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Increasing the number of qubits that can be controlled in a quantum system

represents an essential challenge to the field of quantum computing. Quantum net-

works consisting of nodes for local information processing and photonic channels

to distribute entanglement between different nodes represent a promising modular

approach to achieve this scaling. Trapped atomic ions are an ideal candidate for

quantum network nodes, with long-lived identical qubit memories that can be lo-

cally entangled through their Coulomb interaction and remotely entangled through

photonic channels. In this work I will first discuss our established toolkit for using

171Yb+ and 138Ba+ ions individually or together within a quantum node. Next I will

show how the 138Ba+ toolkit has been extended to allow for quantum operations in

the 52D3/2 manifold. I will then demonstrate how we can generate ion-photon en-

tanglement as a resource to connect separate nodes with a focus on some important

improvements which will allow us to implement it as part of a larger network. These



improvements include first the use of separate memory (171Yb+ ) and photon gener-

ating (138Ba+ ) ions. Additionally, the use of separate atomic lines within 138Ba+ for

excitation and collection allows us to preserve integrity of this photonic interface by

ensuring the purity of the single photons that are produced. To this end I demon-

strate a single-photon source for quantum networking based on a trapped 138Ba+ ion

with a single photon purity of g2(0) = (8.1± 2.3)× 10−5 without background sub-

traction. Trade-offs between the photonic generation rate and the memory-photon

entanglement fidelity for the case of polarization photonic qubits are also examined

and optimized by tailoring the spatial mode of the collected light. These techniques

should be useful in constructing larger ion-photon networks.
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Chapter 1: Introduction

1.1 Quantum Computing

The field of quantum computing has received tremendous interest over the

past couple of decades. In the early 1980s, Richard Feynman introduced the notion

of using a quantum system to process information that would be impossible to

efficiently simulate on a classical computer [1]. It was over a decade, though, before

a pair of seminal works ushered in an age of immense support and activity in the

field. First, in 1994, Peter Shor demonstrated an algorithm for efficiently factoring

large integers [2]. This was not the first quantum algorithm presented with an

exponential speedup over the best known classical counterpart [3], and, but for a

historical quirk of cryptographic standards, this algorithm might have gone largely

unnoticed. As it happened, though, this exact task of factoring large integers lay at

the heart of breaking the common RSA encryption that was (and often still is) used

to protect user data throughout the world. This result sparked both academic and

governmental interest in the field, and in rapid succession, the first quantum logic

gate was proposed and then demonstrated on a trapped ion system [4,5].

Nonetheless, valid questions remained about the viability of realizing a quan-

tum computer given the sensitivity of necessary quantum coherences to external
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noise [6]. Specifically, it was noted that if a single qubit error can spoil a quan-

tum algorithm, then the exponentially small error rates required to reliably perform

even modest calculations may be unobtainable. These concerns were addressed by

another result presented by Peter Shor [7] and Andrew Steane [8] which proposed a

method for implementing fault-tolerant error correction on quantum bits. For the

cost of redundantly encoding a single quantum bit of information in many different

physical qubits, this result showed that long algorithms may be performed without

the exponential sensitivity to single-qubit noise.

These results provided a concrete (if distant) motivation for developing large-

scale quantum information processors and demonstrated that such a device is achiev-

able, at least in principle. Since then, considerable effort and progress has been made

in the field towards the twin goals of increasing the size of the system and increasing

the fidelity of operations on that system. These two goals, however, have consis-

tently shown an antagonistic relationship. With each new step in system size, great

effort must be made to ensure that fidelities are not sacrificed. Similarly, fidelity

records are typically set on small systems, and much additional effort is required

before they can be applied to more qubits. For instance, today researchers on state-

of-the-art quantum computers on a number of platforms are working hard to extend

the successes of smaller systems of 5-7 qubits [9,10] to perform algorithms on larger

processors with 10’s of qubits. These larger systems threaten to perform certain

calculations faster than their classical counterparts [11]. An approach to alleviate

this struggle between system size and fidelity by using a modular architecture will

be discussed later this chapter and provides much of the motivation for this work.
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1.2 Quantum Communication

Whereas quantum computing attempts to process quantum information, quan-

tum communication seeks to distribute quantum information over macroscopic dis-

tances, typically through a photonic link. Because they rely on the same fundamen-

tal principles and often leverage similar hardware, these two fields have developed

in parallel with one another. In 1984, a decade before Shor published his algo-

rithm which threatened to eventually shake the foundation of modern cryptogra-

phy, Charles Bennett and Gilles Brassard proposed a method for using a quantum

channel to securely send and receive classical information [12]. Unlike most methods

for secure communications, this quantum cryptography protocol and others that fol-

lowed [13] rely on the principles of quantum physics rather than on the mathematical

complexity of certain tasks to guarantee protection against eavesdroppers.

Another area of interest for quantum communication is the development of

quantum repeaters. Light propagating through an optical fiber suffers loss that

scales exponentially with path length. Even for low-loss telecom wavelength photons,

this loss becomes prohibitive for networks ∼ 100 km. Classical communication

overcomes this by including repeater nodes at regular intervals along the path to

amplify the signal. It has been shown to be impossible, however, to make a copy of an

unknown quantum state [14], meaning that this kind of amplification is impossible

for a quantum repeater. Instead, a quantum repeater can break the communication

channel into smaller sections and verify the entanglement between each stage [15].

This reduces efficiency scaling to polynomial in channel length and in principle
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allows for quantum communication over arbitrarily long distances.

Today there exist many large scale experimental implementations of quantum

communication, distributing entanglement from 10’s to 1000’s of kilometers [16–

19]. The largest of these networks require quantum repeater nodes to mitigate the

exponential attenuation of photons through optical fibers. Recently, entanglement

has been demonstrated between photons from a satellite at two ground-based labs

1203 km apart [20].

1.3 Quantum Networks

At the intersect of quantum computing and quantum communication is the

field of quantum networking. A quantum network is comprised of two components:

nodes, where quantum information is generated, stored and processed, and chan-

nels where quantum information is distributed node to node [22, 23]. Many of the

quantum communication applications already discussed can utilize quantum net-

works. For example, quantum repeater nodes typically require memory qubits and

the ability to perform local operations in order to carry out the necessary entan-

glement purification [24]. Thus, a quantum communication system typically is a

long-distance 1-D quantum network, with nodes at the end points and the repeater

locations, and with channels connecting them in a nearest-neighbor architecture (see

Fig. 1.1(a)). By contrast, other applications of quantum networks such as quantum

meteorology often use networks with more dense connectivity such as the graph

shown in Fig. 1.1(b) [21].
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Nodes

Channels

(a)

Nodes

Channels

(b)

Figure 1.1: (a) Network diagram of a quantum communication network with two

repeaters in the middle. Nodes of the network are shown in red and quantum

channels (edges of the network) are shown in blue. (b) Quantum network with a

higher connectivity. This network was proposed for quantum sensing applications

[21].
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Another important application of quantum networking is distributed quantum

computing [25–28], which will serve as the focus for much of this dissertation. As

discussed at the start of this chapter, increasing the number of qubits in a physical

system without sacrificing performance is an arduous task. This difficulty suggests

that a networked architecture may be key to scaling quantum processors [25]. In

this approach, instead of increasing the number of qubits per system ad infinitum,

one constructs a large number of modules (nodes), each with a manageable number

of qubits (likely in the 50-100 range for trapped ions [29]). These modules can then

be connected via photonic interfaces (channels) to effect a single, larger quantum

processor. This approach has a large up-front cost in added complexity, but promises

to provide a way around many of the scaling issues present in trapped ion quantum

computers [30]. Later chapters will focus on ways these complexities have been

addressed and on how each element of a modular trapped ion quantum network has

been demonstrated and refined.
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Figure 1.2: Modular quantum network for trapped ion quantum computing. Each

module contains some manageable number of trapped ions and has the ability to

perform local operations within the module. Each module also possesses at least one

communication qubit that can be probabilistically entangled with the communica-

tion qubit in another module through a photonic link mediated by the optical fibers

(yellow), beam splitters, and SPD array. For many quantum computing applications,

greater connectivity can lead to improved performance [31]. It has therefore been

proposed that arbitrary pairwise connectivity could be achieved between nodes by

using an NxN optical cross-connect switch [30] such as the one presented in Ref. [32].
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Chapter 2: Basic Ion Trapping Toolkit: Yb

Eighteen years ago, DiVincenzo proposed a set of five criteria necessary for a

physical implementation of a quantum computer [33]:

1. A scalable physical system with well characterized qubits

2. The ability to initialize the state of the qubits to a simple fiducial state

3. Long relevant decoherence times, much longer than the gate operation time

4. A “universal” set of quantum gates

5. A qubit-specific measurement capability

These criteria are not meant to capture the full range of issues facing the field

today, but nonetheless they serve as a useful framework for thinking about some

of the basics tools required for performing quantum computing experiments. This

chapter will discuss some of the basic tools used on the 171Yb+ atom, framed in the

context of these criteria.

2.1 The 171Yb+ Atom as a Physical System

The first of Divincenzo’s criteria calls for a physical system that is scalable

and well characterized. While “scalable” is a common claim in the field [34–43], it

is a notoriously tricky term to define. A scalable system is typically understood to
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refer to a system whose required recourses, in principle, scale at most linearly with

the number of qubits [44]. There is ambiguity, however, in the phrase “in principle,”

since it can be difficult to distinguish challenges to scalability that are fundamental

from those that are simply hard. In this section I will not attempt to demonstrate

that Yb ions or trapped ions in general are fundamentally scalable, except to cite a

number of works on methods for scaling the ion trap quantum processor [29,45,46],

including this thesis in its entirety.

“Well-characterized” is a much less nebulous concept, and represents one of

the great strengths of the trapped-ion platform. Unlike artificial qubits such as

superconducting circuits, each trapped 171Yb+ ion is fundamentally identical, and

thus the full set of energy levels are known and many of the required “calibrations”

can be simply looked up in advance with high precision (Fig. 2.1). We use the two

mF = 0 hyperfine “clock” states in the ground level of 171Yb+ as our qubit, defining

2S1/2 |F = 1,mF = 0〉 ≡ |⇑〉 and 2S1/2 |F = 0,mF = 0〉 ≡ |⇓〉. For every 171Yb+

ion, splitting between these states is 12642812118.466± 0.002 Hz at zero magnetic

field [47].

Moreover, precise measurements have been made on other transitions in 171Yb+

[48, 49], including one of the most precise clock measurements ever performed [50].

The fact that each qubit is identical and defect-free, as well as the first order mag-

netic field insensitivity of the transition, also contributes to the unrivaled coherence

times of trapped ions [51]. Our group has shown a coherence time of 2.5 s [52]

and other groups using 171Yb+ have demonstrated coherence times of over 15 min-

utes [47]. These timescales are much longer than modern quantum experiments,
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satisfying DiVincenzo’s 3rd criterion.

2.1.1 Photoionization

In addition to the general quality of the 171Yb+ atom as a physical platform,

the particulars of how it is trapped, cooled, and prepared for quantum operations in

our lab are also important. Inside our vacuum chambers, there is a small stainless

steel tube open at one end and filled with enriched 171Yb which serves as an atomic

source oven. The opening points towards the center of the ion trap and the oven

is grounded to the chamber at one end and connected to an electrical feedthrough

at the other end. A current can be run through the oven to resistively heat the

Yb inside and produce a small atomic flux directed at the trapping region. The

required currents vary dramatically based on the size of the oven and the amount

of heat-sinking the support structure provides, but a typical value is around 3.6 A.

Once this atomic flux is established, a 399 nm beam from a CW laser is

sent through the trapping region to excite neutral Yb population from the 1S0

ground state to the 1P1 excited state [52]. When setting the frequency of this laser,

consideration must be given to the geometry of the trapping setup to account for

Doppler shifts, as the angle between the atomic beam and the 399 nm beam can

change the required lock frequency by ∼ 1 GHz.

A 399 nm photon, however, lacks sufficient energy to excite the electron from

1P1 to the continuum, so laser light from another CW source at 369 nm must also

be applied in order to liberate the electron and produce an ion.

10



Figure 2.1: Energy level diagram for 171Yb+ . Levels that we directly address are

shaded darker. Additional levels that we off-resonantly couple to are included in

lighter shading.
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2.1.2 Doppler Cooling

In order to be well localized and useful for quantum experiments, the ions

must be Doppler cooled to near their ground state of motion. The principle behind

Doppler cooling is to apply light that is red detuned from a given atomic transition.

This causes the atom to preferentially absorb photons with momentum opposite of

its own, and because the subsequent spontaneous emission is isotropic, this leads to

an average net reduction in the atom’s momentum per scattering event.

A short discussion of the limits of this cooling scheme will introduce some

useful principles of light-matter interactions. Consider a two-level system with an

energy splitting ~ω driven by monochromatic light of frequency ω0. The photon

scattering rate (Rscatt) is given by [53]:

Rscatt =
Γ

2

I/Isat

1 + I/Isat + 4δ2/Γ2
. (2.1)

where δ = ω− ω0 − kv is the detuning of the laser with the Doppler shift on an ion

moving at velocity v taken into account, Γ is the linewidth of the transition, I is the

intensity of the applied light, and Isat is the saturation intensity for the transition.

The saturation intensity for a given transition with resonance wavelength λ is

Isat =
π

3

hcΓ

λ3
. (2.2)

This is a useful parameter for many atomic physics calculations, and the saturation

intensities for a few of our common transitions in the lab are listed in Table 2.1.

Because each photon carries momentum ~k, there is a force imparted on the

12



Species Transition Resonance Frequency (THz) Isat (mW/cm2)

171Yb 1S0 → 1P1 751.52639 60

171Yb+ 2S1/2 → 2P1/2 811.2890 51.0

2S1/2 → 2P3/2 911.1361 95.1

2D3/2 → 2[3/2]1/2 320.5692 37.5

138Ba 1S0 → 3Do
1 725.25890 0.44

138Ba+ 2S1/2 → 2P1/2 607.42630 16.4

2S1/2 → 2P3/2 658.11648 35.7

2D3/2 → 2P1/2 461.31192 28.9

Table 2.1: Resonance frequencies and saturation intensities for common transitions

in our lab. Yb data from Ref. [52], Ba data from Ref. [54].
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ion Fs = ~kRscatt. For small velocities, this force can be approximated as:

Fs(δ) = Fs(ω − ω0 − kv) ≈ Fs(ω − ω0)− kv∂F
∂ω

(2.3)

The first term on the right, Fs(ω − ω0) ≡ F0, is constant in v and can be

considered as simply applying a small offset of the ion position in the trapping

potential. If ∂F
∂ω

is positive, the second term acts as a damping force. Taking the

derivative of equation 2.1 gives Fs = F0 − αv where

α = ~k2 I

Isat

−4δ/Γ

[1 + I/Isat + (2δ/Γ)2]2
(2.4)

is the damping coefficient. In order to cool the ions rather than heat them, this

value must be positive, meaning that the detuning must be negative, i.e. we must

be red detuned. The damping coefficient is maximized at δ = −Γ/2 giving a value

of αmax = ~k2/4.

At low temperatures, this damping force is primarily opposed by heating from

the random walk of the recoil force of spontaneous emissions. We can define the

energy per recoil event as Er = ~ωr. Noting that each spontaneous emission event

involves two random kicks (one for absorption and one for emission) this gives a

heating rate of 2~ωrRscatt [55]. At equilibrium, this is equal to the cooling rate,

−αv2, and so plugging in equation 2.1 gives the temperature as

kBT =
~Γ

4

1 + (2δ/Γ)

−2δ/Γ
. (2.5)

This is again minimized at δ = −Γ/2, producing a Doppler cooling temperature

14



limit of TD = ~Γ
2kB

. For the 2S1/2 ↔2 P1/2 transition in Yb+, Γ = 2π × 19.6 MHz,

giving a Doppler limited temperature of 470 µK.

We implement Doppler cooling on 171Yb+ using a 369 nm diode laser tuned red

of the transition from the F=1 manifold of the 2S1/2 level (|⇑〉) to the F=0 manifold

of the 2P1/2 level as in Fig. 2.2(a). Off resonant pumping to the 2P1/2 F=1 manifold

can result in decays to |⇓〉. The primary cooling beam is 14.7 GHz detuned from

any transitions from this state, meaning that the ion goes dark once population ends

up here. Therefore, 14.7 GHz sidebands are added to our cooling beam to pump

the ion out of this dark state and back into the cooling cycle (Fig. 2.2(b)). These

sidebands are actually the second sideband of a resonant EOM driven at 7.37 GHz.

The ion can also decay from the cooling cycle into the 2D3/2 F=1 level. To

avoid population trapping in this state, a CW laser at 935nm is applied to drive the

2D3/2 → 2[3/2]1/2 transition. Population in the 2[3/2]1/2 level quickly decays back

to the cooling cycle. Additionally, the same off-resonant pumping to the 2P1/2 F=1

manifold that populates the |⇓〉 state can also decay to the 2D3/2 F=2 level. This

requires that we apply 3.07 GHz sidebands to this 935 nm light using an in-fiber

EOM.

Finally, there exists a low-lying 2F7/2 state in 171Yb+ with a lifetime of 5.4

years. Though there are no dipole allowed transitions from our cooling cycle into this

state, population is occasionally driven there by either collisions with background

gas or decays from population off-resonantly driven to the 2P3/2 level and then

decaying there via 2D5/2. This F-state population is returned to the cooling cycle

using a 638 nm CW laser which excites the atom to the 1[5/2]5/2 level where it can

15



2S1/2

2P1/2

2D3/2

3[3/2]1/2

369 nm

935 nm

(a) Main Cooling Cycle (State Detection)

2S1/2

2P1/2

369 nm

(b) Cooling Sidebands

2S1/2

2P1/2

369 nm

(c) Pumping Sidebands

Figure 2.2: (a) Closed cooling cycle allows no excitations or decays to take ion out of

the cycle. Because this cycle includes the |⇑〉 state and not the |⇓〉 state, application

of this light without any sidebands can serve as state detection as well. (b) 14.7 GHz

cooling sidebands are added to the light shown in (a) when Doppler cooling the ion

in order to return light from the |⇓〉 state to the cooling cycle. (c) 2.1 GHz pumping

sidebands are added to the light shown in (a) in order to initialize the light in the

|⇓〉 state.
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decay back to the 2D3/2 manifold [49]. Because F-state events are rare (∼ 1/hour)

we sweep the frequency of this laser to span the hyperfine states rather than apply

sidebands to the light.

2.2 State Initialization and Readout

In this section, I will discuss how we realize DiVincenzo’s 2nd and 5th criteria

in Yb ions. Though this may seem an odd ordering, the hardware used for these

implementations are very similar to each other and to the Doppler cooling just

discussed. State initialization is performed by switching off the 7.37 GHz EOM on

the 369 nm light and turning on a 2.1 GHz EOM. This drives population from |⇑〉

to the 2P3/2 F=1 manifold, where it can decay back to the |⇓〉 state and become

trapped as in Fig. 2.2(c). This efficiently pumps the ion into the |⇓〉 state in ∼ 1 µs.

For state readout, the 369 nm light can be applied to the ion without any

sidebands. If the ion is in |⇑〉, this will drive a cycling transition on |⇑〉 ↔

2P1/2 |F = 0,mF = 0〉. If the ion is in the “dark” |⇓〉 state, however, it will be

trapped and scatter no light. This allows for efficient state-detection by discrimina-

tion of the number of photons collected on a photomultiplier tube (PMT) during a

detection cycle. For optimal detection fidelities, we must detect long enough that

the Poisson distributions of photon counts from bright and dark states have minimal

overlap, but not so long that off-resonant pumping mixes the bright and dark states.

The optimal detection time will vary based on background count rates and the size

of the imaging objective. For our current setup this is about 250 µs.
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2.3 Single Qubit Rotations

DiVincenzo’s fourth criterion is by far the most complex to implement in

171Yb+ . In fact, in most quantum computing platforms, it is gate errors rather than

coherence times, initialization, or readout that limit the complexity of computations

that can be performed. In this section, I will discuss ways we can implement single

qubit rotations, which constitute only one part of a universal gate set. Later this

chapter I will discuss how we complete our universal gate set with a two-qubit

entangling gate.

2.3.1 Microwave Rotations

One way to perform qubit rotations is to apply resonant 12.6 GHz microwave

radiation directly to the ions to drive coherent dipole transitions between hyperfine

levels. This signal is generated by mixing a 12.450 GHz clock output with a signal

near 200 MHz from a direct digital synthesizer (DDS). This mixed signal is then put

through a filter to ensure that only the sum frequency component passes. It is then

amplified and applied to a microwave horn located just outside one of our vacuum

windows. Transitions from |⇓〉 to different Zeeman sub-levels of the 2S1/2 F=1 level

can be frequency selected by changing the output frequency of the DDS.

When setting up the microwave horn, it is important to check different Zeeman

transitions to ensure the microwave intensity and polarization at the ion location

can efficiently drive the different lines. If one of the transitions is too slow, physically

moving or rotating the horn may be required.
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Figure 2.3: Microwave Rotations on a single 171Yb+ ion. Probability of finding the

ion in the |⇑〉 is plotted as a function of applied microwave time.
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2.3.2 Raman Beams

In addition to applying the 12.6 GHz radiation directly to the atoms in the

form of microwaves, coherent rotations can also be driven by applying this frequency

as a beatnote on a pair of 355 nm beams to drive Raman rotations. The 355 nm

light comes from a mode-locked, frequency tripled Nd:YVO4 laser. Common AO

frequency shifters tend to operate at <1 GHz, so in order to span the 12.6 GHz

frequency splitting, we utilize the large bandwidth of this laser. In frequency space,

a mode-locked laser is a frequency comb, with comb teeth separated by the repetition

rate of the laser νr [56]. We can impart a relative frequency offset between the two

beams by putting them through AOMs with bandwidth of at least νr/2, allowing

us to achieve arbitrary frequency splittings between separate comb teeth up to the

bandwith of the laser. For Nd:YVO4, this bandwidth is hundreds of GHz [57],

easily allowing us to span the hyperfine structure of Yb. If we apply a relative

frequency shift of δ0 to the two beams, then, we can drive carrier Raman transitions

if δa + nνr ≡ δn = νHF (see Fig. 2.4(a)) where n is some integer and νHF is the

hyperfine energy splitting. For our laser, νr ≈ 80 MHz, so typically n=158.

2.3.3 Beatnote Lock

There is no active stabilization on the repetition rate of this laser, so it is

susceptible to noise from drifts in cavity length. Unfortunately, since the beat

note that we use is equal to δa + nνr, this noise is amplified by a factor of n=158,

making some form of beat note locking necessary [58]. To implement this, first a
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small portion of the light from the laser is picked off and measured on an Aplhalas

UPD-30-VSG-P fast photodiode. The photodiode puts out a signal at νr and its

harmonics, and it is important that the bandwidth of the photodiode be at least

13 GHz so that the 158th harmonic at 12.65 GHz is produced. All other harmonics

are removed by a narrow filter and then this signal is mixed with our 12.450 GHz

clock output. The difference frequency from this mixer is then mixed again with

the output of an HP 8640B signal generator at near 200 MHz. This output is near

DC and is used as the error signal on a PI loop that feeds back onto the frequency

modulation port of the 8640B. This ∼ 200 MHz signal from the 8640B is also applied

to the AOM for one of the 355nm beams (AOM 1 in figure 2.4(b)).

This circuit locks the beatnote between the un-shifted beam and the beam

shifted by AOM1 to exactly the clock frequency (12.450000 GHz). This ensures

that δn is constant throughout our experiments, independent of changes in νr.

2.3.4 Raman Rotations

The 355 nm beams couple the ground state levels to both the 2P1/2 and 2P3/2

manifolds, and the interplay between these levels is important to consider when

finding the rate of the transitions [55]. Much of the important physics of this inter-

action, though, can be obtained by considering a simplified example where the two

ground levels |⇑〉 and |⇓〉 only couple to a single excited state |e〉 in a Λ configuration

where |e〉 is seperated from |⇓〉 by a frequency of ωe. Additionally, the mode-locked

laser behaves as two CW lasers driving these transitions [59] with frequencies ω1
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δ0 νr

ν

δn

ν

Beam 1

Beam 2

(a)

AOM1

BPF

RF ampli�er 12.450 GHz clock

LPF

HP 8460B
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Photodiode

PI
Lockbox

(b)

Figure 2.4: (a) Beatnote between two 355 nm beams used to drive carrier Raman

transitions in 171Yb+ (b) Schematic of the circuit used to lock the beatnote.
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and ω2 and a frequency difference ω1 − ω2 = δn = δω + ωHF . In a frame rotating at

ω1 and setting ~ = 1, the Hamiltonian of this system can be written as

HI = Ω1 |e〉 〈⇓|+ Ω∗1 |⇓〉 〈e|+ Ω2 |e〉 〈⇑|+ Ω∗2 |⇑〉 〈e|+ ∆1 |e〉 〈e| (2.6)

where ∆ = ω1−ωe, and Ω1,Ω2 are the one-photon Rabi frequencies for the transitions

|⇓〉 ↔ |e〉 and |⇑〉 ↔ |e〉 respectively. This leads to the following equations of motion

for the population amplitudes:

ċ⇓ = iΩ∗1ce (2.7)

ċ⇑ = iδnc⇑ + iΩ∗2ce (2.8)

ċe = i∆ce + iΩ1c⇓ + iΩ2c⇑. (2.9)

If we assume δω � ∆ and ∆� γe where γe is the excited state decay rate, then

we can adiabatically eliminate the excited state population ce = −1
∆

(Ω1c⇓ + Ω2c⇑),

and the equations of motion become

ċ⇓ = i
|Ω1|2

∆
c⇓ − i

Ω∗1Ω2

∆
c⇑ (2.10)

ċ⇓ = i(δω −
|Ω2|2

∆
)c⇑ − i

Ω∗1Ω2

∆
c⇓. (2.11)

Thus the system evolves between |⇓〉 ↔ |⇑〉 exactly as a driven 2-level system with

a Rabi frequency

ΩR = −Ω1Ω∗2/∆. (2.12)
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If we take into account the phase and momentum components of the driving fields,

this system is governed by the Hamiltonian [60]:

HI =
1

2

(
ΩRe

−i∆k·r−δωt−∆φ |⇑〉 〈⇓|+ h.c.
)

(2.13)

where ∆φ is the phase difference between the two driving fields and ∆k is the

difference in the momentum vectors for the two separate Raman beams, arising

from the fact that a photon is absorbed from one arm and emitted into the other

arm.

2.4 Addressing Ion Motion

A single trapped ion’s motion is governed by the harmonic trapping (pseudo)potential

[61], and when there are multiple ions in a single trapping potential, they are cou-

pled to each other via Coulomb repulsion. For small deviations from equilibrium,

this system behaves like a system of coupled harmonic oscillators and produces a

series of collective eigenmodes of motion [62]. All of our local, multi-qubit gates

rely on coupling the atom’s spins through this shared degree of freedom of their

motional modes. Though microwave 12.6 GHz photons lack sufficient momentum

to effectively address these motional modes [55], by aligning our Raman beam such

that their ∆k vector has a projection along one of the motional modes, we can drive

spin flips in the atom while also adding or subtracting vibrational quanta from this

motional mode. These transitions are known as blue and red vibrational sidebands

respectively (see Fig. 2.5).
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Figure 2.5: Raman frequency scan on two-ion chain with a non-copropogating

beam geometry. Here we plot the probability of finding an ion in the |⇑〉 state as a

function of detuning from the hyperfine carrier transition. The beams are aligned so

that δK is in the axial direction, so in addition to the carrier at δ = 0, strong blue

and red vibrational sidebands are present at δω = ±0.85 MHz for the COM mode

and δω = ±1.05 MHz for the tilt mode. Second order sidebands are also visible at

twice these frequencies.
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First we will consider the case of addressing the motion of a single atom.

By setting the detuning δn = ωHF − ωm where ωHF is the qubit splitting and ωm

is the frequency of one of the trap modes, we produce a red sideband transition.

The Hamiltonian for this interaction is a modified version of Equation 2.13 in the

interaction picture that accounts for the changing phonon number [63]

HRSB
I = ΩR · exp(i[η(ae−iωmt + a†eiωmt)− δωt+ ∆φ]) + h.c. (2.14)

Here, a and a† are the phonon annihilation and creation operators for the mode

being addressed.

η = ∆k

√
~

2mωm
(2.15)

is known as the Lamb-Dicke parameter. This important parameter quantifies the

coupling between the atom’s spin and motional degrees of freedom, and can also be

thought of as representing the spatial extent of the vibrational mode relative to the

wavelength of the driving light. From this perspective, Equation 2.15 can also be

written as η = ∆kx0 where x0 =
√

~
2mωm

is the RMS radius of the ion in the ground

state of a harmonic oscillator of frequency ωm.

With this interpretation of the Lamb-Dicke parameter in mind, one can see

that if η is large, then the atom’s spatial extent causes it to sample over the phase

of the driving field. If the spatial density matrix is in a thermal distribution, this

leads to decoherence. To avoid this, we impose the condition that we operate in the

Lamb-Dicke regime: η
√

2n+ 1 � 1 where n is the average vibrational occupation
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mode of the atom. In this regime, equation 2.14 can be expanded to the first power

in η to give [63]

HRSB
I = ηΩR(σ+ae

i∆φ + σ−a
†e−i∆φ). (2.16)

where σ̂+ is the spin raising operator on the ion. Likewise, the blue sideband Hamil-

tonian can be written as

HBSB
I = ηΩR(σ+a

†ei∆φ + σ−ae
−i∆φ). (2.17)

2.5 Mølmer Sørensen Interaction

In this section, I will give a brief discussion on how we can address these red

and blue sidebands to drive Mølmer-Sørensen gates on trapped Yb ions. For a more

detailed derivation, see references [59, 60, 63, 64]. The Mølmer-Sørensen interaction

is produced by simultaneously applying red and blue sidebands of Raman light with

symmetric detunings of −δ and δ from the motional mode. From Eqns. 2.16 and

2.17, this produces the Hamiltonian [65]:

HMS = ηΩRσ+(ae−i(δt−φr) + a†ei(δt+φb)) + h.c.

= ηΩR(σ+e
iφS − σ−e−iφS)(aeiφM e−iδt + a†e−iφM eiδt)

(2.18)

Here φr, φb are the relative phases for the red, blue sideband beams. φS = (φr+φb)/2

is the spin phase and φM = (φr−φb)/2 is the motional phase. When this interaction

is applied to two ions in a single trapping potential, it is useful to think about the
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evolution of the system in terms of the available transition paths [66]. Consider a

pair of ions both prepared in the spin state |⇓〉 with a shared oscillator mode of

phonon number n. The state of the system can be written as |⇓⇓ n〉. There are four

paths for exciting both spins |⇓⇓, n〉 ↔ |⇑⇑ n〉: two with a red sideband followed by

a blue sideband and two with a blue sideband followed by a red sideband. Because

of the symmetric detunings, each of these paths has a total energy ~ωm, meaning

that they are all resonant. There are, however, no resonant paths for single spin

excitations (see figure 2.6).

If δ is larger than ΩR, this behaves as a Raman system, allowing us to adi-

abatically eliminate population from the single spin excitation states. From Eqn.

2.12 we can find the effective Rabi frequencies for the two paths. First we will look

at the path where the red sideband acts on |⇓⇓, n〉 [67]

Ωpath1,2 =
Ω|⇓⇓,n〉→|⇓⇑,n−1〉Ω|⇓⇑,n−1〉→|⇑⇑,n〉

−4δ

=
(ηΩR

√
n)(ηΩR

√
n)

−4δ

= −n(ηΩR)2

4δ

(2.19)

The n dependence in this equation comes from the creation and annihilation op-

erators from the sideband Hamiltonians in Eqns. 2.16 and 2.17 acting on the

vibrational mode: a |n〉 =
√
n |n− 1〉 and a† |n− 1〉 =

√
n |n〉. Obviously the

|⇓⇓, n〉 → |⇑⇓, n− 1〉 path behaves the same, so next we can find the rate for

the paths where the blue sideband acts on |⇓⇓, n〉.
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Figure 2.6: Resonant paths for two spin flips in MS interaction. Red and blue

sidebands are both detuned by δ giving four resonant paths to excite both spins.

Because there are no resonant paths for exciting a single spin and δ > ΩR we do not

drive population into the intermediate n = ±1 states in the middle of the figure, and

population is driven on |⇓⇓, n〉 ↔ |⇑⇑, n〉. The rate of this transition is determined

by the interference between the four paths.
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Ωpath3,4 =
Ω|⇓⇓,n〉→|⇓⇑,n+1〉Ω|⇓⇑,n+1〉→|⇑⇑,n〉

4δ

=
ηΩR

√
n+ 1)(ηΩR

√
n+ 1)

4δ

= (n+ 1)
(ηΩR)2

4δ

(2.20)

Likewise, the |⇓⇓, n〉 → |⇑⇓, n+ 1〉 path is identical.

The total transition rate comes from the sum over these four transition paths:

ΩMS = −n(ηΩR)2

2δ
+ (n+ 1)

(ηΩR)2

2δ
=

(ηΩR)2

2δ
. (2.21)

The “miracle” [66] of the MS interaction is shown in Eqn. 2.21. Given that we go

slowly enough as to not drive the single spin flip operations, the effective Rabi rate

is independent of n. This means that the spin states can evolve independently from

the motional state, and the gate does not rely on ground-state cooling. Population

in the |⇓⇑〉 and |⇑⇓〉 states undergo a similar interaction, and the evolution of the

system can be described by [64]:

|⇓⇓〉 → cos(ΩMSt/2) |⇓⇓〉+ i sin(ΩMSt/2) |⇑⇑〉

|⇑⇑〉 → cos(ΩMSt/2) |⇑⇑〉+ i sin(ΩMSt/2) |⇓⇓〉

|⇓⇑〉 → cos(ΩMSt/2) |⇓⇑〉 − i sin(ΩMSt/2) |⇑⇓〉

|⇑⇓〉 → cos(ΩMSt/2) |⇑⇓〉 − i sin(ΩMSt/2) |⇓⇑〉

(2.22)

By choosing t = π/ΩMS, we can evolve from a basis state to a maximally entangled

Bell state. This interaction serves as an entangling 2-qubit gate, completing our

universal set of gates and satisfying the last of DiVincenzo’s criteria.
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Chapter 3: Networking Experiments with 171Yb+

As discussed in Chapter 1, the creation of quantum networks of trapped ions

and emitted photons is of great interest for quantum meteorology [68,69], quantum

communication [70, 71], and quantum computing [30] applications. As discussed in

Chapter 2, trapped 171Yb+ ions serve as excellent qubits and are ideal memories

for the nodes of these quantum networks. Optical photons can travel macroscopic

distances through fibers, are compatible with room temperature operation, and

possess a number of degrees of freedom that can carry quantum information, making

them a natural candidate for channels in a quantum network [72–76].

3.1 Ion-Photon Entanglement

Foundational to an ion-photon network architecture is the ability to generate

entanglement between the spin state of an ion and the state of an emitted photon.

There are several methods for generating this ion-photon entanglement. In this

section, I will give a brief overview of many of these methods and an in-depth

discussion of the methods used in this work. Where necessary, I will also discuss

how this ion-photon entanglement is used to generate ion-ion entanglement, but a

full explanation of how that is done in our experiments will be given in the next
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section.

All of these methods require an energy scheme with a short-lived excited state

|e〉 with decays to one or both of the ground-state qubit levels |↓〉 and |↑〉. The

emitted photon can carry angular momentum of ∆mZ = +1, 0, or −1 quanta, and

we will refer to these as σ+, π, and σ− decays respectively.

3.1.1 Photon Number Entanglement

The first protocol for generating remote entanglement in an ion-photon system

is the single photon detection scheme, which uses weak entanglement between the

atom’s spin state and the photon number state [77]. In this protocol, the ion is first

prepared in the |↓〉 state. It is then weakly excited to |e〉 with probability Pe � 1.

After a decay the atom-spin, photon-number state is |↓ 0〉+
√
Pe |ψd 1〉 where ψd is

the state of the atom after a decay, and is in general a superposition of |↓〉 and |↑〉

determined by the Clebsch-Gordan coefficients.

This state exhibits only very weak entanglement, but the power of this protocol

comes from its ability to probabilistically turn weak ion-photon entanglement into

strong remote ion-ion entanglement, heralded by detection of a single photon. This

is achieved by simultaneously exciting two atoms and collecting their decay photons.

First, the polarization corresponding to the decays back to the |0〉 state must be

filtered out (see Fig. 3.1(a)), producing the state
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(|↓ 0〉+
√
ε |↑ 1〉)⊗ (|↓ 0〉+

√
ε |↑ 1〉) = |↓↓ 00〉+

√
ε |↓↑ 01〉+

√
ε |↑↓ 10〉+ ε |↑↑ 11〉

(3.1)

where ε ≤ Pe accounts for the probability of a decay to the |↑〉 state.

Next, photons from the two atoms must be combined on a beamsplitter to

erase the information about which path they came from. A more quantitative

description of the action of the beamsplitter on single photon states will be given

in the next section. Detection of a single photon after the beamsplitter produces

the state |↑↓〉 + eiφp |↓↑〉 +
√
εeiφ2 |↑↑〉 where φp is determined by the optical path

length difference from the two atoms to the detector. For sufficiently small Pe,

√
ε can be neglected and this state approaches maximal entanglement, but since

Pe also determines the entanglement generation rate, this protocol forces a trade-

off between experimental rate and fidelity. Additionally, because the phase of the

resultant state depends on the optical path lengths, this protocol requires that these

paths be interferometrically stabilized during the experiment. Moreover, any recoil

from the decay can betray which atom it was that emitted the photon and spoil

the entanglement, meaning that the atoms need to be cooled to well within the

Lamb-Dicke limit [78]. These factors make this protocol less than ideal for our

system.
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Figure 3.1: (a) Energy level diagram for the photon number entanglement protocol.

Each ion is prepared in |↓〉, and then weakly excited to |e〉. The polarization corre-

sponding to the decay back to |↓〉 must be filtered out, ensuring that any collected

photons correspond to population in the state |↑〉. (b) Diagram of the detection

setup for this protocol. Light is collected from both atoms and then coupled into

optical fibers to clean up the spatial mode before combining the paths on a 50:50

beamsplitter to erase the path information. Detection of a single photon at one of

the detectors heralds the creation of an entangled state between the two ions.
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3.1.2 Frequency Qubits

Two photonic degrees of freedom that are more straightforward to entangle

with a trapped ion’s spin state are frequency and polarization. Protocols for these

qubits generate strong ion-photon entanglement, and allow for high excitation prob-

abilities without affecting experimental rate [79]. To have a well-defined frequency

qubit, the |↑〉 and |↓〉 states must have a frequency splitting much larger than the

linewidths of the decays used. The magnetic fields we tend to operate at produce the

Zeeman splitting between different mF levels that is typically similar to the decay

linewidths, making hyperfine structure necessary for a frequency qubit.

The first step for both the frequency qubit and polarization qubit entanglement

protocols is to prepare a pure state in the excited state manifold [76]. This is

typically accomplished by preparing the ion to a ground state level and then applying

a fast pulse of resonant light to excite population to |e〉. In chapter 5 we will

explore how fast this pulse needs to be, and how slow pulses can introduce errors

into the resultant entanglement. Unit excitation probability is ideal, but imperfect

population transfer only affects the rate of the protocol and not the fidelity of the

final state. Upon decay, either the frequency or polarization of the emitted photon

from the multiple decay channels can become entangled with the resulting spin state

of the atom. The unnormalized state of the ion-photon system after a decay is [80]:

ψ =
∑
i,j,∆m

Ci,j,∆m |Si〉 |νj〉 |Π∆m〉 (3.2)

where Ci,j,∆m is the Clebsch-Gordan coefficient for the decay, νj is the photon fre-

35



quency, Π∆m is the photon polarization, and Si is the resulting atomic state.

For a frequency qubit, light must be collected from two decays to different

hyperfine levels |↓〉 and |↑〉 as shown in Fig. 3.2(a). It is critical that the polarization

of these decays be the same, so decays with other polarizations are filtered out to

ensure a pure entangled state is created [48]. Assuming equal CG coefficients, after

the decay the atom-photon state will be (|↓ b〉+ |↑ r〉)/
√

2 where |b〉 and |r〉 denote

the higher (blue) and lower (red) photon frequency states respectively.

3.1.3 Polarization Qubits

A frequency qubit is very robust to propagation through fiber, but rotations

and state detection are very difficult. Thus, for applications where photonic qubit

manipulation is important [81], where the atoms being used lack hyperfine structure

[82], or for implementation into a cavity [83], polarization may represent a superior

qubit. Similar to the frequency qubit scheme, to generate ion-photon entanglement

with a polarization qubit, the atom is first excited to a short-lived excited state |e〉

and then decays along one of two paths to either |↓〉 or |↑〉. Rather than a frequency

difference, these decay paths must now have separate polarizations.

There is one additional piece of complexity for polarization qubits: The atomic

decay polarizations (σ± and π) do not in general map onto the linear and circular

polarizations that we can measure and manipulate easily in the lab. In order to

ensure that the collected photons from different decays are distinguishable, one of

two convenient geometries must be used. The first is to look at σ+ and σ− decays
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Figure 3.2: (a) Energy level diagram for ion-photon entanglement with frequency

qubits. Decays from |e〉 to two different ground state hyperfine levels are collected.

This scheme often requires polarization filtering of unwanted decay lines. (b) Energy

level diagram for the σ± scheme for polarization qubits. For this scheme, photons

must be collected along the magnetic field direction, and π decays must be filtered

out. (c) Energy level diagram for the H-V scheme for polarization qubits. Here,

light is collected about an axis perpendicular to the B field, and often energy levels

do not require any filtering.
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with collection optics parallel to the magnetic field (see Fig. 3.2(b)). Along this

axis, σ+ and σ− polarized photons map onto right-handed (σR) and left-handed (σL)

circularly polarized light respectively. Additionally, no π light is collected directly

along this axis and even at larger collection angles, the π decays do not couple into

a single-mode optical fiber, providing an easy method for filtering them out [84].

The other convenient geometry is to collect σ+ (or σ−) and π decays as shown

in Fig. 3.2(c) about an axis perpendicular to the magnetic field. In this configu-

ration, σ and π polarizations map onto orthogonal linear polarizations H and V

respectively, corresponding to horizontal and vertical if the B-field is in the vertical

direction.

For all of these schemes, it is important to consider both the Clebsch-Gordan

coefficients and the radiation profile of the relevant polarizations when considering

the final state created. Ideally, these would produce a maximally entangled state

with equally weighted populations on each term. If the atomic level structure pre-

vents this, perfect entanglement can still be achieved at the cost of experimental

rate by introducing a polarization-dependent loss into the collection system [85].

It is also important to note that the mappings from atomic decay polarizations

to lab-measurable polarizations is only exact directly along the specified axis. To

perform experiments in the lab, light must be collected over some non-zero solid

angle given by the collection optics, leading to errors in the resulting ion-photon

entanglement. These errors, and ways to mitigate them are discussed in detail in

Chapter 5.
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3.2 Remote Ion-Ion Entanglement

We have already briefly discussed how weak ion-photon entanglement can be

used to generate remote ion-ion entanglement in the single photon detection scheme,

as well as some factors that limit this scheme’s usefulness for our purposes. In this

section, we will discuss the two-photon detection scheme which is compatible with

strong ion-photon entanglement and is used to generate remote entanglement in

this thesis. This scheme does not rely on cooling to the Lamb-Dicke limit, and

it is not sensitive to optical path length fluctuations [79, 86]. Only polarization

qubits are used in the experiments presented in this work, so we will focus on

that implementation of the remote entanglement generation protocol, though the

implementation for frequency qubits is very similar [87].

First, the scheme described in the previous section is used to create two iden-

tical ion-photon entangled systems. Next, if the σ scheme was used (as in Fig.

3.2(b)), we apply a quarter wave plate to rotate the photon into the {H,V } basis.

The combined ion-photon state from systems a and b can now be written as:

ψ =
1

2
(|↓ H〉+ |↑ V 〉)a ⊗ (|↓ H〉+ |↑ V 〉)b. (3.3)

This can be rewritten in the Bell basis of entangled states:

ψ =
1

2
(
∣∣Ψ+

〉
atom

∣∣Ψ+
〉

photon
+
∣∣Ψ−〉

atom

∣∣Ψ−〉
photon

+
∣∣Φ+

〉
atom

∣∣Φ+
〉

photon
+
∣∣Φ−〉

atom

∣∣Φ−〉
photon

),

(3.4)

where |Ψ±〉atom = |↑a↓b〉 ± |↓a↑b〉, |Φ±〉atom = |↑a↑b〉 ± |↓a↓b〉, |Ψ±〉photon = |HaVb〉 ±

39



|VaHb〉, and |Φ±〉photon = |HaHb〉 ± |VaVb〉 are the maximally entangled Bell states.

These photons are then collected by optical fibers and directed onto a beam-

splitter as shown in Fig. 3.3. For the components of the wavefunction with even

parity (|Φ±〉), identical photons impinge on the beamsplitter, and their behavior is

described by the Hong-Ou-Mandel effect [88, 89]. These photons will always exit

from the same port of the beamsplitter, and because they are the same polarization

they will also exit through the same port of the subsequent polarizing beamsplitter.

Thus, the |Φ±〉 component of the wavefunction will never result in clicks on two

different detectors.

The odd parity terms (|Ψ±〉), however, correspond to photons of orthogonal

polarizations. These photons do not interfere and behave as single photons incident

on different modes of a beamsplitter as shown in Fig. 3.3(b). The action of the

beamsplitter on single photons can be described in terms of the creation operators

for these modes [90]. â†3 = 1√
2
(â†1 − â

†
2) and â†4 = 1√

2
(â†1 + â†2). We can rewrite these

equations to see more clearly what affect the beamsplitter will have on the various

input modes:

â†1 =
1√
2

(â†3 + â†4)

â†2 =
1√
2

(−â†3 + â†4).

(3.5)

Now we can look at what effect the beamsplitter will have on the odd parity terms.

Here we must consider both the horizontal and vertical light in each of the two input

modes labeled 1 and 2, and the two output modes labeled 3 and 4 in Fig. 3.3(b),

for a total of eight modes.
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Figure 3.3: (a) Hong-Ou-Mandel interferometer for two photon interference of

polarization qubits. Photons from each ion are collected through optical fibers and

interfered at the 50:50 beamsplitter. Based on the HOM effect, identical photons

will bunch and only a single detector will fire. Non-identical photons, however,

may either bunch or antibunch, and will always be separated at the polarizing

beamsplitter, causing separate detectors to fire. Coincident clicks on certain detector

pairs effects a destructive measurement of the polarization state of the photons in the

Bell basis. The ions are not destroyed, and are projected into the same maximally

entangled Bell state. (b) Inset of the beamsplitter from (a) showing the input and

output modes.
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Ψ+
photon =

1

2
(â†1H â

†
2V + â†1V â

†
2H)

=
1

4
[(â†3H + â†4H)(−â†3V + â†4V ) + (â†3V + â†4V )(−â†3H + â†4H)]

=
1

2
(−â†3V â

†
3H + â†4V â

†
4H).

(3.6)

So just as with the even parity terms, photons corresponding to the |Ψ+〉 will always

exit the same port when exiting the beamsplitter. Unlike the |Φ+〉 terms, however,

these bunched photons are of opposite polarizations, and so they will be split at the

subsequent beamsplitter, leading to coincident clicks on either detectors 1 and 2 or

on detectors 3 and 4.

Finally we can look at what the beamsplitter does to the |Ψ−〉 term:

Ψ−photon =
1

2
(â†1H â

†
2V − â

†
1V â

†
2H)

=
1

4
[(â†3H + â†4H)(−â†3V + â†4V )− (â†3V + â†4V )(−â†3H + â†4H)]

=
1

2
(â†3H â

†
4V − â

†
3V â

†
4H).

(3.7)

We see that for this term, the photons exit opposite ports of the beamsplitter,

leading to coincident clicks on detectors 1 and 4 or detectors 2 and 3. This behavior

of bunching and antibunching can also be understood in terms of the symmetry of

the overall photonic wavefunction, where only the antisymmetric |Ψ−〉 term leads

to antibunching [88].

Coincident clicks on a pair of detectors, then, collapse the wavefunction from

Equation 3.4 and project the atom state onto |Ψ+〉 if the coincidence was on detector

pairs 1-2 or 3-4, or onto |Ψ−〉 if the coincidence was on detector pairs 1-4 or 2-3.
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Ideally, there should never be coincident clicks on pairs 1-3 or 2-4. Because both of

these are maximally entangled bell states, this completes the remote entanglement

generation protocol.

From equation 3.4 we see that after the decays, half of the system’s population

is in the |Φ±〉 states. Because these states cannot be detected by this protocol, the

rate of entanglement generation suffers by a factor 2 and the success is inherently

probabilistic. In practice, the need to collect both photons, couple them into fibers,

and register them on the detector limits the success probability much more severely

than this factor of 0.5 from Bell state readout. The overall success probability for

this scheme is given by [87]

Ps = P|Ψ〉(pepd
∆Ω

4π
TfiberTopticsQe)

2 (3.8)

where P|Ψ〉 = 0.5 is the probability the system decays into one of the Bell states that

we can measure, pe is the probability that an atom is excited and should approach

one, pd is the probability that the decay photon is a polarization that we do not

filter out. This value will typically vary from 0.5 to 1 based on the atomic structure

of the ion and geometry of the system used. ∆Ω
4π

represents the fraction of the solid

angle of emission from the ion that is collected by our lens. Tfiber and Toptics refer to

the transmission through the fiber and other optics in the system including coupling

losses into the fiber, and Qe is the quantum efficiency of the detector.

The quadratic dependence on most of these terms comes from the need to

collect a photon from both ions simultaneously for the protocol to work. In a
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practical sense, this means that any improvements or sacrifices to photon collection

have a strong impact on the final rate. Our best value for Ps is ∼ 10−5 [91], mainly

limited by Tfiber = 0.14, Qe = 0.35, and ∆Ω
4π

= 0.1 [60]. In Chapter 5 we will

discuss steps that have already been taken, and other possible options to improve

these numbers. Additionally, because successful attempts are heralded by coincident

clicks on a pair of detectors, this low probability does not prohibit its implementation

into a larger network as it does not rely on post-selection of the data [87].

3.3 Integrating Remote and Local Entanglement

In Chapter 1 we discussed how the path from elementary demonstrations of

quantum resources to implementation within a larger system can be a non-trivial

exercise. Much of the rest of this thesis is dedicated to expanding these remote

entanglement generation protocols for integration with local operations which were

introduced in Chapter 2 and have been extensively studied and refined on trapped

ion systems [10, 92–94]. In this section I will discuss the first step we took to-

wards achieving this integration by first generating remote entanglement between

two 171Yb+ atoms in separate traps and then performing a local entangling gate on

one of these ions and another co-trapped Yb atom [91]. Additionally, this section

will introduce the experimental structure of using a “fast loop” and a “slow loop,”

which will be common to many future results.

This experiment was performed on ions in two traps labeled A and B, separated

by about 1 m. Two 171Yb+ ions were trapped in module A and a single Yb ion was
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Figure 3.4: Setup for the so called “2x1 experiment.” Two ion modules were used,

with two ions in module A and a single ion in module B. Light from ions 2 and

3 was collected to be sent into a photonic Bell state analyzer similar to Fig. 3.3.

Additionally, an individually focused pump beam can address only atom 1 and

Raman beams are aligned to perform a Mølmer-Sørensen gate between atoms 1 and

2.
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trapped in module B as shown in Fig. 3.4. First, the ions were all initialized

into the state |⇓〉. Next, an ultrafast (∼ 1 ps) pulse of resonant 369 nm light was

used to simultaneously excite population in atoms 2 and 3 to the short lived level∣∣2P1/2, F = 1,mF = 0
〉
≡ |e〉. The σ+/σ− geometry was used in this experiment

(see Fig. 3.2(b)) so an NA = 0.6 PhotonGear microscope objective was positioned

to collect light along the magnetic field direction.

This light was sent through a quarter wave plate to rotate the polarization of

the photons from σ+ → H, and σ− → V . This ensures that the polarizing beam-

splitters in the Bell state analyzer behave as described in the previous section. The

light is then coupled into single-mode optical fibers, which serve several purposes.

First, it cleans up the spatial modes of the emitted photons, which is necessary to

achieve good interference at the beamsplitter [95]. Second, as discussed above, they

serve to filter π light out, since that spatial mode does not couple into the fiber.

Third, the optical fiber provides sufficient spatial filtering to ensure that light from

ion 1 does not make it to the interferometer. And forth, strain can be applied to

the fibers by a set of fiber paddles to ensure that the same polarization comes out

of the fibers as goes into them.

The output of these fibers are incident on a free space Bell state analyzer as

shown in Fig. 3.3. Aligning the fibers for maximal overlap on the beamsplitter

is very important [48], but difficult to set and maintain. Reference [60] gives a

thorough discussion on how this was achieved, but going forward, a transition to

visible photons should allow this interferometer to be implemented with in-fiber

beamsplitters, ensuring perfect mode overlap.
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At the output of the interferometer were four photomultiplier tubes (PMTs)

used as single photon detectors with a quantum efficiency of 0.35. These PMTs

are gated open for a window of 60 ns after the fast pulse, and coincident clicks on

certain pairs of detectors heralds the creation of an entangled state between atoms

2 and 3.

This process of state preparation, fast pulse, and waiting for coincidence clicks

constitutes the so called “fast loop” of the experiment. These steps are repeated

over and over, stopping to Doppler cool for 100 µs every 200 cycles, until a pair of

coincident clicks is actually registered. In practice, this fast loop was implemented

with a repetition rate of 470 kHz. Once a coincidence has been measured, we break

out of the fast loop and begin the slow loop. This would occur at a rate of 4.5 s−1.

At the beginning of the slow loop, the state of ions 2 and 3 is:

ψ2,3 = |−〉 |+〉+ eiφD |+〉 |−〉 (3.9)

where |−〉 ≡
∣∣2S1/2, F = 1,mF = −1

〉
and |+〉 ≡

∣∣2S1/2, F = 1,mF = +1
〉

are the

Zeeman sublevels of the S manifold and φD is the phase acquired based on which

pair of detectors fired. In order to go from these magnetically sensitive levels to the

familiar clock basis, the first step of the slow loop is to apply microwave rotations.

This consisted of a series of π pulses, first to drive population from |+〉 → |⇓〉, then

a second pulse drove |⇓〉 → |⇑〉, and finally, a third pulse performed |−〉 → |⇓〉 .

So far we have not been keeping track of the state of atom 1. Because we do

not know whether it emitted a photon after the fast pulse of resonant light, it is
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in a mixed state at this point in the experiment. In order for it to be useful for

subsequent operations, then, it needs to be reinitialized into the |⇓〉 state. To do

this, a narrowly focused beam of pumping light is applied to only ion 1. After this,

the three ion state is

ψ1,2,3 = |⇓〉1 (|⇓〉2 |⇑〉3 + ei(φD+φr) |⇑〉2 |⇓〉3). (3.10)

with the added phase φr accounting for the phase acquired by the microwave rota-

tions.

Next, the MS interaction described in the previous chapter is applied to atoms

1 and 2. This creates the 3-particle entangled state:

ψ1,2,3 = (|⇓⇓〉A − ie
iφA |⇑⇑〉A) |⇑〉B + eiφAB(|⇓⇑〉A − i |⇑⇓〉A) |⇓〉B . (3.11)

Here, the intermodular phase ψAB = (ψD + ψr), and the intramodular phase ψA

is the phase acquired by the MS gate. We see that the parity of ions 1 and 2 is

correlated with the spin state of ion 3. To verify this entanglement, a π/2 Raman

rotation is performed on ions 1 and 2 with a varying phase. The state of all three

atoms is then read out and the results are analyzed. When atom 3 is found to be

in state |⇓〉, the parity of atoms 1 and 2 should oscillate with the phase of this π/2

rotation. When the state of atom 3 is found to be |⇑〉, though, the atoms in module

A should have 0 average parity regardless of the phase of the final rotation [60].

Results with and without the final rotation are plotted in Fig. 3.5 [91], and

confirm that the three particle entangled state was indeed created. The average
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fidelity of the entangled state in module A, based on the measurement of the state

of ion 3 was 0.63(3). This was limited primarily by polarization mixing on the

photonic qubits, imperfect mode-matching at the beamsplitter, and poor MS gates

(F=0.85) due to a imperfect cooling to the Lamb Dicke regime.

As already mentioned, the mode matching can be addressed by using an in-

fiber beamsplitter with visible photons. The MS gate infidelity was due partially to

an anomalously high heating rate in the segmented blade trap used for module A,

which had ṅ ≈ 1 ms−1 on the mode that was used. This will hopefully be addressed

by using new traps in the future. Part of the issue, however, also came from our

inability to perform sub-Doppler cooling techniques such as resolved sideband cool-

ing [96]. These techniques help get the ions deep into the Lamb Dicke regime [30],

but they would have been prohibitively long to include in the experiment’s fast cy-

cle. Although we have since demonstrated a slightly faster method of ground state

cooling which will be discussed next chapter, our need for high repetition rates in

the fast loop will likely prevent us from attaining cutting edge local gate fidelities

in experiments involving remote entanglement for years to come.

At the time of my writing this thesis, the polarization mixing is also still an

ongoing limitation on our ion-photon entanglement fidelities. We attribute it to

either polarization-dependent loss or spatially inhomogeneous birefringence in the

vacuum window. These may be introduced by stresses during chamber construction

and baking, and in the future it may be wise to inspect the optical properties of

the vacuum window before building up so much structure around the trap to make

a thorough inspection onerous. More so than these sources of error, though, the
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Figure 3.5: (a) Populations are read out after performing both remote and local en-

tangling operations. Here, no π/2 analysis pulse was performed. We see that atoms

1 and 2 are more likely to be in an even parity state when atom 3 is measured in

state |⇑〉 and they are more likely to have odd parity when |Ψ3〉 = |⇓〉. (b) Coher-

ences are shown by performing a π/2 rotation on atoms 1 and 2 after generating

the three particle entangled state. As expected, the parity of atoms oscillates with

the phase of the π/2 pulse in the case that |Ψ3〉 = |⇑〉 (red points) and does not

oscillate for |Ψ3〉 = |⇓〉 (blue points).
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need to reinitialize the state of ion 1 after breaking out of the fast loop is a much

more fundamental limitation to the ability to expand on this protocol. The next

section will discuss why this is such a problem and the steps that we have taken to

overcome it.

3.4 Motivation for Dual Species

A fundamental issue with the ability to scale this system to larger networks is

shown by the need to reinitialize the state of ion 1 in the middle of the experiment.

For a quantum network to be useful for distributed quantum computing, it needs

to be able to hold onto quantum information while the remote link is established

[29]. Unfortunately, in this protocol, establishing that remote link involves shining

resonant 369 nm light on an atom that is separated from the memory ion by as little

as 5 µm. Focusing a pulsed beam well enough to avoid spoiling the memory qubit

after one pulse would not be impossible, but because this is a probabilistic scheme,

establishing that remote link requires an average of ∼ 105 pulses.

Interestingly, this problem of disturbing local memories during the generation

of a remote link is not unique to trapped ions. Another platform that is currently

combining photonic and local operations is NV centers in diamond, and they are

also plagued by a cross-talk between these processes [97].

One approach to isolate the memory qubits from the photon generating process

would be to physically separate the atoms from each other as the remote connection

is generated, and then shuttle them back together for local operations [45]. A more
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straightforward approach, and the one that we have elected to pursue is to introduce

a second atomic species to the trap [98] for use in generating the remote link. Using

171Yb+ ions as memory qubits and 138Ba+ ions as communication qubits allows us

to excite the Ba ion with 493 nm or 650 nm light, which are off-resonant from any

transitions in Yb. This completely divorces the remote entanglement generation

from the qubit storage mechanism.

Moreover, many proposals have called for the addition of a separate atomic

species into trapped ion chains to sympathetically cool the chain during longer

computations [30,99]. There are several other factors that make 138Ba+ a good choice

for use as a communication ion. While most ions have their primary transitions in

the UV wavelengths, barium has two strong lines in the visible range: a primary

cooling transition from the 62S1/2 to 62P1/2 at 493 nm and a repump line with a 1:3

branching ratio from 52D3/2 to 62P1/2 at 650 nm. Compared to the UV transitions

in most ions, these visible lines suffer less attenuation through optical fibers, permit

access to a larger collection of supporting technologies, and can be converted to IR

wavelengths for longer-distance networks [100].

Finally, we still intend to perform two-qubit gates on the hybrid chain by

addressing their collective modes of motion in a trapping potential [98, 101]. To

ensure that both ions contribute strongly to these normal modes, it is important

that they be near each other in mass, so it was important to choose another heavy

ion to match 171Yb+ .
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Chapter 4: Building the Barium Toolkit

In Chapter 2, we discussed how the DiVincenzo criteria have been satisfied with

171Yb+ ions, and much of my graduate work has involved rebuilding that toolkit for

Ba ions. Barium has a long history in trapped ion quantum computing [102–104],

and it has even been used before in ion-photon experiments [78,105]. The first novel

challenge that we have sought to overcome, though, has been to reinvent these tools

in such a way as to add minimal complexity when integrated with our existing Yb

system. First, this has meant that we use the 138Ba+ isotope of Ba, which has 0

nuclear spin, allowing us to avoid adding the sidebands necessary for addressing

different hyperfine levels.

Also, while Ba ion trap experiments typically perform state readout by shelving

the atom to its 2D5/2 level, this requires a narrow-linewidth laser [106]. Because our

ultimate architecture calls for Ba ions to be used only for generating a photonic link,

and for all of the local processing and readout to be performed on Yb ions, we elected

to forgo this complex equipment. Nonetheless, Ba state detection is important for

many of the experiments presented in this work, and so alternative methods have

been developed and implemented.

Though subject to these design constraints, many of the tools and techniques
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we have developed that will be discussed in this chapter have unlocked new pos-

sibilities for the Ba ion, particularly with regards to the use of its low-lying 2D3/2

level. Details on these new possibilities will be explored in the following sections.

In parallel to Chapter 2, this chapter will be loosely organized in terms of how

DiVincenzo’s criteria have been realized on the Ba platform.

4.1 The 138Ba+ Atom

With its long history in the field, 138Ba+ has been well-characterized as a

physical system [107, 108]. As with Yb, every 138Ba+ ion is fundamentally iden-

tical, removing the need to calibrate every qubit. Our Ba qubit is defined in the

two ground state levels of the 62S1/2 manifold: |J = 1/2,mJ = −1/2〉 ≡ |↓〉 and

|J = 1/2,mJ = +1/2〉 ≡ |↑〉. These levels as well as other energy levels commonly

addressed in 138Ba+ are shown in Fig. 4.1. Unlike the 171Yb+ qubit, these Zeeman

levels are first-order magnetic field sensitive with an energy splitting of 2.8 MHz/G,

resulting in shorter coherence times.

4.1.1 Ba Oven Tests

The first step to actually realizing Ba as a physical platform is to trap it. This

is done in a process similar to Yb, by resistively heating an atomic source oven

to direct a beam of neutral atoms towards the trapping region for photoionization.

Constructing the atomic source oven, however, is significantly more difficult with

Ba than Yb due to the fact that Ba oxidizes quickly when exposed to oxygen or
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Figure 4.1: Energy level diagram for the 138Ba+ ion. Lines that we directly apply

are shown in black. Other common lines are included in gray.
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water vapor in air. Our original solution for overcoming this was to use alvasource

ovens from AlvaTec. These ovens contain atomic barium packed under a pure argon

environment and capped with an indium seal. It is claimed that resistively heating

this seal causes it to melt away and expose the atomic source underneath, and this

behavior was observed for the first oven we used. Unfortunately, when a second

alvasource oven was heated, the back pressure fired the indium seal outwards and

onto the trap, shorting electrodes and ruining the trap.

To avoid another such disaster, a test chamber was built for evaluating Ba

source ovens without risking an entire trap or having to wait for a long bake. This

chamber consisted of a bell jar, electrical feedthroughs with thick gauge wire, and

an attachment to a Pfeiffer HiCube pump station. These feedthroughs served both

to run current through the oven and as mechanical support. The turbo pump could

bring pressures to ∼ 10−7 Torr in less than an hour, allowing for quick iterations.

To test an oven, it was mounted in the test chamber as shown in Fig. 4.2, and

a 791 nm beam was directed at the front of the opening. This light is resonant with

the transition from the 1S0 ground state to the 3P1 excited state, and was aligned to

be perpendicular to the atomic beam from the oven. The setup was imaged with a

ZOSI ZG2116E digital camera, which has high sensitivity to IR light. Additionally,

the frequency of the 791 nm beam was modulated around resonance by 1 GHz at a

rate of 0.25 Hz. This would cause the laser to be on-resonance with different velocity

classes of the atomic beams at different phases of the modulation. Thus, when the

neutral barium was fluorescing, the bright spot would move across the atomic beam

at the same rate as the modulation. Reflections of blackbody radiation from the
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Figure 4.2: (a) Diagram giving a side view of the oven test setup. (b) Photo of the

setup from the top. This is before firing the oven and the indium seal is still intact.

nearby oven could sometimes look like a Ba signal, but this lock-in-style approach

made it very clear when we were seeing actual barium fluorescence.

A more complex setup can calibrate the amount of light collected or atoms

deposited on a nearby glass slide to characterize the operating temperatures of the

ovens [52]. This can be highly dependent on mounting, though, and these tests

sought only to see if the ovens would work at all.

First, a series of five additional Alvasource ovens were tested. Two shot their

seals out just as in the ruined trap. These both produced a flux of neutral barium

afterwards. The other three never shot out their indium seals and no neutral flux
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was ever observed. Examination of the ovens after breaking vacuum revealed that

the seal had migrated to the very end of the tube, but still blocked the barium.

These results indicated that we needed to find a replacement for the alvasource

ovens. One proposed solution was BaAl4, which produce atomic Ba when heated

under ideal conditions and is stable under atmosphere [109]. Three ovens were

made from SAES getters and tested. An unmodified SAES getter did produce the

fluorescence at 11 A of current. The other two tests were for ovens in which we had

attempted to put the getter material into a tube for better directionality. Both of

these failed to produce fluorescence. Additional tests on BaAl4 also failed to produce

positive results, and we deemed the alloy unreliable for loading with a resistively

heated oven. It is worth noting, however, that there has been considerable success

in loading using similar alloys as an ablative source [110], and so they may remain

useful candidates for air-stable atomic sources.

Next, we tested ovens made of pure atomic Ba, that had been assembled under

a clean argon environment inside of a glove bag. These ovens reliably produced an

atomic flux, but would often have to be initially “activated” by heating them orange-

hot with 15 A of current. After this activation, we could see fluorescence at much

lower currents. We attribute this activation behavior to a need to briefly melt the

Ba to crack a thin oxide layer. At the time of these tests, the source of this oxide

layer was a mystery, but we now believe it was caused by residual water vapor on

the tools used to manipulate the barium and on the stainless steel tube used as the

oven. This may be mitigated by prebaking the tools and tube before putting them

in the glove bag.
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More recent tests have also revealed that brief (∼ 10 min) exposure to air does

not build up enough of an oxide layer to prevent trapping, and so the glove bag may

be foregone since it is difficult to use. These tests were all performed in collaboration

with James Siverns in the lab of Qudsia Quraishi. Tests have also been performed

in our lab using the 413 nm laser to drive 1S0 → 3Do
1 with collection of light on the

stronger decay line at 660 nm [111]. This allows the excitation light to be filtered

out and provides a stronger signal to noise.

4.1.2 Ba Photoionization

Once the neutral flux has been established, we generate ions by resonant two-

photon photoionization. We use a 413 nm laser beam resonant with the transition

from 1S0 → 3Do
1 to transfer population to an excited state, and then a second photon

from the same beam has enough energy to excite the electron to the continuum,

generating a Ba+ ion. Many of the same considerations apply to this process as

in Yb photoionization, and the geometry of the system must be considered to take

Doppler shifts into account for the 413 nm frequency (see Chapter 2).

4.1.3 Doppler Cooling

Once ionized and trapped, we require that the Ba atoms be Doppler cooled

before we can perform quantum operations. For background on the principle behind

Doppler cooling, see Chapter 2. In this section we will discuss how Doppler cooling

is implemented on the 138Ba+ ion and how its atomic level structure forces additional
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considerations beyond those present in 171Yb+ .

The primary cooling transition in Ba is on the 2S1/2 → 2P1/2 line at 493 nm.

We apply light at this frequency with a CW direct diode laser. 138Ba+ has no

hyperfine structure, so we do not need to apply sidebands to this laser. The 2P1/2

excited state has a strong branching ratio (27.1%) to the low-lying 2D3/2 level, so we

apply 650 nm light from another direct diode CW laser to directly excite population

back to 2P1/2. Unlike the 935 nm line in 171Yb+ , this repump beam addresses the

same excited state as the main cooling line at 493 nm, causing interference between

the two lines. We saw in Chapter 2 that the optimal detuning for a 2-level system

is γ/2, but if we naively apply this to both the 493 and 650 beams, we produce a

dark state in the S and D manifold, suppressing fluorescence and cooling. In order

to find optimal cooling parameters, the lambda system from the S, P, and D states

must be taken into account. Moreover, because the splitting between the Zeeman

sublevels is of order γ, a full analysis must consider the entire 8-level system.

An in-depth discussion of the 3-level and 8-level system calculations is given in

[65,112], and the results show that optimal fluorescence is achieved by red detuning

the 493 nm beam by about γ/2 and the 650 nm beam blue detuned by about the

same amount. This allows for cooling on the stronger green line and repumping on

the red line while avoiding dark states.

Finally, when 532 nm light is applied to the ions for Raman transitions (this

will be discussed later this chapter), off-resonant coupling to the 2P3/2 manifold can

decay to the 2D5/2 states. Population is trapped here for ∼ γ = 32 s before it decays

back to the S state. With the 532 nm light left on, this dark state pumping was
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observed to happen about once per minute, resulting in ions being dark roughly 50%

of the time, which was prohibitive for running experiments. To overcome this, we

have implemented a Thorlabs M617F2 fiber coupled 617 nm LED into the optical

setup. Light from this LED is collimated and then combined with the sigma beams

in free space using a dichroic filter. This center frequency of this LED is 3 nm

from the 614 nm 2D5/2 →2 P3/2 transition, but due to its high intensity and large

bandwidth we are still able to drive transitions at a Rabi rate of 30 ms. Though

slow on experimental timescales, this is still 1000x faster than the rate of pumping

into the dark state, leaving the ion bright for an acceptable 99.9% of the time.

4.1.4 EIT Cooling

While Doppler cooling is sufficient for most experiments we perform in this

work, some operations like the Cirac-Zoller gate [4] require additional cooling to

the vibrational ground state of motion. Moreover, for barium ions in our trap, the

Doppler cooling limit of n = γ
2ω

where ω is the trap frequency gives n ≈ 5 for a trap

frequency ω/2π = 1.5 MHz and a transition linewidth γ/2π = 15.1 MHz. This does

not put the ion deep within the Lamb-Dicke limit, and for higher fidelities, even the

Molmer Sorensen gate may require sub-Doppler cooling [94].

Cooling to sub-Doppler temperatures is often accomplished by resolved side-

band cooling [96], but the energy level structure of 138Ba+ also allows for imple-

mentation of electromagnetically induced transparency (EIT) cooling [113]. This

approach is technically simpler than sideband cooling and allows for multiple modes
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Figure 4.3: Absorption spectrum of the cooling beam in an EIT cooling setup.

This beam is detuned from the raw atomic resonance by ∆g1 , producing a broad

resonance peak around 0. The zero absorption point at ∆g1 = ∆g2 is caused by

a dark resonance between the cooling and pumping beams. The narrow peak at

∆g1 = ∆g2 + δ is a bright resonance with the dressed state created by the pumping

beam.
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of motion to be cooled simultaneously, permitting faster cooling rates [114]. As

discussed in Chapter 2, Doppler cooling is limited by atomic recoil. In the case of

ions trapped in a harmonic potential, this takes the form of transitions on the line

|g〉 ↔ |e〉 that do not reduce the vibrational quantum number. EIT cooling relies

on suppressing |g, n〉 → |e, n〉 and enhancing |g, n〉 → |e, n− 1〉 transitions using a

coherent dark state.

This is done in a Λ system with excited state |e〉 and ground states |g1〉 and

|g2〉. First a strong beam drives the |g2〉 → |e〉 transition (Ωg2 ∼ γ). This “coupling”

beam is detuned blue of the atomic transition by ∆g2 and produces ac Stark shift

on |e〉 and |g2〉 of δ = (
√

∆2
g2

+ Ω2
g2
− |∆g2|)/2.

A second “cooling” beam is also applied, which has a broad absorption peak at

frequencies near resonance, and also exhibits a narrow Fano-like absorption profile

for detuning ∆g1 around ∆g2 (see Fig. 4.3). At ∆g1 = ∆g2 , an EIT dark resonance

is created and this absorption goes to zero, suppressing |g1〉 → |e〉 transitions.

Conversely, at a detuning of ∆g1 = ∆g2 +δ, there is a bright resonance corresponding

with the narrow peak of the Fano like profile. If the Rabi rate ∆g2 and detuning

∆g2 are chosen such that δ is equal to the trap frequency ν, this serves to enhance

transitions on the |g1, n〉 → |e, n− 1〉 line that contributes to cooling.

In our lab, we implement EIT cooling in 138Ba+ using a σ+ polarized 493 nm

beam to drive transitions on |↓〉 → |e〉 as the coupling beam and a weaker π polarized

beam that drives |↑〉 → |e〉 as the cooling beam. These beams are both detuned

∼ 120 MHz blue of resonance. First, we observe the Fano peak by varying the

detuning of the π beam, and observing how much light is scattered by the ion. The
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results of this experiment are plotted in Fig. 4.4(a), and produce the expected line

shape.

Next we wish to measure the effects of the cooling. We adjust the intensity of

the σ coupling beam until the spacing between the maximum and minimum on the

Fano peak is equal to the trap frequency. To more easily read out the temperature,

we co-trap one Ba and one Yb ion for this analysis. The temperature can then be

measured by comparing the strengths of red and blue vibrational sideband transi-

tions on the Yb ion [115]. As shown in Fig. 4.4(b), EIT cooling allows us to prepare

the atoms in the vibrational ground state in < 200 µs. Furthermore, because there

was no cooling light on the 171Yb+ ion during this process, this experiment also

demonstrates effective sympathetic cooling on the Yb ion.

4.2 138Ba+ S State Toolkit

In this section we will discuss how we have implemented state preparation,

state readout, and single qubit rotations on the 2S1/2 manifold of 138Ba+ . More

details on these methods are given in [65], but it will serve as useful context for

thinking about how many of the more recent D-state operations presented in the

following section work. Moreover, these operations, combined with the two qubit

entangling gates detailed later this chapter represent a complete gate set for Ba,

and are integral to the networking experiments described in the next chapter.
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Figure 4.4: (a) Experimental data on the absorption spectrum of the π beam. Com-

pare to the inset in Fig. 4.3. To maximize cooling, the Fano peak should be at

(∆π −∆σ)/ν = 1, corresponding to the red vibrational sideband. To achieve this in

the lab, the intensity of the σ (coupling) beam can be adjusted to change δ. (b) EIT

cooling time plot for a Ba-Yb chain. First the chain is Doppler cooled for 300 µs

and then EIT cooling is performed for a variable amount of time. Temperature is

determined by examining red and blue vibrational sidebands on the Yb atom [115].

This shows that we can cool to n = 0.1 in 500 µs. Additionally, this confirms that

EIT cooling on the Ba atom can sympathetically cool a co-trapped Yb ion.
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4.2.1 S State Initialization

In the 171Yb+ ion, we are able to apply sidebands to the 369 nm light with an

EO modulator to address different transitions based on frequency. Because the Zee-

man splittings in barium are of order the transition linewidths, though, transitions

between different qubit states are not well-resolved in frequency, and so we often rely

on polarization selectivity instead to address different transitions. Specifically, we

must be able to switch between σ+ and σ− polarized light within an experimental

cycle. As shown in Fig. 4.5(a), this is implemented using a dedicated polarization

board that splits a single beam of 493 nm light into two orthogonal polarizations,

puts each through an AOM for fast switching, and then recombines them into a sin-

gle fiber. Wave plates after the fiber are used to rotate the orthogonal beams into

left-handed and right-handed circular polarizations, and beams are sent through the

trap along the magnetic field.

In the S manifold, the |↓〉 state is dark to σ− light and the |↑〉 state is dark to

σ+ light. We can therefore optically pump to either of these states by applying the

correct polarization of 493 nm light along with all polarizations of 650 nm light.

4.2.2 S State Detection

We discussed in Chapter 2 how we are able to efficiently read out the state

of 171Yb+ by taking advantage of a closed cycling, where the bright state scatters

thousands of photons and the dark state scatters none. Unfortunately, no such

closed cycling transition exists for 138Ba+ . For either pure σ polarization of applied
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493 nm light, the bright state population will be pumped into the dark state after

scattering only a few photons. For instance, if σ+ light is applied, population in the

|↓〉 state will scatter on average 2.8 photons before decaying back to the |↑〉 dark

state.

Nonetheless, we are able to do a probabilistic state readout by repeating the

experiments many times and recording the average number of photons collected

per experiment [82]. Normally, this method would be highly sensitive to the total

efficiency of our detection system, which can drift slightly over the course of a day

due to alignment or power fluctuations. To overcome this, we alternate between σ+

and σ− detection light on subsequent trials. This allows us to extract the populations

by comparing the number of photons detected on σ+ trials to σ− trials, and the

detection efficiency factors out of the equations. If we collect n+ total photons on

σ+ detection cycles, and n− total photons on σ− detection cycles, the populations

are:

P (|↓〉) =
n−

n+ + n−
, P (|↑〉) =

n+

n+ + n−
(4.1)

where n− (n+) represents the average number of photons collected on σ− (σ+) trials.

These equations can be thought of as solutions to the following linear equation:

n+

n−

 = Ed

M↓+ M↑+

M↓− M↑−


P (|↓〉)

P (|↑〉)

 (4.2)

subject to the condition that P (|↑〉) + P (|↓〉) = 1. Here Ed refers to the (unknown)

total single-photon detection efficiency for the system. Mij gives the average number
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of photons scattered from an atom in state |i〉 when illuminated by 493 nm light of

polarization σj. By dark state arguments given earlier, we see that M↑+ = M↓− = 0.

As mentioned earlier M↓+ = M↑− = 2.8 is the average number of photons scattered

by an ion in the bright state before being pumped dark. Of course, the solution to

this set of equations is trivial, and the linear algebra approach is not necessary for

finding the result given in Eqn. 4.1. This approach will be useful later this chapter,

however, in thinking about how state detection is performed in the D manifold.

We implement this state detection by applying alternating σ+ or σ− light for

1.5 µs after each experiment. Light is collected using a 0.6 NA microscope objective

and sent to an APD with 70% quantum efficiency at 493 nm. As shown in Fig.

4.5(b), this allows us to read out the state of the atom with 98% fidelity. Although

the probabilistic nature of the readout requires us to run more experiments per

point than for Yb to get the same uncertainties, the actual detection cycle is 200x

faster, allowing experiments to be run much more quickly. For fast experiments,

where data collection is limited by state detection times, this does not result in a

significant slowdown in data collection rate. For longer experiments or experiments

that are inherently probabilistic, however, the probabilistic nature of this detection

has a much harsher effect on how quickly scans can be run.

4.2.3 S State Qubit Rotations

The laser we use to generate 355 nm laser for Raman rotations in Yb is a

Spectra Physics Vanguard laser that generates 355 nm light as the third harmonic
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of a 1064 nm Nd:YVO4 source. This system also generates light as the second

harmonic at 532 nm, which is a convenient wavelength for driving Raman transitions

in Ba. The energy splitting of the Ba qubit is smaller than the bandwidth of many

commercial AOMs, thus we do not need to exploit the large bandwidth of this mode

locked laser to drive transitions. Rather, we can simply apply two RF frequencies

with a beat note equal to the qubit splitting directly to the AOMs. As with Yb,

copropagating beams from a single AOM can be used to drive carrier rotations, but

a non-copropagating geometry must be used to address the vibrational sidebands.

As in Yb, the phase of this rotation can be controlled by setting the phase of

the beat note. Most of the frequency sources in our lab are direct digital synthesizers,

which are not phase referenced to the experiment in any way. If the Raman AOM

RF is supplied by one of these free-running frequency sources, the phase of the

rotation with respect to the experimental cycle will be random shot-to-shot. As

long as the Raman beams are the only element in the experiment that reference the

qubit phase, this is not a problem, since the DDS beat note effectively serves as the

qubit clock to which all subsequent Raman operations will be phase referenced.

For the ion-photon experiments discussed in the next chapter, there is a phase

written onto the atom that is referenced to the photon detection time. This re-

quires the use of frequency sources whose beat note can be phase referenced to the

experimental cycle (or better yet, to the photon detection signal from an APD).

This can be accomplished by using an arbitrary waveform generator (AWG) that

can put out a frequency timed to an external trigger as the RF source. Because

AWGs have slow update times, we typically maintain the ability to switch between
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Figure 4.5: (a) Schematic of the σ table used to switch σ+ and σ− beams on and

off. At the top, light comes in from the 493 nm laser table. It is sent through a

half wave plate (HWP) to control the division of power at the subsequent polarizing

beamsplitting cube (PBS). This splits the beam into two orthogonal polarizations

that are each sent through their own AOM. The first order outputs of these AOMs

are recombined on another PBS and then recoupled to another fiber to be sent

to the trap. At the output of that fiber is another set of wave plates to ensure

the polarization at the ion is circular for each beam. (b) Rabi flops in the S-State

manifold of Ba after driving Raman rotations for time T with co-propagating 532 nm

beams.
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Figure 4.6: (a) σ initialization and detection scheme for the S state in 138Ba+ .

Note that each state is dark to one of the applied 493 nm polarizations. (b) State

initialization into the mJ = +3/2 D state in 138Ba+ . σ+ and π 650 nm light as well

as all polarizations of 493 nm light are applied to the ion so that mJ = +3/2 is the

only stable dark state.

the two types of frequency sources, using an AWG when the experiment requires it

and a DDS otherwise.

4.3 138Ba+ D State Toolkit

There are several factors that make the 2D3/2 level appealing for performing

quantum operations. Its 80 s lifetime [116] is much longer than conceivable quantum
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operations, and its 3:1 branching ratio from the 6P1/2 state is sizable, providing fast

rates of pumping into or exciting out of this level. Additionally, the 650 nm line is

spectrally distant from the 493 nm line that addresses the S state, allowing many

D state operations to be performed without affecting population in the Ba qubit

states. This will contribute to the purity of many of the photonic experiments seen

in the next chapter.

4.3.1 D State Initialization

As shown in Fig. 4.1, the 52D3/2 state of 138Ba+ consists of four Zeeman

sublevels. Because these Zeeman levels are not well separated in frequency, we

rely on applying different polarizations to address different lines, just as we do in

the S state. σ+ and σ− polarizations are produced using a polarization table for

650 nm light similar to the one shown in Fig. 4.5(a). We also have a dedicated

beam traveling perpendicular to the B field to apply π polarized light to the ion by

sending in light polarized along the B field direction.

State initialization into the D manifold can be achieved by simply switching

off the 650 nm light and leaving on all polarizations of 493 nm light [100]. We are

able to further pump into the mJ = +3/2 stretch state by also applying σ+ and π

polarizations of 650 nm light as shown in Fig. 4.6(b).
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4.3.2 D State Detection

While state preparation in the D manifold is very similar to the S state im-

plementation, readout is much more difficult. This is because with four sublevels,

there is not a single bright state for each applied polarization. Just as in the S state,

we wish to perform state detection by applying some polarization of 650 nm light at

the end of each experiment and recording how many photons we collect on average

before the ion is pumped dark. We are still collecting 493 nm photons, and the

493 nm cooling beam is left on at all times to repump population out of the S levels.

We can then compare the average number of photons collected from the different

applied polarizations of 650 nm detect light to solve for the D state populations.

It may at first seem impossible to deduce our populations using this method

given the fact that there are four states, and we only have three polarizations of

light that we can apply. That is, by analogy to Equation 4.2, the equation


n+

n−

nπ

 = Ed


M−3/2,+ M−1/2,+ M+1/2,+ M+3/2,+

M−3/2,− M−1/2,− M+1/2,− M+3/2,−

M−3/2,π M−1/2,π M+1/2,π M+3/2,π





P (|−3/2〉)

P (|−1/2〉)

P (|+1/2〉)

P (|+3/2〉)


(4.3)

does not have a unique solution. Here, we assume that we do not know the detection

efficiency Ed and we impose the condition
∑
P (|mJ〉) = 1. As before, nε represents

the average number of photons collected from trials with detection polarization ε,

and Mi,ε gives the average number of photons an ion in the state |mJ = i〉 scatters
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before being pumped dark by 650 nm light of polarization ε.

We resolve this by noting that applying σ± and π light at the same time pro-

duces an equation that is linearly independent from the individual polarizations.

This is because for a J = 3/2 → J = 1/2 transition, there are two dark states for

any polarization of applied light. For σ+, σ−, and π light, both of these states are

stationary states of the system even when a magnetic field is applied to impose a

Zeeman splitting between the levels. For combinations of σ± and π light, however,

only one dark state is a stationary state, and the other is a superposition of dif-

ferent Zeeman levels. If the detunings of the π and σ beams are not set to be the

same, this superposition is not stable and quickly evolves to a bright state. Because

this mechanism of pumping out of the dark state is not present in either σ± or π

equations, the σ± − π combinations are linearly independent.

Thus, the populations can be found with the equation



n+

n−

nπ

n+π

n−π


= Ed



M−3/2,+ M−1/2,+ M+1/2,+ M+3/2,+

M−3/2,− M−1/2,− M+1/2,− M+3/2,−

M−3/2,π M−1/2,π M+1/2,π M+3/2,π

M−3/2,+π M−1/2,+π M+1/2,+π M+3/2,+π

M−3/2,−π M−1/2,−π M+1/2,−π M+3/2,−π





P (|−3/2〉)

P (|−1/2〉)

P (|+1/2〉)

P (|+3/2〉)


(4.4)

where ±π refers to the combination of σ± and π light. With the unknown Ed and

the normalization condition, a solution for the populations is still under-constrained.

This allows us to add an additional term: a static background count rate Cb.
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

n+

n−

nπ

n+π

n−π


= Ed



M−3/2,+ M−1/2,+ M+1/2,+ M+3/2,+ 1

M−3/2,− M−1/2,− M+1/2,− M+3/2,− 1

M−3/2,π M−1/2,π M+1/2,π M+3/2,π 1

M−3/2,+π M−1/2,+π M+1/2,+π M+3/2,+π 1

M−3/2,−π M−1/2,−π M+1/2,−π M+3/2,−π 1





P (|−3/2〉)

P (|−1/2〉)

P (|+1/2〉)

P (|+3/2〉)

Cb


(4.5)

This equation gives a unique solution for the populations as well as Cb and

Ed. This solution, as well as a derivation of the values of the M matrix, is given

in Appendix B. This allows us to perform readout on the state of the ion in the D

manifold of Ba by performing the experiment many times and at the end of each

experiment, applying one of the 5 possible detection polarizations, building statistics

on the values of nε. Our solution stipulates that populations sum to one, but we do

not have enough free parameters to also demand that each population fall into the

range [0,1]. It is common, then, for our analysis of states near 0 or 1 to fluctuate

outside this physical regime. Some results of this D state detection are shown in

Fig. 4.7.

4.3.3 D State Rotations

The same 532 nm light that is used to drive Raman rotations in the S state of

Ba can also be used to drive transitions between different D state levels. Whereas

the 532 nm light is red detuned from both the P1/2 and P3/2 levels for transitions

between S levels, it is blue detuned of both transitions from the D levels.
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Figure 4.7: (a) Table giving the values of Mi,ε. (b) Raw data from state detection

after pumping to the |−3/2〉 edge state. These values should correspond to the

highlighted last column of the table in (a), scaled by our detection efficiency, and

with a background offset. (c) Populations calculated from the raw data presented

in (b).
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Figure 4.8: Two types of Raman transitions that can be driven in the D manifold

of Ba using 532 nm light. (a) Using only σ light we can drive transitions between

the states as two disconnected 2-level systems. For these transitions the beat note

on the Raman beams must be set to twice the splitting between adjacent Zeeman

levels, or 8
5
µBBz (b) Using σ and π light we can drive transitions between all 4

levels. Here the Raman beat note is set to the energy splitting between adjacent

Zeeman levels: 4
5
µBBz. Both types of transitions involve coupling to the P3/2 levels

at detuning ∆1 and to the P1/2 levels at detuning ∆2.
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As shown in Fig. 4.8, there are two different types of transitions that can be

driven with 532nm light. The first kind of transition can be driven with two σ lines

with an energy splitting of 8
5
µBBz/h. Here µB is the Bohr magneton, Bz is the

magnetic field in the z-direction, and h is Plank’s constant. This drives transitions

with ∆mJ = 2 between |−3/2〉 ↔ |+1/2〉 and |−1/2〉 ↔ |+3/2〉. Fig. 4.9 shows

Rabi flopping on this transition.

The second type of transition we can drive in the D manifold uses σ and π po-

larizations with a beat note splitting equal to 4
5
µBBz/h to drive transitions between

adjacent Zeeman states with ∆mJ = 1. Unlike the simple Rabi flopping that occurs

on driven 2-level systems, the dynamics of this 4-level system are more complicated.

Theoretical curves and actual data of population over time for initialization into one

of the edge states are shown in Fig. 4.9.

4.4 Multi-Species Gates on Ba-Yb chains

Critical to realizing a quantum network architecture with 138Ba+ as communi-

cation qubits and 171Yb+ qubits used for local storage and processing is the ability

to reliably transfer information between these two species. The primary gate that

we are interested in performing is a SWAP interaction to transfer the remote en-

tanglement generated in a pair of Ba ions onto nearby Yb ions. This gate can be

achieved either with concatenated Mølmer-Sørensen gates [101], or directly using a

Cirac-Zoller gate [4].
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Figure 4.9: (a) Raman transitions driving Rabi flops between |−1/2〉 ↔ |+3/2〉

states in the D manifold of 138Ba+ . Small oscillations on |−3/2〉 and |+1/2〉 pop-

ulations are due to impure polarizations in the 650 nm detection light. (b) Raman

transitions at 4
5
µB/h driving population between all Zeeman levels. Results from

both (a) and (b) come from copropagating Raman beams. (c) QuTiP simulations

of evolution shown in (b). Couplings have not been optimized to match our polar-

izations. Rabi rate was set to match experimental results.

79



4.4.1 Mølmer-Sørensen Gates on Ba-Yb chains

Because it does not require ground state cooling, the MS gate is a natural

choice for performing this quantum state mapping. A multi-species MS gate has

been demonstrated between Be+ and Mg+ ions [101] using two Raman lasers for the

two elements. A similar configuration allows us to perform Mølmer-Sørensen gates

on chains consisting of one 138Ba+ and one 171Yb+ ion [82]. We implement this gate

by applying the MS interaction described in chapter 2 on 171Yb+ using 355 nm light

and on 138Ba+ using 532 nm light These beams have equal, symmetric detunings

from the red and blue vibrational sidebands. Extensive details on the experimental

concerns for performing and calibrating this gate are provided in Ref. [65].

The results from these experiments are plotted in Fig. 4.10, and the fidelity

of this gate was 0.60. We attribute this error to a high heating rate of ṅ = 5 ms−1

in the blade trap that was used for this result. Recently we have been moving to

4-rod traps, whose simple design and large structure tend to result in heating rates

ṅ ∼ 0.1 ms−1.

4.4.2 Cirac Zoller Gate on Ba-Yb Chains

We would like to demonstrate a full SWAP operation between Ba and Yb,

but an implementation of this operation with MS gates requires that two gates be

performed sequentially. Our fidelity of F=0.6 is prohibitively low to meaningfully

achieve this with MS gates, so instead we chose to use a Cirac Zoller interaction

to perform the SWAP gate. This type of gate, also referred to as quantum logic
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Figure 4.10: Experimental results for Mølmer-Sørensen gate on Ba-Yb chains.

(a) Z-basis correlations between Ba and Yb spin states. (b) Coherences in x-basis

obtained by performing a π/2 pulse on both qubits. Phase of the rotation on the

Yb ion was scanned. We expect to see parity switch as we scan this phase.
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spectroscopy, has also been demonstrated in mixed species chains [98].

We are interested in mapping the state of a Ba ion onto a nearby Yb ion.

To implement this we trap one 138Ba+ and one 171Yb+ and use EIT cooling to put

the atoms in their vibrational ground state. We then initialize the Yb ion into the

state |⇓〉 and we prepare Ba into some state (α |↓〉 + β |↑〉). The full state of the

Ba-Yb-phonon system can then be written as

ψBaψY bψn = (α |↓〉+ β |↑〉)(|⇓〉)(|0〉). (4.6)

Next we can use 532 nm light to apply a red sideband π pulse on the Ba ion.

This pulse drives the transition |↑〉 |0〉 → |↓〉 |1〉 on the Ba-phonon state, but does

not couple to the state |↓〉 |0〉. The effect of this pulse, then, is to take the quantum

information from the Ba ion and write it onto the phonon number state:

ψBaψY bψn = (|↓〉)(|⇓〉)(α |0〉+ β |1〉). (4.7)

Following this, a RSB π pulse can be applied on the Yb+ ion to drive popula-

tion on |⇓〉 |1〉 → |⇑〉 |0〉 to write the quantum information onto the Yb qubit. The

final state of the system after the second RSB pulse is

ψBaψY bψn = (|↓〉)(α |⇓〉+ β |⇑〉)(|0〉), (4.8)

completing the SWAP operations as desired. A graphical representation of this gate

and results from the experiment are shown in Fig. 4.11 and demonstrate that we

are able to transfer the state of the Ba atom onto the Yb qubit. The need for
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lengthy EIT cooling before every experiment, however, may limit the usefulness of

this protocol for integration with probabilistic photonic experiments.
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Figure 4.11: (a) Experimental sequence for the CZ SWAP gate. The RSB opera-

tions address both spin and motion as described in Chapter 2. We see here that the

qubit is briefly written directly onto the phonon before being moved to Yb. This

is in contrast with the MS gate which avoids writing quantum information onto

phonons. (b) Experimental data for the experiment shown in (a) where the state of

the Ba ion is read out on the Yb ion after performing the SWAP operation. The

horizontal axis gives the time of the variable rotation applied to the Ba+ ion. (c) In

order to show phase control over this experiment, we apply a variable delay while the

qubit is stored in the phonon mode. (d) Experimental results for experiment shown

in (c). Ramsey fringes at 1.8 MHz agree well with the measured trap frequency.
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Chapter 5: Networking Experiments with Ba

As discussed throughout this work, generating flying photons that are entan-

gled with local memory qubits is an essential component of quantum networking and

is of great interest for quantum communication and distributed quantum computing

applications [23, 117, 118]. In the mixed species quantum information network ar-

chitecture we have proposed [82], the primary role of the Ba ion is to generate these

photons for distributing remote entanglement between separate ion traps. Now that

we have shown a full toolkit for manipulating quantum information in the 138Ba+

ion, we wish to demonstrate ion-photon entanglement on this platform.

Due to the level structure of 138Ba+ , the simplest method of generating ion-

photon generation is to use a polarization qubit and collect 493 nm light about an

axis perpendicular to the B-field. In previous works we have implemented this by

first pumping a single Ba+ ion to the |↓〉 state. Next, a weak pulse of σ+ polarized

light was applied to excite ∼ 10% of the population to the 2P1/2 |mJ = +1/2〉 ≡ |e〉

state. This 5 ns pulse was generated using the same AOM that is used for state

initialization and detection, and the low excitation probability was used to help

prevent double excitations. From here, there are two possible decay paths back

to the S manifold; the ion can decay back to the |↓〉 state emitting a σ+ polarized
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photon or to the |↑〉 state producing a π polarized photon. This results in ion-photon

entanglement as discussed in Chapter 2.

493 nm photons were collected through a 0.6 NA lens and their polarization

was read out using a polarizing beamsplitter and a pair of single photon detectors

as shown in Fig. 5.2(a). We additionally perform state readout on the Ba qubit

using methods described in the previous chapter. Results from this experiment are

plotted in Fig. 5.1, and show that we create an entangled Bell state with fidelity

F ≥ 0.86 [82]. In the next section, we go into detail to evaluate and eliminate some

of the sources of error that limited this fidelity.

Much of my work has centered examining the sources of error that limit the

fidelity of this entanglement and altering our ion-photon entanglement protocol to

mitigate or eliminate these errors. For instance, all correlations between the local

and flying qubits are destroyed if the atom is re-excited after a photon is collected,

thus the purity of the atom as a single-photon source is critical for the fidelity of the

ion-photon entanglement [119]. Moreover, for non-zero collection angles, the atomic

decays do not perfectly map onto experimental polarizations, limiting the fidelity of

ion-photon entanglement [120]. The following sections will discuss the effects of these

sources of error in detail and demonstrate methods for reducing them by exciting

with and collecting different colors of light, and by applying a custom aperture

to maximize collected light while keeping polarization mixing errors low. Another

source of error resulting from uncontrolled phase evolution during our detection

window is examined and a method for eliminating it is demonstrated in Appendix

C.

86



Ion rotationPhoton rotation
(a) (b)

Figure 5.1: Results from the Ba entanglement experiment with 493 nm excitation.

(a) No rotations performed on the state of the ion, correlations observed between

the state of the ion and the photon in the Z basis. HWP angle of π/4 corresponds

to a π rotation of the photon qubit, reversing the correlations. (b) Here the HWP

was set to perform a π/2 rotation on the state of the photon and a π/2 Raman pulse

was performed on the ion to demonstrate correlations in an orthogonal basis.
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5.1 Double Excitations

First we will examine the effects of double excitations on the fidelity of ion-

photon entanglement experiments. We assume that such an experiment is trying

to produce a maximally entangled Bell state between the ion and the photon by

collecting emitted photons from a specific excited state |e〉. For probabilistic pho-

ton collection, there are two mechanisms by which double excitations can introduce

errors. In the first mechanism, the first photon emitted by the atom is collected,

but the second photon is not collected. In this mechanism, the second excitation

destroys the entanglement between the first photon and the state of the atom. The

second mechanism describes a situation where the first photon is not collected but

the second photon is collected. This situation still produces entanglement between

the ion and the collected photon, but if the second excitation prepared the ion in

the incorrect 6P1/2 Zeeman level, that entanglement will have correlations opposite

of those intended, introducing errors into the fidelity of the desired Bell state. If the

second excitation still prepares the atom in |e〉, the expected ion-photon entangle-

ment is still produced.

In the previous section we showed ion-photon entanglement with 138Ba+ by

first pumping into |↓〉 and exciting the atom to |e〉 with light at 493 nm [82]. Because

this scheme uses the same line for excitation and collection light, it is susceptible

to both types of double excitation errors. These can be mitigated with a fast pulse

of excitation light Tp << τe where Tp is the excitation pulse time and τe is the

excited state lifetime [91]. Alternatively, the atom can be weakly excited with
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Figure 5.2: (a) Sketch of the setup used to collect light and analyze the polarization

of photonic qubits. Light is collected by a NA = 0.6 lens and then directed through

a half-wave plate that can perform x-rotations on the polarization of the qubit. Next

is a polarizing, beam-splitting cube and a pair of APDs to detect the photon’s polar-

ization in the z-basis. (b) Energy level scheme for 138Ba+ ion-photon entanglement

with 493 nm excitation. (c) Energy levels for 138Ba+ ion-photon entanglement with

650 nm excitation.
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Figure 5.3: Double excitation errors when exciting from a stretch state in the D

manifold of 138Ba+ , plotted as a function of pulse time assuming a Rabi rate of

Ω = π/Tp. Note that even for pulses of order Tp ∼ τe the double excitation error is

low.
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probability Pe such that the probability of double excitations scales as P 2
e [121].

This was the approach used in the previous chapter. Weak excitation also reduces

the overall success rate of the experiment, however, and forces a harsh trade-off

between entanglement generation rate and fidelity. In the limit of long pulses, the

experimental repetition rate Rwe and the maximum fidelity Fmax are given by

Rwe = Rb ∗ Pe, Fmax = 1− 1

2
Pe, (5.1)

where Rb is the base rate of ion-photon entanglement for unit excitation probability.

To avoid the difficulties caused by weak excitation and to eliminate the second

mechanism of double excitation errors by ensuring single 493 nm photon emission, it

has been proposed [100,122] to prepare the Ba atom in the low-lying 5D3/2 manifold.

A similar method of using seperate excitation and collection lines has been imple-

mented for Ca+ ions as well [71]. Barium’s 5D3/2 level has several advantageous

properties for photonic applications. It has a lifetime of 80 s [116], which is longer

than conceivable quantum operations. Additionally, its 3:1 branching ratio from the

6P1/2 state is larger than in most ions, providing fast pumping times. Importantly,

the 650 nm excitation line is off-resonant from the 493 nm collected photons, thus

once a photon has been collected there can be no further excitation events, com-

pletely eliminating the first mechanism for double excitations. This scheme does not

render the ion-photon entanglement immune to the second mechanism of double ex-

citation errors, but favorable branching ratios and Clebsch-Gordan coefficients do

serve to suppress these errors. It has been shown [100] that by pumping to one of
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the edge states in the D manifold mJ = ±3/2, even in the limit of Tp >> τe, double

excitations only introduce an error of 11%.

To examine how the second mechanism of double excitation errors limits our

fidelity in the regime where Tp ∼ τe, we perform a Bloch equation calculation on the

evolution of the system’s state during and after the pulse, keeping track of whether

the resulting S-state population comes from decays from the correct P-state (|e〉).

Our results are plotted in Fig. 5.3 and show that for 650 nm excitation, high fidelity

entanglement does not require Tp << τe. This significantly relaxes the technological

requirements for the experiment, since pulses Tp ∼ τe = 10.5 ns can be created with

a CW source and acousto-optic (AO) or electro-optic (EO) intensity modulators.

The experiments presented in this paper are performed with 10 ns pulses generated

by an AO modulator, contributing an error of 0.004.

5.2 Pure Single Photons from 650 nm Excitation

The ability to generate pure single photons is at the core of many quantum

optics applications such as quantum cryptography [123], quantum repeaters [124],

quantum random number generation [125], and distributed quantum computing

[126]. In addition to fundamental interest in single photon production, we wish to

demonstrate the efficiency of our system as a single photon source to verify that we

do not suffer from the first type of double excitation errors [127].

To show this, a 138Ba+ ion is pumped into the mJ = +3/2 edge state 5D3/2

by applying all polarizations of 493 nm light and σ+ and π polarizations of 650 nm
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light. Next, a 10 ns pulse of σ− polarized light is applied to excite the atom to

|e〉 (see Fig. 5.2(c)). 493 nm decay photons are then collected by an NA = 0.6

microscope objective and directed to a Hanbury Brown-Twiss type setup as shown

in Fig. 5.2(a). To avoid collecting light from the pumping cycle the APDs are gated

closed except for a 200 ns window around the 650 nm pulse.

The normalized second-order autocorrelation function after integrating for 18

hours is plotted in Fig. 5.4(a). No background subtraction was applied. The

strong suppression of the τ = 0 peak demonstrates the effectiveness of our system

as a single-photon source. In Fig. 5.4(b) we present our calculated g(2)(τ = 0) as a

function of the integration window. We report our value of g(2)(0) = (8.1±2.3)×10−5

using a 30 ns integration window. This window was chosen to provide sufficient

photons to have a low uncertainty and is large enough to include 97% of our collected

photons as shown in the red curve of Fig. 5.4(b). This gives 12 ± 3 coincidence

events around τ = 0 and 149145 ± 386 coincidence events in the side peaks. This

result represents the lowest value ever recorded for a source of indistinguishable

photons [122] and is consistent with the lowest value reported in any system of

g(2)(0) = (7.5± 1.6)× 10−5 in a solid state experiment [128].

Dark counts on our detectors limit us to g(2)(0) ≥ 4 × 10−5. The mechanism

by which dark counts limit our g(2)(0) involves registering a single dark count on

one detector within the same window as we register a bright count on the other

detector. For this experiment we used a 30 nm window and our detectors have a

10 s−1 dark count rate, thus the probability of registering a dark coincidence given

a single bright click is Pbd = 3× 10−7. This value is compared to the probability of
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Figure 5.4: (a) Normalized second-order autocorrelation function. 26 µs peak spac-

ing corresponds to experimental repetition rate. Strong suppression of τ = 0 peak

demonstrates purity of single photon source. (b) Calculated g(2)(0) value (blue) and

fraction of light collected (red) plotted as functions of integration time. Dashed line

represents the lowest reported g(2)(0) value [128].
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registering a bright count on different detectors on subsequent trials. This is given

by the probability of collecting a single photon on a given detector on a single trial:

Pt = 0.5 · pe · p493 · Ωo/4π · pc · eq = 0.007. (5.2)

Here 0.5 accounts for the beamsplitter and must be included to account for the

fact that we only accept coincidence events corresponding to clicks on two different

detectors. pe is the probability of exciting the atom to the P3/2 level, p493 = 0.76 is

the probability that an atom in the P3/2 level emits a 493 nm photon, Ωo/4π = 0.1

gives the fraction of the solid angle that the objective collects, pc gives the remaining

collection efficiency of the system and is primarily limited by our coating which has

40% loss at 493 nm. eq = 0.7 is the quantum efficiency of the detector. The limit

on g(2)(0) , then is given by Pbd/Pt = 4× 10−5.

We attribute the remaining t=0 counts to observed transient light leakage

through our 493 nm AO modulators. This source of error was mitigated in our

experiment by adding a delay after initialization, decreasing the overall repetition

rate of the experiment, but to eliminate it compleately it seemed that we would have

to wait for ∼ 1 ms, which would make the experiment prohibitively slow. This rate

of multi-photon generation limits the contribution of the first mechanism of double

excitation errors to a negligible value of ≤ 4× 10−5.
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5.3 Atomic Decay Polarizations

As discussed in Chapter 3, trapped ions can be entangled with various degrees

of freedom of an emitted photon including polarization, frequency, or photon number

[46, 121]. While frequency qubits are generally more robust against propagation

through fibers, a polarization qubit can be easily manipulated and detected, making

it preferable for many applications [129]. Additionally, it has been shown [130] that

polarization qubits can be converted to time-bin qubits for implementation into long-

distance networks. There are two different schemes for generating entanglement

between an ion’s internal state and the polarization state of an emitted photon.

One is to collect σ+ and σ− photons from atomic decays that subtract or add one

quanta of angular momentum. When collected along the atom’s quantization axis,

these photons map to right and left handed circularly polarized light [91,131]. This

method generally requires filtering of any π polarized photons corresponding to

∆mJ = 0 decays by coupling the collected light into an optical fiber [84]. Another

method [83,121] is to collect photons from π and σ+ (σ−) decays. For this scheme,

photons are collected along an axis perpendicular to the atom’s quantization axis,

such that π and σ+ (σ−) photons map onto two orthogonal linear polarizations

V and H. For both methods, however, the polarization mappings are only exact

directly along the specified axis. To perform experiments in the lab, light must be

collected over some non-zero solid angle given by the collection optics, leading to

errors in the resulting ion-photon entanglement.

Consider a single atom with a quantization axis from an external magnetic field
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pointing in the z-direction undergoing spontaneous emission. The emitted photon

can carry angular momentum of ∆mZ = +1, 0, or −1 quanta, and we will refer to

these as σ+, π, and σ− events respectively. The radiation patterns resulting from

these decays are also referred to as σ+, π, and σ− radiation patterns and can be

represented by [52]:

π = χ1,0(θ, φ)× r̂ = i

√
3

8π
sin(θ)θ̂ (5.3)

σ+ = χ1,1(θ, φ)× r̂ = ieiφ
√

3

16π
(cos θθ̂ + iφ̂) (5.4)

σ− = χ1,−1(θ, φ)× r̂ = ie−iφ
√

3

16π
(cos θθ̂ − iφ̂) (5.5)

where χlm(θ, φ) are the normalized spherical harmonic vectors.

Now we look at the case of light collected along the x-axis from a P1/2 → S1/2

decay such as the decay in 138Ba+ shown in Fig. 5.2(c) where the atom’s spin

was initially aligned with the magnetic field direction. After a decay the resultant

atom-photon state is given by Ψr = 1√
2
(
√
Pσ |↓ σ〉 +

√
Pπ |↑ π〉) where Pσ and Pπ

are the probabilities of the collected photon coming from a σ or π decay. Here we

are interested in mapping σ+ (or σ−) and π onto Ĥ = φ̂ and V̂ = θ̂ photons to

create the desired maximally entangled state Ψd = 1√
2
(|↓ H〉 + |↑ V 〉). There are

two potential sources of error. First, as implied in Fig. 5.5(a), for large collection

angles Pσ 6= Pπ. Second, as shown in Fig. 5.5(b), for θ 6= π/2, we have σ+ 6= H. We

calculate these errors by first integrating the spatial distributions of σ and π decays

to find Pσ and Pπ as a function of the half-angle of our collection optics α1. Next

we numerically integrate the H and V components of the σ decays to find PσH and

PσV , the probabilities that a collected σ photon is detected as H or V . This gives
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(a) (b) (c)

Figure 5.5: (a) Spatial distribution of light from a σ decay (blue) and π decay

(yellow). The blue curve is normalized to have twice the total probability as the

yellow curve. This satisfies the condition that decays into free space be isotropic.

Note that at θ = π/2 there are equal amounts of σ and π decays. (b) Decomposition

of the σ decay radiation pattern from (a) into horizontal (cyan) and vertical (light

blue) linear polarization components. At θ = π/2 there is no vertical component,

and at θ = 0 or π, the vertical and horizontal components are equal as the light

is circularly polarized. (c) Two types of apertures are analyzed in this experiment.

Circular stop (top) used to restrict collection angle while maintaining a circular

aperture. Horizontal stop (bottom) used to restrict collection in the θ (vertical)

direction while allowing full collection in φ (horizontal) direction.
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us our resultant state Ψr with the photon state in the {H, V } basis:

Ψr(α1) =
√
PσH |↓ H〉+

√
PσV |↓ V 〉+

√
Pπ |↑ V 〉 . (5.6)

We now define the error ε = 1 − F = 1 − | 〈Ψd|Ψr〉 |2 where F is the fidelity of the

ion-photon entanglement. This error is plotted as a function of solid angle collected

in the blue curve of Fig. 5.6(a).

This result shows that as larger numerical apertures are used to improve en-

tanglement generation rates, the fidelity of the ion-photon entanglement will suffer.

Note that both types of errors increase for light farther from θ = π/2, but are in-

dependent of φ. This suggests that it may be possible to achieve a more favorable

trade-off between rate and fidelity by blocking light in the θ direction. To analyze

this possibility, we consider light collected by a lens with collection half-angle α1

with a set of stops that limit collection in the vertical direction to θ = π/2 ± α2

where α2 ≤ α1 (Fig. 5.5(c)). The error calculations are then repeated and the

results are plotted in Fig. 5.6(a) as a function of total solid angle collected for

a variety of values of α1. The results confirm that the horizontal stops provide a

favorable trade-off between light collection and fidelity.

5.4 Ba Ion-Photon Entanglement with 650 nm Excitations

To experimentally examine the effects of polarization mixing described in the

previous section, we perform ion-photon entanglement using a single trapped 138Ba+

atom. First, we use 650 nm excitation to generate an entangled ion photon pair as
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Figure 5.6: (a) Theoretical scaling between solid angle of collection lens and

polarization-mixing errors on ion-photon fidelity. The blue curve represents the

scaling for a simple circular aperture. The yellow, green, and red curves give the

scaling assuming a fixed circular aperture of NA = 0.6, 0.7, or 0.8 respectively that

has light farthest from θ = π/2 blocked as by a horizontal aperture. (b) The blue

and yellow curves are the theoretical scaling curves from (a) applied to fidelity, in-

cluding our other sources of error. The blue and yellow points show the data taken

with the corresponding apertures applied. The error bars show 1σ uncertainties.
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described in Section 5.2.2. For this experiment, we also make use of the half-wave

plate that can rotate the photon’s polarization before the polarization measurement.

Additionally, ion S state rotations and readout are performed using the methods

described in [82].

To demonstrate entanglement, we first show correlations between the state of

the ion and the photon in the z-basis. This is done by performing no rotations on

the ion and analyzing correlations between the ion and photon states as a function

of photon rotation angle. Next, correlations in an orthogonal basis, the coherences,

are demonstrated by fixing the wave plate angle to rotate the polarization by π/2

and performing a π/2 rotation on the atom with a variable phase. These results are

plotted in Fig. 5.7 and show an ion-photon entanglement fidelity of F = 0.884(4)

when light is collected over the entire 0.6 NA of the lens. Intrinsic polarization

mixing for this size of aperture accounts for a fidelity loss of 0.046; we attribute the

remaining errors to imperfect state initialization and readout, intensity and phase

noise on the Raman beams used to analyze the coherences, and polarization mixing

in the collection optics [91]. The analysis from previous sections indicates that errors

from double excitations are < 0.004.

To analyze the effects of spatial filtering on ion light, various optical stops

were 3D printed to be inserted immediately after the last lens of the microscope

objective (see Fig. 5.5(c)). These apertures were designed to block half of the solid

angle either symmetrically (circular stops) or in only the θ direction (horizontal

stops). After inserting the stops, the amount of light blocked was measured and the

entanglement experiments were repeated. The circular stops produced a fidelity of
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Figure 5.7: (a) Ion-photon correlation results as a function of wave plate rotation

angle. A wave plate angle of θ rotates the qubit by 4θ, thus the 90 degree period.

The red (blue) curve shows the probability of finding the ion in the |↑〉 state when

the photon is detected on APD1 (APD2). No stops were used for these experiments.

(b) Coherences in the y-basis are taken by setting the half-wave plate to perform a

π/2 rotation on the photon and then applying a π/2 pulse on the ion with a varying

phase.
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0.912(5) and the horizontal stops improved this further to 0.930(4). These results

are plotted along with the theory curves in Fig. 5.6(b) and confirm that, by taking

into consideration the spatial profile of the atomic decays, we can maximize fidelity

gained by sacrificing rate.

It should be noted that the spatial mode of the |↓ V 〉 term in Eqn. 5.6 is anti-

symmetric about the X-Y plane and thus will not couple into the symmetric mode of

a single mode optical fiber aligned perpendicular to the B-field [132]. Because fiber

coupling is important for a networked architecture [133], this eliminates the largest

fundamental source of error for this protocol and makes it an attractive option for

generating ion-photon entanglement.
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Chapter 6: Outlook

In this work, we have shown all of the necessary ingredients to construct a

modular node consisting of a superior Yb memory qubit and visible photon flying

qubits from a Ba ion. Going forward, an integrated demonstration of this node,

where the state of the visible photon is entangled with the Yb qubit will be a major

step. The lower heating rates in the Alice trap, in which the later works presented

in this thesis were performed, as well as other small technical improvements related

to moving to the new lab will hopefully facilitate the improved local operations that

will be necessary for this. Additionally, as I write this we are working on getting

a second trap with low heating rates up and running. This should allow for local

gates to be performed with higher fidelities.

The total overhead in resources required as we scale our system towards two

traps each with two species scales generally quite well. Most of the lasers and

electronics can be shared between the two traps. Nonetheless, the requirements for

separating, switching, and distributing each beam to the different traps is significant,

and as we hope to eventually move beyond two traps we have given considerable

thought to how our optics setup can be efficiently scaled. Just as we believe that a

modular approach is critical for scaling a quantum computing system, we are also

104



moving towards a modular architecture for this classical hardware. Fig. 6.1 shows

modules for combining and distributing 355/532 nm beams and 399/370 nm beams,

with the intent that additional traps will require only that additional modules be

added on, avoiding a need for major renovations with every upgrade.
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(a) (b)

Figure 6.1: Two types of modular optics boxes designed to allow for easier scaling

to more traps. Multiple of these boards can be chained together for scaling to more

traps. (a) Compact box for splitting 532 and 355 nm beams into four total beams

with individual AOM control, and then combining one beam of each color for each

of the two paths to the trap. Fine path length adjustments and wave plates are

included in the setup. (b) Schematic of a 399 and 369 nm distribution box designed

to combine Yb cooling and ionization light into a single fiber for delivery to a single

trap.
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Appendix A: Fast Remote Entanglement Without Weak Pulses or

Optical Phases

A number of results from NV centers in diamond have been referenced in this

thesis, and one method for generating remote entanglement that has been realized

on that platform merits particular note. This technique uses an auxiliary memory

qubit to generate remote entanglement using a two photon protocol that is insen-

sitive to optical phases, but does not rely on weak excitation and has a rate that

scales with the first power of the photon collection probability [134]. With our dual

species networks giving us strong isolation between memory qubits and the photon

generation process, this protocol might seem like a natural fit for our system. Un-

fortunately our energy level scheme makes this difficult to implement. Here, I will

briefly describe the protocol, then I will show why there is no straightforward way

to apply it to our system without a shelving laser, and finally I will discuss how this

protocol could be performed with the inclusion of a shelving laser.

The energy level diagram for the NV centers used in the first experimental

realization of this protocol [135] is shown in Fig. A.1(a). The photonic degree of

freedom utilized in this experiment is photon number in the two channels coming

from the individual NV centers. First both NV’s are prepared state 1√
2
(|↓〉 + |↑〉),
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Figure A.1: (a) Energy level diagram for NV-photon entanglement experiments. It is

important for this protocol that the |↑〉 state be completely disconnected from both

the |↓〉 → |e〉 excitation and decay processes. (b) Hong-Ou-Mandel interferometer

used in these experiments. As with some ion experiments, no polarizing beam

splitters are required after the 50:50 beam splitter.
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and then each is strongly excited on the |↓〉 → |e〉 line. After the decay this produces

the state

1

2
(|↓〉 |1〉+ |↑〉 |0〉)(|↓〉 |1〉+ |↑〉 |0〉)

=
1

2
(|↓↓〉 |11〉+ |↓↑〉 |10〉+ |↑↓〉 |01〉+ |↑↑〉 |00〉)

where |mn〉 denotes m photons in the first NV’s channel and n photons in the second

NV’s channel. The photons are combined on a Hong-Ou-Mandel interferometer as

shown in Fig. 3.1(b). Detection of a single photon heralds the creation of state

1√
3

(|↓↓〉+ |↓↑〉+ |↑↓〉) =

√
2

3
Ψ+ +

1√
3
|↓↓〉

where Ψ+ is the maximally entangled bell state Ψ+ = 1√
2
(|↓↑〉+ |↑↓〉). This state is

then swapped onto a nearby spectator memory qubit (a nuclear spin in the case of

the NV centers). Next these steps are repeated until a second copy of this state is

created. Once this has been achieved, it is possible to use local operations within

each node as well as classical communication between the nodes to distill these two

imperfect bell pairs into a single maximally entangled state [136]. This is achieved

in the NV experiment by performing a σy rotation on the electron spin, followed by

a CNOT gate between the electron and nuclear spins, and then a final a σx rotation

on the electron. The state of the NV is then read out and detection of |↓↓〉 heralds

the creation of a maximally entangled bell pair on the nuclear spins [135]. This

protocol is insensitive to slow optical path length fluctuations, but is sensitive to

optical path length fluctuations within a single experiment.

Our system has many of the basic components required for performing this

kind of experiment, including the optical link, the ability to perform local opera-
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tions, and the local memory qubits that can store information, so it may seem like

this would be a natural direction for our experiments to proceed. Unfortunately,

this scheme also requires that the |↑〉 state be entirely removed from the photon

generation process. Even if we filter out σ polarized photons to ensure that any

collected photons come from |e〉 → |↓〉 decays, the |↑〉 may still undergo excitation

and decay, acquiring an uncontrolled phase in the process.

To perform this protocol with 138Ba+ , a narrow shelving laser to coherently

transfer population to the 5D5/2 level would be required. Defining
∣∣6S1/2mJ = −1/2

〉
≡

|↓〉,
∣∣5S5/2mJ = −3/2

〉
≡ |↑〉, and

∣∣6P1/2mJ = −1/2
〉
≡ |e〉 would allow for a

straightforward application of this protocol assuming that we are able to filter out

σ or π polarized light.
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Appendix B: 138Ba+ D-State Detection

For performing state detection on the D manifold of 138Ba+ , it is critical that

we know how many photons will be scattered from each state j by each polarization

ε. These values are the elements Mj,ε of the matrix that is used in Equation 4.5.



n+

n−

nπ

n+π

n−π


= Ed



M−3/2,+ M−1/2,+ M+1/2,+ M+3/2,+ 1

M−3/2,− M−1/2,− M+1/2,− M+3/2,− 1

M−3/2,π M−1/2,π M+1/2,π M+3/2,π 1

M−3/2,+π M−1/2,+π M+1/2,+π M+3/2,+π 1

M−3/2,−π M−1/2,−π M+1/2,−π M+3/2,−π 1





P (|−3/2〉)

P (|−1/2〉)

P (|+1/2〉)

P (|+3/2〉)

Cb


(B.1)

These matrix elements are evaluated by performing simulations on the 8-levels

of the 138Ba+ atom and a 9th state keeping track of the average number of 493 nm

decays. As discussed in chapter 4, the Zeeman splittings quickly wash out any

coherent effects between different levels, and so the simulation tracks only population

in each state and no phase information.

The state of the system, then, is expressed as a 9d vector of real numbers

where the first 8 terms are the populations in the 8 states in order of increasing

energy. The 9th element of the vector is simply a counter for the average number
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of 493 nm decays and is always initialized to zero. The effects of light of a given

polarization ε could be written as a stochastic Markov matrix Qε whose elements

in the top left 8x8 section Qε
i,j give the probability of atomic population in state i

being excited to or decaying to state j. For example, for ε = σ+, if we assume all

polarizations of 493 nm light are applied with equal intensity,

Q+
8x8 =



0 0 0 0 0 0 1
3

2
3

0 0 0 0 0 0 2
3

1
3

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0.762
3

0.761
3

0.241
2

0.241
3

0.241
6

0 0 0

0.762
3

0.761
3

0 0.241
6

0.241
3

0.241
2

0 0



. (B.2)

where the fractions are given by the magnitude of the Clebsch-Gordan coefficients

and the decimals are the branching ratios between 493 and 650 nm decays. Note that

each row sums to one in order to preserve probability when applied to a normalized

population vector. The Qε matrices are calculated similarly for other polarizations.

The 9th row and column are included to count the total number of 493 nm

decays, and therefore do not need to preserve population:
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Qε =



... 1

... 1

... 0

. . . . . . . . . Qε
8x8 . . . . . . . . . . . . 0

... 0

... 0

... 0

... 0

0 0 0 0 0 0 0 0 1



. (B.3)

The last column is 0 for rows corresponding to P and D state population and 1 for

rows corresponding to S state population.

Applying Qε to a state vector represents the evolution of the system by one

“step” of decay or excitation. Because these steps may take different amounts of

time, there is not a simple analogue to time for this simulation, but because we

know that the ion will be quickly pumped into a dark state we are only concerned

with the long-time limit of the simulation. This is done by raising Qε to some large

power N and applying that to an initial state vector. For N=100 we verify that over

99% of the population is in a dark state regardless of initial state, and the number

of photons emitted is given by the last element of the resultant vector.

This allows us to calculate the matrix M :

113



Mj,ε = (Qε)Nψj ·



0

...

0

1


(B.4)

where ψj is the initial state unit vector corresponding to all of the population

starting in state j.

These simulations were performed for each polarization, each time with the

assumption that the 493 nm intensities were the same for each polarization. In cases

where there are two 650 nm polarizations, it was assumed that their intensities were

the same as well. The resulting M matrix is:

M =



M−3/2,+ M−1/2,+ M+1/2,+ M+3/2,+

M−3/2,− M−1/2,− M+1/2,− M+3/2,−

M−3/2,π M−1/2,π M+1/2,π M+3/2,π

M−3/2,+π M−1/2,+π M+1/2,+π M+3/2,+π

M−3/2,−π M−1/2,−π M+1/2,−π M+3/2,−π


=



6.57 5.43 0 0

0 0 5.43 6.57

0 6.00 6.00 0

13.25 12.63 11.38 0

0 11.38 12.63 13.25


.

(B.5)

These values can be used with Eqn. B.1 to solve for the populations given the

average number of photons collected from each polarization of detection light.

P (|−3/2〉) = 0.780 +
0.224n+ + 0.361n− + 0.004n+π − 0.590n−π

−0.052n+ − 0.052n− − 1.00nπ + 0.552n+π + 0.552n−π
(B.6)
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P (|−1/2〉) = −0.280 +
0.433n+ − 1.018n− − 0.067n+π − 0.652n−π

−0.052n+ − 0.052n− − 1.00nπ + 0.552n+π + 0.552n−π

(B.7)

P (|+1/2〉) = −0.280 +
0.433n− − 1.018n+ − 0.067n−π − 0.652n+π

−0.052n+ − 0.052n− − 1.00nπ + 0.552n+π + 0.552n−π

(B.8)

P (|−3/2〉) = 0.780 +
0.224n− + 0.361n+ + 0.004n−π − 0.590n+π

−0.052n+ − 0.052n− − 1.00nπ + 0.552n+π + 0.552n−π
(B.9)

These equations all rely on the assumption that population is trapped in the

dark state, but the added term for a background offset can somewhat account for

impure polarizations. Additionally, in deriving the M matrices, it was assumed

that all polarizations had equal intensities. Our sensitivity to this assumption was

examined, and it was found that intensity fluctuations of 50% cause populations to

change by 1-5 percentage points. In practice, it should be easy to set our intensity

with better accuracy than this, and matching the intensities to within 10% causes

errors to be < 1%.
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Appendix C: Ion Photon Entanglement Phases

In order to demonstrate entanglement between the state of an ion and an

emitted photon, it is critical that we keep track of the phase of the entangled state.

In Chapter 4, we briefly discussed the different kinds of frequency sources that we

can use to drive the AOMs we use for ion rotations in the lab. The most common

source we use is a free-running source such as a DDS. The absolute phase of these

sources will be random shot-to-shot with respect to both the experimental cycle and

to other frequency sources in the lab. As long as all operations are referenced to

the frequency source, this is not a problem, and we have even demonstrated how

a “master clock” frequency source could be used to perform coherent operations

across distant nodes in a large network [137].

For experiments involving a phase that is not controlled by this master clock,

however, these free-running frequency sources present a problem. To see an example

of this, let us consider the phases during an ion-photon entanglement experiment.

For the sake of concreteness, we will consider the protocol used in Ba in Chapter 5,

but these results are general enough to be applied to most schemes.

Immediately after the decay, the unnormalized atom-photon state is
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Ψ(t) = e−iE|↓〉t/~ |↓〉 e−iωσt |σ〉+ e−iE|↑〉t/~ |↑〉 e−iωπt |π〉 (C.1)

where E|↓〉 (E|↑〉) is the energy of the |↓〉 (|↑〉) state, and ωσ/π is the frequency of the

corresponding decay. Noting that by energy conservation, E|↓〉 + ~ωσ = E|↑〉 + ~ωπ,

we see that the relative phase does not evolve while the photon is in flight.

If we are attempting to measure the coherences of this system by looking at

correlations in an alternative basis, however, we see a relative phase evolution. For

instance, if the photon is found to be in the state (|σ〉 + |π〉), this projects the ion

into the state

Ψ(t) = |↓〉+ e−i∆ωt |↑〉 (C.2)

where t=0 is at the time that the photon is detected.

Thus we see that for coherence experiments, the clock starts once the photon

is detected. This timing will be random with respect to any free-running oscillator,

and so these experiments will require a frequency source that can be externally

triggered.

The excitation pulse is timed to the experimental cycle, but this photon de-

tection will occur at some subsequent time given by a convolution of the (typically

Gaussian) excitation pulse and the (exponentially decaying) decay profile. For small

energy splittings ∆ω � Γ, the amount of phase evolution over the spread of photon

arrival times is small, and the AWG can be triggered on the experimental cycle. If

∆ω 6� Γ, a random phase will be written onto the ion shot-to-shot based on the
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photon arrival time. One way to address this would be to timestamp each photon

and correct for the phase of the subsequent rotation in post-processing as done in

Ref. [138]. Another solution is to trigger the AWG not on the experimental cycle,

but rather on the photon arrival time, effectively feeding forward onto the phase of

the AWG. This feed-forward technique was implemented for the results discussed in

Section 5.2.4.

I will also mention that for Raman rotations, it is the phase of the beatnote,

rather than the individual phase from either beam that gets written onto the ion.

The disadvantage of this is that in a straightforward application, both AOMs must

be driven by AWG channels, increasing the overhead in resources required. The

advantage is that it opens up the possibility to use a high frequency DDS around

the AOM frequency and to mix in a signal from a single lower frequency AWG at

the qubit splitting.

Our results in Section 5.2.4 rely on this method where a 190 MHz DDS signal

was split and one arm was mixed with a 5 MHz AWG signal to give the two beams

a beatnote with phase controlled by the AWG. The signals were then recombined

and sent to a single AOM for the copropagating Raman rotations as shown in Fig.

C.1.
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Figure C.1: Setup used to produce the RF drive for the 200 MHZ AOM on the

532 nm Raman beam used for the analysis pulse in Section 5.2.4. This signal should

have two tones separated by the qubit splitting ω ≈ 5 MHz. It is critical that the

phase of this beatnote is controlled by an AWG. We implement this with a DDS

at 190 MHz that is split into two arms. The right arm is mixed with the 5 MHz

signal from an Agilent 33250A AWG producing outputs at 185 MHz and 195 MHz.

This signal is then put through a narrow band filter to remove the sum frequency

component. The output of this mixer is combined with the left arm of the original

splitter to produce a signal with the desired two tones. The AWG is triggered on a

signal from the photon detection. This design allows us to control the beatnote on

two ∼ 200 MHz beams using only a single channel of a 25 MHz AWG and a DDS.
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