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Abstract

In this paper, we discuss the connection between two genuinely quantum phenomena—the
discontinuity of quantum maximum entropy inference and quantum phase transitions at zero
temperature. It is shown that the discontinuity of the maximum entropy inference of local observable
measurements signals the non-local type of transitions, where local density matrices of the ground
state change smoothly at the transition point. We then propose to use the quantum conditional
mutual information of the ground state as an indicator to detect the discontinuity and the non-local
type of quantum phase transitions in the thermodynamic limit.

1. Introduction

Quantum phase transitions happen at zero temperature with no classical counterparts and are believed to be
driven by quantum fluctuations [22]. The study of quantum phase transitions has been a central topic in the
condensed matter physics community during the past several decades involving the study of exotic phases of
matter such as superconductivity [ 1], fractional quantum Hall systems [12], and recently the topological
insulators [2, 11, 18]. In recent years, it also becomes an intensively studied topic in quantum information
science community, mainly because of its intimate connection to the study of local Hamiltonians [6].

In a usual model for quantum phase transitions, one considers a local Hamiltonian H (4) which depends on
some parameter vector A. While H (1) smoothly changes with 4, the change of the ground state |y (4) ) may not
be smooth when the system is undergoing a phase transition. Such kind of phenomena is naturally expected to
happen at alevel-crossing, or at an avoided (but near) level-crossing [22].

Intuitively, the change of ground states can then be measured by some distance between |y, (1) ) and
[y (A + 64)). For asmall change of the parameters 4, such a distance is relatively large near a transition point,
while the Hamiltonian changes smoothly from H (4) to H (4 + A). The fidelity approach, using the fidelity of
quantum states to measure the change of the global ground states, has demonstrated the idea successfully in
many physical models for signaling quantum phase transitions [3, 5, 25, 26]. In addition, the relations between
the density functional fidelity susceptibility and the Kullback—Leibler entropy or Rényi entropy have been
discussedin [17, 21]. While the fidelity approach is believed to provide a signal for many kinds of quantum phase
transitions, it does not distinguish between different types of the transition, for instance local or non-local (ina
sense that the reduced fidelity of local density matrices may also signal the phase transition, as discussed in [5]).

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Moreover, one usually needs to compute the fidelity change of a relatively large system in order to clearly signal
the transition point.

In this work, we explore an information-theoretic viewpoint to quantum phase transitions. Our approach is
based on the structure of the convex set given by all the possible local measurement results, and the
corresponding inference of the global quantum states based on these local measurement results. By the principle
of maximum entropy, the best such inference compatible with the given local measurement results is the unique

quantum state p* with the maximum von Neumann entropy [7].
Itis known that in the classical case, the maximum entropy inference is continuous [7, 9, 24]. This means
that, for any two sets of local measurement results & and a’ close to each other, the corresponding inference

p* () and p* (a') are also close to each other. Surprisingly, however, the quantum maximum entropy inference
can be discontinuous! Namely, a small change of local measurement results may correspond to a dramatic
change of the global quantum state.

The main focus of this work is to relate the discontinuity of the quantum maximum entropy inference to
quantum phase transitions. We show that the discontinuity of maximum entropy inference signals level-
crossings of the non-local type. That is, at the level-crossing point, a smooth change of the local Hamiltonian

H (A) corresponds to a smooth change of the local density matrices of the ground states, while the change of p*,
the maximal entropy inference of these local density matrices, is discontinuous.
We then move on to discuss the possibility of signaling quantum phase transitions by computing the

discontinuity of the maximal entropy inference p*. Given the observation on the relation between discontinuity

of p* and the non-local level-crossings, it is natural to consider signaling quantum phase transitions by directly
computing where the discontinuity happens. This approach works well in finite systems, but may fail in the
thermodynamic limit of infinite size systems as the places of discontinuity (i.e. where the system ‘closes gap’)
may change when the system size goes to infinity. Hence, computations in finite systems may provide no
information of the phase transition point. We propose to solve the problem by using the quantum conditional
mutual information of two disconnected parts of the system for the ground states. This idea comes from the
relationship between the three-body irreducible correlation and quantum conditional mutual information of
gapped systems. As it turns out, the quantum mutual information works magically well to signature the
discontinuity point, thereby also signals quantum phase transitions in the thermodynamic limit. In some sense,
the quantum conditional mutual information is an analog of the Levin—-Wen topological entanglement
entropy [13].

We apply the concept of discontinuity of the maximum entropy inference to some well-known quantum
phase transitions. In particular, we show that the non-local transition in the ground states of the transverse
quantum Ising chain can be detected by the quantum mutual information of two disconnect parts of the system.
The scope of the applicability of the quantum conditional mutual information was extended to many other
systems, featuring different types of transitions [28, 29]. All these studies conclude that the quantum mutual
information serves well as a universal indicator of non-trivial phase transitions.

We organize our paper as follows. In section 2, we discuss the concept of the maximum entropy inference
and summarize some important relevant facts. In section 3, we analyze several examples of discontinuity of the

maximum entropy inference p*, ranging from simple examples in dimension 3 to more physically motivated

ones. In section 4, we link the discontinuity of p* to the concept of the long-range irreducible many-body
correlation and propose to detect the non-local type of quantum phase transitions by the quantum conditional
mutual information of two disconnect parts of the system. In section 5, further properties of discontinuity of the
maximum entropy inference are discussed. We provide both a necessary condition and a sufficient condition for
the discontinuity to happen. Finally, section 6 contains a summary of all the main concepts discussed and a
discussion of possible future directions.

2. The maximum entropy inference

We start our discussion by introducing the concept of the maximum entropy inference given a set of linear
constraints on the state space.

2.1. The general case

Let H be the d-dimensional Hilbert space corresponding to the quantum system under discussion and p be the
state of the system. Let D be the set of all possible quantum states on . Any tuple ¥ = (F, E, ..., E)ofr
observables defines a mapping
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pPa= (tr(pFl),tr<F2p), ...,tr(pF,)), (1)
from states p in D to points a in the set
Dy = {ala = (tr(pFl), e tr(pE)) for some p}.

The set Dy can be considered as a projection of D and is a compact convex setin R. If all the F;’s are commuting
(i.e.[F;, Fj] = 0, corresponding to the classical case), then D is a polytope in R,

The convex set Dy is mathematically related to the so-called ‘(joint) numerical range’ of the operators F;’s.
For more mathematical aspects of these joint numeral ranges and the discontinuity of the maximum entropy
inference, we refer to [20]. We remark that Dy is also known as quantum convex support in the literature [23].

Asitwill be clear in later discussions, the observables F;’s usually come from the terms in the local
Hamiltonian of interest so that the Hamiltonian is in the span of the observables F;’s. We will call H = Zi 0;F;

the Hamiltonian related to the observables in 7. The energy tr (Hp) can be written as
ZH,’ tr ( pFi> ,
i

the inner product of the vector @ = (6;) and a. This means that one can think of the Hamiltonian H
geometrically as the supporting hyperplanes of the convex set D.

Given any measurement result &« € Dy, we are interested in the set of all states in D that can give & as the
measurement results. We denote such a set as

L(x) = {pltr (pFi) =a;,i=1, ..., r}.

Itis the preimage of & under the mapping in equation (1). In other words, it consists of the states satisfying a set
of linear constraints and we call this subset of D a linear family of quantum states.

In general, there will be many quantum states compatible with a and L (&) contains more than one state,
unless one chooses to measure an informationally complete set of observables (for example, a basis of operators
on H as one often does for the case of quantum tomography). Especially, when the dimension of system d is
large, it is unlikely that one can really measure an informationally complete set of observables. For instance, for
an n-qubit system when # is large, we usually only have access to the expectation values of local measurements,
each involving measurements only on a few number of qubits. In this case, quantum states compatible with the
local observation data a are usually not unique.

The question is then what would be the best inference of the quantum states compatible with the given
measurement results &. The answer to this question is well-known, and is given by the principle of maximum

entropy [7, 24]. That s, for any given measurement results o, there is a unique state p* € L (a), given by

p* (@) = argmax S(p), (2)
peL (a)

where S (p) is the von Neumann entropy of p. We call p* (&) the maximum entropy inference for the given
measurement results a. More explicitly, it is the optimal solution of the following optimization problem

Maximize: S(p)
Subject to: tr(pF;) =a;, foralli=1,2, ..., k,
p €D.

It may seem counter-intuitive that both the maximum entropy inference p* and its entropy can be

discontinuous [9] as functions of the local measurement data @. When we say p* is discontinuous, we mean the
state itself, not its entropy, is discontinuous. Indeed there could be examples where these two concepts are not
the same (e.g. the energy gap of the system closes but the ground-state degeneracy does not change). For all
examples considered in this paper, however, the entropy is also discontinuous when the state is. We note that the
discontinuity of the maximum entropy inference is a genuinely quantum effect as the classical maximum
entropy inference is always continuous [7, 24].

2.2. The case of local measurements
The discussions in the above subsection specialize to the important case of many-body physics with local
measurements.

Consider an n-particle system where each particle has dimension d. The Hilbert space H of the systems is
(C)®" with dimension d”. We know that, for an n-particle state p, we usually only have access to the
measurement results of a set of local measurements 7 = (F, ..., F ) on the system, where each F; acts on at most

3
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k particles for k < n. The most interesting case is where # is large and k is small (usually a constant independent
of n). In this sense, we will just call such a measurement setting k-local.

Notice that each measurement result tr (pF; ) now depends only on the k-particle reduced density matrix (k-
RDM) of the particles that F; is acting non-trivially on. It is convenient to write the set of all the k-RDMs of p (in

some fixed order) as a vector p® = {pl(k), o prqu) }, where each componentisa k-RDM of p and m = ( Z ) The
k-RDMs p® will play the role of expectation values e as in the general case.

Along this line, the set of results of all k-local measurements can be defined in terms of k-RDMs, and we write
the set D% of all such measurement results as

DM = {p<k) |p®© is the k — RDMs of some p}. (3)
Similarly, the linear family can also be defined in terms of k-RDMs
L (p(k)) = {plp has the k — RDMs p® } (4)
The maximum entropy inference given the k-RDMs p® is
p* (p(k) ) = argmax S (p). (5)
ﬂeﬁ(ﬂ“))

We remark that, in practice, one may not be interested in all the m = ( : ) k-RDMs, but rather only those k-

RDMs that are geometrically local. For instance, for a lattice spin model, one may only be interested in the two-
RDMs of the nearest-neighbour spins. Our discussion can also be generalized to these cases, as in the discussion
in [29] for one-dimensional spin chains. There could also be cases that the system has certain symmetry (for
instance a bosonic system or fermionic system where all the k-RDMs are the same), and our theory can be
naturally adapted to these cases.

The maximum entropy inference p* given local density matrices has a more concrete physical meaning. For

any n-particle state p, if p = p* (p®) ), then p is uniquely determined by its k-RDMs using the maximum entropy
principle. One can argue, in this case, that all the information (including all correlations among particles)
contained in p are already contained in its k-RDMs. In other words, p does not contain any irreducible
correlation [30] of order higher than k. On the other hand, if p # p*, then p can not be determined by its k-
RDMs and there are more information/correlations in p than those in its k-RDMs. Therefore, p contains non-
local irreducible correlation that can not be obtained from its local RDMs.

3. Discontinuity of p*

In this section, we explore the discontinuity of p* based on several simple examples. The first three of them
involve only two different measurement observables, but they do demonstrate almost all the key ideas in the
general case.

3.1. The examples of two observables
We will choose d = 3 for the Hilbert space dimension as it is enough to demonstrate most of the phenomena we
need to see. Fix an arbitrary orthonormal basis of C, say, {|0), [1), |2}}.

Example 1. F consists of the following two observables

100 101
FE=lo1 0] FE=[o1 1] (6)
00 -1 11 -1

First, notice that E, F, do not commute. The set of all possible measurement results Dy is a convex setin R?. We
plot this convex set in figure 1(a). To obtain this figure, we let p vary for all the density matrices on C?, and let the
corresponding tr (pE ) be the horizontal coordinate and tr (pE ) the vertical coordinate. The resulting picture is
nothing but the numerical range of the matrix F + iFE,.

As discussed in section 2, the Hamiltonian H related to F has the form

H= 91F1 + 92F2 (7)
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Figure 1. (a) The convex set of Dy in [R?. The horizontal axis corresponds to the value of tr (pF, ) and the vertical axis corresponds to
tr(pF,); (b) the supporting hyperplanes of Dz in R? (i.e. the straight lines on the figure which are tangent to Dy-), which corresponds
to the Hamiltonians H = 6, F, + 6,F,.

for some parameters 6, 8, € R. Notice that the Hamiltonian corresponds to supporting hyperplanes of D, as
the inner product has the form tr (Hp) = (6}, 6,) - (a1, a;)". We demonstrate these supporting hyperplanes of
Dy in figure 1(b).

It is straightforward to see that the ground state of H is non-degenerate except for the case 6; < 0, 6, = 0,
where the ground space is two-fold degenerate with a basis {|0), |1) } corresponding to the measurement results
ay = (1, 1).

We now show that the maximum entropy inference p* (a) is indeed discontinuous at the point &y = (1, 1).

To see this, first notice that the corresponding p* = % (10Y¢0| + |1)(1]). While for any small ¢, the

corresponding ground state space of —F + ¢F, is no longer degenerate, which means p* (@) is a pure state for
a=ay. Therefore, for any sequence of @ on the boundary of Dy approachingoy,

p* (@) #p*(ay) when a — ay, (8)

and the discontinuity of p* (a) follows.

This example seems to indicate that the discontinuity simply comes from degeneracy: as in general
degeneracy is rare, whenever such a point of degeneracy exists, we have a singularity on the boundary of Dz so
discontinuity happens. However, it is important to point out that this is not quite true. For example, degeneracy

also happens in classical systems where there can have no discontinuity of p*. We further explain this point in
the following example.

Example 2. F consists of the following two observables

100 101
F=l01 0) F=[00 1] 9)
00 -1 11 -1

Notice thatagain [F, E ] # 0. And we show the convex set Dy in figure 2(a).

Consider the Hamiltonian H = 6, F + 6, F, for some 6, 6, € R, asillustrated as supporting hyperplanes in
figure 2(b). Similarly, the ground state of H is two-fold degenerate for 8, < 0, 6, = 0 (corresponding to the
vertical line at a; = 1) with abasis {|0), |1) }. However, different from example 1, the ground states do not
correspond to a single measurement result a; = (1, 1). Instead, they are on theline [(1, 0), (1, 1)].

By simple calculations, now the maximum entropy inference p* (@) is in fact continuous at the point
a; = (1, 1),and on the entireline [(1, 0), (1, 1)]. Infact, p*(e,) = p [0)(0] + (1 — p)|1){1|for @, = (1, p).

5
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Figure 2. (a) The convex set of Dy in [R2. The horizontal axis corresponds to the value of tr (pF) ) and the vertical axis corresponds to
tr(pF,); (b) the supporting hyperplanes of Dz in R? (i.e. the straight lines on the figure which are tangent to Dy-), which corresponds
to the Hamiltonians H = 6, F; + 6,F,.

For any small perturbation ¢, the corresponding ground state space of —F, + €F is non-degenerate,
meaning p* (&) is a pure state. This change of p* (a) from € < 0to € > 0is sudden with respect to the small
change of €, which, however, is accompanied by a sudden change also in the measurement results (from a point
near (1, 1) to (1, 0)). As we are considering the discontinuity of p* with respect to the measurement dataa, not
the parameter € in the Hamiltonian, p* is in fact continuous.

This example demonstrates that when Hamiltonian changes smoothly, ground states have sudden changes
accompanied with the sudden change of measurement results. In other words, the change of ground states can
be described already by the change of local measurement results. This is somewhat a classical feature, as
discussed in the next example.

Example 3. F consists of the following two observables

10 0 100
F=|l01 0} F=|00 0] (10)
00 -1 00 -1

Now this corresponds to the classical situation where [, F,] = 0.

The convex set Dy in given in figure 3(a). Itis a triangle for this example, and a polytope in the general
classical case.

Consider the related Hamiltonian H = 6, F, + 0, FE, forsome 6,, 8, € R, asillustrated as supporting
hyperplanes in figure 3(b). Similarly, the ground state of H is two-fold degenerate for 6, < 0, 8, = 0
(corresponding to the vertical line at @; = 1) with abasis {|0), |1)}. For a similar reason, the maximum entropy

inference p* (@) is continuous on the entire line [(1, 0), (1, 1)]asin the previous example.

If we still consider for any small perturbation —F + €E, the corresponding ground-state space is non-
degenerate: itis|1) for € < 0 and|2) for € > 0.Sofrom ¢ < 0to € > 0, we also see sudden changes of both the
measurement results and the ground states.

In the above three examples, the first one is the most interesting and exhibits smooth change in
measurement results and discontinuity of the maximum entropy inference p*. The second and third behave in a
similar classical way where a small change in the Hamiltonian will induce a sudden change of measurement
results and there is no discontinuity of p*. We summarize our observations from the three examples in this
subsection as below. Although the examples involve two observables only, we state the observation in the more
general setting of arbitrarily many observables.
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Figure 3. (a) The convex set of Dy in [R2. The horizontal axis corresponds to the value of tr (pF, ) and the vertical axis corresponds to
tr(pF,); (b) the supporting hyperplanes of Dz in R? (i.e. the straight lines on the figure which are tangent to D), which corresponds
to the Hamiltonians H = 6, F, + 6,F,.

Observation 1. Given a set of measurements ¥ = (F, E, ..., F.), and a family of related Hamiltonians H of the
form H = Zl_ 0, F; with 0; changing with certain parameter. The Hamiltonian H has two types of ground state
level crossing:

e Typel (local type): level-crossing that can be detected by a sudden change of the measurement results.

e Typell (non-local type): level-crossing that can not be detected by a sudden change of the measurement
results.

More importantly, only Type II corresponds to discontinuity of the maximum inference p* (@).

3.2. The example of local measurements

We now give a simple example showing the discontinuity of p* in a three-qubit system with two-local
interactions.

Example 4. The three-qubit GHZ state given by

1
|GHZ;) = f(|ooo> +]111)) (11)

is known to be the ground state of a two-body Hamiltonian
H=-727Z,—- 7,75 (12)
with Z; the Pauli Z operator acting on the ith qubit. The ground-state space of H is two-fold degenerate and is
spanned by {|000), |111)}. Now consider the two-RDM:s of the GHZ state
P = {pap Prsp P (13)
with Piijy = % (]00)<00| + |11)(11|) being the two-RDM of qubits i and j. We claim that there is discontinuity
at p?,

To see this, consider a family of perturbations H + € 23 . X; of the Hamiltonian H. For any € # 0, the
i=

ground space is non-degenerate and the unique ground state converges to | GHZ ;) when ¢ — 0—and to
(1000) — |111))/~/2 when ¢ — 0+. As the ground state is unique when ¢ # 0 and the Hamiltonian is two-local,

the two-RDMs of the ground state determines the state. This means that p* is pure and coincide with the ground

state forall ¢ # 0. However,ate = 0, p*is
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p*(p<2>) = %(|ooo)(000| +[111)(111)), (14)

and the discontinuity of p* follows.
It is worth pointing out the similarity in the structure of the above example and example 1, despite their
totally different specific form. First notice that % [000) + |111) are two eigenstates of Z,Z, + Z,Z; of the

same eigenvalue 1. If we complete % [000) + |111) toabasis, Z,Z, + Z,Z; will have a 2-by-2 identity block
with zero entries to the right and bottom. In that basis, the Z; X; also has such a 2-by-2 block proportional to

. . . . 3
identity and has some non-zero off diagonal entries. In other words, Z,Z, + Z,Z; and Zi_l X; hasarather

similar block structure as F; and F, in example 1.
We generalize the observation 1 in terms of local measurements as follows.

Observation 1'. For an n-particle system, consider the set of all k-local measurements 7', which then
corresponds to alocal Hamiltonian H = Z]‘ cjF;with F; € F acting nontrivially on at most k particles. There

are two kinds of ground state level crossing:

o TypeI:level-crossing that can be detected by a sudden change of the k-RDMs p®.

o TypeII: level-crossing that can not be detected by a sudden change of the local k-RDMs p®).

Only Type II corresponds to discontinuity of the maximum entropy inference p* (p®)).

3.3. The example of transverse quantum Ising model
Our next example is an n-qubit generalization of example 4 and is known as the transverse quantum Ising
model.

Example 5. The Ising Hamiltonian is given by
n—1 n
H(1) = —J[Zz,zm + Azxi], (15)
i=1 i=1

for J > 0. For any finite # the discontinuity of p* determined by the two-RDMs happen at 4 = 0. For infinite ,
the discontinuity of p* happenat A = 1.

The Hamiltonian H (1) hasa Z, symmetry, which is given by X®",i.e. [X®", H (1)] = 0. In the limit of
A = 0, the ground state of H(0) is two-fold degenerate and spanned by {|0)®", |1)®"}. And in the limit of
A = o0, the ground state of H (o0) is non-degenerate and is given by % (10 + |1))®".

In the case of finite #, the ground space of H (1) forany A > 0 is non-degenerate. Based on a similar
discussion of example 4, we have

lim p* (1) = |GHZ,)(GHZ,|, (16)
y

where |GHZ,,) is the n-qubit GHZ state % (10Y®" + |1)®"). On the other hand, at A = 0, p* (0) hasrank 2.

When the two-RDMs of p* (0) is approached by the two-RDMs of the ground states p* (1) of H (1), the local

RDMs of p* (1) change smoothly, and discontinuity of p* (1) happensat A = 0.

In the thermodynamic limitof n — oo, itis well-known that when A increases from 0 to oo, quantum phase
transition happens at the point 4 = 1[19]. For A — 1t, 1 = 1is exactly the point where the ground space of
H (1) undergoes the transition from non-degenerate to degenerate. A discontinuity of p* (1) happensat A = 1

when 4 — 1%, which is a sudden jump of rank from 1 to 2, while the local RDMs of p* (1) change smoothly.

For 0 < 4 < 1, the two-fold degenerate ground states, although not exactly the same as those twoat 1 = 0,
are qualitatively similar. For the range of 0 < A4 < 1, the ground states are all two-fold degenerate. For finite 7,
however, in the region of 0 < 1 < 1, an (exponentially) small gap exists between two near degenerate states, and
the true ground state does not break the Z, symmetry of the Hamiltonian H (4).

This example demonstrates the dramatic difference between the case of finite n and the case of the
thermodynamic limit of infinite n. It also foretells the difficulty of signaling phase transitions by computing the

discontinuity of p* of finite systems directly. We will propose a solution to this problem in section 4.

8



10P Publishing

NewJ. Phys. 17 (2015) 083019 J Chenetal

4. Signaling discontinuity by quantum conditional mutual information

4.1.Irreducible correlation and quantum conditional mutual information

We have mentioned the relation between the maximum entropy inference and the theory of irreducible many-
body correlations [30]. For an n-particle quantum state p, denote its k-RDMs by p*). Then its k-particle
irreducible correlation is given by [15, 30]

(o) =5 (p*(p%1)) = 5(p*(s™)). (17)

What C%®) measures is the amount of correlation contained in p® but not contained in p*=).
Consider a partition A, B, C of the n particles so that A and C are far apart. Define
P ipc = argmax S(o4pc). (18)

OAB=P AB
OBC=PpC

Then the three-body irreducible correlation of p, - is given by
CH¢ = $(pigc) = S(panc)- (19)

Note that we do not include the constraint 64¢c = p . in the definition of p,, .. The reason for this is that the
region of A and Care chosen to be far apart and, therefore, there will be no k-local terms in the Hamiltonian that
actnon-trivially on both A and C.

In the discussion on the example of quantum Ising chain, we have observed the difficulty of signaling the

discontinuity of p* in the thermodynamic limit by computations of finite systems. In the following, we propose
aquantity that can reveal the physics in the thermodynamic limit by investigating relatively small finite systems.
The quantity we will use is the quantum conditional mutual information

I(A: CIB)/) = S(pp) + S(pge) — S(pp) — S(Papc)- (20)

We will also omit the subscript p when there is no ambiguity. Usually, the state p will be chosen to be a reduced
state of the ground state of the Hamiltonian. It is known that the quantum conditional mutual information is an
upper bound of C*#“[13, 16]. Namely, we have

CY¢(p) < I(A: C|B),, (21)

which is equivalent to the strong subadditivity [ 14] for the state p ;. The equality holds when the state p } ;-
satisfies I (A : C|B) = 0, orisaso-called quantum Markovian state.

We will use the quantum conditional mutual information I (A : C|B) of the ground state, instead of three-
body irreducible correlation C**“ to signal the discontinuity and phase transitions in the system. We do this for
two reasons. First, it is conjectured that the equality in equation (21) always holds in the thermodynamic limit
for gapped systems. In other words, the corresponding p ;. - of the ground state is always a quantum Markovian
state (there are reasons to believe this, see e.g. [8, 16]). Assuming this conjecture, I (A : C|B) isindeed a good
quantity to signal the discontinuity and phase transition in the thermodynamic limit. Second, as it turns out,
quantum conditional mutual information performs much better as in indicator when we do computations in
systems of small system sizes. Most importantly, it doesn’t seem to suffer from the problem C**“ has in finite
systems. For more discussion on the physical aspects of I (A : C|B), we refer to [28].

4.2. The transverse Ising model
We now illustrate the mutual information approach in one-dimensional systems. First, consider a one-
dimensional system with periodic boundary conditions. As we need A and Cto be large regions far away from
each other, the partition A, B, C canbe chosen as in figure 4.

Following the discussions in section 4.1, one can use the quantity I (A : C|B) to indirectly detect the

existence of the discontinuity of p* and the corresponding phase transition. We have computed I (A : C|B) for
the ground state of the transverse quantum Ising chain H (1), with total 4, 8, 12, 16, 20 particles of the system.
The results are shown in figure 5, in which I (A : C|B)’s clearly indicate a phase transition at A = 1 (where the
curves intersect). This is consistent with our discussions for the quantum Ising chain with transverse field in
section 3.3.

However, the phase transition of the Hamiltonian with a Z direction magnetic field, given by

H(A.) = —][Zzizi+1 + A Zz,—], (22)
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Figure 4. Each dot represents a particle. The partition of a chain to three parts ABC, where A, C are disconnectedand B = B; U B,.

0.8}
‘é“ 0.6
: \
= 04
0.2
2 0.5 1 1.5 - 2
A

Figure5. I (A : C|B) of the Ising model with open periodic boundary condition and the A, B, C regions as chosen in figure 4. A
similar resultis presented in [28], from a different viewpoint.

Figure 6. A, B, C cuttingona 1D chain.

is a local transition without discontinuity of p* (1, ). That is, when approached on the boundary of D%, from the
direction correspondingto 4, — 0, thelocal RDMs of p* (1,) has a sudden change at the point 4, = 0 (and
significantly different for any two points each correspondingto 4, < 0and 4, > 0). If we plot the diagram of
I (A : C|B) for this model, we will not see any transition in the system.

We emphasize that the above approach employs calculations of extremely small systems yet still precisely
signals the transition point of the corresponding system in the thermodynamic limit.

4.3. The choice of regions A, B, C

Itis important to note that the choice of the regions A, B, C should respect the locality of the system. If we
consider one-dimensional system with open boundary condition, we can choose the A, B, C regionsasin
figure 6. For the transverse Ising model with open boundary condition, this choice will give a similar diagram of

I(A : C|B)asinfigure 5, which is given in figure 7. This clearly shows a discontinuity of p* and a quantum phase
transitionat A = 1.

However, if the partition in figure 6 is used for the Ising model with periodical boundary condition, as given
in figure 8, the behaviour of I (A : C|B) will be very different. In fact, in this case I (A : C|B) reflects nothing but
the 1D area law of entanglement, which will diverge at the critical point 4 = 1in the thermodynamic limit. Fora

10
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0.8 n=9
n=12
\ —n=15
& 06 \ n=18+
&)
<
= 04
0.2 X 1
4 05 1 15 2

Iy

Figure7. I (A : C|B) of the Ising model with open boundary condition and the A, B, C regions as chosen in figure 6.

Figure 8. A, B, C cuttingona 1Dring.

1.2
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Did 0.5 1 1.5 2

A

Figure9. I (A : C|B) of the Ising model with periodical boundary condition and the A, B, C regions as chosen in figure 8.

finite system as illustrated in figure 9, I (A : C|B) does no clearly signal the two different quantum phases and
the phase transition.

4.4.1(A : C|B)asauniversal indicator

From our previous discussions, we observe that touse I (A : C|B) to detect quantum phase and phase
transitions, it is crucial to choose the areas A, C thatare far from each other. Here ‘far’ is determined by the
locality of the system. For instance, on an 1D chain, the areas A, C in figure 6 are far from each other, butin

figure 8 are not.

11
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Figure 10. A, B, C, D cuttingona 1D chain.
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Figure 11. Cuttings on a 2D disk.

Ifsuch anareas A, C are chosen, then for a gapped system, anonzero I (A : C|B) ofa ground state will then
indicates non-trial quantum order. We have already demonstrated it using the transverse Ising model, where for
0 < 4 < 1, the system exhibits the ‘symmetry-breaking’ order. In fact, we can also use I (A : C|B) to detect
other kind of non-trivial quantum orders.

For instance, I (A : C|B) was recently applied to study the quantum phase transitions related to the so-called
‘symmetry-protected topological (SPT) order’, which also has a ‘nonlocal’ nature despite that the corresponding
ground states are only short-range entangled (in the usual sense as discussed in this paper) [29].

It was shown that for a 1D gapped system on an open chain, anon-zero I (A : C|B) for the choice of the
regions A, B, C asin figure 6 also detects non-trivial SPT order. However, it does not distinguish SPT order
from the symmetry-breaking order. In stead, one can use a cutting as given in figure 10, where the whole system
is divided into four parts A, B, C, D,and I (A : C|B) the detects the non-trivial correlation in the reduced
density matrix of the state of ABC. Under this cutting, I (A : C|B) is zero for a symmetry-breaking ground state,
but has non-zero value for an SPT ground state.

A similar idea also applies to 2D systems. For instance, for a 2D system on a disk with boundary, we can
consider three different kinds of cuttings [13, 28, 29], as shown in figure 11. For each of these cuttings, anon-
trivial I (A : C|B) detects different orders of the system. For figure 11(a), I (A : C|B) detects both symmetry-
breaking order and SPT order and topological phase transitions [ 16]. Figure 11(b) is nothing but the choices of
A, B, Ctodefine the topological entanglement entropy by Levin and Wen [13], which detects topological order.
And similarly as the 1D case, figure 11(c) detects SPT order, which distinguishes it from symmetry-breaking
order (in thiscase I (A : C|B) = 0 for symmetry-breaking order) [29].

In this sense, by choosing proper areas A, B, C with A, C far from each other, anon-zero I (A : C|B)
universally indicates a non-trivial quantum order in the system. Furthermore, by analyzing the choices of
A, B, C,italso tells which order the system exhibits (symmetry-breaking, SPT, topological, or a mixture
ofthem).

We remark that, for a pure state, the cuttings of figures 4 and 6 give that I (A : C|B) = I (A: C). However,
this is not the case for a mixed state. Therefore, although one may be able to detect nontrivial quantum order
simply using I (A: C),in the most general case, I (A : C|B) is a universal indicator of a non-trivial quantum
orderbut I (A: C)is not. For instance, the equal-weight mixture of the all |0) and all | 1) states does not exhibit
non-trivial order (i.e. contains no irreducible many-body correlation), hence I (A : C|B) = 0 for the cuttings of
figures 4 and 6, but I (A: C) # 0, which in fact indicates the classical correlation in the system.

12
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-1

Figure 12. The convex set of Dy for F = (F, F,, F;) of example 6 in R>. For the normalized ground state p (a, ¢) of

cos aF; + sin a cos ¢F, + sin a sin ¢F; forany given a € [0, #], ¢ € [0, 2x], a pointis plotted for

(tr(p(a, @) F, tr(p(a, ¢p)Fy, tr(p(a, ¢)F;). Greylines correspond to @ € [0, 7/2], and red lines correspond to a € [#/2, x]. The
yellow line corresponds to (1, 1, x), where the discontinuity happens.

5. Further properties of the discontinuity

In this section, we further explore the structure associated with the discontinuity of the maximum entropy

inference.

5.1. Path dependence of discontinuity
We continue our discussion of examples 1-3 in dimension 3, but with more than two observables. The following

example illustrates that one may need to choose the right path in order to see the discontinuity of p*.Itisan
example that combines examples 1 and 2 together.

Example 6. We consider the tuple F of 3 operators, with K, F the same as given in example 1 and

10 1
F=l00 1| (23)
11 -1

In this example, Dz isa compact convex set in R?. Consider the point @ = (1, 1, 0.5). If @ is approached along

theline[(1, 1, 0), (1, 1, 1)], thereis no discontinuity of p* (a), similar as the discussion in example 2.

However, if @ is approached from ¢ — 0 in a Hamiltonian —F, + €F,, then there is discontinuity of p* (@),

similar as the discussion in example 1.
The convex set of D for F = (E, E, E)in R is shown in figure 12. This shows that if one approaches the

yellow line (correspondingto (1, 1, x)) from aline inside the red area of the surface, then discontinuity of p* (@)

happens. Butalong theline [(1, 1, 0), (1, 1, 1)], there is no discontinuity of p* ().

This example shows that, in general for k measurements, whether there is discontinuity of p* (@) at the point
a € Dy depends on the direction on the boundary of Dy along which & is approached. If there is a sequence &
approaching a but

p(ag) = p*(a), (24)

then there is discontinuity of p* ().
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The same situation can happen in example 4. If we approach the two-RDM p® of the GHZ state using the
ground statesof H + ¢ Zj_l Z;insteadof H + € Zj_l X; as in example 4, there will be no discontinuity. And

furthermore, for the Hamiltonian H + ¢ Zj_l Xi+ e Zj_l Z;, the convex set of Dy for F = (F, E, E) with

3 3 .. . .
E=22Z,+ 72,73 F, = Zi_l X, E = zi—l Z; has asimilar structure as that in figure 12, as given in figure 1
(c) of [27]. Now consider the situation of the thermodynamic limit, corresponding to the transverse Ising model
with also a magnetic field in the Z direction, i.e. the Hamiltonian

n—1 n n
H(o h) = =J| D ZiZisi + A 2 Xi + A 321, (25)
i=1 i=1 i=1
with J > 0. The corresponding convex set of D for F = (F, B, F) with
E = ﬁ ?__11 ZiZiy1, B = % :l_l Xi, = % Z?_l Z;is quite different, as the line of discontinuity (similar

astheline (1, 1, x) in figure 12) will expand to become a ‘ruled surface’ (see figure 1(b) of [27]), which is nothing
but the symmetry-breaking phase [27] (this corresponds to the phase transitionat A = 1).

Another interesting thing of example 6 is that the discontinuities of p* () do not only happen at the point

a = (1, 1, 0.5). In fact they can happen at any point (1, 1, s) with (0 < s < 1). This can be done by engineering
the Hamiltonian

H=—F + cF, + f (e)F;, (26)
fle)
€
situation of thermodynamic limit. For instance, the Hamiltonian H (4, 4,) discussed above only has one phase
transition (discontinuity) point for A > 0 at (1 = 1) that corresponds to zero magnetic field in the Z direction

(see figure 1(b) of [27]).

with lim._ o—— = 0 for some function f (¢). We remark that however, this does not happen in a similar

5.2. A necessary condition

Suppose p* (@;) — p when a; — a,thenwe musthave p € L (@). Thatis, j returns the measurement results
a. If discontinuity happens ata, state j is different from p* (a). As the maximal entropy inference p* has the
largest range, the range of j is contained in that of p*. We can then choose a linear combination of p* and j in

L () that has strictly smaller range than p*. This then gives us a necessary condition for discontinuity of p* (e)
in finite dimensions. We emphasize, however, that the same claim may not hold in infinite systems.

Observation 2. A necessary condition for the discontinuity of p* (ar) at the point « is that there exists a state

p € L (&) whose range is strictly contained in that of p* (@).

In particular, for local measurements, we have

Observation 2'. A necessary condition for the discontinuity of p* (p¥) ) at the point p® is that there exists a state

p € L (p™®)whose range is strictly contained in that of p* (p®).

To better understand observation 2’, we would like to examine an example where the condition is not
satisfied.

Example 7. Consider again a three-qubit system, and the Hamiltonian
H = Hy; + Ha; (27)

asdiscussed in [4], where Hjjacting nontrivially on qubits , j with the matrix form

2
Z 0 0 _4
9 9
2
0o — 0 0
> (28)
0 0o — 0
3
4
-2 00 2
9 9

14
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The ground-state space of the Hamiltonian H is two-fold degenerate and is spanned by
1

|l//O> - \/g
1

lyq) = NG

Now take the maximally mixed state

(2 ]000) + [101) + [110)),

(2 ]111) + |010) + |001}).

pr = %<|U/o><ll/0| + 1y1) (nal ) (29)

and its two-RDMs are p‘?,
Itis straightforward to check that there does not exist any rank 1 state in the ground-state space with the
form a |y;,) + f |y ) that has the same two-RDMs as p'?. Therefore, for p* (p® ), the condition in observation

2 is not satisfied, hence no discontinuity at the point p®.

In the previous subsection, we see that discontinuity of p* (&) at the point @ € Dy depends on the direction
approaching a. The next example tells us that one can not conclude the existence of discontinuity by looking at
the low dimensional projections of Dg.

Example 8. Consider the measurement of four operators, with F, B, B the same as given in example 6 and
11 0
Fo=|11 0| (30)
0 0 -1

Note that the projection of Dy to the plane spanned by (E, F, ) is nothing but figure 1(a), whose maximum
entropy inference has discontinuity at the point (1, 1). However, for the measurements 7, one can not conclude
the existence of points of discontinuity by solely examining the discontinuity at its projections (e.g. the
discontinuity for measuring (E, E,) only). The existence of (E, F,) does matter.

To see why, for the point @ = (1, 1, 0.5, 1), the maximum entropy inference is

pa) = %(|0) (0] + |1)(1]). However, there is no rank one state of the form a [0) + f |1) with

Andlet F = (E, E, E, E,).

la|* + |B? = 1thatcan return the measurement result &. Then according to observation 2, there is in fact no
discontinuity at a.

5.3. A sufficient condition
Notice that the condition in observation 2 is not sufficient. Example 2 provides a counterexample. By studying

the examples that do have discontinuity, we find a sufficient condition for the discontinuity of p*.

Observation 3. For a set of observables ¥ = (E, ..., E),if:

o the ground state space V, of some Hamiltonian Hy = 2;1 ¢; F; is degenerate with the maximally mixed state
supported on V,be p*, which corresponds to measurement results @; = tr(p*F;);
o there exists a basis |y, ) of V; such that
(il Fi lyy) = Sap (31)
foranya # band F; € F;
o there exists a sequence of
€= (e, ....e) = (0,...,0), (32)

such that the Hamiltonian H = H, + Zr € F; has unique ground states |y (€) ) at any nonzero €, and
1=

lim |y (e)) = ly), (33)
€—(0,...,0)

where |y) = % z;nzl [y, ) and m is the ground state degeneracy of Hy (1 > 1); then p* (a) is discontinuous
at the point a.
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Table 1. Summary of the relationship between the main con-
cepts discussed in this paper.

Types of quantum phase transitions Local Non-local
Discontinuity of p* (p®)) No Yes
Irreducible many-body correlations No Yes
Conditional mutual information Zero Nonzero

This condition guarantees that the state |y) and the maximally mixed state p* have the same local density
matrices. The discontinuity of maximum entropy inference therefore follows when considering the sequence of
reduced density matrices of |y (€) ).

Notice that equation (31) is the quantum error-detecting condition for the error set F but without the
coherence condition of (y;,| F; |y;,) = cjfora="b[10], where ¢jisa constant that is independent of a. We will
refer to this condition as the partial error-detecting condition.

For example, for the observables 7 = (E, E, E) discussed in example 6, consider the ground-state space of
Hy = —F,, which is degenerate and is spanned by {|0), | 1) }. It is straightforward to check that (0| F; |[1) = 0 for
alli = 1, 2, 3. Furthermore, the Hamiltonian H = —F + ¢, E + ¢, F, hasaunique ground state |y (€) ) atany

nonzero € = (€, €;) # 0. And for the sequencethat e, = Oand ¢; — 0, lim,, ¢ |y (e, 0)) = %(lO) + |1)).
Similarly for local measurements, we have

Observation 3. For a set of k-local observables 7 = (F, ..., E),if:

o the ground state space V;, of some Hamiltonian Hy = 22—1 c;F; is degenerate with the maximally mixed state
supported on Vj be p*, which corresponds to k-RDMs p*;

o there exists a basis |y, ) of V;, such that
(il Filyy) = Sap (34)
foranya # band F; € F;
o there exists a sequence of

€= (e, ....e) > (0,...,0), (35)

such that the Hamiltonian H = H, + Z:zl €;F; has unique ground states |y (€) ) at any nonzero €, and
lim |y (e)) = lw), (36)
0,...,0)

€—

1
where |y) = — Zm [y, ) and m is the ground state degeneracy of Hy (m > 1); then p* (p®) ) is
Jm A=l

discontinuous at the point p®.

For example, for the observables F = (E, E, E)with F = Z,Z, + Z,Z5, F, = Zj_l X;, 3= Zj_l Z;
discussed in example 4, consider the ground-state space of Hy = —F), which is degenerate and is spanned by
{1000), [111)}.Itis straightforward to check that (000| F; [111) = Oforalli = 1, 2, 3. Furthermore, the
Hamiltonian H = —F + ¢,E + ¢, F, hasa unique ground state |y (€) ) atany nonzero € = (€, €;) # 0. And for

the sequencethat e, = 0 and ¢; — 0, lim, ¢ |y (€1, 0)) = %(lOOO) + |111)).

These demonstrate an intimate connection between the discontinuity of p* (p™® ) and the (partial) quantum
error-detecting condition.

6. Summary and discussion

We now summarize the main results this paper in table 1. We start from introducing two natural types of
quantum phase transitions: alocal type that can be detected by a non-smooth change of local observable
measurements, and a non-local type which can not. We then further show that the discontinuity the maximum

entropy inference p* (p'¥) ) detects the non-local type of transitions. We have done this by examining the convex

set D™ of the local reduced density matrices p*', where the discontinuity of p* (p® ) only happens on the
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Table 2. Summary of the choices of the areas of A, B, C (in different figures) and the non-trivial indicator I (A : C|B) for different quantum
order. Here ‘yes’ means a non-zero value of I (A : C|B).

Figure4 or6or 11(a) Figure 11(b) Figure 10 or 11(c)
Symmetry-breaking order Yes No No
Topological order No Yes No
SPT order Yes No Yes

boundary of the convex set, hence is directly related to the ground states of local Hamiltonians (hence zero
temperature physics). And essentially, the discontinuity only happens at the transition points.

We further show that the discontinuity of p* (p® ) is in fact related to the existence of irreducible many-
body correlations. This allows us to propose a practical method for detecting the non-local type of transitions by
the quantum conditional mutual information of two disconnected parts, which is an analogy of the Levin—-Wen
topological entanglement entropy [ 13]. We have demonstrated how the conditional mutual information detects
the phase transition in the transverse Ising model and the toric code model, which are both continuous quantum
phase transitions.

Based on the connection between irreducible many-body correlation and the quantum conditional mutual
information I (A : C|B), we have proposed that I (A : C|B) as a universal indicator of non-trivial quantum
order of gapped systems. The crucial part is to chose that the areas A, C thatare far from each other, based on
the locality of the system. By choosing proper regions to compute I (A : C|B), one can indeed further tell the
type of the phase transition (symmetry-breaking, topological, SPT, or a mixture of them). We summarize these
different indicators in table 2.

We remark that a non-zero I (A : C|B) even contains information for a gapless system. By choosing
different ratios of the lengths (areas) of A, B, C, thevalue I (A : C|B) ofa gapless system could vary, and the
dependance of I (A : C|B) with those ratios is closely related to universal quantities of the system, such as the
central charge [28]. We hope that our discussion brings new links between quantum information theory and
condensed matter physics.
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