0 0% 0% 50.0 0% 3% 70.0 0% 7%
tUmax 58.5 0% 0% 78.5 0% 0% 98.5 11% 6%
t̄U 40.4 0% 0% 60.4 0% 0% 80.4 0% 11%
QTU

1 32.1 0% 0% 52.1 0% 3% 72.1 0% 3%
QTU

2 36.1 0% 0% 56.1 0% 3% 76.1 0% 3%
QTU

3 52.9 0% 0% 72.9 0% 0% 92.9 11% 6%

140

- 70.0 1% 0% 70.0 0% 0% 70.0 0% 0%
tUmin 30 0% 0% 50.0 0% 1% 70.0 0% 4%
tUmax 49.0 0% 0% 69.0 0% 0% 89.0 0% 0%
t̄U 37.4 0% 0% 57.4 0% 1% 77.4 0% 0%
QTU

1 32.1 0% 0% 52.1 0% 1% 72.1 0% 0%
QTU

2 36.1 0% 0% 56.1 0% 1% 76.1 0% 0%
QTU

3 43.4 0% 0% 63.4 0% 0% 83.4 0% 0%
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apron capacity. We also use our model to perform a detailed review and analysis of

the objective functions used in existing studies on gate reassignment.

Our experiments are embedded in a framework which allows us to switch be-

tween different objectives by adjusting the cost coefficients of each of four types of

objective function terms. First, we verify our model by testing its output in a pre-

liminary set of customized case studies with different airports, schedules, objective

functions, and decision parameters. The results indicate that the model produces

reasonable results when its input changes. We then perform our main experiments,

where we apply the model to a large-size case study based on a real airport. We first

use a hierarchical optimization framework to examine the interaction between the

measures of effectiveness used in the literature and then we compare the proposed

assumption on connection time with the simple assumption of fixed thresholds.

Our experiments demonstrate the following findings: First, omitting passenger con-

nections from the model results in an extreme increase in the reassignment cost.

Second, prioritizing missed connections is necessary in the absence of monetary val-

ues, although the total cost of the optimal solution is still far from the optimal

cost yielded when using total monetary cost as an objective. Finally, there exist

significant differences between the solutions yielded when using the simple and the

proposed assumption, except for extreme cases, such as negligible disruptions or

high delays within the airport.

We believe that our model has the potential to be of use to both researchers

and practitioners. On the one hand, it can provide researchers with an insight of

the underlying relationships between solution quality indices and can be used for
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guidance for the development of heuristic techniques to achieve low solution time,

which is the key for real-time decision making. On the other hand, practitioners

can take advantage of the model’s versatility and adapt it according to their own

objectives, priorities, and strategies. Our research will now focus on improving

the current mathematical formulation to achieve higher computational performance

(see Chapter 4), as well as on developing a mathematical programming heuristic

approach based on the multidimensional assignment formulation (see Chapter 5).
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Figure 3.5: Misconnected passengers (a), gate changes (b) and total additional delay
(c) Vs. Maximum holding time.
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Chapter 4

Mathematical Models for Flight-to-Gate
Reassignment with Passenger Flows:
State-of-Art Comparative Analysis,

Formulation Improvement, and a New
Multidimensional Assignment Model

Chapter Overview

This chapter explores the mathematical programming formulation of flight-to gate

reassignment with passenger connections. Motivated by the intractable increase

in problem size when passenger flows are considered, combined with the need for

low solution time, we perform three main tasks: (a) We compare and analyze both

theoretically and experimentally the different types of state-of-art formulations, and

identify the limitations of each one. (b) We improve the performance of existing

models by modifying their formulations and introducing valid inequalities. (c) We

improve the mathematical formulation proposed in Chapter 3, which accounts for

passenger connections considering the layout of the airport and the available time
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between connecting flights. For the purpose of our experiments, we generate a

number of cases of various sizes and schedule scenarios, as well as a set based on a real

European airport. We then use our results to identify the most efficient formulations

under different objective functions and problem assumptions. We expect that our

work can provide researchers with a valuable tool for formulating efficient models

that can be embedded in mathematical programming-based heuristics.

Keywords: gate reassignment; passenger connections; mathematical programming;

quadratic formulation; aggregating formulation

4.1 Introduction

The concept of passenger flows plays a major role in the aircraft-to-gate re-

assignment problem, with different types of passengers generating different flow

patterns: For example, passengers whose trip begins at the airport generally move

from the entrance to the gate of the departing flight; passengers whose trip ends at

the airport move from the gate of their arriving flight to the airport exit. Finally,

connecting passengers move from the gate of the arriving flight to the gate of the

departing flight of their transfer. In every case, as we showed in Chapter 3, flow

patterns, as well as the resulting walking distance and time, vary according to lay-

out of the airport (e.g. terminal location, existence of people movers and moving

walkways) and the processing procedures (e.g. passport control) for passengers with

different origins and destinations.
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In Chapter 3, we used the required connection time to create a realistic model

which determines the success of passenger transfers based on the relationship be-

tween the required and the available connection time. However, in order to linearize

the quadratic model proposed in section 3.3, we added a set of constraints 3.7 - 3.9,

which increase dramatically the size of the problem.

Motivated by the intractable size of mathematical models which consider pas-

senger flows, in this chapter we study different types of state-of-art formulations, im-

prove them by introducing valid inequalities, and propose a novel assignment model

that considers the layout of the airport and the available time between connect-

ing flights. Our experiments demonstrate that we achieve significant improvements

in optimization time and indicate the conditions under which each formulation is

preferable.

The work presented in this chapter has been published in Pternea and Haghani

(2018).

The remaining of this chapter is structured as follows: In section 4.3, we

propose a series of steps to strengthen the assignment formulation and gradually

build a new formulation that significantly increases the speed of the branch-and-cut

optimization procedure applied by an MIP solver. In section 4.4, we compare and

analyze the alternative formulations by defining upper bounds on the number of vari-

ables and constraints, and identify the underlying assumptions and the limitations

of each one. In section 4.5, we apply the different models in real-size experimental

cases. Finally, in section 4.6 we draw the main conclusions of the study and identify

paths for future research.
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4.2 Literature Review: Mathematical Modeling of Passen-

ger Flows

As explained in the literature review (Chapter 2), only few gate reassignment

studies explore the problem from the perspective of transfer passengers, namely the

ones by Maharjan and Matis (2011), Yu and Lau (2015), and Zhang and Klabjan

(2017). However, the quadratic assignment model proposed by Maharjan and Matis

(2011) does not include assignment time as a decision variable. We will therefore

examine the remaining two studies (Yu and Lau, 2015; Zhang and Klabjan, 2017),

which determine not only the gate that each flight is assigned to, but also the exact

time period that the flight occupies the gate.

4.2.1 State-of-Art Overview

Yu and Lau (2015) minimize the total assignment cost and maximize the

number of passengers who miss their connecting flight, while Zhang and Klabjan

(2017) build an assignment network for each gate, and a passenger network for each

connection.

In a typical network flow approach of GAP, one network is created for each

gate, with nodes corresponding to time windows. A feasible flow corresponds to a

sequence of flights occupying the gate throughout the planning horizon: Starting

from the source, the order of the incident nodes of arcs with positive flow corresponds
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to the sequence of flights assigned to the gate, as well as their respective time

windows. The problem is then solved as a minimum cost network flow problem.

However, the model requires extensions to capture passenger flows, as in Yu

and Lau (2015) and Zhang and Klabjan (2017). The reader shall refer to these

studies for further details. Yu and Lau (2015) minimize the total assignment cost

and the number of passengers who miss their connecting flight. Their formulation

relies on a single network for the whole problem with separate flow conservation

constraints for each gate. To solve the problem, they iteratively divide passenger

connections into a hard set and a soft set. Zhang and Klabjan (2017) build an

assignment network for each gate, and a passenger network for each connection.

Each network is associated with its own set of variables and constraints, while

an additional set of constraints establishes the relationship between the two. The

authors propose a diving and a rolling horizon heuristic. In the diving heuristic,

flights are iteratively fixed in cliques, i.e. groups of neighboring gates, according

to the solution of the linear relaxation, while in the rolling horizon heuristic the

planning horizon is divided into smaller windows based on the number of connecting

passengers. For simplicity, in the rest of this chapter, the formulations by Yu and Lau

(2015) and Zhang and Klabjan (2017) will be referred to as YL and ZK, respectively.

4.2.2 Common Modeling Assumptions

In gate assignment, the decision maker (airport or airline) aims to determine

the optimal allocation of flights to airport gates, subject to physical, operational and
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practical constraints, where optimality is defined according to the incurred monetary

costs and/or the priorities of the decision maker.

Every flight can be assigned to a subset of the gates, based on criteria such

as the airline, the size of the aircraft, and the type of the flight (e.g. domes-

tic/international, or Schengen/Out-of-Schengen for international European airports).

Certain studies additionally include the assignment time as a decision variable. In

general, arrival and departure times are planned weeks or months in advance. How-

ever, using updated information about arrival/departure times and gate availability

to modify the time when a flight begins to occupy its gate allows for more precise

flight configuration. In this context, the decision maker can delay the arrival of a

flight to its designated gate, or hold an outbound flight at the gate to prevent missed

connections.

The planning horizon is divided into discrete time windows, each 5-10 minutes

long; for every flight, the time window of planned arrival/departure is known in

advance. Based on the airport/airline policies for maximum holding time, each

flight is associated with the earliest and latest time windows at which it may start

occupying a gate. The duration of gate occupancy depends on the type of the flight,

the number of passengers, and the size of the aircraft, and is known in advance. As

a result, every flight occupies a gate for a fixed number of consecutive time windows,

the first of which is the assignment window, and is associated with two sets: a) The

set of gates to which it can potentially be assigned, and b) The set of time windows

where it can potentially be assigned.
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4.2.3 Contributions of This Research

As can be seen, even when mathematical programming models are available,

researchers apply heuristics to find good solutions to the gate reassignment prob-

lem. Both Yu and Lau (2015) and Zhang and Klabjan (2017) develop mathematical

programming-based heuristics, in the sense that they use the model formulation to

obtain solution bounds by solving restricted versions of the linear relaxation based on

specific branching rules. From this perspective, the development of efficient heuris-

tics requires an appropriate formulation that can handle the modeling assumptions

and restrictions of the problem in hand fast and effectively. However, developing

strong mathematical formulations is an aspect of the solution that has been ne-

glected in the context of gate reassignment, especially when passenger connections

are involved.

In addition, current research on modeling transfer passengers is occasionally

based on unrealistic assumptions. Most importantly, with the exception of the study

by Zhang and Klabjan (2017), the chance of passengers missing their connecting

flight is generally treated as independent of the walking distance between the gates

of the inbound and the outbound flight. In reality, a tight connection is more likely

to be missed if the required walking time between the gates is long, given the layout

and the available transportation modes, as well as the required mandatory passenger

processing procedures.
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In this chapter, we focus on the mathematical formulation of the gate reas-

signment problem with passenger flows. To tackle the issues explained above, the

key contributions of this study are the following:

• We compare and analyze existing formulations of the gate reassignment problem

with time as a decision variable and passenger flows in the objective function. To

achieve this, we examine the mathematical models both from a theoretical (section

4.4) and a practical-experimental perspective (section 4.5). We also study the

limitations and underlying assumptions of each formulation and provide guidelines

for selecting a suitable formulation accordingly.

• We extend and improve existing formulations: We take advantage of the properties

of the problem, such as the set partitioning constraints, to develop strong integer

formulations that result in significant time savings when solved to optimality.

• We extend the time-indexed assignment formulation from Chapter 3, where the

main idea is that the success of a passenger connection depends on both the

physical location of the gates and the available time between the arrival of the

inbound flight and the departure of the outbound flight. We then apply a number

of transformations to accelerate the exact cut-and-branch solution procedure.

4.3 Improving the Assignment Formulation

In this section, we explore ways to strengthen the assignment formulation in

order to accelerate the solution procedure.
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4.3.1 Decision Variables

In the planned version of the gate assignment problem, the assignment formu-

lation is the most common. As explained in Chapter 2, a binary assignment variable

can be defined as the main decision variable in the literature (Maharjan and Matis,

2011; Wang et al., 2013) is binary Xij, such that

Xij =


1, if flight i is assigned to gate j

0, otherwise

(4.1)

When allocation time is also a decision variable (Tang et al., 2010; Yan et al.,

2011), a time-indexed formulation is adopted, where the main decision variable is

Xijk :

Xijk =


1, if flight i is assigned to gate j and time window k

0, otherwise

(4.2)

In this study, we use a three-index formulation, since we assume that the

decision maker can adjust the time at which a flight occupies a gate, within some

predefined range. We will rely on two approaches exhibited in the literature for

handling connections in an assignment model:

• A quadratic approach that is linearized with the introduction of appropriate in-

equalities.
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• An aggregating approach that calculates the total connection cost for every ar-

riving flight, based on a study by Yu et al. (2016).

4.3.2 Notation

In the following paragraphs, we will be using the following general notation

for the basic problem elements:

Sets:

FA: Set of arriving flights.

FD: Set of departing flights.

F : Set of flights, F = FA ∪ FD.

G: Set of gates.

T : Set of passenger connections (i, i′) (i ∈ FA and i′ ∈ FD).

W : Set of time windows.

Gi ⊂ G: Set of gates that are compatible with flight i.

Wi ⊂ W : Set of time windows that are compatible with flight i.

His: Set of time windows such that, if flight i is assigned to them, it occupies

its gate at time window s.

QA
ii′ : Set of allowed combinations (j, j′, k, k′) for connection (i, i′), i.e. com-

binations that result in connecting passengers catching the outbound

flight.

QF
ii′ : Set of forbidden combinations (j, j′, k, k′) for connection (i, i′), i.e.

combinations that result in connecting passengers missing the out-

bound flight.
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Costs:

Cijk: Cost of assigning flight i to gate j at time window k.

CS
ijki′j′k′ : Successful connection cost due to the assignment of flight i to gate j

and time window k, and of flight i′ to gate j′ and time window k′,

where (ijki′j′k′) ∈ QA
ii′ .

CF
ii′ : Cost of failed connection (i, i′).

The costs vary according to the objectives of the problem, which are generally

oriented towards restoring the original schedule and minimizing the impact of the

disruptions on both passengers and operators. More details on the definition of cost

have been provided in Chapter 3. In this context, Cijk represents the delay costs,

as well as the deviation from the original schedule. For example, it can be 0 if flight

i was originally assigned to gate j and time k, and 1 otherwise. Alternatively, it

can measure the distance between the planned and the reassigned gate, the addi-

tional imposed delay, or a combination of the two. Regarding connections, CS
ijki′j′k′

expresses the cost of connection (i, i′) with regards to the assignment of the flights.

For example, it may be equal to the walking distance of passengers whose departing

flight is assigned to a different gate. Finally, CF
ii′ is the cost of a failed connection

(i, i′) and generally depends on the number of connecting passengers, the amount

of compensation per passenger, and possible expenses for hotel accommodation.
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4.3.3 The Quadratic Approach for Passenger Flows

The combination of individual connecting flight assignments is defined as the

product of the respective binary assignment variables (4.3):

Zijki′j′k′ = Xijk ·Xi′j′k′ , (i, i
′) ∈ T, j ∈ Gi, j

′ ∈ Gi′ , k ∈ Wi, k
′ ∈ Wi′ (4.3)

which is equal to 1 if arriving flight i is assigned to gate j and departing flight

i′ is assigned to gate j′. The quadratic terms are linearized by adding inequalities

(4.4)-(4.6):

Zijki′j′k′ ≤ Xijk, (i, i
′) ∈ T, j ∈ Gi, j

′ ∈ Gi′ , k ∈ Wi, k
′ ∈ Wi′ (4.4)

Zijki′j′k′ ≤ Xi′j′k′ , (i, i
′) ∈ T, j ∈ Gi, j

′ ∈ Gi′ , k ∈ Wi, k
′ ∈ Wi′ (4.5)

−Zijki′j′k′ ≥ Xijk +Xi′j′k′ − 1, (i, i′) ∈ T, j ∈ Gi, j
′ ∈ Gi′ , k ∈ Wi, k

′ ∈ Wi′ (4.6)

In this study, we assume that whether a connection will be made or missed

depends on the location of the gates where the connecting flights are assigned, as

well as the available time for passengers to walk between the gates. As a result,

if inbound flight i is assigned to gate j and time window k, and outbound flight

i′ is assigned to gate j′ and time window k′, the connection will be made if and

only if the available time k′ − k is at greater than or equal to the time required by

passengers for moving between gates j and j′, given the layout of the airport as well

as the time required for passenger processing. We therefore classify each potential
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assignment combination of gates and time windows as “allowed”, if it results in a

successful connection, or “forbidden”, if it results in a missed connection. Based

on the measures of effectiveness that are used as objectives in the literature and in

practice, we break down the objective function into three distinct components:

• Assignment cost
∑

i∈I
∑

j∈Gi

∑
k∈Wi

CijkXijk. It captures all costs that depend on

individual assignments (e.g., flight delays, gate changes, undesirable assignments

to remote gates, etc.).

• Successful connection cost
∑

(i,i′)∈T
∑

(j,j′,k,k′)∈QA
ii′
CS
ijki′j′k′Zijki′j′k′ . It includes all

connection costs, provided that the connection is successful (e.g., total connecting

passenger walking distance).

• Missed connection cost
∑

(i,i′)∈T C
F
ii′
∑

(j,j′,k,k′)∈QF
ii′
Zijki′j′k′ . It captures all costs

resulting from failed connections (e.g., number of passengers who miss their con-

nection, total compensation for connecting passengers, etc.).

Using the above components, and putting together the constraints that are normally

used in the optimization, we can wrap up the basic three-index assignment-based

formulation as follows:

Formulation Q-A (Quadratic Using All Connections)

Minimize: ∑
i∈I
∑

j∈Gi

∑
k∈Wi

CijkXijk +∑
(i,i′)∈T

∑
(j,j′,k,k′)∈QA

ii′
CS
ijki′j′k′Zijki′j′k′ +∑

(i,i′)∈T C
F
ii′
∑

(j,j′,k,k′)∈QF
ii′
Zijki′j′k′

(4.7)

Subject to:
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Equations 8-11.

∑
j∈Gi

∑
k∈Wi

Xijk = 1, i ∈ F (4.8)

∑
i∈F

∑
k∈His∩Wi

Xijk ≤ 1, j ∈ Gi, s ∈ W (4.9)

Xijk ∈ {0, 1}, i ∈ F, j ∈ Gi, k ∈ Wi (4.10)

Zijki′j′k′ ∈ {0, 1}, (i, i′) ∈ T, j ∈ Gi, j
′ ∈ Gi′ , k ∈ Wi, k

′ ∈ Wi′ (4.11)

Objective function (4.7) is the minimization of the sum of assignment and connection

costs. Constraint (4.8) is the flight constraint, which enforces that each flight will

be assigned to exactly one gate and time window. Constraint (4.9) is the gate

constraint, stipulating that every gate can be occupied by at most one flight at any

moment. Finally, constraints (4.10) and (4.11) enforce that all decision variables

are binary.

4.3.3.1 First Modification: Defining Quadratic Variables over Al-

lowed Combinations

Introducing passenger flow variables Zijki′j′k′ increases dramatically the num-

ber of variables and constraints of the problem. A detailed estimation of upper

bounds on the number of variables and constraints follows in section 4.4. In this

section, we investigate ways to create an equivalent formulation with a reduced num-

ber of variables and constraints so that the required computational time is reduced.
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The main idea is based on the following implied valid equality:

∑
j∈Gi

∑
j′∈Gi′

∑
k∈Wi

∑
k′∈Wi′

Zijki′j′k′ = 1, (i, i′) ∈ T (4.12)

which holds because of the set partitioning flight constraints (4.8) and the

linearization constraints (4.4)-(4.6).

The following observation allows us to reduce the number of variables: While

the cost of a successful connection depends on the location and the time of the indi-

vidual flights, the cost of a missed connection is independent of walking distance or

time and depends on flight properties, such as the number of connecting passengers,

the availability of other outbound flights with the same destination for passenger

rebooking, etc.

Therefore, if flights (i, i′) are assigned to a forbidden combination (j, j′, k, k′)

, we are not interested in the combination itself, but only in the fact that it belongs

to QF
ii′ . As a result, we only need to define Z variables over allowed combinations

belonging to QA
ii′ . We rename them to ZA, where A stands for “allowed combina-

tions”, and obtain Formulation Q-S:

Formulation Q-S (Quadratic Using Successful Connections)

Minimize: ∑
i∈F
∑

j∈Gi

∑
k∈Wi

CijkXijk +∑
(i,i′)∈T

∑
(j,j′,k,k′)
∈QA

ii′

CS
ijki′j′k′Z

A
ijki′j′k′ +

∑
(i,i′)∈T C

F
ii′(1−

∑
(j,j′,k,k′)∈QA

ii′
ZA
ijki′j′k′)

(4.13)
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Subject to:

Constraints (4.8) - (4.10)

ZA
ijki′j′k′ ≤ Xijk, (i, i′) ∈ T, (j, j′, k, k′) ∈ QA

ii′ (4.14)

ZA
ijki′j′k′ ≤ Xi′j′k′ , (i, i′) ∈ T, (j, j′, k, k′) ∈ QA

ii′ (4.15)

ZA
ijki′j′k′ ≥ Xijk +Xi′j′k′ − 1, (i, i′) ∈ T, (j, j′, k, k′) ∈ QA

ii′ (4.16)

ZA
ijki′j′k′ ∈ {0, 1}, (i, i′) ∈ T, (j, j′, k, k′) ∈ QA

ii′ (4.17)

Observe that, since
∑

(i,i′)∈T C
F
ii′ is a constant, the objective function (4.13) can be

written equivalently as

Minimize: ∑
i∈F
∑

j∈Gi

∑
k∈Wi

CijkXijk +∑
(i,i′)∈T

∑
(j,j′,k,k′)∈QA

ii′
(CS

ijki′j′k′ − CF
ii′)Z

A
ijki′j′k′

(4.18)

Compared to Formulation Q-A, Formulation Q-S contains significantly fewer

variables and constraints, but also introduces an obstacle to the optimization proce-

dure: In all likelihood, the objective function coefficients of the quadratic variables

ZA
ijki′j′k′ are negative, since the cost CF

ii′ of a missed connection is usually larger than

the cost CS
ijki′j′k′ of a successful connection. This increases computational time by

preventing the solver from finding a feasible solution (i.e. an upper bound), as will

be shown experimentally in section 4.5. To facilitate the solution procedure, we

add a technically redundant, yet effective auxiliary constraint, i.e. a valid inequality
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that speeds up significantly the solution procedure:

∑
(j,j′,k,k′)∈QA

ii′

ZA
ijki′j′k′ ≤ 1, (i, i′) ∈ T (4.19)

Detailed experiments to evaluate this approach are presented in section 4.5.2.

We will distinguish between the formulations Q-S with and without the auxiliary

constraint by referring to them as Q-S2 and Q-S1, respectively.

4.3.3.2 Second Modification: Defining Quadratic Variables over For-

bidden Combinations

In real time assignment, it is quite common that the cost of successful connec-

tions is not considered. In this case, we can define Z variables only over combinations

(j, j′, k, k′) ∈ QF
ii′ . Renaming the quadratic variables Z to ZF , the problem now

becomes:

Formulation Q-F (Quadratic Using Failed Connections)

Minimize: ∑
i∈F
∑

j∈Gi

∑
k∈Wi

CijkXijk +∑
(i,i′)∈T C

F
ii′
∑

(j,j′,k,k′)∈QF
ii′
ZF
ijki′j′k′

(4.20)
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Subject to:

Constraints (4.8) - (4.10)

ZF
ijki′j′k′ ≤ Xijk, (i, i′) ∈ T, (j, j′, k, k′) ∈ QF

ii′ (4.21)

ZF
ijki′j′k′ ≤ Xi′j′k′ , (i, i′) ∈ T, (j, j′, k, k′) ∈ QF

ii′ (4.22)

ZF
ijki′j′k′ ≥ Xijk +Xi′j′k′ − 1, (i, i′) ∈ T, (j, j′, k, k′) ∈ QF

ii′ (4.23)

ZF
ijki′j′k′ ∈ {0, 1}, (i, i′) ∈ T, (j, j′, k, k′) ∈ QF

ii′ (4.24)

4.3.3.3 Third Modification: Defining Quadratic Variables over Ag-

gregated Forbidden Combinations

We now test whether we can further improve Formulation Q-F by taking

advantage of the set partitioning flight constraints (4.8), combined with the fact that

cost coefficients CF
ii′ only depend on the connection itself. We propose an equivalent,

yet more concise formulation of the problem, by summing the assignment variables

Xijk of either the arriving or the departing flight corresponding to a connection.

We will demonstrate this approach by summing the assignment variables for the

departing flight of each pair (i, i′) . Now the quadratic variables are defined as:

ZG
ii′jk = Xijk ·

∑
(j,j′,k,k′)∈QF

ii′

Xi′j′k′ , (i, i
′) ∈ T, j ∈ Gi, k ∈ Wi (4.25)

and the problem is formulated as follows:
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Formulation Q-FA (Quadratic Using Aggregated Failed Connections)

Minimize: ∑
i∈F

∑
j∈Gi

∑
k∈Wi

CijkXijk +
∑

(i,i′)∈T

CF
ii′

∑
j∈Gi

∑
k∈Wi

ZG
ii′jk (4.26)

Subject to:

Constraints (4.8) - (4.10)

ZG
ii′jk ≤ Xijk, (i, i′) ∈ T, j ∈ Gi, k ∈ Wi (4.27)

ZG
ii′jk ≤

∑
(j,j′,k,k′)∈QF

ii′

Xi′j′k′ , (i, i
′) ∈ T, j ∈ Gi, k ∈ Wi (4.28)

ZG
ii′jk ≥ Xijk +

∑
(j,j′,k,k′)∈QF

ii′

Xi′j′k′ − 1(i, i′) ∈ T, j ∈ Gi, k ∈ Wi (4.29)

ZG
ii′jk ∈ {0, 1}, (i, i′) ∈ T, j ∈ Gi, k ∈ Wi (4.30)

This approach allows us to remove the dimensions corresponding to indices j′

and k′ and therefore further reduce the size of the problem.

4.3.3.4 Summary of the Quadratic Approach Q

In summary, the Quadratic formulation Q can be further categorized based on

the definition of the connection variables. In this context, formulation Q might use:

• All connections: Q-A, or

• Only the successful connections (Q-S), which might be formulated without

(Q-S1) or with (Q-S2) an auxiliary constraint, or
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• Only the failed connections (Q-F), or

• Only the failed connections, aggregated (Q-FA).

4.3.4 The Aggregating Approach for Passenger Connections

Yu et al. (2016) applied an alternative formulation for the planned Gate As-

signment Problem, using the fact that the contribution of each arriving flight to the

objective function is equal to the sum of the connection costs of all transfers where

the flight participates. Adapting the notation to match the one used in this study,

the passenger connection cost becomes
∑

i∈FA
∑

j∈Gi ξij.

For every decision variable ξij, the authors add constraints (4.31)-(4.32):

ξij ≥
∑

i′∈FD:(i,i′)∈T

∑
j′∈Gi′

Cξ
ii′jj′Xi′j′ − UBij(1−Xij), i ∈ FA, j ∈ Gi (4.31)

ξij ≥ 0, i ∈ FA, j ∈ Gi (4.32)

where Cξ
ii′jj′ is the cost of connection (i, i′) when flights i, i′ occupy gates j and

j′, respectively, assuming that connection cost is independent of assignment time,

while UBij denotes an upper bound of the value of ξij. In practice, constraints

(4.31)-(4.32) can be interpreted as

ξijk =


∑

i′∈FD:(i,i′)∈T
∑

j′∈Gi′
Cξ
ii′jj′Xi′j′ , if Xij = 1

0, if Xij = 0

(4.33)
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We will refer to all forms of the aggregating formulation as “Formulation A”.

The basic 2-index aggregating formulation is as follows:

Basic 2-Index Aggregating Formulation

Minimize: ∑
i∈F
∑

j∈Gi C
ξ
ii′jj′

∑
k∈Wi

Xijk +∑
i∈FA

∑
j∈Gi ξij +∑

(i,i′)∈T C
F
ii′
∑

(j,j′,k,k′)∈QF
ii′
ZF
ijki′j′k′

(4.34)

Subject to:

Constraints (4.8) - (4.10) and (4.21)-(4.24).

ξij ≥
∑
i′∈FD:
(i,i′)∈T

∑
j′∈Gi′

Cξ
ii′jj′

∑
k′∈Wi′

Xi′j′k′ − UBij

(
1−

∑
k∈Wi

Xijk

)
, i ∈ FA, j ∈ Gi

(4.35)

ξij ≥ 0, i ∈ FA, j ∈ Gi

(4.36)

where
∑

i∈F represents the total assignment cost,
∑

i∈FA
∑

j∈Gi ξij the total

successful connection cost, and
∑

(i,i′)∈T C
F
ii′
∑

(j,j′,k,k′)∈QF
ii′
ZF
ijki′j′k′ the total missed

connection cost.

In order for this formulation to be valid, we assume that connection costs are

independent of the assignment times k, k′ of the connecting flights i, i′ respectively.

This is a reasonable assumption when connection cost depends only on flight (e.g.

number of connecting passengers) and gate properties, as in the case of total walking

distance. Based on the idea of Yu et al. (2016), we first propose a new three-
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dimensional assignment formulation that considers time as a decision variable and

then we develop alternative versions of this formulation to determine the best one

in terms of computational efficiency.

4.3.4.1 Two-Index Vs. Three-Index Aggregating Formulation

In some cases, connection cost can be time-dependent: For example, Maharjan

and Matis (2012) proposed a penalty cost factor Ckk′

jj′ to quantify passenger discom-

fort due to long walking distances combined with tight connections, for planned gate

assignment. To accommodate this case, we redefine the ξ variables to capture the

temporal dimension of the decision. As a result, the cost of a successful connection

becomes
∑

i∈FA
∑

j∈Gi

∑
k∈Wi

ξijk . Building on the formulation proposed by Yu

et al. (2016), we create a time-index formulation as follows:

Basic 3-Index Aggregating Formulation

Minimize: ∑
i∈F
∑

j∈Gi

∑
k∈Wi

CijkXijk +∑
i∈FA

∑
j∈Gi

∑
k∈Wi

ξijk +∑
(i,i′)∈T C

F
ii′
∑

(j,j′,k,k′)∈QF
ii′
ZF
ijki′j′k′

(4.37)

Subject to:

Constraints (4.8)-(4.10) and (4.21)-(4.24)

ξijk ≥
∑
i′∈FD:
(i,i′)∈T

∑
j′∈Gi′

∑
k′∈Wi′

CS
ijki′j′k′Xi′j′k′ − UBijk(1−Xijk), i ∈ FA, j ∈ Gi, k ∈ Wi

(4.38)
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ξijk ≥ 0, i ∈ FA, j ∈ Gi, k ∈ Wi (4.39)

4.3.5 ξ For Successful Connections Vs. ξ For All Connec-

tions

As in Yu et al. (2016), ξ expresses the cost of successful connections only, while

the cost of missed connections is calculated using the quadratic formulation. In order

to extend the aggregating formulation to handle missed connections, we modify

the upper bound UBξ
ij (2-index formulation) or UBξ

ijk (3-index formulation). For

successful connections only, an upper bound can be estimated as follows: Assume

that flight i will be assigned to gate j and time window k. Then, we assume that

each flight i′ connected with i is assigned to gate j′ and time window k′ such that

the highest cost CS
ijki′j′k′ is achieved:

UBijk =
∑
i′∈FD:
(i,i′)∈T

max
(j,j′,k,k′)
∈QA

ii′

CS
ijki′j′k′ (4.40)

On the other hand, if ξijk are defined over successful and missed connections, the

calculation of UBijk is modified accordingly:

UBijk =
∑
i′∈FD:
(i,i′)∈T

max

CF
ii′ , max

(j,j′,k,k′)
∈QA

ii′

CS
ijki′j′k′

 (4.41)

For a 2-index formulation, UBij = maxk UBijk.
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Therefore, the Basic 2-index Aggregating Formulation is modified as follows:

Minimize: ∑
i∈F
∑

j∈Gi

∑
k∈Wi

CijkXijk +∑
i∈FA:(i,i′)∈T

∑
j∈Gi ξij

(4.42)

Subject to:

Constraints (4.8)-(4.10)

ξij ≥
∑

i′∈FD:
(i,i′)∈T

∑
j′∈Gi′

Cξ
ii′jj′

∑
k′∈Wi′

Xi′j′k′ +

∑
i′∈FD:
(i,i′)∈T

CF
ii′
∑

(j′,k′):
(j,j′,k,k′)∈QA

ii′

Xi′j′k′ −

UBij

(
1−

∑
k∈Wi

Xijk

)
, i ∈ FA, j ∈ Gi

(4.43)

ξij ≥ 0, i ∈ FA, j ∈ Gi (4.44)

The Basic 3-Index Aggregating Formulation is modified as follows:

Minimize:

∑
i∈F

∑
j∈Gi

∑
k∈Wi

CijkXijk +
∑
i∈FA:

(i,i′)∈T

∑
j∈Gi

∑
k∈Wi

ξijk (4.45)
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Subject to:

Constraints (4.8)-(4.10)

ξijk ≥
∑

i′∈FD:
(i,i′)∈T

∑
j′∈Gi′

∑
k′∈Wi′

CS
ijki′j′k′Xi′j′k′ +

∑
i′∈FD:
(i,i′)∈T

CF
ii′
∑

(j′,k′):
(j,j′,k,k′)∈QA

ii′

Xi′j′k′ −

UBijk (1−Xijk) , i ∈ FA, j ∈ Gi, k ∈ Wi

(4.46)

ξijk ≥ 0, i ∈ FA, j ∈ Gi, k ∈ Wi (4.47)

4.3.5.1 Defining ξ For Arriving Flights Vs. Defining ξ For Departing

Flights

Yu et al. (2016) define one ξij variable for each combination of arriving flight

i and potential gate j. Equivalently, we can define the variables over the set of

departing flights, instead of the arriving flights. In this case, the Basic 2-Index Ag-

gregating Formulation is modified as follows:

Minimize: ∑
i∈F
∑

j∈Gi

∑
k∈Wi

CijkXijk +∑
i′∈FD:(i,i′)∈T

∑
j′∈Gi′

ξi′j′ +∑
(i,i′)∈T C

F
ii′
∑

(j,j′,k,k′)∈QF
ii′
ZF
ijki′j′k′

(4.48)
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Subject to:

Constraints (4.8)-(4.10) and (4.21)-(4.24)

ξi′j′ ≥
∑
i∈FA:

(i,i′)∈T

∑
j∈Gi

Cξ
ii′jj′

∑
k∈Wi

Xijk −

UBi′j′

(
1−

∑
k∈Wi

Xijk

)
, i′ ∈ FD, j′ ∈ Gi′

(4.49)

ξi′j′ ≥ 0, i′ ∈ FD, j′ ∈ Gi′ (4.50)

Similarly, the 3-index formulation is written as follows:

Minimize: ∑
i∈F
∑

j∈Gi

∑
k∈Wi

CijkXijk +∑
i′∈FD

∑
j′∈Gi′

∑
k′∈Wi′

ξi′j′k′

(4.51)

Subject to:

Constraints (4.8)-(4.10) and (4.21)-(4.24)

ξi′j′k′ ≥
∑
i∈FA:

(i,i′)∈T

∑
j∈Gi

∑
k∈Wi

Cξ
ii′jj′kk′Xijk−

UBi′j′k′ (1−Xi′j′k′) , i
′ ∈ FD, j′ ∈ Gi′ , k

′ ∈ Wi′

(4.52)

ξi′j′k′ ≥ 0, i′ ∈ FD, j′ ∈ Gi′ , k
′ ∈ Wi′

(4.53)

To improve the efficiency of the Aggregating Formulation A, we use a minimum

cardinality criterion: If |FA| ≥ |FD| , we define ξ over departing flights, while if
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|FA| < |FD|, we define ξ over arriving flights. Since every connection is included in

the formulation exactly once, the two formulations are equivalent, but one of them

should require fewer variables and constraints (assuming that the average number

of potential gate and time windows does not vary significantly among the flights).

In practice, |FA| can differ significantly from |FD| within the reassignment window

in case of grouped coordinated arrivals and departures.

By expressing the total connection cost considering either the arriving or the

departing flights, we make sure that the cost of each transfer is counted exactly

once in the cost function. Selecting between |FA| and |FD| using the minimum

cardinality criterion helps reduce the required number of continuous ξ variables

and respective constraints (assuming that the average number of compatible gates

and assignment windows does not vary significantly across flights). We can further

reduce the required number of variables and constraints using a bipartite graph to

represent transfers: The nodes on the left side correspond to arriving flights, while

the nodes on the right side correspond to departing flights. An arc connecting an

arriving to a departing flight represents a transfer. To consider all transfers, we

essentially have to cover all arcs. An arc is covered if at least one of its adjacent

nodes is considered.

For example, consider the case of Figure 4.1a, with four arriving and four

departing flights (|FA| = |FD| = 4). Instead of using either FA or FD to define

ξ variables, we can cover all transfers (Figure 4.1b) by assigning transfers A1-D1,

A1-D2, A1-D3, and A1-D4 to flight A1, transfer A2-D2 to flight D2, and transfers

A2-D3, A3-D3 and A4-D3 to flight D3, and therefore use only 3 flights to define ξ.
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Figure 4.1: Representing transfers using a bipartite graph.

To minimize the number of nodes required, we can solve a minimum cover

problem. Transfers corresponding to arcs that are covered by both their starting

and their ending node, such as A1-D2 and A1-D3 in the example, can be randomly

assigned to one of the two nodes. For the rest of this chapter, however, we will

simply use the cardinality criterion.

4.3.5.2 Summary of the Aggregating Formulation A

In summary, different versions of Formulation A can be created by modifying

the definition of ξ variables, i.e.:
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a) Whether ξ variables express the cost of successful (S) only, or of all (A) connec-

tions.

b) Whether between the sets of arriving and departing flights we choose the one

that has the smallest (S) or the largest (L) cardinality.

c) Whether ξ variables are 2-index (ξij) or 3-index (ξijk).

The combinations of (a), (b), and (c), result in 23 = 8 formulations, summarized in

Table 4.1.

Table 4.1: Different Versions of Aggregating Formulation A

All Vs.
Successful Connections

Smallest Vs.
Largest Cardinality

2 - Index Vs.
3-Index

Form. All Successful SmallestLargest 2-
Index

3-
Index

A-SS2 X X X
A-SS3 X X X
A-SL2 X X X
A-SL3 X X X
A-AS2 X X X
A-AS3 X X X
A-AL2 X X X
A-AL3 X X X

4.4 Theoretical Analysis of Formulations

Before we implement the mathematical formulations in practice, we analyze

them based on the size of the resulting problem, as well as on their underlying

assumptions.
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4.4.1 Number of Variables and Constraints

In this section, we perform a worst-case analysis of the alternative formula-

tions based on the number of variables and constraints. We introduce the following

additional notation:

C: Set of gate cliques, as defined in Zhang and Klabjan (2017).

F : Upper bound on the number of flights which are compatible with a gate.

Ḡ : Upper bound on the number of gates that are compatible with a flight.

C̄ : Upper bound on the number of cliques that are compatible with a flight.

W̄ : Upper bound on the number of potential time windows for a flight.

FA,C : Set of arriving flights participating in connections.

FD,C : Set of departing flights participating in connections.

Both YL and ZK formulations include shadow constraints, while YL also in-

cludes constraints for flights using the same aircraft. In this section, we present

the number of variables and constraints for the basic formulation only. Tables 4.2

and 4.3 present the variables and constraints for the assignment formulation, while

Tables 4.4 and 4.5 are the respective ones for network flow formulations.

A summary of the total number of variables and constraints for each formula-

tion can be found in Table A3 of the Appendix.

4.4.2 Comparison of Assumptions - Limitations

The above formulations are generally equivalent in terms of the problem rep-

resentation and optimal solution. However, under certain conditions, some of the
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Table 4.2: Number of Variables for Assignment Formulations

Formulation Assignment Variables Connection Variables
Q-A

|F |ḠW̄

|T |Ḡ2W̄ 2Q-S
Q-F
Q-FA |T |ḠW̄

A-SS2, A-SL2,
A-AS2, A-AL2

min (|FA,C |, |FD,C |)Ḡ

A-SS3, A-SL3,
A-AS3, A-AL3

min (|FA,C |, |FD,C |)ḠW̄

Table 4.3: Number of Constraints for Assignment Formulations

Formulation FlightGate Linearization Variable
Definition

Variable Type

Q-A

|F | |T |

3|T |Ḡ2W̄ 2.
Q-S2: Extra
|T |Ḡ2W̄ 2

|F |ḠW̄+
|T |Ḡ2W̄ 2

|F |ḠW̄+
|T |Ḡ2W̄ 2Q-S

Q-F
Q-FA 3|T |ḠW̄ |F |ḠW̄ +

|T |ḠW̄
|F |ḠW̄ +
|T |ḠW̄

A-SS2,
A-SL2,
A-AS2,
A-AL2

0 2 min (|FA,C |, |FD,C |)Ḡ|F |ḠW̄

A-SS3,
A-SL3,
A-AS3,
A-AL3

0 min (|FA,C |, |FD,C |)Ḡ |F |ḠW̄

Table 4.4: Number of Variables for Network Flow Formulations

Formulation Assignment
Variables

Ground
Variables

Flow Connection
Variables

YL |F |ḠW̄ |G|(|W |+ 1)
|T |W̄ 2

ZK |T |+ |T |(2C̄W̄ +
C̄2W̄ 2 + 1)
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Table 4.5: Number of Constraints for Network Flow Formulations

Formulation Flight Linearization Flow
Conserva-

tion

Connection
Con-

straints

Variable
Type

YL —F—
3|T |W̄ 2 |G|(|W |+

1)
|T |+

2|T |WC
|F |W̄ Ḡ+
|T |W̄ 2

ZK

- |G|(|W |+
2) +

|T |(2C̄W̄ +
2)

2|T | F̄ W̄+(W+
1) + |T |

formulations are not adequate and therefore cannot be applied. These conditions

include:

• The way a successful or failed connection is determined.

• The type of objective functions that can be accommodated.

• The value of connection costs.

• The variation in flight duration.

4.4.3 Determining Success/Failure of Connections

All formulations presented assume that whether a connection will be made

depends on the assignment of flights that comprise it. However, the YL formulation

assumes for simplicity that the location of gates does not affect the success or failure

of a connection. In other words, passengers will always catch the departing flight

if its departure time is later than the arrival time of the arriving flight, regardless

of the distance between the gates and the required connection time. On the other
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hand, both the proposed assignment approach and the ZK assume that the success

of a connection depends also on the required connection time. While the latter

approaches can be easily adapted to capture the simplifying assumption of YL, the

reverse does not hold.

4.4.4 Objective Function Types

The objective function generally consists of three cost components, namely

cost of flight assignment, missed connections, and successful connections. However,

formulation YL does not associate the individual assignments with the incurred

connection costs and therefore cannot be used with objectives like total passenger

walking distance.

4.4.5 Value of Connection Costs

In formulation ZK, the relationship between gate and connection networks is

established using the inequality

∑
e∈E(f,fd,k)

xe −
∑

ω∈Ep
(τ,f,fd,k)

zω ≥ 0,

τ ∈ T, f ∈ F, fd ∈ FDf , k ∈ K
(4.54)

which stipulates that variable zω of a passenger arc ω whose starting node corre-

sponds to clique c and time window k, and ending node corresponds to clique c′ and

time window k’ of a connection t = (i, i′), cannot be positive unless the xe variable

corresponding to flight i, gate j ∈ C, and time window k, and the xe variable cor-
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responding to flight i′, gate j′ ∈ C ′, and time window k′, are both positive. The

inverse relationship, however, is not explicitly enforced; in other words, the zω vari-

able is allowed to remain 0 even when both xe variables are equal to 1. Nevertheless,

if zω was equal to 0, then flow conservation constraints, combined with constraint

zcycleeτ + yτ = 1, τ ∈ T (4.55)

would make yτ equal to 1. This would contribute to the term of the objective

function dealing with missed connections, i.e.
∑

τ∈T canceltyτ . Under the reasonable

assumption that the costs of missing a connection is always larger than the cost of

the same connection if it succeeds, and given that the problem is a minimization

problem, the optimization will not allow the value of yτ to become 1 unless it

is “forced to”, i.e. when the respective zecycleτ
is equal to 0. But, due to flow

conservation constraints, this can only happen when there is zero flow in the network

of the connection, i.e. when the connection fails.

However, it might occasionally be more beneficial to allow for a connection to

be missed, as in the case where intentionally holding an outbound flight to facilitate

passenger connections from inbound flights would result in delay propagation across

the whole network. In that case, there exist combinations (j, j′, k, k′) ∈ QA
ii′ for a

connection (i, i′) which correspond to cost coefficients CS
ijki′j′k′ that are greater than

the respective CF
ii′ for missing a connection. This case cannot be handled by For-

mulation ZK, since the model might result in an “expensive” successful connection
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having all its zω variable values equal to 0 and therefore falsely count the connection

as missed.

4.4.6 Variation in Flight Duration

In most approaches, the duration of gate occupancy for each flight is fixed and

known beforehand. Therefore, the starting time of a gate assignment determines

uniquely the ending time. However, the duration of gate occupancy for a given flight

can change in practice. This means that the same starting time for a flight can

correspond to more than one potential ending times. In the time-index formulation,

this case cannot be covered without further modification. On the contrary, network

flow formulations can easily handle this case by defining suitable flight arcs.

4.5 Implementation

To compare the existing formulations and test the modified formulations we

developed, we carry out a number of experiments for a variety of custom generated

cases, as well as for cases based on the layout of Athens International Airport in

Greece (AIA, 2016). The optimization is performed using Gurobi© solver, which

applies a branch-and-cut procedure, assisted by a number of presolving and heuristic

techniques. All experiments were ran on a single host equipped with a quad core

Intel i7 2860QM processor (2.50 GHz) and 32GB of RAM, running Windows 10.
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4.5.1 Design of Experiments

Since we are interested in the performance of the alternative formulations, we

focus on the effect of the problem size, which depends on three factors: a) The

number of flights, which is associated with the number of passengers, b) the size of

the airport, i.e. the number of gates, and c) the planning horizon, i.e. the number of

time windows. To ensure that the case studies produced are reasonable, we generate

linear concourses with gates on one or both sides, and different scenarios for the

hourly rate of inbound and outbound flights. Details on the size and properties of

the case studies for each set can be found in the Appendix. All flight properties, like

scheduled arrival time, aircraft size, number of passengers, feasible set of gates, etc.,

are determined using a random number generator, according to predefined values of

distribution parameters. Table 4.6 summarizes the values of the basic parameters

used in the experiments.

4.5.2 Set 1: Improving the Assignment Formulation

In this set of experiments (Appendix Table A4), we compare the performance

of the different versions of quadratic formulation Q, the different versions of aggre-

gating Formulation A, and also compare Q and A to each other. The results

(Table 4.7) can be summarized as follows:

• The solution speed increases significantly from Formulation Q-A to Q-S and Q-F.
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Table 4.6: Basic Parameter Values in Sensitivity Analysis Experiments

Parameter Value

Flights

Aircraft

load factor limits
(0.5, 1)

Percentage

of connecting passengers
50%

Gate occupancy duration
(minute)

30’ for ≤150 seats, 40’ for
> 150 seats

Disruption Probability 0.4

Number

of aircraft types
9

Airport

Shadow Constraint
limit (m)

50

Concourse
Layout

Linear

Operator
Decisions

Additional holding
time range (min)

(-20,50)

Step size
(minutes)

10

Assumptions

Random Delay
Range (minutes)

(-10,70)

Passenger Walking
Speed (meters/minute)

70
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• Without the auxiliary constraint (4.19), Formulation Q-S cannot produce a fea-

sible solution within half an hour.

• The fastest version of formulation A is A-AS3, which is 3-index, is defined over all

connections, and uses the set of arriving or departing flights with the minimum

cardinality.

• Models with formulation A are faster than problems with formulation Q-S in most

cases.

First, we compare the performance and model properties between the different

quadratic formulations Q-A, Q-S, Q-F, Q-FA, where we optimize for a linear com-

bination of missed passenger connections and passengers with gate changes. The

objective function does not include cost components that depend on the success of

connections, since formulations Q-F and Q-FA cannot handle them, as explained in

section 4.2.2. On average (Figure 4.2), formulation Q-F is the fastest one, with aver-

age running time of 0.2 seconds; despite the fact that we expected formulation Q-FA

to result in further improvement, this did not happen, since formulation Q-F is on

average 3.9 times faster. However, both formulations result in low running times

and they both present significant speedup compared to formulations Q-A and Q-S.

Specifically, formulation Q-F is more than 500 times faster than formulation Q-A

(average running time of 103 seconds) and almost 100 times faster than formulation

Q-S (average running time of 21 seconds).

We observe there does not exist a single case where Formulation Q-S1 yields

a single feasible solution within the predefined time limit (1800 seconds), since the
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Table 4.7: Comparison between Formulations Q-A, Q-S1, and Q-S2

Combination Flow Approach Time Gap

1
Q-A - 100%
Q-S1 - 32545%
Q-S2 63.9 0%

2
Q-A - 100%
Q-S1 - 13392%
Q-S2 23.9 0%

3
Q-A - 100%
Q-S1 - 8730%
Q-S2 12.8 0%

4
Q-A - 100%
Q-S1 - 1E+100%
Q-S2 23.3 0%

5
Q-A - 97%
Q-S1 - 11417%
Q-S2 48.3 0%

Q-A Q-S2 Q-F Q-FA
Quadratic Formulations
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Figure 4.2: Running time for different quadratic formulations.
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solver cannot find a feasible solution in the root of the branch-and-bound tree with-

out the addition of auxiliary constraint set (4.19).

Next (Appendix Table A5), we compare formulations Q-A and Q-S assum-

ing the objective is to minimize a weighted sum of missed connections, passenger

walking distance, and gate changes. The results present a similar trend to the pre-

vious case, with Formulation Q-S1 consistently failing to produce feasible solutions,

while version Q-S2 produced feasible solutions relatively quickly (64 seconds in the

worst case, for an airport of 50 gates and a planning horizon of 4 hours, with 30

flight arrivals and departures per hour). The improvement in running time between

formulations Q-A and Q-D can be attributed not only to the reduction in problem

size (approximately 29 fewer variables and constraints) but also to the use of the

auxiliary constraints.

Moving on to the aggregating approach, we test (Table A6) all alternative

versions of formulation A. The Box-and-whisker plots for the running times are

shown in Figure 4.3. On average, formulation A-AS3 is the fastest one, yielding the

lowest times in 5 out of the 12 cases and the second lowest in 3 out of 12, where

it is outperformed only by formulation A-SL2. As can be seen in Figure 4.4, these

are the two formulations with the smallest number of variables and constraints.

However, reducing the number of variables and constraints does not necessarily

improve computational performance: This is obvious in the case of formulation

A-AL2, which fails to find an optimal solution in 11 out of the 12 cases, despite

the fact that, for every case, it produces the third smallest model, following only

formulations A-SL2 and A-AS3.
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In addition, it is interesting to observe the importance of selecting an appro-

priate flight set over which the ξ variables are defined. Out of all the models that

fail to find the optimal solution within the time limit of 1/2 hour, 97% used formu-

lations A-SL2, A-SL3, A-AL2, and A-AL3, which define ξ over the set of flights

(arriving or departing) with the largest cardinality. In total, out of all models where

the variables are defined over the largest set of flights, 67% eventually run out of

time.

It is also worth noting (Figure 4.3) that for every pair of formulations, a 3-index

formulation always outperforms its respective 2-index formulation.

We then compare the aggregating approach with the quadratic one (case stud-

ies in Table A7. For each approach, we use the formulation that has yielded the

best results so far, i.e. Q-S2 and A-AS3. Clearly (Figure 4.5), A-AS3 outperforms

Q-S2, which runs out of time in 33% of the cases and has an optimality gap that

varies between 4% and 65%.

4.5.3 Set 2: Comparing the Assignment Formulation with

Network Flow Formulations

In this set of experiments, we compare our best aggregating formulation, i.e.,

A-AS3, with the network flow formulations YL and ZK, proposed by Yu and Lau

(2015) and Zhang and Klabjan (2017), respectively. The findings of this experimen-

tal set can be summarized as follows:
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Figure 4.3: Running time for all aggregating formulations. Reaching the time limit
is represented with a value of 1800.
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Figure 4.4: Number of variables and constraints for different versions of the aggre-
gating formulation.

• The proposed formulation A-AS3 always outperforms YL approach, but is less

efficient than ZK approach when the cost of successful connections is considered.

• However, when the only objective associated with transfers is the number of

missed connections, A-AS3 outperforms ZK, with the difference in the required

time increasing with the number of gate cliques.

4.5.3.1 Our Formulation Vs. Yu and Lau’s Formulation

To compare the proposed formulation with Yu and Lau’s (2015), fwe adapt the

models based on each others simplifying assumptions. Therefore, in A-AS3, we a)

simplify the sets QA
ii′ and QF

ii′ so that they only depend on the available time (section
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Figure 4.5: Running time for Formulations Q-S2 and A-AS3.

4.4.3) and b) omit any objective terms referring to the cost of successful connections

(section 4.4.4). On the other hand, to account for fixed occupancy duration (section

4.4.6), YL formulation is simplified by only including arcs of specific length for each

flight. In all cases (Appendix Table A8), Gurobi can find the optimal solution within

seconds, not exceeding 1.6 seconds under Formulation A-AS3, and 13.1 seconds in

Yu and Laus model. Also in all cases, our model outperformed Yu and Lau’s,

requiring between 46% and 88% less time. Figure 4.6 depicts the optimization time

(a), number of variables (b), number of constraints (c), and number of non-zeros

(d) for the two formulations.

4.5.3.2 Our Formulation Vs. Zhang and Klabjan’s Formulation

To compare our model with Zhang and Klabjan’s, the assignment formulation

A-AS3 is modified to account for gate cliques, while formulation ZK is simplified
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Figure 4.6: Proposed Formulation Vs. YL Formulation

by assuming fixed flight duration (section 4.4.6). We also assume that the cost

of missing a connection is always greater than the cost of a successful connection

(section 4.4.5). To divide the gates into cliques we adapt out formulation accordingly

and introduce the following notation:

Sets:

C: Set of gate cliques (indexed as c and c′).

Ci ⊂ C: Set of gate cliques compatible with flight i.

Costs:

Cξ,S
(i,i′,c,c′,k,k′): Aggregating cost coefficients.

QA
ii′C: Set of allowed combinations (c, c′, k, k′) for connection (i, i′) .

QF
ii′C: Set of forbidden combinations (c, c′, k, k′) for connection (i, i′) .
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The aggregating variables ξ are defined similarly to before, but since they are

affected by the clique assignment instead of the specific gate assignment, constraints

(47)-(48) are modified accordingly:

ξick ≥
∑
i′∈FD:
(i,i′)∈T

∑
c′∈Ci′∩C′

∑
k′∈Wi′

Cξ,S
ii′cc′kk′Xi′j′k′ − UBS

ick,

i ∈ FA, c ∈ Ci, k ∈ Wi

(4.56)

ξick ≥ 0, i ∈ FA, c ∈ Ci, k ∈ Wi (4.57)

To cluster the gates, we use a Multidimensional Scaling (MDS) approach.

MDS was first proposed by Torgerson (1952) and is used for visualizing the level

of similarity between different points of a dataset, based on the value of a distance

function. For m objects, we develop an m × m dissimilarity matrix ∆, where the

element δij is the value of the distance function for objects i and j. MDS then

maps the objects to the N -dimensional space by calculating m co-ordinate vectors

x̂1, x̂2, . . . , x̂m ∈ RN (one for each object), each of length N , such that the distance

between every two objects i and j, based on the new coordinates, is as close as

possible to the dissimilarity value δij:

‖x̂i − x̂j‖ ≈ δi,j, i, j ∈ 1, . . . , I. (4.58)

In this case, we use passenger connection times as a measure of dissimilarity.

When examining gate connections, we are interested in the required connection
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time between the gates, which depends not only on the distance between gates,

but also on the layout of the airport, the available transportation modes, etc. As a

result, Euclidean distance is not sufficiently representative of the required connection

time, especially in airports with multiple terminals. We map the gates on the N -

dimensional space (for simplicity we choose N = m) and perform k-means clustering

based on the new coordinate vectors. Each case is tested for k=5, 6, and 7 cliques,

as well us without the use of cliques.

When walking distance is included in the objective, all cases (Table A9) are

solved to optimality within 30 minutes for both formulations (Table 4.8). However,

in spite of the fact that the assignment models are smaller (they require up to 96%

fewer variables and up to 98% fewer constraints), the formulation of Zhang and

Klabjan (2017) is faster in 33 of the total 48 models generated. We also observe

that, whenever the assignment formulation is faster, it is when no cliques have

been used and all gates are treated individually. When the network formulation is

faster, it can be faster by around 10% up to 98%; similarly, when the assignment

formulation is faster, it can be faster by less than 8%, up to 93%. No patterns

regarding direct correlation between the model performance and the size of the

problem were observed.

However, when we remove the cost of successful connections from the objective

function (Table A10), a different trend is observed: the assignment formulation

outperforms the network flow formulation in all cases, regardless of clustering or

problem size (Table 4.9). The performance difference is now consistently significant,

with the proposed formulation being 9 to almost 30 times faster. The speedup (ratio
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of ZK time to A-AS3 time) increases with the number of clusters (Figure 4.7), while

without clustering, the proposed formulation is between 11 and 100 times faster.
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Figure 4.7: Speedup of A-AS3 Vs. ZK formulation. Successful connection cost
is not taken into account
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Table 4.8: Time Comparison Between Formulations A-AS3 and ZK, Walking Distance Considered

Case

Clusters

5 6 7 None

A-AS3 ZK Diff. A-AS3 ZK Diff. A-AS3 ZK Diff. A-AS3 ZK Diff.

1 4.7 2.4 95.4% 17.2 4.5 283.9% 41.5 4.2 895.6% 15.4 58.1 -73.4%

2 5.6 4.5 26.3% 62.7 12.5 400.1% 33.9 5.4 527.5% 43.7 20 118.0%

3 24.5 3.4 619.1% 19.7 5.2 278.4% 19.1 4.1 367.1% 47.1 34.9 35.0%

4 10.8 5.8 87.1% 103.5 7.4 1302.1% 113.5 12.5 807.3% 170.5 88.7 92.2%

5 8.4 11.5 -27.1% 32.7 8.8 269.4% 59.5 21.7 174.8% 81.9 97.5 -16.1%

6 0.7 6.4 -89.7% 0.6 6.1 -90.7% 0.6 6.3 -90.1% 0.6 8.3 -92.5%

7 4.7 3.9 19.7% 5.8 7 -16.9% 2.6 7 -63.2% 6.6 53.1 -87.6%

8 3.1 6.2 -50.5% 16.8 11.8 42.7% 16.4 28.8 -43.1% 21.4 95.8 -77.7%

9 107.2 4.2 2432.3% 153.8 13.6 1032.7% 636.8 13.5 4613.9% 422 130.4 223.6%

10 28.7 5.9 387.6% 467.4 8 5774.3% 221.6 8.9 2396.2% 1241.2 157.6 687.8%

11 5.5 7.7 -29.0% 30.2 19.6 53.8% 58.4 28 108.6% 82.7 27.7 197.9%

12 8 5.8 37.1% 18.1 19.5 -7.0% 33.4 18.8 78.0% 71.1 32.6 118.0%
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Table 4.9: Time Comparison Between Formulations A-AS3 and ZK, Walking Distance Not Considered

Case

Clusters

5 6 7 None

A-AS3 ZK Diff. A-AS3 ZK Diff. A-AS3 ZK Diff. A-AS3 ZK Diff.

1 0.5 5.8 -91.9% 0.5 6.6 -92.6% 0.4 8.9 -95.1% 1 99.2 -99.0%

2 0.5 8.8 -94.2% 0.8 9.8 -92.1% 1.1 16.7 -93.3% 2.6 120.4 -97.8%

3 0.6 5.9 -89.8% 0.5 6.2 -91.2% 0.5 7.1 -92.6% 0.5 6.2 -91.2%

4 0.4 6.5 -94.2% 0.6 8 -92.5% 0.6 12.1 -95.4% 1.4 182.4 -99.2%

5 0.4 3.2 -88.6% 0.4 7 -94.4% 0.4 6 -94.2% 0.6 37 -98.5%

6 0.6 9.3 -93.0% 0.9 20.1 -95.5% 0.8 22.3 -96.6% 0.8 259.5 -99.7%
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4.5.4 Set 3: Large Case Study

In the final set of experiments, we verify our results in a real-sized airport.

We borrow the layout of Athens International Airport in Greece, which consists of

a main and a satellite terminal.

We perform the reassignment for 3, 6, and 8 hour-long reassignment windows,

assuming hourly flow rate equal to 35 and 40 flights per hour, 52 total gates, and

a different random number generator seeds for each case, resulting in a total of 12

cases (Table 4.10).

Table 4.10: Case Study Description

Case
Flights
/ Hour

Schedule
(Hours)

Reassignment
Window (Hours)

1 35 3 1
2 35 3 1
3 40 6 4
4 40 6 4
5 35 8 4
6 35 8 4
7 40 3 1
8 40 3 1
9 35 6 4
10 35 6 4
11 40 8 4
12 40 8 4

For each case, we run three subsets of experiments:

• Subset A1: We test the aggregating formulation A-AS3 for three different ob-

jective function combinations: a) When walking distance is involved (WALK), b)

When walking distance is not involved (NO WALK), and c) When walking distance
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is not involved, and we also assume that the success of a connection depends only

on the available time between the flights (NO WALK SIMPLE) (section 4.4.3). No

additional constraints were considered.

• Subset A2: We compare the aggregating formulation A-AS3 with YL formulation

for the NO WALK SIMPLE objective function combination. The common assump-

tions of both formulations are adopted. We also consider additional constraints

included in the study by Yu and Lau (2015), namely shadow constraints and

constraints regarding flights operated by the same aircraft.

• Subset A3: We compare the aggregating formulation A-AS3 with ZK formulation

for the WALK and NO WALK objective function combinations. Shadow constraints,

as in the study by Zhang and Klabjan (2017), are also included.

The basic model properties (number of variables, constraints, and non-zeros) are

shown in Tables 4.11 - 4.13, while Tables 4.14 - 4.16 shows the optimization results

(running time, resulting gap, and nodes explored in the branching procedure). Sub-

set A1 clearly demonstrates that, even under the same constraints, i.e. the same

feasible region of the problem, the objective function is a critical component de-

termining the running time of the cut-and-branch procedure: When total walking

distance is not included in the objective, i.e. in the NO WALK and SIMPLE cases,

an exact solution is always found within less than 3.5 seconds (Table 4.14). How-

ever, the WALK case is much more difficult to solve, with the solution time always

higher than 41 seconds and exceeding the limit of 15 minutes in large case studies.

In addition, the default cut generation procedures applied by Gurobi can solve all
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Table 4.11: Number of Variables, Constraints, and Non-Zeros for Experimental Set
A1

Case Variables Constraints
Non-Zeros

W NW S
1 8976 1773 246001 104946 104946
2 7074 1563 193270 113450 113450
3 16020 2735 484220 142719 142719
4 16004 2603 408439 141250 141250
5 17162 2721 661029 183445 183445
6 17209 2449 359468 86234 86234
7 9126 1178 214436 69831 69831
8 9329 1296 173469 73798 73798
9 20342 2602 591817 179286 179286
10 21621 2873 768324 260138 260138
11 22233 2698 550537 145534 145534
12 22274 2469 537952 120725 120725

NO WALK and SIMPLE cases at the root; however, all WALK cases require further

branching, as can be seen from the number of nodes explored.

Subset A2 confirms the results of section 4.5.3.1, where formulation A-AS3 was

shown to be more efficient compared to YL, as can be seen from the running times

and the number of nodes explored in the cut and branch tree. We also observe that

the additional constraints occasionally make the problem infeasible (Table 4.12).

In subset A3, we compare formulation A-AS3 with ZK, assuming that each

terminal corresponds to a gate clique. The results confirm that formulation A-AS3

is consistently faster than ZK when walking distance is not included in the objective

function. However, A-AS3 is also shown to outperform ZK in 7 out of 12 WALK

cases, while both approaches run out of time in 2 cases.
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Table 4.12: Number of Variables, Constraints, and Non-Zeros for Experimental Set
A2

Case Variables Constraints Non-Zeros
A-AS3 YL A-AS3 YL A-AS3 YL

1 8827 10358 7459 218077 233774 553413
2 8492 9028 7653 193963 158470 482834
3 18806 21359 15143 843152 377439 1932884
4 19214 21295 16000 567109 424874 1375949
5 22170 23358 19718 580755 371965 1404367
6 19629 21718 16881 587342 394498 1423561
7 11884 12583 9129 297673 255203 726276
8 10992 11472 8479 263844 253544 656668
9 24667 26505 18034 804322 485695 1914903
10 24679 26598 18300 855093 441432 2014969
11 27375 28825 20952 711869 437681 1748297
12 28077 29444 21821 1055492 496998 2448461

Table 4.13: Number of Variables, Constraints, and Non-Zeros for Experimental Set
A3

Case Time Gap Nodes
W NW S W NW S W NW S

1 32 25 1 12 0% 0% 0% 0% 17117
2 9 7 0 6 0% 0% 0% 0% 1088
3 52 437 1 130 0% 0% 0% 0% 1254
4 22 51 1 49 0% 0% 0% 0% 1101
5 100 227 3 70 0% 0% 0% 0% 1159
6 27 183 1 64 0% 0% 0% 0% 1091
7 14 47 0 18 0% 0% 0% 0% 1031
8 51 929 2 1800 0% 0% 0% 1% 6179
9 - - 6 - 1% 1E+100 0% 11% 4494
10 - - 9 - 2% 9% 0% 13% 1790
11 171 1802 6 645 0% 0% 0% 0% 1219
12 433 - 15 - 0% 1E+100 0% 10% 1212
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Table 4.14: Running Time, Gap, and Number of Nodes for Experimental Set A1

Case Time (s) Gap Nodes
W NW S W NW S W NW S

1 552 0 0 0% 0 0 34785 0 0
2 393 0 0 0% 0 0 27912 0 0
3 348 1 1 0% 0 0 17692 0 0
4 88 1 1 0% 0 0 1200 0 0
5 900 2 2 40% 0 0 20837 0 0
6 132 0 0 0% 0 0 1277 0 0
7 42 0 0 0% 0 0 1156 0 0
8 57 0 0 0% 0 0 2117 0 0
9 725 2 2 0% 0 0 10685 0 0
10 900 3 3 50% 0 0 10709 0 0
11 734 2 2 0% 0 0 5174 0 0
12 900 0 0 29% 0 0 4072 0 0

Table 4.15: Running Time, Gap, and Number of Nodes for Experimental Set A2

Case Time (s) Gap Nodes
A-AS3 YL A-AS3 YL A-AS3 YL

1 2 7 0 0 0 0
2 Inf Inf 1E+100 0 0 0
3 4 628 0 0 0 12129
4 12 121 0 0 1735 1120
5 Inf Inf 1E+100 0 0 0
6 4 90 0 0 0 6123
7 2 32 0 0 0 1114
8 3 TL 0 0 0 173478
9 16 TL 0 0 0 8733
10 7 TL 0 0 0 1693
11 Inf Inf 1E+100 0 0 0
12 Inf Inf 1E+100 0 0 0

Inf: Infeasible,
TL: Time Limit
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Table 4.16: Running Time, Gap, and Number of Nodes for Experimental Set A3

Case Time (s) Gap Nodes
W NW W NW W NW

A-AS3 ZK A-AS3 ZK A-AS3 ZK A-AS3 ZK A-AS3 ZK A-AS3 ZK
1 32 25 1 12 0% 0% 0% 0% 17117 0 0 0
2 9 7 0 6 0% 0% 0% 0% 1088 0 0 0
3 52 437 1 130 0% 0% 0% 0% 1254 3337 0 2181
4 22 51 1 49 0% 0% 0% 0% 1101 0 0 0
5 100 227 3 70 0% 0% 0% 0% 1159 931 0 0
6 27 183 1 64 0% 0% 0% 0% 1091 2366 0 0
7 14 47 0 18 0% 0% 0% 0% 1031 1521 0 489
8 51 929 2 1800 0% 0% 0% 1% 6179 46295 0 51558
9 - - 6 - 1% 1E+1000% 11% 4494 1466 0 4566
10 - - 9 - 2% 9% 0% 13% 1790 2724 0 2666
11 171 1802 6 645 0% 0% 0% 0% 1219 21062 0 12895
12 433 - 15 - 0% 1E+1000% 10% 1212 1801 0 2290

4.5.5 Discussion and Implications

The results of sections 4.5.2-4.5.4 can facilitate airport authorities in real-time

decision making, where the most suitable formulation depends on a) the priorities

of the decision maker, and b) the problem limitations.

On the one hand, the experiments showed that assignment formulations al-

ways outperform network flow formulations when walking distance is not considered.

When walking distance is optimized, their behavior is comparable network flow for-

mulation ZK, occasionally outperforming them and sometimes performing rather

poorly. Meanwhile, priorities vary among airports and airlines and can also change

according to the circumstances. For example, in cases of large scale disruptions (e.g.

due to temporary airport closures), the airport authority would focus on reducing

missed connections rather than improving the level of passenger service; in this
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case, an aggregating assignment formulation would always be more suitable than a

network flow formulation. However, other circumstances, such as the existence of

flights with a high percentage of priority (first class and business) passengers, might

require to optimize the walking distance. In this case, either a network flow or an as-

signment formulation could work. Finally, the choice of formulation depends on the

available time for optimization and can change in airports where demand presents

high variability: In days of relatively low traffic, when the available time is higher,

a multi-objective approach that includes level of service can be used. However,

when high demand increases both the problem size and the number of potential

gate conflicts, an assignment model which does not consider walking distance might

be preferred.

On the other hand, certain problem circumstances might require specific for-

mulations. For example, when disruptions are so intense that flight cancellations

are preferable to additional delays, only an assignment formulation can be used,

as explained in section 4.4.5. Finally, assuming fixed flight duration, the proposed

assignment formulation is the most easily adaptable to different assumptions and

objective functions.

4.6 Summary, Conclusions, and Future Research

In this study, we have analyzed the formulation of the flight-to-gate reassign-

ment problem with passenger connections. Our research has focused on three main

directions: First, we have analyzed the two dominant formulations in the literature,
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i.e. the multidimensional assignment and the network flow-based formulations. Sec-

ond, we have adapted and strengthened the existing assignment-based formulations

by reformulating the constraints and introducing valid inequalities that facilitate

the cut-and-branch procedure. Finally, we have developed a new assignment formu-

lation that considers the layout of the airport and the available connection time to

determine whether a connection will eventually be made or missed.

We have analyzed the existing and the new formulations from both a theoreti-

cal and an experimental perspective: First, we have estimated upper bounds on the

number of variables and constraints of each formulation. We have also pinpointed

the differences in the underlying assumptions of each approach and, consequently,

in the applicability of each one under different types of objective functions, cost co-

efficients, and modeling assumptions. To evaluate each formulation in practice, we

generated experimental sets of various sizes with different airports and flight sched-

ules. Our results indicate that the aggregating assignment formulations outperform

the quadratic formulations, while assignment formulations are consistently more ef-

ficient than network flow-based approaches when the cost of successful connections

is not included in the objective function.

Having developed a strong and efficient mathematical formulation, the next

step is to embed it in a model-based metaheuristic framework to further accelerate

the solution procedure and produce near-optimal results in real time.
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Chapter 5

A Modified Variable Neighborhood
Search With Local Branching Approach

for the Flight-To-Gate Reassignment
Problem

Chapter Overview

In this chapter, we develop a metaheuristic framework to assist airport operators

in reassigning aircraft to gates in a quick and efficient way. Since we have already

explored and significantly improved the mathematical formulation of the gate reas-

signment problem in Chapter 4, we embed the mathematical programing model in

a metaheuristic framework that relies on Variable Neighborhood Search with Local

Branching. We explore alternative ways to define the key notion of a solution neigh-

borhood, given that transfer passengers are the main consideration of the problem.

We calibrate the algorithm to determine the optimal parameter combinations and

test it in a separate set of experiments to verify its applicability. The results indi-

cate that within 10 minutes the algorithm can reach a provably optimal solution for
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which an MIP solver requires between 1/2 and 3 hours. We then use the algorithm in

a set of sensitivity analysis experiments and verify its performance under variations

in external and operational parameters. In the end, we propose a set of extensions

to the algorithm to improve the quality of the final solution and the progress of

the optimization. In this chapter, we also introduce a new measure of effectiveness

concerning transfer passengers, i.e., the number of baggage pieces (“misconnected

baggage”) that fail to make the connection from the inbound to the outbound flight.

Keywords: gate reassignment; MIP heuristics; metaheuristics; Local Branching;

Variable Neighborhood Search with Local Branching

5.1 Introduction

By this point, we have examined the Gate Reassignment Problem with pas-

senger connections from a practical (Chapter 3) and a modeling (Chapters 3 and 4)

perspective. First (Chapter 3), we examined the measures of effectiveness and the

way to incorporate them in the objective function cost coefficients. Based on our

observations, we proceeded to the development of a time-index assignment model

that handles passenger transfers in a realistic way. Then (Chapter 4), we examined

alternative formulations of the gate reassignment problem with passenger connec-

tions and identified the assumptions under which each formulation is more suitable.

We also used state-of-art knowledge combined with our own research to improve the

proposed assignment model.
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As it naturally follows, the next step is to use the findings described in the

previous sections to develop an algorithm that is capable of solving the gate re-

assignment problem with passenger connections in an acceptable amount of time.

In this section, we will examine how we can embed the formulation in a solution

framework that combines the advantages of our improved mathematical formulation

with the efficiency and exploration capability of modern metaheuristics. A recently

developed metaheuristic which combines the above properties is Variable Neighbor-

hood Search with Local Branching (VNS-LB), which will be implemented in this

Chapter. For comparison, but primarily because it shares the same basic properties

with VNS-LB, we will also adapt simple Local Branching, which is an MIP heuristic

that has already been tested in a similar context (Yu and Lau, 2015).

Before proceeding to our application, we will first explain the three main

methodological concepts of this chapter, i.e., MIP heuristics, metaheuristics, and

MIP (“model-based”) metaheuristics. We will then introduce a new measure of

effectiveness, i.e. missed baggage connections, which we will use in our objective

function in some of the experiments that follow.

5.1.1 MIP Heuristics

MIP heuristics use the mathematical formulation of an optimization problem

to generate a near-optimal or optimal solution in a limited amount of time. Con-

temporary MIP solvers embed MIP heuristics in the Branch-And-Bound process,

along with presolve and cut generation, to accelerate the solution procedure. A
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comprehensive review of MIP heuristics can be found in Berthold (2006), who iden-

tify two main categories of MIP heuristics, namely start heuristics and improvement

heuristics.

1. Start heuristics: Start heuristics aim at finding relatively good feasible solutions

in the early stages of the Branch-and-Bound process (Berthold, 2006).

2. Improvement heuristics: Improvement heuristics use some “provided informa-

tion” to generate new feasible solutions which are better than one or more given

solutions (Berthold, 2006).

5.1.2 Metaheuristics

Metaheuristic techniques are a major subfield of stochastic optimization which

includes a variety of general algorithms that can be applied to a very wide range of

problems (Luke, 2013). Glover and Kochenberger (2003), define them as “solution

methods that orchestrate an interaction between local improvement procedures and

higher level strategies to create a process capable of escaping from local optima

and performing a robust search of a solution space”. In other words, metaheuristics

combine the ability to explore different areas of the solution space (“diversification”)

while also focusing on discovering the best solution in every area (“intensification”).

At each stage of the solution procedure, the metaheuristic uses the available infor-

mation to determine whether the search should be guided towards discovering new

solutions or into a deeper local search of the current solution area (“exploration Vs.

exploitation”).
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Contrary to common heuristics, a metaheuristic generally does not take into

account the specific structure or properties of the problem in hand and treats the

objective function of the problem as a “black box”. Consequently, metaheuristics are

generally problem-independent, a fact which contributes to their wide applicability

to a broad range of combinatorial optimization problems.

Simulated annealing, tabu search, and genetic algorithms are only a few ex-

amples of metaheuristics. Recent research in the field focuses on the development of

so-called “hybrid metaheuristics” or “metaheuristic hybrids”. A detailed survey on

this special category of algorithms can be found in Raidl et al. (2010). Metaheuristic

hybrids may combine features of different metaheuristics, or combine metaheuris-

tics with other optimization techniques, such as branch-and-bound or mathematical

programming (Raidl et al., 2010).

5.1.3 MIP Metaheuristics

As explained, a certain category of hybrid metaheuristics are the result of com-

bining classical metaheuristics with mathematical programming. The algorithms of

this class are sometimes referred to as “model-based metaheuristics” or “matheuris-

tics”. In this dissertation, we will use the term “model-based metaheuristics” or the

equivalent “MIP-Metaheuristics”.

There are two main types of model-based metaheuristics:

1. Algorithms which use the MIP model as a subroutine for known metaheuristics,

such as genetic algorithms, tabu search, and Variable Neighborhood Search.
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2. Algorithms which use the MIP as a paradigm for new metaheuristics. These

algorithms could not exist without the use of the MIP model. Examples from this

category are Local Branching (Fischetti and Lodi, 2003), Dynasearch (Congram

et al., 2002), and Very Large Neighborhood Search (Ahuja et al., 2002).

In both cases, the algorithm handles the MIP formulation in different ways, such as

for generating columns of a set partitioning formulation, or for generating relaxed

versions of the problem. Therefore, a restricted version (which is easier to solve) of

the original MIP problem is used in the procedure.

5.2 Local Branching and Variable Neighborhood Search with

Local Branching: Overview

In this chapter, we use a model-based metaheuristic, namely Variable Neigh-

borhood Search with Local Branching, to solve large instances of the gate reassign-

ment problem. Since variable Neighborhood Search with Local Branching shares

many sub-procedures with simple Local Branching, we will also apply the Local

Branching heuristic in the same context. Before applying these techniques, we will

introduce their main features and describe the general version of each procedure.

To the best of our knowledge, this is the first application of Variable Neighborhood

Search with Local Branching for solving the planned or real-time gate assignment

problem.
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5.2.1 Local Branching

Local branching (LB) is an MIP technique introduced by Fischetti and Lodi

(2003) which relies on the iterative solution of properly defined sub-problems using

the mathematical formulation of the problem. Although in principle designed as an

exact method, LB can be adapted and used as a heuristic method to solve large and

complicated problems (Hansen et al., 2006) by adding one or more linear constraints

which restrict the solution space during the search procedure. These constraints

push the search procedure to explore solutions that are “close” or “further away”

from the current solution. For a general Binary IP problem, the local branching

procedure is as follows:

Let X represent the total solution space. After a feasible solution x̃1 is ob-

tained, a new constraint is added, so that the candidate solution space is reduced to

solution space X1, which includes only solutions that are within a given Hamming

distance from x̃1, i.e.:

Nk(x̃1) = {x | d(x, x̃1) ≤ k} (5.1)

Using the MIP formulation, Nk(x̃1) can be represented by a local branching con-

straint:

∆(x, x̃1) =
∑
j∈S̄

(1− xj) +
∑
j∈B\S̄

xj ≤ k (5.2)

where S̄ = {j ∈ B | x̃1 = 1}. The restricted problem is ran for a given time limit

and has three possible outcomes:
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• If a better solution x̃2 is found, a new branching constraint is created by replacing

the “≤” of constraint 5.2 with “>”:

∑
j∈S̄

(1− xj) +
∑
j∈B\S̄

xj > k (5.3)

By adding constraint 5.3 to the problem, the search is moved “far” from x̃1 and is

now centered around the new solution x̃2. Therefore, the feasible region X2 is now

given as

X2 = X ∩ (Nk(x̃2) \Nk(x̃1)) = (X \X1) ∪Nk(x̃2) (5.4)

The new restricted MIP is solved and the procedure continues as long as the in-

cumbent solution is improved. In general, after l steps, l new branching constraints

have been added, and the feasible region Xl is found as

Xl = (X \X1 \X2 · · · \Xl) ∩Nk(x̃l−1) (5.5)

• If a new feasible solution is found within a predetermined time limit tnode, but is

not better than the incumbent, the neighborhood Xl is reduced by replacing k with

k/2. This procedure is called intensification:

∑
j∈S̄

(1− xj) +
∑
j∈B\S̄

xj ≤ k/2 (5.6)

• If the problem is proven to be infeasible, or no feasible solution at all is found

within tnode time, a diversification procedure is followed. First, the right-hand side
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of the branching constraint is increased by k/2:

∑
j∈S̄

(1− xj) +
∑
j∈B\S̄

xj ≤ k + k/2 (5.7)

Then, a new constraint is added, to force the exploration of neighborhoods that are

further away from the current solution xl:

∆(x, xl) > 1 (5.8)

Finally, all previously added branching constraints are deleted. The new MIP prob-

lem is solved within a given time limit. The maximum allowed number of diversifi-

cations is given by a parameter dvmax.

The solution procedure continues when the total time limit is reached, or when the

maximum number of diversifications, dvmax has been made. Algorithm 1 shows in

detail the steps of a general local branching algorithm, as was originally introduced

by Fischetti and Lodi (2003).

Algorithm 1 General Local Branching Procedure (Fischetti and Lodi, 2003)

1: procedure LocalBranching(k, T TL, NTL, dvmax, xopt)
2: rhs←∞, UBBest ←∞, UB ←∞, TL←∞
3: xopt ← None
4: opt← True,First← True
5: dv ← 0
6: Diversify← False
7: repeat
8: if rhs <∞ then
9: Add ∆(x, xnew) ≤ rhs

10: end if
11: TL← minT TL, T TL − elapsed time
12: stat←MIPSolve(TL, UB,First, xnew)
13: TL← NTL
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14: if stat = optimal solution found then
15: if cTxnew < UBBest then
16: UBBest ← cTxnew
17: xopt ← c
18: end if
19: if rhs ≥ ∞ then return opt
20: end if
21: Reverse the last local branching constraint into ∆(x, xcur) ≥ rhs+ 1
22: Diversify← False,First← False
23: else if stat = proven infeasible then
24: if rhs ≥ ∞ then return (opt)
25: Reverse the last local branching constraint into ∆(x, xcur) ≥ rhs+

1
26: if Diversify then
27: UB ←∞, TL←∞ ; dv ← dv + 1; First← True
28: end if
29: rhs← rhs+ k/2; Diversify← True
30: end if
31: else if stat = feasible solution found then
32: if rhs ≤ ∞ then
33: if First = True then
34: Delete the last local branching constraint ∆(x, xcur) ≤ rhs
35: else
36: Replace the last local branching constraint ∆(x, xcur) ≤ rhs

by ∆(x, xcur) ≥ 1
37: end if
38: end if
39: Refine(xnew)
40: if cTxnew ≤ UBBest then
41: UBBest ← cTxnew;xopt ←new

42: end if
43: First ← False,Diversify ← False, xnew ← xnew, UB ← cTxnew, rhs ←

k
44: else if stat = no feasible solution found then
45: if Diversify then
46: Replace the last local branching constraint ∆(x, xcur) ≤ rhs by

∆(x, xcur) ≥ 1
47: UB ←∞, TL←∞; dv ← dv+ 1; rhs← rhs+ k/2; First← True
48: else
49: Delete the last local branching constraint ∆(x, xcur) ≤ rhs
50: rhs← rhs− k/2
51: end if
52: Diversify ← True
53: end if
54: until elapsed time > T TL) or (dv > dvmax
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55: TL ← T TL − elapsed time; First ← False; stat ← MIP SOLVE
(TL, UBBest,First, xopt); opt ← (stat = optimal solution found) or
(stat = proven infeasible) return (opt)

56: end procedure

5.2.2 Variable Neighborhood Search with Local Branching

Variable Neighborhood Search (VNS) is a metaheuristic technique originally

introduced by Mladenović and Hansen (1997). The basic idea of VNS is “a system-

atic change of neighborhood both within a descent phase to find a local optimum

and in a perturbation phase to get out of the corresponding valley”.

In its original form, VNS was not proposed as a model-based metaheuristic.

However, Hansen et al. (2006) developed an alternative version of VNS, called Vari-

able Neighborhood Search with Local Branching (VNS-LB), which takes advantage

of the MIP formulation by using local branching constraints to define the neighbor-

hood that is used in every step of the procedure.

In order to understand VNS-LB, we will first define the fundamental con-

cepts of classic VNS, such as the neighborhood and the k-neighborhood (paragraph

5.2.2.1), and describe the steps of the algorithm (paragraph 5.2.2.2).

5.2.2.1 Defining a Neighborhood in VNS

A key concept of Neighborhood Search is the definition of the neighborhood of

a solution. In general, the neighborhood of a solution p refers to the set of solutions

that are “close” to p. The term “close” means that they can be easily computed from
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p or that they have a common structure with p (Ambite, 2001). For example, in an

assignment problem, one could define the neighborhood of a solution by exchanging

the assigned tasks between two agents.

The definition of “neighborhood” is directly associated with the notion of “dis-

tance” between two solutions. The distance between two solutions x1, x2 measures

the degree of difference between them, regardless of their objective function value,

and is defined according to the specific problem it refers to. For example, for a Trav-

eling Salesman Problem, the distance can be calculated as the number of different

edges between the two tours. For a facility location problem, it can be measured as

the number of facilities assigned to different locations. For a general binary integer

program, it can be equal to the number of variables that receive a different value in

the two solutions.

Sometimes, the definition of a neighborhood depends not only on the neigh-

borhood structure, but also on the value of some distance measure as expressed

through a parameter k; in this case we refer to the k-neighborhood of a solution

x. Assume, for example, a Traveling Salesman Problem defined for a set of nodes

1, . . . , N , where a feasible solution x is a permutation of the nodes. Then, for

k = 2, the 2-neighborhood of x can be defined as the set of solutions that share

all but 2 common edges with x. In the assignment problem described before, the

k-neighborhood of a solution may include all assignments for which exactly k agents

have been assigned the same task.

In this context, the neighborhood of a solution x1 is the set of all feasible

solutions which belong within a certain distance from x1. Setting the distance limit
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equal to k, we get the definition of the k-neighborhood of a solution, i.e., the set of

solutions that are within at most k distance units from the solution. Therefore, in

a Traveling Salesman Problem, the k-neighborhood is the set of all tours with most

k different edges compared to the tour corresponding to x̃, while for the facility

location problem, the k-neighborhood is the set of solutions with at most k facilities

assigned to a different location compared to their assignment in x̃.

5.2.2.2 VNS Procedure

In VNS, a set of neighborhood structures is defined and sorted from 1 to k.

The main idea of the search is to explore the neighborhood that is supposed to be

the most promising (k = 1) and move to the next neighborhood only if no improved

solution is found.

A typical VNS procedure can be roughly described as follows: First, a starting

solution is found and set as current. Then, the neighborhood of the current solution

is searched, and a new solution is found. If the solution is better than the current,

it replaces the current solution and the search is centered around the new current

solution. In the opposite case, the search continues to the next neighborhood of the

current solution and a new solution is yielded. Similarly to before, if the solution is

better than the current one, it replaces the current one and the search is centered

around the new solution. Otherwise, the search again continues to the next neigh-

borhood of the current solution. The procedure continued until all neighborhoods of

a solution have been explored without improvement, or until a time limit is reached.
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The main body of VNS involves the iterative execution of three basic sub-

procedures: The Shake function (Shake), the Variable Neighborhood Decent func-

tion (VND), and the Neighborhood Change function (NeighborhoodChange).

The NeighborhoodChange function is called when a new solution x′ is

found. If the new solution is better than the current x, then x′ becomes the cur-

rent solution and the procedure restarts centered around x′. If not, then the next

neighborhood of x is searched. The procedure is described in Algorithm 2.

Algorithm 2 The Neighborhood Change Function, as shown in Hansen et al. (2010)

1: procedure NeighborhoodChange(x, x′, k)
2: if f(x′) < f(x) then
3: x← x′ . Make a move
4: k ← 1 . Initial Neighborhood
5: else
6: k ← k + 1 . Next Neighborhood
7: end if
8: return (x, k)
9: end procedure

The Shake Function generates a random point x′ within the k-neighborhood

of x. The pseudocode of the procedure follows in Algorithm 3:

Algorithm 3 The Shake Function, as shown in Hansen et al. (2010)

1: procedure Shaking(x, k)
2: w ← [1 + rand(0, 1)× | Nk(x) |]
3: x′ ← xw

4: return x′

5: end procedure

Finally, VND is used instead of simple local search to find the best solution

in the neighborhood under consideration, within a specified amount of time. VND

itself is a simplified form of VNS, since it involves the systematic exploration of

neighborhoods in a predetermined order and calls the NeighborhoodChange
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function when a new candidate solution is obtained. The steps of VND are described

in Algorithm 4:

Algorithm 4 The Variable Neighborhood Descent Function, as shown in Hansen
et al. (2010)

1: procedure VND(x, Kmax)
2: k ← 1
3: repeat
4: x′ ← arg miny∈Nk(x) f(y) . Find the best neighborhood in Nk(x)
5: x, k ← NeighborhoodChange(x, x′, k) . Change neighborhood
6: until k = kmax

7: return (x)
8: end procedure

The main VNS function iteratively calls all three sub-procedures, i.e., Shake,

VND, and NeighborhoodChange. The procedure is shown in Algorithm 5.

Algorithm 5 The General Variable Neighborhood Search Procedure

1: procedure GVNS(X, lmax, kmax, tmax)
2: repeat
3: k ← 1
4: repeat
5: x′ ← Shake(x, k)
6: x′′ ← VND(x′, lmax)
7: x, k ← NeighborhoodChange(x, x′′, k)
8: until k = kmax

9: until t > tmax

10: return x
11: end procedure

A number of potential modifications Hansen et al. (2010) allow us to obtain

simpler versions of VNS: By replacing the VND procedure with a simple local search

heuristic, like best improvement (steepest descent) or first improvement, the Basic

Variable Neighborhood Search (BVNS) is obtained; if the descent phase is com-

pletely eliminated, the so-called Reduced Variable Neighborhood Search (RVNS) is

obtained. However, in this study, we use the general form of Variable Neighborhood

Search, which includes all of the sub-procedures described before.
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5.2.2.3 Variable Neighborhood Search With Local Branching

In VNS-LB, local branching constraints are used to define the neighborhood

of the current solution x̃. More specifically, the k neighborhood of x̃ is the set of

feasible solutions with a Hamming distance from x̃ (constraint 5.2) that is no greater

than k. This defines a set of neighborhood structures {N1, N2, . . . , Nk}, which are

used both in the inner VND loop of Algorithm 5, and in the outer loop, when the

Shake function is called. The value of k changes from 1 to kmax in the outer loop

and from 1 to lmax in the inner loop. In each step of the outer loop, k is increased by

a predetermined value kstep. The total procedure runs for at most tmax time, while

tnode is the time limit of every MIP subproblem.

To reduce the number of required parameters, Hansen et al. (2006) allowed

unlimited increase in the size of the neighborhood both in the outer and in the

inner loop by not specifying a value for kmax or lmax. For simplicity, they also set

kmin = kstep. Algorithm 6 presents in detail the steps of the procedure. Hansen et al.

(2006) use the following parameters:
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UB: Input parameter for the MIP solver. It defines the objective function

cutoff, i.e., the worst acceptable objective function value.

First: Input for the MIP solver. If True, the solver returns the first feasible

solution found. If False, the solver continues until the termination

conditions (e.g., node time limit) are satisfied.

TL: Total time limit, used as input for the MIP solver. It is equal to the

time limit allocated to the optimization procedure.

rhs: The right-hand side of the local branching constraint for the inner

(VND) loop.

Cont: If True, the inner loop continues; if False, it breaks.

xopt, fopt: Incumbent (best so far) solution and corresponding objective func-

tion value, respectively.

xcur, fcur: Current solution and corresponding objective function value, respec-

tively.

kcur: The neighborhood from where VND starts.

xnext, fnext: Solution and corresponding objective function value in inner loop.

5.3 Adaptation of LB and VNS-LB to the Gate Reassign-

ment Problem

In this section, we will describe in detail how Variable Neighborhood Search

with Local Branching is appropriately modified so that it is adapted to the problem
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Algorithm 6 The Variable Neighborhood Search With Local Branching Procedure
(Hansen et al., 2006)

1: procedure VNSBranching(T TL, NTL, kstep, x
opt)

2: TL← T TL; UB ←∞; First← textrmTrue
3: stat←MIPSolve(TL, UB,First, xopt, fopt)
4: xcur ← xopt; fcur ← fopt

5: while elapsed time < T TL do
6: cont← True; rhs← 1; First← False
7: while cont or elapsed time < T TL do
8: TL← min(NTL, T TL − elapsed time)
9: Add local branching constraint ∆(x, xcur) ≤ rhs;UB ← fcur

10: stat←MIPSolve(TL, UB,First, xnext, fnext)
11: if stat = optimal solution found then
12: Reverse the last local branching constraint into ∆(x, xcur) ≥ rhs+

1
13: xcur ← xnext; fcur ← fnext; rhs← 1
14: else if stat = feasible solution found then
15: Reverse the last local branching constraint into ∆(x, xcur) ≥ 1
16: xcur ← xnext; fcur ← fnext; rhs← 1
17: else if stat = proven infeasible then
18: Remove last local branching constraint; rhs← rhs+ 1
19: else if stat = no feasible solution found then
20: cont← False
21: end if
22: end while
23: if fcur < fopt then
24: xopt ← xcur; fopt ← fcur; kcur ← kstep

25: else
26: kcur ← kcur + kstep
27: end if
28: Remove all added constraints; cont← True
29: while cont and elapsed time < T TL do
30: Add constraints kcur ≤ ∆(x, xopt) < rhs+ 1
31: TL← T TL − elapsed time;UB ←∞; First← True
32: stat←MIPSolve(TL, UB,First, xcur, fcur)
33: Remove last two added constraints; cont← False
34: if stat ← proven infeasible or

no feasible solution found then
35: cont← True; kcur ← kcur + kstep
36: end if
37: end while
38: end while
39: end procedure
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of gate reassignment. In addition, we implement the Local Branching heuristic,

since both techniques are centered around the concept of a solution neighborhood.

Therefore, before we implement these techniques, we have to determine a

proper way to define the “neighborhood” of a solution. In particular, we are in-

terested in two neighborhood properties, i.e., the structure and the size limits. Af-

terwards, we proceed by identifying the main parameters which define the search

procedure in each algorithm. We will calibrate the algorithm by determining the

most suitable values of each of these parameters before we implement it for solving

large-size problems (section 5.5).

5.3.1 Prior to Implementing

As explained in sections 5.2.1 and 5.2.2, to embed the notion of neighborhood

within an MIP formulation, we use a local branching constraint which limits the

Hamming distance between each solution of the neighborhood and the current solu-

tion, within some bound k. In the original version of LB Fischetti and Lodi (2003),

the value of k is fixed and selected according to the problem. In VNS-LB, the values

of k define the order in which the neighborhoods of a specific solution are explored,

with the search procedure starting from k = 1 and increasing to k = 2, k = 3,. . . ,

etc., if no neighborhood change has been performed.

The proper selection of k is one of the major implementation issues investigated

in this study. Therefore, prior to applying LB and VNS-LB, we have to answer

the following questions, from the perspective of the problem in hand:

189



1. What is the neighborhood of a solution?

2. For each neighborhood definition, how should we define the limits of the pa-

rameters that control the size of the neighborhood?

3. Based on our answers to the previous two questions, what are the alternative

ways to formulate the local branching constraints?

4. Which combinations of parameters give the best results?

Questions 1-3 can be answered by examining the properties of the problem

combined with the formulation of the local branching constraints, as will be shown

in section 5.3.1.1. For question 4, a systematic calibration and validation of the algo-

rithms using different parameter combinations is required. Details on the procedure

of parameter combinations follow in section 5.5

5.3.1.1 Defining a Neighborhood and Its Size Limits

To better adapt the VNS and VNS-LB algorithms to the gate reassignment

problem, we experiment with alternative neighborhood definitions by using our

knowledge about a) the practical aspects of the problem, and b) the properties

of the MIP time-index assignment formulation.

From a practical perspective, the key features of the problem are incorporated

in the objective function, which is a weighted sum of missed and successful connec-

tion cost, as well as of the assignment cost, with the latter expressed as a function

of the temporal and spatial deviation from the planned schedule. Therefore, apart
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from using the number of binary variables with different values, we additionally

propose the following four alternative ways to define the distance between two gate

assignment solutions:

1. Number of binary variables with a different value between the solutions.

2. Number of flights with a gate change.

3. Number of flights with a time change.

4. Number of flights with either a gate or a time change.

5. Number of connections with a different outcome, i.e., connections which are

successful in one solution but fail in the other, and vice versa.

While it is simple to formulate the left-hand side of the local branching con-

straints when using neighborhood definitions 1-4, using the transfer-based definition

5 is less straightforward. Simply put, we want to use the decision variables of the

problem to create an expression that is translated as “the number of connections

which have a different outcome in the two solutions”. Based on the results from

Chapter 4, we use the aggregating formulation A-AS3, which expresses the total

connection cost of each flight i assigned to gate j in time window k as the value of

a continuous variable ξijk. However, formulation A-AS3 does not explicitly include

information on the outcome (success or failure) of a transfer (i, i′), while the success

or failure of a connections cannot be directly assessed by evaluating the values of

ξijk variables.
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To tackle this issue, we use the linearized quadratic mathematical formulation

Q-FA (Chapter 4) and define a new set of variables, ZG. It is reminded that ZG

was defined as follows:

ZG
ii′jk =


1, if connection (i, i′) is missed, and Xijk = 1

0, otherwise

(5.9)

We also specify the following sets: Let TS be the set of successful transfers in

the current solution x1, and TF the set of failed transfers in x1. The local branching

constraint which imposes that the number of transfers with a different outcome than

the one in solution x1 should not exceed k can be formulated as follows:

∑
(i,i′)∈TS

∑
j∈Gi

∑
k∈Wi

ZG
ii′jk +

∑
(i,i′)∈TF

(
1−

∑
j∈Gi

∑
k∈Wi

ZG
ii′jk

)
≤ k (5.10)

To ensure the validity of the formulation, we additionally include the linearization

constraints:

ZG
ii′jk ≤ Xijk, (i, i

′) ∈ T, j ∈ Gi, k ∈ Wi (5.11)

ZG
ii′jk ≤

∑
(j,j′,k,k′)∈QF

ii′

Xi′j′k′ , (i, i
′) ∈ T, j ∈ Gi, k ∈ Wi (5.12)

ZG
ii′jk ≥ Xijk +

∑
(j,j′,k,k′)∈QF

ii′

Xi′j′k′ − 1, (i, i′) ∈ T, j ∈ Gi, k ∈ Wi (5.13)

Obviously, every definition of the distance between solutions corresponds to

a neighborhood structure: For example, if the distance is defined as the number

of flights with a gate change, then the k-neighborhood of solution x contains all
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solutions where at most k flights are assigned to a different gate than they were

assigned to in x. Respectively, each neighborhood structure is associated with the

minimum and maximum value of k in the right-hand side of the local branching

constraint. In theory, the maximum value could be set to infinity, or at least equal

to the number of binary variables in the formulation. However, we can limit the value

of k to prevent redundant neighborhood exploration by using the set partitioning

flight constraints: ∑
j∈G

∑
k∈Wi

Xijk = 1, i ∈ F (5.14)

Because of the flight constraints, we know that, out of all variables Xijk which are

associated with a flight i, exactly one is equal to 1, while all of the others are 0.

When either the assigned gate or the time of flight i are changed, the the values of

exactly two variables change: The variable Xijk that was previously equal to 1 drops

to 0, while some other variable, which was previously equal to 0 and corresponds to

the new gate-time combination, receives a value of 1 in the new solution. All other

Xijk variables associated with flight i remain zero. Therefore, two solutions cannot

differ in more than two variables for each flight. Based on that, we can make the

following propositions regarding the value of k:

1. Two different solutions have at least two different variables.

2. Two different solutions have at most 2× | F | different variables, where | F |

represents the total number of flights considered.

Using a similar reasoning, we can define the respective bounds for the remain-

ing neighborhood definitions, as shown in Table 5.1. We should highlight here that
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the values provided for the minimum difference between two solutions, according

to the definition of the neighborhood, are defined in the context of the algorithm

with the purpose to guide the optimization procedure using different neighborhood

definitions. The fact that two solutions are different from each other does not nec-

essarily imply that the distance between them is necessarily greater than or equal

to the minimum values calculated based on Table 5.1 for all distance metrics. For

example, if we change the gate of a flight and keep everything else the same, then

the distance between the previous and the new solution measured in terms of time

changes, for example, will be equal to 0 (not 1).

Table 5.1: Minimum and Maximum Distance Between Solutions (| F | = Total
Number of Flights, | T | = Total Number of Transfers).

Neighborhood Minimum Distance Maximum Distance
Variables 2 2| F |

Gates 1 | F |
Time 1 | F |

Gate or Time 1 2| F |
Transfers 1 | T |

5.3.2 Additional Parameters

As can be seen in Algorithm 6, the user-defined parameters of VNS-LB are

the total time limit T TL, the time limit allocated to each sub-problem, NTL, and

the incremental change in the neighborhood size in every iteration of the SHAKE

function, kstep. For our application, we also introduce a number of additional pa-

rameters, which are not calibrated in the original version of the algorithm either

because they have a predetermined value or because they are not considered at all.
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The first set of parameters we introduce is based on our observations about

the neighborhood size and the maximum and minimum possible values of distance

presented in section 5.3.1.1 (Table 5.1).

NEIGHBORHOODTYPE: The neighborhood structure chosen (1 - 5).

kpmin: Minimum possible value (percentage) of the right-hand

side constant k in the VND loop.

kpstep: Increase (percentage) of the right-hand side constant k

in the VND loop.

kpmax: Maximum possible value (percentage) of the right-hand

side constant k in the VND loop.

rhspmin: Minimum possible value (percentage) of the right-hand

side constant rhs in the Shake function.

rhspstep: Increase (percentage) of the right-hand side constant

rhs in the Shake function.

rhspmax: Maximum possible value (percentage) of the right-hand

side constant rhs in the Shake function.

To account for problems of different sizes, with different numbers of flights and

transfers, we do not calibrate directly the absolute maximum, minimum, and step

values of the right-hand side of the local branching constraints. Instead, we calibrate

the percentage of flights, transfers, or gate/time changes, and multiply them with

the total number of flights, transfers, or gate/time changes, respectively, according

to the value of NEIGHBORHOODTYPE.
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The second set of parameters we introduce is based on our observations about

the performance of VNS-LB throughout a set of preliminary experiments. In the

original version of the algorithm (6), both in the initialization phase (line 3) and

in the SHAKE phase (line 32), the solver returns the first feasible solution. To take

advantage of the speed and efficiency of the solver, we allow it to continue the branch-

and-cut procedure for a few more seconds, instead of terminating after finding a

random solution. At the same time, to maintain the required level of randomness,

we impose a time limit on the sub-problem solution, which is different from the time

limit defined for the VND loop. The goal is to strike a balance between the solver’s

ability to converge to local optima, and the randomness needed for diversification

and effective exploration of the solution space. The parameters we introduce based

on these observations are the following:

FirstI: Input for the MIP solver in the initialization phase. If True, the solver

returns the first feasible solution found. If False, the solver continues

until the time limit T TLI is reached.

FirstS: Input for the MIP solver in the SHAKE phase. If True, the solver returns

the first feasible solution found. If False, the solver continues until the

time limit T TLS is reached.

T TLI : Solver time limit in the initialization phase. Used if FirstI = 0.

T TLS : Solver time limit in the SHAKE phase. Used if FirstS = 0

As will be shown in section 5.5.1.3, parameters kpmin, kpmax, and kpstep are intro-

duced in the implementation of the Local Branching algorithm as well.
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5.4 MIP Formulation for Baggage Connections

The proposed solution algorithms will be applied in a set of experimental cases

with the objective to minimize the total reassignment cost. For details on the various

cost components and measures of effectiveness used in gate reassignment problems,

the reader shall refer to Chapter 3. In this section, we will also introduce a new

measure of effectiveness, i.e., the cost of failed baggage connections.

5.4.1 Delayed Baggage as a Measure of Effectiveness

As explained in Chapter 3, scheduled transfers satisfy a minimum connec-

tion time (MCT) between the arrival of the inbound flight and the departure of

the outbound flight. However, in case of schedule disruptions, such as a delay in

the inbound flight, the actual available connection time may not be sufficient for

passengers.

However, apart from transporting passengers, airlines are also responsible for

the transportation of baggage. The safe and timely delivery of baggage to the

destination airport is one of the most important handling procedures since it directly

affects the provided level of service. In fact, the Office of Aviation Enforcement and

Proceedings of the US Department of Transportation ranked baggage mishandling as

the third most common passenger complaint in 2017, following only flight problems

and high fares (US DOT, 2018).

To better understand how the problem of missed baggage connections is asso-

ciated with the gate assignment problem, we have to explain the general structure
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of baggage handling for connecting flights, as described in Barth (2013): Upon the

arrival of the inbound flight, baggage is unloaded from the aircraft and transported

with vehicles to the so-called infeed area, where the bag tags are scanned. Then,

according to the type of the outbound flight, security screening might follow, and

the bags are transported through the baggage handling system to the respective

handling facilities of the outbound flights, where they are loaded to containers and

carried to the aircraft of the departing flight. The whole procedure must be finished

before a given time threshold in advance to the departure time. In the case of self-

transfers, passengers have to collect their baggage themselves and check them in at

the departing flight.

However, when the available time between the connecting flights is signifi-

cantly short, the baggage might not be transported and loaded to the aircraft of the

departing flight on time. This is a result of long required baggage processing time

and large transportation distances and can further be associated with the service

period of the baggage station serving the departing flight. In practice, the service

period for an outbound flight, during which the baggage may be processed before

it is loaded in the aircraft, ends tb minutes before the departure of the flight. After

the end of the service period, baggage for that flight cannot be processed.

As will be shown in section 5.4.2, these restrictions can be modeled similarly

to passenger connections in Chapter 3.

Current research on baggage handling systems examines the optimal assign-

ment of sorting stations to gates or gate piers: For outbound flights, Abdelghany

et al. (2006) developed an algorithm to determine the assignment of flights to airport
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piers so that the utilization of piers is optimized, while Frey et al. (2017) minimized

workload peaks using a decomposition method to handle efficiently the symmetries

of the problem. Huang et al. (2016) used a Stochastic Vector Assignment Prob-

lem to find the optimal assignment of unloading zoned (chutes) to outgoing flights.

Regarding transfer baggage, Barth (2013) developed a MIP model to minimize the

number of missed bags, while Clausen and Pisinger (2010) developed a binary in-

teger model for the optimal assignment of baggage to sorting stations so that the

number of undelivered baggage pieces in short transfers is minimized, considering

the capacity of baggage delivery vehicles.

All of the aforementioned studies examine the planning phase of the problem

and do not consider alternative strategies to handle schedule disruptions. Therefore,

in this chapter, we bridge the gap between real-time gate assignment and baggage

handling optimization, by modifying our gate reassignment model so that it consid-

ers not only the cost of missed passenger connections, but also the cost of missed

baggage connections. To achieve this, the model takes into account the time re-

quired for baggage processing and transportation, given the available vehicles and

the distance between the gates of every pair of connecting flights. The main idea

of the model is that, due to the difference between passenger and baggage transfer

procedures, a successful passenger connection does not imply a successful baggage

connection as well.
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5.4.2 Modeling Delayed Baggage in an Assignment-Based

Formulation

To model baggage connections, we follow a procedure very similar to the one

described in Chapter 3 for passenger connections. We will using the indices “P” and

“B” for measures referring to passengers and baggage, respectively.

The required time tB,reqjj for transferring baggage between gates j and j′ in-

cludes the time allocated to the above procedures and depends on the distance

between the infeed area of gate j and the sorting station allocated to gate j′, as

well as the time required to screen and transport the baggage under the baggage

handling system. On the other hand, the available time tB,avii′ depends on the time

between the arrival and departure of the inbound and outbound flights, but also on

the time threshold tb which determines the minimum buffer time between the end

of the service period for flight i′ and the departure time of flight i′. Therefore, we

can define a similar condition to 3.1 and assume that if flight i is assigned to gate

j and time window k, and flight i′ is connected to gate j′ and time window k’, the

transfer baggage of connection (i, i′) will not make the connection if and only if

tB,reqjj′ > k′ − tb − k (5.15)

Based on condition 5.15, we form sets AB(i, i′) and FB(i, i′), which contain all com-

binations (j, j′, k, k′) resulting in success and failure, respectively, of each baggage

connection (i, i′).
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In this study, we assume that FB(i, i′) ⊂ FA(i, i′), which means that all el-

ements (j, j′, k, k′) of FB(i, i′) correspond to successful passenger connections, to

reflect the situation where a passenger boards the departing flight on time but their

baggage is left behind. We assume that the reverse situation i.e., successful baggage

but failed passenger connection, is not possible, due to the PPBM (Positive Passen-

ger Bag Matching) regulation which prevents the baggage from being transported

without their owner boarding the plane. In addition, when both the passenger and

the baggage are left behind, only the cost of the missed passenger connection is

added to the total cost. The case of failed baggage connections will also be referred

to as “missed baggage connections” or “misconnected baggage”.
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5.4.3 Model Formulation

Sets:

F : Set of flights.

FA: Set of arriving flights.

G: Set of gates.

T : Set of passenger connections.

W : Set of time windows.

Wi ⊂ W : Set of time windows that are compatible with flight i.

Gi ⊂ G: Set of gates that are compatible with flight i.

FO
k : Set of flights that may occupy a gate at time window k.

FG
j : Set of flights that can be assigned to gate j.

GN
j : Set of gates adjacent to gate j.

GL: Set of large gates.

His: Set of time windows such that, if flight i is assigned to them, it occupies

its gate at time window s.

Costs:

CFS
ijk : Cost of assigning flight i to gate j at time window k.

Cξ
ijki′j′k′ : Connection cost of transfer (i, i′) ∈ T , given that flight i is assigned to

gate j and time window k, and flight i′ is assigned to gate j′ and time

window k′.
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Parameters:

UBijk: The estimated upper bound on the total connection cost for all

connections of flight i ∈ FA, if it is assigned to gate j at time

window k.

Decision Variables:

Xijk: Binary, equal to 1 if flight i is assigned to gate j at time

window k, 0 otherwise.

ξijk: Continuous, equal to the total connection cost of all con-

nections with flight i as the arriving flight, given that

flight i is assigned to gate j and time window k.

The problem is formulated using the aggregating formulation A-AS3 (Chapter 4)

as follows:

Minimize:

∑
i∈F

∑
j∈Gi

∑
k∈Wi

CFS
ijkXijk + (5.16)

∑
i∈F

∑
j∈Gi

∑
k∈Wi

ξijk (5.17)
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Subject to:

∑
j∈G

∑
k∈Wi

Xijk = 1, i ∈ F

(5.18)∑
i∈FOk ∩F

G
j

∑
k∈His

Xijk ≤ 1, j ∈ G, s ∈ W

(5.19)∑
k∈His

Xijk +
∑

k′∈Hi′s

Xi′j′k′ ≤ 1, j ∈ GL, j′ ∈ GN
j , i ∈ Gi, i

′ ∈ Gi′ , s ∈ W

(5.20)

ξijk ≥
∑
i′∈FD:
(i,i′)∈T

∑
j′∈Gi′

∑
k′∈Wi′

CS
ijki′j′k′Xi′j′k′ − UBijk(1−Xijk), i ∈ FA, j ∈ Gi, k ∈ Wi

(5.21)

ξijk ≥ 0, i ∈ FA, j ∈ Gi, k ∈ Wi

(5.22)

Xijk ∈ 0, 1, i ∈ F, j ∈ Gi, k ∈ Wi

(5.23)

The objective function of the problem is to minimize the total cost, which

includes the sum of the individual assignment costs 5.16 and connection costs 5.17.

The assignment cost is a function of additional flight delays and gate changes, while

the connection cost accounts for missed passenger and baggage connections.
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Constraint 5.18 is the flight constraint, which ensures that every flight is as-

signed to one gate and time window, while constraint 5.19 is the gate constraint,

which ensures that a gate cannot be occupied concurrently by more than one aircraft.

Constraint 5.20 is the shadow constraint, which prevents the concurrent occupation

of adjacent gates by aircraft with a long wingspan. Constraints 5.21 and 5.22 define

the aggregating variable ξijk as a function of the respective binary variables Xijk

, while constraint 5.23 defines the main binary decision variable ξijk . Constraints

5.21 and 5.22 define the continuous ξ variables, as in Chapter 4.

To calculate the cost coefficients CFS
ijk , Cξ

ijki′j′k′ , we need the following param-

eters and sets:
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Sets:

tAi : Arrival / departure time of flight i according to the updated delay

information.

gBi : Gate where flight i was assigned to in the planned schedule.

Pi: Number of passengers in flight i.

Nii′ : Number of passengers transferring from flight i to flight i′.

Bii′ : Number of baggage pieces to be transferred from flight i to flight i′.

CB: Cost of failed baggage connection ($/piece).

CM : Cost of missed passenger connection ($/passenger).

CG: Operational cost for a gate change ($/flight).

CGD
t : Passenger inconvenience cost for a gate change of a departing flight,

if the departure time is t minutes after the start of the reassignment

window ($/passenger).

CT : Delay cost ($/passenger/minute).

tstep: The duration of the elementary time windows in which we divide the

planning horizon.

F P (i, i′): Set of combinations (j, j′, k, k′) of gate and time assignments for con-

necting flights i and i′, that result in the failure of passenger connection

(i, i′).

FB(i, i′): Set of combinations (j, j′, k, k′) of gate and time assignments for con-

necting flights i and i′, that result in the success of passenger connec-

tion (i, i′), but in the failure of the respective baggage connection.
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Therefore, the cost coefficients in 5.16 and 5.17 are calculated as follows:

Delay cost:

CT
ijk = CT

ijk tstep max{0, k − tAi }, i ∈ F, j ∈ Gi, k ∈ Wi (5.24)

Gate change cost:

CG
ijk =



0, if j = gbi

CG, if i ∈ FA and j 6= gbi

CG + CGD
k , otherwise

(5.25)

Missed passenger connection cost:

CP
ijki′j′k′ =


CMNii′ if (j, j′, k, k′) ∈ F P (i, i′)

0, otherwise

(5.26)

Missed baggage connection cost:

CB
ijki′j′k′ =


CBBii′ if (j, j′, k, k′) ∈ FB(i, i′)

0, otherwise

(5.27)

Consequently, the assignment coefficients in 5.16 are equal to

CFS
ijk = CT

ijk + CG
ijk, i ∈ F, j ∈ Gi, k ∈ Wi (5.28)
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while the connection cost coefficients Cξ
ijki′j′k′ in 5.17 are calculated as

Cξ
ijki′j′k′ =



CP
ijki′j′k′ , if (j, j′, k, k′) ∈ F P (i, i′)

CB
ijki′j′k′ , if (j, j′, k, k′) ∈ FB(i, i′)

0, otherwise

(5.29)

5.5 Numerical Experiments

In this section, we will review the procedure followed for the implementation

of LB and VNS-LB and for the evaluation of the solutions produced. In summary,

every set of experiments consists of three main steps: a) Parameter Calibration, b)

Parameter Validation (Testing), and c) Sensitivity Analysis.

5.5.1 Calibration and Validation

5.5.1.1 Procedure Overview

For both Local Branching and Variable Neighborhood Search with Local Branch-

ing, we follow a similar fine-tuning procedure to determine the combination of pa-

rameters that yields the best results and is therefore more likely to produce near-

optimal solutions. The procedure consists of two main steps: Calibration and vali-

dation (testing).

We first generate two discrete sets of experimental cases, such that the MIP

solver (in this case, Gurobi) requires a relatively long time to produce a provably
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optimal solution; the term “relatively long” refers to cases that are solved in an

amount of time that is too long for real-time schedule updates, but short enough

so that we know the final optimal solution within the time frame dedicated to our

experiments. In this context, case studies with running time between 30 and 180

minutes were selected. In practice, the case studies were of medium size, i.e., for an

airport with 50 gates, hourly flight rate (inbound plus outbound) ranging between

30 and 50 flights/hour, and a planning horizon from 4 to 8 hours. The case studies

produced are then divided in two sets, one for calibration (models MC1-MC5) and

one for testing (models MT1-MT5). Details on the features of each case study are

shown in Table 5.2.
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Table 5.2: Case Studies Used For Calibration and Testing

Model
Name

Flights Gates Time
Windows

Variables Constraints

MC1 200 50 25 11115 5890
MC2 250 50 39 14835 9700
MC3 300 50 40 16935 9260
MC4 275 50 34 15495 8395
MC5 360 45 51 17940 10663
MT1 200 50 30 11895 7700
MT2 200 50 33 11865 7850
MT3 330 60 41 22986 13446
MT4 392 52 50 18636 12400
MT5 416 52 53 19764 13156

Model
Name

Binary
Variables

Optimal
Objective

Solver
Time

Solver
Gap

Best
Heuristic
Bound

MC1 8895 1399090 7201.26 7% 1300131
MC2 11085 1436460 2857.53 0% 1436460
MC3 13455 1579840 5341.37 0% 1579840
MC4 12285 443890 10800.64 0% 443369
MC5 13936 34200 10800.34 2% 33633
MT1 8895 1151590 5147.5 0 1151590
MT2 8865 1157720 2341.85 0 1157720
MT3 17658 38520 10800.32 1% 38324
MT4 13932 52280 7559.69 0% 52276
MT5 14772 43750 1995.26 0% 43746
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In the calibration procedure, we test each case study of the calibration set for

every parameter combination, so that we select the combinations that return the

best solutions. To quantify the quality of the best solution found by the algorithm

(VNS or VNS-LB), we calculate the optimality gap as follows: Let x? be the optimal

solution as determined by the MIP solver, and xU the best solution yielded by the

algorithm within the time limit selected. The optimality gap is calculated as follows:

gap (%) =
xU − x?

x?
× 100 (5.30)

For every parameter combination, we then calculate the average gap across all case

studies.

In addition, to ensure that the selected parameter combinations perform well

compared to the rest of the candidate combinations, we order the combinations for

each case study in increasing order based on the gap value and determine the relevant

position of each combination. Then, the average ranking for each combination across

all experiments is calculated.

We then sort the candidate combinations based on the values of their average

gap and average ranking, and select the combinations that do well in both rankings,

and that also consistently give a small gap (e.g., less than 5%) across all experiments.

In the testing procedure, we apply the selected parameter combinations to the

test set to verify that the algorithm produces results that satisfy a predetermined

optimality gap in the test set as well.
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The performance of the algorithms and the selected parameter combinations

is further analyzed through a series of sensitivity analysis experiments, which verify

the quality of the solution with regard to the expected results, based on various

changes in the input of the model.

5.5.1.2 Calibration and Testing for Variable Neighborhood Search

with Local Branching

As shown in Algorithm 6, in its original form proposed by Mladenović and

Hansen (1997), VNS-LB requires three parameters: Total time limit T TL, node time

limit NTL, and step parameter kstep. In the modified version we propose, we also

include (section 5.3.2) the structure of the neighborhood NEIGHBORHOODTYPE, as

well as minimum and maximum values for the right-hand side of the local branching

constraint, kpmin, kpmax, rhspmin, rhspmax. We also specify the values of FirstI and FirstS

to impose a termination criterion in the solution of the subproblems, well as T TLI ,

T TLS to determine their time limit.

Since trying all combinations of the above parameters would require a time

consuming exhaustive search, we choose 48 of them to participate in the experi-

ments. First, a set of preliminary experiments is performed to further narrow down

the number of combinations. The final ten combinations are shown in Table 5.3.

Whenever the value of is shown as “Default” or simply“D”, it is implied that the

minimum and maximum possible values were used, based on Table 5.1.
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In all of the ten best combinations, a variable-based definition is used. These

are the combinations that participate in the calibration procedure (paragraph 5.5.1.1).

The results are shown in detail in Table A11 of the Appendix, while the mean op-

timality gap and the mean ranking of each combination are shown in Table 5.4.

Figure 5.1 shows the box-and-whisker plots for each of the ten parameter combi-

nations. Based on the results, we proceed for the rest of this study with param-

eter combination 33, which presents the smallest average gap (0.7%) and consis-

tently outperforms the other combinations (average ranking 2.8, followed immedi-

ately by combination 37 following with 3.8). The parameter values for combination

33 are kpstep = 0.25, NTL = NTL
I = NTL

S = 20 seconds, FirstI = FirstS = False,

kpmin = kpmax = rhspmin = rhspmax = “Default”.
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VNS-LB Calibration Results

Figure 5.1: Box-and-Whisker plots for the calibration experiments of VNS-LB.
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Table 5.3: Parameter Combinations For Calibration of Variable Neighborhood Search With Local Branching

Name kgivenmin kgivenstep kgivenmax rhsgivenmin rhsgivenstep rhsgivenmax NTL NTL
I FirstI

Neighb.
Type

FirstS NTL
S

9 D 0.02 D D D D 20 20 FALSE Variables FALSE 20

13 D 0.02 D D D D 40 20 FALSE Variables FALSE 20

17 D 0.05 D D D D 20 20 FALSE Variables FALSE 20

21 D 0.05 D D D D 40 20 FALSE Variables FALSE 20

25 D 0.1 D D D D 20 20 FALSE Variables FALSE 20

29 D 0.1 D D D D 40 20 FALSE Variables FALSE 20

33 D 0.25 D D D D 20 20 FALSE Variables FALSE 20

37 D 0.25 D D D D 40 20 FALSE Variables FALSE 20

41 D 0.4 D D D D 20 20 FALSE Variables FALSE 20

45 D 0.4 D D D D 40 20 FALSE Variables FALSE 20
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Table 5.4: Average Gap and Ranking For VNS-LB Combinations

CombinationAverage
Gap

Average
Ranking

9 2.0% 5.6
13 2.4% 6.8
17 0.9% 3.8
21 1.6% 5
25 1.0% 4.2
29 2.0% 5.8
33 0.7% 2.8
37 1.5% 4.8
41 1.7% 5.2
45 1.3% 4.4

The selected combination is then tested in a separate set of five experiments to

make sure that it performs well in previously unseen experimental cases. The test-

ing procedure (Table 5.5) confirms the suitability of combination 33, which yields a

consistently small (less than 5%) gap from the optimal solution for all cases exam-

ined.

5.5.1.3 Calibration and Testing for Local Branching

As shown in Algorithm 1, the parameters that have to be determined for the

implementation of Local Branching according to Fischetti and Lodi (2003) are the

total time limit T TL, the node time limit NTL, the right-hand side value k, and the

maximum number of diversifications dvmax. As explained in section 5.3.2, we also

consider the neighborhood type NeighborhoodType, as well as the minimum and

maximum right-hand side values kpmin, kpmax.
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Table 5.5: Testing Results for Selected VNS-LB Combination 33

Model Gap
MT1 0.5%
MT2 0.3%
MT3 2.7%
MT4 4.7%
MT5 3.0%

Similarly to the procedure followed for the calibration of VNS, we initially

generate 48 different combinations of the above parameters. The next step is to

carry out a set of preliminary experiments to find the most promising combinations

which advance to the calibration phase. Using the preliminary experiments, we limit

the number of parameter combinations to 10. The selected combinations are shown

in Table 5.6.

We then apply the calibration procedure 5.5.1.1 to the selected ten combina-

tions. The box-and-whisker plot for each combination is shown in Figure 5.2, while

Table 5.7 shows the mean optimality gap and the mean ranking of each combination.

The results are shown in detail in Table A12 of the Appendix.

For the rest of our experiments, we select combination 45, since the difference

from combination 35 is negligible with regards to the average gap, but more signif-

icant in terms of the average ranking. For combination 45, the parameter values

are NeighborhoodType = ’Variables’, kpmin = kpmax = Default, dvmax = 10, and

NTL = 60 seconds.
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Figure 5.2: Box-and-Whisker plots for the calibration experiments of LB.

In the testing procedure (Table 5.8), the selected combination results in a

relatively small optimality gap for most case studies of the testing set - although

the gap is larger than 12% for the two last case studies.

5.5.1.4 Comparison of VNS-LB with LB in the Calibration Phase

In terms of the characteristic properties of the combinations that perform best,

the selected ten combinations of LB present larger variability compared to the se-

lected combinations of VNS-LB, with six of them (combinations 25, 33, 35, 41, 43,

45) having a variable-based neighborhood definition and four of them (combinations

22, 24, 40, and 48) a transfer-based definition. Overall, we also observe that connec-

tions with transfer-based neighborhood definition perform well for relatively high

node time limit (three out of four require 2 minutes allocated to each node), while

variable-based neighborhood definitions perform better for a lower time limit, i.e.,

20-60 seconds.
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Table 5.6: Parameter Combinations For Calibration of Local Branching

Name kgiven kgivenmin kgivenmax Node
Time
Limit

Neighb.
Type

dvmax

22 0.05 Default Default 60 Transfers 10
24 0.05 Default Default 120 Transfers 10
25 0.1 Default Default 20 Variables 10
33 0.25 Default Default 20 Variables 10
35 0.25 Default Default 40 Variables 10
40 0.25 Default Default 120 Transfers 10
41 0.4 Default Default 20 Variables 10
43 0.4 Default Default 40 Variables 10
45 0.4 Default Default 60 Variables 10
48 0.4 Default Default 120 Transfers 10

Table 5.7: Average Gap and Ranking For LB Combinations

CombinationAverage
Gap

Average
Ranking

22 12.2% 8.2
24 8.6% 6.2
25 9.0% 6.8
33 8.4% 6
35 3.0% 2.6
40 9.7% 7.4
41 8.3% 5.8
43 3.7% 3.2
45 3.1% 2.8
48 7.9% 5.4

Table 5.8: Testing Results for Selected LB Combination 45

Model Gap
MT1 1.8%
MT2 0.4%
MT3 4.0%
MT4 11.8%
MT5 12.4%
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Furthermore, we can identify significant differences in the performance of the

two algorithms. Contrary to VNS-LB, there was no parameter combination for Local

Branching that resulted in a consistently small optimality gap (less than 5%). In

fact, the most successful combinations were 35 and 45, with a gap value less than 7%

in the worst case. These combinations present the smallest average optimality gap

as well, equal to 3.0% and 3.1% respectively, while they also perform consistently

well compared to the other combinations, with average rankings equal to 2.8 and 2.6,

respectively. Overall, regarding the selected best combinations (33 for VNS-LB and

45 for VNS), VNS-LB performs better than LB, since it achieves a smaller optimality

gap for a time limit of 10 minutes, in 5 out of the 6 calibration experiments (Figure

5.3a) and in all of the testing experiments (Figure 5.3b).
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Figure 5.3: Optimality gap for VNS-LB and LB in the calibration (left) and testing
(right) phase.
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5.5.2 Sensitivity Analysis

The sensitivity analysis procedure consists of a set of experiments which in-

vestigate the impact of changes in external parameters ans assumptions, which are

used as input to the model, on the optimal solution. We use sensitivity analysis

to verify that VNS-LB produces reasonable results in a variety of “what-if” experi-

ments. We also implement local branching to compare the results between the two

methodologies.

5.5.2.1 Procedure Overview

In the gate reassignment problem, there exists a variety of parameters that

can be used for sensitivity analysis, such as cost components (e.g., the unit cost of

misconnected baggage), operating conditions (e.g., the layout of the airport, or the

properties of the baggage handling system), or external factors (e.g., the distribution

of flight delays). The case studies (Table 5.9) that we generate for the sensitivity

analysis procedure are of significantly larger size, compared to the ones that we use

for calibration and testing. For the purpose of this study, we construct the following

experimental sets to examine the impact of changes to the following conditions:

• S-1: We change the unit cost CB of failed baggage connections.

• S-2: We change the properties of the baggage handling system BHS, namely the

service period and the baggage transportation speed.
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Table 5.9: Experimental Cases For Sensitivity Analysis

Set Changing
Parameter

Flights Gates Hours

S1 Unit cost of
misconnected

baggage

612 52 12

S2 BHS
Properties

600 52 12

S3 Delay
Distribution

600 52 12

S4 Airport Layout 400 50 10

• S-3: We examine different delay distributions in terms of a) the probability of

disruption occurrence for each flight, and b) the delay duration.

• S-4: We experiment with different terminal layouts.

Similarly to Chapters 3 and 4, for experimental sets S-1, S-2, and S-3, we use

the layout of Athens International Airport (AIA, 2018), which includes one main

and one smaller, satellite terminal. For experimental set S-4, we test the impact

of different layouts, as will be shown in section 5.5.2.6. The values of the basic

parameters used in the sensitivity analysis experiments are summarized in Table

5.10.

5.5.2.2 Comparison of VNS-LB with LB in the Sensitivity Analysis

Phase

Table 5.11 summarizes the best upper bound of the objective function yielded

by Local Branching an by Variable Neighborhood Search with Local Branching for

all sensitivity analysis experiments. With the exception of set S-4, VNS-LB consis-
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Table 5.10: Basic Parameter Values in Sensitivity Analysis Experiments

Parameter Value
F

li
g
h
ts

Aircraft

load factor limits
(0.5, 1)

Percentage

of connecting passengers
50%

Gate occupancy duration (minute) 30’ for ≤150 seats, 40’ for > 150 seats

Number

of aircraft types
9

Number

of baggage pieces per passenger
1

C
o
st

s

Operational cost for a gate change
CG($/flight)

40

Passenger inconvenience cost for gate
change of departing flight, CGDt

(4$/flight)

Piecewise linear function of available
time t, from 260 for t = 1h to 0 for

t = 6h

Delay cost, CT ($/flight/minute). 20

Cost of failed
passenger connection, CM ($/passenger)

200

Cost of failed baggage connection,
CB ($/baggage piece)

50

O
p

e
ra

to
r

D
e
c
is

io
n

s

Additional holding
time range

(min)
(-20,50)

Step size
(minutes)

10

O
th

e
r

V
a
lu

e
s

Delay distribution Γ (shape = 3, scale =1) for arriving
flights, Normal (µ = σ = 10) for

departing flights

Passenger walking speed
(meters/minute)

70

Baggage transportation speed /
Passenger walking speed

1.4

Service time threshold for baggage
(minutes)

20
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Table 5.11: Best Upper Bounds Found By LB and VNS-LB In Sensitivity Analysis

Experimental
Set

Name VNS Best
Objective

LB Best
Objective

% Difference

S-1

S1-1 59367.5 78385 -24%
S1-2 59795 74410 -20%
S1-3 62030 72997.5 -15%
S1-4 64250 79662 -19%

S-2
S2-1 42120 70040 -40%
S2-2 42120 71760 -41%
S2-3 47330 63020 -25%

S-3

S3-1 6790 17250 -61%
S3-2 80130 109930 -27%
S3-3 284520 323817 -12%
S3-4 417030 481363 -13%

S-4
S4-1 1342745 1342825 0%
S4-2 1235554 1236442 0%
S4-3 1469646 1470840 0%

tently finds better solution than LB, with the difference between them ranging from

12% up to even 61%. This means that LB has failed to reach the optimal solution at

least in 3 out of the 4 experimental sets. Nevertheless, for the sake of completeness,

we have presented the sensitivity analysis results for both methodologies.

5.5.2.3 Set S-1: Changes in the unit cost CB of failed baggage con-

nections

In the base case, we assume that, when a connecting passenger’s baggage fails

to make the transfer, the total objective function cost in increased by $50 per piece,

a value which accounts for the monetary compensation that the passenger is entitled

to, as well as for indirect costs due to the decline in the provided level of service. In
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this set, we experiment with the value of unit delayed baggage cost CB, changing it

from 25% to 150% of the base case value.

Both algorithms present reasonable results (Figure 5.4), with the number of

misconnected baggage decreasing with the increase in CB. For VNS, changing the

value of CB from $50 to $12.5 (corresponding to a decrease of 75%) results in a 104%

increase in the number of misconnected baggage pieces, while changing the value of

CB to $75 (a 50% increase) decreases the value of baggage pieces by 14%. For Local

Branching, the respective values are 42% and 32%. We also notice that the value

of missed baggage is consistently higher in the solutions found by Local Branching,

compared to the solutions found by VNS; this indicates that, as was already known

from Table 5.11, Local Branching has not reached an optimal solution.
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Figure 5.4: Sensitivity analysis: Changes in missed baggage cost.
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5.5.2.4 Set S-2: Changes in the features of the Baggage Handling

System

In this set, we experiment with the operational features of the baggage han-

dling system. More specifically, we focus on two properties that affect the required

baggage transportation time and define the time windows within which the trans-

portation of baggage between gates will be successful: The average speed of the

baggage handling system, and the service period (see section 5.4.2). To calculate

the average baggage transportation speed, we assume different values of the ratio

rPB = Passenger speed
Baggage speed

. For the service period, we assume that, for a flight that departs

at time t, the baggage handling station cannot process baggage after t− tb, and we

experiment with different values of tb.

Keeping everything else the same, we produce three experimental cases. In

case S2-1, we assume a fast baggage handling system with rPB = 2, which remains

open until the departure of the outbound flight (tb = 0). In practice, this condition

can be used to capture the case where, in case of delayed inbound flights which result

in tight connections, the baggage is directly transported and loaded in the aircraft.

In case S2-2, we assume a slower BHS with stricter service period thresholds, with

rPB = 1 and tb = 20 minutes, while in case S2-3 we use an even less efficient BHS,

with with rPB = 0.8 and tb = 40 minutes.

The results for both algorithms are plotted in Figure 5.5. On the one hand,

the solutions of VNS-LB demonstrate an equal cost ($42,120) between S2-1 and

S2-2, and a 12% cost increase ($47,330) in case S2-3. On the other hand, Local
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Branching in this case produces counter-intuitive results, with the total objective

cost decreasing from case S2-2 to case S2-3.
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Figure 5.5: Sensitivity analysis: Changes in the baggage handling system.

5.5.2.5 Set S-3: Changes in delay patterns

For our experiments, we assume that the delays encountered by arriving flight

follow a Γ distribution, with shape = 3 and scale = 1, while the delays of departing

flights are normally distributed with a mean and standard deviation equal to 10

minutes (see Table 5.10. In this set, to quantify the magnitude of schedule disrup-

tions, we use a Bernoulli trial with probability p that a flight will be delayed, and

a uniform distribution U(lb, ub) to predict the delay duration, as in section 3.5.4 of

Chapter 3. We therefore generate 4 delay scenarios as follows:
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• S3-1: Smooth daily operations with delays lower than usual with p = 0.1,

lb = 0 minutes, ub = 20 minutes.

• S3-2: Normal daily operations with usual delays with p = 0.3, lb = 10 minutes,

ub = 30 minutes.

• S3-3: Delays longer than usual with p = 0.5, lb = 20 minutes, ub = 100

minutes.

• S3-4: Severe schedule disruption with p = 0.6, lb = 20 minutes, ub = 120

minutes.

We expect an increase in the total cost as we move from scenario S3-1 to S3-4.

Indeed, both algorithms demonstrate an increasing cost trend, as can be seen in

Figure 5.6. Compared to the base-case (“normal”) scenario, VNS-LB finds a solution

with a 92% lower cost in case S3-1 (“Lower delays than normal”) and a 420%

more expensive solution for the S3-4 scenario (“Extreme level of delays”). The

respective values for Local Branching are 84% and 338%. However, as in the previous

experimental sets, the solutions found by local branching are of higher cost compared

to the ones of Variable Neighborhood Search with Local Branching.

5.5.2.6 Set S-4: Changes in the layout of the airport

In this set, we examine how the objective function changes for various types

of airport terminals, and therefore different spatial configuration of the gates. For

set S4, we examine three different terminal layouts, as follows:
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Figure 5.6: Sensitivity analysis: Changes in delay patterns.

• S4-1: Layout 1, i.e., simple linear terminal with one airside.

• S4-2: Layout 2, i.e., two parallel linear terminals, each with one airside.

• S4-3: Layout 3, i.e., one main concourse with multiple satellite teminals.

Exactly as we do in all of the experimental sets, we assume that all in-

stances S4-1, S4-2, S4-3, have identical planned schedules and, consequently, the

same planned passenger transfers, based on the original arrival/departure times and

planned gate assignment. To maintain consistency in this set as well, after we gener-

ate the planned assignment for every case, we eventually consider only the transfers

that were feasible according to the planned assignment across all sets.

Out of all sets (Figure 5.4), experimental set S4 is the only one where both

algorithms produce the same results, with the total reassignment cost 8% lower in
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Figure 5.7: Sensitivity analysis: Changes in the layout of the airport.

the case of two parallel terminals compared to the simple Layout 1, and almost 10%

higher for multiple satellite terminals located around a main concourse.

5.6 Further Extensions of VNS-LB

So far, the following main contributions of this study have been presented in

this chapter:

• We have adapted a metaheuristic technique, i.e. Variable Neighborhood Search

with Local Branching, to solve the gate reassignment problem in a limited amount

of time.

• We have experimented with different definitions of the “solution neighborhood”

and have used problem-specific properties to optimize the implementation of the

algorithms.

229



• We have displayed the functionality of our approach by showing that it can pro-

duce near-optimal solutions within 10 minutes, and have supported our conclusion

by demonstrating plausible sensitivity analysis results.

However, we have not analyzed so far the progress of the solution procedure through-

out the running time. In this section, we will examine the behavior of Variable

Neighborhood Search with Local Branching within the 10 minutes allocated to the

solution procedure. More specifically, we will observe the best upper bound of the

objective function for the VNS-LB and for the MIP solver throughout the optimiza-

tion procedure, and compare the values of the two.

5.6.1 Neighborhood Change Threshold in Variable Neigh-

borhood Descent

In this section, we examine the performance of VNS-LB throughout the opti-

mization time and observe the progress of the search procedure from the beginning

until the time limit T TL is reached (10 minutes in this case). In particular, we com-

pare the best solution found by VNS-LB with the incumbent solution found by the

MIP solver throughout the 10 minute period allocated to the optimization. This

information is valuable in the following aspects:

• Under certain circumstances, we might require to produce near-optimal solution

in a smaller amount of time than the time limit for which we have calibrated the

solution algorithm. Therefore, if we know that the algorithm converges fast to
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the optimal solution, we can be confident that good solutions can be found at the

earlier stages of the optimization as well.

• Regardless of the required solution time, by observing the progress of the algo-

rithm to the final solution, we can identify techniques to further accelerate the

optimization procedure. These techniques may potentially extend beyond the

scope of the gate assignment problem.

One would argue that, for different values of the total running time, a new

calibration procedure is required to determine new parameter values. However,

the purpose of this section is not to perform an exhaustive search on the different

parameter combinations with respect to the possible time limits, but to suggest

possible modifications to the algorithm that can accelerate the convergence of the

algorithm to a good solution.

In the plots that follow, the green line corresponds to the best known bound

found by VNS-LB, while the blue line is the respective incumbent solution value

found by Gurobi.

Figure 5.8 demonstrates two cases where using VNS-LB essentially provides no

advantage compared to using an MIP solver and terminating the solution procedure

at 10 minutes. On the left plot (Figure 5.8a), Gurobi performs consistently better

than VNS, while on the right plot (Figure 5.8b), VNS eventually produces a better

final result that the solver, but is consistently outperformed for the first 500 seconds.

The stepwise form of the green line in Figure 5.8 implies the existence of

multiple marginal improvements in the optimal solution. In other words, during the
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Figure 5.8: Cases where the solver produces consistently better results than VNS-LB
during all (left) or almost all (right) the optimization procedure.

Variable Neighborhood Descent phase, the heuristic finds an improved solution x′

within the neighborhood of the current solution x̃, centers the search around the

new solution, and so on. The “dive” that takes place around 400 seconds after the

start of the heuristic corresponds to the end of the current descent phase and the

beginning of the Shake function. Until 250 seconds, the solver spends significant

time in the descent phase, moving from a solution to nearby solutions within a small

distance (low values of k) which are only marginally better compared to the current

solution.

To remedy this situation, we impose a stricter threshold in the Neighborhood

Change function applied within the VND loop. Specifically, we require the new

solution x′ to be considerably better than the current solution x̃ in order to replace

it. To achieve this, we modify the neighborhood change condition from

if f(x′) < f(x̃) (5.31)
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to

if f(x′) ≤ α f(x̃) (5.32)

where α is a coefficient between 0 and 1.

A suitable value for α satisfies the following criteria:

1. It is small enough, so that the current solution x̃ is not replaced by the new

solution x′, unless x′ is significantly improved compared to x̃.

2. It is large enough, to prevent the termination of VND loop because of infea-

sibility.

Our next step is to determine which values of α improve the performance of

VNS-LB. Our preliminary experiments indicate that, in general, values lower than

α = 0.8 force an early termination of the VND loop due to infeasibility. Therefore,

we experiment with different values of α, namely 0.8, 0.9, 0.95, 0.97, and 0.99. For

the purpose of our experiments, we select VNS parameter combinations 25 and 33,

which were the two combinations with the smallest optimality gap in the calibration

and testing experiments. However, even for these combinations there still exist large

experimental cases where they converge slower compared to the MIP solver, as was

shown before in Figure 5.8.

The modified VNS-LB algorithm is tested in a set of eight new experimental

cases of dimensions similar to the ones used for sensitivity analysis in paragraph 5.5,

and compare the plots of the best incumbent solutions found by the solver and by the

heuristic during the ten minutes. Details on the number of flights, gates, and time

horizon of these studies can be found in the Appendix (Table A13). We then compare
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the incumbent solution found by the MIP solver with the best upper bound that had

been found by VNS-LB for selected time points t ∈ T = {100, 200, 300, 400, 500}

during the optimization, namely for time equal to 100, 200, 300, 400, and 500

seconds.

Table 5.12 summarizes the total number of cases (out of the eight, i.e., the

number of experimental cases) for which every modified combination outperformed

the MIP solver in terms of the best solution yielded so far, for all of the selected time

points. For parameter combination 25, we can find 3 cases where the heuristic finds

a better solution at the end of the procedure (600 seconds), but we can increase this

number to 4 for lower values of α. However, this is not the case for combination 33,

which outperforms the solver at t = 600 seconds in only 1 out of the 8 examples.

For α = 0.8, a second model that eventually converges to a better solution can be

found.

Table 5.12: Number of Cases Where VNS-LB Has Found A Better Solution Than
The Current Solver Incumbent

Comb. α
Time (s)

100 200 300 400 500 600

25

0.8 5 6 7 6 5 4
0.9 5 7 7 6 5 4
0.95 5 7 7 6 5 4
0.97 4 6 6 6 4 3
0.99 3 4 5 4 4 3

1 2 2 4 4 3 3

33

0.8 5 5 5 5 3 2
0.9 5 5 4 4 2 0
0.95 5 5 5 4 1 0
0.97 5 6 5 4 2 1
0.99 4 5 5 5 2 1

1 2 2 4 4 2 1
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To evaluate the progress of the solution prior to termination, we examine

the results produced for t = 100, 200, . . . 500 seconds. For both combinations 25

and 33, using α < 1 increases the percentage of models where the metaheuristic

outperforms the solver at the earlier stages of the optimization. For example, for

parameter combination 33, we observe that only 2 of the 8 total models can find a

better solution than the solver by the time t = 200 seconds. However, this number

is increased to 5 for α = 0.8, 0.9, 0.95, 0.99, and to 6 for α = 0.97. A similar general

pattern can be observed for both combinations and all values of α and t < 600

seconds.

To get a more compact idea of the performance of modified VNS compared to

the solver, we plot the best upper bounds found by the solver and by VNS against

the running time. With simple VNS (α = 1), models which perform worse or

only slightly better than the solver at the end of the 10-minute time limit, benefit

significantly or at least slightly from the introduction of the coefficient a < 1 (Figure

5.9 a, b) However, we also observe certain cases where, at the end of the 10-minute

time limit, VNS eventually finds a worse solution than the MIP solver, although the

use of the coefficient α can improve the quality of the solutions found by VNS at

the early stages of the optimization (Figure 5.9c, d).

Overall, the introduction of coefficient a in the neighborhood change approach

seems a plausible idea that yields promising preliminary results. Further research is

required to identify more clear patterns and relationships between the progress of

the solution procedure, the VNS-LB parameters, and the value of a, and therefore to

determine the conditions under which a consistent improvement in the performance
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Figure 5.9: Top: A case where α (b) improves the final result compared to simple
VNS-LB (a). Bottom: A case where α (d) does not improve the final result compared
to simple VNS-LB (c), although it accelerates convergence at the earlier stages of
the procedure.

of the method can be achieved. In the next paragraph, we will introduce an al-

ternative approach for the neighborhood change function that relies on the gradual

decrease of the value of α.

5.6.2 Increasing a During The Procedure

The plots of the solution progress as a function of time indicate that the MIP

solver is able to find good solutions at the beginning of the optimization, while, as the

procedure progresses, the improvement rate decreases. For example, let us consider

the case shown in Figure 5.10a. Until approximately t = 80 seconds, multiple

236



small improvements are observed, which correspond to consecutive iterations of

the VND loop inside the same iteration of the outer loop. Around 110 seconds,

a new solution is found, which corresponds in to the drop observed in the plot.

The same pattern of multiple small improvements is observed again between 140

and 190 seconds, although it now lasts significantly less. Gradually, the rate of

improvement decreases and the algorithm seems to converge to a solution, without

further improvement after about 320 seconds. Eventually, the solution found by the

MIP solver is better than the solution found by VNS-LB at the end of the 10-minute

time period.

To take advantage of the fast convergence of the solver to solutions of good

quality at the early stages of the algorithm, we experiment with a variable α value

in the Variable Neighborhood Descent phase. The main idea is to start the VNS-LB

with a low a (e.g., 0.8) and increase a in every iteration of the outer VNS-LB loop.

By starting with relatively low a, we require large improvement in the objective

function before we center the search around a new solution. Therefore, we do not

spend time moving between solutions of marginally different objective value. On

the other hand, by increasing a as the algorithm progresses, we essentially require a

less strict improvement in the objective function to allow the new solution to replace

the current one. The maximum value of a is equal to 1, which is equivalent to using

the original neighborhood change condition 5.31. As soon as a becomes equal to 1,

it remains 1 for all VNS iterations until the algorithm terminates.
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The values of a that we use in the experiments belong to a predetermined set

AI , which we define as follows:

AI = {0.8, 0.9, 0.95, 0.99, 0.9999, 1} (5.33)

We test the modified VNS-LB algorithm with increasing a value for the same

cases examined in the previous paragraph (5.6.1).

Table 5.13 contains the ratio of the best solution found by the algorithm to the

best solution found by the solver, for the simple and the modified VNS-LB versions,

for all values of α. In some cases (MM5 and MM8 for combination 33), using an

increasing a coefficient not only returns a better solution than all other values of a

(including a fixed a = 1), but is also the only way to produce a final solution that

has a lower objective value than the solver solution.

The results indicate that, whenever the basic (a = 1) version of VNS-LB fails

to find a better solution than the MIP solver solution (Models MM4, MM5, MM6,

and MM8 for combination 33, and models MM4 and MM8 for combination 25, as

shown in Table 5.13), increasing the value of a in every iteration of the outer loop

results in a strictly better final solution compared to the solution produced by the

solver (in 6 out of 7 cases, with the exception of combination 33 for model MM4).

Plotting the solution progress of VNS-LB and of the MIP solver as a function

of time allows us to observe the relative performance of the two throughout the

optimization procedure. As can be seen, using an increasing a value (Figure 5.10c)

can help the metaheuristic not only reach a better final solution than the solver,
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but also perform better than both the solver and VND-LB with a fixed coefficient

a (Figure 5.10b) during the optimization.

The above experiments allow us to test the proposed modifications and un-

derstand their potential to improve the convergence speed as well as the quality of

progress towards the final solution, and of the final solution itself. Certain positive

results indicate that the modified version of VNS-LB can accelerate the convergence

of the procedure towards a good solution, and can provide better solutions than

the ones that an MIP solver would provide if it was forced to terminate branch-

and-bound after a time limit was reached. However, the number of experiments

presented in the last section is limited, while we have not been able to identify

yet a set of conditions under which we expect the modified version of VNS-LB to

perform well. Since the experiments represent work that is currently in progress,

further research is required to produce more systematic results and reach more solid

conclusions in terms of the performance of the modified algorithm under different

conditions.

5.7 Conclusions

In this chapter, we embedded the time-index formulation that was first pre-

sented in Chapter 3 and further improved in Chapter 4 in an MIP-based meta-

heuristic framework to develop a methodology that produces near-optimal results

for the gate reassignment problem in a small amount of time. In particular, we

implemented Variable Neighborhood Search with Local Branching (VNS-LB), orig-
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Table 5.13: Ratio Best VNS Solution / Best Gurobi Solution (“var” = increasing
vaue of α

Comb. α MM1 MM2 MM3 MM4

25

0.8 1.03 1.02 1.07 1
0.9 1.03 1.02 1.09 0.99
0.95 1.03 1.03 1.09 0.99
0.97 1.02 1.01 1.06 1.01
0.99 1.23 1 1.05 1.05

1 1 1 1 1.03
var 1.04 1 1.01 0.99

33

0.8 1.26 1.24 1.39 1.02
0.9 1.23 1.24 1.2 1.11
0.95 1.23 1.23 1.31 1.08
0.97 1.16 1.14 1.24 1.09
0.99 1.23 1.17 1.1 1.07

1 1 1 1 1.05
var 1.22 1.11 1.14 1.03

MM5 MM6 MM7 MM8

0.25

0.8 0.97 1 0.95 0.99
0.9 0.97 1.01 0.96 0.95
0.95 0.97 1 0.94 0.95
0.97 1 1 0.95 0.95
0.99 1 1.01 0.93 0.99

1 0.97 1 0.98 1.01
var 0.97 1.01 0.97 0.98

0.33

0.8 0.99 1.01 1 1.05
0.9 1.05 1.02 1.03 1.01
0.95 1 1.02 1.03 1.05
0.97 0.99 1.03 1.03 1.01
0.99 1.02 1.05 0.99 1.05

1 1.02 1.02 0.99 1.04
var 0.98 1 1 0.99
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inally proposed by Mladenović and Hansen (1997). VNS-LB combines the ability of

classic Variable Neighborhood Search for concurrent exploration and exploitation of

the solution space with the strong MIP formulation that was developed in Chapter

4.

One of the key implementation issues explored in this study was the defini-

tion of a solution neighborhood. Therefore, a number of alternative definitions in

the context of gate assignment were explored, and the mathematical formulation of

the problem was modified accordingly when required. After fine-tuning the algo-

rithm, we used the selected parameter combinations for sensitivity analysis, where

we tested the output of the model for changes in operational and external factors.

The sensitivity analysis results verified the applicability of Variable Neighborhood

Search with Local Branching for the gate reassignment problem. In addition, we

implemented a Local Branching heuristic approach, which shares some of its basic

concepts with VNS-LB. However, the calibration for both algorithms shows that,

while a transfer-based neighborhood definition works well for Local Branching, this

is not the case for VNS-LB, where all of the best parameter combinations had a

variable-based neighborhood definition. Overall, VNS-LB was shown to produce

better results than LB, consistently returning a solution with at most 5% gap from

optimality during the calibration and testing procedures.

To further improve the performance of the algorithm in large case studies,

we proposed a modified version by introducing a coefficient a in the Neighborhood

Change function to impose a requirement for large improvement in the objective

function before centering the search procedure around a new solution. The exper-
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iments indicated that this approach is useful for improving the quality of the final

solution and the progress of the optimization procedure as a whole. In addition,

making a value decrease in each loop was shown to further improve the performance

of the algorithm in some models.

These preliminary experiments on the modified algorithm can guide future

research towards exploring in more depth the conditions under which VNS-LB can

be successfully applied in cases of large airports with heavy flows and long scheduling

horizons.
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Figure 5.10: A model without the coefficient a (a), with fixed a = 0.97 (b), and
with increasing a ∈ AI .
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Chapter 6

Summary, Conclusions, and Future
Research

Chapter Overview

In the final chapter, we first summarize the dissertation and highlight the method-

ologies and techniques that have been presented in the previous chapters; second,

we use the findings of the dissertation to draw more general conclusions; and finally,

based on the research potentials identified in this study, we propose directions that

seem promising for future research.

6.1 Summary

This dissertation has focused on developing a modeling framework for opti-

mizing flight-to-gate assignment in schedule recovery procedures with a focus on

transfer passengers. To a large extent, the need for schedule recovery strategies

results from congestion caused by the increase in passenger demand observed over
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the last years, combined with tight scheduling and limited infrastructure capacity.

From the perspective of gate scheduling, delayed flights may render the planned as-

signment infeasible, due to gate blockages, or impractical, at risk of causing further

delay propagation. In this context, we proposed a methodology that allows airport

and airline operators to generate a revised assignment of aircraft to airport gates,

so that the effect of schedule disruptions is minimized. In particular, the proposed

framework takes into account transfer passengers, who comprise a large percentage

of airport users, especially in major hubs. From a modeling perspective, formulat-

ing passenger transfers is a computationally challenging task which has not been

sufficiently addressed in the existing literature. Therefore, the critical role of gate

scheduling in airport recovery procedures, combined with the scarcity of mathemati-

cal models and algorithms that deal with the optimization of passenger connections,

has been the main motivation for the research presented in this dissertation.

Starting with a thorough review of the state-of-art approaches in Chapter 2, we

introduce the existing studies on the planned gate assignment problem, which is es-

sentially the “parent” problem of gate reassignment. Then, we emphasize three key

elements of existing gate reassignment approaches, i.e., the objective function and

constraints considered, the mathematical formulation, and the solution approach.

Reviewing current literature helps us identify the gaps that this dissertation at-

tempts to fill, which correspond to our three main contributions: First, we develop

a model that handles passenger connections in what we consider to be a realistic

way. Second, we analyze existing mathematical formulations and propose a set of

sequential improvements to model. Finally, we investigate the applicability of dif-
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ferent model-based heuristics in the context of gate reassignment and develop a

metaheuristic framework which relies on our own, improved mathematical formula-

tion.

In Chapter 3, we developed a gate reassignment framework that considers

passenger transfers. Our formulation relies on a Binary Integer model which is the

first multidimensional assignment model that uses gate location and the resulting

required connection time to assess the success of passenger transfers. The model

is generalized, in the sense that we can express every possible objective based on

the observation that any measure of effectiveness corresponds to one of four discrete

objective function terms categories. The cost coefficient of each of the four categories

is properly adjusted so that the objective function of the problem is accurately

expressed. Also, the model is easy to extend, so that it accounts for limited apron

capacity, flight cancellations, and flights which are operated by the same aircraft. Its

adaptability to a wide range of objectives and constraints allows us to use numerous

measures of effectiveness as objective function components and evaluate the quality

of the final solution in terms of its individual components under different objective

functions.

In Chapter 4, we explore in depth the mathematical programming formulation

of the problem. Our first step is to compare and analyze both theoretically and

experimentally the two primary types of formulations in the current literature, i.e.

the multidimensional assignment and the network flow-based formulations. In the

context of this comparison, we estimate upper bounds on the number of variables and

constraints of each formulation, and also identify the differences in the underlying
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assumptions of each approach and, consequently, in the applicability under different

types of objective functions, cost coefficients, and modeling assumptions. Then, we

strengthen the time-index assignment formulation of Chapter 3 by reformulating

the constraints and by introducing valid inequalities that facilitate the cut-and-

branch procedure. We also explore an alternative formulation to express the cost of

passenger connections.

In Chapter 5, we embed the time-index formulation first presented in Chapter

3 and improved in Chapter 4 in an MIP-based metaheuristic framework with the

goal to develop a methodology that produces near-optimal results for the gate reas-

signment problem in a low amount of time. In particular, we choose to implement

Variable Neighborhood Search with Local Branching (VNS-LB), which combines

the concurrent exploration and exploitation properties of Variable Neighborhood

Search with the strong MIP formulation developed in Chapter 4. One of the key

implementation issues explored is the definition of a solution neighborhood in the

context of gate assignment, given that transfer passengers are the main consideration

of the problem. Especially for definitions which are based on passenger transfers,

the mathematical formulation of the problem has to be modified accordingly. We

also apply a Local Branching heuristic, which shares some of its basic concepts with

VNS-LB, to compare the results generated by the two methodologies. The VNS-LB

algorithm is used to minimize the total cost, in which we also include a new measure

of effectiveness concerning transfer passengers, i.e., the number of baggage pieces

that fail to make the connection between the inbound and the outbound flight. At

the end, we propose a set of extensions to the algorithm, based on the observed
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progress of the algorithm towards the final solution. These extensions concern the

introduction of a tolerance coefficient in the neighborhood change function which is

included in the Variable Neighborhood Descent loop of the algorithm.

6.2 Conclusions

In Chapter 3, we verify the validity of the assumption that the success of a

transfer is a function of both the available time between the connecting flights, and of

the required connection time, which in turn depends on numerous factors, including

the layout of the airport and the duration of passenger processing procedures. As

demonstrated by our experimental results, with the exception of extremely high or

unusually low delays, the detailed assumption of considering gate location yields

different results than simply assuming that a fixed time threshold is sufficient for all

connections. Using the proposed model, we also conclude that the consideration of

passenger connections in the optimization procedure is of utmost importance, since

connecting passengers contribute significantly to the total solution cost. To prove

this, we apply a hierarchical optimization framework to examine the interaction

between the measures of effectiveness used in the literature and compare the results

between the proposed assumption on connection time and the simple assumption of

fixed thresholds. Our experiments demonstrate that prioritizing missed connections

is necessary in the absence of monetary values, although the cost of the optimal

solution is still far from the optimal cost yielded when using total monetary cost as

an objective.
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In Chapter 4, we evaluate the existing network flow formulations, as well as the

proposed formulation, by generating experimental sets of various sizes with differ-

ent airports and flight schedules. Our results indicate that aggregating assignment

formulations outperform the respective linearized quadratic ones. Between the ag-

gregating time-index assignment formulation and the network flow formulations,

the experiments show that the former is consistently more efficient when the cost of

successful connections is not included in the objective function, while the latter are

faster whenever the objective function includes components like walking distance,

which depend on successful passenger connections.

Finally, in Chapter 5, our Variable Neighborhood Search with Local Branching

approach exhibits a consistently solid performance. Using medium-sized experimen-

tal cases, we calibrate the algorithm to determine the appropriate combination of

parameters for the optimization. It is shown that the VNS-LB algorithm is capable

of producing near-optimal results within only 10 minutes of running time, whereas

the branch-and-cut procedure applied by the MIP solver would require between

1/2 and 3 hours for the same cases. We then use the algorithm in a set of sensi-

tivity analysis experiments and verify its performance under variations in external

and operational parameters. The sensitivity analysis results show that the proposed

framework is capable of producing reasonable results and can answer various “what-

if” questions concerning changes in operating parameters and external conditions.

Furthermore, the comparison of VNS-LB with the simple Local Branching applica-

tion indicates that VNS-LB outperforms Local Branching in terms of the quality

of the best solution found by each of the two procedures. The last set of experi-
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ments is a preliminary evaluation of the proposed modified version of the VNS-LB

metaheuristic, where a tolerance coefficient determines the threshold beyond which

an improved solution replaces the current solution in the Variable Neighborhood

Descent sub-process. The experiments indicated that this modification is useful not

only for improving the quality of the final solution, but also the progress of the

optimization procedure as a whole. A modified version of the algorithm with a de-

creasing tolerance coefficient was also tested, and showed promising results regarding

the progress of the optimization and the quality of the final solution.

6.3 Future Research

The work presented in this dissertation can direct interesting avenues of future

research. The recommendations included in this section focus primarily on the

applicability of the model, as well as its methodological aspects.

6.3.1 Model Application

• Comparison with Airline Practice: The model provides airlines with a recom-

mended course of action by incorporating the majority of the potential decisions

into the model output. Future research can compare the optimal result of the

model with the exact course of action and the empirical rules followed by airlines

to quantify the magnitude of the benefits provided by using the proposed model.
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• Airport Operations: The model treats gate reassignment as a stand-alone prob-

lem. Future research can focus on an integrated model that combines interdepen-

dent airport operations, including runway scheduling and apron bus scheduling.

• Stochasticity: The fluctuation of components that affect the model, such as

the required connection time, is handled by appropriately adjusting their values

prior to the optimization and solving the model as deterministic. In this context,

a stochastic model would be able to better capture the uncertainty of delays,

connection times, and other factors that affect decision making.

• Additional Decisions: The output of the model provides the decision maker

with a set of actions that include gate switching and aircraft holding. The model

can be further extended to accommodate additional decisions, such as holding a

flight at the gate and consequently increasing the occupancy duration.

• Air cargo: The objectives that have been used so far only consider passenger

transportation. An extension of the model to handle the movement of cargo is

another direction for future research.

• Delay propagation: In the proposed model, decision making is limited to a

specific airport. Future research can investigate ways to prevent the propagation

of delays to the rest of the network.
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6.3.2 Methodological Approach

• Mathematical Formulation: A significant part of this research has focused on

the development and improvement of the MIP model formulation, while the set

partitioning constraints have been proven to be particularly useful for strength-

ening the formulation in the linearized quadratic model. An alternative approach

that has been shown to be quite successful in other applications is column gen-

eration. The potential of column generation lies in its application to models

with complicating constraints, i.e., constraints that tie variables together. The

valid inequalities introduced in Chapter 4 can be used for dividing the problem

into smaller sub-problems based on passenger connections. Additional ideas from

strengthening the formulation can be borrowed from problems of similar struc-

ture, such as the machine scheduling problem, for which Sousa and Wolsey (1992)

proposed a number of valid cuts.

• Variable Neighborhood Search With Local Branching: The preliminary

experiments of Chapter 5 yielded promising results for the modified version of

VNS-Lb with tolerance. Therefore, research in the future can focus on identifying

the values of the tolerance coefficient that result in consistently good performance

of the algorithm. In addition, many concepts of pure Variable Neighborhood

Search can be explored in the context of VNS-LB. For example, skewed VNS,

which allows the search to be centered around a worse solution than the current

one, provided that the distance between the two exceeds a specific threshold,

is a concept worth examining. Furthermore, the Variable neighborhood Search
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with Formulation Space Search is another modification of Variable Neighborhood

Search, which alternates between two different, yet equivalent, formulations, of

the same problem. Given that we have already explored the different MIP for-

mulations, combining them within a VNS-LB framework is another interesting

direction for future studies.

• Dynamic Framework: The model that we have proposed in this study is meant

to satisfy the requirement for real-time solutions. However, it is a one-step opti-

mization model, which assumes that the operator has all the information about

flight delays for the whole planning horizon and uses it to optimize the assign-

ment of aircraft to gates. In an extension of the model, delays can be simulated

as random events and the model can be optimized iteratively as soon as a new

piece of information about a flight delay is obtained.

This dissertation has two main aspirations: First, to develop a versatile tool

that can be adapted according to the objectives, priorities, and strategies of air

transportation practitioners. Second, to provide air transportation researchers with

an insight of how the features of a solution in practice are reflected in the abstract

modeling aspects of the mathematical formulation. Every idea that relies on these

two principles should be a promising path for future research.
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Appendix

Additional Tables
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Table A1: Increase in total cost when using each MOE as the objective value com-
pared to the optimal cost.

MOE Case Cost
Increase

Case Cost
Increase

OTPT

1

1942%

4

1997%
OSPD 1359% 1636%
ORP 1905% 2149%
OW 2805% 3112%
OMP 207% 252%
ORF 1780% 1922%
OSF 1654% 1916%
OTF 2056% 2168%
OTT 1942% 1997%
OSP 2046% 2075%
OTPT

2

1751%

5

2090%
OSPD 1377% 1424%
ORP 2079% 1549%
OW 3178% 3328%
OMP 279% 261%
ORF 2114% 1505%
OSF 1579% 1248%
OTF 2024% 2232%
OTT 1751% 2090%
OSP 1835% 2179%
OTPT

3

2191%

6

2242%
OSPD 1928% 1986%
ORP 2080% 2177%
OW 3402% 3384%
OMP 246% 237%
ORF 1734% 2218%
OSF 1749% 1525%
OTF 2355% 2382%
OTT 2191% 2242%
OSP 2221% 2413%
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Table A2: Ratio of single objective optimization cost to hierarchical optimization
cost (with missed connections as the objective with the highest priority) for different
MOEs as objectives.

MOE Case Ratio Case Ratio
OTPT

1

12.4

4

11.6
OSPD 5 5.7
ORP 6.2 6.3
OW 9.7 9.1
OMP 1 1
ORF 5.8 5.6
OSF 5.6 5.4
OTF 8.2 8
OTT 7.7 7.4
OSP 13 12
OTPT

2

9.5

5

11.7
OSPD 4 4.3
ORP * 4.3
OW 8.1 8.3
OMP 1 1
ORF 5.5 4.2
OSF 4.3 3.4
OTF 6.3 6.8
OTT 6.1 7.2
OSP 10 12.1
OTPT

3

12.4

6

12.8
OSPD 5.6 6.1
ORP 5 5.7
OW 10.7 10.1
OMP 1 1
ORF 4.5 5.6
OSF 4.6 4.1
OTF 7.9 8.8
OTT 7.9 8.9
OSP 12.5 13.7
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Table A3: Summary of Number of Variables and Constraints For All Formulations

Formulation Number of Variables Number of Constraints
Q-A

|F |ḠW̄ + |T |Ḡ2W̄ 2 |F |+ |T |+ 4|T |Ḡ2W̄ 2 + 2|F |ḠW̄ + |T |G2W 2

Additional Ḡ2W̄ 2 for Q-S2
Q-S
Q-F

Q-FA (|F |+ |T |)ḠW̄ |F |+ |T |+ 4|T |ḠW̄
+2|F |ḠW̄ + |T |Ḡ

A-SS2, A-SL2,
A-AS2, A-AL2

(|F |W̄ + min(|FA,C |, |FD,C |))Ḡ |F |+ |T |+ Ḡ(2 min(|FA,C |, |FD,C |) + |F |W̄

A-SS3, A-SL3,
A-AS3, A-AL3

ḠW̄ (|F |+ min(|FA,C |, |FD,C |)) |F |+ |T |+ ḠW̄ × 2 min(|FA,C |, |FD,C |) + |F |)

YL
|F |ḠW̄+

|G|(|W |+ 1) + |T |W̄ 2

|F |+ 3(|T |W̄ 2) + |G|(|W |+ 1)+
|T |+ 2|T |WC + |F |W̄ Ḡ+ |T |W̄ 2

ZK
|F |ḠW̄ + |G|(|W |+ 1) + |T |

+|T |(2C̄W̄ + C̄2W̄ 2 + 1)
|F |+ |G|(|W |+ 2) + |T |(2C̄W̄ + 2)+

2|T |+ (F̄ W̄ ) + (W + 1) + |T |
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Table A4: Comparison of Quadratic Assignment Formulations

Case Flights Gates Hours
1 200 40 5
2 200 40 5
3 200 40 5
4 200 40 5
5 200 40 5

Table A5: Comparison of Quadratic Assignment Formulations Q-A and Q-S

Case Flights Gates Hours
1 120 50 4
2 120 50 4
3 120 50 4
4 120 50 4
5 120 50 4

Table A6: Comparison of Aggregating Formulations

Case Flights Gates Hours
1 75 50 3
2 90 50 3
3 75 50 3
4 100 50 4
5 105 50 3
6 75 50 3
7 90 50 3
8 120 50 4
9 100 50 4
10 105 50 3
11 90 50 3
12 140 50 4
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Table A7: Comparison of Quadratic and Aggregating Formulation

Case Flights Gates Hours
1 120 50 4
2 120 50 4
3 120 50 4
4 120 50 4
5 120 50 4
6 120 50 4

Table A8: Aggregating Formulation (A-AS3) Vs. Yu and Lau’s (YL) Formulation
(Comb. = Combination)

Comb. Flights Gates Known Comb. Flights Gates Known
1 120 50 4 25 200 50 5
2 120 50 4 26 200 50 5
3 120 50 4 27 200 50 5
4 150 50 5 28 160 50 4
5 150 50 5 29 160 50 4
6 150 50 5 30 160 50 4
7 120 50 4 31 160 50 4
8 120 50 4 32 160 50 4
9 120 50 4 33 160 50 4
10 120 50 4 34 150 50 5
11 120 50 4 35 150 50 5
12 120 50 4 36 150 50 5
13 160 50 4 37 200 50 5
14 160 50 4 38 200 50 5
15 160 50 4 39 200 50 5
16 150 50 5 40 200 50 5
17 150 50 5 41 200 50 5
18 150 50 5 42 200 50 5
19 150 50 5 43 160 50 4
20 150 50 5 44 160 50 4
21 150 50 5 45 160 50 4
22 120 50 4 46 200 50 5
23 120 50 4 47 200 50 5
24 120 50 4 48 200 50 5
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Table A9: Aggregating Formulation (A-AS3) Vs. Zhang and Klabjan’s (ZK) For-
mulation - Successful Connection Cost Included

Case Flights Gates Hours
1 175 40 5
2 175 40 5
3 175 40 5
4 200 40 5
5 200 40 5
6 200 40 5
7 210 40 6
8 210 40 6
9 210 40 6
10 240 40 6
11 240 40 6
12 240 40 6

Table A10: Aggregating Formulation A-AS3 Vs. ZK Formulation - Successful Con-
nection Cost Not Included

Case Flights Gates Hours
1 200 40 5
2 200 40 5
3 200 40 5
4 200 40 5
5 200 40 5
6 200 40 5
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Table A11: Calibration Results For Variable Neighborhood Search With Local
Branching (Time = Time of Optimal Heuristic Value)

Model
Name

Comb.
Heuristic

Value
Optimal
Iteration

Time
Heuristic
/ Optimal

Gap
From

Optimal

MC1

22 1485570 2 61.7 1.06 6%
24 1485570 2 120.8 1.06 6%
25 1455590 31 600.2 1.04 4%
33 1496990 11 433.8 1.07 7%
35 1460470 12 526.8 1.04 4%
40 1500040 2 121.8 1.07 7%
41 1464380 8 143.1 1.05 5%
43 1484620 7 322.9 1.06 6%
45 1471470 7 484 1.05 5%
48 1440410 2 121.1 1.03 3%

MC2

22 1452610 2 61.3 1.01 1%
24 1437600 2 121.5 1.00 0%
25 1515440 31 592.1 1.05 5%
33 1463670 16 286.7 1.02 2%
35 1445040 15 525.6 1.01 1%
40 1488550 5 363.5 1.04 4%
41 1472090 10 163.3 1.02 2%
43 1442950 10 325.2 1.00 0%
45 1437640 9 484.5 1.00 0%
48 1510700 2 484.2 1.05 5%

MC3

22 479615 2 63.1 1.08 8%
24 460830 2 122.4 1.04 4%
25 454303 20 402.6 1.02 2%
33 463464 7 147.2 1.04 4%
35 446760 8 351.9 1.01 1%
40 493560 2 122.9 1.11 11%
41 454910 5 111.4 1.02 2%
43 447900 6 231.4 1.01 1%
45 449030 6 202.4 1.01 1%
48 453300 2 122.6 1.02 2%
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MC4

22 42320 2 63.5 1.24 24%
24 38680 2 123.5 1.13 13%
25 39160 19 277.4 1.15 15%
33 39840 8 100.3 1.16 16%
35 37000 9 296.3 1.08 8%
40 36600 2 123.3 1.07 7%
41 40160 5 182.3 1.17 17%
43 36520 6 216.4 1.07 7%
45 36440 6 167.4 1.07 7%
48 36960 2 123.3 1.08 8%

MC5

22 1923470 2 183.2 1.22 22%
24 1895650 2 122.4 1.20 20%
25 1877430 27 575.7 1.19 19%
33 1768990 11 245.8 1.12 12%
35 1600220 13 567.5 1.01 1%
40 1889230 3 243.1 1.20 20%
41 1809090 7 123.3 1.15 15%
43 1649330 7 323.5 1.04 4%
45 1619370 7 484.7 1.03 3%
48 1917510 2 122 1.21 21%

262



Table A12: Calibration Results For Local Branching (Time = Time of Optimal
Heuristic Value)

Model
Name

Comb.
Heuristic

Value
Optimal
Iteration

Time
Heuristic
/ Optimal

Gap
From

Optimal

MC1

22 1485570 2 61.7 1.06 6%
24 1485570 2 120.8 1.06 6%
25 1455590 31 600.2 1.04 4%
33 1496990 11 433.8 1.07 7%
35 1460470 12 526.8 1.04 4%
40 1500040 2 121.8 1.07 7%
41 1464380 8 143.1 1.05 5%
43 1484620 7 322.9 1.06 6%
45 1471470 7 484 1.05 5%
48 1440410 2 121.1 1.03 3%

MC2

22 1452610 2 61.3 1.01 1%
24 1437600 2 121.5 1.00 0%
25 1515440 31 592.1 1.05 5%
33 1463670 16 286.7 1.02 2%
35 1445040 15 525.6 1.01 1%
40 1488550 5 363.5 1.04 4%
41 1472090 10 163.3 1.02 2%
43 1442950 10 325.2 1.00 0%
45 1437640 9 484.5 1.00 0%
48 1510700 2 484.2 1.05 5%

MC3

22 479615 2 63.1 1.08 8%
24 460830 2 122.4 1.04 4%
25 454303 20 402.6 1.02 2%
33 463464 7 147.2 1.04 4%
35 446760 8 351.9 1.01 1%
40 493560 2 122.9 1.11 11%
41 454910 5 111.4 1.02 2%
43 447900 6 231.4 1.01 1%
45 449030 6 202.4 1.01 1%
48 453300 2 122.6 1.02 2%
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MC4

22 42320 2 63.5 1.24 24%
24 38680 2 123.5 1.13 13%
25 39160 19 277.4 1.15 15%
33 39840 8 100.3 1.16 16%
35 37000 9 296.3 1.08 8%
40 36600 2 123.3 1.07 7%
41 40160 5 182.3 1.17 17%
43 36520 6 216.4 1.07 7%
45 36440 6 167.4 1.07 7%
48 36960 2 123.3 1.08 8%

MC5

22 1923470 2 183.2 1.22 22%
24 1895650 2 122.4 1.20 20%
25 1877430 27 575.7 1.19 19%
33 1768990 11 245.8 1.12 12%
35 1600220 13 567.5 1.01 1%
40 1889230 3 243.1 1.20 20%
41 1809090 7 123.3 1.15 15%
43 1649330 7 323.5 1.04 4%
45 1619370 7 484.7 1.03 3%
48 1917510 2 122 1.21 21%

Table A13: Experimental Cases For The Modified VNS-LB Algorithm

MODEL
NAME

FLIGHTS/HOUR GATES HOURS

MM1 50 52 12
MM2 50 52 12
MM3 51 52 12
MM4 51 52 12
MM5 51 52 12
MM6 51 52 12
MM7 51 52 12
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