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Malware still is a vital security threat. Adversaries continue to distribute

various types of malicious programs to victims around the world. In this study, we

try to understand the strategies the miscreants take to distribute malware, develop

systems to detect malware delivery and explore the benefit of a transparent platform

for blocking malware distribution in advance.

At the first part of the study, to understand the malware distribution, we

conduct several measurements. We initiate the study by investigating the dynamics

of malware delivery. We share several findings including the downloaders responsible

for the malware delivery and the high ratio of signed malicious downloaders. We

further look into the problem of signed malware. To successfully distribute malware,

the attacker exploits weaknesses in the code-signing PKI, which falls into three

categories: inadequate client-side protections, publisher-side key mismanagement,

and CA-side verification failures. We propose an algorithm to identify malware that

exploits those weaknesses and to classify to the corresponding weakness. Using the

algorithm, We conduct a systematic study of the weaknesses of code-signing PKI on

a large scale. Then, we move to the problem of revocation. Certificate revocation is

the primary defense against the abuse in code-signing PKI. We identify the effective

revocation process, which includes the discovery of compromised certificates, the



revocation date setting, and the dissemination of revocation information; moreover,

we systematically measure the problems in the revocation process and new threats

introduced by these problems.

For the next part, we explore two different approaches to detect the malware

distribution. We study the executable files known as downloader Trojans or drop-

pers, which are the core of the malware delivery techniques. The malware delivery

networks instruct these downloaders across the Internet to access a set of DNS do-

main address to retrieve payloads. We first focus on the downloaded by relationship

between a downloader and a payload recorded by different sensors and introduce

the downloader graph abstraction. The downloader graph captures the download

activities across end hosts and exposes large parts of the malware download activ-

ity, which may otherwise remain undetected, by connecting the dots. By combining

telemetry from anti-virus and intrusion-prevention systems, we perform a large-scale

analysis on 19 million downloader graphs from 5 million real hosts. The analysis

revealed several strong indicators of malicious activity, such as the slow growth rate

and the high diameter. Moreover, we observed that, besides the local indicators,

taking into account the global properties boost the performance in distinguishing

between malicious and benign download activity. For example, the file prevalence

(i.e., the number of hosts a file appears on) and download patterns (e.g., number of

files downloaded per domain) are different from malicious to benign download ac-

tivities. Next, we target the silent delivery campaigns, which is the critical method

for quickly delivering malware or potentially unwanted programs (PUPs) to a large

number of hosts at scale. Such large-scale attacks require coordination activities

among multiple hosts involved in malicious activity. We developed Beewolf, a sys-

tem for detecting silent delivery campaigns from Internet-wide records of download

events. We exploit the behavior of downloaders involved in campaigns for this sys-

tem: they operate in lockstep to retrieve payloads. We utilize Beewolf to identify

these locksteps in an unsupervised and deterministic fashion at scale. Moreover, the

lockstep detection exposes the indirect relationships among the downloaders. We

investigate the indirect relationships and present novel findings such as the overlap



between the malware and PUP ecosystem.

The two different studies revealed the problems caused by the opaque software

distribution ecosystem and the importance of the global properties in detecting

malware distribution. To address both of these findings, we propose a transparent

platform for software distribution called Download Transparency. Transparency

guarantees openness and accountability of the data, however, itself does not provide

any security guarantees. Although there exists an anecdotal example showing the

benefit of transparency, it is still not clear how beneficial it is to security. In the

last part of this work, we explore the benefit of transparency in the domain of

downloads. To measure the performance, we designed the participants and the

policies they might take when utilizing the platform. We then simulate different

policies with five years of download events and measure the block performance. The

results suggest that the Download Transparency can help to block a significant part

of the malware distribution before the community can flag it as malicious.
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Chapter 1: Introduction

Malware is the important security threat, and adversaries continue to adopt

various strategies to deliver various types of malware to the victims around the

world. The well-known techniques they take are drive-by-download attacks [1],

pay-per-install infrastructures [2], self-updating malware [3], or compromising the

benign software distribution (e.g., abusing the code-signing certificates) [4]. In order

to make the most out of the delivered malware, some malware has the functional-

ity to deliver additional malware. The malware delivery networks instruct these

downloaders across the Internet to access a set of DNS domain address to retrieve

payloads. The payload delivery results in the form of coordinated waves, which of-

ten do not require any user intervention to avoid attracting attention. The payload

may turn out to be another downloader, which results in a chain-of-download.

This dissertation consists of a series of studies regarding malware distribution.

We first aim to understand the malware distribution, focusing on how they get deliv-

ered. Among the various distribution channels, we focus on the case where malware

distributors exploit the code signing Public Key Infrastructure (PKI), which is one

of the benign software distribution mechanisms. We currently depend on the code-

signing PKI to set up trust in the software coming from the Internet. Where the
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Certification Authorities (CAs) and the software publishers first construct the trust.

The CA issue the certificate to the software publishers, vouching for their identity.

With the issued certificate, the publishers sign the software they release. The users

check the certificate and decide to trust the software or not. However, if adversaries

can breach this chain of trust, it can threaten the end-host security. Anecdotal

information suggests that an extensive scope of malicious programs may hold valid

digital signatures, resulting from compromised certificates [5–8]. Moreover, we have

not paid much attention to the effectiveness of its primary defense: certificate re-

vocation. In case of the Web’s PKI, many efforts have been made to measure the

ecosystem, including the problems in revocation [9–12], and the vulnerabilities and

abuse [13–15]. In contrast, both the threats in code-signing PKI and the effective-

ness of revocation have not been measured systematically due to several challenges

in the code-signing PKI. Whereas we can systemically discover potentially compro-

mised certificates through network scanning [9–11] in the Web’s PKI, we do not have

a comprehensive list of code signing certificates and the corpus of signed samples,

including malware, on end-hosts around the world. Such challenges make the code-

signing PKI ecosystem opaque and might cause platform security protections to

make incorrect assumptions about how critical properly validating the code-signing

certificates and performing effective revocation are for end-host security.

In the second part of the dissertation, we develop systems that can detect

malware distribution. The growing commoditization of the underground economy

has given rise to malware delivery networks [2, 16]. These networks orchestrate

campaigns to quickly deliver malware to a large number of hosts. Prior studies
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generally focused on either understanding the properties of the global malware dis-

tribution networks or on investigating the various techniques that malware delivery

networks utilize for the final step of the delivery process. For instance, they analyze

the business models [2], their network-level behavior [17, 18], or their server-side

infrastructure [19, 20]; or investigate drive-by-download attacks [1] (which exploit

vulnerabilities in web browsers when users are surfing the Web), pay-per-install in-

frastructures [2] (which are paid services that distribute malware on behalf of their

affiliates), or self-updating malware (e.g., worker bots from recent botnets [3]). In-

stead, we pay attention to the executable files known as downloader Trojans or

dropper, which functionality is to deliver additional malware to the victim’s ma-

chine. However, it is not trivial to distinguish between benign and malicious down-

loads based merely on their content and behavior because the act of downloading

software components from the Internet is not a sign of inherently malicious intent.

For example, many benign applications download legitimate installers and software

updates. To overcome the challenge, we can connect the dots between the down-

loader and the payload. Such relationships and the generated graph can provide a

better understanding of the malware distribution and expose the larger picture of

the malware distribution. Then we can come up with the properties that lead to

separation between benign and malicious software delivery. Moreover, by mining

the graphs that reflect relationships among the artifacts of malware delivery, it is

possible to identify the entire structure of the malware download activity, which

may otherwise remain undetected. For instance, we can precisely characterize the

relationships among downloaders and the domain names associated with each mal-

3



ware delivery campaigns, and the malware payloads disseminated. Furthermore, we

can establish precise time bounds to identify correlated downloads. The graphs cap-

turing these relationships can help us understand the malware delivery campaigns,

provide new insights into the malware landscape, and expose fragile dependencies in

the underground economy, leading to practical intervention strategies for disrupting

the malware delivery process [21].

The digitally signed malware and the problems in the code signing PKI infers

the opaque software distribution ecosystem as one of the primary cause. Also, we

discussed the importance of understanding the structure of malware delivery and

the global properties. It supports the introduction of transparency to the software

distribution ecosystem as a promising direction. The anecdotal evidence suggests

that deploying a transparency platform has brought a positive impact to security.

A set of misissued certificates by Symantec’s Thawte CA left a trace on the Cer-

tificate Transparency (CT) Log, which included a certificate issued for the domains

google.com and www.google.com [22]. By introducing transparency to the domain of

PKI, we now have a better opportunity to detect misbehaving CAs and the misissued

certificates from the opaque ecosystem. However, besides the anecdotal case of CT,

the benefit of transparency is yet not fully explored. It is still unclear whether we

can benefit or not even with users with different policies concerning the utilization of

the platform or with adversary influence. In the last part of the dissertation, we ex-

plore the adoption of transparency in the domain of software distribution and study

the benefit it introduces regarding the blockage of the unknown malware delivery.

Such transparency platform may consist of logs with events of software distribution
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and the flagged malicious binaries, shared in a transparent manner (i.e., the data is

open to the public, and we can verify the integrity). Users can submit the software

distribution events (e.g., download events) to the log and utilize the log to make

decisions whether to accept a download or not. The security analyitics may utilize

the download events in the log and apply detection algorithms on the constructed

downloader graph [23] with the globally aggregated features such as prevalence from

the log. It can be used as a platform for software publishers to announce their soft-

ware distribution in advance. Having such a platform, we can measure how much

benefit the community can get under different policies. For example, users can have

different policies in terms of submission of download events or making download de-

cisions or the threshold of accepting the analytic reports. It could also be applied to

the software publishers for deciding to opt-in or not to pre-announce the software

distribution. We may evaluate the benefit from the aspect of how many malicious

samples can be detected earlier after introducing transparency without losing too

much performance regarding the accuracy of blocking malware.

Outline of the Introduction. In the introduction, we discuss the objectives and

the contributions of the three topics regarding the malware distribution. We then

illustrate the principle concepts including the code signing PKI and the revoca-

tion, downloaders, silent delivery campaigns, and transparency. We also provide an

overview of the common data sources used throughout the studies.
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1.1 Objectives and Contributions

The dissertation consists of three parts: understanding the malware distri-

bution by measurement, detecting malware distribution, and blocking the malware

distribution by having a transparent platform for software distribution.

1.1.1 Understanding Malware Distribution

In the first part of the work, we conduct several measurements regarding mal-

ware distribution. We initiate the study by investigating the dynamics of malware

delivery. We share several findings including the downloaders responsible for the

malware delivery and the high ratio of signed malicious downloaders. We further

look into the problem of signed malware. To successfully distribute malware, the

attacker exploits weaknesses in the code-signing PKI, which falls into three cate-

gories: inadequate client-side protections, publisher-side key mismanagement, and

CA-side verification failures. We propose an algorithm to identify malware that

exploits those weaknesses and to classify to the corresponding weakness. Using the

algorithm, We conduct a systematic study of the weaknesses of code-signing PKI

on a large scale. In summary, we make the following contributions:

• We propose a threat model that highlights three types of weaknesses in the

code signing PKI.

• We develop techniques to address challenges specific to measuring the code

signing certificate ecosystem.
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• We conduct a systematic study of threats that breach the trust encoded in the

Windows code-signing PKI.

Then, we move to the problem of revocation. Certificate revocation is the

primary defense against the abuse in code-signing PKI. We identify the effective

revocation process, which includes the discovery of compromised certificates, the

revocation date setting, and the dissemination of revocation information; moreover,

we systematically measure the problems in the revocation process and new threats

introduced by these problems. In summary, we make the following contributions:

• We collect a large corpus of code signing certificates and the revocation infor-

mation.

• We conduct the first end-to-end measurement of the code signing certificate

revocation process.

• We use our data to estimate a lower bound on the number of compromised

certificates.

• We highlight the problems in the three parts of the revocation process as well

as new threats that result from those problems.

1.1.2 Detecting Malware Distribution

For the next part, we explore two different approaches to detect the malware

distribution. We first focus on the downloaded by relationship between a downloader

and a payload recorded by different sensors and introduce the downloader graph
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abstraction. The downloader graph captures the download activities across end

hosts and exposes large parts of the malware download activity, which may otherwise

remain undetected, by connecting the dots. By combining telemetry from anti-virus

and intrusion-prevention systems, we perform a large-scale analysis on 19 million

downloader graphs from 5 million real hosts. The analysis revealed several strong

indicators of malicious activity, such as the slow growth rate and the high diameter.

Moreover, we observe that, besides the local indicators, taking into account the

global properties boost the performance in distinguishing between malicious and

benign download activity. For example, the file prevalence (i.e., the number of hosts

a file appears on) and download patterns (e.g., number of files downloaded per

domain) are different from malicious to benign download activities. In summary,

we make the following contributions:

• We build a large data set of malicious and benign download activities on 5

million real hosts by reconstructing download events. We also build a ground

truth of malicious and benign downloaders by combining three data sources.

• We propose a graph-based abstraction to model the download activity on end

hosts, and perform a large measurement study to expose the differences in the

growth patterns between benign and malicious downloader graphs.

• We use insights from our measurements to build a malware detection system,

using machine learning on downloader graph features, and evaluate it using

both internal and external performance metrics.

Next, we target on the silent delivery campaigns, which is the key method
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for quickly delivering malware or potentially unwanted programs (PUPs) to a large

number of hosts. Such large-scale attacks require coordinated activities among mul-

tiple hosts involved in malicious activity. We develop Beewolf, a system for detecting

silent delivery campaigns from Internet-wide records of download events. We de-

sign Beewolf based on the key observation that campaigns frequently distributed

payloads through downloaders in lockstep. Beewolf employs an algorithm that can

effectively identify such locksteps in an unsupervised and deterministic fashion. By

utilizing Beewolf, we study silent delivery campaigns at scale. The lockstep detec-

tion exposes the indirect relationships, not visible otherwise, among the downloaders

across different machines that are caught in lockstep together. The investigation on

the indirect relationships yields novel findings, e.g., malware distributed over benign

software updates, a considerable overlap between the malware and PUP distribution

ecosystems, and business relationships within these ecosystems, which may remain

hidden. In summary, we present the following contributions:

• We conduct a systematic study of malware delivery campaigns and we report

several new findings about the malware and PUP delivery ecosystems.

• We propose techniques for discovering silent delivery campaigns by detecting

lockstep behavior in large collections of download events. These techniques

are unsupervised and deterministic, as they do not require seed nodes and are

not based on machine learning.

• We present a system, Beewolf, which implements these techniques, along with

evidence-based optimizations that allow it to detect silent delivery campaigns

9



in a streaming fashion.

• We identify the parts of Beewolf where we can introduce parallelism, and

evaluate the scalability of the parallel version of Beewolf.

1.1.3 Blocking Malware Distribution

The two different studies revealed the problems caused by the opaque software

distribution ecosystem and the importance of the global properties in detecting

malware distribution. To address both of these findings, we introduce a transparency

platform called Download Transparency, which apply transparency in the download

events. Transparency guarantees openness and accountability of the data, however,

itself does not provide any security guarantees. Although there exists an anecdotal

example showing the benefit of transparency, it is still not clear how beneficial it is to

security. In the last part of the dissertation, we explore the benefit of transparency

in the domain of downloads.

The Download Transparency consists of two transparency logs, where the

download events and the flagged malicious binaries recorded in a public log backed

by the Merkle tree. We utilize the platform to evaluate the benefit of transparency,

which we define as (1) accurately blocking malware and (2) blocking unknown mal-

ware (i.e., before the community is aware of its maliciousness). For a much realistic

evaluation, we design the participants and the policies they stick to when utilizing

the platform. For instance, users can submit the download events to the log based

on a submission policy. They may also use the log for decision making for downloads,
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which is backed by different download policies. Another factor that may impact their

choice is the enforcement policy, which is a threshold for accepting the analytic re-

ports. In other words, to consider a binary as malware, how many analytic reports

they need to see. The security analytics may post the malware they found to the log.

Some may utilize the download events in the log to apply detection algorithms on

the constructed downloader graph [23] with the globally aggregated features such as

prevalence from the log. To prevent their distribution to be blocked and to provide

the legitimate distribution to their user base, the software publishers can announce

their software distribution in advance to the platform. Moreover, we do not neglect

the fact that the software distribution is noisy (i.e., legitimate software download

malware and malware deliver benign software). We identify the existing download

events that can be interpreted as adversary influence, and evaluate the effect. We

then introduce several methods that can mitigate specific adversarial submissions.

In summary, we make the following contributions:

• We introduce Download Transparency, a platform for download event trans-

parency.

• We measure the benefits of applying transparency under realistic policies and

the existence of adversaries.

• We propose solutions that can mitigate adversary influence and discuss their

effect.
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1.2 Background Principles

1.2.1 Code Signing PKI

The code signing PKI serves as a mechanism to ensure trust in the unknown

software from the Internet. We can first verify the integrity of a binary executable

by comparing the hash of the file and the signed hash in the digital signature.

Moreover, the chain of trust constructed from the certificate authority (CA) to the

publisher provides authentication of the software. We give a brief description of the

code signing process, the code signing in Windows platforms, and the trusted time

stamping, which is a unique property of code-signing PKI in this chapter.

Code signing process. To issue a code signing certificate, the software publisher

has to ask a Certificate Authority (CA). The CA performs a vetting process on the

publisher to confirm the identity. Once the identity is proven, the CA issues the code

signing certificate based on the X.509 v3 certificate standard [24] to the publisher.

The publisher then utilizes the certificate to produce digitally signed software. First,

the hash value of the binary is computed. Then using the code-signing private key,

we digitally sign the hash value. Finally, we append the digital signature to the

binary as well as the code-signing certificate.

Microsoft Authenticode. The Windows platforms have Authenticode [25] as the

standard of code-signing. Authenticode is designed for Windows portable executa-

bles (PE) e.g., executable (.exe), dynamically loaded library (.dll), cabinet (.cab),

ActiveX control (.ctl, .ocx), and catalog (.cat), based on the the Public Key Cryp-
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tography Standard (PKCS) #7 [26]. The certificate has to contain either the X.509

code signing certificate or TSA certificate chains, a digital signature, and a hash

value of the PE file, with no encrypted data.

Trusted Timestapming. The trusted timestamping is a unique property of the

code signing PKI, which guarantees that the owner (legitimate or not) of the key

signed the binary at a specific date and time. Whereas the trust in the web expires

with the certificate expiration, in code signing, we employ the trusted timestamp

for extending the trust in the signed software even after the certificate expiration

date by allowing the software writers to obtain the signed timestamp from the Time

Stamping Authority (TSA) during the code signing process.

1.2.2 Revocation Process

To protect the PKI ecosystem from the abuse of code-signing, we have “Certifi-

cate revocation” as the primary defense mechanism. CAs should revoke a certificate

if it falls into either one of these reasons: the private key associated with a certificate

is made public, the entity behind the certificate becomes untrusted, the certificate

is used to sign malware even if the source is unknown, or if the CAs issue a certifi-

cate erroneously [4]. The revocation process consists of three roles: (1) promptly

discovering compromised certificates, (2) performing an effective revocation of the

certificate, and (3) disseminating the revocation information.

Discovery of potentially compromised certificates. Once notified from either

internally or externally (e.g., from Anti-virus companies) about the abuse, the CAs,
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who have issued the certificates, should promptly investigate and revoke the abused

certificates. In other words, the “revocation delay” (tp−td), which is the time passed

from the initial discovery (td) and the time when revocation information is posted

to the public (i.e., revocation publication date (tp)), should be as short as possible.

Figure 1.1 depicts the case where the discovery happened after the expiration

(te). As the code-signing certificate supports trusted timestamping, which extends

the validity of the code even after the expiration date, the revocation should be

performed even for the expired certificates.

Setting the revocation date. Once the CAs confirm the abuse, they have to

decide the effective revocation date (tr) either in collaboration with the certificate

owners or independently. The effective revocation date determines which binaries

will be impacted. As shown in Figure 1.1, any binary signed after tr, regardless of

the trusted timestamp, become invalid. However, the ones signed before tr remains

valid. Furthermore, if the binary is trusted timestamp, it remains valid even after

expiration, even it has a revoked certificate.

Dissemination of revocation information. The final step is disseminating the

revocation information to the users. While the prior two steps required several actors

in the process, CAs are solely responsible for this part of the revocation process.

The two dominant methods to disseminate certificate revocation information are (1)

Certificate Revocation List (CRL) [24] and (2) Online Certificate Status Protocol

(OCSP) [27].

• CRLs contain the revocation information (certificate serial numbers, (effective)
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Figure 1.1: An example of (i) an effective revocation date (tr) that determines the
validity of signed malware and (ii) a revocation delay (tp - td) (ti: issue date, te:
expiration date, tr: effective revocation date, tb: signing date of a benign program,
tm: signing date of malware, td: detection date, and tp: revocation publication date).
When an effective revocation date is set at tr, the malware signed at tm1 validates
continuously as it was signed before tr.

revocation date, revocation reason) of the revoked certificates. Each CRL is up-

dated based on their CA’s policy; for example, they can publish when they have

a newly revoked certificate or at a specific time of day or a day of a month. The

CA has to specify the location of the CRL at CRL Distribution Point (CDP) of

the X.509 certificate. Clients have to periodically download the entire CRL (not

just recent changes) to check the latest revocations.

• OCSP was introduced to resolve the network overhead problems of CRL. Clients

can query an OCSP server for a specific certificate, which helps mitigate the
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network overhead at the server as well as clients. Authority Information Access

(AIA), an extension field in an X.509 certificate specifies OCSP point for each

certificate.

The TLS CAs are typically not responsible for providing the revocation status of

expired certificates. The code signing CAs, however, must maintain and provide

the revocation information of all certificates that they have issued including expired

certificates due to the trusted timestamp [28,29].

1.2.3 Overview of Downloaders

The ubiquitous Internet environment introduces many benefits for the soft-

ware delivery process including customized software installation and efficient up-

date mechanisms. It is often the case that applications use a dedicated component

for determining which software components need to be installed or updated, and

for downloading them from remote servers. We call this particular component the

downloader, and both legitimate and malicious software use it to distribute their

software.

It is unclear when downloaders first appeared, but this probably happened

in the early 2000s. Symantec’s generic Downloader.Trojan AV definition is dated

April 4, 2002. A search in Google Scholar for ”Downloader Trojan” doesn’t re-

turn anything until 2004. We can find an early form of downloaders in the multi-

phase malware. When the multi-phase malware lands to a system, it installs a

small executable—called droppers or downloader trojans. Then the dropper or the
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downloader trojan downloads additional components, which we call the payload.

One well-known example of such multi-phase malware was the Sobig email worm,

discovered in 2003. The downloader component was responsible for downloading

additional files to set up spam relay servers on the infected machines. The down-

loader also had a self-updating functionality [30]. Some adapted the auto-update

function against to the defenses deployed by the security community. We can find

such functionality in many modern botnets [31, 32].

Then it came the emergence of the general-purpose droppers. The Bredolab

trojan [33] used a general-purpose dropper which was configured to propagate differ-

ent malware families. The pay-per-install (PPI) infrastructures employ the dropper

on the client-side, to deliver arbitrary executables on thousands of hosts. Recent

studies on these droppers [2] used in PPIs found that they are even configured to

select the targets based on the properties of the victims (e.g., their geographical loca-

tions). The need to maintain connectivity with the droppers has lead to the creation

of server-side infrastructure, which includes C&C servers for managing their mal-

ware, exploit servers to distribute the malware, payment servers for monetization,

and redirectors for anonymity. These server-side systems are often designed to be

resilient to takedown efforts [2,19,34] (e.g., peer-to-peer, DGA, bulletproof hosting),

which allow droppers installed on end hosts continue downloading malware for long

periods of time, often exceeding two years [35].

The malware distributors also made a large effort to employ sophisticated

techniques to disseminate malicious payloads to a large number of hosts. These

techniques include drive-by-downloads [1], social engineering and search engine poi-
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soning [36]. Some even provide this functionality as a service [2]. These sophisticated

downloaders represent only a fraction of the current population of downloaders; sim-

pler and older forms of downloaders also continue to operate [35].

The act of downloading other software components without informing the user

is not particularly malicious behavior. Benign applications download and install

software updates silently [37,38], while other applications come in the form of bun-

dles (e.g., InstallQ, Softronic), which include third-party software, as part of their

monetization strategy. Additionally, malware authors may try to infiltrate bundles

and ad-supported software, which may otherwise be benign, in order to extend their

reach. Due to these reasons, it is difficult to distinguish between benign and mali-

cious downloaders based only on their content and behavior. In consequence, the

propagation of malware often relies on the downloaders.

1.2.4 Silent Delivery Campaigns

As we described in Chapter 1.2.3, malware delivery networks employ various

methods to install their downloaders, e.g., drive-by-download exploits, social en-

gineering, affiliate programs [2]. Through the connection established between the

C&C server and the downloader, the malware delivery networks push the payloads

to the victim hosts. The payloads include various software including malware and

potentially unwanted programs (PUP), which are submitted by the clients of these

delivery networks. These coordinated waves of payload delivery to the victims often

do not require any user intervention to avoid detection. We define these coordi-

18



nated waves as silent delivery campaigns from its similarity with the silent updating

mechanisms, which we can find in many benign software updates [37, 39]. We can

further label these campaigns depending on the payloads they distribute malware

delivery campaigns, which deliver malware such as trojan horses, bots, keystroke

loggers, or PUP delivery campaigns, which drop PUPs such as adware, spyware and

even additional droppers.

With the help of various efforts made by the security community (e.g., DNS

domain blacklist), malicious silent delivery campaigns exhibit a high domain churn,

while the benign campaigns keep access the same server-side infrastructure. Such

frequent change in the domains is a critical behavior that can distinguish malicious

and benign campaigns.

1.2.5 Transparency

Transparency is getting attention these days as a solution for solving the prob-

lems due to the opaque ecosystem. Including the cryptocurrency, e.g., the famous

Bitcoin, we can find the introduction of transparency in various areas of security.

Another well-known implementation is Certificate Transparency (CT), which came

out as a countermeasure for the misbehavior in the Web’s PKI. Such misbehavior

was hard to detect due to the challenges in observing the certificates issued in the

wild.

Then, how can transparency be achieved? The transparency implementations

in security guarantee two properties: openness and accountability. Openness implies
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Figure 1.2: Merkle tree.

the provisioning of the data. For example, everyone can see the certificates recorded

in the CT log. The next property, accountability indicates a third party can monitor

the data for any malicious attempts to tamper the data. In summary, a platform is

transparent if anyone can freely monitor the log and confirm the no malicious actor

tampered with the data. To guarantee that someone did not tamper with the data,

transparency platforms such as CT utilize cryptographic approaches, e.g., Merkle

tree.

Merkle Tree is a cryptographic hash tree where the leaf node of the tree has

the data, and other nodes are cryptographic hashes. As shown in Figure 1.2, the

data are kept in the leaf nodes. Each of the leaf nodes has a parent node which is

the computed cryptographic hash of the data. The tree is constructed by paring

the leaves and hashing the concatenation. For example, the hash of data A (H A)
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Figure 1.3: Consistency proof.

and the hash of data B (H B) are pared, and the concatenation (H A + H B) is

hashed resulting in node H AB. This process continues until a single hash node

remains, which becomes the head of the tree (H ABCD). Merkle tree provides

useful features for accountability.

Consistency proof. The Merkle tree supports an efficient way of verifying the

consistency of two different versions of the log. The two logs are consistent, if and

only if the later version contains every data in the old version in the same order.

Such property implies the old version is not compromised and the log has never been

branched. We can verify the consistency can by checking if the old version is the

sub-tree of the new version and we can reconstruct the new version by appending

the new data elements to the old version. We try to explain the process by figure 1.3.
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Let us assume the old version whose head is H ABCD, and we append Data E and

Data F in the new version. In this case, the log returns the old head H ABCD and

node H EF as the consistency proof. The old head H ABCD shows the Data A,

B, C, and D in the old version of the tree has not been modified and the order is

preserved. The node H EF can be used with H ABCD to construct the head of

the new version. If the constructed head is H ABCDEF , then it can be guaranteed

that the log is consistent.

Inclusion proof. Merkle tree also supports an efficient way of verifying if a specific

data is in the log. The proof is the minimum set of hash nodes that are required to

compute the intermediate nodes from the Data D leaf node to the tree head. Now

we want to prove that Data D is in the log. The nodes we have to compute are H D,
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H CD, H ABCD and H ABCDEF . We can compute H D without any further

information since we already know the Data D. To compute the other nodes H CD,

H ABCD and H ABCDEF , the following nodes are required: H C, H AB and

H EF . These three hash values are the minimum set of nodes that are necessary for

computing the nodes between Data D and the tree head. Therefore, when we ask

the Merkle tree to provide the inclusion proof of Data D H C, H AB and H EF

are returned.

1.3 Overview of the Data Sources

In this chapter, we discuss the primary data sources, which we continually use

throughout the study.

1.3.1 Binaries Seen in the Wild

We introduce the core dataset of our study, where we extract information

regarding the binaries seen in the wild. Symantec provides a platform called the

Worldwide Intelligence Network Environment (WINE) [40], which consists of secu-

rity telemetry collected on real hosts. Specifically, we use three WINE datasets:

(1) binary reputation, (2) intrusion prevention system telemetry, and (3) antivirus

(AV) telemetry. WINE keeps the data sets as SQL relations consisting of multiple

columns.

Binary reputation. This dataset includes summarized information about all bi-

nary that appears on the Symantec’s customers’ machines. We collect the server-side
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timestamp of the event, the unique identifier for the machine where the file is located,

the name and SHA2 hash of the file, the SHA2 hash of the parent file (an archive

including the file or the actual downloader), and the high-level information of the

code signing certificate (e.g., issuer of the certificate and subject of the certificate).

Intrusion prevention system telemetry. The IPS telemetry dataset consists

of the report of downloads of Portable Executable (PE) files over HTTP, which

includes both malicious activities and the records that are not necessarily tied to

any malicious activities on network streams. We extract the unique identifier of

the host, the MD5 hash of the process initiated the network activity (portal in IPS

jargon), the server-side timestamp and the URL from which the portal downloads

the binary.

Anti-virus (AV) telemetry. The AV telemetry data contains information on

the anti-virus signatures triggered on user machines. From this dataset, we collect

the SHA256 hash of the binary that triggered the report and the name of the AV

detection signature assigned to the binary.

1.3.2 Ground Truth Data

As a ground truth for known malicious and benign files, we utilize two different

datasets: VirusTotal and National Software Reference Library (NSRL).

VirusTotal. VirusTotal [41] is a service that provides a private API (report API)

for scanning files with up to 63 different anti-virus (AV) products, and for querying

hashes to retrieve their previous analysis reports. We query VirusTotal for each
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binary in the dataset to obtain its first-seen timestamp, the number of AV products

that flagged the binary as malicious, the AV detection names assigned to it, the

total number of AV products that scanned the binary, and the corresponding file

signer information.

National Software Reference Library (NSRL). NSRL [42] is a project sup-

ported by the U.S. Department of Homeland Security, federal, state, and local law

enforcement, and the National Institute of Standards and Technology (NIST). It

provides a reference data set (RDS) of benign software, which is a collection of

the hashes (mainly SHA1, MD5, and other metadata) of known, traceable software

applications. It also maintains a list of benign software publishers.

1.4 Structure

The paper is organized as follows. In Chapter 2, we review the related works.

In Chapter 3, we present the measurement studies on the malware distribution.

In Chapter 4, we introduce the two techniques for detecting malware delivery. In

Chapter 5, we discuss the download transparency in detail and present the benefits

when introducing it to the current software distribution ecosystem. We conclude

this study in Chapter 6.

1.5 Published Works and Copyrights

This dissertation extends the material from four papers by the author c©Bum

Jun Kwon [4, 23, 43, 44]. Chapter 2 is based on the literature studies presented
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in all four works [4, 23, 43, 44]. Chapter 3 presents the findings from measuring

the code-signing PKI, which are based on the papers [4, 44]. Chapter 4 covers

the materials from paper [23, 43], with some extended work from paper [43]. This

introductory Chapter and the conclusion in Chapter 6 also include some material

from each of these publications by the author [4, 23, 43, 44]. The definitive Version

of Record of each papers were published in c©ACM CCS’15 http://dx.doi.org/

10.1145/2810103.2813724, c©Internet Society NDSS’17 http://dx.doi.org/10.

14722/ndss.2017.23220, c©ACM CCS’17 https://doi.org/10.1145/3133956.

3133958, and c©USENIX Security’18 ISBN 978-1-931971-46-1.
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Chapter 2: Related Work

In this Chapter, we provide the review of the works that are related to ours.

We discuss the measurement studies in PKI, prior research on malware distribution,

and transparency proposals in the domain of security.

2.1 PKI Measurement

We begin with reviewing the measurement studies in PKI including the HTTPS

and TLS certificate ecosystem and the abuse in Authenticode and Android code

signing.

Measurements of the TLS certificate ecosystem. The introduction of network

scanners such as ZMap [45], which can scan the entire IPv4 address space, enabled

the studies on the TLS certificates and HTTPS ecosystems. For example, two mea-

surement studies [10,11] have investigated the impact of Heartbleed and the reaction

to it. These studies revealed that the majority of the compromised certificates were

not revoked even after the incident. There have been several additional research on

the TLS certificate revocation. Liu et al. [12] found that a large number of revoked

certificates are still in use. Kumar et al. [46] measured the mismanagement of OCSP

and CRLs in the Web’s PKI.
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Code signing abuse. Prior works studied the abuse in code signing in Windows

Authenticode and Android. Sophos reported their findings regarding the signed ma-

licious Windows PE files collected from 2008 to 2010 [47]. Whereas we utilize a more

recent data, and we also propose a threat model that accentuates the weaknesses

in the code signing PKI. Kotzias et al. and Alrawi et al [48, 49]. investigated the

Windows PE samples and found that most of the signed samples are potentially un-

wanted programs (PUP), while we focus on the signed malware. The measurement

in Android code signing [50] reported security threats such as the signature-based

permissions caused by the key reuse.

2.2 Malware Delivery and Detection

Behavior of downloaders. In Chapter 3.1 and 4.1, we analyze the behavior

of malicious downloaders in the wild. Moreover, we analyze the properties of the

malicious and benign downloader graphs to determine the features that are a strong

indication of malicious behavior. We then train a classifier for malware detection

using information extracted from the downloader graphs. Whereas, prior research

on the behavior of downloaders [2, 35, 51] focused on executing malware droppers

in lab environments. They typically focused for short periods of time (e.g., up to

one hour), in order to observe the communication protocols they employ and to

milk their server-side infrastructures (i.e., to download the payloads). For example,

Caballero et al. [2] described pay-per-install infrastructures, which distributed mal-

ware on behalf of their affiliates. They analyzed their structure and business model
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by milking the server-side infrastructures. Follow-up work reported a longer inves-

tigation showing that downloaders might remain active for over 2 years [35], and

characterized several malware distribution operations [51]. However, less attention

has been given to the client side behavior or downloaders.

Malware distribution. In Chapter 4, we conduct two studies on detecting mal-

ware distribution. We discuss the prior works on malware distribution and compare

with our work.

We can find various prior works on malware distribution. These studies fo-

cused on characterizing the properties of the malware delivery and the distribution

infrastructure. Provos et al. [1] described drive-by-download attacks caused by ex-

ploiting vulnerabilities in web browsers. They analyzed the tree-like structure of

redirection paths leading to the main malware distribution sites. Additionally, they

identified several mechanisms to inject malicious web content into popular pages

(e.g., comments on blogs or syndication in Ad serving networks). Li et al. [19]

conducted a study on URL redirection graphs. By analyzing those graphs, they

identified a set of topologically dedicated malicious hosts (e.g., Traffic Distribution

Systems). Perdisci et al. [52] analyzed the malicious HTTP traffic traces and stud-

ied the structural similarities between them. Xu et al. [20] fingerprinted several

types of malicious servers, such as exploit servers (for malware distribution through

drive-by downloads), C&C servers (for command and control), redirection servers

(anonymity), and payment servers (for monetization).

Several proposed techniques exist for detecting malware download events by

29



leveraging these studies. Cova et al. [53] analyzed the rogue anti-virus campaigns

by investigating the malicious domains involved in the distribution. Based on the

analysis, they further presented an attack attribution method with feature-based

clustering. Vadrevu et al. [54] and Invernizzi et al. [55] introduced systems for

detecting malware download activities in the network traffic. Zhang et al. [56]

employed an unsupervised technique to identify the group of related servers that

are likely to be involved in the same malware campaign.

Our studies differ from these works as follows. First, we focus on the client

side of malware distribution networks and reconstruct the downloaded by relation-

ship. Second, we detect malware delivery campaigns by utilizing an unsupervised

technique based on graph patterns. Lastly, while prior works generally rely on

the malicious domains for attribution, we exploit the code signing behavior of the

downloaders.

Graph-based attack detection. We then review the works where the attacks

are detected by utilizing graphs. Chau et al. [57] and Tamersoy et al. [58] proposed

techniques for assigning reputation scores to the nodes (i.e., executable files). They

set the reputation by performing belief propagation on the host-file graph. Graph

analytics have also been employed for analyzing function call graphs in malware

samples [59–61], spamming operations [62, 63], and vote gaming attacks [64]. The

Oddball approach [65] extracting features from the k-hop neighborhoods of every

node. They analyze the patterns in the features and investigate the outliers.

We also propose graphs based approaches for detecting malware distribution
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in Chapter 4. In contrast to these prior works, we analyze the malware delivery

activities on the client side. Explicitly, in the downloader graph analytics, we con-

struct graphs that encode semantic relationship between files (i.e., a file downloads

another file). Such graphs can provide more profound insights into malware dis-

tribution activities. Similarly, we maintain a graph that captures the accessed by

relationship between the downloader and domain. We apply a lockstep behavior

detection to identify the clusters of downloaders and domains involved in the same

campaign.

2.3 Malicious Campaigns and Detection

In Chapter 4.2, we conduct a study on detecting silent delivery campaigns.

Here we present some relevant prior works on detecting malicious campaigns.

Spam campaigns. Spam is one of the well-studied types of attack, where we can

find campaigns. We observe several studies on measuring and analyzing spam across

different domains, such as email [66, 67] and social media [68, 69]. Prior work on

social media campaigns developed machine learning techniques to characterize these

campaigns, which are often domain specific features that cannot transfer outside the

domain. Whereas, the lockstep detection algorithm utilized in our study has broad

applicability.

Detecting coordinated activities. The core of our detection system is the fre-

quent pattern tree based lockstep detection. We discuss prior systems for detec-

tion coordinated activities, which utilize different methods. CopyCatch [70] detects
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locksteps by analyzing the connectivity between users and pages through the likes

relationship. We give a comparison with our system in Chapter 4.2.5.1 and the limi-

tations of this algorithm when applied to the detection of silent delivery campaigns.

Besides the CopyCatch, most of the works utilize outlier detection to identify sus-

picious nodes [71] or suspicious edges [72]. SynchroTrap [73] proposes a malicious

account detection system in the context of social networks to uncover malicious ac-

counts and campaigns. They cluster users based on the Jaccard similarity of their

behavior. Whereas, our system detects malicious campaigns which correspond to

near bipartite cores.

2.4 Transparency in Security

PKI. The current web PKI relies on the trust in the CA (certificate authorities),

which is vulnerable to man in the middle (MITM) attacks, i.e., compromised CAs.

Moreover, the assumption of honesty does not scale up very well because it is hard

for a user to check the trustfulness of the hundreds of CAs. In order to address these

issues, several prior works propose publicizing the issued certificates as a solution.

Sovereign key [74] is a long-term key that is used for cross-signing the TLS key. These

keys are kept in an append-only data structure called the timeline server, and the

clients have to check if the domain has a sovereign key; if it has a sovereign key, then

the client has to verify if the public key is cross-signed correctly. Google’s Certificate

Transparency [75] aims to make the certificate issuance transparent. Certificate

Transparency also uses the public append-only log, which is implemented using a
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Merkle tree. By making the certificate issuance transparent, i.e., record all certificate

chains seen in the wild to the log, the misissued or maliciously issued certificates

can be detected efficiently.

The Merkle tree data structure used in the previous studies were not suit-

able for managing revocation. However, there exist several pieces of research that

take into account certificate revocation. The google revocation transparency [76]

proposed the sparse Merkle tree as the data structure for revocation. The account-

able key infrastructure (AKI) [77] suggest a new public-key validation infrastruc-

ture, which uses Integrity Log Server where an Integrity Tree keeps all the regis-

tered certificates transparently. The keys are in lexicographical order in the tree

and only the currently valid certificates are kept, which is a design decision that

takes into account revocation checking. Attack Resilient Public-Key Infrastructure

(ARPKI) [78], which is an improvement of AKI, also use the similar transparency

data structure. Certificate Issuance and Revocation Transparency (CIRT) [79] use

two Merkle trees, one in chronological order and one in lexicographical order. The

former is used to record all the issued certificates as in the CT, and the latter is used

to record the currently valid certificates, which provides an efficient way to check

revocation. Distributed Transparent Key Infrastructure (DTKI) [80] is an extension

of the CIRT with more considerations on the distributed setting.

Binary. There has been a couple of proposals for making binaries transparent. CT

for binary codes [81] is an extension of Certificate Transparency, accepting the binary

codes to the log. Repository of signed code (ROSCO) [82] propose to publicize the
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signed by the relationship between a binary and the certificate that is used to sign

the binary. The Mozilla binary transparency [83] propose to utilize the current

Certificate Transparency for publicizing the integrity of the software update.

Cryptocurrency. The heart of cryptocurrency, e.g., BitCoin, is in the transparency

in transactions. Each of the blocks that consists of the blockchain contains the set

of transactions in an append-only log.
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Chapter 3: Understanding Malware Distribution

3.1 Dynamics of Malware Delivery

In this chapter, we provide insights into how malware is delivered to end hosts.

Web browsers, updaters and instant messengers. We initiate the investiga-

tion by focusing on the programs responsible for most downloads in our download

activity dataset. The well-known programs, which appear in the NSRL dataset and

considered as benign, place on the top of the list. We identify that these programs

correspond to the browsers, software updates, and Skype (an instant messaging pro-

gram), by looking at their publisher name in their code-signing certificate and the

product name on their PE metadata.

Benign Programs Dropping Malware. Then, we measure which programs are

involved in delivering the malicious droppers. For this analysis, we considered a

binary as malicious if more than 30% of the AV engines flagged it as malicious

on the VirusTotal reports. We identified that 94.8% of the malicious droppers are

downloaded using the top-3 Web browsers.

We observe multiple benign programs that drop malware besides the browsers,

listed in Table 3.1. These include three Windows process, EXPLORER.EXE, CSRSS.EXE
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Downloader file name Payloads

CSRSS.EXE 14801
EXPLORER.EXE 1717
JAVA.EXE 892
DAP.EXE 749
OPERAUPGRADER.EXE 584
SVCHOST.EXE 547
WMPLAYER.EXE 247
IDMAN.EXE 237
CBSIDLM-CBSI145-
SUBTITLESSYNCH-ORG-10445104.EXE

209

MODELMANAGERSTANDALONE.EXE 187
KMPLAYER.EXE 140
JAVAW.EXE 105

Table 3.1: Top benign downloaders dropping malware.

and SVCHOST.EXE. In the case of CSRSS.EXE, the ten most frequently downloaded

executables are adware programs (detected by several AV products); 8 out of 10

are from Mindspark Interactive Network. For EXPLORER.EXE, the ten most fre-

quently downloaded executables are adware programs from Conduit, Mindspark,

Funweb, and Somoto. In the case of SVCHOST.EXE most of top 10 payloads are

generic trojan droppers. Executables downloaded from JAVA.EXE are specific tro-

jans (Zlob, Genome, Qbot, Zbot, Mufanom, Cycbot, Gbot and FakeAV), and a

hack tool (passview). DAP.EXE and IDMAN.EXE are downloader managers, and the

top 5 executables they drop are products signed by Mindspark. For JAVAW.EXE,

Bitcoin mining executables made the top of the list. Another Java related process,

MODELMANAGERSTANDALONE.EXE, is also used for dropping trojans. In many of these

cases it is difficult to pinpoint the exact program that is responsible for deliver-

ing malware; for example, SVCHOST.EXE is a process that can contain a variety of

Windows services, while JAVA.EXE is an interpreter that runs Java programs.
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The result suggests the fact that various types of malware often infiltrate

benign software ecosystems to remain undetected. Which eventually makes the

software delivery ecosystem noisy. It may imply that the resulting download graph

may be a mixed with both benign and malicious. This finding motivates our decision

of using the sub-graph rooted in each downloader (i.e., influence graph), instead of

the full graph, in the study of detecting malware distribution based on graphs in

Chapter 4.1.

Signed Malicious Downloaders. We share another surprising finding from the

analysis of download activities. Almost 22.4% of the malicious downloaders among

the total 67,609 malicious downloaders have a valid digital signature. Including the

ones with invalid signatures, the ratio goes up to 55.5%. Softonic International,

Amonetize Ltd, InstallX, Mindspark Interactive Network, and SecureInstall rank as

the top-5 publishers with downloaders having valid signatures. These downloaders

are known to distribute third-party software. Especially, Amonetize is known to be

a pay-per-install provider [84]. The purpose of this behavior seems to be an effort

of evading detection, mimicking the benign software distribution, which is usually

carrying digital signatures. We discuss the problem in details in the next chapter.

3.2 Measuring the Code Signing Abuse

Goal. The goal in this work is to measure breach-of-trust in the Windows code

signing PKI. An adversary can steal the private key from the legitimate software

developer or fool the verification process of the CA to issue a certificate with a false
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identity or exploit the vulnerability in the code-signing checking on the client side.

We aim to perform a real-world measurement of the prevalence of these threats and

the mechanisms for breaching the trust.

Non-goals. The non-goals include fully characterizing the code signing ecosys-

tems, analyzing certificates issued legitimately to real publishers, or developing new

techniques for authenticating executable programs.

We start the discussion by a description of the threat model (Chapter 3.2.1),

followed by the challenges of measuring the problem in Chapter 3.2.2. We then

present the methods of the measurement (Chapter 3.2.3) and the abuse detection

algorithm that we developed to overcome those challenges (Chapter 3.2.4). Finally,

we discuss the findings from the measurement in Chapter 3.2.5.

3.2.1 Threat Model

We can list the goal of an adversary as (1) distribute and install malware on

end-user machines, and (2) conceal its identity. The adversary with these goals

will digitally sign malware, which may help to evade AV detection and exploit the

client side security policies such as the User Account Control (UAC) and Windows

SmartScreen. For the second goal, the adversary shall not use its true identity

to acquire a code-signing certificate. The prior works on PUP found that PUP

publishers often use their actual identity to get a legitimate code-signing certifi-

cate [43, 48, 85, 86]. Instead, our adversary, who is interested in delivering malware

instead of PUP, tries to exploit the weaknesses in the code-signing PKI to sign mal-
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ware. These weaknesses fall into three categories: inadequate client-side protections,

publisher-side key mismanagement, and CA-side verification failures.

Inadequate client-side protections. Windows operating systems can verify

code-signing signatures, and when the program needs elevated privilege, the UAC

presents the information of the certificate to the user. However, if the user allows

granting the privilege, no further enforcement is done from the OS. Such policy may

be a problem when the user accidentally grants privilege to a suspicious publisher

or a program with an invalid certificate. As a supplement, Anti-virus engines may

block these suspicious programs. However, the certificate verification may have been

implemented differently, which may result in varied interpretations of the validity

of the certificate among AV engines.

Publisher-side key mismanagement. The private key of the code-signing cer-

tificate needs to be secure. However, if the adversary penetrates the development

machines involved in the signing process, it can (1) steal the private key that cor-

responds to the publisher’s certificate or (2) inject their malware to those machines

to sign it.

We define the former as a certificate is stolen. There are several reported cases

of potentially stolen private keys. Stuxnet and Duqu 2.0 [5, 8] are advanced pieces

of malware that carried valid digital signatures. Certificates belonging to legitimate

companies located in Taiwan were utilized to generate these digital signatures.

As the second case, adversaries may also infect developer machines and sign

their code without the victim’s consent. The community first encountered the
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W32/Induc.A [87] in 2009. The malware infects files required by the Delphi compil-

ers. In consequence, the compiler involved in the development process automatically

signed the malicious code with a valid certificate, and the signed malware got dis-

tributed as a legitimate software package.

CA-side verification failures. The chain of trust starts from CAs properly ver-

ifying the publisher’s identity before issuing a code-signing certificate under the

provided identity. However, if the CA fails the verification, it results in the misis-

suance of the certificate to the false identities.

We define two types of methods the adversaries take to exploit the CA’s ver-

ification process. The first case is called the Identity theft, which is a masquerade

attack pretending as a reputable company. A successful attack will grant a code-

signing certificate with that company’s identity to the attacker. In January 2001,

there was a report of a successful masquerade attack, which resulted in Verisign

issuing two code signing certificates to an adversary who claimed to be an employee

of Microsoft [88]. However, the attack is not limited to large software publishers.

Perhaps it may be easier to target companies that are not involved in software

development, since the victims may not expect such abuse of their identity.

Instead of stealing an existing identity, the adversary may take advantage of

Shell companies. It may be easier for the adversaries regarding the preparation of

the identity materials because they have full control of the information used for

registering the company. A downside of this method would be in a low reputation,

both in the defense mechanisms like SmartScreen and the users. However, the
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adversary nevertheless gets a malware with valid digital signatures, which may give

a better chance of delivery.

3.2.2 Challenges for Measuring Code Signing Abuse

The challenges in measuring the abuse in code signing certificate are collecting

the digitally signed binaries and distinguishing between the abuse cases. While in

TLS, it is now possible to get a comprehensive list of certificates by scanning the

IP spaces, there exists no easy way to collect a large enough corpus of certificates

used in the wild. Even for those that are collected, capturing the binaries carrying

the certificate is another difficulty. Moreover, it is challenging to classify the abused

certificates to its abuse types, e.g., stolen, identity theft, shell company, due to the

lack of ground truth about the type of abuse. Only a few cases have been reported

and identified as a specific type of abuse, for instance, the Duqu and Stuxnet.

3.2.3 Measurement Methods

We take two steps in large to identify the breaches of trust in the Windows

code signing PKI. Initially, we collect the certificates used to sign malware in the

wild. Then, we classify the certificates by using an algorithm for distinguishing

among the three types of threats introduced in Chapter 3.2.1.
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3.2.3.1 Data Sources

We identify the hashes of signed malware samples, and the corresponding

publishers and CAs, from Symantec’s WINE dataset, we collect detailed certificate

information from VirusTotal, and we assess the publishers using OpenCorporates

and HerdProtect.

Worldwide Intelligence Network Environment (WINE). We infer the down-

load activities on 5 million end-hosts described in Chapter 1.3.1. From the WINE

data set, we query the (1) anti-virus (AV) telemetry and (2) binary reputation. We

extract about 70,293,533 unique hashes from the AV telemetry.

There are 587,992,001 unique binaries from the binary reputation dataset.

However, we cannot directly infer to the WINE dataset to distinguish between files

with different certificates in case they share the same publisher. It is due to the

high granularity of the information given: WINE does not provide more detailed

information about the certificate such as its serial number.

VirusTotal. To get a much fine granularity of information regarding the code-

signing certificates, we use the reports from VirusTotal in Chapter 1.3.2.

OpenCorporates. OpenCorporates [89] maintains the largest open database of

businesses around the world, providing information on over 100 million companies.

We use this database to determine if the publisher is a legitimate company.

HerdProtect. We utilize another source providing information about the pub-

lisher, using HerdProtect [90]. We collect the following information for each pub-

lisher in the dataset: whether the publisher is a known PUP distributor, the profile
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Figure 3.1: Data analysis pipeline.

of the company (e.g., location, business type), and the reported list of certificates

associated with the publisher.

3.2.3.2 Binary Labeling

Malware. In this chapter, we describe how we label a binary as either malware

or potentially unwanted programs (PUP) or benign. Initially, we define cmal, which

indicates the number of anti-virus products that flagged the binary as malicious in

the VirusTotal report. We say a binary is suspicious (i.e., either malware or PUP),

if cmal ≥ 20. To discriminate PUP from malware, we inspect the detection names

given by these AV products and compute rpup, which is the ratio of PUP detection

names [43]. We consider malware to have both cmal ≥ 20 and rpup ≤ 10%.

Benign programs. To consider a binary as benign, it has to be cmal = 0 and has

a valid signature.
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3.2.3.3 System Overview

Pipeline overview. By utilizing the data sources listed above, we design a data

collection and analysis pipeline as depicted in Figure 3.1. The pipeline is a se-

quence of four processes: seed collection, data filtration, input data preparation and

identifying potentially abusive certificates.

• Seed collection. This step of the pipeline creates a list of SHA256 file hashes

that are likely malicious and has a digital signature. We start by collecting

a set of malware samples reported in AV telemetry data set in WINE, in

their SHA256 hash value. To extend the dataset, we supplement the list

with additional hashes of known malicious binaries from an external source

(Symantec). To narrow them down to the ones that are likely digitally signed,

we join the list of hashes to the binary reputation schema and get the high-level

information of the certificate.

• Filtering data. What we need is the digitally signed malware. However, the

list from the previous step may still contain Potentially Unwanted Programs

(PUPs) and false positives. We filter out PUPs through a conservative process.

We first filter out the previously known PUP publishers in prior work [43,48,

85, 86] and the publishers listed in HerdProtect as a PUP provider. Then, we

pick ten binary samples for each publisher and filter out the publisher if at

least one of them is determined to be a PUP. To determine whether a binary

is a PUP or not, we follow the method described in Chapter 3.2.3.2. For the
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publishers with a large number of binaries, such as Microsoft or Anti-virus

companies, we sample the files that have a bad reputation in the Symantec

ground truth.

• Input data preparation. We now query VirusTotal to get detailed information

on the code signing certificate and the AV detection results of these filtered

hashes. We consider a binary as a signed malware if it satisfies the two con-

dition: (1) it is duly signed, and (2) it is labeled as malware according to

the rules in Chapter 3.2.3.2. At this stage, we encountered several malicious

samples with malformed signatures. These correspond to the evidence of in-

adequate client-side protections, which we analyze in Chapter 3.2.5, However,

we do not take them to the next of the pipeline.

Then we use the <publisher, CA> pair of the signed malware, to query the

binary reputation schema in WINE. The query returns us a set of binaries

that are likely benign and share the same certificate with the signed malware.

These binaries are also queried to VirusTotal to get additional information.

Then, we determine benign files as described in Chapter 3.2.3.2.

• Identify potentially abusive certificates. As the final step of the pipeline, we

classify them to the abuse type using the algorithm described in Chapter 3.2.4.

3.2.4 Abuse Detection Algorithm

The proposed algorithm distinguish code signing certificates to its abuse cases.

We group the signed binaries by their certificate. The groups may consist of either

45



Clustering
All samples

By cer4ficate

Stolen 
Cer4ficate

Fraudulent or 
Shell company

NO

YES

Signed 
Malware

Properly 
Signed

NO

YES

Malformed
Cer4ficate

Only 
Malware

Figure 3.2: Flowchart of the abuse detection algorithm.

(1) only malware or (2) both malware and benign binaries. Since there are binaries

that we were not able to label due to the lack of information, we consult additional

data sources to extend the ground truth. We query HerdProtect for more samples

signed with the same certificate. Moreover, we visit the publishers’ website to get

information about the publishers (e.g., legitimate company or involved in software

development). With the additional information, we use the method illustrated in

Figure 3.2 to detect the type of abuse.

Stolen certificates. As described in Chapter 3.2.1, in this case, the certificate is

issued initially to the legitimate publisher and then leaked to the adversary. Intu-

itively, it is likely to see both benign and malicious programs in this case of abuse.

We further obtain the trusted timestamps to reenact the timeline of the abuse.

Identity theft & shell companies. We assume for this case, where the malware

writers have sole possession of the private key, they have no motivation of signing

and distributing benign software, which will result in a group of only malicious
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samples.

To distinguish between identity theft and shell companies, we use the infor-

mation of the publisher acquired from OpenCorporates and HerdProtect. If the

publisher appears in OpenCorporates and the company address in the X.509 certifi-

cate matches the information in the profile, we suspect that the company is a victim

of the masquerade attack. If not listed, we assume it is a shell company.

Verification. To verify the results, we manually analyze the signing time-line of

the binaries in the certificate, and we contact the publishers and CAs to confirm the

findings.

3.2.5 Measurement Results

3.2.5.1 Summary of the Input Data

We provide a summary of essential numbers out of the analysis pipeline in

Chapter 3.2.3.3. We have 153,853 samples in the seed set that are suspicious (i.e.,

not yet defined as malicious based on our labeling method but from AV telemetry)

and has a full certificate chain. To apply the abuse detection algorithm from Chap-

ter 3.2.4, we search for potentially benign samples signed with the certificates in the

seed set. It gives us a total of 415,377 from VT.

We examine the validity of the certificates from the seed set referring to the

verified message in the VT reports. VT verifies the certificate using the sigcheck

tool provided by Microsoft [91]. Table 3.2 shows a breakdown of the result. The

325 samples are detected as malware in a total of 153,853 signed samples. Of these
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Cert. Desc. (Error code) Total Malware

Properly
Valid 130,053 109
Revoked (0x800b010c) 4,276 43
Expired (0x800b0101) 17,330 37
Total 151,659 189

Malformed
Bad Digest (0x80096010) 1,880 101
Others 81 0
Parsing Error 233 35
Total 2,194 136

Total 153,853 325

Table 3.2: Property of the certificates. Others include unverified time stamping
certificates or signature, distrusted root authority, etc.

325 signed malware, 58.2% samples have valid digital signatures while 41.8% have

malformed certificates. Most (74.3%) improperly signed malware results from bad

digests. We provide a detailed explanation of these malformed signatures in the

next chapter. Surprisingly, more than a half of all properly signed samples (57.7%)

are still valid at the time of this work was done.

3.2.5.2 Malformed Digital Signatures

We encountered 101 samples which signature and the authentihash do not

match. Such mismatch results in an Authenticode error code “0x80096010”, which

appears when a digital signature and a certificate is just copied from one file to an-

other. There is no need for an adversary to acquire a private key to produce a sample

with the malformed signature. Therefore, this does not correspond to a breach of

trust in the publisher or the CA. However, the high prevalence of these signatures

(31.1% of the signed malware), suggests the need for a further investigation of the

intention: it may help malware bypass client-side protections. Therefore, we con-
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duct experiments to see how the malformed signatures affect client-side protections

provided by browsers, operating systems and anti-virus products.

Browser protections. We test the browser protections including Safe Browsing

in Chrome and SmartScreen in Microsoft IE9. To prepare a test sample, we copied

a legitimate certificate and signature to a benign and simple calculator, which does

not ask for elevated privilege. We checked if the browsers block this sample at

the time of download. Both Safe Browsing and SmartScreen blocked our sample.

However, when the file extension is removed (.exe), the browsers do not block the

download.

Operating system protections. We tested how windows react to an executable

with a malformed signature. We attached a certificate to an installer that triggers

UAC at execution time, regardless of where the file originated (i.e., from the Web

or not). UAC displays a message saying that the file is from an unknown source,

which does not differ from the unsigned binaries. Windows only warn the user and

do not block the execution of the binary with malformed signature. Which means,

no enforcement is done by the OS, once the user chooses to ignore the warnings.

Anti-virus protections. Now we check if malformed signatures affect the AV

detection. We prepare five test samples, which are recently reported unsigned ran-

somware samples with high detection, i.e., 56–58 AV detection from VirusTotal. For

the certificates to append, we prepared two certificates and signature from different

publishers. To give a better chance for the AV engines, we set another criterion: the

certificate and signature has been employed as a malformed signature in the wild.
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nProtect 8 F-Prot 4 Symantec 2 Sophos 2
Tencent 8 CrowdStrike 4 TrendMicro-HouseCall 2 SentinelOne 2
Paloalto 8 ClamAV 4 Avira 2 VBA32 2
AegisLab 7 VIPRE 4 Microsoft 2 Zillya 1
TheHacker 6 AVware 4 Fortinet 2 Qihoo-360 1
CAT-QuickHeal 6 Ikarus 4 ViRobot 2 Kaspersky 1
Comodo 6 Bkav 3 K7GW 2 ZoneAlarm 1
Rising 5 TrendMicro 3 K7AntiVirus 2
Cyren 4 Malwarebytes 2 NANO-Antivirus 2

Table 3.3: Bogus digest detection (AV and the number of detection fail).

For each sample, we create two sample with a different malformed certificate, which

results in total ten samples.

Then, we test the change in the detection of these ten samples compared to

the detection before appending the certificate and signature. The result shows that

this simple attack disturbs many anti-virus products from detecting the malware.

Table 3.3 lists the 34 AVs fail to detect the same sample after appending the sig-

nature. The malformed signatures reduced the VirusTotal detection rate rmal by

20.7% on average. We have reported the issue to the antivirus companies. One of

them confirmed that their product fails to check the signatures properly and plans

to fix the issue. A second company gave us a confirmation but did not provide

details.

Summary. In summary, we explored three different protection mechanisms on the

client side. The browser blocks the binaries with bogus certificates but has ways

to evade, the OS provides the minimum level of protection with no enforcement,

and many AVs have the incorrect implementation of Authenticode signature checks.

The current state gives malware authors the opportunity to evade detection with a

simple and inexpensive method.
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Stolen Identify Theft Shell Company

Issuer Count Issuer Count Issuer Count
Thawte 27 Thawte 8 Wosign 2
VeriSign 24 Comodo 4 DigiCert 1
Comodo 8 VeriSign 4 USERTrust 1
USERTrust 2 eBiz Networks 3 GlobalSign 1
Certum 2 USERTrust 1
Others 9 Others 2

Total 72 (64.9%) Total 22 (19.8%) Total 5 (4.5%)

Table 3.4: Type of abuse and the top 5 frequent CAs.

3.2.5.3 Measuring the Abuse Factors

We utilize the algorithm from Section 3.2.4 to distinguish the 111 certificates

by to their type of abuse.

Publisher-side key mismanagement. Among 111 certificates, 75 certificates

are carried by both malware and benign software. Since these are likely to be

compromised certificates, we examined if they are revoked. 13.3% of certificates are

explicitly revoked. However, a more significant number of certificates (50, 66.7%)

are still valid at the time of this study. To further distinguish the certificates, we

manually investigated the signed malware samples.

• Stolen certificate. Most of the certificates (72) are stolen and used to sign

malware. One of the certificates were carried by the Stuxnet malware, which is

known to have been signed with a compromised certificate [5]. In our dataset,

it has the Realtek Semiconductor Corp. certificate issued by Verisign. Also, an

Australian department’s private key is found, which is used for signing autoit

malware.
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• Infected developer machines. Three certificates are identified, which are

carried by W32/Induc.A malware that infects only Delphi developer machines.

CA-side verification failure. The algorithm suggests that 27 certificates are

issued to malicious producers due to this weakness. We perform a manual investi-

gation to distinguish between identity theft and shell companies. We first check if

the publisher is legitimate by searching for the publisher on the Internet or in open-

Corporates. 22 certificates masqueraded legitimate companies and 5 certificates

exploited the verification using shell company information.

Revocation. We investigate the revocation practice in the field. By category,

15.3%, 40.9%, and 80.0% of the certificates were revoked for stolen, identity theft,

and the shell company, respectively. Interestingly, the revocation rate was signifi-

cantly less for the stolen certificates compared to the other abuse types. The obser-

vation of the low revocation rate motivates our next study on the effectiveness of

the code signing certificate revocation.

3.3 Measuring the Code Signing Certificate Revocation

There are various reasons for certificate revocation, and it is unclear what an

effective revocation process is. However, when the private code-signing key has been

used to sign malware, it requires a prompt and precise revocation [28]. Therefore,

this study focus on the effective revocation in case of the certificate abuse.

Goals. The goal of this study is to measure the problems in the revocation process

systemically, (1) promptly discovering compromised certificates, (2) revoking the
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compromised certificates effectively, and (3) disseminating the revocation informa-

tion, and new threats introduced by these problems.

Non-goals. We do not aim a full characterization of (1) CA’s internal infrastructure

fully problems, (2) their internal revocation policies, and (3) the internal revocation

checking policies of Windows.

We initiate the study by illustrating the research questions for the effective

revocation process (Chapter 3.3.1), followed by the challenges of measuring the

problem in Chapter 3.3.2. We then present the methods of the measurement (Chap-

ter 3.3.3). The following chapters present the measurement results of each step of

revocation starting from the discovery to the dissemination (Chapter 3.3.4–3.3.6).

3.3.1 Effectiveness of Revocation Process

In this chapter, we introduce four research questions that have to be answered

to check the effectiveness of the revocation process in code-signing.

Q1. How many certificates are being used to sign malware? The revocation

process starts with the discovery of compromised certificates. We initiate the inves-

tigation by estimating the magnitude of the current threat that should be the target

of the revocation process. The estimation should also provide how much coverage

our community has for the compromised certificates.

Q2. How prompt is the revocation process? Once a notification of abuse is

received, CAs have to begin investigating the reports within 24 hours and revoke the

compromised certificates and publish the revocation information within seven days
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or get reasonable cause from the owner of the certificate to delay [28]. However,

the requirements in code-signing [28] do not explicitly state, who is responsible for

discovering the abused certificates. Such ambiguity may result in a delay between

the initial evidence of compromise (td) and the revocation published date (tp).

Q3. Are effective revocation dates set properly? Two strategies are used

when setting the effective revocation date (tr): hard revocation where tr = ti, and

soft revocation where ti < tr ≤ te. Hard revocation has the advantage that all

malicious signed files are untrusted, but it lets benign files to become invalid as

well. To mitigate the impact to the benign files, CAs and publishers can try soft

revocation. If we set the precisely effective revocation date, it can make the malware

invalid and save a large number of benign programs. However, if we fail to set the

date correctly, then signed malware (i.e., malware signed before the date, tm < tr)

may still exist and continue to be trusted as the example shown in Figure 1.1.

Q4. Is revocation information served properly? The last question is to

determine if the revocation information reaches the users rightly and the users are

protected even in the circumstances where they cannot retrieve the information

of revocation. The code-signing requirement [28] states that we should consider a

binary unsigned when it is not possible to check the revocation status. However, if

the client-side platform (e.g., Windows), who check the validity of the certificate,

applies a soft-fail policy in checking the revocation, the binary will be considered as

valid when the information is not accessible. Provided that, if we fail to serve the

revocation information correctly, then signed malware could remain valid even after
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the revocation has happened.

3.3.2 Challenges for Measuring Code-signing Certificate Revocation

The two major challenge in this study is in the (1) visibility and (2) timing.

As we discussed in the study of code signing abuse in Chapter 3.2, Visibility is

an issue in the measurement of code-signing certificates. Because it is difficult to

identify all the certificates that are actively being used in the wild. To address this

challenge, we combine various data sources and try to obtain as wide a view of the

ecosystem as possible. A unique challenge in studying revocation is in the Timing.

This is due to the revocation publication date (tp). In the CRL, we can only see the

effective revocation date (tr). To record the revocation publication date (tp) of the

revoked certificate, we have to monitor every update that happens in the CRL and

the precise timing of the update.

3.3.3 Data Collection

In this chapter, we describe the methodology of the data collection that can

overcome the challenge and how we measure the process of the code signing certifi-

cate revocation.

3.3.3.1 Fundamental Data (D1 – D2)

The code signing certificates are the fundamental data for this research. They

contain the revocation distribution points (CRLs and OCSP points) and other infor-
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Malsign Malcert Symantec WINE Total*

PKCS #7 2,171 801,995 149,840 11,108 965,114

CS certs.** 2,106 1,121 145,411 1,137 145,582
CRL URLs 55 60 403 49 413

OCSP URLs 24 24 130 16 131

Table 3.5: Summary of the fundamental data. (*: total number of unique data, **:
CS stands for code signing – some certificates have parsing errors.)

mation that are necessary to monitor the revocation process. This chapter presents

how we collect the code signing certificates and the revocation information from

them. Table 3.5 shows the breakdown of the fundamental data.

Code signing certificates (D1). As there exist no large corpus of code-signing

certificates, we use multiple public datasets from prior research [40, 48, 49] and a

proprietary repository of binary samples to find code signing certificates. We utilize

the following datasets:

• Malsign. Kotzias et al. [48] evaluated signed malicious PE files, and they publicly

released the 2,171 leaf code signing certificates used to sign the PE files.

• Malcert. Alrawi et al. [49] examined 3.3 million samples collected from a commer-

cial feed of a private company, and they shared 801,995 signed PE samples. The

reason for the substantial reduction from PKCS #7 to CS certs for Malcert in Ta-

ble 3.5 is that most of the PKCS #7 files were duplicate code signing certificates

used to sign binaries with different hashes.

• Symantec data set. Symantec has an internal repository of binary files, from which

they extracted a sample of 149,840 PKCS #7 files for analysis.

• Samples from WINE [40] and VirusTotal. To get additional code signing certifi-
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CA Leaf Certificates

Verisign 44,014 (30.23%)
Thawte 26,884 (18.47%)
Comodo 24,780 (17.02%)
GlobalSign 12,079 (8.30%)
Symantec 8,913 (6.12%)
DigiCert 8,300 (5.70%)
Go Daddy 7,376 (5.07%)
WoSign 3,796 (2.61%)
Certum 1,874 (1.29%)
StartCom 1,830 (1.26%)

Other 4,281 (2.94%)

Total 145,582 (100%)

Table 3.6: Top 10 code signing certificate authorities. The top 10 CAs account for
97% of the certificates in our data set (D1).

cates, we also select around 300 PE files for each CA from WINE (c.f., chapter

3.3.3.3) and download the samples from VirusTotal using the download API; we

accumulate 11,108 PE samples. The details of VirusTotal are explained in Chap-

ter 3.3.3.3.

A PKCS #7 [26] file consists of code signing certificate chains, TSA certificate

chains, a signature, and a hash value of a PE file. We can extract the PKCS

#7 file from each dataset, except for the Malsign data set that provides only leaf

code signing certificates. We initially extract the leaf certificate from each PKCS

#7. Then, we narrow down the data to only code signing certificates using the

keyword of “Code Signing” in the extendedKeyUsage extension field. When we only

take the unique leaf code signing certificates, we get 145,582 certificates that CAs

legitimately issued. Table 3.6 shows the number of code signing certificates for the

top-ten most popular CAs in the dataset (D1).
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We utilize the D1 dataset for investigating (1) the certificates without CRL and

OCSP (Section 3.3.6.2), (2) the inconsistent responses from CRLs and OCSP (Sec-

tion 3.3.6.2), and (3) the unknown or unauthorized responses from OCSP (Section

3.3.6.2).

Revocation information (D2). The CRLs and OCSP points (URLs) can be

found at CRLDistributionPoints and AuthorityInfoAccess extensions respectively.

We extract the CRLs and OCSP points from the unique leaf code signing certificates

maintained in the previous dataset. A majority of the certificates (137,027, 94.1%)

contain both CRL and OCSP point; the remainder are 7,794 (5.3%) that has only

CRL and 98 (0.06%) certificates only OCSP points are specified. We observe a total

of 413 unique CRLs, however, to filter out the CRLs with mixed usage, we manually

search Censys.io for each CRL and filter out CRLs used for other purposes. This

results in 215 CRLs that are dedicated in code-signing. We observed 131 unique

OCSP points.

We utilize the D2 dataset to examine the problems in (1) the effective revo-

cation date setting (Section 3.3.5), (2) the transient certificates in CRLs (Section

3.3.6.2), and (3) the no longer updated CRLs (Section 3.3.6.2).

3.3.3.2 Revocation Publication Date List (D3)

It is challenging to obtain the date when the revocation is posted since the CRL

does not contain the information. Therefore, we devise a system, called revocation

publication date collection system that monitors the revoked serial numbers once a
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day from the collected CRL dataset (D2) in order to record the revocation publication

date (tp) when the CRL or OCSP servers post the certificate. During the study of

Apr. 16th, 2017 to Sept. 10th, 2017, we observed 2,617 different certificates added to

the CRLs. This D3 data set is used to examine the revocation delay (tp− td)(Section

3.3.4.2).

3.3.3.3 Binary Sample Information (D4 – D6)

In order to answer some of the research questions, it is necessary to have not

only the code-signing certificates but also the binary that carry them. One example

could be the effective revocation date setting. Whether the date is set correctly

or not can only be answered by looking at the signed binaries. Specifically, we

need to see the signing date of the malware that are carrying these certificates.

Therefore, we collect information about the signed binaries from three data sets:

WINE, Symantec, and VirusTotal.

Worldwide Intelligence Network Environment (WINE) (D4). WINE, as

described in Chapter 1.3.1, provide multiple telemetry data from users around the

world. We find the necessary information for this study from the binary reputation

data that contains metadata of binary files seen on endpoints. WINE only provides

the high-level information of the certificate and detailed information of the certificate

(e.g., a serial number of the certificate, CRL) is not provided. It does not have the

actual binary as well. This D4 data set is used to examine the problems in revocation

date setting (Section 3.3.5).
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Symantec metadata telemetry (D5). Besides the WINE dataset, Symantec

provided additional telemetry data that correspond to the revoked certificates ob-

served by the revocation publication date collection system. The data contains the

metadata of the binaries signed by the 2,617 revoked code signing certificates. The

information comes from a more recent period (from Jan. 1st, 2016 to Sept. 10th,

2017) and consists of the serial number of the signing certificates, the SHA256 hash

of the binary, the first seen timestamp. It enables us to obtain information about

the revoked certificates we observed (D3) during the time of this study. In addition

to the provided metadata, Symantec also shared us the ground truth for identify-

ing malware among these signed binaries. With the ground truth, we can identify

the abused certificates and the signed malware. This D5 data set is used to esti-

mate malware signing certificates in the wild (Section 3.3.4.1), and to examine the

revocation delay (Section 3.3.4.2).

VirusTotal (D6). We utilize the VirusTotal [41] private API to find additional

information that we need in some part of the study. VirusTotal provided us three

APIs for the measurement, including the report-API mentioned in Chapter 1.3.2.

Besides the report-API, we utilize the VirusTotal Hunting [92]. It allows users

to apply rule-based matching (YARA [93] rule) on the incoming submissions, which

can help researchers find a specific type of malware. We write a YARA rule that

targets a binary both signed and flagged by at least 10 AV engines. From each

collected submissions, we extract the SHA256 hash of the binary, the first submission

date, and the serial number of the leaf code signing certificate. The data collection
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began on Apr. 18th, 2017. The extracted data set is used in the estimation of

malware signing certificates (Section 3.3.4.1), and to examine the revocation delay

(Section 3.3.4.2).

We also use the VirusTotal download API to download the actual binary of a

given hash when necessary (e.g., to collect the certificate to extract the CRL/OCSP

information).

3.3.3.4 CRL/OCSP Reachability History (D7)

To see if the CAs are correctly serving the revocation information, we monitor

the following information.

CRL reachability history. We check the reachability of the CRLs daily from

Aug. 10th, 2017 to Sept. 10th, 2017. In case a CRL is unreachable, we record

the timestamp and the reason of failure to the log. This D7 data set is used for

measuring the unreachability of CRLs (Section 3.3.6.1).

OCSP reachability history. We also develop an OCSP reachability checker.

The checker tests the reachability of each OCSPs every 30 minutes. It does not

simply ping the domain, but it queries each OCSP points with the certificates that

contain the OCSP point over the OCSP protocol using Openssl. If the OCSP is not

reachable, we log the timestamp and the reasons for failure. It has been running with

131 unique OCSP points from Aug. 10th, 2017 to Sept. 10th, 2017. This D7 data

set is used for measuring the unreachability of OCSP points (Section 3.3.6.1).
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3.3.4 Discovery of Potentially Compromised Certificates

We begin the measurement by investigating the first step of the revocation:

discovering the potentially compromised certificate. Here, we try to answer the two

questions: Q1. How many certificates are used to sign malware in the wild? and Q2.

After the discovery of signed malware, how promptly is the corresponding certificate

revoked?.

3.3.4.1 Estimation of the Abused Certificates

It is challenging to understand how much coverage the community has in

discovering the certificates used in malware since there exists no official repository

for code signing certificates and the signed binaries. We address this problem by

employing an estimation technique called the capture-recapture analysis [94].

Capture-recapture population estimation. This technique is widely utilized

for measuring wildlife populations. The goal of capture-recapture is to estimate

the size N of a population that is hard to observe entirety. In our case, N is the

number of abused certificates. In order to make an estimate, we have to draw two

separate samples from the population. The first sampling results in the capture

of n1 subjects. These subjects are marked and released in the wild. The second

sampling results in the capture of n2 subjects, among which p has been re-captured.

In other words, p is the size of the intersection of the two samples. A population
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estimation N̂ can then be made as:

N̂ =
n1n2

p
(3.1)

Assumptions and interpretation. To estimate the total number of potentially

compromised certificates, we apply the capture-recapture technique to the malware

signing certificates from two different data sets: Symantec telemetry (D5, n1) and

VirusTotal (D6, n2). We consider that each data set is a sample of the total popu-

lation potentially compromised certificates.

However, capture-recapture makes three assumptions about the population

and the sampling process that we may have violated in this case. First, the subjects

in the population should be homogeneous, which means they have an equal chance

of being captured. However, the certificate population does not meet this property.

For example, a certificate used on a common software will appear much frequently

in the dataset. Second, the samples drawn should be independent to each other.

However, we know that security companies often share malware feeds with each

other, which raises the probability of recapture for the potentially compromised

certificates captured in the first sample. Third, the population should be closed. In

other words, the size of the population should not fluctuate due to the birth and

death of its members during the investigation. However, this property does not hold

either, since the certificate issuance and revocation happens daily.

We take several mitigation strategies to address these issues. First, we estimate

N̂ separately for each day to address the last issue. We consider the birth of the
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Figure 3.3: Trend in malware signing certificates (capture-recapture estimation as
red and observed number as blue) over time.

certificate either at the first seen timestamp in the Symantec telemetry or the first

submission date for VirusTotal. The certificate is considered to be dead at its

revocation publication date (tp). The population of interest is approximately closed

within each day because CRLs are updated daily. The other two violations result in

an underestimation for the actual population of potentially compromised certificates.

For example, the certificates with low prevalence may not occur in either sample

population. Similarly, dependencies between the two data sets would lead to an

increase of the intersection p. The former leads to the decrease in n1 or n2, and

the latter may increase p, which decreases the size of the estimation. Therefore, we

interpret the estimation as the lower bound of the actual population.

Results. Figure 3.3 shows the average of our daily estimations N̂ , for each week dur-
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ing our measurement period. We also compare these estimations with the number

of potentially compromised certificates that we observe. The observed population

is the union of the sets of certificates observed daily from the Symantec telemetry

(D5) and VirusTotal (D6). Excluding the last week (9/4–9/10), the result of the

estimation shows that at least 1,004–1,786 code signing certificates were used to

sign malware in the wild and had not been revoked by the date of the estimation,

which is 2.74× larger than the observed number of certificates on average. Such

results suggest that even a major security company like Symantec and an informa-

tion aggregator like VirusTotal may not observe a large portion of the potentially

compromised certificates.

3.3.4.2 Revocation Delay

The remaining question in this step of the revocation process is Q2. After the

discovery of signed malware, how promptly is the corresponding certificate revoked?.

We need two dates to determine the revocation delay (tp− td): (1) the revoca-

tion publication date (tp) and (2) the discovery date of the signed malware (td). The

revocation publication date is collected by the revocation publication date collection

system (D3) for 2,617 code signing certificates between Apr. 16th, 2017 and Sept.

10th, 2017. To identify td, we take the following steps. We begin by collecting the

hashes for the binaries that carry the revoked certificates (D3) from the Symantec

metadata telemetry (D5). We were able to retrieve 468 (17.9%) revoked certificates

and 146,286 hashes by this step. Then, we utilize VirusTotal (D6) to get an analysis
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Figure 3.4: Revocation delays between the dates on which the malware signed with
compromised certificates and the dates on which CAs revoke the compromised cer-
tificate.

report of the binary. As a result, we get additional information for 19,053 unique

samples and 254 unique certificates used to sign the samples. For each certificate,

we use the earliest detection date of a signed malware sample as the discovery date

(td).

Results. Figure 3.4 shows a cumulative distribution of the revocation delay. We

observe the average delay of 171.4 days (5.6 months). The result implies that users

remain exposed to the signed malware over five months, on average, even after the

community discovers the malware.

3.3.5 Problems in Effective Revocation Date Setting

Once discovering the potentially compromised certificates, the CA must de-

termine a effective revocation date. In this chapter, we explore the answer to the
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< ti = ti ≤ te > te Total

Comodo 0 426 1,437 17 1,880
Thawte 0 74 1,055 39 1,168

Go Daddy 2 14 672 18 706
Verisign 2 59 430 51 542
Digicert 1 161 323 3 488
Starfield 0 3 153 2 158
Symantec 0 33 89 1 123
Wosign 0 57 17 0 74

Startcom 0 0 47 0 47
Certum 0 1 9 0 10

Other 0 96 117 1 214

Total 5 924 4,349 132 5,410

Table 3.7: Effective revocation date setting policy for top 10 CAs (ti: issue date, te:
expiration date).

research question: Q3. Are effective revocation dates set properly?. As described in

Chapter 3.3.1, CAs must set revocation dates when revoking the certificates that

they have issued. CAs can set tr (effective revocation date) to any date between

ti (issue date) and te (expiration date). As the trust in a signed binary relies on

the effective revocation date, a general strategy a CA tries is to set tr (effective

revocation date) close to the oldest date on which the certificate signed malware

(min(tm)). However, if the tr is set in a wrong date, i.e., after some tm, then it can

cause security problems.

Ineffective revocation date setting. We observe 5,410 (3.7% out of 145,582 cer-

tificates) explicitly revoked certificates. Then we investigate the effective revocation

date setting for these revoked certificates. Table 3.7 shows the breakdown of the

effective revocation date.

As mentioned in Chapter 3.3.1 a wrong effective revocation date setting may
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Figure 3.5: CDF of the revocation date setting error (tr −min(tm)): difference be-
tween the effective revocation date and the first malware signing date of a certificate.

result in the survival of signed malware even after a certificate revocation. We can

find one prominent case of the wrong effective revocation date setting in Table 3.7;

a lot of CAs have set the effective revocation dates after the certificate expiration

date. In this case, the revocation has no better impact than the expiration. All the

time-stamped binaries remain valid even after the revocation of the certificate.

A not very obvious case is setting the effective revocation date after the date a

malware was signed. We conduct the following process to measure how many certifi-

cates corresponds to this issue and how many malware remain valid due to this inef-

fective revocation date setting. We first query VirusTotal with the 12,351,946 signed

hashes from WINE (D4) and retrieve the signing date. Only 4,729,023 (38.3%)

samples have sigcheck information in its VirusTotal report, which are signed with

45,613 unique certificates. We then obtain the effective revocation date by querying

the CRLs we have (D2). For the certificates in the CRL (revoked), we retrieve the
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Ineffective revocation date      # # # # #
Certs. without CRLs and OCSP points #  # # # # # # # #
Unreachable OCSP or CRLs points  # #  # # # #   
Inconsistent responses from CRLs and OCSP # #  # #  # # # #
Unknown or Unauthorized OCSP response # # # # # # # # #  
Transient certs. in CRLs  # # #  # # # #  

 = Issues found, # = Issues not found

Table 3.8: Mismanagement issues found across the top 10 CAs.

effective revocation date (tr). At the end of the process, we have 1,022 revoked

certificates.

The analysis of these revoked certificates revealed that 45 (5.1%) certificates

have a wrong effective revocation date (tr). The affected CAs are summarized in

Table 3.8. Additionally, we measure how many digitally signed malware remain valid

as the effect of the ineffective revocation date. As a first step, we use AVClass [95]

to label malware using the VirusTotal reports. For the signed binaries identified

as malware, we extract the signed date tm. We keep monitor if there is a signed

malware with tm < tr, in case we encounter such sample, we say an error is in the

effective revocation date setting, and the malware remains valid.

Result. We identified 250 malware (5.3% out of the 4,716 malware) signed with

the 45 revoked certificates and remain valid. Such a result indicates clients remain

vulnerable to the signed malware. They may execute or install the still-valid malware

because the OS may not trigger any warnings for clients even though it carries a

revoked certificate.
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3.3.6 Dissemination of Revocation Information

The last step of the effective revocation process is to disseminate the revocation

information to the clients properly. As discussed in Chapter 3.3.1, when combined

with the soft-fail policy, the clients may be vulnerable if the revocation information

cannot be retrieved. We examine the security problems in this step and try to answer

the last research question Q4. Is the revocation information served adequately?.

3.3.6.1 Unavailable Revocation Information

In the code signing PKI, CAs must maintain the revocation information even

beyond the expiration date. Moreover, taking into account the soft-fail policy, the

revocation information has to be always available. However, we identified several

cases when the revocation status information for a certificate is not available for

clients. The cases and affected CAs are summarized in Table 3.8.

Certificates without CRL and OCSP. We observe that 788 (0.5% out of 145,582)

certificates has neither CRLs nor OCSP points. Such a result implies that clients

have no means to check the revocation status for these certificates.

Unreachable CRLs and OCSP server. We then examine how many CRLs and

OCSP points were unreachable during the observation period (Apr. 16th, 2017-

Sept. 10th, 2017). In total 55 CRLs were unreachable at least in one day. Among

them, there were 13 CRLs that we could never reach. Of the 13 CRLs, 5 (38.4%)

CRLs are unreachable due to HTTP 404 Not Found Error, which means the CA

has removed the CRL from the address, but a server still exists. In the OCSP’s
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case, we experienced 15 OCSP URLs operated by eight CAs (AOL, Verisign, Co-

modo, StartSSL, WoSign, GlobalTrustFinder, Certum, and GlobalSign) that were

unreachable.

3.3.6.2 Mismanagement in CRLs and OCSPs

We also encountered some mismanagement issues while observing the CRLs

and OCSPs during the period from Apr. 16th, 2017 to Sept. 10th, 2017. Table 3.8

depicts the affected CAs and the corresponding issues.

No longer updated CRLs. According to the code-signing minimum require-

ment [28], CRLs should be re-issued at least once a week, and the next update

timestamp at the nextUpdate field should be less than ten days from thisUpdate

field. We examined if this guideline is well kept in practice. Of 215 CRLs, 57 CRLs

had no change in the nextUpdate timestamps, which implies they show no evidence

of being updated during the observation period.

Transient certificates in CRLs. Recall that code signing CAs must maintain and

provide the revocation status information of all certificates even after expiration due

to time stamping. However, 278 certificates were removed from 18 CRLs.

Inconsistent responses from CRLs and OCSP. We expect that the state in the

CRL and OCSP to be consistent. However, we encountered 19 certificates having

inconsistent responses from CRLs and OCSP from our dataset (D1); the certificates

are valid according to the OCSP, but the CRLs indicate they are revoked.

Unknown or unauthorized responses from OCSP. The OCSP server can re-
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turn three status regarding a certificate; good, revoked, and unknown [27]. The

unknown state is returned when the server is unaware of the status of the certifi-

cate. In our dataset (D1), the three OCSP servers (Certum, Shanghai Electronic

CA, and LuxTrust) respond with unknown for their 669 certificates; most of the

certificates (658, 98%) are issued by Certum. We may receive an error message

from the OCSP servers, which message is among malformedRequest, internalEr-

ror, tryLater, sigRequired, and unauthorized. In our dataset (D1), we observe that

2,129 certificates (1.5% out of 145,582) return the unauthorized error message; most

certificates (1,515, 71.2%) came from Go Daddy. To figure out whether client or

server-side causes the problem, we check the revocation status of the certificates

through OCSP using different tools: OpenSSL and Windows SignTool. We receive

the unauthorized error for both tools, which indicates that this problem likely re-

sides on the server-side. Which implies either (1) they are not granted to access the

revocation records for the certificate, or (2) they removed the revocation records

of expired certificates. Since the Windows platform also checks the CRLs when

they encounter these responses, it may not result in security issues. However, it is

another evidence of the improper maintenance of the OCSP servers by the CAs.
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Chapter 4: Detecting Malware Distribution

4.1 Downloader Graph Analytics

In this chapter, we present a systematic analysis of downloaders in the wild.

Primarily, we focus on the relationship between the downloaders and the payloads

they distribute. We can represent such a relationship as a graph abstraction, where

the nodes are the downloader and the payload with an edge connecting the two.

Goals. We set two goals for this study. The first goal is to explore the differences

between the benign and malicious download activities, by analyzing the graphs con-

structed on the download relationship. We leverage the insights gained from the

analysis to develop a novel method to discriminate against malicious downloaders

from benign, which is our second goal. The overall performance of malware detectors

could improve by propagating the detection down the graph and achieving an earlier

warning for malicious download activities. We note that the proposed method com-

plements existing malware detectors by connecting the dots between the downloader

and payloads.

Non-goals. We state the non-goals that are outside of the scope of this study: (1)

the analysis of the server-side infrastructure and network-level behavior of malware
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delivery networks, (2) the attribution of the malware distribution campaigns, (3)

improving the network security. As we mentioned above, we instead focus on com-

plementing the approaches based on server-side infrastructures [19,20] and network-

level behaviors [17, 18].

We start the discussion by a formal description of the downloader graph ab-

straction (Chapter 4.1.1), followed by the summary of the data (Chapter 4.1.2) and

how we construct the downloader graphs from the collected data (Chapter 4.1.3).

We then share the insights regarding the malicious IGs in Chapter 4.1.4 and design

features based on the properties of these malicious IGs in Chapter 4.1.5. Finally,

we build the classifier and evaluate its performance in Chapter 4.1.6.

4.1.1 Downloader Graph

We introduce two graph abstractions that captures the downloaded by rela-

tionship between the downloader and the payload: (i) the downloader graph (DG)

and (ii) the influence graph (IG). We begin with the DG, which is a directed graph

defined for each host machines. Each node in the graph represents a file, and an

edge from fa to fb indicates that fa has downloaded fb, which all occur on the

same host machine. An IG is a subgraph of the DG, where the root corresponds

to a downloader. Influence graph captures the impact of the root downloader by

depicting the chain of downloads originated from the root.

We present an example of a DG and two IGs (in looped dotted lines) in Fig-

ure 4.1. The node can have an attribute such as the filename (e.g., IExplore.exe)
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Figure 4.1: Example of a real downloader graph and the influence graphs of two
selected downloaders.

and each edge has the DNS domain that hosts the payload (e.g., secure.2-pn-

installer.com). We observe multiple downloader graphs per machine since they could

be disconnected. We also encounter some influence graphs nested in another influ-

ence graph, which implies the influence graph of a malicious downloader can be a

part of the influence graph of a benign downloader, which we observed in Chap-

ter 3.1.

Formal definition of the downloader graph and influence graph abstrac-

tion. Let V be the set of all files in the dataset, and M to be the set of all host

machines. A downloader graph Gi for machine Mi is defined as Gi = (Vi, Ei, α, β),
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where:

• Vi ⊆ V denotes the downloader and the downloaded executables presented in

machine Mi. We can observe an executable file across multiple machines.

• Ei ⊆ Vi X Vi denotes a set of directed edges that represents the downloaded by

semantics between executables.

• α denotes a set of properties regarding the nodes. These are (a) machine-

dependent (unique across all machines), and (b) machine-independent (unique

to a host machine) properties.

• β denotes a set of edge properties.

We then define influence graph. The influence graph Ig(dMi
) is the subgraph

of Gi, which is reachable from a download root d in machineMi. The download root

d has to be a downloader, which has downloaded at least one payload.

4.1.2 Data Summary

Download activities. We utilize the binary telemetry data on 5 million end-hosts

described in Chapter 1.3.1. Specifically, we focus on the events that can reconstruct

the download. We extract the downloaders and payloads from the binary reputation

and the IPS telemetry dataset. From the first dataset we extract information about

24 million distinct files, including 0.4 million parent files. We extract information

about 0.5 million portals from the next dataset. We explain how we use these pieces

of information to reconstruct the download relationship in Chapter 4.1.3. Table 4.1

summarizes the data.

76



Influence graphs 19 million
Files (graph nodes) 24 million

Total Downloaders 0.9 million
Benign downloaders 87,906
Malicious downloaders 67,609

Download events (graph edges) 50.5 million
Domains accessed 0.5 million
Hosts 5 million

Table 4.1: Summary of the data sets and ground truth.

Ground truth. We collect the ground truth for labeling a file. These are a set of a

large number of known-malicious and known-benign files from VirusTotal, the Na-

tional Software Reference Library (NSRL), and an additional data set received from

Symantec. The details regarding VirusTotal and NSRL are given in Chapter 1.3.

We label a file as malicious/benign as follows:

• Malicious. We compute the percentage rmal of products that flagged the binary

as malicious based on the VirusTotal report. We consider that a file is malicious

if rmal ≥ 30%.

• Benign. We treat all the downloaders with matching hashes in NSRL as benign.

We use the RDS 2.47 version released in December 2014.

Due to the limitations imposed by the VirusTotal API, we are unable to query

all the 24 million file hashes at the time of this study. We, therefore, complement

the ground truth with an additional ground truth maintained by Symantec. This

step increases the coverage of the ground truth.

After combining all these sources of ground truth, we identify 87,906 benign

and 67,609 malicious downloaders; the rest of the downloaders remain unlabeled.
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4.1.3 Constructing DGs and Labeling IGs

We begin by constructing the DGs for each machine using the data described

in Chapter 4.1.2. Then we extract the IGs from each possible root of the DGs and

label the IG as benign, malicious, or unlabeled using the ground truth data for the

individual downloaders.

Constructing downloader graphs. We utilize the two telemetry datasets from

WINE to construct the downloader graphs. At first, we connect the portals in IPS

and the downloaded files in the binary reputation dataset by matching the HTTP

records. We extract the names of the downloaded files from the URL column of the

IPS telemetry data set (example entry:http://somedomain.com/file_name.exe);

this corresponds to the name of the file created on a disk. 95% of the URLs from

which users downloaded PE files include the name of the file downloaded. We then

search for these files in the binary reputation dataset, which reports file creation

events and includes the corresponding SHA2 hashes. The report should match both

the filename and source domain. Also, the timestamp should be within ±2 days1

from the IPS event timestamp. If there exists a record that meets the conditions, we

create a graph node for the file and add an incoming edge from the portal reported

in the IPS event. When we match the filename, we employ an approximate file

name matching algorithm by computing the edit distance between file names and

by accepting pairs with distance below three as matches. Such a method allows us to

handle differences in the file name caused by duplicate downloads (e.g., setup.exe

1We look two days taking into account the transmission delays and different submission orders
between the two data sets.
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and setup[1].exe).

In addition to the above method, we utilize the parent information in the

binary reputation dataset to generate the edge. If there exists a parent with the

source domain in the record, we consider it as a download event. Therefore, we add

a directed edge from the parent to the file. The observation motivated the step that

many of the parents recorded in the binary reputation dataset are the same as the

portals in the IPS telemetry. Note that we extract the domain name from the URL

and add it as an attribute to the edge.

During the downloader graph construction, we add the following properties to

each node in the graph:

• Number of outgoing edges: This property captures the download volume of a

downloader.

• Number of incoming edges: This property captures how often an executable is

downloaded on a host.

• Time interval between a node and its out-neighbors: This property captures how

quickly, on an average, a downloader tends to download other executables after

it landed on a host.

• File score (based on digital signatures): We assign a score based on the digital

signatures of the downloaders, in the range 0–3. Specifically, we set the score

utilizing the following information: (1) signature, (2) publisher information, and

(3) reputation of the certification authorities. We give a score 0 to the executables

without a digital signature or a VirusTotal report. Otherwise, we assign score 1
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to the executable if it contains information about the publisher. We increment

the score by 1 if the certificate is from the following CAs Comodo, VeriSign, Go

Daddy, GlobalSign, and DigiCert. Finally, if the signature is valid, we also add 1

to the score.

• Number of out-neighbors with score 0 or 1: This property represents a rudimentary

quantification of the malicious intent of a downloader.

We add the following properties to each edge in the graph:

• URL has IP instead of domain: denotes if the corresponding download URL had

a domain name or an IP address.

• URL is Localhost: denotes if the corresponding download URL was relative to a

localhost address.

• URL is in Alexa top 1 million: denotes if the download URL is in Alexa [96] top

1 million websites.

We also extract some aggregated properties, which will be leveraged to derive

some features of influence graphs:

• File prevalence (FP): For every file, we count the number of hosts it appears on,

in the binary reputation data set.

• Number of unique downloaders accessing given URL (UDPL): For every URL

(domain), we count the number of unique downloaders that used the domain to

download new executables, aggregated across all machines.

• Number of unique downloads from a given URL (UDFL): For every URL (do-

main), we count the number of unique executables downloaded from the domain,
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aggregated across all machines.

Extracting the influence graphs. Extracting the influence graph is identical to

the subgraph extraction. We iterate the graph and extract all possible subgraphs,

which results in the collection of influence graphs. However, we filter out the influ-

ence graphs with fewer than 3 nodes, which might not provide sufficient insight for

analyzing the properties of downloader graphs.

Labeling influence graphs. We next label the influence graphs, using the benign

and malicious labels of downloaders, determined as described in Chapter 4.1.2. We

label only the IGs whose root downloader is known in ground truth. Specifically,

we consider that an IG is malicious if its root downloader is labeled as malicious.

On the other hand, we consider that an IG is benign if one of the following three

conditions is true: (1) the root is in NSRL, (2) the digital signature of the root is

from a well-known publisher and verified by VirusTotal, or (3) the root is rmal = 0

and is benign in Symantec ground truth, and the next two are also true: (1) none

of the other nodes in the IG have rmal > 0, (2) none of the influence graph nodes

is labeled as malicious in Symantec ground truth. This results in 14,918,097 benign

and 274,126 malicious influence graphs.

4.1.4 Properties of Malicious Influence Graphs

We now analyze the properties of influence graphs of the benign or malicious

downloader and identify properties that have power for discriminating malware dis-

tribution. We report the most reliable indicators of malicious activity from our
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findings.

Large diameter IGs are mostly malicious. The diameter of influence graphs

(the maximum length of the shortest path between two nodes) ranges between 2–5.

Figure 4.2(a) shows the distribution. A graph with diameter 2 (a single downloader

with multiple payloads) is equally likely to be benign or malicious. However, when

the diameter is 3 and above a high percentage (84%) of graphs are malicious. More

importantly, almost 12% of the malicious influence graphs have a diameter of 3 and

larger. These findings are consistent with prior observations of pricing arbitrage in

the underground economy [2], where PPI providers distribute their droppers through

opposing PPI infrastructures.

IGs with slow growth rates are mostly malicious. Figure 4.2(b) shows the

distribution of the average inter-download time (AIT) of the influence graphs. We

define AIT to be the average amount of time taken to grow by one node. Almost

88% of the influence graphs that grow slowly (AIT > 1.5 days/node) are malicious.

The ratio of malicious graphs further increases with slower growth rates. We also

observe that over 65% of the malicious influence graphs have AIT > 1.5 days/node.

Such a result suggests that successful malware campaigns, which can evade detection

for a long time, tend to deliver their payloads slowly.

URL access patterns vary across subclasses of malicious/benign down-

loaders. Figure 4.2(c) shows the distribution of the average number of distinct

downloaders accessing an Internet domain. We compute this number by determin-

ing the set of source domains for the nodes in an influence graph and by taking the
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average of the number of downloaders accessing them, across all the hosts. Even

though the distribution does not distinctly separate malicious and benign behav-

ior, we found some interesting patterns. The large number of IGs with between

1,100–1,200 downloaders per domain, towards the right side of the plot, is mostly

caused by adware. In fact, three adware programs, LUCKYLEAP.EXE, LINKSWIFT.EXE,

and BATBROWSER.EXE comprise 26% of the IGs in that distribution bucket. Such

observation suggests that the organizations behind these programs have resilient

server-side infrastructures (and the domains used to host the adware do not have

to change very often) and that they frequently re-pack their droppers (in order

to evade detection on the client side). Figure 4.2(d) zooms in on the left side of

the same distribution. Most of the benign IGs have up to 10 downloaders per do-

main. However, we also identified several malicious IGs in this bucket; the top-3

are fake antivirus programs (EASYVACCINESETUP.EXE, LITEVACCINESETUP.EXE, and

BOAN- DEFENDERSETUP.EXE), which access Korean domains and seem to be part of

the same campaign. Windows Update IGs have between 60–70 downloaders per

domain in the data set.

Malware tend to download fewer files per domain. Figure 4.2(e) shows the

distribution of the average number files downloaded from the domains accessed from

an influence graph. The figure also illustrates the diversity of malicious behavior.

Most of the malicious droppers that download a large number of files per domain

correspond to adware. For example, 40% of the IGs in the 4000–5000 files-per-

domain histogram bucket (the tallest malicious bar) correspond to three adware
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programs (LUCKYLEAP.EXE, LINKSWIFT.EXE, and BATBROWSER.EXE). Apart from the

adware, most of the other malicious droppers (around 40% of all malware) download

1–5 files per domain, as they have to move to new domains after the old ones are

blacklisted. Another interesting observation is that benign downloaders also exhibit

various behaviors. For example, the influence graphs of Apple Software Update

are also in the 4000–5000 histogram bucket, while DivXInstaller’s influence graphs

download around 10000 files per domain.

4.1.5 Feature Engineering

We design the features based on the properties of the influence graphs. We

can organize the features into five semantic categories : internal dynamics, life cycle,

properties of downloaders, properties of domains, and globally aggregated behavior.

In addition to what these features imply, we provide the high-level intuition for why

we expect they would help classify malicious and benign graphs.

We can distinguish the features into two feature types, depending on how

we compute the features. Local features (LF) use information contained in the

influence graph. We also compute Global features (GF) for each influence graph;

however, they use properties aggregated across all the hosts. An example of a GF

is the Average Distinct File Affinity, illustrated in Figure 4.2(e), which reflects the

tendency of an influence graph to download files from domains that are known to

serve a large number of distinct files. Table 4.2 provides the list of features and their

descriptions.
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We quantify the worth of each feature in terms from distinguishing benign and

malicious influence graphs using the gain ratio [97] with 10-fold cross-validation. We

select this metric because it is known to be more robust than alternative metrics,

such as the information gain or the Gini index, when the features differ greatly for

their range [98]. Table 4.3 shows a summary of the top-10 features in descending

order of their gain ratio. The most useful features are the average file prevalence

and the features illustrated in Figures 4.2(c)–(e). We emphasize that, because we

compute the features per influence graph, the power of these global features helps

to classify all the downloaders in the graph. For example, a dropper that normally

evades detection because it is present on many hosts, but that always downloads dif-

ferent files, will likely be classified as malicious because of the low average prevalence

of the files in its influence graph.

4.1.6 Malware Classification

While in the previous chapter we identify several features that indicate mali-

cious download activity, none of these features, taken individually, are sufficient for

detecting most of the malware in the dataset. We, therefore, build a malware detec-

tion system that employs supervised machine learning techniques for automatically

selecting the best combination of features to separate the malicious and benign influ-

ence graphs. Specifically, we train a random-forest classifier using influence graphs

labeled as described in Chapter 4.1.3. We test the classifier using both internal

(cross-fold validation and early detection) and external (VirusTotal results for some

85



of the unlabeled samples predicted to be malicious) performance metrics.

Handling data skew. The ground data consists of 274,126 malicious and 14,918,097

benign influence graphs. Training a classifier on such a skewed data set may bias

the model toward the abundant class (the benign IGs) and may focus on tuning

the less-effective features, i.e., the ones that do not contribute to the classification

but rather model noise in the dataset. We address this problem through stratified

sampling: we sample the abundant and rare classes separately to select approxi-

mately equal numbers of IGs for the training set. In practice, there is no need to

exclude any examples from the rare class, and some examples from the abundant

class can be identified easily and filtered to reduce the variability within that class.

We, therefore, filter out all the Web browsers from the benign set of IGs as the set

of files they download is not predictable and includes both benign and malicious ex-

ecutables. We identify the top-3 browsers by searching the digital signatures for the

following <publisher, product> pairs: <Microsoft Corporation, Internet Explorer>,

<Google Inc, Google Chrome>, <Mozilla Corporation, Firefox>; we also check that

the file name contains the keywords chrome, firefox or explore.

We keep all the malicious graphs. We then downsample the remaining set

of benign graphs (sampling uniformly at random). We manually examined the

properties of several random samples created in this manner and observed that

they closely match the properties of the abundant class. The balanced training set

consists of 43,668 malicious and 44,546 benign influence graphs.
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4.1.6.1 Internal Validation of the Classifier

In this chapter, we evaluate the performance of the RFC classifier in three

ways: (1) using 10-fold cross-validation on the balanced training dataset, (2) us-

ing all the labeled data as a test set, and (3) computing the detection lead time,

compared to the anti-virus products employed by VirusTotal.

10-fold cross validation. We choose Nt = 40 and Nf = log2(# of features) + 1,

for the experiments. These parameters correspond to the number of decisions trees

(Nt) and the number of features per decision tree (Nf ). We use the RandomForest

Classifier module from Python’s scikit-learn package for the experiment. We

run a 10-fold cross validation on the balanced set. We use all the features described

on Table 4.2 for training the classifier. The classification result is reported at 1.0%

FP rate, which achieves 96.0% TP rate2.

We list the results with a default scikit-learn threshold in the first row of

Table 4.4, labeled “All Features”.

Feature evaluation. While in Table 4.3 lists the most useful features for the

classifier; we also want to know how using different feature combinations would

affect the performance of the classifier. Starting from only using FI features from

Table 4.2, we combine other feature categories one by one (FL, FD, FU, then FA)

and evaluate how the classification performance increases. The result is shown as a

Receiver Operating Characteristic (ROC) [99] plot in Figure 4.3, where the X-axis

is the false positive rate and the Y-axis is the true positive rate. ROC plots show

2TPrate = TP
TP+FN

, FPrate = FP
FP+TN

, F1 = 2 ∗ Precision∗Recall
Precision+Recall
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the TP/FP trade-off: the top-left corner corresponds to a perfect classifier, which

never makes mistakes. We obtain the curves for the different feature combinations

by varying internal thresholds of the random forest classifier. There are large jumps

in performance at two points, first is when we add the FL features and then when

we add the FA features. We believe the classifier is capturing the insights discussed

in Chapter 4.1.4, such as the slow growth rate and specific numbers of distinct

downloaders accessing a domain for the malicious influence graphs. At FP rate

1%, the corresponding TP rates are 19.9%, 13.4%, 3%, 17.6%, 28.5% and 96.0%.

Interestingly, only using FI rate was performing better than adding FL and FS at

this point. Such a result is consistent with the observation that almost 12% of

the malicious IGs have diameter 3 and more and 84% of the IGs are malicious at

diameter 3 and beyond (Section 4.1.4). At FP rate 3%, the numbers for TP rate are

24.7%, 33.5%, 42.1%, 59.6%, 98.7%. At 10%, TP rates are 41.7%, 64.5%, 71.2%,

84.8%, and 99.8%.

Early detection. We also evaluate how early can we detect malicious executables

that are previously unknown. We define “early detection” as “we can flag unknown

executables as malicious before their first submission to VirusTotal”. We approx-

imate the date when malware samples become known to the security community

using the VirusTotal first-submission time. We estimate the detection time in three

ways: (1) an executable is detected at its earliest timestamp in the TP set (Lower

bound), (2) an executable is detected at the timestamp when the last node was

added to the newest influence graph it resides as a node (Upper bound), and (3) the
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average timestamp of the executables in the TP set (Average).

We apply random forest with 10 fold cross-validation on the balanced labeled

dataset using all 58 features. The outcome of 10 fold cross validation is TP=42,683,

FP=822, FN=985, and TN=43,724, regarding the number of influence graphs. For

distinct executables in the TP set excluding the ones in the FN set, we compared

the first seen timestamps in VirusTotal and the lower-bound/upper-bound/average

detection timestamps. Among 31,104 distinct executables that are in TP set but

not in FN set, 20,452 files had scanning records in VirusTotal. Among them, 17,462

executables had at least one detection in VirusTotal (rmal > 0), and 10,323 exe-

cutables had detection rates over 30% (rmal ≥ 30). Table 4.5 lists the results. For

rmal > 0, the time difference between the VirusTotal first-seen timestamp and the

lower bound detection timestamp is 20.91 days on average, and we can detect 6,515

executables earlier than VirusTotal. The upper bound is 23.73 after VirusTotal,

with 3,344 executables detected early. On average, we can detect malware 9.24 days

before the first VirusTotal detection. Interestingly, for rmal ≥ 30, the malware are

detected on average 25.24 days earlier than VirusTotal. We further investigate this

trend in Figure 4.4, where we plot the portion of executables that we are able to

detect early, in the average detection scenario, against the VirusTotal detection rate

rmal. Up to rmal = 80%, the early detection lead time increases with rmal. Such a re-

sult suggests that executables that are more likely to be malicious present stronger

indications of maliciousness in their downloader graphs, allowing the classifier to

detect them earlier than current anti-virus products.
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4.1.6.2 External Validation of the Classifier

In this chapter, we evaluate the performance of the RFC classifier by draw-

ing three random samples from the unlabeled IGs and querying the corresponding

file hashes in VirusTotal. Out of the 580,210 unlabeled IGs, the classifier identi-

fies 116,787 as malicious. As discussed in Chapter 4.1.2, we were unable to query

VirusTotal for all the file hashes, which leaves many of the leaf nodes in the graphs

unlabeled. We draw three random samples, of approximately 3000 influence graphs

each, from the set of unlabeled graphs and try to estimate the accuracy of the pre-

dictions by presenting the results of each set. We consider that we misclassified

an IG labeled as malicious if none of the AV products in VirusTotal detect it as

malicious. We consider that we misclassified an IG labeled as benign if its nodes

were detected by more than 30% of the AV vendors, to account for the fact that AV

products may also produce false positives in gray-area situations, such as benign

executables that are sometimes involved in malware delivery.

Table 4.6 shows the results. On average 41.41% of the binaries that construct

the IGs are known to be malicious also by other AV vendors, while only 0.53% of

the binaries in benign IGs has a malicious label. Moreover, on average 78% of the

IGs labeled as malicious have at least one internal node that AV products detect as

malware, and only 1.58% of the IGs labeled as benign carry a malicious node.
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4.2 Detection of Silent Delivery Campaigns

In this chapter, we present a system for detecting silent delivery campaigns

from Internet-wide records of download events. The detection is able by identifying

locksteps in an unsupervised and deterministic manner.

Goals. Lockstep detection is challenging when analyzing large volumes of data. For

example, finding a biclique with the maximum number of edges is an NP-complete

problem [100]. It is also not clear a priori how to parametrize lockstep detection

in order to distinguish benign software dissemination from malware delivery. The

first goal is to build an efficient and scalable system for detecting lockstep behavior.

The system should be unsupervised, i.e., it should not require any prior information

or seed nodes. The system should be able to operate in real time and to build the

locksteps incrementally, as the stream of stars is collected and fed to the system.

While we evaluate the system using telemetry collected worldwide, similar to data

available to security companies, OS vendors, or ISPs, we also aim to lower the de-

ployment bar for small enterprises. Specifically, the system should detect locksteps

if the same campaign infects at least three victims. The second goal is to conduct

a large-scale empirical study of silent delivery campaigns. These campaigns may

deliver benign software, PUPs, malware or a combination of these payload types.

We aim to illuminate the characteristics and differences among the campaigns con-

ducted by various organizations and to expose the business relationships among

these organizations. Finally, the third goal is to incorporate this domain knowledge

into the lockstep detection system and to assess how well it can identify suspicious
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activity, such as malware or PUP dissemination campaigns. Using external infor-

mation about the maliciousness of downloaders and domains caught in locksteps,

we aim to assess the true positive and false positive rates3 of this detection system.

We also aim to measure the lead detection time, compared to the existing sources.

Non-goals. We do not aim to detect all possible malware delivery vectors, e.g.,

download instructions hard coded into the droppers, malware, and PUPs distributed

through software bundles, vulnerability exploits, or other mechanisms that do not

involve remotely controlling a group of downloaders. The campaigns do not aim

to capture the end-to-end attack kill chain and do not include activities performed

by the payloads on the hosts. Finally, the system should detect silent delivery

campaigns in a deterministic manner, without using machine learning.

We initiate the study with the formal definition of the lockstep behavior in

Chapter 4.2.1. We then describe the dataset in Chapter 4.2.2 and present the system

in Chapter 4.2.3. We present the findings regarding the silent delivery campaigns

in Chapter 4.2.4. Finally, we evaluate the performance of running the system in

streams of data in serial mode (Chapter 4.2.5) and check the parallel scalability in

Chapter 4.2.6.

4.2.1 Lockstep Detection

The coordinated waves of payload distribution by the silent delivery campaigns

form a lockstep behavior. The lockstep behavior depicts the synchronized activity

3We cannot estimate the false negative rate because the ground truth about malware delivery
campaigns is lacking. An undetected malicious downloader may be either a false negative or a
dropper not controlled remotely.
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among a group of downloaders (or DNS domains) and a set of DNS domains (or

downloaders). To retrieve payloads, these group of downloaders (or domains) access

(are accessed by) the same set of domains (downloaders) within a limited time

window. The access pattern implies that these coordinated downloads do not involve

user intervention and do not experience random delays. Additionally, it is required

to observe several repeated coordinated downloads to detect a lockstep behavior,

which means a lockstep may correspond to one or several delivery campaigns that

use the same infrastructure. Therefore, the lockstep behavior is a strong signal of

the silent delivery campaign.

Formal definition of lockstep behavior. We can define the lockstep behavior

as a graph mining problem on a bipartite graph G = (U, V,E) where U and V

are a disjoint set of nodes corresponding to left hand nodes and right hand nodes,

respectively. We can place an edge e ∈ E between two nodes belonging to different

sets but not nodes from the same set. Each edge has the time ti,j at which an edge

is formed between node i ∈ U and node j ∈ V as an attribute.

Now we define a star. First, let U ′ ⊆ U and V ′ ⊆ V . Then a star [U ′, j,∆t, δt]

on U ′ and some central node j ∈ V ′ can be defined as follows:

| U ′ |≥ 2 (4.1)

(max
i
ti,j −min

i
ti,j) ≤ ∆t ∀i ∈ U ′ (4.2)
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The above equations state two conditions a star should meet: it should have at least

2 left-hand nodes and the all the edges in a star should be formed within ∆t.

A [U ′, V ′,∆t, δt] in G(U, V,E) is a lockstep if it satisfies the following con-

straints:

| U ′ |> 2 (4.3)

∃V ′i ⊆ V ′ ∀i s.t. | V ′i |> 2 and | V ′i |≥ α | V ′ | (4.4)

(i, j) ∈ E ∀i ∈ U ′, j ∈ V ′i (4.5)

The above equations specify that lockstep consists of more than 2 nodes each from

U and V and that lockstep is a nearly complete subgraph induced by these nodes.

If α = 1.0, this subgraph is a complete biclique, while for any value αmin ≤ α < 1, it

is defined as a near-biclique. So the structure-wise definition of a lockstep has been

made: it is a near or complete biclique. It also has to satisfy the following temporal

conditions. For the temporal constraints, we predefine ∆t and δt and 2 distinct stars

defined as j, j′ ∈ Vi′ . Then the temporal property of the lockstep could be written

as:

(max
i
ti,j −min

i
ti,j) ≤ ∆t ∀i ∈ U ′ (4.6)
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(max
i
ti,j′ −min

i
ti,j′) ≤ ∆t ∀i ∈ U ′ (4.7)

| max
i
ti,j′ −max

i
ti,j |≥ δt (4.8)

The equations ensure that lockstep contains at least two stars and there exists

a gap of at least δt between the stars. We stated the two stars j, j′ as distinct

since if the same star occurs in multiple timestamps, we consider it only once inside

lockstep.

Lockstep behavior for detecting silent delivery campagins. Now we for-

mulate the problem of detecting silent delivery campaigns through their lockstep

behavior. The nodes of the bipartite graph corresponding to downloaders and do-

mains. There would be an edge between a domain and a downloader in the bipartite

graph if the downloader accessed the domain to drop a payload. The edge keeps the

payload information as an attribute. We set two different topologies for the star. In

order to detect the behaviors such as (1) campaign changing to a different domain

after a C&C server takedown, (2) domains within the same campaign establishing

a connection with a new version of the downloader. Therefore, a star can have (1)

multiple downloaders accessing the same domain; or (2) multiple domains accessed

by a single downloader.

Figure 4.5 depicts a real-world example of the lockstep behavior. At time t = 0,

we observe a star with three downloaders accessing a domain. At t = 3δt, although

we observe new stars, they do not correspond to lockstep as lockstep must contain
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more than 2 domains and 2 downloaders according to the lockstep definition. Then,

at t = 6δt, we observe a near-biclique, with α ≥ 0.8, which satisfies the definition

of lockstep, and lockstep is detected. We can observe that lockstep corresponds to

a series of campaigns. The lockstep consists of a set of stars across different time

windows. We exploit the gap between these time windows, and define a campaign

as follows. We consider the activities appearing in the time windows with a gap less

than nδt as a single campaign. If the gap is larger than nδt, we treat it as a different

campaign.

4.2.2 Data Summary

Download activities. We utilize a large data set of download events collected

in the previous study of the downloader graphs. We reconstruct these events from

observations on end hosts. From this data, we utilize the SHA2 hash of the down-

loader and the downloaded file (payload), the source domain of the download, and

the timestamp of the event. We focus on events from 2013, as the data set has good

coverage for that year.

We exclude the downloads performed by Web browsers, which typically in-

volve user actions. We identify the top 5 browsers in the dataset by searching

the digital signatures for the following <publisher, product> pairs: <Microsoft

Corporation, Internet Explorer>, <Google Inc, Chrome>, <Mozilla Corporation,

Firefox>, <Apple Inc, Safari>, <Opera Software, Opera>. Table 4.7 summarizes

the data after this filtering step.
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Ground truth. While ground truth for malware delivery campaigns is currently

unavailable, we collect ground truth about executables from multiple sources. We

were able to retrieve VirusTotal reports for about 17% of the binaries from 2013.

In this study, we separate PUP from malware. Both malware and PUP are

flagged by rmal ≥ 30%. To separate them, we search the AV labels given to these

samples for the following keywords: “adware”, “not-a-virus”, “not malicious”, “po-

tentially”, “unwanted”, “pup”, “pua”, “riskware”, “toolbar”, “grayware”, “unwnt”,

and “adload” [101]. We define rpup to be the percentage of AV labels that include

one of these keywords.

A file is labeled as malware/pup/benign as follows:

• Malware. We consider that a binary is malware if rmal ≥30% and rpup ≤10%.

• PUP. It is treated as PUP if rpup >10% and rmal ≥30%.

• Benign. We consider benign all the executables where either (1) the hash matches

or (2) the publisher matches and has a valid signature. We used the RDS 2.52

version released in December 2014.

We identify 1,228 malware samples and 15,350 PUPs through this process.

Information about publishers. To identify publishers engaged in the Pay-Per-

Install (PPI) business [2], we utilize two lists of PPI providers from underground

forums [102,103].For other types of publishers, we query the Reason Labs knowledge

base [104]. This service provides details about the publisher, e.g., whether it is

considered safe or if it uses its certificates to sign PUPs.
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4.2.3 Detecting Lockstep Behaviors in Real-Time

In this chapter, we describe the design and implementation of Beewolf, which

detects lockstep behavior in real-time. Beewolf can operate in two modes. In offline

mode, the system analyzes the entire download events, with the aim of character-

izing lockstep behaviors empirically. We utilize this mode in the experiment in

Chapter 4.2.4.In streaming mode, Beewolf receives data incrementally and prunes

the locksteps detected to focus on suspicious downloaders and domains. We eval-

uate this mode in Chapter 4.2.5.2. We implement Beewolf in Python, using the

NetworkX [105] package to manipulate graphs.

As illustrated in Figure 4.6, Beewolf consists of a data analysis pipeline with

four components: star detection, galaxy graph construction, frequent pattern (FP)

tree construction, and lockstep detection. We also maintain a database with three

tables: download_events, stars, and locksteps. The first step is to detect new

star patterns as new download events appear. In the rest of the paper, we refer to

the bipartite graph as “galaxy graph”. The stars detected are updated incrementally

in the galaxy graph. Further, we traverse the galaxy graph to build the FP tree

which is an in-memory data structure to detect locksteps.

4.2.3.1 Whitelisting

As discussed in Chapter 4.2.2, we identify benign binaries using the NSRL

data. We maintain a whitelist, which consists of these benign binaries. Before

the main data analysis pipeline, we filter out the download events generated by
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the benign downloaders listed in the whitelist. We do not expect this whitelist

to be exhaustive—NSRL may not include all the legitimate downloaders—but this

simple filtering step helps Beewolf to focus on the most suspicious campaigns and

improves its performance. Moreover, while it is likely unfeasible to whitelist all

benign software, only a few programs have a downloader functionality. The whitelist

contains 6,996 downloaders.

4.2.3.2 Star Detection

Each row of the download_events table consists of a downloader (dlr), corre-

sponding domain accessed (dom), the downloaded file (payload), and the timestamp

when the download event occurred. We assign a unique identifier to each download

event in the table and sort them in ascending time order. Conceptually, each down-

load event corresponds to an edge in the galaxy graph, linking a node represented

by dlr with a node represented by dom.

Given a moving time window of size ∆t, We query the events that occurred

within this time range. We utilize these series of download events to identify star

patterns. The stars can be created in two ways, by starting from a downloader and

aggregating the adjacent domains, or by starting from a domain and aggregating the

adjacent downloaders. We assign a unique identifier to each new star, and record

the associated events in the stars table. After generating all the stars within ∆t,

we slide the time window by δt and repeat the star detection process, until the end

of the time window reaches the last event.
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4.2.3.3 Galaxy Graph

Beewolf maintains the galaxy graph, which has two kinds of nodes: nodes

that correspond to downloader programs and nodes that correspond to domains

hosting payloads. We represent a node in the galaxy graph as nodegg. We explicitly

maintain only 1 edge between a downloader and a domain. However, there can arise

situations where a downloader accesses a domain at different times; we will discuss

how to deal with this situation later in this chapter.

We update the galaxy graph incrementally, using the star patterns detected in

the previous step. As explained earlier, there are 2 types of stars. We consider only

one type of star and ignore the other while detecting and updating the stars to the

galaxy graph; galaxy graph at any point contains only one type of stars. For simpler

explanation, we discuss only the star type corresponding to multiple downloaders

accessing the same domain; we can extend the same explanation when dealing with

the other star type. Further, we present results corresponding to both star types,

when dealt separately in Chapter 4.2.4.

When we detect a star, we add the central node (domain) and its adjacent

nodes (downloaders accessing it) to the bipartite graph, and we create the corre-

sponding edges. For each newly detected star, while adding the central node (do-

main) we also specify the star id (e.g., (2) domB), in order to separate it from the

nodes corresponding to domB from different stars. When the new star is a superset

of some existing star in the galaxy graph, we replace the existing star with it. If it

is a subset of some existing star, Beewolf discards it from further processing.
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4.2.3.4 FP tree

We traverse the galaxy graph, constructed in the previous step, to build a data

structure called a Frequent Pattern (FP) tree. The FP tree was used successfully

in other domains, for example, to design scalable algorithms for frequent pattern

mining [106]. We employ the FP tree algorithm from [107]. Let us represent a node

in the FP tree as nodefp. Given the galaxy graph G = (U, V,E), the algorithm

starts by sorting the adjacency list of V . The adjacency list is a representation of

the galaxy graph and consists of the collection of neighbor lists for each nodegg ∈ V .

We do the sorting in two rounds. In the first round, we sort each nodegg v ∈ V by

their degree (the number of v’s neighbors in U), in descending order. In the second

round, we sort each list of neighbors. Specifically, we sort the neighbors u of v by

their degree (the number of u’s neighbors in V ), also in descending order.

Once we finish the sorting, we start building the FP tree by creating a root

nodefp in the tree. For each neighbor u of v, we traverse the FP tree starting from

the root and check if u is the child of the current nodefp. If this is the case, we

set the current nodefp as u and append v to its visited list. Otherwise, we first

add u as the child of the current nodefp and repeat the same process. We continue

this process until we have checked all nodegg v
′s and their corresponding neighbors.

Figure 4.7 illustrates the FP tree construction procedure given the galaxy graph as

input.

Once we finish building the FP tree, we can traverse it to detect all the com-

plete bicliques of the galaxy graph. However, the FP tree has some limitations :
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(1) FP tree does not return near-bicliques and (2) FP tree misses part of complete

bicliques when overlap exists at the left-hand nodes between a larger biclique and a

smaller biclique. We address how we handle these limitations in the next chapter.

4.2.3.5 Lockstep Detection

After constructing the FP tree, we move to the lockstep detection phase. Each

path downwards from the root to a nodefp A in the FP tree indicates lockstep.

The set of nodes along the path corresponds to the downloaders, and the visited

list of A corresponds to the domains in the lockstep. For example, in Figure 4.7,

dlrC → dlrB → dlrA, the resulting lockstep will be [(domB, domA), (dlrC , dlrB,

dlrA)]. When identifying lockstep, we remove the star id from the domain nodes;

however, we store the star ids along with the lockstep, so that we do not lose

the download events that resulted from the lockstep behavior. We can observe in

Figure 4.7 that some bicliques are not interesting; for example, when A is a child

of the root (e.g., dlrC), we get a star centered on A, and when A is a leaf (e.g.,

dlrE), we get a star centered on the single domain from the visited list of A (e.g.,

domA). To avoid generating locksteps that are too small or that are a subset of

larger lockstep, we filter out the locksteps that satisfy the following conditions: (1)

the number of downloaders or the domains is either below 3; or (2) A has a child

with the same visited list.

Partially missing locksteps. The FP tree captures most of the locksteps. How-

ever, it misses the small locksteps that share part of the left-hand elements with
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the larger lockstep. In Figure 4.7, path dlrC → dlrD should have produced the

lockstep of [(domB, domC), (dlrC , dlrD)]. However, because dlrC and dlrD are the

part of the longer path dlrC → dlrB → dlrA → dlrD, (2)domB fails to visit the

corresponding path. This phenomenon occurs at the nodes that appear in multiple

paths, such as dlrD and dlrE in the example. The missing locksteps can be recovered

by maintaining different node versions, for each path where the node appears, and

by constructing a separate FP tree only on the stars that contain the node with

multiple versions. To cover all the locksteps, we do this recursively until there is

no node with multiple versions in the FP tree. However, considering the overhead

due to the recursive computation and the chance that the near-biclique algorithm

would help recover some of the partially missing locksteps as explained in the next

paragraph, we only apply the FP tree construction once on each node with multiple

versions without recursion.

Near-bicliques. The aim here is to detect locksteps even in cases where some

edges are missing from the galaxy graph, e.g., the corresponding download events

may not have been recorded for some reason. These missing edges could prevent

some potential nodes from being added to the lockstep. Therefore we relax the

lockstep definition and search for subgraphs that include a fraction α ≥ αmin of the

edges that would form a biclique. We set αmin to 0.8 to accommodate for at most

1 missing edge in the smallest lockstep.

There could be many possible missing edges. We reduce the search space by

exploiting the fact that the adjacent nodes in the FP tree have higher connectivity
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than the other nodes, which implies that by introducing it into the lockstep will

have fewer missing edges.

We point to the end node A of the path, which we want to extract the lockstep.

We start by traversing the FP tree upwards, toward the root, until we reach a node B

that has a larger visited list. We also count the number of hops (missingv) required

to reach B. We define the relative complement list as the difference between the

visited list of B and that of A. We then add the relative complement list to the

candidate list with missingv as an attribute. Next, we look at the children A. We

add each child to the candidate list with the size of the difference between its visited

list and A′s visited list as the attribute missingu.

Once we get the candidate list, we sort it by the attribute in ascending order.

Starting from the first node in the list, we add the node into the lockstep and

calculate α which corresponds to the edge density within lockstep. We stop when α

drops below αmin. We observed that, in practice, this heuristic is good enough, as

the adjacent nodes in the FP tree are more likely to be connected to the lockstep

than the other nodes.

4.2.3.6 Streaming Set-up

When using Beewolf in a streaming setting, we ingest the download event data

in real time. Instead of triggering the system for each single data stream, we run

the system by processing incoming data as a batch within a fixed period ∆t. Except

for the difference in how the data comes in the system, the rest of the process is
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identical to that of the non-streaming setup. The star detection search for new stars

from the batch data; the new stars are added to the galaxy graph; the FP tree is

built from the galaxy graph, and the lockstep detection will find new locksteps.

4.2.3.7 Parallel Implementation

While Beewolf searches for locksteps for the nodes in the FP tree sequentially,

the supplementation phase for finding partially missing locksteps can be done in par-

allel, since it consists of independent supplementation sub-processes (i.e., extracting

locksteps for each node with multiple versions). We implement the parallel process

of Beewolf using the Multiprocessing [108] Python package.

Algorithm. The input for the supplementation, a node with multiple versions and

the stars containing the node (u, stars), prepared during the FP tree construction, is

fed to the worker. The worker then performs the entire process to extract locksteps

from the input stars, in this case without the supplementation phase. The master

then collects the extracted locksteps from all workers.

4.2.4 Silent Distribution Campaigns

We present a large-scale empirical study of silent delivery campaigns. As

discussed in Chapters 4.2.3.2 and 4.2.3.3, we can track two types of stars in the

galaxy graph: multiple downloaders accessing a domain (typedlr:dom) and multiple

domains accessing a downloader (typedom:dlr). These two different star types result in

different bicliques and capture different download activities. The difference derives
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from the fact that the central nodes in the stars may be duplicated in the galaxy

graph when we add new stars that emerge in later time windows. The resulting

locksteps reflect different distribution strategies. typedlr:dom account for downloaders

that are more stable than the domains. Conversely, typedom:dlr identify distribution

networks where domains are more stable.

For the empirical analysis, we set a narrow time window, to detect download

events that are remotely triggered and do not experience delays. More generally,

we should choose a shorter time window than the typical reaction time of domain

blacklists during the observation period. In consequence, we set the time window

∆t to 3 days, and we use a sliding window δt of 3 days.4

Lockstep attribution. In general, it is challenging to precisely identify which

organizations were controlling the download activities reflected in the locksteps we

detect, as the domains may no longer be registered and the downloaders may no

longer be active. However, we aim to make a coarse-grained distinction among the

distribution campaigns for malware, PUP and benign software, to compare their

properties and to assess their overlaps. To do so, we observe that 38.2% (3479

out of 9103) of the downloaders involved in locksteps are digitally signed, with

valid X.509 certificates. We first analyze these signatures to determine the most

frequent publisher in lockstep. We consider that a publisher is the representative

publisher (rep-pub) of the lockstep, if it accounts for more than 50% of the signed

downloaders in the lockstep. If we cannot identify a representative publisher, we

4During the observation period, domains delivering malware were blacklisted within 17 days on
average [109].
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set the lockstep’s rep-pub to mixed. In this manner, we identify 335 rep-pubs. We

investigate the top 50 rep-pubs from each lockstep type, and we manually categorize

them into six different groups: potentially unwanted programs (PUP) [101], pay-per-

install (PPI) [2], benign (BN), other, mixed, and unknown (UK). The first 4 groups

inherit the label of the rep-pub, determined as discussed in Chapter 4.2.2. We place

the mixed rep-pubs in a separate group. In some cases, we cannot identify the real

publisher behind the lockstep, as the downloader is an archive extractor (Winzip).

These correspond to the unknown group. Table 4.8 describes the distribution of

these lockstep groups. While it can label some locksteps in this manner, we observe

that most locksteps involve downloaders that are difficult to place in a specific

category, as many locksteps have mixed rep-pubs.

We, therefore, perform a second labeling step, based on the payloads that the

locksteps distribute. We distinguish between malware and PUP payloads with the

method described in Chapter 4.2.2. We conduct the labeling in two steps. First, we

label the downloaders by the payloads they distribute within the lockstep. We say

a downloader is malware downloader (MD) if it distributes at least one malware.5

Similarly, we label a downloader as PUP downloader (PD) if it downloads PUP

payloads but no malware. A downloader is labeled as Benign downloader (BD) if

it downloads a benign payload but no suspicious (malware, PUP) download. We

place the rest as unknown downloader (UD). As the next step, we label the locksteps.

We label the locksteps that include at least one MD as malware downloader lockstep

5This is an aggressive labeling policy, as even benign downloaders may be tricked into down-
loading malware occasionally. However, this labeling produces a conservative estimate of the false
positive rate (as discussed in Chapter 4.2, we do not aim to measure false negatives).
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(MDL). Similarly, we label lockstep as PUP downloader lockstep (PDL) if it contains

PDs but no MDs. We label the locksteps with no suspicious (MD, PD) downloader

as unknown downloader lockstep (UDL). Note that, as malware families sometimes

evade detection for extended periods of time, not every UDLs correspond to benign

download activities. Therefore, we try to identify the benign downloader locksteps

(BDL) among the UDLs. Similar to the definition of MDLs and PDLs, the BDL

should contain at least one BD.

We present the result of the labeling in Table 4.9. For both lockstep types,

MDL occupy more than 80% of the total number of locksteps while benign are

4.82% and 2.48% for typedlr:dom and typedom:dlr, respectively. The higher success

rate in labeling with payloads, compared to labeling only with downloaders, reflects

the security community’s focus on detecting and labeling malware, rather than on

understanding the client-side distribution infrastructure.

Identifying campaigns. As discussed in Chapter 4.2, we separate the campaigns

within the lockstep by nδt. By setting n = 3, We identify 1,292,141/71,424/27,145/

6,233 campaigns corresponding to MDL/PDL/BDL/UDL. On average there are

12.2/4.9/5.7/3.6 campaigns per lockstep for MDL/PDL/BDL.

4.2.4.1 Relationships Among Representative Publishers

The locksteps help determine the business relationships between rep-pubs and

payloads among groups of rep-pubs. We focus on PPI and PUP providers, which

distribute other executables intentionally. We collect PUP and PPIs from the top
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10 rep-pubs with a high percentage of MDLs within their locksteps. Each of these

rep-pubs conducted at least 40 campaigns. We also include the known PPI providers

Amonetize Ltd., Conduit Ltd. and OutBrowse LTD to this list.

We investigate which publishers frequently appear together in lockstep with

the 13 rep-pubs. As the downloaders signed by these publishers simultaneously

utilize the same server-side infrastructure, this likely reflects a relationship among

the corresponding distribution networks. We also determine whether one of these

downloaders was itself downloaded by one of the downloaders in the lockstep, which

suggests a stronger business connection. We, therefore, term such relationship be-

tween the publishers as partner. For example, we observe such partnership relations

among some PPI providers, e.g., Outbrowse Ltd. that frequently delivers down-

loaders from Somoto Ltd.. Additional frequent partners of Somoto Ltd. include

Mindad media Ltd., IronInstall, betwlkx, and Multiply ROI, which suggests a

stable business relationship with these organizations.6 The cases where we cannot

establish a downloaded-by relationship among the downloaders in the lockstep may

point to an organization that uses multiple code signing certificates to evade attri-

bution or to relationships with a common third party. We term such relationship as

neighbor. We illustrate some of these business relationships in Figure 4.8. The nodes

are the publishers, and the edge between publishers indicate a business relationship,

either partner or neighbor. The thickness of the edge indicates the frequency of that

relationship.

To further illuminate this ecosystem, we employ a community detection algo-

6Several of these publishers attended the 2014 Affiliate Summit in Las Vegas [110].
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rithm [111] to the graph illustrated in Figure 4.8(a). This algorithm identifies seven

communities. Within each community, we determine the publisher with the highest

betweenness centrality [112], which is the number of shortest paths between any two

nodes that pass through the publisher. This graph centrality measure singles out a

node that likely acts as a bridge between other nodes from each community.

• Community #1: OutBrowse. This community represents the advertisers or the af-

filiates of the Outbrowse PPI. The PUPs Multiply ROI and Mindad media Ltd.

are frequently in lockstep with the rep-pub. The other publishers in this commu-

nity represent variants of the rep-pub’s certificate: OutBrowse LTD and OutBrowse.

• Community #2: Somoto. This community belongs to Somoto, which is also a

PPI provider. Beside Somoto’s certificates (Somoto Ltd. and Somoto Israel),

this community includes 12 other publishers. International News Network

Limited, a known PUP distributor, is tightly connected with the publishers in

this community, suggesting a close relationship.

• Community #3: raonmedia. 22 publishers belong to this community. Three PUP

publishers including raonmedia, Pacifics Co., and CIDA showed high centrality

in this community. All three publishers were located in Busan, Korea and the

certificates were issued by Thawte, Inc., which suggests these publishers could

belong to the same group.

• Community #4: Sendori. Although we see PPI Conduit Ltd. within the com-

munity, PUP Sendori has a higher centrality. At 77 publishers, this is the largest

community. Sendori was is tightly connected to most of the publishers within
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the group, which reflects an aggressive distribution strategy of this PUP.

• Community #5: Amonetize. This group represents Amonetize Ltd. and several

PUPs. In particular, Shetef Solutions & Consulting (1998) Ltd. is known

to be the advertiser [113] of Amonetize.

• Communities #6 & #7. These communities are small and include the InstallX

PPI and the Wajam PUP.

These results suggest that the partner and neighbor relationships can expose

organizations that utilize distinct code signing certificates for different activities,

e.g., PPI and PUP. Additionally, the graph communities capture close relationships

among the publishers, such as delivery networks that rent the server-side infras-

tructure from a third party or publishers that engage in aggressive distribution

campaigns using multiple providers. The graph also includes instant messengers

and file sharing software, which are likely involved in locksteps resulting from spam

campaigns.

4.2.4.2 Malware and PUP Delivery Ecosystems

Downloaders that appear in locksteps with different labels provide the opportu-

nity to analyze the overlap of different software distribution ecosystems. 36.7% of the

downloaders (3,345 out of 9,103) are present in both MDLs and PDLs. These down-

loaders are associated with 7,635 and 6,886 of typedlr:dom and typedom:dlr PDLs, which

account for 97.8% and 99.8% of all the PDLs. 100 of these downloaders dropped

payloads known to be malicious, while the other ones downloaded other files in lock-
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step with the malware droppers. The PUP publishers from Figure 4.8 distributed 13

trojan families, including vundo, pasta, symmi, crone, pahador, pecompact, scar,

dapato, renum, jorik, fareit, llac, and kazy. We also observed generic trojans,

induc (virus), zeroaccess (botnet), onescan (fakeAV), pincav (keystroke logger),

dnschanger, startpage, and several worms delivered through these publishers.

To further illuminate the connection of the malware and PUP delivery ecosys-

tems, we compare the publishers from the locksteps to the ones from the Malsign

blacklist of certificates used to sign PUP and malware payloads [101]. In this way,

we identify 1,926 downloaders signed by 212 publishers from malsign, which were

involved in 70,984 and 5,468 of MDLs and PDLs respectively. Such a result suggests

that many publishers thought to belong to the PUP category are also involved in

malware delivery. Considering that many of the unknown files in the data set may

be malware samples (83% of the payloads not found in VirusTotal), the number of

MDLs is likely higher.

These results contradict two recent studies [114,115], which did not find sub-

stantial overlap between the malware and PUP delivery ecosystems. The key distinc-

tion is that these studies analyzed direct download relationships between publisher

pairs, while lockstep detection allows us to identify indirect relationships, through

the neighbor links discussed in Chapter 4.2.4.1. These indirect links can overcome

evasive strategies such as certificate polymorphism or utilizing unsigned downloaders

for malicious payloads. In particular, in Somoto’s locksteps, 90.6% of the download-

ers, on average, are either unsigned or have invalid certificates. We also observe

several PUPs with over 50% ratio, including Strongvault Online Storage LLC,
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Save Valet, and LLC Mail.Ru. Variations in experimental methods may further

explain the different results. Thomas et al. [114] milk PPI downloaders on hosts

located in the US, while our dataset includes hosts from 72 countries. Geographical

targeting has been reported previously for PPI providers [2]. Additionally, their

data set covers a different observation period. In contrast, Kotzias et al. [115] ana-

lyze data from WINE from a time span that largely overlaps with the observation

period. However, they focus on 70 malware families, excluding for instance trojans

that received generic labels from anti-virus vendors.

4.2.4.3 Properties of MDLs

We identify a total of 54,497 and 51,831 locksteps of typedlr:dom and typedom:dlr,

respectively, that download at least one malware. These MDLs come from 246

and 169 rep-pub each. In addition to the PPI and PUP delivery vectors discussed

above, we observed that malware sometimes exploit the compromised software up-

date channels to propagate. We identified a malware distribution campaign involving

the KMP Media Co., which is a legitimate media player. The campaign distributed

trojan dofoil. The version of the media player involved in the MDL is 3.6.0.87,

which is known to have a stack overflow vulnerability [116] that was exploited in the

wild [117]. Additionally, while experimenting with larger values for ∆t, we observed

a Hewlett-Packard software updater deliver the hexzone ransomware.7

We observe several features that distinguish MDLs from other locksteps. Fig-

7We did not find evidence that HP’s code signing certificate was compromised; it is more likely
that the malware was able to infect the server-side infrastructure involved in software updates,
which is consistent with prior reports of a trojan that was signed by HP after it infected the
company’s systems, but without having compromised any certificates [118].
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ure 4.9 illustrates the approximate FP tree level where the MDLs reside. As each

node in the FP tree corresponds to lockstep, the typical level of MDLs indicates the

region of the FP tree where it is most likely to find evidence of malware distribution;

which is an approximation, as we may add or subtract a level when computing near-

bicliques, as described in Chapter 4.2.3.5. The median FP tree level where locksteps

reside is 5, for both typedlr:dom and typedom:dlr. In other words, the median number

of downloaders in an MDL is 5, which is relatively close to the root of the FP tree,

as malware delivery networks rely on only a few downloaders within a time window.

This observation helps to improve the performance of Beewolf in streaming mode,

as discussed in Chapter 4.2.5.2.

4.2.4.4 Detection Performance

While the previous chapter provides empirical insights into silent distribution

campaigns, we now evaluate the effectiveness of Beewolf as a detection system.

The aim is to detect suspicious activity, such as malware and PUP dissemination

campaigns. We can use this information in several ways. The downloaders and

domains caught in locksteps can help prioritize further analysis, e.g., to attribute

the campaigns to publishers as we demonstrate in Chapter 4.2.4. We can combine

with other techniques (e.g., DNS reputation systems [119, 120]) to detect a specific

form of abuse (e.g., botnet activity). An enterprise may also block all downloads

initiated remotely by unknown organizations; in this case, an initial whitelist with

a few trusted publishers could be sufficient.
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We use the locksteps labeled in Chapter 4.2.4 to validate the system: an MDL

or PDL detection represents a true positive, while a BDL detection is a false positive.

For the true positives, we compute the detection lead time, compared with the anti-

virus products invoked by VirusTotal (for downloaders) and with three malware

blacklists (for domains). We also analyze the causes of false positive detections.

As the ground truth about malware distribution campaigns is lacking, we cannot

estimate the false negative rate.

Experimental settings. We evaluate Beewolf in offline mode, and we build on

the empirical insights to select the appropriate configuration parameters. We set

∆t = δt = 3 days, to capture locksteps with a high domain churn.

Result. Table 4.9 lists the numbers of locksteps from each category. Overall, the

benign locksteps (BDLs) represent 4.82% and 2.48% of typedlr:dom and typedom:dlr

locksteps, respectively. We observe the highest fraction of BDLs among the mixed

locksteps of typedlr:dom, perhaps because malware and PUP creators utilize dedicated

malicious infrastructures as well as generic downloaders, which may also distribute

benign software. In contrast, PPI rep-pubs do not generate any BDL of typedom:dlr

and only 4 BDLs of typedlr:dom. Overall, the suspicious locksteps (MDL or PDL)

account for 92.85% and 97.24% of all locksteps of typedlr:dom and typedom:dlr, respec-

tively.

Detection lead time. As Beewolf is content-agnostic (i.e., it does not analyze the

downloader binaries or the Web content served by the URLs contacted), we evalu-

ate how early it can detect suspicious downloaders or domains that are previously
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unknown. We consider the downloaders submitted to VirusTotal in 2013 that have

at least one detection record. We compare the time when Beewolf can detect these

downloaders to the time of their first submission to VirusTotal. Because a down-

loader detected by Beewolf is active in the wild, and because VirusTotal invokes up

to 63 AV products with updated virus definitions, we consider that a detection lead

time illustrates the opportunity to identify previously unknown droppers. Lock-

step emerges at the time when the second star is formed; we estimate the detection

time of a downloader as the earliest detection timestamp among the locksteps that

contain it. Figure 4.10 illustrates this comparison. The negative range represents

a detection lead time, and the positive range corresponds to detection lag. We

observe 1182 downloaders detected early and 213 downloaders detected late. The

median detection lead time is 165 days. Among the late detections, 69 of the down-

loaders are detected <3 days late, which suggests that they may be detected early

with a shorter ∆t. In contrast, the detection lead time seems uniformly distributed,

suggesting that Beewolf can detect both recent distribution campaigns as well as

campaigns that have been operating for a while.

We also collect URLs blacklisted in 2013 from three publicly available sources

[121–123]. These URLs correspond to 394 unique domains, of which 29 were present

in the dataset. Among these 29 domains, we caught 14 domains in locksteps; the

other 15 domains may represent false negatives, or they may correspond to malware

dissemination techniques other than silent delivery campaigns. As for downloaders,

we estimate the detection lead time for these 14 domains by comparing the lockstep

detection dates with the blacklisting dates. Except for one domain that is detected
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36 days later, 13 out of 14 domains are detected early, with a median lead detection

time of 196 days.

4.2.5 System Performance

In this chapter, we present the performance of Beewolf. We evaluate the

system in two ways: (i) comparison made with the alternative techniques, (ii) the

performance at the streaming mode by feeding the download data in batches.

4.2.5.1 Comparison with Alternative Techniques

We compare the lockstep detection algorithm with two alternative techniques

for detecting malicious campaigns: community detection algorithms [111,124], which

have been explored extensively in the context of graph mining, and prior algorithm

for detecting lockstep behavior [70].

Community detection. To compare lockstep detection and community detection

algorithms, we construct a typedlr:dom bipartite graph with all the download events.

We employ two popular community detection algorithms [111,124] based on optimiz-

ing modularity, i.e., maximizing the edges within each community and minimizing

the edges between communities, and we compare them with the locksteps detected

by Beewolf. We use the Python package igraph [125] to run these algorithms.

Table 4.10 shows the comparison of these algorithms with Beewolf. Most of the

communities are very small (< 3 nodes). We observe that a large portion of the lock-

steps gets mapped to the larger communities. The number of locksteps/community

117



and the number of nodes/community reflect long tail distributions. We define the

lockstep coverage as the fraction of locksteps that reside within a single community.

We predominantly observe locksteps having large (> 80%) coverage. Further, the

number of unique rep-pubs per community is considerably large (10). Such a result

suggests that most of the communities are mixed up with locksteps coming from dif-

ferent publishers, which makes it difficult to assign each community to a particular

group logically. Community detection algorithms do not account for the timing of

downloads, which makes it hard to pinpoint coordinated behavior between nodes.

Prior lockstep detection algorithm. We compare the locksteps detected by our

algorithm to locksteps detected by the serial implementation of the CopyCatch [70]

algorithm over one month (January 2013) of data. We reimplement CopyCatch, as

the code is not available. There are qualitative differences between the proposed

algorithm and CopyCatch. Firstly, the proposed algorithm is unsupervised. In con-

trast, CopyCatch requires seed domains corresponding to malicious domains and also

times for all the domains at which some suspicious activity has occurred. Secondly,

given a batch of data, we can detect all the locksteps within that batch; CopyCatch

can detect one single lockstep, which depends on the seed. Thirdly, CopyCatch

solves an optimization problem to detect locksteps, which makes it highly sensitive

to the choice of seed domains and the times provided. Furthermore, this serial im-

plementation of CopyCatch is not scalable for large lockstep sizes; we consider only

small locksteps for comparison.

To make a fair comparison, we generate 470 locksteps using our algorithm over
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the one-month data. Of these only 139 locksteps have a size less than ten which

we consider for comparison. For each lockstep the algorithm detected, we provide

CopyCatch the domains as seed nodes and the timestamp at which each domain

was active in the lockstep as the seed times. The proposed algorithm generates 470

locksteps in 7.56 s, taking an average of 0.016 seconds per lockstep. In contrast,

CopyCatch takes 600.9 s to generate 139 locksteps—an average of 4.32 s per lock-

step detection. These results suggest that Beewolf shows promise for processing

streaming data.

4.2.5.2 Streaming Performance

Experimental settings. We evaluate Beewolf in streaming mode by feeding the

download data in batches. We set ∆t = δt = 3 days, to capture locksteps with a high

domain churn. In the lockstep detection phase, we filter out the FP tree level over 5,

based on the observation that MDLs reside close to the root of the FP tree, and we

measure the latency of lockstep detection. Each batch corresponds to a time window

of ∆t = 3 days. As we employ one year of data, we have 121 data points excluding

the first batch in the experiment. For all 121 data points, we measure the elapsed

time for each of the four phases in the data analysis (illustrated in Figure 4.7).

We run the experiments on Amazon’s Elastic Compute Cloud (Amazon EC2) [126].

We use one M4.4xlarge instance, which has a 16-core 2.4 GHz Intel Xeon E5-2676

v3 (Haswell) with 64 GB of memory. For this evaluation, we focus on typedlr:dom

graphs.
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Streaming performance. Figure 4.11(a) illustrates the growth of the data struc-

tures that Beewolf maintains. The plots have a logarithmic Y-axis, to compare both

the number of new stars per batch and the cumulative number of nodes in the galaxy

and the FP tree. On average, a batch contains 225,939 download events. Both the

number of nodes in the galaxy graph and the FP tree grow linearly. In the end,

the graph has 123,335 nodes and 637,814 edges. As the data grows, the cost for

detecting lockstep also grows incrementally.

Figure 4.11(b) suggests that Beewolf’s runtime is dominated by the lockstep

detection phase, which accounts for 97.2% of the total runtime on average. The

total runtime shows three growth patterns: a steep increase for the first 20 batches,

a slower increase for most of the period, and another steep increase starting around

batch 94–96. Each of these growth patterns is linear and follows a regression line with

the coefficients shown in the figure. To further understand the latency of the lockstep

detection step, recall that this phase consists of two parts: (1) lockstep detection on

the main FP tree, (2) supplementation for finding partially missing locksteps (see

Chapter 4.2.3.5). The near-biclique detection is done during lockstep detection, and

it results in an overhead of at most 10 seconds. As shown in Figure 4.11(c), the first

part is fast and requires at most 12 s. Most of the cost of lockstep detection comes

from the supplementation effort, which induces the three phases of linear growth. In

particular, the number of nodes that have multiple versions in the FP tree increases

significantly around batch 94–96, which triggers the third growth pattern in the

total runtime.

While Beewolf searches for these nodes sequentially, we note that this could
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be done in parallel, as the supplementation sub-processes are independent of each

other. To evaluate this potential optimization, we estimate the lockstep detec-

tion time with optimal parallelism. Assuming that enough computing resources are

available for running all missing lockstep searches in parallel, the longest running

supplementation will determine the cost of this part of the computation. We obtain

the total cost of lockstep detection with optimal parallelism by adding this to the

runtime of lockstep detection on the main FP tree. As shown in Figure 4.11(c),

this cost is at most 19 seconds and shows a single pattern of slow linear growth.

The supplementation phase is essential for detecting malicious locksteps: at the last

batch, this phase contributes to 95% of the MDL detections and 91% of the PDL

detections. These locksteps include 48.7% of the MDs and 80.6% of the PDs.

Overall, these results suggest that the cost of Beewolf’s first two analysis steps

is amortized over time, as we perform star detection only on the new batch of data

and we maintain the galaxy graph incrementally. The FP tree construction algo-

rithm is not incremental and requires traversing the entire graph, but we optimize

this step by pruning the FP tree at level 5, as we typically do no observe MDLs

below this level. Similarly, the lockstep detection requires traversing the whole FP

tree and constructing version lists for its nodes, but we can optimize this step by

performing the supplementation in parallel. The resulting runtime of Beewolf in-

creases linearly with the size of the graph. The results suggest that maintaining one

year of download events imposes reasonable resource and performance requirements,

even if we execute lockstep detection every day.
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4.2.6 Parallel Scalability

We evaluate the performance of Beewolf, in parallel, over a different number

of processors (strong scalability) and at streaming mode (increasing the data size).

We run our experiments on a 64-core 2.2 GHz AMD Opteron 6274 machine. In

the lockstep detection phase, we filter out the FP tree level over 5, based on the

observation that MDLs reside close to the root of the FP tree. For this evaluation,

we focus on typedlr:dom graphs.

4.2.6.1 Strong Scalability

Experimental settings. We evaluate the strong scalability of Beewolf, in parallel.

The idea is to measure the decrease in the running time of the algorithm by adding

more computation resources while we fix the size of the data. We run the Beewolf

in offline mode, where we have the supplementation phase done in parallel at the

entire dataset and measure the total elapsed time from all four phases. We iterate

the process by doubling the number of cores from 1 to 64.

Result. We depict the running time measured at a different number of cores in

Figure 4.12(a). Each line represents the total elapsed time (total cost), the running

time of the parallel processes only (star detection and supplementation), and the

ideal scalability from the parallel processes. We also present the running time of

parallel component separately. All data points are the average of 5 measurements,

excluding the highest and lowest value. The total runtime and the total parallel

component cost decreases as the number of core increases until it saturates around
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64 cores. The measured performance is close to the ideal performance until 4–8

cores and converges afterward. We attribute this to the overhead of the parallelism.

4.2.6.2 Scaling with Data

Experimental settings. We evaluate parallel Beewolf in streaming mode by feed-

ing the download data in batches. As a reminder, in streaming mode, only the

supplementation phase is done in parallel. We have 121 data points with a time

window of ∆t = 3 days, which represents one year of download event data. For all

121 data points, we measure the elapsed time for each of the four phases in our data

analysis (illustrated in Figure 4.7). We utilize 32 cores for this measurement.

Result. We illustrate the running time of Beewolf at figure 4.12(a). The total run-

time shows three growth patterns: a steep increase for the first 20 batches, a slower

increase for most of the period, and another steep increase starting around batch

94–96. Each of these growth patterns is linear. Figure 4.12(c) depicts the growth of

the number of supplementation processes where we can find the similar three linear

growth pattern. The correlation in the increase pattern between the two plots and

the linear growth in the running time suggests that our algorithm is resilient to the

increasing size of the dataset. Also, our results suggest that maintaining one year of

download events imposes reasonable resource and performance requirements, even

if we execute lockstep detection every day.
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Categories Name Type Explanation

Internal
Dynamics
(FI)

f1. Diameter LF Diameter capture a chain of download relations (e.g., A→ B, B →
C, and so on). High diameter could imply malicious behavior such
as droppers or Pay-per-install ecosystem where there is an affiliate.

f2. Clustering
Coefficient

LF Clustering coefficient is a measure of the degree to which nodes in a
graph tend to cluster together, i.e., create triangles (e.g., (A → B,
A→ C, B→ C ) or (A→ B, B→ C, C→ A)). Intuitively, I would
expect the benign software to show low clustering as compared to
malware.

f3. Density LF A graph with high density means that the binaries are downloading
each other actively, and there are binaries that are downloaded by
multiple downloaders.

f4. Total Down-
load

LF Total number of downloads made by the influence graph.

Domain
Properties
(FU)

f5. Number of
Unique Domains

LF Some malware droppers may access more domains, e.g. if they
employ domain generation algorithms to bypass blacklists.

f6. Domain
Name Similarity

LF I compute the similarity between all pairs of domains accessed from
the graph:

similarity = 1− EditDistance(D1, D2)

min(length(D1), length(D2))

f7. Alexa top-
1M

LF Percentage of domains in the influence graph that appear in Alexa
top 1 Million list

Downloader
Score
Properties
(FD)

f8. Average
Score

LF Average score (based on signatures—see Section 4.1.3) of all the
downloaders in an influence graph. Intuitively, even if the root has
high score (signed malware) it might download low score download-
ers, indicating that the root might be malicious.

f9. Standard
Deviation of the
Score

LF A malicious influence graph can achieve high average score by
downloading known high score downloaders. Standard deviation
of downloader score in the IG might be relatively robust in that
regard.

Life
Cycle
(FL)

f10. Influence
Graph Life Span

LF The life span of an influence graph is defined as the time interval
between the newest and oldest node. The life span of malicious IGs
tends to be shorter, as A/V programs eventually start detecting
the droppers.

f11. Growth
Rate

LF Average inter-download time for the nodes in an influence graph
(=

IGlifespan

#Nodes
). Malicious IG trying to remain stealthy tend to grow

slowly, as shown in Figure 4.2(b).
f12. Children
Spread

LF Average time difference between the root and the children of an
influence graph.

f13. Intra-
children Time
Spread

LF Average difference in download timestamp among the children of
the root. Intuitively, I would expect this value to be smaller for
malware, as they tend to be more aggressive as downloaders.

Gloablly
Aggregated
Behavior
(FA)

f14. Average
File Prevalence

GF Average FP (see Section 4.1.3) of the executables that appear in
an influence graph. Benign binaries are expected to show high
prevalence.

f15. Average
Distinct File
Affinity

GF Intuitively, this depicts whether an influence graph tends to pre-
fer/avoid domains that download less/more distinct binaries. This
feature is illustrated in Figure 4.2(e).

f16. Aver-
age Distinct
Dropper Affinity

GF Intuitively, this depicts the bias of a dropper toward a specific set of
domains in order download new binaries. This feature is illustrated
in Figures 4.2(c)–(d).

Table 4.2: Feature categories and the high-level intuition behind some of the impor-
tant features
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Features Gain Ratio Avg. Rank

f14. Avg. File Prevalence .16 ± 0 1.1 ± .3
f15. Avg. Distinct File Affinity .16 ± 0 1.9 ± .3
f16. Avg. Distinct Dropper Affinity .12 ± 0 3 ± 0
f10. IG Life Span .1 ± 0 4.3 ± .64
f7. Alexa Top-1M .1 ± 0 5 ± 0.5
f11. Growth Rate .09 ± 0 5.7 ± 0.6
f13. Children Spread .08 ± 0 7.4 ± .66
f1. Diameter .06 ± 0 8.5 ± 1.1
f12. Intra-children Time Spread .06 ± 0 11.4 ± 1.1

Table 4.3: Gain ratio of top 10 features of influence graphs.
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Figure 4.3: ROC curve for different feature groups

Algorithms TP rate FP rate F-score ROC Area

All Features 0.980 0.020 0.980 0.998
FI+FL+FD+FU 0.868 0.124 0.870 0.939
FI+FL+FD 0.831 0.184 0.823 0.902
FI+FL 0.811 0.211 0.801 0.876
Only FI 0.602 0.261 0.644 0.752

Table 4.4: Classifier performance on malicious class.
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rmal > 0 Lower bound Upper bound Average

Distinct Executables 6,515 (37.3%) 3,344 (19.2%) 4,871 (27.9%)
Early detection avg. 20.91 -23.73 9.24

rmal ≥ 30 Lower bound Upper bound Average

Distinct Executables 3,939 (38.2%) 2,041 (19.8%) 3,002 (29.1%)
Early detection avg. 35.86 -7.69 25.24

Table 4.5: Early detection.
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Figure 4.4: Detection rate vs. Early detection ratio / Early detection avg. (days)

#Run Predictions #IGs #IGmal by VT #Binarymal by VT

#1
Malicious 582 444 (76%) 1093(41%)
Benign 2456 43 (1.7%) 60 (0.5%)

#2
Malicious 590 471 (80%) 1249 (43%)
Benign 2454 30 (1.2%) 38 (0.3%)

#3
Malicious 592 466 (79%) 1041 (41%)
Benign 2495 44 (1.7%) 67 (0.6%)

Table 4.6: Testing classifier on the unlabeled influence graphs.
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Figure 4.5: Lockstep illustration (Red color corresponds to existing nodes and edges.
Green color corresponds to new nodes and edges which we receive in the data stream
in an online fashion).
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Lockstep Behaviors 127,495
typedlr:dom 67,094
typedom:dlr 60,401

Total Downloaders 83,088
Domains accessed 60,002
Download events 33.3 million
Total Payloads 0.7 million
Hosts 1.9 million

Table 4.7: Summary of the data sets of the year 2013.
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Figure 4.6: System architecture.
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Table 4.8: Lockstep group statistics.
typedlr:dom
(MDL/PDL/BDL/UDL)

typedom:dlr

(MDL/PDL/BDL/UDL)

PUP
27,522
(26,764/501/109/148)

13,117
(11,902/1,202/6/7)

PPI
2,639
(2,137/498/4/0)

1,496
(1,164/332/0/0)

BN
3,939
(1,749/888/597/705)

2,021
(1,152/840/7/22)

Other
9,203
(8,041/1,053/58/51)

5,092
(3,479/1,580/8/25)

Mixed
20,766
(14,085/4,069/2,255/357)

36,594
(32,576/2,479/1,449/90)

UK
86
(86/0/0/0)

835
(808/27/0/0)

Table 4.9: Lockstep label statistics
typedlr:dom typedom:dlr

MDL 54,497 (81.22%) 51,831 (85.81%)
PDL 7,800 (11.63%) 6,901 (11.43%)
BDL 3,231 (4.82%) 1,500 (2.48%)
UDL 1,566 (2.33%) 169 (0.28%)

Table 4.10: Community detection and locksteps.
FastGreedy [111] Multilevel [124]

Number of Communities 6919 6439
Average #nodes/community 21 22
Median #nodes/community 2 2
Average #locksteps/community 2042 2387
Median #locksteps/community 7 31
Average Lockstep Coverage 89.7 85.9
Median Lockstep Coverage 91.67 87.5
Average #Unique rep-pubs/community 9 11
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Chapter 5: Blocking Malware Distribution

5.1 The Benefit of Transparency

Transparency guarantees openness and accountability of the data, however,

itself does not give any guarantee as a security mechanism. It is still not clear how

beneficial it is to security by introducing transparency to its domain. So far, we

only have encountered the anecdotal example of the benefit, which is the case of

the misbehaving CAs detected by investigating the Certificate Transparency log. In

this paper, we explore the benefit of transparency in the domain of downloads.

The opaque software distribution. The opaque software distribution ecosystem

is exposing users to security threats. When accepting an incoming software from

the Internet, the users rely on the code-signing certificate. However, we reported

the widespread abuse in the ecosystem (e.g., stolen private keys, certificates issued

with false identities) in Chapter 3. According to our investigation, the revocation,

which is the primary defense mechanism against such abuse, is also broken. The

dominant factor in the fail of the ecosystem is the difficulty of precisely identifying

the software and the compromised certificates. Moreover, malware often exploits

the benign software to distribute their software [127]. Even the benign software
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publishers do not sign all of their distributed software [4], which makes users more

vulnerable in such attacks.

Download transparency. To remove the opaqueness of the software distribution,

we introduce the Download Transparency. We have a platform, which logs the

download events from the internet, submitted by the users. The software publishers

may also publish the software they will distribute in the future in advance. These

submitted records of download events are backed by the Merkle Tree, which gives the

cryptographic guarantee that the records are not compromised since the submission.

Disturbing malware propagation. We can utilize the transparency log as a

ground for making decisions of accepting an incoming software. Which may help in

preventing the successful landing of malware, for instance, a user can only accept

download which has been reported before. In this case, we may expect the repacking

behavior to be less effective for malware because it has a high chance of not seen in

the log. Moreover, it becomes hard for the malware writers, who exploit the benign

software distribution by compromising their downloaders or certificates, to stick to

the same strategy. Because the Download Transparency, force them to announce

their distribution to the log, which means the exposure of their resources.

Adversary influence. Due to the nature of an open platform, Download Trans-

parency is exposed to adversary influence. The attacks the adversary performs falls

largely into two categories. The first type of attack is called “Evasion”. The attacker

knows how the users utilize the log (e.g., decline if not seen in the log) and the data

used to make those decisions (e.g., downloads reported), and utilize the pieces of
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information to deliver its software successfully. The attacker can make a different

attempt of “Poison” the dataset. It can be submitting false information regarding

the distribution or reports that could lead users to download malware.

Research questions. The Download Transparency has potential benefits as we

have discussed above. However, it is still unclear if these expectations will be valid

even under different conditions, such as the different user’s policies in utilizing the

platform. We also have to explore the effect of the adversary influence. Provided

that, we state the following research questions:

• Q1. Can we propose realistic policies for utilizing the Download Trans-

parency? Various parties join the log and have different ways of using the infor-

mation. For example, the users can submit certain records or not, utilize the log

in multiple ways for making download decisions, and have a different threshold for

malware. The security analytics can have a different opinion regarding a sample,

i.e., malware or not. Additionally, not all software publishers pre-announce their

distribution to the log. We aim for a realistic design of the entities and their

policies.

• Q2. How effective will the Download Transparency be for blocking

malware propagation with different policies applied? One of the benefits,

Download Transparency can introduce, is the blockage of malware propagation.

However, the effectiveness may chance when different policies are applied.

• Q3. How much performance can Download Transparency have in the

presence of adversary influence? As we discussed, the platform is exposed
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to adversaries. We need to understand the effect of the adversary influence in

Download Transparency.

• Q4. Can we propose methods that can mitigate adversary influence

and how will it disturb adversaries? After we investigate the impact the

adversaries can bring to the platform, we explore the attacks that the Download

Transparency can mitigate and those that are hard to suppress.

5.2 Goals and Non-goals

Goals. The goal is to propose the platform where software distribution is reported

in a transparent manner. We also design realistic policies that capture the potential

usage of the Download Transparency. Based on those policies we aim to measure the

benefit it can introduce to security, from the perspective of disturbing the malware

distribution.

Non-goals. We do not introduce the details for implementing the platform, which

includes the specifics of the data submission protocol, the management of the data

in the back-end, and how we assign unique identifiers to the participants. We also

do not aim to propose a perfect policy that can disturb the malware distribution.

The goal is to measure the effect of transparency assuming we have such a platform.

We organize the following chapters as follows. We describe the Download

Transparency, including the components and the participating entities and their

policies in Chapter 5.3. In the consecutive Chapter 5.4, we provide an empirical

analysis of the download events in our dataset and the existing poison instances.
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The next chapters discuss the methods we take for measuring the benefits of trans-

parency. We first describe the methods in Chapter 5.5, and present the results in

Chapter 5.6. We then dedicate Chapter 5.7 to illustrate the possible adversarial

influence. Finally, we have a chapter for discussion (Chapter 5.8).

5.3 Download Transparency

We start by illustrating the design of Download Transparency. The goal of

Download Transparency is to provide a data sharing platform for download events in

the wild, where individuals act as sensors around the world and report the download

events they observed. The platform operates as a transparent and append-only log

for the download events so that anyone can audit the behavior of the log and monitor

download activities listed in the log. Note that, the log itself does not provide any

security guarantees, i.e., identify malicious download events, but it allows agents who

are interested in the download events (e.g., security analytics) to perform computer

security experiments freely on this representative field data, which could benefit the

community.

5.3.1 Components

Download Transparency consists of two logs each backed with a Merkle tree.

As illustrated in Figure 5.1, the two logs are the download activity log and the

analytic result log. It also depicts six possible usages of the platform: (i) the software

publishers announce their distribution to the download activity log in advance of the
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Figure 5.1: System diagram of Download Transparency.

dissemination, (ii) the software publishers monitor the logs to find any indicators

of compromise, (iii) the users submit the download events they observed to the

download activity log, (iv) the users refer to the analytic result log and the download

activity log to make decisions of download, (v) the analytics use the download

activity log to detect malicious download activities, and (vi) the analytics submit

their findings to the analytic result DB.

Download activity log. The download activity log consists of a Merkle tree,

which has the download events submitted from the users at the leaf. Each record

implies the following information: binary A was downloaded by binary B at time

T through DNS domain C on machine D. In some cases, it can be binary B will

download by binary A, which is defined as “edge announcement”. The details are
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discussed at Chapter 5.3.2. Here, binary A indicates a payload and the binary B,

which downloads A, is defined as a downloader. We represent both the payload and

the downloader as the SHA256 hash value of the binary1. The DNS domain (C) is

where the payload is hosted, for example, it can be the fully qualified domain name

(FQDN). Every single record will also have the server-side submission timestamp

(T), which is the time when the log server received the report.

Analytic result log. The analytic result log also consists of a Merkle tree. The

record at the leaf has binary A is detected as malicious by analytic B.

5.3.2 Agents and Policies

The Download Transparency expects the participation from multiple parties.

These parties (i.e., agents) include the users who submit the download activity

reports to the log, the analytics who use the log to detect malicious software dis-

tribution and report the detections, the software publishers who announce their

distribution (i.e., edge information consisting of a downloader and a payload) be-

forehand, and the monitors who check if the log is appropriately operating as in the

certificate transparency.

5.3.2.1 Users

As mentioned previously, the log consists of the download events in the wild.

We assume that these download events are submitted to the log by ordinary users

1In order to reduce the size of the log, we can use an identifier instead. In this case, it is
necessary to have an ID–SHA256 mapping log that is also backed by a separate Merkle tree.
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across the world. We also expect that these users can make their own decisions,

e.g., which download records to submit, and how to use the information in the log

for decision making (download or not). Based on these expectations, we design the

policy model for these submission agents.

Submission policy. The users can freely submit the download events they observed

in the field to the Download Transparency log. We assume there exists a submission

policy these users stick to during the experiment. In other words, we do not consider

the case of a user changing the policy in the middle of the observation period. We

model the submission policy based on the edge (i.e., a downloader and a payload)

recorded in the log.

• Submit nothing (SN). Users can decide not to submit their observation to the log.

However, they can still check the log when deciding a download.

• Submit only unseen edges (SUE). A user will report only the new edges, which has

not been reported to the log. We can assume the user, who wants to contribute to

the log but wants to minimize the number of submissions, can set such a policy.

• Submit only reported edges (SRE). This is a policy very opposite to the one above.

Users with this policy will only report the edges that are reported in the log. A

possible justification for such behavior could be, they might feel much safer to

report what others already have.

• Submit everything (SE). Users under this policy report every download events

they observed.

Enforcement policy. Before we discuss how the users decide to accept a download,
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we have to define how the user precept malware.

• Threshold for malware (rmal). Users may consider a binary as malware if a certain

portion of analytics flagged it as malware. We give a term rmal, which is the rate

of analytics flagged a binary as malware. For simplicity, a user can set rmal from

{0, 25, 50, 75}. rmal > 0 implies he/she will consider a binary flagged as malware

by at least one analytic as malware.

Download policy. Users can utilize, both the download activity log and the an-

alytic result log from the Download Transparency, for deciding a download. For

instance, by checking the existence of an edge in the download activity log, the user

can block the unknown download. This policy encourages the software writers to

report their software release to the log promptly. We discuss the pre-announcement

of software distributions in Chapter 5.3.2.3. We design the download policy as

follows:

• Download everything (DE). A user under this policy does not choose to utilize

the transparency information at download.

• Only accept reported edges (DR). Some users might want to accept downloads

from the Internet, only in the case that they are seen from somewhere else. Which

could imply the software writer reported its release to the log or other users had

accepted the corresponding download.

• Only accept edges with no malicious reports (DN). These users only take benefit

of the detection results shared by the analytics. The download is blocked if the

number of detection posted in the log exceeds the rmal, for either the downloader
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or the payload.

• Only accept reported edges with no malicous records (DRN). The most security-

concerned user in our setting. Users under this policy check both logs and only

perform a download, if and only if, others reported its existence and it has no

known evidence of maliciousness.

5.3.2.2 Analytics

We expect the analytics to be interested in the download events in the wild.

They can utilize the log to find out suspicious behaviors (e.g., malware distribution).

The analytics can apply various methods for identifying the malicious software de-

livery. For example, an analytic can construct download graphs from the log, extract

features, and train a classifier using their ground truth. Once the analytic detect

malware, the hash of the binary will be reported to the log and be recorded with

the report timestamp.

• Malware definition It is a well-known phenomenon that AV engines reach into

different conclusions, i.e., malware or not, to reflect this in our analysis, we assume

the malicious download event detection could vary among analytics. By allowing

analytics to have different conclusions for a binary, we expect to observe how it

affects the users.
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5.3.2.3 Software Publishers

If the download transparency becomes prominent among their customer base,

we believe the software publishers will have enough motivation to announce their

distribution–the edges (i.e., a software updater will download a payload) to the

log. Because not doing so might block the distribution at certain customers with

download policy that blocks unseen downloads (e.g., DR and DRN). We model the

aggressiveness of the announcement from only the edges of very benign publishers

(i.e., a publisher in NSRL) to the edges of no detection history. We note that

we only allow announcements for the downloaders that the publisher owns. The

ownership can be proved by letting the publishers sign their announcement with

their code-signing private key and append the signature to the edge. We discuss

how this property can mitigate a part of the poisoning attacks in Chapter 5.7.2.

In result, we introduce three different levels of an announcement: report edges

where (1) the downloader is in NSRL (PN), (2) the downloader is signed (PS),

and (3) the downloader is not malicious (PND). In case of generic downloaders,

such as browsers or download managers, which cannot aggregate all the possible

distributions in advance, we allow an edge submission stating the payload as ‘*’

indicating the downloader can distribute any payload.

5.3.2.4 Monitors

Since we assume that the analytics’ role is to identify malicious download

activities, what remains for the monitors’ role is to check if the log is operating
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correctly. The monitor should do this by periodically downloading all the new

download events that have been added to the log and checking the consistency.

5.4 Empirical Analysis of the Downloads

5.4.1 Data Summary

Download Activities. We utilize a large data set of download events from the

downloader graph study in Chapter 4.1. We reconstructed these download events

from observations on end hosts. In the previous study, we filtered out the events

associated with browsers. We do not follow that filtering. Instead, we drop the

hosts with less than 100 download records. From this data, we utilize the unique

identifier of the machine, SHA2 hash of the downloader and the downloaded file

(payload), the source domain of the download, and the timestamp of the event.

Besides, we extract the information of the code signing certificates to simulate the

edge announcements by the software publishers. Table 5.1 summarizes the data.

Ground Truth. We query all the hashes in the download activity dataset, which

are above certain prevalence (i.e., number of machines a file appeared on), to Virus-

Total. In result, we are able to retrieve reports on 909,281 binaries from VirusTotal.

Since we want to focus on malware and exclude gray-ware such as potentially

unwanted programs (PUP), we use the AVClass [95] to filter out the PUPs. The

AVClass tool, when provided with the VirusTotal reports, returns whether a binary

is a PUP or not with the representative labels. If the AVClass says a binary is a PUP,

then we filter it out from the malware ground truth. For the remaining malware,
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Download Activites

Download events 19.5 million
Total payloads 12.4 million
Domains accessed 64,545
Total hosts 48,709
NSRL downloaders 22,962
Signed downloaders 50,432
Not malicious downloaders 110,689

Ground Truth

At least 1 detection 104,788
Above 25% 5,541
Above 50% 3,261
Above 75% 1,619
Benign 802,780

Table 5.1: Summary of the dataset.

we keep the first submission timestamp to VirusTotal (tvt) and the number of total

detection among the total AV engines utilized for the scanning (rmal).

We use the results from VirusTotal to label benign files. We consider benign

all the executables which VirusTotal report shows zero detection. We also list the

resulting ground truth on Table 5.1 with the summary of the download activities.

5.4.2 Labeling the Edges with the Downloaders

We label the edges based on their downloaders to allow the edge announcement

from the software publishers as described in Chapter 5.3.2.3 The first two categories

e.g., NSRL and Signed require code-signing certificate information. We check the

code-signing certificate information to label the samples to the software publisher

groups. So, how do we collect the certificate information? For the binaries with

VirusToal reports, we check the sigcheck field to see if the verified field indicates
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valid or expired or revoked and to retrieve the publisher name. Those do not have

VirusTotal report has to rely on the information from WINE: if it has both issuer and

subject information, then it is considered to have a certificate. We also collect the

name of the publisher. To identify the downloaders belonging to the Not malicious

category, we utilize binary information from both VirusTotal and WINE. Once we

obtain the necessary certificate information, we place the samples to the software

publisher groups based on the following methods.

• NSRL: We extract the list of publishers from the NSRL RDS dataset [42]. The

version of the RDS is at 2.52, released in April 2015. We utilize the python

libraries NLTK [128] and Cleanco [129] to match the publisher names between the

NSRL list and the code-signing certificates. The steps taken are: (1) clean the

publisher name (i.e., remove legal terms and punctuation), (2) tokenize, and (3)

compare the similarity.

• Signed: We assign this label to the binaries that have a certificate according to

VirusTotal and WINE.

• Not malicious: We define a downloader to be not malicious if it has no information

in VirusTotal or if it has less than 5% rmal. We set the threshold for taking into

account the false positives existing in the AV engines. We explore the downloaders

that have at least one detection on VirusTotal and the number of benign payloads

they distribute depicted in Figure 5.2. We observe that more than 80% of the

benign payloads, which has been distributed by the flagged downloaders, are

delivered by downloaders with rmal < 5%.
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Figure 5.2: AV false positive decision: detection rate of the downloaders and the
number of unique benign payloads they distribute.

Note that an edge can belong to multiple groups.

5.4.3 Characteristics of the Download Events (Edges)

We can illustrate a download as a directed edge of (downloader
attr−−→ payload),

which implies downloader delivered a payload. The edge can also have attributes,

which describes the user who saw the edge, the source domain name where the

payload originated from, and the time of the download. For this chapter, we ignore

the attributes and take the unique combination of downloader and payload only, to

investigate the properties of the edges. We illustrate the distribution of the number

of edges per user in Figure 5.3. It shows a long-tail distribution, where a few numbers

of users have more than 20,000 edges. The average number of edges is 349, and the

median is 143.

Result of the edge labeling. Using the methods in Chapter 5.4.2, we attempt
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to assign the publisher grouping to the edges and label them by their downloader

and payload. We conduct the publisher grouping by using the information of the

downloader. In result, the download events are assigned to the publisher groups and

labeled by the downloader and payload as depicted in Table 5.2.

Existing poison instances. A majority of the download events in the dataset

resulted from the benign downloaders and delivered non-malicious payloads (i.e.,

benign or has no VT record). However, we still observe a portion of download

events that cannot be neglected, associated with malicious binaries. We revisit the

findings regarding malware delivery shared in prior work [4, 23].

• Abusive certificates: Among 173,317 code-signed binaries labeled as NSRL, we ob-

serve 8,803 binaries at least one AV engine flagged it as malicious and not labeled

as PUP. We investigate the ones with more than 25% detection rate. The most

obvious and common type of abuse we see is the impersonation. These abusive

certificates exploit the code-signing PKI in two ways: (1) request a certificate with

a similar naming with a legitimate publisher, and (2) use a different CA from the

one which the legitimate publisher uses. The publisher names are polymorphed by

adding or removing the legal terms, for instance, Adobe Systems Incorporated

poly−−→ Adobe Systems and Microsoft
ploy−−→ Microsoft Corporation. Moreover,

the abusive Microsoft certificate was issued by Ascertia Public CA whereas the

other Microsoft certificates were from GlobalSign.

• Benign downloaders as malware distribution channel: We observe about 107,600

download events where benign downloaders deliver malicious binaries. For 50,773
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Label by downloader/payload
m/m m/b m/n b/m b/b b/n n/m n/b n/n

NSRL 6.5K 23K 47K 51.3K 467.6K 5.6M 563 10K 3.4K
Publisher Signed 12.9K 57.9K 54.7K 60.6K 544.2K 5.6M 3.6K 24.7K 13.2K

Group Not malicious 18.2K 112K 525.3K 108K 1.3M 11.1M 15.7K 136.8K 67.5K
None 2.4K 8.1K 3.1K 0 0 0 839 86 18

Table 5.2: Download event labeling: m,b,n stands for malicious (has at least one
detection), benign, and no ground truth.

downloads, the downloaders are code-signed by the NSRL publisher. There are

3,090 NSRL downloaders involved, and they are the generic downloaders (e.g.,

browsers) that are most frequently abused. We see instant messengers such as

Skype and the remote control products like TeamViewer on the top of the list.

5.5 Experimental Methods

5.5.1 Evaluation Metrics

As we discussed in Chapter 5.3.2, we expect that the users will exploit the log

under different policies in the submission of the download information, the decision
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Label by downloader/payload
m/m m/b m/n b/m b/b b/n n/m n/b n/n

NSRL 256 21.9K 47.2K 44.4K 467.6K 5.6M 5 10K 3.4K
Publisher Signed 588 47.4K 53.1K 47.3K 544.2K 5.6M 3.6K 24.7K 13.2K

Group Not malicious 806 101.5K 523.7K 80.3K 1.3M 11.1M 989 136.8K 67.5K
None 19.7K 18.7K 4.7K 27.8K 0 0 14.8K 0 0

Table 5.3: Download event labeling with defense assumptions: m,b,n stands for
malicious (has at least one detection), benign, and no ground truth.

on which information to check at the time of download, and the tolerance in mali-

cious reports. Here we present the evaluation metrics that will help us capture how

much the users can benefit from the log under different policy settings.

Propagation block performance. The first metric aims to measure how effective

the policies are regarding the blockage of incoming malware. We use the Matthews

correlation coefficient (MCC)2, which takes into account of both the true/false pos-

itives and negatives. The positive and negative corresponds to malware and benign,

respectively. We chose this metric over the F1 score, which is another widely used

metric that considers the precision and recall of the positive since the MCC is known

to give a balanced measure in an imbalanced positive/negative dataset. The MCC

ranges from -1 to +1, where +1 indicates perfect performance.

Early propagation block. Besides, we also evaluate how early we can block the

malware propagation that is previously unknown. We define “early propagation

block” as “it can block unknown malicious executables before their first submission

to VirusTotal”. Based on these definitions, we estimate the propagation block lead

time introduced by exploiting the download transparency log.

Performance of the detector. When we utilize the downloader graph detector,

2(TP ∗ TN − FP ∗ FN)/
√

(P ) ∗ (TP + FN) ∗ (TN + FP ) ∗ (N)
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we measure how effective a malware is detected. The two above metrics are still

employed, but instead of evaluating the “block”, we focus on “detection”. In other

words, we evaluate the detection performance with MCC and the early detection

(i.e., it can detect unknown malicious binaries before their first submission to VT).

5.5.2 Measuring the Benefit of Download Transparency

We measure the benefit of introducing download transparency in security un-

der different policies. We evaluate the performance two ways, which includes, (1) a

simulation where we assign a single policy to every user and (2) simulation with a

single policy but with the downloader graph detector.

5.5.2.1 Simulating the Agents

We first describe how we populate information for the agents.

Users. We assign a set of policies (download policy, submission policy, enforcement

policy) to each user. A user will decide weather download a binary or submit the

download record to the log based on the given policy. For example, if a user with

policy (DRN, SRE, 25) will check both the download record log and the detection

log to see if the download has been reported before (DRN policy) and if not more

than 25% of the analytics labeled the payload as malicious (25 policy). Once the

user accepts the download based on those conditions, now the user reports the

download edge to the download record log since the edge has been reported before

(SRE policy).
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Analytics. We use the information from VirusTotal to simulate the analytics. In

case we have a scanning report of a binary A from VirusTotal, which is labeled as

malware by 25 AV engines out of 62 and is submitted on 01 July 2013, then we

populate this information to the detection log as 25 AV engines out of 62 reported

the binary as malicious at 01 July 2013.

Software publishers. As mentioned in Chapter 5.3.2.3, the software publishers

announce their edges to the download activity log before the distribution.

5.5.2.2 Simulations

Here, we describe the detail of the three simulations mentioned at the begin-

ning of the chapter. We expect to observe the result of having different policies:

• Effect of download policy. We measure how much can the users benefit from uti-

lizing the information shared through transparency. Specifically, we focus on how

the download policy can help to prevent the propagation of malicious software.

• Effect of submission policy. The download transparency is built on top of the

participation from the users, which implies the benefits the users can get also

depends on the submissions. Throughout the experiment, we will observe the

how the submission can affect the block performance.

• Effect of tolerance in malware (enforcement policy). In our model, we let not

only the analytics but also the users to decide what they think is harmful to

them. These difference in the tolerance can affect both the submission and the

propagation block.
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• Effect of edge announcement. The download policy can be though as a simple

unsupervised decision with two features: is the edge is in the download record

log and is the payload in the detection log, which implies the chance of having

false positives (i.e., download of a benign file gets blocked). Therefore, we allow

the software publishers to announce their distribution beforehand, which can act

similar to a white-list. We will investigate the importance of the edge announce-

ment for reducing the false positive, which will motivate the software publishers

for releasing their distribution.

Full policy deployment. This simulation will have a set of policy assigned to

all users. The control parameters will, therefore, be the policy set and the edge

announcement (download policy, submission policy, enforcement policy, edge an-

nouncement). We exclude the case where submission policy is “download every-

thing” since we cannot measure the propagation block. Therefore, we have 144

simulations with two output metrics, in total 288 data points.

Utilizing the downloader graph detector. We train a random-forest classifier

using influence graphs introduced in prior work [23]. We utilize the same random-

forest classifier with the features including graph structural features, source URL

features, graph growth features, and globally aggregated features. We implement

the detector in an online-fashion, which considers of the frequency of detection (i.e.,

run the classifier on the unknown influence graphs) and the periodicity of the model

retraining (i.e., update the model with the new labeled influence graphs). The detail

of how we manage the detector is discussed in Chapter 5.5.3.
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With and without adversary influence. We experiment with two different

conditions. At first, we reduce the poison instances discussed in Chapter 5.4.3

and run the simulations. The details on the reduction are stated in Chapter 5.5.4.

We then utilize the real-world data that contains poison instances introduced in

Chapter 5.4.3 and examine the effect.

5.5.3 Online Detection of Malicious Downloader Graphs

The prior work [23] introduced the downloader graph detection algorithm in

offline mode; and conducted both the training and the testing on the graphs con-

structed with the entire five years of data. In this paper, we utilize the detection

algorithm in online mode, where the graph keeps growing, and the unknown graphs

are added as time goes. We allow this chapter to illustrate some parameter deci-

sions in adapting to the online mode and other specifications of the online simulation

including the graph labeling.

Classifier. We use the random forest classifier with Nt = 200, Nf = sqrt (# of

features), Nd = 20, Ns = 10, and Nl = 4. We also adjust the weight of the samples

based on their class (e.g., malicious or benign) frequencies. Each of these parameters

stands for the number of decision trees, the number of features per decision trees,

the depth of the decision tree, the minimum samples for a split in the tree, and the

minimum samples in the leaf of the tree, respectively. We decide the parameter by

testing the performance of the classifier on the training set of the graphs built before

2013 and the graphs generated in the year 2013 as the testing set. We attempted
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a 1000 random set of parameters and selected the set of parameters with the best

performance.

Detection frequency. How frequently should the analytics perform the detection?

The algorithm consists of features that depend on the time. For example, the

globally aggregated features might require some time to populate in order to reach

a sufficient amount for discrimination. However, if we perform the detection in a

too long interval, it will result in late detection. Also, the graph growth features and

graph structure features need the graphs to mature enough. Therefore, we try to

find the best and shortest detection frequency. We try different frequency (3 days,

7 days, 14 days, 30 days, and 90 days) and evaluate the MCC and early detection.

Considering the running time of each simulation, the detection performance, and the

early detection rate, we decided to use the 30-day interval. Note that, we considered

the running time since this is a simulation of 5 years of data. For practical use, we

can use a shorter interval for better performance.

Retrain frequency. We retrain the classifier with the updated labels from the

previous detection. For simplicity of the simulation, we set the retrain interval

identical to that of the detection interval (30 days). Therefore, every time after we

perform detection on the unknown graphs, the resulting labeled graphs are added

to the ground truth and used as the training set. We utilize the retrained model for

the next detection.

Online detection. We simulate the online detection with the above settings. Since

we need a trained model to initiate the simulation, we construct the influence graphs
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from the download events before the year 2013 and label them with the analytic

reports also until the end of the year 2012. Note that, we do not report these edges

to the log. We only use them to generate the influence graphs. From the year

2013, users report and block the downloads based on the assigned policies. For

the simplicity of the experiment, we assume all the analytics use the same model

with the same ground truth. Therefore, the result from the downloader graph

detector is interpreted as 100% rmal. We illustrate the specifics of the method like

the following:

• Labeling the influence graphs. We first have to define the node as malicious or

benign or unknown. As we discovered that binaries with less than 5% detection

rate might be false positives in Chapter 5.4.2, we say a node is malicious if it has

rmal ≥ 5%. The node is benign if it has zero detection from VirusTotal. Note

that when we consider no adversary influence, we add the downloaders of the

announced edges to the benign ground truth. The rest are considered unknown.

After we label the nodes, we label the influence graphs. We label the influence

graphs as malicious, benign, mixed, and unknown. An influence graph that has

a malicious node and the root is not benign is labeled as malicious. If the root is

benign and none of the nodes are malicious, then it is labeled as benign. In case

the root is benign but has a malicious node in the graph, we label it as mixed and

ignore at training. The rest of the influence graphs, which has no information

about the nodes in the graph, are labeled as unknown and used at detection.

• Dealing with the detections. We apply the trained classifier to the unknown influ-
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ence graphs and label it as malicious or benign. We report all the nodes in the

malicious influence graphs to the detection log with the timestamp. We add these

nodes to the malware ground truth for the next training. In case of the benign

detection, we only add the root node to the ground truth. Once we complete the

report and the ground truth update, we retrain the classifier with the new labels.

For the online detector, we only apply variation to the download policy and

submission policy. Since we only rely on the single detector, we cannot manipulate

the enforcement policy. In case of the edge announcement, we expect the implica-

tion is similar (i.e., the change in the number of ground truth) with the previous

simulation in Chapter 5.6.1.1.

5.5.4 Reducing the Poison Instances

Since the original dataset contains poison instances as described in Chap-

ter 5.4.3, we have to exclude these edges from being announced when we simulate

the case without adversary influence. We assume the situation where the adversary

decided not to submit information regarding their distribution to the log, consid-

ering the risk of being revealed to the public early. Therefore, we will not see the

distributions utilizing abusive certificates in the list of announcements. For the mal-

ware delivered through benign downloaders, we eliminate ones from benign software

updater, due to the same reason. However, we leave the downloads via generic down-

loaders. We apply a heuristic to determine generic downloaders by looking at their

number of payloads they deliver and the domains they access. We say a downloader
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is generic if it utilizes more than or equal to 5 distinct effective domain names to

deliver payloads and the number of unique payloads distributed by a single effective

domain name should be between 0.5 and 2. We made this decision based on the

intuition that it will have a more significant number of domains and less number of

dedicated payload hosting compared to a software update. As a result, we acquire

a refined edge labeling for the software publisher edge announcement, depicted on

Table 5.3.

5.6 Experimental Results

By performing a series of simulations, we want to answer to the main research

question of the paper “the benefit of transparency in security”. Based on the meth-

ods we present in Chapter 5.5.2, we perform a quantitative evaluation of the benefit

of the Download Transparency from the perspective of obstructing the spread of

malware. We begin with the result of the download events with reduced adversarial

instances. The result consists of simulations with two different scenarios assuming

(1) full deployment of the policies and (2) online downloader graph detector with

full policy deployment. We then explore the effect of the poison instances.

5.6.1 Measuring the Benefit

We present the benefit of the Download Transparency in terms of blocking

the malware propagation associated with the realistic policies introduced in Chap-

ter 5.3.2. For the experiments in this chapter, we use the download events with the
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MCC Early block rate

Policy t P >‖t‖ t P >‖t‖
Download -12.14 0.000 17.98 0.000
Submission 0.03 0.976 -0.29 0.771
Enforcement 0.61 0.541 -6.89 0.000
Announcement 4.35 0.000 -4.25 0.000

Table 5.4: Regression result of full policy deployment.

poison instances reduced as illustrated in Chapter 5.5.4. We initiate the simulation

with the full policy deployment, to take a look at the pure effect of each policy

on disturbing the malware delivery. We then present the results with the online

downloader graph detector. We note that the target of evaluation differs from the

downloader graph analytic in Chapter 4.1. In the previous work, we evaluated the

detection performance based on the graph or the root downloader. In other words,

if the root of the influence graph is malicious, it is a true positive detection. On the

other hand, for the current evaluation, we target the detection of nodes, i.e., files

in the influence graph. Therefore, the performance might differ from the previous

work. The detail of the methods can be referred from Chapter 5.5.2.

5.6.1.1 Full Policy Deployment

We present the result of the initial experiment, which we conduct assuming

the same policy applies to all the users. As stated in Chapter 5.5.2.2, we explore the

correlation of each policy, when solely applied, for disturbing the malware distribu-

tion. We interpret the result as follows. First, we perform a regression between the

controlled parameters (policies) and the output (the propagation block performance
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as MCC and the early block rate). Then, we present the result of the regression

with the t value and P value. We first define the null hypothesis as the parameter

does not affect the output. We reject the null hypothesis when we have a low P

value (less than 0.05). In other words, the parameter has a significant effect on

the output. The t value is presented to show if the estimated trend is positive or

negative. We depict the result of the regression at Table 5.4.

Propagation block performance. The performance of the propagation block is

heavily dependent on the download policy. We present the result in Figure 5.4(a).

When we utilize the download activity log by making download decisions, the perfor-

mance decreases due to (1) the decrease in true positive and (2) the increase in false

positive. The decrease in true positive is due to the malware delivered by benign

generic downloaders, which cannot be blocked by the ‘DR’ policy. The next issue

results from the malicious binaries that drop benign files. The false positive is sim-

ilar for all download policies when the threshold for enforcement is low (rmal > 0).

However, the false positive gets significantly lower when we rely on the analytic

result log when rmal is set higher than 0. The result implies a large portion of down-

loaders, which are detected as malicious and distributing benign files, may be false

positives of the AV engines. Which also suggests that in the ideal scenario, where

all the benign publishers announce their distribution to the log, the actual block-

ing performance will be higher for the downloader policies that check the activity

log. The result of the regression supports the positive effect of the announcement.

The announcement has a low p-value, which means the policy has strong statistical
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Figure 5.4: Performance and regression of full-policy deployment: without adversary
(a) propagation block performance and (b) early propagation block rate, and with
adversary (c) propagation block performance and (d) early propagation block rate.

meaning on the performance; it also shows a positive trend on the performance.

Early propagation block. The download policy strongly contributes to the early

propagation block as well in a positive trend. The result is depicted in Figure 5.4(b).

Employing the download activity log at making download decisions gives about

63.75% early detection rate at best, whereas only 10% or less malware is blocked

earlier when only checking the analytic result log. The enforcement and announce-

ment explain the result well in a negative trend, which may imply the effort of the

security community for detecting highly malicious samples. The early detection rate

decreases for the announcement due to the increased number of malware from the

generic downloaders.
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Figure 5.5: Performance of the online downloader graph detector: (a) detection per-
formance v.s. download policy, (b) detection performance v.s. submission policy, (c)
early detection rate v.s. download policy, and (d) early detection rate v.s. submis-
sion policy (blue circle for without adversary and red triangle for with adversary).

5.6.1.2 Online Downloader Graph Detector

We depict the performance of the online detector in Fig. 5.5. Note that we

present results of both with and without adversarial influence in the same figure. We

mark the current result (without adversarial influence) with blue circles. Both the

detection performance and early detection show minor change due to the download

policy. We get zero positive detection when we apply submission policy ‘SR’ (i.e.,

submit only reported edges). Since most of the malicious downloads get blocked

and only reported edges are submitted, not enough malicious graphs remain for

detection. Besides this single case, submission policy also shows the weak effect to

the detection performance.
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5.6.1.3 Summary of the Result

We can state the takeaway of the result can as: (1) Download Transparency

can help to block a significant part of malware distribution before it is flagged

as malicious. However, it introduces false positives and (2) the aggressive edge

announcement can help to reduce the false positive. The submission policy shows no

significant effect compared to the other policies. One reason could be, the high ratio

of singletons. In the real-world download record dataset we use for this experiment,

only 9% (1.15 million out of 12.4 million) of the binaries have an appearance more

than once. In other words, 91% of the binaries had no chance of being utilized as

regardless of the information has been shared or not. Which also could be one of

the factors that decreased the performance by the download policies relying on the

download activity log.

We can interpret the result from the online detector as the policies seem to

have no significant effect on the detection performance when we have a trustable

ground truth.

5.6.2 Impact of the Adversarial Influence

We now perform the same simulation in Chapter 5.6.1, this time with adver-

sarial influence. We present the results and try to analyze the impact of the poison

instances on the performance.

Impact to the policies. We begin with the simulation with the full policy de-

ployment. We present the regression result on Table 5.5. The trend is similar to
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MCC Early block rate

Policy t P >‖t‖ t P >‖t‖
Download -10.91 0.000 11.41 0.000
Submission 0.04 0.972 -0.19 0.851
Enforcement 1.97 0.050 -3.31 0.001
Announcement 3.33 0.001 -10.60 0.000

Table 5.5: Regression result of full policy deployment with adversary influence.

the result of without adversarial influence; however, we can see the difference in the

t value. Since the download policy fits the regression best among the other policies

and we expect it will be most affected by the adversarial influence, we try to examine

the impact by comparing the results of the download policy. For the comparison,

we depict the result of the adversarial case in Figure 5.4(c),(d). We can see a slight

decrease in the overall performance in both MCC and early block rate. Also, we

observe several points with a huge decrease in the performance of download policies

that consider the download activity logs. Which can be explained by the existence

of the poisonous instances in the announcement of NSRL or Signed edges, which

caused high false negatives (i.e., malware not blocked). However, not all of the data

points are affected, since the detection rate these poisonous samples reside is mostly

below 75% and the ‘Not malicious’ announcement is less affected by the types of

poisoning we have.

Impact to the online downloader graph detector. As we mentioned in Chap-

ter 5.6.1.2, we depict the performance of the online detector in Fig. 5.5 and we use

the red triangles to mark the result with adversarial influence. Similar with the case

without adversarial influence, the detection performance seems not to be affected
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significantly by the download policy and even by the submission policy. However,

we see a considerable drop in the early detection rate when the submission policy is

‘SU’ (i.e., submit only unknown edges). The reason is the malware included in the

announcement cannot be detected since they are not reported.

The overall detection performance decrease by about 0.15. It is because when

we have better ground truth for the case of without poison instances. However, the

early detection rate is much higher (about 30%). We can provide two explanation:

(1) we allow more malware to get downloaded in the current simulation, which

also provides a better opportunity for the detector to detect more malware and (2)

malware involved in these poisonous edges remain undetected for a long time in the

wild.

5.7 Adversary Influences and Defenses

Due to the nature of a public platform, the Download Transparency is also

inevitable from adversary influence. We illustrate the possible attacks against the

Download Transparency and discuss possible countermeasures with assumptions.

We set the potential targets of these adversaries as (1) the propagation block spring

from the download policy and (2) the machine learning models based on preva-

lence features like the downloader graph classifier. For the prevalence feature, we

assume the model tends to detect as malicious if it has low prevalence as reported

by prior work [23]. Then we discuss what benefits can be introduced by Download

Transparency with these assumptions.
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5.7.1 Evasion Attack

We place a situation where the adversaries already know how the propaga-

tion is blocked by the download policies and about the prevalence features. Under

the evasion attack scenario, the goal of the adversary is to make its malware suc-

cessfully land on the victim without being blocked. A large part of the evasion

attacks against the target defense mechanisms must accompany with the poisoning

attempts. For example, to bypass the download policy, the adversary should an-

nounce their distribution to the log or to fool the prevalence features fake records to

increase the prevalence of the malware should be submitted to the log, which all can

be considered as a type of poisoning attacks although the purpose is on evading the

propagation block. Therefore, we discuss in details about the attacks above later

where we talk about the poisoning attacks. A pure evasion strategy the attacker can

come up with is to distribute the malware through generic downloaders exploiting

the fact that it does not need to specify the payload. However, it still exposes the

downloader, which is also a valuable resource for the adversaries, to the security

community and provides the opportunity to identify the threat of these download-

ers and come up with the countermeasure earlier. They can use the benign generic

downloaders to distribute malware. The log itself cannot provide a defense against

such evasion attempt. However, we claim that benign generic downloaders such as

browsers have already been widely used as an attack vector and introducing the

Download Transparency does not deteriorate the current state. Instead, the Down-

load Transparency provides an opportunity for identifying the distribution earlier
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with the help of users who submit the download records to the log.

5.7.2 Poisoning Attack

As we already discussed while exploring the evasion attacks in Chapter 5.7.1,

the poisoning attack in the Download Transparency indicates attempts to make

malware bypass the block by submitting reports that poisons the platform. The

poisoning attack can be achieved in high-level as follows: poisonous edge submission

(1) to mimic the benign distribution or (2) to pollute the benign distributions.

Mimic the benign distribution. The attacker who knows the features that

block the malware propagation (i.e., block unseen edge or block binaries within a

low prevalence download graph), can take two strategies.

First, as the benign software publishers announce their edges to the trans-

parency log, the adversary can also announce the edges in advance. It may help

the initial propagation however it implies exposing the malware and providing the

opportunity to the security community to identify the threat and come up with

the countermeasure earlier. In case the malware is signed, which is a well-known

technique the malware writers use to bypass the detection, it even exposes the cer-

tificate to the risk of revocation. We have observed in the study of code-signing

abuse [4] that obtaining the code-signing certificates are challenging. However, by

introducing the Download Transparency with the “download based on the trans-

parency log” policy, the malicious distributor has to append the information to the

log, revealing its information. Such behavior is beneficial to the security community
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for detecting abusive/compromised certificates and initiates a prompt and efficient

revocation, which implies the Download Transparency combined with the existing

security mechanisms such as code-signing could let malware writers face a dilemma

of: the increase in the cost of mimicking the benign standards.

Now, we can imagine about an attacker trying to exploit the known features

such as the prevalence by submitting a large number of download records correspond-

ing to its malware distribution. We may adopt a reputation system for the users

and the downloaders and combine with the ideas from the collaborative platforms

such as Wikipedia [130]. For instance, we can provide an alert for the submission

volume increase for downloaders with low reputation. The security analytics may

investigate these surges and report the poisoning attempts. We may also limit the

attacker’s ability by placing a delay on the reports for unknown downloaders and a

delay for users with low reputation, which will require the attackers spend resources

to build up the reputation.

Pollute the benign distribution. Attackers may also try to damage the repu-

tation of the benign distribution by submitting false information to the log. For

example, an attacker with malicious intent could submit information such as down-

loader A downloads C (which is not true) or a malicious downloader B is signed by a

particular key (which is not true either).We can mitigate such attacks by introducing

a cryptographic guarantee at the announcement. By allowing the publishers to sign

their software distribution record with their code-signing private key and append

the signature to the announcement (e.g., dlr, pld, Sig(dlr,pld)), the ownership can
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be proved with the code-signing PKI. Either the log can only accept the record with

a valid signature, or we can detect the submitted fake information by verifying the

signature.

5.8 Discussion

5.8.1 Complement of the Code Signing PKI

We observed the breaches of trust in code-signing PKI and the failure of the

revocation in Chapter 3. We also identified that the primary cause of these weak-

nesses in the code-signing PKI is due to the opaque ecosystem, where it is hard to

identify what files are signed by the code-signing key. We believe the Download

Transparency can complement the code-signing PKI by introducing transparency

to the files carrying the valid digital signatures. As we discussed in Chapter 5.7.2,

we can allow the software distribution announcements from the publishers 5.3.2.3 to

append a signature of the downloader–payload pair generated with the code-signing

key of the publisher. Note that the code-signing key should be the same as the one

used to sign the downloader, which implies the owner of the downloader submits

the record. To allow the announcement of the signed payloads, which does not

have a download functionality, the publisher may submit a digitally signed record

of payload–none.

Such software distribution announcements provide an additional property to

the code-signing PKI, which is the publisher is aware of the signed binary. Moreover,

since the information of the digitally signed binaries is recorded in the public log, we
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can identify the abuse and revoke the certificate effectively when a breach happens

(e.g., malware signed with the compromised code-signing key).

5.8.2 Privacy Concerns

Although we can introduce anonymization schemes to users, such as hashing

the user’s identification, an adversary may still be able to utilize the information in

the log to determine the user’s identity. For example, (1) the user’s location can

be identified by the submission timestamp or due to the software localization or (2)

the user’s occupation can be referred by the software he/she has. Moreover, the

adversary might utilize the information to find the vulnerable population based on

the software they have or the domains they visit and plan the attack. A possible

solution is to adopt differential privacy [131] to the data submission from the users,

so that the log can still provide the aggregated information such as the prevalence

of a binary while preserving the privacy.

Blocking user submission. Another option might be not allowing submission

from users. The evaluation of the policies in Chapter 5.6 suggest the contribution

from the submission policies are not critical compared to the other policies such as

the download policy or the announcement. Therefore, a valid option could be only

utilizing the log where the software publishers make their distribution transparent;

still, the users can benefit from the log by blocking the propagation of malware in

its early stage. However, the detectors that utilize user telemetry data such as the

downloader graph will be hard to be deployed.
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Chapter 6: Conclusion

In this dissertation, we conducted studies on malware distribution. We take

the approach in three directions. We begin with several measurement studies to

understand the malware distribution, explicitly focusing on the digitally signed mal-

ware. We then develop a couple of algorithms for detecting malware distribution and

share the insights of malware delivery. Lastly, we propose a transparency platform

for software distribution that can prevent malware propagation.

Understanding malware distribution. The measurements provided unique in-

sights to understand the malware delivery. It showed that various types of malware

often infiltrate benign software ecosystems to be stealthy. The finding motivated us

to build the detection algorithm based on sub-graphs rooted in each downloader,

rather than the full downloader graph, which we discussed in Chapter 4.1. We also

examined the abuse in code signing and the effectiveness of the revocation process.

We identified various abuse that exploited the weakness in the code-signing PKI

and revealed that the revocation is not done correctly in many cases. These is-

sues are due to the challenges in monitoring the code-signing PKI ecosystem. The

opaque ecosystem is making the responsible actors underestimate the security im-

plications that result from the mismanagement. This lesson extends to the study
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on transparency, which is discussed in Chapter 5.

Detecting malware distribution. We developed two detection algorithms for

malware distribution. In the first study, we proposed abstracts defined as the down-

loader graphs and the influence graphs, which captures the relationships between

downloaders and the payloads. By analyzing the downloader graphs in the wild,

we designed features that can differentiate between the malicious and benign down-

load activity. The classifier builds upon these features show their effectiveness in

terms of precisely discriminating malicious from benign, and introducing a way to

detect malware distribution earlier than the existing anti-virus systems. Then we

introduce Beewolf, a system for systematically detecting silent delivery campaigns.

With Beewolf, we identify the silent delivery campaigns conducted in the year of

2013. These campaigns provide novel findings regarding the malware distribution,

such as the overlap between the PUP and malware delivery ecosystems and the busi-

ness relationships among PPI providers, which may remain hidden. The studies on

download graph analytics and lockstep detection highlight the importance of global

analysis in detecting malicious software distribution. A transparency platform for

download events could be an excellent environment to conduct such global analysis.

Blocking malware distribution. In the last part of the dissertation, we proposed

Download Transparency, a platform where we can publicize software distribution

with guarantees of integrity. We studied the benefits by introducing such platform

to the software distribution ecosystem. The first possible benefit could be disturbing

malware distribution. To measure the performance, we designed the participants and
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the policies they might take when utilizing the platform. We then simulate different

policies with five years of download events and measure the block performance. The

results suggest that the Download Transparency can help to block unknown malware

distribution in advance. However, it comes with false positive due to the corruptive

nature of the software distribution (e.g., benign software distributing malware and

distributed by malware). We can reduce the false positives by having benign software

publishers announce their distribution in advance to the log. We also investigated

the effect of a machine learning system such as the malicious downloader graph

detector. The detection performance did not show a significant change depending

on the policies. We also investigated the effect of the adversarial influences and

proposed possible mitigation for different types of attacks. For example, we can

enforce the digital signatures to be submitted along with the software distribution

announcement. These mitigations suggest the potential of Download Transparency

as the complement of code signing PKI. Such enforcement disturbs the malware

writers mimicking the benign software distribution such as utilizing code signing

certificates. They now have to expect their digitally signed malware have a shorter

validity, which implies the cost of the attack will increase to achieve the similar

impact. It adds another benefit of introducing transparency.

6.1 Future Directions

In this section, we discuss some potential topics that could extend our study.
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6.1.1 Improvements in the Code Signing PKI

The findings in Chapter 3 suggest the current revocation systems based on

CRLs and OCSP are facing several problems including (1) revocation delay, (2)

inaccurate revocation dates, (3) availability of revocation information, and (4) in-

validated benign files by the revocation. We describe several necessary properties

for an effective code signing PKI and how a new design could address the current

problems in revocation.

Design goals. We desire the following properties:

• Publicize certificate issuing. The code signing certificate issuing should be open

to the public to prevent certificate issuance for a publisher without the publishers

knowing it.

• Publicize signed binaries. The new system should help the owner of the certificates

to monitor which binaries are signed by their certificates.

• Pin-pointed revocation. The proposed system should support the targeted invali-

dation for a signing binary or targeted whitelisting to revoke all except a specific

subset so that we can set a revocation date with a finely controlled impact on

benign files.

• Better availability. The system should have better availability and better failure

modes on the client that do not negatively impact users but allow the system to

work as intended.

One possible direction could be introducing transparency in the code sign-

ing certificates as in the TLS certificate transparency or as we discussed in Chap-
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ter 5.8.1, we can use the software distribution transparency such as the Download

Transparency as a way to monitor the digitally signed binaries.

6.1.2 Improvements in the Downloader Graph Detector

Refine the labeling. We train the downloader graph classifier with the labeling

method based on the root downloader of the influence graph. The two different eval-

uations in Chapter 4.1 and Chapter 5, which used the downloader and the payload

as the target, respectively, suggests that the performance significantly decreases in

the latter case. The difference in the performance might be due to the difference in

the conditions such as 1) including the downloads from the browsers, 2) distinguish-

ing PUP from malware, and 3) online-learning. However, the most significant factor

is the chaotic nature of download graphs, i.e., malware download benign software

and benign downloaders deliver malware. Therefore, it is critical to come up with a

better method for labeling the graphs.

Cross-machine influence graph features. We explored the influence graphs

across different hosts. There we employed globally aggregated features and observed

the high discrimination power of them. However, these cross-machine features fo-

cused only on the nodes, and we did not pay enough attention to influence graphs.

The influence graphs that share the same root downloader or that has a similar

pattern might be able to provide us with essential insights of malware distribution.

For example, the different shape among the influence graphs with the same root

may indicate a failure/success of some delivery mechanism or a targeted distribu-
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tion strategy. A feature that captures such information might be useful in detecting

graphs of malicious distribution. Moreover, studying the graph patterns may reveal

a way to come up with an unsupervised algorithm for identifying specific distribution

strategies, such as pay-per-install or botnets.

Differential privacy. We relied on a centralized setting, where all the download

event information is available either transparently or not. However, what if there

is no such environment and all the graphs are kept on each users machine? To

make users willing to share such information, we need a method that can guaran-

tee privacy. As we discussed in Chapter 5.8.2, applying differential privacy to the

downloader graph might be a possible direction for this problem.

6.1.3 A Better Data Sharing Platform for Security Research

We take this section as an opportunity to overview the current data collection

sources found in the cybersecurity research, and we introduce the common challenges

in conducting research when utilizing these data sources. Those challenges then lead

to several properties a new platform for data exchange should meet.

6.1.3.1 Data Sources in Cybetsecurity Research

Private data. VirusTotal [41] is one of the most widely used sources of private data

both in academy and industry. They provide various information about the malware

including the detection rate by different anti-virus engines and the behavioral report

from the sandbox. In some cases, research is conducted on the data from industry
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partners, who shares it with the academics under a non-disclosure agreement. For

example, the WINE [40] dataset provided by Symantec corresponds to this case.

Public data. Several repositories share the data for free without limiting the scope

of access. A public data repository such as VirusShare [132] hosts the malware

samples. Sometimes the research institutes share the malware analysis report to the

public [133]. However, often the analysis report has to be acquired by utilizing the

private data sources or by setting up an own sandbox environment.

6.1.3.2 Challenges in Data Collection

The challenges in the data collection fundamentally result from the surge in

the number of malware. For the public data service, it becomes much difficult to

have good coverage of the scope of data. Even for the largest provider VirusShare,

the total number of samples they cover is about 31 million, which is less than 5% of

the reported number of the year 2018 [134]. The private data providers, which likely

have a better coverage compared to the public data (e.g., VirusTotal sees about 0.4

million new binaries that are detected by at least one antivirus engine [135], the

value of the data and the cost of maintenance naturally lead to a business model of

providing data in exchange of price. The cost of the data in case of VirusTotal is

reported to be around $100,000 per year [136,137].
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6.1.3.3 Properties Required for the New Platform

The challenges in data collection suggest several properties desirable for a new

platform.

A public dataset with strategies to increase motivation. The aim here is

to have a public dataset with better coverage and to achieve this we allow data

submission from users around the world. However, it is challenging to motivate the

voluntary submission. Therefore, considerations should be made in the platform

design to motivate the participation of the users.

Reduce the burden of data maintenance. We discuss the difficulties of main-

taining and hosting the data due to a large number of resources to take care of.

We can distribute the burden of the maintenance of the dataset (e.g., hosting the

binaries) among the users utilizing the dataset.
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