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Attitude estimation algorithms are critical components of satellite control

systems, aircraft autopilots, and other applications. Attitude estimation systems

perform their task by fusing attitude and gyroscope measurements; however, such

measurements are typically corrupted by random noise and gyroscopes may have

significant bias. Variations of the extended Kalman filter are commonly used, but

this technique relies on instantaneous linearization of the underlying nonlinear dy-

namics and global stability cannot be guaranteed. Nonlinear attitude observers with

guaranteed global stability have been derived and experimentally demonstrated, but

only for the deterministic setting where no stochastic effects are present.

The first part of this thesis extends a deterministic nonlinear attitude estima-

tor by introducing additional dynamics that allow learning variations of gyro bias as

a function of operating temperature, a common source of bias variation in rate gyro

readings. The remainder of the thesis formally addresses the problem of stochastic



stability and asymptotic performance for this family of estimators when the mea-

surements contain random noise. Analysis tools from stochastic differential equation

theory and stochastic Lyapunov analysis are used together to demonstrate conver-

gence of the filter states to a stationary distribution, and to bound the associated

steady-state statistics as a function of filter gains and sensor parameters.

In many cases these bounds are conservative, but solutions have been found for

the associated stationary Fokker-Planck PDEs for two cases. When only the gyro

measurement contains noise, the attitude estimation errors are shown to converge

to a bipolar Bingham distribution. When the gyro measurement is further assumed

to have constant bias, the estimation errors are shown to converge to a joint bipo-

lar Bingham and multivariate Gaussian distribution. Knowledge of the stationary

distributions allow for exact computation of steady-state statistics. Further, the

analysis suggests a method for modeling a continuous quaternion noise process with

specified statistics on SO(3); this model is used for analyzing estimator performance

when both the gyro and the attitude measurements contain noise. Bounds and

exact predictions for the different noise models are validated using a high fidelity

numerical integration method for nonlinear stochastic differential equations.
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for the Itô SDE 4.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

5.1 Comparison of the ultimate attitude estimate error variance of Corol-
lary 5.5.1.2 to simulation realizations for a range of values of the
tracking gain ke. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

5.2 Comparison of the ultimate gyro bias estimate error variance of Equa-
tion 5.25 to simulation realizations for a range of values of the tracking
gain ke. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

5.3 Comparison of the ultimate attitude estimate error variance of Corol-
lary 5.5.1.2 to simulation realizations for a range of values of the
adaptation gain α. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

5.4 Comparison of the ultimate gyro bias estimate error variance of Equa-
tion 5.25 to simulation realizations for a range of values of the adap-
tation gain α. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

5.5 Comparison of simulation realizations of the attitude estimate error
variance and the notional bound of Equation 5.26 for several choices
of ξ over a range of tracking gains ke. . . . . . . . . . . . . . . . . . . 243

5.6 Comparison of simulation realizations of the bias estimate error vari-
ance and the notional bound of Equation 5.26 for several choices of ξ
over a range of tracking gains ke. . . . . . . . . . . . . . . . . . . . . 244

5.7 Comparison of simulation realizations of the attitude estimate error
variance and the notional bound of Equation 5.26 for several choices
of ξ over a range of adaptation gains α. . . . . . . . . . . . . . . . . . 246

5.8 Comparison of simulation realizations of the bias estimate error vari-
ance and the notional bound of Equation 5.26 for several choices of ξ
over a range of adaptation gains α. . . . . . . . . . . . . . . . . . . . 247

5.9 Comparison of simulation realizations of the attitude estimate error
variance and the notional bound of Equation 5.28 for a range of track-
ing gain parameters ke. . . . . . . . . . . . . . . . . . . . . . . . . . . 248

5.10 Comparison of simulation realizations of the bias estimate error vari-
ance and the notional bound of Equation 5.29 for a range of tracking
gain parameters ke. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

5.11 Comparison of simulation realizations of the attitude estimate error
variance and the notional bound of Equation 5.28 for a range of adap-
tation gain parameters α. . . . . . . . . . . . . . . . . . . . . . . . . 250

5.12 Comparison of simulation realizations of the bias estimate error vari-
ance and the notional bound of Equation 5.29 for a range of adapta-
tion gain parameters α. . . . . . . . . . . . . . . . . . . . . . . . . . . 251

5.13 Comparison of simulation realizations of the attitude estimate error
variance with the analytic solution for a range of tracking gain pa-
rameters ke. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

xiii



5.14 Comparison of simulation realizations of the bias estimate error vari-
ance with the analytic solution for a range of tracking gain parameters
ke. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

5.15 Comparison of simulation realizations of the attitude estimate error
variance with the analytic solution for a range of adaptation gain
parameters α. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

5.16 Comparison of simulation realizations of the bias estimate error vari-
ance with the analytic solution for a range of adaptation gain param-
eters α. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

6.1 Comparison of simulation realizations of the general moment of Equa-
tion 6.11 and the associated bound for the case of a vehicle spinning
at 5 revolutions per minute about the vehicle body’s [1 2 3]T axis. . . 282

6.2 Comparison of simulation realizations of the general moment of Equa-
tion 6.11 and the associated bound for the case of a vehicle inertially
fixed (not spinning). . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

6.3 Comparison of simulation realizations of the attitude estimate error
and the bound of Equation 6.13 for the case of a vehicle spinning at
5 revolutions per minute about the vehicle body’s [1 2 3]T axis. . . . . 284

6.4 Comparison of simulation realizations of the attitude estimate error
and the bound of Equation 6.13 for the case of a vehicle inertially
fixed (not spinning). . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

6.5 Comparison of simulation realizations of attitude estimate errors of
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Chapter 1: Introduction

Attitude and angular rate estimation are critical systems for a great many

applications. For example, NASA routinely utilizes spacecraft as a platform for

hosting scientific observatories above the atmosphere; precise attitude and angu-

lar rate estimates of the spacecraft are needed to ensure the science instruments

point in the appropriate direction with minimal error. Aircraft autopilots rely on

attitude and angular rate estimates to achieve appropriate conditions to maintain

smooth flight. Autonomous underwater vehicles (AUVs) rely on attitude and angu-

lar rate estimates to similarly maintain appropriate conditions to dive and maneuver

underwater. Other recent applications for attitude and angular rate estimation in-

clude personnel tracking in unstructured environments [24], fitness tracking [55],

and virtual reality systems [63]. It is typical to need both attitude and angular rate

estimates; as attitude measurements inherently have noise differentiating the atti-

tude measurements to provide angular rate estimates is often insufficient for closed

loop attitude control, estimating body motion, etc.

In many applications, it is challenging to model the system dynamics. In the

spacecraft attitude estimation problem, disturbance torques induced by bending

modes in solar panels, variation in aerodynamic drag as the atmosphere expands
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and contracts, variation in solar radiation pressure due to sun spots or solar flares,

liquid propellant slosh, jitter due to rotating instruments onboard the spacecraft,

and other effects are common examples [31,66]. Aircraft may be subjected to wind

gusts and variation in mass properties as payload shifts and passengers move about.

AUVs are similarly often exposed to changing water currents, unexpected shifts

to their center of mass, and unexpected changes to their center of buoyancy [23].

Even rigid body vehicles in an environment with negligible disturbance can prove

challenging to model as a system’s inertia tensor may be hard to measure or estimate.

In applications where the system dynamics are difficult to model with sufficient

fidelity, it is common to instead rely on a sensor fusion approach based on a kinematic

model [51,56] driven by angular rate gyro measurements. As orientation kinematics

are known [31] precisely, an angular rate gyro can be used to measure the effect of

dynamics and drive the kinematic equations; thus the challenge shifts from modeling

the dynamics of the underlying system to modeling the gyro sensor itself. This

technique is sometimes referred to as dynamic model replacement.

One of the main sources of error with the dynamics model replacement tech-

nique is error in the gyro measurements. Gyro sensors are characterized by the

magnitude of bias in their measurements and how the bias might vary. High end

gyros have better (smaller) bias characteristics, but come at substantial expense in

addition to size, weight, and power requirements; note that even the highest grade

of gyros commercially available still have noticeable bias for many applications. Of

course, size, weight, power, and financial constraints often dictate lower quality gyro

sensors are required for a particular application. The emergence of micro-electrical-
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mechanical system (MEMS) gyros has enabled attitude estimation for entirely new

classes of problems as well as providing a useful alternative to traditional gyros, but

MEMS gyros in particular are known for having large bias that varies over time. A

critical idea behind the dynamics model replacement technique is to estimate the

gyro bias; the gyro bias estimate is then subtracted from the gyro measurement

to attempt to cancel the impact of the underlying gyro bias. The “corrected” gyro

measurement is then used to drive the attitude kinematics equation of the estimation

algorithm.

1.1 State of the Art

Many of the early advances in attitude estimation theory came from the space

industry. As many of the first developments were in the interest of rocket and missile

development during the beginning of the Cold War, an accurate and complete history

is difficult to assemble as the work was kept classified [102].

The importance of Kalman’s work [39] in the estimation of linear stochastic

systems was immediately recognized by Schmidt and his collaborators [69,82,83].

Kalman filter techniques were soon applied to attitude estimation One of the

first published works is by Farrell [18,19] who used a Kalman filter to fuse sun sensor

and magnetometer sensors to provide an attitude estimate. Potter and Velde [76]

used a Kalman filter to combine star tracker data with gyro measurements. However,

as noted by [79] many of these early applications did not have sufficient performance;

an inability to model the underlying system dynamics with enough fidelity was a

3



major setback.

The dynamic model replacement technique met this challenge with great suc-

cess. The technique appears to have originated with the Space Precision Attitude

Reference System (SPARS) described in an Euler angle formulation by Paulson,

Jackson, and Brown [74] and a quaternion and error angle formulation by Toda,

Heiss, and Schlee [97]. These formulations both estimated gyro bias which was sub-

sequently used to correct the gyro measurements used in their filter’s attitude kine-

matics equations. The Multiplicative Extended Kalman Filter (MEKF) introduced

by Lefferts, Markley, and Shuster [51, 64] improved on the work by Toda et al. by

formulating new attitude measurement information as a quaternion for measurement

updates. The MEKF was employed for the Space Shuttle, is currently employed on

the Hubble Space Telescope, the International Space Station, and numerous other

current missions. It is the current industry standard and is incorporated in designs

for the James Webb Space Telescope and Orion Crew Exploration Vehicle.

Research in attitude estimation filters continues. An Unscented Kalman Filter

by Crassidis [14] has been employed to attempt to address the highly nonlinear at-

titude kinematics. Particle Filters have been developed by Cheng and Crassidis [12]

and Oshman and Carmi [73] for attitude estimation problems to relax the typical

Kalman filter assumption of Gaussian measurement noise. Unfortunately these tech-

niques come with considerable computational cost compared to the classic MEKF.

Other recent work includes the construction of an assumed density Bayesian filter by

Glover and Kaelbling [27] based on the assumption that the attitude estimate obeys

a Bingham distribution, a type of probability distribution on the unit quaternion hy-
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persphere. This same probability density is used in a recursive filter implementation

by Kurz et al [48].

Kalman filter techniques have enjoyed considerable success for attitude estima-

tion, but their use is not without criticism as they require instantaneous linearization

of the highly nonlinear attitude kinematics equation. It is known [9] that extended

Kalman filters based on instantaneous linearization are not guaranteed to be glob-

ally stable. With improper tuning or inappropriate initialization it is possible for

divergence to occur. Even with appropriate tuning and initialization, the region

of stability for an extended Kalman filter can be difficult to establish. Addition-

ally, Kalman filter techniques can be computationally expensive, requiring matrix

inverses and propagation of a covariance matrix in addition to the filter state.

Application of nonlinear state observers to the attitude estimation problem

has provided an appealing alternative to filter techniques based on instantaneous

linearization. Several nonlinear attitude observers have been developed with global

stability guarantees derived via Lyapunov analysis. The use of Lyapunov analysis to

establish stability for quaternion feedback was first demonstrated for attitude control

algorithms. Wie and Barba [105] and Wie, Weiss, and Arapostathis [106] proposed

a set of Lyapunov functions that were used to show global asymptotic stability of a

class of spacecraft attitude regulators. Egeland and Godhavn [17] extended one of

the Wie et al. controllers for attitude tracking control, and showed stability with

an augmentation to adaptively learn mass parameters such as the inertia matrix.

Fjellstad and Fossen [21] considered a number of various quaternion feedback control

schemes for attitude regulation and list associated Lyapunov functions used to show
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stability.

Following the successful application of Lyapunov stability analysis to the at-

titude control problem, several authors have utilized similar Lyapunov candidate

functions to demonstrate global stability for nonlinear attitude observers. Salcud-

ean [80] introduced a nonlinear observer for rigid body attitude and angular rate;

using deterministic lyapunov stability theory the observer was shown to eventually

converge exponentially fast. Vik, Shiriaev, and Fossen [101] extended this nonlin-

ear observer to also estimate exponentially decaying gyro bias. Thienel and San-

ner [94, 95] showed that the gyro bias observer of [101] is exponentially stable even

when the biases are constant (persistent); additionally, they show the observer, when

combined with a passivity-based attitude controller from [17], exhibits a nonlinear

version of the separation principle. Mahony, Hamel, and Pflimlin [56] extended the

analysis to consider line-of-sight attitude measurements (e.g. a magnetometer or

sun sensor) in addition to estimating persistent gyro bias online; their analysis is

provided in both quaternion space and rotation matrix space.

In all of the above nonlinear observer studies, the analysis was performed in a

deterministic Lyapunov framework. Thienel and Sanner [94,95] point out that expo-

nential stability guarantees the stability of the observers in the presence of bounded

additive gyro noise, but the deterministic analysis does not provide a means to quan-

tify the stochastic performance of the system. Thus deterministic Lyapunov theory

is unable to provide criteria for selection of observer gains based on sensor noise

specifications. Choukroun [13] demonstrated how to perturb quaternion kinematics

by Brownian motion angular rate noise and analyzed stability using a result from
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linear stochastic differential equation theory, but the result does not generalize to

nonlinear drift terms that arise in the nonlinear attitude observers of [80, 95, 101]

and no explicit stationary performance metric is provided.

The theory of stochastic differential equations (SDEs) are the natural setting

for considering measurement noise in the highly nonlinear attitude estimation prob-

lem. The rigorous foundation for SDEs dates back to Wiener [16, 107] for linear

SDEs and Itô for nonlinear SDEs [33–35,67]. While the linear SDE work of Wiener

provided the basis for the celebrated work of Kalman, the lack of a readily available

estimation framework suitable for application appears to have prevented the nonlin-

ear SDE case from finding as much utility. The development of the time evolution

of probability densities goes back further to the work of Fokker [22], Planck [75],

and Komolgorov [46]. Unfortunately, the time evolution of probability densities is

given by a second order paraboloic partial differential equation (PDE) which can be

challenging to solve.

Several results provide a stochastic analog to the deterministic theory of Lya-

punov, referred to as stochastic Lyapunov analysis [43, 96, 112–114], but do not

appear to be widely used in the literature. Some of these results allow for the direct

computation of bounds of statistics on certain statistics of a nonlinear Itô SDE. For

example, this theory has been used to optimize gains in a nonlinear angular rate

regulator [52]. Additionally, several results of stochastic Lyapunov theory allow

for the determination of various definitions of stochastic stability. This can be a

powerful tool as weak stochastic stability implies that the system converges in the

infinite time limit to a stationary state (where the probability distribution for the
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system states remains constant); thus the complication of solving the time varying

Fokker Planck PDE, a second order parabolic PDE, can be reduced to the simpler

stationary Fokker-Planck PDE, which is a second order elliptic PDE. If the under-

lying system is one-dimensional, then the stationary Fokker-Planck PDE reduces to

a second order ODE. These simplifications and reductions may make the solution

of a Fokker-Planck PDE tractable.

1.2 Contributions

The first contribution of the thesis is the extension of a nonlinear gyro bias

observer to allow for the learning of gyro bias as a function of operating temperature.

Provided the underlying gyro thermal bias function is sufficiently smooth, the gyro

thermal bias observer is able to learn an approximation to gyro thermal bias of

arbitrary shape by using an adaptation law to update weighting coefficients of a

collection of radial basis functions (RBFs). Simulation studies demonstrate the

performance of the observer.

The remaining contributions of this thesis are directed at the formal under-

standing of the stochastic stability and stationary statistics of several nonlinear atti-

tude observers when provided measurements with noise. The analyses conducted in

this thesis are summarized in Table 1.1. Each row depicts the analysis of a nonlin-

ear attitude observer (or attitude and gyro bias observer) with progressively more

complicated measurement noise and error models. The columns are broken into

SO(2) and SO(3) results for weak stochastic stability, ultimate bounds on perfor-
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mance statistics derived via stochastic Lyapunov analysis, and the solution to the

corresponding stationary Fokker-Planck PDE. For many measurement models, weak

stochastic stability guarantees were found via stochastic Lyapunov analysis. For the

gyro additive noise and gyro constant bias measurement model case, weak stochas-

tic stability was found via an appeal to a converse Lyapunov theorem. In the cases

where the SO(3) solutions remain unknown to the author, the analysis proceeded

to the corresponding SO(2) analogs which were shown to have tractable solutions

to their stationary Fokker-Planck PDEs. Ultimate statistics from the solution to

the stationary Fokker-Planck PDE for the SO(2) analogs were then extrapolated as

heuristic bounds for the SO(3) case; the heuristic bounds were subsequently verified

by numerical simulation.

Another significant contribution of the thesis is the development of a Itô SDE

quaternion measurement noise model. Prior work has utilized an additive noise

model which does not obey the unit norm constraint for quaternions parameterizing

rotation. Other work has generated a noise quaternion via a nonlinear mapping

from a Gaussian distribution, but this nonlinear mapping precludes the possibility

of modeling the noise as a specific type of Itô SDE referred to as an Itô diffusion.

By formulating the quaternion measurement noise model as a continuous time Itô

diffusion, high fidelity stochastic numerical integration tools may be utilized for

simulation studies. Further, the ultimate statistics of the quaternion measurement

noise model presented in this thesis were found in the full SO(3) case, allowing for

specification of the measurement noise level for simulation and analysis purposes.
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1.3 Dissertation Outline

Chapter 2 provides an overview of the mathematical theory and analysis tools

used throughout the thesis. The chapter begins with a brief review of nonlinear de-

terministic differential equations and analysis tools to provide a basis for comparison.

The chapter then details important concepts from nonlinear stochastic differential

equation theory with a detailed discussion of modeling aspects. Stochastic stability

concepts are introduced and several results from stochastic Lyapunov theory are

presented. The Fokker-Planck PDE is also discussed with an example demonstrat-

ing its utility. Numerical SDE simulation techniques are described which are used

throughout the thesis to provide validation of the analytical results. Quaternion

arithmetic and attitude kinematics are then presented to familiarize the reader with

notation used throughout the document. Finally, the structure of several determin-

istic observers is discussed providing a more detailed description of the remaining

chapters.

Chapter 3 provides an extension to the deterministic observer of Thienel and

Sanner [95] to account for gyro bias as a function of operating temperature. A brief

review of the phenomena of gyro thermal bias from the literature is presented and

a pair of notional gyro thermal bias models are provided. Some techniques from

function approximation theory are presented, providing a mechanism by which an

adaptive observer can encode an estimate of a gyro thermal bias function. The

function approximation techniques are then combined with the nonlinear adaptive

observer of Thienel and Sanner to formulate a deterministic gyro thermal bias ob-
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server. Deterministic simulations demonstrate that the observer is able to “learn”

an approximation to the gyro thermal bias function. The deterministic observer of

Thienel and Sanner, as well as the new gyro thermal bias observer, are then placed

in a stochastic setting by including additive gyro noise and attitude measurement

noise. The performance of the observers is compared. Finally, a number of simula-

tions are conducted to sample the gain parameter space in an attempt to find the

gain selection criteria for the performance of the filters. The inexact nature of the

study and excessive computational cost to perform the work provide motivation for

analytic criteria for gain parameter selection.

Chapter 4 details a rigorous analysis of the simple case of a nonlinear attitude

observer with additive gyro noise; as the analysis is done in a stochastic setting the

terminology changes to a nonlinear attitude filter. The error dynamics are formu-

lated as an Itô SDE and the filter is determined to be weakly stochastically stable.

Stochastic Lyapunov theory is used to find performance bounds for the system,

but the bounds are shown to be conservative compared to simulation realizations.

The SO(3) Fokker-Planck PDE is derived but the complicated structure does not

appear to immediately suggest a solution. To gain further understanding of the

problem, the analysis is restricted to the SO(2) (single axis) case. The stochastic

Lyapunov analysis is repeated there and found to still be conservative, but analysis

of the Fokker-Planck PDE proves to be tractable; the solution is given by a von

Mises distribution. The solution of the SO(2) stationary Fokker-Planck PDE allows

for analytic computation of stationary statistics of the filter which agree with nu-

merical simulation. Intuition gained from the SO(2) case provides motivation for

12



a proposed solution to the SO(3) Fokker-Planck PDE which fits numerical simu-

lation data. Finally, the insight gained from the SO(2) case suggests a solution

to the SO(3) stationary Fokker-Planck PDE which is found as a bipolar Bingham

distribution; the solution is used to derive exact analytic expressions for the ulti-

mate statistics of the SO(3) process which agree with numerical simulation. The

SO(3) stationary Fokker-Planck solution is subsequently used to compute the entire

ultimate covariance matrix for the attitude estimate errors.

Chapter 5 extends the results of the fourth chapter by considering constant

gyro bias. The error dynamics for the filter are found to be weakly stochastically

stable via an appeal to a converse Lyapunov theorem. While the converse Lyapunov

theorem is successfully used in combination with stochastic Lyapunov analysis to

demonstrates stability, no explicit formulation of the Lyapunov function is available

to find performance bounds for the filter using stochastic Lyapunov analysis. The

SO(3) Fokker-Planck PDE is found but again has complicated structure. As before,

the analysis focuses on the restricted SO(2) case for further insight. The stochastic

Lyapunov analysis is repeated there and found to still be conservative, but anal-

ysis of the Fokker-Planck PDE proves to be tractable; the solution is given by a

joint von Mises and Gaussian distribution. The solution of the SO(2) stationary

Fokker-Planck PDE allows for analytic computation of stationary statistics of the

filter which agree with numerical simulation. Intuition gained from the SO(2) case

provides motivation for a proposed solution to the SO(3) Fokker-Planck PDE which

fits numerical simulation data. Finally, the insight gained from the SO(2) case sug-

gests a solution to the SO(3) stationary Fokker-Planck PDE which is found as a

13



joint bipolar Bingham and multivariate Gaussian distribution; the solution is used

to derive exact analytic expressions for the ultimate statistics of the SO(3) process

which agree with numerical simulation.

Chapter 6 introduces attitude measurement noise to the analysis. As the anal-

ysis tools used in this thesis require the error dynamics be formulated as an Ito SDE,

the filter error dynamics are augmented by a separate process to generate quater-

nion measurement noise with specified noise density; the filter dynamics from Chap-

ter 4 provide such a mathematical process. The first section begins with additive

gyro noise and attitude measurement noise only, no gyro bias is considered. Weak

stochastic stability is demonstrated using Lyapunov analysis. Ultimate performance

bounds are found using stochastic Lyapunov analysis; however, numerical simula-

tion shows the performance bounds are very conservative and not indicate of actual

performance. Following the analysis strategy of previous chapters, the system is

reduced to the SO(2) case. An asymptotic solution to the stationary Fokker-Planck

PDE is found as a bivariate von Mises distribution; the solution is used to compute

stationary statistics for the filter which agree with numerical simulation. Intuition

gained from the SO(2) case provides a suggestion for a heuristic upper bound for the

SO(3) case which correctly envelopes numerical simulation data. The next section

repeats the analysis for the case of additive gyro noise, gyro constant bias, and atti-

tude measurement noise. A stability result for this case eludes the author, but as in

the previous section an asymptotic solution to the SO(2) stationary Fokker-Planck

PDE is found as a joint bivariate von Mises and Gaussian distribution which agrees

with simulation realizations. The SO(s) solution is again extrapolated to the SO(3)
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case as a heuristic bound which is found to agree with extensive simulation data.

Chapter 7 provides a summary of the dissertation and discusses directions for

future research. Aside from filling in the gaps in Table 1.1, other important gyro

noise models are discussed; particularly non-axis-symmetric additive gyro noise and

bias random walk. An extension of the filters of Chapter 6 is proposed to filter

the non-white attitude noise present in the attitude measurement noise model from

that chapter. Additionally, the subject of closed-loop attitude control is mentioned

along with a preliminary stability and performance result. The chapter concludes

with final remarks on the stochastic tools and analysis approach used in the thesis.
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Chapter 2: Background

This chapter provides an overview of relevant background material used in

this thesis. First, Section 2.1 covers stochastic differential equations (SDEs) and

methods of analyzing stability; it begins with a brief review of ODEs in Section

2.1.1 and deterministic Lyapunov stability theory 2.1.2 to provide a basis for the

overview of SDEs in Section 2.1.3 and stochastic Lyapunov stability theory presented

in Section 2.1.4, and concludes with a discussion of Fokker-Planck analysis in Section

2.1.5. Next, Section 2.2 reviews numerical integration methods useful for validating

analytical results. Quaternion arithmetic and attitude kinematics are presented in

Section 2.3. Finally, Section 2.4 discusses the structure of the deterministic observers

that serve as the basis for the attitude filters analyzed in this thesis.

2.1 Nonlinear Stochastic Differential Equations and Stability

This section reviews several key concepts from deterministic ordinary differ-

ential equations (ODEs) along with methods of establishing stability via Lyapunov

analysis. Next, the stochastic analog of these concepts are presented, including

a rigorous definition of stochastic differential equations (SDEs), practical stochas-

tic modeling issues, and stochastic Lyapunov analysis techniques for determining
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stability and performance. An alternative analysis technique utilizing partial differ-

ential equations (PDEs) via stationary Fokker-Planck analysis is discussed. Several

examples are used to illustrate the theoretical concepts.

2.1.1 Deterministic Ordinary Differential Equations

Consider the deterministic Ordinary Differential Equation (ODE)

ẋ(t) = f (x(t)) +G (x(t))u(t) x (ta) = xa (2.1)

where x(t) ∈ Rn×1
is the system state evaluated at time t and the input u(t) is some

deterministic known function of time.

The ODE is interpreted by its integral

x (t
b
)− x(ta) =

∫ tb

ta

f(x(t))dt+

∫ tb

ta

G (x(t))u(t)dt (2.2)

The integrals in Equation 2.2 are the ordinary Riemann integrals of elementary

calculus, defined as ∫ tb

ta

f(x(t))dt = lim
δ→0

N−1∑
i=0

f(x(τ
i
))[t

i+1
− t

i
] (2.3)

where ta = t0 < t1 . . . tN = t
b

is a partition of the integration interval [ta , tb ],

δ = maxi(ti+1 − ti), and each τ
i
∈ (t

i
, t
i+1). If the limit does not exist, the integral

is said to not exist or not converge.

Of course, the integral Equation 2.2 does not directly yield the solution of the

system as x(t) appears on both sides of the equation. The linear time invariant

(LTI) system, a special case of Equation 2.1, is given as

ẋ(t) = Ax(t) +Bu(t) x (ta) = xa (2.4)
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The solution to the LTI ODE is a well known result from elementary calculus [11]

x(tb) = e(tb−ta)Ax(ta) +

∫ tb

ta

e(tb−τ)ABu(τ)dτ

This solution may be used to determine the properties and behavior of the system.

The solution to certain classes of linear time varying (LTV) systems that are periodic

can be found via a time varying coordinate change that transforms the periodic

system into an LTI system using Floquet theory [11].

The situation is less well understood for the general nonlinear ODE of Equation

2.1. Closed-form solutions to the general nonlinear ODE may be very challenging

to find, or even impossible. Tenenbaum and Pollard [93] state “It is unfortunately

true that only very special types of first order differential equations possess solutions

which can be expressed in terms of elementary functions. Most first order differential

equations, in fact, one could say almost all, cannot be thus expressed.”

While closed-form solutions to the general nonlinear ODE of Equation 2.1

may be difficult or impossible to find, it may be possible to find a more general

solution or at least determine if a unique solution exists. The existence of a so-

lution, and uniqueness of that solution, can be established by the Picard-Lindelof

Theorem which has Lipschitz continuity conditions that ensure the integral of the

ODE converges [42, 93]. Assuming a unique solution exists, the solution can then

always be found via successive Picard iterations; however, this solution technique

may yield the solution as an infinite series of nested integrals.

For design and analysis purposes, however, an explicit closed form solution

often isn’t needed. As long as a unique solution exists, it may be sufficient to assess
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qualitative properties of a system such as system stability or boundedness. The

following section presents ODE analysis techniques that do not require the explicit

solution.
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2.1.2 Deterministic Stability Analysis

Some highlights of Lyapunov stability analysis are reviewed in this section.

The discussion here provides a basis for understanding the stochastic Lyapunov

results presented in the upcoming stochastic stability analysis overview of Section

2.1.4.

Consider a system described by the ODE

ẋ(t) = f(x(t)) x(ta) = xa (2.5)

The system of Equation 2.5 is said [42] to be

• stable if, for each ε > 0 there exists a δ = δ(ε) > 0 such that

‖xa‖ < δ =⇒ ‖x(t)‖ < ε ∀ t ≥ ta

• Globally Asymptotically Stable (GAS) if

lim
t→∞

x(t) = 0 ∀ x(ta) = xa

• Globally Exponentially Stable (GES) if there exist positive constants c, k, and

λ such that

‖x(t)‖ ≤ k‖x(ta)‖−λ(t−ta) ∀ x(ta) = xa

In words, a system is stable if for any ball of arbitrary radius centered at the origin,

the system states remain within that ball for any initial condition inside some initial

condition set (a ball centered at the origin with radius dependent on the first ball).

A system is GAS if, for any initial condition, the state asymptotically approaches
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the origin. A system is GES if, for any initial condition, the state approaches the

origin exponentially fast. These types of stability may be assessed via the analysis

techniques pioneered by Lyapunov.

Theorem 2.1.1 (Lyapunov’s Direct Method [42]). Let x = 0 be an equilibrium

point for Equation 2.5 and V : Rn×1 → R be a continuously differentiable function

such that

V (0) = 0 and V (x) > 0 ∀ x 6= 0

If

V̇ (x(t)) ≤ 0 ∀ x(t)

then the system described by Equation 2.5 is stable.

Moreover, if

V̇ (x(t)) < 0 ∀ x(t) 6= 0

then the system described by Equation 2.5 is Globally Asymptotically Stable (GAS).

Consider the LTI system of Equation 2.4 in the unforced case (when the input

is u(t) = 0 ∀ t). Then Equation 2.4 reduces to

ẋ(t) = Ax(t) (2.6)

The choice of Lyapunov function V (x(t)) = x
T
(t)Px(t) with P symmetric and

positive definite (SPD) leads to

V̇ (t) = x
T

(t)
(
A
T

P + PA
)
x(t)

= −xT (t)Qx(t) < 0 ∀ x(t) 6= 0 iff Q is SPD
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This is of course an abbreviated derivation of the well known stability Lyapunov

equation for LTI systems given in the following corollary.

Corollary 2.1.1.1 (Lyapunov Asymptotic Stability for LTI Systems). The LTI sys-

tem of Equation 2.6 is Globally Asymptotically Stable iff there exists SPD matrices

P,Q such that

A
T

P + PA = −Q

Other types of stability exist. The system of Equation 2.5 is said to be Globally

Uniformly Ultimately Bounded (globally UUB) [42] if there exists a T < ∞ and a

positive scalar k such that

‖x(t)‖ < k <∞ ∀ t ≥ ta + T, ∀ x(ta) = xa (2.7)

Note the distinction between stability in the sense of Theorem 2.1.1 and UUB.

Theorem 2.1.1 requires a system to be such that the states remain within a ball of

any size (centered on the origin) to be deemed stable. UUB relaxes this notion as

a system is UUB if its states remain within any finite bound; a system may rapidly

diverge from the origin and still be UUB provided its states remain within some ball

centered on the origin. A classic example is the Van der Pol oscillator which, for

positive damping coefficient, is unstable but UUB as the system trajectory converges

to a stable limit cycle [42]. The following Lyapunov theorem may be used to assess

if a particular system is UUB. First recall that a continuous function α(·) is said to

belong to class K if it is strictly increasing and α(0) = 0.
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Theorem 2.1.2 (Uniformly Ultimately Bounded Lyapunov Theorem [42] ). Let

V : Rn → R be a continuously differentiable function such that

α1 (‖x(t)‖) ≤ V (x(t)) ≤ α2 (‖x(t)‖)

where α1(·) and α2(·) are class K functions and α1 (‖x(t)‖)→∞ as ‖x(t)‖ → ∞.

If

V̇ (x(t)) =

(
∂V

∂x

)T
f(x(t)) ≤ W (x(t)) < 0 ∀ ‖x(t)‖ ≥ µ > 0 ∀t ≥ ta

for some continuous positive definite function W (·), then the system described by

Equation 2.5 is Uniformly Ultimately Bounded (UUB). If the above holds for any

initial condition x(ta) = xa, the system is globally UUB.

Furthermore, for any r > 0 satisfying µ < α−1
2 (α1(r)), there exists a T ≥ 0

(dependent on x(ta) and µ) such that

‖x(t)‖ ≤ α−1
1 (α2(µ)), ∀ t ≥ ta + T

To illustrate the utility of the UUB theorem, consider the logistic population

model given by the scalar nonlinear ODE

ẋ(t) = rx(t)

(
1− x(t)

k

)
x(t0) = x0 > 0 (2.8)

In the model, x(t) is some population that can be modeled with a continuous vari-

able (a large group of individual animals, or perhaps bacteria). The parameter r

models the growth and decay (birth and death) in the population while k models

the environmental carrying capacity. Note that the population can never become

23



negative; the population begins with a positive value. As the solution is continuous,

and ẋ(t) = 0 for x(t) = 0, the solution must remain positive semidefinite; if the

population ever drops to zero, it remains zero forever after.

The logistic population model of Equation 2.20 is UUB. Choose V = 1
2
x2(t).

Then

V̇ (t) = rx2(t)

(
1− x(t)

k

)
< 0 ∀ x(t) > k

Application of Theorem 2.1.2 shows the desired result.

The above theorems used a Lyapunov function to demonstrate a stability

property of a given system. There will be use in this thesis for converse Lyapunov

theorems as well. These theorems allow one to use the fact that a system is GES

to infer the existence of a Lyapunov function that has certain properties without

finding the explicit form of the Lyapunov function. In Chapter 6, the fact that a

deterministic system is known to be GES will be used with the following converse

Lyapunov theorem to generate a Lyapunov function that will in turn be used to

show a stochastic extension of the system is weakly stochastically stable using a

stochastic Lyapunov theorem.

Theorem 2.1.3 (Converse Lyapunov [42]). Let x = 0 be an equilibrium point for

Equation 2.5 with f(·) : Rn → Rn continuously differentiable and ∂f
∂x

be bounded. If

there exist positive constants k, λ such that trajectories of the system satisfy

‖x(t)‖ ≤ k‖x(ta)‖e−λ(t−ta), ∀ t ≥ ta
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then there is a function V : Rn → R that satisfies the inequalities

c1‖x‖2 ≤ V (x) ≤ c2‖x‖2

∂V

∂x
f(x(t)) ≤ −c3‖x‖2∥∥∥∥∂V∂x

∥∥∥∥ ≤ c4‖x‖ (2.9)

for some positive constants c1, c2, c3, and c4.
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2.1.3 Stochastic Differential Equations

Extending the model of Equation 2.1 to include the effects of random noise is

of great interest for modeling disturbance forces and torques, measurement noise,

and other phenomena [9,37,68]. Inclusion of random noise will require considerably

more mathematical theory than was used to define ODEs; this section presents a

rigorous definition of a stochastic differential equation (SDE).

A common approach to formulating an SDE [9, 26, 84, 109] is to perturb an

ODE by a Gaussian white noise process n(·) where at each time t the process is

an independent identically distributed (iid) sample from a zero mean unit variance

Gaussian noise distribution: n(t) ∼ N (0, I).

ẋ(t) = f(x(t)) +G(x(t))n(t) (2.10)

In this thesis an ODE perturbed by a Gaussian white noise process will be referred

to as a Langevin form differential equation.

The scalar white noise process n(·) is so named since at each time instant n(t) is

drawn from an independent identically distributed normal distribution, n(t) ∼ N (0, 1),

thus the autocorrelation is necessarily E[n(t)n(τ)] = δ(t− τ). This is how the noise

process gets its name as the Fourier transform of the autocorrelation function, the

spectral density, is flat for this process. That is, the spectral density contains content

at all frequencies, similar to how white light contains content of all visible light fre-

quencies. Of course, a dirac-delta autocorrelated process is not continuous [72], the

process is nonphysical as a signal would require infinite energy be truly white [109],
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and the process is difficult to interpret rigorously [44,67].

A closely related process is the Brownian motion process, also called a Wiener

process, which will be denoted as β(·). Brownian motion is defined as a process with

the following properties [44]:

• Independent Increments β(t) − β(s) for t > s is independent of the past,

meaning independent of β(u) for 0 ≤ u ≤ s

• Normal Increments β(t)−β(s) for t > s has a normal distribution with mean

0 and variance t−s; symbolically, E[β(t)−β(s)] = 0 and E
{

[β(t)− β(s)]2
}

=

t− s

• Continuous Paths β(t), t ≥ 0 are continuous functions of t.

In fact, the third property, that the Brownian motion process has continuous paths,

can be deduced from the first two defining properties [44].

Wiener [67, 107] rigorously derived his integral using the Brownian motion

process: ∫ tb

ta

G(t)dβ(t) = l.i.m.
δ→0

N−1∑
i=0

G(ti) [β(ti+1)− β(ti)]

where ta = t0 < t1 < . . . < tN = tb and δ = max
i

(ti+1 − ti). The limit is taken as

the limit in the mean, or the mean square limit, and l.i.m. is shorthand for

l.i.m.
δ→0

x
δ

= x ⇔ lim
δ→0

E
[
(x

δ
− x)2

]
= 0

In the definition of the Wiener integral, the integrand G(t) is restricted to be de-

terministic; it must in no way depend on the Brownian motion process β(·). Since

the state is dependent on the Brownian motion process, the Wiener integral is not
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defined for integrands that are a function of the state [67]. Note that in the sum,

the integrand is evaluated at the left end of the integration interval, ti.

With this in hand, the stochastic differential equation

dx(t) = f(x(t))dt+G(t)dβ(t) x(ta) = xa (2.11)

can now be associated with the integral equation

x(tb)− x(ta) =

∫ tb

ta

f(x(t))dt+

∫ tb

ta

G(t)dβ(t) (2.12)

where the first integral is an ordinary Riemann integral and the second integral is a

Wiener integral.

Wiener calculus serves as the rigorous basis for interpreting Langevin form

differential equations of the type

ẋ(t) = f(x(t)) +G(t)n(t) (2.13)

by replacing the problematic n(·) white noise process with the Brownian increment

dβ(·). The white noise process n(·) can be thought of [37, 44, 67, 72], informally, as

the “derivative” of the Brownian motion process β(·), symbolically “β̇(t) = n(t)”.

However, the Brownian motion process is nowhere differentiable. Hence the patho-

logical nature of white noise; it is the derivative of a process that has no derivative.

This can seem to be a subtle distinction and is of little consequence for working

with Langevin form differential equations when G is independent of the state like

in Equation 2.13; however, when the diffusion matrix G is state dependent, the

Brownian increment is no longer independent of the diffusion matrix as the state is

itself dependent on the Brownian increment.
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Wiener calculus shares many of the same fundamental mechanics as ordinary

calculus, such as the chain rule. Again it should be stressed that the Wiener integral

does not allow for G(t) to be dependent on the state. The Wiener integral is the

type of integral used in the derivation of an extended Kalman filter, which addresses

the issue by instantaneously linearizing the system dynamics at every time step and

thus assuming the G(t) matrix is only time varying. The region of validity of this

assumption is difficult to assess.

Most of the stochastic differential equations (SDEs) encountered in this thesis

are such that the G matrix does indeed depend on the state, which in turn de-

pends on previous values of the Brownian motion process. The Wiener integral was

extended by Itô [33, 34,37,67] as

∫ tb

ta

G
(
x(t)

)
dβ(t) = l.i.m.

δ→0

N−1∑
i=0

G
(
x(ti)

)
[β(ti+1)− β(ti)]

Note carefully that the integrand is again evaluated at the left side of the integration

interval. Since the Brownian motion process has increments independent of its prior

values it follows that for each term in the summation G
(
x(ti)

)
and β(ti+1)− β(ti)

are independent.

Observe that the Wiener integral is a special case of the Itô integral. Similarly,

the Itô stochastic differential equation (SDE)

dx(t) = f(x(t))dt+G(x(t))dβ(t) x(ta) = xa (2.14)

is interpreted as

x(tb)− x(ta) =

∫ tb

ta

f(x(t))dt+

∫ tb

ta

G(x(t))dβ(t) (2.15)
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In Equation 2.15, the first integral is interpreted as an ordinary Riemann integral

and the second is an Itô integral. The f(x(t)) term is often referred to as the drift

term and G(x(t)) as the diffusion matrix. By construction of the Itô integral, the

solution to x(t) is a Markov process [44, 67]. This thesis only considers a specific

type of SDE called an Itô diffusion; that is, an SDE that can be written in the form

of Equation 2.14 which is affine in the driving noise.

While the Wiener integral and the Itô integral appear to be very similar,

Wiener calculus follows the same rules as ordinary calculus while the more general

Itô integral and its attendant calculus do not. Specifically, the chain rule of ordi-

nary calculus does not hold. Consider the twice continuously differentiable function

V (x(t)). Its derivative with respect to the SDE of Equation 2.14 is given by Itô’s

Lemma, which is the chain rule for Itô calculus [67]:

dV (x(t)) =

(
∂V

∂x

)T
dx(t) +

1

2
tr

(
GT (x(t))

∂2V

∂x2
G (x(t))

)
dt

=

[(
∂V

∂x

)T
f (x(t)) +

1

2
tr

(
GT (x(t))

∂2V

∂x2
G (x(t))

)]
dt

+

(
∂V

∂x

)T
G (x(t)) dβ(t)

= L V (x(t)) dt+

(
∂V

∂x

)T
G (x(t)) dβ(t) (2.16)

where the L · operator is given by

L V (x(t)) =

(
∂V

∂x

)T
f (x(t)) +

1

2
tr

(
GT (x(t))

∂2V

∂x2
G (x(t))

)
(2.17)

The operator is known as the differential generator [67] [96], the differential operator

[114], and the generator [44] [43]; it will be referred to as a differential generator

in this thesis and will be used extensively. The differential generator is such that
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L V = E[dV ]; that is, it is the expectation of the Itô derivative along sample paths

of the associated SDE [67].

Alternative integrals exist for handling state dependent G matrices. A popular

alternative is the Stratonovich [37,67,91,92] integral, defined as

S

∫ tb

ta

G (x(t)) ◦ dβ(t) = l.i.m.
δ→0

N−1∑
i=0

G

(
x

(
ti+1 − ti

2

))
[β(ti+1)− β(ti)]

where the S
∫

and ◦dβ(t) are used to distinguish a Stratonovich integral from a Wiener

or Itô integral. Note that in this definition the integrand is evaluated in the middle

of the integration interval.

The Stratonovich integral allows for Stratonovich SDEs of the form

dx(t) = f(x(t))dt+G(x(t)) ◦ dβ(t), x(ta) = xa (2.18)

to be interpreted as

x(tb)− x(ta) =

∫ tb

ta

f(x(t))dt+ S

∫ tb

ta

G(x(t)) ◦ dβ(t) (2.19)

where the first integral is an ordinary Riemann integral and the second is a Stratonovich

integral.

The Stratonovich and Itô integrals differ in several fundamental ways. As

noted earlier, the Itô integral and its attendant calculus utilize their own special

chain rule which differs from that of ordinary calculus. The Stratonovich integral and

its attendant calculus utilizes the same chain rule as that of ordinary calculus. While

this might make it more attractive, it has its own drawbacks. The Stratonovich

integral is not a martingale while the Itô integral is [72]; the martingale property

makes the Itô integral easier to work with in proofs so Itô calculus is more prevalent
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in the literature. Additionally, the Stratonovich integral is only defined for explicit

functions of β(t) while the Itô integral is defined for functionals on {β(τ), τ ≤ t}, so

Itô integrals are applicable to a wider class of systems [37,58].

Note that for the restricted class of functions for which the Stratonovich inte-

gral can be defined, there is a one-to-one correspondence between an Itô SDE and

a Stratonovich SDE [26, 67]. The same process y(t) may be represented as the Itô

SDE

dy(t) = fito,y(y(t))dt+G(y(t))dβ(t)

or the Stratonovich SDE

dy(t) =

[
fito,y(y(t))− 1

2

∑
j

∂gj
∂y
gj

]
dt+G(y(t)) ◦ dβ(t)

where gj is the jth column of G(y(t)) ∈ Rn×m and for any v ∈ Rm×1

∂v

∂y
=


∂v1
∂y1

· · · ∂v1
∂yn

...
. . .

...

∂vm
∂y1

· · · ∂vm
∂yn


Conversely, the same process z(t) may be represented as the Stratonovich SDE

dz(t) = fstrat,z(z(t))dt+G(z(t)) ◦ dβ(t)

or the Itô SDE

dz(t) =

[
fstrat,z(z(t)) +

1

2

∑
j

∂gj
∂y
gj

]
dt+G(y(t))dβ(t)

The question remains, how does one interpret a Langevin form differential

equation such as Equation 2.10? Or, as eloquently stated in [71], “which kind of
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calculus does nature use?” Opinions differ [70,87,89,98,100,104], although there is

agreement that both Itô calculus and Stratonovich calculus are both self-consistent

and the correspondence between Itô and Stratonovich SDEs may be utilized to

freely transform a system description as needed [37, 67, 71]. Note that the two

different interpretations of the Langevin form differential equation lead, in general,

to two distinct stochastic processes. Each process can be described by an Itô SDE,

a Stratonovich SDE, or a Fokker-Planck PDE (which will be discussed in Section

2.1.5). The situation is illustrated in Figure 2.1.
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Figure 2.1: The two interpretations of the Langevin form differential equation lead, in

general, to two distinct stochastic processes.
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Some authors, particularly in mathematics [44, 72] and chemistry [98–100],

argue that the non-rigorous definition and construction of the white noise process,

evidenced by the possibility of distinct interpretations of the Langevin form dif-

ferential equation, means the Langevin form differential equation itself should be

discarded and the modeling process should begin with an Itô SDE, a Stratonovich

SDE, or a Fokker-Planck PDE (or the more generalized Master Equation). Other au-

thors [87,104] argue unequivocally that Langevin form differential equations should

be interpreted as Stratonovich SDEs (by replacing the white noise term with the

Brownian increment) based on analytical analysis and experimental data. All cited

authors agree that the Stratonovich interpretation of a Langevin form differential

equation is appropriate when the noise being modeled is a so called “external force”,

such as a disturbance force, disturbance torque, a disturbance due to an external

thermal source (aka dark current), and shot noise. Examples of “internal forces”

in this context are typically due to chemical reactions. As this thesis is concerned

with modeling gyro noise and attitude measurement sensor noise, which would be

considered due to “external forces”, the Stratonovich interpretation appears appro-

priate.

Analyses conducted by Wong and Zakai [110, 111] attempted to address this

issue. They studied a sequence of ODEs driven by continuous piecewise linear ap-

proximations to Brownian motion process where the approximations converge to

actual Brownian motion processes in the limit. They found that the sequence of so-

lutions to the ODEs converged in the limit to the Stratonovich interpretation of the

Langevin form differential equation, not the Itô interpretation. This interpretation
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has been quite influential and is recommended by prominent texts by mathemati-

cians [40, 45], physicists [26], and engineers [37]. Following these recommendations,

in this thesis first principles will be used to derive Langevin form differential equa-

tions which will be interpreted as Stratonovich SDEs. However, since the results

from stochastic stability theory (to be presented in Section 2.1.4) and high fidelity

numerical integration algorithms (to be presented in Section 2.2) are given for Itô

SDEs, the Stratonovich SDEs will subsequently be converted into Itô SDEs for

analysis and numerical simulation.

In summary, in this thesis Langevin form differential equations such as

ẋ(t) = flang(x(t)) +G(x(t))n(t)

will be interpreted as a Statonovich SDE

dx(t) = flang(x(t))dt+G(x(t)) ◦ dβ(t)

which will in turn be converted to an Itô SDE given by

dx(t) =

[
flang(x(t))dt+

1

2

∑
j

∂gj
∂x
gj

]
dt+G(x(t))dβ(t)

These concepts will now be illustrated using, as an example, a stochastic ver-

sion of the logistic population model. The deterministic logistic population model

is given by the scalar nonlinear ODE

ẋ(t) = rx(t)

(
1− x(t)

k

)
x(t0) = x0 > 0 (2.20)

In the model, x(t) is some population that can be modeled with a continuous variable

(a large group of individual animals, or bacteria, or the concentration of a chemical
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species in a reaction). The parameter r models the growth and decay (birth and

death) in the population while k models the environmental carrying capacity. Note

that the population can never become negative; the population begins with a positive

value. As the solution is continuous, and ẋ(t) = 0 for x(t) = 0, the solution must

remain positive semidefinite; if the population ever drops to zero, it remains zero

forever after.

Assume now that there are random effects on the rate of change of the popu-

lation level due to variation in the environment that would be proportional to the

population level. A Langevin form differential equation for the system could then

be written as

ẋ(t) = rx(t)

(
1− x(t)

k

)
+ σx(t)n(t), x(t0) = x0 > 0 (2.21)

where the volatility of the random effect is parameterized by σ and n(t) is a zero

mean unit variance Gaussian white noise process. This system is of interest in

biology, microbiology, chemistry, mathematical modeling, and risk assessment [10,

54,88].

If the Langevin form differential equation 2.21 is interpreted as a Stratonovich

SDE, the interpretation that will be used in later chapters of this thesis, it is then

written as

dx(t) = rx(t)

(
1− x(t)

k

)
dt+ σx(t) ◦ dβ(t) (2.22)

which can be converted to Itô form, yielding

dx(t) = rx(t)

(
1− x(t)

k
+
σ2

2r

)
dt+ σx(t)dβ(t) (2.23)
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Alternatively, the Langevin form differential equation 2.21 may be interpreted

as an Itô SDE, and would be written as

dx(t) = rx(t)

(
1− x(t)

k

)
dt+ σx(t)dβ(t) (2.24)

which can be converted to Stratonovich form, yielding

dx(t) = rx(t)

(
1− x(t)

k
− σ2

2r

)
dt+ σx(t) ◦ dβ(t) (2.25)

Note that the Stratonovich interpretation of the Langevin form differential

equation given by the Stratonovich SDE 2.22 and Itô SDE 2.23 are consistent with

each other, but differ from the Itô interpretation of the Langevin form differential

equation given by the Stratonovich SDE 2.25 and Itô SDE 2.24. The two interpre-

tations yield distinct stochastic processes. Later sections will show these distinct

stochastic processes have different stationary statistics, only one of which is physi-

cally meaningful for all possible r, k, and σ.
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2.1.4 Stochastic Stability Analysis

This section discusses stability of stochastic differential equations. First, the

concept of weak stochastic stability introduced by Wonham [113] is presented. Next,

two Lyapunov-like theorems are discussed; these theorems will be the primary tool

used in this thesis to asses stochastic stability. This section concludes with two

demonstrations of the application of these stochastic Lyapunov-like theorems. First,

the stochastic Lyapunov-like theorems are used to evaluate the performance of the

classic LTI state observer; the resulting analysis is used to optimize the LTI state

observer gain and a comparison is made to the classical analysis. Next, the stochastic

logistic population model is investigated as it is an example nonlinear stochastic

differential equation.

There are many notions of stability for stochastic differential equations. If

one examines the origin as an equilibrium point, there are a substantial number of

Lyapunov-like theorems similar in spirit to Theorem 2.1.1 available to assess the

stochastic analog of asymptotic and exponential stability [43, 96] of Equation 2.14.

Of course for this type of stability, it is necessary that the diffusion matrix G(·) be

such that G(x)→ 0 as x→ 0; while this is true for the examples of Equations 2.23

and 2.24 it does not hold for any of the nonlinear attitude filters considered in this

thesis.

Alternatively, there are a number of sample path boundedness Lyapunov-like

theorems similar in spirit to Theorem 2.1.2. These theorems guarantee that the

actual realization of the process remains within some bound with probability one
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[43]. Unfortunately, even the conclusion of sample path boundedness excludes many

stochastic models, even some for which all ultimate moments limt→∞E
[
‖x(t)‖n

]
are bounded [113].

Instead this thesis will utilize much less restrictive notions of stability, specif-

ically the notion coined “weakly stochastically stable” by Wonham [113]. By Won-

ham’s definition, a process (such as the solution x(·) of the SDE 2.14) that is weakly

stochastically stable is one that admits a unique invariant probability distribution.

Provided that the drift and diffusion coefficients are respectively once and twice

continuously differentiable (as they will be for all systems considered in this thesis),

the invariant probability distribution corresponds to a stationary (joint) probabil-

ity density function ps(x). Symbolically, if the solution x(·) = {x(t) ∀ t ≥ t0} to

SDE 2.14 has the (instantaneous) joint probability density function p(x(t), t), then

the statement that the SDE admits a unique invariant probability density means

that ps(x) exists, is such that

lim
t→∞

p(x(t), t) = ps(x) (2.26)

and, further, that ps(x) is the solution to the stationary Fokker Planck PDE for

the system which will be discussed in the next section. Note carefully that Won-

ham’s notion of weak stochastic stability differs from Khasminskii’s weak stochastic

stability in probability [43] which is stronger but more restrictive.

In this thesis weak stochastic stability is established using a Lyapunov-like

theorem from Zakai [114], a version of Wonham’s [113] that relaxes Wonham’s re-

striction on the diffusion matrix having full rank.
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Theorem 2.1.4 (Zakai Stability [114]). Let x(·) be the solution to the Itô SDE 2.14

and V : Rn → R be a twice continuously differentiable function such that

α1 (‖x(t)‖) ≤ V (x(t)) ≤ α2 (‖x(t)‖) (2.27)

where α1(·) and α2(·) are class K functions and α1 (‖x(t)‖)→∞ as ‖x(t)‖ → ∞.

If there exist positive numbers R0 <∞ and k such that

L V (x(t)) ≤ −k < 0 ∀‖x‖ > R0

then the process defined by the SDE 2.14 admits an invariant probability distribution.

If the solution to an SDE is weakly stochastically stable, it is often of interest to

compute bounds on various stationary averages when they exist. The next theorem

was originally derived and named by Wonham [112]. Zakai [114] later relaxed the

conditions of the theorem. The theorem allows one to compute bounds on various

stationary averages, also referred to as ultimate (general) moments, provided the

SDE is weakly stochastically stable.

Theorem 2.1.5 (Zakai Ultimate Moment Bound [114]). Let x(·) be the solution

to SDE 2.14 known to be weakly stochastically stable and V : Rn → R be a twice

continuously differentiable function such that

α1 (‖x(t)‖) ≤ V (x(t)) ≤ α2 (‖x(t)‖) (2.28)

where α1(·) and α2(·) are class K functions and α1 (‖x(t)‖)→∞ as ‖x(t)‖ → ∞.
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If there exists a positive number k and a nonnegative function L(x) : Rn → R

such that

L V (x(t)) ≤ k − L(x(t)) ∀x ∈ Rn

then

lim
t→∞

E[L(x(t))] ≤ k

Theorem 2.1.5 can be considered as a stochastic analog of the deterministic

uniform ultimate boundedness theorem of Theorem 2.1.2. Here the ultimate bound

is not on the sample path, but merely on the expectation of some nonnegative

function of the process, sometimes referred to as a generalized moment bound.
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2.1.4.1 LTI State Observer Example

This section demonstrates the utility of stochastic Lyapunov theory for the LTI

state observer. First the mathematical model of the system is presented. Then the

optimal filter gain is found using classical analysis. Finally, stochastic Lyapunov

analysis is applied to optimize the gain; the result from the stochastic Lyapunov

analysis is compared to the result from the classical approach.

Consider the Linear Time-Invariant (LTI) system

ẋ(t) = Ax(t) +Dnd(t)

y(t) = Cx(t) +Mnm(t) (2.29)

where x(t) is the system state evaluated at time t, A is a matrix such that Ax(t) de-

scribes the homogeneous dynamics of the system, and the disturbance noise nd(·) is

a zero mean unit variance Gaussian white noise process with E
[
Dnd(t)n

T
d (τ)DT

]
=

DDT δ(t− τ) where δ(t− τ) is the Dirac delta function. Measurements y(t) of the

state are assumed to be continuously available where the measurement matrix C

describes the extent to which each component of the state is included in each com-

ponent of the measurement, while the measurement noise nm(·) is a zero mean unit

variance Gaussian white noise process with E
[
Mnm(t)nTm(τ)MT

]
= MMT δ(t− τ).

The disturbance noise and measurement noise are assumed to be independent,

E
[
nd(t)n

T
m(τ)

]
= 0. Further assume the usual conditions, that the pair (A,C)

is detectable, the pair (A,D) is stabilizable, that MMT is positive definite, and

that DDT is positive definite.
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A fixed structure LTI state observer for the system of Equation 2.29 is given

as

˙̂x(t) = Ax̂(t) + L (y(t)− ŷ(t))

= Ax̂(t) + L (y(t)− Cx̂(t))

where x̂(t) is the observer estimate of the state x(t) at time t and the matrix L is

a gain matrix.

Defining the filter error as x̃(t) = x(t)−x̂(t) yields the observer error dynamics

˙̃x(t) = ẋ(t)− ˙̂x(t)

= (A− LC)x̃(t) +Dnd(t)− LMnm(t)

= F x̃(t) +

[
D −LM

]nd(t)
nm(t)


= F x̃(t) +Gn(t) (2.30)

where by inspection F = A− LC, G =

[
D −LM

]
, and n(t) =

nd(t)
nm(t)

.

Denote the estimate error covariance matrix as P (t) = E
[
x̃(t)x̃T (t)

]
. The

design goal is to choose the gain matrix L to minimize the trace of the steady state

estimate error covariance matrix Ps = limt→∞ P (t).

The classic approach to this problem is to solve the covariance matrix evolution

equation in the infinite time limit. Specifically, for the LTI system of Equation 2.30

the time derivative of the covariance matrix P (t) can be found by differentiating

the expectation integral (including differentiating the expectation integral limits)
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resulting in

Ṗ (t) = FP (t) + P (t)F T +GGT (2.31)

If L is chosen such that F = A − LC is Hurwitz, then limt→∞ Ṗ (t) = 0 and there

exists a unique symmetric positive definite matrix Ps = limt→∞ P (t) that solves

FPs + PsF
T = −GGT (2.32)

which is in the form of a stability Lyapunov equation. This specific stability Lya-

punov equation is sometimes called a covariance Lyapunov equation.

So in the classical analysis the design goal of minimizing tr
{
Ps

}
is subject

to the constraint given in Equation 2.32, which can be adjoined via the Lagrange

multiplier matrix Z to formulate the cost function

J = tr

{
Ps + Z

(
FPs + PsF

T +GGT
)}

= tr

{
Ps + Z

(
(A− LC)Ps + Ps(A− LC)T +DDT + LMMTLT

)}
To minimize the cost function with respect to the filter gain L, impose the

extremal conditions. The first is

0 =
∂J

∂Ps
= I + ZF + F TZ (2.33)

which is another stability Lyapunov equation. Since by assumption L was chosen

such that F = A − LC is Hurwitz, the stability Lyapunov equation guarantees

the Lagrange multiplier matrix Z is symmetric and positive definite. The second

extremal condition is

0 =
∂J

∂L
= −ZPsCT − ZTPsC

T + ZTLMMT + ZLMMT

= 2Z(LMMT − PsCT )
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which must hold for all possible Z. Solving yields

L = PsC
T (MMT )−1 (2.34)

which is the steady-state LTI Kalman filter gain. Further, substituting the optimal

gain back into Equation 2.32 yields the Continuous Algebraic Riccati Equation

(CARE)

0 = FPs + PsF
T +GGT

= (A− LC)Ps + Ps(A− LC)T +DDT + LMMTLT

= APs + PsA
T +DDT − PsCT (MMT )−1CPs

The classical analysis approach required the derivation of the time evolution

equation for the covariance matrix, given in Equation 2.31. In the LTI case with

F = A−LC Hurwitz the system is known to be weakly stochastically stable and the

covariance evolution equation simplified to the covariance Lyapunov Equation 2.32.

For general Itô SDEs, determination of weak stochastic stability is more involved and

the time evolution of the covariance matrix may not be given as a simple matrix

differential equation that is a function of the covariance matrix. For general Itô

SDEs, the time evolution of the probability density function, which is given by the

Fokker-Planck PDE, can be used to find the time evolution of the covariance matrix,

but the Fokker-Planck PDE can be challenging to solve. More on this topic will be

discussed in Section 2.1.5.
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Now consider the same design goal, but utilize stochastic Lyapunov analysis.

As the diffusion matrix (noise input matrix) G of Equation 2.30 is independent of

the state, conversion to an Itô SDE trivially results in

˙̃x(t) = F x̃(t)dt+Gn(t)

= f (x̃(t)) dt+Gn(t) (2.35)

Let S be a symmetric positive definite matrix satisfying the stability Lyapunov

equation

F TS + SF = −I (2.36)

Choose the Lyapunov function V = x̃T (t)Sx̃(t). Then applying the differential

generator with respect to the Itô SDE 2.35 yields

L V =

(
∂V

∂x̃

)T
f (x̃(t)) +

1

2
tr

(
GT ∂

2V

∂x̃2
G

)
= x̃T (t)

(
F TS + SF

)
x̃(t) + tr

(
GTSG

)
= −x̃T (t)x̃(t) + tr

(
DTSD

)
+ tr

(
MTLTSLM

)
thus application of the Zakai Stability Theorem 2.1.4 shows the system is weakly

stochastically stable. Further, Zakai Ultimate Moment Bound Theorem 2.1.5 implies

lim
t→∞

E
[
x̃T (t)x̃(t)

]
= tr

(
GTSG

)
= tr

(
DTSD

)
+ tr

(
MTLTSLM

)
(2.37)

where limt→∞E
[
x̃T (t)x̃(t)

]
= tr

{
Ps

}
is the design objective to be minimized. As

in the classical analysis approach, a constraint was used that must be adjoined to
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the cost function for minimization

J = tr
{
GTSG+ Z

(
FS + SF T + I

)}
= tr

{
DTSD

}
+ tr

{
MTLTSLM

}
+ tr

{
Z
(
(A− LC)S + S(A− LC)T + I

)}
where again Z is a Lagrange multiplier matrix. Note that in contrast to the clas-

sical analysis approach where the adjoined constraint was the covariance Lyapunov

Equation 2.32, here the constraint to be adjoined is merely the stability Lyapunov

Equation 2.36.

To minimize the cost function with respect to the filter gain L, impose the

extremal conditions. The first is

0 =
∂J

∂S
= FZ + ZF T +GGT

= (A− LC)Z + Z(A− LC)T +DDT + LMMTLT (2.38)

which recovers the covariance Lyapunov Equation 2.32 when Z = Ps.

The second extremal condition is

0 =
∂J

∂L
= 2S

(
LMMT − ZCT

)
which must hold for all S. Solving for L and using Z = Ps yields L = PsC

T
(
MMT

)−1

which exactly matches the result from the classical analysis technique. Further, sub-

stituting the optimal result into the extremal constraint of Equation 2.38 recovers

the CARE.

Both the classical analysis and the stochastic Lyapunov analysis produced the

same optimal LTI filter gain, which is the steady state Kalman filter gain. The

classical analysis required L to be such that F = A − LC was Hurwitz in order
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to use the covariance Lyapunov Equation as a constraint in the optimization. In

the stochastic Lyapunov analysis approach, the requirement that L be such that

F = A − LC was Hurwitz was the only condition needed to proceed with the

Lyapunov analysis; the covariance Lyapunov equation was recovered as a result

from the extremal condition during optimization. Note further that the stochastic

Lyapunov analysis approach provided a single framework to assess weak stochastic

stability as well as find the stationary statistic limt→∞E
[
x̃T (t)x̃(t)

]
= tr

(
GTSG

)
.

Finally, the stochastic Lyapunov analysis approach is applicable to nonlinear Itô

SDEs. Since the stochastic Lyapunov analysis approach was able to find the Kalman

filter gain for the LTI observer, this thesis will explore if the stochastic Lyapunov

analysis tools can be used to find optimal “Kalman filter like” optimality results for

the nonlinear attitude observer and gyro bias observer.
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2.1.4.2 Stochastic Logistic Population Model Example

Consider again the stochastic logistic population model developed at the end

of Section 2.1.3. The Zakai Lyapunov-like analysis techniques allow for the determi-

nation of stability of the model, as well as provide a means to bound ultimate statis-

tics. Since the Zakai Lyapunov-like theorems are written for Itô SDEs, the following

theorem will be applied to the Itô SDE 2.23 that corresponds to the Stratonovich

SDE 2.22. The application of stochastic Lyapunov theory to the stochastic logistic

population model appears to be unreported in the literature.

Theorem 2.1.6. The stochastic logistic population model SDE 2.23 is weakly stochas-

tically stable.

Proof. Choose as a Lyapunov function V (x(t)) = 1
2
x2(t). Then

L V (x(t)) = − r
k
x3(t) + (r + σ2)x2(t) (2.39)

< 0 ∀ x(t) >
k

r
(r + σ2)

Weak stochastic stability follows from application of Theorem 2.1.4.

Corollary 2.1.6.1. The stochastic logistic population model SDE 2.23 has the ulti-

mate first moment bound

lim
t→∞

E[x(t)] ≤ k +
kσ2

r
(2.40)

Proof. Consider again the differential generator applied to the Lyapunov function

V (x(t)) = 1
2
x2(t) in Equation 2.39. If one could find L V ≤ −p1x(t) + p0 for
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constant p0 and positive constant p1, then Theorem 2.1.5 could be used to deduce

limt→∞E[x(t)] ≤ p0
p1

. Thus the problem has been reduced to finding constants p1 > 0

and p0 such that e(x(t)) ≥ 0 where

0 ≤ e(x(t)) = −p1x(t) + p0 −L V (x(t))

= −p1x(t) + p0 +
r

k
x3(t)− (r + σ2)x2(t) x(t) ≥ 0 ∀ t > t0 (2.41)

Lasserre [50, Thm. 2.5,p. 20] provides the sum of squares (S.O.S.) result (for

a polynomial of degree 3) that e(x) ≥ 0 ∀x ≥ 0 iff it can be written as

e(x) =

[
1 x

]u11 u12

u12 u22


1

x

+ x

[
1 x

]w11 w12

w12 w22


1

x



=

[
1 x

]
U

1

x

+ x

[
1 x

]
W

1

x

 (2.42)

with U,W symmetric and positive semidefinite.

Equating the two expressions from Equation 2.41 and Equation 2.42 for e(t)

lead to

w22 =
r

k
u22 + 2w12 = −(r + σ2) w11 + 2u12 = −p1 u11 = p0

Of course U is symmetric and positive semidefinite if and only if

u11 ≥ 0 u22 ≥ 0 u11u22 − u2
12 ≥ 0

Similarly, W is symmetric and positive semidefinite if and only if

w11 ≥ 0 w22 ≥ 0 w11w22 − w2
12 ≥ 0

Observe that actually w22 > 0 since w22 = r
k

and r, k > 0.
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Combining the constraints p1 > 0, −p11 = w11 + 2u12, and w11 ≥ 0 leads to

the requirement

u12 <
−w11

2

so choose

u12 =
−φw11

2

where φ > 1 is to be determined.

Combining the constraints w11w22 − w2
12 ≥ 0, u22 + 2w12 = −(r + σ2), and

w22 = r
k

leads to the requirement

w11 ≥

(
u22 + (r + σ2)

)2

4 r
k

so choose

w11 =
γ
(
u22 + (r + σ2)

)2

4 r
k

where γ ≥ 1 is to be determined.

Finally, combining the constraints u11u22 − u2
12 ≥ 0 and u11 = p0, and noting

that u22 ≥ 0 by requirement, leads to the combined requirement

p0 ≥
u2

12

u22

so choose

p0 =
ψu2

12

u22

where ψ ≥ 1 is to be determined.

Solving for p0 in terms of u22, φ, γ, and ψ results in

p0 =
ψφ2γ2

(
u22 + (r + σ2)

)4

64 r
2

k2
u22
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Similarly, solving for p1 yields

p1 =
γ(φ− 1)

(
u22 + (r + σ2)

)2

4 r
k

By construction, if u22 > 0, φ > 0, ψ ≥ 1, and γ ≥ 1 then U and W will

be symmetric and positive semidefinite. This in turn implies, by Lasserre [50,

Thm. 2.5,p. 20], that e(x) ≥ 0 ∀x ≥ 0. Thus by Zakai’s ultimate moment bound

theorem of Theorem 2.1.5

lim
t→∞

E[x(t)] ≤ p0

p1

=
ψγ

16 r
k

φ2

φ− 1

(
u22 + (r + σ2)

)2

u22

= M(u22, φ, ψ, γ)

where u22 > 0, φ > 0, ψ ≥ 1, and γ ≥ 1.

Now minimize the parameterized bound M(u22, φ, ψ, γ) over the valid domain

of the parameters. Obviously choose ψ = γ = 1 to minimize M . Taking the partial

derivative with respect to φ reveals

∂M

∂φ
=

ψγ

16 r
k

(
u22 + (r + σ2)

)2

u22

φ(φ− 2)

(φ− 1)2

The critical point φ = 2 minimizesM with respect to φ. Taking the partial derivative

with respect to u22 yields

∂M

∂u22

=
ψγ

16 r
k

φ2

φ− 1

u2
22 − (r + σ2)2

u22

The critical point u22 = r + σ2 minimizes M with respect to u22.

Substituting the minimizers into the bound M(u22, φ, ψ, γ) results in the op-

timal stochastic Lyapunov bound, given the choice of Lyapunov function used and

SOS bounding technique employed, as

lim
t→∞

E[x(t)] ≤ k +
k

r
σ2
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Corollary 2.1.6.2. The stochastic logistic population model SDE 2.23 has the ulti-

mate noncentral second moment bound

lim
t→∞

E[x2(t)] ≤ k2 +
2k2σ2

r
+
σ4k2

r2
(2.43)

Proof. Consider again the differential generator applied to the Lyapunov function

V (x(t)) = 1
2
x2(t) in Equation 2.39. If one could find L V ≤ −s2x

2(t) + s0 for

constant s0 and positive constant s1, then Theorem 2.1.5 could be used to deduce

limt→∞E[x2(t)] ≤ s0
s2

. Thus the problem has been reduced to finding constants

s2 > 0 and s0 such that e(x(t)) ≥ 0 where

0 ≤ e(x(t)) = −s2x
2(t) + s0 −L V (x(t))

= −s2x
2(t) + s0 +

r

k
x3(t)− (r + σ2)x2(t) x(t) ≥ 0 ∀ t > t0 (2.44)

Again utilize the theorem from Lasserre [50, Thm. 2.5,p. 20] that the sum of

squares (S.O.S.) result (for a polynomial of degree 3) that e(x) ≥ 0 ∀x ≥ 0 if and

only if it can be written in the form of Equation 2.42 with U,W symmetric and

positive semidefinite. Equating the two expressions for e(t) from Equation 2.42 and

Equation 2.44 lead to

w22 =
r

k
u22 + 2w12 = −

(
s2 + (r + σ2)

)
w11 + 2u12 = 0 u11 = s0

As before, U is symmetric and positive semidefinite if and only if

u11 ≥ 0 u22 ≥ 0 u11u22 − u2
12 ≥ 0
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and W is symmetric and positive semidefinite if and only if

w11 ≥ 0 w22 ≥ 0 w11w22 − w2
12 ≥ 0

where in fact w22 ≥ 0 is immediately satisfied since w22 > 0 as w22 = r
k

and r, k > 0.

Combining the constraints u22 + 2w12 = −
(
s2 + (r+ σ2)

)
and s2 > 0 leads to

the requirement

w12 <
−
(
u22 + (r + σ2)

)
2

so choose

w12 =
−γ
(
u22 + (r + σ2)

)
2

where γ > 1 is to be determined.

The constraint w11w22−w2
12 ≥ 0, combined with the fact w22 = r

k
> 0, implies

the requirement

w11 ≥
w2

12

w22

so choose

w11 =
φw2

12

w22

where φ ≥ 1 is to be determined.

Impose the constraint u22 > 0; this combined with the constraint u11u22 −

u2
12 ≥ 0 implies the requirement

u11 ≥
u2

12

u22

so choose

u11 =
ψu2

12

u22

where ψ ≥ 1 is to be determined.
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Solving for s0 in terms of u22, φ, γ, and ψ results in

s0 =
ψφ2γ4

(
u22 + (r + σ2)

)4

64u22
r2

k2

Similarly, solving for s2 yields

s2 = (γ − 1)
(
u22 + (r + σ2)

)
By construction, if u22 > 0, γ > 1, φ ≥ 1, and ψ ≥ 1 then U and W

will be symmetric and positive semidefinite. This in turn implies, by Lasserre [50,

Thm. 2.5,p. 20], that e(x) ≥ 0 ∀x ≥ 0. Thus by Zakai’s ultimate moment bound

theorem of Theorem 2.1.5

lim
t→∞

E[x(t)] ≤ s0

s2

=
ψφ2

64 r
2

k2

(
u22 + (r + σ2)

)3

u22

γ4

γ − 1
= M(u22, φ, ψ, γ) (2.45)

where u22 > 0, γ > 1, φ ≥ 1, and ψ ≥ 1.

Now minimize the parameterized bound M(u22, φ, ψ, γ) over the valid domain

of the parameters. Obviously choose ψ = φ = 1 to minimize M . Taking the

derivative with respect to u22 yields

∂M

∂u22

=
ψφ2

64 r
2

k2

γ4

γ − 1

2u3
22 + 3(r + σ2)u2

22 − (r + σ2)3

u2
22

The critical point u22 = 1
2
(r + σ2) minimizes M with respect to u22. Taking the

derivative with respect to γ results in

∂M

∂γ
=
ψφ2

64 r
2

k2

(
u22 + (r + σ2)

)3

u22

γ3(3γ − 4)

(γ − 1)2

The critical point γ = 4
3

minimizes M with respect to γ.
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Substituting the minimizers into the bound M(u22, φ, ψ, γ) results in the op-

timal stochastic Lyapunov bound, given the choice of Lyapunov function used and

SOS bounding technique employed, as

lim
t→∞

E[x2(t)] ≤ k2 +
2k2σ2

r
+
σ4k2

r2

Note that the choice of the form of the bound L V ≤ −p1x(t) + p0 may not

result in the least upper bound for limt→∞E[x(t)]; this choice may introduce some

conservatism. Likewise, the choice of the form of the bound L V ≤ −p1x(t)+p0 may

not result in the least upper bound for limt→∞E[x2(t)]. Of course, the Theorem

2.1.5 makes no claim to provide the least upper bound on the ultimate moment

limt→∞E[L(x(t))].

In this thesis, many of the stochastic Lyapunov moment bounds will prove to

be conservative compared to other analysis techniques considered in the next section

and numerical simulation results. On the other hand, for some systems considered

in this thesis stochastic Lyapunov theory is the only analysis technique that has yet

yielded tractable rigorous performance bounds; a conservative performance bound

is more informative than no bound at all.
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2.1.5 Stationary Fokker-Planck Analysis

Provided the drift and diffusion coefficients are respectively once and twice con-

tinuously differentiable, the process described by any Itô SDE of the form SDE 2.14

may also be described by the time evolution of its (joint) probability density func-

tion (pdf) notated p(x(t), t). The time evolution of a stochastic process’s pdf is

described by the Fokker-Planck equation, also known as the forward Kolmogorov

equation, a second order paraboloic partial differential equation (PDE). The PDE

associated with SDE 2.14 is

∂

∂t
p(x(t), t) = −

∑
i

∂

∂xi
[fi(x(t))p(x(t), t)]

+
1

2

∑
i

∑
j

∂2

∂xi∂xj

[{
G(x(t))GT (x(t))

}
ij
p(x(t), t)

]
(2.46)

where fi(x(t)) is the ith element of f(x(t)) and
{
G(x(t))GT (x(t))

}
ij

is the element

in the ith row and the jth column of the matrix G(x(t))GT (x(t)).

The Fokker-Planck PDE can be very challenging to solve even for very simple

systems. However, if one can establish that a process is weakly stochastically stable,

such as by using Theorem 2.1.4, then there exists a stationary pdf ps(x) such that

lim
t→∞

p(x(t), t) = ps(x) (2.47)

where the stationary pdf satisfies the stationary Fokker-Planck PDE

0 = −
∑
i

∂

∂xi
[fi(x)ps(x)] +

1

2

∑
i

∑
j

∂2

∂xi∂xj

[{
G(x)GT (x)

}
ij
ps(x)

]
(2.48)

which is a simpler second order elliptic PDE. If the system is one-dimensional, the

stationary Fokker-Planck PDE reduces to a second order ODE.

58



Even the stationary Fokker-Planck PDE can be challenging to solve. If a so-

lution ps(x) can be found, however, it can be used to compute any (instantaneous)

ultimate moment of the underlying process. Once again the stochastic logistic pop-

ulation model of SDE 2.23 will be used as an example.

Theorem 2.1.7. The stationary Fokker-Planck PDE associated with the stochastic

logistic population model described by SDE 2.23 is solved by a Gamma distribution

ps(x) =
1

Γ(α)θα
xα−1e−

x
θ (2.49)

with shape parameter α = 2r
σ2 and scale parameter θ = kσ2

2r
. The ultimate distribution

has the following ultimate moments

lim
t→∞

E[x(t)] = k (2.50)

lim
t→∞

V ar[x(t)] =
k2σ2

2r
(2.51)

Comparing the ultimate mean of Equation 2.50 from the stationary Fokker-

Planck analysis with the ultimate mean bound of Equation 2.40 from the stochastic

Lyapunov analysis demonstrates that while the Lyapunov analysis did provide a

valid bound, there is indeed conservatism in the bound. Similarly, the ultimate

variance of Equation 2.51 from the stationary Fokker-Planck analysis can be consid-

erably less than the ultimate variance bound of Equation 2.43 from the stochastic

Lyapunov analysis. However, as will be seen for many systems under consideration

in this thesis, stochastic Lyapunov bounds are readily obtainable for some systems

while solutions to the stationary Fokker-Planck equation may remain unknown.
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The proof follows almost directly from [54], however the proof in [54] is for

the Itô interpretation of the logistic population model of SDE 2.24 resulting in a

slightly different Gamma distribution with

lim
t→∞

E[x(t)] = k
2r − σ2

2r

lim
t→∞

V ar[x(t)] =
k2σ2

2r

2r − σ2

2r
(2.52)

Note that these ultimate moments from [54] can be nonphysical as the ultimate

mean can be negative if σ2 > 2r, but the solution x(t) to the SDE 2.24 is non-

negative. Additionally, the ultimate variance from [54] can be negative if σ2 > 2r,

a violation of the definition of variance. These insights provide further evidence

that the Stratonovich interpretation of the Langevin form differential equation is

more physically meaningful. As the proof provides an demonstration of a stationary

Fokker-Planck analysis and differs from [54], it is included below.

Proof. Noting that the system described by SDE 2.23 was shown to be weakly

stochastically stable in Theorem 2.1.6, there exists an ultimate probability density

function (stationary PDF) ps(x) such that

lim
t→∞

p(x(t), t) = ps(x)

where p(x(t), t) is the (nonstationary) pdf of the process. Furthermore, weak stochas-

tic stability implies ps(x) solves the stationary Fokker-Planck PDE 2.46 which in

the single dimension case reduces to

0 = − ∂

∂x
(f(x)ps(x)) +

1

2

∂2

∂x2

(
G2(x)ps(x)

)
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where f(x) = rx
(

1− x
k

+ σ2

2r

)
and G(x) = σx.

Integrating the stationary Fokker-Planck equation once yields

c = −f(x)ps(x) +
1

2

∂

∂x

(
G2(x)ps(x)

)
where c is a constant of integration. Since ps(x) is a pdf, it obeys the normalization

constraint
∫∞
−∞ ps(x)dx = 1. The normalization constraint implies that ps(x) → 0

as x→∞, which in turn implies c = 0. Thus

f(x)ps(x) =
1

2

∂

∂x

(
G2(x)ps(x)

)
Substituting in the expressions for f(x), G(x), taking the partial derivative, and

rearranging to separate variables yields

dps
ps

=

(
2r − σ2

σ2

1

x
− 2r

kσ2

)
dx

Integrating yields

ln(ps(x)) =
2r − σ2

σ2
ln(x)− 2r

kσ2
x+ c2

where c2 is another constant of integration. Exponentiating yields

ps(x) = c3x
2r−σ2
σ2 e

− 2r
kσ2

x

where c3 = ec2 . By choosing α = 2r
σ2 , θ = kσ2

2r
, and c3 = 1

Γ(α)θα
the stationary PDF

can be rewritten as

ps(x) =
1

Γ(α)θα
xα−1e−

x
θ

which is a Gamma distribution with shape parameter α and scale parameter θ.
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The mean of the Gamma distribution is given by αθ, so

lim
t→∞

E[x(t)] =

∫ ∞
0

xps(x)dx = αθ = k

Similarly, the variance of the Gamma distribution is given by αθ2, resulting in

lim
t→∞

V ar[x(t)] = αθ2 =
k2σ2

2r

The key descriptions associated with the stochastic logistic population model

are collected in Figure 2.2. Note carefully that the two interpretations of the

Langevin form differential equation lead to distinct stochastic processes. The two

stochastic processes may each be described by an Itô SDE, a Stratonovich SDE,

or a Fokker-Planck PDE. For the stochastic logistic population model, stochastic

Lyapunov analysis was able to establish weak stochastic stability and provide ul-

timate bounds on the mean and variance of the process(es), though these bounds

are conservative. A stationary Fokker-Planck analysis led to the analytic stationary

probability density function which was used to calculate the precise ultimate mean

and variance of the process(es). The values differ for the different processes.
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Figure 2.2: SDEs and PDEs associated with the two interpretations of the Langevin form

differential equation for the stochastic logistic population model.
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2.2 Numerical Integration of Nonlinear SDEs

Numerical simulation can be used to validate analytical results from a stochas-

tic Lyapunov analysis or stationary Fokker-Planck analysis. In this context, the

numerical integration of an SDE for a given noise realization is a simulation of the

stochastic process. By repeating the simulation many times with distinct noise re-

alizations (by, for example, changing the seed of the random number generator),

one can perform a Monte Carlo analysis. Statistics over the ensemble of simulation

realizations can then be compared to analytical predictions.

This section briefly reviews several numerical integration techniques to inte-

grate a general multidimensional nonlinear Itô stochastic differential equation 2.14

repeated here for convenience:

dx(t) = f(x(t))dt+G(x(t))dβ(t) (2.53)

with the initial condition x(ta) = xa over a time interval ta ≤ t ≤ tb. All the

numerical integration techniques that are considered in this section are fixed step,

meaning the time interval ta ≤ t ≤ tb is divided into a regular partition

{
t0, t1, t2, . . . , ti, . . . , tN

}
=
{
ta, ta + ∆t, ta + 2∆t, . . . , ta + i∆t, . . . , ta +N∆t

}
(2.54)

with time increments ∆t = ti−ti−1

N
and tN = tb.

The section concludes with a comparison of the performance of the techniques

using the logistic population SDE of Equation 2.23.
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2.2.1 Runge-Kutta fixed-step Integration Scheme

The fixed-step 4th order Runge-Kutta numerical integration scheme, often re-

ferred to as simply the Runge-Kutta numerical integration algorithm, is widely used

and works well for many ordinary differential equations (ODEs). For the determin-

istic multivariate ODE

ẋ(t) = h(x(t), t) x(t0) = x0 (2.55)

the fixed-step 4th order Runge-Kutta numerical integration scheme approximates

the solution x(ti) with yi using the recursive rule

yi+1 = yi +
∆t

6
(k1 + 2k2 + 2k3 + k4) (2.56)

where

k1 = h(ti,yi)

k2 = h

(
yi +

∆t

2
k1, ti +

∆t

2

)
k3 = h

(
yi +

∆t

2
k2, ti +

∆t

2

)
k4 = h(ti + ∆t,yi + ∆tk3)

and ya = x(ta). The algorithm gets its name as it is a 4th order method, meaning

that yN − x(tN) = O
(
(∆t)4

)
[90].

It can be tempting to utilize the 4th order Runge-Kutta numerical integration

scheme for the numerical integration of SDEs by treating the Brownian noise incre-

ment as simply a time varying input to a deterministic ODE. This heuristic scheme

could be implemented as follows.
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First generate a standard Brownian motion process over a refined partition of

solution approximation’s time partition 2.54 by setting β(ta) = 0 and computing

values of

{
β(ta),β

(
ta +

∆t

2

)
,β(ta + ∆t),β

(
ta +

3∆t

2

)
, . . . ,β(tb)

}

according to

β

(
ti +

∆t

2

)
= β (ti) + ni

β (ti+1) = β

(
ti +

∆t

2

)
+ ni+ 1

2

where ni and ni+ 1
2

are independent identically distributed Gaussian random vari-

ables with zero mean and variance ∆tI.

One might then apply a fixed-step 4th order Runge-Kutta numerical integration

technique to the SDE 2.53 by setting y0 = xa and using the recursive rule

yi+1 = yi +
∆t

6
(k1 + 2k2 + 2k3 + k4) (2.57)

where

k1 = f (yi)

k2 = f

(
yi +

∆t

2
k1

)
+ β

(
t
i
+

∆t

2

)
− β (ti)

k3 = f

(
yi +

∆t

2
k2

)
+ β

(
ti +

∆t

2

)
− β (ti)

k4 = f (yi + ∆tk3) + β (ti + ∆t)− β (ti)

As explained in [45, p. 150] however, heuristic generalizations of Runge-Kutta

algorithms are not consistent with Itô calculus and in general their approximations yi
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do not converge to the true process x(ta+i∆t) as step size ∆t is reduced. As will soon

be demonstrated for a test problem, even the simple yet rigorously justified Euler-

Maruyama integration scheme outperforms this heuristic Runge-Kutta algorithm

for many systems.

2.2.2 Euler-Maruyama Integration Scheme

The Euler-Maruyama numerical integration scheme is given by the simple rule

yi+1 = yi + ∆tf (yi, ti) +G (yi, ti)ni (2.58)

where ni is a collection of independent identically distributed Gaussian random

variables with zero mean and variance matrix ∆tI. The scheme works directly for

nonautonomous SDEs [45].

This scheme has strong convergence of order 0.5, meaning there exists a posi-

tive constant c1 such that for all i

E
[∣∣x(ti)− yi

∣∣] ≤ c1 (∆t)0.5 (2.59)

where ti = t0+i∆t. In words, this quantifies the rate of convergence of the numerical

approximation to the true process (also known as the rate of pathwise convergence).

Further, assuming f(·) and G(·) are sufficiently smooth, the Euler-Maruyama

scheme has weak convergence of order 1.0, meaning there exists a positive constant

c2 such that for all i

∣∣∣E[p (x(ti))
]
− E

[
p (yi)

]∣∣∣ ≤ c2 (∆t)1.0 (2.60)
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for any polynomial p(·) : Rn → R. Weak convergence is in the sense that the

numerical approximation may not exactly match the sample path of the true process,

but since the definition requires the bound to hold for any polynomial p(·) it is

implied that all moments of the numerical approximation converge to all moments

of the sample path of the true process [45, p. 128].

2.2.3 Kloeden-Platen Explicit Weak 2.0 Integration Scheme

The Kloeden-Platen Explicit Weak 2.0 [45, p. 186] integration scheme is one

of the few schemes available for obtaining higher order statistics for nonlinear au-

tonomous SDEs without requiring the computation of derivatives of the drift and

diffusion terms of the SDE. The integration rule is given by

yi+1 =yi +
1

2

(
f(Υ) + f(yi)

)
∆t

+
1

4

m∑
j=1

[(
Gj
(
rj+
)

+Gj
(
rj−
)

+ 2Gj
(
yi
))

∆wji

+
m∑

k=1,k 6=j

(
Gj
(
uk+
)

+Gj
(
uk−
)
− 2Gj

(
yi
))

∆wji
1√
∆t

]

+
1

4

m∑
j=1

[(
Gj
(
rj+
)
−Gj

(
rj−
)){ (

∆wji
)2 −∆t

}
+

m∑
k=1,k 6=j

(
Gj
(
uk+
)
−Gj

(
uk−
)){

∆wji∆w
k
i + Vk,j

}] 1√
∆t

(2.61)

where

Υ = yi + f (yi) ∆t+
m∑
j=1

Gj (yi) ∆wji

rj± = yi + f (yi) ∆t±Gj (yi)
√

∆t

uj± = yi ±Gj (yi)
√

∆t
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and m is the spatial dimension of dβ or, equivalently, the number of columns of

G(·). In the above equations, Gj (·) denotes the jth column of G (·).

At every time step i, the column matrix ∆wi = [∆w1
i ∆w2

i . . . ∆wmi ]T

consists of m independent identically distributed random variables ∆wji drawn from

a three point distribution with

P
(

∆wji =
√

3∆t
)

=
1

6
P
(

∆wji = −
√

3∆t
)

=
1

6
P
(

∆wji = 0
)

=
2

3

Also at every time step i, the Vj1,j2 are independent two point distributed

random variables with

P
(
Vj1,j2 = ∆t

)
=

1

2
P
(
Vj1,j2 = −∆t

)
=

1

2

for j2 = 1, 2, . . . , j1 − 1,

Vj1,j1 = −∆t

and

Vj1,j2 = −Vj2,j1

for j2 = j1 + 1, . . . ,m and j1 = 1, 2, . . . ,m.

While this numerical integration scheme is not strongly convergent, it has weak

convergence of order 2.0, meaning there exists a positive constant c3 such that for

all i ∣∣∣E[p (x(ti))
]
− E

[
p (yi)

]∣∣∣ ≤ c3 (∆t)2.0 (2.62)

Therefor the statistical properties of the approximation from this scheme converge

much faster to the statistical properties of the true system than the approximation

from the Euler-Maruyama integration scheme.
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2.2.4 Numerical Integration Performance Comparison

This section features a comparison of the performance of the ad hoc Runge-

Kutta 4th order scheme of Equation 2.57, the Euler-Maruyama scheme of Equation

2.58, the Kloeden-Platen Explicit Weak 2.0 scheme of Equation 2.61, and MAT-

LAB’s ode45 command using default options for the stochastic logistic population

model of SDE 2.23. The performance of these numerical integration schemes are

further compared against analytic stochastic Lyapunov bounds of Corollaries 2.1.6.1

and 2.1.6.2 and the known analytic ultimate expectations of Theorem 2.1.7. These

results provide context on performance and will provide a rationale for the selection

of the numerical methods employed in this thesis.

Specifically, 100 distinct realizations of the process were numerically simu-

lated with each of the numerical integration schemes. Each simulation realization

is computed with 1,000,000 steps with a step size of ∆t = 0.001s for a 1,000 second

simulation. The mean, variance, and second noncentral moment of the last 100

seconds are then computed. Finally, the ensemble mean for each integration scheme

is computed by averaging the means and variances of each realization for the given

integration scheme. All simulations used the parameters r = 6, k = 20, σ = 2, and

initial condition x(t0) = 5. The results are reported in Table 2.1.

First note the significant conservatism in the stochastic Lyapunov bounds

compared to the analytic values from the stationary Fokker-Planck analysis. There

is no guarantee that the bounds from a stochastic Lyapunov analysis will be “tight”,

and various choices of Lyapunov functions and bounds on the expectation of the
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Table 2.1: Comparison of the performance of the SDE numerical integration schemes

of Kloeden-Platen Explicit Weak 2.0 of Equation 2.61, the Euler-Maruyama

scheme of Equation 2.58, the fixed-step ad-hoc Runge-Kutta algorithm of Equa-

tion 2.57, and MATLAB’s ode45 utility for simulating the stochastic logistic

population model of SDE 2.23 to the stochastic Lyapunov upper bounds of

Corollaries 2.1.6.1 and 2.1.6.2 and the analytic ultimate expectations of Theo-

rem 2.1.7.

lim
t→∞

E[x(t)] lim
t→∞

V ar[x(t)] lim
t→∞

E[x2(t)]

Lyap UB 33.333 - 1111.111

Analytic Sol 20.000 133.333 533.333

Mean
sims

[
Mean
ti∈Tss

[
x(ti)

]]
Mean
sims

[
Var
ti∈Tss

[
x(ti)

]]
Mean
sims

[
Mean
ti∈Tss

[
x2(ti)

]]
Kloeden-Platen 19.979 133.307 532.921

Euler-Maruyama 20.014 133.772 534.624

Runge-Kutta 25.466 93.491 742.302

MATLAB ode45 26.635 0.471 709.878

71



stochastic derivative will yield different ultimate moment bounds.

The Kloeden-Platen Explicit Weak 2.0 scheme and the Euler-Maruyama scheme

have very similar performance and have excellent agreement with the analytic ul-

timate statistics. It is tempting to suggest the Euler-Maruyama approach over

the Kloeden-Platen scheme, but this table does not indicate the performance as

the step size ∆t is increased. In practice the Euler-Maruyama scheme is not as

numerically robust to large step sizes and rapidly diverges. When comparing the

two approaches, there is a tradeoff between the computational complexity of the

Kloeden-Platen scheme and the worse step size robustness of the Euler-Maruyama

scheme. It is common to require step sizes that are several orders of magnitude

smaller for the Euler-Maruyama scheme to remain numerically stable compared to

the Kloeden-Platen scheme.

Finally, observe the poor performance of the ad hoc Runge-Kutta scheme

of Equation 2.57 and MATLAB’s ode45 utility. These algorithms did manage to

produce estimates of the stationary mean that were within 30% of the analytic

expectation, but that is far worse than the SDE numerical integrators’ performances.

The Runge-Kutta algorithms were off dramatically for the stationary variance, a 2nd

order statistic. The ad hoc Runge-Kutta’s stationary variance estimate was off by

50% while MATLAB’s ode45 was off by several orders of magnitude.

Throughout the remainder of this thesis, any simulation results are the prod-

uct of a C implementation of the Kloeden-Platen Explicit Weak 2.0 integration

scheme. The implementation utilizes the GNU scientific library (GSL [2]) which has

optimized basic linear algebra routines (through BLAS [1] and LAPACK [3]). Data
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is output to .mat files using the matio library [4]. All simulations were validated via

comparison with MATLAB implementations of both the Kloeden-Platen Explicit

Weak 2.0 and the Euler-Maruyama schemes.
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2.3 Attitude Kinematics Overview

This section reviews basic spacecraft attitude kinematics. The presentation

begins with rotational motion in three spatial dimensions, referred to as the SO(3)

case, which is fundamental to the mathematical description of the systems con-

sidered in this thesis. Then the SO(2) case is discussed, in which motion will be

restricted to a single spin axis.

2.3.1 Attitude Kinematics in SO(3)

The attitude of a rigid body can be represented by a unit quaternion q, con-

sisting of a unit vector a known as the Euler axis and a rotation φ about that axis,

which is such that

q =

a sin
(
φ
2

)
cos
(
φ
2

)
 =

ε
η

 =



εx

εy

εz

η


(2.63)

It is typical in spacecraft attitude applications for the quaternion q to represent the

orientation of the spacecraft’s body-fixed reference frame relative to an inertially-

fixed reference frame. Specifically, the unit quaternion q parameterizes the attitude

rotation matrix via

R (q) =
(
η2 − εTε

)
I − 2η [ε×] + 2εεT

= η2I − 2η [ε×] + εεT + [ε×] [ε×] (2.64)
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where I is the identity matrix and the skew-symmetric cross product matrix is given

as

[ε×] =


0 −εz εy

εz 0 −εx

−εy εx 0


The inverse relationship, which is rather more involved, is given in [65]. The attitude

rotation matrix R (q) is such that a vector expressed in inertial frame coordinates

vn and the same vector in body frame coordinates vb are related via vb = R (q)vn.

While the space of unit quaternions is a global non-singular covering of the space of

rotations in SO(3), there is a well known 2-to-1 mapping between unit quaternions

and rotations. Specifically, R (q) = R (−q). Note that the identity rotation matrix

is parameterized by q
Identity

= [0 0 0 ± 1]T which is called the identity quaternion.

The quaternion inverse, given by

q−1 =

−ε
η

 (2.65)

is such that

R (q)R
(
q−1
)

= R (q)R−1 (q) = I = R−1 (q)R (q) = R
(
q−1
)
R (q)

For any two quaternions q1 and q2, the quaternion product operation is defined
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[66] as

q1 ⊗ q2 =

ε1

η1

⊗
ε2

η2



=

η2ε1 + η1ε2 + ε1 × ε2

η1η2 − ε
T

1 ε2

 =

η1I +
[
ε1 ×

]
ε1

−εT1 η1


ε2

η2

 (2.66)

Note that this quaternion product is adopted from [51, 66] where the quaternions

are multiplied in the same order as rotation matrix multiplication; this definition

is in contrast to the original quaternion product established by Hamilton [30]. The

quaternion product may be used to compute the relative orientation q̃ between the

coordinate frames represented by q and q̂

q̃ =

ε̃
η̃

 = q ⊗ q̂−1 =

ε
η

⊗
−ε̂
η̂


The quaternion product operation is not restricted to unit quaternions [66].

It will frequently be used to compute the product between angular rate vectors and

quaternions:

ω ⊗ q =

ω
0

⊗ q =

ω
0

⊗
ε
η

 =

ηω − ω × ε
−ωT

ε



and similarly q⊗ω = q⊗

ω
0

. The quaternion product is also useful for changing

the coordinate frame of expression for a vector:vb
0

 =

R (q)vn

0

 = q ⊗

vn
0

⊗ q−1 = q ⊗ vn ⊗ q−1
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Orientation kinematics, such as that of a rigid body spacecraft, are known [103]

to obey

q̇(t) =
1

2
ω(t)⊗ q(t) =

1
2
η(t)ω(t)− 1

2
ω(t)× ε(t)

−1
2
ω
T
(t)ε(t)



=

1
2

{
η(t)I +

[
ε(t)×

]}
−1

2
εT (t)

ω(t) =

−1
2

[
ω(t)×

]
1
2
ω(t)

−1
2
ωT (t) 0

 q(t) (2.67)

where ω(t) is the body’s angular rate expressed in body frame coordinates.

This thesis will consider several attitude estimation observers and filters. These

algorithms will utilize estimates q̂(t) of the true attitude q(t) which are driven by

their own kinematic relationship

˙̂q(t) =
1

2
ω̂(t)⊗ q̂(t) (2.68)

Noting that q̂(t)⊗ q̂−1(t) = q
Identity

∀t, one can take the derivative to find

0 = ˙̂q(t)⊗ q̂−1(t) + q̂(t)⊗ d

dt

(
q̂−1(t)

)
which can be rearranged to solve for d

dt
(q̂−1(t))

d

dt

(
q̂−1(t)

)
= −q̂−1(t)⊗ ˙̂q(t)⊗ q̂−1(t)

= −1

2
q̂−1(t)⊗ ω̂(t) (2.69)

The attitude observer or filter error, denoted q̃(t), is computed as

q̃(t) = q(t)⊗ q̂−1(t) (2.70)
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The error kinematics are then given by

˙̃q(t) = q̇(t)⊗ q̂−1(t) + q(t)⊗ d

dt

(
q̂−1(t)

)
=

1

2
ω(t)⊗ q(t)⊗ q̂−1(t)− 1

2
q(t)⊗ q̂−1(t)⊗ ω̂(t)

=
1

2
ω(t)⊗ q̃(t)− 1

2
q̃(t)⊗ ω̂(t)⊗ q̃−1(t)⊗ q̃(t)

=
1

2
ω(t)⊗ q̃(t)− 1

2

{
R
(
q̃(t)

)
ω̂(t)

}
⊗ q̃(t)

=
1

2

{
ω(t)−R

(
q̃(t)

)
ω̂(t)

}
⊗ q̃(t) (2.71)

As shown in [31], orientation kinematics may also be expressed directly in

the Euler axis and angle parameterization, providing an alternative (yet equivalent)

formulation to Equation 2.67. Recalling from Equation 2.63 that the Euler axis is

denoted a(t) and the Euler angle is φ(t), the kinematics may be written as

ȧ(t) =
1

2

[[
a(t)×

]
− cot

(
φ(t)

2

)[
a(t)×

][
a(t)×

]]
ω(t)

φ̇(t) = aT (t)ω(t) (2.72)

78



2.3.2 Attitude Kinematics in SO(2)

Many of the analyses in this thesis will be restricted to rotational motion about

a single axis. Without loss of generality, the attitude of a single axis rigid body can

be parameterized via the quaternion

q =



sin
(
φ
2

)
0

0

cos
(
φ
2

)


=



ε

0

0

η


which is simply Equation 2.63 with the y and z components zeroed out. Similarly,

other multidimensional quantities will be restricted as

q̂ =



ε̂

0

0

η̂


ω =


ω

0

0

 ω̂ =


ω̂

0

0



and so on. Note that as a consequence

q̃ =



ε̃

0

0

η̃


q̇(t) =



ε̇(t)

0

0

η̇(t)


˙̂q(t) =



˙̂ε(t)

0

0

˙̂η(t)


˙̃q(t) =



˙̃ε(t)

0

0

˙̃η(t)
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where the fact that, for any SO(2) quaternion q = [ ε 0 0 η ]
T
, that

R (q) =


1 0 0

0 η2 − ε2 2ηε

0 −2ηε η2 − ε2


was used.

Since by construction the y and z elements of every SO(2) unit quaternion will

always be zero, SO(2) unit quaternions will be written as simply

q =

sin
(
φ
2

)
cos
(
φ
2

)
 =

ε
η


For any two SO(2) quaternions q1 and q2 , the quaternion product operation

of Equation 2.66 simplifies to

q1 ⊗ q2 =

ε1
η1

⊗
ε2
η2

 =

η2ε1 + η1ε2

η1η2 − ε1ε2


Similarly, the quaternion kinematics of Equation 2.67 simplify in SO(2) to

q̇(t) =
1

2
ω(t)⊗ q(t) =

 1
2
η(t)ω(t)

−1
2
ε(t)ω(t)


and the filter error dynamics of Equation 2.71 simplify in SO(2) to

˙̃q(t) =
1

2

{
ω(t)− ω̂(t)

}
⊗ q̃(t) (2.73)

In SO(2), the Euler axis and angle parameterization of the spacecraft kine-

matics of Equation 2.72 simplifies considerably to

ȧ(t) = 0

φ̇(t) = ω(t)
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where, without loss of generality, the Euler axis is assumed to be a(t) = 1 ∀t.
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2.4 A Class of Nonlinear Attitude Observers

Salcudean [80] introduced a nonlinear observer for rigid body attitude and

angular rate; using deterministic Lyapunov stability theory the observer was shown

to eventually converge exponentially fast. The observer is given by

˙̂q(t) =
1

2
ω̂(t)⊗ q̂(t)

=
1

2

[
R
(
q̃−1(t)

) (
ωmeas(t) + k sign

(
η̃(t)

)
ε̃(t)

)]
⊗ q̂(t) (2.74)

where 0 < k ∈ R is a constant gain and the observer has access to the true vehicle

attitude (via measurements with negligible error) allowing online computation of the

attitude error q̃(t) = q(t)⊗ q̂−1(t). The observer also has access to noise-corrupted

measurements of the vehicle’s angular rate notated as ωmeas(t). The noise was

not explicitly modeled as the stability analysis was done entirely in a deterministic

setting. Under this assumption, the tracking feedback term k sign
(
η̃(t)

)
ε̃(t) was

shown to enable the observer error to converge exponentially fast to zero.

Vik, Shiriaev, and Fossen [101] extended this nonlinear observer to consider

the case when the vehicle’s angular rate is measured via an angular rate gyro with

bias:

ωg(t) = ω(t) + b(t) (2.75)

where the gyro bias b(t) was assumed to decay exponentially fast. Again, as this

work was done in a deterministic setting gyro noise was not explicitly modeled.

They augmented the observer state to include a gyro bias estimate, leading to the
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observer dynamics

˙̂q(t) =
1

2
ω̂(t)⊗ q̂(t)

=
1

2

[
R
(
q̃−1(t)

) (
ωg(t)− b̂(t) + k sign

(
η̃(t)

)
ε̃(t)

)]
⊗ q̂(t)

˙̂
b(t) = −α sign

(
η̃(t)

)
ε̃(t) (2.76)

where b̂(t) is the observer’s estimate of the gyro bias and 0 < α ∈ R is again an

observer gain. Under the deterministic assumptions and requirement that the gyro

bias decays exponentially fast, they show the observer to be exponentially stable.

Thienel and Sanner [94, 95] showed that the gyro bias observer of [101] is

exponentially stable even when the biases are constant (persistent); additionally,

they show the observer, when combined with a passivity-based attitude controller

from [17], exhibits a nonlinear version of the separation principle. Finally, they

showed that if the gyro is further subjected to bounded stochastic measurement

noise, the bias estimates converge exponentially fast to an error bound that is a

function of the noise parameters and that the attitude tracking errors converge

asymptotically to an error bound that is also a function of the noise parameters.

Mahony, Hamel, and Pflimlin [56] extended the analysis to consider line-of-sight

attitude measurements (e.g. a magnetometer or sun sensor) in addition to estimating

persistent gyro bias online; their analysis is provided in both quaternion space and

rotation matrix space however their analysis does not consider noise.

Chapter 3 of this thesis will consider a deterministic extension of the observer

of Equation 2.76 to include gyro biases that are a function of temperature assuming

that the gyro bias function of temperature remains constant and that the gyro’s
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temperature is available with negligible error.

In Chapters 4, 5, and 6 of this thesis will analyze observer structures like that of

Equation 2.76 in a stochastic setting. This will allow for the explicit consideration

of stability and performance when the gyro is subjected to unbounded “white”

measurement noise (Chapter 4), when the attitude measurements are also corrupted

by noise (Chapter 5), and when the gyro bias also drifts according to a constant

bias or first-order Gauss Markov process (Chapter 6).

In the deterministic work to date, stability results were generated using Lya-

punov analysis. Specifically, Lyapunov functions of the kind

V (x(t)) =
1

2
b̃
T

(t)b̃(t) +
1

2


(η̃(t)− 1)2 + ε̃T (t)ε̃T (t) η̃ ≥ 0

(η̃(t) + 1)2 + ε̃T (t)ε̃T (t) η̃ < 0

(2.77)

were used. While the Lyapunov function of Equation 2.77 is once continuously

differentiable which met the conditions of the Lyapunov stability theorems utilized,

it is not twice continuously differentiable. In order to satisfy the conditions of the

stochastic Lyapunov Theorems 2.1.4 and 2.1.5, later chapters in this thesis will

instead consider attitude filters (as the system models shift from a deterministic to

a stochastic setting) with the structure

˙̂q(t) =
1

2
ω̂(t)⊗ q̂(t)

=
1

2

[
R
(
q̃−1(t)

) (
ωmeas(t) + kη̃(t)ε̃(t)

)]
⊗ q̂(t) (2.78)

where the feedback term kη̃(t)ε̃(t) retains the same direction as the feedback term

k sign
(
η̃(t)

)
ε̃(t) of Salcudean’s observer but is twice continuously differentiable (and

further is smooth).
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Chapter 3: Deterministic Gyro Thermal Bias Observer

This chapter considers the impact of deterministic gyro bias that are time-

invariant functions of gyro temperature on the performance of several nonlinear

adaptive attitude observers. The first section 3.1 introduces the nonlinear adaptive

gyro constant bias observer from Thienel and Sanner [95] which is referred to as

a Constant Bias Observer (CBO) in this thesis. The next section 3.2 presents a

pair of notional gyro thermal bias function models; the functions are assumed to be

time-invariant but as gyro temperature varies the gyro thermal bias evaluated at a

specific time will vary when these models are employed. Deterministic numerical

simulation shown in Section 3.3 show the CBO bias estimates “chase” the time

varying gyro bias resulting in an attitude estimate error.

Section 3.4 presents techniques from function approximation theory, providing

a mechanism by which sufficiently smooth gyro bias functions of arbitrary shape can

be represented. These techniques are then used to extend the CBO to adaptively

estimate (“learn”) gyro thermal bias functions in real time in Section 3.5 in an ex-

tension referred to here as a Thermal Bias Observer (TBO). Deterministic numerical

simulations in Section 3.6 demonstrate several variations of the TBO learning gyro

thermal bias functions.
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Section 3.7 considers the CBO and TBO when measurements are no longer

deterministic; additive unbounded gyro measurement noise and attitude measure-

ment noise are combined with the CBO and TBO dynamics to formulate Itô SDEs

for both systems. Stochastic numerical simulations of the observers are described

in Section 3.8 to understand performance in the stochastic setting. Finally, an at-

tempt to understand performance as a function of observer tuning parameters is

conducted via stochastic numerical simulation in Section 3.9. The computational

expense and imprecise nature of this technique provide significant motivation to

find analytic expressions for observer performance as a function of gain parameters

and measurement noise specifications which are the subject of the remainder of the

thesis.
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3.1 Gyro Constant Bias Observer (CBO) Formulation

This section presents an overview of the gyro bias observer from [95], which in

this thesis is referred to as the gyro Constant Bias Observer (CBO). The structure

of the CBO is used as the basis of all attitude observers and filters considered in the

thesis.

The CBO is assumed to be provided with angular rate gyro measurements

that are corrupted by a constant bias

ωg(t) = ω(t) + b (3.1)

where ωg(t) is the gyro measurement at time t, ω(t) is the true angular rate at time

t, and the bias is denoted b. As the bias is assumed to be constant, ḃ(t) = 0.

It is further assumed that the CBO has access to perfect (noise free and unbi-

ased) attitude measurements qm(t) of the true attitude q(t)

qm(t) = q(t) =

ε(t)
η(t)

 =



εx(t)

εy(t)

εz(t)

η(t)


(3.2)

The true attitude q(t) evolves according to the usual kinematics equation

q̇(t) =
1

2
ω(t)⊗ q(t)
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The CBO of Thienel and Sanner [95] is given as

˙̂q(t) =
1

2

{
R
(
q̃−1(t)

)[
ωg(t)− b̂(t) + keη̃(t)ε̃(t)

]}
⊗ q̂(t) (3.3)

˙̂
b(t) = −αη̃(t)ε̃(t) (3.4)

where ke > 0 is an observer (estimator) gain parameter and α > 0 is an adaptation

gain parameter. The observer’s estimate q̂(t) at time t of the true attitude q(t)

is obtained by propagating the attitude kinematic equation using the measured

angular rate corrected by a bias estimate along with the feedback term keη̃(t)ε̃(t)

in Equation 3.3. The feedback term is a measure of the observer’s attitude estimate

error, given by

q̃(t) =

ε̃(t)
η̃(t)

 = q(t)⊗ q̂−1(t)

which is available to the observer in real time as the attitude measurements are

assumed to be perfect. The feedback term is also used in the observer’s gyro bias

adaptation law of Equation 3.4 where b̂(t) is the observer’s estimate at time t of the

gyro bias b. The observer’s bias estimate error b̃(t) is given as

b̃(t) = b− b̂(t) (3.5)

When there is no attitude error, the feedback term goes to zero and thus the bias

estimate stops changing. If there is error in the bias estimate, however, the bias

estimate will divert the observer attitude estimate through the observer attitude

kinematics. This in turn will increase the attitude estimate error, providing the

feedback loop.
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Thienel and Sanner [95] show that in the deterministic setting that the CBO

is not only stable, but that it is Globally Exponentially Stable (GES). This means

that not only does the observer’s bias estimate error remain bounded, it goes to

zero exponentially fast. As the CBO was shown to be GES, it is furthermore BIBO

(bounded-input bounded-output) stable [42]. Thienel and Sanner show that this

implies that for bounded gyro noise the CBO estimate errors are bounded. They

further find the bound as a function of the bound on the noise.

Section 3.2 will consider time-varying deterministic gyro bias. The CBO is

not GES in this situation, but provided the gyro bias is bounded the CBO estimate

errors are still bounded. Sections 3.4 and 3.5 will provide a technique to extend the

CBO to learn gyro bias functions provided the gyro bias is a constant function of

some other readily available signal, specifically gyro temperature. The remaining

sections of the chapter will consider unbounded gyro noise and attitude measurement

noise via numerical simulation. A rigorous stochastic analysis of the CBO will be

presented in Chapter 6.

As explained in Section 2.4, the CBO considered in this thesis is actually a

slightly modified version than that of [95]; the feedback term k sign
(
η̃(t)

)
ε̃(t) has

been altered to kη̃(t)ε̃(t) for the CBO here. This modification results in a smoother

observer dynamics equation as the sign(·) function is not continuously differentiable.

The results of [95] can similarly be established for the CBO given here.
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3.2 Gyro Thermal Bias Model

The Constant Bias Observer (CBO) of Section 3.1 made the modeling assump-

tion that the angular rate gyro measurements are corrupted by a constant gyro bias,

or at least that the gyro bias is constant relative to the time scales of the dynamics

of the CBO. This is a common modeling assumption amongst the attitude filter

literature as well [20,51,64].

Figure 3.1: Measurement of gyro bias as a function of operating temperature for a specific

MEMS gyro unit by Aggarwal, Syed, and El-Sheimy [6].

One of the predominate deterministic factors behind gyro bias variation is

due to change in the operating temperature of the gyro. It has been reported in
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the literature that this is a particularly important phenomena for micro-electrical-

mechanical system (MEMS) gyros [6,78]. A commonly reported mechanism for this

phenomena is that despite their various designs, all MEMS gyros use some sort of

a vibrating proof mass or structure made of silicon which expands and contracts

with temperature. Several studies fit linear functions to measured gyro bias as a

function of temperature [7,41,78]. Other studies fit second and third order functions

to measured gyro bias as a function of temperature [29, 38]. The magnitude of the

gyro bias as a function of temperature is specific to the particular design of the

MEMS elements; over a range of 100◦ C, the bias varied by as much as 5 deg
sec

for

some MEMS gyros [6] and as little as 0.0056deg
sec
≈ 97µrad

sec
for other gyro units [85]. An

example of a measurements of gyro bias as a function of operating temperature for

a specific MEMS gyro (an orthogonally-mounted triad of ADXRS150 MEMS gyros

made by Analog Devices Inc) by Aggarwal, Syed, and El-Sheimy [6] is repeated here

in Figure 3.1. Note carefully that while a pre-flight calibration campaign may be

utilized to attempt to characterize gyro thermal bias, the gyro thermal model has

been known to vary (slowly) over the life of the sensor as the moving components

age.

In this chapter, two gyro thermal bias models are considered. In both cases,

the gyro measurement model is given by the equation

ωg(t) = ω(t) + b(T (t)) (3.6)

where ωg(t) is the angular rate gyro measurement at time t, ω(t) is the true vehicle

angular rate in rad
sec

, and the gyro bias b(T (t)) is a function of the time-varying gyro
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temperature T (t) given in degrees Celsius. For simplicity, in this thesis the gyro

temperature is assumed to be homogeneous; that is, each gyro sensing element is

the same temperature at any given time. For real world applications, many MEMS

gyro designs have an independent temperature sensing element for each motion axis

and can provide distinct temperature measurement for each sensing element.

The first gyro thermal bias model considered in this chapter is linear in gyro

temperature. The model is given by

b(T (t)) =


0.02

0.02

0.011

T (t) +


−1

0

−1

 (3.7)

in units of degree/second and visualized in Figure 3.2. This notional model is of the

same shape and magnitude as that measured by Aggarwal et al [6] for a low cost

MEMS gyro unit. This type and quality of gyro is common for cubesats and hosted

payloads for space applications, as well as being representative of the type of gyros

used in consumer electronics like cell phones, consumer UAVs, and virtual reality

equipment.

The second gyro thermal bias model considered in this chapter is a third order

function of gyro temperature. The model is given by

b(T (t)) =


0.000015

0.000008

0.000008

T
3(t) +


−0.002

−0.0007

−0.001

T
2(t) +


0.07

0.012

0.039

T (t) +


−1

0

−0.1

 (3.8)

in units of degree/second and displayed in Figure 3.3. This notional model has a

shape similar to that studied in [29] and ongoing gyro modeling work at NASA. The
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Figure 3.2: The first order gyro thermal bias function of Equation 3.7.

magnitude of the thermal bias is again consistent with low cost MEMS gyro units

commonly used in cubesats.

For a satellite in orbit utilizing a gyro to rate measurement, the impact of a

gyro thermal bias can lead to a failure to meet pointing requirements. It is not

uncommon for a Low Earth Orbiting (LEO) satellite in an orbit passing in and out

of Earth’s shadow to experience temperature variation of 100◦ C over each orbit.

Other satellites are spin stabilized with spin rates of 5 revolutions per minute being

common, and can experience temperature variation oscillating with the spin rate.

Due to cost, complexity, and other thermal design considerations it too is common

for gyro instruments aboard satellites to experience the full range of the vehicle’s
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Figure 3.3: The third order gyro thermal bias function of Equation 3.8.

thermal variation.
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3.3 CBO Deterministic Simulation Study

This section features simulation studies of the CBO of Section 3.1 when the

gyro measurements are corrupted by bias as a function of operating temperature.

In the simulations, the gyro’s operating temperature varies sinusoidally ac-

cording to

T (t) =
100

2
cos

(
2πt

τ
+ π

)
+

100

2
(3.9)

in degrees Celsius. The amplitude is 100◦C with a phase angle chosen so the simula-

tion starts at the coldest temperature. The thermal oscillation period τ is chosen as

5400 seconds, providing a thermal profile representative of a satellite in Low Earth

Orbit (LEO) passing through Earth’s shadow every 90 minutes.

The gyro measurement model is now given by

ωg(t) = ω(t) + b(T (t)) (3.10)

where as before ωg(t) is the gyro measurement at time t and ω(t) is the true angular

rate at time t. The bias, denoted b(T (·)), is given by the notional gyro bias ther-

mal function models of Section 3.2. While the gyro thermal bias function b(T (·))

is assumed to be time-invariant function of temperature, the value of the gyro bias

in general varies between time t1 to time t2, from b(T (t1)) to b(T (t2)), as the tem-

perature T (t) varies with time. If the temperature is constant, or the gyro bias

function of temperature is a constant, the model of Equation 3.10 reverts to the

gyro constant bias model of Equation 3.1.

Figure 3.4 shows time series plots for the CBO attitude estimate error and bias
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estimate error. In this figure, the gyro thermal bias is modeled as the first order

thermal bias function of Equation 3.7. After an initial transient, the bias estimates

lag behind the true gyro bias. As the gyro bias varies sinusoidally (since it is a

linear function of gyro operating temperature which is sinusoidally varying), the

bias estimate error passes through zero once every time the derivative of the gyro

bias changes sign. Essentially the gyro bias estimate “crosses paths” with the true

gyro bias, but can never keep up.

The study is repeated in Figure 3.5 for the third order thermal bias function

of Equation 3.8. Now as the temperature varies continuously from 0 to 100 degrees

Celsius over half an orbit, the derivative of the true thermal bias changes sign three

times. Accordingly, the CBO bias estimate error passes through zero three times

every half orbit.
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Figure 3.4: The CBO demonstrates sinusoidal tracking error for the first order gyro ther-

mal bias model of Equation 3.7 as the gyro operating temperature heats and

cools once every orbit of 90 minutes. The CBO gains were set to ke = 1 and

α = 0.1.
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Figure 3.5: The CBO demonstrates sinusoidal tracking error for the third order gyro ther-

mal bias model of Equation 3.8 as the gyro operating temperature heats and

cools once every orbit of 90 minutes. The CBO gains were set to ke = 1 and

α = 0.1.
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The next simulation study explores the variation of the estimate error as a

function of the thermal oscillation period. The gyro operating temperature is again

given by the sinusoidal model of Equation 3.9, but now the thermal oscillation period

τ is varied. The smallest (fastest) thermal oscillation period considered is τ = 60

seconds. This period is consistent with a 1 rpm spin stabilized satellite, although

the thermal amplitude of the oscillation is unrealistic for this frequency. The largest

(slowest) thermal oscillation period considered is τ = 2 hours which is representative

with a spacecraft in LEO. The thermal variation amplitude of components in a LEO

spacecraft coming into and out of the Earth’s shadow are commonly on the order

of 100◦C.

Figure 3.6 shows the estimate errors as a function of gyro operating temper-

ature oscillation period τ for the first order gyro thermal bias model; Figure 3.7

repeats the analysis for the third order gyro thermal bias model. In both cases, the

estimate error rapidly drops off with increasing τ which is to be expected. As the

thermal oscillation period τ increases, the gyro thermal bias better matches a con-

stant gyro bias which the CBO is capable of tracking exponentially fast. However, in

many applications the bias estimate error of the CBO may still exceed requirements

and an algorithm capable of estimating the gyro thermal bias might be necessary.
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Figure 3.6: The CBO demonstrates sinusoidal tracking error for the first order gyro ther-

mal bias model of Equation 3.7 as the gyro operating temperature heats and

cools once every orbit of 90 minutes. The CBO gains were set to ke = 1 and

α = 0.1.
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Figure 3.7: The CBO demonstrates sinusoidal tracking error for the third order gyro ther-

mal bias model of Equation 3.8 as the gyro operating temperature heats and

cools once every orbit of 90 minutes. The CBO gains were set to ke = 1 and

α = 0.1.
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3.4 Function Approximation

This section is a brief overview of some basic concepts of function approxima-

tion theory. With an appropriate parameterization, the CBO of Section 3.1 may

be extended to estimate not merely a constant gyro bias, but parameters of an

approximation to the gyro thermal bias function of temperature.

The fundamental idea behind function approximation is to use a set of canon-

ical functions as a basis for a class of functions one wishes to approximate. Assum-

ing the class of functions to be approximated is sufficiently smooth, weighted linear

combinations of scaled and shifted collections of the basis functions serve as the

approximation. The approximation gets better as more basis functions are used.

Many types of functions may be used to form a basis. For example, sinusoids of

differing frequency constitute the well-known Fourier basis, Chebyshev polynomials

constitute a Chebyshev basis, and so on. For many practical applications, however,

these bases require a great number of distinct basis functions in the linear combi-

nation to achieve a suitable function approximation. Many applications instead use

radial basis functions (RBFs), such as the boxcar radial basis function:

g(x) =


1 |x| ≤ 0.5

0 |x| > 0.5

(3.11)

the hat radial basis function:

g(x) =


1− |x| |x| ≤ 1

0 |x| > 1

(3.12)
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or the Gaussian radial basis function

g(x) = exp
{
− x2

}
(3.13)

These standard radial basis functions are depicted graphically in Figure 3.8. The

left images in the figure depict the RBFs of Equation 3.11 (Boxcar RBF, top left),

Equation 3.12 (Hat RBF, middle left), and Equation 3.13 (Gaussian RBF, bottom

left). These RBF can be horizontally scaled and shifted by composing the RBF with

a linear function, such as

g (hx− k) = g

(
1

w
x− λk

w

)
(3.14)

where w is the basis function width and λk is the basis function’s center location

(also called a knot point); note that k = λk
w

is an integer. The right side of the figure

has a plot of the RBFs of Equation 3.11 (Boxcar RBF, top right), Equation 3.12

(Hat RBF, middle right), and Equation 3.13 (Gaussian RBF, bottom right) each

scaled to have a width of 10 and a center location of 40.
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Figure 3.8: Radial basis functions (left) can be horizontally scaled and shifted (right) via

composition with a linear function as in Equation 3.14.
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Now consider the task of approximating a known function. The top left image

of Figure 3.9 depicts a first order polynomial gyro thermal bias function. The top

right image of the same figure depicts a collection of boxcar RBFs of Equation 3.11,

each of width 10◦C. The boxcar RBFs have center locations of λ0 = 0◦C, λ1 = 10◦C,

..., λ11 = 100◦C spanning the domain of 0◦C to 100◦C. These RBFs form a basis

for functions that are piecewise constant over the domain. The bottom left image

of the same figure shows the function to be approximated in a thick blue line, the

weighted individual RBFs in thin red lines, and the sum of all weighted RBFs in a

thick red line. The sum of the weighted RBFs is the bias function approximation,

given by the equation

b̂(T ) =
11∑
k=1

ckg (hT − k) =
11∑
k=1

ckg

(
1

w
T − λk

w

)
(3.15)

where b̂(T ) is the approximation of the thermal bias function b(T ) evaluated at

temperature T . The bias function approximation weights ci were found by sampling

the true gyro thermal bias function at 1000 points along the domain (0,100) and

performing a least squares fit. Thus a given weighting coefficient, say c7, is the least

squares best fit piecewise constant value of the function to be approximated over

the interval (λ7− w
2
, λ7 + w

2
). Finally, the bottom right of the same figure depicts the

bias function approximation error b̃(T ) = b(t) − b̂(T ). Note that as boxcar RBFs

are piecewise constant, a function approximation using them will fail to capture the

slope of the true thermal bias function.

If the domain were partitioned by more boxcar RBFs of smaller width, the

function approximation would better match the true function. This notion is made
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precise for spline approximations in Theorem 20.3 of Powell [77] where, for suffi-

ciently smooth thermal bias function b(·) a jth order spline approximation b̂(T ) is

such that

‖b(·)− b̂(·)‖∞ ≤ c
(w

2

)j+1

‖b(j+1)(·)‖∞ (3.16)

In the inequality, w is the knot spacing (space between RBF centers), b(j) is the jth

derivative of the gyro thermal bias, and c is a positive constant. Note that a boxcar

RBF is a 0th order spline and a hat RBF is a 1st order spline. A Gaussian RBF is

in some sense the infinite limit of the sequence of splines [81].
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Figure 3.9: Boxcar RBF approximation of a first order polynomial.
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A function approximation using hat RBFs is able to capture slope information.

Figure 3.10 demonstrates the performance of hat RBF function approximation for

the same first order gyro thermal bias function depicted in the top left plot. The

top right plot shows a collection of hat RBFs forming a basis over the interval for

approximation. The bottom left plot compares the hat RBF function approximation

with the true gyro thermal bias which is perfectly covered by the approximation.

The function approximation error is the constant zero function.

Figure 3.10: Hat RBF approximation of a first order polynomial.
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A function approximation using Gaussian RBFs is theoretically able to capture

arbitrary order functions; however, as noted in Sanner and Slotine [81] to approxi-

mate functions on a bounded interval many Gaussian RBFs well outside the interval

may be needed. The Gaussian RBFs for this problem were chosen to have center

locations of λ0 = −100◦C, λ1 = −90◦C, ..., λN = 200◦C. Figure 3.11 demonstrates

Gaussian RBF function approximation for the same first order gyro thermal bias

function depicted in the top left plot. The top right plot shows a collection of

Gaussian RBFs forming a basis over the interval for approximation. The bottom

left plot compares the Gaussian RBF function approximation with the true gyro

thermal bias which is covered by the approximation. The function approximation

error is negligibly small.
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Figure 3.11: Gaussian RBF approximation of a first order polynomial.
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Figure 3.12 depicts function approximation via boxcar RBFs for a third order

gyro thermal bias which is shown in the top left plot. The bottom left plot compares

the function approximation to the true gyro thermal bias. The bottom right plot

shows the bias function approximation error which is significant, as in the first order

boxcar RBF function approximation case.

Figure 3.12: Boxcar RBF approximation of a third order polynomial.
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The third order gyro thermal bias is approximated via hat RBFs in Figure

3.13. As opposed to the first order thermal bias case where the hat RBFs were able

to capture the highest order of the true bias function, in this case with a third order

bias function the piecewise linear hat RBFs are unable to capture the highest order

components of the true bias function. The approximation error in the bottom right

plot is still far smaller than the boxcar RBF approximation for this gyro thermal

bias function as predicted by the function approximation error criterion of Equation

3.16 from Powell [77].
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Figure 3.13: Hat RBF approximation of a third order polynomial.
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Finally, the third order gyro thermal bias is approximated via Gaussian RBFs

in Figure 3.14. As in the previous Gaussian RBF function approximation case, the

Gaussian RBFs were chosen to have center locations of λ0 = −100◦C, λ1 = −90◦C,

..., λN = 200◦C to ensure suitable coverage over the interval of approximation. The

Gaussian RBF function approximation covers the true gyro thermal bias function

in the bottom left plot. The corresponding error function in the bottom right plot

is negligibly small.

Figure 3.14: Gaussian RBF approximation of a third order polynomial.
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3.5 Gyro Thermal Bias Observer (TBO) Formulation

This section extends the gyro constant bias observer of Section 3.1 to estimate

gyro bias as a function of temperature. This extended version is referred to in this

thesis as a gyro Thermal Bias Observer (TBO).

As in Equation 3.10, the gyro measurement model is given by

ωg(t) = ω(t) + b(T (t)) (3.17)

where as before ωg(t) is the gyro measurement at time t and ω(t) is the true angular

rate at time t. Now the gyro thermal bias, denoted b(T (·)), is assumed to be a

time-invariant, continuous, yet unknown function of the gyro temperature. As in

the previous section, while the gyro thermal bias function b(T (·)) is assumed to be

time-invariant function of temperature, the value of the gyro bias in general varies

between time t1 to time t2 from b(T (t1)) to b(T (t2)) as the temperature T (t) varies

with time. The gyro temperature is assumed to be available to the observer.

The TBO, presented by Galante and Sanner in [25], is given by

˙̂q(t) =
1

2

{
R
(
q̃−1(t)

) [
ωg(t)− b̂(T (t)) + keη̃(t)ε̃(t)

]}
⊗ q̂(t) (3.18)

˙̂ck(t) = −αη̃(t)ε̃(t)g (hT (t)− k) (3.19)

where, as for the CBO, the ke > 0 is a tracking gain and α > 0 is an adaptation

gain. The observer’s attitude kinematic equation 3.18 is similar to that of the CBO

in Equation 3.3; however, in the TBO case the gyro bias estimate is computed using
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a weighted sum of RBFs

b̂(T (t)) =
∑
k

ĉk(t)g (hT (t)− k) (3.20)

where g(·) is a radial basis function, h = 1
w

encodes the knot spacing w, and k = λk
w

is an integer specifying the center location λk of kth RBF. The weighting coefficients

are updated via the adaptation law of Equation 3.19, which is the same law used

for the CBO in Equation 3.4 but scaled by the RBF evaluated at the current gyro

temperature. The TBO is parameterized not only by a feedback gain ke and an

adaptation gain α, but also the choice of RBF basis, the RBF spacing (knot spacing)

encoded in h, and the RBF center locations (knot locations) k.

As before, the observer attitude estimate error is given by

q̃(t) =

ε̃(t)
η̃(t)

 = q(t)⊗ q̂−1(t)

which is available to the observer in real time as the attitude measurements are

assumed to be perfect. The bias estimate error at time t is given by

b̃(T (t)) = b(T (t))− b̂(T (t))

which is of course not available to the observer in real time.

In this formulation, the CBO can be viewed as a special case of the TBO

using a single constant basis function g(T ) = 1. Conversely, if the TBO RBFs

are chosen to be boxcar RBFs, referred to as a boxcar TBO, then the observer

is similar to utilizing a bank of CBOs. In this analogy, the temperature range is

divided into partitions (the domain of each boxcar RBF) with a CBO i is assigned
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to each partition. Then each CBO is “responsible” for the gyro bias estimate in its

temperature partition. If the gyro temperature remains within one boxcar RBF’s

temperature partition, then the boxcar RBF TBO behaves precisely the same as the

CBO. Naturally, if the gyro temperature does not reach the domain of a particular

RBF, the corresponding coefficient will never update as the true gyro thermal bias

model has not been excited at that temperature. Essentially, the boxcar TBO uses

the CBO’s gyro bias persistent excitation guarantee to learn the gyro thermal bias

function at any experienced temperature.

Note that the TBO does not have an a priori model of the true thermal bias

function. The TBO estimates coefficients of RBFs that serve as an approximation

to a suitable basis for representing the thermal bias function. The performance of

this approximation depends on the number of RBFs used and their relative spacing,

the choice of RBF used, and the smoothness of the true gyro thermal bias function.

Assume the true gyro thermal bias function can be written as

b(T ) =
∑
k

ckg(hT − k) (3.21)

allowing one to write the bias estimate error as

b̃(T (t)) = b(T (t))− b̂(T (t))

=
∑
i

(ck − ĉk(t)) g(hT (t)− k)

=
∑
i

c̃kg(hT (t)− k) (3.22)

Then the attitude observer dynamics given by Equations 3.18, 3.19, and 3.20 can

be combined with the quaternion error kinematics of Equation 2.71 and the perfect
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(noise free) attitude measurement model 3.27 to find the observer’s estimate error

dynamics:

˙̃x(t) =

 ˙̃q(t)

˙̃ci(t)



=


1
2

{
ω(t)−R

(
q̃(t)

)
R
(
q̃−1(t)

)[
ωg(t)− b̂(T (t)) + keη̃(t)ε̃(t)

]}
⊗ q̃(t)

− ˙̂ck(t)g(hT (t)− k)


Subtracting the bias estimate from the gyro measurement model of Equation 3.10

leads to

ωg(t)− b̂(T (t)) =

= ω(t) +
∑
k

ckg (hT (t)− k)−
∑
k

ĉk(t)g (hT (t)− k)

= ω(t) +
∑
k

c̃kg (hT (t)− k)

Substituting back into the error dynamics, and substituting in the bias adaptation

law, resolves as

˙̃x(t) =

 ˙̃q(t)

˙̃ck(t)



=


1
2

{
− keη̃(t)ε̃(t)−

∑
k c̃kg (hT (t)− k)

}
⊗ q̃(t)

αη̃(t)ε̃(t)g(hT (t)− k)

 (3.23)

where the attitude estimate error dynamics can be broken into the quaternion vector

and scalar components as

˙̃q(t) =

 ˙̃ε(t)

˙̃η(t)

 =

−1
2
keη̃

2(t)ε̃(t)− 1
2

[
η̃(t)I +

[
ε̃×

]]∑
k c̃kg (hT (t)− k)

1
2
keη̃(t)ε̃T (t)ε̃(t) + 1

2
ε̃T (t)

∑
k c̃kg (hT (t)− k)


The stability of the TBO is provided in the following theorem.
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Theorem 3.5.1. Assume the gyro measurement model of Equation 3.10 has a ther-

mal bias function that can be expressed as in Equation 3.20. Then the thermal bias

observer error dynamics of Equation 3.23 are stable. Further,

lim
t→∞

ε̃T (t)ε̃(t) = 0

Proof. Choose the Lyapunov function V (t) = 1
2
ε̃T (t)ε̃(t)+ 1

4α

∑
k c̃

T
k (t)c̃k(t). Taking

the derivative yields

V̇ (t) = −1

2
keη̃

2(t)ε̃T (t)ε̃(t)

− 1

2
η̃(t)ε̃T (t)

∑
k

c̃k(t)g(hT (t)− k) +
1

2
η̃(t)

∑
k

c̃Tk (t)ε̃(t)g(hT (t)− k)

= −1

2
keη̃

2(t)ε̃T (t)ε̃(t) ∀ t

This establishes that c̃k(t), ε̃(t), and η̃(t) are globally uniformly bounded.

Differentiating again results in

V̈ (t) =
1

2
k2
e

(
η̃2(t)− 1

)
η̃2(t)ε̃T (t)ε̃(t) +

1

2
keη̃(t)

(
η̃2(t)− ε̃T (t)ε̃(t)

)
ε̃T (t)b̃(t)

which is bounded as c̃k(t), ε̃(t), and η̃(t) are bounded. Barbalat’s Lemma [42] then

shows that

lim
t→∞

ε̃T (t)ε̃(t) = 0

The proof comes almost directly from Thienel and Sanner [95] for the CBO.

Note however, that in Thienel and Sanner’s proof for the CBO they were able to show

that the gyro constant bias is always persistently exciting. In the TBO case, the

adaptation law for weighting coefficient ĉk is not activated if g(hT −k) = 0. For the
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boxcar TBO this has the consequence that if the gyro temperature remains constant

only the weighting coefficient associated with the measured gyro temperature will

ever change. In this case the problem can be modeled precisely as in the CBO

case and the weighting coefficient will converge to the true bias exponentially fast

as shown by Thienel and Sanner. For the constant temperature case, the gyro

bias estimates of the hat TBO and Gaussian TBO will converge to the true bias

exponentially fast according to the proof from Thienel and Sanner, but the RBF

weighting coefficients ĉk(t) may not converge to the RBF weighting coefficients ck

for the true gyro thermal model.
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3.6 Gyro Thermal Bias Observer (TBO) Function Learning Simula-

tions

This section presents a number of numerical simulations of the TBO of Section

3.5 to demonstrate its function estimation ability. These deterministic simulations

are performed using MATLAB’s ode45 numerical integrator with default arguments.

In each simulation study, the TBO has no initial knowledge of the true gyro thermal

bias function. The simulation study is conducted for each RBF discussed in Section

3.4 and both gyro thermal bias models of Section 3.2 for a total of six simulations.

The TBO has the same parameters for each simulation (aside from the choice

of RBF). The TBO tracking gain is set to k = 1 and the adaptation gain is set

to α = 0.1. The RBF knot spacing (center location spacing) is set uniformly to

w = 1
h

= 10◦C. Knot locations (center locations) are chosen as −0◦C, 10◦C, ...,

100◦C for the boxcar and hat RBFs, but the knot locations for the Gaussian RBFs

are chosen as −100◦C, −90◦C, ..., 200◦C. Note that these choices of parameters are

not optimized according to any criteria, they are merely chosen for demonstration

purposes.

As before, the gyro’s operating temperature varies sinusoidally according to

T (t) =
100

2
cos

(
2πt

τ
+ π

)
+

100

2
(3.24)

in degrees Celsius. The amplitude is 100◦C with a phase angle chosen so the simu-

lation starts at the coldest temperature. The thermal oscillation period τ is chosen

as 5400 seconds for the simulations of this section, providing a thermal profile repre-
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sentative of a notional satellite in Low Earth Orbit (LEO) passing through Earth’s

shadow every 90 minutes.

Figure 3.15 contains a collection of plots detailing the TBO using boxcar RBFs

over the course the a simulation. The true first order gyro thermal bias function of

Equation 3.7 is depicted in the upper left plot, but is unknown to the TBO which

starts with an initial estimate of zero bias at all temperatures. After 1
8

orbit, the

gyro temperature has warmed from 0◦C to just over 15◦C; the TBO gyro thermal

bias function estimate b̂(T ) shifts to a piecewise linear approximation of the true

gyro bias for the temperatures observed by the TBO up to that point. After 1
4

orbit

the gyro temperature has increased to 50◦C and the TBO has accordingly adjusted

its gyro thermal bias function estimate over the range of temperatures experienced

thusfar. After half an orbit, the TBO has sampled the gyro thermal bias function

over the entire range of the temperature profile. The TBO continues to refine its

gyro thermal bias estimate as the simulation continues. After one full orbit, the

temperature has returned to 0◦C. The bottom right plot shows the TBO gyro

thermal bias estimate error . As the true gyro thermal bias in this simulation is

linear, the boxcar function approximation error is off by a linear function. Notice

that since the most recent temperature experienced in the domain of each boxcar

RBF was on the leftmost (coldest) side, so the thermal bias function estimate is most

accurate on the leftmost side of each temperature partition creating a sawtooth error

shape.

Time series of the bias estimate and attitude estimate errors for the boxcar

TBO during this simulation are shown in Figure 3.16. There is significant error dur-
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ing the first half orbit as the TBO’s weighting coefficients each in turn experience a

transient as the gyro operating temperature increases from the coldest to warmest

values of its thermal profile. After the entire temperature range has been experi-

enced, the observer’s bias estimate error settles to a lower level consistent with the

error of using boxcar RBFs to approximate a line.
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Figure 3.15: The boxcar TBO estimates the first order gyro thermal bias function of Equa-

tion 3.7.
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Figure 3.16: Time series plots of the attitude and estimate error for the boxcar TBO as

it estimates the first order gyro thermal bias function of Equation 3.7.
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The hat TBO is considered next. Figure 3.17 depicts the estimated thermal

bias function at the same simulation time as the boxcar TBO previously considered.

The thermal bias function approximation has significant error after the first orbit,

incorrectly approximating both the value and the slope of the true bias function.

After 20 orbits, however, the transient has settled and the thermal bias function

approximation has little error. The time series plots of the attitude and bias estimate

errors in Figure 3.18 show the error decays to zero.
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Figure 3.17: The hat TBO estimates the first order gyro thermal bias function of Equation

3.7.
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Figure 3.18: Time series plots of the attitude and estimate error for the hat TBO as it

estimates the first order gyro thermal bias function of Equation 3.7.
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The Gaussian TBO, parameterized by the same tracking gain k and adaptation

gain α, experiences a significantly longer transient than the boxcar or hat TBOs.

Figure 3.19 depicts the gyro thermal bias function estimate at the same simulation

times as the boxcar and hat TBOs, but after 20 orbits the Gaussian TBO has yet

to capture the linear shape of the true gyro thermal bias function, particularly at

the edges of the temperature interval. The time series plots in Figure 3.20 confirm

that the Gaussian TBO has not yet reached steady state after 20 orbits. Figure 3.21

displays the Gaussian TBO thermal bias function estimate at 10 orbits, 100 orbits,

and 1000 orbits, where the Gaussian TBO’s bias function estimate error finally

reaches the level of the Hat TBO’s function error estimate after just 20 orbits.
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Figure 3.19: The Gaussian TBO estimates the first order gyro thermal bias function of

Equation 3.7.
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Figure 3.20: Time series plots of the attitude and estimate error for the Gaussian TBO

as it estimates the first order gyro thermal bias function of Equation 3.7.
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Figure 3.21: The Gaussian TBO estimates the first order gyro thermal bias function of

Equation 3.7.

132



Figure 3.22 shows the boxcar TBO estimating the third order gyro thermal

bias function of Equation 3.8. The bias estimate error for the boxcar TBO is more

pronounced for this model than the first order model, which is to be expected as

higher order information is harder for the boxcar approximation to capture. The

transient response is similar to the first order thermal model case however, needing

only half an orbit (the ability to experience the full gyro operating temperature

range) to reach a steady state performance level.
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Figure 3.22: The boxcar TBO estimates the third order gyro thermal bias function of

Equation 3.8.
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Figure 3.23: Time series plots of the attitude and estimate error for the boxcar TBO as

it estimates the third order gyro thermal bias function of Equation 3.8.
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The hat TBO bias function estimation process for the third order gyro thermal

bias function of Equation 3.8 is depicted in Figure 3.24. The corresponding time

series plots are included in Figure 3.25. The estimate error settling time for the

third order gyro thermal bias model case as for the first order gyro thermal bias

model case. Note that in this case, as opposed to the case of the first order gyro

thermal bias model, that there is significant bias function estimate error. This is to

be expected as the order of the true gyro thermal bias function now exceeds what

can be encoded by a first order spline (hat RBF).
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Figure 3.24: The hat TBO estimates the third order gyro thermal bias function of Equa-

tion 3.8.
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Figure 3.25: Time series plots of the attitude and estimate error for the hat TBO as it

estimates the third order gyro thermal bias function of Equation 3.8.
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The last permutation to consider is the Gaussian TBO estimating a third order

gyro thermal bias function of temperature. The bias function estimates are depicted

in Figure 3.26. As in the case of the Gaussian TBO estimating a first order gyro

thermal bias, the Gaussian TBO takes significantly longer than the boxcar or hat

TBOs to reach a steady state. Again, the Gaussian TBO’s estimates of the gyro

thermal bias function are worst at the edges of the experienced temperature range.

The time series plots of Figure 3.27 show that by 20 orbits the observer’s estimates

still haven’t converged. Figure 3.28 compares the Gaussian TBO’s thermal bias

function estimation performance at 10, 100, and 1000 orbits. After 1000 orbits

have elapsed, the Gaussian TBO’s thermal bias function estimate error near 0 and

100 degrees Celsius is finally of the same order of magnitude as the hat TBO was

after 20 orbits. However, in this third order gyro thermal bias function case the

smoothness of the Gaussian function approximation leads to significantly less bias

function estimation error once the transient has settled.
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Figure 3.26: The Gaussian TBO estimates the third order gyro thermal bias function of

Equation 3.8.
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Figure 3.27: Time series plots of the attitude and bias estimate error for the Gaussian

TBO as it estimates the third order gyro thermal bias function of Equation

3.8.
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Figure 3.28: The Gaussian TBO estimates the third order gyro thermal bias function of

Equation 3.8.
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Figure 3.29 shows the transient response for the CBO, boxcar TBO, hat TBO,

and Gaussian TBO for the third order gyro thermal bias function of Equation 3.8.

As before, the gyro operating temperature sinusoidally oscillates with a period of

90 minutes and all observers have tracking gain ke = 1 and adaptation gain α = 0.1

with no observer having any initial knowledge of the gyro bias. The CBO and boxcar

TBO experience very short transients (less than an orbit), but have the worst gyro

bias estimate performance in steady state. The hat TBO takes approximately 15

orbits to converge, but its steady state error is less than the CBO and boxcar

TBO. The Gaussian TBO takes much longer to converge than 20 orbits as noted

before. The top plot of Figure 3.30 shows that the Gaussian TBO converges after

approximately 1000 orbits, but the steady state performance has again improved.

The convergence rate can be reduced by increasing the adaptation gain; the bottom

plot in Figure 3.30 has an order-of-magnitude larger adaptation gain of α = 1 and

the convergence time is approximately 500 orbits.
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Figure 3.29: Comparison of the observer’s bias estimate error time series for the third

order gyro thermal bias function of Equation 3.8.
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Figure 3.30: Time series plots of the estimate estimate error for the Gaussian TBO as it

estimates the third order gyro thermal bias function of Equation 3.8. In the

top plot ke = 1 and α = 0.1; in the bottom plot ke = 1 and α = 1.
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Table 3.1: Comparison of the steady-state bias estimate error for the CBO, boxcar TBO,

hat TBO, and Gaussian TBO; error statistics are the ergodic average of the

last 100 orbits’ worth of bias estimate errors from 1000 orbit long simulations.

Observer Mean
ti∈Tss

[
‖b̃(ti)‖

]
in deg

sec

CBO 0.01634

Boxcar TBO 0.01523

Hat TBO 0.00316

Gaussian TBO 0.00086

The steady-state performance of the CBO, boxcar TBO, hat TBO, and Gaus-

sian TBO are compared in Table 3.1. For each entry in the table, the indicated

observer was simulated for 1000 orbits with the tracking gain ke = 1 and adaptation

gain α = 0.1. The ergodic mean was computed from the time series of the bias es-

timate error b̃(t) = b(T (t))− b̂(T (t)) over the final 100 orbits. As noted previously,

the CBO and boxcar TBO have very similar performance as the boxcar TBO’s gyro

thermal bias function approximation is little better than the CBO’s. The hat TBO

has nearly an order of magnitude improvement in bias estimate error as the hat

basis provides a more useful gyro thermal bias function approximation. Finally, the

Gaussian TBO’s bias estimate error is nearly an order of magnitude better than the

hat TBO’s as the Gaussian basis is capable of perfectly approximating third order

polynomial functions.
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3.7 Gyro CBO and TBO Stochastic Simulation Models

The CBO of Thienel and Sanner [95] and the TBO were developed in a deter-

ministic setting. Global exponential stability (GES) of the CBO is guaranteed by the

work of Thienel and Sanner for a constant gyro bias. They also point out that the

GES property implies the CBO estimate error is bounded for bounded gyro noise;

the provide a bound on the estimate error as a function of a bound on the noise. In

Section 3.5 the TBO was found to be stable for sufficiently smooth time-invariant

gyro thermal bias models. In neither sets of analyses was unbounded additive gyro

noise considered, nor was attitude measurement noise considered. Neither sets of

analyses provided insight on how to choose the observer gain parameters.

Of course the attitude estimation performance of the observers is affected by

sensor noise and choice of gain parameters. In this section, stochastic differential

equations will be developed to model the impact of attitude measurement noise

and gyro noise on the observers. Subsequent sections of this chapter will then use

stochastic integration techniques to explore how measurement noise influences the

estimate errors of the observers.

In the stochastic setting, the gyro measurement model of Equation 3.10 is now

augmented with additive noise as

ωg(t) = ω(t) + b(T (t)) + σwnw(t) (3.25)

where σw is a positive scaling constant and nw(·) is a zero mean unit variance

Gaussian white noise process.
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In addition to gyro measurement noise, the observers are also assumed to have

attitude measurements with noise. The attitude measurement qm(t), possibly from

a quaternion output star tracker, is a noise corrupted version of the true vehicle

attitude q(t)

qm(t) =

εm(t)

ηm(t)

 = q̆−1(t)⊗ q(t) (3.26)

where q̆(·) is “quaternion noise”. Note that the stochastic numerical integration

methods presented in Section 2.2 are defined only for Itô diffusions, a specific class

of SDEs that are affine in the driving noise.

As will be explained in detail in Section 5.1, an Itô SDE that is useful for

generating quaternion measurement noise is given by the Langevin form differential

equation

q̇m(t) =
1

2

{
R
(
q̆−1(t)

)
[ω(t) + σmnm(t) + kmη̆(t)ε̆(t)]

}
⊗ qm(t) (3.27)

where km and σm are positive scalars that parameterize the attitude measurement

noise statistics, nm(·) is a collection of independent identically distributed zero

mean unit variance Gaussian white noise processes independent of nw(·), and q̆(t)

compares the attitude measurement process to the true attitude

q̆(t) = q(t)⊗ q−1
m (t) =

ε̆(t)
η̆(t)

 (3.28)

In Chapter 4.10 the attitude measurement noise process q̆(t) will be shown to have

the heuristic upper bound on its ultimate noise statistics

lim
t→∞

E
[
ε̆T (t)ε̆(t)

]
≤ 3

4

1−
I1

(
km
3σ2
m

)
I0

(
km
3σ2
m

)
 (3.29)
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where I0(·) and I1(·) are the 0th and 1st modified Bessel functions of the first kind.

The bound 3.29 provides a way to parameterize the attitude measurement noise by

selection of the ratio km
σ2
m

.

In the forthcoming stochastic models for the CBO and TBO, the observers

will no longer have access to the true attitude to compute the attitude estimate

error q̃(t) for use in their feedback term η̃(t)ε̃(t). Instead, the observers will be

provided the noise corrupted attitude measurement qm(t) generated from the model

of Equation 3.27, so they instead compute a corrupted attitude estimate error

q̃m(t) =

ε̃m(t)

η̃m(t)

 = qm(t)⊗ q̂−1(t)

= q̆−1(t)⊗ q(t)⊗ q̂−1(t)

= q̆−1(t)⊗ q̃(t)

which results in the corrupted feedback term

η̃m(t)ε̃m(t) =
(
η̆(t)η̃ + ε̆T (t)ε̃(t)

)[
− η̃(t)ε̆(t) + η̆(t)ε̃(t) + ε̆(t)× ε̃(t)

]
(3.30)

Combining the CBO dynamics equations 3.3 and 3.4 with the gyro measure-

ment model of Equation 3.25 and the attitude measurement model from Equation
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3.27 results in the Langevin form differential equation for the CBO

ε̇m

η̇m

˙̂ε

˙̂η

˙̂
b


=



1
2

[
ηmI +

[
εm ×

]]
R
(
q−1
)[
ω + kmη̆ε̆

]
−1

2
εTmR

(
q−1
)[
ω + kmη̆ε̆

]
1
2

[
η̂I +

[
ε̂×

]]
R
(
q−1
m

)[
ω + b(T )− b̂+ keη̃mε̃m

]
−1

2
ε̂TR

(
q−1
m

)[
ω + b(T )− b̂+ keη̃mε̃m

]
−αη̃mε̃m



+



1
2

[
ηmI +

[
εm ×

]]
R
(
q−1
)
σm 0

−1
2
εTmR

(
q−1
)
σm 0

0 1
2

[
η̂I +

[
ε̂×

]]
R
(
q−1
m

)
σw

0 −1
2
ε̂TR

(
q−1
m

)
σw

0 0



nm
nw



(3.31)

where function of time notation has been suppressed for brevity. The quaternion

rotation matrix identities
[
ηI+

[
ε×
]]
R
(
q
)

=
[
ηI+

[
ε×
]]

and εTR
(
q
)

= εT were

used to further simplify the expression.

Per Section 2.1.3, the Langevin form error dynamics differential equation 3.31
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is interpreted as a Stratonovich SDE. Converting to an Itô SDE yields

dεm

dηm

dε̂

dη̂

db̂


=



1
2

[
ηmI +

[
εm ×

]]
R
(
q−1
)[
ω + kmη̆ε̆

]
− 3

8
σ2
mεm

−1
2
εTmR

(
q−1
)[
ω + kmη̆ε̆

]
− 3

8
σ2
mηm

1
2

[
η̂I +

[
ε̂×

]]
R
(
q−1
m

)[
ω + b(T )− b̂+ keη̃mε̃m

]
− 3

8
σ2
wε̂

−1
2
ε̂TR

(
q−1
m

)[
ω + b(T )− b̂+ keη̃mε̃m

]
− 3

8
σ2
wη̂

−αη̃mε̃m


dt

+



1
2

[
ηmI +

[
εm ×

]]
R
(
q−1
)
σm 0

−1
2
εTmR

(
q−1
)
σm 0

0 1
2

[
η̂I +

[
ε̂×

]]
R
(
q−1
m

)
σw

0 −1
2
ε̂TR

(
q−1
m

)
σw

0 0



dβm
dβw



(3.32)

where η̃m(t)ε̃m(t) is expanded in Equation 3.30.
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The process is similar for the TBO, resulting in the Itô SDE

dεm

dηm

dε̂

dη̂

dĉ0

...

dĉN



=



1
2

[
ηmI +

[
εm ×

]]
R
(
q−1
)[
ω + kmη̆ε̆

]
− 3

8
σ2
mεm

−1
2
εTmR

(
q−1
)[
ω + kmη̆ε̆

]
− 3

8
σ2
mηm

1
2

[
η̂I +

[
ε̂×

]]
R
(
q−1
m

)[
ω + b(T )− b̂(T ) + keη̃mε̃m

]
− 3

8
σ2
wε̂

−1
2
ε̂TR

(
q−1
m

)[
ω + b(T )− b̂(T ) + keη̃mε̃m

]
− 3

8
σ2
wη̂

−αη̃mε̃mg(hT − µ0)

...

−αη̃mε̃mg(hT − µN)



dt

+



1
2

[
ηmI +

[
εm ×

]]
R
(
q−1
)
σm 0

−1
2
εTmR

(
q−1
)
σm 0

0 1
2

[
η̂I +

[
ε̂×

]]
R
(
q−1
m

)
σw

0 −1
2
ε̂TR

(
q−1
m

)
σw

0 0

...
...

0 0



dβm
dβw



(3.33)
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3.8 Gyro CBO and TBO Stochastic Simulations

Stochastic simulation of the CBO and TBO were performed using the Euler-

Maruyama method detailed in Section 2.2. Note that the Kloeden-Platen Explicit

Weak 2.0 scheme, used for all other stochastic simulations in this thesis, is not

applicable here as the system is nonautonomous [45, p. 186]. Specifically, the gyro

bias is a function of temperature which, in turn, is an explicit function of time.

Simulation step size was set to ∆t = 0.1s.

The first simulation study consists of a comparison of a single realization of

both the TBO and CBO. In the simulation, the gyro experiences a thermal oscillation

of period 90 minutes, again representative of a spacecraft in LEO going into and out

of the Earth’s shadow. The gyro noise level was set to σw = 0.01 and the attitude

measurement noise level set to km
σ2
m

= 104. The TBO tracking gain is set to k = 1

and the adaptation gain is set to α = 0.01.

Plots of the instantaneous bias estimate error are given in Figure 3.31. Both

observers experience a transient of similar magnitude, but the CBO transient dies

out within seconds. The TBO transient is significantly longer, taking nearly half an

orbit. Of course this is to be expected; the TBO has no internal model of the gyro

thermal bias and must experience the effect of temperature variation in order to

estimate the corresponding portion of the bias thermal function. Once the TBO has

sampled enough of the temperature range, its bias estimate error is driven largely

by noise. The CBO, on the other hand, has a consistent bias estimate error as its

estimate attempts to keep up with the true gyro bias that is time varying. A plot
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of the TBO’s gyro thermal bias function estimate from the end of the simulation is

given in Figure 3.32.

Figure 3.31: Simulation run bias estimate errors (LEO)
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Figure 3.32: Simulation run (LEO)
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The next simulation study varies the thermal oscillation period τ similar to

the deterministic simulation study of the CBO in Section 3.3. The thermal profile

still assumes the form of Equation 3.9, repeated here for convenience

T (t) =
100

2
cos

(
2πt

τ
+ π

)
+

100

2
(3.34)

with the same amplitude of 100◦C, but 60 distinct simulations were conducted, each

with a different value of the thermal oscillation period τ . As in Section 3.3, the

smallest (fastest) thermal oscillation period considered is τ = 60 seconds, consistent

with a 1 rpm spin stabilized satellite. The largest (slowest) thermal oscillation

period considered is τ = 2 hours which is representative with a spacecraft in LEO.

The simulations were performed with the Euler-Maruyama scheme with a step size

of ∆t = 0.1s for 106 steps, for a total simulation time of just under 28 hours. In

each simulation realization, the observers had no initial bias knowledge.

A plot of the bias estimate error and the attitude estimate error for the CBO

and the TBO with each RBF choice is given in Figures 3.33 and 3.34. The true

gyro thermal bias function was modeled as the first order function of Equation 3.7

in Figure 3.33 and the third order function of Equation 3.8 in Figure 3.34.

The CBO estimate error performance approaches the TBO estimate error per-

formance for large τ , which is when the temperature varies so slowly that the gyro

thermal bias acts almost like a constant. The CBO performs the worst of all ob-

servers considered for rapid thermal variation (small τ) as expected. It is interesting

to note that the attitude estimate errors for all TBOs were nearly the same for the

first order gyro thermal bias model in Figure 3.33, however the attitude estimate
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errors for the boxcar TBO are slightly worse than the other TBOs for the third

order gyro thermal bias model in Figure 3.34.

The relative performance of the TBOs was more distinct in the bias estimate

error plots. The hat TBO had the lowest bias estimate error for all cases consid-

ered, followed by the Gaussian TBO, and then the hat TBO. Given that the total

simulation time was only 28 hours the Gaussian TBO has not reached steady state

in any of the plots.
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Figure 3.33: Bias and attitude estimate errors for the CBO, boxcar TBO, hat TBO, and

Gaussian TBO for a range of thermal oscillation periods τ for the first order

true gyro thermal bias function model of Equation 3.7.
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Figure 3.34: Bias and attitude estimate errors for the CBO, boxcar TBO, hat TBO, and

Gaussian TBO for a range of thermal oscillation periods τ for the third order

true gyro thermal bias function model of Equation 3.8.
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3.9 Gyro CBO and TBO Gain Search

While the work of Thienel and Sanner [95] proved the CBO was GES for

constant gyro bias, the deterministic Lyapunov theory and subsequent analysis used

was unable to provide any notion for how to select the tracking gain k and adaptation

gain α other than both must be positive. In this section, a search is conducted by

performing simulations for a number of choices of these parameters. Error statistics

from each simulation realization can be then used to form an understanding of the

observer performance as a function of the gain.

As before, in each simulation the gyro experiences a thermal oscillation of

period 90 minutes, again representative of a spacecraft in LEO going into and out

of the Earth’s shadow. The gyro noise level was set to σw = 0.01 and the attitude

measurement noise level set to km
σ2
m

= 104. Each simulation was run for 105 seconds

of simulation time (which is just over 18 orbits). The TBO had no initial knowledge

of the true gyro bias thermal function. For both observers, simulations were run

for every permutation of a choice of 20 different tracking gains k and 20 different

adaptation gains α for a total of 400 simulations.

The results of the search of the gain space are shown in Figure 3.35 for the

CBO, Figure 3.7 for the boxcar TBO, Figure 3.7 for the hat TBO, and Figure 3.7

for the Gaussian TBO. A black dot represents a choice of gains α and k where a

simulation was actually performed. MATLAB’s contourf utility was then used to

plot a surface generated from the numerical data for visualization purposes. The

numerical data suggest the underlying estimate error for the observers as a function
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of the gains may be a smooth function.

Of course the true underlying estimate error function may be of any shape.

The surfaces drawn in the figures are merely fits to a small sampling of the space.

Note also the computational expense required to generate these simulation surfaces

and the dependence on numerical integration techniques which may have numerical

stability issues. Additionally, this simulation study is representative of a single gyro

noise level, a single attitude measurement noise level, thermal oscillation period,

and so on.

The remainder of this thesis will pursue an analytic treatment of this problem.

The hope is to find analytic expressions for the estimation error as a function of the

gain and noise level parameters. If these analytic expressions exist, they can be

used to predict performance without the expense of running numerous simulations

to generate performance surfaces like those of the plots. Analytic expressions for

estimation error performance may even exist that could allow one to compute an

analytic optimum gain choice for a given set of sensor noise level parameters.
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Figure 3.35: Error statistics over a subset of the gain parameter space for the CBO as

obtained via numerical simulation for the linear gyro thermal bias model of

Equation 3.7.
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Figure 3.36: Error statistics over a subset of the gain parameter space for the boxcar TBO

as obtained via numerical simulation for the linear gyro thermal bias model

of Equation 3.7.
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Figure 3.37: Error statistics over a subset of the gain parameter space for the hat TBO

as obtained via numerical simulation for the linear gyro thermal bias model

of Equation 3.7.
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Figure 3.38: Error statistics over a subset of the gain parameter space for the Gaussian

TBO as obtained via numerical simulation for the linear gyro thermal bias

model of Equation 3.7.
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Chapter 4: Attitude Estimation Filter for Noisy Gyro Measurements

A nonlinear attitude estimation filter for angular rate gyro measurements with

additive noise and perfect attitude measurements is considered in this chapter. The

first section, Section 4.1, presents a formulation of the filter and a derivation of an

Itô SDE for its error dynamics. Weak stochastic stability is established and ana-

lytic filter performance bounds are found in Section 4.2 using stochastic Lyapunov

theory. Section 4.3 uses numerical simulation analysis to demonstrate the validity

of the theoretical claims, but the performance bounds are found to be conservative.

The next section, Section 4.4, contains a presentation of the Fokker-Planck PDE

associated with the error dynamics SDE.

To make further progress on the analysis, the system formulation is reduced

to the SO(2) case in Section 4.5. In Section 4.6 the SO(2) case is analyzed using

stochastic Lyapunov theory to verify weak stochastic stability and find performance

bounds. Section 4.7 includes a comparison of the stochastic Lyapunov performance

bounds with numerical simulation, and again the stochastic Lyapunov performance

bounds exhibit significant conservatism. A Fokker-Planck analysis in Section 4.8

yields an analytic solution to the stationary Fokker-Planck PDE; the section includes

the derivation of analytic expressions for the first two moments of the stationary
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probability density. The analytic solution for the ultimate moments are compared

to numerical simulation results in Section 4.9. Section 4.10 extrapolates the SO(2)

results to provide a heuristic upper bound for the SO(3) case that is tighter than

the SO(3) upper bounds generated via the stochastic Lyapunov analysis. Finally,

the intuition gained from the SO(2) analysis and the success of the heuristic upper

bound are used to solve the Fokker-Planck PDE for the SO(3) case in Section 4.11.

The solution is used to compute an analytic expression for the ultimate attitude

estimate error mean vector, variance, and covariance matrix. The analytic solution

is then compared to numerical simulation realizations in Section 4.12.

167



4.1 Attitude Filter Formulation in SO(3)

Consider a nonlinear attitude filter given angular rate gyro measurements mod-

eled as

ωg(t) = ω(t) + σwnw(t) (4.1)

where ωg(t) is the gyro measurement at time t, ω(t) is the true vehicle angular rate

at time t, σw is a positive scaling constant, and nw(·) is a zero mean unit variance

Gaussian white noise process.

Further assume that the filter has access to perfect (noise free) attitude mea-

surements qm(t) of the vehicle attitude q(t)

qm(t) = q(t) =

ε(t)
η(t)

 =



εx(t)

εy(t)

εz(t)

η(t)


(4.2)

The vehicle attitude q(t) evolves according to the usual kinematics equation

q̇(t) =
1

2
ω(t)⊗ q(t)

The nonlinear attitude filter is given by the equation

˙̂q(t) =
1

2

{
R
(
q̃−1(t)

)[
ωg(t) + keη̃(t)ε̃(t)

]}
⊗ q̂(t) (4.3)

where ke > 0 is a filter (estimator) gain parameter and q̂(t) is the filter’s estimate

of the vehicle attitude. The rotation parameterized by q̃(t) is the filter’s attitude
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estimate error, given by

q̃(t) =

ε̃(t)
η̃(t)

 = q(t)⊗ q̂−1(t) (4.4)

which is available in real time for the filter to use since the attitude measurements

are assumed to be noise free. The rotation R
(
q̃−1(t)

)
resolves the angular velocity

terms in the filter’s reference frame.

The attitude filter dynamics given by Equation 4.3 can be combined with

the quaternion error kinematics of Equation 2.71 and the measurement models of

Equations 4.1 and 4.2 to find the filter’s attitude estimate error dynamics as a

Langevin form differential equation:

˙̃q(t) =
1

2

{
ω(t)−R

(
q̃(t)

)
R
(
q̃−1(t)

)[
ω(t) + σwnw(t) + keη̃(t)ε̃(t)

]}
⊗ q̃(t)

=
1

2

{
− keη̃(t)ε̃(t)− σwnw(t)

}
⊗ q̃(t)

=

 −1
2
keη̃

2(t)ε̃(t)

1
2
keη̃(t)ε̃T (t)ε̃(t)

+

−1
2

{
η̃(t)I +

[
ε̃(t)×

]}
σw

1
2
ε̃T (t)σw

nw(t) (4.5)

Note that the filter’s attitude estimate error dynamics are independent of the vehi-

cle’s angular rate ω(t).

As explained in Section 2.1.3, the Langevin form error dynamics differential

equation 4.5 are interpreted as a Stratonovich SDE. Converting to an Itô SDE results
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in the following

dx̃(t) =

dε̃(t)
dη̃(t)



=

 −1
2
keη̃

2(t)ε̃(t)− 3
8
σ2
wε̃(t)

1
2
keη̃(t)ε̃T (t)ε̃(t)− 3

8
σ2
wη̃(t)

 dt+

−1
2

{
η̃(t)I +

[
ε̃(t)×

]}
σw

1
2
ε̃T (t)σw

 dβw(t)

= f
(
x̃(t)

)
dt+G

(
x̃(t)

)
dβw(t) (4.6)

Note that when ke = 0, the homogeneous dynamics of Itô SDE 4.6 are linear.

Choukroun [13] used this fact to show, in this particular case with no feedback, that

lim
t→∞

E
[
q̃(t)q̃T (t)

]
=

1

4
I (4.7)

and hence

lim
t→∞

E
[
ε̃T (t)ε̃(t)

]
=

3

4
(4.8)

However, in the case of feedback (when ke > 0) the homogeneous dynamics are

nonlinear and the techniques used by Choukroun do not apply.
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4.2 Stochastic Lyapunov Analysis in SO(3)

In this section, weak stochastic stability of the Itô error SDE 4.6 is demon-

strated and attitude filter performance bounds are obtained using stochastic Lya-

punov theory.

Theorem 4.2.1. The attitude estimate error dynamics of the Itô SDE 4.6 are weakly

stochastically stable. Further, the attitude estimate error has the ultimate bound

lim
t→∞

E
[
ε̃T (t)ε̃(t)

]
≤ 3

4
(4.9)

which is valid for any filter gain ke ≥ 0.

Proof. Choose as a Lyapunov function V (t) = ε̃T (t)ε̃(t). Then application of the

differential generator to the Lyapunov function with respect to the Itô SDE 4.6

yields

L V (t) =

(
∂V

∂x̃

)T
f
(
x̃(t)

)
+

1

2
tr

{
GT
(
x̃(t)

)∂2V

∂x̃2
G
(
x̃(t)

)}
= −keη̃2(t)ε̃T (t)ε̃(t)− σ2

wε̃
T (t)ε̃(t) +

3

4
σ2
w (4.10)

≤ −σ2
wε̃

T (t)ε̃(t) +
3

4
σ2
w (4.11)

Zakai’s stability theorem (Theorem 2.1.4) implies the system is weakly stochas-

tically stable.

Zakai’s ultimate moment bound theorem (Theorem 2.1.5) implies

lim
t→∞

E
[
σ2
wε̃

T (t)ε̃(t)
]
≤ 3

4
σ2
w (4.12)

Using the fact that the expectation operator is linear, simple algebraic manip-

ulation provides the attitude estimate error ultimate bound.
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Since application of Theorem 2.1.5 yielded the expectation equality 4.14, one

can further deduce a performance lower bound.

Corollary 4.2.1.1. The attitude estimate error dynamics of the Itô SDE 4.6 obey

the ultimate lower bound

lim
t→∞

E
[
ε̃T (t)ε̃(t)

]
≥
ke + σ2

w −
√
k2
e + σ4

w − keσ2
w

2ke
(4.13)

Proof. Apply Theorem 2.1.5 directly to Equation 4.10 to find

lim
t→∞

E
[
keη̃

2(t)ε̃T (t)ε̃(t) + σ2
wε̃

T (t)ε̃(t)
]

=
3

4
σ2
w

Using linearity of the expectation operator, the unit quaternion normalization

constraint 1 = ε̃T (t)ε̃(t) + η̃2(t), and rearranging results in

0 = lim
t→∞

{
E
[ (
ε̃T (t)ε̃(t)

)2
]
− ke + σ2

w

ke
E
[
ε̃T (t)ε̃(t)

]
+

3σ2
w

4ke

}

= lim
t→∞

{(
E
[
ε̃T (t)ε̃(t)

])2

+ V ar
[
ε̃T (t)ε̃(t)

]
− ke + σ2

w

ke
E
[
ε̃T (t)ε̃(t)

]
+

3σ2
w

4ke

}

(4.14)

Combining Equation 4.14 with the fact that V ar
[
ε̃T (t)ε̃(t)

]
≥ 0 provides the

second order polynomial inequality

0 ≥ lim
t→∞

{(
E
[
ε̃T (t)ε̃(t)

])2

− ke + σ2
w

ke
E
[
ε̃T (t)ε̃(t)

]
+

3σ2
w

4ke

}
(4.15)

Solving the polynomial inequality yields the lower ultimate performance bound.
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This ultimate lower bound matches the ultimate upper bound for small ke, as

seen in the limit

lim
ke→0

ke + σ2
w −

√
k2
e + σ4

w − keσ2
w

2ke
=

1

2
+ lim

ke→0

σ2
w − 2ke

4
√
k2
e + σ4

w − keσ2
w

=
3

4

where the second equality follows from L’Hôpital’s rule.

A somewhat tighter upper bound than the one of Theorem 4.2.1 may be de-

duced by further manipulating Equation 4.10 using an additional assumption.

Corollary 4.2.1.2. Assuming the underlying probability density of ε̃T (t)ε̃(t) is uni-

modal, the attitude estimate error dynamics of the Itô SDE 4.6 obey the ultimate

upper bound

lim
t→∞

E
[
ε̃T (t)ε̃(t)

]
≤
ke + σ2

w −
√

5
9
k2
e + σ4

w − keσ2
w

2ke
(4.16)

Proof. As the expression ε̃T (t)ε̃(t) is itself a random variable, the definition of vari-

ance provides

V ar
[
ε̃T (t)ε̃(t)

]
= E

[(
ε̃T (t)ε̃(t)

)2
]
−
(
E
[
ε̃T (t)ε̃(t)

])2

≥ 0

Combining with Equation 4.14 yields

0 ≤ lim
t→∞

{(
E
[
ε̃T (t)ε̃(t)

])2

−ke + σ2
w

ke
E
[
ε̃T (t)ε̃(t)

]
+

(
3σ2

w

4ke
+ supV ar

[
ε̃T (t)ε̃(t)

])}
(4.17)

For a random variable z restricted to the interval a ≤ z ≤ b with a unimodal

distribution, the Jacobson Inequality [36] is given as

V ar[z] ≤ (b− a)2

9
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If the underlying probability density of ε̃T (t)ε̃(t) is assumed to be unimodal

and recognizing that 0 ≤ ε̃T (t)ε̃(t) ≤ 1, the Jacobson Inequality for the system

provides

supV ar
[
ε̃T (t)ε̃(t)

]
≤ 1

9
(4.18)

Substituting the variance bound into Inequality 4.17 results in a second order poly-

nomial inequality in E
[
ε̃T (t)ε̃(t)

]
:

0 ≤ lim
t→∞

{(
E
[
ε̃T (t)ε̃(t)

])2

− ke + σ2
w

ke
E
[
ε̃T (t)ε̃(t)

]
+

(
3σ2

w

4ke
+

1

9

)}
(4.19)

Solving the polynomial inequality yields the final result.

This new ultimate upper bound matches the prior ultimate upper bound for

small ke, as seen in the limit

lim
ke→0

ke + σ2
w −

√
5
9
k2
e + σ4

w − keσ2
w

2ke
=

3

4

However, the new ultimate upper bound approaches a different limit for large ke,

specifically

lim
ke→∞

ke + σ2
w −

√
5
9
k2
e + σ4

w − keσ2
w

2ke
=

1

2
−
√

5

6
≈ 0.127

which is independent of the filter gain ke and the gyro noise parameter σw.
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4.3 Numerical Simulation of SO(3) Stochastic Lyapunov Bounds

Numerical simulations of the SO(3) attitude filter’s Itô SDE error dynamics

of Equation 4.6 were performed for a variety of system parameters. The Kloeden-

Platen Explicit Weak 2.0 numerical integration scheme discussed in Section 2.2.3

was used. For each simulation realization, a time step size of ∆t = 0.1 was used

for a total of 108 simulation steps. At the end of a simulation realization, the last

107 simulation steps were used to compute the ergodic mean of the filter attitude

estimate error ε̃T (t)ε̃(t), which is denoted Mean
ti∈Tss

[
ε̃T (ti)ε̃(ti)

]
. An ensemble of 7

realizations were simulated for each choice of system parameters; the ensemble mean

of the ergodic means was then computed: Mean
sims

[
Mean
ti∈Tss

[
ε̃T (ti)ε̃(ti)

]]
.

A gallery of plots of the filter attitude estimate errors are included in Figure

4.1. A magenta dot represents the ensemble mean of the ergodic means. The

stochastic Lyapunov bounds of the previous section are also drawn on the plots,

with the upper bound from Theorem 4.2.1 in red, the lower bound of Corollary

4.2.1.1 in blue, and the upper bound of Corollary 4.2.1.2 in yellow.

All three bounds correctly envelope the ensemble of numerical realizations.

The ultimate performance bound of Theorem 4.2.1 is neither dependent on the

filter gain ke nor the noise scaling parameter σw. While the value 3
4

does bound

the ensemble of the means of the realizations of mean(‖ε̃(t)‖2), the bound becomes

more conservative as ke increases. The ultimate upper bound of Corollary 4.2.1.2

does bow at the same transition region where the numerical realizations first start to

drop, but the upper bound quickly levels off and grows increasingly conservative as ke

175



increases. The lower ultimate bound is slightly conservative in the transition region,

but consistently tracks the overall shape of the numerical simulation performance.

Of all the stochastic Lyapunov bounds considered in this chapter, this is the only

bound to suitably capture the filter performance for large gain ke.

Figure 4.1: Comparison of simulation realizations of attitude estimate errors of the SO(3)

error dynamics Itô SDE of Equation 4.6 to the stochastic Lyapunov upper

bound from Theorem 4.2.1 in red, the lower bound of Corollary 4.2.1.1 in

blue, and the upper bound of Corollary 4.2.1.2 in yellow.
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4.4 Fokker-Planck PDE in SO(3)

Let p = p
(
q̃(t), t

)
= p

(
ε̃(t), η̃(t), t

)
= p

(
ε̃x(t), ε̃y(t), ε̃z(t), η̃(t), t

)
be the joint

probability density for the attitude filter error q̃(t). The Fokker-Planck partial

differential equation associated with the attitude filter error dynamics Itô SDE 4.6

is given by

∂p

∂t
= −

4∑
i=1

∂

∂q̃i

[
fi
(
q̃(t)

)
p(q̃(t), t)

]
+

1

2

4∑
i,j=1

∂2

∂q̃i∂q̃j

[{
G
(
q̃(t)

)
GT
(
q̃(t)

)}
i,j
p(q̃(t), t)

]

= ke

(
2η̃2(t)− 1

2

)
p(q̃(t), t)−

(
1

2
ke
(
1− η̃2(t)

)
+

3

8
σ2
w

)
η̃(t)

∂p

∂η̃

+

(
1

2
keη̃

2(t)− 3

8
σ2
w

)(
ε̃x(t)

∂p

∂ε̃x
+ ε̃y(t)

∂p

∂ε̃y
+ ε̃z(t)

∂p

∂ε̃z

)
− σ2

w

4

(
ε̃x(t)ε̃y(t)

∂2p

∂ε̃x∂ε̃y
+ ε̃x(t)ε̃z(t)

∂2p

∂ε̃x∂ε̃z
+ ε̃x(t)η̃(t)

∂2p

∂ε̃x∂η̃

+ ε̃y(t)ε̃z(t)
∂2p

∂ε̃y∂ε̃z
+ ε̃y(t)η̃(t)

∂2p

∂ε̃y∂η̃
+ ε̃z(t)η̃(t)

∂2p

∂ε̃z∂η̃

)
+
σ2
w

8

((
1− ε̃2

x(t)
) ∂2p

∂ε̃2
x

+
(
1− ε̃2

y(t)
) ∂2p

∂ε̃2
y

+
(
1− ε̃2

z(t)
) ∂2p

∂ε̃2
z

+
(
1− η̃2(t)

) ∂2p

∂η̃2

)
(4.20)

Since Theorem 4.2.1 proved the attitude filter error dynamics Itô SDE 4.6

is weakly stochastically stable, the joint probability density p
(
q̃(t), t

)
ultimately

approaches a stationary density ps
(
q̃
)

ps = ps
(
q̃
)

= lim
t→∞

p
(
q̃(t), t

)
(4.21)
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which obeys the stationary Fokker-Planck PDE

0 = ke

(
2η̃2 − 1

2

)
ps −

(
1

2
ke
(
1− η̃2

)
+

3

8
σ2
w

)
η̃
∂ps
∂η̃

+

(
1

2
keη̃

2 − 3

8
σ2
w

)(
ε̃x
∂ps
∂ε̃x

+ ε̃y
∂ps
∂ε̃y

+ ε̃z
∂ps
∂ε̃z

)
− σ2

w

4

(
ε̃xε̃y

∂2ps
∂ε̃x∂ε̃y

+ ε̃xε̃z
∂2ps
∂ε̃x∂ε̃z

+ ε̃xη̃
∂2ps
∂ε̃x∂η̃

+ ε̃yε̃z
∂2ps
∂ε̃y∂ε̃z

+ ε̃yη̃
∂2ps
∂ε̃y∂η̃

+ ε̃zη̃
∂2ps
∂ε̃z∂η̃

)
+
σ2
w

8

((
1− ε̃2

x

) ∂2ps
∂ε̃2

x

+
(
1− ε̃2

y

) ∂2ps
∂ε̃2

y

+
(
1− ε̃2

z

) ∂2ps
∂ε̃2

z

+
(
1− η̃2

) ∂2ps
∂η̃2

)
(4.22)

At this point the solution to the stationary Fokker-Planck PDE 4.22 may not

be immediately obvious. First, the system will be reduced to the SO(2) case to

gain a deeper understanding of the problem. The SO(2) analysis will result in a

stationary Fokker-Planck PDE with a known analytic solution as will be shown in

Section 4.8. The intuition gained from the SO(2) case will suggest a solution for the

full SO(3) case, which is revisited in Section 4.11.
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4.5 Attitude Filter Formulation in SO(2)

In this section, the attitude filter dynamical model is reduced to the single

axis case of SO(2). In following sections, the reduced model will be shown to yield

tractable analysis results that can provide insight into the full SO(3) case.

As explained in Section 2.3.2, the SO(3) dynamical model may be reduced to

the SO(2) case by simply zeroing out the y and z components of all vector quantities.

Equivalently, the vector quantities in the SO(3) case reduce to scalar quantities, and

SO(3) unit quaternions comprised of four elements reduce to SO(2) unit quaternions

with two elements.

The SO(3) Langevin form error dynamics of Equation 4.5 reduce in the SO(2)

case to

˙̃q(t) =
1

2

{
− σwnw(t)− keη̃(t)ε̃(t)

}
⊗ q̃(t)

=

−1
2
keη̃

2(t)ε̃(t)

1
2
keη̃(t)ε̃2(t)

+

−1
2
η̃(t)σw

1
2
ε̃(t)σw

nw(t) (4.23)

As explained in Section 2.1.3, the Langevin form error dynamics differential

equation 4.23 is interpreted as a Stratonovich SDE. Converting to Itô form yields

dx̃(t) =

dε̃(t)
dη̃(t)



=

−1
2
keη̃

2(t)ε̃(t)− 1
8
σ2
wε̃(t)

1
2
keη̃(t)ε̃2(t)− 1

8
σ2
wη̃(t)

 dt+

−1
2
η̃(t)σw

1
2
ε̃(t)σw

 dβw(t)

= f
(
x̃(t)

)
dt+G

(
x̃(t)

)
dβ(t) (4.24)
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The attitude filter error dynamics of Equation 4.23 can equivalently be written

in the SO(2) Euler Axis/Angle parameterization (as explained in Section 2.3.2) as

˙̃φ(t) = −keη̃(t)ε̃(t)− σwnw(t)

= −1

2
ke sin

(
φ̃(t)

)
− σwnw(t) (4.25)

which is immediately in Langevin form. Conversion to an Itô SDE is trivial as the

diffusion matrix G(φ̃(t)) = −σw is independent of the state φ̃(t):

dφ̃(t) = −1

2
ke sin

(
φ̃(t)

)
dt− σwdβw(t) (4.26)

Note of course that SDEs 4.24 and 4.26 describe the same system. One can

verify, for example, by taking the Itô derivative (given in Equation 2.16) of ε̃(t) =

a(t) sin
(
φ̃(t)

2

)
and η̃(t) = cos

(
φ̃(t)

2

)
with respect to the Itô SDE 4.26 and the trivial

SO(2) Euler axis SDE dã(t) = 0 to recover the Itô SDE 4.24 and vice-versa.
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4.6 Stochastic Lyapunov Analysis in SO(2)

In this section a stochastic Lyapunov stability analysis of the SO(2) Itô SDE

4.24 is conducted and performance bounds are established. The analysis in this

section is the SO(2) analog of the SO(3) analysis of Section 4.2.

Theorem 4.6.1. The attitude error dynamics of the Itô SDE 4.24 are weakly

stochastically stable. Further, the attitude estimate error has the ultimate bound

lim
t→∞

E[ε̃2(t)] ≤ 1

2
(4.27)

which is valid for all ke ≥ 0.

Proof. Choose as a Lyapunov function V (t) = ε̃2(t). Then application of the differ-

ential generator to the Lyapunov function with respect to the Itô SDE 4.24 yields

L V (t) =

(
∂V

∂x̃

)T
f
(
x̃(t)

)
+

1

2
tr

{
GT
(
x̃(t)

)∂2V

∂x̃2
G
(
x̃(t)

)}
= −keη̃2(t)ε̃2(t)− 1

4
σ2
wε̃

2(t) +
1

4
σ2
wη̃

2(t)

= −keη̃2(t)ε̃2(t)− 1

2
σ2
wε̃

2(t) +
1

4
σ2
w (4.28)

≤ −1

2
σ2
wε̃

2(t) +
1

4
σ2
w (4.29)

Zakai’s stability theorem (Theorem 2.1.4) implies the system is weakly stochas-

tically stable.

Application of Zakai’s ultimate moment theorem, Theorem 2.1.5, yields

lim
t→∞

E
[1

2
σ2
wε̃

2(t)
]
≤ 1

4
σ2
w (4.30)

Using the fact that the expectation operator is linear, simple algebraic manip-

ulation provides the attitude estimate error ultimate bound.
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As in the SO(3) case, this upper bound is a constant and does not capture

the performance improvement once the filter gain ke is large enough to mitigate

the influence of the gyro noise. Also as in the SO(3) case, it is possible to find an

ultimate lower bound on E
[
ε̃2(t)

]
.

Corollary 4.6.1.1. The attitude error dynamics of the Itô SDE 4.24 obey the ulti-

mate lower bound

lim
t→∞

E
[
ε̃2(t)

]
≥ 1

2
+
σ2
w

4ke
− 1

2

√
1 +

σ4
w

4k2
e

(4.31)

Proof. Apply Theorem 2.1.5 directly to Equation 4.28 to find

lim
t→∞

E
[
keη̃

2(t)ε̃2(t) +
1

2
σ2
wε̃

2(t)
]

=
1

4
σ2
w (4.32)

Using linearity of the expectation operator, the unit quaternion norm con-

straint ε̃2(t) + η̃2(t) = 1, and rearranging results in

0 = lim
t→∞

{
E
[
ε̃4(t)

]
−
(

1 +
σ2
w

ke

)
E
[
ε̃2(t)

]
+
σ2
w

4ke

}

= lim
t→∞

{(
E
[
ε̃2(t)

])2

+ V ar
[
ε̃2(t)

]
−
(

1 +
σ2
w

ke

)
E
[
ε̃2(t)

]
+
σ2
w

4ke

}
(4.33)

Combining Equation 4.36 with the fact that V ar[ε̃2(t)] ≥ 0 results in the

second order polynomial inequality

0 = lim
t→∞

{(
E
[
ε̃2(t)

])2

+ V ar
[
ε̃2(t)

]
−
(

1 +
σ2
w

ke

)
E
[
ε̃2(t)

]
+
σ2
w

4ke

}

≥ lim
t→∞

{(
E
[
ε̃2(t)

])2

−
(

1 +
σ2
w

ke

)
E
[
ε̃2(t)

]
+
σ2
w

4ke

}
(4.34)
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Solving the polynomial inequality yields the lower ultimate bound.

As in the SO(3) case, if the underlying probability density of ε̃2(t) is assumed

to be unimodal, the Jacobson inequality can be used to find a tighter ultimate upper

bound.

Corollary 4.6.1.2. If the underlying probability density of ε̃2(t) is unimodal, the

attitude estimate error dynamics of the Itô SDE 4.24 obey the ultimate upper bound

lim
t→∞

E
[
ε̃2(t)

]
≤ 1

2
+
σ2
w

4ke
− 1

2

√
5

9
+
σ4
w

4k2
e

(4.35)

Proof. From Equation 4.36 it is clear that

0 = lim
t→∞

{(
E
[
ε̃2(t)

])2

+ V ar
[
ε̃2(t)

]
−
(

1 +
σ2
w

ke

)
E
[
ε̃2(t)

]
+
σ2
w

4ke

}
(4.36)

≤ lim
t→∞

{(
E
[
ε̃2(t)

])2

−
(

1 +
σ2
w

ke

)
E
[
ε̃2(t)

]
+

(
σ2
w

4ke
+ supV ar

[
ε̃2(t)

])}

(4.37)

If one assumes the underlying probability density of ε̃2(t) is unimodal and

recognizing that 0 ≤ ε̃2(t) ≤ 1, the Jacobson Inequality [36] for this system provides

supV ar
[
ε̃2(t)

]
≤ 1

9
(4.38)

Substituting the variance bound into Inequality 4.37 results in a second order poly-

nomial inequality in E
[
ε̃2(t)

]
:

0 ≤ lim
t→∞

{(
E
[
ε̃2(t)

])2

−
(

1 +
σ2
w

ke

)
E
[
ε̃2(t)

]
+

(
σ2
w

4ke
+

1

9

)}
(4.39)
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Solving the polynomial inequality yields the final result.

This new ultimate upper bound from Corollary 4.6.1.2 matches the upper

bound from Theorem 4.6.1 for small ke as seen in the limit:

lim
ke→0

1

2
+
σ2
w

4ke
− 1

2

√
5

9
+
σ4
w

4k2
e

=
1

2
(4.40)

For large ke the upper bound from Corollary 4.6.1.2 has the high gain limit

lim
ke→∞

1

2
+
σ2
w

4ke
− 1

2

√
5

9
+
σ4
w

4k2
e

=
1

2

(
1−

√
5

9

)
=

1

2
−
√

5

6
≈ 0.127 (4.41)

which is precisely the same high gain limit as in the SO(3) case.
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4.7 Numerical Simulation of Stochastic SO(2) Lyapunov Bounds

Numerical simulations of the SO(2) attitude filter’s Itô SDE error dynamics

of Equation 4.24 were performed for a variety of system parameters. The Kloeden-

Platen Explicit Weak 2.0 numerical integration scheme discussed in Section 2.2.3

was used. For each simulation realization, a time step size of ∆t = 0.1 was used

for a total of 108 simulation steps. At the end of a simulation realization, the last

107 simulation steps were used to compute the empirical ergodic mean of the filter

attitude estimate error ε̃2(t). An ensemble of 7 realizations were simulated for each

choice of system parameters; as before, the ensemble mean of the ergodic means was

them computed.

A gallery of plots of the filter attitude estimate errors are included in Figure

4.2. A magenta dot indicates the ensemble mean of the ergodic means. The stochas-

tic Lyapunov bounds of the previous section are also drawn on the plots, with the

upper bound from Theorem 4.6.1 in red, the lower bound of Corollary 4.6.1.1 in blue,

and the upper bound of Corollary 4.6.1.2 in yellow. As in the SO(3) case, all the

stochastic Lyapunov bounds do correctly envelope the ensemble of the simulation

realizations. The ultimate upper bound from Theorem 4.6.1, which is independent

of any system parameters, is increasingly conservative for large ke but does tightly

match the numerical simulation data for small ke. The ultimate upper bound of

Corollary 4.6.1.2 bends at the transition region in the numerical simulation data

but levels off, growing increasingly conservative, for large ke. The ultimate lower

bound of Corollary 4.6.1.1 most closely bounds the numerical data.
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Figure 4.2: Comparison of simulation realizations of attitude estimate errors of the SO(2)

error dynamics Itô SDE of Equation 4.24 to the stochastic Lyapunov upper

bound from Theorem 4.6.1 in red, the lower bound of Corollary 4.6.1.1 in blue,

and the upper bound of Corollary 4.6.1.2 in yellow.
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4.8 Fokker-Planck Analysis in SO(2)

Let p = p
(
φ̃(t), t

)
be the joint probability density for the attitude filter error

φ̃(t). The Fokker-Planck PDE associated with the attitude filter error dynamics Itô

SDE 4.26 is given by

∂p

∂t
= −

1∑
i=1

∂

∂q̃i

[
fi
(
q̃(t)

)
p(q̃(t), t)

]
+

1

2

1∑
i,j=1

∂2

∂q̃i∂q̃j

[{
G
(
q̃(t)

)
GT
(
q̃(t)

)}
i,j
p(q̃(t), t)

]

=
1

2
ke cos

(
φ̃(t)

)
p
(
φ̃(t), t

)
+

1

2
ke sin

(
φ̃(t)

)∂p
∂φ̃

+
1

2
σ2
w

∂2p

∂φ̃2
(4.42)

Theorem 4.6.1 showed the attitude filter error dynamics of the Itô SDE 4.24

are weakly stochastically stable. As explained in Section 4.5 the Itô SDE 4.26 is an

equivalent parameterization of the Itô SDE 4.24 (as they both describe the same

underlying system) and thus the Itô SDE 4.26 is also weakly stochastically stable.

For further verification, one can form the SO(2) Fokker-Planck PDE in the SO(2)

quaternion parameterization and use the usual change of variables formula (along

with the unit quaternion norm constraint ε̃2(t) + η̃2(t) = 1 and the equivalent Euler

axis norm constraint ã(t) = 1) to arrive at the Fokker-Planck PDE 4.42.

Thus the joint probability density function p
(
φ̃(t), t

)
ultimately approaches a

stationary probability density function

ps = ps

(
φ̃
)

= lim
t→∞

p
(
φ̃(t), t

)
which is the solution to the stationary Fokker-Planck PDE

0 =
1

2
ke cos

(
φ̃
)
ps

(
φ̃
)

+
1

2
ke sin

(
φ̃
)∂ps
∂φ̃

+
1

2
σ2
w

∂2ps

∂φ̃2
(4.43)
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The SO(2) stationary Fokker-Planck PDE, which is actually an ODE, is tractable.

An exact solution is given in the following theorem.

Theorem 4.8.1. The stationary Fokker-Planck PDE of Equation 4.43 is solved by

the von Mises probability density function

ps

(
φ̃
)

=
1

N
exp

{
ke
σ2
w

cos
(
φ̃
)}

(4.44)

where the normalization constant N is given by

N =

∫ 2π

−2π

exp

{
ke
σ2
w

cos
(
φ̃
)}

dφ̃ = 4πI0

(
ke
σ2
w

)

and I0(x) is the 0th order modified Bessel function of the first kind.

Proof. The stationary Fokker-Planck PDE of Equation 4.43 is not solved by the

wrapped normal distribution, the wrapped Cauchy distribution, the wrapped ex-

ponential distribution, or the cardiod distribution [53, 60, 61]. Consider instead the

von Mises probability density function of the form

ps(φ̃) =
1

N
exp

{
κ cos

(
φ̃
)}

(4.45)

where the normalization constant N is a positive scalar and the concentration pa-

rameter κ is a non-negative scalar.

Substituting the PDF of Equation 4.45 into the right hand side of the PDE

4.43 yields the expression

{
1

2
cos
(
φ̃
)(
ke − σ2

wκ
)

+
1

2
sin2

(
φ̃
)(
σ2
wκ

2 − keκ
)} 1

N
exp

{
κ cos

(
φ̃
)}

which is zero for all possible φ̃ if and only if κ = ke
σ2
w

.
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Thus ps

(
φ̃
)

= 1
N

exp

{
ke
σ2
w

cos
(
φ̃
)}

solves the stationary Fokker-Planck PDE

with the to be determined scaling constant N .

The scaling constant N may be recovered by enforcing the probability density

normalization constraint ∫ 2π

−2π

ps

(
φ̃
)
dφ̃ = 1

Noting that the modified Bessel function of first kind is given in integral form [28]

as

Iν(x) =
1

π

∫ π

0

cos(νγ)ex cos(γ)dγ − sin(νπ)

π

∫ ∞
0

e− cosh(t)−νtdt (4.46)

the normalization constant can be found as

N =

∫ 2π

−2π

exp

{
ke
σ2
w

cos
(
φ̃
)}

dφ̃

= 2

∫ π

−π
exp

{
ke
σ2
w

cos
(
φ̃
)}

dφ̃

= 4

∫ π

0

exp

{
ke
σ2
w

cos
(
φ̃
)}

dφ̃

= 4πI0

(
ke
σ2
w

)

where the second equality holds because the integrand is periodic with period 2π

and the third equality holds because the integrand is even.

The analytic solution to the stationary Fokker-Planck PDE allows for the

computation of ultimate statistics of the filter’s attitude estimate error. The follow-

ing corollary shows that the SO(2) attitude estimation filter of this chapter is an

(ultimately) unbiased estimator.
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Corollary 4.8.1.1. The error dynamics of the Itô SDE 4.24 have the ultimate mean

lim
t→∞

E
[
ε̃(t)
]

= 0 (4.47)

Proof. Compute the expectation using the probability density function from Theo-

rem 4.8.1

lim
t→∞

E
[
ε̃(t)
]

=
1

N

∫ 2π

−2π

ε̃ exp

{
ke
σ2
w

cos
(
φ̃
)}

dφ̃

=
1

N

∫ 2π

−2π

sin

(
φ̃

2

)
exp

{
ke
σ2
w

cos
(
φ̃
)}

dφ̃

Note that sin(·) is an odd function but ecos(·) is an even function, so the inte-

grand is an odd function. The integral of an odd function over a symmetric interval

about the origin is zero.

The next corollary allows one to analytically compute the ultimate noncentral

second moment of the system. Since the ultimate mean was found to be zero in the

previous corollary, the ultimate noncentral second moment given below is also the

ultimate variance (also known as the ultimate central moment).

Corollary 4.8.1.2. The error dynamics of the Itô SDE 4.24 are such that

lim
t→∞

E
[
ε̃2(t)

]
=

1

2

1−
I1

(
ke
σ2
w

)
I0

(
ke
σ2
w

)
 (4.48)

where I0(x) and I1(x) are the 0th and 1st order modified Bessel functions of the first

kind respectively.
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Proof. Compute the expectation using the probability density function from Theo-

rem 4.8.1

lim
t→∞

E
[
ε̃2(t)

]
=

1

N

∫ 2π

−2π

ε̃2 exp

{
ke
σ2
w

cos
(
φ̃
)}

dφ̃

=
1

N

∫ 2π

−2π

sin2

(
φ̃

2

)
exp

{
ke
σ2
w

cos
(
φ̃
)}

dφ̃

=
1

2N

∫ 2π

−2π

exp

{
ke
σ2
w

cos
(
φ̃
)}

dφ̃− 1

2N

∫ 2π

−2π

cos
(
φ̃
)

exp

{
ke
σ2
w

cos
(
φ̃
)}

dφ̃

=
N

2N
− 2

N

∫ π

0

cos
(
φ̃
)

exp

{
ke
σ2
w

cos
(
φ̃
)}

dφ̃

=
2πI0

(
ke
σ2
w

)
− 2πI1

(
ke
σ2
w

)
4πI0

(
ke
σ2
w

)
=

1

2

1−
I1

(
ke
σ2
w

)
I0

(
ke
σ2
w

)


where the integral form of the modified Bessel function of the first kind, as stated

in Equation 4.46, was used.
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4.9 Numerical Simulation of Stochastic SO(2) Analytic Results

Figure 4.3 shows the probability density function computed from an ensem-

ble of 100 realizations for four different gyro noise levels. The von Mises PDF of

Equation 4.44 is also drawn in both plots and is in exact agreement with the nu-

merical data. The top plot depicts the PDFs in SO(2) quaternion space; note that

the data is restricted to the unit circle in (ε̃, η̃) space which is a great circle of the

unit quaternion hypersphere. The peaks in the PDF correspond to the η̃ = 1 and

η̃ = −1 “poles” on the unit quaternion hypersphere. The bottom plot shows the

same PDFs in Euler angle space, “unwrapping” the data for a two dimensional plot

and confirming the peaks (at φ̃ = 0 and φ̃ = ±2π ) have the same height. Note that

the PDF is bimodal and symmetric with period 2π. This is to be expected as there

is a 2-to-1 covering from quaternions to rotations; specifically, q̃ and −q̃ encode the

same rotation.
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Figure 4.3: PDFs for the Itô SDE 4.24 computed from an ensemble of 100 realizations for

four gyro noise levels agree with the von Mises PDF of Equation 4.44; depicted

in SO(2) quaternion space (top) and Euler angle space (bottom).
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Consider again the numerical simulations of the SO(2) attitude filter’s Itô

SDE error dynamics of Equation 4.24 first discussed in Section 4.7. Figure 4.4 com-

pares the analytic ultimate variance of Corollary 4.8.1.2 to numerical simulation

realizations. There is excellent agreement between the numerical simulation results

with the analytic ultimate variance for all sampled values of the system parame-

ters. Note that as Theorem 4.8.1 shows that the ultimate PDF of the underlying

system is parameterized by the ratio ke
σ2
w

, and consequently the ultimate variance

limt→∞E
[
ε̃2(t)

]
of Corollary 4.8.1.2 is parameterized by the same ratio, a plot of

the ultimate variance as a function of ke is merely shifted horizontally when σw

changes which correctly matches the numerical simulation results in Figure 4.4.
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Figure 4.4: Comparison of simulation realizations of attitude estimate errors of the SO(2)

error dynamics Itô SDE of Equation 4.24 to the ultimate variance given by

the analytic solution from Corollary 4.8.1.2.
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4.10 An SO(3) Upper Bound

This section explores possible ultimate upper bounds on ε̃T (t)ε̃(t) for the

SO(3) case by extrapolating the ultimate upper bound for ε̃2(t) for the SO(2) case

given in Corollary 4.8.1.2. The factor of 1
2

in Equation 4.48 is rescaled to 3
4

so the

SO(3) bound matches the low filter gain limit seen in all the bounds of Section 4.2

as well as the low filter gain limit apparent in the numerical simulation results of

Section 4.3. The general form of the notional bound is assumed to have the same

structure as that of Equation 4.48, but as the SO(3) case is driven by three indepen-

dent noise sources the notional bound is assumed to be parameterized by ke
ξσ2
w

where

the positive scaling constant ξ is to be determined. This results in the following

proposed SO(3) ultimate upper bound

bound

(
ξ,
ke
σ2
w

)
=

3

4

1−
I1

(
ke
ξσ2
w

)
I0

(
ke
ξσ2
w

)
 (4.49)

Figure 4.5 contains a gallery of the proposed upper bound for various choices

of ξ are superimposed on plots of the numerical simulation realizations of the SO(3)

attitude filter’s error first presented in Section 4.3. In all cases considered, the

choice of ξ = 3 in the expression of Equation 4.49 bound the simulation realizations;

however, smaller choices of ξ do not bound all simulation data.

The choice of ξ = 3 can be understood as an upper bound in the following

thought experiment. The variance of a random walk process in three dimensions

driven by three independent noise sources each acting on a single axis can be upper

bounded by the variance of a single dimensional random walk process driven by
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Figure 4.5: Comparison of simulation realizations of the attitude estimate error and the

notional bound of Equation 4.49 for several choices of ξ and for various gyro

measurement noise levels .

the same three independent noise sources each acting on the single axis. In other

words, focusing the noise energy of all noise sources along a single physical dimension

maximizes the potential for constructive and destructive interference. Of course, in

the SO(3) case considered in this chapter, the energy of any noise source is restricted

to a gyro measurement channel; since gyro measurement axes are orthogonal the

measurement noise sources will never “align” and the choice of ξ = 3 is thus an
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upper bound.

Following the above logic, the SO(3) attitude estimate variance may be upper

bounded by the attitude estimate variance of the SO(2) attitude filter when driven

by three independent noise sources. Assuming the three independent noise sources

each have the same variance σ2
w , the ultimate attitude estimate error variance is

equivalent to that of the SO(2) attitude filter when driven by a single noise of noise

variance 3σ2
w, yielding the heuristic upper bound

lim
t→∞

E
[
ε̃T (t)ε̃(t)

]
≤ 3

4

1−
I1

(
ke

3σ2
w

)
I0

(
ke

3σ2
w

)
 (4.50)

The upper bound is drawn again for clarity in the plots of Figure 4.6.
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Figure 4.6: Comparison of simulation realizations of the SO(3) attitude estimate error for

the Itô SDE 4.6 and the ultimate upper bound of Equation 4.50 for various

gyro measurement noise levels .
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4.11 Exact Solution to the Stationary SO(3) Fokker-Planck PDE

In this section, the understanding gained from the SO(2) analysis and its

SO(3) extrapolation are used to identify a possible distribution for the SO(3) case.

This distribution is then shown to indeed solve the SO(3) stationary Fokker-Planck

PDE. The solution is used to find an analytical expression for the ultimate attitude

estimate error which will be compared to numerical simulation data in the following

section.

Given the success of the von Mises distribution in the SO(2) case, it is natural

to look for generalizations for the SO(3) case. The Bingham distribution [8] is a

distribution on the d − 1 unit hypersphere in Rd; its probability density function

has the form

p(x) =
1

N
exp

{
xTMZMTx

}
(4.51)

where M ∈ Rd×d is an orthogonal matrix, Z ∈ Rd×d is a negative semidefinite di-

agonal matrix, and x ∈ Rd is such that ‖x‖ = 1 [48]. The quadratic form in the

exponential of the Bingham probability density function guarantee this distribution

antipodally symmetric [60], meaning p(x) = p(−x). This is a necessary property

for a PDF to be meaningful for an orientation distribution as q and −q encode

the same rotation. For certain choices of parameters, the two dimensional Bingham

distribution reduces to the von Mises distribution on the unit circle [48]. The Bing-

ham distribution has been used to represent the assumed probability distribution

for quaternions in a Bayesian filter by Glover and Kaelbling [27] and in a recursive

filter implementation by Kurz et al [48], as well as being used in texture analysis and
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crystallography [47]. A special case of the Bingham distribution, called the Bipolar

Bingham distribution by Kunze and Schaeben [47], has the form

ps

(
φ̃
)

=
1

N
exp

{
λ cos

(
φ̃
)}

=
1

N
exp

{
λ
(
2η̃2 − 1

)}
(4.52)

which is identical in structure to the von Mises probability density function that

solved the SO(2) case. This form is equivalent to the general Bingham PDF with

M = I and Z = diag (−λ,−λ,−λ, λ) and noting by the unit quaternion normal-

ization constraint 1 = ε̃2
x + ε̃2

y + ε̃2
z + η̃2. The next theorem shows that the Bipolar

Bingham distribution solves the SO(3) stationary Fokker-Planck PDE.

Theorem 4.11.1. The stationary distribution for the attitude estimate error dy-

namics of the Itô SDE 4.6 is given by the Bipolar Bingham probability density func-

tion

ps

(
φ̃
)

=
1

N
exp

{
ke
σ2
w

cos
(
φ̃
)}

(4.53)

where the normalization constant N is

N = π2I0

(
ke
σ2
w

)
− π2I1

(
ke
σ2
w

)

and I0(x) and I1(x) are the 0th and 1st order modified Bessel functions of the first

kind.

Proof. By definition η̃ = cos
(
φ̃
2

)
, so η̃2 = cos2

(
φ̃
2

)
= 1

2

(
1 + cos

(
φ̃
))

. Substituting

into the Bipolar Bingham PDF of Equation 4.52 yields

ps (q̃) =
1

N
exp

{
λ
(
2η̃2 − 1

)}
(4.54)
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Taking partial derivatives as appropriate and substituting into the right hand

side of the SO(3) stationary Fokker-Planck PDE 4.22 yields

{
− 1

2
(ke − σ2

wλ) + 2(1− λ)(ke − λσ2
w)η̃2 + 2λ(ke − λσ2

w)η̃4

}
ps

which is zero for all possible q̃ if and only if λ = ke
σ2
w

.

Thus ps

(
φ̃
)

= 1
N

exp

{
ke
σ2
w

cos
(
φ̃
)}

solves the stationary Fokker-Planck PDE

with the to be determined scaling constant N .

The scaling constant N may be recovered by enforcing the probability density

normalization constraint. Note that in the SO(2) case, the normalization constant

found in Theorem 4.8.1 was computed by integrating over the circle of unit radius,

so the differential element was a section of arc (again with unit radius). To find the

normalization constant here, the integration must be done over the surface of the unit

quaternion hypersphere which can be performed in hyperspherical coordinates; [47]

provides such a parameterization for unit quaternions as

q̃ =

ε̃
η̃

 =

ã sin
(
φ̃
2

)
cos
(
φ̃
2

)
 =



ε̃x

ε̃y

ε̃z

η̃


=



r̃ sin(θ̃) cos(ψ̃) sin
(
φ̃
2

)
r̃ sin(θ̃) sin(ψ̃) sin

(
φ̃
2

)
r̃ cos(θ̃) sin

(
φ̃
2

)
r̃ cos

(
φ̃
2

)


(4.55)

where the final parameterization utilizes hyper-spherical coordinates with radius

r̃ = 1. Essentially, the hyper-spherical coordinate parameterization is the Euler

axis and angle formulation with the Euler axis expressed in (traditional) spherical

coordinates ã = [sin(θ̃) cos(ψ̃) sin(θ̃) sin(ψ̃) cos(θ̃)]T with polar angle θ̃ ∈ [0, π] and

azimuth angle ψ̃ ∈ [0, 2π].
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The differential surface element for this manifold is given in [47] as

1

2
sin2

(
φ̃

2

)
sin
(
θ̃
)
dφ̃dθ̃dψ̃

so the normalization constant can be found by computing

N =

∫ 2π

ψ̃=0

∫ π

θ̃=0

∫ π

φ̃=0

exp

{
ke
σ2
w

cos
(
φ̃
)}1

2
sin2

(
φ̃

2

)
sin
(
θ̃
)
dφ̃dθ̃dψ̃

=
1

2

∫ 2π

0

dψ̃

∫ π

0

sin
(
θ̃
)
dθ̃

∫ π

0

sin2

(
φ̃

2

)
exp

{
ke
σ2
w

cos
(
φ̃
)}

dφ̃

= 2π

∫ π

0

(
1

2
− 1

2
cos
(
φ̃
))

exp

{
ke
σ2
w

cos
(
φ̃
)}

dφ̃

= π2I0

(
ke
σ2
w

)
− π2I1

(
ke
σ2
w

)
recognizing the integral form [5]

In(z) =
1

π

∫ π

0

cos(nx) exp

{
z cos(x)

}
dx ∀ n ∈ N (4.56)

as the nth order modified Bessel function of the first kind.

In the Bayesian filter work by Glover and Kaelbling [27] and the recursive filter

implementation by Kurz et al [48], the underlying probability distribution was as-

sumed to be given by a Bingham distribution. Motivations for this assumption were

given as its natural representation of quaternions, its relationship to the Gaussian

distribution, and a maximum entropy property [59]. The above theorem formally

proves that the attitude estimate error state for the filter of Equation 4.3 actually

does asymptotically converge to a Bingham distribution.

Now that the stationary Fokker-Planck PDE is known to be solved by the

Bipolar Bingham distribution of Equation 4.53, the PDF can be used to find analytic
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expressions for various stationary statistics of the process. The following corollary

shows the filter is ultimately an unbiased estimator.

Corollary 4.11.1.1. The error dynamics of the Itô SDE 4.6 have zero stationary

mean:

lim
t→∞

E
[
ε̃(t)

]
= 0

Proof. Using the hyperspherical parameterization for the unit quaternion from Equa-

tion 4.55, each element of the stationary mean vector may be computed in turn by

taking the expectation on the unit quaternion hypersphere as

lim
t→∞

E
[
ε̃(t)

]
=


mx

my

mz


where

mx =
1

N

∫ 2π

ψ̃=0

∫ π

θ̃=0

∫ π

φ̃=0

r̃ sin
(
θ̃
)

cos
(
ψ̃
)

sin

(
φ̃

2

)

× exp

{
ke
σ2
w

cos
(
φ̃
)}1

2
sin2

(
φ̃

2

)
sin
(
θ̃
)
dφ̃dθ̃dψ̃

=
1

2N

∫ 2π

0

cos
(
ψ̃
)
dψ̃

∫ π

0

sin2
(
θ̃
)
dθ̃

∫ π

0

sin3

(
φ̃

2

)
exp

{
ke
σ2
w

cos
(
φ̃
)}

dφ̃

= 0
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and

my =
1

N

∫ 2π

ψ̃=0

∫ π

θ̃=0

∫ π

φ̃=0

r̃ sin
(
θ̃
)

sin
(
ψ̃
)

sin

(
φ̃

2

)

× exp

{
ke
σ2
w

cos
(
φ̃
)}1

2
sin2

(
φ̃

2

)
sin
(
θ̃
)
dφ̃dθ̃dψ̃

=
1

2N

∫ 2π

0

sin
(
ψ̃
)
dψ̃

∫ π

0

sin2
(
θ̃
)
dθ̃

∫ π

0

sin3

(
φ̃

2

)
exp

{
ke
σ2
w

cos
(
φ̃
)}

dφ̃

= 0

and

mz =
1

N

∫ 2π

ψ̃=0

∫ π

θ̃=0

∫ π

φ̃=0

r̃ cos
(
θ̃
)

sin

(
φ̃

2

)

× exp

{
ke
σ2
w

cos
(
φ̃
)}1

2
sin2

(
φ̃

2

)
sin
(
θ̃
)
dφ̃dθ̃dψ̃

=
1

2N

∫ 2π

0

dψ̃

∫ π

0

sin
(
θ̃
)

cos
(
θ̃
)
dθ̃

∫ π

0

sin3

(
φ̃

2

)
exp

{
ke
σ2
w

cos
(
φ̃
)}

dφ̃

= 0

The next corollary develops an analytic expression for the ultimate noncentral

second moment limt→∞E
[
ε̃T (t)ε̃(t)

]
, which was only upper and lower bounded in

the analysis of Section 4.2 and heuristically bounded in the analysis of Section 4.10.

Note that as the ultimate mean was found to be zero, the ultimate noncentral second

moment is also the ultimate variance (the ultimate central second moment). The

ultimate variance is a function of the ratio of ke
σ2
w

.

Corollary 4.11.1.2. The error dynamics of the Itô SDE 4.6 are such that

lim
t→∞

E
[
ε̃T (t)ε̃(t)

]
=

3I0

(
ke
σ2
w

)
− 4I1

(
ke
σ2
w

)
+ I2

(
ke
σ2
w

)
4
(
I0

(
ke
σ2
w

)
− I1

(
ke
σ2
w

)) (4.57)
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where In(x) is the nth order modified Bessel function of the first kind.

Proof. Recall from Section 2.3.1 that ε̃(t) = ã(t) sin
(
φ̃(t)

2

)
.

Noting that by construction ãT (t)ã(t) = 1 ∀ t, the expectation can be com-

puted using the probability density function from Theorem 4.11.1 and integrating

on the manifold:

lim
t→∞

E
[
ε̃T (t)ε̃(t)

]
=

1

N

∫ 2π

ψ̃=0

∫ π

θ̃=0

∫ π

φ̃=0

sin2

(
φ̃

2

)
exp

{
ke
σ2
w

cos
(
φ̃
)}

× 1

2
sin2

(
φ̃

2

)
sin
(
θ̃
)
dφ̃dθ̃dψ̃

=
1

2N

∫ 2π

0

dψ̃

∫ π

0

sin
(
θ̃
)
dθ̃

∫ π

0

sin4

(
φ̃

2

)
exp

{
ke
σ2
w

cos
(
φ̃
)}

dφ̃

=
2π

N

∫ π

0

(
3

8
− 1

2
cos
(
φ̃
)

+
1

2
cos
(

2φ̃
))

exp

{
ke
σ2
w

cos
(
φ̃
)}

dφ̃

=
2π

π2
(
I0

(
ke
σ2
w

)
− I1

(
ke
σ2
w

))[3π

8
I0

(
ke
σ2
w

)
− π

2
I1

(
ke
σ2
w

)
+
π

8
I2

(
ke
σ2
w

)]

=
3I0

(
ke
σ2
w

)
− 4I1

(
ke
σ2
w

)
+ I2

(
ke
σ2
w

)
4
(
I0

(
ke
σ2
w

)
− I1

(
ke
σ2
w

))

The ultimate covariance matrix can similarly be found as shown in the follow-

ing corollary.

Corollary 4.11.1.3. The error dynamics of the Itô SDE 4.6 have the ultimate

covariance matrix

lim
t→∞

E
[
q̃(t)q̃T (t)

]
= diag

(ν
3
,
ν

3
,
ν

3
, 1− ν

)
(4.58)

where

ν

(
ke
σ2
w

)
=

3I0

(
ke
σ2
w

)
− 4I1

(
ke
σ2
w

)
+ I2

(
ke
σ2
w

)
4
(
I0

(
ke
σ2
w

)
− I1

(
ke
σ2
w

)) = lim
t→∞

E
[
ε̃T (t)ε̃(t)

]
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Proof. As in Corollary 4.11.1.1, the hyperspherical parameterization for the unit

quaternion from Equation 4.55 can be used to find each element of the stationary

covariance matrix by computing in turn the expectation on the unit quaternion

hypersphere for

lim
t→∞

E
[
q̃(t)q̃T (t)

]
= lim

t→∞



ε̃2
x(t) ε̃x(t)ε̃y(t) ε̃x(t)ε̃z(t) ε̃x(t)η̃(t)

ε̃x(t)ε̃y(t) ε̃2
y(t) ε̃y(t)ε̃z(t) ε̃y(t)η̃(t)

ε̃x(t)ε̃z(t) ε̃y(t)ε̃z(t) ε̃2
z(t) ε̃z(t)η̃(t)

ε̃x(t)η̃(t) ε̃y(t)η̃(t) ε̃z(t)η̃(t) η̃2(t)



=



cxx cxy cxz cxs

cxy cyy cyz cys

cxz cyz czz czs

cxs cys czs css


Noting r̃ = 1 ∀ t, the diagonal elements are computed as

cxx =
1

N

∫ 2π

ψ̃=0

∫ π

θ̃=0

∫ π

φ̃=0

r̃2 sin2
(
θ̃
)

cos2
(
ψ̃
)

sin2

(
φ̃

2

)

× exp

{
ke
σ2
w

cos
(
φ̃
)}1

2
sin2

(
φ̃

2

)
sin
(
θ̃
)
dφ̃dθ̃dψ̃

=
1

2N

∫ 2π

0

cos2
(
ψ̃
)
dψ̃

∫ π

0

sin3
(
θ̃
)
dθ̃

∫ π

0

sin4

(
φ̃

2

)
exp

{
ke
σ2
w

cos
(
φ̃
)}

dφ̃

=
1

2

1

π2
(
I0

(
ke
σ2
w

)
− I1

(
ke
σ2
w

)) π
1

4

3

[
3π

8
I0

(
ke
σ2
w

)
− π

2
I1

(
ke
σ2
w

)
+
π

8
I2

(
ke
σ2
w

)]

=
3I0

(
ke
σ2
w

)
− 4I1

(
ke
σ2
w

)
+ I2

(
ke
σ2
w

)
3 · 4

(
I0

(
ke
σ2
w

)
− I1

(
ke
σ2
w

)) =
ν
(
ke
σ2
w

)
3
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cyy =
1

N

∫ 2π

ψ̃=0

∫ π

θ̃=0

∫ π

φ̃=0

r̃2 sin2
(
θ̃
)

sin2
(
ψ̃
)

sin2

(
φ̃

2

)

× exp

{
ke
σ2
w

cos
(
φ̃
)}1

2
sin2

(
φ̃

2

)
sin
(
θ̃
)
dφ̃dθ̃dψ̃

=
1

2N

∫ 2π

0

sin2
(
ψ̃
)
dψ̃

∫ π

0

sin3
(
θ̃
)
dθ̃

∫ π

0

sin4

(
φ̃

2

)
exp

{
ke
σ2
w

cos
(
φ̃
)}

dφ̃

=
1

2

1

π2
(
I0

(
ke
σ2
w

)
− I1

(
ke
σ2
w

)) π
1

4

3

[
3π

8
I0

(
ke
σ2
w

)
− π

2
I1

(
ke
σ2
w

)
+
π

8
I2

(
ke
σ2
w

)]

=
3I0

(
ke
σ2
w

)
− 4I1

(
ke
σ2
w

)
+ I2

(
ke
σ2
w

)
3 · 4

(
I0

(
ke
σ2
w

)
− I1

(
ke
σ2
w

)) =
ν
(
ke
σ2
w

)
3

czz =
1

N

∫ 2π

ψ̃=0

∫ π

θ̃=0

∫ π

φ̃=0

r̃2 cos2
(
θ̃
)

sin2

(
φ̃

2

)

× exp

{
ke
σ2
w

cos
(
φ̃
)}1

2
sin2

(
φ̃

2

)
sin
(
θ̃
)
dφ̃dθ̃dψ̃

=
1

2N

∫ 2π

0

dψ̃

∫ π

0

sin
(
θ̃
)

cos2
(
θ̃
)
dθ̃

∫ π

0

sin4

(
φ̃

2

)
exp

{
ke
σ2
w

cos
(
φ̃
)}

dφ̃

=
1

2

1

π2
(
I0

(
ke
σ2
w

)
− I1

(
ke
σ2
w

)) 2π

1

2

3

[
3π

8
I0

(
ke
σ2
w

)
− π

2
I1

(
ke
σ2
w

)
+
π

8
I2

(
ke
σ2
w

)]

=
3I0

(
ke
σ2
w

)
− 4I1

(
ke
σ2
w

)
+ I2

(
ke
σ2
w

)
3 · 4

(
I0

(
ke
σ2
w

)
− I1

(
ke
σ2
w

)) =
ν
(
ke
σ2
w

)
3
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css =
1

N

∫ 2π

ψ̃=0

∫ π

θ̃=0

∫ π

φ̃=0

r̃2 cos2

(
φ̃

2

)

× exp

{
ke
σ2
w

cos
(
φ̃
)}1

2
sin2

(
φ̃

2

)
sin
(
θ̃
)
dφ̃dθ̃dψ̃

=
1

2N

∫ 2π

0

dψ̃

∫ π

0

sin
(
θ̃
)
dθ̃

∫ π

0

cos2

(
φ̃

2

)
sin2

(
φ̃

2

)
exp

{
ke
σ2
w

cos
(
φ̃
)}

dφ̃

=
1

2N

2π

1

2

1

∫ π

0

1

2

(
1 + cos

(
φ̃
)) 1

2

(
1− cos

(
φ̃
))

exp

{
ke
σ2
w

cos
(
φ̃
)}

dφ̃

=
π

2N

∫ π

0

(
1− cos2

(
φ̃
))

exp

{
ke
σ2
w

cos
(
φ̃
)}

dφ̃

=
π

2N

(
1

2
− 1

2
cos
(

2φ̃
))

exp

{
ke
σ2
w

cos
(
φ̃
)}

dφ̃

=
π

4

πI0

(
ke
σ2
w

)
− πI2

(
ke
σ2
w

)
π2I0

(
ke
σ2
w

)
− π2I1

(
ke
σ2
w

)
=

I0

(
ke
σ2
w

)
− I2

(
ke
σ2
w

)
4I0

(
ke
σ2
w

)
− 4I1

(
ke
σ2
w

) = 1− ν
(
ke
σ2
w

)

The off diagonal elements of the ultimate covariance matrix are all zero:

cxy =
1

N

∫ 2π

ψ̃=0

∫ π

θ̃=0

∫ π

φ̃=0

r̃2 sin2
(
θ̃
)

sin
(
ψ̃
)

cos
(
ψ̃
)

sin2

(
φ̃

2

)

× exp

{
ke
σ2
w

cos
(
φ̃
)}1

2
sin2

(
φ̃

2

)
sin
(
θ̃
)
dφ̃dθ̃dψ̃

=
1

2N

∫ 2π

0

sin
(
ψ̃
)

cos
(
ψ̃
)
dψ̃

∫ π

0

sin3
(
θ̃
)
dθ̃

∫ π

0

sin4

(
φ̃

2

)
exp

{
ke
σ2
w

cos
(
φ̃
)}

dφ̃

= 0
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cxz =
1

N

∫ 2π

ψ̃=0

∫ π

θ̃=0

∫ π

φ̃=0

r̃2 sin
(
θ̃
)

cos
(
θ̃
)

cos
(
ψ̃
)

sin2

(
φ̃

2

)

× exp

{
ke
σ2
w

cos
(
φ̃
)}1

2
sin2

(
φ̃

2

)
sin
(
θ̃
)
dφ̃dθ̃dψ̃

=
1

2N

∫ 2π

0

cos
(
ψ̃
)
dψ̃

∫ π

0

sin2
(
θ̃
)

cos
(
θ̃
)
dθ̃

∫ π

0

sin4

(
φ̃

2

)
exp

{
ke
σ2
w

cos
(
φ̃
)}

dφ̃

= 0

cxs =
1

N

∫ 2π

ψ̃=0

∫ π

θ̃=0

∫ π

φ̃=0

r̃2 sin
(
θ̃
)

cos
(
ψ̃
)

sin

(
φ̃

2

)
cos

(
φ̃

2

)

× exp

{
ke
σ2
w

cos
(
φ̃
)}1

2
sin2

(
φ̃

2

)
sin
(
θ̃
)
dφ̃dθ̃dψ̃

=
1

2N

∫ 2π

0

cos
(
ψ̃
)
dψ̃

∫ π

0

sin2
(
θ̃
)
dθ̃

∫ π

0

sin3

(
φ̃

2

)
cos

(
φ̃

2

)
exp

{
ke
σ2
w

cos
(
φ̃
)}

dφ̃

= 0

cyz =
1

N

∫ 2π

ψ̃=0

∫ π

θ̃=0

∫ π

φ̃=0

r̃2 sin
(
θ̃
)

cos
(
θ̃
)

sin
(
ψ̃
)

sin2

(
φ̃

2

)

× exp

{
ke
σ2
w

cos
(
φ̃
)}1

2
sin2

(
φ̃

2

)
sin
(
θ̃
)
dφ̃dθ̃dψ̃

=
1

2N

∫ 2π

0

sin
(
ψ̃
)
dψ̃

∫ π

0

sin2
(
θ̃
)

cos
(
θ̃
)
dθ̃

∫ π

0

sin4

(
φ̃

2

)
exp

{
ke
σ2
w

cos
(
φ̃
)}

dφ̃

= 0
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cys =
1

N

∫ 2π

ψ̃=0

∫ π

θ̃=0

∫ π

φ̃=0

r̃2 sin
(
θ̃
)

sin
(
ψ̃
)

sin

(
φ̃

2

)
cos

(
φ̃

2

)

× exp

{
ke
σ2
w

cos
(
φ̃
)}1

2
sin2

(
φ̃

2

)
sin
(
θ̃
)
dφ̃dθ̃dψ̃

=
1

2N

∫ 2π

0

sin
(
ψ̃
)
dψ̃

∫ π

0

sin2
(
θ̃
)
dθ̃

∫ π

0

sin3

(
φ̃

2

)
cos

(
φ̃

2

)
exp

{
ke
σ2
w

cos
(
φ̃
)}

dφ̃

= 0

czs =
1

N

∫ 2π

ψ̃=0

∫ π

θ̃=0

∫ π

φ̃=0

r̃2 cos
(
θ̃
)

sin

(
φ̃

2

)
cos

(
φ̃

2

)

× exp

{
ke
σ2
w

cos
(
φ̃
)}1

2
sin2

(
φ̃

2

)
sin
(
θ̃
)
dφ̃dθ̃dψ̃

=
1

2N

∫ 2π

0

dψ̃

∫ π

0

sin
(
θ̃
)

cos
(
θ̃
)
dθ̃

∫ π

0

sin3

(
φ̃

2

)
cos

(
φ̃

2

)
exp

{
ke
σ2
w

cos
(
φ̃
)}

dφ̃

= 0

Corollary 4.11.1.3 provides several insights for this system. First, the states

are ultimately uncorrelated for any filter gain ke and gyro noise σw. Next, the ul-

timate covariance matrix is parameterized by the ratio of ke
σ2
w

as was the ultimate

scalar ultimate variance as found in Corollary 4.11.1.2. Finally, in the no feedback

case (when ke = 0), then ν (0) = 3
4

and limt→∞E
[
q̃(t)q̃T (t)

]
= 1

4
I. This calculation

agrees with the value given in Choukroun [13] who studied the no feedback case.

Note however that Choukroun’s technique only found the ultimate covariance. The-

orem 4.11.1 provides the actual distribution, which in the no feedback case reduces
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to a uniform distribution on the unit quaternion hypersphere.
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4.12 Numerical Simulation of Stochastic SO(3) Analytic Results

The numerical simulation realizations of the SO(3) attitude filter’s estimate

error first presented in Section 4.3 are depicted again in the gallery of Figure 4.7,

now with the analytic ultimate attitude estimate error of Equation 4.57 superim-

posed. The analytic result exactly matches the numerical simulation data in all

cases considered.

Figure 4.7: The analytic ultimate attitude estimate error of Equation 4.57 exactly matches

simulation realizations of the SO(3) attitude estimate error for the Itô SDE 4.6.
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Chapter 5: Gyro Bias Filter for Gyro with Constant Bias and Addi-

tive Noise

In this chapter, the analysis of the previous chapter, which considered gyro

additive noise, is extended by also including constant gyro bias. The filter state is

augmented to include a gyro bias estimate which is driven by an adaptation law of

the observer from [95,101]. As in Chapter 4, the attitude measurements are assumed

to be perfect.

Section 5.1 presents the measurement models considered, the formulation of

the attitude filter, and culminates with the derivation of an Itô SDE for the system

error dynamics. The following Section 5.2 uses an appeal to the converse Lya-

punov theorem by leveraging the GES result of the deterministic observer of [95]

to demonstrate the filter is weakly stochastically stable. As the explicit form of

the Lyapunov function is not provided via the converse Lyapunov theorem, Zakai’s

Ultimate Moment Bound Theorem 2.1.5 cannot be invoked to bound system perfor-

mance. Section 5.3 develops the Fokker-Planck PDE associated with the filter error

dynamics.

The system is then reduced to the SO(2) case in Section 5.4 to gain more

insight into the filter error dynamics. The SO(2) stationary Fokker-Planck PDE
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again proves to be tractable in Section 5.5, yielding analytic expressions for the

ultimate attitude estimate error mean and variance as well as the ultimate gyro

bias estimate error mean and variance. These results are verified via simulation

analysis in Section 5.6. Similar to Section 4.10, Section 5.7 provides bounds for

the ultimate attitude estimate error mean and variance as well as the ultimate gyro

bias estimate error mean and variance for the SO(3) gyro constant bias filter by

extrapolating the SO(2) results of Section 5.5. Finally, the intuition gained from

the SO(2) analysis and the success of the heuristic upper bound are used to solve

the Fokker-Planck PDE for the SO(3) case in Section 5.8 which is subsequently used

to find analytic expressions for various ultimate statistics. The analytic expressions

for filter ultimate statistics are then compared to numerical simulation realizations

in Section 5.9.
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5.1 Gyro Bias Filter Formulation in SO(3)

In this section, the angular rate gyro measurements are modeled as having a

constant bias b as well as additive noise

ωg(t) = ω(t) + b+ σwnw(t) (5.1)

where, as before, ωg(t) is the gyro measurement at time t, ω(t) is the true vehicle

angular rate at time t, σw is a positive scaling constant, and nw(·) is a zero mean

unit variance Gaussian white noise process. As the bias is assumed to be constant,

ḃ(t) = 0.

Further assume that the filter has access to perfect (noise free) attitude mea-

surements qm(t) of the vehicle attitude q(t)

qm(t) = q(t) =

ε(t)
η(t)

 =



εx(t)

εy(t)

εz(t)

η(t)


(5.2)

The vehicle attitude q(t) evolves according to the usual kinematics equation

q̇(t) =
1

2
ω(t)⊗ q(t)

Consider a nonlinear adaptive gyro bias filter based on the observer from [95]

˙̂q(t) =
1

2

{
R
(
q̃−1(t)

)[
ωg(t)− b̂(t) + keη̃(t)ε̃(t)

]}
⊗ q̂(t)

˙̂
b(t) = −αη̃(t)ε̃(t) (5.3)
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where α > 0 is the filter adaptation gain parameter and b̂(t) is the filter’s estimate

at time t of the gyro bias b. The filter’s bias estimate error b̃(t) is given as

b̃(t) = b− b̂(t) (5.4)

The filter uses its bias estimate in the filter kinematic equation to attempt to correct

for the true bias in the gyro measurement. As before, ke > 0 is a filter (estimator)

gain parameter and q̂(t) is the filter’s estimate of the vehicle attitude. The rotation

parameterized by q̃(t) is the filter’s attitude estimate error, given by

q̃(t) =

ε̃(t)
η̃(t)

 = q(t)⊗ q̂−1(t) (5.5)

which is available in real time for the filter to use since the attitude measurements

are assumed to be noise free. The rotation R
(
q̃−1(t)

)
resolves the angular velocity

terms in the filter’s reference frame.

The attitude filter dynamics given by Equation 5.3 can be combined with

the quaternion error kinematics of Equation 2.71 and the measurement models of

Equations 5.1 and 5.2 to find the filter’s estimate error dynamics as a Langevin form

differential equation:
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˙̃x(t) =

 ˙̃q(t)

˙̃b(t)

 =


˙̃ε(t)

˙̃η(t)

˙̃b(t)



=


1
2

{
ω(t)− ω(t)− b− σwnw(t) + b̂(t)− keη̃(t)ε̃(t)

}
⊗ q̃(t)

αη̃(t)ε̃(t)



=


1
2

{
− keη̃(t)ε̃(t)− b̃(t)− σwnw(t)

}
⊗ q̃(t)

αη̃(t)ε̃(t)



=


−1

2
keη̃

2(t)ε̃(t)− 1
2

{
η̃(t)I +

[
ε̃(t)×

]}
b̃(t)

1
2
keη̃(t)ε̃T (t)ε̃(t) + 1

2
ε̃T (t)b̃(t)

αη̃(t)ε̃(t)

+


−1

2

{
η̃(t)I +

[
ε̃(t)×

]}
σw

1
2
ε̃T (t)σw

0

nw(t)

(5.6)

As explained in Section 2.1.3, the Langevin form error dynamics differential

equation 5.6 are interpreted as a Stratonovich SDE. Converting to an Itô SDE results
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in the following

dx̃(t) =

dq̃(t)

db̃(t)

 =


dε̃(t)

dη̃(t)

db̃(t)



=


−1

2
keη̃

2(t)ε̃(t)− 1
2

{
η̃(t)I +

[
ε̃(t)×

]}
b̃(t)− 3

8
σ2
wε̃(t)

1
2
keη̃(t)ε̃T (t)ε̃(t) + 1

2
ε̃T (t)b̃(t)− 3

8
σ2
wη̃(t)

αη̃(t)ε̃(t)

 dt

+


−1

2

{
η̃(t)I +

[
ε̃(t)×

]}
σw

1
2
ε̃T (t)σw

0

 dβw(t)

= f
(
x̃(t)

)
dt+G

(
x̃(t)

)
dβw(t) (5.7)
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5.2 Stochastic Stability Analysis in SO(3)

A tractable analysis demonstrating weak stochastic stability of the gyro con-

stant bias filter’s error dynamics of Itô SDE 5.7 does not appear to be as straight-

forward as the stability analysis for the filters of Chapters 4 and 5. An explanation

will be given in this section; however, a conclusion of weak stochastic stability is

reached by leveraging analysis of the deterministic case and an appeal to a converse

Lyapunov theorem.

A Lyapunov function that allows one to determine weak stochastic stability for

the error dynamics of the Itô SDE 5.7 using Zakai’s stability result of Theorem 2.1.4

has eluded the author. Consider a simple augmentation of the Lyapunov function

that proved successful in Section 4.2

V
(
x̃(t)

)
=

1

2
ε̃T (t)ε̃(t) +

1

4α
b̃T (t)b̃(t) (5.8)

Application of the differential generator with respect to the Itô SDE 5.7 yields

L V
(
x̃(t)

)
=

(
∂V

∂x̃

)T
f
(
x̃(t)

)
+

1

2
tr

{
GT
(
x̃(t)

)∂2V

∂x̃2
G
(
x̃(t)

)}
= −1

2
keη̃

2(t)ε̃T (t)ε̃(t)− 1

2
σ2
wε̃

T (t)ε̃(t) +
3

8
σ2
w (5.9)

Note that while L V is negative for sufficiently large attitude estimate error, it is

completely unaffected by the bias estimate error state. Zakai’s Stability Theorem

2.1.4 requires L V to be negative definite for any ‖x̃‖ > R0 (for some appropri-

ate choice of finite R0) to conclude weak stochastic stability. Thus the Lyapunov

function of Equation 5.8 does not meet the conditions of Zakai’s theorem; however,
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Zakai’s Stability Theorem does not necessarily conclude that the system of Itô SDE

5.7 is not weakly stochastically stable. It could very well be the case that another

Lyapunov function does meet the conditions of Zakai’s Stability Theorem.

This situation is frequently encountered in deterministic adaptive estimation

and control theory [32]. In the deterministic version of the error dynamics for this

filter (when σw = 0) the Lyapunov function of Equation 5.8 encounters a similar

issue, V̇ is only negative semidefinite. The invariance principle of LaSalle for au-

tonomous systems, or the lemma by Barbalat for nonautonomous sytems, can be

used [42] to show that the system is still stable in the deterministic case. There

are nonautonomous stochastic extensions of LaSalle’s Theorem [15,57,86]; however

the versions cited all require L V to be upper bounded [15] or ultimately upper

bounded [57, 86] by a negative semidefinite function. The positive constant 3
8
σ2
w at

the end of L V of Equation 5.9 prevents the Lyapunov function of 5.8 from satisfying

the conditions of the cited stochastic extensions of LaSalle’s Theorem.

Fortunately a much stronger stability result for a deterministic version of the

gyro constant bias filter, referred to here as a constant bias observer, is available

due to Thienel and Sanner [95]. In addition to merely showing the the constant

bias observer is stable via Barbalat’s Lemma, they were able to prove the observe is

Globally Exponentially Stable (GES). The fact that the observer’s estimate errors

go to zero is intuitively obvious; a bias estimate error would corrupt the observer’s

attitude kinematics which would in turn lead to an attitude estimate error, but

attitude estimate errors are used to drive the bias adaptation law to correct the

bias estimate. The proof behind this intuition is not obvious; it was conducted via
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a time varying observability analysis that effectively demonstrated persistency of

excitation of the error states. Thienel and Sanner were able to conclude that not

only do ε̃(t) and b̃(t) go to zero, but the convergence is exponentially fast.

As the deterministic observer’s error dynamics are GES, the Converse Lya-

punov Theorem 2.1.3 may be employed to demonstrate existence of a Lyapunov

function with the property

∂V

∂x̃
flang(x̃(t)) ≤ −c3‖x̃‖2 (5.10)

where

flang(x̃(t)) =


−1

2
keη̃

2(t)ε̃(t)− 1
2

{
η̃(t)I +

[
ε̃(t)×

]}
b̃(t)

1
2
keη̃(t)ε̃T (t)ε̃(t) + 1

2
ε̃T (t)b̃(t)

αη̃(t)ε̃(t)

 (5.11)

Equation 5.10 implies that the Stratonovich to Itô conversion term

1

2

∑
j

∂gj
∂x̃
gj = fconv(x̃(t)) =


−3

8
σ2
wε̃(t)

−3
8
σ2
wη̃(t)

0


is such that

∂V

∂x̃
fconv(x̃(t)) ≤ −c3‖x̃‖2

Provided the additional assumption that ∂2V
∂x̃2 is bounded, this Lyapunov function

satisfies the conditions of Zakai’s Stability Theorem 2.1.4 and the gyro constant bias

filter’s error dynamics of Itô SDE 5.7 are weakly stochastically stable. Note that

the explicit form of this Lyapunov function remains unknown and thus can not be

used with Zakai’s Ultimate Moment Bound Theorem 2.1.5 to provide a quantitative

performance bound.
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5.3 Fokker-Planck PDE in SO(3)

Let

p = p
(
q̃(t), b̃(t), t

)
= p
(
ε̃(t), η̃(t), b̃(t), t

)
= p
(
ε̃x(t), ε̃y(t), ε̃z(t), η̃(t), b̃x(t), b̃y(t), b̃z(t), t

)
be the joint probability density for the attitude estimate error q̃(t) and gyro bias

estimate error b̃(t). The Fokker-Planck PDE associated with the gyro bias filter

error dynamics Itô SDE 5.7 is given by

∂p

∂t
= ke

(
2η̃2(t)− 1

2

)
p−

(
1

2
ke
(
1− η̃2(t)

)
η̃(t) +

3

8
σ2
wη̃(t) +

1

2
ε̃εεT (t)b̃bb(t)

)
∂p

∂η̃

+
1

2

{(
keη̃

2(t)− 3

4
σ2
w

)
ε̃x(t) + η̃(t)b̃x(t)− ε̃z(t)b̃y(t) + ε̃y(t)b̃z(t)

}
∂p

∂ε̃x

+
1

2

{(
keη̃

2(t)− 3

4
σ2
w

)
ε̃y(t) + η̃(t)b̃y(t)− ε̃x(t)b̃z(t) + ε̃z(t)b̃x(t)

}
∂p

∂ε̃y

+
1

2

{(
keη̃

2(t)− 3

4
σ2
w

)
ε̃x(t) + η̃(t)b̃z(t)− ε̃y(t)b̃x(t) + ε̃x(t)b̃y(t)

}
∂p

∂ε̃z

− σ2
w

4

(
ε̃x(t)ε̃y(t)

∂2p

∂ε̃x∂ε̃y
+ ε̃x(t)ε̃z(t)

∂2p

∂ε̃x∂ε̃z
+ ε̃x(t)η̃(t)

∂2p

∂ε̃x∂η̃

+ ε̃y(t)ε̃z(t)
∂2p

∂ε̃y∂ε̃z
+ ε̃y(t)η̃(t)

∂2p

∂ε̃y∂η̃
+ ε̃z(t)η̃(t)

∂2p

∂ε̃z∂η̃

)
+
σ2
w

8

((
1− ε̃2

x(t)
) ∂2p

∂ε̃2
x

+
(
1− ε̃2

y(t)
) ∂2p

∂ε̃2
y

+
(
1− ε̃2

z(t)
) ∂2p

∂ε̃2
z

+
(
1− η̃2(t)

) ∂2p

∂η̃2

)
−αη̃(t)

(
ε̃x(t)

∂p

∂b̃x
+ ε̃y(t)

∂p

∂b̃y
+ ε̃z(t)

∂p

∂b̃z

)
(5.12)

which is the same PDE as Equation 4.20 with additional terms associated with the

gyro bias estimation error highlighted in red.

Since the gyro bias filter error dynamics Itô SDE 5.7 were shown to be weakly

stochastically stable in Section 5.2, the joint probability density p
(
q̃(t), b̃(t), t

)
ul-
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timately approaches a stationary density ps

(
q̃, b̃
)

ps = ps

(
q̃, b̃
)

= lim
t→∞

p
(
q̃(t), b̃(t), t

)
(5.13)

which obeys the stationary Fokker-Planck PDE

0 = ke

(
2η̃2 − 1

2

)
ps −

(
1

2
ke
(
1− η̃2

)
η̃ +

3

8
σ2
wη̃ +

1

2
ε̃εεT b̃bb

)
∂ps
∂η̃

+
1

2

{(
keη̃

2 − 3

4
σ2
w

)
ε̃x + η̃b̃x − ε̃z b̃y + ε̃y b̃z

}
∂ps
∂ε̃x

+
1

2

{(
keη̃

2 − 3

4
σ2
w

)
ε̃y + η̃b̃y − ε̃xb̃z + ε̃z b̃x

}
∂ps
∂ε̃y

+
1

2

{(
keη̃

2 − 3

4
σ2
w

)
ε̃x + η̃b̃z − ε̃y b̃x + ε̃xb̃y

}
∂ps
∂ε̃z

− σ2
w

4

(
ε̃xε̃y

∂2ps
∂ε̃x∂ε̃y

+ ε̃xε̃z
∂2ps
∂ε̃x∂ε̃z

+ ε̃xη̃
∂2ps
∂ε̃x∂η̃

+ ε̃yε̃z
∂2ps
∂ε̃y∂ε̃z

+ ε̃yη̃
∂2ps
∂ε̃y∂η̃

+ ε̃zη̃
∂2ps
∂ε̃z∂η̃

)
+
σ2
w

8

((
1− ε̃2

x

) ∂2ps
∂ε̃2

x

+
(
1− ε̃2

y

) ∂2ps
∂ε̃2

y

+
(
1− ε̃2

z

) ∂2ps
∂ε̃2

z

+
(
1− η̃2

) ∂2ps
∂η̃2

)
−αη̃

(
ε̃x
∂ps

∂b̃x
+ ε̃y

∂ps

∂b̃y
+ ε̃z

∂ps

∂b̃z

)
(5.14)

which is similar to the stationary Fokker-Planck PDE of Equation 4.22 with new

terms highlighted in red.

The solution to the stationary Fokker-Planck PDE 5.14 may not be clear at

this point. First, the system will be reduced to the SO(2) case to gain a deeper

understanding of the problem. The SO(2) analysis will result in a stationary Fokker-

Planck PDE with a known analytic solution as will be shown in Section 5.5. The

intuition gained from the SO(2) case will suggest a solution for the full SO(3) case,

which is revisited in Section 5.8.
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5.4 Attitude Filter Formulation in SO(2)

In this section, the gyro bias filter dynamical model is reduced to the single

axis case of SO(2). In following sections, the reduced model will provide tractable

analytic results that can provide insight into the full SO(3) case.

As explained in Section 2.3.2, the SO(3) dynamical model may be reduced to

the SO(2) case by simply zeroing out the y and z components of all vector quantities.

Equivalently, the vector quantities in the SO(3) case reduce to scalar quantities, and

SO(3) unit quaternions comprised of 4 elements reduce to SO(2) unit quaternions

with two elements.

The SO(3) Langevin form error dynamics of Equation 5.6 reduce in the SO(2)

case to

˙̃x(t) =

 ˙̃q(t)

˙̃b(t)

 =


˙̃ε(t)

˙̃η(t)

˙̃b(t)



=


1
2

{
− keη̃(t)ε̃(t)− b̃(t)− σwnw(t)

}
⊗ q̃(t)

αη̃(t)ε̃(t)



=


−1

2
keη̃

2(t)ε̃(t)− 1
2
η̃(t)b̃(t)

1
2
keη̃(t)ε̃2(t) + 1

2
ε̃(t)b̃(t)

αη̃(t)ε̃(t)

+


−1

2
η̃(t)σw

1
2
ε̃(t)σw

0

nw(t) (5.15)

As explained in Section 2.1.3, the Langevin form error dynamics differential
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equation 5.15 is interpreted as a Stratonovich SDE. Converting to Itô form yields

dx̃(t) =

dq̃(t)

db̃(t)

 =


dε̃(t)

dη̃(t)

db̃(t)



=


−1

2
keη̃

2(t)ε̃(t)− 1
2
η̃(t)b̃(t)− 1

8
σ2
wε̃(t)

1
2
keη̃(t)ε̃2(t) + 1

2
ε̃(t)b̃(t)− 1

8
σ2
wη̃(t)

αη̃(t)ε̃(t)

 dt+


−1

2
η̃(t)σw

1
2
ε̃(t)σw

0

 dβw(t)

= f
(
x̃(t)

)
dt+G

(
x̃(t)

)
dβw(t) (5.16)

The attitude filter error dynamics of Equation 5.15 can equivalently be written

in the SO(2) Euler Axis/Angle parameterization (as explained in Section 2.3.2). Let

q̃ =

ε̃
η̃

 =

sin
(
φ̃
2

)
cos
(
φ̃
2

)


Then the SO(2) Euler Axis/Angle parameterization of the filter error dynamics is

given as

˙̃y(t) =

 ˙̃φ(t)

˙̃b(t)

 =

−keη̃(t)ε̃(t)− b̃(t)− σwnw(t)

αη̃(t)ε̃(t)



=

−1
2
ke sin

(
φ̃(t)

)
− b̃(t)

1
2
α sin

(
φ̃(t)

)
+

−σw
0

nw(t) (5.17)

which is immediately in Langevin form. Conversion to an Itô SDE is trivial as the
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diffusion matrix
[
− σw 0

]T
is independent of the state:

dỹ(t) =

dφ̃(t)

db̃(t)



=

−1
2
ke sin

(
φ̃(t)

)
− b̃(t)

1
2
α sin

(
φ̃(t)

)
 dt+

−σw
0

 dβw(t)

= f
(
ỹ(t)

)
dt+G

(
ỹ(t)

)
dβ(t) (5.18)
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5.5 Fokker-Planck Analysis in SO(2)

In this section the stationary Fokker-Planck PDE is derived and directly solved

for the Gyro Constant Bias Filter. The solution is subsequently used to find analytic

ultimate expectations for the filter’s attitude estimate error mean, attitude estimate

error variance, the gyro bias estimate error mean, and the gyro bias estimate error

variance.

Let p = p
(
ỹ(t), t

)
= p

(
φ̃(t), b̃(t), t

)
be the joint probability density for the

SO(2) Gyro Constant Bias Filter estimate error states. Then the Fokker-Planck

PDE associated with the Itô SDE 5.18 is given by

∂p

∂t
= −

2∑
i=1

∂

∂ỹi

[
fi
(
ỹ(t)

)
p
(
ỹ(t), t

)]
+

1

2

2∑
i,j=1

∂2

∂ỹi∂ỹj

[{
G
(
ỹ(t)

)
GT
(
ỹ(t)

)}
i,j
p
(
ỹ(t), t

)]

=
1

2
ke cos

(
φ̃(t)

)
p
(
ỹ(t), t

)
+

(
1

2
ke sin

(
φ̃(t)

)
+ b̃(t)

)
∂p

∂φ̃

− 1

2
α sin

(
φ̃(t)

) ∂p
∂b̃

+
1

2
σ2
w

∂2p

∂φ̃2
(5.19)

Note that as the bias estimate error is not directly driven by the noise process,

the bottom entry of G is zero in Equation 5.18. Thus there is no ∂2p

∂b̃2
term in the

Fokker-Planck PDE.

The SO(2) Gyro Constant Bias Filter is weakly stochastically stable as the full

SO(3) version was shown to be so via a converse Lyapunov theorem in Section 5.2.

Thus the joint probability density function p
(
φ̃(t), b̃(t), t

)
ultimately approaches a

stationary probability density function

ps = ps

(
φ̃, b̃
)

= lim
t→∞

p
(
φ̃(t), b̃(t), t

)
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which is a solution to the stationary Fokker-Planck PDE

0 = ke cos
(
φ̃
)
ps

(
φ̃, b̃
)

+
(
ke sin

(
φ̃
)

+ 2b̃
)∂ps
∂φ̃
− α sin

(
φ̃
) ∂ps
∂b̃

+ σ2
w

∂2ps

∂φ̃2
(5.20)

The stationary Fokker-Planck PDE is solved in the following theorem.

Theorem 5.5.1. The stationary Fokker-Planck PDE of Equation 5.20 is solved by

the probability density function

ps

(
φ̃, b̃
)

=
1

4πI0

(
ke
σ2
w

) exp

{
ke
σ2
w

cos
(
φ̃
)} 1√

πασ2
w

ke

exp

{
− ke
ασ2

w

b̃2

}
(5.21)

where I0(x) is the 0th order modified Bessel function of the first kind.

Proof. Note that as φ̃(t) ∈
(
− 2π, 2π

)
and b̃(t) ∈ R, the domain of the filter’s

estimate error state covers the surface of an infinitely long cylinder. So, check

to see if the cylindrical probability density function of Mardia and Sutton [62] is

a solution to the stationary Fokker-Planck PDE of Equation 5.20. Mardia and

Sutton’s probability density function is of the form

ps

(
φ̃, b̃
)

=
1

N
exp

{
κ cos(φ̃) + νb̃2

}

where the normalization constant N is a positive scalar, the concentration parameter

κ is a non-negative scalar, and ν is a scalar.

Substituting the probability density function into the right hand side of PDE

5.20 yields the expression{(
ke − σ2

wκ
)

cos
(
φ̃
)
− κ
(
ke − σ2

wκ
)

sin2
(
φ̃
)
− 2
(
κ− αν

)
b̃ sin

(
φ̃
)}

ps

(
φ̃, b̃
)
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which is zero for all possible
(
φ̃, b̃
)

if and only if κ = ke
σ2
w

and ν = −ke
ασ2

w
. Thus the

solution to the stationary Fokker-Planck PDE is given by

ps

(
φ̃, b̃
)

=
1

N
exp

{
ke
σ2
w

cos
(
φ̃
)
− ke
ασ2

w

b̃2

}
(5.22)

The scaling constant N may be recovered by enforcing the probability density

normalization constraint ∫ 2π

−2π

∫ ∞
−∞

ps

(
φ̃, b̃
)
db̃dφ̃ = 1

Substituting in the probability density function of Equation 5.22 and rearranging

results in

N =

∫ 2π

−2π

∫ ∞
−∞

exp

{
ke
σ2
w

cos
(
φ̃
)
− ke
ασ2

w

b̃2

}
db̃dφ̃

=

∫ 2π

−2π

exp

{
ke
σ2
w

cos
(
φ̃
)}

dφ̃

∫ ∞
−∞

exp

{
− ke
ασ2

w

b̃2

}
db̃ (5.23)

The first integral of Equation 5.23 was solved in the proof of Theorem 4.8.1 as∫ 2π

−2π

exp

{
ke
σ2
w

cos
(
φ̃
)}

dφ̃ = 4πI0

(
ke
σ2
w

)
where I0(x) is the 0th order modified Bessel function of the first kind. Since the

exponential function is such that for all positive scalars a∫ ∞
−∞

exp

{
−1

a
x2

}
dx =

√
πa

the second integral in Equation 5.23 evaluates to∫ ∞
−∞

exp

{
− ke
ασ2

w

b̃2

}
db̃ =

√
πασ2

w

ke

Combining yields the normalization constant.
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Observe that the stationary probability density function is such that (ulti-

mately) b̃ and φ̃ are independent. By inspection, the ultimate marginal distribution

for φ̃ is distributed according to a von Mises probability distribution with zero mean

and concentration parameter ke
σ2
w

. Using the nonlinear relationship ε̃(t) = sin
(
φ̃(t)

2

)
one can find ultimate statistics for ε̃(t). First it is shown that the ultimate attitude

estimate error is unbiased.

Corollary 5.5.1.1. The error dynamics of the Itô SDE 5.16 have the ultimate mean

lim
t→∞

E
[
ε̃(t)
]

= 0

Proof. Compute the ultimate expectation using the stationary probability density

function of Theorem 5.5.1

lim
t→∞

E
[
ε̃(t)
]

=

∫ 2π

−2π

∫ ∞
−∞

ε̃ps

(
φ̃, b̃
)
db̃dφ̃

=

∫ 2π

−2π

∫ ∞
−∞

sin

(
φ̃

2

)
ps

(
φ̃, b̃
)
db̃dφ̃

=
1

4πI0

(
ke
σ2
w

) ∫ 2π

−2π

sin

(
φ̃

2

)
exp

{
ke
σ2
w

cos
(
φ̃
)}

dφ̃

× 1√
πασ2

w

ke

∫ ∞
−∞

exp

{
− ke
ασ2

w

b̃2

}
db̃

=
1

4πI0

(
ke
σ2
w

) ∫ 2π

−2π

sin

(
φ̃

2

)
exp

{
ke
σ2
w

cos
(
φ̃
)}

dφ̃

Note that sin(·) is an odd function but ecos(·) is an even function, so the inte-

grand is an odd function. The integral of an odd function over a symmetric interval

about the origin is zero.
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The following corollary shows the computation of the ultimate noncentral sec-

ond moment of the attitude estimate error. Since the ultimate mean was found

to be zero, the ultimate noncentral second moment is equivalent to the ultimate

variance. The ultimate attitude estimate error variance is precisely the same as in

Section 4.8.1.2 when there was no bias in the gyro model.

Corollary 5.5.1.2. The error dynamics of the Itô SDE 5.16 have the ultimate

variance

lim
t→∞

E
[
ε̃2(t)

]
=

1

2

1−
I1

(
ke
σ2
w

)
I0

(
ke
σ2
w

)


Proof. Compute the ultimate expectation using the stationary probability density

function of Theorem 5.5.1

lim
t→∞

E
[
ε̃2(t)

]
=

∫ 2π

−2π

∫ ∞
−∞

ε̃2ps

(
φ̃, b̃
)
db̃dφ̃

=
1

N

∫ 2π

−2π

∫ ∞
−∞

sin2

(
φ̃

2

)
exp

{
ke
σ2
w

cos
(
φ̃
)
− ke
ασ2

w

b̃2

}
db̃dφ̃

=
1

4πI0

(
ke
σ2
w

) ∫ 2π

−2π

sin2

(
φ̃

2

)
exp

{
ke
σ2
w

cos
(
φ̃
)}

dφ̃

which was solved in Corollary 4.8.1.2.

By inspection of the ultimate joint probability density function of Theorem

5.5.1, it can be seen that b̃ is ultimately distributed according to a Gaussian distri-

bution with zero mean

lim
t→∞

E
[
b̃(t)
]

= 0 (5.24)
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and variance

lim
t→∞

E
[
b̃2(t)

]
=
ασ2

w

2ke
(5.25)

Since the ultimate mean of both the attitude estimate error and the gyro bias

estimate error are zero, the filter is an (ultimately) unbiased estimator. While

the random variables φ̃(t) and b̃(t) are ultimately independent of one another, the

ultimate variance of the gyro bias estimate error is inversely proportional to the

tracking gain ke while being proportional to the adaptation gain α and the gyro

noise scaling parameter σ2
w.

Note that this analysis is of the stationary Fokker-Planck PDE. As the gyro

bias is modeled as a constant, in the infinite time limit a larger adaptation gain does

not help as the gyro bias estimate has already conceivably “learned” the gyro bias.

From this analysis perspective, the adaptation gain merely lets gyro noise corrupt

the gyro bias estimate and should be set as small as possible. Of course this analysis

says nothing about the transient performance of the filter when the adaptation law

attempts to estimate the gyro bias in the first place.
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5.6 Numerical Simulation of Stochastic SO(2) Analytic Results

Two numerical simulations of the SO(2) Gyro Constant Bias Filter’s Itô SDE

error dynamics of Equation 5.16 were performed for a variety of system parameters.

The Kloeden-Platen Explicit Weak 2.0 numerical integration scheme discussed in

Section 2.2.3 was used. For each simulation realization, a time step size of ∆t = 0.1

was used for a total of 108 simulation steps. At the end of a simulation realization,

the last 107 simulation steps were used to compute the ergodic mean of the filter

attitude estimate error ε̃2(t) and the filter bias estimate error b̃2(t). Ensembles of 7

realizations were performed for each choice of system parameters, and the ensemble

mean of the ergodic means are reported in the figures below as magenta dots; the

attitude estimate errors are computed as Mean
sims

[
Mean
ti∈Tss

[
ε̃2(ti)

]]
and the bias estimate

errors are computed as Mean
sims

[
Mean
ti∈Tss

[
b̃2(ti)

]]
.

The first simulation study varied the filter tracking gain ke across a range of

values. A gallery of plots of the filter attitude estimate errors are included in Figure

5.1, a gallery of plots of the filter bias estimate errors for the same simulations are

included in Figure 5.2. The numerical results, shown in magenta dots, are compared

to plots of the ultimate attitude estimate error variance of Corollary 5.5.1.2 and the

ultimate gyro bias estimate error variance of Equation 5.25 respectively which are

drawn in blue lines.

As predicted by the analytic solutions for the ultimate attitude estimate error

variance of Corollary 5.5.1.2 and the ultimate gyro bias estimate error variance

of Equation 5.25, decreasing the gyro noise value σw shifts the performance curve
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for ε̃2 left and the performance curve for b̃2 down. Increasing the adaptation gain

α increases the bias estimate error variance curve while having no impact on the

ultimate attitude estimate error variance curve.
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Figure 5.1: Comparison of the ultimate attitude estimate error variance of Corollary

5.5.1.2 to simulation realizations for a range of values of the tracking gain

ke.
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Figure 5.2: Comparison of the ultimate gyro bias estimate error variance of Equation 5.25

to simulation realizations for a range of values of the tracking gain ke.
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The second simulation study varied the filter’s bias adaptation gain α across a

range of values. A gallery of plots of the filter attitude estimate errors are included

in Figure 5.3, a gallery of plots of the filter bias estimate errors for the same sim-

ulations are included in Figure 5.4. The numerical results, shown in magenta dots,

are compared to plots of the ultimate attitude estimate error variance of Corollary

5.5.1.2 and the ultimate gyro bias estimate error variance of Equation 5.25 respec-

tively which are drawn in blue lines.

As the form of the ultimate attitude estimate error variance of Corollary 5.5.1.2

predicts, the ultimate attitude estimate error variance is completely unaffected by

variation of the adaptation gain parameter. The ultimate gyro bias estimate error

variance of Equation 5.25 captures the trend seen in the numerical data that an

increase in the adaptation gain parameter increases the bias estimate error variance.
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Figure 5.3: Comparison of the ultimate attitude estimate error variance of Corollary

5.5.1.2 to simulation realizations for a range of values of the adaptation gain

α.
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Figure 5.4: Comparison of the ultimate gyro bias estimate error variance of Equation 5.25

to simulation realizations for a range of values of the adaptation gain α.
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5.7 An SO(3) Upper Bound

Following the same approach as that of Section 4.10 , this section extrapo-

lates upper bounds for the stationary statistics of the SO(3) filter from the analytic

solutions of the SO(2) case.

The SO(3) ultimate attitude estimate error variance bound is assumed to

have the form of the SO(2) ultimate attitude estimate error variance from Corollary

5.5.1.2, but as before is rescaled to account for the low filter gain limit seen in the

previous chapters. The proposed SO(3) ultimate upper bound is given by

bound

(
ξ,
ke
σ2
w

)
=

3

4

1−
I1

(
ke
ξσ2
w

)
I0

(
ke
ξσ2
w

)
 (5.26)

Similarly, the ultimate bias estimate error variance bound is assumed to have

the same form as Equation 5.25 but with the same scaling parameter acting on the

gyro variance σ2
w

bound

(
ξ,
ke
σ2
w

)
=
ξασ2

w

2ke
(5.27)

Numerical simulations of the Itô SDE 5.7 were performed to evaluate the

notional bounds. As before, the Kloeden-Platen Explicit Weak 2.0 numerical in-

tegration scheme discussed in Section 2.2.3 was used. For each simulation realiza-

tion, a time step size of ∆t = 0.1 was used for a total of 107 simulation steps.

At the end of a simulation realization, the last 106 simulation steps were used to

compute the ergodic mean of the filter attitude estimate error ε̃T (t)ε̃(t) and the

filter bias estimate error b̃T (t)b̃(t). Ensembles of 7 realizations were performed for

each choice of system parameters, and the ensemble mean of the ergodic means
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are reported in the figures below as magenta dots; the attitude estimate errors are

computed as Mean
sims

[
Mean
ti∈Tss

[
ε̃T (ti)ε̃(ti)

]]
and the bias estimate errors are computed

as Mean
sims

[
Mean
ti∈Tss

[
b̃T (ti)b̃(ti)

]]
.

Figure 5.5 contains a gallery of the proposed upper bound for the stationary

attitude estimate error variance of Equation 5.26 for various choices of ξ superim-

posed on plots of the numerical simulation realizations for a range of tracking gain

parameters ke. Figure 5.6 similarly contains a gallery of the proposed upper bound

for the stationary gyro bias estimate error variance of Equation 5.27 for the cor-

responding choices of ξ for the range of tracking gain parameters ke. In all cases

considered, the choice of ξ = 3 in the expression of Equation 5.26 and 5.27 bound

the simulation realizations; however, smaller choices of ξ do not.

242



Figure 5.5: Comparison of simulation realizations of the attitude estimate error variance

and the notional bound of Equation 5.26 for several choices of ξ over a range

of tracking gains ke.
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Figure 5.6: Comparison of simulation realizations of the bias estimate error variance and

the notional bound of Equation 5.26 for several choices of ξ over a range of

tracking gains ke.
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A second numerical simulation study was performed to verify that the choice

of adaptation gain α had no impact on the ultimate attitude estimate variance and

to evaluate the ultimate bias estimate notional bounds. Figure 5.7 contains a gallery

of the proposed upper bound for the stationary attitude estimate error variance of

Equation 5.26 for various choices of ξ. The numerical simulation data confirms

the attitude estimate error is independent of the choice of α. Figure 5.6 similarly

contains a gallery of the proposed upper bound for the stationary gyro bias estimate

error variance of Equation 5.27 for the corresponding choices of ξ. As before, the

choice of ξ = 3 in the expression of Equation 5.26 and 5.27 bound the simulation

realizations; however, smaller choices of ξ do not.

Thus the simulation data suggest the ultimate upper bounds of

lim
t→∞

E[ε̃T (t)ε̃(t)] ≤ 3

4

1−
I1

(
ke

3σ2
w

)
I0

(
ke

3σ2
w

)
 (5.28)

and

lim
t→∞

E[ε̃T (t)ε̃(t)] ≤ 3ασ2
w

2ke
(5.29)

which, for clarity, are drawn in the gallery of Figure 5.9 for the ultimate attitude

estimate error variance bound of Equation 5.28 and Figure 5.10 for the ultimate

bias estimate error variance bound of Equation 5.29 for a range of tracking gain

parameters ke. The bounds are drawn for a variety of adaptation gain parameters α

in the gallery of Figure 5.11 for the ultimate attitude estimate error and the gallery

of Figure 5.12 for the ultimate bias estimate error.
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Figure 5.7: Comparison of simulation realizations of the attitude estimate error variance

and the notional bound of Equation 5.26 for several choices of ξ over a range

of adaptation gains α.
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Figure 5.8: Comparison of simulation realizations of the bias estimate error variance and

the notional bound of Equation 5.26 for several choices of ξ over a range of

adaptation gains α.
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Figure 5.9: Comparison of simulation realizations of the attitude estimate error variance

and the notional bound of Equation 5.28 for a range of tracking gain param-

eters ke.
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Figure 5.10: Comparison of simulation realizations of the bias estimate error variance and

the notional bound of Equation 5.29 for a range of tracking gain parameters

ke.
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Figure 5.11: Comparison of simulation realizations of the attitude estimate error variance

and the notional bound of Equation 5.28 for a range of adaptation gain

parameters α.
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Figure 5.12: Comparison of simulation realizations of the bias estimate error variance and

the notional bound of Equation 5.29 for a range of adaptation gain parameters

α.
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5.8 Exact Solution to the Stationary SO(3) Fokker-Planck PDE

In this section, the understanding gained from the SO(2) analysis and its

SO(3) extrapolation, as well as the solution to the SO(2) and SO(3) stationary

Fokker-Planck PDEs for the gyro noise case studied in the previous chapter, are

used to identify a possible distribution for the SO(3) case. This distribution is then

shown to indeed solve the SO(3) stationary Fokker-Planck PDE. The solution is

used to find an analytical expression for the ultimate attitude estimate error and

ultimate bias estimate error which will be compared to numerical simulation data

in the following section.

In Chapter 4, the attitude estimation filter for gyro measurements with addi-

tive noise was studied. In particular, the stationary Fokker-Planck PDE was shown

to be solved by a von Mises PDF in the SO(2) case in Section 4.8 and a bipolar

Bingham PDF in the SO(3) case in Section 4.11. In Section 5.5, the stationary

Fokker-Planck PDE for the gyro measurements with additive noise and constant

bias in the SO(2) case was shown to be solved by a joint PDF consisting of an inde-

pendent von Mises distribution and a Gaussian distribution. The following theorem

shows the patten continues; that the SO(3) stationary Fokker-Planck PDE is indeed

solved by a joint PDF consisting of an independent bipolar Bingham distribution

and a multivariate Gaussian.

Theorem 5.8.1. The stationary distribution for the filter error dynamics of the Itô

SDE 5.7 is given by the joint PDF with a Bipolar Bingham PDF and multivariate
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Gaussian PDF

ps

(
q̃, b̃
)

=
1

Nq

exp

{
ke
σ2
w

(
2η̃2 − 1

)} 1

Nb

exp

{
− ke
ασ2

w

b̃T b̃

}
(5.30)

where the normalization constant Nq is given by

Nq = π2I0

(
ke
σ2
w

)
− π2I1

(
ke
σ2
w

)
and the normalization constant Nb is given by

Nb =

√
π3α3σ6

w

k3
e

Proof. Per the reasoning given above, consider the jointly independent PDF that

is a bipolar Bingham distribution in the attitude estimate error and a multivariate

Gaussian in the bias estimate error

ps

(
q̃, b̃
)

=
1

Nq

exp
{
λ
(

2η̃2 − 1
)} 1

Nb

exp
{
γb̃T b̃

}
Taking partial derivatives as appropriate and substituting into the right hand

side of the SO(3) stationary Fokker-Planck PDE 5.14 yields{
− 1

2
(ke − σ2

wλ) + 2(1− λ)(ke − λσ2
w)η̃2 + 2λ(ke − λσ2

w)η̃4 − 2η̃ε̃T b̃(αγ + λ)

}
ps

which is zero for all possible q̃ and b̃ if and only if λ = ke
σ2
w

and γ = − ke
ασ2

w
.

The scaling constants Nq and Nb may be recovered by enforcing the proba-

bility density normalization constraints on the marginal PDFs. The normalization

constant for the bipolar Bingham marginal PDF was found in Theorem 4.11.1 to be

Nq = π2I0

(
ke
σ2
w

)
− π2I1

(
ke
σ2
w

)
253



Similarly, the normalization constant for the multivariate Gaussian marginal PDF

is given as

Nb =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

exp

{
− ke
ασ2

w

(
b̃2
x + b̃2

y + b̃2
z

)}
db̃xdb̃ydb̃z

=

∫ ∞
−∞

exp

{
− ke
ασ2

w

b̃2
x

}
db̃x

∫ ∞
−∞

exp

{
− ke
ασ2

w

b̃2
y

}
db̃y

∫ ∞
−∞

exp

{
− ke
ασ2

w

b̃2
z

}
db̃z

=

√
πασ2

w

ke

√
πασ2

w

ke

√
πασ2

w

ke
=

√
π3α3σ6

w

k3
e

(5.31)

where the Gaussian integral

∫ ∞
−∞

e−ax
2

dx =

√
π

a
∀ a > 0

was used.

Theorem 5.8.1 shows the ultimate PDF 5.30 that satisfies the stationary

Fokker-Planck PDE 5.14 is jointly independent. Specifically, it consists of a bipo-

lar Bingham distribution in the attitude estimate error q̃ which is independent of

the multivariate Gaussian in the bias estimate error b̃. Thus the ultimate statistics

for the attitude estimate error have zero mean as shown in Corollary 4.11.1.1, the

variance as given in Corollary 4.11.1.2, and the covariance matrix as found in Corol-

lary 4.11.1.3. Similarly, the ultimate statistics for the bias estimate error can be

computed with the associated marginal PDF. Since the marginal PDF is a simple

uncorrelated multivariate Gaussian, the ultimate statistics are merely stated here.

The ultimate bias estimate error has the mean

lim
t→∞

E
[
b̃(t)

]
= 0 (5.32)
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the ultimate variance

lim
t→∞

E
[
b̃T (t)b̃(t)

]
=

3ασ2
w

2ke
(5.33)

and the ultimate covariance matrix

lim
t→∞

E
[
b̃(t)b̃T (t)

]
=
ασ2

w

2ke
I (5.34)

where the I (without a subscript) is the 3× 3 identity matrix.

Note that, as in Chapter 4, the ultimate attitude estimate error statistics

depend on the ratio of ke
σ2
w

; however, they are completely independent of the gyro

bias adaptation gain α.

While the bias estimate error is (ultimately) independent of the attitude es-

timate error, the gyro bias estimate error is ultimately parameterized by the ratio

of ασ2
w

ke
. Thus increasing (or decreasing) both the filter tracking gain ke and the

adaptation gain α by the same amount will have no impact on the bias estimation

error in the infinite time limit.
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5.9 Numerical Simulation of Stochastic SO(3) Analytic Results

Consider again the simulations reported in Section 5.6. The first simulation

study investigates filter performance as the tracking gain ke is varied. The attitude

estimate error numerical simulation statistics are repeated in Figure 5.13 with the

analytic solution using the bipolar Bingham marginal of the PDF 5.30 to compute

the expected attitude estimate error. The analytic solution exactly matches the

numerical simulation data. The bias estimate error numerical simulation statistics

are repeated in Figure 5.14 with the analytic solution for the variance from Equation

5.33 superimposed. The analytic solution matches the numerical simulation data

exactly except for the smallest two tracking gain points in the σw = 0.1 case, which

is possibly due to the simulation realizations not fully reaching steady state. The

slopes of all data are -1 on the log-log plot, which agrees with the ultimate variance

being inversely proportional to the tracking gain ke.
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Figure 5.13: Comparison of simulation realizations of the attitude estimate error variance

with the analytic solution for a range of tracking gain parameters ke.
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Figure 5.14: Comparison of simulation realizations of the bias estimate error variance with

the analytic solution for a range of tracking gain parameters ke.
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The second simulation study examines filter performance as the adaptation

gain α is varied. The attitude estimate error numerical simulation statistics are re-

peated in Figure 5.15 with the analytic solution using the bipolar Bingham marginal

of the PDF 5.30 to compute the expected attitude estimate error. The analytic solu-

tion exactly matches the numerical simulation data, and clearly show that variation

of the adaptation gain α has no impact on the ultimate attitude estimate error vari-

ance. The bias estimate error numerical simulation statistics are repeated in Figure

5.16 with the analytic solution for the variance from Equation 5.33 superimposed.

The analytic solution matches the numerical simulation data exactly . The slopes

of all data are +1 on the log-log plot, which agrees with the ultimate variance being

directly proportional to the adaptation gain α.
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Figure 5.15: Comparison of simulation realizations of the attitude estimate error variance

with the analytic solution for a range of adaptation gain parameters α.
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Figure 5.16: Comparison of simulation realizations of the bias estimate error variance with

the analytic solution for a range of adaptation gain parameters α.
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Chapter 6: Attitude Measurement Noise

This chapter extends the analysis of Chapters 4 and 5 by considering atti-

tude measurement noise. Section 6.1 introduces a measurement noise model that

obeys the quaternion norm constraint and will be used throughout the chapter.

Specifically, the Itô SDE for the attitude noise filter of Chapter 4 is used to pro-

vide a continuous time process whose ultimate noise density is a bipolar Bingham

distribution which can be specified to model an attitude measurement sensor.

Section 6.2 extends the gyro additive noise measurement model analysis of

Chapter 4 by also including the attitude measurement noise model of Section 6.1.

An Itô SDE for the filter state is formulated and augmented by the attitude mea-

surement process noise model in Section 6.2.1 to provide a complete mathematical

description of the system. Section 6.2.2 uses a stochastic Lyapunov analysis to find

conditions needed to ensure weak stochastic stability of the SO(3) system as well as

stochastic Lyapunov performance bounds, which are then examined numerically in

Section 6.2.3. The system is then reduced to the SO(2) case in Section 6.2.4. The

SO(2) stationary Fokker-Planck PDE again proves to be tractable in Section 6.2.7,

yielding analytic expressions for the ultimate attitude estimate error mean and vari-

ance which are verified via simulation analysis in Section 6.2.8. Similar to Sections
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4.10 and 5.7, Section 6.2.9 provides bounds for the ultimate attitude estimate error

mean and variance for the SO(3) case by extrapolating the SO(2) results of Section

6.2.7.

Section 6.3 extends the analysis of Section 6.2 by further including the gyro

constant bias as in Chapter 5. Similar to the analysis of Section 5.5, a Fokker-

Planck analysis of the reduced system in SO(2) finds that a particular extension of

the stationary probability density function from Section 6.2 can be made to asymp-

totically approach a solution to the stationary Fokker-Planck PDE of this Section.

The asymptotic solution to the SO(2) stationary Fokker-Planck PDE for this sys-

tem is then used to find analytic expressions for the ultimate attitude estimate error

variance as well as the ultimate gyro bias estimate error mean and variance. The re-

sults are verified via numerical simulation. Bounds for the filter’s ultimate attitude

estimate error variance as well as the filter’s ultimate gyro bias estimate error mean

and variance in the SO(3) case are provided by extrapolating the SO(2) results.
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6.1 Quaternion Measurement Noise Model

This section develops a quaternion measurement noise process suitable for

modeling attitude measurement noise. The measurement noise model will be used

in the remaining sections of this chapter.

The general form of the nonlinear attitude estimation dynamics considered in

this thesis is given by

˙̂q(t) =
1

2

{
R
(
q̃−1(t)

)[
ωg(t) + keη̃(t)ε̃(t)

]}
⊗ q̂(t)

which depends on the attitude estimate error

q̃(t) =

ε̃(t)
η̃(t)

 = q(t)⊗ q̂−1(t)

The true attitude estimate error was assumed to be available to the estimator in

Chapters 4 and 5 as the attitude measurements were assumed perfect in those chap-

ters.

This chapter considers the case of attitude measurement noise, so the estima-

tors no longer have direct access to the true attitude q(t); instead, in this chapter

the estimators will only have access to a noise corrupted version

qm(t) =

εm(t)

ηm(t)

 = q̆−1(t)⊗ q(t) (6.1)

where q̆(t) is “quaternion noise”. Thus the true attitude estimate error q̃(t) will no

longer be available to the estimation algorithms. The estimators will now have to
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use the noise corrupted attitude estimate error

q̃m(t) =

ε̃m(t)

η̃m(t)


= qm(t)⊗ q̂−1(t)

= q̆−1(t)⊗ q(t)⊗ q̂−1(t)

= q̆−1(t)⊗ q̃(t)

The theoretical tools used in this thesis assume the error dynamics under con-

sideration may be formulated as an Itô SDE; namely that the error dynamics are

affine in the driving noise, and further that the driving noise is zero mean and nor-

mally distributed. The construction of a continuous time quaternion measurement

noise model that is restricted to the unit quaternion hypersphere and is affine in

the driving noise does not appear to exist in the literature. A common attitude

measurement model [64, 66] is given by

qm(t) = δq
(
σmnm(t)

)
⊗ q(t)

where δq
(
·
)

is a unit quaternion parameterized by a small angle σmnm() where

nm(·) is a zero mean unit variance Gaussian white noise process in R3. Various

parameterization choices for the mapping δq
(
·
)

exist [64] (such as Gibbs param-

eters, modified Rodrigues parameters, the rotation vector, or even Euler angles),

however all are highly nonlinear functions of their input arguments and thus these

attitude measurement models can not be expressed as an affine function of the driv-

ing noise. As this common model can not be expressed as an affine function of the
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driving noise, the model can not be written as an Itô SDE and thus none of the

stochastic Lyapunov analysis techniques of Section 2.1.4, nor the stochastic numer-

ical integration methods of Section 2.2, are applicable. Another approach, used by

Choukroun [13], is given as

dqm(t) = q(t)dt+ σqnq(t)

where the driving noise is modeled by nq(·), a zero mean unit variance Gaussian

white noise process in R4. Note that this model does not restrict the quaternion

measurements to have unit norm which in turn means they do not parameterize

a rotation. As the normalization operation is also highly nonlinear, enforcing the

normalization constraint would similarly prevent this model from being written as

an Itô SDE.

Note that the analysis of Chapter 4 did, however, identify a continuous time

quaternion process that was restricted to the unit quaternion hypersphere and was

affine in the driving noise (and thus an Itô SDE). Rearranging the attitude mea-

surement model of Equation 6.1 to solve for the noise quaternion yields

q̆(t) = q(t)⊗ q−1
m (t) (6.2)

which is precisely the form of the attitude estimate error computation used in Equa-

tion 4.4. Thus the attitude filter dynamics of Equation 4.3 can be used here to

provide a SDE to serve as the dynamical model for the quaternion noise and all the

results of Chapter 4 may be leveraged to understand the properties of the model.

With this choice, attitude measurement evolves according to the Langevin form
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differential equation

q̇m(t) =
1

2

{
R
(
q̆−1(t)

)
[ω(t) + σmnm(t) + kmη̆(t)ε̆(t)]

}
⊗ qm(t) (6.3)

where km and σm are positive scalars that parameterize the attitude measurement

noise statistics and nm(·) is a collection of independent identically distributed zero

mean unit variance Gaussian white noise processes independent of gyro noise nw(·).

The attitude measurement noise error dynamics are given by

˙̆q(t) =
1

2

{
− kmη̆(t)ε̆(t)− σmnm(t)

}
⊗ q̆(t)

=

 −1
2
kmη̆

2(t)ε̆(t)

1
2
kmη̆(t)ε̆T (t)ε̆(t)

+

−1
2

{
η̆(t)I + [ε̆(t)×]

}
σm

1
2
ε̆T (t)σm

nm(t) (6.4)

The attitude measurement noise model of Equation 6.4 can be viewed in this context

as a coloring filter. The model is driven by the unbounded white noise process

nm(·) but the attitude measurement noise state q̆(t) remains on the unit quaternion

hypersphere.

Again note the error dynamics share precisely the same structure as the error

dynamics of the previous chapter’s filter of Equation 4.5; the results of Section

4.11 imply that the quaternion noise model asymptotically approaches a stationary

density given by a bipolar Bingham distribution that is parameterized by the ratio

km
σ2
m

. Specifically, the attitude measurement noise has ultimate mean

lim
t→∞

E
[
ε̆(t)

]
= 0

the ultimate variance

ν

(
km
σ2
m

)
= lim

t→∞
E
[
ε̆T (t)ε̆(t)

]
=

3I0

(
km
σ2
m

)
− 4I1

(
km
σ2
m

)
+ I2

(
km
σ2
m

)
4
(
I0

(
km
σ2
m

)
− I1

(
km
σ2
m

))
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and ultimate covariance matrix

lim
t→∞

E
[
q̆(t)q̆T (t)

]
= diag

(
1

3
ν

(
km
σ2
m

)
,
1

3
ν

(
km
σ2
m

)
,
1

3
ν

(
km
σ2
m

)
, 1− ν

(
km
σ2
m

))
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6.2 Attitude Estimation Filter for Gyro Additive Noise and Attitude

Measurement Noise

This section extends the gyro additive noise measurement model analysis of

Chapter 4 by also including attitude measurement noise. Section 6.2.1 presents

the filter formulation and noise models, culminating in an Itô SDE for the system

error dynamics. The next section, Section 6.2.2, contains a stochastic Lyapunov

analysis that derives conditions needed to ensure weak stochastic stability of the

SO(3) system as well as stochastic Lyapunov performance bounds. Section 6.2.3

includes a numerical simulation analysis of the SO(3) error dynamics.

The system is then reduced to the SO(2) case in Section 6.2.4. The SO(2)

stationary Fokker-Planck PDE again proves to be tractable in Section 6.2.7, yielding

analytic expressions for the ultimate attitude estimate error mean and variance.

These results are verified via simulation analysis in Section 6.2.8. Similar to Sections

4.10 and 5.7, Section 6.2.9 provides bounds for the ultimate attitude estimate error

mean and variance for the SO(3) case by extrapolating the SO(2) results of Section

6.2.7.
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6.2.1 Filter Formulation in SO(3)

This subsection develops a formulation for the attitude estimation filter with

gyro additive noise and attitude measurement noise. The attitude measurement

model is given in Section 6.1.

The angular rate gyro measurement model is the same as in Chapter 4, which

is repeated here for convenience

ωg(t) = ω(t) + σwnw(t) (6.5)

where ωg(t) is the gyro measurement of the true vehicle angular rate ω(t) at time

t, σw is a positive scaling constant, and nw(·) is a zero mean unit variance Gaussian

white noise process.

As explained in Section 6.1, if the filter had access to the true attitude, it

could use the filter attitude estimate error q̃(t) =

ε̃(t)
η̃(t)

 = q(t) ⊗ q̂−1(t) to drive

its kinematics as in Equation 4.3; however, in this chapter the filter only has access

to attitude measurements corrupted by noise. Thus the filter kinematics equation

is given as

˙̂q(t) =
1

2

{
R
(
q̃−1
m (t)

)[
ωg(t) + keη̃m(t)ε̃m(t)

]}
⊗ q̂(t) (6.6)
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which is driven by

q̃m(t) =

ε̃m(t)

η̃m(t)

 = qm(t)⊗ q̂−1(t)

= q̆−1(t)⊗ q(t)⊗ q̂−1(t)

= q̆−1(t)⊗ q̃(t)

Expanding the expression η̃m(t)ε̃m(t) yields

η̃m(t)ε̃m(t) =
(
η̆(t)η̃ + ε̆T (t)ε̃(t)

)[
− η̃(t)ε̆(t) + η̆(t)ε̃(t) + ε̆(t)× ε̃(t)

]
(6.7)

which simplifies to η̃(t)ε̃(t) when there is no attitude noise, i.e. when q̆T (t) =[
ε̆T (t) η̆(t)

]
=
[
0 0 0 ± 1

]T
.

The attitude filter dynamics given by Equation 6.6 can be combined with the

quaternion error kinematics of Equation 2.71 and the gyro measurement model from

Equation 6.5 to find the filter’s attitude estimate error dynamics

˙̃q(t) =
1

2

{
ω(t)−R

(
q̃(t)

)
R
(
q̃−1
m (t)

)[
ωg(t) + keη̃m(t)ε̃m(t)

]}
⊗ q̃(t)

=
1

2

{
ω(t)−R

(
q̃(t)

)
R
(
q̃−1(t)

)
R
(
q̆(t)

)[
ω(t) + σwnw(t) + keη̃m(t)ε̃m(t)

]}
⊗ q̃(t)

=
1

2

{[
I −R

(
q̆(t)

)]
ω(t)−R

(
q̆(t)

)[
keη̃m(t)ε̃m(t) + σwnw(t)

]}
⊗ q̃(t) (6.8)

which is not independent of the vehicle’s angular rate ω(t). This is in contrast to

the filter attitude estimate error dynamics of Equation 4.5 in the perfect attitude

measurement case. Since the attitude filter in this chapter must rely on noise cor-

rupted attitude measurements, it is not able to perfectly resolve the filter’s angular

rate estimate in the appropriate frame.
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Combining the attitude noise model error dynamics of Equation 6.4, the filter

attitude estimate error dynamics of Equation 6.8, and suppressing function of time

notation for brevity, the Langevin form error dynamics are found as

˙̆ε

˙̆η

˙̃ε

˙̃η


=



−1
2
kmη̆

2ε̆

1
2
kmη̆ε̆

T ε̆

1
2

[
η̃I +

[
ε̃×

]][
I −R

(
q̆
)]
ω − 1

2
ke

[
η̃I +

[
ε̃×

]]
R
(
q̆
)
η̃mε̃m

−1
2
ε̃T
[
I −R

(
q̆
)]
ω + 1

2
keε̃

TR
(
q̆
)
η̃mε̃m



+



−1
2

[
η̆I +

[
ε̆×

]]
σm 0

1
2
ε̆Tσm 0

0 −1
2

[
η̃I +

[
ε̃×

]]
R
(
q̆
)
σw

0 1
2
ε̃TR

(
q̆
)
σw



nm
nw

 (6.9)

where η̃mε̃m is expanded in Equation 6.7.

As discussed in Section 2.1.3, the Langevin form error dynamics differential

equation 6.9 is interpreted as a Stratonovich SDE. Converting to an Itô SDE results

272



in the following

dε̆

dη̆

dε̃

dη̃


=



−1
2
kmη̆

2ε̆− 3
8
σ2
mε̆

1
2
kmη̆ε̆

T ε̆− 3
8
σ2
mη̆

1
2

[
η̃I +

[
ε̃×

]][
I −R

(
q̆
)]
ω − 1

2
ke

[
η̃I +

[
ε̃×

]]
R
(
q̆
)
η̃mε̃m − 3

8
σ2
wε̃

−1
2
ε̃T
[
I −R

(
q̆
)]
ω + 1

2
keε̃

TR
(
q̆
)
η̃mε̃m − 3

8
σ2
wη̃


dt

+



−1
2

[
η̆I +

[
ε̆×

]]
σm 0

1
2
ε̆Tσm 0

0 −1
2

[
η̃I +

[
ε̃×

]]
R
(
q̆
)
σw

0 1
2
ε̃TR

(
q̆
)
σw



dβm
dβw



= f
(
x̃
)
dt+G

(
x̃
)
dβ (6.10)

where x̃T = [ε̆T η̆ ε̃T η̃].
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6.2.2 Stochastic Lyapunov Analysis in SO(3)

In this section, stochastic Lyapunov theory is used to show the Itô error SDE

6.10 is weakly stochastically stable provided the vehicle angular rate is bounded.

A generalized moment ultimate bound for the attitude filter is found which can be

used as a performance metric. An ultimate bound for ε̃T (t)ε̃(t) is also established.

Theorem 6.2.1. The attitude error dynamics of the Itô SDE 6.10 are weakly

stochastically stable provided the vehicle angular rate is bounded, ‖ω(t)‖ < ωmax <

∞ ∀t. Further, the attitude error dynamics are such that

lim
t→∞

E

[
kmη̆

2(t)ε̆T (t)ε̆(t) + σ2
mε̆

T (t)ε̆(t) + σ2
wε̃

T (t)ε̃(t)

+ keη̃
2(t)ε̃T (t)ε̃(t)

(
ε̆T (t)ε̃(t)

)2

+ keη̃
2(t)η̆4(t)ε̃T (t)ε̃(t)

+ keη̆
2(t)η̃2(t)‖ε̆(t)× ε̃(t)‖2 + keη̆

2(t)η̃2(t)
(
ε̆T (t)ε̃(t)

)2
]

≤ 5ke + 2ωmax +
3

4
σ2
m +

3

4
σ2
w (6.11)

Proof. Choose as a Lyapunov function

V (t) =
1

2
ε̆T (t)ε̆(t) +

1

2
ε̃T (t)ε̃(t)

Application of the differential generator to the Lyapunov function with respect to

the Itô SDE 6.10 is computed according to

L V (t) =

(
∂V

∂x̃

)T
f
(
x̃(t)

)
+

1

2
tr

{
GT
(
x̃(t)

)∂2V

∂x̃2
G
(
x̃(t)

)}

which is rather involved for this system, so each term is computed in sequence.
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Suppressing function of time notation for clarity, the first term is found as

(
∂V

∂x̃

)T
f
(
x̃
)

= −1

2
kmη̆

2ε̆T ε̆− 3

8
σ2
mε̆

T ε̆− 3

8
σ2
wε̃

T ε̃

+
1

2
ε̃T
[
η̃I +

[
ε̃×

]][
I −R

(
q̆
)]
ω

− 1

2
keε̃

T
[
η̃I +

[
ε̃×

]]
R
(
q̆
)(
η̆η̃ + ε̆T ε̃

)[
− η̃ε̆+ η̆ε̃+ ε̆× ε̃

]
= −1

2
kmη̆

2ε̆T ε̆− 3

8
σ2
mε̆

T ε̆− 3

8
σ2
wε̃

T ε̃

+
1

2
η̃ε̃T

[
I −R

(
q̆
)]
ω

− 1

2
ke
(
η̆η̃ + ε̆T ε̃

)
η̃ε̃TR

(
q̆
)[
− η̃ε̆+ η̆ε̃+ ε̆× ε̃

]
where the second equality holds since ε̃T

[
ε̃×

]
= 0T .

To compute the trace term, first note by the cyclic property of the trace

operator

tr

{
GT ∂

2V

∂x̃2
G

}
= tr

{
GGT ∂

2V

∂x̃2

}
Using the rotation matrix property R

(
q̆
)
RT
(
q̆
)

= I, the expression evaluates as

1

2
tr

{
GT ∂

2V

∂x̃2
G

}
=

3

8
σ2
mη̆

2 +
1

4
σ2
mε̆

T ε̆+
3

8
σ2
wη̃

2 +
1

4
σ2
wε̃

T ε̃

Combining the two terms and using the quaternion normalization constraints

η̆2 + ε̆T ε̆ = 1 and η̃2 + ε̃T ε̃ = 1 yields

L V = −1

2
kmη̆

2ε̆T ε̆− 1

2
σ2
mε̆

T ε̆− 1

2
σ2
wε̃

T ε̃

− 1

2
ke
(
η̆η̃ + ε̆T ε̃

)
η̃R
(
q̆
)[
− η̃ε̆+ η̆ε̃+ ε̆× ε̃

]
+

1

2
η̃ε̃T

[
I −R

(
q̆
)]
ω +

3

8
σ2
m +

3

8
σ2
w

Expanding out the fourth term’s rotation matrix R
(
q̆
)

in terms of ε̆ and η̆ according

275



to Equation 2.64 and simplifying leads to

L V = −1

2
kmη̆

2ε̆T ε̆− 1

2
σ2
mε̆

T ε̆− 1

2
σ2
wε̃

T ε̃

− 1

2
ke
(
η̆η̃ + ε̆T ε̃

)
η̃
(
− η̃ε̃T ε̆+ η̆3ε̃T ε̃+ η̆‖ε̆× ε̃‖2 + η̆

(
ε̆T ε̃

)2
)

+
1

2
η̃ε̃T

[
I −R

(
q̆
)]
ω +

3

8
σ2
m +

3

8
σ2
w

= −1

2
kmη̆

2ε̆T ε̆− 1

2
σ2
mε̆

T ε̆− 1

2
σ2
wε̃

T ε̃

− 1

2
keη̃

2ε̃T ε̃
(
ε̆T ε̃

)2 − 1

2
keη̃

2η̆4ε̃T ε̃− 1

2
keη̆

2η̃2‖ε̆× ε̃‖2 − 1

2
keη̆

2η̃2
(
ε̆T ε̃

)2

+
1

2
keη̆η̃

3ε̃T ε̆+
1

2
ke
(
ε̆T ε̃

)2 − 1

2
keη̃η̆

3ε̆T ε̃ε̃T ε̃− 1

2
keη̆η̃ε̆

T ε̃‖ε̆× ε̃‖2 − 1

2
keη̆η̃

(
ε̆T ε̃

)3

+
1

2
η̃ε̃T

[
I −R

(
q̆
)]
ω +

3

8
σ2
m +

3

8
σ2
w

Noting that ‖I − R
(
q̆
)
‖ =

√
λmax [4 (ε̆T ε̆I − ε̆ε̆T )] = 2‖ε̆‖ and using |η̆| ≤ 1

and |η̃| ≤ 1, L V can be bound as

L V ≤ −1

2
kmη̆

2ε̆T ε̆− 1

2
σ2
mε̆

T ε̆− 1

2
σ2
wε̃

T ε̃

− 1

2
keη̃

2ε̃T ε̃
(
ε̆T ε̃

)2 − 1

2
keη̃

2η̆4ε̃T ε̃− 1

2
keη̆

2η̃2‖ε̆× ε̃‖2 − 1

2
keη̆

2η̃2
(
ε̆T ε̃

)2

+
1

2
ke‖ε̃‖‖ε̆‖+

1

2
ke‖ε̆‖2‖ε̃‖2 +

1

2
ke‖ε̆‖‖ε̃‖3 +

1

2
ke‖ε̆‖‖ε̃‖‖ε̆× ε̃‖2

+
1

2
ke‖ε̆‖3‖ε̃‖3 + ‖ε̃‖‖ε̆‖‖ω‖+

3

8
σ2
m +

3

8
σ2
w

≤ −1

2
kmη̆

2ε̆T ε̆− 1

2
σ2
mε̆

T ε̆− 1

2
σ2
wε̃

T ε̃

− 1

2
keη̃

2ε̃T ε̃
(
ε̆T ε̃

)2 − 1

2
keη̃

2η̆4ε̃T ε̃− 1

2
keη̆

2η̃2‖ε̆× ε̃‖2 − 1

2
keη̆

2η̃2
(
ε̆T ε̃

)2

+
5

2
ke + ωmax +

3

8
σ2
m +

3

8
σ2
w (6.12)

where to find the second inequality ‖ε̆‖ ≤ 1, ‖ε̃‖ ≤ 1, and ‖ω‖ ≤ ωmax were used.

Zakai’s stability theorem (Theorem 2.1.4) implies the system is weakly stochas-

tically stable. Further, Zakai’s ultimate moment bound theorem (Theorem 2.1.5)

directly yields the ultimate expectation.
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The generalized moment ultimate bound of Equation 6.11 can be further re-

fined to yield an ultimate bound for ε̃T (t)ε̃(t).

Corollary 6.2.1.1. The attitude error dynamics of the Itô SDE 6.10 are such that

lim
t→∞

E
[
ε̃T (t)ε̃(t)

]
≤ 9

ke
σ2
w

+ 2
1

σ2
w

ωmax +
3

4
(6.13)

Proof. Bounding the cross-coupling terms of Equation 6.12 yields

L V ≤ −1

2
kmη̆

2ε̆T ε̆− 1

2
σ2
mε̆

T ε̆− 1

2
σ2
wε̃

T ε̃

+
1

2
ke|η̃|2‖ε̃‖4‖ε̆‖2 +

1

2
ke|η̃|2|η̆|4‖ε̃‖2 +

1

2
ke|η̆|2|η̃|2‖ε̆‖2‖ε̃‖2 +

1

2
ke|η̆|2|η̃|2‖ε̆‖2‖ε̃‖2

+
5

2
ke + ωmax +

3

8
σ2
m +

3

8
σ2
w

≤ −1

2
kmη̆

2ε̆T ε̆− 1

2
σ2
mε̆

T ε̆− 1

2
σ2
wε̃

T ε̃+
9

2
ke + ωmax +

3

8
σ2
m +

3

8
σ2
w

where the last inequality follows from the norm constraint on unit quaternions.

Application of Zakai’s ultimate moment bound theorem (Theorem 2.1.5) re-

sults in

lim
t→∞

E
[
kmη̆

2ε̆T ε̆+ σ2
mε̆

T ε̆+ σ2
wε̃

T ε̃
]
≤ 9ke + 2ωmax +

3

4
σ2
m +

3

4
σ2
w

Using the linearity property of the expectation operator and rearranging leads to

lim
t→∞

E
[
ε̃T ε̃

]
≤ 9

ke
σ2
w

+ 2
1

σ2
w

ωmax +
3

4

σ2
m

σ2
w

+
3

4

− km
σ2
w

lim
t→∞

E
[
η̆2ε̆T ε̆

]
− σ2

m

σ2
w

lim
t→∞

E
[
ε̆T ε̆

]
= 9

ke
σ2
w

+ 2
1

σ2
w

ωmax +
3

4

σ2
m

σ2
w

+
3

4

− km + σ2
m

σ2
w

lim
t→∞

E
[
ε̆T ε̆

]
+
km
σ2
w

lim
t→∞

E
[ (
ε̆T ε̆

)2 ]
(6.14)
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where the last line holds from the norm constraint on unit quaternions.

From Chapter 4, Equation 4.15 provides a bound on limt→∞E
[ (
ε̆T ε̆

)2 ]
, specif-

ically

lim
t→∞

E
[ (
ε̆T ε̆

)2 ] ≤ km + σ2
m

km
lim
t→∞

E
[
ε̆T ε̆

]
− 3

4

σ2
m

km

Combining with Equation 6.14 results in

lim
t→∞

E
[
ε̃T ε̃

]
≤ 9

ke
σ2
w

+ 2
1

σ2
w

ωmax +
3

4

σ2
m

σ2
w

+
3

4

+

(
km
σ2
w

km + σ2
m

km
− km + σ2

m

σ2
w

)
lim
t→∞

E
[
ε̆T ε̆

]
− 3

4

σ2
m

km

km
σ2
w

= 9
ke
σ2
w

+ 2
1

σ2
w

ωmax +
3

4

The bound on ε̃T (t)ε̃(t) can be larger than one which suggests significant

conservatism since q̃ is a unit quaternion and thus ε̃T (t)ε̃(t) ≤ 1 ∀t. It is important

to note that Equation 6.13 is merely an ultimate upper bound and not necessarily

the least ultimate upper bound. The first term in the ultimate upper bound arose

as the sign indefinite terms and cross coupling terms between q̆(t) and q̃(t) in L V

were bounded in the proof. The observation that the ultimate bound on ε̃T (t)ε̃(t)

is proportional to the filter gain ke may be an artifact of the choice of Lyapunov

function or the analysis techniques used. Of course from inspection of the filter

equations, if the filter gain ke is set very large the filter kinematic equation will be

dominated by the feedback term and the filter’s estimate will follow the attitude

measurement noise.

Additionally, according to the second term on the right hand side of Equation
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6.13, the ultimate upper bound on ε̃T (t)ε̃(t) is proportional to the vehicle angular

rate. This term arose from the
[
I − R

(
q̆(t)

)]
ω(t) terms in the system dynamics.

From Chapter 4, the ultimate PDF for the attitude noise error dynamics are given by

a bipolar Bingham distribution with zero mean, or in symbols limt→∞E
[
ε̆(t)

]
= 0,

so it is possible that in the mean the vehicle angular rate plays no part in the ultimate

attitude estimate error. Similar to the observation of the previous paragraph, the

fact that the ultimate upper bound on ε̃T (t)ε̃(t) is proportional to the vehicle angular

rate may be an artifact of the choice of Lyapunov function or the analysis techniques

used.
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6.2.3 Numerical Simulation of SO(3) Stochastic Lyapunov Bounds

Numerical simulations of the attitude filter’s Itô SDE error dynamics of Equa-

tion 6.10 were performed for a variety of system parameters. The Kloeden-Platen

Explicit Weak 2.0 numerical integration scheme discussed in Section 2.2.3 was used.

For each simulation realization, a time step size of ∆t = 0.001 was used for a total

of 107 simulation steps . At the end of a simulation realization, the last 106 simula-

tion steps were used to compute the empirical mean of the generalized moment of

Equation 6.11

mean
t∈Tss

[
kmη̆

2(t)ε̆T (t)ε̆(t) + σ2
mε̆

T (t)ε̆(t) + σ2
wε̃

T (t)ε̃(t)

+ keη̃
2(t)ε̃T (t)ε̃(t)

(
ε̆T (t)ε̃(t)

)2

+ keη̃
2(t)η̆4(t)ε̃T (t)ε̃(t)

+ keη̆
2(t)η̃2(t)‖ε̆(t)× ε̃(t)‖2 + keη̆

2(t)η̃2(t)
(
ε̆T (t)ε̃(t)

)2
]

and statistics for the numerical realizations of the filter attitude estimate error

Mean
sims

[
Mean
ti∈Tss

[
ε̃T (ti)ε̃(ti)

]]

A gallery of plots of the generalized moment of Equation 6.11 are included in

Figure 6.1 for a spin stabilized spacecraft and in Figure 6.2 for an inertially fixed

spacecraft. In each plot, a magenta dot represents a single simulation realization.

The blue line in each plot is the generalized moment upper bound from Equation

6.11. The generalized moment upper bound does appear to bound the ensemble

of simulation realizations for all simulated cases, however the upper bound grows

increasingly conservative for large filter gains. Despite the bound being proportional
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to the vehicle angular rate, the numerical simulation realizations from the spinning

case appear to be of similar magnitude to the inertially fixed case.

A gallery of plots of the filter attitude estimate errors are included in Figure 6.3

for a spin stabilized spacecraft and in Figure 6.4 for an inertially fixed spacecraft. As

before, a magenta dot represents a single simulation realization. The blue line in each

plot is the stochastic Lyapunov upper bound from Equation 6.13. The stochastic

Lyapunov upper bound also upper bounds the ensemble of simulation realizations,

but similar to the general moment bound the stochastic Lyapunov upper bound

on the attitude estimate errors grows increasingly conservative for large filter gain

ke. The stochastic Lyapunov bounds are clearly unsuitable for filter performance

characterization.
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Figure 6.1: Comparison of simulation realizations of the general moment of Equation 6.11

and the associated bound for the case of a vehicle spinning at 5 revolutions

per minute about the vehicle body’s [1 2 3]T axis.
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Figure 6.2: Comparison of simulation realizations of the general moment of Equation 6.11

and the associated bound for the case of a vehicle inertially fixed (not spin-

ning).
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Figure 6.3: Comparison of simulation realizations of the attitude estimate error and the

bound of Equation 6.13 for the case of a vehicle spinning at 5 revolutions per

minute about the vehicle body’s [1 2 3]T axis.
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Figure 6.4: Comparison of simulation realizations of the attitude estimate error and the

bound of Equation 6.13 for the case of a vehicle inertially fixed (not spinning).
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6.2.4 Filter Formulation in SO(2)

In this section, the attitude filter dynamical model is reduced to the single

axis case of SO(2). In following sections, the reduced model will provide tractable

analytic results that can provide insight into the full SO(3) case.

As explained in Section 2.3.2, the SO(3) dynamical model may be reduced to

the SO(2) case by simply zeroing out the y and z components of all vector quantities.

Equivalently, the vector quantities in the SO(3) case reduce to scalar quantities, and

SO(3) unit quaternions comprised of 4 elements reduce to SO(2) unit quaternions

with two elements.

The SO(3) Langevin form error dynamics of Equation 6.9 reduce in the SO(2)

case to

˙̃x =

 ˙̆q

˙̃q

 =



˙̆ε

˙̆η

˙̃ε

˙̃η



=



−1
2
kmη̆

2ε̆

1
2
kmη̆ε̆

2

−1
2
keη̃
(
η̆η̃ + ε̆ε̃

)(
− η̃ε̆+ η̆ε̃

)
1
2
keε̃
(
η̆η̃ + ε̆ε̃

)(
− η̃ε̆+ η̆ε̃

)


+



−1
2
η̆σm 0

1
2
ε̆σm 0

0 −1
2
η̃σw

0 1
2
ε̃σw



nm
nw

 (6.15)

where again the function of time notation has been suppressed for brevity. Note that,

as derived in Section 2.3.2, the angular rate driving the attitude error kinematics

in SO(2) do not depend on any rotation matrices as SO(2) rotation matrices are
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trivially R = 1. Thus the
[
I −R

(
q̆(t)

)]
ω(t) term from the SO(3) case vanishes in

the reduced SO(2) case.

As explained in Section 2.1.3, the Langevin form error dynamics differential

equation 4.23 is interpreted as a Stratonovich SDE. Converting to Itô form yields

dx̃ =

dq̆
dq̃

 =



dε̆

dη̆

dε̃

dη̃



=



−1
2
kmη̆

2ε̆− 1
8
σ2
mε̆

1
2
kmη̆ε̆

2 − 1
8
σ2
mη̆

−1
2
keη̃
(
η̆η̃ + ε̆ε̃

)(
− η̃ε̆+ η̆ε̃

)
− 1

8
σ2
wε̃

1
2
keε̃
(
η̆η̃ + ε̆ε̃

)(
− η̃ε̆+ η̆ε̃

)
− 1

8
σ2
wη̃


dt+



−1
2
η̆σm 0

1
2
ε̆σm 0

0 −1
2
η̃σw

0 1
2
ε̃σw



dβm
dβw



= f(x̃)dt+G(x̃)dβ (6.16)

The attitude filter error dynamics of Equation 6.15 can equivalently be written

in the SO(2) Euler Axis/Angle parameterization (as explained in Section 2.3.2). Let

q̆ =

ε̆
η̆

 =

sin
(
φ̆
2

)
cos
(
φ̆
2

)
 q̃ =

ε̃
η̃

 =

sin
(
φ̃
2

)
cos
(
φ̃
2

)


Then the SO(2) Euler Axis/Angle parameterization of the filter error dynamics is
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given as

˙̃y =


˙̆
φ

˙̃φ

 =

 −kmη̆ε̆

−ke
(
η̆η̃ + ε̆ε̃

)(
− η̃ε̆+ η̆ε̃

)
+

−σm 0

0 −σw


nm
nw



=

 −1
2
km sin

(
φ̆
)

−1
2
ke sin

(
φ̃− φ̆

)
+

−σm 0

0 −σw


nm
nw

 (6.17)

which is immediately in Langevin form. Conversion to an Itô SDE is trivial as the

diffusion matrix is independent of the state:

dỹ =

dφ̆
dφ̃

 =

 −1
2
km sin

(
φ̆
)

−1
2
ke sin

(
φ̃− φ̆

)
 dt+

−σm 0

0 −σw


dβm
dβw


= f(ỹ)dt+G(ỹ)dβ (6.18)
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6.2.5 Stochastic Lyapunov Analysis in SO(2)

In this section weak stochastic stability of the SO(2) Itô SDE 6.16 is established

via stochastic Lyapunov theory. A number of performance bounds are also found.

Theorem 6.2.2. The attitude error dynamics of the Itô SDE 6.16 are weakly

stochastically stable. Further,

lim
t→∞

E
[
ε̃2(t)

]
≤ 1

2
+
ke
σ2
w

(6.19)

Proof. Note that the dynamics governing the attitude measurement noise states

ε̆(t) and η̆(t) are decoupled from the dynamics of the filter’s attitude estimate error

states ε̃(t) and η̃(t). Further, the dynamics governing the attitude measurement

states have (by construction) the same form as those of the SO(2) Itô SDE from

the previous chapter given in Equation 4.24. Thus the attitude measurement noise

states are weakly stochastically stable as shown in Theorem 4.6.1 and the attitude

measurement noise Euler angle has the ultimate probability density given in Theo-

rem 4.44.

To show weak stochastic stability of the filter’s attitude estimate error states,

choose the Lyapunov function V = 1
2
ε̃2. Application of the differential generator

with respect to the Itô SDE 6.16 yields

L V = −1

2
keη̃

2ε̃2 − 1

4
σ2
wε̃

2 +
1

8
σ2
w +

1

2
ke

(
η̆ε̆η̃ε̃

(
2η̃2 − 1

)
+ 2ε̆2η̃2ε̃2

)
(6.20)

Observe that the final term, 1
2
ke

(
η̆ε̆η̃ε̃

(
2η̃2 − 1

)
+ 2ε̆2η̃2ε̃2

)
, is upper and lower

bounded as all of its components are bounded by the norm constraint on unit quater-
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nions. Specifically, using the norm constraint one can find

− 1

16
≤ η̆ε̆η̃ε̃

(
2η̃2 − 1

)
+ 2ε̆2η̃2ε̃2 ≤ 1

2
(6.21)

Combining the bound on this term with Equation 6.20 yields

L V ≤ −1

2
keη̃

2ε̃2 − 1

4
σ2
wε̃

2 +
1

8
σ2
w +

1

4
ke (6.22)

≤ −1

4
σ2
wε̃

2 +
1

8
σ2
w +

1

4
ke

Zakai’s stability theorem (Theorem 2.1.4) implies the system is weakly stochas-

tically stable.

Application of Zakai’s ultimate moment bound theorem (Theorem 2.1.5) im-

plies

lim
t→∞

E
[1

4
σ2
wε̃

2(t)
]
≤ 1

8
σ2
w +

1

4
ke

Linearity of the expectation operator and algebraic manipulation yields the final

result.

Again observe the curious result that the ultimate bound on ε̃2(t) is propor-

tional to the filter gain ke and inversely proportional to the square of the gyro noise

parameter σw which was seen in the SO(3) case. As before, it is important to

note that Equation 6.19 is merely an ultimate upper bound and not necessarily the

least ultimate upper bound. The observation that the ultimate bound on ε̃2(t) is

proportional to the filter gain ke may be an artifact of the analysis techniques used.

Zakai’s ultimate moment bound theorem (Theorem 2.1.5) provides a means

of finding an ultimate moment upper bound, specifically if L V ≤ k − L(x) then
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limt→∞E[L(x)] ≤ k. As can be seen from Zakai’s proof [114], the equalities hold: if

L V = k − L(x) then limt→∞E[L(x)] = k. If it can be assumed that the ultimate

moment bound theorem can be used for finding ultimate moment lower bounds,

meaning if L V ≥ k − L(x) then limt→∞E[L(x)] ≥ k, a lower bound can be found

for the system of SDE 6.16.

Corollary 6.2.2.1. Assume Zakai’s ultimate moment bound theorem (Theorem

2.1.5) provides a means of finding an ultimate moment lower bound in the following

way: if L V = k−L(x) then limt→∞E[L(x)] = k. Then the attitude error dynamics

of the Itô SDE 6.16 are such that

lim
t→∞

E
[
ε̃2(t)

]
≥ 1

2
+
σ2
w

4ke
− 1

2

√
5

4
+
σ4
w

4k2
e

(6.23)

Proof. Using the bound − 1
16
≤ η̆ε̆η̃ε̃

(
2η̃2− 1

)
+ 2ε̆2η̃2ε̃2 from Equation 6.21, a lower

bound for Equation 6.20 can be found as

L V ≥ −1

2
keη̃

2ε̃2 − 1

4
σ2
wε̃

2 +
1

8
σ2
w −

1

32
ke (6.24)

Using the assumed version of Zakai’s ultimate moment bound theorem (The-

orem 2.1.5) for ultimate lower bounds results in

lim
t→∞

E
[1

2
keη̃

2ε̃2 +
1

4
σ2
wε̃

2
]
≥ 1

8
σ2
w −

1

32
ke

Rearranging and using the quaternion norm constraint ε̃2 + η̃2 = 1 leads to

0 ≥ lim
t→∞

E
[
ε̃4
]
−
(

1 +
σ2
w

2ke

)
lim
t→∞

E
[
ε̃2
]

+
σ2
w

4ke
− 1

16
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Using the definition of variance, V ar
[
ε̃2
]

= E
[
ε̃4
]
−
(
E
[
ε2
])2

≥ 0, one finds

0 ≥ lim
t→∞

(
E
[
ε2
])2

−
(

1 +
σ2
w

2ke

)
lim
t→∞

E
[
ε2
]

+
σ2
w

4ke
− 1

16
+ lim

t→∞
V ar

[
ε̃2
]

≥ lim
t→∞

(
E
[
ε2
])2

−
(

1 +
σ2
w

2ke

)
lim
t→∞

E
[
ε2
]

+
σ2
w

4ke
− 1

16

Solving the polynomial inequality yields the final result.

If the underlying probability density of ε̃2(t) is assumed to be unimodal, the

Jacobson inequality can be used to find a tighter ultimate upper bound than the

one of Theorem 6.2.2.

Corollary 6.2.2.2. Assuming the underlying probability density of ε̃2(t) is uni-

modal, the attitude estimate error dynamics of the Itô SDE 6.16 obey the ultimate

upper bound

lim
t→∞

E
[
ε̃2(t)

]
≤ 1

2
+
σ2
w

4ke
− 1

2

√
σ4
w

4k2
e

− 13

9
(6.25)

Proof. Apply Zakai’s ultimate moment bound theorem (Theorem 2.1.5) directly to

Equation 6.22 to find

lim
t→∞

E
[1

2
keη̃

2ε̃2 +
1

4
σ2
wε̃

2
]
≤ 1

8
σ2
w +

1

4
ke

Using η̃2 = 1 − ε̃2, the definition of variance V ar
[
ε̃2
]

= E
[
ε̃4
]
−
(
E
[
ε̃2
])2

, and

rearranging, yields

0 ≤ lim
t→∞

(
E
[
ε̃2
])2

−
(

1 +
σ2
w

2ke

)
lim
t→∞

E
[
ε̃2
]

+
σ2
w

4ke
+

1

2
+ lim

t→∞
V ar

[
ε̃2
]
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As a = 0 ≤ ε̃2 ≤ 1 = b, Jacobson’s Inequality guarantees V ar
[
ε̃2
]
≤ (b−a)2

9
= 1

9
.

Combining with the above leads to the polynomial inequality

0 ≤ lim
t→∞

(
E
[
ε̃2
])2

−
(

1 +
σ2
w

2ke

)
lim
t→∞

E
[
ε̃2
]

+
σ2
w

4ke
+

11

18

Solving the polynomial inequality yields the final result.

While the previous corollary used an upper bound on the term 1
2
ke

(
η̆ε̆η̃ε̃

(
2η̃2−

1
)

+ 2ε̆2η̃2ε̃2
)

, it is possible to separate the cross coupled terms using Young’s in-

equality and bounding the attitude noise states given that their ultimate probability

density function is known. This line of analysis results in the following corollary.

Corollary 6.2.2.3. Assuming the underlying probability density of ε̃2(t) is uni-

modal, the attitude estimate error dynamics of the Itô SDE 6.16 obey the ultimate

upper bound

lim
t→∞

E
[
ε̃2(t)

]
≤ 1

2
+
σ2
w

2ke
− 1

2

√
σ4
w

k2
e

− 12 lim
t→∞

E
[
η̆2(t)ε̆2(t)

]
− 8 lim

t→∞
E
[
ε̆4(t)

]
− 51

81

(6.26)

where

lim
t→∞

E
[
η̆2(t)ε̆2(t)

]
=

1

4 km
σ2
m

I1

(
km
σ2
m

)
I0

(
km
σ2
m

)
and

lim
t→∞

E
[
ε̆4(t)

]
=

1

2

1−
1 + 2 km

σ2
m

2 km
σ2
m

I1

(
km
σ2
m

)
I0

(
km
σ2
m

)


Proof. Apply Young’s Inequality, ab ≤ a2

2
+ b2

2
, to Equation 6.20 to find

L V ≤ −1

4
keη̃

2ε̃2 − 1

4
σ2
wε̃

2 +
1

8
σ2
w +

3

4
keη̆

2ε̆2 +
1

2
keε̆

4 +
1

2
keη̃

6ε̃2 +
1

2
keη̃

4ε̃4

≤ −1

4
keη̃

2ε̃2 − 1

4
σ2
wε̃

2 +
1

8
σ2
w +

3

4
keη̆

2ε̆2 +
1

2
keε̆

4 +
6

81
ke
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where the last line holds since 0 ≤ η̃6ε̃2 + η̃4ε̃4 ≤ 12
81

which follows from 1 = ε̃2 + η̃2.

Application of Zakai’s ultimate moment bound theorem (Theorem 2.1.5) yields

lim
t→∞

E
[1

4
keη̃

2ε̃2 +
1

4
σ2
wε̃

2
]
≤ 1

8
σ2
w +

3

4
ke lim

t→∞
E
[
η̆2ε̆2

]
+

1

2
ke lim

t→∞
E
[
ε̆4
]

+
6

81
ke

Rearranging and using the definition of variance yields

0 ≤ lim
t→∞

(
E
[
ε̃2
])2

−
(

1 +
σ2
w

ke

)
lim
t→∞

E
[
ε2
]

+
σ2
w

2ke

+ 3 lim
t→∞

E
[
η̆2ε̆2

]
+ 2 lim

t→∞
E
[
ε̆4
]

+
24

81
+ lim

t→∞
V ar

[
ε̃2
]

Using Jacobson’s Inequality, V ar
[
ε̃2
]
≤ (b−a)2

9
= 1

9
for a = 0 ≤ ε̃2 ≤ 1 = b, leads to

0 ≤ lim
t→∞

(
E
[
ε̃2
])2

−
(

1 +
σ2
w

ke

)
lim
t→∞

E
[
ε2
]
+
σ2
w

2ke
+3 lim

t→∞
E
[
η̆2ε̆2

]
+2 lim

t→∞
E
[
ε̆4
]
+

35

81

Solving the polynomial inequality provides the final result.

Note that, as explained in the proof of Theorem 6.2.2, the attitude measure-

ment noise states are weakly stochastically stable as shown in Theorem 4.6.1 and

the attitude measurement noise Euler angle φ̆ has the ultimate probability density

given in Theorem 4.44, specifically

ps(φ̆) =
1

4πI0

(
km
σ2
m

) exp

{
km
σ2
m

cos
(
φ̆
)}

Using the relations ε̆ = sin
(
φ̆
2

)
and η̆ = sin

(
φ̆
2

)
and the ultimate probability density

one can compute limt→∞E
[
η̆2ε̆2

]
and limt→∞E

[
ε̆4
]

as follows

lim
t→∞

E
[
η̆2(t)ε̆2(t)

]
=

1

4πI0

(
km
σ2
m

) ∫ 2π

−2π

sin2

(
φ̆

2

)
cos2

(
φ̆

2

)
exp

{
km
σ2
m

cos
(
φ̆
)}

dφ̆

=
1

16πI0

(
km
σ2
m

) ∫ 2π

−2π

sin2
(
φ̆
)

exp

{
km
σ2
m

cos
(
φ̆
)}

dφ̆

=
1

4 km
σ2
m

I1

(
km
σ2
m

)
I0

(
km
σ2
m

)
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and

lim
t→∞

E
[
ε̆4(t)

]
=

1

4πI0

(
km
σ2
m

) ∫ 2π

−2π

sin4

(
φ̆

2

)
exp

{
km
σ2
m

cos
(
φ̆
)}

dφ̆

=
1

4πI0

(
km
σ2
m

)[1

4

∫ 2π

−2π

exp

{
km
σ2
m

cos
(
φ̆
)}

dφ̆

− 1

2

∫ 2π

−2π

cos
(
φ̆
)

exp

{
km
σ2
m

cos
(
φ̆
)}

dφ̆

+
1

4

∫ 2π

−2π

cos2
(
φ̆
)

exp

{
km
σ2
m

cos
(
φ̆
)}

dφ̆

]

=
1

4πI0

(
km
σ2
m

)[πI0

(
km
σ2
m

)
− 2πI1

(
km
σ2
m

)

+

(
π
km
σ2
m

I1

(
km
σ2
m

)
+ πI2

(
km
σ2
m

))]

=
1

4I0

(
km
σ2
m

)[I0

(
km
σ2
m

)
− 2I1

(
km
σ2
m

)

+
1
km
σ2
m

I1

(
km
σ2
m

)
+ I0

(
km
σ2
m

)
− 2

km
σ2
m

I1

(
km
σ2
m

)]

=
1

2

1−
1 + 2 km

σ2
m

2 km
σ2
m

I1

(
km
σ2
m

)
I0

(
km
σ2
m

)


where the Bessel function recurrence identity Iν(x) = Iν−2(x) − 2(ν−1)
x

Iν−1(x) was

used.
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6.2.6 Numerical Simulation Verification of Stochastic SO(2) Lya-

punov Bounds

Numerical simulations of the SO(2) attitude filter’s Itô SDE error dynamics

of Equation 6.16 were performed for a variety of system parameters. The Kloeden-

Platen Explicit Weak 2.0 numerical integration scheme discussed in Section 2.2.3

was used. For each simulation realization, a time step size of ∆t = 0.001 was used

for a total of 108 simulation steps. At the end of a simulation realization, the last

107 simulation steps were used to compute the empirical mean of the filter attitude

estimate error ε̃2(t).

A gallery of plots of the filter attitude estimate errors are included in Fig-

ure 6.5. As before, a magenta dot represents a single simulation realization. The

stochastic Lyapunov bounds of the previous section are also drawn on the plots,

with the upper bound of Equation 6.19 in blue, the lower bound of Equation 6.23

in red, and the upper bound of Equation 6.25 in yellow. As in the SO(3) case,

the stochastic Lyapunov bounds do correctly envelope the ensemble of numerical

realizations, but the bounds grow conservative for large filter gain ke and are in-

sufficient for filter performance characterization. In contrast to the SO(3) case, the

SO(2) stochastic Lyapunov bounds are tight in the small filter gain regime when

the attitude estimate state is essentially a random walk process.

In order to compute the stochastic Lyapunov upper bound of Equation 6.25,

limt→∞E
[
η̆2(t)ε̆2(t)

]
and limt→∞E

[
ε̆4(t)

]
must be evaluated. While analytic ex-

pressions of these ultimate expectations were given in terms of the modified Bessel
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functions of the first kind, they can still be difficult to evaluate using standard anal-

ysis software. For example, for the attitude noise level km
σ2
m

= 10000, Mathematica

yields I0(10000) ≈ 3.513 ∗ 104340 while MATLAB returns Inf. Standard numerical

tools such as MATLAB use 64 bit floating point numbers, which can encode num-

bers with exponents as high as 10308 or low as 10−308, but this is not sufficient for

evaluating the upper bound of Equation 6.25. Mathematica was used to evaluate

the bound, while MATLAB was used for loading the simulation results from file and

creating plots.
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Figure 6.5: Comparison of simulation realizations of attitude estimate errors of the SO(2)

error dynamics Itô SDE of Equation 6.16 to the stochastic Lyapunov upper

bound of Equation 6.19 in blue, the stochastic Lyapunov lower bound of Equa-

tion 6.23 in red, and the stochastic Lyapunov upper bound of Equation 6.25

in yellow.
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6.2.7 Fokker-Planck Analysis in SO(2)

This section presents a Fokker-Planck analysis of the SO(2) attitude filter.

As the system was shown to be weakly stochastically stable, the joint probability

density for the system will ultimately approach the solution to the stationary Fokker-

Planck PDE. In this section, the stationary Fokker-Planck PDE is derived and

a probability density function that asymptotically approaches the solution to the

stationary Fokker-Planck PDE is found. The asymptotic solution is subsequently

used to find stationary statistics for the system states.

Let p = p
(
ỹ(t), t

)
= p
(
φ̃(t), φ̆(t), t

)
be the joint probability density function

for the filter attitude estimate error φ̃(t) and the attitude measurement noise error

φ̆(t). The Fokker-Planck PDE associated with the attitude filter error dynamics Itô

SDE 6.18 is given by

∂p

∂t
= −

2∑
i=1

∂

∂ỹi

[
fi
(
ỹ(t)

)
p(ỹ(t), t)

]
+

1

2

2∑
i,j=1

∂2

∂ỹi∂ỹj

[{
G
(
ỹ(t)

)
GT
(
ỹ(t)

)}
i,j
p(ỹ(t), t)

]

=
1

2

(
km cos

(
φ̃(t)

)
+ ke cos

(
φ̃(t)− φ̆(t)

))
p
(
ỹ(t), t

)
+

1

2
km sin

(
φ̆(t)

) ∂p
∂φ̆

+
1

2
ke sin

(
φ̃(t)− φ̆(t)

)∂p
∂φ̃

+
1

2
σ2
m

∂2p

∂φ̆2
+

1

2
σ2
w

∂2p

∂φ̃2
(6.27)

The underlying system was shown to be weakly stochastically stable in The-

orem 6.2.2, thus the joint probability density function p
(
φ̃(t), φ̆(t), t

)
ultimately

approaches a stationary joint probability density function

ps = ps (ỹ) = ps

(
φ̃, φ̆

)
= lim

t→∞
p
(
φ̃(t), φ̆(t), t

)
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The stationary joint probability density function solves the stationary Fokker-Planck

PDE

0 =
1

2

(
km cos

(
φ̃
)

+ ke cos
(
φ̃− φ̆

))
ps +

1

2
km sin

(
φ̆
) ∂ps
∂φ̆

+
1

2
ke sin

(
φ̃− φ̆

)∂ps
∂φ̃

+
1

2
σ2
m

∂2ps

∂φ̆2
+

1

2
σ2
w

∂2ps

∂φ̃2
(6.28)

The next theorem presents a probability density function that asymptotically

approaches the stationary probability density function ps.

Theorem 6.2.3. The solution joint probability density function ps

(
φ̃, φ̆

)
of the

stationary Fokker-Planck PDE of Equation 6.28 is such that

ps

(
φ̃, φ̆

)
= lim

σm→0
km
σ2m

constant

pa

(
φ̃, φ̆

)

where pa

(
φ̃, φ̆

)
is the bivariate von Mises PDF given as

pa

(
φ̃, φ̆

)
=

1

N
exp

{
km
σ2
m

cos
(
φ̆
)

+
ke

σ2
m + σ2

w

cos
(
φ̃− φ̆

)}
(6.29)

with the normalization constant

N = 16π2I0

(
ke

σ2
m + σ2

w

)
I0

(
km
σ2
m

)
where I0(x) is the 0th order modified Bessel function of the first kind.

Proof. Consider the bivariate von Mises (BVM) distribution [49, 60] which is, in

general, specified as

pa

(
φ̃, φ̆

)
=

1

N
exp

{
κ1 cos

(
φ̆− µ1

)
+ κ2 cos

(
φ̃− µ2

)

+

[
cos
(
φ̆− µ1

)
sin
(
φ̆− µ1

)]
C

cos
(
φ̃− µ2

)
sin
(
φ̃− µ2

)

}
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where N is a normalization constant, κ1 and κ2 are real-valued scaling parameters,

and C is a 2x2 real constant matrix. In general there are no requirements on C; it

may be full rank, singular, zero, negative definite, positive definite, or sign indefinite.

As noted in Theorem 6.2.2, the attitude measurement noise states (q̆ in the

quaternion parameterization, φ̆ in the Euler Axis/Angle parameterization) are de-

coupled from the filter attitude estimate error states but not vice-versa. The station-

ary probability density function for the attitude measurement noise states was found

in the Euler Axis/Angle parameterization in Theorem 4.8.1. This in turn implies

the marginal probability density of the solution ps to the stationary Fokker-Planck

PDE of Equation 6.28 must be such that

∫
ps

(
φ̃, φ̆

)
dφ̃ =

1

4πI0

(
km
σ2
m

) exp

{
km
σ2
m

cos(φ̆)

}
(6.30)

Therefor κ1 = km
σ2
m

and µ1 = 0. Since all the trigonometric terms in the stationary

Fokker-Planck PDE have zero phase, one can further conclude that µ2 = 0.

As explained in [49, 60], the bivariate von Mises distribution may have the

von Mises marginal distribution of Equation 6.30 if and only if precisely one of the

following sets of conditions holds: C = 0, κ2 = 0 and C = c

−1 1

1 1

, κ2 = 0 and

C = c

1 −1

1 1

, κ2 = 0 and C = c

 1 1

−1 1

, κ2 = 0 and C = c

1 1

1 −1

, κ2 = 0 and

C = c

0 1

1 0

, or κ2 = 0 and C = c

1 0

0 1

. The first six of the seven possibilities

do not satisfy the stationary Fokker-Planck PDE of Equation 6.28. Substituting the
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last possibility into the Fokker-Planck PDE results in

0 =

{(
ke−c(σ2

m+σ2
w)
)(

cos
(
φ̆− φ̃

)
−c sin2

(
φ̆− φ̃

))
−ckm sin

(
φ̆
)

sin
(
φ̆− φ̃

)}
ps

Choosing c = ke
σ2
m+σ2

w
, the above equation becomes

0 =

{
kekm

σ2
m + σ2

w

sin
(
φ̆
)

sin
(
φ̆− φ̃

)}
ps

=

{
ke

km
σ2
m

1 + σ2
w

σ2
m

sin
(
φ̆
)

sin
(
φ̆− φ̃

)}
ps (6.31)

which does not hold for all possible φ̃ and φ̆ so this is not a solution. Note how-

ever that the right hand side of Equation 6.31 asymptotically approaches 0 for any

possible φ̃ and φ̆ when σm goes to zero while the ratio km
σ2
m

is held constant. The

attitude measurement noise density of Equation 6.30 is parameterized by the ratio

km
σ2
m

, so as long as km is made small enough to maintain the ratio km
σ2
m

the parameter

σm may be made arbitrarily small without altering the ultimate statistics of the

attitude measurement noise.

Thus

pa

(
φ̃, φ̆

)
=

1

N
exp

{
km
σ2
m

cos
(
φ̆
)

+
ke

σ2
m + σ2

w

cos
(
φ̃− φ̆

)}
(6.32)

asymptotically approaches the solution to the stationary Fokker-Planck PDE of

Equation 6.28 in the sense that

lim
σm→0

km
σ2m

constant

pa

(
φ̃, φ̆

)
= ps

(
φ̃, φ̆

)
The scaling constant N may be recovered by enforcing the probability density

normalization constraint ∫ 2π

−2π

∫ 2π

−2π

pa

(
φ̃, φ̆

)
dφ̃dφ̆ = 1
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Substituting in the probability density function of Equation 6.32 and rearranging

yields

N =

∫ 2π

−2π

∫ 2π

−2π

exp

{
km
σ2
m

cos
(
φ̆
)

+
ke

σ2
m + σ2

w

cos
(
φ̃− φ̆

)}
dφ̃dφ̆

=

∫ 2π

−2π

exp

{
km
σ2
m

cos
(
φ̆
)}∫ 2π

−2π

exp

{
ke

σ2
m + σ2

w

cos
(
φ̃− φ̆

)}
dφ̃dφ̆ (6.33)

Observe that exp

{
ke

σ2
m+σ2

w
cos
(
φ̃− φ̆

)}
is 2π periodic with phase φ̆, so

∫ 2π

−2π

exp

{
ke

σ2
m + σ2

w

cos
(
φ̃− φ̆

)}
dφ̃ =

∫ 2π

−2π

exp

{
ke

σ2
m + σ2

w

cos
(
φ̃
)}

dφ̃

The modified Bessel function of first kind is given in integral form as

Iν(x) =
1

π

∫ π

0

cos(νγ)ex cos(γ)dγ − sin(νπ)

π

∫ ∞
0

e− cosh(t)−νtdt (6.34)

Then

∫ 2π

−2π

exp

{
ke

σ2
m + σ2

w

cos
(
φ̃
)}

dφ̃

= 2

∫ π

−π
exp

{
ke

σ2
m + σ2

w

cos
(
φ̃
)}

dφ̃

= 4

∫ π

0

exp

{
ke

σ2
m + σ2

w

cos
(
φ̃
)}

dφ̃

= 4πI0

(
ke

σ2
m + σ2

w

)
(6.35)

where the first equality holds because the integrand is periodic with period 2π and

the second equality holds because the integrand is even.

Substituting back into Equation 6.33 results in

N = 4πI0

(
ke

σ2
m + σ2

w

)∫ 2π

−2π

exp

{
km
σ2
m

cos
(
φ̆
)}

dφ̆

= 16π2I0

(
ke

σ2
m + σ2

w

)
I0

(
km
σ2
m

)
(6.36)
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where again the facts that the integrand is periodic with period 2π and is even were

used.

The bivariate von Mises (BVM) probability density function of Equation 6.29

asymptotically approaches the solution to the stationary Fokker-Planck PDE of

Equation 6.28 as σm → 0 while the ratio km
σ2
m

is held constant, meaning km → 0 at

the same rate σ2
m → 0. The attitude measurement noise density of Equation 6.30 is

parameterized by the ratio km
σ2
m

so the ultimate statistics for the attitude measurement

noise given in Corollary 4.8.1.1 and Corollary 4.8.1.2 are unaffected. However it is

unclear as to whether there is some consequence to entirely parameterizing the

attitude measurement noise process via the ratio km
σ2
m

. The measurement noise PDF

of Equation 6.30 does not provide information about the autocorrelation of the

attitude measurement noise process, which could be parameterized by some different

function of km and σ2
m. Despite the potential loss of generality in parameterizing

the von Mises PDF of Equation 6.30 via the ratio km
σ2
m

, the BVM PDF of Equation

6.29 can be used to compute ultimate statistics of the filter attitude estimate error

as shown in the next corollary.

Corollary 6.2.3.1. The error dynamics of the Itô SDE 6.18 are such that

lim
t→∞

E
[
ε̃2(t)

]
=

1

2

1−
I1

(
ke
σ2
w

)
I1

(
km
σ2
m

)
I0

(
ke
σ2
w

)
I0

(
km
σ2
m

)
 (6.37)

where I0(x) and I1(x) are the 0th and 1st order modified Bessel functions of the first

kind respectively.
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Proof. Compute the expectation using the probability density function from Theo-

rem 6.2.3

lim
t→∞

E
[
ε̃2(t)

]
= lim

σm→0
km
σ2m

constant

1

N

∫ 2π

−2π

∫ 2π

−2π

ε̃2 exp

{
km
σ2
m

cos
(
φ̆
)

+
ke

σ2
m + σ2

w

cos
(
φ̃− φ̆

)}
dφ̃dφ̆

= lim
σm→0

km
σ2m

constant

1

N

∫ 2π

−2π

∫ 2π

−2π

sin2

(
φ̃

2

)
exp

{
km
σ2
m

cos
(
φ̆
)

+
ke

σ2
m + σ2

w

cos
(
φ̃− φ̆

)}
dφ̃dφ̆

= lim
σm→0

km
σ2m

constant

1

2N

∫ 2π

−2π

∫ 2π

−2π

exp

{
km
σ2
m

cos
(
φ̆
)

+
ke

σ2
m + σ2

w

cos
(
φ̃− φ̆

)}
dφ̃dφ̆

− 1

2N
lim
σm→0

km
σ2m

constant

∫ 2π

−2π

∫ 2π

−2π

cos
(
φ̃
)

exp

{
km
σ2
m

cos
(
φ̆
)

+
ke

σ2
m + σ2

w

cos
(
φ̃− φ̆

)}
dφ̃dφ̆

=
1

2
− 1

2N
lim
σm→0

km
σ2m

constant

[
∫ 2π

−2π

exp

{
km
σ2
m

cos
(
φ̆
)}∫ 2π

−2π

cos
(
φ̃
)

exp

{
ke

σ2
m + σ2

w

cos
(
φ̃− φ̆

)}
dφ̃dφ̆

]

The φ̃ integral can be found in Mathematica [108] as

∫ 2π

−2π

cos
(
φ̃
)

exp

{
ke

σ2
m + σ2

w

cos
(
φ̃− φ̆

)}
dφ̃ = 4πI1

(
ke

σ2
m + σ2

w

)
cos
(
φ̆
)

Substituting into the above yields

lim
t→∞

E
[
ε̃2(t)

]
=

1

2
− lim

σm→0
km
σ2m

constant

4πI1

(
ke

σ2
m+σ2

w

)
2N

∫ 2π

−2π

cos
(
φ̆
)

exp

{
km
σ2
m

cos
(
φ̆
)}

dφ̆

=
1

2
− lim

σm→0
km
σ2m

constant

16π2I1

(
ke

σ2
m+σ2

w

)
I1

(
km
σ2
m

)
2N

= lim
σm→0

km
σ2m

constant

1

2

1−
I1

(
ke

σ2
m+σ2

w

)
I1

(
km
σ2
m

)
I0

(
ke

σ2
m+σ2

w

)
I0

(
km
σ2
m

)
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Now hold the ratio km
σ2
m

= γ fixed but let σm →∞:

lim
t→∞

E
[
ε̃2(t)

]
= lim

σm→0
km
σ2m

constant

1

2

1−
I1

(
ke

σ2
m+σ2

w

)
I1

(
km
σ2
m

)
I0

(
ke

σ2
m+σ2

w

)
I0

(
km
σ2
m

)


= lim
σm→0

1

2

1−
I1

(
ke

σ2
m+σ2

w

)
I1 (γ)

I0

(
ke

σ2
m+σ2

w

)
I0 (γ)


=

1

2

1−
I1

(
ke

σ2
m+σ2

w

)
I1 (γ)

I0

(
ke

σ2
m+σ2

w

)
I0 (γ)


=

1

2

1−
I1

(
ke
σ2
w

)
I1

(
km
σ2
m

)
I0

(
ke
σ2
w

)
I0

(
km
σ2
m

)
 (6.38)
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6.2.8 Numerical Simulation of Stochastic SO(2) Analytic Results

Consider again the simulations of the SO(2) attitude filter’s Itô SDE error

dynamics of Equation 6.16 previously discussed in Section 6.2.6. In the proof of

Corollary 6.2.3.1, limt→∞E
[
ε̃2(t)

]
was shown to be such that

lim
t→∞

E
[
ε̃2(t)

]
= lim

σm→0

1

2

1−
I1

(
ke

σ2
m+σ2

w

)
I1 (γ)

I0

(
ke

σ2
m+σ2

w

)
I0 (γ)

 (6.39)

where γ = km
σ2
m

is held constant. The gallery in Figure 6.6 shows plots of the right

hand side of Equation 6.39 for a logarithmic sequence of σm approaching zero (while

holding the ratio γ = km
σ2
m

constant) overlaid on the mean simulation realizations

of ε̃2(t). In each set of simulation realizations considered, the analytic ultimate

expectation of ε̃2(t) converges to the simulation results as σm → 0. The gallery is

repeated in Figure 6.7 with the σm → 0 limit used for the ultimate expectation.

307



Figure 6.6: The analytic ultimate expectation of ε̃(t), provided in Equation 6.39, con-

verges to simulation realizations of attitude estimate errors of the SO(2) error

dynamics Itô SDE of Equation 6.16 as γ → 0.
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Figure 6.7: The analytic ultimate expectation of Corollary 6.2.3.1 matches the simulation

realizations of attitude estimate errors of the SO(2) error dynamics Itô SDE

of Equation 6.16.
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As further evidence to corroborate the result that the ultimate attitude esti-

mate error is a function of the ratio of γ = km
σ2
m

as in Corollary 6.2.3.1, several sets of

simulations were performed. Each of the plots in Figure 6.8 consists of simulations

with the same ratio γ = km
σ2
m

, but each plot has distinct values of σm (and thus also

km). The analytic ultimate attitude estimate error performance curve from Corol-

lary 6.2.3.1 is compared to simulation realizations for a range of tracking gains ke

in each plot. The performance curves, both from the analytic expression and the

simulation results, have the same shape in each plot since they all have the same

ratio γ.
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Figure 6.8: Varying the individual values of km and σ2
m while holding the ratio km

σ2
m

con-

stant yields the same performance curve from both the analytic expectation

of Corollary 6.2.3.1 and the simulation realizations.
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Plots of the ultimate expectation from Corollary 6.2.3.1 for various attitude

measurement noise levels σ2
m

km
are shown in Figure 6.9. As the attitude measure-

ment noise level σ2
m

km
is reduced (as km

σ2
m

increases), the high filter gain ke limit of

limt→∞E[ε̃2(t)] decreases. This result agrees with intuition since, given the structure

of the filter, larger gains force the filter states to track the attitude measurements

more closely. In the low gain limit, the filter is unable to incorporate attitude mea-

surement information in its state estimate faster than the state estimate randomly

walks due to gyro measurement noise.

Figure 6.9: Plots of the ultimate expectation from Corollary 6.2.3.1 for various attitude

measurement noise levels σ2
m
km

; as the attitude measurement noise level σ2
m
km

decreases (as km
σ2
m

increases), the high filter gain limit of the attitude estimate

errors decrease.
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Plots of the ultimate expectation from Corollary 6.2.3.1 for various gyro mea-

surement noise levels σw are shown in Figure 6.10. As the gyro measurement noise

increases, the filter gain must increase to allow attitude measurement information

to significantly improve the state estimate. Conversely, as the gyro measurement

noise decreases, the filter gain allows the state estimates to track the attitude mea-

surements more quickly. Thus the effect of changing the gyro measurement noise

parameter σw is to simply shift the plot of the ultimate expectation from Corollary

6.2.3.1 horizontally.

Figure 6.10: Plots of the ultimate expectation from Corollary 6.2.3.1 for various angular

measurement noise levels σw. The effect of increasing σw is to shift the filter’s

attitude estimate performance curve to the right.
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The plots in Figures 6.9 and 6.10 show that the ultimate attitude estimate

error variance limt→∞E
[
ε̃2(t)

]
approaches the ultimate attitude measurement noise

variance limt→∞E
[
ε̆2(t)

]
in the high filter gain limit, when ke → ∞. One might

expect this result as the filter’s feedback term keη̃mε̃m compares the filter attitude

estimate to the attitude measurement. As the filter gain ke is increased, the feedback

term forces the filter to track the attitude measurements more closely.

This phenomena can be further understood by investigating a linear time in-

variant (LTI) system analogous to the nonlinear attitude filter. Consider the simple

LTI kinematics equation for translation

ẋ(t) = v(t) (6.40)

where x(t) is position at time t and v(t) is velocity at time t. Assume two types of

measurements of the system state are continuously available. The first measurement

is from a velocity sensor with the measurement model

vm(t) = v(t) + σvwv(t) (6.41)

which produces measurements vm(t) of the true velocity v(t), but the measurement

is perturbed by additive unbounded noise generated by the zero mean Gaussian

white noise process wv(·) and σv > 0 is a scaling constant. The velocity sensor is

analogous to the angular rate gyro. The second measurement comes from a position

sensor with the measurement model

xm(t) = x(t) + n(t)

n(t) = −λn(t) + σnwn(t) (6.42)
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where the measurements xm(t) of the true position x(t) at time t are corrupted by the

non-white noise n(t). The non-white noise process is given as a First Order Gauss

Markov (FOGM) process with correlation time 1
λ
> 0 and driving noise density

σn > 0. The driving process noise wn(·) is a zero mean unit variance Gaussian

which is independent of wv(·).

A translation filter for the velocity measurements of Equation 6.41 and the

position measurements of Equation 6.42 can be formulated as

˙̂x(t) = vm(t) + ke (xm(t)− x̂(t))

= v(t) + ke (x(t)− x̂(t) + n(t)) + σvwv(t) (6.43)

with tracking gain ke > 0 as a scalar. The filter of Equation 6.43 is a translational

analog of the nonlinear attitude estimation filter of Section 6.2.1; the velocity sensor

measurement is used to (imperfectly) propagate the filter kinematic equation, and

a feedback term ke (xm(t)− x̂(t)) is used to drive the position estimate x̂(t) towards

the position measurement xm(t).

Defining the LTI filter’s translational estimate error as x̃(t) = x(t)− x̂(t), the

estimate error dynamics are then

˙̃x(t) = ẋ(t)− ˙̂x(t)

= v(t)− v(t)− ke (x(t)− x̂(t) + n(t)) + σvwv(t)

= −kex̃(t)− ken(t)− σvwv(t)

Augmenting the estimate error dynamics with the FOGM process dynamics yields
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the filter error dynamics

ẋ(t) =

ṅ(t)

˙̃x(t)

 =

−λ 0

−ke −ke


n(t)

x̃(t)

+

σn 0

0 −σv


wn(t)

wv(t)


= Fx(t) +Gw(t) (6.44)

The filter error dynamics of Equation 6.44 constitute an LTI system. As

λ > 0 and ke > 0 by construction, the matrix F is Hurwitz. As discussed in

Section 2.1.4.1, the LTI system with Hurwitz dynamics matrix F has a covariance

matrix P (t) = E[x(t)xT (t)] that approaches a stationary covariance matrix Ps =

limt→∞E[x(t)xT (t)] that satisfies the covariance Lyapunov equation

0 = FPs + PsF
T +GGT

Denoting

Ps =

pn,n pn,x

pn,x px,x

 = lim
t→∞

E[x(t)xT (t)]

and solving the covariance Lyapunov equation yields

pn,n = lim
t→∞

E[n2(t)] =
σ2
n

2λ

pn,x = lim
t→∞

E[n(t)x(t)] = − ke
λ+ ke

σ2
n

2λ

px,x = lim
t→∞

E[x2(t)] =
σ2
v

2ke
+

ke
λ+ ke

σ2
n

2λ
(6.45)

The translational position estimate error variance px,x is composed of two

terms: the first term describes the contribution of the velocity sensor noise density σv

to the estimate error variance, while the second describes the contribution of the non-

white position measurement noise density σn. For infinitely large tracking gain ke,
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the contribution of the velocity sensor noise vanishes; however, the contribution from

the position measurement noise remains. This result can be further corroborated by

examining the structure of the filter dynamics of Equation 6.43. The filter tracking

gain ke essentially acts as a weighting coefficient balancing contributions to the filter

dynamics between the filter translation kinematic model and position measurement

feedback. For a small tracking gain ke the filter dynamics ˙̂x(t) are principally given

by the filter’s translational kinematic model driven by the velocity measurement.

For a large tracking gain ke the filter dynamics ˙̂x(t) are principally driven by the

estimate error term ex(t) = xm(t)− x̂(t).

The above analysis in the LTI case is analogous to that of the nonlinear at-

titude filter. For large tracking gain ke, the ultimate attitude estimate error vari-

ance limt→∞E
[
ε̃2(t)

]
approaches the ultimate attitude measurement noise variance

limt→∞E
[
ε̆2(t)

]
. From the construction of the nonlinear attitude filter, the tracking

gain ke acts as a weighting coefficient balancing contributions to the filter dynamics

between the filter attitude kinematic model and attitude measurement feedback.

For a small tracking gain ke the filter dynamics ˙̂q(t) are principally given by the

filter’s attitude kinematic model driven by the gyro measurement. For a large track-

ing gain ke the filter dynamics ˙̂q(t) are principally driven by the attitude estimate

error term e(t) = η̃m(t)ε̃m(t) which compares the filter attitude estimate q̂(t) with

the attitude measurement qm(t).
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6.2.9 SO(3) Bound Extrapolated from SO(2) Analytic Solution

Following the same approach as that of Section 4.10, this section extrapolates

an upper bound for the ultimate expectation of the SO(3) filter’s attitude estimate

errors from the analytic solution of the ultimate expectation of the SO(2) filter’s

attitude estimate errors given in Corollary 6.2.3.1. The factor of 1
2

in Equation 6.37

is rescaled to 3
4

so the SO(3) bound matches the low filter gain limit seen in the

numerical simulation results. Next, various choices of noise level scaling ξ are used

in the expression

bound

(
ξ,
ke
σ2
w

,
km
σ2
m

)
=

3

4

1−
I1

(
ke
ξσ2
w

)
I1

(
km
ξσ2
m

)
I0

(
ke
ξσ2
w

)
I0

(
km
ξσ2
m

)
 (6.46)

The notional bound with various choices of ξ is superimposed on plots of the nu-

merical simulations of the SO(3) Itô SDE 6.10 for the case of a spinning vehicle in

the gallery of Figure 6.11 and an inertially fixed vehicle in Figure 6.12.

In all cases considered, the choice of ξ = 3 in the expression of Equation 6.46

bound the simulation realizations. Again this agrees with the logic considered in

Section 4.10, that the variance of a random walk process in three dimensions driven

by independent noise sources along each axis is upper bounded by the variance of

a random walk process in one dimension with the three independent noise sources

each acting on the single axis. Focusing all the noise energy along a single physical

dimension maximizes the potential for constructive and destructive interference.

This is an upper bound as the noise channels in the SO(3) case represent actual

sensor hardware noise which are physically restricted to independent axes. Thus
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the heuristic upper bound for the SO(3) case is given here as

lim
t→∞

E
[
ε̃T (t)ε̃(t)

]
≤ 3

4

1−
I1

(
ke

3σ2
w

)
I1

(
km
3σ2
m

)
I0

(
ke

3σ2
w

)
I0

(
km
3σ2
m

)
 (6.47)

The upper bound is drawn again for clarity for the case of a spinning vehicle in the

gallery of Figure 6.13 and an inertially fixed vehicle in Figure 6.14.
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Figure 6.11: Comparison of simulation realizations of the attitude estimate error and the

notional bound of Equation 6.46 for several choices of ξ and for the case of a

vehicle spinning at 5 revolutions per minute about the vehicle body’s [1 2 3]T

axis. 320



Figure 6.12: Comparison of simulation realizations of the attitude estimate error and the

notional bound of Equation 6.46 for several choices of ξ and for the case of a

vehicle inertially fixed (not spinning).
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Figure 6.13: Comparison of simulation realizations of the attitude estimate error and the

heuristic bound of Equation 6.47 for the case of a vehicle spinning at 5 rev-

olutions per minute about the vehicle body’s [1 2 3]T axis.
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Figure 6.14: Comparison of simulation realizations of the attitude estimate error and the

heuristic bound of Equation 6.47 for the case of a vehicle inertially fixed (not

spinning).
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6.3 Gyro Constant Bias Filter for Gyro Additive Noise and Attitude

Measurement Noise

This section considers the inclusion of attitude measurement noise in the gyro

constant bias estimation problem. Specifically, the gyro constant bias estimation

filter studied in Chapter 5 is now assumed to have the attitude measurement noise

model of Section 6.1.

Section 6.3.1 presents the measurement models considered, the formulation

of the attitude filter, and culminates with the derivation of an Itô SDE for the

system error dynamics. While the constant gyro bias filter was able to utilize the

converse Lyapunov theorem to find a Lyapunov function suitable to demonstrate

weak stochastic stability in Section 5.2, the converse Lyapunov theorem does not

apply to the filter error dynamics augmented with the quaternion measurement noise

model; a Fokker-Planck analysis is pursued under the assumption that the filter

error dynamics are stable. The system is reduced to the SO(2) case in Section 6.3.2

to first gain insight.

Similar to the attitude estimation filter with attitude measurement noise stud-

ied in Section 6.2, an asymptotic solution to the SO(2) stationary Fokker-Planck

PDE is found in Section 6.3.3. The asymptotic solution is subsequently used to find

analytic expressions for the ultimate attitude estimate error variance as well as the

ultimate gyro bias estimate error mean and variance. These results are verified via

simulation analysis in Section 6.3.4. Similar to Sections 4.10, 5.7, and 6.2.9, Section
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6.3.5 provides bounds for the ultimate attitude estimate error variance as well as

the ultimate gyro bias estimate error variance for the SO(3) case by extrapolating

the SO(2) results of Section 6.3.3 .
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6.3.1 Gyro Constant Bias Filter Formulation in SO(3)

As in Section 5.1, the angular rate gyro measurements are modeled as having

a constant bias b as well as additive noise

ωg(t) = ω(t) + b+ σwnw(t) (6.48)

where, as before, ωg(t) is the gyro measurement at time t, ω(t) is the true vehicle

angular rate at time t, σw is a positive scaling constant, and nw(·) is a zero mean

unit variance Gaussian white noise process. As the bias is assumed to be constant,

ḃ(t) = 0.

The attitude measurement qm(t), possibly from a quaternion output star

tracker, is modeled here as a noise corrupted version of the true vehicle attitude

q(t) as presented in Section 6.1

qm(t) = q̆−1(t)⊗ q(t) (6.49)

where q̆(·) is a quaternion noise process. The attitude measurement evolves accord-

ing to Equation 6.3 repeated here for convenience

q̇m(t) =
1

2

{
R
(
q̆

−1

(t)
)

[ω(t) + σmnm(t) + kmη̆(t)ε̆(t)]
}
⊗ qm(t) (6.50)

where km and σm are positive scalars that parameterize the attitude measurement

noise statistics, nm(·) is a collection of independent identically distributed zero

mean unit variance Gaussian white noise processes independent of nw(·), and q̆(t)

compares the attitude measurement noise process to the true vehicle attitude

q̆(t) = q(t)⊗ q−1
m (t) =

ε̆(t)
η̆(t)

 (6.51)
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The attitude measurement noise error dynamics are given in Equation 6.4.

In Chapter 5 the gyro constant bias filter had access to the true attitude in real

time; it could use the filter attitude estimate error q̃(t) =

ε̃(t)
η̃(t)

 = q(t) ⊗ q̂−1(t)

to drive its kinematics as in Equation 5.3. In this chapter, however, the filter is

restricted to using attitude measurements corrupted by noise. Thus in this section

the filter equations are given as

˙̂q(t) =
1

2

{
R
(
q̃−1
m (t)

)[
ωg(t)− b̂(t) + keη̃m(t)ε̃m(t)

]}
⊗ q̂(t)

˙̂
b(t) = −αη̃m(t)ε̃m(t) (6.52)

which is driven by the noise corrupted attitude estimate error

q̃m(t) =

ε̃m(t)

η̃m(t)

 = qm(t)⊗ q̂−1(t)

= q̆−1(t)⊗ q(t)⊗ q̂−1(t)

= q̆−1(t)⊗ q̃(t) (6.53)

The expression η̃m(t)ε̃m(t) is expanded in terms of ε̃(t), η̃(t), ε̆(t), and η̆(t) in

Equation 6.7. As before, ke > 0 is a filter (estimator) gain parameter, q̂(t) is the

filter’s estimate of the vehicle attitude q(t) at time t, α > 0 is the filter adaptation

gain parameter, and b̂(t) is the filter’s estimate at time t of the gyro bias b.

The filter’s bias estimate error b̃(t) is given as

b̃(t) = b− b̂(t) (6.54)

The filter uses its bias estimate in the filter kinematic equation to attempt to correct

for the true bias in the gyro measurement. Since the gyro bias is assumed to be
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constant, ḃ(t) = 0, the bias estimate error dynamics are simply

˙̃b(t) = αη̃m(t)ε̃m(t) (6.55)

The attitude estimate dynamics in Equation 6.52 can be combined with the

quaternion error kinematics of Equation 2.71 and the gyro measurement model

from Equation 6.48 to find the filter’s attitude estimate error dynamics. Suppressing

function of time notation for brevity, the attitude estimate error dynamics are found

to be

˙̃q =
1

2

{
ω −R

(
q̃
)
R
(
q̃−1
m

)[
ωg − b̂+ keη̃mε̃m

]}
⊗ q̃

=
1

2

{
ω −R

(
q̃
)
R
(
q̃−1
)
R
(
q̆
)[
ω + b+ σwnw − b̂+ keη̃mε̃m

]}
⊗ q̃

=
1

2

{[
I −R

(
q̆
)]
ω −R

(
q̆
)[
keη̃mε̃m + b̃+ σwnw

]}
⊗ q̃ (6.56)

Just as in Section 6.2.1, the attitude measurement noise prevents the filter from

being able to perfectly resolve its angular rate estimate in the appropriate frame.

A consequence is that the vehicle angular rate ω appears explicitly in the attitude

estimate error dynamics. As before, when the attitude noise is zero (q̆ = q
Identity

),

the
[
I −R

(
q̆
)]
ω term vanishes and η̃mε̃m simplifies to η̃ε̃.

Combining the attitude noise model error dynamics of Equation 6.4, the fil-

ter attitude estimate error dynamics of Equation 6.56, and the bias estimate error
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dynamics of Equation 6.55 leads to the Langevin form filter error dynamics

˙̃x =


˙̆q

˙̃q

˙̃b

 =



˙̆ε

˙̆η

˙̃ε

˙̃η

˙̃b



=



−1
2
kmη̆

2ε̆

1
2
kmη̆ε̆

T ε̆

1
2

[
η̃I +

[
ε̃×

]][
I −R

(
q̆
)]
ω − 1

2

[
η̃I +

[
ε̃×

]]
R
(
q̆
)[
keη̃mε̃m + b̃

]
−1

2
ε̃T
[
I −R

(
q̆
)]
ω + 1

2
ε̃TR

(
q̆
)[
keη̃mε̃m + b̃

]
αη̃mε̃m



+



−1
2

[
η̆I +

[
ε̆×

]]
σm 0

1
2
ε̆Tσm 0

0 −1
2

[
η̃I +

[
ε̃×

]]
R
(
q̆
)
σw

0 1
2
ε̃TR

(
q̆
)
σw

0 0



nm
nw

 (6.57)

where η̃mε̃m is expanded in Equation 6.7.

As discussed in Section 2.1.3, the Langevin form error dynamics differential

equation 6.57 is interpreted as a Stratonovich SDE. Converting to an Itô SDE results
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in the following

dx̃ =


dq̆

dq̃

db̃

 =



dε̆

dη̆

dε̃

dη̃

db̃



=



−1
2
kmη̆

2ε̆− 3
8
σ2
mε̆

1
2
kmη̆ε̆

T ε̆− 3
8
σ2
mη̆

1
2

[
η̃I +

[
ε̃×

]][
I −R

(
q̆
)]
ω − 1

2

[
η̃I +

[
ε̃×

]]
R
(
q̆
)[
keη̃mε̃m + b̃

]
− 3

8
σ2
wε̃

−1
2
ε̃T
[
I −R

(
q̆
)]
ω + 1

2
ε̃TR

(
q̆
)[
keη̃mε̃m + b̃

]
− 3

8
σ2
wη̃

αη̃mε̃m


dt

+



−1
2

[
η̆I +

[
ε̆×

]]
σm 0

1
2
ε̆Tσm 0

0 −1
2

[
η̃I +

[
ε̃×

]]
R
(
q̆
)
σw

0 1
2
ε̃TR

(
q̆
)
σw

0 0



dβm
dβw



= f(x̃)dt+G(x̃)dβ (6.58)

Note that the converse Lyapunov theorem can not be invoked here as in Section

5.2. Here, the attitude estimate error states and the measurement error states

mix in the nonlinear function η̃m(t)ε̃m(t) of Equation 6.7. While the quaternion

measurement error dynamics of Equation 6.4 were shown to be weakly stochastically

stable in Section 4.2.1 and the noise-free attitude measurement gyro constant bias
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observer of Chapter 5 was shown to be weakly stochastically stable in Section 5.2,

there is no guarantee that providing the state of one weakly stochastically stable

system as an input into another weakly stochastically stable system results in a

combination that is weakly stochastically stable. Even in the deterministic nonlinear

case there is no guarantee of a separation principle as discussed in Thienel and

Sanner [95].

Instead, the analysis in the remainder of this chapter assumes the error dynam-

ics are weakly stochastically stable. The analysis will proceed with an investigation

of the stationary Fokker-Planck PDE and any results obtained will be corroborated

via comparison to statistics from numerical simulation realizations.
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6.3.2 Gyro Constant Bias Filter Formulation in SO(2)

As in the attitude estimation filter for gyro additive noise and attitude mea-

surement noise case studied in Section 6.2, the author has not yet been able to solve

the Fokker-Planck PDE for the full SO(3) case. The SO(2) case, however, will be

shown to have a tractable solution. In this section the attitude filter dynamical

model will be reduced to the SO(2) case to enable the Fokker-Planck analysis in the

following section.

As explained in Section 2.3.2, the SO(3) dynamical model may be reduced to

the SO(2) case by simply zeroing out the y and z components of all vector quantities.

Equivalently, the vector quantities in the SO(3) case reduce to scalar quantities, and

SO(3) unit quaternions comprised of four elements reduce to SO(2) unit quaternions

with two elements.

The SO(3) Langevin form error dynamics of Equation 5.6 reduce in the SO(2)

case to

˙̃x =


˙̆q

˙̃q

˙̃b

 =



˙̆ε

˙̆η

˙̃ε

˙̃η

˙̃b


=



−1
2
kmη̆

2ε̆

1
2
kmη̆ε̆

2

−1
2
keη̃η̃mε̃m − 1

2
η̃b̃

1
2
keε̃η̃mε̃m + 1

2
ε̃b̃

αη̃mε̃m


+



−1
2
η̆σm 0

1
2
ε̆σm 0

0 −1
2
η̃σw

0 1
2
ε̃σw

0 0



nm
nw

 (6.59)

where again the function of time notation has been suppressed for brevity. In the

SO(2) case the feedback term is given by

η̃mε̃m = (η̆η̃ + ε̆ε̃) (η̆ε̃− η̃ε̆) (6.60)
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As explained in Section 2.1.3, the Langevin form error dynamics differential

equation 6.59 is interpreted as a Stratonovich SDE. Converting to Itô form yields

dx̃ =


dq̆

dq̃

db̃

 =



dε̆

dη̆

dε̃

dη̃

db̃



=



−1
2
kmη̆

2ε̆− 1
8
σ2
mε̆

1
2
kmη̆ε̆

2 − 1
8
σ2
mη̆

−1
2
keη̃η̃mε̃m − 1

2
η̃b̃− 1

8
σ2
wε̃

1
2
keε̃η̃mε̃m + 1

2
ε̃b̃− 1

8
σ2
wη̃

αη̃mε̃m


dt+



−1
2
η̆σm 0

1
2
ε̆σm 0

0 −1
2
η̃σw

0 1
2
ε̃σw

0 0



dβm
dβw

 (6.61)

The attitude filter error dynamics of Equation 6.59 can equivalently be written

in the SO(2) Euler Axis/Angle parameterization (as explained in Section 2.3.2). Let

q̆ =

ε̆
η̆

 =

sin
(
φ̆
2

)
cos
(
φ̆
2

)
 q̃ =

ε̃
η̃

 =

sin
(
φ̃
2

)
cos
(
φ̃
2

)


Then the SO(2) Euler Axis/Angle parameterization of the filter error dynamics is
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given as

˙̃y =


˙̆
φ

˙̃φ

˙̃b

 =


−kmη̆ε̆

−ke (η̆η̃ + ε̆ε̃) (η̆ε̃− η̃ε̆)− b̃

α (η̆η̃ + ε̆ε̃) (η̆ε̃− η̃ε̆)

+


−σm 0

0 −σw

0 0


nm
nw



=


−1

2
km sin

(
φ̆
)

−1
2
ke sin

(
φ̃− φ̆

)
− b̃

1
2
α sin

(
φ̃− φ̆

)

+


−σm 0

0 −σw

0 0


nm
nw

 (6.62)

which is immediately in Langevin form. Conversion to an Itô SDE is trivial as the

diffusion matrix is independent of the state :

dỹ =


dφ̆

dφ̃

db̃

 =


−1

2
km sin

(
φ̆
)

−1
2
ke sin

(
φ̃− φ̆

)
− b̃

1
2
α sin

(
φ̃− φ̆

)

 dt+


−σm 0

0 −σw

0 0


dβm
dβw



= f(ỹ)dt+G(ỹ)dβ (6.63)
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6.3.3 Fokker-Planck Analysis in SO(2)

This section presents a Fokker-Planck analysis of the SO(2) attitude filter. As-

suming the SO(2) attitude filter error dynamics of Itô SDE 6.61 are weakly stochas-

tically stable, the joint probability density for the system will ultimately approach

the solution to the stationary Fokker-Planck PDE. In this section, the stationary

Fokker-Planck PDE is derived and a probability density function that asymptoti-

cally approaches the solution to the stationary Fokker-Planck PDE is found. The

asymptotic solution is subsequently used to find stationary statistics for the system

states.

Let p = p
(
ỹ(t), t

)
= p

(
φ̃(t), φ̆(t), b̃(t), t

)
be the joint probability density

function for the filter attitude estimate error φ̃(t), the attitude measurement noise

error φ̆(t), and the bias estimate error b̃(t). Then the Fokker-Planck PDE associated

with the attitude filter error dynamics Itô SDE 6.63 is given by

∂p

∂t
= −

3∑
i=1

∂

∂ỹi

[
fi
(
ỹ(t)

)
p(ỹ(t), t)

]
+

1

2

3∑
i,j=1

∂2

∂ỹi∂ỹj

[{
G
(
ỹ(t)

)
GT
(
ỹ(t)

)}
i,j
p(ỹ(t), t)

]

=
1

2

[
km cos

(
φ̃(t)

)
+ ke cos

(
φ̃(t)− φ̆(t)

) ]
p
(
ỹ(t), t

)
+

1

2
km sin

(
φ̆(t)

) ∂p
∂φ̆

+
[1

2
ke sin

(
φ̃(t)− φ̆(t)

)
+ b̃(t)

]∂p
∂φ̃

− 1

2
α sin

(
φ̃(t)− φ̆(t)

)∂p
∂b̃

+
1

2
σ2
m

∂2p

∂φ̆2
+

1

2
σ2
w

∂2p

∂φ̃2
(6.64)

Assuming the underlying system is weakly stochastically stable, the joint prob-

ability density function p
(
φ̃(t), φ̆(t), b̃(t), t

)
ultimately approaches a stationary joint
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probability density function

ps = ps (ỹ) = ps

(
φ̃, φ̆, b̃

)
= lim

t→∞
p
(
φ̃(t), φ̆(t), b̃(t), t

)
The stationary joint probability density function solves the stationary Fokker-Planck

PDE

0 =
[
km cos

(
φ̃
)

+ ke cos
(
φ̃− φ̆

) ]
ps + km sin

(
φ̆
) ∂ps
∂φ̆

+
[
ke sin

(
φ̃− φ̆

)
+ 2b̃

]∂ps
∂φ̃
− α sin

(
φ̃− φ̆

)∂ps
∂b̃

+ σ2
m

∂2ps

∂φ̆2
+ σ2

w

∂2ps

∂φ̃2
(6.65)

The next theorem presents a probability density function that asymptotically

approaches the stationary probability density function ps.

Theorem 6.3.1. The solution joint probability density function ps

(
φ̃, φ̆, b̃

)
of the

stationary Fokker-Planck PDE of Equation 6.65 is such that

ps

(
φ̃, φ̆, b̃

)
= lim

σm→0
km
σ2m

constant

pa

(
φ̃, φ̆, b̃

)

where

pa

(
φ̃, φ̆, b̃

)
=

1

N
exp

{
km
σ2
m

cos
(
φ̆
)

+
ke

σ2
m + σ2

w

cos
(
φ̃−φ̆

)
− ke
α (σ2

w + σ2
m)
b̃2

}
(6.66)

with the normalization constant

N = 16π2I0

(
ke

σ2
m + σ2

w

)
I0

(
km
σ2
m

)√
πα (σ2

w + σ2
m)

ke

where I0(x) is the 0th order modified Bessel function of the first kind.

Proof. Recalling that the attitude measurement noise stationary Fokker-Planck PDE

was asymptotically solved by a bivariate von Mises distribution in Theorem 6.2.3 and
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the gyro constant bias stationary Fokker-Planck PDE was solved by the cylindrical

probability density function of Mardia and Sutton [62] in Theorem 5.5.1, consider

the following joint distribution that is a combination of the forms of the mentioned

PDFs

pa

(
φ̃, b̃
)

=
1

N
exp

{
κ cos(φ̃) + λ cos(φ̃− φ̆) + νb̃2

}
where the normalization constant N is a positive scalar, the concentration parame-

ters κ and λ are non-negative scalars, and ν is a scalar.

Substituting the probability density function into the right hand side of PDE

6.65 yields the expression

0 =

{(
km − κσ2

m

)
cos
(
φ̆
)

+
(
ke − κ

(
σ2
m + σ2

w

))(
cos
(
φ̃− φ̆

)
− κ sin2

(
φ̃− φ̆

))
− κ
(
km − κσ2

m

)
sin2

(
φ̆
)

+ λ
(
km − 2κσ2

m

)
sin
(
φ̆
)

sin
(
φ̃− φ̆

)
− 2
(
λ+ να

)
b̃ sin

(
φ̃− φ̆

)}
pa

Choosing κ = km
σ2
m

, λ = ke
σ2
m+σ2

w
, and ν = −λ

α
= − ke

α(σ2
m+σ2

w)
and substituting into the

above equation results in

0 =
kekm

σ2
m + σ2

w

sin
(
φ̆
)

sin
(
φ̃− φ̆

)
pa

=
ke

km
σ2
m

1 + σ2
w

σ2
m

sin
(
φ̆
)

sin
(
φ̃− φ̆

)
pa (6.67)

which does not hold for all possible φ̃ and φ̆ so this is not a solution. Note how-

ever that the right hand side of Equation 6.67 asymptotically approaches 0 for any

possible φ̃ and φ̆ when σm goes to zero while the ratio km
σ2
m

is held constant. As

discussed in the proof of Theorem 6.2.3, the attitude measurement noise density is

parameterized by the ratio of km
σ2
m

; as long as km is made small enough to maintain
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the ratio km
σ2
m

the parameter σm may be made arbitrarily small without altering the

ultimate statistics of the attitude measurement noise.

Thus

pa

(
φ̃, φ̆, b̃

)
=

1

N
exp

{
km
σ2
m

cos
(
φ̆
)

+
ke

σ2
m + σ2

w

cos
(
φ̃− φ̆

)
− ke
α (σ2

m + σ2
w)
b̃2

}
(6.68)

asymptotically approaches the solution to the stationary Fokker-Planck PDE of

Equation 6.65 in the sense that

lim
σm→0

km
σ2m

constant

pa

(
φ̃, φ̆, b̃

)
= ps

(
φ̃, φ̆, b̃

)

The scaling constant N may be recovered by enforcing the probability density

normalization constraint

∫ 2π

−2π

∫ 2π

−2π

∫ ∞
−∞

pa

(
φ̃, φ̆, b̃

)
db̃dφ̃dφ̆ = 1

Substituting in the probability density function of Equation 6.68 and rearranging

results in

N =

∫ 2π

−2π

∫ 2π

−2π

∫ ∞
−∞

exp

{
km
σ2
m

cos
(
φ̆
)

+
ke

σ2
m + σ2

w

cos
(
φ̃− φ̆

)
− ke
α (σ2

m + σ2
w)
b̃2

}
db̃dφ̃dφ̆

=

∫ 2π

−2π

∫ 2π

−2π

exp

{
km
σ2
m

cos
(
φ̆
)

+
ke

σ2
m + σ2

w

cos
(
φ̃− φ̆

)}
dφ̃dφ̆

×
∫ ∞
−∞

exp

{
− ke
α (σ2

m + σ2
w)
b̃2

}
db̃ (6.69)

In the proof of Theorem 6.2.3, the double integral of Equation 6.69 was found
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to be

∫ 2π

−2π

∫ 2π

−2π

exp

{
km
σ2
m

cos
(
φ̆
)

+
ke

σ2
m + σ2

w

cos
(
φ̃− φ̆

)}
dφ̃dφ̆

= 16π2I0

(
ke

σ2
m + σ2

w

)
I0

(
km
σ2
m

)

where I0(x) is the 0th order modified Bessel function of the first kind. Since the

exponential function is such that for all positive scalars a

∫ ∞
−∞

exp

{
−1

a
x2

}
dx =

√
πa

the second integral in Equation 6.69 evaluates to

∫ ∞
−∞

exp

{
− ke
α (σ2

m + σ2
w)
b̃2

}
db̃ =

√
πα (σ2

m + σ2
w)

ke

Combining yields the normalization constant.

Similar to the discussion in Section 6.2.7, the asymptotic solution to the sta-

tionary Fokker-Planck PDE of Theorem 6.3.1 asymptotically approaches the solution

to the stationary Fokker-Planck PDE of Equation 6.65 as σm → 0 while the ratio

km
σ2
m

is held constant, meaning km → 0 at the same rate σ2
m → 0. The attitude mea-

surement noise density is parameterized by the ratio km
σ2
m

so the ultimate statistics

for the attitude measurement noise given in Corollary 4.8.1.1 and Corollary 4.8.1.2

are unaffected, but the attitude measurement noise density says nothing about the

autocorrelation of the attitude measurement noise process. Despite the potential

loss of generality in parameterizing the attitude measurement noise PDF via the ra-

tio km
σ2
m

, the asymptotic solution of Theorem 6.3.1 can be used to compute ultimate
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statistics of the filter attitude estimate error and the filter bias estimate error which

will be shown in the remainder of this section.

Corollary 6.3.1.1. The error dynamics of the Itô SDE 6.63 are such that

lim
t→∞

E
[
ε̃2(t)

]
=

1

2

1−
I1

(
ke
σ2
w

)
I1

(
km
σ2
m

)
I0

(
ke
σ2
w

)
I0

(
km
σ2
m

)
 (6.70)

Proof. Compute the expectation using the probability density function from Theo-

rem 6.3.1

lim
σm→0

km
σ2m

constant

lim
t→∞

E
[
ε̃2(t)

]

= lim
σm→0

km
σ2m

constant

1

N

∫ 2π

−2π

∫ 2π

−2π

∫ ∞
−∞

ε̃2 exp

{
km
σ2
m

cos
(
φ̆
)

+
ke

σ2
m + σ2

w

cos
(
φ̃− φ̆

)
− ke
α (σ2

m + σ2
w)
b̃2

}
db̃dφ̃dφ̆

= lim
σm→0

km
σ2m

constant

1

16π2I0

(
ke

σ2
m+σ2

w

)
I0

(
km
σ2
m

)
×
∫ 2π

−2π

∫ 2π

−2π

sin2

(
φ̃

2

)
exp

{
km
σ2
m

cos
(
φ̆
)

+
ke

σ2
m + σ2

w

cos
(
φ̃− φ̆

)}
dφ̃dφ̆

which was solved in Corollary 6.2.3.1.

By inspection of the ultimate joint probability density function of Theorem

6.3.1, it can be seen that b̃ is ultimately distributed according to a Gaussian distri-

bution with zero mean

lim
t→∞

E
[
b̃(t)
]

= 0

and variance

lim
t→∞

E
[
b̃2(t)

]
=
ασ2

w

2ke
(6.71)
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6.3.4 Numerical Simulation of Stochastic SO(2) Analytic Results

Two numerical simulations of the SO(2) filter’s Itô SDE error dynamics of

Equation 6.61 were performed for a variety of system parameters. The Kloeden-

Platen Explicit Weak 2.0 numerical integration scheme discussed in Section 2.2.3

was used. For each simulation realization, a time step size of ∆t = 0.1 was used

for a total of 108 simulation steps. At the end of a simulation realization, the last

107 simulation steps were used to compute the empirical mean of the filter attitude

estimate error ε̃2(t) and the filter bias estimate error b̃2(t).

The first simulation study varied the filter tracking gain ke across a range of

values. A gallery of plots of the filter attitude estimate errors are included in Figure

6.15, a gallery of plots of the filter bias estimate errors for the same simulations are

included in Figure 6.16. The numerical results, shown in magenta dots, are compared

to plots of the ultimate attitude estimate error variance of Corollary 6.3.1.1 and the

ultimate gyro bias estimate error variance of Equation 6.71 respectively which are

drawn in blue lines.

The analytic ultimate expectations are in good agreement with the numeri-

cal simulation realizations with a few exceptions. In the top two attitude estimate

error variance plots of Figure 6.15, the ultimate expectation differs from the numer-

ical realizations when the ultimate expectation curve flattens out horizontally (near

ke = 1). Other than these discrepancies, the numerical data matches the overall

trends predicted by the analytic ultimate expectations: the attitude estimate error

variance curve shifts horizontally with σw, the high ke limit of the attitude esti-
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mate error variance decreases with decreased attitude measurement noise density

(increased km
σ2
m

), and the bias estimate error variance curve shifts vertically with σw.

Similarly, the bias estimate error simulation realizations are in good agreement with

the analytic expectation; the negative unit slope on the log-log plots are indicative

of the analytic result that the bias estimate error is inversely proportional to the

tracking gain ke.
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Figure 6.15: Comparison of the ultimate attitude estimate error variance of Corollary

6.3.1.1 to simulation realizations for a range of values of the tracking gain ke.
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Figure 6.16: Comparison of the ultimate gyro bias estimate error variance of Equation

6.71 to simulation realizations for a range of values of the tracking gain ke.
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The second simulation study varied the filter’s bias adaptation gain α across

a range of values. A gallery of plots of the filter attitude estimate errors are in-

cluded in Figure 6.17, a gallery of plots of the filter bias estimate errors for the

same simulations are included in Figure 6.18. The numerical results, shown in ma-

genta dots, are compared to plots of the ultimate attitude estimate error variance

of Corollary 6.3.1.1 and the ultimate gyro bias estimate error variance of Equation

6.71 respectively which are drawn in blue lines.

The numerical simulation realizations agree with the analytic ultimate expec-

tations. The attitude estimate error variance is unaffected by changing the adap-

tation gain α. The linear relationship between the ultimate bias estimate error

variance and the adaptation gain is apparent in the data as well.
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Figure 6.17: Comparison of the ultimate attitude estimate error variance of Corollary

6.3.1.1 to simulation realizations for a range of values of the adaptation

gain α.
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Figure 6.18: Comparison of the ultimate gyro bias estimate error variance of Equation

6.71 to simulation realizations for a range of values of the adaptation gain α.
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6.3.5 SO(3) Bound Extrapolated from SO(2) Analytic Solution

Following the same approach as that of Section 4.10, 5.7, and 6.2.9, this section

extrapolates upper bounds for the stationary statistics of the SO(3) filter from the

analytic solutions of the SO(2) case.

The SO(3) ultimate attitude estimate error variance bound is assumed to

have the form of the SO(2) ultimate attitude estimate error variance from Corollary

6.3.1.1, but as before is rescaled to account for the low filter gain limit seen in the

previous chapters. The proposed SO(3) ultimate upper bound is given by

bound

(
ξ,
ke
σ2
w

,
km
σ2
m

)
=

3

4

1−
I1

(
ke
ξσ2
w

)
I1

(
km
ξσ2
m

)
I0

(
ke
ξσ2
w

)
I0

(
km
ξσ2
m

)
 (6.72)

Similarly, the ultimate bias estimate error variance bound is assumed to have

the same form as Equation 6.71 but with the same scaling parameter acting on the

gyro variance σ2
w

bound

(
ξ,
ke
σ2
w

)
=
ξασ2

w

2ke
(6.73)

A number of numerical simulations of the Itô SDE 6.58 were performed to

evaluate the notional bounds. The Kloeden-Platen Explicit Weak 2.0 numerical

integration scheme discussed in Section 2.2.3 was used. For each simulation realiza-

tion, a time step size of ∆t = 0.1 was used for a total of 107 simulation steps. At the

end of a simulation realization, the last 106 simulation steps were used to compute

the ergodic mean of the filter attitude estimate error ε̃T (t)ε̃(t) and the filter bias

estimate error b̃T (t)b̃(t) Finally, ensembles of seven ergodic means were computed

for a final statistic for each set of simulation parameters ke, σw, km, and σm.
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Four simulation studies in total were conducted. First the vehicle was simu-

lated as having no inertial rate; the analytic and simulation statistics are considered

for a range of tracking gains ke in Figures 6.19 and 6.20. Next, a range of tracking

gains ke were considered for a spinning vehicle in Figures 6.21 and 6.22. Then a

range of adaptation gains α were considered for an inertially fixed vehicle in Figures

6.23 and 6.24. Finally, a range of adaptation gains α were considered for a spinning

vehicle in Figures 6.25 and 6.26. In all cases considered, the choice of ξ = 3 in

the expression of Equation 6.72 bound the simulation realizations; however, smaller

choices of ξ do not bound all simulation data.
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Figure 6.19: Comparison of simulation realizations of the attitude estimate error variance

and the notional bound of Equation 6.72 for several choices of ξ for a range

of tracking gains ke for an inertially fixed vehicle (not spinning).
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Figure 6.20: Comparison of simulation realizations of the bias estimate error variance and

the notional bound of Equation 6.73 for several choices of ξ for a range of

tracking gains ke for an inertially fixed vehicle (not spinning).
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Figure 6.21: Comparison of simulation realizations of the attitude estimate error variance

and the notional bound of Equation 6.72 for several choices of ξ for a range

of tracking gains ke for a vehicle spinning at 5 revolutions per minute about

the vehicle body’s [1 2 3]T axis.

Figure 6.22: Comparison of simulation realizations of the bias estimate error variance and

the notional bound of Equation 6.73 for several choices of ξ for a range of

tracking gains ke for a vehicle spinning at 5 revolutions per minute about the

vehicle body’s [1 2 3]T axis.
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Figure 6.23: Comparison of simulation realizations of the attitude estimate error variance

and the notional bound of Equation 6.72 for several choices of ξ for a range

of adaptation gains α for an inertially fixed vehicle (not spinning).
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Figure 6.24: Comparison of simulation realizations of the bias estimate error variance and

the notional bound of Equation 6.73 for several choices of ξ for a range of

adaptation gains α for an inertially fixed vehicle (not spinning).
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Figure 6.25: Comparison of simulation realizations of the attitude estimate error variance

and the notional bound of Equation 6.72 for several choices of ξ for a range of

adaptation gains α for a vehicle spinning at 5 revolutions per minute about

the vehicle body’s [1 2 3]T axis.

355



Figure 6.26: Comparison of simulation realizations of the bias estimate error variance and

the notional bound of Equation 6.73 for several choices of ξ for a range of

adaptation gains α for a vehicle spinning at 5 revolutions per minute about

the vehicle body’s [1 2 3]T axis.
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Thus the simulation data suggest the ultimate upper bounds of

lim
t→∞

E[ε̃T (t)ε̃(t)] ≤ 3

4

1−
I1

(
ke

3σ2
w

)
I1

(
km
3σ2
m

)
I0

(
ke

3σ2
w

)
I0

(
km
3σ2
m

)
 (6.74)

and

lim
t→∞

E[ε̃T (t)ε̃(t)] ≤ 3ασ2
w

2ke
(6.75)

bound the ultimate expectations for the attitude estimate error and the bias estimate

error respectively. For clarity, the bounds are drawn in the following figures.
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Figure 6.27: Comparison of simulation realizations of the attitude estimate error variance

and the notional bound of Equation 6.74 for a range of tracking gains ke for

an inertially fixed vehicle (not spinning).
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Figure 6.28: Comparison of simulation realizations of the bias estimate error variance and

the notional bound of Equation 6.73 for a range of tracking gains ke for an

inertially fixed vehicle (not spinning).
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Figure 6.29: Comparison of simulation realizations of the bias estimate error variance and

the notional bound of Equation 6.75 for a range of tracking gains ke for a

vehicle spinning at 5 revolutions per minute about the vehicle body’s [1 2 3]T

axis.

Figure 6.30: Comparison of simulation realizations of the bias estimate error variance and

the notional bound of Equation 6.75 for a range of tracking gains ke for a

vehicle spinning at 5 revolutions per minute about the vehicle body’s [1 2 3]T

axis.
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Figure 6.31: Comparison of simulation realizations of the attitude estimate error variance

and the notional bound of Equation 6.74 for a range of adaptation gains α

for an inertially fixed vehicle (not spinning).
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Figure 6.32: Comparison of simulation realizations of the bias estimate error variance and

the notional bound of Equation 6.75 for a range of adaptation gains α for an

inertially fixed vehicle (not spinning).
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Figure 6.33: Comparison of simulation realizations of the attitude estimate error variance

and the notional bound of Equation 6.74 for a range of adaptation gains α

for a vehicle spinning at 5 revolutions per minute about the vehicle body’s

[1 2 3]T axis.
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Figure 6.34: Comparison of simulation realizations of the bias estimate error variance and

the notional bound of Equation 6.75 for a range of adaptation gains α for a

vehicle spinning at 5 revolutions per minute about the vehicle body’s [1 2 3]T

axis.
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Chapter 7: Future Directions and Concluding Remarks

Attitude estimation systems are critical components of satellite control sys-

tems, aircraft autopilots, and underwater vehicle control systems; additionally, they

are used extensively for virtual reality devices, fitness tracking equipment, and other

applications. The performance of attitude estimation systems is typically driven by

the error and noise properties of the sensor measurements. Gyroscopes in particu-

lar are known for being corrupted by significant measurement bias error. Nonlinear

adaptive state observers are an attractive technique for estimating gyro constant bias

in real time onboard applications as in the deterministic setting they have global

stability properties, but their stability and performance properties in a rigorous

stochastic setting were not previously well understood.

The first part of this thesis provided an extension of a nonlinear adaptive gyro

bias observer by introducing additional dynamics to allow for the learning of gyro

thermal bias functions of arbitrary shape provided they are sufficiently smooth.

Numerical simulation studies were conducted to demonstrate performance in the

deterministic case. The stochastic case was then considered by introducing additive

unbounded gyro noise and attitude measurement noise by formulating the system

dynamics as a formal stochastic differential equation. Observer estimate error per-
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formance was examined in the stochastic case by conducting simulation studies at a

variety of samples of the parameter space. The computational expense and impre-

cise nature of the technique provided motivation to find analytic bounds or solutions

to observer estimate error as a function of gain parameters and measurement noise

specifications.

To gain a formal understanding of the stability and performance properties for

this class of nonlinear attitude observers, the simplest case of an attitude observer

with additive gyro noise was first considered in detail. Stochastic Lyapunov theory

was used to prove the filter is weakly stochastically stable. Bounds on the ultimate

error statistics were found and compared to numerical simulation but were shown to

be conservative. The weak stochastic stability result allowed for the determination

of the analytic solution to the stationary Fokker-Planck PDE; the solution to the

stationary Fokker-Planck PDE in the SO(2) case was found to be given by a von

Mises distribution and the SO(3) case was solved by a bipolar Bingham distribution.

The stationary probability distribution functions were in turn used to derive closed

form expressions for stationary statistics which matched numerical simulation results

exactly.

Next, constant gyro bias was considered along with gyro additive noise. The

gyro constant bias filter was shown to be weakly stochastically stable via an appeal

to the converse Lyapunov theorem. Once weak stochastic stability was shown, the

stationary Fokker-Planck PDE was investigated. The filter error dynamics were

found to converge to a joint distribution that was a von Mises distribution in the

attitude estimate error and a Gaussian distribution in the bias estimate error in the
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SO(2) case; the SO(3) case had the stationary PDF given as a joint distribution that

was a bipolar Bingham distribution in the attitude estimate error and a multivari-

ate Gaussian distribution in the bias estimate error. In both the SO(2) and SO(3)

cases the ultimate attitude estimate error and ultimate bias estimate error were

found to be independent of each other; the ultimate attitude estimate error statis-

tics were completely independent of the bias estimation error while the ultimate bias

estimation error distribution depended on the tracking gain. The stationary proba-

bility distribution functions were in turn used to derive closed form expressions for

stationary statistics which matched numerical simulation results exactly.

Next, attitude measurement noise was introduced into the analysis. In order

to utilize the stochastic Lyapunov analysis theorems and stationary Fokker-Planck

analysis approach, the system error dynamics needed to be formulated as an Itô

SDE. A process that can be formulated as an Itô SDE and has a known ultimate

probability density on the unit quaternion hypersphere was identified as the error

dynamics of the attitude estimation filter. Thus to consider an attitude estimation

filter with gyro additive noise and quaternion measurement noise, the filter error

dynamics were augmented with an additional process to model non-white quater-

nion noise. The combined system was then shown to be weakly stochastically stable

for bounded angular rate. Stochastic Lyapunov theory was further used to find

ultimate performance bounds; while the bounds did correctly bound numerical sim-

ulation statistics, the performance bounds were not indicative of the simulated filter

performance. An asymptotic solution to the stationary Fokker-Planck PDE in SO(2)

was found to be given by a bivariate von Mises distribution; ultimate performance
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statistics computed from this stationary PDF agreed with numerical simulation re-

sults. Ultimate statistics derived from the asymptotic solution to the stationary

SO(2) Fokker-Planck PDE were found to agree with numerical simulation realiza-

tions. The solution to the SO(3) stationary Fokker-Planck PDE remains unknown

to the author, but heuristic bounds were found in the SO(3) case by extrapolat-

ing the structure of the analytic expressions for the ultimate expectations from the

SO(2) analysis.

Finally, a filter with gyro additive noise, gyro constant bias, and attitude

measurement noise was considered. A stochastic stability result was not found,

but assuming the system was stochastically stable allowed for the determination

of an asymptotic solution to the stationary Fokker-Planck PDE in the SO(2) case.

The asymptotic SO(2) solution was found to be a joint PDF that was a bivariate

von Mises distribution in the attitude estimate error and attitude measurement

noise model, and a Gaussian distribution in the bias estimate error. As before,

the ultimate attitude estimate error and attitude noise model states given by the

bivariate von Mises were found to be independent of the ultimate bias estimate error.

Ultimate statistics derived from the asymptotic solution to the stationary SO(2)

Fokker-Planck PDE were found to agree with numerical simulation realizations.

The solution to the SO(3) stationary Fokker-Planck PDE remains unknown to the

author, but heuristic bounds were found in the SO(3) case by extrapolating the

structure of the analytic expressions for the ultimate expectations from the SO(2)

analysis.
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7.1 Future Directions

The stochastic analysis framework utilized in this thesis can hopefully be used

to explore the impact of the many other important measurement phenomena that

were not addressed in this thesis. Of course several spots on the Table 1.1 are empty

or have less satisfying results. Given that the converse Lyapunov theorem shows

that the Gyro Constant Bias Filter with additive gyro noise and perfect attitude

measurements of Chapter 5 has an (as yet unidentified by the author) Lyapunov

function that does show stochastic stability for that filter, the explicit determination

of that Lyapunov function would be useful. In particular, such a Lyapunov function

could likely be suitably augmented to demonstrate weak stochastic stability for

the Gyro Constant Bias Filter with additive gyro noise and attitude measurement

noise examined in Section 6.3; the simulation analysis of that section suggests the

filter under those conditions is weakly stochastically stable. Further, an asymptotic

solution to the stationary Fokker-Planck PDE in the SO(2) case was found for both

filters considered in Chapter 6, but no solution was identified for the full SO(3)

versions of those analyses.

The remainder of this chapter outlines several new directions that might fur-

ther be considered with the stochastic analysis tools and strategies demonstrated in

this thesis.
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7.1.1 Non-axis-symmetric Gyro Additive Noise

The gyro additive measurement noise model considered in this thesis was axis

symmetric and uncorrelated. Specifically, the gyro additive noise nw(t) was assumed

to obey E[nw(t)nTw(τ)] = σ2
wIδ(t − τ). In the case of an attitude estimation filter

with gyro additive noise and perfect attitude measurements as studied in Chapter

4, the solution to the stationary Fokker-Planck PDE was shown to be given as a

special case of the Bingham distribution, the bipolar Bingham distribution, which

was

ps(q̃) =
1

N
exp

{
ke
σ2
w

(
2η̃2 − 1

)}
It was noted in Section 4.11 that the above bipolar Bingham distribution is equiva-

lent to the general Bingham distribution

ps(q̃) =
1

N
exp

{
q̃TMZMT q̃

}
for M = I and Z = diag

(
− ke
σ2
w
,− ke

σ2
w
,− ke

σ2
w
, ke
σ2
w

)
= ke

σ2
w

diag(−1,−1,−1, 1).

A more general gyro additive noise model is E[nw(t)nTw(τ)] = Σwδ(t − τ)

where Σw is a symmetric positive definite matrix. This more general model allows

for the noise density of each gyro sensing axis to differ from the others, as well as

allowing for the consideration of cross-coupling in the measurement noise. While the

more general noise model might lead to a more involved stationary Fokker-Planck

PDE in the SO(3) case, it seems natural to expect the solution might be given by

a Bingham distribution with M 6= I and Z 6= ke
σ2
w

diag(−1,−1,−1, 1). A possibility

that matches the form of the axis-symmetric solution would be when Z is a function
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of keΣ
−1
w .

7.1.2 Gyro Random Walk Bias

An important gyro measurement model is one with gyro additive noise and

random walk bias, given as

ωg(t) = ω(t) + b(t) + σwnw(t)

ḃ(t) = σbnb(t) (7.1)

where nb(·) is a zero mean unit variance Gaussian white noise process independent

of nw(t) and σb is a positive scalar. This model is utilized in the widely used

MEKF [51,64]. A gyro random walk bias can be used to model deterministic error

sources that might be difficult to quantify such as fluctuations in gyro operating

temperature or variation in the provided electrical power. Gyro random walk bias

can also be used as a simple model to attempt to account for more complicated

stochastic noise sources such as flicker noise and sinusoidal noise.

Extending the SO(2) gyro constant bias filter error dynamics Itô SDE to model

gyro random walk bias in the SO(2) case leads

dỹ(t) =

dφ̃(t)

db̃(t)



=

−1
2
ke sin

(
φ̃(t)

)
− b̃(t)

1
2
α sin

(
φ̃(t)

)
 dt+

−σw 0

0 σb


dβw(t)

dβb(t)


= f

(
ỹ(t)

)
dt+Gdβ(t)
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which differs from the Itô SDE 5.18 of Section 5.4 by an additional Brownian motion

noise process and a larger diffusion matrix G which now has full rank.

Let p = p
(
ỹ(t), t

)
= p

(
φ̃(t), b̃(t), t

)
be the joint probability density for the

SO(2) Gyro Random Walk Bias Filter estimate error states. Assuming the system is

weakly stochastically stable, then limt→∞ p
(
ỹ(t), t

)
= ps

(
φ̃, b̃
)

where ps = ps

(
φ̃, b̃
)

solves the stationary Fokker-Planck PDE for the system. Similar to the development

in Section 5.5, the stationary Fokker-Planck PDE can be found as

0 = ke cos
(
φ̃
)
ps +

(
ke sin

(
φ̃
)

+ 2b̃
)∂ps
∂φ̃
− α sin

(
φ̃
) ∂ps
∂b̃

+ σ2
w

∂2ps

∂φ̃2
+ σ2

b

∂2ps

∂b̃2

which differs from the Gyro Constant Bias Filter’s SO(2) stationary Fokker-Planck

PDE by the additional term σ2
b
∂2ps
∂b̃2

.

The similarity between the stationary Fokker-Planck PDE in SO(2) for the

Gyro Constant Bias Filter and the Gyro Random Walk Bias Filter suggest the

solutions to the stationary Fokker-Planck PDEs may be similar as well. Note that

the analysis of this section assumes the error dynamics for the Gyro Random Walk

Bias Filter are weakly stochastically stable. Weak stochastic stability for the Gyro

Constant Bias Filter was established in Section 5.2 via an appeal to the converse

Lyapunov theorem as the explicit form of a Lyapunov function that satisfies the

conditions of the Zakai Stability Theorem 2.1.4 were not found in this thesis; a

similar appeal could be used for the Gyro Random Walk Bias Filter.
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7.1.3 Augment Attitude Estimation Filter State to Estimate Non-

White Attitude Measurement Noise

Chapter 6 considered attitude measurement noise. In order to formulate the

system dynamics as an Itô SDE, the attitude measurements were modeled as cor-

rupting the true attitude by quaternion noise. The quaternion noise was generated

as the output of a continuous process driven by Gaussian white noise as described

in Section 6.1. An interesting consequence of using a continuous process driven

by white noise is that the resulting quaternion noise, while constrained to the unit

quaternion hypersphere, is not white.

The analysis in Section 6.2 showed that in the high filter gain limit (as ke →

∞), the attitude estimate error is ultimately limited by the attitude measurement

noise density. A discussion at the end of Section 6.2.8 used a linear time invariant

(LTI) analog to clarify the issue. The analogous LTI system was given by the

translational kinematics

ẋ(t) = v(t)

A velocity sensor, the translational analog of an angular rate gyro, was assumed to

provide velocity measurements perturbed by unbounded additive white noise

vm(t) = v(t) + σvwv(t)

Further, a translational position sensor was considered with the measurement model

xm(t) = x(t) + n(t)
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where the process n(·) is non-white noise given by a First Order Gauss Markov

(FOGM) process

ṅ(t) = −λn(t) + σnwn(t)

An LTI analog of the nonlinear attitude filter for this system was given as the

translational position filter

˙̂x(t) = vm(t) + ke
(
xm(t)− x̂(t)

)
The LTI translational position filter used the velocity measurement to propagate

its kinematic model. The feedback term em(t) = xm(t) − x̂(t) was used to drive

the translation estimate x(t) towards the translation measurement xm(t). Since

the noise process n(t) is non-white, its mean process E[n(t)] is in general nonzero;

the consequence of the non-white position noise is that the mean of the feedback

term is non-zero even if the position estimate x̂(t) matches the true position x(t).

However, it might be possible to reduce the impact of this noise by augmenting the

filter state to estimate not only the true system state x(t) but also estimate the

non-white noise; thus the filter would have an estimate x̂(t) of the state and an

estimate n̂(t) of the non-white noise. The filter could then use the feedback term

em2(t) = xm(t) − (x̂(t) + n̂(t)) which will be nonzero when either x̂(t) or n̂(t) have

error. The augmented filter could be implemented as

˙̂x(t) = vm(t) + keem2(t)

˙̂n(t) = −λn̂(t)− knem2(t)

The details of how to incorporate these ideas in a quaternion estimation algo-

rithm may not be immediately apparent, but in the deterministic case Thienel [94,
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Chapter 5] was able to augment a gyro bias observer with a gyro alignment observer

in a quaternion formulation. Specifically, the nonlinear attitude filter of Chapter 6

would need its state to be augmented by an estimate ˆ̆q(t) of the quaternion noise

q̆(t).

The feedback term for the attitude filter would then need to be appropriately

modified. In Chapter 6 the feedback term was computed as keη̃m(t)ε̃m(t) where

q̃m(t) =

ε̃m(t)

η̃m(t)

 = qm(t)⊗ q̂−1(t)

= q̆−1(t)⊗ q(t)⊗ q̂−1(t)

= q̆−1(t)⊗ q̃(t)

compared the attitude measurement qm(t) with the attitude estimate q̂(t). The

feedback term was based on the comparison q̃m(t) which was a noise corrupted

version of the attitude estimate error q̃(t).

This section proposes augmenting the filter state with an estimate ˆ̆q(t) of

the non-white attitude measurement noise q̆(t) which can be used to compute the

augmented feedback term

q̃m2(t) =

ε̃m2(t)

η̃m2(t)

 = ˆ̆q(t)⊗ qm(t)⊗ q̂−1(t)

= ˆ̆q(t)⊗ q̆−1(t)⊗ q(t)⊗ q̂−1(t)

= ˜̆q−1(t)⊗ q̃(t)

The feedback term would then be used to drive the filter’s attitude estimate quater-

nion kinematics ˙̂q(t) as well as the filter’s quaternion measurement noise model
˙̂
q̆(t).
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7.1.4 Closed Loop Attitude Control Analysis

Another important area that could benefit from the techniques of this thesis

is the closed-loop attitude control problem. Consider the attitude control problem

for a rigid body vehicle (such as a satellite or an aerial vehicle with negligible drag)

with the dynamics

Hω̇(t) +
[
ω(t)×

]
Hω(t) = τ = unom(t)

where H is the system inertia matrix, ω(t) is the vehicle angular rate, and τ are

torques acting on the system. Egeland and Godhavn [17] propose the nonlinear

attitude tracking controller

unom(t) = −Ks(t) +Hω̇ref (t) +
[
ωref (t)×

]
Hω(t)

where the controller attitude error q̃(t) =

ε̃(t)
η̃(t)

 = q(t)⊗q−1
d (t) compares the error

between the true attitude q(t) and desired attitude qd(t) at time t, the angular rate

tracking error is given by ω̃(t) = ω(t)−R (q̃(t))ωd(t) compares the true angular rate

with the desired angular rate ωd(t), ωref (t) = R (q̃(t))ωd(t)− λε̃(t), the composite

tracking error metric s(t) = ω̃(t) + λε̃(t) relatively weights the attitude and rate

tracking error via the scalar λ > 0, and the matrix K > 0 consists of controller

gains. They show the tracking controller is globally asymptotically stable and is

able to track arbitrarily rapid slews. By setting ω̇d(t) = ωd(t) = 0, the controller

simplifies to the celebrated PD quaternion feedback regulator of Wie, Weiss, and

Arapostathis [106].
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Now assume the controller no longer has access to the true vehicle attitude;

instead it is given gyro measurements perturbed by additive gyro noise

ωg(t) = ω(t) + σwnw(t)

and the dynamics are perturbed by random disturbance torques (such as aerody-

namic torques, solar radiation pressure, or fuel slosh for a satellite) according to

Hω̇(t) +
[
ω(t)×

]
Hω(t) = τ = umeas(t) + σdnd(t)

where σw > 0, σd > 0, and nw(t) and nd(t) are independent zero mean Gaussian

white noise processes. The closed-loop error dynamics can then be found as the Itô

SDE

ds(t) =

{
H−1

[(
Hω(t)

)
×
]
s(t)−H−1Ks(t)

}
dt

+

[
H−1∆ (q̃(t),ωd(t))σw H−1σd

]dβw(t)

dβd(t)


= f(s(t))dt+G(s(t))dβ(t) (7.2)

where

∆ (q̃(t),ωd(t)) = H
[
ωd(t)×

]
+
[
ωref (t)×

]
H − 1

2
λH

(
η̃(t)I +

[
ε̃(t)×

])
−K

Note that the desired angular acceleration ω̇d(t) does not appear in the error dy-

namics as the inertia matrix is assumed to be known and the controller has access

to perfect attitude measurements.

In the axis symmetric case where K = kI, H = hI, and h, k > 0 the following

theorem shows the closed-loop system is weakly stochastically stable provided the

desired angular rate is bounded.
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Theorem 7.1.1. In the axis symmetric case, the closed loop attitude tracking er-

ror dynamics of the Itô SDE 7.2 are weakly stochastically stable provided ωmax =

supt ‖ωd(t)‖. Further,

lim
t→∞

E
[
sT (t)s(t)

]
≤
(

4σ2
whω

2
max + 6σ2

wλhωmax +
9

4
σ2
wλ

2h+
3

2
σ2
d

1

h

)
1

k
+

3

2
σ2
wλ+

3

2
σ2
w

1

h
k

(7.3)

Proof. Choose the Lyapunov function V (t) = 1
2
sT (t)Hs(t). Application of the

differential generator yields

L V (t) =

(
∂V

∂s

)T
f
(
s(t)

)
+

1

2
tr

{
GT (s(t))

)∂2V

∂s2
G(s(t))

}
= −s(t)Ks(t) +

1

2
σ2
w tr

(
∆TH−1∆

)
+

1

2
σ2
d tr
(
H−1

)
Invoking the axis symmetric simplification and algebraic manipulation lead to

L V (t) ≤− ksT (t)s(t) + 4σ2
whω

2
max + 6σ2

wλhωmax

+
9

4
σ2
wλ

2h+
3

2
σ2
wλk +

3

2
σ2
w

1

h
k2 +

3

2
σ2
d

1

h

Thus the error dynamics are weakly stochastically stable via the Zakai Stability

Theorem 2.1.4. Further, application of the Zakai Ultimate Moment Bound Theorem

2.1.5 and dividing by k yields the ultimate error statistic.

The result agrees well with intuition. If the controller gain k is too small,

the controller is overwhelmed by disturbance torques. If the controller gain is too

large, the controller admits too much gyro measurement noise. Additionally, the

bound provides criteria to optimize the controller gain given system parameters

noise specifications.
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Optimizing the ultimate error upper bound of Equation 7.3 for the controller

gain results in

kopt =

√
8

3
h2ω2

max + 4λh2ωmax +
3

2
λ2h2 +

σ2
d

σ2
w

Numerical simulations of the Itô SDE 7.2 for a sample of controller gain k are

shown in Figure 7.1. The dashed line superimposed on the plot is the ultimate error

upper bound of Equation 7.3. The controller gain that optimizes the ultimate error

upper bound for the given system parameters is drawn as a circle.

Figure 7.1: Comparison of numerical simulations of the closed-loop attitude controller

error Itô SDE 7.2 with the ultimate error upper bound of Equation 7.3.

Unfortunately the minimum of the stochastic Lyapunov bound does not match

the minimum in the numerical simulation data. A recurring theme throughout
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Chapters 4, 5, and 6 is that the stochastic Lyapunov bounds have been conservative

compared to numerical simulation and the Fokker-Planck solutions (when available).

As before, the error in the Lyapunov bound may be an artifact of the Lyapunov

function chosen or bounding techniques used in the proof; different Lyapunov func-

tion choices may provide a better bound. Note the challenge that might be involved

in conducting a Fokker-Planck analysis of the system as the error dynamics are a

function of the (time varying) desired angular rate ωd(t).

A direction for further investigation is to consider the closed-loop feedback

control problem where a state observer provides attitude and rate estimates for

use by the controller in a certainty equivalence fashion. The deterministic case was

studied by Thienel [94] and Thienel and Sanner [95] for a class of nonlinear adaptive

gyro observers with this same control law. They found that that the separation

principle, which does not in general hold for nonlinear systems, does hold for the

Thienel and Sanner gyro constant bias observer and the Egeland and Godhavn

controller closed loop system. Does the situation hold in the stochastic setting?
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7.2 Final Remarks

The driving goal of this thesis was to address practical concerns in the use of

nonlinear state estimation strategies for attitude estimation applications.

The first contribution toward this goal was the extension of a Gyro Constant

Bias Observer to account for a physically significant deterministic error source of

gyro bias, that of bias variation as a function of gyro operating temperature. Modifi-

cation of the Gyro Constant Bias Observer adaptation law to update a gyro thermal

bias function approximation was able to mitigate the impact of gyro thermal bias in

the deterministic case. Use of simulation analysis to understand performance and

select gains in the stochastic case proved troubling due to the extensive computa-

tional cost; further, the simulation analysis provided no guarantee of stability in the

stochastic setting with unbounded additive gyro noise.

The remainder of the thesis investigated nonlinear state estimation strategies

in a formal stochastic setting. Four measurement configurations (and the corre-

sponding filter formulation) were considered: gyro additive noise, gyro additive

noise and constant gyro bias, gyro additive noise and attitude measurement noise,

and finally gyro additive noise, constant gyro bias, and attitude measurement noise.

Stochastic Lyapunov theory was used to establish that the nonlinear filters were

weakly stochastically stable for every configuration considered with the exception

of the filter with attitude measurement noise, gyro additive noise, and gyro bias.

Further, stochastic Lyapunov theory was used to find bounds on the stationary

statistics of the filters when no attitude measurement noise was present, but these
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results were often very conservative compared to numerical simulation.

The most precise results from this thesis were found by using a hybrid anal-

ysis approach: first stochastic Lyapunov theory was used to determine the system

under consideration was weakly stochastically stable, then the stability result could

be used to simplify the corresponding Fokker-Planck PDE to the simpler stationary

Fokker-Planck PDE. For the single rotation axis (motion on SO(2)) setting, exact

or asymptotic solutions were found for the stationary Fokker-Planck PDE for all

four nonlinear filters considered. For the gyro additive noise case, the exact solu-

tion to the full SO(3) stationary Fokker-Planck PDE was found to be given by a

bipolar Bingham distribution which allowed for the precise calculation of stationary

statistics. The filter dynamics for the gyro additive noise case were later used as

a process model for quaternion measurement noise, which had a known stationary

distribution given by the bipolar Bingham distribution from the prior analysis. The

exact solution to the full SO(3) stationary Fokker-Planck PDE for the gyro addi-

tive noise and gyro constant bias case was found to be given by a joint bipolar

Bingham and multivariate Gaussian distribution. The exact solution to the full

SO(3) stationary Fokker-Planck PDE was not found in this thesis for the attitude

measurement noise cases, but heuristic bounds for stationary SO(3) statistics were

found by extrapolating the SO(2) analytic results and rescaling based on simulation

realizations.

The stochastic stability tools and approach to the Fokker-Planck analysis are

readily extensible to other nonlinear attitude estimation filters and measurement

models as detailed in the Future Directions Section 7.1. Further, the analysis
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paradigm may be of use to other estimation and control problems beyond the domain

of attitude estimation.

In summary, a deterministic extension to the nonlinear gyro bias filter was

formulated to account for a common type of gyro deterministic error source. Then

various types of measurement noise were considered in a formal stochastic setting.

Stability results were obtained for several important system models. The exact

SO(3) stationary distributions were found for the attitude estimation filter and

gyro constant bias filter. The analysis techniques utilized in this thesis provide a

promising approach to obtain more results for other important attitude estimation

filters.
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