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Analysis of signals of relatively long duration, an area that is referred to as

deep waveform analysis, is of increasing importance in instrumentation systems for

wireless communications. For example, jitter measurement of deep waveforms must

be performed during design and manufacturing tests for complex communications

circuitry or equipment. As requirements for bit error rate performance become more

stringent and data volumes increase, it becomes increasingly important and inter-

esting to perform deep waveform analysis computations in long, or even temporally

unbounded, waveforms.

Real-time response and limited hardware resources challenge the design meth-

ods of deep waveform analysis systems. Previous methods for deep waveform anal-

ysis required storage and computation across all samples of the waveform at once.

However, as the amount of data in the waveform grows, and especially if the wave-

form is unbounded, storage of the waveform in its entirety becomes impractical.



The need to satisfy stringent real-time constraints, handle large volumes of

data at high sample rates, and operate on resource-constrained platforms result in

challenging problems in the development of advanced systems for deep waveform

analysis. In this thesis, we have developed new design methodologies and design op-

timization methods to address these problems. The contributions of the thesis are

geared toward handling large, possibly unbounded, signal data sets, and providing

novel trade-offs among measurement accuracy, memory constraints, and real-time

performance. Motivated by performance bottlenecks that we observed in our ex-

perimentation with deep waveform analysis, we have also developed a new model of

computation for representing signal processing applications in a way that improves

the efficiency of data communication between computational modules.

The main contributions of this thesis are summarized in the following.

(1). Design methodology for deep waveform analysis systems. We have devel-

oped a new design methodology for deep waveform analysis under limited resources.

The methodology builds on the formalisms of dataflow-based design and implemen-

tation of signal processing systems. Our proposed methodology is shown to help

significantly advance the prior state of the art in jitter measurement system design,

and it forms an important foundation for later contributions that are presented in

the thesis. Our approach is demonstrated through extensive experiments using ac-

tual measured data. Through its incorporation of high-level dataflow principles, the

approach is suitable for efficient mapping to a variety of platforms, including mul-

ticore processors and graphics processing unit (GPU) devices for high performance

signal processing.



(2). Design optimization for gapless deep waveform analysis. We have devel-

oped novel models and design optimization methods for addressing the real-time

processing challenges of gapless deep waveform applications. A gapless signal pro-

cessing application is characterized by one or more continuous streams of input

data, where the data must be processed reliably without dropping any of the input

samples. The strict real-time processing requirements for gapless deep waveform

applications can be very challenging when input data rates are high, processing re-

quirements are intensive, or the target platform is significantly resource constrained.

The methods developed in this part of the thesis focus on optimizing the throughput

of deep waveform analysis subject to the on-board memory constraints of a given

data acquisition system interface, processor memory constraints, and the constraint

of gapless processing.

(3). Passive-active flowgraphs for dataflow-based implementation. We intro-

duce a new model of computation called passive-active flowgraphs (PAFGs), which

complement conventional dataflow-based application representations. We have de-

veloped PAFGs to address important bottlenecks in dataflow graph implementation

associated with communication between computational modules (dataflow graph

vertices). We demonstrate the use of PAFGs as an intermediate representation for

refining dataflow graphs into efficient implementations. We develop formal underpin-

nings of the PAFG model of computation, and introduce systematic transformation

techniques for deriving and optimizing PAFG representations.
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Chapter 1: Introduction

In the information era, more and more data needs to be processed in daily

life, which greatly challenges the ways in which people store data, as well as the

methods for processing and managing data efficiently and accurately. Our increas-

ing ability to acquire data in the real world has resulted in continually escalating

requirements for higher throughput and optimized memory management in design

and implementation of embedded signal processing systems.

Many embedded signal processing applications involve the continuous acquisi-

tion and sampling of data, and the management of signals that have long duration.

The time spans of continuous signal acquisition for such applications range from

minutes, hours to days or even longer. Often, there is no well defined bound on the

input signal duration that is known in advance.

Signals with long, possibly indefinitely-long durations and high sample rates

are referred to as deep waveforms. Deep waveforms present major challenges for

resource-constrained embedded implementation due to the large volumes of samples

that need to be processed, and the need for reliable, real-time performance to avoid

“falling behind” in the processing of the continuously-arriving input samples. This

thesis is concerned with developing new models and methods for addressing the chal-
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lenges of deploying deep waveform applications on resource-constrained platforms.

1.1 Jitter Measurement

As a concrete example of an important deep waveform application, we focus

on jitter measurement, which has important uses in instrumentation for electronic

system design, such as in measurement equipment for communication systems. Al-

though we focus on jitter measurement for a significant part of this thesis, the core

approaches developed in the thesis are not specific to this application, and can be

adapted to other relevant deep waveform applications.

The jitter of a signal is defined as the short-term deviation of the signal’s tran-

sition time from its ideal position in time [1]. Continuous, accurate evaluation of

jitter is useful, for example, in computing the Bit Error Rate (BER) of a communi-

cation system. The BER is a widely-used performance metric for quality evaluation

in communication systems. It is defined as the ratio of the number of bits received

or transmitted in error to the total number of bits received or transmitted in the

system [2]. BER can be estimated from the statistics of the jitter of eye crossings

in the input signals (e.g., see [1]).

1.2 Dataflow Modeling

We employ dataflow-based modeling and analysis extensively in this thesis,

and make new contributions to the application of dataflow methods in deep wave-

form applications. Dataflow models of computation are widely-used in the design
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and implementation of signal processing systems. While dataflow represents a broad

spectrum of models and methods that are used in many types of computer hard-

ware and software systems, we focus specifically on dataflow as it relates to model-

based design of embedded signal processing systems (e.g., see [3]). In this form of

dataflow, signal processing applications are represented as directed graphs, where

vertices (actors) represent computational tasks, and edges represent first-in, first-out

(FIFO) buffers that store data that is communicated between actors [4]. Dataflow

techniques are used in a wide variety of commercial tools for design and implemen-

tation for signal and information processing systems. Prominent examples include

LabVIEW (National Instruments), MATLAB (MathWorks), SystemVue (Keysight

Technologies), and Tensor Flow (Google).

1.3 Contributions of This Thesis

In this thesis, we develop new methods for dataflow-based design and imple-

mentation of deep waveform applications on resource-constrained platforms. Our

methods are demonstrated on multicore platforms and hybrid CPU-GPU platforms,

which integrate central processing unit (CPU) and graphic processing unit (GPU)

devices. As mentioned previously, our methods are demonstrated concretely in the

context of an advanced system for jitter measurement.

The contributions of this thesis involve three main parts. The first involves a

new design methodology for deep waveform analysis under limited resources using

dataflow graph techniques. This methodology is shown to help significantly advance
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the prior state of the art in jitter measurement system design, and it forms an

important foundation for later contributions that are presented in the thesis. Details

and demonstrations of the methodology are presented in Chapter 3. This chapter

is based on a paper that we have published in the Proceedings of the 2015 IEEE

International Instrumentation and Measurement Technology Conference [5].

The second main contribution in this thesis addresses the problems of gapless

deep waveform analysis, and systematic integration of data acquisition devices and

their associated real-time constraints into model-based design and implementation

of deep waveform applications. A gapless signal processing application is charac-

terized by one or more continuous streams of input data, where the data must be

processed without gaps. In this context, by “without gaps”, we mean continuous

processing without dropping any of the input samples. The strict real-time pro-

cessing requirements for gapless deep waveform applications can be very challenging

when input data rates are high, processing requirements are intensive, or the target

platform is significantly resource constrained.

In the second part of this thesis, we present novel models and design opti-

mization methods for addressing the real-time processing challenges of gapless deep

waveform applications. Details of these models and methods are presented in Chap-

ter 4 and Chapter 5. We have published a preliminary version of this work in

the Proceedings of the 2016 IEEE International Instrumentation and Measurement

Technology Conference [6].

The third main contribution of this thesis addresses a fundamental limitation

of dataflow semantics in design and implementation of signal processing systems.
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This limitation involves inter-actor communication patterns that depart from the

single-input, single-output (SISO) interface and FIFO behavior that are defined

for dataflow edges (e.g., see [7]). When these types of communication pattern are

mapped into hardware or software using pure dataflow semantics, the resulting

implementations can be very inefficient. At the same time, these types of commu-

nication patterns are important in deep waveform applications.

To address this problem, we introduce a novel application modeling concept

called passive blocks, which generalize the FIFO buffers of dataflow graphs. Like

dataflow buffers, passive blocks are used to store data during the intervals between

its generation by producing actors, and its use by consuming actors. However,

passive blocks can have multiple inputs and multiple outputs, and can incorporate

operations on and rearrangements of the stored data subject to certain constraints.

We introduce a new model of computation called passive-active flowgraphs

(PAFGs), which complement conventional dataflow-based application representa-

tions. We demonstrate the use of PAFGs as an intermediate representation for

refining dataflow graphs into efficient implementations. We develop formal under-

pinnings of the PAFG model of computation, and introduce transformation tech-

niques for deriving and optimizing PAFG representations. We demonstrate the

utility of PAFG-based modeling and optimization through application case studies

involving jitter measurement and error vector magnitude monitoring, which are two

important deep waveform applications used in instrumentation for communication

system design.

Details on the PAFG model of computation and its application to signal pro-
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cessing system design are presented in Chapter 6. This chapter is based on a paper

that has been accepted for publication and is to appear in the Proceedings of the

2018 IEEE Workshop on Signal Processing Systems [8].

1.4 Outline of Thesis

The remainder of this thesis is organized as follows. Chapter 2 introduces back-

ground on the different research topics discussed in the thesis. The chapter covers

fundamentals of dataflow models for signal processing system design; background on

specific software tools that we have used for prototyping and experimentation; and

background on the jitter measurement application that we study in depth through-

out the thesis. As described in Section 1.3, the three main contributions of the

thesis are presented in Chapter 3, Chapter 4/Chapter 5, and Chapter 6, respec-

tively. Chapter 7 concludes with a summary of the contributions of this thesis, and

discusses directions for future work that are motivated by these contributions.
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Chapter 2: Background

In this chapter, we introduce background on core concepts that are applied to

the work in this thesis.

2.1 Synchronous Dataflow

Dataflow is a form of model-based design that is employed for design and imple-

mentation in many areas of signal processing [3,4]. By providing formal methods to

represent and analyze the flowgraph structures within signal processing applications,

dataflow methods help to enhance the efficiency and reliability of implementations,

and assist in the retargeting of designs across different hardware platforms.

A dataflow graph is a directed graph in which vertices, called actors, represent

computational tasks, and edges represent the communication of data between actors.

More specifically, each edge e = (u, w) in a dataflow graph represents a first-in, first-

out (FIFO) buffer that stores data as it passed from the output of actor u to the

input of actor v. Actor u is referred to as the source actor of edge e, and actor w is

referred to as the sink actor of e.

Ports connect actors and edges. A port can be either an input port or an

output port, depending on whether the actor consumes data from the incident edge or
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produces data on it, respectively. Each unit of data that passes along a dataflow edge

edge is referred to as a token. Tokens can have arbitrary data types. The execution

of an actor in a dataflow graph is decomposed into discrete units of execution, which

are referred to as firings of the actor.

Synchronous dataflow (SDF) is a restricted form of dataflow in which the

number of tokens produced on each output edge is constant across all firings of a

given actor, and similarly, the number of tokens consumed from each input edge

is constant [9]. SDF graphs are widely used in the design and implementation of

signal processing applications, and many kinds of useful analysis and optimization

techniques have been developed for this class of graphs [3]. An important property

of SDF graphs is that, if certain well-defined consistency properties hold, they can

be implemented to operate on unbounded-length input streams with deadlock-free

execution, and bounded memory requirements that can be determined at compile-

time [9].

Figure 2.1 shows an example of a simple SDF graph. The annotations on the

edges represent the production and consumption rates of the actors — that is, the

constant numbers of tokens that are produced and consumed on each firing. For

example, when actor Y is fired, cY tokens are consumed from edge e1, and pY tokens

are produced onto edge e2. The production and consumption rates of an actor are

collectively known as the dataflow rates of the actor.

An important task involved in implementing a dataflow graph is the task of

scheduling the graph — that is, the process of determining the assignment of actor

firings to processors and the order in which multiple firings assigned to the same pro-

8



Figure 2.1: A simple synchronous dataflow graph.

cessor will execute [10]. Scheduling techniques can be distinguished based on when

the assignment and ordering tasks described above are performed (e.g., at compile

time versus at run time). This leads to important classes of scheduling strategies, in-

cluding static, dynamic, quasi-static, and static assignment strategies [11]. Various

useful abstractions have been developed for representing dataflow graph schedules,

and providing a basis for analysis, transformation, and software synthesis of sched-

ules [12, 13].

2.2 Core Functional Dataflow

In this thesis, we build on the methodology of dataflow-based design and im-

plementation of signal processing systems, and we apply a specific form of dataflow-

based design referred to as core functional dataflow (CFDF). In this section, we will

provide background on CFDF graph.

Core functional dataflow (CFDF) is a form of dataflow that is useful for ap-

plying dataflow-based design methods to a wide variety of signal processing appli-

cations [14]. In CFDF, the behavior of an actor is decomposed into a set of modes

such that any given firing corresponds to a single mode, and in each mode, the

number of tokens consumed from each input edges is constant, and similarly, the
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number of tokens produced on each output edge is constant. These numbers of

tokens consumed and produced by the actor in each mode are consumption rates

and production rates, respectively. More specifically, given a mode m of a CFDF

actor A, the consumption rate associated with m and input edge ei is the number

of tokens consumed by A during m from ei. Similarly, if eo is an output edge of A,

then the production rate associated with m and eo is number of tokens produced by

A during m on eo.

As part of execution of a given modem, a CFDF actor must determine the next

mode in which the actor will operate. The next mode determines the mode that will

be active during the next firing of the actor. Although production and consumption

rates for any given mode are constant, the rates can vary across different modes,

which allows for modeling and design of dynamic dataflow behavior. Additionally,

the next mode of an actor can be data-dependent — i.e., it is not necessarily a

function only of the current mode.

Implementation of a CFDF actor requires implementation of two specific func-

tions, which are called the enable and invoke functions of the actor. Each of these

functions take as an argument in the actor context, including the mode state, and

the current values of all parameters of the actor. Here, by the mode state, we mean

the current mode of the actor if the actor is currently firing or the next mode of

the actor (as determined by the previous mode or an initialization process) if the

actor is currently dormant (not firing). The enable function returns a Boolean value

indicating whether or not there is sufficient data on the input edges and sufficient

empty space on the output edges to allow the actor to fire based on the mode spec-

10



ified by the mode state. On the other hand, the invoke function executes a single

firing of the associated actor in the mode specified by the mode state, and changes

the value of the mode state based on the next mode that is determined as part of

the firing.

The separation of enable and invoke functions helps to modularize the design

of CFDF actors, and to implement more efficient and predictable scheduling tech-

niques. It is also important to note that it is not always necessary to call the enable

function at run-time prior to executing the invoke function. Compile-time analysis

of dataflow properties may provide guarantees about data and output space avail-

ability for some proper subset of an actor’s firings or for all firings. In such cases,

the invoke function can safely be executed without first using the enable function to

validate fireability. For example, when implementing static scheduling techniques

(e.g., see [3, 9]) for CFDF graphs (when such schedules exist), there is no need to

use the enable function at all.

In addition to applying CFDF semantics as a specific form of dataflow in this

thesis, some of the techniques that we apply are related to parametric dataflow

modeling techniques, such as parameterized dataflow [15]; parameterized sets of

modes [16]; and parameterized and interfaced dataflow meta-model [17].

2.3 LIDE — The DSPCAD Lightweight Dataflow Environment

LIDE, which stands for the DSPCAD LIghtweight Dataflow Environment, pro-

vides a flexible and lightweight software environment for dataflow-based design and
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implementation of DSP applications [18]. LIDE contains collections of pre-designed

libraries for dataflow graph elements, including actor and edge implementations.

These existing graph elements or gems, which stands for “Graph EleMentS”, provide

useful building blocks for constructing dataflow graphs, and also provide examples

that designers can use as references or templates when extending LIDE with their

own custom-designed actor and edge implementations.

A core part of LIDE is a compact set of abstract application programming in-

terfaces (APIs) for implementing, integrating, and scheduling dataflow actors based

on CFDF semantics. These APIs are abstract in the sense that they are defined in

terms of mathematical dataflow principles, and are independent of any particular

language for programming the actors (actor design language). The compact and

abstract nature of this set of APIs makes it easy to map it into a wide variety of

actor design languages. Presently, the set of actor design languages supported in

LIDE includes C, CUDA, OpenCL and Verilog.

An actor in LIDE can be viewed as an abstract data type or a class (if an

object oriented language is employed as the actor design language). Four interface

functions are used in LIDE in the implementation of each actor — the construct,

enable, invoke, and terminate functions. The construct function is used to create

an instance of the actor, including all of the associated memory allocation and

initialization. The enable and invoke functions implement their counterparts as

defined by CFDF semantics. The terminate function is used to carry out any tasks,

such as deallocation of memory, that are appropriate when an actor is no longer

needed — e.g., if the enclosing application has terminated or if the dataflow graph
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is being reconfigured in such a way that the actor will not be used any more.

2.4 Jitter Measurement

In this thesis, we investigate a jitter measurement system as a case study for

dataflow-based design and implementation of real-time deep waveform analysis. Jit-

ter is defined as the deviation of a timing event in a signal from its ideal appearance

in time [1]. We specifically study jitter measurement in the context of wireless com-

munications, where bit error rate (BER) is an important metric for assessing overall

system performance.

Previous work on jitter measurement has been performed in conjunction with

use of clock recovery algorithms, and measurement based on a reference clock signal

(e.g. see [19]). Loken presents a fixed-frequency clock recovery algorithm for jitter

measurement [20]. This work assumes a two-state digital signal and a duty cycle

that is approximately equal to 50%. We maintain these assumptions in our research,

as they are applicable in our primary application context of deep waveform analysis

for wireless communication systems.

There are various limitations in state-of-the-art methods for jitter measure-

ment that our proposed research seeks to overcome. For example, some of the pre-

vious research on jitter measurement relies on a stable reference clock period. This

limits applicability of the approaches since a stable reference clock period is not

always available for measuring jitter. We overcome this limitation in our proposed

research by integrating clock period estimation with jitter measurement analysis
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— that is, our proposed analysis system first estimates the clock period, and then

estimates the jitter in the input signal based on the estimated clock period.

Loken has developed an algorithm for jitter measurement from fixed-frequency

signals that does not require a reference clock [20]. However, this algorithm has

the limitation of being a “swallow and wallow” technique for signal analysis. This

swallow and wallow characteristic requires all of the signal data to be stored in

memory before the computation for jitter measurement is initiated. Such swallow

and wallow approaches require large amounts of memory to analyze long signals,

and limit the length (number of samples) or “depth” of deep waveform signals that

can be handled.

In this thesis, we have demonstrated new window- and dataflow-based design

and implementation techniques for jitter measurement that overcome this swallow

and wallow limitation, while also maintaining the feature that a reference clock

is not needed for the underlying measurement algorithm. We apply a windowing

method that partitions the signal to be analyzed into multiple subsets, and allows

processing of windows to proceed in real-time without need for all of the signal

data to be available at once. We apply dataflow methods to model the signal

flow characteristics of the algorithm that analyzes the signal windows, and develop

efficient design transformations using the dataflow model to optimize memory cost

and real-time performance.
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Chapter 3: Dataflow Design for Deep Waveform Analysis Systems

Deep waveform analysis applications are increasingly important in signal pro-

cessing application areas, such as wired and wireless communication and biomedical

instrumentation. In this chapter we begin to examine system design challenges

for a specific deep waveform analysis application, jitter measurement, that we use

throughout the thesis as a concrete case study to develop and demonstrate our

research contributions.

The measurement of jitter is key when verifying the design or performing man-

ufacturing test of ever more complex digital communications circuitry or equipment.

As the requirements for bit error rates (BER) become more stringent and data vol-

umes increase, it becomes increasingly important and interesting to measure timing

jitter in long, or even temporally unbounded, waveforms.

Previous methods for doing constant rate clock recovery and jitter measure-

ment required storing and computing all samples of the waveform at once. As

the waveform grows, and especially if the waveform is unbounded, this storage of

the waveform in its entirety becomes impractical. In this chapter, we demonstrate

the transformation of the previous methods to a dataflow method where the entire

waveform need never be stored.
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The new method has been tested on actual measured data. Through its incor-

poration of dataflow principles, the new method is suitable for efficient mapping to

a variety of platforms, including multicore and field programmable gate array plat-

forms for high performance signal processing. Intermediate measurement results

converge toward those obtained in the original method. The final measurement re-

sult, the jitter standard deviation, agrees with the original method to within well

under one percent. Thus, a small amount of additional measurement error is added

in order to remove the restriction that the entire waveform fit into memory.

Material described in this chapter has been published in [5].

3.1 Introduction

Complex systems often include or are connected to other complex systems by

ever faster communications links with lower rates of error. Communications errors

are often due to timing errors or jitter. Thus, the measurement of jitter is key when

verifying the design or performing manufacturing test of digital communications

circuitry or equipment. As the requirements for bit error rates (BER) become

more stringent and data volumes increase, it becomes increasingly important and

interesting to measure timing jitter in signals of longer duration (that is, of so-called

“deep waveforms”). Measuring deep waveforms both (1) increases the chances that

rare events leading to communications errors will be captured and identified [21],

and (2) allows the statistical estimation of the tails of jitter probability distributions,

which in turn permits better extrapolation of BER. [22]
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Commercially available instrumentation is capable of measuring communica-

tions and/or timing signal waveforms containing billions of samples. Here, we are

concerned with constant rate clock recovery, where the clock is assumed not to

change its period during the course of the measurement. Any deviation of the tim-

ing of the communication signal being measured from that constant rate clock is

to be considered jitter. This is the case for many communications physical layers.

(Exceptions include example in designs utilizing spread spectrum clocks.) Clock re-

covery and computation of jitter statistics are straightforward and computationally

inexpensive when considered on a per-sample basis.

As discussed in Chapter 2, performing these tasks on deep waveforms takes

considerable computing time. One way to address this computation speed issue is

through parallel computing. Previous work [20] described and demonstrated the

measurement capability and computational performance of a parallel algorithm for

constant rate clock recovery from a two-logic state digital waveform.

That method is suitable for implementation on multicore central processing

units (CPUs) and graphics processing units (GPUs). The resulting computational

speedups permits its use on waveforms with millions of samples. However, that

algorithm must store not only the entire waveform in memory but also a number

of working arrays with lengths comparable to that of the number of samples in the

waveform. As a result, even a multi-gigabyte memory is inadequate to do constant

rate clock recovery on more than a few hundred million samples.

Figure 3.1 demonstrates typical input signals that are analyzed in this chapter.

The figure shows a small portion of a waveform with two logic states including high
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Figure 3.1: An illustration of typical input signals that are analyzed in this chapter.

and low states. The two dashed horizontal lines indicate the thresholds l = 0.48

and h = 0.78 of the low and high logic states, respectively.

An alternative to storing a large waveform in memory is to use a dataflow

approach. That is, a programming model is used where samples and intermediate

results move on the edges of a directed graph and computations on these data occur

at the graph vertices, called actors. Languages commonly used in measurement that

provide variants of a dataflow framework include LabVIEW [23], VEE Pro [24], and

Simulink [25]. When using a dataflow programming tool, the signal is processed

sequentially. Neither it not intermediate computations are not (and typically can

not be) stored in their entirety. This feature is attractive when analyzing deep
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waveforms, when all such data will not fit into the available memory. Another

important advantage of the dataflow formalism is that the dataflows exactly specify

the data dependencies between computations, and so the computations of the actors

can in many cases automatically be scheduled on multicore processors [3], yielding

a parallel implementation without the need for explicitly parallel programming.

Vector-mode computation is sometimes still possible inside actors [26], yielding a

second level of parallel speed-up.

Despite such advantages, there is a subtle incompatibility between the data

flow approach and that of storing and computing on the entire waveform. When the

whole waveform is available, measurements can be made of the waveform based on

its entirety that are used in later measurement stages. Sometimes this sort of design

is referred to as the “swallow and wallow” approach, because the entire waveform is

stored (or “swallowed”) and then computed on (or “wallowed over”). For example,

in the present case, the voltage statistics of the whole waveform can be used as

recommended by the relevant IEEE standard [27] to arrive at the voltage thresholds

used to determine the low and high voltage levels of the signal and the timing of

the signal for purposes of clock recovery and then jitter measurement. When using

the dataflow paradigm, it is no longer possible to take measurements of the entire

signal and use them in computing derived measurements.

Thus, a measurement algorithm designed for the swallow and wallow approach

can not in general produce identical results when modified to be used with the

dataflow paradigm. It would seem that the best that can be done is to design

a dataflow algorithm that closely approximates the behavior of the swallow and
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wallow algorithm. Note that this must be a dynamic approximation. Suppose that

the dataflow algorithm has fully processed the first n samples of the waveform.

The best it can do is to approximate the measurement results of the swallow and

wallow algorithm if it were applied to the same n samples. Since differences between

the “swallow and wallow” and dataflow measurement results are inevitable, the

differences should be categorized and documented.

In this chapter we present a case study of creating such a dataflow algorithm

from a swallow and wallow algorithm, where the measurement problem being solved

is constant-rate clock recovery. First, we present the proposed dataflow method

along with a discussion of how and where that method must deviate from the swallow

and wallow algorithm of [20]. Then we present the results of a study comparing the

measurement results of the two methods in the light of the approximation criterion

of the previous paragraph.

3.2 Proposed method

The swallow and wallow algorithm takes considerable computing time and

requires a large amount of memory. As we discussed in Section 3.1, application

of the dataflow paradigm can help to reduce memory requirements significantly.

In this section, we take the case of clock recovery [20] as an example to discuss

how to develop a dataflow method, based on the swallow and wallow algorithm,

that approximates the measurement results of that algorithm in the sense described

above.
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3.2.1 Dataflow Modeling

To create a dataflow model for the clock recovery application, we analyze the

application to extract its high-level signal flowgraph structure. The basic steps for

clock recovery [20] can be summarized as follows. The first step is to determine the

voltage thresholds that correspond to high and low signal levels. The next step is to

determine the complete set of transitions across these thresholds in the input signal.

The third and last step is to estimate, from this set of transitions, the clock period;

refine this estimate by rounding the differences of neighboring transitions in terms of

the estimated clock period; and apply linear fitting to further refine the result. The

input signal to this three-step clock recovery process is decomposed into a sequence

of overlapping windows, where the three processing steps are applied iteratively to

successive windows.

The resulting dataflow graph is shown in Figure 3.2. It is a dataflow model of

the swallow and wallow algorithm for clock recovery. Table 3.1 lists the actors em-

ployed in the dataflow graph of Figure 3.2, and briefly summarizes the functionality

of each one. The dataflow graph in Figure 3.2 is annotated with the production and

consumption rates of the edges (flowgraph connections) in the graph. Such dataflow

properties associated with edges are important when analyzing dataflow graphs to

construct schedules and derive other parts of implementations. Given a dataflow

edge e that is directed from an actor x to an actor y, the production rate of e is

the number of tokens (data values) that is produced onto e in each firing of x, and

similarly, the consumption rate of e is the number of tokens consumed from e during
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Figure 3.2: Dataflow model for signal frequency recovery and jitter computation

each firing of y.

The input port p of the DVL actor is annotated with two values [c, τ ], where c

is the consumption rate of the DVL actor from the input edge associated with p, and

τ is another dataflow-edge-related attribute called the threshold of the edge [28]. The

threshold specifies the number of tokens that must be present on the corresponding

input FIFO before the actor can fire. In general, the consumption rate of a port

is less than or equal to the threshold. Consumption rate / threshold pairs are also

indicated at certain input ports of the STR and TRT actors in Figure 3.2. In

Figure 3.2, the consumption rates and thresholds for all edges are equal except for

the input edges of the DVL, STR and TRT actors that are annotated with pairs of

values on the associated input ports. More details about the key actors in Figure 3.2,

including the DVL actor, are discussed in Section 3.2.2.
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Table 3.1: Summary of actors in the dataflow graph of signal frequency recovery

Actor Description

SRC Source. Load data from input file.

DVL
Determine Voltage Level. Sort the input data in the current
window and determine the high and low voltage thresholds.

STR
State Representation. Perform analog-to-digital conversion; assign

state to data in the current window of the input signal.

FSM
Finite State Machine. Determine transitions from high to low

voltage states or low to high states.

TRT
Compute Transition Time. Compute the transition time for each

transition in the current window.

RE
Rough Estimation. Derive an preliminary estimate of the clock

period.

RRE
Refine Rough Estimation. Refine the rough estimation of the

clock period to improve its accuracy.

LFT
Linear Fitting. Further refine the estimated clock period by linear

fitting.

PHS
Phase. Compute the phase and time interval errors at the current

transition using the refined clock period estimate.

DBS
Double Sink. Store double precision numeric data to an output

file; each input token encapsulates a scalar, double precision value.

DAS
Double Array Sink. Store double precision numeric data to an
output file; each input token encapsulates an array of double

precision values.
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3.2.2 Implementation in LIDE-C

In this section, we discuss our implementation of the dataflow graph (Fig-

ure 3.2) for clock recovery. To develop this implementation, we have used LIDE

(Lightweight Dataflow Environment) [18,29]. In our implementation of clock recov-

ery, we employ LIDE-C, which provides APIs for implementing signal processing

dataflow graphs using the C language. In general, a LIDE-C implementation in-

cludes C implementations of actors, edges, and a schedule to execute the overall

dataflow graph.

Next, in Section 3.2.2.1 and Section 3.2.2.2, we discuss details of two of the

most critical actors in our implementation.

3.2.2.1 DVL

Each firing of the DVL actor examines a window of samples from the in-

put signal, sorts the values of these samples, and determines high and low voltage

thresholds based on the results of this sorting operation. The parameters of the DVL

actor include the window size Ws, and the amount of overlap Op between succes-

sive windows. The consumption rate and threshold for this actor are, respectively,

Ws × (1 − Op), and Ws. Intuitively, this means that before the actor can fire, a

full window of data must be available at the input, but only part of this input is

consumed during the firing — the rest remains in the input FIFO to be processed

as part of the next (overlapping) window during the subsequent firing.

Since the applied voltage thresholds will influence the value of the estimated
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clock period, it is essential to determine an appropriate voltage threshold. In our

implementation, we consider two alternative methods for determining the voltage

threshold. Selection between these two alternative methods is controlled by a third

parameter Y of the DVL actor. The first method (Y = 1) is to use the sorted

result from the current window to dynamically determine the voltage threshold

associated with the current firing of the DVL actor. The second method (Y = 2)

is to fix the voltage thresholds across all iterations based on the sorted result from

the first window. We experiment with both of these methods, and results of this

experimentation are discussed in Section 3.3. From these experiments, we find

that the accuracy for Y = 2 is slightly better than that for Y = 1; however, the

difference is so small for the examined application scenarios that it is not worth the

added complexity to implement and apply the Y = 2 case.

3.2.2.2 LFT

This actor optimizes (further refines) the result of clock period estimation by

linear least square fitting. The sequences of transition times and phases at the

transition times are the two data streams used in this linear fitting operation. The

phase at a given transition time t depends on t and the estimated clock period. Since

the total number of transitions is proportional to the number of windows processed,

performing linear fitting across all transitions computed is computationally very

expensive. To make this process more efficient, we select a subset of data for linear

fitting. We allocate a buffer in the LFT actor to store the selected transition times,
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and the corresponding phases to be used for linear fitting. There is a variety of

methods to select data for linear fitting (e.g., see [30]). In our design of the LFT

actor, we apply a rule for selecting data in which the selected data is composed both

of data from previous transitions and from the current input signal window.

3.2.3 Scheduling the Dataflow Graph

As discussed in Section 3.2.1, scheduling is an important step in simulating or

implementing a dataflow graph application model. There are many possible sched-

ules for our dataflow model of the clock recovery application. For the experiments in

this chapter, we use a relatively simple, sequential (single-processor) schedule since

the main objective in this chapter is to validate and study functional properties of

the proposed clock recovery system. Applying the developed dataflow model to de-

rive fast implementations (with correspondingly fast schedules) is a useful direction

for future work that builds naturally on the developments of this chapter.

The specific schedule that we used in our experiments is

SRC (Ws DVL) STR FSM TRT RE RRE LFT PHS

DBS DAS

where the parenthesized term (Ws DVL) represents a schedule loop that executes

actor DVL a number of times in succession that is determined by the window size

Ws. In addition to providing a simple execution pattern that is suitable for rapid

prototyping, this schedule is efficient in terms of buffer memory requirements —
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i.e., the amount of memory required to implement the dataflow graph edges. This

buffering efficiency is useful for our computations because our experiments involve

input signals that contain large numbers of samples (in the range of 107 to 109

samples in each experiment).

3.3 Results

The above dataflow implementation was tested using actual measured data ac-

quired and processed using the apparatus in Figure 3.3. Two waveforms were used

for testing. One is the signal used in [20] to test a GPU implementation of the swal-

low and wallow algorithm for the present measurement. That waveform comprises

approximately 1.6 × 107 samples of a pseudo-random binary (PRBS) signal. The

first few thousand samples of that signal are shown in Figure. 3.1. That waveform

was chosen for testing because the outputs of the dataflow method, especially the

corrected clock period and phase, could be directly compared with those obtained

by the previous swallow and wallow implementation in [20].

A second PRBS waveform comprising approximately 2×109 samples was used

to test that dataflow implementation’s ability to operate on waveforms too large to

process in memory all at once. The proposed method produced the expected results.

As was discussed in the introduction, a difficulty of modifying a swallow and

wallow measurement algorithm into a dataflow on is the presence in the original

algorithm of intermediate measurement results that depend on the entire acquired

waveform. In the dataflow algorithm such intermediate measurement results can
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only depend on the prefix of the waveform that has previously been processed.

Thus, these intermediate measurement results in the dataflow method can only ap-

proximate those of the swallow and wallow method. The question therefore arises as

to whether this approximation is sufficiently good or whether it negatively influences

the accuracy of the final measurements.

Here, in the swallow and wallow algorithm percentile levels of all the sample

voltages are used to compute the low, medium, and high voltage thresholds used

to determine the locations of the state transitions. In the dataflow method this is

done in the actor DVL. In that actor, two different methods were tried to obtain

the thresholds. One was to use the voltages of the first window to compute the

thresholds and then use those thresholds for all succeeding windows. The second

approach was to re-compute the thresholds for each window. In order to investigate

the sensitivity of the measurement results to the choice between these methods,

processing of the measured signals was done twice, one using each of these methods.

The result of using the proposed method with 10 windows on the signal with

1.6× 107 samples is shown in Figure 3.4 and Figure 3.5. Figure 3.4 shows evolution

of the measured value of the clock period from the waveform with 1.6×107 samples.

Its beginning is shown in Figure 3.1. The dashed, horizontal line in Figure 3.4

indicates the clock period measured in [20] as a reference for accuracy comparison.

Figure 3.5 demonstrates evolution of the measured value of clock phase offset

from the waveform with 1.6×107 samples using the same input data as in Figure 3.4.

The dashed, horizontal line in Figure 3.5 shows the phase offset found in [20]. Both

Figure 3.4 and Figure 3.5 compare results with the results reported in [20].
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Clock recovery was not sensitive to whether or not the voltage thresholds were

fixed or varied according to each window’s voltage statistics. Both the clock period

and phase offset converge toward the values obtained from the swallow and wallow

algorithm, as was desired. The final measurements from the dataflow algorithm are

not identical to those obtained by the swallow and wallow algorithm. Some difference

is expected because the two methods use slightly different voltage thresholds and

perform the final correction by linear fitting using different time interval errors.

However, the final clock periods and phase offsets produced by the two methods

have absolute relative differences of under 1 × 10−8 samples per clock cycle and

1× 10−2 samples, respectively.

Figure 3.6 is a scatter plot matrix [31] that shows the correlations of the

time interval errors (TIEs) measured using each of the two tested variants of the

proposed method and the method of [20]. Here, we index the three different methods

under investigation as 1, 2, 3. Index 1 corresponds to TIEs obtained using the

method of [20] (labeled “SW”). Index 2 represents TIEs obtained using the proposed

method with voltage thresholds fixed (“DF (fixed thresh)”). Index 3 represents

TIEs obtained using the proposed method with flexible thresholds (“DF (flexible

thresh)”). For each i 6= j, the subfigure of Figure 3.6 in row i and column j shows

the correlation of TIEs measured using the methods with indices i and j. All axes

in the subfigures show time, as a multiple of the sample time of the measured signal.

Both of the proposed methods increase the measurement uncertainty of the

TIE by 0.39 sample times over the prior method. This increase is less than the

inherent timing accuracy of the measurements, which is one sample time. However,

29



Figure 3.3: Measurement apparatus used to verify the proposed method

there is no discernible difference in the added uncertainty between the two variants

of the proposed method.

To quantify further this added uncertainty, the key metric of jitter, the jitter

standard deviation (that is, the standard deviation of the TIE), was computed

for the three methods (Table 3.2). The absolute relative error between each of

the two variants of the proposed method and the prior method are also tabulated

there. Both variants of the proposed method increase the measured jitter standard

deviation by roughly 0.1 sample or well under one percent. Thus, a small amount

of additional measurement error is added in order to remove the restriction that the

entire waveform fit into memory.
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Figure 3.4: Recovered clock period in different windows.
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Figure 3.5: Clock phase in different windows.
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Figure 3.6: Scatter plot matrix for correlation of TIEs using different methods.
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Table 3.2: Obtained jitter standard deviation, by method

Method TIE standard deviation Absolute relative error

Method of [20] 4.630 —

Proposed, fixed threshold 4.647 0.00378

Proposed, threshold updated 4.646 0.00351

3.4 Summary

In this chapter, we considered the problem of transforming an algorithm for

extracting the parameters (period and phase) of a fixed frequency clock from one

based on computing from all available measured samples to a dataflow algorithm

that can only base its results at any time on a prefix of the samples that have

already been processed. One novel contribution of this chapter is the proposed

dataflow method for modeling and design of the application. This method provides

a formal connection to a wide variety of dataflow-based techniques for deriving

efficient implementations on high performance signal processing platforms.

Another novel contribution arises from consideration of the question: how

does one tell if such a transformation has adequately been performed? That is, what

results of the original and dataflow methods should be compared in order to establish

that the dataflow method is approximating well the results of the original method.

We propose and demonstrate that two kinds of results should be compared. Firstly,

intermediate values computed in the original method on all samples and used in later

computational phases should in the dataflow method converge toward the values

obtained in the original algorithm. For the proposed dataflow method, these values
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are the recovered clock period and phase. In the present example, these do converge.

Secondly, the final measured quantities of the original and dataflow methods should

differ by a small amount relative to the uncertainty of the measurement results of the

original method. Here, the final measured quantity is the jitter standard deviation,

which is found by either variant of the dataflow method to with about one third of

a percent.
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Chapter 4: Deep Waveform Analysis with Parallelization and Con-

stant Memory

In Chapter 3, we presented a novel jitter measurement algorithm that sig-

nificantly improved measurement response time compared to previous work. The

algorithm achieves its efficiency by partitioning the overall data set into windows

and allowing jitter measurement results to be reported for earlier windows before

later windows are received. This re-formulation of jitter measurement eliminates

the swallow and wallow characteristic, and provides improved speed.

However, a memory requirement limitation still remains: the memory required

(like the method of [20]) is unbounded. In other words, the memory requirement

grows without bound as the size of the data set is increased. This characteristic

again limits the amount of signal data that can be measured, which is problematic,

for example, in measuring relatively long signals or signals with high sample rates

with limited memory resources.

In this chapter, we improve the algorithm of Chapter 3 to overcome its limi-

tation of having unbounded memory requirements. In the jitter measurement ap-

proach proposed in this chapter, the memory requirements are fixed for a given

system design configuration — in particular, the memory requirements are inde-
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pendent of the amount of data that is processed when the system operates. This

allows processing of unbounded signal streams: the measurement system can pro-

cess as much data as it receives during a given execution of the system. At the same

time, the method proposed in this chapter provides significantly faster response time

compared to previous work, and is capable of delivering measurement results in real

time.

For design and implementation of the jitter measurement system presented in

this chapter, we integrate the application of Graphics Processing Units (GPUs) [32],

the Open Computing Language (OpenCL) [33], and dataflow-based modeling of

signal processing systems [3]. GPUs are massively parallel processors that execute

large numbers of specialized computational modules, called kernels, concurrently

to achieve improved performance in terms of throughput and latency. OpenCL is

an open standard for programming applications, and executing programs on het-

erogeneous computing platforms, including platforms that integrate CPU and GPU

devices. Dataflow-based modeling provides representations for signal processing

application design that help to formally capture high level algorithmic and com-

putational structure in a systematic way. The structure exposed by well-designed

dataflow models can help to significantly enhance the reliability and efficiency of

derived implementations.

In summary, the novel contributions of this chapter are three-fold. First,

we present the design and implementation of a jitter measurement system that

jointly provides (a) constant-memory requirements (independent of the amount of

data processed) and (b) potential for real-time response. Second, we investigate
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fundamental trade-offs among accuracy, processing speed, and memory requirements

in the implementation of jitter measurement systems. Third, we demonstrate the

integrated application of GPU, OpenCL and dataflow technologies to address design

challenges of high speed signal measurement applications.

Material described in this chapter has been published in [6].

4.1 Jitter Measurement System Design

In Chapter 3, we developed dataflow modeling methods and window-based

signal analysis methods to improve the efficiency of jitter measurement. In Sec-

tion 4.1.1 and Section 4.1.2, we provide a brief review of these methods in the

context of the objectives in this chapter. We then present the main contributions

of this chapter, which enable real-time jitter measurement by (1) significantly im-

proving response time, and (2) providing bounded memory requirements that are

dependent on the window length rather than on the overall duration across which

the jitter measurement is performed. We discuss novel GPU implementation tech-

niques that we have applied to improve the efficiency of jitter measurement in these

dimensions of response time and memory requirements.

4.1.1 Dataflow Modeling

Our jitter measurement system design takes the form of a computation graph [28].

Computation graphs are similar to SDF, except that the consumption rate of a port

can be different from the number of tokens from the associated input edge that
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is accessed during a firing. Tokens that are accessed but not consumed during a

firing remain in the associated FIFO so that they can be accessed or consumed in

subsequent firings. The number of tokens that is accessed from an edge is referred

to as the threshold for the associated actor port.

An important step in the implementation of a dataflow graph is the assignment

of actors to processing resources, and the ordering of actors that share the same

processor. This step is referred to as dataflow graph scheduling. The result of the

scheduling step is a design component called a schedule, which is used to execute the

actors in the graph. A wide variety of scheduling techniques have been developed

based on specific constraints and objectives in different signal processing application

areas (e.g., see [3]).

4.1.2 Window-based Signal Analysis

To help reduce memory requirements for jitter measurement computations on

large input data sets, we have developed a windowing method that decomposes the

jitter analysis process into fixed-size blocks of successive samples, where the block

(“window”) size Ws is relatively small compared to the size of the overall data set

(see Chapter 3). The dataflow graph can then be executed repeatedly on successive

windows of the input data stream. The measurement system designer can set the

window size Ws to influence an underlying trade-off between jitter measurement

accuracy and memory requirements. Larger window sizes generally provide increased

accuracy at the expense of increased memory cost.
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Figure 4.1: Dataflow model for real-time jitter measurement system.

4.1.3 System-Level Model

The dataflow (computation graph) model of our jitter measurement system is

illustrated in Figure 4.1. We implement the individual dataflow modeling compo-

nents (actors and edges) in OpenCL. Details on these implementations are discussed

below. The integers next to the actor ports represent the production and consump-

tion rates associated with the ports. For all input ports except one (the input port

of the DVL actor), the consumption rate and threshold are equal, so they are not

shown separately. The dataflow behavior of the input port of the DVL actor is

represented by the parameter pair [c, τ ], where c is the consumption rate and τ is

the threshold of the port. The parameter τ is the window size for the actor, and

satisfies τ ≥ c.
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4.1.3.1 Actor Descriptions

Here, we briefly summarize selected actors that are employed in Figure 4.1.

The actors summarized here are those whose implementations have changed (com-

pared to the system presented in Chapter 3) due to our use of a GPU for the new

measurement system.

Actor DVL (Determine Voltage Level) sorts the input data of the current win-

dow and determines the high and low voltage thresholds. Actor STR (State Repre-

sentation) performs analog-to-digital conversion based on the voltage thresholds to

assign low or high voltage states. Actor FSM (Finite State Machine) identifies volt-

age transitions from high to low or low to high voltage states. Actor TRT (Compute

Transition Time) computes the transition time for every voltage transition in the

current window. Actor RE (Rough Estimation) derives a preliminary estimate of

the clock period. Actor RRE (Refine Rough Estimation) refines the rough estimate

of the clock period to improve the accuracy. Actor LFT (Linear Fitting) further

refines the clock period estimate using a linear fitting method, and computes time

interval errors using the refined clock period estimate. For descriptions of the other

actors in Figure 4.1, we refer the reader to Chapter 3.

In addition to changing the implementation platform to a GPU, we have made

important improvements in the dataflow graph structure compared to the design in

Chapter 3. In particular, phase computation is now implemented as part of the LFT

actor instead of as a separate actor. This graph transformation is motivated from

observations that (1) GPU kernels for both actors have similar levels of parallelism,
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and (2) combination of the actors provides significant reduction in GPU memory

requirements. In the transformed graph of Figure 4.1, the outputs of the LFT

actor encapsulate the derived clock period and time interval error (TIE) for jitter

estimation.

4.1.4 Actor Implementation

In this section, we discuss the implementation of the dataflow graph actors

summarized in Section 4.1.3. We emphasize our optimized application of GPU

features to jitter measurement tasks, and improvements incorporated in our GPU-

based actor implementations compared to the system presented in Chapter 3.

The GPU-targeted actors in our implementation are developed using LIDE-

OCL. LIDE-OCL provides an integrated software tool for implementing signal pro-

cessing dataflow graphs using OpenCL. LIDE-OCL is centered on OpenCL imple-

mentations of the abstract (platform- and language-independent) dataflow program-

ming APIs (application programming interfaces) in the lightweight dataflow envi-

ronment (LIDE) [18].

4.1.4.1 Jitter Measurement Optimization using LIDE-OCL

In LIDE-OCL implementation, computations in an actor can be decomposed

into one or more kernels with different amounts of concurrency (GPU “work group”

sizes). Initialization of device and kernel configurations is performed before graph

execution. Before actors and FIFOs are constructed, relevant host device and GPU
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device properties, including device and command queue initialization, are set up.

The command queue can be viewed as a dynamically-managed list of commands

that have been submitted (“issued”) to the GPU for execution, and are waiting to

be fetched and executed by the GPU. When a GPU-targeted actor is constructed,

GPU memory used by the kernels in the actor is allocated, and the kernels are

dynamically loaded and compiled so that they are available to the dataflow graph

schedule when the graph is executed. Once these initialization and configuration

steps are completed, the dataflow graph is ready to execute.

In our implementation of jitter measurement, the deep waveform analysis com-

putations are performed on the GPU. After a window of data is processed, the de-

rived clock period results, and Time Interval Error (TIE) results are sent from GPU

memory to the host device (CPU). Since all of the waveform analysis is performed

within the GPU, parallelism be exploited extensively throughout the associated com-

putations, and all inter-actor communication is performed within the GPU (rather

than between the GPU and the host). These features help significantly to improve

jitter measurement response time. The token type used by the GPU-targeted actors

is a generic type associated with OpenCL objects [33]. This organization provides

flexibility and efficiency in processing different kinds of data within actors on the

GPU.

In the remainder of this section on actor implementation, we provide details

on how efficient parallel execution of jitter measurement computations is achieved

on the targeted GPU platform.
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4.1.4.2 DVL and RE

Efficient sorting of numeric values is important in our jitter measurement sys-

tem. For example, in the DVL actor shown in Figure 4.1, a sorting algorithm is

applied to determine thresholds for high and low voltage values. Similarly, the RE

actor operates by sorting the differences between neighboring transition times.

We apply a sorting algorithm called bitonic sort to accelerate the sorting op-

erations required for jitter measurement calculation. Bitonic sorting was applied

originally in the construction of sorting networks [34], which can be viewed as inter-

connections of comparators and wires that are used to sort collections of values. It

is well known that bitonic sort is useful for its utility as a parallel sorting algorithm.

We apply this feature to derive fast implementations of the DVL and RE actors on

the targeted GPU.

In the design of the RE actor, we compute the intervals of pairs of neighboring

transitions, and then sort these intervals in ascending order using bitonic sort. Then

the 25th percentile of the sorted intervals is computed as the rough estimation of

the clock period.

4.1.4.3 RRE and LFT

The RRE and LFT actors involve computing sums over large numbers of

data values. The associativity of the addition operator allows for use of efficient

GPU implementation techniques that are based on parallel computation methods

for reduction operations [35]. However, due to the large volumes of data involved,
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Figure 4.2: Illustration of reduction methods applied to summation

reduction techniques must be applied carefully in our implementation to optimize

performance. For example, non-local synchronization of data between every com-

ponent operation within a reduction operation is costly. In OpenCL-based GPU

implementation, relatively costly non-local synchronization arises when the data in-

volved in an operation crosses the boundary of a set of operations called a local work

group. Thus, we structure the summations in the RRE and LFT actors such that

they are reduced first at the level of local work groups. This makes maximal use of

local memory operations (fast synchronization) during the reduction process.

Figure 4.2 illustrates our application of reduction methods to summation op-

erations. In the example of Figure 4.2, the total data length (number of values to

be added) is 16, and the local work group size is 4.
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4.1.4.4 TRT

Another computationally-intensive process in our jitter measurement system

is the stream compaction [36] of the transition time array in the TRT actor. Stream

compaction refers to the process of compressing the storage requirements of a sparse

array by removing zero-valued elements from the array. In each jitter measurement

window, transitions are detected at switching points between high and low volt-

age levels, the corresponding transition times are computed, and these transition

times are stored by setting array elements to non-zero values at array indices that

correspond to the transition time intervals. This approach is efficient for initial com-

putation and storage of the transition times, but it results in a sparse array that is

costly in terms of memory.

Thus, within our implementation of the TRT actor, we compress the sparse

transition time array using a prefix sum [37] technique. This stream compaction

process is illustrated in Figure 4.3 with a simple example involving 10 data items.

In OpenCL, a prefix sum computation on a large data set can be implemented

in a manner similar to a reduction operation. Using such an approach, we compute

the prefix sum for the local work groups in parallel. Then we compute the prefix sum

of those partial prefix sums. The result of this intermediate prefix sum operation

is called the “summation offset”. The final prefix sum result is then computed by

adding the summation offset to the results computed on the local work groups.
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Figure 4.3: An illustration of stream compaction.

4.1.5 Schedule for Dataflow Graph Execution

As is discussed in Section 4.1.1, a schedule is needed to execute the dataflow

graph on a targeted hardware platform. Many possible schedules can be constructed

for the dataflow graph of Figure 4.1. The alternative schedules in general have

different implementation costs in terms of relevant metrics. For the experiments in

Section 4.2, we derive a static schedule that employs a heuristic to decrease the CPU

and GPU memory requirements. A static schedule is one in which the assignment

and ordering of all actors are fixed before the graph is executed. Static schedules are

useful for reducing the run-time overhead of schedule execution, and for improving

the predictability of the implementation [3]. Constant-valued dataflow rates and

thresholds allow for the construction of static schedules, and we exploit this property

of our dataflow graph model when constructing the schedule.

The static schedule that we employ in our implementation can be expressed

46



as

(Ws SRC ) DVL STR FSM TRT RE RRE

LFT DBS DAS ,

where the parenthesized term (Ws SRC ) represents the successive execution Ws

times of the SRC actor. Recall from Section 4.1.3 that Ws represents the window

size for jitter measurement.

4.2 Experimental Verification

In this section, we present an experimental validation of the proposed method.

Actual measured data were used: a two-state digital waveform representing bits

from a PRBS sequence measured using a deep-memory digital oscilloscope. A fuller

description of the waveform and the measurement apparatus used to acquire it was

provided in Chapter 3. Also in that reference, there were proposed two criteria for

judging the correctness of a measurement algorithm that is transformed in order to

meet software engineering goals such as increased throughput, decreased latency, or

decreased memory consumption:

• Intermediate values obtained using both the old and new algorithms should

be comparable, and

• The difference between the final measurement results of the old and new al-

gorithms should be small compared to the total measurement uncertainty in
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either.

Here, we compare the measurement results of [20] and Chapter 3 with those of

two variants of the proposed method, which we will refer to as the accumulated and

real-time variants. The same actual measured data is used for the comparison. Our

experiments are carried out on a hybrid CPU-GPU platform that includes an Intel

Core i7-2600K Quad-core CPU with an NVIDIA GeForce GTX680 GPU running

Ubuntu Linux 12.04 LTS. OpenCL 1.0 and GCC 4.6.3 are used for code compilation.

In the accumulated variant, the transition times from the very first window are

accumulated in a buffer and the clock period estimation is based on all transitions

found from the first window to the current window. Voltage thresholds are fixed

based on the voltage statistics found in the first window. Thus, the first window

needs to contain at least one logic state transition. The accumulated variant needs

only to store one array that grows with waveform depth: the transition times. Thus,

it has lower memory consumption than the methods of [20] and Chapter 3, but

nevertheless can run only for some finite time before computer memory is exhausted.

In the real-time variant, clock recovery in every window is regarded as a com-

plete and independent process. The voltage thresholds, transition locations, clock

recovery, and time interval errors within each window are computed independently

of all other windows. This variant has memory requirements that are fixed, in-

dependently of the amount of time it runs: the amount of time it can run is not

memory-limited. By “real-time” we refer to the ability of this method to operate

successfully on a temporally unbounded waveform. The term is not to be under-
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stood as a claim to be able to measure at the full, many-gigasample per second,

sampling rate of contemporary instruments.

Both variants were implemented in LIDE-C and in LIDE-OCL. The two im-

plementations produced identical results to 8 decimal places, and so are identical

for all practical purposes. This validates the correctness of the LIDE-OCL imple-

mentation. The LIDE-OCL results are used in the following graphs.

The accumulated variant reports the desired statistic about jitter, the standard

deviation of time interval error (TIE), only after processing the entire waveform.

Table 4.1 shows the value of that statistic obtained using the accumulated variant

for various window sizes and reported in [20] and Chapter 3 for the same waveform.

All of the results are within 0.02 of a sample time, under a half a percent of relative

error.

Validation of the real-time variant is more complicated because it produces a

value of standard deviation of TIE for each window. And, as shall be seen below, the

statistical behavior of the measurement results varies considerably with the window

size. The same measured waveform was provided to the real-time variant, once for

each of a number of window sizes.

Figure 4.4 summarizes the statistical distribution of the key intermediate com-

puted value, the waveform unit interval (UI). In this figure, box plots show the

distribution of corrected UIs as a function of window size, as determined by the

LIDE-OCL implementation of the real-time variant, and given the actual measured

data described in Chapter 3. The known a priori correct value is 128.00. Boxes

extend from the 25th to the 75th percentile. The median corrected UI is shown as
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a thick black horizontal line. Outliers are shown as circles. One extreme outlier was

deleted for window size 8192.

Figure 4.5 shows the standard deviation of TIE found for each combination

(wi, ws), where wi is a window index and ws is a window size.

More specifically, Figure 4.5 demonstrates the evolution of the standard devi-

ation of the TIE as windows are processed in the real-time variant. Each point in

the figure corresponds to the standard deviation of the TIE in a single window. Dif-

ferent points therefore correspond to different combinations of window indices and

window sizes. Different colors indicate results that are based on different window

sizes. The x-axis indicates the last sample index in each window. The horizontal

black line is at the standard deviation value of 4.63 samples, which is obtained from

experiments in [20].

Figure 4.6 summarizes with a box plot the statistical distribution of the stan-

dard deviations of the previous figure. The horizontal line passing through the figure

shows the standard deviation of 4.63 sample times obtained by experiments [20].

Figure 4.6 shows that the UI estimates and standard deviation of TIEs of the real-

time variant converge toward those of the accumulated variants and results of [20]

and Chapter 3. However, there is a significant frequency of high measurement errors

(shown with the outlier circles in Figures 4.4 and 4.6) at lower window sizes. On

the other hand, the measurement results are visually as accurate with windows of

131,072 samples as they are when processing the entire waveform of over 14 million

samples — yet the windowed version requires approximately 1% of the memory.
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Table 4.1: Standard deviation of TIE: Accumulated variant

window size
(samples)

[20] Chap. 3 8192 16384 32768 65536 131072

std dev of TIE
(sample times)

4.63 4.65 4.65 4.65 4.65 4.65 4.65

Figure 4.4: Box plots of corrected waveform unit intervals (UIs).

4.3 Summary

In this chapter, we have presented a system for deep jitter measurement that

achieves real-time operation, and memory requirements that are constant (indepen-

dent of the amount of data that is processed). Such constant memory requirements
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Figure 4.5: Standard deviation of TIE for different window sizes.

enable the novel capability of processing unbounded-length signal streams in a jit-

ter measurement system, which in turn provides more thorough and accurate jitter

assessment. We have also exposed and investigated system-level design trade-offs

among computation accuracy, memory requirements and latency in jitter measure-

ment. Finally, we have validated our new jitter measurement system’s consistency

with related previous systems by verifying that it produces both intermediate com-

puted values and final measurement results that converge to within sub-percent

measurement errors compared to two previous systems. Useful directions for future

work include optimization of the dataflow graph actors and the schedule to further

improve the execution speed of the implementation.
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Figure 4.6: Box plots of TIE standard deviation for different window sizes.
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Chapter 5: Design Methods for Gapless DSP Applications

In Chapter 4, we presented a novel deep jitter measurement system that loads

and processes constant-frequency signal data from an input file. The contribution of

Chapter 4 was focused on streamlining memory requirements and efficiently trading

off accuracy and performance. The contribution improved the algorithm of Chap-

ter 3 to overcome its limitation of having unbounded memory requirements. This

led to a novel deep jitter measurement system whose memory requirements are fixed

for a given system design configuration — in particular, the memory requirements

are independent of the amount of data that is processed when the system operates.

This allows processing of unbounded signal streams: the measurement system can

process as much data as it receives during a given execution of the system.

In this chapter, we go beyond the developments of Chapter 4 in the follow-

ing ways. First, we incorporate methods to process input from a data acquisition

(DAQ) device under the constraint that samples received from the device must be

reliably stored and processed. We refer to this form of reliable operation as gap-

less operation. Second, we present design optimization techniques that significantly

improve memory management efficiency and system throughput. Additionally, we

incorporate methods to dynamically monitor the frequency of the input signal, and
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adapt relevant system parameters when changes in the input frequency are detected.

5.1 Introduction

This chapter is concerned with the design and implementation of an impor-

tant class of digital signal processing (DSP) applications that we refer to as gapless

DSP applications. A gapless DSP application is characterized by one or more con-

tinuous streams of input data, where the data must be processed without gaps —

that is, without dropping any of the input samples. The strict real-time process-

ing requirements for gapless DSP applications can be very challenging when input

data rates are high, processing requirements are intensive, or the target platform

is significantly resource constrained. The major objective of this chapter is to pro-

vide structured models and systematic methods for addressing this challenge. For

concreteness, the models and methods are developed in the context of a specific

gapless DSP application, which is an application involving jitter measurement of

deep waveforms. However, the core approaches developed in our chapter are not

specific to this application, and can be adapted to other relevant applications.

Real-time jitter measurement of deep waveforms is an example of a gapless

DSP application that has important applications in instrumentation for digital com-

munication systems. Deep waveforms are signals with long durations and high sam-

ple rates that result in large numbers of samples that need to be processed. For

conciseness, we refer to jitter measurement in this context as deep jitter measure-

ment.
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In this chapter, we develop techniques for optimized mapping of deep jitter

measurement onto a high-performance, heterogeneous computing platform. The

techniques are designed to address the challenges associated with gapless opera-

tion, real-time processing, and deep waveform analysis in a systematic, model-based

manner. Here, by model-based, we mean that the methods are developed in terms

of formal models of computation, and at a level of abstraction that is higher than

that of conventional platform-oriented design languages, such as C, C++, CUDA,

and OpenCL. For detailed background on model-based design for signal processing

systems, we refer the reader to [38].

Specifically, we develop model-based techniques based on dataflow models of

computation, which are widely-used in signal processing design and implementation.

In this form of dataflow, signal processing applications are represented as directed

graphs in which vertices (actors) represent DSP hardware/software components and

edges represent first-in, first-out (FIFO) buffers that store data as it passed from

the output of one actor to the input of another. Formal underpinnings of this form

of model-based design are presented in [4].

An important aspect of the techniques that we develop in this chapter is

the model-based integration of data acquisition (DAQ) devices into dataflow-based

design processes. DAQ boards are widely applied in gapless DSP applications to

enable continuous data collection from input sources. DAQ boards are widely used

in numerous signal processing application areas, such as astronomy, environmental

monitoring, biomedical instrumentation, and satellite communication (e.g., see [39,

40]).
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In the deep jitter measurement system that we develop in this chapter, we

employ as the target platform a hybrid CPU-GPU computing platform that is

connected to a DAQ board. This provides a state-of-the-art platform for high-

speed, heterogeneous signal processing of continuously arriving digital communica-

tions waveforms. The methods developed in this chapter focus on optimizing the

throughput of jitter measurement subject to the on-board memory constraints of

a given DAQ interface, GPU memory constraints, and the constraint of gapless

processing.

More broadly, the techniques developed in this chapter provide a novel frame-

work for addressing in an integrated manner the following important challenges of

gapless DSP system design: (1) the requirement for processing unbounded data

streams without DAQ buffer overflow; (2) the need for efficient methods to trade-

off signal processing accuracy and throughput subject to the constraint of gapless

processing; and (3) iterative platform-based optimization of dataflow actor imple-

mentations to maximize system throughput.

The remainder of this chapter is organized as follows. Section 5.2 presents

some background beyond the concepts discussed in Chapter 2 that is relevant to

this chapter. Section 5.3 presents dataflow graph design approaches for efficient

implementation of gapless DSP applications, using deep jitter measurement as a

concrete case study. In Section 5.4, we present design optimization methods to

improve the real-time performance of the deep jitter measurement system. Experi-

ments and analysis of the optimized design are presented in Section 5.5.
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5.2 Background

The developments of this chapter depend on some background on dataflow-

based design beyond the background that has been reviewed in Chapter 2. In this

section, we review this additional background.

An important task in the implementation of a dataflow graph is the task of

constructing a schedule for the graph. A schedule specifies the assignment of actors

to processing resources, and the execution order of actors that are assigned to the

same resource. If all of these assignment and ordering decisions are made at compile

time, the schedule is said to be static, whereas if some of the decisions are deferred

to execution time, it is said to be a dynamic schedule [11]. If the decisions are made

after compile time but prior to graph execution, the schedule is said to be a just-

in-time schedule [41]. Static and just-in-time scheduling techniques offer increased

predictability and reduced run-time scheduling overhead at the expense of generality

— they cannot be applied to all types of dataflow models.

In this chapter, we focus primarily on static scheduling techniques. In the

dataflow graph execution model that we apply, a statically constructed schedule is

executed iteratively, where each iteration is triggered by the availability of a new

block of input samples from a DAQ device. The dataflow graphs that we apply

in this chapter are sufficiently predictable to enable this form of static scheduling.

Extension of the static scheduling techniques proposed in this chapter to just-in-time

deployment contexts is an interesting direction for future work.
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5.3 System Design

In this section, we discuss our methods for dataflow graph design of gapless

deep waveform analysis applications. As described in Section 5.1, we present these

methods in the context of a concrete application — deep jitter measurement. The

deep jitter measurement system that we develop is a gapless DSP system where a

DAQ subsystem supplies continuously arriving input samples, and these samples

are processed to analyze the jitter of input waveform.

The primary challenges when integrating jitter measurement algorithms with

DAQ devices for real-time analysis include adhering to memory capacity constraints,

ensuring that system throughput does not fall below the sampling rate of the DAQ

device, and avoiding excessive latency in the jitter measurement computation. The

methods developed in this section provide our system design foundations for ad-

dressing these challenges. The core dataflow-based system architecture presented in

this section is built upon in Section 5.4 with various optimization techniques. These

optimizations further improve the trade-offs among memory cost, throughput, and

latency that are achieved by our deep jitter measurement system design.

5.3.1 Window-based Analysis

The dataflow graph for our deep jitter measurement system is designed to

measure jitter continuously so that intermediate results of jitter analysis and the re-

covered clock period are accessible, and so that computational latency is streamlined

while meeting throughput constraints.
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A windowing method is applied to reduce the memory requirements of the

jitter measurement system. The windowing method decomposes the input stream

into a set of fixed-size subsequences. The fixed size is referred to as the window size

Ws. In our implementation, the dataflow graph memory requirements are dependent

only on Ws and not on the number of windows that is processed. Thus, the jitter

measurement dataflow graph can be executed on an unbounded number of windows

with predictable, bounded memory requirements. The window size is a system pa-

rameter that can be configured by the designer to control an associated trade-off

between measurement accuracy and memory requirements for deep jitter measure-

ment. Larger values of Ws in general lead to improved accuracy at the expense of

higher memory requirements. We discuss this trade-off further in Section 5.4.1.

5.3.2 DAQ Interfacing

In design and implementation of gapless DSP systems, we are concerned with

processing data that arrives continuously from one or more DAQ subsystems. The

data processed by the system dataflow graph is accessed from one or more internal

buffers on the DAQ devices rather than from files that are stored on disk.

In our deep jitter measurement system, we employ a single DAQ device. To

integrate use of the device into the system-level dataflow graph, we develop a source

actor that encapsulates the functionality associated with acquiring data from the

DAQ device. Here, by a source actor, we mean a dataflow actor that has no inputs;

such actors are commonly used to model interfaces between dataflow graphs and
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Figure 5.1: Subgraph for acquiring data.

sources of input data. Similarly, sink actors, which have no outputs, are used to

model output interfaces of dataflow graphs.

We use the dataflow subgraph shown in Figure 5.1 to model the process of

acquiring data from the DAQ subsystem and converting the data to a stream of

digital input samples that is to be processed by the rest of the enclosing dataflow

graph. The subgraph consists of two actors: the DAS (Data Acquisition Source)

actor handles configuration of the DAQ subsystem as well as acquisition of raw data,

while the DAT (Data Acquisition Transformation) actor performs any preprocessing

required on the raw data (to extract individual samples), as well as the sending of

the preprocessed data to a GPU device for the core signal processing tasks in the

given gapless DSP application.

In the remainder of this section (Section 5.3.2), we demonstrate concrete imple-

mentations for the DAS and DAT actors that target the specific type of DAQ device

that we have used in our experiments. The targeted DAQ device is the Keysight

U5303A PCIe High-Speed Digitizer. For conciseness, we refer to this specific DAQ

device in the remainder of this chapter as the Targeted DAQ Device (TDD). The

implementations of the DAS and DAT actors are developed using LIDE-OCL (see

Chapter 2).
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5.3.2.1 DAS Actor Implementation

The design of the DAS actor is decomposed into three CFDF modes, called

the initialization, inject, and error modes. Before acquiring data from the TDD, a

DAQ configuration, including selection of the sample rate, needs to be set up. The

triggering process for the device also needs to be set up. The initialization mode

handles these setup tasks, and then transitions the actor to the inject mode, which

can be viewed as representing the steady state functionality of the actor.

Upon each firing in the inject mode, a new frame of data is fetched from the

internal buffer of the TDD and made accessible to the rest of the dataflow graph for

processing. A new frame corresponds to a new window based on the window-based

analysis described in Section 5.3.1. The actor is enabled (allowed to fire) only when

there is a new frame of data available within the TDD internal buffer, and there is

sufficient empty space on the actor’s output edge eout for transfer of the new frame

to the DAT actor. If we model the internal buffer as a self-loop edge connected to

the DAS actor, then the enable method involves checking for sufficient data on this

self-loop edge. In a dataflow graph, a self-loop edge is an edge whose source and

sink vertices are identical. Self-loop edges are an established method for modeling

actor state in signal processing dataflow graphs (e.g., see [42]).

Instead of copying raw data from the internal buffer to eout, only a pointer

value pout is written to eout. This value contains the starting address of the block of

memory in the internal buffer where the next frame of acquired data is stored. The

DAT actor can then use this pointer value to access the acquired data directly from
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the TDD internal buffer so that the data does not need to be copied.

Once the actor is in the inject mode, it remains in this mode indefinitely until

the system is stopped or reset through external control, or until an error, such as

overflow of the TDD internal buffer, is detected. Upon detection of an error, the

actor transitions to the error mode, and remains in that mode until the system is

reset. As one might expect, further data acquisition from the TDD is disabled while

the DAS actor is in the error mode.

5.3.2.2 DAT Actor Design

The TDD packages pairs of adjacent input samples as two 16-bit data items

within a single 32-bit packed pair of samples. In our hybrid CPU-GPU implementa-

tion, the TDD actor sends packed pairs to a GPU to be unpacked and then injected

into the dataflow subgraph that carries out the core signal processing functionality

for deep jitter measurement. The overall dataflow graph for deep jitter measurement,

including the subgraph of Figure 5.1 and the subgraph for core signal processing, is

presented in Section 5.3.3. Within the GPU, the accesses of the packed pairs and

the operation of all of the core signal processing actors are parallelized to optimize

real-time performance.

5.3.3 Dataflow Graph for Deep Jitter Measurement

Figure 5.2 illustrates the overall dataflow graph for our deep jitter measure-

ment system. Here, as described in Section 5.3.2, the DAS and DAT actors provide
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the input interface for the deep jitter measurement system. The output interface is

provided by the SKC and SKT actors, which store measurement results in output

files. Descriptions of these actors along with all of the other actors in Figure 5.2

are summarized in Table 5.1. For further background on computations involved in

jitter measurement, we refer the reader to [5, 6, 20].

Figure 5.2: Dataflow graph for deep jitter measurement system.

In the context of a gapless DSP application, we say that a CFDF actor is

a single-mode steady state (SMSS) actor if it contains a unique mode, called the

signal processing mode, that is intended to be executed during the continuous data

processing (“steady state”) phase of the enclosing application. If an SMSS actor

has one or more modes in addition to its signal processing mode, then those modes

must be executed during system initialization or during error handling (e.g., as

illustrated in Section 5.3.2.1 for the DAS actor). Since CFDF modes must have

constant production and consumption rates on all actor ports (see Chapter 2), the

steady state behavior of an SMSS actor can be represented by an SDF actor that

corresponds to only the signal processing mode.

64



In the dataflow graph of Figure 5.2, all of the actors are SMSS actors. The

edges in the figure are annotated with the production and consumption rates as-

sociated with the signal processing modes of the actors. For example, the signal

processing mode of the RRE actor consumes two tokens on each of its input edges

and produces one token on its output edge on each firing. Recall from Section 5.3.1

that Ws, which appears in the annotations associated with edge (DAS,DAT), rep-

resents the window size.

The token types associated with the edges in Figure 5.2 are summarized

as follows. The edge (DAS,DAT) has long type. The edges (GCC, SKC) and

(GCT, SKT) have double type. All of the other edges in Figure 5.2 have OpenCL

memory object token type. A memory object in OpenCL is a pointer that points to

a linear arrangement of bytes that resides on the GPU and can be accessed by the

host.

After each complete firing of the DAS actor, the following static subschedule

of the remaining 13 actors in the graph is executed to process the next frame of data

acquired from the TDD.

DAT DVL STR FSM TRT

RE RRE LFT TSD GCC GCT

SKC SKT

(5.1)

Acquisition of a new frame of data by the TDD can then proceed concurrently
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Table 5.1: Actors in the dataflow graph of Figure 5.2.

Actor Description

DAS
Data acquisition source. Interface for acquiring data from the

TDD.

DAT
Data acquisition transformation. Sends packed pairs of

samples to the GPU, and unpacks the samples on the GPU.

DVL
Determine voltage level. Sorts the input data in the current
window and determines high and low voltage thresholds.

STR
State representation. Converts samples that encapsulate
voltage values into digital form (high/low voltage states).

FSM
Finite state machine. Determines voltage transitions from
high to low voltage states or low to high voltage states.

TRT
Compute transition time. Computes the transition time for

each voltage transition in the current window.

RE
Rough estimation. Derives a preliminary estimation of the

clock period.

RRE
Refine rough estimation. Refines the rough estimation of the

clock period to improve its accuracy.

LFT
Linear fitting. Further refines the estimated clock period with
linear fitting. Computes time interval errors (TIEs) using the

refined clock period estimate.

TSD
Compute TIE standard deviation. Computes the standard

deviation of the TIEs for the current window.

GCC
GPU to CPU data transfer. Transfers clock period result

from GPU memory to CPU memory.

GCT
GPU to CPU data transfer. Transfers TIE standard deviation

from GPU memory to CPU memory.

SKC
Corrected refined estimation sink actor. Produces the result
of the corrected refined estimation for the recovered clock

period.

SKT
Standard deviation of TIE sink actor. Produces the standard

deviation of the TIEs.
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with execution of the subschedule in Equation 5.1. The subschedule of Equation 5.1

involves no run-time scheduling overhead since the ordering is constructed as a

topological sort, which respects all of the data dependencies among the actors. The

run-time testing of data availability in the system is limited to just the DAS actor,

which is polled for availability of a new data frame whenever an iteration of the static

subschedule (Equation 5.1) completes and there is no input data on the (DAS,DAT)

edge that is available to trigger the next subschedule iteration.

5.4 Performance Optimization

Gapless DSP applications generally require high throughput to process input

streams without missing data points and while reliably avoiding memory overflow.

In this section, we demonstrate algorithm- and implementation-based optimization

methods to help address these multi-faceted implementation constraints. Taking the

dataflow graph presented in Section 5.3 as a starting point, we improve the design by

applying a sequence of optimizations. These optimization techniques are described

in Section 5.4.1 through Section 5.5.5. Experimental results from applying these

optimization are then presented in Section 5.5.

5.4.1 Window Size Optimization

In this section, we discuss optimized, dynamic configuration of the window

size parameter Ws, which was introduced in Section 5.3.1. In our deep jitter mea-

surement system, the window size, along with sorting-related parameters (discussed
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in Section 5.4.2) that are directly influenced by Ws, have significant impact on

trade-offs among measurement accuracy, execution time performance, and memory

requirements.

In jitter measurement systems, the frequencies of the input signals are typically

not known at design time, and vary dynamically at run-time. A larger window size

in general improves the accuracy of signal frequency and TIE estimation. For lower

frequencies (larger clock periods), a larger window size is preferred to encapsulate

a sufficient number of signal periods per signal frame. Larger window sizes also

provide improved accuracy, as demonstrated in Chapter 4. Larger window sizes also

improve throughput.

However, memory requirements increase linearly with the window size. Thus,

we initialize execution of our jitter measurement system to support an initial minimal

frequency of finit, and we increase the window size dynamically if we encounter

signals that have lower estimated frequency levels than the currently supported

minimum frequency.

More specifically, In our deep jitter measurement system, the window size

is dynamically optimized by monitoring the number of high/low signal transitions

found in each window. If the number of transitions falls below a threshold Ctrt num ,

then the window size for subsequent signal frames is doubled.

In our experiments, we use finit = 130 kHz, and we use the empirically-

determined value of Ctrt num = 32 transitions per frame. The value of Ctrt num

can be varied to tune system-level trade-offs — lower threshold values lead to lower

memory requirements and faster execution time at the expense of decreased accuracy
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of gapless signal analysis.

5.4.2 Sorting Optimization

Sorting operations are involved in two actors of our jitter measurement system,

the DVL and RE actors. These operations account for significant portions of the

overall computation in a given dataflow graph iteration. We employ bitonic sort [34]

in an effort to enhance the efficiency of the sorting process.

To further improve the efficiency of sorting, we sort only part of the relevant

data associated with each signal frame, and perform the required analysis on the

partially-sorted data. This again represents a way to trade-off reduced accuracy

for improved real-time performance. We configure the optimized sorting process

carefully to ensure that the reduction in accuracy stays within a reasonable level.

In the DVL actor, the input data in a given signal frame is sorted to select

high and low voltage thresholds. These thresholds are then used to find the high-

to-low and low-to-high signal transitions in the given frame. We randomly select a

subset of the data samples in each data frame to sort. The size SDVL of this subset

is determined as

SDVL = power(kDVL × ceil(Ws/Ntrans)), (5.2)

where kDVL is a positive integer parameter, ceil(x) gives the smallest integer that

is greater than or equal to the real-valued argument x, power(y) gives the smallest

power of two that is greater than or equal to the integer argument y, and Ntrans is
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the number of signal transitions that were detected in the previous frame. In other

words, (SDVL/Ws) gives the fraction of available samples that are used in the sorting

process.

For example, suppose that kDVL = 4, and Ws = 65, 536, and Ntrans = 135,

then:

SDVL = power(4 × ceil(65536/135)) = power(4 × 486) = 211 = 2048. (5.3)

In each firing of the RE actor, a sorting operation is performed as part of

the process for deriving a rough clock period estimate. In each signal frame, the

differences in pairs of neighboring transition times are sorted, and the 25th percentile

of the sorted transition time differences is taken as the rough estimate.

Here, we use a threshold CRE to determine the size SRE of the subset (of all

transition time differences) that is sorted. If Ntrans > CRE, then SRE is set to CRE

for the current frame; otherwise, SRE is set to Ntrans.

In our experiments, we use kDVL = 4, and CRE = 1, 024. Through exper-

imentation, we have determined these values to provide improvements in sorting

efficiency without significantly degrading jitter measurement accuracy.

5.4.3 Throughput Optimization

In this section, we focus on further methods that we have applied to opti-

mize the throughput of computationally-intensive actors in the proposed deep jitter
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measurement system. As discussed previously, we targeted our implementation to

a hybrid CPU-GPU platform with C and OpenCL as the actor implementation

languages for CPU- and GPU-based mapping, respectively.

All of the computationally-intensive actors in our jitter measurement system

employ GPU acceleration. Specifically, the following actors employ GPU kernels:

DAT, DVL, STR, FSM, TRT, RE, RRE, LFT, and TSD. However, some GPU-

mapped operations, are not fully parallelized (see Chapter 4). In particular, sorting,

prefix sum, and reduction operations significantly limit the performance of several

actors. Both the DVL and RE actors involve sorting; the TRT actor includes prefix

sum computation; and the RRE and LFT actor include reduction operations.

For the RE and DVL actors, we described in Section 5.4.2 how we employed

approximate computing techniques that trade-off acceptable decrease in accuracy for

improvement in execution time. In addition to these techniques, we employ dynamic

configuration of the vectorization degree to further improve processing efficiency.

By the vectorization degree of a kernel, we mean the number of data parallel

instances of a kernel that are launched simultaneously. In OpenCL terminology, the

vectorization degree is commonly referred to as the number of global work items.

Careful optimization of vectorization degrees can have major performance benefit

for GPU acceleration of dataflow graphs [43].

For the sorting operation within the RE actor, an efficient value for the vec-

torization degree is SRE. However, as discussed in Section 5.4.2, the value of SRE

is determined dynamically. Thus, in our implementation, the vectorization degree

of the sorting kernel K is adapted at run-time. After computation of the number
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of transitions Ntrans on the GPU, the value of Ntrans is communicated to the CPU,

and then used by the CPU to configure the vectorization degree of K before ex-

ecuting the kernel. The performance benefit here of dynamically optimizing the

vectorization degree significantly overshadows the overhead of communicating the

Ntrans value from the GPU to the CPU.

The prefix sum operation in the TRT actor, and the reduction operations in

the RRE, LFT, and TSD actors also represent performance bottlenecks. For these

actors, we optimize the prefix sum and reduction implementations in a number of

ways. First, we perform interleaved addressing so that active kernels have consec-

utive indices (IDs). We also implement sequential addressing for memory read and

write operations in the GPU to avoid shared memory bank conflicts. Furthermore,

we apply loop unrolling (e.g., see [44–46]) for further performance improvement.

5.5 Experiments and Analysis

In this section, we present experimental results of our novel system for gapless

deep jitter measurement. The TDD that we apply is the Keysight U5303A PCIe

High-Speed Digitizer [39]. This is a fast 12-bit PCIe digitizer with programmable

on-board processing. The U5303A device stores acquired data on its on-board mem-

ory, and the data can then be transferred from the on-board memory to the host

computer through a PCIe bus. The host computer that we use in our experiments

contains a hybrid CPU-GPU platform. The platform includes an Intel Core i7-

3820 quad-core CPU with an NVIDIA GeForce GTX680 GPU running Windows 7.
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Figure 5.3: Throughput speedup for the DVL actor for varying values of Rsort.

OpenCL 1.2 and Visual Studio 2010 are used for code compilation.

5.5.1 Sorting in the Optimized DVL and RE Actors

In this section, we examine results related to the optimization techniques

for sorting that were discussed in Section 5.4.2. Figure 5.3 shows the throughput

speedup measured for the DVL actor as the ratio Rsort of data used for sorting is

varied. For example, when Rsort = 0.25 (3 out of 4 samples are ignored), a speedup

of 4.63 is obtained. The range of speedup values represented in Figure 5.3 is from

2.13 (when R = 0.5) to 822.57 (when R = 0.00012).

Figure 5.4, 5.5, 5.6 and 5.7 show the relative error of results produced by
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Figure 5.4: Relative error of high voltage threshold for various Rsort in DVL actor.

the DVL actor for varying values of Rsort. Figure 5.4 shows the relative error of

the high voltage threshold, and Figure 5.5 gives corresponding results for the low

voltage threshold. Figure 5.6 and Figure 5.7 show results on the recovered clock

period and TIE standard deviation, respectively.

The input data set for this experiment is as described in Chapter 4. The

results in Figure 5.4, Figure 5.5, Figure 5.6 and Figure 5.7 show that low levels of

relative error (high levels of analysis accuracy) are observed across the entire range

of Rsort values evaluated.

Figure 5.8 and 5.9 summarize experimental results on the throughput speedup

and relative error for different values of Rsort in the RE actor. Figure 5.8 demon-
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Figure 5.5: Relative error of low voltage threshold for various Rsort in DVL actor.

strates the relative error of results for different values of Rsort, and Figure 5.9 shows

the throughput speedup for different values of Rsort.

The data in Figure 5.8 and 5.9 exhibits the same general trends observed in

Figure 5.3, Figure 5.4, 5.5, 5.6 and 5.7 — significant speedups achieved with rela-

tively low reduction in accuracy — although the magnitudes of throughput speedups

are somewhat lower. Also, the throughput speedup is not linear. We expect that

this is due to nonlinear effects related to memory cache operations and work group

size organization in OpenCL.
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Figure 5.6: Relative error of recoved clock period for various Rsort in DVL actor.

5.5.2 Optimization of Reduction and Prefix Sum Operations

Table 5.2 shows the throughput speedup achieved for the three actors — TRT,

RRE and LFT — that contain reduction and prefix sum operations. The design

optimizations that produced these speedups were discussed in Section 5.5.5. The

throughput values listed in the third and fourth columns of the table are in units of

samples per second (SPS). A representative window size (given in the second column)

is used in this experiment. Compared to the system design presented in Chapter 4,

all three of these actors exhibit over 10X speedup. Unlike the optimizations related

to manipulating Rsort, the optimizations examined in Table 5.2 do not affect signal
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processing accuracy.

Table 5.2: Throughput speedup for TRT, RRE and LFT actors.

Actor
Window
Size

(samples)

Baseline
Throughput

Optimized
Throughput

Speedup

TRT 1,048,576 1.38× 107 1.63× 108 11.79

RRE 1,048,576 2.08× 108 6.88× 109 33.12

LFT 1,048,576 5.02× 107 2.17× 109 43.26
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Figure 5.8: Relative error of rough estimation for various Rsort in RE actor.

5.5.3 Window Size Configuration

In our system design, we consider only powers of two for the window size.

That is, the window size is always of the form Ws = 2k for some positive integer k.

This power-of-two constraint is motivated by our use of bitonic sort, and parallel

computations for prefix sum and reduction operations, as described in Section 5.4.

In our design, all of these critical operations are performed more efficiently (e.g., by

avoiding the need for zero padding) when the window size is a power of two.

In general, hardware characteristics may impose constraints on Ws for a given

implementation. For example, the TDD that we apply has a minimum sampling
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Figure 5.9: Throughput speedup for the RE actor for varying values of Rsort.

rate of 125M SPS. From our experiments involving system throughput (presented

in Section 5.5.5), we have determined empirically that this minimum sample rate

constraint leads to a minimum window size of Wmin = 221. This minimum window

size is required to provide sufficient processing throughput to use the TDD. On the

other hand, the memory constraints on the GPU of our target platform impose a

maximum limit of Wmax = 222 on the window size. Thus, most of our experiments

in the remainder of this section apply window sizes within the set {Wmin,Wmax}.
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5.5.4 Overhead Analysis for Dynamic Adaptation

As described in Section 5.4.1 and Section 5.4.2, the window size Ws and the

ratios Rsort of data samples to sort — for both the DVL and RE actors — are

adapted dynamically based on continuously-monitored characteristics of the input

signal.

Table 5.3 shows the execution time overhead measured for these dynamic adap-

tation operations. The overhead includes both the cost of computations to perform

the relevant signal monitoring, and the cost of changing the relevant parameter set-

tings in memory. The columns of the table correspond to the overhead of adapting

Ws, Rsort for the DVL actor, and Rsort for the RE actor. The overhead is reported

as a percentage of the total execution time for the optimized jitter measurement

system as the window size is dynamically changed from Wmin to Wmax.

Table 5.3: Adaptation overhead in gapless jitter measurement system.

Window Size
Configuration

Sorting
Configuration
for DVL Actor

Sorting
Configuration
for RE Actor

0.74% 0.0034% 0.0018%

5.5.5 System Throughput

Figure 5.10 shows the measured throughput of the jitter measurement system

for different values of the window size Ws. These results are shown for a repre-

sentative input signal frequency of 800kHz. The implementation is tested with 10

different window sizes from 213 to 222 (Wmax), with each value of Ws corresponding
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Figure 5.10: System throughput versus window size.

to a different power of 2. The results demonstrate that system throughput increases

consistently with increases in Ws. We expect that this trend is due to the enhanced

performance of parallel operations with increased window sizes. However, increases

in Ws also result in CPU-GPU communication and memory operations accounting

for larger percentages of the overall execution time. Thus, with increases in Ws, we

see a decrease in the rate of throughput increase.

Figure 5.11 shows the system throughput for different signal frequencies when

the window size is fixed at Ws = Wmin. The results show relatively small variation

in throughput for different frequencies. More specifically, the relative difference

between different levels of throughput is less than 1.5%.
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Figure 5.11: System throughput versus frequency.

In summary, the experimental results presented in this section demonstrate

significant improvements achieved by the design optimization techniques applied in

our novel system for deep jitter measurement. Additionally, the results demonstrate

low levels of accuracy loss in the approximate computing approaches that we applied

to improve the performance of sorting operations. Furthermore, our results provide

quantitative insight into other relevant trends in dynamic adaptation overhead and

overall system performance.
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Chapter 6: Generalized Graph Connections for Dataflow Modeling

As discussed in Chapter 2.1, dataflow representations are directed graphs in

which vertices represent computations and edges correspond to buffers that store

data as it passes between computations. The buffers are single-input, single-output

components that manage data in a first-in, first-out (FIFO) fashion. In this chapter,

we generalize the concept of dataflow buffers with a concept called passive blocks.

Like dataflow buffers, passive blocks are used to store data during the intervals be-

tween its generation by producing actors, and its use by consuming actors. However,

passive blocks can have multiple inputs and multiple outputs, and can incorporate

operations on and rearrangements of the stored data subject to certain constraints.

We define a form of flowgraph representation that is based on replacing dataflow

edges with the proposed concept of passive blocks. We present a structured design

methodology for utilizing this new form of signal processing flowgraph, and demon-

strate its utility in improving memory management efficiency, and execution time

performance for deep waveform applications.

Material described in this chapter will be published in the Proceedings of the

2018 IEEE Workshop on Signal Processing Systems.
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6.1 Introduction

Dataflow modeling is widely used in design processes and tools for signal pro-

cessing systems. In this form of modeling, applications are represented as directed

graphs, called dataflow graphs, in which vertices (actors) represent discrete compu-

tations that are executed iteratively (fire) to process semi-infinite streams of input

data. Each edge e = (x, y) in a dataflow graph represents a logical communication

channel between actors x and y. More specifically, each e = (x, y) represents a

first-in, first-out (FIFO) buffer that stores data during the period between its pro-

duction by actor x and its consumption by actor y. Actors can be fired when certain

conditions, referred to as firing rules, are satisfied [4].

Dataflow modeling has proven to be of great utility in the design and im-

plementation of signal processing systems for various reasons, including its provi-

sions for ensuring determinacy, support for exploiting parallelism, and capability

for exposing high-level application structure that is useful for many kinds of design

optimization beyond those associated with exploiting parallelism [38].

A limitation of signal processing dataflow representations, however, is that

they are inefficient in describing inter-actor communication patterns that depart

from the simple single-input, single-output (SISO) interface and FIFO behavior that

are defined for dataflow edges. As a canonical example of this kind of inefficiency,

consider the fork actor illustrated in Figure 6.1. This is a synchronous dataflow

(SDF) [9] actor that consumes a single token t and produces two tokens — one on

each output edge — on each firing. The values of the two tokens that are produced
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Figure 6.1: Fork actor illustration.

Figure 6.2: Pseudo code of fork actor.

are identical to the value of the input token t. Thus, this actor can be viewed as

providing a kind of broadcast functionality.

Figure 6.2 shows a pseudocode fragment for the fork actor. From this pseu-

docode, we can see that there is overhead of copying the value of the input token

to each of the outputs. This overhead in general includes a run-time cost as well as

a cost in terms of increased memory requirements. The overhead is required under

a pure dataflow interpretation since the input token must be replicated on each of

the two output edges (FIFOs).

The functionality of the fork actor can be realized more efficiently if we aban-

don this pure dataflow interpretation, and implement the actor instead using the

one-input, two-output component illustrated in Figure 6.3. This component, which

we refer to here as a passive fork, is not fired as a dataflow actor is. Instead, the

component operates in a manner similar to a typical FIFO implementation, where
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Figure 6.3: Passive form of fork actor.

a buffer is associated with the component, and tokens are written to and read from

the buffer using write and read pointers, respectively. However, the passive fork has

two read pointers — one corresponding to each output edge of the fork actor —

instead of the single read pointer that would be used in a FIFO. In effect, we have

transformed the fork actor, which operates in an “active” manner (by firing) into an

passive component, which is used by writing to and reading from the component’s

ports. In this passive version of fork actor, wptr, rptr1, and rptr2 in the figure show

possible positions of the write pointer and the two read pointers.

A more powerful form of this “active-to-passive” conversion is illustrated on

Figure 6.4, which shows a gain actor that is connected at the input of the fork actor.

This gain actor corresponds to a constant multiplication, where the constant factor

k is a parameter of the actor. The gain together with the fork can be replaced by

a single passive component. This component is similar to the passive fork actor,

except that when a value is written into the buffer, it is multiplied by k before

being stored. In this chapter, we generalize this process of converting certain kinds

of actors into passive components, which achieve equivalent functionality through

read/write interfaces rather than through the mechanism of being fired. This gen-
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Figure 6.4: Gain actor illustration.

eralization leads to a powerful new design methodology in which passive compo-

nents of arbitrary complexity can be designed to provide streamlined functionality

for actors or subgraphs that are more efficiently realized with internal buffers and

read/write interfaces. When dataflow graphs are transformed to incorporate such

passive components, we refer to the resulting graphs as Passive-Active FlowGraphs

(PAFGs). A central objective of this chapter is to introduce PAFGs as a useful new

representation for model-based design of signal processing systems.

6.2 Related Work

Many researchers have investigated efficient buffer memory management in

dataflow graphs (e.g., see [38,47–49]). Bhattacharyya and Lee discussed the concept

that certain actors, such as the fork actor described above, can be implemented more

efficiently by deviating from pure dataflow semantics [50]. However, this earlier work

did not propose any approach for integrating such deviations systematically into the
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modeling framework. In this new work, we develop such a systematic approach based

on the novel abstraction of PAFGs.

Perhaps the most closely related form of dataflow memory management op-

timization to what we develop in this chapter is buffer merging, which involves

mapping subsets of input and output buffers of a given actor to a common memory

space (e.g., see [51, 52]). Like the method of [52], the PAFG approach allows for

memory sharing across arbitrary numbers of input and output buffers for a given

actor. Similarly, like the method of [51], the PAFG approach does not involve ex-

pansion to a single rate graph, which can be costly in terms of compiler memory

requirements and time complexity for highly multirate applications (e.g., see [53]).

In this sense, the PAFG approach provides a novel combination of useful features in

the two previously developed buffer merging approaches described above. Addition-

ally, while the methods of [51, 52] are limited to SDF graphs, the PAFG approach

is not restricted to any specific form of dataflow. For example, Boolean dataflow

switch and select actors [54] can be formulated as optimized PAFG components

using the same methodology that is presented in this chapter. Applicability beyond

SDF is also a distinguishing point compared to the abstraction of deterministic SDF

with shared FIFOs (DSSF) [55].

While there are significant differences between buffer merging, DSSF, and

PAFG-based memory management, investigating and exploiting complementary re-

lationships among the different approaches is an interesting direction for future

work.
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6.3 PAFG Representations

In this section, we develop in detail the PAFG model of computation. In

this work, PAFGs are derived from dataflow graphs, and are intended as intermedi-

ate representations or implementation architectures for dataflow application graphs

(dataflow models of signal processing applications). For concreteness, we develop

the concepts of PAFGs here in the context of core functional dataflow (CFDF) as the

application graph model; however, the concepts are not specific to CFDF and can be

adapted to other forms of dataflow. CFDF is a highly expressive model that can be

used to represent other well-known dataflow models, including synchronous, cyclo-

static, and Boolean dataflow [56]. CFDF is the model that underlies the lightweight

dataflow environment (LIDE) tool [57], which we use for our experiments in Sec-

tion 6.5.

We first define some notation that will be useful throughout the remainder of

this chapter. Given an edge e in a directed graph, we denote the source and sink

vertices of e by src(e) and snk(e), respectively. A self-loop is an edge whose source

and sink vertices are identical. In the remainder of this chapter, we consider only

directed graphs that do not contain self-loops. Self-loops can be incorporated easily

into the methods developed in this chapter; we omit the details for brevity.

Given an edge e, we say that src(e) is a predecessor of snk(e), snk(e) is a

successor of src(e), and src(e) and snk(e) are adjacent vertices. The sets of all

predecessors and successors of a vertex v in a given graph are denoted by pred(v)

and succ(v), respectively. The sets of all input edges and output edges of v are
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denoted by in(v) and out(v), respectively.

We refer to PAFG vertices as blocks. In a dataflow graph, vertices correspond

to computational modules, and edges correspond to SISO buffers between the mod-

ules. In contrast, in a PAFG, both computational modules and buffers are repre-

sented as vertices, and edges represent connections between computational modules

and buffers. Additionally, PAFG buffers are not restricted to SISO interfaces —

they can have multiple inputs, multiple outputs, or both. A third distinguishing

characteristic of the PAFGs that we are interested in this chapter is that they are

bipartite graphs. We define this bipartite characteristic precisely in Section 6.3.3.

For conciseness and clarity, we assume that dataflow graphs and PAFGs are

directed graphs rather than multigraphs (which can contain multiple edges directed

in the same direction and between the same pair of vertices). The adaptation of the

PAFG model to multigraphs can be readily achieved when implementing the model.

Additionally, we develop the concepts of dataflow graphs and PAFGs in terms

of vertices and edges and avoid details associated with ports, which provide inter-

faces between vertices and incident edges. In practical dataflow design processes and

tools, multigraph and port representations are both important. The methods devel-

oped in this chapter can be extended naturally to incorporate such representations.

However, because these extensions are not essential to conveying the main ideas of

this chapter, we avoid introducing the additional notation required to accommodate

them.

We refer to an ordered pair of actors (xd, yd) as a dataflow pair and an ordered

pair of PAFG blocks (xb, yb) as a PAFG pair.
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The PAFGs that we are concerned with in this chapter are derived from cor-

responding dataflow graphs (application graphs). We elaborate on the process of

deriving a PAFG from a dataflow graph in Section 6.3.4. This derivation process

places blocks in a PAFG F in correspondence with actors or edges in the dataflow

graph from which F was derived. A simple passive buffer is a PAFG block that

corresponds in this way to an edge in some dataflow graph. A PAFG block that is

not a simple passive buffer is referred to as a non-simple block. We often refer to

simple passive buffers as simple blocks.

6.3.1 PAFG Blocks

A PAFG block is either a passive block or an active block. The distinction

between these two types was motivated intuitively in Section 6.1. More precisely,

an active block corresponds to an application graph actor that is used in the usual

way — that is, through interfaces that are associated with firing the actor and (if

available) for testing fireability. In CFDF, these are referred to as invoke and enable

interfaces, respectively [56]. In contrast, a passive block is used through read/write

interfaces, as illustrated by the passive fork example in Section 6.1.

Given an application graph G, we assume that implementations of the actors

in G are available in an actor library. We assume that each actor in G has one active

implementation (with enable/invoke interfaces) in the library, and that it may or

may not have a passive implementation (with read/write interfaces). We refer to an

actor A as a buffer actor if it has a passive implementation; otherwise, we refer to A
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as a computational actor. Thus, only buffer actors can be placed in correspondence

with passive blocks.

Like active blocks, non-simple passive blocks correspond to actors. However,

they are used (executed) in a different way — again, as illustrated by the difference

between the active (“standard”) and passive versions of the fork actor in Section 6.1.

A non-simple passive block should implement the same input/output behavior as

its corresponding actor — that is, it should perform the same mapping from input

streams into output streams. For background on the interpretation of actors as

mappings from input streams to output streams, we refer the reader to [4]. In

this work, we assume that unit testing processes are used to validate such “mapping

equivalence” between passive blocks and their corresponding actors. For background

on synergies between unit testing and dataflow-based design processes, we refer the

reader to [57]. We envision as an interesting area for future work the automation

of the equivalence checking process between active and passive implementations of

the same buffer actor.

A block in a PAFG is either a computational block or a buffer block. The com-

putational/buffer dichotomy is another relevant way to distinguish between blocks

in addition to the active/passive and simple/non-simple dichotomies. All compu-

tational blocks are active blocks. However, buffer blocks can in general be either

passive or active.
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6.3.2 Coordination Functions and Alternating PAFGs

When deriving a PAFG, each buffer block needs to be designated as being an

active or passive buffer. An active buffer is executed like any other actor (using en-

able/invoke interfaces), while passive buffers are read from and written to directly by

computational blocks and active buffers (using read/write interfaces). Coordination

functions are used to specify whether a given block is executed in a passive or active

fashion. Thus, coordination functions specify how schedulers should manipulate the

blocks when executing the associated application graph.

Given a PAFG F , we represent the set of blocks (vertices) in F by blks(F ),

and we define a coordination function of F as one that specifies for each b ∈ blks(F )

whether or not b is to be executed in an active or passive fashion. More precisely, a

coordination function is a mapping C : blks(F ) → {pssv , actv}, where C(bc) = actv

for every computational block bc ∈ blks(F ), and C(bs) = pssv for every simple block

bs ∈ blks(F ). We refer to C(b) as the coordination type of block b with respect to

C. Computational blocks and simple blocks must be coordinated in an active and

passive fashion, respectively, and a coordination function just “reminds us” of this.

On the other hand, a coordination function C specifies for each non-simple buffer

block whether or not the block is to be executed in a passive or active fashion (if

we execute the PAFG based on C).

A coordinated PAFG is an ordered pair Z = (F,C), where F is a PAFG and

C is a coordination function for F .
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6.3.3 Alternating PAFGs

In this work, we are interested in a specific form of coordinated PAFG, which

we refer to as an alternating PAFG. An alternating PAFG is defined to be a coordi-

nated PAFG that is bipartite in terms of the active blocks and passive blocks. More

precisely, an alternating PAFG Z = (F,C) with F = (Vf , Ef) is one that satisfies

C(src(e)) 6= C(snk(e))for all e ∈ Ef .

A block in a PAFG is an interface block if it has no output edges or it has

no input edges. The concept of coordinated PAFGs allows for the possibility of

interface blocks that are passive. However, we have not yet experimented with the

design of passive interface blocks. Exploration into the utility of passive interface

blocks appears to be an interesting direction for future work.

In our context, direct communication between pairs of active blocks or pairs

of passive blocks is ambiguous. Intuitively, some form of buffer is needed to manage

the flow of data between active blocks (just as dataflow edges connect pairs of

communicating actors in dataflow graphs). Generalization of the developments of

this chapter beyond alternating PAFGs is potentially another interesting direction

for future work.

6.3.4 Direct PAFGs

We propose a design methodology in which dataflow graphs are converted into

a kind of equivalent PAFG representation, and then transformed so that some subset

of the active buffers is converted into passive coordination form. In this section, we
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define the equivalent PAFG representation, which we refer to as direct PAFG form,

and in Section 6.4, we define the process of transforming active buffers into passive

form.

Suppose that we are given a dataflow graph G = (V,E). For each edge e ∈ E,

we define a corresponding passive buffer ρ(e). We denote the set of passive buffers

defined in this way as P (G). Thus, P (G) = {ρ(e) | e ∈ E}. Each ρ(e) ∈ P (G) is a

simple block (see Section 6.3.1) since it is defined in correspondence with a distinct

dataflow graph edge e.

Similarly, for each v ∈ V , we define a corresponding block α(v). Each α(v)

is referred to as an actor block with corresponding actor v. If v is a computational

actor, then α(v) is defined as a computational block. Otherwise, α(v) is defined as

a non-simple buffer block. For a given dataflow graph G = (V,E), we define the set

of all actor blocks by A(G) = {α(v) | v ∈ V }

For each z = ρ(e) ∈ P (G), we define the PAFG pairs κi(z) = (α(src(e)), z)

and κo(z) = (z, α(snk(e)). Recall that PAFG pairs are ordered pairs of blocks, and

actor blocks and passive buffers both represent different types of blocks. Thus, κi(z)

and κo(z) can correctly be referred to as PAFG pairs. The sets of all pairs defined in

this way are represented by Ki = {κi(z) | z ∈ P (G)}, and Ko = {κo(z) | z ∈ P (G)}.

The direct PAFG representation of G is a coordinated PAFG Zd = (Fd, Cd).

The PAFG Fd = (Vd, Ed) is defined by Vd = (A(G) ∪ P (G)), and Ed = (Ki ∪ Ko),

and the coordination function is defined by Cd(b) = actv for every non-simple block

b.

By construction, each edge in Zd connects a simple block to a computational
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Figure 6.5: A dataflow graph illustration (application graph).

Table 6.1: Coordination function for the direct PAFG of Figure 6.6.

Block (B) Coordination type C(B)

Yi, i = 1, 2, . . . , 10 actv

Zj, j = 1, 2, . . . , 4 actv

Lk, k = 1, 2, . . . , 15 pssv

block or an active buffer block. Thus, a direct PAFG is always an alternating PAFG.

To illustrate key concepts introduced in this section, Figure 6.5 shows an ex-

ample of a dataflow graph (application graph), Figure 6.6 shows the direct PAFG

that results from this application graph, and Table 6.1 shows the coordination func-

tion for the direct PAFG. In Figure 6.5 and Figure 6.6, each Hi is a computational

actor, each Ji is a buffer actor, each Yi corresponds to Hi, each Zi corresponds to

Ji, and each Li is a simple passive buffer.
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Figure 6.6: The direct PAFG that is derived from Figure 6.5.

As illustrated in Figure 6.5 and Figure 6.6, we use the convention that dataflow

graph actors are drawn with circles, PAFG blocks are drawn with rectangles or

squares, and the borders of PAFG blocks are solid or dashed based on whether the

blocks are active or passive, respectively.

6.3.5 Association between Dataflow Graphs and PAFGs

Given a dataflow graph G = (V,E) and a PAFG F = (Vf , Ef), we say that

G and F are associated (each is associated with the other) if each simple block p

in F corresponds to an edge e in G (p = ρ(e)), and each non-simple block q in

F corresponds to an actor a in G (q = α(a)). By construction, the direct PAFG

representation of a dataflow graph G is always associated with G.
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6.4 Passivization Transformation

In the direct PAFG representation of a dataflow graph, all non-simple buffer

blocks are coordinated as active buffers. In this section, we define the process of

converting an active buffer to passive form. This conversion process is defined as

a transformation process for alternating PAFGs — that is, a process that takes as

input an alternating PAFG and produces as output another alternating PAFG.

If b and c are adjacent blocks in a PAFG, then we disallow coordination func-

tions that assign a passive form to both b and c. We refer to this as the adjacent

buffer coordination (ABC) restriction. We impose the ABC restriction because we

do not have any mechanism defined for direct communication between two passive

blocks. Intuitively, communication between passive buffer blocks “stalls” because

each is “waiting” for a read or write operation to be initiated by the other. It may

be interesting as future work to investigate communication mechanisms that allow

one to relax the ABC restriction.

Given an alternating PAFG (F,C) and a block b in F , we say that b is simply

surrounded if all of its predecessors and successors are simple passive buffers. For-

mally, this means that x is a simple passive buffer for all x ∈ (pred(b) ∪ succ(b)).

For example, in Figure 6.6, blocks Z1 and Z2 are simply surrounded, while blocks

L1 and L2 are not.

Suppose that we have an alternating PAFG Za = (Fa, Ca), where Fa =

(Va, Ea), and suppose we have an active buffer β ∈ Va that is simply surrounded.

Then we can perform the passivization transformation of Za with respect to β. This

98



transformation, which is the primary contribution of this section, produces a new

PAFG Zb = (Fb, Cb), Fb = (Vb, Eb). The vertex set of Fb is defined by the set

difference Vb = Va − Vz, where Vz = pred(β) ∪ succ(β).

To define the edge set Eb, we first define the sets Yp = {y ∈ pred(x) | x ∈

pred(β)}, and Ys = {y ∈ succ(x) | x ∈ succ(β)}. Since β is simply surrounded,

we have from the ABC restriction that all elements of Yp and Ys are active blocks.

Next, we construct the set Eβ of PAFG pairs that are directed from members of Yp

to β, or from β to members of Ys: Eβ = ({(x, β) | x ∈ Yp} ∪ {(β, y) | y ∈ Ys}).

We also define the set of all input and output edges of blocks that are adjacent to

β: Er = {e ∈ out(x) | x ∈ Vz} ∪ {e ∈ in(x) | x ∈ Vz}. We can then define Eb by

Eb = ((Ea −Er) ∪ Eβ).

The coordination function Cb : Vb → {pssv , actv} is derived by changing the

form of β, while “copying” the values from Ca for all other blocks in Vb: Cb(β) =

pssv , and Cb(x) = Ca(x) for all x ∈ (Vb − {β}).

To summarize, the passivization transformation with respect to a simply sur-

rounded active buffer β involves the following steps:

1. Change the form of β from actv to pssv ;

2. Remove all of the predecessor and successor blocks of β along with their input

and output edges;

3. Add edges that are directed to β from each member of Yp;

4. Add edges that are directed from β to each member of Ys.
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Figure 6.7: Resulting PAFG after applying the passivization transformation.

Table 6.2: Coordination function for the PAFG in Figure 6.7.

Block (B) Coordination type C(B)

Yi, i = 1, 2, . . . , 10 actv

Zj, j = 1, 2, 3 pssv

Y4 actv

Lk, k = 4, 5, 6, 7, 12, 13 pssv

The passivization transformation can be applied multiple times, where in each

application (transformation step) after the first, the transformation is applied on

the graph that results from the previous step.

For example, Figure 6.7 illustrates the PAFG that results after applying the

passivization transformation three times on the direct PAFG of Figure 6.6. The

transformation is applied with respect to Z1, Z2, and then Z3. The coordination

function associated with Figure 6.7 is illustrated in Table 6.2
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6.5 Application Examples and Experiments

In this section, we present experiments on two relevant applications. These

experiments demonstrate the utility of design optimization using PAFGs. In both

of these experiments, we carried out a sequence of passivization transformations

by hand, and implemented the original dataflow graph and the optimized PAFG

(derived through the transformations) using the lightweight dataflow environment

(LIDE) [57]. In this work, we have developed extensions in LIDE to provide complete

support for design and implementation using PAFGs, including features that allow

implementation and interfacing of non-simple passive blocks. The experiments for

both applications are conducted on an Intel Core i7-2600K Quad-core CPU running

Ubuntu Linux 16.04 LTS, and using GCC 5.4.0 for code compilation.

6.5.1 Error Vector Magnitude Computation

The error vector magnitude (EVM) is a figure of merit for signal quality in com-

munication systems. EVM computation is an important application in measurement

and test equipment for communications. For background on EVM computation, we

refer the reader to [58].

A dataflow graph for measuring the EVM for a given reference signal and

received signal is shown in Figure 6.8. This is a dynamic dataflow graph modeled

using CFDF semantics, as supported in LIDE. Here, SRC1 provides on each ith

firing the input data length for the ith EVM computation. The actors SRC2 and

SRC3 provide the real and imaginary parts, respectively, of the reference signal;
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Figure 6.8: Dataflow graph for EVM measurement.

and similarly, SRC4 and SRC5 provide the real and imaginary parts of the received

signal. The actor FA is a fork actor (see Section 6.1), which broadcasts data to

multiple output ports. The actors RFC and RCC are interleavers that interleave

corresponding pairs of input tokens so that the real and imaginary parts of each

signal sample are arranged in successive elements of the actors’ output streams.

The actors E and RFM compute the error vector and reference signal magnitude,

respectively. The actor RMS computes the root mean square (RMS) ke of the error

signal and the RMS kr of the reference signal, and derives the EVM result as the ratio

ke/kr. The actors RFA and EA compute the average magnitudes of the reference

and error signals, respectively. The SNK actor represents the output interface of

the graph; in our experiments, we use a file writing interface.
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Figure 6.9: Optimized PAFG for EVM measurement.

We first derive a direct PAFG, which represents the implementation of the

application graph (Figure 6.8) using pure dataflow semantics. To the direct PAFG,

we apply the passivization transformation three times with respect to the actors

FA, RFC and RCC. All three of these actors are simply-surrounded, and can be

implemented efficiently in passive form.

The resulting optimized PAFG is illustrated in Figure 6.9. We use a minor

abuse of notation where non-simple blocks in the PAFG are labeled with the same

names as their corresponding actors in the application graph. Blocks labeled as SPB

represent simple passive buffers.

Table 6.3 compares the performance of the direct and transformed PAFGs.

Through passivization, the throughput is improved by about 31.88%, and the buffer

memory requirement (BMR) is reduced by about 25%. We define the BMR of a

PAFG G as the total memory requirement for all passive blocks in G.
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Table 6.3: Results for the EVM application.

Throughput
(samples/sec)

BMR (MB)

Direct PAFG 7.93× 105 29.30

Optimized PAFG 1.05× 106 21.97

6.5.2 Jitter Measurement Application

In this section, we apply PAFG-based modeling and optimization for the jitter

measurement system design that was presented in Chapter 3. For details on this

system design, including the dataflow model and the constituent actors, we refer the

reader to Chapter 3.

An important parameter in the jitter measurement system is the window size,

which determines the number of samples that are processed in a given dataflow graph

iteration. Larger window sizes in general improve the throughput at the expense of

a larger BMR (see Chapter 3).

The dataflow graph for this application is illustrated in Figure 6.10. The

actors labeled FA2,FA3,FA4 are 2-output, 3-output, and 4-output fork actors, re-

spectively. The graph in Figure 6.10 is based on the dataflow model presented in

Chapter 3, except that the graph in Figure 6.10 incorporates fork actors for all inter-

actor broadcast operations. In contrast, several of the broadcast operations in the

dataflow model of Chapter 3 are achieved by replicating data across multiple output

ports of the producing actors (“broadcasting actors”). The use of fork actors, as

represented in Figure 6.10, provides a more modular approach since a broadcasting
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Figure 6.10: Dataflow graph for jitter measurement application.

actor need not have multiple implementations or multiple configurations (with dif-

ferent numbers of output ports) depending on whether its output data is broadcast

or how many actors the output data is broadcast to.

Again, we first derive the direct PAFG and then transform this into an opti-

mized PAFG through a sequence of passivization transformations. In this transfor-

mation process, we convert the six fork actors in the design, from active to passive

buffer form.

The resulting optimized PAFG is illustrated in Figure 6.11. In this figure, the

non-simple passive blocks corresponding to the fork actors are denoted F1, F2, . . . , F6.

Table 6.4 shows the improvement measured from the optimized PAFG com-

pared to the direct PAFG for different window sizes. From these results, we see

significant improvements delivered by the optimized PAFG in terms of the trade-off

105



65&

63%

'9/

675

)60

757

5(55(/)73+6

'$6

'%6

)�

63%

)�

)�

)�

63%

)�

)�

63%

63%

63%)�

63%

Figure 6.11: Optimized PAFG for jitter measurement application.

between throughput and BMR. For the optimized PAFG, the BMR ranges from

0.38MB to 6.0MB for increasing window sizes, and the throughput ranges from

1.9× 106 samples/sec to 3.1× 106 samples/sec.

Table 6.4: Results for the jitter measurement application.

Window size 16,384 32,768 65,536 131,072 262,144

Throughput 11% 7.0% 7.7% 6.5% 7.0%

BMR 60% 60% 60% 60% 60%

6.6 Summary

In this chapter, we have introduced passive-active flowgraphs (PAFGs) as a

model of computation that complements dataflow models for design and imple-

mentation of signal processing systems. PAFGs generalize the concept of dataflow

edges into multi-input, multi-output components that are called “passive blocks”.
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PAFGs provide a new approach to integrating designer-specified memory manage-

ment optimization systematically into the framework of dataflow-based design and

implementation. In addition to presenting details of the PAFG model of compu-

tation, we have introduced the passivization transformation, which can be used

iteratively to derive progressively more efficient PAFGs. We have demonstrated

the utility of PAFGs and the passivization transformation on two important deep

waveform analysis applications. The optimized implementation of these applications

using PAFGs leads to significant throughput improvement and reduction in buffer

memory requirements.
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Chapter 7: Conclusions and Future Work

In this chapter, we first summarize our work and contributions, as presented

in the previous chapters of this thesis. Then we discuss interesting directions for

future research.

7.1 Conclusions

In this thesis, we have presented new methods for dataflow-based design and

implementation of deep waveform applications on resource-constrained platforms.

Throughout the thesis, we have demonstrated our methods concretely in the context

of deep waveform analysis for jitter measurement, which finds important applications

in many areas, including communication system design. The contributions of the

thesis consist of three main parts.

First, we have developed new dataflow-based design methods and windowing

techniques for efficient, model-based implementation of deep waveform measurement

systems. We have demonstrated that our approach to dataflow modeling together

with window-based signal analysis helps to significantly reduce memory requirements

and reduce latency compared to conventional “swallow and wallow” analysis. We

have also developed novel methods to assess the accuracy of transformations from

108



swallow and wallow analysis to dataflow analysis that bases its results at any time

on a prefix of the samples that have already been processed. These methods help

to ensure that transformations maintain sufficient accuracy, which in turn allows

system designers to provide more strategic trade-offs between real-time performance

and analysis quality.

Second, we have developed novel models and design optimization methods

for gapless deep waveform applications, where continuous streams of data must be

processed reliably without any gaps. The approaches developed in this part of

the thesis involve unified dataflow-based modeling of the interfaces and signal pro-

cessing functionality of gapless deep waveform analysis. Bottleneck actors in the

resulting dataflow model are then identified and tackled with approximate comput-

ing techniques. These techniques are developed and configured carefully so that

large performance gains are achieved while keeping reductions in signal processing

accuracy to a manageable level. Efficient actor- and graph-level code optimization

techniques are also applied to further improve real-time performance. In addition

to providing accurate, real-time processing on the experimental platform used in

our experiments, the algorithm- and model-based formulation of the contributions

in this part promote their general utility in deep waveform analysis, and their re-

targetability to other platforms.

Third, we have developed a modeling approach that enables new ways of op-

timizing memory management efficiency in signal processing dataflow graphs. In

particular, we have developed passive-active flowgraphs (PAFGs) as a model of

computation that provides a useful new intermediate representation for dataflow-
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based design flows. The PAFG model generalizes dataflow edges into multi-input,

multi-output elements that are referred to as passive blocks. We develop system-

atic methods for transforming a signal processing dataflow graph into an equivalent

PAFG representation. Furthermore, we develop transformation techniques for de-

riving progressively more efficient PAFG representations for an application. When

applying these transformations, the final PAFG that results can be converted into

optimized embedded software that realizes the original application in a manner that

provides significantly improved efficiency of inter-actor communication. We have

demonstrated the utility our new PAFG model and its associated transformation

techniques on complex applications for deep waveform analysis.

7.2 Future Work

Various useful directions for future work have been motivated from the devel-

opments of this thesis. These can be divided into two major areas — future work

on efficient parallelization of deep waveform analysis systems, and future work on

the PAFG model of computation.

7.2.1 Parallelization of Deep Waveform Analysis Systems

The design optimization methods developed in this thesis for efficient parallel

computation have focused on accelerating the parts of the system that are mapped

to the GPU in a hybrid CPU-GPU implementation. This has been an effective

approach in our jitter measurement case study since all of the computationally
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intensive actors in the system are amenable to GPU acceleration.

However, a more general design methodology would support optimizations

that strategically map some computationally-intensive actors to the CPU. This way,

CPU and GPU resources could cooperate in parallel on time-consuming parts of the

required deep waveform analysis.

Additionally, more thorough investigation into vectorization of selected actors

would enable more comprehensive design space exploration of trade-offs involving

dataflow buffer memory requirements, latency, and throughput. Recent work by

Lin et al. has introduced new algorithms for integrated vectorization and CPU-GPU

parallelization of synchronous dataflow graphs [43]. We anticipate that this would

be a promising starting point for investigation into more comprehensive design space

exploration of deep waveform analysis systems.

Extension of the static scheduling techniques proposed in this thesis to just-

in-time deployment contexts is another interesting direction for future work.

7.2.2 Future Work on PAFG-Based Design and Implementation

Our work on the new PAFG model of computation has introduced several

directions for future work. These include the following.

• Automation of the equivalence checking process between active and passive

implementations of the same buffer actor.

• Exploration into the utility of passive interface blocks, corresponding to source

and sink actors of a dataflow graph.
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• Generalization of the developed PAFG-based optimizations beyond alternating

PAFGs.

• Investigation of communication mechanisms in PAFGs that allow relaxing of

the adjacent buffer coordination (ABC) restriction.

• Exploration of complementary relationships among buffer merging, determin-

istic SDF with shared FIFOs (DSSF), and PAFG-based memory management.
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