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Attitude estimation algorithms are critical components of satellite control
systems, aircraft autopilots, and other applications. Attitude estimation systems
perform their task by fusing attitude and gyroscope measurements; however, such
measurements are typically corrupted by random noise and gyroscopes may have
significant bias. Variations of the extended Kalman filter are commonly used, but
this technique relies on instantaneous linearization of the underlying nonlinear dy-
namics and global stability cannot be guaranteed. Nonlinear attitude observers with
guaranteed global stability have been derived and experimentally demonstrated, but
only for the deterministic setting where no stochastic effects are present.

The first part of this thesis extends a deterministic nonlinear attitude estima-
tor by introducing additional dynamics that allow learning variations of gyro bias as
a function of operating temperature, a common source of bias variation in rate gyro

readings. The remainder of the thesis formally addresses the problem of stochastic



stability and asymptotic performance for this family of estimators when the mea-
surements contain random noise. Analysis tools from stochastic differential equation
theory and stochastic Lyapunov analysis are used together to demonstrate conver-
gence of the filter states to a stationary distribution, and to bound the associated
steady-state statistics as a function of filter gains and sensor parameters.

In many cases these bounds are conservative, but solutions have been found for
the associated stationary Fokker-Planck PDEs for two cases. When only the gyro
measurement, contains noise, the attitude estimation errors are shown to converge
to a bipolar Bingham distribution. When the gyro measurement is further assumed
to have constant bias, the estimation errors are shown to converge to a joint bipo-
lar Bingham and multivariate Gaussian distribution. Knowledge of the stationary
distributions allow for exact computation of steady-state statistics. Further, the
analysis suggests a method for modeling a continuous quaternion noise process with
specified statistics on SO(3); this model is used for analyzing estimator performance
when both the gyro and the attitude measurements contain noise. Bounds and
exact predictions for the different noise models are validated using a high fidelity

numerical integration method for nonlinear stochastic differential equations.
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Chapter 1: Introduction

Attitude and angular rate estimation are critical systems for a great many
applications. For example, NASA routinely utilizes spacecraft as a platform for
hosting scientific observatories above the atmosphere; precise attitude and angu-
lar rate estimates of the spacecraft are needed to ensure the science instruments
point in the appropriate direction with minimal error. Aircraft autopilots rely on
attitude and angular rate estimates to achieve appropriate conditions to maintain
smooth flight. Autonomous underwater vehicles (AUVs) rely on attitude and angu-
lar rate estimates to similarly maintain appropriate conditions to dive and maneuver
underwater. Other recent applications for attitude and angular rate estimation in-
clude personnel tracking in unstructured environments [24], fitness tracking [55],
and virtual reality systems [63]. It is typical to need both attitude and angular rate
estimates; as attitude measurements inherently have noise differentiating the atti-
tude measurements to provide angular rate estimates is often insufficient for closed
loop attitude control, estimating body motion, etc.

In many applications, it is challenging to model the system dynamics. In the
spacecraft attitude estimation problem, disturbance torques induced by bending

modes in solar panels, variation in aerodynamic drag as the atmosphere expands



and contracts, variation in solar radiation pressure due to sun spots or solar flares,
liquid propellant slosh, jitter due to rotating instruments onboard the spacecraft,
and other effects are common examples [31,66]. Aircraft may be subjected to wind
gusts and variation in mass properties as payload shifts and passengers move about.
AUVs are similarly often exposed to changing water currents, unexpected shifts
to their center of mass, and unexpected changes to their center of buoyancy [23].
Even rigid body vehicles in an environment with negligible disturbance can prove
challenging to model as a system’s inertia tensor may be hard to measure or estimate.

In applications where the system dynamics are difficult to model with sufficient
fidelity, it is common to instead rely on a sensor fusion approach based on a kinematic
model [51,56] driven by angular rate gyro measurements. As orientation kinematics
are known [31] precisely, an angular rate gyro can be used to measure the effect of
dynamics and drive the kinematic equations; thus the challenge shifts from modeling
the dynamics of the underlying system to modeling the gyro sensor itself. This
technique is sometimes referred to as dynamic model replacement.

One of the main sources of error with the dynamics model replacement tech-
nique is error in the gyro measurements. Gyro sensors are characterized by the
magnitude of bias in their measurements and how the bias might vary. High end
gyros have better (smaller) bias characteristics, but come at substantial expense in
addition to size, weight, and power requirements; note that even the highest grade
of gyros commercially available still have noticeable bias for many applications. Of
course, size, weight, power, and financial constraints often dictate lower quality gyro

sensors are required for a particular application. The emergence of micro-electrical-



mechanical system (MEMS) gyros has enabled attitude estimation for entirely new
classes of problems as well as providing a useful alternative to traditional gyros, but
MEMS gyros in particular are known for having large bias that varies over time. A
critical idea behind the dynamics model replacement technique is to estimate the
gyro bias; the gyro bias estimate is then subtracted from the gyro measurement
to attempt to cancel the impact of the underlying gyro bias. The “corrected” gyro
measurement is then used to drive the attitude kinematics equation of the estimation

algorithm.

1.1 State of the Art

Many of the early advances in attitude estimation theory came from the space
industry. As many of the first developments were in the interest of rocket and missile
development during the beginning of the Cold War, an accurate and complete history
is difficult to assemble as the work was kept classified [102].

The importance of Kalman’s work [39] in the estimation of linear stochastic
systems was immediately recognized by Schmidt and his collaborators [69,82,83].

Kalman filter techniques were soon applied to attitude estimation One of the
first published works is by Farrell [18,19] who used a Kalman filter to fuse sun sensor
and magnetometer sensors to provide an attitude estimate. Potter and Velde [76]
used a Kalman filter to combine star tracker data with gyro measurements. However,
as noted by [79] many of these early applications did not have sufficient performance;

an inability to model the underlying system dynamics with enough fidelity was a



major setback.

The dynamic model replacement technique met this challenge with great suc-
cess. The technique appears to have originated with the Space Precision Attitude
Reference System (SPARS) described in an Euler angle formulation by Paulson,
Jackson, and Brown [74] and a quaternion and error angle formulation by Toda,
Heiss, and Schlee [97]. These formulations both estimated gyro bias which was sub-
sequently used to correct the gyro measurements used in their filter’s attitude kine-
matics equations. The Multiplicative Extended Kalman Filter (MEKF) introduced
by Lefferts, Markley, and Shuster [51,64] improved on the work by Toda et al. by
formulating new attitude measurement information as a quaternion for measurement
updates. The MEKF was employed for the Space Shuttle, is currently employed on
the Hubble Space Telescope, the International Space Station, and numerous other
current missions. It is the current industry standard and is incorporated in designs
for the James Webb Space Telescope and Orion Crew Exploration Vehicle.

Research in attitude estimation filters continues. An Unscented Kalman Filter
by Crassidis [14] has been employed to attempt to address the highly nonlinear at-
titude kinematics. Particle Filters have been developed by Cheng and Crassidis [12]
and Oshman and Carmi [73] for attitude estimation problems to relax the typical
Kalman filter assumption of Gaussian measurement noise. Unfortunately these tech-
niques come with considerable computational cost compared to the classic MEKF.
Other recent work includes the construction of an assumed density Bayesian filter by
Glover and Kaelbling [27] based on the assumption that the attitude estimate obeys
a Bingham distribution, a type of probability distribution on the unit quaternion hy-
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persphere. This same probability density is used in a recursive filter implementation
by Kurz et al [48].

Kalman filter techniques have enjoyed considerable success for attitude estima-
tion, but their use is not without criticism as they require instantaneous linearization
of the highly nonlinear attitude kinematics equation. It is known [9] that extended
Kalman filters based on instantaneous linearization are not guaranteed to be glob-
ally stable. With improper tuning or inappropriate initialization it is possible for
divergence to occur. Even with appropriate tuning and initialization, the region
of stability for an extended Kalman filter can be difficult to establish. Addition-
ally, Kalman filter techniques can be computationally expensive, requiring matrix
inverses and propagation of a covariance matrix in addition to the filter state.

Application of nonlinear state observers to the attitude estimation problem
has provided an appealing alternative to filter techniques based on instantaneous
linearization. Several nonlinear attitude observers have been developed with global
stability guarantees derived via Lyapunov analysis. The use of Lyapunov analysis to
establish stability for quaternion feedback was first demonstrated for attitude control
algorithms. Wie and Barba [105] and Wie, Weiss, and Arapostathis [106] proposed
a set of Lyapunov functions that were used to show global asymptotic stability of a
class of spacecraft attitude regulators. Egeland and Godhavn [17] extended one of
the Wie et al. controllers for attitude tracking control, and showed stability with
an augmentation to adaptively learn mass parameters such as the inertia matrix.
Fjellstad and Fossen [21] considered a number of various quaternion feedback control

schemes for attitude regulation and list associated Lyapunov functions used to show



stability.

Following the successful application of Lyapunov stability analysis to the at-
titude control problem, several authors have utilized similar Lyapunov candidate
functions to demonstrate global stability for nonlinear attitude observers. Salcud-
ean [80] introduced a nonlinear observer for rigid body attitude and angular rate;
using deterministic lyapunov stability theory the observer was shown to eventually
converge exponentially fast. Vik, Shiriaev, and Fossen [101] extended this nonlin-
ear observer to also estimate exponentially decaying gyro bias. Thienel and San-
ner [94,95] showed that the gyro bias observer of [101] is exponentially stable even
when the biases are constant (persistent); additionally, they show the observer, when
combined with a passivity-based attitude controller from [17], exhibits a nonlinear
version of the separation principle. Mahony, Hamel, and Pflimlin [56] extended the
analysis to consider line-of-sight attitude measurements (e.g. a magnetometer or
sun sensor) in addition to estimating persistent gyro bias online; their analysis is
provided in both quaternion space and rotation matrix space.

In all of the above nonlinear observer studies, the analysis was performed in a
deterministic Lyapunov framework. Thienel and Sanner [94,95] point out that expo-
nential stability guarantees the stability of the observers in the presence of bounded
additive gyro noise, but the deterministic analysis does not provide a means to quan-
tify the stochastic performance of the system. Thus deterministic Lyapunov theory
is unable to provide criteria for selection of observer gains based on sensor noise
specifications. Choukroun [13] demonstrated how to perturb quaternion kinematics

by Brownian motion angular rate noise and analyzed stability using a result from



linear stochastic differential equation theory, but the result does not generalize to
nonlinear drift terms that arise in the nonlinear attitude observers of [80, 95, 101]
and no explicit stationary performance metric is provided.

The theory of stochastic differential equations (SDEs) are the natural setting
for considering measurement noise in the highly nonlinear attitude estimation prob-
lem. The rigorous foundation for SDEs dates back to Wiener [16,107] for linear
SDEs and It6 for nonlinear SDEs [33-35,67]. While the linear SDE work of Wiener
provided the basis for the celebrated work of Kalman, the lack of a readily available
estimation framework suitable for application appears to have prevented the nonlin-
ear SDE case from finding as much utility. The development of the time evolution
of probability densities goes back further to the work of Fokker [22], Planck [75],
and Komolgorov [46]. Unfortunately, the time evolution of probability densities is
given by a second order paraboloic partial differential equation (PDE) which can be
challenging to solve.

Several results provide a stochastic analog to the deterministic theory of Lya-
punov, referred to as stochastic Lyapunov analysis [43,96, 112-114], but do not
appear to be widely used in the literature. Some of these results allow for the direct
computation of bounds of statistics on certain statistics of a nonlinear 1t6 SDE. For
example, this theory has been used to optimize gains in a nonlinear angular rate
regulator [52]. Additionally, several results of stochastic Lyapunov theory allow
for the determination of various definitions of stochastic stability. This can be a
powerful tool as weak stochastic stability implies that the system converges in the

infinite time limit to a stationary state (where the probability distribution for the
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system states remains constant); thus the complication of solving the time varying
Fokker Planck PDE, a second order parabolic PDE, can be reduced to the simpler
stationary Fokker-Planck PDE, which is a second order elliptic PDE. If the under-
lying system is one-dimensional, then the stationary Fokker-Planck PDE reduces to

a second order ODE. These simplifications and reductions may make the solution

of a Fokker-Planck PDE tractable.

1.2 Contributions

The first contribution of the thesis is the extension of a nonlinear gyro bias
observer to allow for the learning of gyro bias as a function of operating temperature.
Provided the underlying gyro thermal bias function is sufficiently smooth, the gyro
thermal bias observer is able to learn an approximation to gyro thermal bias of
arbitrary shape by using an adaptation law to update weighting coefficients of a
collection of radial basis functions (RBFs). Simulation studies demonstrate the
performance of the observer.

The remaining contributions of this thesis are directed at the formal under-
standing of the stochastic stability and stationary statistics of several nonlinear atti-
tude observers when provided measurements with noise. The analyses conducted in
this thesis are summarized in Table 1.1. Each row depicts the analysis of a nonlin-
ear attitude observer (or attitude and gyro bias observer) with progressively more
complicated measurement noise and error models. The columns are broken into

SO(2) and SO(3) results for weak stochastic stability, ultimate bounds on perfor-



mance statistics derived via stochastic Lyapunov analysis, and the solution to the
corresponding stationary Fokker-Planck PDE. For many measurement models, weak
stochastic stability guarantees were found via stochastic Lyapunov analysis. For the
gyro additive noise and gyro constant bias measurement model case, weak stochas-
tic stability was found via an appeal to a converse Lyapunov theorem. In the cases
where the SO(3) solutions remain unknown to the author, the analysis proceeded
to the corresponding SO(2) analogs which were shown to have tractable solutions
to their stationary Fokker-Planck PDEs. Ultimate statistics from the solution to
the stationary Fokker-Planck PDE for the SO(2) analogs were then extrapolated as
heuristic bounds for the SO(3) case; the heuristic bounds were subsequently verified
by numerical simulation.

Another significant contribution of the thesis is the development of a It6 SDE
quaternion measurement noise model. Prior work has utilized an additive noise
model which does not obey the unit norm constraint for quaternions parameterizing
rotation. Other work has generated a noise quaternion via a nonlinear mapping
from a Gaussian distribution, but this nonlinear mapping precludes the possibility
of modeling the noise as a specific type of [to6 SDE referred to as an Ito diffusion.
By formulating the quaternion measurement noise model as a continuous time Ito
diffusion, high fidelity stochastic numerical integration tools may be utilized for
simulation studies. Further, the ultimate statistics of the quaternion measurement
noise model presented in this thesis were found in the full SO(3) case, allowing for

specification of the measurement noise level for simulation and analysis purposes.
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1.3 Dissertation Outline

Chapter 2 provides an overview of the mathematical theory and analysis tools
used throughout the thesis. The chapter begins with a brief review of nonlinear de-
terministic differential equations and analysis tools to provide a basis for comparison.
The chapter then details important concepts from nonlinear stochastic differential
equation theory with a detailed discussion of modeling aspects. Stochastic stability
concepts are introduced and several results from stochastic Lyapunov theory are
presented. The Fokker-Planck PDE is also discussed with an example demonstrat-
ing its utility. Numerical SDE simulation techniques are described which are used
throughout the thesis to provide validation of the analytical results. Quaternion
arithmetic and attitude kinematics are then presented to familiarize the reader with
notation used throughout the document. Finally, the structure of several determin-
istic observers is discussed providing a more detailed description of the remaining
chapters.

Chapter 3 provides an extension to the deterministic observer of Thienel and
Sanner [95] to account for gyro bias as a function of operating temperature. A brief
review of the phenomena of gyro thermal bias from the literature is presented and
a pair of notional gyro thermal bias models are provided. Some techniques from
function approximation theory are presented, providing a mechanism by which an
adaptive observer can encode an estimate of a gyro thermal bias function. The
function approximation techniques are then combined with the nonlinear adaptive

observer of Thienel and Sanner to formulate a deterministic gyro thermal bias ob-
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server. Deterministic simulations demonstrate that the observer is able to “learn”
an approximation to the gyro thermal bias function. The deterministic observer of
Thienel and Sanner, as well as the new gyro thermal bias observer, are then placed
in a stochastic setting by including additive gyro noise and attitude measurement
noise. The performance of the observers is compared. Finally, a number of simula-
tions are conducted to sample the gain parameter space in an attempt to find the
gain selection criteria for the performance of the filters. The inexact nature of the
study and excessive computational cost to perform the work provide motivation for
analytic criteria for gain parameter selection.

Chapter 4 details a rigorous analysis of the simple case of a nonlinear attitude
observer with additive gyro noise; as the analysis is done in a stochastic setting the
terminology changes to a nonlinear attitude filter. The error dynamics are formu-
lated as an It6 SDE and the filter is determined to be weakly stochastically stable.
Stochastic Lyapunov theory is used to find performance bounds for the system,
but the bounds are shown to be conservative compared to simulation realizations.
The SO(3) Fokker-Planck PDE is derived but the complicated structure does not
appear to immediately suggest a solution. To gain further understanding of the
problem, the analysis is restricted to the SO(2) (single axis) case. The stochastic
Lyapunov analysis is repeated there and found to still be conservative, but analysis
of the Fokker-Planck PDE proves to be tractable; the solution is given by a von
Mises distribution. The solution of the SO(2) stationary Fokker-Planck PDE allows
for analytic computation of stationary statistics of the filter which agree with nu-
merical simulation. Intuition gained from the SO(2) case provides motivation for

12



a proposed solution to the SO(3) Fokker-Planck PDE which fits numerical simu-
lation data. Finally, the insight gained from the SO(2) case suggests a solution
to the SO(3) stationary Fokker-Planck PDE which is found as a bipolar Bingham
distribution; the solution is used to derive exact analytic expressions for the ulti-
mate statistics of the SO(3) process which agree with numerical simulation. The
SO(3) stationary Fokker-Planck solution is subsequently used to compute the entire
ultimate covariance matrix for the attitude estimate errors.

Chapter 5 extends the results of the fourth chapter by considering constant
gyro bias. The error dynamics for the filter are found to be weakly stochastically
stable via an appeal to a converse Lyapunov theorem. While the converse Lyapunov
theorem is successfully used in combination with stochastic Lyapunov analysis to
demonstrates stability, no explicit formulation of the Lyapunov function is available
to find performance bounds for the filter using stochastic Lyapunov analysis. The
SO(3) Fokker-Planck PDE is found but again has complicated structure. As before,
the analysis focuses on the restricted SO(2) case for further insight. The stochastic
Lyapunov analysis is repeated there and found to still be conservative, but anal-
ysis of the Fokker-Planck PDE proves to be tractable; the solution is given by a
joint von Mises and Gaussian distribution. The solution of the SO(2) stationary
Fokker-Planck PDE allows for analytic computation of stationary statistics of the
filter which agree with numerical simulation. Intuition gained from the SO(2) case
provides motivation for a proposed solution to the SO(3) Fokker-Planck PDE which
fits numerical simulation data. Finally, the insight gained from the SO(2) case sug-

gests a solution to the SO(3) stationary Fokker-Planck PDE which is found as a
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joint bipolar Bingham and multivariate Gaussian distribution; the solution is used
to derive exact analytic expressions for the ultimate statistics of the SO(3) process
which agree with numerical simulation.

Chapter 6 introduces attitude measurement noise to the analysis. As the anal-
ysis tools used in this thesis require the error dynamics be formulated as an Ito SDE,
the filter error dynamics are augmented by a separate process to generate quater-
nion measurement noise with specified noise density; the filter dynamics from Chap-
ter 4 provide such a mathematical process. The first section begins with additive
gyro noise and attitude measurement noise only, no gyro bias is considered. Weak
stochastic stability is demonstrated using Lyapunov analysis. Ultimate performance
bounds are found using stochastic Lyapunov analysis; however, numerical simula-
tion shows the performance bounds are very conservative and not indicate of actual
performance. Following the analysis strategy of previous chapters, the system is
reduced to the SO(2) case. An asymptotic solution to the stationary Fokker-Planck
PDE is found as a bivariate von Mises distribution; the solution is used to compute
stationary statistics for the filter which agree with numerical simulation. Intuition
gained from the SO(2) case provides a suggestion for a heuristic upper bound for the
SO(3) case which correctly envelopes numerical simulation data. The next section
repeats the analysis for the case of additive gyro noise, gyro constant bias, and atti-
tude measurement noise. A stability result for this case eludes the author, but as in
the previous section an asymptotic solution to the SO(2) stationary Fokker-Planck
PDE is found as a joint bivariate von Mises and Gaussian distribution which agrees
with simulation realizations. The SO(s) solution is again extrapolated to the SO(3)

14



case as a heuristic bound which is found to agree with extensive simulation data.
Chapter 7 provides a summary of the dissertation and discusses directions for
future research. Aside from filling in the gaps in Table 1.1, other important gyro
noise models are discussed; particularly non-axis-symmetric additive gyro noise and
bias random walk. An extension of the filters of Chapter 6 is proposed to filter
the non-white attitude noise present in the attitude measurement noise model from
that chapter. Additionally, the subject of closed-loop attitude control is mentioned
along with a preliminary stability and performance result. The chapter concludes

with final remarks on the stochastic tools and analysis approach used in the thesis.
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Chapter 2: Background

This chapter provides an overview of relevant background material used in
this thesis. First, Section 2.1 covers stochastic differential equations (SDEs) and
methods of analyzing stability; it begins with a brief review of ODEs in Section
2.1.1 and deterministic Lyapunov stability theory 2.1.2 to provide a basis for the
overview of SDEs in Section 2.1.3 and stochastic Lyapunov stability theory presented
in Section 2.1.4, and concludes with a discussion of Fokker-Planck analysis in Section
2.1.5. Next, Section 2.2 reviews numerical integration methods useful for validating
analytical results. Quaternion arithmetic and attitude kinematics are presented in
Section 2.3. Finally, Section 2.4 discusses the structure of the deterministic observers

that serve as the basis for the attitude filters analyzed in this thesis.

2.1 Nonlinear Stochastic Differential Equations and Stability

This section reviews several key concepts from deterministic ordinary differ-
ential equations (ODEs) along with methods of establishing stability via Lyapunov
analysis. Next, the stochastic analog of these concepts are presented, including
a rigorous definition of stochastic differential equations (SDEs), practical stochas-

tic modeling issues, and stochastic Lyapunov analysis techniques for determining
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stability and performance. An alternative analysis technique utilizing partial differ-
ential equations (PDEs) via stationary Fokker-Planck analysis is discussed. Several

examples are used to illustrate the theoretical concepts.

2.1.1 Deterministic Ordinary Differential Equations

Consider the deterministic Ordinary Differential Equation (ODE)
a(t) = f (x(1) + G () ut) =z=(,) ==, (2.1)

where z(t) € R"" is the system state evaluated at time ¢ and the input w(t) is some
deterministic known function of time.

The ODE is interpreted by its integral

b

w(tb)—w(ta)Z/tbf(w(t))dH/ G (x(t)) u(t)dl (2.2)

¢
ta
The integrals in Equation 2.2 are the ordinary Riemann integrals of elementary

calculus, defined as

/tbf(m(t))dt =lim > f(@(r)t,, —t] (2.3)

where t, = t, < t,...t, = t, is a partition of the integration interval [t,,¢,],

N b

d = max;(t,4+1 —t,), and each 7, € (¢,,¢,+1). If the limit does not exist, the integral
is said to not exist or not converge.
Of course, the integral Equation 2.2 does not directly yield the solution of the

system as x(t) appears on both sides of the equation. The linear time invariant

(LTT) system, a special case of Equation 2.1, is given as

x(t) = Az(t) + Bu(t) x (t,) = x, (2.4)
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The solution to the LTI ODE is a well known result from elementary calculus [11]

ty
x(ty) = ello™t) A (t,) —i—/ e~ A By (r)dr

ta
This solution may be used to determine the properties and behavior of the system.
The solution to certain classes of linear time varying (LTV) systems that are periodic
can be found via a time varying coordinate change that transforms the periodic
system into an LTI system using Floquet theory [11].

The situation is less well understood for the general nonlinear ODE of Equation
2.1. Closed-form solutions to the general nonlinear ODE may be very challenging
to find, or even impossible. Tenenbaum and Pollard [93] state “It is unfortunately
true that only very special types of first order differential equations possess solutions
which can be expressed in terms of elementary functions. Most first order differential
equations, in fact, one could say almost all, cannot be thus expressed.”

While closed-form solutions to the general nonlinear ODE of Equation 2.1
may be difficult or impossible to find, it may be possible to find a more general
solution or at least determine if a unique solution exists. The existence of a so-
lution, and uniqueness of that solution, can be established by the Picard-Lindelof
Theorem which has Lipschitz continuity conditions that ensure the integral of the
ODE converges [42,93]. Assuming a unique solution exists, the solution can then
always be found via successive Picard iterations; however, this solution technique
may yield the solution as an infinite series of nested integrals.

For design and analysis purposes, however, an explicit closed form solution

often isn’t needed. As long as a unique solution exists, it may be sufficient to assess
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qualitative properties of a system such as system stability or boundedness. The
following section presents ODE analysis techniques that do not require the explicit

solution.
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2.1.2 Deterministic Stability Analysis

Some highlights of Lyapunov stability analysis are reviewed in this section.
The discussion here provides a basis for understanding the stochastic Lyapunov
results presented in the upcoming stochastic stability analysis overview of Section
2.14.

Consider a system described by the ODE
@(t) = flx(t)  x(t.) = za (2.5)
The system of Equation 2.5 is said [42] to be

e stable if, for each € > 0 there exists a 6 = d(e) > 0 such that

|zl <6 = [z()]| <e Vit

e Globally Asymptotically Stable (GAS) if

limz(t)=0 Vax(t,) ==,

t—o00

e Globally Exponentially Stable (GES) if there exist positive constants ¢, k, and
A such that

lz @)l < klla(t)| Y a(t) = 2.

In words, a system is stable if for any ball of arbitrary radius centered at the origin,
the system states remain within that ball for any initial condition inside some initial
condition set (a ball centered at the origin with radius dependent on the first ball).
A system is GAS if, for any initial condition, the state asymptotically approaches
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the origin. A system is GES if, for any initial condition, the state approaches the
origin exponentially fast. These types of stability may be assessed via the analysis

techniques pioneered by Lyapunov.

Theorem 2.1.1 (Lyapunov’s Direct Method [42]). Let * = 0 be an equilibrium
point for Equation 2.5 and V : R™! — R be a continuously differentiable function
such that

V(0)=0 and  V(x)>0 Va#0

If

V(z(t) <0 V()

then the system described by Equation 2.5 is stable.
Moreover, if

V(z(t) <0 Va(t)£0

then the system described by Equation 2.5 is Globally Asymptotically Stable (GAS).

Consider the LTI system of Equation 2.4 in the unforced case (when the input

is u(t) = 0 V t). Then Equation 2.4 reduces to
(t) = Az(t) (2.6)

The choice of Lyapunov function V(z(t)) = ' (t)Px(t) with P symmetric and

positive definite (SPD) leads to
V()= (1) (ATP + PA) (1)
= —x ()Qx(t) <0 Va(lt)#£0 iff Qis SPD
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This is of course an abbreviated derivation of the well known stability Lyapunov

equation for LTI systems given in the following corollary.

Corollary 2.1.1.1 (Lyapunov Asymptotic Stability for LTI Systems). The LTI sys-
tem of Equation 2.6 is Globally Asymptotically Stable iff there exists SPD matrices

P, Q) such that

AP+ PA=-Q

Other types of stability exist. The system of Equation 2.5 is said to be Globally
Uniformly Ultimately Bounded (globally UUB) [42] if there exists a 7' < oo and a

positive scalar £ such that
|lx(t)]] < k < o0 Vt>t,+T, V) =z, (2.7)

Note the distinction between stability in the sense of Theorem 2.1.1 and UUB.
Theorem 2.1.1 requires a system to be such that the states remain within a ball of
any size (centered on the origin) to be deemed stable. UUB relaxes this notion as
a system is UUB if its states remain within any finite bound; a system may rapidly
diverge from the origin and still be UUB provided its states remain within some ball
centered on the origin. A classic example is the Van der Pol oscillator which, for
positive damping coefficient, is unstable but UUB as the system trajectory converges
to a stable limit cycle [42]. The following Lyapunov theorem may be used to assess
if a particular system is UUB. First recall that a continuous function «(-) is said to

belong to class K if it is strictly increasing and «(0) = 0.
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Theorem 2.1.2 (Uniformly Ultimately Bounded Lyapunov Theorem [42] ). Let

Vi R™ = R be a continuously differentiable function such that

a, ([[z@)) < V(=) < a, (Jz@)])

where a, () and a, () are class K functions and o, (]Jz(t)]]) = oo as [|x(t)]] — oco.
If

V<w<t>>:(g—2) F@®) < W (2() <0 Ve = x>0 Vi1,

for some continuous positive definite function W (-), then the system described by
Equation 2.5 is Uniformly Ultimately Bounded (UUB). If the above holds for any
initial condition x(t,) = x,, the system is globally UUB.

Furthermore, for any r > 0 satisfying p < oy (ay(r)), there exists a T > 0

(dependent on x(t,) and u) such that

lz(®)] < oy (aa(p),  VEizta+T

To illustrate the utility of the UUB theorem, consider the logistic population

model given by the scalar nonlinear ODE

x(t) = ra(t) (1 - %) x(ty) =29 >0 (2.8)

In the model, z(t) is some population that can be modeled with a continuous vari-
able (a large group of individual animals, or perhaps bacteria). The parameter r
models the growth and decay (birth and death) in the population while & models
the environmental carrying capacity. Note that the population can never become
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negative; the population begins with a positive value. As the solution is continuous,
and x(t) = 0 for z(t) = 0, the solution must remain positive semidefinite; if the
population ever drops to zero, it remains zero forever after.

The logistic population model of Equation 2.20 is UUB. Choose V = %xz(t).
Then

V(t) = ra’(t) (1 - %) <0 Vaz(t)>k

Application of Theorem 2.1.2 shows the desired result.

The above theorems used a Lyapunov function to demonstrate a stability
property of a given system. There will be use in this thesis for converse Lyapunov
theorems as well. These theorems allow one to use the fact that a system is GES
to infer the existence of a Lyapunov function that has certain properties without
finding the explicit form of the Lyapunov function. In Chapter 6, the fact that a
deterministic system is known to be GES will be used with the following converse
Lyapunov theorem to generate a Lyapunov function that will in turn be used to
show a stochastic extension of the system is weakly stochastically stable using a

stochastic Lyapunov theorem.

Theorem 2.1.3 (Converse Lyapunov [42]). Let @ = 0 be an equilibrium point for
Equation 2.5 with f(-) : R™ — R"™ continuously differentiable and % be bounded. If

there exist positive constants k, A such that trajectories of the system satisfy

lz(@)]] < Kllz(ta)|le ), Vi,
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then there is a function V : R™ — R that satisfies the inequalities

allz]* < V(z) < e 2|
ov
557 @0) < —csf|’

W < eyl
ox || — 4

for some positive constants cy, ¢, c3, and cy.
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2.1.3 Stochastic Differential Equations

Extending the model of Equation 2.1 to include the effects of random noise is
of great interest for modeling disturbance forces and torques, measurement noise,
and other phenomena [9,37,68]. Inclusion of random noise will require considerably
more mathematical theory than was used to define ODEs; this section presents a
rigorous definition of a stochastic differential equation (SDE).

A common approach to formulating an SDE [9, 26, 84, 109] is to perturb an
ODE by a Gaussian white noise process n(-) where at each time t the process is
an independent identically distributed (iid) sample from a zero mean unit variance

Gaussian noise distribution: n(t) ~ N (0, I).

@(t) = fla(t) + Gz(t))n(1) (2.10)

In this thesis an ODE perturbed by a Gaussian white noise process will be referred
to as a Langevin form differential equation.

The scalar white noise process n(+) is so named since at each time instant n(t) is
drawn from an independent identically distributed normal distribution, n(t) ~ N (0, 1),
thus the autocorrelation is necessarily En(t)n(7)] = d(t — 7). This is how the noise
process gets its name as the Fourier transform of the autocorrelation function, the
spectral density, is flat for this process. That is, the spectral density contains content
at all frequencies, similar to how white light contains content of all visible light fre-
quencies. Of course, a dirac-delta autocorrelated process is not continuous [72], the

process is nonphysical as a signal would require infinite energy be truly white [109],
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and the process is difficult to interpret rigorously [44,67].
A closely related process is the Brownian motion process, also called a Wiener
process, which will be denoted as 5(-). Brownian motion is defined as a process with

the following properties [44]:

e Independent Increments 3(t) — f(s) for ¢t > s is independent of the past,

meaning independent of f(u) for 0 <wu <'s

e Normal Increments 3(t)—/(s) for t > s has a normal distribution with mean
0 and variance t — s; symbolically, E[3(t)— 8(s)] = 0 and E {[B(t) — B(s)]Q} =

t—s
e Continuous Paths (§(t),t > 0 are continuous functions of t.

In fact, the third property, that the Brownian motion process has continuous paths,
can be deduced from the first two defining properties [44].

Wiener [67, 107] rigorously derived his integral using the Brownian motion
process:

N—

[ Gis0 = L. 3 60 180 - 86

—
=0

—_

where t, = tg < t; < ... <ty =t, and 6 = max (t;41 —t;). The limit is taken as

the limit in the mean, or the mean square limit, and [.i.m. is shorthand for

. o . . 2] _
l.(;z._)nol.xé—x & {S%E[(xé 2)’] =0

In the definition of the Wiener integral, the integrand G(t) is restricted to be de-
terministic; it must in no way depend on the Brownian motion process B(-). Since
the state is dependent on the Brownian motion process, the Wiener integral is not
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defined for integrands that are a function of the state [67]. Note that in the sum,
the integrand is evaluated at the left end of the integration interval, ¢;.

With this in hand, the stochastic differential equation

da(t) = f(z(t)dt + GHABE)  a(t,) = xa (2.11)

can now be associated with the integral equation

() — ot /f dt+/ G()dB(@) (2.12)

where the first integral is an ordinary Riemann integral and the second integral is a
Wiener integral.
Wiener calculus serves as the rigorous basis for interpreting Langevin form

differential equations of the type

&(t) = f(x(t) + G(t)n(t) (2.13)

by replacing the problematic n(-) white noise process with the Brownian increment
dB(-). The white noise process n(-) can be thought of [37,44,67,72], informally, as
the “derivative” of the Brownian motion process 3(-), symbolically “8(t) = n(t)”.
However, the Brownian motion process is nowhere differentiable. Hence the patho-
logical nature of white noise; it is the derivative of a process that has no derivative.
This can seem to be a subtle distinction and is of little consequence for working
with Langevin form differential equations when G is independent of the state like
in Equation 2.13; however, when the diffusion matrix G is state dependent, the
Brownian increment is no longer independent of the diffusion matrix as the state is
itself dependent on the Brownian increment.
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Wiener calculus shares many of the same fundamental mechanics as ordinary
calculus, such as the chain rule. Again it should be stressed that the Wiener integral
does not allow for G(t) to be dependent on the state. The Wiener integral is the
type of integral used in the derivation of an extended Kalman filter, which addresses
the issue by instantaneously linearizing the system dynamics at every time step and
thus assuming the G(t) matrix is only time varying. The region of validity of this
assumption is difficult to assess.

Most of the stochastic differential equations (SDEs) encountered in this thesis
are such that the G matrix does indeed depend on the state, which in turn de-
pends on previous values of the Brownian motion process. The Wiener integral was

extended by It6 [33,34,37,67] as

?

/t G(a(0)aB() = Lim. Y G(x(t:) [B(tin) — B(t:)]

—0

Il
=)

i
Note carefully that the integrand is again evaluated at the left side of the integration
interval. Since the Brownian motion process has increments independent of its prior
values it follows that for each term in the summation G(x(t;)) and B(t;i11) — B(t;)
are independent.

Observe that the Wiener integral is a special case of the [to integral. Similarly,

the It6 stochastic differential equation (SDE)
dx(t) = f(x(t))dt + G(x(t))dB(t) x(t,) = x, (2.14)

is interpreted as

(t) — a(t / Fla()dt + /t " () dB) (2.15)

29



In Equation 2.15, the first integral is interpreted as an ordinary Riemann integral
and the second is an It6 integral. The f(a(t)) term is often referred to as the drift
term and G(x(t)) as the diffusion matrix. By construction of the It6 integral, the
solution to «(t) is a Markov process [44,67]. This thesis only considers a specific
type of SDE called an Ito diffusion; that is, an SDE that can be written in the form
of Equation 2.14 which is affine in the driving noise.

While the Wiener integral and the Ito integral appear to be very similar,
Wiener calculus follows the same rules as ordinary calculus while the more general
Ito integral and its attendant calculus do not. Specifically, the chain rule of ordi-
nary calculus does not hold. Consider the twice continuously differentiable function
V(x(t)). Its derivative with respect to the SDE of Equation 2.14 is given by Itd’s
Lemma, which is the chain rule for It6 calculus [67]:

dV (z(t)) = (%)Tdm<t) + %tr <GT (x(t)) %G(w(zﬁ))) dt

(%)Tf (z(t)) + %tr (GT (x(t)) %G (w(t)))] dt

(2 cwnas

ov

— PV (2(t) dt + (%> G (z(t)) dB(t) (2.16)

where the .Z- operator is given by

2LV (x(t)) = (%) fx(t)+ %tr (GT (x(t)) %G(w(i))) (2.17)

The operator is known as the differential generator [67] [96], the differential operator
[114], and the generator [44] [43]; it will be referred to as a differential generator
in this thesis and will be used extensively. The differential generator is such that
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ZV = E[dV]; that is, it is the expectation of the It6 derivative along sample paths
of the associated SDE [67].
Alternative integrals exist for handling state dependent G matrices. A popular

alternative is the Stratonovich [37,67,91,92] integral, defined as

tf ¢ odg(>:zgﬂ3§fcz(w(ﬁigiﬁ))[ﬂaﬂn-—ﬂu»

where the § and od3(t) are used to distinguish a Stratonovich integral from a Wiener
or Ito integral. Note that in this definition the integrand is evaluated in the middle
of the integration interval.

The Stratonovich integral allows for Stratonovich SDEs of the form

de(t) = f(a(t)dt + Gla(t) 0 dB(t),  @(t) = @, (2.18)

to be interpreted as

() — ot / I dt+]{ba(x(t))odg(t) (2.19)

where the first integral is an ordinary Riemann integral and the second is a Stratonovich
integral.

The Stratonovich and Ito integrals differ in several fundamental ways. As
noted earlier, the Ito integral and its attendant calculus utilize their own special
chain rule which differs from that of ordinary calculus. The Stratonovich integral and
its attendant calculus utilizes the same chain rule as that of ordinary calculus. While
this might make it more attractive, it has its own drawbacks. The Stratonovich
integral is not a martingale while the It6 integral is [72]; the martingale property
makes the [t0 integral easier to work with in proofs so It calculus is more prevalent
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in the literature. Additionally, the Stratonovich integral is only defined for explicit
functions of 3(t) while the It6 integral is defined for functionals on {S(7), 7 < t}, so
[t6 integrals are applicable to a wider class of systems [37,58].

Note that for the restricted class of functions for which the Stratonovich inte-
gral can be defined, there is a one-to-one correspondence between an [to SDE and
a Stratonovich SDE [26,67]. The same process y(t) may be represented as the It

SDE
dy(t) = fioy(y(t))di + G(y(t))dB(t)

or the Stratonovich SDE

1 < 99,
dy(t) = | firoy(y —528— dt + G(y(t)) o dB(¢)
where g; is the j” column of G(y(t)) € R™™ and for any v € R™*!
8y1 81/71
dv
Jy
Qom .. Oum
_8y1 Oyn |

Conversely, the same process z(t) may be represented as the Stratonovich SDE
dz(t) = Fforar,-(2())dt + G(2(1)) 0 dB(2)
or the It6 SDE
dz(t) = | f D42 Mg at+ Gly()dB
stratz 9 - a

The question remains, how does one interpret a Langevin form differential
equation such as Equation 2.107 Or, as eloquently stated in [71], “which kind of
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calculus does nature use?” Opinions differ [70,87,89,98,100,104], although there is
agreement that both It6 calculus and Stratonovich calculus are both self-consistent
and the correspondence between It6 and Stratonovich SDEs may be utilized to
freely transform a system description as needed [37,67,71]. Note that the two
different interpretations of the Langevin form differential equation lead, in general,
to two distinct stochastic processes. Each process can be described by an 1to6 SDE,
a Stratonovich SDE, or a Fokker-Planck PDE (which will be discussed in Section

2.1.5). The situation is illustrated in Figure 2.1.
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\t& interpretation

Stratonovich interpretatic;/

Figure 2.1: The two interpretations of the Langevin form differential equation lead, in

general, to two distinct stochastic processes.

34



Some authors, particularly in mathematics [44, 72] and chemistry [98-100],
argue that the non-rigorous definition and construction of the white noise process,
evidenced by the possibility of distinct interpretations of the Langevin form dif-
ferential equation, means the Langevin form differential equation itself should be
discarded and the modeling process should begin with an Ito SDE, a Stratonovich
SDE, or a Fokker-Planck PDE (or the more generalized Master Equation). Other au-
thors [87,104] argue unequivocally that Langevin form differential equations should
be interpreted as Stratonovich SDEs (by replacing the white noise term with the
Brownian increment) based on analytical analysis and experimental data. All cited
authors agree that the Stratonovich interpretation of a Langevin form differential
equation is appropriate when the noise being modeled is a so called “external force”,
such as a disturbance force, disturbance torque, a disturbance due to an external
thermal source (aka dark current), and shot noise. Examples of “internal forces”
in this context are typically due to chemical reactions. As this thesis is concerned
with modeling gyro noise and attitude measurement sensor noise, which would be
considered due to “external forces”, the Stratonovich interpretation appears appro-
priate.

Analyses conducted by Wong and Zakai [110,111] attempted to address this
issue. They studied a sequence of ODEs driven by continuous piecewise linear ap-
proximations to Brownian motion process where the approximations converge to
actual Brownian motion processes in the limit. They found that the sequence of so-
lutions to the ODEs converged in the limit to the Stratonovich interpretation of the

Langevin form differential equation, not the Ité interpretation. This interpretation
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has been quite influential and is recommended by prominent texts by mathemati-
cians [40,45], physicists [26], and engineers [37]. Following these recommendations,
in this thesis first principles will be used to derive Langevin form differential equa-
tions which will be interpreted as Stratonovich SDEs. However, since the results
from stochastic stability theory (to be presented in Section 2.1.4) and high fidelity
numerical integration algorithms (to be presented in Section 2.2) are given for It6
SDEs, the Stratonovich SDEs will subsequently be converted into It6 SDEs for
analysis and numerical simulation.

In summary, in this thesis Langevin form differential equations such as

(1) = frang(z(t)) + G(z(t))n(1)

will be interpreted as a Statonovich SDE

dx(t) = fiang(x(t))dt + G(x(t)) 0 dB(t)
which will in turn be converted to an It6 SDE given by

dz(t) = | fiang(x(t))dt + % %
J

o] it + Gila0) a0
These concepts will now be illustrated using, as an example, a stochastic ver-

sion of the logistic population model. The deterministic logistic population model

is given by the scalar nonlinear ODE

z(t) = ra(t) (1 — ?) x(t,) =x, >0 (2.20)

In the model, z() is some population that can be modeled with a continuous variable
(a large group of individual animals, or bacteria, or the concentration of a chemical
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species in a reaction). The parameter r models the growth and decay (birth and
death) in the population while £ models the environmental carrying capacity. Note
that the population can never become negative; the population begins with a positive
value. As the solution is continuous, and #(t) = 0 for x(t) = 0, the solution must
remain positive semidefinite; if the population ever drops to zero, it remains zero
forever after.

Assume now that there are random effects on the rate of change of the popu-
lation level due to variation in the environment that would be proportional to the
population level. A Langevin form differential equation for the system could then

be written as

x(t) = rx(t) (1 - %) + ox(t)n(t), x(ty) =29 >0 (2.21)

where the volatility of the random effect is parameterized by ¢ and n(t) is a zero
mean unit variance Gaussian white noise process. This system is of interest in
biology, microbiology, chemistry, mathematical modeling, and risk assessment [10,
54,88].

If the Langevin form differential equation 2.21 is interpreted as a Stratonovich
SDE, the interpretation that will be used in later chapters of this thesis, it is then
written as

x(t)

dx(t) = rz(t) (1 - T) dt + ox(t) o df5(t) (2.22)

which can be converted to It6 form, yielding

dx(t) = ra(t) (1 — ? + g—:) dt + ox(t)dp(t) (2.23)
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Alternatively, the Langevin form differential equation 2.21 may be interpreted

as an Ito SDE, and would be written as

dx(t) = ra(t) (1 - %) dt + ox(t)dp(t) (2.24)

which can be converted to Stratonovich form, yielding

dx(t) = rz(t) (1 - ? - g—i) dt + ox(t) o d(t) (2.25)

Note that the Stratonovich interpretation of the Langevin form differential
equation given by the Stratonovich SDE 2.22 and It6 SDE 2.23 are consistent with
each other, but differ from the It interpretation of the Langevin form differential
equation given by the Stratonovich SDE 2.25 and [t6 SDE 2.24. The two interpre-
tations yield distinct stochastic processes. Later sections will show these distinct
stochastic processes have different stationary statistics, only one of which is physi-

cally meaningful for all possible r, k, and o.
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2.1.4 Stochastic Stability Analysis

This section discusses stability of stochastic differential equations. First, the
concept of weak stochastic stability introduced by Wonham [113] is presented. Next,
two Lyapunov-like theorems are discussed; these theorems will be the primary tool
used in this thesis to asses stochastic stability. This section concludes with two
demonstrations of the application of these stochastic Lyapunov-like theorems. First,
the stochastic Lyapunov-like theorems are used to evaluate the performance of the
classic LTI state observer; the resulting analysis is used to optimize the LTI state
observer gain and a comparison is made to the classical analysis. Next, the stochastic
logistic population model is investigated as it is an example nonlinear stochastic
differential equation.

There are many notions of stability for stochastic differential equations. If
one examines the origin as an equilibrium point, there are a substantial number of
Lyapunov-like theorems similar in spirit to Theorem 2.1.1 available to assess the
stochastic analog of asymptotic and exponential stability [43,96] of Equation 2.14.
Of course for this type of stability, it is necessary that the diffusion matrix G(-) be
such that G(x) — 0 as & — 0; while this is true for the examples of Equations 2.23
and 2.24 it does not hold for any of the nonlinear attitude filters considered in this
thesis.

Alternatively, there are a number of sample path boundedness Lyapunov-like
theorems similar in spirit to Theorem 2.1.2. These theorems guarantee that the

actual realization of the process remains within some bound with probability one
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[43]. Unfortunately, even the conclusion of sample path boundedness excludes many
stochastic models, even some for which all ultimate moments lim; . E [||2(t)]|"]
are bounded [113].

Instead this thesis will utilize much less restrictive notions of stability, specif-
ically the notion coined “weakly stochastically stable” by Wonham [113]. By Won-
ham’s definition, a process (such as the solution @(-) of the SDE 2.14) that is weakly
stochastically stable is one that admits a unique invariant probability distribution.
Provided that the drift and diffusion coefficients are respectively once and twice
continuously differentiable (as they will be for all systems considered in this thesis),
the invariant probability distribution corresponds to a stationary (joint) probabil-
ity density function ps(x). Symbolically, if the solution x(-) = {x(t) ¥V t > to} to
SDE 2.14 has the (instantaneous) joint probability density function p(x(t),t), then
the statement that the SDE admits a unique invariant probability density means

that ps(a) exists, is such that

lim p(z(t),t) = ps(x) (2.26)

t—o00

and, further, that ps(x) is the solution to the stationary Fokker Planck PDE for
the system which will be discussed in the next section. Note carefully that Won-
ham’s notion of weak stochastic stability differs from Khasminskii’s weak stochastic
stability in probability [43] which is stronger but more restrictive.

In this thesis weak stochastic stability is established using a Lyapunov-like
theorem from Zakai [114], a version of Wonham’s [113] that relaxes Wonham’s re-

striction on the diffusion matrix having full rank.
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Theorem 2.1.4 (Zakai Stability [114]). Let x(-) be the solution to the It6 SDE 2.14

and V : R" — R be a twice continuously differentiable function such that

a, (z®)]) < V() < a, (lz)]) (2.27)

where a, (+) and o, (+) are class K functions and o, (||(t)|]) — oo as ||x(t)| — oo.

If there exist positive numbers Ry < oo and k such that

LV(x(t) < —-k<0 V|| > R

then the process defined by the SDE 2.14 admits an invariant probability distribution.

If the solution to an SDE is weakly stochastically stable, it is often of interest to
compute bounds on various stationary averages when they exist. The next theorem
was originally derived and named by Wonham [112]. Zakai [114] later relaxed the
conditions of the theorem. The theorem allows one to compute bounds on various
stationary averages, also referred to as ultimate (general) moments, provided the

SDE is weakly stochastically stable.

Theorem 2.1.5 (Zakai Ultimate Moment Bound [114]). Let x(-) be the solution
to SDE 2.14 known to be weakly stochastically stable and V : R™ — R be a twice

continuously differentiable function such that

a, (z®)]) < V() < a, (lz()]) (2.28)

where a, (+) and o, (+) are class K functions and o, (||(t)|]) — oo as ||x(t)| — oo.
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If there exists a positive number k and a nonnegative function L(x) : R™ — R
such that

LV (x(t) <k — L(z(t) VYo cR"

then

lim E[L(x(t)] < k

t—o0

Theorem 2.1.5 can be considered as a stochastic analog of the deterministic
uniform ultimate boundedness theorem of Theorem 2.1.2. Here the ultimate bound
is not on the sample path, but merely on the expectation of some nonnegative

function of the process, sometimes referred to as a generalized moment bound.
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2.1.4.1 LTI State Observer Example

This section demonstrates the utility of stochastic Lyapunov theory for the LTI
state observer. First the mathematical model of the system is presented. Then the
optimal filter gain is found using classical analysis. Finally, stochastic Lyapunov
analysis is applied to optimize the gain; the result from the stochastic Lyapunov
analysis is compared to the result from the classical approach.

Consider the Linear Time-Invariant (LTI) system

x(t) = Azx(t) + Dny(t)

y(t) = Cx(t) + Mn,,(t) (2.29)

where x(t) is the system state evaluated at time ¢, A is a matrix such that Ax(t) de-
scribes the homogeneous dynamics of the system, and the disturbance noise 14(-) is
a zero mean unit variance Gaussian white noise process with E[Dngy(t)n] (7)DT] =
DDT§(t — 1) where 6(t — 7) is the Dirac delta function. Measurements y(t) of the
state are assumed to be continuously available where the measurement matrix C'
describes the extent to which each component of the state is included in each com-
ponent of the measurement, while the measurement noise n,, () is a zero mean unit
variance Gaussian white noise process with E[Mn,,(t)nl (1) M| = MM7T§(t — ).
The disturbance noise and measurement noise are assumed to be independent,
E[ng(t)nl ()] = 0. Further assume the usual conditions, that the pair (A, C)

is detectable, the pair (A, D) is stabilizable, that M M7T is positive definite, and

that DD is positive definite.
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A fixed structure LTT state observer for the system of Equation 2.29 is given

as

2(t) = Az (t) + L (y(t) — 9(t))

Az(t) + L (y(t) — Cz(t))

where @(t) is the observer estimate of the state (t) at time ¢ and the matrix L is
a gain matrix.

Defining the filter error as &(t) = a(t)—(t) yields the observer error dynamics
z(t) = @(t) — a(t)
=(A— LC)Z(t) + Dngy(t) — LMmn,,(t)

7ld(t)

FﬁO+P)—m4 o
T (t

Fa(t) + Gnl(t) (2.30)

(1)
where by inspection F = A — LC, G = {D —LM} , and n(t) = .

(1)
)" (

m
Denote the estimate error covariance matrix as P(t) = E[&(t t)]. The
design goal is to choose the gain matrix L to minimize the trace of the steady state
estimate error covariance matrix Py = lim;_,o, P(f).

The classic approach to this problem is to solve the covariance matrix evolution
equation in the infinite time limit. Specifically, for the LTI system of Equation 2.30

the time derivative of the covariance matrix P(t) can be found by differentiating

the expectation integral (including differentiating the expectation integral limits)
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resulting in
P(t) = FP(t) + P(t)F" + GG" (2.31)

If L is chosen such that /' = A — LC' is Hurwitz, then lim; .., P(t) = 0 and there

exists a unique symmetric positive definite matrix Py = lim;_,, P(t) that solves
FP,+ P,FT = -GG"T (2.32)

which is in the form of a stability Lyapunov equation. This specific stability Lya-
punov equation is sometimes called a covariance Lyapunov equation.

So in the classical analysis the design goal of minimizing tr {Ps} is subject
to the constraint given in Equation 2.32, which can be adjoined via the Lagrange

multiplier matrix Z to formulate the cost function
J:ﬁp&z+z@mﬁ+aFT+GGﬂ}
:m{&+Z«A—L0ﬂ1+apy—unT+DDT+LMwﬂLﬂ}

To minimize the cost function with respect to the filter gain L, impose the

extremal conditions. The first is

oJ

O:ag

=1+2ZF+F'Z (2.33)

which is another stability Lyapunov equation. Since by assumption L was chosen
such that FF = A — LC' is Hurwitz, the stability Lyapunov equation guarantees
the Lagrange multiplier matrix Z is symmetric and positive definite. The second

extremal condition is

0:g%:—ZﬂOT—ZﬁyTWJFLMMT+meMT

=2Z(LMM" — P,CT)
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which must hold for all possible Z. Solving yields

L=PC"(MM")™? (2.34)

which is the steady-state LTI Kalman filter gain. Further, substituting the optimal
gain back into Equation 2.32 yields the Continuous Algebraic Riccati Equation

(CARE)

0=FP,+ P, F" + GG"
=(A—LC)P,+ P,(A— LC)" + DD* + LMM*L*

= AP, + P,A" + DD — P,CT(MM")~'CP,

The classical analysis approach required the derivation of the time evolution
equation for the covariance matrix, given in Equation 2.31. In the LTI case with
F' = A— LC Hurwitz the system is known to be weakly stochastically stable and the
covariance evolution equation simplified to the covariance Lyapunov Equation 2.32.
For general 1to6 SDESs, determination of weak stochastic stability is more involved and
the time evolution of the covariance matrix may not be given as a simple matrix
differential equation that is a function of the covariance matrix. For general Ito
SDEs, the time evolution of the probability density function, which is given by the
Fokker-Planck PDE, can be used to find the time evolution of the covariance matrix,
but the Fokker-Planck PDE can be challenging to solve. More on this topic will be

discussed in Section 2.1.5.
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Now consider the same design goal, but utilize stochastic Lyapunov analysis.
As the diffusion matrix (noise input matrix) G of Equation 2.30 is independent of

the state, conversion to an Ito6 SDE trivially results in

z(t) = F&(t)dt + Gn(t)

= f(&(t))dt + Gn(t) (2.35)

Let S be a symmetric positive definite matrix satisfying the stability Lyapunov
equation

FT'S+SF=—1I (2.36)

Choose the Lyapunov function V' = & (¢t)Sz(t). Then applying the differential

generator with respect to the Ito SDE 2.35 yields

2V - (%)T F @ (1) + 5 tr (GT%G>

=a"(t) (F'S+ SF) &(t) + tr (GTSG)

= —z"(t)z(t) + tr (D"SD) + tr (M"L"SLM)

thus application of the Zakai Stability Theorem 2.1.4 shows the system is weakly

stochastically stable. Further, Zakai Ultimate Moment Bound Theorem 2.1.5 implies

lim E [2" (t)z(t)] = tr (G"SG) = tr (D"SD) + tr (M"L"SLM) (2.37)

t—o00

where limy_,o E [27 (t)&(t)] = tr {Ps} is the design objective to be minimized. As

in the classical analysis approach, a constraint was used that must be adjoined to
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the cost function for minimization

J = {G"SG+Z(FS+SF"+1)}

— tr {DTSD} bt {MTLTSLM} ttr {Z((A — LC)S + S(A— LC)YT + I)}

where again Z is a Lagrange multiplier matrix. Note that in contrast to the clas-
sical analysis approach where the adjoined constraint was the covariance Lyapunov
Equation 2.32, here the constraint to be adjoined is merely the stability Lyapunov
Equation 2.36.

To minimize the cost function with respect to the filter gain L, impose the
extremal conditions. The first is

oJ

== = FZ+ZF" +GGT
55 + +

0

= (A-LCYZ + Z(A— LCY' + DD" + LMM™ L™ (2.38)

which recovers the covariance Lyapunov Equation 2.32 when Z = P,.
The second extremal condition is

oJ

Oza_L:

25 (LMM" — ZC™)

which must hold for all S. Solving for L and using Z = P, yields L = P,CT (M M T) !

which exactly matches the result from the classical analysis technique. Further, sub-
stituting the optimal result into the extremal constraint of Equation 2.38 recovers
the CARE.

Both the classical analysis and the stochastic Lyapunov analysis produced the
same optimal LTI filter gain, which is the steady state Kalman filter gain. The
classical analysis required L to be such that F' = A — LC was Hurwitz in order
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to use the covariance Lyapunov Equation as a constraint in the optimization. In
the stochastic Lyapunov analysis approach, the requirement that L be such that
F = A — LC was Hurwitz was the only condition needed to proceed with the
Lyapunov analysis; the covariance Lyapunov equation was recovered as a result
from the extremal condition during optimization. Note further that the stochastic
Lyapunov analysis approach provided a single framework to assess weak stochastic
stability as well as find the stationary statistic lim, .. E [€7(¢)Z(t)] = tr (GTSG).
Finally, the stochastic Lyapunov analysis approach is applicable to nonlinear Ito
SDEs. Since the stochastic Lyapunov analysis approach was able to find the Kalman
filter gain for the LTI observer, this thesis will explore if the stochastic Lyapunov
analysis tools can be used to find optimal “Kalman filter like” optimality results for

the nonlinear attitude observer and gyro bias observer.
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2.1.4.2 Stochastic Logistic Population Model Example

Consider again the stochastic logistic population model developed at the end
of Section 2.1.3. The Zakai Lyapunov-like analysis techniques allow for the determi-
nation of stability of the model, as well as provide a means to bound ultimate statis-
tics. Since the Zakai Lyapunov-like theorems are written for 1t6 SDEs, the following
theorem will be applied to the Ito6 SDE 2.23 that corresponds to the Stratonovich
SDE 2.22. The application of stochastic Lyapunov theory to the stochastic logistic

population model appears to be unreported in the literature.

Theorem 2.1.6. The stochastic logistic population model SDE 2.23 is weakly stochas-

tically stable.
Proof. Choose as a Lyapunov function V(z(t)) = 32*(¢). Then
LV (x(t) = —+2°(t) + (r + o)z () (2.39)
k 2
<0 ‘v’x(t)>;(7‘+a)

Weak stochastic stability follows from application of Theorem 2.1.4.

O

Corollary 2.1.6.1. The stochastic logistic population model SDE 2.23 has the ulti-
mate first moment bound
ko?

lim Elz(t)] < k+ — (2.40)

t—o0 T

Proof. Consider again the differential generator applied to the Lyapunov function

V(z(t)) = %2%(t) in Equation 2.39. If one could find £V < —pjz(t) + po for

ol
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constant py and positive constant p;, then Theorem 2.1.5 could be used to deduce
limy o0 Elz(t)] < E2. Thus the problem has been reduced to finding constants p; > 0

and po such that e(x(t)) > 0 where

0 <e(x(t)) = —pra(t) +po — LV (x(t))

= —pra(t) + po + %x?)(t) —(r+oNaX(t) () >0VE>t, (241)

Lasserre [50, Thm. 2.5,p. 20] provides the sum of squares (S.0.S.) result (for

a polynomial of degree 3) that e(x) > 0 Vo > 0 iff it can be written as

[ T U111 U12 1 w11 Wi2 1
e(x) =11 =z +T |1
) U2 u| | Wiz Wa| [T
r . 1 1
=11 2|U +x [1 x} %74 (2.42)
- . T T

with U, W symmetric and positive semidefinite.
Equating the two expressions from Equation 2.41 and Equation 2.42 for e(t)

lead to
r 2
Wy = Ugz + 2wip = —(r + 07) wyy + 2us = —py U11 = Po
Of course U is symmetric and positive semidefinite if and only if
uyp >0 Ugg > 0 Ur1U22 — u%2 >0
Similarly, W is symmetric and positive semidefinite if and only if
wyp >0 Wy > 0 Wi1Was — Wiy > 0

Observe that actually wae > 0 since wyy = ¢ and r, k > 0.
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Combining the constraints p; > 0, —p1; = wi1 + 2uq2, and wy; > 0 leads to

the requirement

— W11
Uro < 9
so choose
Ugp = —pwn
2
where ¢ > 1 is to be determined.
Combining the constraints wyjwy — w?y > 0, ugy + 2wy = —(r + o?), and

woy = 7 leads to the requirement

(u22 + (r+ 02)>2

wy 2> =
4%
so choose )
7(“22 + (r+ 02)>
w11 = p
4%

where v > 1 is to be determined.

Finally, combining the constraints w;jus — u3, > 0 and uy; = pg, and noting

that uss > 0 by requirement, leads to the combined requirement

2

U
12
Do = —
U22
so choose
2
. Yut,
Do =
U22

where ¢ > 1 is to be determined.

Solving for pg in terms of ug, ¢, 7y, and ¢ results in

PPy <U22 +(r+ U2)>4

2
642—2’&22

Do =
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Similarly, solving for p; yields

- (¢ — 1)(U2jl+ (r+ 02))2

K
By construction, if ugs > 0,¢ > 0,9 > 1, and v > 1 then U and W will

be symmetric and positive semidefinite. This in turn implies, by Lasserre [50,

Thm. 2.5,p. 20|, that e(z) > 0 V& > 0. Thus by Zakai’s ultimate moment bound

theorem of Theorem 2.1.5

2
. po Uy ¢ (“22+ (TJFUZ)) _
lim Elz(t)] < el T - = M (uzs, ¢, 1), 7)

t—o00

where ug > 0,0 > 0,7 > 1, and v > 1.

Now minimize the parameterized bound M (uss, ¢,1,~y) over the valid domain

of the parameters. Obviously choose ¥ = v = 1 to minimize M. Taking the partial

derivative with respect to ¢ reveals

2
oMy (w2t (0% g g)
o¢ 16T U2 (¢—1)

The critical point ¢ = 2 minimizes M with respect to ¢. Taking the partial derivative

with respect to ugs yields

oM - Py ¢? qu - (7“—1—02)2
(9UQ2 N 16% ¢ -1 U922

The critical point uss = r + o minimizes M with respect to .

Substituting the minimizers into the bound M (ugs, ¢,1,~y) results in the op-

timal stochastic Lyapunov bound, given the choice of Lyapunov function used and

SOS bounding technique employed, as

k
lim E[z(t)] < k + o>

t—o00 r
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]

Corollary 2.1.6.2. The stochastic logistic population model SDE 2.23 has the ulti-

mate noncentral second moment bound

2]€2 2 4]{72
lim El22(t)] < &2+ —— 4+ 2

t—o0 T 7’2

(2.43)

Proof. Consider again the differential generator applied to the Lyapunov function
V(z(t)) = L22(t) in Equation 2.39. If one could find £V < —sy2%(t) + s¢ for
constant sy and positive constant s;, then Theorem 2.1.5 could be used to deduce
lim; o E[2*(t)] < 2. Thus the problem has been reduced to finding constants

so > 0 and sg such that e(z(t)) > 0 where

0 <e(z(t)) = —s02°(t) + 59 — LV (x(t))

= —s5022(t) + 50 + %x?’(t) —(r+0¥)2(t) () >0VE>ty (2.44)

Again utilize the theorem from Lasserre [50, Thm. 2.5,p. 20] that the sum of
squares (S.0.S.) result (for a polynomial of degree 3) that e(z) > 0 Vo > 0 if and
only if it can be written in the form of Equation 2.42 with U, W symmetric and

positive semidefinite. Equating the two expressions for e(t) from Equation 2.42 and

Equation 2.44 lead to

Wy = + U + 2w = —<82 + (r+ 02)) w1 + 2u32 =0 U1 = So

1=

As before, U is symmetric and positive semidefinite if and only if

ull >0 Uz > 0 U11U22 — U%2 >0
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and W is symmetric and positive semidefinite if and only if
wll Z 0 Wa2 Z 0 W11Wo2 — wa Z 0

where in fact wyy > 0 is immediately satisfied since wys > 0 as wy = ¢ and r, k > 0.
Combining the constraints usg + 2wy = — <32 + (r+ 02)> and sy > 0 leads to

the requirement
- <U22 + (r+ 02)>
2

Wi <

so choose
—7(1@2 + (r+ 02)>
2

Wi2 =

where v > 1 is to be determined.
The constraint w;wag — w%2 > 0, combined with the fact wqy = z > 0, implies

the requirement

2
12
wyp = —
Wa2
so choose
2
Pwiy
wi1 =
Wa2

where ¢ > 1 is to be determined.
Impose the constraint wuss > 0; this combined with the constraint wu;jusy —

u?, > 0 implies the requirement

0
up > 2
U2
so choose

2
- Yuy

Uy =
U22

where ¢ > 1 is to be determined.
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Solving for sg in terms of wugs, ¢, v, and 1 results in

PPyt (U22 +(r+ 02)>4

2
64U22£—2

So =
Similarly, solving for sy yields

sy =(y—1) (qu + (r+ 02)>

By construction, if ugs > 0, v > 1, ¢ > 1, and ¢ > 1 then U and W
will be symmetric and positive semidefinite. This in turn implies, by Lasserre [50,
Thm. 2.5,p. 20], that e(x) > 0 Yz > 0. Thus by Zakai’s ultimate moment bound

theorem of Theorem 2.1.5

3
Ugg + (7 + o?
lim Ez(t)] < - il ( ( )> £l = M (ug2, 9,1, 7) (2.45)

= 2
=00 S2. 6447 U2 v—1

where ug >0, v>1, ¢ > 1, and ¢ > 1.
Now minimize the parameterized bound M (ugs, ¢, 1, y) over the valid domain
of the parameters. Obviously choose v = ¢ = 1 to minimize M. Taking the

derivative with respect to uqo yields

oM Po? At 2ud, + 3(r + 0% udy — (1 + 0?)?

Ougs 642—2 v—1 U3,

The critical point uss = 3(r + 0%) minimizes M with respect to uss. Taking the

derivative with respect to v results in

3
aM B ¢¢2 <u22+(7’+0'2)> 73(37_4)
oy 642—2 U2 (v—1)2

The critical point v = % minimizes M with respect to 7.
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Substituting the minimizers into the bound M (uss, ¢,1,~y) results in the op-
timal stochastic Lyapunov bound, given the choice of Lyapunov function used and

SOS bounding technique employed, as

2 2 41.2
lim El2?(t)] < k2 + 20 T

t—00 T ’]”2

]

Note that the choice of the form of the bound £V < —pyx(t) 4+ po may not
result in the least upper bound for lim; ., E[x(¢)]; this choice may introduce some
conservatism. Likewise, the choice of the form of the bound £V < —p2(t)+po may
not result in the least upper bound for lim; ,., E[x?(t)]. Of course, the Theorem
2.1.5 makes no claim to provide the least upper bound on the ultimate moment
limy o E[L(x(t))].

In this thesis, many of the stochastic Lyapunov moment bounds will prove to
be conservative compared to other analysis techniques considered in the next section
and numerical simulation results. On the other hand, for some systems considered
in this thesis stochastic Lyapunov theory is the only analysis technique that has yet
yielded tractable rigorous performance bounds; a conservative performance bound

is more informative than no bound at all.
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2.1.5 Stationary Fokker-Planck Analysis

Provided the drift and diffusion coefficients are respectively once and twice con-
tinuously differentiable, the process described by any Ito6 SDE of the form SDE 2.14
may also be described by the time evolution of its (joint) probability density func-
tion (pdf) notated p(x(t),t). The time evolution of a stochastic process’s pdf is
described by the Fokker-Planck equation, also known as the forward Kolmogorov
equation, a second order paraboloic partial differential equation (PDE). The PDE

associated with SDE 2.14 is

(0.0 = = 3 oL ()l o)

i %Z Z 3x?8mj [{G(m(t))GT(w(t)) L P (), t)} (2.46)

where f;(x(t)) is the i" element of f(x(t)) and {G(:I:(t))GT(:v(t))}ij is the element
in the i’ row and the j* column of the matrix G(z(t))G* (z(t)).

The Fokker-Planck PDE can be very challenging to solve even for very simple
systems. However, if one can establish that a process is weakly stochastically stable,

such as by using Theorem 2.1.4, then there exists a stationary pdf ps(x) such that

lim p(z(t),t) = ps(x) (2.47)

t—o00

where the stationary pdf satisfies the stationary Fokker-Planck PDE

0= =3 s @]+ 5 23 5o (G @) )] (249

which is a simpler second order elliptic PDE. If the system is one-dimensional, the
stationary Fokker-Planck PDE reduces to a second order ODE.
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Even the stationary Fokker-Planck PDE can be challenging to solve. If a so-
lution p,(x) can be found, however, it can be used to compute any (instantaneous)
ultimate moment of the underlying process. Once again the stochastic logistic pop-

ulation model of SDE 2.23 will be used as an example.

Theorem 2.1.7. The stationary Fokker-Planck PDE associated with the stochastic

logistic population model described by SDE 2.23 is solved by a Gamma distribution

o) = e (2.49)
with shape parameter o = % and scale parameter 0 = % The ultimate distribution
has the following ultimate moments

tliglo Elz(t)] =k (2.50)
tliglo Var[z(t)] = k;jz (2.51)

Comparing the ultimate mean of Equation 2.50 from the stationary Fokker-
Planck analysis with the ultimate mean bound of Equation 2.40 from the stochastic
Lyapunov analysis demonstrates that while the Lyapunov analysis did provide a
valid bound, there is indeed conservatism in the bound. Similarly, the ultimate
variance of Equation 2.51 from the stationary Fokker-Planck analysis can be consid-
erably less than the ultimate variance bound of Equation 2.43 from the stochastic
Lyapunov analysis. However, as will be seen for many systems under consideration
in this thesis, stochastic Lyapunov bounds are readily obtainable for some systems
while solutions to the stationary Fokker-Planck equation may remain unknown.
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The proof follows almost directly from [54], however the proof in [54] is for
the Ito interpretation of the logistic population model of SDE 2.24 resulting in a

slightly different Gamma distribution with

. 2r — o2
fim Elo(0] =15
. k20?21 — o2
tlg?o Varlz(t)] = o o (2.52)

Note that these ultimate moments from [54] can be nonphysical as the ultimate
mean can be negative if 02 > 2r, but the solution z(¢) to the SDE 2.24 is non-
negative. Additionally, the ultimate variance from [54] can be negative if o2 > 2r,
a violation of the definition of variance. These insights provide further evidence
that the Stratonovich interpretation of the Langevin form differential equation is
more physically meaningful. As the proof provides an demonstration of a stationary

Fokker-Planck analysis and differs from [54], it is included below.

Proof. Noting that the system described by SDE 2.23 was shown to be weakly
stochastically stable in Theorem 2.1.6, there exists an ultimate probability density

function (stationary PDF) pg(z) such that

lim p(z(t),t) = ps()

t—00

where p(x(t), t) is the (nonstationary) pdf of the process. Furthermore, weak stochas-
tic stability implies p(x) solves the stationary Fokker-Planck PDE 2.46 which in

the single dimension case reduces to
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where f(z) =rz <1 -7+ g—i) and G(z) = ox.

Integrating the stationary Fokker-Planck equation once yields

¢ = —T@pa(r) + 5 o (CPla)pa(a)

where ¢ is a constant of integration. Since ps(z) is a pdf, it obeys the normalization
constraint [*°_p,(z)dz = 1. The normalization constraint implies that p,(z) — 0

as r — 00, which in turn implies ¢ = 0. Thus

F@ps(@) = 55 (G*@)pa(a))

Substituting in the expressions for f(x), G(x), taking the partial derivative, and

rearranging to separate variables yields

dp.  [(2r—o21 2
p:(r o’1l T)dm

Ds o2 x  ko?

Integrating yields

2r—o 2r_ .
ps(x) =csx 7 e ko?
where c3 = e2. By choosing a = %, 0= ’“2;':, and c3 = W the stationary PDF
can be rewritten as
1 »
) = O‘_le_§
P() ()0

which is a Gamma distribution with shape parameter o and scale parameter 6.
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The mean of the Gamma distribution is given by a#, so

lim Ex(t)] = /000 xps(z)dr = abf = k

t—o00

Similarly, the variance of the Gamma distribution is given by a6?, resulting in

k*o?
. _ 2 _
tlgilo Varjz(t)] = af” = 5

]

The key descriptions associated with the stochastic logistic population model
are collected in Figure 2.2. Note carefully that the two interpretations of the
Langevin form differential equation lead to distinct stochastic processes. The two
stochastic processes may each be described by an Ito SDE, a Stratonovich SDE,
or a Fokker-Planck PDE. For the stochastic logistic population model, stochastic
Lyapunov analysis was able to establish weak stochastic stability and provide ul-
timate bounds on the mean and variance of the process(es), though these bounds
are conservative. A stationary Fokker-Planck analysis led to the analytic stationary
probability density function which was used to calculate the precise ultimate mean

and variance of the process(es). The values differ for the different processes.
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N:a interpretation

Stratonovich interpretatio:/

Figure 2.2: SDEs and PDEs associated with the two interpretations of the Langevin form

differential equation for the stochastic logistic population model.
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2.2 Numerical Integration of Nonlinear SDEs

Numerical simulation can be used to validate analytical results from a stochas-
tic Lyapunov analysis or stationary Fokker-Planck analysis. In this context, the
numerical integration of an SDE for a given noise realization is a simulation of the
stochastic process. By repeating the simulation many times with distinct noise re-
alizations (by, for example, changing the seed of the random number generator),
one can perform a Monte Carlo analysis. Statistics over the ensemble of simulation
realizations can then be compared to analytical predictions.

This section briefly reviews several numerical integration techniques to inte-
grate a general multidimensional nonlinear 1t6 stochastic differential equation 2.14

repeated here for convenience:
dzx(t) = f(x(t))dt + G(x(t))dB(t) (2.53)

with the initial condition x(t,) = x, over a time interval ¢, < ¢ < ¢,. All the
numerical integration techniques that are considered in this section are fixed step,

meaning the time interval ¢, <t <, is divided into a regular partition

{t07t17t27"'7ti7"‘)t]\7}

= {ta, ta+ At bty +2A8, ...ty it ... g+ NAt} (2.54)

with time increments At = % and ty = tp.
The section concludes with a comparison of the performance of the techniques

using the logistic population SDE of Equation 2.23.
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2.2.1 Runge-Kutta fixed-step Integration Scheme

The fixed-step 4" order Runge-Kutta numerical integration scheme, often re-
ferred to as simply the Runge-Kutta numerical integration algorithm, is widely used
and works well for many ordinary differential equations (ODEs). For the determin-

istic multivariate ODE
i(t) = h(z(t),t)  @lty) = o (2.55)

the fixed-step 4" order Runge-Kutta numerical integration scheme approximates

the solution x(t;) with y,; using the recursive rule

Yir1 = Yi + % (k1 + 2k + 2k3 + ky) (2.56)
where
ki = h(ti, y:)
ke=h (yl + %kzl,ti + %)
ks=nh (yz + %kz,ti + %)

ki4 = h(tl + At, Y; + Atkﬁg)

and y, = x(t,). The algorithm gets its name as it is a 4" order method, meaning
that yy — z(ty) = O((At)*) [90].

It can be tempting to utilize the 4* order Runge-Kutta numerical integration
scheme for the numerical integration of SDEs by treating the Brownian noise incre-
ment as simply a time varying input to a deterministic ODE. This heuristic scheme
could be implemented as follows.
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First generate a standard Brownian motion process over a refined partition of
solution approximation’s time partition 2.54 by setting 3(t,) = 0 and computing

values of

At

(0. (1 3) Bt + 208 (1 ). o)

according to

B(ti‘i‘%) =B () +n,

At
B(ti) =8 <ti + 7) BRI
where n; and n, 1 are independent identically distributed Gaussian random vari-
ables with zero mean and variance At[.

One might then apply a fixed-step 4" order Runge-Kutta numerical integration

technique to the SDE 2.53 by setting yo = @, and using the recursive rule

At
Yir1 =Y + F (kﬂl + 2’{32 + 2’{33 + k?4) (257)
where
ki=f (yz)
At At
ky=f (yi+7k1) + 3 (tz- +7) — B (t:)

At At
ks =f (yi‘i‘?k&) + 8 (tri-?) —B(:)
As explained in [45, p. 150] however, heuristic generalizations of Runge-Kutta

algorithms are not consistent with Ito calculus and in general their approximations y;
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do not converge to the true process x(t,+iAt) as step size At is reduced. As will soon
be demonstrated for a test problem, even the simple yet rigorously justified Euler-
Maruyama integration scheme outperforms this heuristic Runge-Kutta algorithm

for many systems.

2.2.2 Euler-Maruyama Integration Scheme

The Euler-Maruyama numerical integration scheme is given by the simple rule
Yir1 = Yi + AL (yi, ti) + G (yi, ti) my (2.58)

where n; is a collection of independent identically distributed Gaussian random
variables with zero mean and variance matrix At/. The scheme works directly for
nonautonomous SDEs [45].

This scheme has strong convergence of order 0.5, meaning there exists a posi-

tive constant ¢; such that for all ¢
E“w(ti) - yzﬂ < ¢ (A1)’ (2.59)

where t; = tg+1At. In words, this quantifies the rate of convergence of the numerical
approximation to the true process (also known as the rate of pathwise convergence).

Further, assuming f(-) and G(-) are sufficiently smooth, the Euler-Maruyama
scheme has weak convergence of order 1.0, meaning there exists a positive constant

¢y such that for all 7

Elp@(t:)] - Blp ()] < e (A" (2.60)
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for any polynomial p(-) : R" — R. Weak convergence is in the sense that the
numerical approximation may not exactly match the sample path of the true process,
but since the definition requires the bound to hold for any polynomial p(-) it is
implied that all moments of the numerical approximation converge to all moments

of the sample path of the true process [45, p. 128].

2.2.3 Kloeden-Platen Explicit Weak 2.0 Integration Scheme

The Kloeden-Platen Explicit Weak 2.0 [45, p. 186] integration scheme is one
of the few schemes available for obtaining higher order statistics for nonlinear au-
tonomous SDEs without requiring the computation of derivatives of the drift and

diffusion terms of the SDE. The integration rule is given by

Yit1 =Y + %(f('f) + f(y,))At

32 [(E0) 460 20 ) o
N Zm: (Gj(u;i)JrGJ'(uﬁ)_2Gj(y,~))Awf\/%}

k=1,k#j

Ll
4

™

[(Gj(ri) () (aw)’ - at)

1

J

Ly (Gj(ui_i)_Gj(u’j)){Angvam}}L (2.61)

k=1,k#j A

~+

where

Y=y + fy) A+ > G (y) Aw]

=1
rho =y + F(y) At £ G (y;) VAL

W, =y £ G (y;) VA
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and m is the spatial dimension of dB3 or, equivalently, the number of columns of
G(-). In the above equations, G7 (-) denotes the 5 column of G (-).
At every time step 4, the column matrix Aw; = [Aw! Aw? ... Aw™|"

consists of m independent identically distributed random variables Aw? drawn from

a three point distribution with
; 1 ; 1 , 2
J — = — ‘] = — = — j s = —
P(Awi - \/3At> == P(Awl \/3At> - P(sz o) .

Also at every time step 4, the Vj, ;, are independent two point distributed

random variables with
1 1
P(‘/jl7j2 = At) = 5 P(‘/}l»]é = _At> = 5

fOI‘j2:1,2,...,j1—1,

V}'hh = —At

and

le,jz - _‘GQ,jl

for o=g51+1,....mand j; =1,2,... ,m.
While this numerical integration scheme is not strongly convergent, it has weak
convergence of order 2.0, meaning there exists a positive constant c3 such that for

all ¢

Blp@t)] - E[p ()] < es (20 (2.62)
Therefor the statistical properties of the approximation from this scheme converge
much faster to the statistical properties of the true system than the approximation
from the Euler-Maruyama integration scheme.
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2.2.4 Numerical Integration Performance Comparison

This section features a comparison of the performance of the ad hoc Runge-
Kutta 4" order scheme of Equation 2.57, the Euler-Maruyama scheme of Equation
2.58, the Kloeden-Platen Explicit Weak 2.0 scheme of Equation 2.61, and MAT-
LAB’s ode45 command using default options for the stochastic logistic population
model of SDE 2.23. The performance of these numerical integration schemes are
further compared against analytic stochastic Lyapunov bounds of Corollaries 2.1.6.1
and 2.1.6.2 and the known analytic ultimate expectations of Theorem 2.1.7. These
results provide context on performance and will provide a rationale for the selection
of the numerical methods employed in this thesis.

Specifically, 100 distinct realizations of the process were numerically simu-
lated with each of the numerical integration schemes. Each simulation realization
is computed with 1,000,000 steps with a step size of At = 0.001s for a 1,000 second
simulation. The mean, variance, and second noncentral moment of the last 100
seconds are then computed. Finally, the ensemble mean for each integration scheme
is computed by averaging the means and variances of each realization for the given
integration scheme. All simulations used the parameters r = 6, k = 20, 0 = 2, and
initial condition z(ty) = 5. The results are reported in Table 2.1.

First note the significant conservatism in the stochastic Lyapunov bounds
compared to the analytic values from the stationary Fokker-Planck analysis. There
is no guarantee that the bounds from a stochastic Lyapunov analysis will be “tight”,

and various choices of Lyapunov functions and bounds on the expectation of the
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Table 2.1: Comparison of the performance of the SDE numerical integration schemes

of Kloeden-Platen Explicit Weak 2.0 of Equation 2.61, the Euler-Maruyama

scheme of Equation 2.58, the fixed-step ad-hoc Runge-Kutta algorithm of Equa-

tion 2.57, and MATLAB’s ode45 utility for simulating the stochastic logistic

population model of SDE 2.23 to the stochastic Lyapunov upper bounds of

Corollaries 2.1.6.1 and 2.1.6.2 and the analytic ultimate expectations of Theo-

rem 2.1.7.
Jim Ela (1) Jim Var(at) Jim Bl (0)
Lyap UB 33.333 - 1111.111
Analytic Sol 20.000 133.333 533.333
Mo Mg [e00] | tean| Vo [r00] ] M g 2200

Kloeden-Platen 19.979 133.307 532.921
Euler-Maruyama 20.014 133.772 534.624
Runge-Kutta 25.466 93.491 742.302
MATLAB ode45 26.635 0.471 709.878
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stochastic derivative will yield different ultimate moment bounds.

The Kloeden-Platen Explicit Weak 2.0 scheme and the Euler-Maruyama scheme
have very similar performance and have excellent agreement with the analytic ul-
timate statistics. It is tempting to suggest the Euler-Maruyama approach over
the Kloeden-Platen scheme, but this table does not indicate the performance as
the step size At is increased. In practice the Euler-Maruyama scheme is not as
numerically robust to large step sizes and rapidly diverges. When comparing the
two approaches, there is a tradeoff between the computational complexity of the
Kloeden-Platen scheme and the worse step size robustness of the Euler-Maruyama
scheme. It is common to require step sizes that are several orders of magnitude
smaller for the Euler-Maruyama scheme to remain numerically stable compared to
the Kloeden-Platen scheme.

Finally, observe the poor performance of the ad hoc Runge-Kutta scheme
of Equation 2.57 and MATLAB’s ode45 utility. These algorithms did manage to
produce estimates of the stationary mean that were within 30% of the analytic
expectation, but that is far worse than the SDE numerical integrators’ performances.
The Runge-Kutta algorithms were off dramatically for the stationary variance, a 2"¢
order statistic. The ad hoc Runge-Kutta’s stationary variance estimate was off by
50% while MATLAB’s ode45 was off by several orders of magnitude.

Throughout the remainder of this thesis, any simulation results are the prod-
uct of a C implementation of the Kloeden-Platen Explicit Weak 2.0 integration
scheme. The implementation utilizes the GNU scientific library (GSL [2]) which has
optimized basic linear algebra routines (through BLAS [1] and LAPACK [3]). Data
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is output to .mat files using the matio library [4]. All simulations were validated via
comparison with MATLAB implementations of both the Kloeden-Platen Explicit

Weak 2.0 and the Euler-Maruyama schemes.
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2.3 Attitude Kinematics Overview

This section reviews basic spacecraft attitude kinematics. The presentation
begins with rotational motion in three spatial dimensions, referred to as the SO(3)
case, which is fundamental to the mathematical description of the systems con-
sidered in this thesis. Then the SO(2) case is discussed, in which motion will be

restricted to a single spin axis.

2.3.1 Attitude Kinematics in SO(3)

The attitude of a rigid body can be represented by a unit quaternion g, con-
sisting of a unit vector a known as the Euler axis and a rotation ¢ about that axis,

which is such that

Ex
asin (£ € €
q= () _ N (2.63)
CoS (%) ] €z
_77_

It is typical in spacecraft attitude applications for the quaternion q to represent the
orientation of the spacecraft’s body-fixed reference frame relative to an inertially-
fixed reference frame. Specifically, the unit quaternion q parameterizes the attitude

rotation matrix via

R(q) = (n* —e"e) I —2n[ex] + 2ee”

=0l — 2n[ex] +ee’ + [ex][ex] (2.64)
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where [ is the identity matrix and the skew-symmetric cross product matrix is given

as

[ex] = e, 0 —e,

The inverse relationship, which is rather more involved, is given in [65]. The attitude
rotation matrix R (q) is such that a vector expressed in inertial frame coordinates
v, and the same vector in body frame coordinates v, are related via v, = R (q) v,.
While the space of unit quaternions is a global non-singular covering of the space of
rotations in SO(3), there is a well known 2-to-1 mapping between unit quaternions
and rotations. Specifically, R (q) = R (—q). Note that the identity rotation matrix
is parameterized by q,,...., = [0 0 0 = 1]7 which is called the identity quaternion.

The quaternion inverse, given by

q'= (2.65)

is such that

R(QR(qg7')=R(q)R ' (g9 =I=R"'(q)R(q) = R(q"") R(q)

For any two quaternions q; and g», the quaternion product operation is defined
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[66] as

€1 €9
41X qgy = X
T 72
12€1 + €2 + €1 X €2 ml + [51 X } €1 €9
= = (2.66)
T T
iz — €, €2 —€ m 2

Note that this quaternion product is adopted from [51,66] where the quaternions
are multiplied in the same order as rotation matrix multiplication; this definition
is in contrast to the original quaternion product established by Hamilton [30]. The
quaternion product may be used to compute the relative orientation q between the

coordinate frames represented by g and q

Qe
Il
m,
I
=]
®
>
|
®
®
|
®

R
3
3

The quaternion product operation is not restricted to unit quaternions [66].

It will frequently be used to compute the product between angular rate vectors and

quaternions:
w w 5 Nw —w X €
0 0 i —w'e
w
and similarly Q@ w = q® . The quaternion product is also useful for changing
0

the coordinate frame of expression for a vector:



Orientation kinematics, such as that of a rigid body spacecraft, are known [103]

to obey

where w(t) is the body’s angular rate expressed in body frame coordinates.
This thesis will consider several attitude estimation observers and filters. These
algorithms will utilize estimates g(t) of the true attitude q(t) which are driven by

their own kinematic relationship
w(t) ® q(t) (2.68)

Noting that ¢(t) ® ¢~'(t) = @,y.,..., V1, One can take the derivative to find

Gt @) (2.69)

qt)=qt)®q '(t) (2.70)
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The error kinematics are then given by

q(t) = 4(t) © ¢ (1)

+
=)
=
&®
|
~
VN
=
=
N———

=-wt)®q(t)®

= -w(t)®§(t) - =4t) @ w(t) ® ¢ ' (t) ® §(t)

N~ N~ Q>

= sw(t) @q(t) -

I
—
€
=
|
=
—
Qe
=
~ — Qe
juy)
—
Qe
=
N
&
=
&
Qe
=

5(t) b @ q(t) (2.71)

As shown in [31], orientation kinematics may also be expressed directly in
the Euler axis and angle parameterization, providing an alternative (yet equivalent)
formulation to Equation 2.67. Recalling from Equation 2.63 that the Fuler axis is

denoted a(t) and the Euler angle is ¢(¢), the kinematics may be written as

o(t) = a” (tw(t) (2.72)
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2.3.2  Attitude Kinematics in SO(2)

Many of the analyses in this thesis will be restricted to rotational motion about

a single axis. Without loss of generality, the attitude of a single axis rigid body can

be parameterized via the quaternion

sin (£) £
0 0
q = =
0 0
_COS (%)_ _7]_

which is simply Equation 2.63 with the y and z components zeroed out. Similarly,

other multidimensional quantities will be restricted as

é‘ R S
w w
A O A
0
0 0
P [ L
and so on. Note that as a consequence
g £(t) (1) (1)
) 0 0 R 0 . 0
q= q(t) = q(t) = q(t) =
0 0 0 0
7 1(t) 0(t) 1(t)
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where the fact that, for any SO(2) quaternion ¢ =[e 007 ], that

R(@)= 10 n2—c2 2me

was used.

Since by construction the y and z elements of every SO(2) unit quaternion will

always be zero, SO(2) unit quaternions will be written as simply

sin (%) €
q= =
cos (%) n

For any two SO(2) quaternions g, and g,, the quaternion product operation

of Equation 2.66 simplifies to

1 82 772€1 + 77152
q1 ® q2 frg ® —

A UM M, — €.&

Similarly, the quaternion kinematics of Equation 2.67 simplify in SO(2) to

(1) = 5 @ q(t) =

and the filter error dynamics of Equation 2.71 simplify in SO(2) to

1

a(t) = 3{w) -} © q0) (273)

In SO(2), the Euler axis and angle parameterization of the spacecraft kine-

matics of Equation 2.72 simplifies considerably to



where, without loss of generality, the Euler axis is assumed to be a(t) =1 V¢.

81



2.4 A Class of Nonlinear Attitude Observers

Salcudean [80] introduced a nonlinear observer for rigid body attitude and
angular rate; using deterministic Lyapunov stability theory the observer was shown

to eventually converge exponentially fast. The observer is given by

1(t)

4(t) = () 9 q
= 3[R (@) (90 + bsimn (10)20)| 0a) (270

N~ N —

where 0 < k € R is a constant gain and the observer has access to the true vehicle
attitude (via measurements with negligible error) allowing online computation of the
attitude error g(t) = q(t) ® g~1(t). The observer also has access to noise-corrupted
measurements of the vehicle’s angular rate notated as wyeqs(t). The noise was
not explicitly modeled as the stability analysis was done entirely in a deterministic
setting. Under this assumption, the tracking feedback term ksign (7(t))&(t) was
shown to enable the observer error to converge exponentially fast to zero.

Vik, Shiriaev, and Fossen [101] extended this nonlinear observer to consider
the case when the vehicle’s angular rate is measured via an angular rate gyro with
bias:

wy(t) = w(t) + b(t) (2.75)

where the gyro bias b(t) was assumed to decay exponentially fast. Again, as this
work was done in a deterministic setting gyro noise was not explicitly modeled.

They augmented the observer state to include a gyro bias estimate, leading to the
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observer dynamics

(1) = 59 @ 4()
= % R(g'(t)) (wg(t) — b(t) + ksign (ﬁ(t))é(t))} ®q(t)
b(t) = —asign (7i(t))&(t) (2.76)

where I;(t) is the observer’s estimate of the gyro bias and 0 < o € R is again an
observer gain. Under the deterministic assumptions and requirement that the gyro
bias decays exponentially fast, they show the observer to be exponentially stable.

Thienel and Sanner [94,95] showed that the gyro bias observer of [101] is
exponentially stable even when the biases are constant (persistent); additionally,
they show the observer, when combined with a passivity-based attitude controller
from [17], exhibits a nonlinear version of the separation principle. Finally, they
showed that if the gyro is further subjected to bounded stochastic measurement
noise, the bias estimates converge exponentially fast to an error bound that is a
function of the noise parameters and that the attitude tracking errors converge
asymptotically to an error bound that is also a function of the noise parameters.
Mahony, Hamel, and Pflimlin [56] extended the analysis to consider line-of-sight
attitude measurements (e.g. a magnetometer or sun sensor) in addition to estimating
persistent gyro bias online; their analysis is provided in both quaternion space and
rotation matrix space however their analysis does not consider noise.

Chapter 3 of this thesis will consider a deterministic extension of the observer
of Equation 2.76 to include gyro biases that are a function of temperature assuming
that the gyro bias function of temperature remains constant and that the gyro’s
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temperature is available with negligible error.

In Chapters 4, 5, and 6 of this thesis will analyze observer structures like that of
Equation 2.76 in a stochastic setting. This will allow for the explicit consideration
of stability and performance when the gyro is subjected to unbounded “white”
measurement noise (Chapter 4), when the attitude measurements are also corrupted
by noise (Chapter 5), and when the gyro bias also drifts according to a constant
bias or first-order Gauss Markov process (Chapter 6).

In the deterministic work to date, stability results were generated using Lya-

punov analysis. Specifically, Lyapunov functions of the kind

. L | @@ =12+ )e"(t) 7=0
V(a(t)) = 5b (1)b(t) + 3 (2.77)

() +1)> + €7 (1)e"(t) n<0
were used. While the Lyapunov function of Equation 2.77 is once continuously
differentiable which met the conditions of the Lyapunov stability theorems utilized,
it is not twice continuously differentiable. In order to satisfy the conditions of the
stochastic Lyapunov Theorems 2.1.4 and 2.1.5, later chapters in this thesis will
instead consider attitude filters (as the system models shift from a deterministic to

a stochastic setting) with the structure

A

q(t) = e(t) ® 4(t)

N — N~

R (G 0) (@) + Ki0E(0) | 2410 (279

where the feedback term k7(t)€(t) retains the same direction as the feedback term
ksign (7(t))€(t) of Salcudean’s observer but is twice continuously differentiable (and

further is smooth).
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Chapter 3: Deterministic Gyro Thermal Bias Observer

This chapter considers the impact of deterministic gyro bias that are time-
invariant functions of gyro temperature on the performance of several nonlinear
adaptive attitude observers. The first section 3.1 introduces the nonlinear adaptive
gyro constant bias observer from Thienel and Sanner [95] which is referred to as
a Constant Bias Observer (CBO) in this thesis. The next section 3.2 presents a
pair of notional gyro thermal bias function models; the functions are assumed to be
time-invariant but as gyro temperature varies the gyro thermal bias evaluated at a
specific time will vary when these models are employed. Deterministic numerical
simulation shown in Section 3.3 show the CBO bias estimates “chase” the time
varying gyro bias resulting in an attitude estimate error.

Section 3.4 presents techniques from function approximation theory, providing
a mechanism by which sufficiently smooth gyro bias functions of arbitrary shape can
be represented. These techniques are then used to extend the CBO to adaptively
estimate (“learn”) gyro thermal bias functions in real time in Section 3.5 in an ex-
tension referred to here as a Thermal Bias Observer (TBO). Deterministic numerical
simulations in Section 3.6 demonstrate several variations of the TBO learning gyro

thermal bias functions.
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Section 3.7 considers the CBO and TBO when measurements are no longer
deterministic; additive unbounded gyro measurement noise and attitude measure-
ment noise are combined with the CBO and TBO dynamics to formulate 1t6 SDEs
for both systems. Stochastic numerical simulations of the observers are described
in Section 3.8 to understand performance in the stochastic setting. Finally, an at-
tempt to understand performance as a function of observer tuning parameters is
conducted via stochastic numerical simulation in Section 3.9. The computational
expense and imprecise nature of this technique provide significant motivation to
find analytic expressions for observer performance as a function of gain parameters
and measurement noise specifications which are the subject of the remainder of the

thesis.
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3.1 Gyro Constant Bias Observer (CBO) Formulation

This section presents an overview of the gyro bias observer from [95], which in
this thesis is referred to as the gyro Constant Bias Observer (CBO). The structure
of the CBO is used as the basis of all attitude observers and filters considered in the
thesis.

The CBO is assumed to be provided with angular rate gyro measurements

that are corrupted by a constant bias
wy(t) =w(t)+b (3.1)

where wy(t) is the gyro measurement at time ¢, w(t) is the true angular rate at time
t, and the bias is denoted b. As the bias is assumed to be constant, b(t) = 0.
It is further assumed that the CBO has access to perfect (noise free and unbi-

ased) attitude measurements g, (t) of the true attitude q(t)

»
t St

ant) = a = || = [PV (3.2)
w0 e
_n(t)_

The true attitude q(t) evolves according to the usual kinematics equation

(1) = (1) © (1)
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The CBO of Thienel and Sanner [95] is given as

~

) = 3 { A(a0) [w0) - b0) + 0]} oa) 63

b(t) = —ail(t)é(t) (3.4)

where k., > 0 is an observer (estimator) gain parameter and a > 0 is an adaptation
gain parameter. The observer’s estimate g(t) at time ¢ of the true attitude g(t)
is obtained by propagating the attitude kinematic equation using the measured
angular rate corrected by a bias estimate along with the feedback term k.7(t)e(t)
in Equation 3.3. The feedback term is a measure of the observer’s attitude estimate

error, given by

which is available to the observer in real time as the attitude measurements are
assumed to be perfect. The feedback term is also used in the observer’s gyro bias
adaptation law of Equation 3.4 where B(t) is the observer’s estimate at time ¢ of the

gyro bias b. The observer’s bias estimate error B(t) is given as
b(t) = b—b(t) (3.5)

When there is no attitude error, the feedback term goes to zero and thus the bias
estimate stops changing. If there is error in the bias estimate, however, the bias
estimate will divert the observer attitude estimate through the observer attitude
kinematics. This in turn will increase the attitude estimate error, providing the

feedback loop.
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Thienel and Sanner [95] show that in the deterministic setting that the CBO
is not only stable, but that it is Globally Exponentially Stable (GES). This means
that not only does the observer’s bias estimate error remain bounded, it goes to
zero exponentially fast. As the CBO was shown to be GES, it is furthermore BIBO
(bounded-input bounded-output) stable [42]. Thienel and Sanner show that this
implies that for bounded gyro noise the CBO estimate errors are bounded. They
further find the bound as a function of the bound on the noise.

Section 3.2 will consider time-varying deterministic gyro bias. The CBO is
not GES in this situation, but provided the gyro bias is bounded the CBO estimate
errors are still bounded. Sections 3.4 and 3.5 will provide a technique to extend the
CBO to learn gyro bias functions provided the gyro bias is a constant function of
some other readily available signal, specifically gyro temperature. The remaining
sections of the chapter will consider unbounded gyro noise and attitude measurement
noise via numerical simulation. A rigorous stochastic analysis of the CBO will be
presented in Chapter 6.

As explained in Section 2.4, the CBO considered in this thesis is actually a
slightly modified version than that of [95]; the feedback term ksign (7(¢))€(t) has
been altered to kn(t)é(t) for the CBO here. This modification results in a smoother
observer dynamics equation as the sign(-) function is not continuously differentiable.

The results of [95] can similarly be established for the CBO given here.
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3.2  Gyro Thermal Bias Model

The Constant Bias Observer (CBO) of Section 3.1 made the modeling assump-
tion that the angular rate gyro measurements are corrupted by a constant gyro bias,
or at least that the gyro bias is constant relative to the time scales of the dynamics
of the CBO. This is a common modeling assumption amongst the attitude filter

literature as well [20,51,64].
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Figure 3.1: Measurement of gyro bias as a function of operating temperature for a specific

MEMS gyro unit by Aggarwal, Syed, and El-Sheimy [6].

One of the predominate deterministic factors behind gyro bias variation is

due to change in the operating temperature of the gyro. It has been reported in
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the literature that this is a particularly important phenomena for micro-electrical-
mechanical system (MEMS) gyros [6,78]. A commonly reported mechanism for this
phenomena is that despite their various designs, all MEMS gyros use some sort of
a vibrating proof mass or structure made of silicon which expands and contracts
with temperature. Several studies fit linear functions to measured gyro bias as a
function of temperature [7,41,78]. Other studies fit second and third order functions
to measured gyro bias as a function of temperature [29,38]. The magnitude of the
gyro bias as a function of temperature is specific to the particular design of the
MEMS elements; over a range of 100° C, the bias varied by as much as 5 % for
some MEMS gyros [6] and as little as 0.0056 9 ~ 97422 for other gyro units [85]. An
example of a measurements of gyro bias as a function of operating temperature for
a specific MEMS gyro (an orthogonally-mounted triad of ADXRS150 MEMS gyros
made by Analog Devices Inc) by Aggarwal, Syed, and El-Sheimy [6] is repeated here
in Figure 3.1. Note carefully that while a pre-flight calibration campaign may be
utilized to attempt to characterize gyro thermal bias, the gyro thermal model has
been known to vary (slowly) over the life of the sensor as the moving components
age.

In this chapter, two gyro thermal bias models are considered. In both cases,

the gyro measurement model is given by the equation
wy(t) = w(t) +b(T(t)) (3.6)

where w,(t) is the angular rate gyro measurement at time ¢, w(t) is the true vehicle

angular rate in %, and the gyro bias b(T'(¢)) is a function of the time-varying gyro
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temperature 7T'(t) given in degrees Celsius. For simplicity, in this thesis the gyro
temperature is assumed to be homogeneous; that is, each gyro sensing element is
the same temperature at any given time. For real world applications, many MEMS
gyro designs have an independent temperature sensing element for each motion axis
and can provide distinct temperature measurement for each sensing element.

The first gyro thermal bias model considered in this chapter is linear in gyro

temperature. The model is given by

_ 0.02 _ _—1-
b(T(t)=1]002|T®+ |0 (3.7)
0.011 1

in units of degree/second and visualized in Figure 3.2. This notional model is of the
same shape and magnitude as that measured by Aggarwal et al [6] for a low cost
MEMS gyro unit. This type and quality of gyro is common for cubesats and hosted
payloads for space applications, as well as being representative of the type of gyros
used in consumer electronics like cell phones, consumer UAVs, and virtual reality
equipment.

The second gyro thermal bias model considered in this chapter is a third order

function of gyro temperature. The model is given by

0.000015 —0.002 0.07 -1

b(T(t)) = {0.000008| T°(t) + | —0.0007| T°(t) + [0.012| T(t) + | 0© (3.8)

0.000008 —0.001 0.039 —0.1

in units of degree/second and displayed in Figure 3.3. This notional model has a
shape similar to that studied in [29] and ongoing gyro modeling work at NASA. The
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Gyro Thermal Bias First Order Model
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Figure 3.2: The first order gyro thermal bias function of Equation 3.7.

magnitude of the thermal bias is again consistent with low cost MEMS gyro units
commonly used in cubesats.

For a satellite in orbit utilizing a gyro to rate measurement, the impact of a
gyro thermal bias can lead to a failure to meet pointing requirements. It is not
uncommon for a Low Earth Orbiting (LEO) satellite in an orbit passing in and out
of Earth’s shadow to experience temperature variation of 100° C over each orbit.
Other satellites are spin stabilized with spin rates of 5 revolutions per minute being
common, and can experience temperature variation oscillating with the spin rate.
Due to cost, complexity, and other thermal design considerations it too is common

for gyro instruments aboard satellites to experience the full range of the vehicle’s
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Figure 3.3: The third order gyro thermal bias function of Equation 3.8.

thermal variation.
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3.3 CBO Deterministic Simulation Study

This section features simulation studies of the CBO of Section 3.1 when the
gyro measurements are corrupted by bias as a function of operating temperature.
In the simulations, the gyro’s operating temperature varies sinusoidally ac-

cording to

T(t) = % cos (? + 7r> + g (3.9)
in degrees Celsius. The amplitude is 100°C with a phase angle chosen so the simula-
tion starts at the coldest temperature. The thermal oscillation period 7 is chosen as
5400 seconds, providing a thermal profile representative of a satellite in Low Earth

Orbit (LEO) passing through Earth’s shadow every 90 minutes.

The gyro measurement model is now given by
wy(t) = w(t) +b(T(t)) (3.10)

where as before w,(t) is the gyro measurement at time ¢ and w(¢) is the true angular
rate at time t. The bias, denoted b(7'(+)), is given by the notional gyro bias ther-
mal function models of Section 3.2. While the gyro thermal bias function b(7())
is assumed to be time-invariant function of temperature, the value of the gyro bias
in general varies between time ¢ to time ty, from b(7'(¢1)) to b(T(t2)), as the tem-
perature T'(t) varies with time. If the temperature is constant, or the gyro bias
function of temperature is a constant, the model of Equation 3.10 reverts to the
gyro constant bias model of Equation 3.1.

Figure 3.4 shows time series plots for the CBO attitude estimate error and bias
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estimate error. In this figure, the gyro thermal bias is modeled as the first order
thermal bias function of Equation 3.7. After an initial transient, the bias estimates
lag behind the true gyro bias. As the gyro bias varies sinusoidally (since it is a
linear function of gyro operating temperature which is sinusoidally varying), the
bias estimate error passes through zero once every time the derivative of the gyro
bias changes sign. Essentially the gyro bias estimate “crosses paths” with the true
gyro bias, but can never keep up.

The study is repeated in Figure 3.5 for the third order thermal bias function
of Equation 3.8. Now as the temperature varies continuously from 0 to 100 degrees
Celsius over half an orbit, the derivative of the true thermal bias changes sign three
times. Accordingly, the CBO bias estimate error passes through zero three times

every half orbit.
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Figure 3.4: The CBO demonstrates sinusoidal tracking error for the first order gyro ther-
mal bias model of Equation 3.7 as the gyro operating temperature heats and
cools once every orbit of 90 minutes. The CBO gains were set to k. = 1 and

a=0.1.
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The next simulation study explores the variation of the estimate error as a
function of the thermal oscillation period. The gyro operating temperature is again
given by the sinusoidal model of Equation 3.9, but now the thermal oscillation period
7 is varied. The smallest (fastest) thermal oscillation period considered is 7 = 60
seconds. This period is consistent with a 1 rpm spin stabilized satellite, although
the thermal amplitude of the oscillation is unrealistic for this frequency. The largest
(slowest) thermal oscillation period considered is 7 = 2 hours which is representative
with a spacecraft in LEO. The thermal variation amplitude of components in a LEO
spacecraft coming into and out of the Earth’s shadow are commonly on the order
of 100°C.

Figure 3.6 shows the estimate errors as a function of gyro operating temper-
ature oscillation period 7 for the first order gyro thermal bias model; Figure 3.7
repeats the analysis for the third order gyro thermal bias model. In both cases, the
estimate error rapidly drops off with increasing 7 which is to be expected. As the
thermal oscillation period 7 increases, the gyro thermal bias better matches a con-
stant gyro bias which the CBO is capable of tracking exponentially fast. However, in
many applications the bias estimate error of the CBO may still exceed requirements

and an algorithm capable of estimating the gyro thermal bias might be necessary.
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Figure 3.6: The CBO demonstrates sinusoidal tracking error for the first order gyro ther-
mal bias model of Equation 3.7 as the gyro operating temperature heats and
cools once every orbit of 90 minutes. The CBO gains were set to k. = 1 and
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3.4 Function Approximation

This section is a brief overview of some basic concepts of function approxima-
tion theory. With an appropriate parameterization, the CBO of Section 3.1 may
be extended to estimate not merely a constant gyro bias, but parameters of an
approximation to the gyro thermal bias function of temperature.

The fundamental idea behind function approximation is to use a set of canon-
ical functions as a basis for a class of functions one wishes to approximate. Assum-
ing the class of functions to be approximated is sufficiently smooth, weighted linear
combinations of scaled and shifted collections of the basis functions serve as the
approximation. The approximation gets better as more basis functions are used.

Many types of functions may be used to form a basis. For example, sinusoids of
differing frequency constitute the well-known Fourier basis, Chebyshev polynomials
constitute a Chebyshev basis, and so on. For many practical applications, however,
these bases require a great number of distinct basis functions in the linear combi-
nation to achieve a suitable function approximation. Many applications instead use

radial basis functions (RBFs), such as the boxcar radial basis function:

1 |z[ <05
g(x) = (3.11)
0 |z[>05

the hat radial basis function:

1—Jz| Jz| <1
g(x) = (3.12)

0 lz| > 1
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or the Gaussian radial basis function

g(x) = exp { — xz} (3.13)

These standard radial basis functions are depicted graphically in Figure 3.8. The
left images in the figure depict the RBFs of Equation 3.11 (Boxcar RBF, top left),
Equation 3.12 (Hat RBF, middle left), and Equation 3.13 (Gaussian RBF, bottom
left). These RBF can be horizontally scaled and shifted by composing the RBF with

a linear function, such as

g(he—k) =g (lx _ ﬁ) (3.14)

w w

where w is the basis function width and )\ is the basis function’s center location
(also called a knot point); note that k = % is an integer. The right side of the figure
has a plot of the RBFs of Equation 3.11 (Boxcar RBF, top right), Equation 3.12
(Hat RBF, middle right), and Equation 3.13 (Gaussian RBF, bottom right) each

scaled to have a width of 10 and a center location of 40.
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Figure 3.8: Radial basis functions (left) can be horizontally scaled and shifted (right) via

composition with a linear function as in Equation 3.14.
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Now consider the task of approximating a known function. The top left image
of Figure 3.9 depicts a first order polynomial gyro thermal bias function. The top
right image of the same figure depicts a collection of boxcar RBF's of Equation 3.11,
each of width 10°C. The boxcar RBF's have center locations of Ay = 0°C, A} = 10°C,
..oy A11 = 100°C' spanning the domain of 0°C' to 100°C'. These RBF's form a basis
for functions that are piecewise constant over the domain. The bottom left image
of the same figure shows the function to be approximated in a thick blue line, the
weighted individual RBF's in thin red lines, and the sum of all weighted RBFs in a
thick red line. The sum of the weighted RBF's is the bias function approximation,

given by the equation

A 11 11 1 A\

b(T) = ; ckg (BT — k) = ; CkY (ET - E) (3.15)
where b(T) is the approximation of the thermal bias function b(T) evaluated at
temperature 7T'. The bias function approximation weights ¢; were found by sampling
the true gyro thermal bias function at 1000 points along the domain (0,100) and
performing a least squares fit. Thus a given weighting coefficient, say c7, is the least
squares best fit piecewise constant value of the function to be approximated over
the interval (A; — %, A7+ % ). Finally, the bottom right of the same figure depicts the
bias function approximation error b(T) = b(t) — b(T). Note that as boxcar RBFs
are piecewise constant, a function approximation using them will fail to capture the
slope of the true thermal bias function.

If the domain were partitioned by more boxcar RBFs of smaller width, the

function approximation would better match the true function. This notion is made
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precise for spline approximations in Theorem 20.3 of Powell [77] where, for suffi-

ciently smooth thermal bias function b(-) a j order spline approximation b(T') is

such that

w

o)~ B0 < e () 900 (3.16)

In the inequality, w is the knot spacing (space between RBF centers), b0 is the 5
derivative of the gyro thermal bias, and ¢ is a positive constant. Note that a boxcar
RBF is a 0" order spline and a hat RBF is a 1 order spline. A Gaussian RBF is

in some sense the infinite limit of the sequence of splines [81].
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Basis of Boxcar RBFs
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Figure 3.9: Boxcar RBF approximation of a first order polynomial.
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A function approximation using hat RBFs is able to capture slope information.
Figure 3.10 demonstrates the performance of hat RBF function approximation for
the same first order gyro thermal bias function depicted in the top left plot. The
top right plot shows a collection of hat RBFs forming a basis over the interval for
approximation. The bottom left plot compares the hat RBF function approximation
with the true gyro thermal bias which is perfectly covered by the approximation.

The function approximation error is the constant zero function.
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Figure 3.10: Hat RBF approximation of a first order polynomial.
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A function approximation using Gaussian RBF's is theoretically able to capture
arbitrary order functions; however, as noted in Sanner and Slotine [81] to approxi-
mate functions on a bounded interval many Gaussian RBF's well outside the interval
may be needed. The Gaussian RBF's for this problem were chosen to have center
locations of \y = —100°C, \; = —90°C, ..., Ay = 200°C. Figure 3.11 demonstrates
Gaussian RBF function approximation for the same first order gyro thermal bias
function depicted in the top left plot. The top right plot shows a collection of
Gaussian RBF's forming a basis over the interval for approximation. The bottom
left plot compares the Gaussian RBF function approximation with the true gyro
thermal bias which is covered by the approximation. The function approximation

error is negligibly small.
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Figure 3.11: Gaussian RBF approximation of a first order polynomial.
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Figure 3.12 depicts function approximation via boxcar RBFs for a third order
gyro thermal bias which is shown in the top left plot. The bottom left plot compares
the function approximation to the true gyro thermal bias. The bottom right plot

shows the bias function approximation error which is significant, as in the first order

boxcar RBF function approximation case.
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Figure 3.12: Boxcar RBF approximation of a third order polynomial.
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The third order gyro thermal bias is approximated via hat RBFs in Figure
3.13. As opposed to the first order thermal bias case where the hat RBFs were able
to capture the highest order of the true bias function, in this case with a third order
bias function the piecewise linear hat RBFs are unable to capture the highest order
components of the true bias function. The approximation error in the bottom right
plot is still far smaller than the boxcar RBF approximation for this gyro thermal
bias function as predicted by the function approximation error criterion of Equation

3.16 from Powell [77].
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Figure 3.13: Hat RBF approximation of a third order polynomial.
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Finally, the third order gyro thermal bias is approximated via Gaussian RBF's
in Figure 3.14. As in the previous Gaussian RBF function approximation case, the
Gaussian RBF's were chosen to have center locations of \g = —100°C', Ay = —90°C,
...y Ax = 200°C to ensure suitable coverage over the interval of approximation. The
Gaussian RBF function approximation covers the true gyro thermal bias function
in the bottom left plot. The corresponding error function in the bottom right plot
is negligibly small.
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Figure 3.14: Gaussian RBF approximation of a third order polynomial.
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3.5 Gyro Thermal Bias Observer (TBO) Formulation

This section extends the gyro constant bias observer of Section 3.1 to estimate
gyro bias as a function of temperature. This extended version is referred to in this
thesis as a gyro Thermal Bias Observer (TBO).

As in Equation 3.10, the gyro measurement model is given by
wy(t) = w(t) +b(T(t)) (3.17)

where as before w,(t) is the gyro measurement at time ¢ and w(?) is the true angular
rate at time ¢. Now the gyro thermal bias, denoted b(7'(+)), is assumed to be a
time-invariant, continuous, yet unknown function of the gyro temperature. As in
the previous section, while the gyro thermal bias function b(7'(+)) is assumed to be
time-invariant function of temperature, the value of the gyro bias in general varies
between time t; to time ty from b(T'(t1)) to b(T(t2)) as the temperature T'(t) varies
with time. The gyro temperature is assumed to be available to the observer.

The TBO, presented by Galante and Sanner in [25], is given by
: 1 -1 - PN .
i) = 5{ 7@ 0) [0 - BTO) + KaE0] poaw 1)
cx(t) = —aij(t)é(t)g (hT(t) — k) (3.19)

where, as for the CBO, the k., > 0 is a tracking gain and o > 0 is an adaptation
gain. The observer’s attitude kinematic equation 3.18 is similar to that of the CBO

in Equation 3.3; however, in the TBO case the gyro bias estimate is computed using
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a weighted sum of RBFs

b(T(t) = é(t)g (hT(t) — k) (3.20)

k

Ak

where ¢(+) is a radial basis function, h = % encodes the knot spacing w, and k = 2%
is an integer specifying the center location )\, of £ RBF. The weighting coefficients
are updated via the adaptation law of Equation 3.19, which is the same law used
for the CBO in Equation 3.4 but scaled by the RBF evaluated at the current gyro
temperature. The TBO is parameterized not only by a feedback gain k. and an
adaptation gain «, but also the choice of RBF basis, the RBF spacing (knot spacing)

encoded in h, and the RBF center locations (knot locations) k.

As before, the observer attitude estimate error is given by

q(t) = =q(t)®q ' (t)

which is available to the observer in real time as the attitude measurements are

assumed to be perfect. The bias estimate error at time ¢ is given by

which is of course not available to the observer in real time.

In this formulation, the CBO can be viewed as a special case of the TBO
using a single constant basis function g(7) = 1. Conversely, if the TBO RBFs
are chosen to be boxcar RBFs, referred to as a boxcar TBO, then the observer
is similar to utilizing a bank of CBOs. In this analogy, the temperature range is

divided into partitions (the domain of each boxcar RBF) with a CBO i is assigned
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to each partition. Then each CBO is “responsible” for the gyro bias estimate in its
temperature partition. If the gyro temperature remains within one boxcar RBF’s
temperature partition, then the boxcar RBF TBO behaves precisely the same as the
CBO. Naturally, if the gyro temperature does not reach the domain of a particular
RBF, the corresponding coefficient will never update as the true gyro thermal bias
model has not been excited at that temperature. Essentially, the boxcar TBO uses
the CBO’s gyro bias persistent excitation guarantee to learn the gyro thermal bias
function at any experienced temperature.

Note that the TBO does not have an a priori model of the true thermal bias
function. The TBO estimates coefficients of RBFs that serve as an approzximation
to a suitable basis for representing the thermal bias function. The performance of
this approximation depends on the number of RBFs used and their relative spacing,
the choice of RBF used, and the smoothness of the true gyro thermal bias function.

Assume the true gyro thermal bias function can be written as

b(T) =Y erg(hT — k) (3.21)

allowing one to write the bias estimate error as

=D (ex = &) g(hT () — k)
= Z éeg(hT(t) — k) (3.22)

Then the attitude observer dynamics given by Equations 3.18, 3.19, and 3.20 can
be combined with the quaternion error kinematics of Equation 2.71 and the perfect
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(noise free) attitude measurement model 3.27 to find the observer’s estimate error

dynamics:

—é(t)g(WT(1) — k)

Subtracting the bias estimate from the gyro measurement model of Equation 3.10

leads to

=w(t)+ ) erg (hT(t) — k) =Y é(t)g (RT(t) — k)
k

=w(t)+ > éxg (hT(t) — k)

Substituting back into the error dynamics, and substituting in the bias adaptation

law, resolves as

s = |40
_ék(t)
%{ — ken(t)E(t) — >, érg (RT(t) — k) } ® q(t)
- (3.23)
_ aii(t)E(t)g (WT (1) = F)

where the attitude estimate error dynamics can be broken into the quaternion vector

and scalar components as

q(t) = =
(t) skeni(t)ET (t)E(t) + 567 (t) 32, éng (RT(t) — k)
The stability of the TBO is provided in the following theorem.
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Theorem 3.5.1. Assume the gyro measurement model of Equation 3.10 has a ther-
mal bias function that can be expressed as in FEquation 3.20. Then the thermal bias

observer error dynamics of Equation 3.23 are stable. Further,

lim é7(t)é(t) =0

t—o0
Proof. Choose the Lyapunov function V (¢) = 37 (t)€(t)+ 1= >, €1 (£)éx(t). Taking

the derivative yields

— SAOET W) S EghT(0) — k) + i) S & (g (hT(e) — b

k

_ —%keﬁQ(t)éT(t)é(t) vt

This establishes that €;(t), €(t), and 7(¢) are globally uniformly bounded.

Differentiating again results in

V(6) = 52 (7(0) — 1) POET(E() + Sheilr) (7(0) — € (0€(1)) €7 (1)b(1)

which is bounded as é(t), €(t), and 7(t) are bounded. Barbalat’s Lemma [42] then
shows that

lim &7 (t)é(t) =0

t—o00

]

The proof comes almost directly from Thienel and Sanner [95] for the CBO.
Note however, that in Thienel and Sanner’s proof for the CBO they were able to show
that the gyro constant bias is always persistently exciting. In the TBO case, the
adaptation law for weighting coefficient ¢ is not activated if g(hT — k) = 0. For the
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boxcar TBO this has the consequence that if the gyro temperature remains constant
only the weighting coefficient associated with the measured gyro temperature will
ever change. In this case the problem can be modeled precisely as in the CBO
case and the weighting coefficient will converge to the true bias exponentially fast
as shown by Thienel and Sanner. For the constant temperature case, the gyro
bias estimates of the hat TBO and Gaussian TBO will converge to the true bias
exponentially fast according to the proof from Thienel and Sanner, but the RBF
weighting coefficients ¢, (f) may not converge to the RBF weighting coefficients ¢y

for the true gyro thermal model.
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3.6  Gyro Thermal Bias Observer (TBO) Function Learning Simula-

tions

This section presents a number of numerical simulations of the TBO of Section
3.5 to demonstrate its function estimation ability. These deterministic simulations
are performed using MATLAB’s ode45 numerical integrator with default arguments.
In each simulation study, the TBO has no initial knowledge of the true gyro thermal
bias function. The simulation study is conducted for each RBF discussed in Section
3.4 and both gyro thermal bias models of Section 3.2 for a total of six simulations.

The TBO has the same parameters for each simulation (aside from the choice
of RBF). The TBO tracking gain is set to & = 1 and the adaptation gain is set
to o = 0.1. The RBF knot spacing (center location spacing) is set uniformly to
w = % = 10°C. Knot locations (center locations) are chosen as —0°C, 10°C, ...,
100°C for the boxcar and hat RBF's, but the knot locations for the Gaussian RBF's
are chosen as —100°C', —90°C, ..., 200°C. Note that these choices of parameters are
not optimized according to any criteria, they are merely chosen for demonstration
purposes.

As before, the gyro’s operating temperature varies sinusoidally according to

100 2mt 100
T(t) = — cos (l + 7r> +— (3.24)
T

in degrees Celsius. The amplitude is 100°C with a phase angle chosen so the simu-
lation starts at the coldest temperature. The thermal oscillation period 7 is chosen

as 5400 seconds for the simulations of this section, providing a thermal profile repre-

121



sentative of a notional satellite in Low Earth Orbit (LEO) passing through Earth’s
shadow every 90 minutes.

Figure 3.15 contains a collection of plots detailing the TBO using boxcar RBF's
over the course the a simulation. The true first order gyro thermal bias function of
Equation 3.7 is depicted in the upper left plot, but is unknown to the TBO which
starts with an initial estimate of zero bias at all temperatures. After % orbit, the
gyro temperature has warmed from 0°C' to just over 15°C’; the TBO gyro thermal
bias function estimate I;(T) shifts to a piecewise linear approximation of the true
gyro bias for the temperatures observed by the TBO up to that point. After }l orbit
the gyro temperature has increased to 50°C' and the TBO has accordingly adjusted
its gyro thermal bias function estimate over the range of temperatures experienced
thusfar. After half an orbit, the TBO has sampled the gyro thermal bias function
over the entire range of the temperature profile. The TBO continues to refine its
gyro thermal bias estimate as the simulation continues. After one full orbit, the
temperature has returned to 0°C'. The bottom right plot shows the TBO gyro
thermal bias estimate error . As the true gyro thermal bias in this simulation is
linear, the boxcar function approximation error is off by a linear function. Notice
that since the most recent temperature experienced in the domain of each boxcar
RBF was on the leftmost (coldest) side, so the thermal bias function estimate is most
accurate on the leftmost side of each temperature partition creating a sawtooth error
shape.

Time series of the bias estimate and attitude estimate errors for the boxcar

TBO during this simulation are shown in Figure 3.16. There is significant error dur-
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ing the first half orbit as the TBO’s weighting coefficients each in turn experience a
transient as the gyro operating temperature increases from the coldest to warmest
values of its thermal profile. After the entire temperature range has been experi-
enced, the observer’s bias estimate error settles to a lower level consistent with the

error of using boxcar RBFs to approximate a line.
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Figure 3.15: The boxcar TBO estimates the first order gyro thermal bias function of Equa-

tion 3.7.
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Figure 3.16: Time series plots of the attitude and estimate error for the boxcar TBO as

it estimates the first order gyro thermal bias function of Equation 3.7.
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The hat TBO is considered next. Figure 3.17 depicts the estimated thermal
bias function at the same simulation time as the boxcar TBO previously considered.
The thermal bias function approximation has significant error after the first orbit,
incorrectly approximating both the value and the slope of the true bias function.
After 20 orbits, however, the transient has settled and the thermal bias function
approximation has little error. The time series plots of the attitude and bias estimate

errors in Figure 3.18 show the error decays to zero.

126



Gyro Thermal Bias First Order Model

1.5¢

0.5r

b(T) [ deg / sec]

15

0.5

[ deg / sec]

b(T)

20

40 6‘0
Temperature T' [ deg C |

80

Hat TBO Func Approx after 1/4 Orbit

[ deg / sec]

b(T)

20

40 60
Temperature T [ deg C |

80

Hat TBO Func Approx after 20 Orbits

20

40
Temperature 7" [

60
deg C ]

L

80

Hat TBO Func Approx after 1/8 Orbit

—x
—Y
| 1.5¢ z|1
P ]
&
~
20
]l & o5
s, /\
“«D
—_—X
Y| 0.5- )
Z
1 . . .
100 0 20 40 60 80 100
Temperature T [ deg C ]
5 Hat TBO Func Approx after 1/2 Orbit
—x
—Yy
z 1.5
o1
@
~
0
< 05
SN
S
4 _05 L
1 |
100 0 20 40 60 80 100
Temperature T' [ deg C ]
) Hat TBO Approx Error after 20 Orbits
—x
—Y
1.5 z1
oo1r
%
~
0
& 05
S o —
S
-0.5
1 L L
100 0 20 40 60 80 100
deg C ]

Temperature 7" [

Figure 3.17: The hat TBO estimates the first order gyro thermal bias function of Equation

3.7.

127



14

12

10

0.4

0.2

-0.4

b(t) | deg/sec |

-0.6

-0.8

Figure 3.18:

estimates the first order gyro thermal bias function of Equation 3.7.

Time series plots of the

Time [ orbits |

128

<103 Hat TBO Attitude Estimate Error
—x
I — /]
z
0 5 10 15 20
Time [ orbits |
Hat TBO Bias Estimate Error
e
—x
I N
z
0 5 10 15 20

attitude and estimate error for the hat TBO as it



The Gaussian TBO, parameterized by the same tracking gain k and adaptation
gain «, experiences a significantly longer transient than the boxcar or hat TBOs.
Figure 3.19 depicts the gyro thermal bias function estimate at the same simulation
times as the boxcar and hat TBOs, but after 20 orbits the Gaussian TBO has yet
to capture the linear shape of the true gyro thermal bias function, particularly at
the edges of the temperature interval. The time series plots in Figure 3.20 confirm
that the Gaussian TBO has not yet reached steady state after 20 orbits. Figure 3.21
displays the Gaussian TBO thermal bias function estimate at 10 orbits, 100 orbits,
and 1000 orbits, where the Gaussian TBO’s bias function estimate error finally

reaches the level of the Hat TBO’s function error estimate after just 20 orbits.
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Equation 3.7.
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Figure 3.22 shows the boxcar TBO estimating the third order gyro thermal
bias function of Equation 3.8. The bias estimate error for the boxcar TBO is more
pronounced for this model than the first order model, which is to be expected as
higher order information is harder for the boxcar approximation to capture. The
transient response is similar to the first order thermal model case however, needing
only half an orbit (the ability to experience the full gyro operating temperature

range) to reach a steady state performance level.
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Figure 3.22: The boxcar TBO estimates the third order gyro thermal bias function of

Equation 3.8.
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Figure 3.23: Time series plots of the attitude and estimate error for the boxcar TBO as

it estimates the third order gyro thermal bias function of Equation 3.8.
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The hat TBO bias function estimation process for the third order gyro thermal
bias function of Equation 3.8 is depicted in Figure 3.24. The corresponding time
series plots are included in Figure 3.25. The estimate error settling time for the
third order gyro thermal bias model case as for the first order gyro thermal bias
model case. Note that in this case, as opposed to the case of the first order gyro
thermal bias model, that there is significant bias function estimate error. This is to
be expected as the order of the true gyro thermal bias function now exceeds what

can be encoded by a first order spline (hat RBF).
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Figure 3.24: The hat TBO estimates the third order gyro thermal bias function of Equa-

tion 3.8.
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Figure 3.25: Time series plots of the attitude and estimate error for the hat TBO as it

estimates the third order gyro thermal bias function of Equation 3.8.
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The last permutation to consider is the Gaussian TBO estimating a third order
gyro thermal bias function of temperature. The bias function estimates are depicted
in Figure 3.26. As in the case of the Gaussian TBO estimating a first order gyro
thermal bias, the Gaussian TBO takes significantly longer than the boxcar or hat
TBOs to reach a steady state. Again, the Gaussian TBO’s estimates of the gyro
thermal bias function are worst at the edges of the experienced temperature range.
The time series plots of Figure 3.27 show that by 20 orbits the observer’s estimates
still haven’t converged. Figure 3.28 compares the Gaussian TBO’s thermal bias
function estimation performance at 10, 100, and 1000 orbits. After 1000 orbits
have elapsed, the Gaussian TBO’s thermal bias function estimate error near 0 and
100 degrees Celsius is finally of the same order of magnitude as the hat TBO was
after 20 orbits. However, in this third order gyro thermal bias function case the
smoothness of the Gaussian function approximation leads to significantly less bias

function estimation error once the transient has settled.
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Figure 3.26: The Gaussian TBO estimates the third order gyro thermal bias function of

Equation 3.8.
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Figure 3.27: Time series plots of the attitude and bias estimate error for the Gaussian
TBO as it estimates the third order gyro thermal bias function of Equation

3.8.
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Figure 3.28: The Gaussian TBO estimates the third order gyro thermal bias function of

Equation 3.8.
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Figure 3.29 shows the transient response for the CBO, boxcar TBO, hat TBO,
and Gaussian TBO for the third order gyro thermal bias function of Equation 3.8.
As before, the gyro operating temperature sinusoidally oscillates with a period of
90 minutes and all observers have tracking gain k. = 1 and adaptation gain o = 0.1
with no observer having any initial knowledge of the gyro bias. The CBO and boxcar
TBO experience very short transients (less than an orbit), but have the worst gyro
bias estimate performance in steady state. The hat TBO takes approximately 15
orbits to converge, but its steady state error is less than the CBO and boxcar
TBO. The Gaussian TBO takes much longer to converge than 20 orbits as noted
before. The top plot of Figure 3.30 shows that the Gaussian TBO converges after
approximately 1000 orbits, but the steady state performance has again improved.
The convergence rate can be reduced by increasing the adaptation gain; the bottom
plot in Figure 3.30 has an order-of-magnitude larger adaptation gain of @ = 1 and

the convergence time is approximately 500 orbits.
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Figure 3.29: Comparison of the observer’s bias estimate error time series for the third

order gyro thermal bias function of Equation 3.8.
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Table 3.1: Comparison of the steady-state bias estimate error for the CBO, boxcar TBO,
hat TBO, and Gaussian TBO; error statistics are the ergodic average of the

last 100 orbits’ worth of bias estimate errors from 1000 orbit long simulations.

Observer IXIEeTEt?[HI;(tl)H} in %
CBO 0.01634
Boxcar TBO 0.01523
Hat TBO 0.00316
Gaussian TBO 0.00086

The steady-state performance of the CBO, boxcar TBO, hat TBO, and Gaus-
sian TBO are compared in Table 3.1. For each entry in the table, the indicated
observer was simulated for 1000 orbits with the tracking gain k. = 1 and adaptation
gain a = 0.1. The ergodic mean was computed from the time series of the bias es-
timate error b(t) = b(T(t)) — b(T'(t)) over the final 100 orbits. As noted previously,
the CBO and boxcar TBO have very similar performance as the boxcar TBO’s gyro
thermal bias function approximation is little better than the CBO’s. The hat TBO
has nearly an order of magnitude improvement in bias estimate error as the hat
basis provides a more useful gyro thermal bias function approximation. Finally, the
Gaussian TBO’s bias estimate error is nearly an order of magnitude better than the

hat TBO’s as the Gaussian basis is capable of perfectly approximating third order

polynomial functions.
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3.7 Gyro CBO and TBO Stochastic Simulation Models

The CBO of Thienel and Sanner [95] and the TBO were developed in a deter-
ministic setting. Global exponential stability (GES) of the CBO is guaranteed by the
work of Thienel and Sanner for a constant gyro bias. They also point out that the
GES property implies the CBO estimate error is bounded for bounded gyro noise;
the provide a bound on the estimate error as a function of a bound on the noise. In
Section 3.5 the TBO was found to be stable for sufficiently smooth time-invariant
gyro thermal bias models. In neither sets of analyses was unbounded additive gyro
noise considered, nor was attitude measurement noise considered. Neither sets of
analyses provided insight on how to choose the observer gain parameters.

Of course the attitude estimation performance of the observers is affected by
sensor noise and choice of gain parameters. In this section, stochastic differential
equations will be developed to model the impact of attitude measurement noise
and gyro noise on the observers. Subsequent sections of this chapter will then use
stochastic integration techniques to explore how measurement noise influences the
estimate errors of the observers.

In the stochastic setting, the gyro measurement model of Equation 3.10 is now

augmented with additive noise as

w,y(1) = w(t) + b(T(t)) + Tuna(t) (3.25)

where o, is a positive scaling constant and m,,(-) is a zero mean unit variance

Gaussian white noise process.
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In addition to gyro measurement noise, the observers are also assumed to have
attitude measurements with noise. The attitude measurement g,,(t), possibly from
a quaternion output star tracker, is a noise corrupted version of the true vehicle

attitude q(t)
qm(t) = =q '(t)®q(t) (3.26)

where ¢() is “quaternion noise”. Note that the stochastic numerical integration
methods presented in Section 2.2 are defined only for Ito diffusions, a specific class
of SDEs that are affine in the driving noise.

As will be explained in detail in Section 5.1, an [to0 SDE that is useful for
generating quaternion measurement noise is given by the Langevin form differential

equation

qm(t) = % {R(q7(1) lw(t) + ommn(t) + knil(DE(L)] } © g (t) (3.27)

where k,, and o, are positive scalars that parameterize the attitude measurement
noise statistics, n,,(-) is a collection of independent identically distributed zero
mean unit variance Gaussian white noise processes independent of n,,(-), and q(t)

compares the attitude measurement process to the true attitude
q(t) = q(t)® g, (t) = (3.28)

In Chapter 4.10 the attitude measurement noise process ¢(t) will be shown to have

the heuristic upper bound on its ultimate noise statistics

km
lim E[gT(t)g(t)] < z 1— ZE% (3.29)
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where I(-) and I,(-) are the 0" and 1% modified Bessel functions of the first kind.
The bound 3.29 provides a way to parameterize the attitude measurement noise by
selection of the ratio 5—2:

In the forthcoming stochastic models for the CBO and TBO, the observers
will no longer have access to the true attitude to compute the attitude estimate
error g(t) for use in their feedback term 7(¢)é(t). Instead, the observers will be

provided the noise corrupted attitude measurement g,,(t) generated from the model

of Equation 3.27, so they instead compute a corrupted attitude estimate error

which results in the corrupted feedback term

iin(én(t) = (1107 + " (0EW)) | - D) + () +(t) x €1)]  (330)

Combining the CBO dynamics equations 3.3 and 3.4 with the gyro measure-

ment model of Equation 3.25 and the attitude measurement model from Equation
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3.27 results in the Langevin form differential equation for the CBO

Em

Tm

- >

SO

_ Sl + [em x 1| R(@™) [+ ke
—1eT R(q™ [w - k:mne}

~

L1+ [&x )| R(g!) [w+ b(T) — b+

—1e"R(q;,") [w +b(T)—b+ keﬁmém]

keﬁmém]

—QMmEm
_% [l + [em X ]| B(a ) 0
—3el R(g ) on 0
+ 0 ;[ﬁu [E:XHR(q;Ll
0 —1eTR(q; )
0 0

(3.31)

where function of time notation has been suppressed for brevity. The quaternion

rotation matrix identities [77[4— [s X H R(q) = [77]+ [s X H and eTR(q) = el were

used to further simplify the expression.

Per Section 2.1.3, the Langevin form error dynamics differential equation 3.31
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is interpreted as a Stratonovich SDE. Converting to an It6 SDE yields

de, %[nml + [Em x ]]R(Q‘l) [w + kmﬁé} — $0mEm
AR b -
2 | = |4[ir + [& x| R(a) [+ B(T) = b+ Kaiinén] — So2¢|
dn _%éTR(q;Ll) [w +b(T) — b+ keﬁmém} - %U?uﬁ
db —mEm
4t + fonx 1] Rla)o 0
—3€nl(q!)om 0
dg,,
¥ 0 $01 + [ x| R(g!)o
dBuw
0 —%éTR(q;ll)O-w
0 0
(3.32)

where 7,,,(t)€,,(t) is expanded in Equation 3.30.
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The process is similar for the TBO, resulting in the Ito SDE
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de,, Sl + [en X 1| R(@™) [ + kuiié] — 202
dn,, —1eT R(q™Y) [w + kmﬁé} — 302,
dé 1 [ﬁ[ + [¢ x H R(q)) [w +B(T) = B(T) + kefjmén | — 2026
i | = —1eTR(q;}) [w +b(T) — b(T) + keﬁmém} 302
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1T R(q o 0
0 s[r+ [& x| R(g.!) o
+ 0 _1ETR(g:) o
0 0
0 0

dt

dBm
dBw
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3.8 Gyro CBO and TBO Stochastic Simulations

Stochastic simulation of the CBO and TBO were performed using the Fuler-
Maruyama method detailed in Section 2.2. Note that the Kloeden-Platen Explicit
Weak 2.0 scheme, used for all other stochastic simulations in this thesis, is not
applicable here as the system is nonautonomous [45, p. 186]. Specifically, the gyro
bias is a function of temperature which, in turn, is an explicit function of time.
Simulation step size was set to At = 0.1s.

The first simulation study consists of a comparison of a single realization of
both the TBO and CBO. In the simulation, the gyro experiences a thermal oscillation
of period 90 minutes, again representative of a spacecraft in LEO going into and out
of the Earth’s shadow. The gyro noise level was set to o, = 0.01 and the attitude
measurement noise level set to [’j—g = 10%*. The TBO tracking gain is set to k = 1
and the adaptation gain is set to a = 0.01.

Plots of the instantaneous bias estimate error are given in Figure 3.31. Both
observers experience a transient of similar magnitude, but the CBO transient dies
out within seconds. The TBO transient is significantly longer, taking nearly half an
orbit. Of course this is to be expected; the TBO has no internal model of the gyro
thermal bias and must experience the effect of temperature variation in order to
estimate the corresponding portion of the bias thermal function. Once the TBO has
sampled enough of the temperature range, its bias estimate error is driven largely
by noise. The CBO, on the other hand, has a consistent bias estimate error as its

estimate attempts to keep up with the true gyro bias that is time varying. A plot

153



of the TBO’s gyro thermal bias function estimate from the end of the simulation is
given in Figure 3.32.

CBO Bias Estimate Error
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Figure 3.31: Simulation run bias estimate errors (LEO)
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Figure 3.32: Simulation run (LEO)
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The next simulation study varies the thermal oscillation period 7 similar to
the deterministic simulation study of the CBO in Section 3.3. The thermal profile

still assumes the form of Equation 3.9, repeated here for convenience

100 2mt 100
T(t) = — cos (% + 7r> + 3 (3.34)

with the same amplitude of 100°C, but 60 distinct simulations were conducted, each
with a different value of the thermal oscillation period 7. As in Section 3.3, the
smallest (fastest) thermal oscillation period considered is 7 = 60 seconds, consistent
with a 1 rpm spin stabilized satellite. The largest (slowest) thermal oscillation
period considered is 7 = 2 hours which is representative with a spacecraft in LEO.
The simulations were performed with the Euler-Maruyama scheme with a step size
of At = 0.1s for 10° steps, for a total simulation time of just under 28 hours. In
each simulation realization, the observers had no initial bias knowledge.

A plot of the bias estimate error and the attitude estimate error for the CBO
and the TBO with each RBF choice is given in Figures 3.33 and 3.34. The true
gyro thermal bias function was modeled as the first order function of Equation 3.7
in Figure 3.33 and the third order function of Equation 3.8 in Figure 3.34.

The CBO estimate error performance approaches the TBO estimate error per-
formance for large 7, which is when the temperature varies so slowly that the gyro
thermal bias acts almost like a constant. The CBO performs the worst of all ob-
servers considered for rapid thermal variation (small 7) as expected. It is interesting
to note that the attitude estimate errors for all TBOs were nearly the same for the

first order gyro thermal bias model in Figure 3.33, however the attitude estimate
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errors for the boxcar TBO are slightly worse than the other TBOs for the third
order gyro thermal bias model in Figure 3.34.

The relative performance of the TBOs was more distinct in the bias estimate
error plots. The hat TBO had the lowest bias estimate error for all cases consid-
ered, followed by the Gaussian TBO, and then the hat TBO. Given that the total
simulation time was only 28 hours the Gaussian TBO has not reached steady state

in any of the plots.

157



Bias Estimate Error

1073
« CBO
+ Boxcar TBO
oc.oooocoolouo..... Ha‘t TBO
"'-.,. e Gaussian TBO
§1074’ .-. 4
~ .o
C:‘U ..
2 "
Z§ .'.
g 107 F ..o ]
[} L]
E .'

10'6L | g0
10° 10t 102

Thermal Oscillation Period 7 [ min ]

Attitude Estimate Error

103 —
« CBO
« Boxcar TBO
Hat TBO
¢ Gaussian TBO
=] °
g .
= e
....oo-ooo.oo..oo.ol.on.-...Ollcl.lll.l.ll.llllll.::::=‘l.
10-4 I I
10° 10t 10?

Thermal Oscillation Period 7 [ min |

Figure 3.33: Bias and attitude estimate errors for the CBO, boxcar TBO, hat TBO, and
Gaussian TBO for a range of thermal oscillation periods 7 for the first order

true gyro thermal bias function model of Equation 3.7.
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3.9 Gyro CBO and TBO Gain Search

While the work of Thienel and Sanner [95] proved the CBO was GES for
constant gyro bias, the deterministic Lyapunov theory and subsequent analysis used
was unable to provide any notion for how to select the tracking gain k& and adaptation
gain « other than both must be positive. In this section, a search is conducted by
performing simulations for a number of choices of these parameters. Error statistics
from each simulation realization can be then used to form an understanding of the
observer performance as a function of the gain.

As before, in each simulation the gyro experiences a thermal oscillation of
period 90 minutes, again representative of a spacecraft in LEO going into and out
of the Earth’s shadow. The gyro noise level was set to o, = 0.01 and the attitude
measurement noise level set to (’j—g = 10*. Each simulation was run for 10° seconds
of simulation time (which is just over 18 orbits). The TBO had no initial knowledge
of the true gyro bias thermal function. For both observers, simulations were run
for every permutation of a choice of 20 different tracking gains k and 20 different
adaptation gains « for a total of 400 simulations.

The results of the search of the gain space are shown in Figure 3.35 for the
CBO, Figure 3.7 for the boxcar TBO, Figure 3.7 for the hat TBO, and Figure 3.7
for the Gaussian TBO. A black dot represents a choice of gains a and k where a
simulation was actually performed. MATLAB’s contourf utility was then used to
plot a surface generated from the numerical data for visualization purposes. The

numerical data suggest the underlying estimate error for the observers as a function
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of the gains may be a smooth function.

Of course the true underlying estimate error function may be of any shape.
The surfaces drawn in the figures are merely fits to a small sampling of the space.
Note also the computational expense required to generate these simulation surfaces
and the dependence on numerical integration techniques which may have numerical
stability issues. Additionally, this simulation study is representative of a single gyro
noise level, a single attitude measurement noise level, thermal oscillation period,
and so on.

The remainder of this thesis will pursue an analytic treatment of this problem.
The hope is to find analytic expressions for the estimation error as a function of the
gain and noise level parameters. If these analytic expressions exist, they can be
used to predict performance without the expense of running numerous simulations
to generate performance surfaces like those of the plots. Analytic expressions for
estimation error performance may even exist that could allow one to compute an

analytic optimum gain choice for a given set of sensor noise level parameters.
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Figure 3.35: Error statistics over a subset of the gain parameter space for the CBO as
obtained via numerical simulation for the linear gyro thermal bias model of

Equation 3.7.
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Boxcar TBO Attitude Estimate Error
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Figure 3.36: Error statistics over a subset of the gain parameter space for the boxcar TBO
as obtained via numerical simulation for the linear gyro thermal bias model

of Equation 3.7.
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as obtained via numerical simulation for the linear gyro thermal bias model

of Equation 3.7.
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Figure 3.38: Error statistics over a subset of the gain parameter space for the Gaussian
TBO as obtained via numerical simulation for the linear gyro thermal bias

model of Equation 3.7.
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Chapter 4: Attitude Estimation Filter for Noisy Gyro Measurements

A nonlinear attitude estimation filter for angular rate gyro measurements with
additive noise and perfect attitude measurements is considered in this chapter. The
first section, Section 4.1, presents a formulation of the filter and a derivation of an
Ito SDE for its error dynamics. Weak stochastic stability is established and ana-
lytic filter performance bounds are found in Section 4.2 using stochastic Lyapunov
theory. Section 4.3 uses numerical simulation analysis to demonstrate the validity
of the theoretical claims, but the performance bounds are found to be conservative.
The next section, Section 4.4, contains a presentation of the Fokker-Planck PDE
associated with the error dynamics SDE.

To make further progress on the analysis, the system formulation is reduced
to the SO(2) case in Section 4.5. In Section 4.6 the SO(2) case is analyzed using
stochastic Lyapunov theory to verify weak stochastic stability and find performance
bounds. Section 4.7 includes a comparison of the stochastic Lyapunov performance
bounds with numerical simulation, and again the stochastic Lyapunov performance
bounds exhibit significant conservatism. A Fokker-Planck analysis in Section 4.8
yields an analytic solution to the stationary Fokker-Planck PDE; the section includes

the derivation of analytic expressions for the first two moments of the stationary

166



probability density. The analytic solution for the ultimate moments are compared
to numerical simulation results in Section 4.9. Section 4.10 extrapolates the SO(2)
results to provide a heuristic upper bound for the SO(3) case that is tighter than
the SO(3) upper bounds generated via the stochastic Lyapunov analysis. Finally,
the intuition gained from the SO(2) analysis and the success of the heuristic upper
bound are used to solve the Fokker-Planck PDE for the SO(3) case in Section 4.11.
The solution is used to compute an analytic expression for the ultimate attitude
estimate error mean vector, variance, and covariance matrix. The analytic solution

is then compared to numerical simulation realizations in Section 4.12.
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4.1 Attitude Filter Formulation in SO(3)

Consider a nonlinear attitude filter given angular rate gyro measurements mod-
eled as

wy(t) = w(t) + oyny,(t) (4.1)

where w,(t) is the gyro measurement at time ¢, w(t) is the true vehicle angular rate
at time t, oy, is a positive scaling constant, and m,,(-) is a zero mean unit variance
Gaussian white noise process.

Further assume that the filter has access to perfect (noise free) attitude mea-

surements @, (t) of the vehicle attitude q(t)

ex(?)
et gy(t
an(t) = q(t) = " = " (4.2)
n(t) ex(t)
(1) |

The vehicle attitude g(t) evolves according to the usual kinematics equation

(1) = Jw(t) ® (1)

The nonlinear attitude filter is given by the equation

) = 5{ A(a0) [0 + Ri0E0)] | ) (43)

where k. > 0 is a filter (estimator) gain parameter and q(t) is the filter’s estimate

of the vehicle attitude. The rotation parameterized by g(t) is the filter’s attitude
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estimate error, given by

q(t) = =q(t)®q (1) (4.4)

which is available in real time for the filter to use since the attitude measurements
are assumed to be noise free. The rotation R(q”l(t)) resolves the angular velocity
terms in the filter’s reference frame.

The attitude filter dynamics given by Equation 4.3 can be combined with
the quaternion error kinematics of Equation 2.71 and the measurement models of
Equations 4.1 and 4.2 to find the filter’s attitude estimate error dynamics as a

Langevin form differential equation:

— %{ — keii(t)é(t) — awnw(t)} ®q(t)
_| oo ||\ Haors o< @5
Lkii(£)ET (1)E(t) €7 (o

Note that the filter’s attitude estimate error dynamics are independent of the vehi-
cle’s angular rate w(t).
As explained in Section 2.1.3, the Langevin form error dynamics differential

equation 4.5 are interpreted as a Stratonovich SDE. Converting to an [t6 SDE results
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in the following

o) dé(t)
it
_| oz -ty | =H{aoreEo e
_%keﬁ(t)éT(t)é(t) — 2o2i(t) 56" (t)ow
- f<i(t)>dt + G(i(t))dﬁw(t) (4.6)

Note that when k. = 0, the homogeneous dynamics of [t6 SDE 4.6 are linear.

Choukroun [13] used this fact to show, in this particular case with no feedback, that

lim E[4(0" ()] = 11 (4.7)
and hence
lim B[&7(1e()] = z (4.8)

However, in the case of feedback (when k. > 0) the homogeneous dynamics are

nonlinear and the techniques used by Choukroun do not apply.
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4.2 Stochastic Lyapunov Analysis in SO(3)

In this section, weak stochastic stability of the It6 error SDE 4.6 is demon-
strated and attitude filter performance bounds are obtained using stochastic Lya-

punov theory.

Theorem 4.2.1. The attitude estimate error dynamics of the Ito SDE 4.6 are weakly

stochastically stable. Further, the attitude estimate error has the ultimate bound

lim B[ (0&(1)] <

t—o00

A~ w

(4.9)

which is valid for any filter gain k. > 0.

Proof. Choose as a Lyapunov function V(t) = €7(¢)é(t). Then application of the

differential generator to the Lyapunov function with respect to the Ito SDE 4.6

yields
V() = (g—g) F(#0) + %tr{GT(w))g—;G(@@))}
kP (OET (DA — 02T (D) + zofu (4.10)
< —c2eT(t)é(t) + Zafu (4.11)

Zakai’s stability theorem (Theorem 2.1.4) implies the system is weakly stochas-
tically stable.

Zakai’s ultimate moment bound theorem (Theorem 2.1.5) implies

lim E[ag)é%)é(t)} <252 (4.12)

t—o00

A~ w

Using the fact that the expectation operator is linear, simple algebraic manip-
ulation provides the attitude estimate error ultimate bound.
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]

Since application of Theorem 2.1.5 yielded the expectation equality 4.14, one

can further deduce a performance lower bound.

Corollary 4.2.1.1. The attitude estimate error dynamics of the Ito SDE /.6 obey

the ultimate lower bound

- ke—i—aﬁ]—\/k‘g%—aﬁ}—kzeaﬁ,

lim E[éT(t)é(t)} o

t—o00

(4.13)

Proof. Apply Theorem 2.1.5 directly to Equation 4.10 to find
lim E[keﬁz(t)éT(t)é(t) + ag,éT(t)é(t)] _p
—00

Using linearity of the expectation operator, the unit quaternion normalization

constraint 1 = €7 (t)€(t) + 7%(t), and rearranging results in

ke + o2 302

0= lim {E[ (€ ()’ | - =BT (e + 4kw}

t—o00 e

ke + o2 302

wE[éT(t)é(t)} + 4kw}

(4.14)

t—o0 e

= lim { <E [éT(t)é(t)]>2 +Var [éT(t)é(t)} —

Combining Equation 4.14 with the fact that Var [éT(t)é(t)] > 0 provides the

second order polynomial inequality

0> lim { (E[éT(t)é(t)DQ _ ket Ug’E[éT(t)é(t)] + Z‘fj} (4.15)

Solving the polynomial inequality yields the lower ultimate performance bound.
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This ultimate lower bound matches the ultimate upper bound for small k., as

seen in the limit

. ket ol — /K240l —ko? 1 o2 — 2k, 3
lim = —+ lim ==
ke—s0 2k, 2 ke—0 4\/162 +oi4 — ko2 4

where the second equality follows from L’Hopital’s rule.
A somewhat tighter upper bound than the one of Theorem 4.2.1 may be de-

duced by further manipulating Equation 4.10 using an additional assumption.

Corollary 4.2.1.2. Assuming the underlying probability density of €X' (t)€(t) is uni-
modal, the attitude estimate error dynamics of the Ito SDE 4.6 obey the ultimate

upper bound

k +02—\/§k2—|—04—k02
lim B|&"(He(t)| < ——— V2 " 416
im E&" (t)e(t) (4.16)

t—00 - le

Proof. As the expression €7 (t)é(t) is itself a random variable, the definition of vari-

ance provides
Var [éT(t)é(t)} - E{(éT(t)é(t)Y} - (E [éT(t)é(t)Dz >0

Combining with Equation 4.14 yields

2

0 < lim { (& [éT(t)é(t)])Q——ke ZeaiE[éT(t)é(t)h(i‘Z +sup Var [éT(t)é’(t)D }

t—o0

(4.17)
For a random variable z restricted to the interval a < z < b with a unimodal

distribution, the Jacobson Inequality [36] is given as

(b—a)®
9

Var[z] <
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If the underlying probability density of €7 ()€(t) is assumed to be unimodal
and recognizing that 0 < €7(¢)é(t) < 1, the Jacobson Inequality for the system
provides

sup Var [éT(t)é(t)] < (4.18)

Nel i

Substituting the variance bound into Inequality 4.17 results in a second order poly-

nomial inequality in E [éT(t)é(t)} :

0 < lim { (E[éT(t)é(t)D2 . I%Z—(’?“E[éT(t)é(t)] + (if” + %) } (4.19)

t—o0 e
Solving the polynomial inequality yields the final result.

[]

This new ultimate upper bound matches the prior ultimate upper bound for

small k., as seen in the limit

w

lim
ke—0

ke + o2 — \/gkg—i—afu — keo?
2k,

=~ |

However, the new ultimate upper bound approaches a different limit for large k.,

specifically

~ 0.127

lim
ke—o0

ke + o2 — \/gk‘g—i-afﬂ — ko2
2k,

>

DO | —

which is independent of the filter gain k. and the gyro noise parameter o,,.
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4.3 Numerical Simulation of SO(3) Stochastic Lyapunov Bounds

Numerical simulations of the SO(3) attitude filter’s It6 SDE error dynamics
of Equation 4.6 were performed for a variety of system parameters. The Kloeden-
Platen Explicit Weak 2.0 numerical integration scheme discussed in Section 2.2.3
was used. For each simulation realization, a time step size of At = 0.1 was used
for a total of 10% simulation steps. At the end of a simulation realization, the last
107 simulation steps were used to compute the ergodic mean of the filter attitude
estimate error €7 (¢)€(t), which is denoted Mean [éT(ti)é(ti)]. An ensemble of 7

ti€Tss

realizations were simulated for each choice of system parameters; the ensemble mean
of the ergodic means was then computed: l\éli%&n {1}{[667%? [éT(ti)é(ti)H .

A gallery of plots of the filter attitude estimate errors are included in Figure
4.1. A magenta dot represents the ensemble mean of the ergodic means. The
stochastic Lyapunov bounds of the previous section are also drawn on the plots,
with the upper bound from Theorem 4.2.1 in red, the lower bound of Corollary
4.2.1.1 in blue, and the upper bound of Corollary 4.2.1.2 in yellow.

All three bounds correctly envelope the ensemble of numerical realizations.

The ultimate performance bound of Theorem 4.2.1 is neither dependent on the

filter gain k. nor the noise scaling parameter o,. While the value 3 does bound
the ensemble of the means of the realizations of mean(||€(t)]|?), the bound becomes
more conservative as k. increases. The ultimate upper bound of Corollary 4.2.1.2

does bow at the same transition region where the numerical realizations first start to

drop, but the upper bound quickly levels off and grows increasingly conservative as k.
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increases. The lower ultimate bound is slightly conservative in the transition region,

but consistently tracks the overall shape of the numerical simulation performance.

Of all the stochastic Lyapunov bounds considered in this chapter, this is the only

bound to suitably capture the filter performance for large gain k..
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Figure 4.1: Comparison of simulation realizations of attitude estimate errors of the SO(3)

error dynamics It6 SDE of Equation 4.6 to the stochastic Lyapunov upper

bound from Theorem 4.2.1 in red, the lower bound of Corollary 4.2.1.1 in

blue, and the upper bound of Corollary 4.2.1.2 in yellow.
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4.4 Fokker-Planck PDE in SO(3)

Let p = p(q(t),t) = p(€(t),7(t),t) = p(Ex(t),&,(¢),E.(t),7(¢),t) be the joint
probability density for the attitude filter error q(t). The Fokker-Planck partial

differential equation associated with the attitude filter error dynamics It6 SDE 4.6

is given by
2 -3 2 nlaopan.] + 3 Y 5o {cta)c@n)} pae.o)
= (2070 - 5 ) a0~ (55 (1= #(0) + G2 ) 1032
+(Grat - 2ot ) (2022 +a 02+ L)
o2 (. 0%p L 0*p o O
- %2 (805 + 202055 + i) 55
)5 + &, 070 b + 2.0 )
# % (=200 S5+ (- 50) G5+ (01— £0) 5+ 1= 70) 5

(4.20)
Since Theorem 4.2.1 proved the attitude filter error dynamics Ito SDE 4.6
is weakly stochastically stable, the joint probability density p((j(t),t) ultimately

approaches a stationary density ps ((j)
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which obeys the stationary Fokker-Planck PDE

1 1 B 3 _Ops
O:ke(2n_§)ps_(§ke(1_n)+ U) 8p~

1 ~2 3 2 8]95 8ps 8ps
+(2k€” 37w )( “9e, "o, T e,
ol =~ 0°ps ps P ps
‘I(%m+ < 0e.0e. 0,00

d?ps e _ 0°p, +€H02ps
02,02, ""oz,05 " “"oz.05

+ €€,

Q

; 2y 07Dy ay 0°Ds oy 02
§<(1_gg) ERAEE b RN

+

At this point the solution to the stationary Fokker-Planck PDE 4.22 may not

be immediately obvious. First, the system will be reduced to the SO(2) case to

gain a deeper understanding of the problem. The SO(2) analysis will result in a

stationary Fokker-Planck PDE with a known analytic solution as will be shown in

Section 4.8. The intuition gained from the SO(2) case will suggest a solution for the

full SO(3) case, which is revisited in Section 4.11.
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4.5 Attitude Filter Formulation in SO(2)

In this section, the attitude filter dynamical model is reduced to the single
axis case of SO(2). In following sections, the reduced model will be shown to yield
tractable analysis results that can provide insight into the full SO(3) case.

As explained in Section 2.3.2; the SO(3) dynamical model may be reduced to
the SO(2) case by simply zeroing out the y and z components of all vector quantities.
Equivalently, the vector quantities in the SO(3) case reduce to scalar quantities, and
SO(3) unit quaternions comprised of four elements reduce to SO(2) unit quaternions
with two elements.

The SO(3) Langevin form error dynamics of Equation 4.5 reduce in the SO(2)

case to

(1) = 51— ounalt) — ki) } © 61
_|eremo| |- )
sheil(t)E(t) 3610w

As explained in Section 2.1.3, the Langevin form error dynamics differential

equation 4.23 is interpreted as a Stratonovich SDE. Converting to It6 form yields

s dz(t)
di(t)
—Lke?(DE(E) — 1024(1) i)y
= dt + dBw(t)
| k() (1) — goun(t) L&(t)ow,
= F(@(0)dt + G(2(1))dB(?) (4.24)
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The attitude filter error dynamics of Equation 4.23 can equivalently be written

in the SO(2) Euler Axis/Angle parameterization (as explained in Section 2.3.2) as

¢(t) = —kei(t)e(t) — ownuw(t)

- —%ke sin (9(0)) = (t) (4.25)

which is immediately in Langevin form. Conversion to an It6 SDE is trivial as the

diffusion matrix G(¢(t)) = —o,, is independent of the state ¢(t):

da(t) = —%ke sin (9(1)) d — o8 (1 (4.26)

Note of course that SDEs 4.24 and 4.26 describe the same system. One can
verify, for example, by taking the Ito derivative (given in Equation 2.16) of £(t) =
a(t) sin (M) and 7(t) = cos (M) with respect to the Ito SDE 4.26 and the trivial

2 2

SO(2) Euler axis SDE da(t) = 0 to recover the It6 SDE 4.24 and vice-versa.
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4.6 Stochastic Lyapunov Analysis in SO(2)

In this section a stochastic Lyapunov stability analysis of the SO(2) It6 SDE
4.24 is conducted and performance bounds are established. The analysis in this

section is the SO(2) analog of the SO(3) analysis of Section 4.2.

Theorem 4.6.1. The attitude error dynamics of the Ito SDE /.24 are weakly

stochastically stable. Further, the attitude estimate error has the ultimate bound

lim E[&%(t)] <

t—o00

(4.27)

N | —

which 1s valid for all k. > 0.

Proof. Choose as a Lyapunov function V() = £2(t). Then application of the differ-

ential generator to the Lyapunov function with respect to the 1to SDE 4.24 yields

V() = (g—g) F(#0) + %tr{GT(w))g—;G(@@))}
= RPN () — 10320 + 1o%()
= — k()& (t) — %aiéQ(t) + iaﬁj (4.28)
< —%afué’?(t) + iaﬁj (4.29)

Zakai’s stability theorem (Theorem 2.1.4) implies the system is weakly stochas-
tically stable.
Application of Zakai’s ultimate moment theorem, Theorem 2.1.5, yields

1
lim EbaQéQ(t)] <o (4.30)

| =

Using the fact that the expectation operator is linear, simple algebraic manip-
ulation provides the attitude estimate error ultimate bound.
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]

As in the SO(3) case, this upper bound is a constant and does not capture
the performance improvement once the filter gain k. is large enough to mitigate
the influence of the gyro noise. Also as in the SO(3) case, it is possible to find an

ultimate lower bound on F [éz(t)].

Corollary 4.6.1.1. The attitude error dynamics of the Ito SDE 4.24 obey the ulti-

mate lower bound

4

1 1 o
— — /1 W 4.31
2 4k, 2 + 4k?2 (4.31)

Proof. Apply Theorem 2.1.5 directly to Equation 4.28 to find

2 (4.32)

lim E[keﬁ2(t)52(t) + %02 52(75)] _—

w
t—o00

Using linearity of the expectation operator, the unit quaternion norm con-

straint £2(t) + 7%(t) = 1, and rearranging results in

0= lim {E[g4(t)i| _ (1 + %) E[é??(t)} + Zli}

= lim { (£ [52@)})2 + Var|2(1)] - (1 + ‘;—w) Bl + ZZI’ } (4.33)

Combining Equation 4.36 with the fact that Var[g2(t)] > 0 results in the

second order polynomial inequality
o=t { (efea])" s varfpe] - (14%2) efea] + 2
> i f (efro])’ - (1455 o] + 52 i
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Solving the polynomial inequality yields the lower ultimate bound.

]

As in the SO(3) case, if the underlying probability density of £2(t) is assumed
to be unimodal, the Jacobson inequality can be used to find a tighter ultimate upper

bound.

Corollary 4.6.1.2. If the underlying probability density of £2(t) is unimodal, the

attitude estimate error dynamics of the Ito SDE 4.2/ obey the ultimate upper bound

o? 1 /5 ot
w _ = (24 %u 4.
Tk 2\ 9 T a2 (4:35)

Proof. From Equation 4.36 it is clear that

0= tli)rgo{ (B [5%})2 + Var[2(1)] - (1 + 2—12”) Bl + :g“} (4.36)

< { ()~ (1 ) o] (22 owverfo])

(4.37)

lim E[é%)} <

t—o00

N
N

If one assumes the underlying probability density of £2(¢) is unimodal and

recognizing that 0 < £2(¢) < 1, the Jacobson Inequality [36] for this system provides

sup Var [52(25)} < (4.38)

Q| —

Substituting the variance bound into Inequality 4.37 results in a second order poly-

nomial inequality in £ [52(15)] :

0< tlirgo{ (E [5%)})2 - (1 + j;—g’) E[?(t)] + (ZE’ + %) } (4.39)
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Solving the polynomial inequality yields the final result.

]

This new ultimate upper bound from Corollary 4.6.1.2 matches the upper

bound from Theorem 4.6.1 for small k. as seen in the limit:

1 o2 1[5 ot 1
lim = 4w = 2y Tw - 4.40
w02 Tan, T2\ T T2 (4.40)

For large k. the upper bound from Corollary 4.6.1.2 has the high gain limit

1 o2 1[5 ot 1 5\ 1 5
lim -+ 2w §+gw —(1— —>:——£z0.127 (4.41)

hevoo 2 Ak, 2 42~ 2 9] "2 6

which is precisely the same high gain limit as in the SO(3) case.
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4.7 Numerical Simulation of Stochastic SO(2) Lyapunov Bounds

Numerical simulations of the SO(2) attitude filter’s It6 SDE error dynamics
of Equation 4.24 were performed for a variety of system parameters. The Kloeden-
Platen Explicit Weak 2.0 numerical integration scheme discussed in Section 2.2.3
was used. For each simulation realization, a time step size of At = 0.1 was used
for a total of 10% simulation steps. At the end of a simulation realization, the last
107 simulation steps were used to compute the empirical ergodic mean of the filter
attitude estimate error €2(¢). An ensemble of 7 realizations were simulated for each
choice of system parameters; as before, the ensemble mean of the ergodic means was
them computed.

A gallery of plots of the filter attitude estimate errors are included in Figure
4.2. A magenta dot indicates the ensemble mean of the ergodic means. The stochas-
tic Lyapunov bounds of the previous section are also drawn on the plots, with the
upper bound from Theorem 4.6.1 in red, the lower bound of Corollary 4.6.1.1 in blue,
and the upper bound of Corollary 4.6.1.2 in yellow. As in the SO(3) case, all the
stochastic Lyapunov bounds do correctly envelope the ensemble of the simulation
realizations. The ultimate upper bound from Theorem 4.6.1, which is independent
of any system parameters, is increasingly conservative for large k. but does tightly
match the numerical simulation data for small k.. The ultimate upper bound of
Corollary 4.6.1.2 bends at the transition region in the numerical simulation data
but levels off, growing increasingly conservative, for large k.. The ultimate lower

bound of Corollary 4.6.1.1 most closely bounds the numerical data.
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Figure 4.2: Comparison of simulation realizations of attitude estimate errors of the SO(2)
error dynamics It6 SDE of Equation 4.24 to the stochastic Lyapunov upper
bound from Theorem 4.6.1 in red, the lower bound of Corollary 4.6.1.1 in blue,

and the upper bound of Corollary 4.6.1.2 in yellow.
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4.8 Fokker-Planck Analysis in SO(2)

Let p = p(gz;(t), t> be the joint probability density for the attitude filter error

¢(t). The Fokker-Planck PDE associated with the attitude filter error dynamics It6

SDE 4.26 is given by

»__ z 2 [ s(awpwtan. 0] + ;z s [{etam)e @}, sa.o)
— Lcos (50))p(6(0,1) + 2 sin (30) g—z i %%g?p (1.42)

Theorem 4.6.1 showed the attitude filter error dynamics of the 1to6 SDE 4.24
are weakly stochastically stable. As explained in Section 4.5 the 1t6 SDE 4.26 is an
equivalent parameterization of the It6 SDE 4.24 (as they both describe the same
underlying system) and thus the [t6 SDE 4.26 is also weakly stochastically stable.
For further verification, one can form the SO(2) Fokker-Planck PDE in the SO(2)
quaternion parameterization and use the usual change of variables formula (along
with the unit quaternion norm constraint %(¢) +7%(t) = 1 and the equivalent Euler
axis norm constraint a(t) = 1) to arrive at the Fokker-Planck PDE 4.42.

Thus the joint probability density function p(a;(t), t> ultimately approaches a

stationary probability density function

= 0. (3) = fim p(500,1)

t—o00

which is the solution to the stationary Fokker-Planck PDE

9%ps
D2

0= %k’e cos (gz;)ps <q~5> + %kze sin (gz;) 88]2: + %ai

(4.43)
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The SO(2) stationary Fokker-Planck PDE, which is actually an ODE, is tractable.

An exact solution is given in the following theorem.

Theorem 4.8.1. The stationary Fokker-Planck PDE of Equation 4.43 is solved by

the von Mises probability density function

Ds <¢~>) = % exp {f—; cos (gz;) } (4.44)

w

where the normalization constant N is given by

2 ke N 5 ke
N = exp  — COS ((b) dp =4mly | —
—2m Ow Ow
and Io(z) is the 0 order modified Bessel function of the first kind.

Proof. The stationary Fokker-Planck PDE of Equation 4.43 is not solved by the
wrapped normal distribution, the wrapped Cauchy distribution, the wrapped ex-
ponential distribution, or the cardiod distribution [53,60,61]. Consider instead the

von Mises probability density function of the form

pa(d) = % exp {n cos () } (4.45)

where the normalization constant N is a positive scalar and the concentration pa-
rameter x is a non-negative scalar.
Substituting the PDF of Equation 4.45 into the right hand side of the PDE

4.43 yields the expression

{% cos (8) (ke — o) + 5 sin? (&) (2% — ko) }% exp { (9) }

which is zero for all possible ¢ if and only if k = C’f—;
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Thus p, <q~5> = % exp {5—5 coS (gz;)} solves the stationary Fokker-Planck PDE
with the to be determined scaling constant V.
The scaling constant N may be recovered by enforcing the probability density
normalization constraint
2m 5 5
| n(3)io=1
—27
Noting that the modified Bessel function of first kind is given in integral form [28§]

as

™ ™

1 ™ : oo
I,(z) = —/0 cos(vy)e M dy — sm(—mr)/o e~ cosh)—vt gy (4.46)

the normalization constant can be found as

where the second equality holds because the integrand is periodic with period 27
and the third equality holds because the integrand is even.

]

The analytic solution to the stationary Fokker-Planck PDE allows for the
computation of ultimate statistics of the filter’s attitude estimate error. The follow-
ing corollary shows that the SO(2) attitude estimation filter of this chapter is an

(ultimately) unbiased estimator.
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Corollary 4.8.1.1. The error dynamics of the Ito SDE 4.24 have the ultimate mean

lim E[£(t)] =0 (4.47)

t—o00

Proof. Compute the expectation using the probability density function from Theo-

rem 4.8.1

2
tli}m E[g(t)] = % € exp {j—; cos (é) }dé

Note that sin(-) is an odd function but e°*() is an even function, so the inte-
grand is an odd function. The integral of an odd function over a symmetric interval
about the origin is zero.

]

The next corollary allows one to analytically compute the ultimate noncentral
second moment of the system. Since the ultimate mean was found to be zero in the
previous corollary, the ultimate noncentral second moment given below is also the

ultimate variance (also known as the ultimate central moment).

Corollary 4.8.1.2. The error dynamics of the Ito SDE 4.24 are such that

lim E[£(1)] = % 1— % (4.48)
0\ox

where Iy(x) and I1(z) are the 0 and 1°* order modified Bessel functions of the first

kind respectively.
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Proof. Compute the expectation using the probability density function from Theo-

rem 4.8.1

lim E[£*(t)] =

t—o00

where the integral form of the modified Bessel function of the first kind, as stated

in Equation 4.46, was used. [
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4.9 Numerical Simulation of Stochastic SO(2) Analytic Results

Figure 4.3 shows the probability density function computed from an ensem-
ble of 100 realizations for four different gyro noise levels. The von Mises PDF of
Equation 4.44 is also drawn in both plots and is in exact agreement with the nu-
merical data. The top plot depicts the PDFs in SO(2) quaternion space; note that
the data is restricted to the unit circle in (£,7) space which is a great circle of the
unit quaternion hypersphere. The peaks in the PDF correspond to the n = 1 and
7 = —1 “poles” on the unit quaternion hypersphere. The bottom plot shows the
same PDFs in Euler angle space, “unwrapping” the data for a two dimensional plot
and confirming the peaks (at ¢=0and ¢ =27 ) have the same height. Note that
the PDF is bimodal and symmetric with period 27. This is to be expected as there
is a 2-to-1 covering from quaternions to rotations; specifically, g and —q encode the

same rotation.
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Figure 4.3: PDFs for the It6 SDE 4.24 computed from an ensemble of 100 realizations for
four gyro noise levels agree with the von Mises PDF of Equation 4.44; depicted

in SO(2) quaternion space (top) and Euler angle space (bottom).

193



Consider again the numerical simulations of the SO(2) attitude filter’s It
SDE error dynamics of Equation 4.24 first discussed in Section 4.7. Figure 4.4 com-
pares the analytic ultimate variance of Corollary 4.8.1.2 to numerical simulation
realizations. There is excellent agreement between the numerical simulation results
with the analytic ultimate variance for all sampled values of the system parame-
ters. Note that as Theorem 4.8.1 shows that the ultimate PDF of the underlying
system is parameterized by the ratio f—g, and consequently the ultimate variance
lim; o E [éz(t)} of Corollary 4.8.1.2 is parameterized by the same ratio, a plot of
the ultimate variance as a function of k. is merely shifted horizontally when o,

changes which correctly matches the numerical simulation results in Figure 4.4.
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Figure 4.4: Comparison of simulation realizations of attitude estimate errors of the SO(2)
error dynamics It6 SDE of Equation 4.24 to the ultimate variance given by

the analytic solution from Corollary 4.8.1.2.
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4.10 An SO(3) Upper Bound

This section explores possible ultimate upper bounds on €7 (t)é(t) for the
SO(3) case by extrapolating the ultimate upper bound for £%(¢) for the SO(2) case
given in Corollary 4.8.1.2. The factor of % in Equation 4.48 is rescaled to % so the
SO(3) bound matches the low filter gain limit seen in all the bounds of Section 4.2
as well as the low filter gain limit apparent in the numerical simulation results of
Section 4.3. The general form of the notional bound is assumed to have the same

structure as that of Equation 4.48, but as the SO(3) case is driven by three indepen-

ke
£odh

dent noise sources the notional bound is assumed to be parameterized by where
the positive scaling constant £ is to be determined. This results in the following

proposed SO(3) ultimate upper bound

Il ’Ze
bound ({, k—;) = 3 1— ﬁ
o

)
(4.49)
\h

Figure 4.5 contains a gallery of the proposed upper bound for various choices

w

of £ are superimposed on plots of the numerical simulation realizations of the SO(3)
attitude filter’s error first presented in Section 4.3. In all cases considered, the
choice of £ = 3 in the expression of Equation 4.49 bound the simulation realizations;
however, smaller choices of £ do not bound all simulation data.

The choice of ¢ = 3 can be understood as an upper bound in the following
thought experiment. The variance of a random walk process in three dimensions
driven by three independent noise sources each acting on a single axis can be upper

bounded by the variance of a single dimensional random walk process driven by
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Figure 4.5: Comparison of simulation realizations

IS

of the attitude estimate error and the

notional bound of Equation 4.49 for several choices of ¢ and for various gyro

measurement noise levels .

the same three independent noise sources each acting on the single axis. In other

words, focusing the noise energy of all noise sources along a single physical dimension

maximizes the potential for constructive and destructive interference. Of course, in

the SO(3) case considered in this chapter, the energy of any noise source is restricted

to a gyro measurement channel; since gyro measurement axes are orthogonal the

measurement noise sources will never “align” and the choice of £ = 3 is thus an
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upper bound.

Following the above logic, the SO(3) attitude estimate variance may be upper
bounded by the attitude estimate variance of the SO(2) attitude filter when driven
by three independent noise sources. Assuming the three independent noise sources
each have the same variance ¢2 | the ultimate attitude estimate error variance is
equivalent to that of the SO(2) attitude filter when driven by a single noise of noise

variance 302, yielding the heuristic upper bound

lim E[éT(t)é(t)] < Z 1 M (4.50)

t—o0

The upper bound is drawn again for clarity in the plots of Figure 4.6.
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Figure 4.6: Comparison of simulation realizations of the SO(3) attitude estimate error for
the It6 SDE 4.6 and the ultimate upper bound of Equation 4.50 for various

gyro measurement noise levels .
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4.11 Exact Solution to the Stationary SO(3) Fokker-Planck PDE

In this section, the understanding gained from the SO(2) analysis and its
SO(3) extrapolation are used to identify a possible distribution for the SO(3) case.
This distribution is then shown to indeed solve the SO(3) stationary Fokker-Planck
PDE. The solution is used to find an analytical expression for the ultimate attitude
estimate error which will be compared to numerical simulation data in the following
section.

Given the success of the von Mises distribution in the SO(2) case, it is natural
to look for generalizations for the SO(3) case. The Bingham distribution [§] is a
distribution on the d — 1 unit hypersphere in R%; its probability density function
has the form

p(x) = %exp {a:TMZMTa:} (4.51)
where M € R%? is an orthogonal matrix, Z € R% is a negative semidefinite di-
agonal matrix, and & € R? is such that ||z| = 1 [48]. The quadratic form in the
exponential of the Bingham probability density function guarantee this distribution
antipodally symmetric [60], meaning p(x) = p(—«). This is a necessary property
for a PDF to be meaningful for an orientation distribution as g and —q encode
the same rotation. For certain choices of parameters, the two dimensional Bingham
distribution reduces to the von Mises distribution on the unit circle [48]. The Bing-
ham distribution has been used to represent the assumed probability distribution
for quaternions in a Bayesian filter by Glover and Kaelbling [27] and in a recursive

filter implementation by Kurz et al [48], as well as being used in texture analysis and
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crystallography [47]. A special case of the Bingham distribution, called the Bipolar

Bingham distribution by Kunze and Schaeben [47], has the form

Ds (gb) - %exp {A cos (¢> } - %exp {A(2ﬁ2 - 1)} (4.52)

which is identical in structure to the von Mises probability density function that
solved the SO(2) case. This form is equivalent to the general Bingham PDF with
M =1 and Z = diag (=X, —A, =\, A) and noting by the unit quaternion normal-
ization constraint 1 = &2 + &2 + &2 + 7>. The next theorem shows that the Bipolar

Bingham distribution solves the SO(3) stationary Fokker-Planck PDE.

Theorem 4.11.1. The stationary distribution for the attitude estimate error dy-
namics of the Ito SDE 4.6 is given by the Bipolar Bingham probability density func-
tion
3 1 ke .
Ds (qb) = &P {% cos <¢> } (4.53)

where the normalization constant N is

ke ke
N = 7T2[0 (0_—2> - 7T2[1 (0_—2>

and Iy(x) and I (x) are the 0" and 1% order modified Bessel functions of the first

kind.

e 3 9 A o o
Proof. By definition 1 = cos (5), so 7)? = cos? <§> = % (1 + cos (qb)) Substituting

into the Bipolar Bingham PDF of Equation 4.52 yields

ps () = %exp {A (27 —1) } (4.54)
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Taking partial derivatives as appropriate and substituting into the right hand

side of the SO(3) stationary Fokker-Planck PDE 4.22 yields
1
{ = 50 =20 + 20 - Nk =20 + 2008~ 22 b,

which is zero for all possible q if and only if A\ = 5_5

Thus p, <q~5> = % exp {5_5 coS (q@)} solves the stationary Fokker-Planck PDE
with the to be determined scaling constant V.

The scaling constant N may be recovered by enforcing the probability density
normalization constraint. Note that in the SO(2) case, the normalization constant
found in Theorem 4.8.1 was computed by integrating over the circle of unit radius,
so the differential element was a section of arc (again with unit radius). To find the
normalization constant here, the integration must be done over the surface of the unit

quaternion hypersphere which can be performed in hyperspherical coordinates; [47]

provides such a parameterization for unit quaternions as

)

> (4.55)

€z 7 sin(#) cos(v)) sin (

N[

5 asin (%) B Ey 7 sin(6) sin(v)) Sin<

)

Qe
Il
Il
|
|
N[

il cos (%) £, 7 cos(0) sin <

n T COS (%)

N[

where the final parameterization utilizes hyper-spherical coordinates with radius

7 = 1. Essentially, the hyper-spherical coordinate parameterization is the Euler
axis and angle formulation with the Euler axis expressed in (traditional) spherical
coordinates @ = [sin(f) cos(v)) sin(f) sin(+p) cos(6)]” with polar angle 6 € [0, ] and
azimuth angle 1 € [0, 27].
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The differential surface element for this manifold is given in [47] as

1 5 N~ - -
5 sin? (g) sin (9) dddadi
so the normalization constant can be found by computing
L (3N
expi — cos | ¢ }— sin? | = | sin () dodfdy
L)y (5) 2 0)
1 T[T 5 [T & k, B B
= 5/0 dw/o sin (9) d@/o sin’ <2> exp{a—?ﬂ 08 ((b)}dgb
1 o1 ~ k. ~ -
= 27r/0 (5 — §COS (qﬁ)) exp {g cos (gb) }dgzﬁ
ke ke
=0 () - (57)
recognizing the integral form [5]

I(z) = ! /07r cos(nx) exp {z cos(x)}dx VneN (4.56)

T
as the n'" order modified Bessel function of the first kind.

O

In the Bayesian filter work by Glover and Kaelbling [27] and the recursive filter
implementation by Kurz et al [48], the underlying probability distribution was as-
sumed to be given by a Bingham distribution. Motivations for this assumption were
given as its natural representation of quaternions, its relationship to the Gaussian
distribution, and a maximum entropy property [59]. The above theorem formally
proves that the attitude estimate error state for the filter of Equation 4.3 actually
does asymptotically converge to a Bingham distribution.

Now that the stationary Fokker-Planck PDE is known to be solved by the
Bipolar Bingham distribution of Equation 4.53, the PDF can be used to find analytic
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expressions for various stationary statistics of the process. The following corollary

shows the filter is ultimately an unbiased estimator.

Corollary 4.11.1.1. The error dynamics of the Ito SDE 4.6 have zero stationary

mean:

lim E[é(t)] =0

t—o00

Proof. Using the hyperspherical parameterization for the unit quaternion from Equa-

tion 4.55, each element of the stationary mean vector may be computed in turn by

taking the expectation on the unit quaternion hypersphere as

where

lim E[&(t)]

t—o0

My

my

o om o N ] -
mx:%/@zzo/ézo/&:ofsm (9> cos (@D) sin (%

—; cos <$

w

{k
X exp
g,

=
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£

/0 " cos (§)ad / "sin? () dd / i

sin (9) dpddy

¢ ke
5 exp 2 cos



and

= [T [ Sm(@sm(g)
X exp {f—; cos <gz~5> }% sin? (%) sin (é) dq@déd;ﬁ
= % /027r sin (1&) dz/; /O7r sin? <§) do /O7r sin® <§) exp {:—2 coS (q@) }dqg

and

DO [

xexp{—cos () } ( >sm<~> dddfdy
<o [0 [ (0o @) [ () {5 o (8)

=0

N)I)—t

]

The next corollary develops an analytic expression for the ultimate noncentral
second moment lim, ., E[€”()&(t)], which was only upper and lower bounded in
the analysis of Section 4.2 and heuristically bounded in the analysis of Section 4.10.
Note that as the ultimate mean was found to be zero, the ultimate noncentral second
moment is also the ultimate variance (the ultimate central second moment). The

ultimate variance is a function of the ratio of 5—2

w

Corollary 4.11.1.2. The error dynamics of the Ito SDE 4.6 are such that

lim B[&7(1)&(t)] = o (51) —4h (3) + 2 (3) (4.57)

A (k%) -n(%))
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where I,,(x) is the n'* order modified Bessel function of the first kind.

Proof. Recall from Section 2.3.1 that €(t) = a(t) sin (%)
Noting that by construction a’(t)a(t) = 1 V ¢, the expectation can be com-
puted using the probability density function from Theorem 4.11.1 and integrating

on the manifold:

lim B[&" (1)&(1)] /60/¢ 0 (%) exp % (qb)}

]

The ultimate covariance matrix can similarly be found as shown in the follow-

ing corollary.

Corollary 4.11.1.3. The error dynamics of the Ito SDE 4.6 have the ultimate

covariance matrix

lim B[q()q" (1)] = diag (5,5, 5.1 - v) (4.58)

where




Proof. As in Corollary 4.11.1.1, the hyperspherical parameterization for the unit
quaternion from Equation 4.55 can be used to find each element of the stationary

covariance matrix by computing in turn the expectation on the unit quaternion

hypersphere for

lim E[q(t)g" (t)] = lim

t—o00 t—o00

CCBm ny C:EZ C"E S
Coy Cyy Cyz Cys
sz CyZ CZZ CZ S

CIES Cys CZS CSS

Noting 7 = 1 V ¢, the diagonal elements are computed as

Caz = % :TO /9 jo /¢ :) 72 sin® (é) cos® (15) sin? (g)
X exp {j—; coS ((5) }% sin? (g) sin (5) d(%déd?/;

w

OO

() 1n () () ()
sl -n()
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Cyy = N/qpo/eo/qjor sin? 8)8111 sm (%)
X exp {f—; cos (qg) }% sin? (g) sin (5) dquédl/;

w

o
Cor = N/wo/eo/qsorcos 9)5111()
xexp{—cos( )}—sm (%) sin (5) dq@déd@;
:%/O%d@ﬁ/oﬂsin 0) cos? (9)6[9/0 sin? (g) exp{k—;cos (é)}d(%
1 1 2w 2 37?1 ke 7rj_ ke 7r[ ke
ey ) P () ()
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T (9
X exp {5—; cos gz~5> }% sin? (%) sin (é) dgzzdédz@

2N/ d@/}/ sin d@/ cos? (;) sin? (;}) exp{f—gcos (qg)}dgz;

- ;<1+eos<¢>>é<1 e (5) o { Ly n ()

QN/ 1 cos? exp{% s(qb)}dqz;

= % (% — %cos <2q§)> exp {% coS <q3> }dé

7 (i) o ()
e (i) - won (&)

) n() (%)
RO TR
The off diagonal elements of the ultimate covariance matrix are all zero:

Cay = %/:TO /9; /J:o 72 sin? (5) sin (2/~1> cos <1/~1> sin? (g)
X exp {5— cos (gz~5> }% sin? (%) sin (5) dgz;déd@

S

w

_ / sm ( dz/;/ sin® /sm ( )exp{j—écos (&)}d&

=0
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N/¢ 0/0 0/(25 07" sm COS 6’ cos (¢> sin? <?>

2
X exp e cos % in? (%) sin (9) ddidi)

:—/02 cos d;/)/ sin? cos Q)dﬁ/ sin* ( )eXp{—a &)}dﬁg

=0

N/QTr /ﬂ/ 72 sm cos 1/} sin (2) cos (;b)
$=0 J6=0 J $=0
xexp{f— coS (&)}%sm (g) ( )d(bdéd?])
—_/2 cos dw/ sin? / sin® ( )cos <§> exp{j—gcos <g§>}d@

=0

Cyz = N/w 0/90/¢07“ sin cos 9 sm<¢>sm ( )

X exp —COS % in? (%) dgbd@d@b

= —/ sin dz/)/ sin? cos d@/o sin (%) exp {% coS (gz;) }dgg

=0
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Cys = ¥ /w 0/9 0/¢ Dr sm sm (1/?) sin (%) coS <§)
X exp {f—; coS (é) }% sin? (g) sin <§) dggdédzﬂ
= % /027r sin (1/?) d@@ /07r sin? (5) do /07r sin® (g) cos (g) exp {5—2 cos (é) }dgz;

DO [

Cas / / 7 cos sm (i) Cos ( )
6=0 J g=0
X exp {j—e coS <q3> }1 sin® (g) sin (é) d&dédzﬂ
ZN/ dw/ Sln é) df /07T sin® (gﬁ) Cos <§) exp {5—5008 (&) }dq;
=0
[l

Corollary 4.11.1.3 provides several insights for this system. First, the states
are ultimately uncorrelated for any filter gain k. and gyro noise o,,. Next, the ul-
timate covariance matrix is parameterized by the ratio of (f—g as was the ultimate
scalar ultimate variance as found in Corollary 4.11.1.2. Finally, in the no feedback
case (when k. = 0), then v (0) = 3 and lim,_,, E[q(t)g” (¢)] = 11. This calculation
agrees with the value given in Choukroun [13] who studied the no feedback case.
Note however that Choukroun’s technique only found the ultimate covariance. The-

orem 4.11.1 provides the actual distribution, which in the no feedback case reduces
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to a uniform distribution on the unit quaternion hypersphere.
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4.12  Numerical Simulation of Stochastic SO(3) Analytic Results

The numerical simulation realizations of the SO(3) attitude filter’s estimate
error first presented in Section 4.3 are depicted again in the gallery of Figure 4.7,
now with the analytic ultimate attitude estimate error of Equation 4.57 superim-
posed. The analytic result exactly matches the numerical simulation data in all

cases considered.

Attitude Estimate Error o, = 0.01

Attitude Estimate Error o,, = 0.05

10t

10

(o()-1(2))

« sim realization

10 102 10°
ke

Attitude Estimate Error o, = 0.1
10°, Bl P o
10t
1072

W
1073
e _(3) 9(2)(3)
() 1(%))
- sim realization

102 10°

ke

10

(o()-1(2))

« sim realization

10 102 10°
ke

o Attitude Estimate Error o, = 0.5
10 T Ea
10t
1072

W
1073
e _(3) 0(2)(3)
1(0()1(%))
- sim realization

102 10°

ke

10

Figure 4.7: The analytic ultimate attitude estimate error of Equation 4.57 exactly matches

simulation realizations of the SO(3) attitude estimate error for the It6 SDE 4.6.
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Chapter 5: Gyro Bias Filter for Gyro with Constant Bias and Addi-

tive Noise

In this chapter, the analysis of the previous chapter, which considered gyro
additive noise, is extended by also including constant gyro bias. The filter state is
augmented to include a gyro bias estimate which is driven by an adaptation law of
the observer from [95,101]. As in Chapter 4, the attitude measurements are assumed
to be perfect.

Section 5.1 presents the measurement models considered, the formulation of
the attitude filter, and culminates with the derivation of an It6 SDE for the system
error dynamics. The following Section 5.2 uses an appeal to the converse Lya-
punov theorem by leveraging the GES result of the deterministic observer of [95]
to demonstrate the filter is weakly stochastically stable. As the explicit form of
the Lyapunov function is not provided via the converse Lyapunov theorem, Zakai’s
Ultimate Moment Bound Theorem 2.1.5 cannot be invoked to bound system perfor-
mance. Section 5.3 develops the Fokker-Planck PDE associated with the filter error
dynamics.

The system is then reduced to the SO(2) case in Section 5.4 to gain more

insight into the filter error dynamics. The SO(2) stationary Fokker-Planck PDE
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again proves to be tractable in Section 5.5, yielding analytic expressions for the
ultimate attitude estimate error mean and variance as well as the ultimate gyro
bias estimate error mean and variance. These results are verified via simulation
analysis in Section 5.6. Similar to Section 4.10, Section 5.7 provides bounds for
the ultimate attitude estimate error mean and variance as well as the ultimate gyro
bias estimate error mean and variance for the SO(3) gyro constant bias filter by
extrapolating the SO(2) results of Section 5.5. Finally, the intuition gained from
the SO(2) analysis and the success of the heuristic upper bound are used to solve
the Fokker-Planck PDE for the SO(3) case in Section 5.8 which is subsequently used
to find analytic expressions for various ultimate statistics. The analytic expressions
for filter ultimate statistics are then compared to numerical simulation realizations

in Section 5.9.
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5.1 Gyro Bias Filter Formulation in SO(3)

In this section, the angular rate gyro measurements are modeled as having a

constant bias b as well as additive noise
wg(t) =w(t) + b+ o,n,(t) (5.1)

where, as before, w,(t) is the gyro measurement at time ¢, w(t) is the true vehicle
angular rate at time ¢, o, is a positive scaling constant, and () is a zero mean
unit variance Gaussian white noise process. As the bias is assumed to be constant,
b(t) = 0.

Further assume that the filter has access to perfect (noise free) attitude mea-

surements @, (t) of the vehicle attitude q(t)

£x(t)
et Eyll
an(t) = q(t) = " = " (5.2)
n(t) ex(t)
() |

The vehicle attitude g(t) evolves according to the usual kinematics equation

(1) = yw(t) ® (1)

Consider a nonlinear adaptive gyro bias filter based on the observer from [95]

i) = 5 { A(a(0) [wyl0) - b0) + k)] 400
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where o > 0 is the filter adaptation gain parameter and I;(t) is the filter’s estimate

at time t of the gyro bias b. The filter’s bias estimate error B(t) is given as
b(t) = b — b(t) (5.4)

The filter uses its bias estimate in the filter kinematic equation to attempt to correct
for the true bias in the gyro measurement. As before, k. > 0 is a filter (estimator)
gain parameter and q(t) is the filter’s estimate of the vehicle attitude. The rotation

parameterized by q(t) is the filter’s attitude estimate error, given by

q(t) = =q(t)®q (1) (5:5)

which is available in real time for the filter to use since the attitude measurements
are assumed to be noise free. The rotation R(cj_l(t)) resolves the angular velocity
terms in the filter’s reference frame.

The attitude filter dynamics given by Equation 5.3 can be combined with
the quaternion error kinematics of Equation 2.71 and the measurement models of
Equations 5.1 and 5.2 to find the filter’s estimate error dynamics as a Langevin form

differential equation:
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ai)(t)E(t)
kP (WEW) = MM+ [E0) < 1Jbm)| | =3 {an1+ [0 x ] o
= Len(ET (H)E(t) + L7 (1)b(t) + L (o, Ty (1)
afi(t)&(t) 0
(5.6)

As explained in Section 2.1.3, the Langevin form error dynamics differential

equation 5.6 are interpreted as a Stratonovich SDE. Converting to an It6 SDE results
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in the following

dé(t)
dq(t)
| T da()
db(t)
- db(t)

sken(t)ET (HE(t) + 3T (1b(t) — Fon(t)
aj(t)e(t)
—1{i1 + [E0) x ] }ou
+ LT (H)ar,, dBu(t)
0

1 (:I:(t)) dt + G (:;:(t)) B (1)
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5.2 Stochastic Stability Analysis in SO(3)

A tractable analysis demonstrating weak stochastic stability of the gyro con-
stant bias filter’s error dynamics of It6 SDE 5.7 does not appear to be as straight-
forward as the stability analysis for the filters of Chapters 4 and 5. An explanation
will be given in this section; however, a conclusion of weak stochastic stability is
reached by leveraging analysis of the deterministic case and an appeal to a converse
Lyapunov theorem.

A Lyapunov function that allows one to determine weak stochastic stability for
the error dynamics of the It6 SDE 5.7 using Zakai’s stability result of Theorem 2.1.4
has eluded the author. Consider a simple augmentation of the Lyapunov function

that proved successful in Section 4.2

V(&) = " (0E(t) + BT (6)b(1) (5.8)

2v(e) - (52) @)+ yu{cr @) 5Le@0) )
_ —%keﬁz(t)éT(t)é(t) - %afvé%)é(t) + gaz, (5.9)

Note that while .2V is negative for sufficiently large attitude estimate error, it is
completely unaffected by the bias estimate error state. Zakai’s Stability Theorem
2.1.4 requires £V to be negative definite for any ||&| > Ry (for some appropri-
ate choice of finite Ry) to conclude weak stochastic stability. Thus the Lyapunov

function of Equation 5.8 does not meet the conditions of Zakai’s theorem; however,
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Zakai’s Stability Theorem does not necessarily conclude that the system of It6 SDE
5.7 is not weakly stochastically stable. It could very well be the case that another
Lyapunov function does meet the conditions of Zakai’s Stability Theorem.

This situation is frequently encountered in deterministic adaptive estimation
and control theory [32]. In the deterministic version of the error dynamics for this
filter (when o,, = 0) the Lyapunov function of Equation 5.8 encounters a similar
issue, V is only negative semidefinite. The invariance principle of LaSalle for au-
tonomous systems, or the lemma by Barbalat for nonautonomous sytems, can be
used [42] to show that the system is still stable in the deterministic case. There
are nonautonomous stochastic extensions of LaSalle’s Theorem [15,57,86]; however
the versions cited all require £V to be upper bounded [15] or ultimately upper
bounded [57,86] by a negative semidefinite function. The positive constant 302, at
the end of 2V of Equation 5.9 prevents the Lyapunov function of 5.8 from satisfying
the conditions of the cited stochastic extensions of LaSalle’s Theorem.

Fortunately a much stronger stability result for a deterministic version of the
gyro constant bias filter, referred to here as a constant bias observer, is available
due to Thienel and Sanner [95]. In addition to merely showing the the constant
bias observer is stable via Barbalat’s Lemma, they were able to prove the observe is
Globally Exponentially Stable (GES). The fact that the observer’s estimate errors
go to zero is intuitively obvious; a bias estimate error would corrupt the observer’s
attitude kinematics which would in turn lead to an attitude estimate error, but
attitude estimate errors are used to drive the bias adaptation law to correct the
bias estimate. The proof behind this intuition is not obvious; it was conducted via
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a time varying observability analysis that effectively demonstrated persistency of
excitation of the error states. Thienel and Sanner were able to conclude that not
only do €(t) and l;(t) go to zero, but the convergence is exponentially fast.

As the deterministic observer’s error dynamics are GES, the Converse Lya-
punov Theorem 2.1.3 may be employed to demonstrate existence of a Lyapunov

function with the property

ov - -
T fons(@(1)) < —cal3]° (5.10)

where

Frang (2(t)) = Lkeii(t)ET (1)E(t) + 367 (1)b(t) (5.11)

ai(t)e(t)

Equation 5.10 implies that the Stratonovich to Ito conversion term

o2 €(t)

a .
%Z ﬁgj = fconv(‘i(t)) = |-

o|w

o|w

0% oni(t)

0

is such that

oV . -
a_ifcorw(m(t)) S _63”3”'”2

Provided the additional assumption that g% is bounded, this Lyapunov function
satisfies the conditions of Zakai’s Stability Theorem 2.1.4 and the gyro constant bias
filter’s error dynamics of Ito SDE 5.7 are weakly stochastically stable. Note that
the explicit form of this Lyapunov function remains unknown and thus can not be

used with Zakai’s Ultimate Moment Bound Theorem 2.1.5 to provide a quantitative

performance bound.
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5.3 Fokker-Planck PDE in SO(3)

Let

be the joint probability density for the attitude estimate error g(¢) and gyro bias
estimate error b(t). The Fokker-Planck PDE associated with the gyro bias filter

error dynamics [to SDE 5.7 is given by

% — k, (2772(75) - 1) p— (lke (1—72(t) (1) + gffiﬁ(t) + 25T(t)b(f)) o

# 3 (mar - 202) &) + 0800 - 208,00 + 2,000 | 2
#5{ (520 - 02 ) &0 + 100 - 5000+ 20000 | 7
+5{ (120 - 302) &0 + 1000 - 5,000 + 2000} 22
F R 5o + &0 5 + (0055 )
% (1-20) 52 + - &0) % + (- 200) 55+ (1- 7)) 55
—ail(t) (@(t)ﬁi 0 >§b"> (5.12)

which is the same PDE as Equation 4.20 with additional terms associated with the

gyro bias estimation error highlighted in red.

Since the gyro bias filter error dynamics [to SDE 5.7 were shown to be weakly
stochastically stable in Section 5.2, the joint probability density p((j(t), b(t), t) ul-
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timately approaches a stationary density ps ((j, l~)>

Dy = Ds (q, B) — lim p<(j(t), b(t), t>

t—o0

which obeys the stationary Fokker-Planck PDE

0=k, (sz - %) 2 (%k (L =7) 7+ gafuﬁ + ;é%) %;:75
+ % { (ken2 — Zai> Ex + by — &by + éyéz} gﬁ;
+ % { (k;eﬁQ - Zai) &y + by — Exb: + 525T} gg:
o { (kn - Zai) &y + b — &,y + b} gf
R a2
e 85:?@ + gyﬁagz%ﬁ * 52770;];;77)
+ 2 (0-) Sk -g) SR a-2 5k

+(1-7)

(5.13)

9%ps
on?

(5.14)

which is similar to the stationary Fokker-Planck PDE of Equation 4.22 with new

terms highlighted in red.

The solution to the stationary Fokker-Planck PDE 5.14 may not be clear at

this point. First, the system will be reduced to the SO(2) case to gain a deeper

understanding of the problem. The SO(2) analysis will result in a stationary Fokker-

Planck PDE with a known analytic solution as will be shown in Section 5.5. The

intuition gained from the SO(2) case will suggest a solution for the full SO(3) case,

which is revisited in Section 5.8.
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5.4 Attitude Filter Formulation in SO(2)

In this section, the gyro bias filter dynamical model is reduced to the single
axis case of SO(2). In following sections, the reduced model will provide tractable
analytic results that can provide insight into the full SO(3) case.

As explained in Section 2.3.2; the SO(3) dynamical model may be reduced to
the SO(2) case by simply zeroing out the y and z components of all vector quantities.
Equivalently, the vector quantities in the SO(3) case reduce to scalar quantities, and
SO(3) unit quaternions comprised of 4 elements reduce to SO(2) unit quaternions
with two elements.

The SO(3) Langevin form error dynamics of Equation 5.6 reduce in the SO(2)

case to

I aij(t)e(t)
— 3PP (E)E(t) — §(t)b(1) —30(t)ow

= | Lki(t)22(t) + L2b(t) | | Let)oy, | M) (5.15)
i an(t)é(t) | i 0 |

As explained in Section 2.1.3, the Langevin form error dynamics differential
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equation 5.15 is interpreted as a Stratonovich SDE. Converting to It6 form yields

- -dé(t)-
) dq(t)
de(t) = | | = |di(t)
db(t)
- db(t)
— sk (1)E(t) — Sii(1)b(t) — 302E(t) —357(t)o
= | IkAE(t) + La)b(t) — Lo2i(t) | A+ | 1&(t)a, | dBu(l)
_ afi(t)E(t) _ 0
- f(aé(t))dt + G(:i:(t))dﬂw(t) (5.16)

The attitude filter error dynamics of Equation 5.15 can equivalently be written

in the SO(2) Euler Axis/Angle parameterization (as explained in Section 2.3.2). Let

[
o ()

Then the SO(2) Euler Axis/Angle parameterization of the filter error dynamics is

Qe
Il
il [N

given as

b(t) WIOE0

B —%kesin<q~5(t)>—l~7(t) N TOw N (1) (5.17)

tasin <q5(t)> 0

which is immediately in Langevin form. Conversion to an It6 SDE is trivial as the
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T

diffusion matrix [ — 0w O] is independent of the state:

do(t)

db(t)

~tkesin (9(1)) = b(t) dt || dgu(o)
%oz sin <€Z~5(t)> ’

F(y(t))dt + G(g(t)ds(t)
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5.5 Fokker-Planck Analysis in SO(2)

In this section the stationary Fokker-Planck PDE is derived and directly solved
for the Gyro Constant Bias Filter. The solution is subsequently used to find analytic
ultimate expectations for the filter’s attitude estimate error mean, attitude estimate
error variance, the gyro bias estimate error mean, and the gyro bias estimate error
variance.

Let p = p(g}(t),t) = p(&(t),&t),t) be the joint probability density for the
SO(2) Gyro Constant Bias Filter estimate error states. Then the Fokker-Planck

PDE associated with the 1to6 SDE 5.18 is given by

2

vy 2 [fi(g(t))p(g(t),t)] . 22: . aa {{G(?J(t))GT(z?(t))}.

i=1

_ %k; cos (&(t)) p((1),1) + (%k sin &(t)) n B(t)) 9
~ “asin <¢~5(t)> e (5.19)

Note that as the bias estimate error is not directly driven by the noise process,
the bottom entry of G is zero in Equation 5.18. Thus there is no g—;f term in the
Fokker-Planck PDE.

The SO(2) Gyro Constant Bias Filter is weakly stochastically stable as the full
SO(3) version was shown to be so via a converse Lyapunov theorem in Section 5.2.

Thus the joint probability density function p(&(t), B(t), t) ultimately approaches a

stationary probability density function

t—o00

ps = p,(8.8) = lim p((8),b(¢).t)
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which is a solution to the stationary Fokker-Planck PDE

0 = k. cos (gzz) Ds ((5, 5) + (k:e sin ((5) + 25) 88135 — asin <gz5> 6(9% + va% (5.20)

The stationary Fokker-Planck PDE is solved in the following theorem.

Theorem 5.5.1. The stationary Fokker-Planck PDE of Equation 5.20 is solved by

the probability density function

Ps (GB, 5) = m exp {5—; cos (&) }%a?u exp { - akc;efu 52} (5.21)

w
ke

where Io(z) is the 0™ order modified Bessel function of the first kind.

Proof. Note that as ¢(t) € (— 2m,27) and b(t) € R, the domain of the filter’s
estimate error state covers the surface of an infinitely long cylinder. So, check
to see if the cylindrical probability density function of Mardia and Sutton [62] is
a solution to the stationary Fokker-Planck PDE of Equation 5.20. Mardia and

Sutton’s probability density function is of the form

- 1 - -
Ds (¢, b) = 3 P {FL cos(¢) + VbQ}
where the normalization constant N is a positive scalar, the concentration parameter
k is a non-negative scalar, and v is a scalar.
Substituting the probability density function into the right hand side of PDE

5.20 yields the expression

(v ) con (3) = (i = o) s (5) - (- s (8) o (53
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which is zero for all possible (gz;, Z;) if and only if kK = C’f—g and v = =%¢. Thus the

w

solution to the stationary Fokker-Planck PDE is given by

p(80) = o e (8) - Lo} 52)

The scaling constant N may be recovered by enforcing the probability density

normalization constraint

/ / s ¢b dbdd = 1

Substituting in the probability density function of Equation 5.22 and rearranging

results in

_%/_ exp {—cos (¢) 04062 b }di)dq;
= /_27r exp {—cos }dgb/ exp{

The first integral of Equation 5.23 was solved in the proof of Theorem 4.8.1 as

/22: exp {5—2 cos (&) }dgz; =4rl, (j—g)

where Iy(z) is the 0" order modified Bessel function of the first kind. Since the

}db (5.23)

exponential function is such that for all positive scalars a

/ exp {—le} dxr = ~/7a
oo a

the second integral in Equation 5.23 evaluates to

o ke ~ TOo?
/_exp{ ao? }db: kzw

Combining yields the normalization constant.
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Observe that the stationary probability density function is such that (ulti-
mately) b and ¢ are independent. By inspection, the ultimate marginal distribution
for qg is distributed according to a von Mises probability distribution with zero mean
and concentration parameter £. Using the nonlinear relationship () = sin (¢(t)>
one can find ultimate statistics for £(¢). First it is shown that the ultimate attitude

estimate error is unbiased.
Corollary 5.5.1.1. The error dynamics of the It6 SDE 5.16 have the ultimate mean

lim E [é(t)] ~0

t—o00

Proof. Compute the ultimate expectation using the stationary probability density

function of Theorem 5.5.1

E&E = / / ) Eps ¢>, dbdgE

:/ /OO Sm< )Ps@,l;)dl;d([ﬁ

- 47r]01<k—2> /_22: sin (f) exp {Uk—gcos (q@) }d&

exp b 2 L
L)
Sy Lo ()0

Note that sin(-) is an odd function but () is an even function, so the inte-

8

grand is an odd function. The integral of an odd function over a symmetric interval
about the origin is zero.
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]

The following corollary shows the computation of the ultimate noncentral sec-
ond moment of the attitude estimate error. Since the ultimate mean was found
to be zero, the ultimate noncentral second moment is equivalent to the ultimate
variance. The ultimate attitude estimate error variance is precisely the same as in

Section 4.8.1.2 when there was no bias in the gyro model.

Corollary 5.5.1.2. The error dynamics of the Ité SDE 5.16 have the ultimate

)

lim E[éQ(t)} _ % 1— L

20

variance

SfF |

Proof. Compute the ultimate expectation using the stationary probability density

function of Theorem 5.5.1
EES SN .~
lim E[éz(t)] _ /_ ) /_ ) §2p8<¢, b)dbd¢
= %/_22: /_Z sin? (%) exp {(Ij—;cos ((Z)) — ak;eal?}dl;dcﬁ
= —1 /27r sin? (é> exp K
Al (5_3) o 2

which was solved in Corollary 4.8.1.2.

]

By inspection of the ultimate joint probability density function of Theorem
5.5.1, it can be seen that b is ultimately distributed according to a Gaussian distri-

bution with zero mean

lim E [5(1&)} —0 (5.24)

t—o00
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and variance

lim E [52(75)} = 2% (5.25)

t—>o00
Since the ultimate mean of both the attitude estimate error and the gyro bias
estimate error are zero, the filter is an (ultimately) unbiased estimator. While
the random variables ¢(t) and b(t) are ultimately independent of one another, the
ultimate variance of the gyro bias estimate error is inversely proportional to the

tracking gain k. while being proportional to the adaptation gain « and the gyro

2

w*

noise scaling parameter o

Note that this analysis is of the stationary Fokker-Planck PDE. As the gyro
bias is modeled as a constant, in the infinite time limit a larger adaptation gain does
not help as the gyro bias estimate has already conceivably “learned” the gyro bias.
From this analysis perspective, the adaptation gain merely lets gyro noise corrupt
the gyro bias estimate and should be set as small as possible. Of course this analysis
says nothing about the transient performance of the filter when the adaptation law

attempts to estimate the gyro bias in the first place.
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5.6 Numerical Simulation of Stochastic SO(2) Analytic Results

Two numerical simulations of the SO(2) Gyro Constant Bias Filter’s [to SDE
error dynamics of Equation 5.16 were performed for a variety of system parameters.
The Kloeden-Platen Explicit Weak 2.0 numerical integration scheme discussed in
Section 2.2.3 was used. For each simulation realization, a time step size of At = 0.1
was used for a total of 10% simulation steps. At the end of a simulation realization,
the last 107 simulation steps were used to compute the ergodic mean of the filter
attitude estimate error £2(¢) and the filter bias estimate error b%(t). Ensembles of 7
realizations were performed for each choice of system parameters, and the ensemble
mean of the ergodic means are reported in the figures below as magenta dots; the
attitude estimate errors are computed as I\éli%%n [I&eﬁn [52 (tl)H and the bias estimate
errors are computed as hé[i%n [Mgﬁn [52 (tZ)H .

The first simulation study varied the filter tracking gain k. across a range of
values. A gallery of plots of the filter attitude estimate errors are included in Figure
5.1, a gallery of plots of the filter bias estimate errors for the same simulations are
included in Figure 5.2. The numerical results, shown in magenta dots, are compared
to plots of the ultimate attitude estimate error variance of Corollary 5.5.1.2 and the
ultimate gyro bias estimate error variance of Equation 5.25 respectively which are
drawn in blue lines.

As predicted by the analytic solutions for the ultimate attitude estimate error

variance of Corollary 5.5.1.2 and the ultimate gyro bias estimate error variance

of Equation 5.25, decreasing the gyro noise value o, shifts the performance curve

234



for £2 left and the performance curve for b* down. Increasing the adaptation gain
« increases the bias estimate error variance curve while having no impact on the

ultimate attitude estimate error variance curve.
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The second simulation study varied the filter’s bias adaptation gain « across a
range of values. A gallery of plots of the filter attitude estimate errors are included
in Figure 5.3, a gallery of plots of the filter bias estimate errors for the same sim-
ulations are included in Figure 5.4. The numerical results, shown in magenta dots,
are compared to plots of the ultimate attitude estimate error variance of Corollary
5.5.1.2 and the ultimate gyro bias estimate error variance of Equation 5.25 respec-
tively which are drawn in blue lines.

As the form of the ultimate attitude estimate error variance of Corollary 5.5.1.2
predicts, the ultimate attitude estimate error variance is completely unaffected by
variation of the adaptation gain parameter. The ultimate gyro bias estimate error
variance of Equation 5.25 captures the trend seen in the numerical data that an

increase in the adaptation gain parameter increases the bias estimate error variance.
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5.7 An SO(3) Upper Bound

Following the same approach as that of Section 4.10 , this section extrapo-
lates upper bounds for the stationary statistics of the SO(3) filter from the analytic
solutions of the SO(2) case.

The SO(3) ultimate attitude estimate error variance bound is assumed to
have the form of the SO(2) ultimate attitude estimate error variance from Corollary
5.5.1.2, but as before is rescaled to account for the low filter gain limit seen in the

previous chapters. The proposed SO(3) ultimate upper bound is given by

L2
bound (g, f—;) _3 1- M (5.26)

Uon(d)

Similarly, the ultimate bias estimate error variance bound is assumed to have

the same form as Equation 5.25 but with the same scaling parameter acting on the

2

gyro variance o,

ke Eaoy,
bound (f, 0—2) = 2—]{;6 (527)

w

Numerical simulations of the Ito SDE 5.7 were performed to evaluate the
notional bounds. As before, the Kloeden-Platen Explicit Weak 2.0 numerical in-
tegration scheme discussed in Section 2.2.3 was used. For each simulation realiza-
tion, a time step size of At = 0.1 was used for a total of 107 simulation steps.
At the end of a simulation realization, the last 10° simulation steps were used to
compute the ergodic mean of the filter attitude estimate error €7 (¢)€(¢) and the

filter bias estimate error b7 (£)b(t). Ensembles of 7 realizations were performed for

each choice of system parameters, and the ensemble mean of the ergodic means
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are reported in the figures below as magenta dots; the attitude estimate errors are

computed as Mean {Mean [éT(t,-)é(ti)H and the bias estimate errors are computed

stms t;€Tss
as Mean {Mean [BT(tl)i)(tl)H :
sims ti€Tss

Figure 5.5 contains a gallery of the proposed upper bound for the stationary
attitude estimate error variance of Equation 5.26 for various choices of £ superim-
posed on plots of the numerical simulation realizations for a range of tracking gain
parameters k.. Figure 5.6 similarly contains a gallery of the proposed upper bound
for the stationary gyro bias estimate error variance of Equation 5.27 for the cor-
responding choices of ¢ for the range of tracking gain parameters k.. In all cases

considered, the choice of £ = 3 in the expression of Equation 5.26 and 5.27 bound

the simulation realizations; however, smaller choices of £ do not.
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ation 5.26 for several choices of £ over a range
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A second numerical simulation study was performed to verify that the choice
of adaptation gain o had no impact on the ultimate attitude estimate variance and
to evaluate the ultimate bias estimate notional bounds. Figure 5.7 contains a gallery
of the proposed upper bound for the stationary attitude estimate error variance of
Equation 5.26 for various choices of £&. The numerical simulation data confirms
the attitude estimate error is independent of the choice of a. Figure 5.6 similarly
contains a gallery of the proposed upper bound for the stationary gyro bias estimate
error variance of Equation 5.27 for the corresponding choices of £. As before, the
choice of & = 3 in the expression of Equation 5.26 and 5.27 bound the simulation
realizations; however, smaller choices of £ do not.

Thus the simulation data suggest the ultimate upper bounds of

T 3 h (3%)
lim E[e" (t)é(t)] < 1 1] - —2 (5.28)
t500 I (3/22)
and
3ao?
: ~T = w
lim Ele™(1)e(t)] < o (5.29)

which, for clarity, are drawn in the gallery of Figure 5.9 for the ultimate attitude
estimate error variance bound of Equation 5.28 and Figure 5.10 for the ultimate
bias estimate error variance bound of Equation 5.29 for a range of tracking gain
parameters k.. The bounds are drawn for a variety of adaptation gain parameters «
in the gallery of Figure 5.11 for the ultimate attitude estimate error and the gallery

of Figure 5.12 for the ultimate bias estimate error.
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Figure 5.11: Comparison of simulation realizations of the attitude estimate error variance
and the notional bound of Equation 5.28 for a range of adaptation gain

parameters «.
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Figure 5.12: Comparison of simulation realizations of the bias estimate error variance and

the notional bound of Equation 5.29 for a range of adaptation gain parameters
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5.8 Exact Solution to the Stationary SO(3) Fokker-Planck PDE

In this section, the understanding gained from the SO(2) analysis and its
SO(3) extrapolation, as well as the solution to the SO(2) and SO(3) stationary
Fokker-Planck PDEs for the gyro noise case studied in the previous chapter, are
used to identify a possible distribution for the SO(3) case. This distribution is then
shown to indeed solve the SO(3) stationary Fokker-Planck PDE. The solution is
used to find an analytical expression for the ultimate attitude estimate error and
ultimate bias estimate error which will be compared to numerical simulation data
in the following section.

In Chapter 4, the attitude estimation filter for gyro measurements with addi-
tive noise was studied. In particular, the stationary Fokker-Planck PDE was shown
to be solved by a von Mises PDF in the SO(2) case in Section 4.8 and a bipolar
Bingham PDF in the SO(3) case in Section 4.11. In Section 5.5, the stationary
Fokker-Planck PDE for the gyro measurements with additive noise and constant
bias in the SO(2) case was shown to be solved by a joint PDF consisting of an inde-
pendent von Mises distribution and a Gaussian distribution. The following theorem
shows the patten continues; that the SO(3) stationary Fokker-Planck PDE is indeed
solved by a joint PDF consisting of an independent bipolar Bingham distribution

and a multivariate Gaussian.

Theorem 5.8.1. The stationary distribution for the filter error dynamics of the Ito

SDE 5.7 is given by the joint PDF with a Bipolar Bingham PDF and multivariate
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Gaussian PDF

D <q~, 5) = Ni exp {f—; (2772 — 1) } Nib exp {—ak; ETB} (5.30)

q w w

where the normalization constant N, 1s given by

ke ke
Ny =ty (E%) -mh (@

and the normalization constant Ny is given by

34356
Tt oy,

No=1/"73

Proof. Per the reasoning given above, consider the jointly independent PDF that
is a bipolar Bingham distribution in the attitude estimate error and a multivariate

Gaussian in the bias estimate error
(a.6) = e {A(20° = 1) } 5 exn {1675
s ) = 7 &KX - 7 X
Ps\q Nq p n N, Py

Taking partial derivatives as appropriate and substituting into the right hand

side of the SO(3) stationary Fokker-Planck PDE 5.14 yields

1 .
{ — §(ke —02X) +2(1 = N (ke — A2 42X (ke — Ao2)i* — 2767 b(ary + )x)}ps
which is zero for all possible ¢ and b if and only if A = :—2 and v = —a’f;, .

The scaling constants /N, and N, may be recovered by enforcing the proba-
bility density normalization constraints on the marginal PDFs. The normalization

constant for the bipolar Bingham marginal PDF was found in Theorem 4.11.1 to be

k k
_ 2 e 2 e
Ny=m [0(—01%)—7r I (—0120)
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Similarly, the normalization constant for the multivariate Gaussian marginal PDF

is given as

Ny, = / / / exp {—
0o ke - 5 0 ke - 5 [ ke - 5
= /OO exp {_aafubx} db, /Oo exp {_aagjby} db, /OO exp {_aaibz} db,
rao? |wac? |mac? m3a3ab
— w w w — w . 1
ke \/ e \/ ko 3 (5.31)
where the Gaussian integral

/ e_‘””de:\/E Va>0
oo a

(B2 + 12+ 82) } bl .

ke
aoc?

was used.

]

Theorem 5.8.1 shows the ultimate PDF 5.30 that satisfies the stationary
Fokker-Planck PDE 5.14 is jointly independent. Specifically, it consists of a bipo-
lar Bingham distribution in the attitude estimate error q which is independent of
the multivariate Gaussian in the bias estimate error b. Thus the ultimate statistics
for the attitude estimate error have zero mean as shown in Corollary 4.11.1.1, the
variance as given in Corollary 4.11.1.2, and the covariance matrix as found in Corol-
lary 4.11.1.3. Similarly, the ultimate statistics for the bias estimate error can be
computed with the associated marginal PDF. Since the marginal PDF is a simple
uncorrelated multivariate Gaussian, the ultimate statistics are merely stated here.

The ultimate bias estimate error has the mean

lim E[b(t)] =0 (5.32)

t—o00
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the ultimate variance

3ao?

. 1T T _ w
lim E[b"(1)b(t)] = o (5.33)
and the ultimate covariance matrix
lim BB (1] = 2% 5.34

where the I (without a subscript) is the 3 x 3 identity matrix.

Note that, as in Chapter 4, the ultimate attitude estimate error statistics
depend on the ratio of f—g; however, they are completely independent of the gyro
bias adaptation gain a.

While the bias estimate error is (ultimately) independent of the attitude es-

timate error, the gyro bias estimate error is ultimately parameterized by the ratio

2
aoy,

of Z. Thus increasing (or decreasing) both the filter tracking gain k. and the

adaptation gain a by the same amount will have no impact on the bias estimation

error in the infinite time limit.
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5.9 Numerical Simulation of Stochastic SO(3) Analytic Results

Consider again the simulations reported in Section 5.6. The first simulation
study investigates filter performance as the tracking gain k. is varied. The attitude
estimate error numerical simulation statistics are repeated in Figure 5.13 with the
analytic solution using the bipolar Bingham marginal of the PDF 5.30 to compute
the expected attitude estimate error. The analytic solution exactly matches the
numerical simulation data. The bias estimate error numerical simulation statistics
are repeated in Figure 5.14 with the analytic solution for the variance from Equation
5.33 superimposed. The analytic solution matches the numerical simulation data
exactly except for the smallest two tracking gain points in the o,, = 0.1 case, which
is possibly due to the simulation realizations not fully reaching steady state. The
slopes of all data are -1 on the log-log plot, which agrees with the ultimate variance

being inversely proportional to the tracking gain k..
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Figure 5.13: Comparison of simulation realizations of the attitude estimate error variance

with the analytic solution for a range of tracking gain parameters k..
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Figure 5.14: Comparison of simulation realizations of the bias estimate error variance with

the analytic solution for a range of tracking gain parameters k..

258



The second simulation study examines filter performance as the adaptation
gain « is varied. The attitude estimate error numerical simulation statistics are re-
peated in Figure 5.15 with the analytic solution using the bipolar Bingham marginal
of the PDF 5.30 to compute the expected attitude estimate error. The analytic solu-
tion exactly matches the numerical simulation data, and clearly show that variation
of the adaptation gain « has no impact on the ultimate attitude estimate error vari-
ance. The bias estimate error numerical simulation statistics are repeated in Figure
5.16 with the analytic solution for the variance from Equation 5.33 superimposed.
The analytic solution matches the numerical simulation data exactly . The slopes
of all data are +1 on the log-log plot, which agrees with the ultimate variance being

directly proportional to the adaptation gain .
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with the analytic solution for a range of adaptation gain parameters a.
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Figure 5.16: Comparison of simulation realizations of the bias estimate error variance with

the analytic solution for a range of adaptation gain parameters «.
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Chapter 6: Attitude Measurement Noise

This chapter extends the analysis of Chapters 4 and 5 by considering atti-
tude measurement noise. Section 6.1 introduces a measurement noise model that
obeys the quaternion norm constraint and will be used throughout the chapter.
Specifically, the It6 SDE for the attitude noise filter of Chapter 4 is used to pro-
vide a continuous time process whose ultimate noise density is a bipolar Bingham
distribution which can be specified to model an attitude measurement sensor.

Section 6.2 extends the gyro additive noise measurement model analysis of
Chapter 4 by also including the attitude measurement noise model of Section 6.1.
An Ito SDE for the filter state is formulated and augmented by the attitude mea-
surement process noise model in Section 6.2.1 to provide a complete mathematical
description of the system. Section 6.2.2 uses a stochastic Lyapunov analysis to find
conditions needed to ensure weak stochastic stability of the SO(3) system as well as
stochastic Lyapunov performance bounds, which are then examined numerically in
Section 6.2.3. The system is then reduced to the SO(2) case in Section 6.2.4. The
SO(2) stationary Fokker-Planck PDE again proves to be tractable in Section 6.2.7,
yielding analytic expressions for the ultimate attitude estimate error mean and vari-

ance which are verified via simulation analysis in Section 6.2.8. Similar to Sections
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4.10 and 5.7, Section 6.2.9 provides bounds for the ultimate attitude estimate error
mean and variance for the SO(3) case by extrapolating the SO(2) results of Section
6.2.7.

Section 6.3 extends the analysis of Section 6.2 by further including the gyro
constant bias as in Chapter 5. Similar to the analysis of Section 5.5, a Fokker-
Planck analysis of the reduced system in SO(2) finds that a particular extension of
the stationary probability density function from Section 6.2 can be made to asymp-
totically approach a solution to the stationary Fokker-Planck PDE of this Section.
The asymptotic solution to the SO(2) stationary Fokker-Planck PDE for this sys-
tem is then used to find analytic expressions for the ultimate attitude estimate error
variance as well as the ultimate gyro bias estimate error mean and variance. The re-
sults are verified via numerical simulation. Bounds for the filter’s ultimate attitude
estimate error variance as well as the filter’s ultimate gyro bias estimate error mean

and variance in the SO(3) case are provided by extrapolating the SO(2) results.
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6.1 Quaternion Measurement Noise Model

This section develops a quaternion measurement noise process suitable for
modeling attitude measurement noise. The measurement noise model will be used
in the remaining sections of this chapter.

The general form of the nonlinear attitude estimation dynamics considered in

this thesis is given by

7(t)
The true attitude estimate error was assumed to be available to the estimator in
Chapters 4 and 5 as the attitude measurements were assumed perfect in those chap-
ters.
This chapter considers the case of attitude measurement noise, so the estima-
tors no longer have direct access to the true attitude g(t); instead, in this chapter

the estimators will only have access to a noise corrupted version

em(t) o1
qn(t) = =q (t)®q(t) (6.1)
Mm (1)

where ¢(t) is “quaternion noise”. Thus the true attitude estimate error g(t) will no

longer be available to the estimation algorithms. The estimators will now have to
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use the noise corrupted attitude estimate error

The theoretical tools used in this thesis assume the error dynamics under con-
sideration may be formulated as an [t6 SDE; namely that the error dynamics are
affine in the driving noise, and further that the driving noise is zero mean and nor-
mally distributed. The construction of a continuous time quaternion measurement
noise model that is restricted to the unit quaternion hypersphere and is affine in
the driving noise does not appear to exist in the literature. A common attitude

measurement model [64,66] is given by

G (1) = a (0 (1) © a(t)

where (5q( . ) is a unit quaternion parameterized by a small angle o,,n,,() where
n,,(-) is a zero mean unit variance Gaussian white noise process in R®. Various
parameterization choices for the mapping 5q< . ) exist [64] (such as Gibbs param-
eters, modified Rodrigues parameters, the rotation vector, or even Euler angles),
however all are highly nonlinear functions of their input arguments and thus these
attitude measurement models can not be expressed as an affine function of the driv-

ing noise. As this common model can not be expressed as an affine function of the
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driving noise, the model can not be written as an It6 SDE and thus none of the
stochastic Lyapunov analysis techniques of Section 2.1.4, nor the stochastic numer-
ical integration methods of Section 2.2, are applicable. Another approach, used by

Choukroun [13], is given as

dg,(t) = q(t)dt + o n,(t)

where the driving noise is modeled by n,(-), a zero mean unit variance Gaussian
white noise process in R*. Note that this model does not restrict the quaternion
measurements to have unit norm which in turn means they do not parameterize
a rotation. As the normalization operation is also highly nonlinear, enforcing the
normalization constraint would similarly prevent this model from being written as
an [to SDE.

Note that the analysis of Chapter 4 did, however, identify a continuous time
quaternion process that was restricted to the unit quaternion hypersphere and was
affine in the driving noise (and thus an Ito6 SDE). Rearranging the attitude mea-

surement model of Equation 6.1 to solve for the noise quaternion yields

q(t) = q(t) ® q,,'(t) (6.2)

which is precisely the form of the attitude estimate error computation used in Equa-
tion 4.4. Thus the attitude filter dynamics of Equation 4.3 can be used here to
provide a SDE to serve as the dynamical model for the quaternion noise and all the
results of Chapter 4 may be leveraged to understand the properties of the model.

With this choice, attitude measurement evolves according to the Langevin form
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differential equation

qm(t) = % {R(q7(1) [w(t) + ommnn(t) + knii(t)E(t)]} @ gn(t) (6.3)

where k,, and o, are positive scalars that parameterize the attitude measurement
noise statistics and m,,(+) is a collection of independent identically distributed zero
mean unit variance Gaussian white noise processes independent of gyro noise m,,(-).

The attitude measurement noise error dynamics are given by

i) = 3{ ~ k020 - 3mnt)} & a0
) LR (DE®) . —%{ﬁ(t)]—l—[é(t)x]}am .
(DT (D) 1 (Do

The attitude measurement noise model of Equation 6.4 can be viewed in this context
as a coloring filter. The model is driven by the unbounded white noise process
1, (+) but the attitude measurement noise state ¢(t) remains on the unit quaternion
hypersphere.

Again note the error dynamics share precisely the same structure as the error
dynamics of the previous chapter’s filter of Equation 4.5; the results of Section
4.11 imply that the quaternion noise model asymptotically approaches a stationary
density given by a bipolar Bingham distribution that is parameterized by the ratio

C’j—g". Specifically, the attitude measurement noise has ultimate mean

lim E[&(t)] =0

t—o0

the ultimate variance
k o (2) 0 (3) 1 (3)
v (—;n) = lim E[e"(t)&(t)] = - - -
) ()1 C2)
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and ultimate covariance matrix

1 [k 1 [k 1 [k k
. v T . m m m m
A PlaOT )] = dies <§V (@) 3" (%) 3" (%) e (%))
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6.2 Attitude Estimation Filter for Gyro Additive Noise and Attitude

Measurement Noise

This section extends the gyro additive noise measurement model analysis of
Chapter 4 by also including attitude measurement noise. Section 6.2.1 presents
the filter formulation and noise models, culminating in an Itd6 SDE for the system
error dynamics. The next section, Section 6.2.2, contains a stochastic Lyapunov
analysis that derives conditions needed to ensure weak stochastic stability of the
SO(3) system as well as stochastic Lyapunov performance bounds. Section 6.2.3
includes a numerical simulation analysis of the SO(3) error dynamics.

The system is then reduced to the SO(2) case in Section 6.2.4. The SO(2)
stationary Fokker-Planck PDE again proves to be tractable in Section 6.2.7, yielding
analytic expressions for the ultimate attitude estimate error mean and variance.
These results are verified via simulation analysis in Section 6.2.8. Similar to Sections
4.10 and 5.7, Section 6.2.9 provides bounds for the ultimate attitude estimate error
mean and variance for the SO(3) case by extrapolating the SO(2) results of Section

6.2.7.

269



6.2.1 Filter Formulation in SO(3)

This subsection develops a formulation for the attitude estimation filter with
gyro additive noise and attitude measurement noise. The attitude measurement
model is given in Section 6.1.

The angular rate gyro measurement model is the same as in Chapter 4, which

is repeated here for convenience
wy(t) = w(t) + oyny,(t) (6.5)

where w,(t) is the gyro measurement of the true vehicle angular rate w(t) at time
t, o, is a positive scaling constant, and n,,(-) is a zero mean unit variance Gaussian
white noise process.

As explained in Section 6.1, if the filter had access to the true attitude, it

could use the filter attitude estimate error g(t) = = q(t) ® ¢7L(t) to drive
7(t)

its kinematics as in Equation 4.3; however, in this chapter the filter only has access

to attitude measurements corrupted by noise. Thus the filter kinematics equation

is given as

i) = 3{ A(:1(0) [wl0) + Kin000] | &) (6:6)
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which is driven by

Expanding the expression 7,,(¢)€,,(t) yields

im0 (t) = (707 + €T (OEW ) | = AOEW) +n(OEW) + (W) x £1)]  (6.7)

which simplifies to 7(¢)€(t) when there is no attitude noise, i.e. when ¢ (t) =
[€7(t) ()] =[000 +1]".

The attitude filter dynamics given by Equation 6.6 can be combined with the
quaternion error kinematics of Equation 2.71 and the gyro measurement model from

Equation 6.5 to find the filter’s attitude estimate error dynamics

it
:%{w(t)—R(d(O)R( D) R(a()) |w(t +awnw<>+keﬁm<t>ém<t>]}®a<t>

= [1- #(a0)]w0 - 8(a0) [rnOent + eumato)] } a1 ©03)

which is not independent of the vehicle’s angular rate w(t). This is in contrast to
the filter attitude estimate error dynamics of Equation 4.5 in the perfect attitude
measurement case. Since the attitude filter in this chapter must rely on noise cor-
rupted attitude measurements, it is not able to perfectly resolve the filter’s angular
rate estimate in the appropriate frame.
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Combining the attitude noise model error dynamics of Equation 6.4, the filter
attitude estimate error dynamics of Equation 6.8, and suppressing function of time

notation for brevity, the Langevin form error dynamics are found as

é —Lkmif?€
i L iigTe
1 S[ar+ [ x]] [1- R(@)|w = ke[l + [& )| R()imen
i —1&" |1 = R(q) |w + k&7 R(@)ménm
_—g[ﬁu[éx]]am 0 _
175, 0 -
+ (6.9)
0 —s[ir + [ x| R(@)ow| | mu
0 1€TR(q)ow

where 7),,€,, is expanded in Equation 6.7.

As discussed in Section 2.1.3, the Langevin form error dynamics differential

equation 6.9 is interpreted as a Stratonovich SDE. Converting to an It6 SDE results
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in the following

de _%kmﬁQé - %qué
dii shmie" € — So7]
_ 2 8 dt
dg| |[ar+ [E x| |1 = R(@)|w = 3ke[il + [ x ]| R(@)imem — 2o2e
di 1|1~ R(q)|w + k& R(@)nén — Lo%0
3]l + [ %] om 0
_l’_
0 —s[ir + [ x| R(d)ow| |dB.
0 2" R(d)ow
= f(2)dt + G(2)dB (6.10)
where &1 = [T 1 €T 1)
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6.2.2 Stochastic Lyapunov Analysis in SO(3)

In this section, stochastic Lyapunov theory is used to show the Ito error SDE
6.10 is weakly stochastically stable provided the vehicle angular rate is bounded.
A generalized moment ultimate bound for the attitude filter is found which can be

used as a performance metric. An ultimate bound for €7 (¢)€(#) is also established.

Theorem 6.2.1. The attitude error dynamics of the Ito SDE 6.10 are weakly
stochastically stable provided the vehicle angular rate is bounded, ||w(t)|| < Wmar <

oo Vt. Further, the attitude error dynamics are such that
lim £ ki (D)ET (1)E(t) 4 o2 6T (1)E(t) + o2 €T (t)E(t)
—00

FRAPOEDEW) (70 + kP (i (DET (DE()
+ kP OFOE() x E@ + ke (1)1 (éT(t)é(t))Q}
3

3
< 5ke + 2wWinar + Za; - Zai (6.11)

Proof. Choose as a Lyapunov function

Application of the differential generator to the Lyapunov function with respect to

the It6 SDE 6.10 is computed according to
LV (t) = o Tf(~(t))+1t GT(~(t))62—VG(~(t))
“ o) TR W ga

which is rather involved for this system, so each term is computed in sequence.
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Suppressing function of time notation for clarity, the first term is found as

IANES 1 ours §
<8_a:) f(@) = —ghnire’e = gone

1
+5&" |l + [ x| [1 - R(a)|w
—%kes [T]I—F[EXHR(V)(ﬁTNI—FéTé)[—UE-i-T]é'-FE><€~
Ly 3 opy 3 o
=——k,N€ € 80m€ 5 80“’5 5
1. o
+ 577€T [I — R(q)]w

where the second equality holds since 7€ x | = 07.
To compute the trace term, first note by the cyclic property of the trace

operator

2 2
wforf o) —u{eer ]

0x? ox?
Using the rotation matrix property R((j) RT (cj) = I, the expression evaluates as
1 { 0?V

3
St {GTEG b = So2 i
2" 7 o0& } gml T

Combining the two terms and using the quaternion normalization constraints

n? +€T¢é =1 and 7> + 7€ = 1 yields

B
<
[
|

+
N = N~ N

Expanding out the fourth term’s rotation matrix R(d) in terms of € and 7} according
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to Equation 2.64 and simplifying leads to

d~T~ L1, vo.0ne =~ 1 5 9/0
ke ‘e é — 5166772772!\&‘ x €||* — §ken2n2(€T€)

1 1 1 1
ki €T e + ke (&7e)” - §keﬁﬁ3éTééTé — §keﬁﬁéTéHé x €||* — ékeﬁﬁ(éTé)?’

3, 3
+ 57" [I - R(cj)}w +Sont s

Noting that [|[I — R(q)|| = /Amae [4 (€Tl — €€T)] = 2||€|| and using [5j] < 1

and |77| <1, £V can be bound as

1 1
ZV < —ikmﬁQéTé - 50'31€vTé - 50'12véTé
_1 ~2 T ~ vT~2_1 ~2v4~T~_1 2219 2_1 22 ~2 (T ~x\2
21{:,377 g'e(e"e) 2k:en niele 2ken i?||& x €| 21{;677 i’ (e"€)
1

S KRS IR TR
+ skell€lllell + kel Il + ShellEllel® + Sk lellli€llle x €1

1 3., 3
SklePlElN® + 1111 So? 4 S0
+ SkellelPllEl” + lellelliwl + gom + gou

1 1 1 1
_ EkeﬁQéTé(éTé)Q — ke i'€"E — Sk € x &I — Sk (7¢)?
) 3 3
“ke + Winaw + =02 + =02 6.12
+ ke + Wmas + g0 + 200, (6.12)
where to find the second inequality [|€|| < 1, ||€]] < 1, and [|w]| < Wpae Were used.
Zakai’s stability theorem (Theorem 2.1.4) implies the system is weakly stochas-
tically stable. Further, Zakai’s ultimate moment bound theorem (Theorem 2.1.5)

directly yields the ultimate expectation.

276



]

The generalized moment ultimate bound of Equation 6.11 can be further re-

fined to yield an ultimate bound for €7 (¢)€(t).

Corollary 6.2.1.1. The attitude error dynamics of the Ito SDE 6.10 are such that

ke 1 3
hmE[éT() ()}<9—+2 wma:v+4

t—o00 0‘2

(6.13)

Proof. Bounding the cross-coupling terms of Equation 6.12 yields

1 1 1
A% S —§k3m’l72é € — EafnéTé — §O'iéTé
R L [ A
+ §/</’e|n|2||€\l4||E||2 + §k:e|77|2|77|4||€||2 + le|n|2|n|2||€||2||f-3||2 + §k:e!77|2|77l2||€||2||€||2
+ 5k + + ; + 5
Wmazx O'm Uw
2 8 8
1 1 1 3 3
G L ia?néTé — 5o—fuzafTé + §ke + Winas + gai + gai

where the last inequality follows from the norm constraint on unit quaternions.
Application of Zakai’s ultimate moment bound theorem (Theorem 2.1.5) re-

sults in

3 3
lim B [ki*e" € + 07,67 + 0,7 €] < Ok + 2wmaq + 705, + 70,

t—o0 4 m
Using the linearity property of the expectation operator and rearranging leads to

k. 1 30 3
. ~T < e 2 <
tlggoE[E s} 902 +2 Wmax+ 402 + 4

2
_ k_m lim E[ﬁQéTg} — U— lim E[e E]

02 t—oo 0' t—r00

ke 1 302 3

=9— w +2 wwma$+4 3} Z
km + 02, km 2
U—ztlggloE[s €]+U—t1££oE[( €)”] (6.14)
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where the last line holds from the norm constraint on unit quaternions.

From Chapter 4, Equation 4.15 provides a bound on lim;_,,, F [ (éTé)Q } , specif-

ically
. UT o\ 2 km +03n . T U 30'7%1
fm Bl(eTe) ] < = i Blete] - 4

Combining with Equation 6.14 results in

k 1 302 3
i Tz <« gtc _ SZm 4 =
tlggE[e 8] - 903 +2012meax + 402 + 4
b km + 02k + 02\ T v 302 kp,
+ (% k;m - 0’5} tll)l’éloE[E E} — Zag
ke 1 3
= 9—2 + 2—2wmam + —
oz o2 4

O

The bound on €7(t)é(t) can be larger than one which suggests significant
conservatism since g is a unit quaternion and thus &7 (¢)é(¢) < 1 V¢. It is important
to note that Equation 6.13 is merely an ultimate upper bound and not necessarily
the least ultimate upper bound. The first term in the ultimate upper bound arose
as the sign indefinite terms and cross coupling terms between ¢(t) and ¢(t) in £V
were bounded in the proof. The observation that the ultimate bound on &7 (t)&(t)
is proportional to the filter gain k. may be an artifact of the choice of Lyapunov
function or the analysis techniques used. Of course from inspection of the filter
equations, if the filter gain k. is set very large the filter kinematic equation will be
dominated by the feedback term and the filter’s estimate will follow the attitude
measurement noise.

Additionally, according to the second term on the right hand side of Equation
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6.13, the ultimate upper bound on €7 (¢)€(t) is proportional to the vehicle angular
rate. This term arose from the [I — R((j(t))}w(t) terms in the system dynamics.
From Chapter 4, the ultimate PDF for the attitude noise error dynamics are given by
a bipolar Bingham distribution with zero mean, or in symbols lim;_,, F [é(t)} =0,
so it is possible that in the mean the vehicle angular rate plays no part in the ultimate
attitude estimate error. Similar to the observation of the previous paragraph, the
fact that the ultimate upper bound on €7 (¢)€(t) is proportional to the vehicle angular
rate may be an artifact of the choice of Lyapunov function or the analysis techniques

used.
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6.2.3 Numerical Simulation of SO(3) Stochastic Lyapunov Bounds

Numerical simulations of the attitude filter’s It6 SDE error dynamics of Equa-
tion 6.10 were performed for a variety of system parameters. The Kloeden-Platen
Explicit Weak 2.0 numerical integration scheme discussed in Section 2.2.3 was used.
For each simulation realization, a time step size of At = 0.001 was used for a total
of 107 simulation steps . At the end of a simulation realization, the last 10° simula-
tion steps were used to compute the empirical mean of the generalized moment of

Equation 6.11

mean Emi?()ET (1)E(t) + o2 €T (1)E(L) + o2€T (t)é(t)

kAP OETDEW) (€70 + kP (i (DET (DE)

+mﬁ@ﬁﬁmawXﬂMP+m%@W@K¥Hﬁ®Y]

and statistics for the numerical realizations of the filter attitude estimate error

Moan Yean [ 00|

A gallery of plots of the generalized moment of Equation 6.11 are included in
Figure 6.1 for a spin stabilized spacecraft and in Figure 6.2 for an inertially fixed
spacecraft. In each plot, a magenta dot represents a single simulation realization.
The blue line in each plot is the generalized moment upper bound from Equation
6.11. The generalized moment upper bound does appear to bound the ensemble

of simulation realizations for all simulated cases, however the upper bound grows

increasingly conservative for large filter gains. Despite the bound being proportional
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to the vehicle angular rate, the numerical simulation realizations from the spinning
case appear to be of similar magnitude to the inertially fixed case.

A gallery of plots of the filter attitude estimate errors are included in Figure 6.3
for a spin stabilized spacecraft and in Figure 6.4 for an inertially fixed spacecraft. As
before, a magenta dot represents a single simulation realization. The blue line in each
plot is the stochastic Lyapunov upper bound from Equation 6.13. The stochastic
Lyapunov upper bound also upper bounds the ensemble of simulation realizations,
but similar to the general moment bound the stochastic Lyapunov upper bound
on the attitude estimate errors grows increasingly conservative for large filter gain
k.. The stochastic Lyapunov bounds are clearly unsuitable for filter performance

characterization.
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Figure 6.1: Comparison of simulation realizations of the general moment of Equation 6.11
and the associated bound for the case of a vehicle spinning at 5 revolutions

per minute about the vehicle body’s [1 2 3]7 axis.
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Figure 6.2: Comparison of simulation realizations of the general moment of Equation 6.11
and the associated bound for the case of a vehicle inertially fixed (not spin-

ning).
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Figure 6.3: Comparison of simulation realizations of the attitude estimate error and the
bound of Equation 6.13 for the case of a vehicle spinning at 5 revolutions per

minute about the vehicle body’s [1 2 3]7 axis.
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Figure 6.4: Comparison of simulation realizations of the attitude estimate error and the

bound of Equation 6.13 for the case of a vehicle inertially fixed (not spinning).
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6.2.4 Filter Formulation in SO(2)

In this section, the attitude filter dynamical model is reduced to the single
axis case of SO(2). In following sections, the reduced model will provide tractable
analytic results that can provide insight into the full SO(3) case.

As explained in Section 2.3.2, the SO(3) dynamical model may be reduced to
the SO(2) case by simply zeroing out the y and z components of all vector quantities.
Equivalently, the vector quantities in the SO(3) case reduce to scalar quantities, and
SO(3) unit quaternions comprised of 4 elements reduce to SO(2) unit quaternions
with two elements.

The SO(3) Langevin form error dynamics of Equation 6.9 reduce in the SO(2)

case to
5
. la| |7
xXTr = =
q g
g
1 SR 1v
—skmip*e —5710m 0
17, =2 1y
skymne =E0m 0 TN
—~ ’ 4|7 (6.15)
17, ~ (v~ | s= Sy ux 1
—ken <7]77 + 56) < — 7€ + 775) 0 —5N0w | | N
_ %keg(ﬁﬁ + éé) ( i 175) 0 feow |

where again the function of time notation has been suppressed for brevity. Note that,
as derived in Section 2.3.2, the angular rate driving the attitude error kinematics
in SO(2) do not depend on any rotation matrices as SO(2) rotation matrices are
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trivially R = 1. Thus the [I — R(cj(t))} w(t) term from the SO(3) case vanishes in
the reduced SO(2) case.
As explained in Section 2.1.3, the Langevin form error dynamics differential

equation 4.23 is interpreted as a Stratonovich SDE. Converting to [to form yields

ds
dg| | di
T _
dg| |de
dn
— 5kl — §00E —3om 0
Ui — Lo2ii Lo, 0 | |dBa
— dt +
Lk (7777 + 55) ( i ﬁé) — lo2s 0 —Lio,| |dB.
k& (7777 + 55) ( it 775) — lo2j 0 lag,
— F(2)dt + G(2)dB (6.16)

The attitude filter error dynamics of Equation 6.15 can equivalently be written

in the SO(2) Euler Axis/Angle parameterization (as explained in Section 2.3.2). Let

NE (g) NE (g)
ox(§) ox(§)

Then the SO(2) Euler Axis/Angle parameterization of the filter error dynamics is

Mc
(O}

Qe
Il
Q.
I

¢
R
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given as

b — ke 11E —0m 0 | |nm
g = = —I—
o) —k. (7777 + 55) ( —nE+ ?76) 0 —0ul| |nw
%km sin (g%) -0, 0 N
— ke sin <gz~§ — &) 0 —0oul| |1

which is immediately in Langevin form. Conversion to an It6 SDE is trivial as the

diffusion matrix is independent of the state:

. dd Lk, sin (gb) e |7 0 | |ds,
Yy = =
dé — Lk, sin (55 _ 95) 0 —oul| |dB,
— f(g)dt + G(§)dB (6.18)
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6.2.5 Stochastic Lyapunov Analysis in SO(2)

In this section weak stochastic stability of the SO(2) Ito SDE 6.16 is established

via stochastic Lyapunov theory. A number of performance bounds are also found.

Theorem 6.2.2. The attitude error dynamics of the Ito SDE 6.16 are weakly

stochastically stable. Further,

Fe

lim E[éQ(t)} <4 (6.19)

t—o0

DN | —
S)

w
Proof. Note that the dynamics governing the attitude measurement noise states
g(t) and 7(t) are decoupled from the dynamics of the filter’s attitude estimate error
states £(t) and 7(t). Further, the dynamics governing the attitude measurement
states have (by construction) the same form as those of the SO(2) It6 SDE from
the previous chapter given in Equation 4.24. Thus the attitude measurement noise
states are weakly stochastically stable as shown in Theorem 4.6.1 and the attitude
measurement noise Euler angle has the ultimate probability density given in Theo-
rem 4.44.

To show weak stochastic stability of the filter’s attitude estimate error states,
choose the Lyapunov function V' = %éz. Application of the differential generator

with respect to the It6 SDE 6.16 yields

1 1
.,%V:——keﬁ2§2 08+ St k:( RE(20P — 1) +28%7°8%) (6.20)

Observe that the final term, 3k, (ﬁé g2 — 1) + 26277282), is upper and lower
bounded as all of its components are bounded by the norm constraint on unit quater-
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nions. Specifically, using the norm constraint one can find

1 1
5= ENE (277 — 1) + 28%°8% < 3 (6.21)
Combining the bound on this term with Equation 6.20 yields
2V < —Lpape L +1 + k (6.22)
S k8 = oS+ GO+ ghe '
1 1 1
S —10'3)52 + 80'120 Zke

Zakai’s stability theorem (Theorem 2.1.4) implies the system is weakly stochas-
tically stable.

Application of Zakai’s ultimate moment bound theorem (Theorem 2.1.5) im-
plies

lim E[j1 (t)} < éaw + —ke

Linearity of the expectation operator and algebraic manipulation yields the final
result.

]

Again observe the curious result that the ultimate bound on £2(t) is propor-
tional to the filter gain k. and inversely proportional to the square of the gyro noise
parameter o, which was seen in the SO(3) case. As before, it is important to
note that Equation 6.19 is merely an ultimate upper bound and not necessarily the
least ultimate upper bound. The observation that the ultimate bound on &%(t) is
proportional to the filter gain k. may be an artifact of the analysis techniques used.

Zakai’s ultimate moment bound theorem (Theorem 2.1.5) provides a means
of finding an ultimate moment upper bound, specifically if £V < k — L(x) then
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lim; o E[L(x)] < k. As can be seen from Zakai’s proof [114], the equalities hold: if
2LV =k — L(zx) then lim; ,, E[L(x)] = k. If it can be assumed that the ultimate
moment bound theorem can be used for finding ultimate moment lower bounds,
meaning if £V >k — L(x) then limy;_,., E[L(x)] > k, a lower bound can be found

for the system of SDE 6.16.

Corollary 6.2.2.1. Assume Zakai’s ultimate moment bound theorem (Theorem
2.1.5) provides a means of finding an ultimate moment lower bound in the following
way: if LV = k—L(x) then lim; . E[L(x)] = k. Then the attitude error dynamics

of the Ito SDE 6.16 are such that

&
4k2

lim E[ef?(t)} >

1 1 /5
- Ot 2
oo st ak 2\1 " (6.23)

Proof. Using the bound —1= < 77 (27? — 1) + 2£27%€% from Equation 6.21, a lower

bound for Equation 6.20 can be found as

k. (6.24)

1 1 1 1
PV > kP — 022 4 —0? — —
= TRTE T 0wt T g0 T 55

Using the assumed version of Zakai’s ultimate moment bound theorem (The-

orem 2.1.5) for ultimate lower bounds results in

1

1 1 1
lim E|:§kfe7~]2§2 + —0'2 §2i| Z 50'120 — Eke

t—o00 4 w

Rearranging and using the quaternion norm constraint &2 + 7> = 1 leads to

2 2
0> nmE[g‘*] — (1+ UW) hmE[éQ} +Z_w__

t—o00 le t—o0
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2
Using the definition of variance, Var [52] =F [54] - (E [52]) > 0, one finds

. 1\ o2\ . 1 o 1 -
OZtli)rgo(E[e}) _<1+2kje>tligloE[€]+4k6_1_6+tliglovar[g}

2 2 2
_ ) B T\ 1. 2 ow 1
> g (2]) - (452 ) oo+ B2 -

Solving the polynomial inequality yields the final result.

]

If the underlying probability density of £(¢) is assumed to be unimodal, the
Jacobson inequality can be used to find a tighter ultimate upper bound than the

one of Theorem 6.2.2.

Corollary 6.2.2.2. Assuming the underlying probability density of £2(t) is uni-
modal, the attitude estimate error dynamics of the Ito SDE 6.16 obey the ultimate

upper bound

1 o2 1 [o? 13
I E[~2t}<— w _ = (% 29 2
fm EIE0] <5+ 573 429 (6.25)

Proof. Apply Zakai’s ultimate moment bound theorem (Theorem 2.1.5) directly to

Equation 6.22 to find

1 1
lim E —k e + ~ o2 52] < =02+
—00

1
2 4" 8
2
Using 72 = 1 — &%, the definition of variance Var [52] =F [54] — (E [52}) , and
rearranging, yields
2

2 2
1
O_tlgilo<E[5 ) (1+2k)tli)r£10Ee +4ke+2+tli)r£10Vare

e
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Asa =0 < & <1 =0, Jacobson’s Inequality guarantees Var [52} < @ = é.
Combining with the above leads to the polynomial inequality
2 2 2
11
<im (£[2]) - (14 2 ] + 24 1L
0= lim (E[E ) (H Zke) e S RVTART
Solving the polynomial inequality yields the final result.
O

While the previous corollary used an upper bound on the term %k’e (775“775 (2772 —
1) + 25277252), it is possible to separate the cross coupled terms using Young’s in-
equality and bounding the attitude noise states given that their ultimate probability

density function is known. This line of analysis results in the following corollary.

Corollary 6.2.2.3. Assuming the underlying probability density of £2(t) is uni-
modal, the attitude estimate error dynamics of the Ité SDE 6.16 obey the ultimate

upper bound

1 o2 1 [o4 51
im B[] <5+ 52— 5y 7 ~ 2 lm Elrw0)] -8 fim B[] - G
(6.26)
where
N D 1 (%)
e [77 e (t)} - 45’2” Iy (%)
and
k
1 142k I (J—m)
. w4 _ = _ Tm m
B

Proof. Apply Young’s Inequality, ab < % + g, to Equation 6.20 to find

1 1 1 3 1 1 1
LV < —Zkeﬁ252 — =028+ =02 + ~k?E + —kE + §keﬁ652 + §keﬁ4€4

8 * 4 2
1 1 1 3 1 6
<__ke~2~2__ 2 ~2 - 2 _kev2VQ _kEV4 _ke
< 4778 4aw5+8aw+4 n€+25+81
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where the last line holds since 0 < 77°62 4 7j** < 2 which follows from 1 = &2 4 7%,

Application of Zakai’s ultimate moment bound theorem (Theorem 2.1.5) yields

ol ., 1,7 1, 3 ool 1t 6
< _
}LTOELLI“‘?"E T30 5} g0 T ke hmE[ng}+2ke}5§E[5} g1

Rearranging and using the definition of variance yields

o<im (of7]) - (1+ ) ol + 2

24
+3lim E [77252] 42 lim E [54] + 2 1 tim Var [52]
t—o0 t—o0 81

t—o00

Using Jacobson’s Inequality, Var [52] < (b’;)z =lfora=0<e&<1=0,

! leads to
o<t ([]) - (1+ %) i B[]+ £+ i 0[] 2 i [+ 2

Solving the polynomial inequality provides the final result.
Note that, as explained in the proof of Theorem 6.2.2, the attitude measure-
ment noise states are weakly stochastically stable as shown in Theorem 4.6.1 and

the attitude measurement noise Euler angle (13 has the ultimate probability density

given in Theorem 4.44, specifically

p(d) = ﬁxp {j—: cos (9) }

Using the relations € = sin (%;) and 7 = sin ( u> and the ultimate probability density

one can compute lim; o F [7725“2} and lim; ., F [54} as follows

tligloE[ ()€ 2(t)] = m /2: sin? (%) cos® <§) exp {fj—;n cos (gzvﬁ) }dqg
0\o2 ) 7727 "
1
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and

1 k. k. 2 k.
Iz 2 ) - =75 (2=
e ()0 ()5 ()]

o2, m
1 1+ 2km [y (i—?)
— 1 _
T

where the Bessel function recurrence identity I, (z) = I,_o(z) — M[V,l(yc) was

T

used.
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6.2.6 Numerical Simulation Verification of Stochastic SO(2) Lya-
punov Bounds

Numerical simulations of the SO(2) attitude filter’s It6 SDE error dynamics
of Equation 6.16 were performed for a variety of system parameters. The Kloeden-
Platen Explicit Weak 2.0 numerical integration scheme discussed in Section 2.2.3
was used. For each simulation realization, a time step size of At = 0.001 was used
for a total of 10® simulation steps. At the end of a simulation realization, the last
107 simulation steps were used to compute the empirical mean of the filter attitude
estimate error £2(t).

A gallery of plots of the filter attitude estimate errors are included in Fig-
ure 6.5. As before, a magenta dot represents a single simulation realization. The
stochastic Lyapunov bounds of the previous section are also drawn on the plots,
with the upper bound of Equation 6.19 in blue, the lower bound of Equation 6.23
in red, and the upper bound of Equation 6.25 in yellow. As in the SO(3) case,
the stochastic Lyapunov bounds do correctly envelope the ensemble of numerical
realizations, but the bounds grow conservative for large filter gain k. and are in-
sufficient for filter performance characterization. In contrast to the SO(3) case, the
SO(2) stochastic Lyapunov bounds are tight in the small filter gain regime when
the attitude estimate state is essentially a random walk process.

In order to compute the stochastic Lyapunov upper bound of Equation 6.25,
lim; oo E [ﬁz(t)éz(t)} and lim; ., F [54(25)} must be evaluated. While analytic ex-
pressions of these ultimate expectations were given in terms of the modified Bessel
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functions of the first kind, they can still be difficult to evaluate using standard anal-
ysis software. For example, for the attitude noise level f—_QZ = 10000, Mathematica
yields Ip(10000) & 3.513 % 10***° while MATLAB returns Inf. Standard numerical
tools such as MATLAB use 64 bit floating point numbers, which can encode num-

03% or low as 1073%8 but this is not sufficient for

bers with exponents as high as 1
evaluating the upper bound of Equation 6.25. Mathematica was used to evaluate

the bound, while MATLAB was used for loading the simulation results from file and

creating plots.
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Figure 6.5: Comparison of simulation realizations of attitude estimate errors of the SO(2)
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error dynamics It6 SDE of Equation 6.16 to the stochastic Lyapunov upper

bound of Equation 6.19 in blue, the stochastic Lyapunov lower bound of Equa-

tion 6.23 in red, and the stochastic Lyapunov upper bound of Equation 6.25

in yellow.
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6.2.7 Fokker-Planck Analysis in SO(2)

This section presents a Fokker-Planck analysis of the SO(2) attitude filter.
As the system was shown to be weakly stochastically stable, the joint probability
density for the system will ultimately approach the solution to the stationary Fokker-
Planck PDE. In this section, the stationary Fokker-Planck PDE is derived and
a probability density function that asymptotically approaches the solution to the
stationary Fokker-Planck PDE is found. The asymptotic solution is subsequently
used to find stationary statistics for the system states.

Let p = p(gj(t), t> = p(q;(t), qz(t), t) be the joint probability density function
for the filter attitude estimate error ¢(t) and the attitude measurement noise error

¢(t). The Fokker-Planck PDE associated with the attitude filter error dynamics It6

SDE 6.18 is given by

% _ —Z 2 we)wen.0] + 5 2 a;;g] [{G(@(t))GT(w))}Z,Jp@(w,t)]
= 2 (kcos (3(0)) + hecos (3(6) — 6(1)) Yo (5(0).1)
gl (0)) 28 + s (30) - 500) 32

il g;p i %awa—;p (6.27)

The underlying system was shown to be weakly stochastically stable in The-
orem 6.2.2, thus the joint probability density function p(&(t),qé(t),t) ultimately

approaches a stationary joint probability density function

ps = s (9) = ps (437 5) = lim p(@(t), o(t), t)

t—o00
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The stationary joint probability density function solves the stationary Fokker-Planck

PDE
Oz%(kmcos< )—l—k cos< >>ps+ —km, sm(é)%—?%—%kesin(q@—é)g}:g
3 T o

The next theorem presents a probability density function that asymptotically

approaches the stationary probability density function p,.

Theorem 6.2.3. The solution joint probability density function ps ((}5,(/;) of the

stationary Fokker-Planck PDE of Equation 6.28 is such that

Ps (&5): Jim - p, (<z~5,<5)

kTm constant
Tm

where pq <g5, gzu5> 15 the bivariate von Mises PDF given as

((;5 gb) = — exp {(Ij—;n cos (qu5> + (ﬂkﬁ coS (qg — $> } (6.29)

m m w

with the normalization constant
k k
_ 2 e m
v=torth () (52
where Io(z) is the 0™ order modified Bessel function of the first kind.

Proof. Consider the bivariate von Mises (BVM) distribution [49, 60] which is, in

general, specified as
Pa ((b cb) == eXp {m cos <<5 — m) + K2 cOS (czNS — m)

sl

+ [cos (6=m) sin(d- m)] 0 sin (6 1z
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where N is a normalization constant, x; and ko are real-valued scaling parameters,
and C' is a 2x2 real constant matrix. In general there are no requirements on C'; it
may be full rank, singular, zero, negative definite, positive definite, or sign indefinite.

As noted in Theorem 6.2.2, the attitude measurement noise states (¢ in the
quaternion parameterization, gz; in the Euler Axis/Angle parameterization) are de-
coupled from the filter attitude estimate error states but not vice-versa. The station-
ary probability density function for the attitude measurement noise states was found
in the Euler Axis/Angle parameterization in Theorem 4.8.1. This in turn implies
the marginal probability density of the solution p, to the stationary Fokker-Planck

PDE of Equation 6.28 must be such that

m

[ (6.6)ds mexp {(’j—’;”‘cos«z?)} (6.30)

Therefor xk; = fr—;” and p; = 0. Since all the trigonometric terms in the stationary
Fokker-Planck PDE have zero phase, one can further conclude that u, = 0.

As explained in [49,60], the bivariate von Mises distribution may have the

von Mises marginal distribution of Equation 6.30 if and only if precisely one of the

-1 1
following sets of conditions holds: C' =0, ky =0 and C = ¢ , kg = 0 and
1 1
1 -1 1 1 1 1
C=c ko =0and C' = ¢ ,ko=0and C' =c¢ , ko = 0 and
1 1 -1 1 1 -1
0 1 10
C=c ,or kg =0and C =c¢ . The first six of the seven possibilities
10 0 1

do not satisfy the stationary Fokker-Planck PDE of Equation 6.28. Substituting the
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last possibility into the Fokker-Planck PDE results in

0= {(k‘e—c(agz+ai)> <COS <g5 — gz~5> —csin? <g5 — gz~5> )—ck:m sin <g5> sin <g5 — qz~5> }ps

Choosing ¢ = %= the above equation becomes

o2, +0%
0= {%sm (gb) sin (qb gb) }

_ { 1]“:%_ sin ((]3) sin (Q; - <Z~5> }ps (6.31)

which does not hold for all possible ¢ and gz so this is not a solution. Note how-

ever that the right hand side of Equation 6.31 asymptotically approaches 0 for any
possible g5 and gg when o,, goes to zero while the ratio (’2—2: is held constant. The
attitude measurement noise density of Equation 6.30 is parameterized by the ratio
i_%z’ so as long as k,, is made small enough to maintain the ratio ’;—2: the parameter
om may be made arbitrarily small without altering the ultimate statistics of the
attitude measurement noise.

Thus

~ 1 km, v ke v
Pa <¢, ¢> = N exp {E COS <¢> + m COS <¢ — ¢>} (632)
asymptotically approaches the solution to the stationary Fokker-Planck PDE of
Equation 6.28 in the sense that

Jm, 2 (6.9) =9 (0.9)

kTm constant
Im

The scaling constant N may be recovered by enforcing the probability density

normalization constraint

//_% . ¢ d(bdgb—l
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Substituting in the probability density function of Equation 6.32 and rearranging

yields
N = / / exp {— cos (gb) 4+ —=— e coS (gz; 5) }dgz;dgzuﬁ
2w J =2m +
kmm - -
= / exp {—2 cos } { cos qu — gb) }dqﬁdqﬁ (6.33)
—27 Om
Observe that exp {ﬁ cos (gz; — g5> is 27 periodic with phase (57 SO

/_227; exp {02 li coS ((;5 qb)}d(% = /_227; exp {U?nkTeaﬁ, coS (é)}dgz;

The modified Bessel function of first kind is given in integral form as

™ ™

1 K : oo
I,(z) = —/0 cos(vy)e® M dy — M/{) e cosh®—rt gt (6.34)

Then

where the first equality holds because the integrand is periodic with period 27 and
the second equality holds because the integrand is even.

Substituting back into Equation 6.33 results in

ke 2w km . 5
Vi (i) [ (e ()

k k
_ 2 e m
-0 () 1 () .
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where again the facts that the integrand is periodic with period 27 and is even were
used.

]

The bivariate von Mises (BVM) probability density function of Equation 6.29
asymptotically approaches the solution to the stationary Fokker-Planck PDE of
Equation 6.28 as ¢, — 0 while the ratio ’;—2: is held constant, meaning k,, — 0 at
the same rate 02, — 0. The attitude measurement noise density of Equation 6.30 is
parameterized by the ratio i_g so the ultimate statistics for the attitude measurement
noise given in Corollary 4.8.1.1 and Corollary 4.8.1.2 are unaffected. However it is
unclear as to whether there is some consequence to entirely parameterizing the
attitude measurement noise process via the ratio fj—g . The measurement noise PDF
of Equation 6.30 does not provide information about the autocorrelation of the
attitude measurement noise process, which could be parameterized by some different
function of k,, and o2,. Despite the potential loss of generality in parameterizing
the von Mises PDF of Equation 6.30 via the ratio (’j—g, the BVM PDF of Equation

6.29 can be used to compute ultimate statistics of the filter attitude estimate error

as shown in the next corollary.

Corollary 6.2.3.1. The error dynamics of the Ito SDE 6.18 are such that

lim E[2(1)] = L. Z E;g ; E;; (6.37)

where Iy(x) and I (x) are the 0" and 15t order modified Bessel functions of the first

t—o00

kind respectively.
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Proof. Compute the expectation using the probability density function from Theo-

rem 6.2.3

lim E [52@)]

t—o00

< m [ en(6) g o)

k" L constant
0

= U}:gg / / ( ) exp {i—g Ccos ((]3) + aglkTeag} COS (<5 - &) }d&dﬂg

kTm constant
a.

m

- m, w/”/%m%—mw@+ o (6 9) o

kTm constant
m

k[ ) o

'—m constant

R U
T2 2N om0

kTm constant
2m k o 2m 5 k ~ U
/ exp {—21 cos <qb> } / cos (qﬁ) exp { 5 cos <¢ ¢> }dgbdgb
—27 Om —27 Om + Uw
The ¢ integral can be found in Mathematica [108] as
2 5 ke 5 5 5 ke .
o COS (¢> exp m COS <¢ — (Z5> d(b = 47'('[1 m COS <¢>

Substituting into the above yields

1' 9 1 1 47T.[1 (Ugn]figg)) 2T o km o dv
i B[] =3 m, T [ con(3) o G on (9) o
ig‘ constant
16720 (o ) 1 ()
- 2 JLILIBO 2N
C%" constant
A () 1 ()
= dim o[- ARG m
iTmU;no;;tant IO (o‘?n%a'ﬁ)) IO (5'_2:>

m



Now hold the ratio i—’;“ = ~ fixed but let ¢, — oo:

() ()
lim E[éQ(t)} = lm S |1-—T .
e (’:Tmazlo?stant ]0 (cr?nkjﬁcr?ﬂ> ]0 <ﬁ)
. 1 L <02 Jﬁoi) I <7)
= lim 5 1—
oo I (757 ) I (7)
1 L (Uzkea2)ll (7)
S 1 o m w
2 [O (a%ﬁigi) IO (7)
()
=3 1— - = (6.38)
()1 (2)
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6.2.8 Numerical Simulation of Stochastic SO(2) Analytic Results

Consider again the simulations of the SO(2) attitude filter’s It6 SDE error
dynamics of Equation 6.16 previously discussed in Section 6.2.6. In the proof of

Corollary 6.2.3.1, limy_,o0 E [52(75)] was shown to be such that

(6.39)

where v = i%” is held constant. The gallery in Figure 6.6 shows plots of the right

hand side of Equation 6.39 for a logarithmic sequence of o,,, approaching zero (while
holding the ratio v = (’j—g constant) overlaid on the mean simulation realizations
of €2(t). In each set of simulation realizations considered, the analytic ultimate
expectation of %(t) converges to the simulation results as o,, — 0. The gallery is

repeated in Figure 6.7 with the 0, — 0 limit used for the ultimate expectation.
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Figure 6.6: The analytic ultimate expectation of &(t), provided in Equation 6.39, con-
verges to simulation realizations of attitude estimate errors of the SO(2) error

dynamics It6 SDE of Equation 6.16 as v — 0.

308



ﬁ/\tt,it,ude Estimate Error &, = 1, 0, = 0.01, 0, = 0.31623
10 T T 3

DAt,titude Estimate Error &, = 1, 0, = 0.1, 0, = 0.31623
10 T T 3

10771+ gim realization 1 10771+ gim realization 1
n()n() | n()n() |
R O B T N A NV . 1y A/ A/ 1
2 N ! 2 N |
I| 5 1| % (% )( 3
1074 4 ‘ 3 2 1 ‘0 1 2 1074 4 ‘ 3 2 1 ‘0 1 2
10" 10" 10" 10 10 10 10 10" 10" 10" 10 10 10 10
ke ke
0 Attitude Estimate Error  k,, =1, 0, = 0.01, 0, = 1 Attitude Estimate Error  k,, =1, 0, =0.1,0, =1
10 T T 10 T T
107 107
il il
S 102 S 102
o o

3L . . .
« sim realization

107 10 102

3L . . . |
« sim realization

B0

10° 107 10

Figure 6.7: The analytic ultimate expectation of Corollary 6.2.3.1 matches the simulation

realizations of attitude estimate errors of the SO(2) error dynamics It6 SDE

of Equation 6.16.
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As further evidence to corroborate the result that the ultimate attitude esti-
mate error is a function of the ratio of v = fj—g as in Corollary 6.2.3.1, several sets of
simulations were performed. Each of the plots in Figure 6.8 consists of simulations
with the same ratio v = 5—2:7 but each plot has distinct values of o, (and thus also
k.). The analytic ultimate attitude estimate error performance curve from Corol-
lary 6.2.3.1 is compared to simulation realizations for a range of tracking gains k.
in each plot. The performance curves, both from the analytic expression and the
simulation results, have the same shape in each plot since they all have the same

ratio 7.
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Figure 6.8: Varying the individual values of k,, and o2, while holding the ratio fr—? con-

stant yields the same performance curve from both the analytic expectation

of Corollary 6.2.3.1 and the simulation realizations.
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Plots of the ultimate expectation from Corollary 6.2.3.1 for various attitude
measurement noise levels % are shown in Figure 6.9. As the attitude measure-
ment noise level % is reduced (as 5—2: increases), the high filter gain k. limit of
lim; ., E[€%(t)] decreases. This result agrees with intuition since, given the structure
of the filter, larger gains force the filter states to track the attitude measurements
more closely. In the low gain limit, the filter is unable to incorporate attitude mea-

surement information in its state estimate faster than the state estimate randomly

walks due to gyro measurement noise.

Ultimate Attitude Estimate Error o, =1

100 T T T T
__10t: .
=
=3
g
i 10'2*_km/0-72n = 100 i
—kn/o? =30
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ke

Figure 6.9: Plots of the ultimate expectation from Corollary 6.2.3.1 for various attitude

2
Im

2
measurement noise levels 77; as the attitude measurement noise level Z—m
m m

decreases (as (’;—5" increases), the high filter gain limit of the attitude estimate

m

errors decrease.
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Plots of the ultimate expectation from Corollary 6.2.3.1 for various gyro mea-
surement noise levels o,, are shown in Figure 6.10. As the gyro measurement noise
increases, the filter gain must increase to allow attitude measurement information
to significantly improve the state estimate. Conversely, as the gyro measurement
noise decreases, the filter gain allows the state estimates to track the attitude mea-
surements more quickly. Thus the effect of changing the gyro measurement noise

parameter o, is to simply shift the plot of the ultimate expectation from Corollary

6.2.3.1 horizontally.
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Figure 6.10: Plots of the ultimate expectation from Corollary 6.2.3.1 for various angular
measurement noise levels o,,. The effect of increasing o, is to shift the filter’s

attitude estimate performance curve to the right.
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The plots in Figures 6.9 and 6.10 show that the ultimate attitude estimate
error variance lim;_,, F [52(15)} approaches the ultimate attitude measurement noise
variance limy_,, F [éQ(t)} in the high filter gain limit, when k., — oco. One might
expect this result as the filter’s feedback term k.7,,&,, compares the filter attitude
estimate to the attitude measurement. As the filter gain k. is increased, the feedback
term forces the filter to track the attitude measurements more closely.

This phenomena can be further understood by investigating a linear time in-
variant (LTI) system analogous to the nonlinear attitude filter. Consider the simple

LTT kinematics equation for translation
z(t) = v(t) (6.40)

where z(t) is position at time ¢ and v(t) is velocity at time t. Assume two types of
measurements of the system state are continuously available. The first measurement

is from a velocity sensor with the measurement model
U (t) = v(t) + opyw,(t) (6.41)

which produces measurements v,,(t) of the true velocity v(t), but the measurement
is perturbed by additive unbounded noise generated by the zero mean Gaussian
white noise process w,(-) and o, > 0 is a scaling constant. The velocity sensor is
analogous to the angular rate gyro. The second measurement comes from a position

sensor with the measurement model

T (t) = x(t) + n(t)

n(t) = —An(t) + opwn(t) (6.42)
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where the measurements x,,(t) of the true position z(t) at time ¢ are corrupted by the

non-white noise n(t). The non-white noise process is given as a First Order Gauss

1

Markov (FOGM) process with correlation time ¢+ > 0 and driving noise density

>

o, > 0. The driving process noise w,(:) is a zero mean unit variance Gaussian
which is independent of w,(-).
A translation filter for the velocity measurements of Equation 6.41 and the

position measurements of Equation 6.42 can be formulated as

B(t) = vm(t) + ke (zm(t) — &(1))

=v(t) + ke (x(t) — 2(t) + n(t)) + opwy,(t) (6.43)

with tracking gain k. > 0 as a scalar. The filter of Equation 6.43 is a translational
analog of the nonlinear attitude estimation filter of Section 6.2.1; the velocity sensor
measurement is used to (imperfectly) propagate the filter kinematic equation, and
a feedback term k. (z,,(t) — &(t)) is used to drive the position estimate Z(¢) towards
the position measurement x,,(t).

Defining the LTT filter’s translational estimate error as Z(t) = z(t) — Z(t), the

estimate error dynamics are then

=v(t) —v(t) — ke (z(t) — 2(t) +n(t)) + opwy(t)

= —k&(t) — ken(t) — opw,(t)

Augmenting the estimate error dynamics with the FOGM process dynamics yields

315



the filter error dynamics

n(t) -2 0 n(t) on 0 Wy (t)
@ (t) = = +
j(t) _ke _ke j(t) 0 — 0y wv(t)
= Fx(t) + Gw(t) (6.44)

The filter error dynamics of Equation 6.44 constitute an LTI system. As
A > 0 and k. > 0 by construction, the matrix F is Hurwitz. As discussed in
Section 2.1.4.1, the LTT system with Hurwitz dynamics matrix F' has a covariance
matrix P(t) = E[z(t)x’(t)] that approaches a stationary covariance matrix P, =

lim; o E[x(t)xT(t)] that satisfies the covariance Lyapunov equation
0=FP,+PF"+GG"

Denoting

Pnn DPnax
P, = = lim Elx(t)x” (t)]

t—o00
Pnaz Pz

and solving the covariance Lyapunov equation yields

: 2 on
Pnn = }g&E[n (t)] o
. ke o2
Pna = tliglo E[n(t)x(t)] = _>\ + ke ﬁ
2 k 0.2
= lim E[2? = v ¢ In 4
Pae = lim Elz™(1)] 2k A+ ke 2X (6.45)

The translational position estimate error variance p,, is composed of two
terms: the first term describes the contribution of the velocity sensor noise density o,
to the estimate error variance, while the second describes the contribution of the non-
white position measurement noise density o,. For infinitely large tracking gain k.,
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the contribution of the velocity sensor noise vanishes; however, the contribution from
the position measurement noise remains. This result can be further corroborated by
examining the structure of the filter dynamics of Equation 6.43. The filter tracking
gain k. essentially acts as a weighting coefficient balancing contributions to the filter
dynamics between the filter translation kinematic model and position measurement
feedback. For a small tracking gain k. the filter dynamics i:(t) are principally given
by the filter’s translational kinematic model driven by the velocity measurement.
For a large tracking gain k. the filter dynamics #(¢) are principally driven by the
estimate error term e, (t) = x,,(t) — Z(¢).

The above analysis in the LTI case is analogous to that of the nonlinear at-
titude filter. For large tracking gain k., the ultimate attitude estimate error vari-
ance limy_,o, [52(75)} approaches the ultimate attitude measurement noise variance
lim; o [52(t)} . From the construction of the nonlinear attitude filter, the tracking
gain k. acts as a weighting coefficient balancing contributions to the filter dynamics
between the filter attitude kinematic model and attitude measurement feedback.
For a small tracking gain k. the filter dynamics Q(t) are principally given by the
filter’s attitude kinematic model driven by the gyro measurement. For a large track-
ing gain k. the filter dynamics f](t) are principally driven by the attitude estimate
error term e(t) = 7,,(t)€mn(t) which compares the filter attitude estimate q(t) with

the attitude measurement g, (t).
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6.2.9 SO(3) Bound Extrapolated from SO(2) Analytic Solution

Following the same approach as that of Section 4.10, this section extrapolates
an upper bound for the ultimate expectation of the SO(3) filter’s attitude estimate
errors from the analytic solution of the ultimate expectation of the SO(2) filter’s
attitude estimate errors given in Corollary 6.2.3.1. The factor of % in Equation 6.37

3

is rescaled to 3 so the SO(3) bound matches the low filter gain limit seen in the

numerical simulation results. Next, various choices of noise level scaling £ are used

in the expression

67 20 o | — 1
7o o/ A\ n(d) ()

The notional bound with various choices of £ is superimposed on plots of the nu-

bound( E km) -3 1- - <£gj) . <%> (6.46)

merical simulations of the SO(3) It6 SDE 6.10 for the case of a spinning vehicle in
the gallery of Figure 6.11 and an inertially fixed vehicle in Figure 6.12.

In all cases considered, the choice of £ = 3 in the expression of Equation 6.46
bound the simulation realizations. Again this agrees with the logic considered in
Section 4.10, that the variance of a random walk process in three dimensions driven
by independent noise sources along each axis is upper bounded by the variance of
a random walk process in one dimension with the three independent noise sources
each acting on the single axis. Focusing all the noise energy along a single physical
dimension maximizes the potential for constructive and destructive interference.
This is an upper bound as the noise channels in the SO(3) case represent actual

sensor hardware noise which are physically restricted to independent axes. Thus
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the heuristic upper bound for the SO(3) case is given here as

()1 ()
RN VA il (6.47)
o () o ()

The upper bound is drawn again for clarity for the case of a spinning vehicle in the

lim E[éT(t)é(t)] <

t—o00

A~ w

gallery of Figure 6.13 and an inertially fixed vehicle in Figure 6.14.
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Figure 6.11: Comparison of simulation realizations of the attitude estimate error and the
notional bound of Equation 6.46 for several choices of £ and for the case of a

vehicle spinning at 5 revolutions per minute about the vehicle body’s [1 2 3]

axis. 320
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Figure 6.12: Comparison of simulation realizations of the attitude estimate error and the

notional bound of Equation 6.46 for several choices of £ and for the case of a

vehicle inertially fixed (not spinning).
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Figure 6.13: Comparison of simulation realizations of the attitude estimate error and the
heuristic bound of Equation 6.47 for the case of a vehicle spinning at 5 rev-

olutions per minute about the vehicle body’s [1 2 3] axis.
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Figure 6.14: Comparison of simulation realizations of the attitude estimate error and the

heuristic bound of Equation 6.47 for the case of a vehicle inertially fixed (not

spinning).
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6.3 Gyro Constant Bias Filter for Gyro Additive Noise and Attitude

Measurement Noise

This section considers the inclusion of attitude measurement noise in the gyro
constant bias estimation problem. Specifically, the gyro constant bias estimation
filter studied in Chapter 5 is now assumed to have the attitude measurement noise
model of Section 6.1.

Section 6.3.1 presents the measurement models considered, the formulation
of the attitude filter, and culminates with the derivation of an Ito6 SDE for the
system error dynamics. While the constant gyro bias filter was able to utilize the
converse Lyapunov theorem to find a Lyapunov function suitable to demonstrate
weak stochastic stability in Section 5.2, the converse Lyapunov theorem does not
apply to the filter error dynamics augmented with the quaternion measurement noise
model; a Fokker-Planck analysis is pursued under the assumption that the filter
error dynamics are stable. The system is reduced to the SO(2) case in Section 6.3.2
to first gain insight.

Similar to the attitude estimation filter with attitude measurement noise stud-
ied in Section 6.2, an asymptotic solution to the SO(2) stationary Fokker-Planck
PDE is found in Section 6.3.3. The asymptotic solution is subsequently used to find
analytic expressions for the ultimate attitude estimate error variance as well as the
ultimate gyro bias estimate error mean and variance. These results are verified via

simulation analysis in Section 6.3.4. Similar to Sections 4.10, 5.7, and 6.2.9, Section
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6.3.5 provides bounds for the ultimate attitude estimate error variance as well as
the ultimate gyro bias estimate error variance for the SO(3) case by extrapolating

the SO(2) results of Section 6.3.3 .
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6.3.1 Gyro Constant Bias Filter Formulation in SO(3)

As in Section 5.1, the angular rate gyro measurements are modeled as having

a constant bias b as well as additive noise
wg(t) =w(t) + b+ o,n,(t) (6.48)

where, as before, w,(t) is the gyro measurement at time ¢, w(t) is the true vehicle
angular rate at time t, o,, is a positive scaling constant, and m,(:) is a zero mean
unit variance Gaussian white noise process. As the bias is assumed to be constant,
b(t) = 0.

The attitude measurement g,,(t), possibly from a quaternion output star
tracker, is modeled here as a noise corrupted version of the true vehicle attitude

q(t) as presented in Section 6.1

an(t) =q"'(t) @ q(t) (6.49)
where ¢(-) is a quaternion noise process. The attitude measurement evolves accord-

ing to Equation 6.3 repeated here for convenience

nlt) = 5 {B (4 () W) + 0nrn(5) + haiDED]} @ an(t)  (650)
where k,, and o, are positive scalars that parameterize the attitude measurement
noise statistics, 1,,(-) is a collection of independent identically distributed zero
mean unit variance Gaussian white noise processes independent of m,, (), and g(t)

compares the attitude measurement noise process to the true vehicle attitude

q(t) =q(t) @ q,'(t) = (6.51)
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The attitude measurement noise error dynamics are given in Equation 6.4.
In Chapter 5 the gyro constant bias filter had access to the true attitude in real

e(t)

time; it could use the filter attitude estimate error g(t) = =q(t) ® g7 (t)
i(t)
to drive its kinematics as in Equation 5.3. In this chapter, however, the filter is

restricted to using attitude measurements corrupted by noise. Thus in this section

the filter equations are given as

i) = 5 1(20) [0 = b00) + K00 0 400

b(t) = —aidj(t)ém(t) (6.52)
dn(t) = = qn(t) ® G (t)

=q ()@ q(t) (6.53)

The expression 7,,(t)€,,(t) is expanded in terms of €(t), 7(t), €(t), and 7(t) in
Equation 6.7. As before, k. > 0 is a filter (estimator) gain parameter, g(t) is the
filter’s estimate of the vehicle attitude g(t) at time ¢, o > 0 is the filter adaptation
gain parameter, and I;(t) is the filter’s estimate at time ¢ of the gyro bias b.

The filter’s bias estimate error b(t) is given as
b(t) = b — b(t) (6.54)

The filter uses its bias estimate in the filter kinematic equation to attempt to correct
for the true bias in the gyro measurement. Since the gyro bias is assumed to be
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constant, b(t) = 0, the bias estimate error dynamics are simply
bi(t) = aijn (1)én (1) (6.55)

The attitude estimate dynamics in Equation 6.52 can be combined with the
quaternion error kinematics of Equation 2.71 and the gyro measurement model
from Equation 6.48 to find the filter’s attitude estimate error dynamics. Suppressing

function of time notation for brevity, the attitude estimate error dynamics are found

to be
i = 3w r(@)R(01) [0, - b e, | 0d
= o r(@)r(a ) r(a) o+ b+ oun— b k] b0
= { [ ()] - 2(a) [bnen + 5+ ouma] g (6.50)

Just as in Section 6.2.1, the attitude measurement noise prevents the filter from
being able to perfectly resolve its angular rate estimate in the appropriate frame.
A consequence is that the vehicle angular rate w appears explicitly in the attitude
estimate error dynamics. As before, when the attitude noise is zero (¢ = q,,,,.,.,)>
the [I — R(d)}w term vanishes and 7,,€,, simplifies to 7e€.

Combining the attitude noise model error dynamics of Equation 6.4, the fil-

ter attitude estimate error dynamics of Equation 6.56, and the bias estimate error
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dynamics of Equation 6.55 leads to the Langevin form filter error dynamics

¢
al |
= |q| = |&
_g_ ﬁ
b
_%kmﬁ2€
LeiieTe
= |1]a] “R(¢)|w =17 N k58 + b
5|+ [sx] I'-R(q)|w—75[n]+ [sx]]R(q)[kenmsm—i-b}
~1" |1~ R(q)|w + L& R(4) [kefimen + B]
XMmEm
—s[ir+ [£ x]|ow 0
%éTam 0
ny,
+ 0 3| + [& x| R(d)ou (6.57)
Ny
0 3¢ R(q)ou
0 0

where 7),,€,, is expanded in Equation 6.7.
As discussed in Section 2.1.3, the Langevin form error dynamics differential

equation 6.57 is interpreted as a Stratonovich SDE. Converting to an [t6 SDE results
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in the following

ab|  |di
_dl;_
- —3kni’€ — 202, € -
U7 — 202
= | 4]+ [e x| [1 = R(q)|w - [ + [ x )| R(q) [keiimén + b] — 2026
16" |1 = R(4)]w + 36"R() [keiimén + b] — 202
i ANmEm |
_—%[ﬁH[éX]]am 0 -
%éTam 0
dBm
+ 0 1]t + [€ x| B(a)o
dBuw
0 1€TR(q)o
L 0 O .
— f(&)dt + G(&)dB (6.58)

Note that the converse Lyapunov theorem can not be invoked here as in Section
5.2. Here, the attitude estimate error states and the measurement error states
mix in the nonlinear function 7,,(t)é,,(t) of Equation 6.7. While the quaternion
measurement error dynamics of Equation 6.4 were shown to be weakly stochastically
stable in Section 4.2.1 and the noise-free attitude measurement gyro constant bias
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observer of Chapter 5 was shown to be weakly stochastically stable in Section 5.2,
there is no guarantee that providing the state of one weakly stochastically stable
system as an input into another weakly stochastically stable system results in a
combination that is weakly stochastically stable. Even in the deterministic nonlinear
case there is no guarantee of a separation principle as discussed in Thienel and
Sanner [95].

Instead, the analysis in the remainder of this chapter assumes the error dynam-
ics are weakly stochastically stable. The analysis will proceed with an investigation
of the stationary Fokker-Planck PDE and any results obtained will be corroborated

via comparison to statistics from numerical simulation realizations.
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6.3.2 Gyro Constant Bias Filter Formulation in SO(2)

As in the attitude estimation filter for gyro additive noise and attitude mea-
surement noise case studied in Section 6.2, the author has not yet been able to solve
the Fokker-Planck PDE for the full SO(3) case. The SO(2) case, however, will be
shown to have a tractable solution. In this section the attitude filter dynamical
model will be reduced to the SO(2) case to enable the Fokker-Planck analysis in the
following section.

As explained in Section 2.3.2; the SO(3) dynamical model may be reduced to
the SO(2) case by simply zeroing out the y and z components of all vector quantities.
Equivalently, the vector quantities in the SO(3) case reduce to scalar quantities, and
SO(3) unit quaternions comprised of four elements reduce to SO(2) unit quaternions
with two elements.

The SO(3) Langevin form error dynamics of Equation 5.6 reduce in the SO(2)

case to
nm
=g = |&| = | - Lkehifimém — S| + 0 —Lio, (6.59)
L o
b il %keéﬁmém + Zéb 0 %éaw
b TnEom 0 0

where again the function of time notation has been suppressed for brevity. In the
SO(2) case the feedback term is given by
NmEm = (7] + €€) (1€ — 7€) (6.60)
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As explained in Section 2.1.3, the Langevin form error dynamics differential

equation 6.59 is interpreted as a Stratonovich SDE. Converting to [to form yields

d
dq dij
dz = \dg| = |dz
db diy
db
— ki€ — §omg —3om 0
Leiie® — 10207 10, 0
~ dfm
= | =Lkl — Aib— Lo2z dt+ | 0 —ljo, (6.61)
AP
SkeETmEm + 560 — $027] 0 S0
FimEm 0 0

The attitude filter error dynamics of Equation 6.59 can equivalently be written
in the SO(2) Euler Axis/Angle parameterization (as explained in Section 2.3.2). Let
sin <§) 3 sin (%)

q —_= —_= } q = —= }
oS (%) coS (%)

Then the SO(2) Euler Axis/Angle parameterization of the filter error dynamics is

Mc
(O}

Sc
R
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given as

Qe
-

-

S

— kg
ke (i) + €) (17 — 7€) = b| +
o (171 + €€) (1j€ — 7€) |
5k sin (gzé) -—am
—%kesm@—(z)—é +1 o
§asm<q~5—gzv5> | I 0

0
nm
o
nw
0
nm
(6.62)
nw

which is immediately in Langevin form. Conversion to an Ito SDE is trivial as the

diffusion matrix is independent of the state :

dgE —%km sin (g?))
d(g = —%k’e sin (q@ - gZ) —b
_dl;_ I %a sin ((5 — QE)

= f(y)di + G(y)dB
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0
dfm
—o,
B
0
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6.3.3 Fokker-Planck Analysis in SO(2)

This section presents a Fokker-Planck analysis of the SO(2) attitude filter. As-
suming the SO(2) attitude filter error dynamics of It6 SDE 6.61 are weakly stochas-
tically stable, the joint probability density for the system will ultimately approach
the solution to the stationary Fokker-Planck PDE. In this section, the stationary
Fokker-Planck PDE is derived and a probability density function that asymptoti-
cally approaches the solution to the stationary Fokker-Planck PDE is found. The
asymptotic solution is subsequently used to find stationary statistics for the system
states.

Let p = p(g](t),t) = p(&(t),gzé(t),&t),t) be the joint probability density
function for the filter attitude estimate error é(t), the attitude measurement noise
error ¢(t), and the bias estimate error b(¢). Then the Fokker-Planck PDE associated

with the attitude filter error dynamics Ito SDE 6.63 is given by

2y [t 0]+ 5 3 S [{et)e w0) ), po.0)
=3 [l{:m oS <q~5(t)> + k. cos (&(t) - &(t)) }p(y(t)at
n %km sin (&(t)) g—g [%k sin (gs(t) - &(t)) + B(t)] g—g
- %asin (cf?(t) - u(t)) % + %afn% %Oi% (6.64)

Assuming the underlying system is weakly stochastically stable, the joint prob-

ability density function p((ﬁ(t), é(t), B(t), t) ultimately approaches a stationary joint
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probability density function

Ps = s (§) = s (iﬁ, 9, 5) = lim p(&(t), (1), b(t), t)

The stationary joint probability density function solves the stationary Fokker-Planck

PDE
Ops

0= [k’m coS <g5> + k. cos <¢~> - g5> }ps + k,, sin <g7>) adé
s _ asin (gz; — gg) 881;) + 02, ?;g; + 02 ?;(;;8 (6.65)

+ [k’e sin <gz~5 — q5> + 25} ¥

The next theorem presents a probability density function that asymptotically

approaches the stationary probability density function p,.

Theorem 6.3.1. The solution joint probability density function p, ((}5,5, ~> of the
stationary Fokker-Planck PDE of Equation 6.65 is such that
Ds <§g’ QZ, E) = lim DPa (Qg, Quﬁu E)

om—0
% constant
where
)t cos (3-0) — i (6.66)
cos | p—ao | — .
a (o, +o7)

with the normalization constant
) o (02 4 02)

ke ko
) f (72 k

N =167l | ———
! “(omaa ;
where Io(x) is the 0™ order modified Bessel function of the first kind.

Proof. Recalling that the attitude measurement noise stationary Fokker-Planck PDE
was asymptotically solved by a bivariate von Mises distribution in Theorem 6.2.3 and
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the gyro constant bias stationary Fokker-Planck PDE was solved by the cylindrical
probability density function of Mardia and Sutton [62] in Theorem 5.5.1, consider
the following joint distribution that is a combination of the forms of the mentioned

PDFs
- 1 - - -
Da <¢, b> = oXP K cos(¢) + Acos(¢p — @) + vb
where the normalization constant NN is a positive scalar, the concentration parame-
ters k and A\ are non-negative scalars, and v is a scalar.

Substituting the probability density function into the right hand side of PDE

6.65 yields the expression
0= { (hn = w02 cos 3) 4 (ke = n(e +.02) ) (s (6 ) = wsin? (6 )
— (ki = k02, ) sin? () + A — 2602, ) sin () sin (6 — 9)
= 3(A+ va)bsin (5 - ) }pa

Choosing k = 5—72", A= — %02 ,and v = —g = —W and substituting into the
above equation results in
kekm Y . 7 v
= sin sin (¢ — a
e sin (4)sin (6 )y
= 2 sin (¢) sin (¢ — ¢)pa (6.67)
T+ %

which does not hold for all possible 95 and gzvﬁ so this is not a solution. Note how-
ever that the right hand side of Equation 6.67 asymptotically approaches 0 for any
possible é and (5 when o, goes to zero while the ratio ﬁ—z’; is held constant. As
discussed in the proof of Theorem 6.2.3, the attitude measurement noise density is
parameterized by the ratio of C’j—gm, as long as k,, is made small enough to maintain
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the ratio fj—g" the parameter 0,, may be made arbitrarily small without altering the
ultimate statistics of the attitude measurement noise.

Thus

V]

Pa (é, (57 5) = %exp {(Ij—? coS ((;US) —1—072711{:760120 coS (é—gb) - W?} (6.68)

asymptotically approaches the solution to the stationary Fokker-Planck PDE of

Equation 6.65 in the sense that

s, (368) = (5.60

kTm constant
Im

The scaling constant N may be recovered by enforcing the probability density

normalization constraint

/%/_/_pa(bfb dbdddd = 1

Substituting in the probability density function of Equation 6.68 and rearranging

results in

= e )
)62 }déda}dqé

ke -~ ke
+a,2n+ag)cos<¢_¢>_a(a2 + 02

m

=/ / exp{—gn os (8) + - ’i 7 cos (- ¢)}d&d&
x/mexp{—ﬁzﬁ}db (6.69)

In the proof of Theorem 6.2.3, the double integral of Equation 6.69 was found
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to be

/_22: /_Z exp {i—g coS (é) + Ugn%cos <q§ — $> }d(/ﬁdqvﬁ

2
k k.
_ 2 e m
“towt () 0 ()
where Iy(z) is the 0" order modified Bessel function of the first kind. Since the

exponential function is such that for all positive scalars a

/ exp {—le} dxr = ~/7a
oo a

the second integral in Equation 6.69 evaluates to

> k =\ ma (02, + 02)
—— p\gp =,/ =m @ Tw/
/. eXp{ a (02, + 0%) } ke

Combining yields the normalization constant.

O

Similar to the discussion in Section 6.2.7, the asymptotic solution to the sta-
tionary Fokker-Planck PDE of Theorem 6.3.1 asymptotically approaches the solution
to the stationary Fokker-Planck PDE of Equation 6.65 as ¢, — 0 while the ratio
(’j—g is held constant, meaning k,, — 0 at the same rate ¢, — 0. The attitude mea-
surement noise density is parameterized by the ratio C’j—g so the ultimate statistics
for the attitude measurement noise given in Corollary 4.8.1.1 and Corollary 4.8.1.2
are unaffected, but the attitude measurement noise density says nothing about the
autocorrelation of the attitude measurement noise process. Despite the potential
loss of generality in parameterizing the attitude measurement noise PDF via the ra-

tio C’j—g", the asymptotic solution of Theorem 6.3.1 can be used to compute ultimate
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statistics of the filter attitude estimate error and the filter bias estimate error which

will be shown in the remainder of this section.

Corollary 6.3.1.1. The error dynamics of the Ito SDE 6.63 are such that
() )

5 1— (6.70)

b (z) b (2)

lim E[ef?(t)} -

t—o00

Proof. Compute the expectation using the probability density function from Theo-

rem 6.3.1

lim  lim F [éz(t)}
om—0 t—o0
(}ij constant

= lim — / / / &2 exp {— coS <gzu5>
om—0 2w J =27
’” constant
k ~ k ~ IO
_ — — " b dbdod
+0',2n+0'12u o8 (¢ ¢) a (o2 +02) } Pdo

1
= lim

om—0 2
km constant 167T IO < 2 +o'2 ) IO < >

/ / ( >exp{§—gcos ((5) +UfnkTeUZUCOS (&—é)}d&dqus

which was solved in Corollary 6.2.3.1. O

By inspection of the ultimate joint probability density function of Theorem
6.3.1, it can be seen that b is ultimately distributed according to a Gaussian distri-

bution with zero mean

lim E [E(t)} ~0

t—o00

and variance

lim E [62(75)} - 02‘% (6.71)

t—o0
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6.3.4 Numerical Simulation of Stochastic SO(2) Analytic Results

Two numerical simulations of the SO(2) filter's It6 SDE error dynamics of
Equation 6.61 were performed for a variety of system parameters. The Kloeden-
Platen Explicit Weak 2.0 numerical integration scheme discussed in Section 2.2.3
was used. For each simulation realization, a time step size of At = 0.1 was used
for a total of 10® simulation steps. At the end of a simulation realization, the last
107 simulation steps were used to compute the empirical mean of the filter attitude
estimate error £2(¢) and the filter bias estimate error b%(t).

The first simulation study varied the filter tracking gain k. across a range of
values. A gallery of plots of the filter attitude estimate errors are included in Figure
6.15, a gallery of plots of the filter bias estimate errors for the same simulations are
included in Figure 6.16. The numerical results, shown in magenta dots, are compared
to plots of the ultimate attitude estimate error variance of Corollary 6.3.1.1 and the
ultimate gyro bias estimate error variance of Equation 6.71 respectively which are
drawn in blue lines.

The analytic ultimate expectations are in good agreement with the numeri-
cal simulation realizations with a few exceptions. In the top two attitude estimate
error variance plots of Figure 6.15, the ultimate expectation differs from the numer-
ical realizations when the ultimate expectation curve flattens out horizontally (near
k. = 1). Other than these discrepancies, the numerical data matches the overall
trends predicted by the analytic ultimate expectations: the attitude estimate error

variance curve shifts horizontally with o, the high k. limit of the attitude esti-
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mate error variance decreases with decreased attitude measurement noise density
(increased %), and the bias estimate error variance curve shifts vertically with o,,.
Similarly, the bias estimate error simulation realizations are in good agreement with
the analytic expectation; the negative unit slope on the log-log plots are indicative
of the analytic result that the bias estimate error is inversely proportional to the

tracking gain k..
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Figure 6.15: Comparison of the ultimate attitude estimate error variance of Corollary

6.3.1.1 to simulation realizations for a range of values of the tracking gain k..

343



lﬁias Estimate Error
10

Em =1, o = 0.01, 0 = 0.01, a = 0.1

108
10°

o)

ao,

T
« sim realization

102 107 10° 10

Bigs Estimate Error &, = 0.01, ¢y, = 0.01, 0, = 0.1, @ = 0.01
10 T T

pias Estimate Error &, = 1, 0, = 0.01, 0, = 0.1, « = 0.1
10! et Lo T o Om T B Twe T e T

_ ool
ok,
« sim realization

Fe
- sim realization

102 107 10° 10’

Boias Estimate Error
10 T

Em =1, o = 0.01, 0, = 0.01, & = 0.01

10° 102

a0}
2k,
« sim realization

107 10° 10

Bias0 Estimate Error

107 10°

]%ias Estimate Error &, = 1, 0, = 0.001, 0, = 0.1, @« = 0.1
10 e Lo T o O ey e T e T T

Em = 0.1, 0y = 0.031623, 0y = 0.1, & = 0.01

_ ool
ok,
« sim realization

- sim realization

107 10° 10

Figure 6.16: Comparison of the ultimate gyro bias estimate error variance of Equation

6.71 to simulation realizations for a range of values of the tracking gain k..
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The second simulation study varied the filter’s bias adaptation gain « across
a range of values. A gallery of plots of the filter attitude estimate errors are in-
cluded in Figure 6.17, a gallery of plots of the filter bias estimate errors for the
same simulations are included in Figure 6.18. The numerical results, shown in ma-
genta dots, are compared to plots of the ultimate attitude estimate error variance
of Corollary 6.3.1.1 and the ultimate gyro bias estimate error variance of Equation
6.71 respectively which are drawn in blue lines.

The numerical simulation realizations agree with the analytic ultimate expec-
tations. The attitude estimate error variance is unaffected by changing the adap-
tation gain a. The linear relationship between the ultimate bias estimate error

variance and the adaptation gain is apparent in the data as well.
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6.3.5 SO(3) Bound Extrapolated from SO(2) Analytic Solution

Following the same approach as that of Section 4.10, 5.7, and 6.2.9, this section
extrapolates upper bounds for the stationary statistics of the SO(3) filter from the
analytic solutions of the SO(2) case.

The SO(3) ultimate attitude estimate error variance bound is assumed to
have the form of the SO(2) ultimate attitude estimate error variance from Corollary
6.3.1.1, but as before is rescaled to account for the low filter gain limit seen in the

previous chapters. The proposed SO(3) ultimate upper bound is given by

! lo <f]ffa) lo (5%)

Similarly, the ultimate bias estimate error variance bound is assumed to have

AEANEY R CHRICY
bound (5, — —?) = 1- = =~ (6.72)
o2’ o2,

w

the same form as Equation 6.71 but with the same scaling parameter acting on the

: 2
gyro variance o,

’“) _ faoy (6.73)

bound (f ) %

w

A number of numerical simulations of the Ito SDE 6.58 were performed to
evaluate the notional bounds. The Kloeden-Platen Explicit Weak 2.0 numerical
integration scheme discussed in Section 2.2.3 was used. For each simulation realiza-
tion, a time step size of At = 0.1 was used for a total of 107 simulation steps. At the
end of a simulation realization, the last 10° simulation steps were used to compute
the ergodic mean of the filter attitude estimate error €7 (¢)€(t) and the filter bias
estimate error b7 (¢)b(t) Finally, ensembles of seven ergodic means were computed

for a final statistic for each set of simulation parameters k., 0., k,, and o,,.
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Four simulation studies in total were conducted. First the vehicle was simu-
lated as having no inertial rate; the analytic and simulation statistics are considered
for a range of tracking gains k. in Figures 6.19 and 6.20. Next, a range of tracking
gains k. were considered for a spinning vehicle in Figures 6.21 and 6.22. Then a
range of adaptation gains o were considered for an inertially fixed vehicle in Figures
6.23 and 6.24. Finally, a range of adaptation gains a were considered for a spinning
vehicle in Figures 6.25 and 6.26. In all cases considered, the choice of & = 3 in
the expression of Equation 6.72 bound the simulation realizations; however, smaller

choices of ¢ do not bound all simulation data.
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and the notional bound of Equation 6.72 for several choices of ¢ for a range

of tracking gains k. for an inertially fixed vehicle (not spinning).
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the notional bound of Equation 6.73 for several choices of £ for a range of

tracking gains k. for an inertially fixed vehicle (not spinning).
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