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Earthquakes are one of the most devastating and expensive natural disasters in the world.  

Economical and earthquake-resistant design remains a challenge for structural engineers. This 

study explores the optimal design of a seismic force resisting steel frame using a population based 

stochastic algorithm known as Particle Swarm Optimization (PSO). PSO is able to efficiently 

explore a complex solution space with many design variables and constraints. PSO is also problem 

independent and can be built around any approach to earthquake design. As a case study, the 

seismic design of a three-story moment resisting frame is optimized for the linear static, linear 

dynamic, and nonlinear static analysis methods. An interface was created between MATLAB and 

OpenSees to link optimization with a well-known and freely available earthquake engineering 

software. This application is extended to the performance-based design of structures, in which the 

optimal design meets the target performance objectives of Immediate Occupancy, Life Safety, and 

Collapse Prevention under Frequent, Design, and Maximum-considered seismic hazard levels. 
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Chapter 1: Introduction 

1.1 Background and Motivation 

Statistics show that earthquakes are one of the most significant natural disasters worldwide 

with most death toll from the year 1980 to 2016 [1].  Japan’s 2011 earthquake was estimated to be 

the deadliest natural disaster in history, resulting in 15,880 fatalities and a total economic loss of 

$235 billion [2]. The January 17, 1994 Northridge earthquake in Los Angeles, California, was 

recorded as one of the most expensive natural disasters in the history of U.S., costing more than 

$40 billion and damaging over 100,000 structures [3]. According to Federal Emergency 

Management Agency (FEMA), thousands of earthquakes of varying magnitudes occur in the U.S. 

every year and all U.S. territories are vulnerable to earthquakes. Earthquakes are caused by the 

movement of tectonic plates beneath the earth’s surface, and are therefore inevitable and uncertain 

by nature. Thus, they can continue to pose a great threat to both human life and the built 

environment.  

In the past fifty years, there has been an unprecedented improvement and advancement in 

earthquake engineering, including seismology and seismic instrumentation, understanding 

ultimate behavior of structures, improved building codes and standards, the development of 

performance-based design methodologies, seismic isolation, and energy dissipation; higher costs 

associated with the seismic design of structures remain a concern. Poor earthquake-prone regions 

have a rapidly growing population living in basic shelters than in earthquake-safe buildings, which 

they can’t afford. Thus, an economical design of structures capable of withstanding extreme 

earthquake events are crucial. As a result, minimizing the cost of structural design has gained 
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widespread interest lately and has presented an interesting optimization problem for researchers 

and engineers.  

Since most real-world optimization problems are nonlinear and complex by nature, 

heuristics remain an efficient and powerful tool for solving real-world engineering optimization 

problems. Heuristics are practical techniques that employs a trial-and-error approach in search for 

an optimal solution. Although an optimal solution is not guaranteed, the method provides 

sufficiently good solutions to the problems that are impractical or impossible to solve otherwise. 

Since 1980s metaheuristic algorithms have gained popularity and are being widely used to solve 

complex optimization problems. Meta- means “beyond” or “higher level”, so metaheuristics are 

higher-level problem-independent methods that mimic the best processes in nature including 

biological systems, and physical and chemical processes; therefore, performing better than simple 

heuristic methods [4]. Unlike conventional linear programming, they are non-deterministic and 

derivative-free algorithms that do not rely on gradient information, and generally follow an 

iterative procedure to solve optimization problems. The two key features of metaheuristics are 

intensification and diversification [5]. Intensification searches for the best solution in a local 

region, while diversification controls the exploration of the global search space, so the overall 

efficiency of an algorithm depends on a good balance between the two [6]. The most popular 

metaheuristic algorithms available in literature include Simulated Annealing (SA), Genetic 

Algorithms (GA), Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), 

Harmony Search (HS), and Cuckoo Search (CS). However, PSO is the most famous and widely 

used technique because it is easy to implement, and has been successfully used by many 

researchers in solving many structural design optimization problems; therefore, this study will only 

consider the application of PSO.  
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 In the past two decades, metaheuristic methods have been applied to many structural 

optimization problems. Goldberg and Samtani [7] applied GA to minimize the weight of a 10-bar 

truss and concluded metaheuristic search methods work well within a reasonable amount of time. 

Lin and Hajela [8] implemented the same in the optimal design of structural systems with discrete 

design variables. May and Balling [9] used SA for optimizing a 3-D steel frame. Bland [10] 

produced the first application of ACO to obtain an optimal configuration of a 25-bar space truss. 

Lee and Geem [11] introduced Harmony Search methods and applied it to several benchmark 

structural optimization problems. Later, Kaveh and Talatahari [12] extended this application to 

optimize rigid steel frames using PSO. Cuckoo Search is a new optimization technique proposed 

by Yang and Deb [13] that is known to be robust in solving different truss structures. A. Kaveh 

and Bakhshpoori [14] have successfully applied CS to several types of structures.  

A. Kaveh, B. Farahmand Azar, A. Hadidi, F. Rezazadeh Sorochi, and S.Talahari [15] 

applied ACO and GA to the seismic design optimization of a 3-story and a 9-story steel moment 

frame subjected to equivalent static loads under Operational (OP), IO (Immediate Occupancy), LS 

(Life Safety), and Collapse Prevention (CP) seismic hazard levels by using design inter-story drifts 

as constraints. S. Gholizadeh and E. Salajegeh [16] obtained optimal seismic designs using PSO 

algorithm for a 10-story steel moment-resisting frame (MRF) under seven earthquake ground 

motions using approximate linear dynamic procedures.  In another recent paper, Kaveh and A. 

Nasrollahi [17] applied CS algorithm to the performance-based seismic design optimization of 

steel frames using equivalent static analysis and modal response spectrum analysis by interfacing 

MATLAB and SAP2000 software to perform parallel computing. However, these studies 

considered simplified analysis procedures; whereas this thesis develops a technique to perform 

structural design optimization using improved and advanced analysis procedures.  
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This thesis develops a technique to implement Particle Swarm Optimization algorithm to 

the seismic design of steel frames using advanced analysis procedures utilizing a MATLAB-

OpenSees interface. The Open System for Earthquake Engineering Simulation, commonly known 

as OpenSees, is a non-profit open-source finite element software developed by Pacific Earthquake 

Engineering (PEER) Center and University of California, Berkeley, and has advanced capabilities 

for modeling and analyzing nonlinear and dynamic response of structures [18]. OpenSees uses Tcl 

programming language scripts in C++ for finite element model building and analysis. However, 

this study uses OpenSees Navigator instead, as it offers a graphical user interface (GUI) pre- and 

post-processing framework for the OpenSees like any other commercial structural analysis and 

design software.  

 An existing three-story steel moment-resisting frame (MRF) office building based in Los 

Angeles, California, was selected as a benchmark structure for this study. ASCE 7-10 and FEMA-

356 were the two main design standards used for the analysis of the frame. Three types of analysis 

procedures are considered in this study in the order of their accuracy in predicting the response of 

structures under earthquakes: Equivalent Lateral Force Procedure (EFP) analysis, Linear Response 

Time-History analysis (LD), and Nonlinear Static (NLS) or Pushover analysis. ASCE 7-10 is used 

for EFP and LD analysis, whereas FEMA 356 is used for the Pushover analysis. The optimal design 

is obtained and compared for each analysis procedure considered. The design and strength checks 

for the steel members of the frame are performed as per the AISC Steel Manual and the AISC 318-

11 seismic provisions. Similarly, the performance-based design optimization of the frame is 

performed for Immediate Occupancy (IO), Life Safety (LS), and Collapse Prevention (CP) seismic 

hazard levels.  
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Using the optimization framework, the differences in optimal results obtained using EFP, LD, and 

NLS analysis procedures are evaluated and explained. Additionally, the sensitivity of the optimal 

results to design selections and assumptions is evaluated. In the course of this study, it was 

determined that the assumptions made by the above design codes on the use of certain seismic 

design parameters such as fundamental period, 𝑇 and effective length factor, 𝐾, either contradicted 

or were unspecified in the above design codes.  

1.2 Objectives 

 The ultimate objective of this study is to optimize the seismic design and the performance-

based design of a three-story steel moment-resisting frame using equivalent lateral force (EFP), 

linear response time-history, and nonlinear static pushover analysis procedures. This optimization 

framework will enable a sensitivity study on the influence of design method and assumptions on 

the resulting optimal design. This framework includes the following steps:   

1) Develop the PSO algorithm in MATLAB and validate the code by considering an example 

case study that has been used in a published paper. This includes the optimization of the weight 

of a 10-bar planar truss structure and a six story steel frame building under gravity loading 

condition. The PSO results are validated in this step in order to confirm that the developed 

MATLAB algorithm is fit for the proceeding applications.  

2) Build a 2-D finite element model of the benchmark structure in OpenSees, perform modal 

analysis, and validate the model by comparing the first three natural frequencies to the ones 

provided in the paper. The objective of this step is to ensure that the OpenSees model is 

accurate and is fit for performing the seismic analysis procedures.  

3) Create an interface between MATLAB and OpenSees. The objective of this step was to 

develop a technique that enables the automation of the OpenSees analysis. This involves 
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random generation of the design or member sizes of the structure; prompting OpenSees for 

performing the analysis of this structure; and then feeding the obtained results in OpenSees 

back into MATLAB.  

4) Perform ASCE 7’s equivalent lateral force, linear response time-history, and FEMA 356 

nonlinear static analysis procedures and optimize the benchmark structure using PSO 

algorithm developed in the first step for each of the three analysis procedures considered 

separately. Compare and summarize the optimal seismic designs of the structure.  

5) Perform the performance-based design optimization of the structure for the nonlinear static 

analysis case, in which the structure is designed for the seismic forces corresponding to the 

IO, LS, and CP seismic hazard levels.  

6) Check sensitivity of the two seismic design parameters specified in the ASCE 7 code for EFP 

analysis case. In this step, fundamental time-period and effective length factors used in the 

seismic design are changed and the obtained optimal seismic designs are compared with the 

original optimization results in step 4.  

1.3 Organization of Thesis 

  

 This chapter presents background and objectives of this thesis. Chapter 2 begins with 

describing the theory and concepts of PSO and its application in the optimization of structures. 

Chapter 2 will also review the current seismic design procedures including capacity design 

method, ASCE 7’s equivalent lateral force procedure, linear response time-history analysis, FEMA 

356 nonlinear static pushover analysis, and performance-based design of buildings.   

 The proceeding chapters commensurate with the objectives or the steps discussed in this 

chapter. Chapter 3 develops the PSO code in MATLAB and includes two optimization examples 

of a 10-bar truss structure and a six-story steel rigid frame. In Chapter 4, the OpenSees software is 
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introduced and a 2-D linear static model of the benchmark structure is built followed by validation 

of the model by comparing the eigenvalue results. Additionally, a technique to create a MATLAB-

OpenSees interface is introduced in this chapter. In Chapter 5, the optimization is performed for 

the LS, LD, and NLS analysis procedures separately, and the obtained optimal seismic designs are 

summarized and compared. Similarly, in Chapter 6, the PSO is applied to the performance-based 

design optimization of the frame using the nonlinear static procedure. In Chapter 7, the sensitivity 

analysis of the two seismic design parameters is performed by comparing the optimization results 

with changed parameters to the optimal designs obtained with the previously obtained results for 

the ASCE 7’s equivalent lateral force analysis case. Lastly, summary, conclusions and 

recommendations for future studies are presented in Chapter 8. 
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Chapter 2: Literature Review 

2.1 Particle Swarm Optimization 

 Particle Swarm Optimization or PSO is a swarm-intelligence based algorithm that is 

inspired by the social behavior of animals functioning as a group or a swarm such as birds, fishes, 

insects, etc. The PSO algorithm was first introduced by Kenny and Eberhart in 1995 [19]. A 

standard PSO algorithm first initializes a population (swarm) of random solutions (particles). Each 

particle has its own position and a velocity with which it explores the solution space. Then, using 

an iterative procedure, each particle moves across the search space looking for a better position, 

i.e., a position that gives a better objective function value. The movement of particles is guided by 

a particle’s best position encountered thus far, known as the local best position, and by the best 

position among its neighboring particles or the swarm, known as the global best position. In this 

way, at every iteration, particles’ positions are updated, moving towards a better and better solution 

until the swarm converges into one best position, which becomes an optimal solution.   

 The original PSO used an equation (see Eq. 2.1) to calculate the velocity of particle that 

makes the particle move in the direction based on its own best position and the swarm’s best 

position. Therefore, this equation takes care of how fast or slow a particle should be moving based 

on how far the current particle (𝑥𝑗
𝑖) is from its own best location (𝑝𝑖) and its neighbors’ best 

location (𝑝𝑗
𝑔

).  In PSO, 𝑐1 and 𝑐2 are trust parameters that controls the attraction of a particle 

towards its previous best location and swarm’s global best location. Kennedy and Eberhart [19] 

proposed 𝑐1 and 𝑐2 to be taken as 2. Later, Shi [20] added a weight or inertial factor (𝑤) to this 

velocity equation to tune the trade-off between the global exploration and the local exploitation of 

the moving particles. Shi and Eberhart [20] recommended using an inertia weight of  0.8 < 𝑤 <
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1.4  and shown that a linearly decreasing inertia weight can improve the performance of the PSO 

significantly It should be noted that  𝑐1 , 𝑐2 and 𝑤 are problem-dependent parameters and are 

determined based on experience or guess and check approach for PSO’s best performance.  

 𝑣𝑗+1
𝑖 = 𝑤𝑣𝑗

𝑖 + 𝑐1𝑟1(𝑝𝑖 − 𝑥𝑗
𝑖) + 𝑐2𝑟2(𝑝𝑗

𝑔
− 𝑥𝑗

𝑖) (Eq. 2.1) 

 𝑥𝑗+1
𝑖 = 𝑥𝑗

𝑖 + 𝑣𝑗+1
𝑖  (Eq. 2.2) 

Where, 

𝑣𝑗+1
𝑖  = Updated velocity of particle 𝑖, at 𝑗 + 1 iteration    

𝑣𝑗
𝑖 = Current Velocity of particle 𝑖 at  𝑗𝑡h iteration 

 𝑟1 & 𝑟2 = Uniformly distributed random numbers between the range [0, 1] 

𝑤 = Weight or inertia factor 

𝑝𝑖 = Previous best position of particle 𝑖 

𝑥𝑗
𝑖 = Current position of particle 𝑖 at 𝑗𝑡ℎ iteration 

𝑐1 & 𝑐2 = PSO trust parameters 

𝑝𝑗
𝑔

 = Global best position of particle 𝑖 at 𝑗𝑡ℎ iteration 

 

2.2 Optimization of Steel Structures 

 The objective function will be the weight of the structure, i.e., obtaining the minimal 

sectional sizes or cross-sectional area of the members. Thus, the variables for the optimization 

problem are the member sizes, cross-sectional areas, depending if the variables are discrete or 

continuous. As seen in Figure 2.1, there are mainly two kinds of regions within the search space, 

which represents the optimization constraints. First is the variable boundary, which are the 

minimum or maximum limits for the variables. Second is problem-specific or design constraints 

which may be displacement limits, stress limits, design strength limits for the members, etc. The 
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bounded region between these two constraints is the feasible region. It can be safely said that an 

optimal solution is usually near the feasible boundary.  

 

 

 

 

 

 

The general iterative procedure for the PSO optimization can be outlined as follows: 

Step 1: Select a swarm size or number of particles of size 𝑁, max number of iterations, 𝑡𝑚𝑎𝑥, and 

PSO parameters 𝑤, 𝑐1, & 𝑐2 described in the preceding text.  

Step 2: Randomly generate particles’ positions (𝑋𝑗
𝑖) within the variables boundary, [𝑋𝑚𝑖𝑛, 𝑋𝑚𝑎𝑥]. 

where 𝑋  is a vector of variables for 𝑚 structural members for 𝑖𝑡ℎ particle and 𝑗𝑡ℎ iteration. 

Step 3: Randomly initialize particles’ velocities (𝑉𝑗
𝑖) in the range [−𝑉𝑚𝑖𝑛, 𝑉𝑚𝑎𝑥]. Thus, each 

particle must have its own position and a velocity.  

Step 4: Perform the analysis for each particle and determine if the design constraints for that 

particle are satisfied, if not, regenerate  𝑖𝑡ℎ particle’s position, if yes, evaluate 𝑖𝑡ℎ objective function 

and assign this position as 𝑝𝑏𝑒𝑠𝑡𝑗
𝑖  or present best (local best) position. Each particle should have 

an associated cost, and the best cost among all the particles or swarm becomes the 𝑔𝑏𝑒𝑠𝑡. 

Step 4: Given 𝑝𝑏𝑒𝑠𝑡𝑗
𝑖 , 𝑔𝑏𝑒𝑠𝑡, and the PSO parameters, update each particle’s velocity and 

position based on the Eq. 2.1 and Eq. 2.2, respectively. 

Search 

Space Design 

onstrants 

Variables 

Boundary 

Feasible 

egon 

Figure 2.1: Structural Optimization Regions 
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Step 5: Repeat Step 4, perform the analysis and check all the design constraints for each particle. 

If the constraints are met, evaluate the objective function and if this cost is better than the previous 

best cost, 𝑝𝑏𝑒𝑠𝑡𝑗−1
𝑖 , then assign this cost as the particle’s new 𝑝𝑏𝑒𝑠𝑡𝑗

𝑖 , and the new 𝑔𝑏𝑒𝑠𝑡 is the 

best of all 𝑝𝑏𝑒𝑠𝑡𝑗
𝑖 . In this way, the 𝑔𝑏𝑒𝑠𝑡 gets updated with every iteration. 

Step 6: Repeat Steps 4-6 until the termination conditions are met or 𝑗 < 𝑡𝑚𝑎𝑥, and the optimal 

solution is the final 𝑔𝑏𝑒𝑠𝑡 and its position.   

2.2.1 AISC-LRFD Steel Frames 

In a typical structural design of an unbraced steel frame, the column and beam sections are 

selected from the standard steel section tables available in the AISC manual [21]. The most 

commonly used primary members in the steel frames are W-shapes, taken from a table of 273 W-

shape sections available in the AISC manual. These 273 sections can be arranged in a sequence 

and these 1 to 273 sequence numbers can be treated as discrete design variables. At any stage of 

optimization, once a sequence number is generated by the algorithm, the real values of the design 

variable (Area, Moment of Inertia, Self-Weight, etc.) corresponding to this sequence number can 

be easily taken from the discrete set. 

In addition to the displacement constraints, the design of steel frame should include the 

strength requirements for beams and columns as per the following AISC-LRFD strength check 

equations for beam-column members: 

𝑃𝑢

ϕ𝐶𝑃𝑛
+  

8

9
 

𝑀𝑢,𝑥

𝜙𝑏𝑀𝑛,𝑥
≤ 1.0 𝑓𝑜𝑟 

𝑃𝑢

ϕ𝐶𝑃𝑛
≥ 0.2 

Eq. 2.3 

𝑃𝑢

2 ϕ𝐶𝑃𝑛
+  

𝑀𝑢,𝑥

𝜙𝑏𝑀𝑛,𝑥
≤ 1.0 𝑓𝑜𝑟 

𝑃𝑢

ϕ𝐶𝑃𝑛
≤ 0.2 

Eq. 2.4 
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2.2.2 Effective Length Factor 

 It is known that the effective length factor, 𝐾 is required in computing the compressive 

strength of columns. The AISC manual recommends either of the two methods for determining 

the effective length factor- Alternate Design Method or Direct Design Method. Alternate Design 

Method is a first-order analysis method, and is most commonly used method for determining 𝐾. 

In this method, the Jackson and Moreland monographs are used that are derived from Eq. 2.5 and 

Eq. 2.6 as specified in the code.   

Unbraced Frame: 
𝛾1 𝛾2 (

𝜋
𝑘

)
2

− 36

6 (𝛾1 + 𝛾2)
=

𝜋/𝑘

𝑡𝑎𝑛(𝜋/𝑘)
 

Eq. 2.5 

 

Braced Frame: 𝛾1 𝛾2

4
(

𝜋

𝑘
)

2

+
𝛾1 + 𝛾2

2
(1 −

𝜋/𝑘

𝑡𝑎𝑛(𝜋/𝑘)
) +

2 𝑡𝑎𝑛(𝜋/2𝑘)

𝜋/𝑘
= 1 

Eq. 2.6 

 

Where, 
𝛾1 = ∑

𝐼𝑐1/𝑙𝐶1

𝐼𝑏1/𝑙𝑏1
 𝑎𝑛𝑑 𝛾2 = ∑

𝐼𝑐2/𝑙𝐶2

𝐼𝑏2/𝑙𝑏2
 

Eq. 2.7 

The subscripts c and b refer to the compression and beam elements, respectively, the 

subscripts 1 and 2 refer to two ends of the compression member under consideration,  𝐼 is the 

moment of inertia, and,  𝑙 is the length of the member under consideration. In Eq. 2.7, the 

summation sign is for all the connecting elements that restrain from weak-axis buckling, and 

therefore, the sizes of the connecting beams connecting to the column in the transverse direction 

must be known. However, since only 2-D planar frames will be considered in this study, the 

member sizes in the transverse direction are unknown, and therefore this method cannot be 

considered in this study. 
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  In the AISC Direct Design Method, the code allows the effective length factor to be taken 

as unity under two conditions- first, the P-Delta second-order effects must be included in the 

analysis and second, the stiffness of the members must be reduced by 20%, or 𝐸𝐼 multiplied by a 

factor of 0.80. So, the forces in the members shall correspond to the reduced stiffness. In addition, 

a notional load of 0.5% of the vertical loads must be applied at each story, to account for the 

geometric imperfections [21].  

2.3 Review of Current Seismic Design Procedures 

2.3.1 Introduction 

The conventional philosophy of Building Codes for earthquake-resistant design is to 

prevent the structures from collapsing in the extreme earthquake event likely to occur at a building 

site and to limit the structural damage. The Code’s approach is to economically design a structure 

that can withstand a very strong earthquake through sufficient ductility in the structure, and not to 

design a structure with high strength [22]. Thus, the structures shall have enough ductility to 

survive strong earthquakes without collapsing.  Ductility is the amount of inelastic deformation 

that the structure can undergo beyond its yield point. Ductility for an earthquake-resistant design 

is important because it permits the redistribution of internal stresses and forces in the members; 

results in more robust structures; provides warning of failure, and prevents a structure from 

collapsing under severe earthquake loads.  

There are three main criteria required to develop ductile behavior in earthquake-resistant 

buildings. First is choosing frame members that must be allowed to yield during earthquakes; for 

example, beams in moment resisting frames, braces in concentrated braced frames, links in 

eccentrically braced frames etc. These members are also known as “Deformation-Controlled” or 

“Fuse” elements, as these are members that have the capability to absorb energy and exhibit highly 
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inelastic ductile behavior [23].  Secondly, these “fuses” must be provided with sufficient seismic 

or steel detailing so that they can sustain target ductility or inelastic deformations prior to their 

failure. The third requirement is to design the “Force-Controlled” elements to be stronger than the 

fuses or deformation-controlled elements. The force-based elements are typically the members that 

are critical for the structure’s stability, or the members that prevents structural collapse.  These 

typically constitute columns in moment frames, beams in concentrically and eccentrically braced 

frames, transfer girders, etc. The ultimate objective behind designing fuses and force-controlled 

elements as per the preceding criteria is to achieve the target yield mechanism of collapse 

prevention, as described in the capacity design concept below.  

2.3.2 Capacity Design Principles 

 The capacity design method was initially proposed by John Hollings in the year 1968 [24] 

related to the seismic-resistant design of frame buildings. The concept of capacity design is to 

ensure a desirable mechanism of inelastic response under seismic attacks, by providing a “strong-

column-weak beam” hierarchy [25]. This is achieved by allowing the fuse or deformation-

controlled elements to yield by designing them to be weaker than the force-controlled elements; 

whereas, the force-controlled or protected elements are designed for the maximum (overstrength) 

force capacity, as can be seen in Eq. 2.8. 

𝜙𝐶𝑛 ≥ 𝛾𝐷𝑛  Eq. 2.8 

Where, 

𝐶𝑛 = Nominal strength of the force-controlled component 

𝐷𝑛 = Nominal force demand, imposed by the yielding component 

𝜙 𝑎𝑛𝑑 𝛾 = Demand and capacity factors (similar to load and resistance factors) 
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There are two approaches in designing the force-controlled elements, i.e., the local 

approach and the global approach. Eq. 2.8 shows the local approach where the required forces in 

these elements; for example, columns in moment-frames, are taken as the forces induced by the 

yielding component such as beams, 𝐷𝑛 multiplied by the capacity factor, 𝛾. As an alternative, in 

the global or simplified approach, the required forces in columns can be taken as the induced forces 

due to seismic loads multiplied by an empirical overstrength factor, Ω [25]. These are also referred 

to as the amplified seismic forces.  

2.3.3 ASCE 7-10 Equivalent Lateral Force Procedure (EFP) 

EFP is a simplified seismic analysis/design procedure codes as an alternative to complex 

nonlinear or incremental dynamic analysis (IDA) procedures, specified in the ASCE 7-10 codes. 

This is one of the most commonly used modern seismic design procedure which works generally 

well with low to mid-rise structures with regular geometric configuration [26]. The design 

approach relies on the inelastic response/yielding of building elements to control structural damage 

under large earthquake loads. The method uses empirical seismic performance parameters such as 

response modification factor, 𝑅, displacement amplification factor, 𝐶𝑑, and overstrength factor, 

Ω𝑂. The seismic design procedure is for design (Life-Safety) earthquake level with a return period 

of 475-years. A site-specific design acceleration response spectrum is used to predict the seismic 

demand or the base shear for a building, where a response spectrum is a plot of the peak response 

(displacement, velocity, or acceleration) of a series of single-degrees-of-freedom (SDOF) 

oscillators of varying natural frequency subjected to the same ground motions [22].  

The design approach of this method can be explained with the help of Figure 2.2, which is 

a plot of seismic base shear, 𝑉 in the y-axis and the story drift, 𝐷 in the x-axis. In Figure 2.2, the 
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actual seismic demand or base shear corresponding to the earthquake ground accelerations, are at 

level E. If a structure was to be designed to remain elastic at level E; there is still no guarantee that 

the design would be safe, as the earthquakes are highly uncertain and there is a chance that the 

earthquake forces may exceed level E. It is apparent that it is infeasible to design a structure that 

relies on its linear response to sustain such large loads. Thus, the code of practice is to reduce the 

seismic base shear at level E, 𝑉𝑒 by the response modification factor, 𝑅, which takes the effects of 

energy-dissipation through damping, 𝑅𝑑, and material overstrength, Ω𝑜 into account. Since these 

effects are difficult or impractical to quantify, a single empirical factor, 𝑅 is specified by the codes 

to obtain the base shear at the design level S, that is, 𝑉𝑠. The intent of the 𝑅 factor is to simplify 

the structural design process such that linear elastic analysis can be used for the seismic design. 

However, during earthquakes, the peak story drifts are at level 𝑈 at the point of ultimate failure, 

and not at design base shear level S. Therefore, to predict the actual displacement response of the 

structure, the code requires us to use the displacement amplification factor, 𝐶𝑑, which amplifies 

the displacement demand from the design level, 𝑆 to the ultimate failure level, 𝑈.  
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Figure 2.2: Equivalent Static Force Method [22] 

To achieve the target yield mechanism of a moment-resisting frame, the strong-column 

weak-beam hierarchy is enforced as per the capacity design principle discussed above. Therefore, 

ASCE 7-10 requires deformation-controlled members to be designed for the design level or 

reduced earthquake forces, at level 𝑉𝑠 and then amplifying their displacements responses by the 𝐶𝑑 

factor. Whereas, the force-controlled members or columns are to be designed for the amplified 

seismic forces, i.e., design level forces at V𝑠 multiplied by a single overstrength factor, Ω𝑜.  

The ASCE 7-10 EFP seismic design steps can be summarized in the following steps:  

1) Fundamental Period, 𝑇 [27]: The fundamental period of the structure shall be determined 

either from the substantiated modal analysis or using an approximate fundamental period 

as per Eq. 2.9. However, if the period is determined from the modal analysis, it shall not 

exceed the product of the coefficient 𝐶𝑢 (Table 2.1) and the approximate fundamental 

period, 𝑇𝑎. 
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𝑇𝑎 = 𝐶𝑡ℎ𝑛
𝑥 Eq. 2.9 

Where, ℎ𝑛 is the structural height in feet, and the coefficients 𝐶𝑡 and 𝑥 are determined from 

Table 2.2. 

 

Table 2.1: Coefficient for Upper Limit on Period [27] 

 

Table 2.2: Values of Approximate Period Parameters 𝐶𝑡 and 𝑥 [27] 

2) Design acceleration response spectrum [28]: The ASCE 7-10 code makes use of the 

mapped seismic acceleration response (at 5% damped) parameters, 𝑆𝐷𝑆 and 𝑆𝐷1, that can 

be used to obtain the design response spectrum by making use of the following equations, 

as shown in Figure 2.3. 
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For 𝑇 < 𝑇0 𝑆𝑎 = 𝑆𝐷𝑆 (0.4 + 0.6
𝑇

𝑇𝑂
) Eq. 2.9 

For 𝑇0 ≤ 𝑇 ≤ 𝑇𝑆 𝑆𝑎 = 𝑆𝐷𝑆 Eq. 2.10 

For 𝑇𝑆 < 𝑇 ≤  𝑇𝐿 𝑆𝑎 =
𝑆𝐷1

𝑇
 Eq. 2.11 

For 𝑇 > 𝑇𝐿 𝑆𝑎 =
𝑆𝐷1𝑇𝐿

𝑇2
 Eq. 2.12 

Where, 

𝑆𝐷𝑆 = Design spectral response acceleration parameter at short periods 

𝑆𝐷1 = Design spectral response acceleration parameter at 1-s period 

𝑇    = Fundamental period of the structure 

𝑇0   = 0.2 
𝑆𝐷1

𝑆𝐷𝑆
  

𝑇𝑆   =
𝑆𝐷1

𝑆𝐷𝑆
 

𝑇𝐿   = Mapped long-period transition period (s) 

3) Determine the seismic weight of the structure, 𝑊, which is basically all the inertial mass 

that resists seismic forces due to the ground motion. This includes, all the dead load of all 

permanent components of the building and permanent equipment, 25% of the design 

storage live load (except in public garages and open parking structures, a uniform load of 

10 psf if partition loads are considered, and a portion of the snow load, i.e., 20% of 𝑝𝑓 in 

regions where the flat roof snow load exceeds 30 psf [29]. 
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Figure 2.3: Design Response Spectrum [28] 

4) Determine Seismic Base Shear [30]: The seismic base shear, 𝑉 (kips) is given by the 

following equation: 

Base Shear, 𝑉 = 𝐶𝑆𝑊 Eq. 2.13 

Where, 

𝐶𝑆 = seismic response coefficient 

𝑊 = the effective seismic weight 

The seismic response coefficient, 𝐶𝑆 shall be determined using the following equation, 

and by complying with its minimum and maximum limits as per the code. Again, this 

factor reduces the earthquake forces to obtain the design level forces to simplify the 

analysis to linear elastic and to predict the inelastic response of the structure by making 

use of the empirical factor, 𝑅.  

𝐶𝑆 =
𝑆𝐷𝑆

𝑅
𝐼𝑒

 
Eq. 2.14 

Where, 𝐼𝑒 is the importance factor for earthquakes. 
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5) Vertical Distribution of Base Shear [31]: For short period buildings, the force distribution 

generally follows a triangular pattern, i.e., increases linearly along the height of the 

structure for evenly distributed mass. The lateral force at each level shall be determined in 

accordance with the following equations. 

𝐹𝑥 = 𝐶𝑣𝑥𝑉 Eq. 2.15 

𝐶𝑣𝑥 =
𝑤𝑥ℎ𝑥

𝑘

∑ 𝑤𝑖ℎ𝑖
𝑘𝑛

𝑖=1

 Eq. 2.16 

Where,  

𝐶𝑣𝑥 = Vertical distribution factor 

𝑉 = Total design base shear at the base of structure (kips) 

𝑤𝑥 𝑎𝑛𝑑 𝑤𝑖 = The seismic weight of story 𝑖 or 𝑥 

ℎ𝑖  𝑎𝑛𝑑 ℎ𝑥 = The height from the base to the level 𝑖 or 𝑥 

𝑘 = An exponent related to the structure period as 

follows: 

  For structures having a period of 0.5 s or less, 𝑘 = 1 

  For structures having a period of 2.5 s or more, 𝑘 = 2 

  For structures having a period between 0.5 s and 2.5 

s, 𝑘 shall be interpolated between 1 and 2.   

 

6) To meet the capacity design requirement, ASCE 7-10 provides two LRFD load case 

combinations for earthquake loads [32]: basic load combination for deformation-controlled 

elements (beams) and load combination with overstrength factor for force-controlled 

elements (columns) as follows: 
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Beams: 

LCC 5: (1.2 + 0.2𝑆𝐷𝑆)𝐷 + 1.0𝐸 + 𝐿 + 0.2𝑆 Eq. 2.17a 

LCC 7: (0.9 − 0.2𝑆𝐷𝑆)𝐷 + 1.0𝐸 Eq. 2.17b 

Columns: 

LCC 5: (1.2 + 0.2𝑆𝐷𝑆)𝐷 + Ω𝑜𝐸 + 𝐿 + 0.2𝑆 Eq. 2.18a 

LCC 7: (0.9 − 0.2𝑆𝐷𝑆)𝐷 + Ω𝑜𝐸 Eq. 2.18b 

 
 

7) Design Story Drifts [33]: The design deflections shall be obtained as per the following 

equation and shall not exceed the allowable story drift limits given in Table 2.3. 

𝛿𝑥 =
𝐶𝑑𝛿𝑥𝑒

𝐼𝑒
 

Eq. 2.19 

Where, 

𝐶𝑑  = Deflection amplification factor from ASCE 7-10, Table 12.2-1 

𝛿𝑥𝑒 = Deflection determined by an elastic analysis 

𝐼𝑒    = Importance factor determined in ASCE 7-10, Section 11.5.1 

The design story drift, Δ shall be computed as the difference of the deflections at the top 

and bottom of the story under consideration, as shown in Figure 2.4. 
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Figure 2.4: Story Drift Determination [33] 

 

Table 2.3: Allowable Story Drift Limits [34] 

It shall be noted that the code permits to determine the elastic drifts, 𝛿𝑒 using the seismic 

design forces based on the computed fundamental period of the structure instead of the 

upper limit period (𝐶𝑢𝑇𝑎) specified in step 1 [33].   
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2.3.4 ASCE 7-10 Linear Response Time-History Analysis 

Both 2-D and 3-D analysis are permitted for the response history procedures. A linear 

model of the structure shall be used in determining its response through the methods of numerical 

integration. A suite of ground motion acceleration records compatible with the design response 

spectrum shall be used for the considered location of the structure. A suite of no less than three 

appropriate ground motions shall be used in the analysis [35]. Each ground motion must consist 

of a horizontal acceleration history selected from an actual recorded earthquake event [35]. 

Additionally, the ground motions can be simulated that are compatible with the design response 

spectrum, to make up the total number required. These ground motions shall be scaled such that 

the average value of the 5 percent damped response spectra for the suite of motions considered is 

not less than the design response spectrum for the site between the periods 0.2 𝑇 𝑎𝑛𝑑 1.5 𝑇, where 

𝑇 is the natural period of the structure in the fundamental mode for the direction of response being 

analyzed [35]. For determining the displacement or force response of the structure, the following 

scaling parameters must be used: 

a. Force quantities shall be multiplied by the factor  𝐼𝑒
𝑅⁄ , where 𝐼𝑒 is the importance factor 

and 𝑅 is the response modification factor as discussed in the previous sections [35].  

b. The story drifts shall be multiplied by  𝐶𝑑
𝑅⁄ , where 𝐶𝑑 is the displacement amplification 

factor specified in Table 12.2-1 of the code. The allowable story drift limits are permitted 

to be taken as 125% of the limits specified in Table 2.3. [35].  

Where the maximum scaled (as above) base shear obtained from this analysis procedure 

(𝑉𝑖) is less than the 85% of the minimum base shear obtained in the equivalent lateral force 

procedure and where the acceleration response parameter 𝑆1 is equal to or greater than 0.6g; then, 

the scaled member forces shall be multiplied by 
𝑉

𝑉𝑖
 , where 𝑉 is the minimum base shear [36]. 
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Additionally, if the maximum scaled base shear predicted in this analysis or 𝑉𝑖 is less than 

0.85𝐶𝑠𝑊, where 𝐶𝑠 is the upper limit of the response modification factor given in ASCE 7-10, Eq. 

12.8-6.; then drifts shall be multiplied by 0.85 𝐶𝑠𝑊/𝑉𝑖 [36]. 

Lastly, if a suite of at least seven ground motions are considered in the analysis, then the 

design member forces and drifts shall be taken as the average of the forces and drifts determined 

from the analyses of the suite and as scaled in the preceding text [36]. If fewer than seven ground 

motions are analyzed, then the design member forces and the design drifts shall be taken as the 

maximum of the scaled force and scaled drift quantities determined from analyses [36]. Where, 

the overstrength factor is used in the load combinations, then the value of the amplified force 

responses need not be taken larger than the maximum of the unscaled force response obtained from 

the analyses [36].  

2.3.5 Nonlinear Static Procedures 

The nonlinear static procedure (NSP), also known as pushover analysis, is a simplified 

method that has a capacity to adequately predict the nonlinear behavior of a structure under seismic 

loads and estimate the strength capacity beyond the elastic limits, as an alternative to performing 

rigorous IDA (incremental dynamic analysis) procedures. The use of pushover analysis has 

accelerated in the United States since the publication of ATC-40, FEMA 274, and FEMA 356 

documents [37]. It is a popular tool for the estimation of seismic demands and for the performance 

evaluation of new and existing structures under different seismic hazard levels. The pushover 

analysis is a static nonlinear analysis of a structure under permanent gravity loads and 

monotonically increasing lateral loads. The analysis can be carried up to failure of the structure, 

thus it helps in the determination of nonlinear characteristics of a structure such as post-yield 
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stiffness, ductility, and ultimate failure strength. The result is a plot between the base shear of the 

structure and the roof or top displacement.  

There are three main nonlinear static analysis provisions in the current U.S. code of practice 

including: ATC-40 Capacity Spectrum Method (CSM), FEMA 274 Coefficient Method, and 

FEMA 356 Coefficient Method (CM) [37]. The main difference between capacity spectrum 

method and coefficient method is that CSM obtains the performance point or seismic demand by 

converting a nonlinear SDOF system into an equivalent linear SDOF system with an assumption 

that, for a SDOF system, inelastic displacement will be approximately equal to the elastic 

displacement with greater period and damping values than the initial values in nonlinear system 

[38]. Whereas, CM obtains the maximum displacement of the MDOF system, termed as target 

displacement, by modifying the linear elastic response of the equivalent SDOF system by 

multiplying it by a series of coefficients obtained from empirical equations derived by calibration 

for a large number of dynamic analyses [38]. In this study, the Coefficient Method of FEMA 356 

will be used because of the following reasons: 

a. It has been adopted in the ASCE-41 provisions [39].  

b. It has shown to provide more accurate results as compared to ATC CSM procedure [40].  

c. ATC-40 CSM tends to overestimate the demand under Maximum Considered Earthquake 

(MCE), resulting in higher costs [40]. 

2.3.6 FEMA 356 Coefficient Method 

The analysis procedure is based on a nonlinear mathematical model of a structure that directly 

incorporates the nonlinear load-deformation relation of all the structural components and elements, 

and the structure shall be subjected to monotonically increasing lateral loads under permanent 

gravity loads, until the target displacement point exceeded [41]. These loads represent the inertial 
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forces experienced during an earthquake. The analysis steps are summarized in the form of 

following requirements as per FEMA 356:  

1) Modeling Considerations [41]: By performing the pushover analysis in combination with 

the gravity loads, the relation between the base shear and lateral displacement of the control 

node shall be established. The control node shall be located at the center of mass of the 

roof. The nonlinear behavior of all the components shall be included in the model that uses 

full backbone curve and includes strength degradation and residual strength, if any. At least 

two lateral load distributions shall be considered in the analysis. When more than 75% of 

the total mass participation is from the fundamental mode in the direction under 

consideration, this distribution is permitted to be either proportional to the 𝐶𝑣𝑥 coefficients 

found from Eq. 2.16 or proportional to the fundamental mode in the direction under 

consideration. The second lateral load distribution pattern shall be proportional to the total 

mass at each level.  

2) Bilinear Idealization [42]: The next step in the procedure is to replace the obtained 

pushover curve or the plot of the base shear and the nonlinear deformation of the control 

node with an idealized bilinear curve. The idealized relationship is used to calculate the 

effective lateral stiffness, 𝐾𝑒, and effective yield strength, 𝑉𝑦 of the building as shown in 

Figure 2.5. The two line segments shall be located such that area under the curve and above 

the curve are approximately equal. This is done by using an iterative procedure in which 

the slopes of the two lines segments are changed until the areas above and below the curve 

are approximately balanced. The point where the two lines meets is taken as the effective 

yield strength, 𝑉𝑦, and then effective lateral stiffness, 𝐾𝑒 is taken as the secant slope 

calculated at the base shear equal to the 60% of the effective yield strength of the structure. 
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The post-yield slope, 𝛼, is the ratio of the post-yield stiffness (slope of the second line 

segment) and effective lateral stiffness, 𝐾𝑒 . Next, an effective fundamental period in the 

direction under consideration shall be determined using the initial elastic lateral stiffness 

(slope of the actual curve in the elastic region), 𝐾𝑖, effective lateral stiffness, 𝐾𝑒, and initial 

fundamental time period calculated in elastic modal/dynamic analysis, 𝑇𝑖: 

𝑇𝑒 = 𝑇𝑖√
𝐾𝑖

𝐾𝑒
 Eq. 2.20 

 

 

Figure 2.5: Idealized Force-Displacement Curves [43]  

3) Target Displacement [43]: The target displacement is intended to represent the maximum 

displacement that is likely to occur during the design earthquake, and the calculated 

internal forces and stresses at this level are reasonable approximations of those expected 

during the design earthquake because the model takes the nonlinear response of the 
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structure into account. The target displacement, 𝛿𝑡 shall be calculated as per the following 

equation: 

𝛿𝑡 = 𝐶0 𝐶1 𝐶2 𝐶3 𝑆𝑎  
𝑇𝑒

2

4𝜋2
𝑔 Eq. 2.21 

Where:  

𝐶0 = Modification factor that relates spectral displacement of an equivalent SDOF system   

to the roof displacement of the building MDOF system, taken from Table 2.4. 

𝐶1 = Modification factor to relate expected inelastic displacement to linear elastic 

response. 

= 1.0 for 𝑇𝑒 ≥ 𝑇𝑠 

=  [1.0 + (𝑅 − 1)𝑇𝑠/𝑇𝑒]/𝑅 for 𝑇𝑒 < 𝑇𝑠  

but shall not be greater than 1.5 and less than 1.0 as per FEMA 356, Section 3.3.1.3. 

𝑅 = Ratio of elastic seismic demand to yield strength coefficient given as follows: 

𝑅 =
𝑆𝑎

𝑉𝑦/𝑊
. 𝐶𝑚 

Eq. 2.22 

          Where:  

𝑉𝑦 = Yield strength calculated as before 

                     𝑊 = Effective seismic weight of the building 

         𝐶𝑚 = Effective mass factor for the fundamental mode taken from Table 2.4 or using      

                              Eigenvalue analysis. 

𝐶2 = Modification factor to represent the effect of pinched hysteretic shape, stiffness 

         degradation, and strength deterioration. 𝐶2 = 1.0 is permitted for nonlinear 

procedures.  

𝐶3 = Modification factor to represent increased displacements due to dynamic P-Δ effects. 
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        For buildings with post-yield stiffness, 𝐶3 can be taken as 1.0.  

𝑆𝑎 = Response spectrum acceleration, at the effective fundamental period and damping 

ratio of the building in the direction under consideration [44].  

𝑔 = Acceleration due to gravity.  

 

Table 2.4: Effective Mass Factor [45] 

4) Acceptance Criteria [46]: The forces and deformations corresponding to the control node 

displacement equaling or exceeding the target displacement forms the seismic demand or 

the required forces and deformations for the design. Therefore, the capacities of the 

structural components shall not be less than the maximum deformation demands calculated 

at the target displacement. For the primary and secondary steel components of the structure, 

the nonlinear modeling criteria, strength and deformation capacities, and their acceptance 

criteria are provided in Chapter 5 of the FEMA 356 document. Since, an OpenSees 

nonlinear mode will be used in this study (see Ch. 5.4), the code’s modeling criteria will 

not be covered. The acceptance criteria for the primary components, beams and columns 

are given as follows: 

a. Beams: Flexural actions shall be considered as deformation-controlled elements, 

and shall conform to permissible plastic rotations as indicated in FEMA 356, Table 

5-6. But, in this paper, the plastic rotation limits specified in the AISC Seismic 

Provisions [47] will be used. (Appendix B).  
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b. Columns: For steel columns under combined axial and bending forces, where the 

column axial load is less than 50% of the lower bound column strength, 𝑃𝐶𝐿, the 

column shall be considered as deformation-controlled element and shall comply 

with the maximum permissible plastic rotations specified in the code (Appendix 

B). Where the axial compressive load exceeds 50% of the lower-bound column 

strength, 𝑃𝐶𝐿, the column shall be considered as force-controlled element for both 

axial loads and flexural loads, and shall conform to the following equation:  

𝑃𝑈𝐹

𝑃𝐶𝐿
+

𝑀𝐹,𝑥

𝑀𝐶𝐿,𝑥
+

𝑀𝐹,𝑦

𝑀𝐶𝐿,𝑦
≤ 1 Eq. 2.23 

Where: 

𝑥, 𝑦   = Member’s forces/strengths about the x-axis and y-axis. 

  𝑃𝑈𝐹    = Required axial force in the member. 

 𝑀𝑈𝐹    = Required bending moment in the member about the x-axis. 

  𝑃𝐶𝐿     = Lower-bound axial compression strength (Appendix C) 

                Seismic Provisions, taking strength reduction factor, 𝜙 = 1.0 and using 

     lower-bound value for yield strength (Appendix C)   

   𝑀𝐶𝐿  = Lower-bound flexural strength determined as per AISC Seismic 

               Provisions, taking strength reduction factor, 𝜙 = 1.0 and using lower-  

               bound value for yield strength (Appendix C).  

2.3.7 Performance-Based Design 

             

  Traditionally, the seismic design of structures has been strength-based and met the 

minimum safety requirements of the occupants. However, recent earthquakes like Northridge 

(1994) and Kobe (1995) showed that buildings experienced significant damages even when their 
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designs were compliant with the code [48]. This resulted in closure of critical facilities including 

schools, hospitals, etc., and interruption of businesses, even if the structural damages were minor. 

Thus, designs that meet the minimum code criteria are not sufficient. In light of this, it was 

recognized that designs that meet the performance objective of the community’s stakeholders, 

while meeting the minimum safety design criteria at the same time needs to be developed. This 

led to the development of a performance-based design methodology, as an enhanced design 

requirement in addition to the current strength-based methods.  

 The growing acceptability of the performance-based design approach is evident in the 

studies related to the seismic rehabilitation of existing buildings, published by FEMA, ATC, and 

SEAOC [49]. The concepts and guidelines for seismic rehabilitations can also be used for new 

buildings in the form of performance-based design [49]. In this paper, the performance-based 

design will be in accordance with FEMA 356, which is a joint work of FEMA and ASCE.  

The code recognizes four building performance-levels as objectives namely, Operational 

Performance (OP), Immediate Occupancy (IO), Life Safety (LS), and Collapse Prevention (CP). 

These objectives are used in conjunction with the probabilistic seismic hazard levels, to select 

target goals considering basic, enhanced, or limited objectives as defined below. 
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50%/50 year a b c d 

20%/50 year e f g h 

BSE-1 

(10%/50 year) 
i j k l 

BSE-2 (2%/50 

year) 
m n o p 

 

Table 2.5: Rehabilitation Objectives [50] 

The code defines the above objectives based on the above table as follows: 

k + p = Basic Safety Objective (BSO) 

k + p + any of a, e, i, b, f, j, or n = Enhanced Objectives 

o alone or n alone or m alone = Enhanced Objectives 

k alone or p alone = Limited Objectives 

c, g, d, g, l =  Limited Objectives 

 

Thus, the above definitions of limited, basic safety, and enhanced objectives can be useful in 

selecting the seismic hazard levels for the performance-based design of buildings. The figure 

below taken from FEMA 274 illustrates the costs associated with the above performance objectives 

in conjunction with the earthquake hazard levels. 
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Figure 2.6: Surface showing Relative Costs of Various Rehabilitation Objectives [51] 

For different target building performance levels of Immediate Occupancy, Life Safety, and 

Collapse Prevention, the definition of structural and nonstructural performance criteria 

corresponding to these target performance levels have been specified in the code. For the 

performance-based design of steel moment frames, the drift limits for target performance levels 

are specified in the code as follows: 

Structural Performance Level Drift Ratio (%) 

Immediate Occupancy 0.7% 

Life Safety 2.5% 

Collapse Prevention 5% 
 

Table 2.6: Drift limits for different target performance levels [52]  
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Chapter 3: PSO Validation 

3.1 Introduction 

 Recently many studies have been undertaken to improve the performance of the original 

PSO algorithm, such as particle swarm optimizer with passive congregation (PSOPC), harmony 

search (HS) scheme, heuristic particle swam optimizer (HPSO), etc. [4]. However, it shall be noted 

that their performance depends on the problem and selection of algorithm parameters, and each 

have different limitations. In this study, the two main algorithms considered are the standard PSO 

and the HPSO algorithms depending on the structure type and analysis case.  

 The main difference between the PSO and HPSO algorithms lies in their constraints-

handling technique. The HPSO uses a technique known as ‘fly-back mechanism’ introduced by 

He et al. [53]. Since for most of the constrained optimization problems, the optimal solution is 

located close the constraints boundary or feasible region, the particles in this technique are 

initialized in the feasible region [54]. When the optimization process starts, the particles fly in the 

feasible space to search the optimal solution; and if any one of the particles flies outside the feasible 

boundary, it is forced to fly back to the previous position, and the particle in the next iteration will 

be closer to the feasible boundary. In this way, the probability of finding a global minimum 

becomes very high if it is near the boundary [54]. Also, experiments have shown that the ‘fly-back 

mechanism’ can help find a better solution with fewer iterations than the other techniques.   

 In this section, a HPSO code developed in MATLAB is validated by comparing the 

optimization results obtained in MATLAB to the previously obtained results [54, 55]. Two 

structures will be used as examples for this purpose. First is a 10-bar planar truss structure [54], 

and the second example is a six-story two-bay rigid steel frame [55]. For these two structures, the 
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HPSO algorithm presented by Li, L.J. and Huang, Z.B. [54] will be used given their proven higher 

convergence rate and better search results. The objective of this step is to validate the HPSO 

algorithm, so that the optimization code is fit for the proceeding studies of this thesis.  

3.2 Code Development 

 A basic representation of the HPSO code developed in MATLAB for the optimization of 

steel structures is illustrated in Figure 3.2. The HPSO algorithm is applied to a 10-bar planar truss 

structure and a six-story steel frame. The strength and serviceability of the design are in accordance 

with the AISC steel manual. The set of design variables (the positions of the particles within the 

swarm) can be continuous or discrete as discussed in Chapter 2. In the 10-bar truss structure, the 

cross-section areas of the truss members are taken as continuous design variables; whereas for the 

six-story steel rigid frame, a set of a total of 273 AISC W-shapes are selected as discrete design 

variables. The structural analysis was done in MATLAB using a numerical finite-element analysis 

method which involved generating local element stiffness matrices, a global structure stiffness 

matrix, and nodal/equivalent load force matrix. The displacement matrix was determined using 

equilibrium equations in order to obtain nodal displacements, strains, stresses, and member forces.   

3.2.1 10-bar Planar Truss 

The 10-bar planar truss geometry with four concentrated loads is shown in Figure 3.1. The 

material density and the modulus of elasticity are given to be as 0.1 lb/in3 and 10,000 ksi, 

respectively. In this example, two load cases will be considered: Case 1, 𝑃1 = 100 𝑘𝑖𝑝𝑠,  𝑃2 = 0; 

and Case 2,  𝑃1 = 150 𝑘𝑖𝑝𝑠,  𝑃2 = 50 𝑘𝑖𝑝𝑠. The objective is to obtain the optimal cross-sectional 

areas of the members using HPSO to minimize the weight of the structure. 
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Figure 3.1: 10-bar Planar Truss Structure [54] 
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                                         Figure 3.2: HPSO Pseudo Code Flow-Chart 
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The design constraints and the PSO parameters used in the paper for this structure is 

summarized in Table 3.1. The minimum permitted cross-sectional area of the 10 design variables 

or members is 0.1 in.2, the maximum limit can be any large number. In this study, the maximum 

limit for the design variables was chosen as 100 in.2. The design constraints include maximum 

tensile/compressive stress of 25 ksi, and maximum nodal displacement limit of ±2 in. in both 

horizontal and vertical directions. The same PSO parameters used in the MATLAB code as 

provided in the paper so that the results are comparable.  

Thus, the optimization problem is defined as: 

Minimize:  
𝑊 = ∑ 𝜌 𝐴𝑘𝑙𝑘

𝑚

𝑘=1

 
Eq. 3.1 

Subject to: 0.1 < 𝐴𝑘 < ∞ Eq. 3.2 

 −2 < 𝛿𝑗 < 2 Eq. 3.3 

 −25 < 𝜎 < 25 Eq. 3.4 

 

Where: 𝜌  

 

= Material density 

𝑙𝑘  

 

= Length of 𝑘𝑡ℎ member 

𝐴𝑘 = Area of 𝑘𝑡ℎ member 

 

𝑚  

 

= Total number of members 

𝛿𝑗  

 

= Displacement of node 𝑗 

𝜎  

 

= Member stress   
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Problem Constraints PSO Parameters 

Minimum Cross Sectional Area 0.1 in.2 No. of particles 50 

Stress Limits ± 25 𝑘𝑠𝑖 Max. Iterations 3000 

Nodal Displacement Limits ± 2 𝑖𝑛. 𝑤 Linearly varies from 0.9 to 0.4 

- - 𝑐1and 𝑐2 2 

Table 3.1: Numerical Example 1: Problem constraints and PSO parameters  

 The optimization was performed and the obtained results were compared with the ones 

provided by L.J. Li et al. [54]. Figures 3.3 and 3.4 shows the HPSO convergence comparison for 

the 10-bar truss structure for Case 1, and Figures 3.5 and 3.6 shows the same for Case 2. The 

comparison of optimal designs for the 10-bar truss structure for Case 1 and Case 2 are shown in 

Table 3.2 and Table 3.3, respectively.  These tables show the comparison of the optimal cross 

sectional areas of the members and the optimal weight of the 10- bar truss structure obtained in 

MATLAB using the developed HPSO code with the results provided in the paper. The HPSO 

optimal weight of the truss obtained in MATLAB for Case 1 is 5063.3 lb. and for Case 2 is 4682.3. 

It can be seen that both the convergence rate and the optimal cross-sectional areas, obtained in 

MATLAB are very similar to the ones given in the paper, within 0.1% of difference.  
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Figure 3.3: Comparison of the convergence rates for the 10-barp planar truss structure (Case 1) by L.J. Li et al. [54] 

 

Figure 3.4: MATLAB result for the 10-bar planar truss structure (Case 1)  
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Figure 3.5: Comparison of the convergence rates for the 10-barp planar truss structure (Case 2) by L.J. Li et al. [54] 

 

Figure 3.6: MATLAB HPSO graph for the 10-bar planar truss structure (Case 2)  
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Variables Area (in.
2
) 

HPSO Optimum Areas Comparison 

L.J. Li et al. [54] HPSO 

1 A
1
 30.704 30.9401 

2 A
2
 0.1 0.1102 

3 A
3
 23.167 23.2006 

4 A
4
 15.183 15.3488 

5 A
5
 0.1 0.1000 

6 A
6
 0.551 0.5405 

7 A
7
 7.46 7.4695 

8 A
8
 20.978 20.8628 

9 A
9
 21.508 21.3547 

10 A
10

 0.1 0.1002 

Weight (lb.) 5060.92 5063.4001 

Table 3.2: HPSO MATLAB results comparison for 10-bar planar truss structure (Case 1) 

Variables Area (in.
2
) 

HPSO Optimum Areas Comparison 

L.J. Li et al. [54] HPSO 

1 A
1
 23.353 23.348 

2 A
2
 0.1 0.1 

3 A
3
 25.502 25.095 

4 A
4
 14.25 14.234 

5 A
5
 0.1 0.1 

6 A
6
 1.972 1.9803 

7 A
7
 12.363 12.575 

8 A
8
 12.894 13.199 

9 A
9
 20.356 20.23 

10 A
10

 0.101 0.1033 

Weight (lb.) 4677.3 4682.3 

Table 3.3: HPSO MATLAB results comparison for 10-bar planar truss structure (Case 2) 
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3.2.2 Six-story Steel Rigid Frame 

 The second structure is a two-bay, six-story steel frame design by E. Doğan and M.P. Saka 

[55], as shown in Figure 3.7. It is an unbraced frame that consists of thirty members that are divided 

into eight groups, which forms the discrete design variables for the optimization. The frame is 

subjected to a uniformly distributed gravity load of 50 𝑘𝑁/𝑚 on all floors, and lateral point loads 

of 25 𝑘𝑁 at each story. The allowable problem constraints as provided in the paper are given in 

Table 3.4.  

The beams and columns of the steel frame were designed for axial loading, strong-axis 

bending, and combined axial and bending effects, in accordance with Chapters D, F, and H of the 

AISC manual, respectively. The effective length factor, 𝐾, used in the design of columns were 

determined as per the sidesway frame equation C-A-7-2 of the AISC manual.  

E. Doğan and M.P. Saka [55] performed optimization for PSO and HS algorithms. In this 

study, the optimization was performed using HPSO algorithm developed for the previous example. 

Figure 3.8 shows the PSO graph obtained in the paper and Figure 3.9 shows the HPSO graph 

obtained in MATLAB. Table 3.8 shows the comparison for the optimal designs with the ones 

shown in Table 3.5. This is a good example of the statement earlier that the performance of 

different algorithms are problem-dependent- in the 10-bar truss example, L.J. Li et al. [54] 

obtained higher optimal cost with PSO than with HPSO (see Tables 3.2 and 3.3); whereas in this 

example, E. Doğan and M.P. Saka [55] obtained better optimal cost with PSO than with HPSO 

(see Table 3.5). 
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Figure 3.7: Six-story, two-bay rigid steel frame [55] 

 

Problem Constraints PSO Parameters 

Variables 273 AISC W-shapes No. of particles 40 

Max. Roof Displacement 7.17 cm Max. Iterations 7000 

Max. Inter-Story Displacement 1.17 cm 𝑤, 𝑐1, 𝑐2 0.08,2,2 

Table 3.4: Numerical Example 2: Problem constraints and PSO parameters 
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Figure 3.8: PSO graph for six-story, two-bay rigid steel frame by E. Doğan and M.P. Saka [55] 

 

Figure 3.9: MATLAB HPSO graph for six-story, two-bay rigid steel frame  
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Group No. Member Type 
E. Doğan and M.P. Saka [55] - 

PSO HS HPSO 

1 Column W16X57 W18X55 W12X45 

2 Column W16X40 W12X50 W21X48 

3 Column W10X39 W8X31 W10X22 

4 Column W24X62 W21X73 W27X84 

5 Column W24X62 W18X65 W10X39 

6 Column W8X40 W12X40 W21X44 

7 Beam W14X30 W16X40 W21X44 

8 Beam W18X65 W14X22 W10X60 

Minimum Weight (kg) 7533 7829 7561 

Table 3.5: HPSO MATLAB results comparison for six-story, two-bay rigid steel frame  

.The HPSO graph shown in Figure 3.8 shows the optimal weight as 16670 lb. or 7561 kg. From 

the comparison of Figures 3.7 and 3.8, it is observed that HPSO has a lot quicker convergence rate 

than PSO, and their optimal weights are quite close with a difference of 0.1%. The difference in 

the design member sizes is expected because of the following reasons: 

1)  There is no unique solution in this optimization problem, as multiple design combinations 

are possible that results in an optimal solution.   

2) The assumptions undertaken during the analysis and design procedures in the paper are 

unknown.  

3) E. Doğan and M.P. Saka [55] considered additional constraints including shear strength 

checks, geometric limits such that the flange widths of beams are less than the flange widths 

of the columns the beams are connected to; and that the depth and weight of the columns 

in the stories below are more than or equal to the ones in the stories above. However, this 

study does not include these additional constraints for simplicity, as these are unlikely to 

govern the final design; and therefore, are not the focus of this study.  
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From the above two examples, it can be concluded that the developed HPSO algorithm is valid, is 

capable of producing near optimal results, and is fit for the proceeding applications of this study.  
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Chapter 4:  Benchmark Building: 3-Story Moment Resisting Frame 

4.1 Introduction 

For the seismic design and performance-based design optimization, a three-story steel 

moment resisting frame (MRF) is selected [56].  As shown in Figure 4.1, the three-story steel MRF 

structure is 120 ft. by 180 ft. in plan with six bays in the east-west (E-W) direction (longer side) 

and 4 bays in the north-south (N-S) direction (shorter side) with equal bay widths of 30ft. on center 

in both directions. The lateral load-resisting system of the building is comprised of steel perimeter 

MRFs with simple framing between the two furthest E-W frames. The interior bays of the structure 

are comprised of simple framing with composite floors as shown in the plan (Figure 4.2).  

The columns of the building are wide-flange 50 ksi steel and the levels of the 3-story 

building are numbered with respect to the ground level, as shown in Figure 4.1, with third story 

being the roof. The typical floor-to-floor heights measured from center-of-beam-to-center-of -

beam is 13 ft. The column bases are assumed as fixed supports at the ground level.  

The floors are given as the composite construction of concrete and steel, and are comprised 

of wide-flange beams with the yield stress of 36 ksi. The floors provide a diaphragm action and 

are assumed to be rigid in the horizontal plane. Also, it is assumed that the inertial effects of each 

floor are transferred to each perimeter moment-resisting frame equally, thus each MRF resists one 

half of the seismic mass of the entire structure [56]. 

The seismic mass of the MRF is due to various components of the building, including the 

steel members, floor slabs, flooring and ceiling, mechanical /electrical works, floor partitions, 

roofing, and a penthouse located on the roof [56]. The seismic mass of the first and second levels 

is 65.5 kips-sec2/ft. and the third level is 71.0 kips-sec2/ft. The seismic mass of the entire structure 
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is 202 kips-sec2/ft. [70]. For this study, only 2-D planar MRF structure in the N-S direction is 

analyzed, as three-dimensional effects can be neglected for simplicity. The N-S direction is chosen 

for our analysis because being the shorter side, the response experienced by the N-S frame will be 

much greater than the frame in the E-W direction being the shorter side. The baseline or original 

design including steel W-Section sizes of the N-S structure is as shown in Figure 4.1. 

 

Figure 4.1: 3-Story Moment Resisting Frame (N-S elevation) [56]  

 

 

 

 

 

Figure 4.2: 3-Story Benchmark Building Plan [56] 
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4.2 OpenSees 2-D Linear Elastic Model 

OpenSees Navigator (hereafter referred to as “OpenSees”) is used in this study, as it offers 

a graphical user interface (GUI) pre- and post-processing framework for the OpenSees. The N-S 

MRF structure is modeled in OpenSees as a 2-D Frame by selecting the number of dimensions as 

two where each node of the structure contains three degrees of freedom, i.e. translation in X-

direction, translation in Y-direction, and rotation about Z-direction. The English unit system (kips, 

inches, second) was adopted for the model and kept consistent with all the model input parameters. 

The fixed boundary conditions at the ground level nodes were modeled by assigning fixed 

constraints in all three degrees-of-freedom using the Single-Point Constraint command in 

OpenSees. Further, the “EqualDOF” command was utilized to allow for the diaphragm action, by 

assigning equal translation in X-direction constraint at each floor level. Then, the seismic mass of 

each floor was lumped proportionally to the corresponding nodes. Note that since it was assumed 

each perimeter frame resists one-half of the entire seismic mass, the floor masses were divided by 

two and then distributed proportionally to each node; thus one-eighth of the floor mass were 

assigned at the interior nodes and one-sixteenth at the corner nodes.   

The material chosen for the model was Steel01, which is a uniaxial bilinear steel material 

commonly used for performing linear elastic analysis. The yield stress was assigned as 50 ksi for 

columns and 36 ksi for beams, as per the baseline design. The frame members were assigned as 

“elasticBeamColumn” elements which are suitable for linear elastic analysis. However, for the 

furthest right beams (W21X44), “truss elements” were used instead to release the end moments 

and model the simple or pin connection behavior. Since, the furthest right columns of each floor 

(W14X68) are oriented in the weak-axis; the weak-axis section properties were chosen for these 

columns in the model. Additionally, second-order “P-delta” effects were simulated in the model 
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using leaning or “ghost” columns connected with rigid links at the right of the main frame as shown 

in Figure 4.3. The P-delta columns were modeled as “truss element” and assigned with gravity 

loads from the story weights. The final OpenSees model of the MRF is shown in Figure 4.3. The 

members are split into 7 groups as shown in Figure 4.3, therefore the optimization would consist 

of seven design variables.   

 

 
 

Figure 4.3: OpenSees Model for the 3-Story MRF 

4.2.1 Model Validation 

The OpenSees model was validated by performing the modal (Eigen) analysis and 

comparing the first three natural frequencies and periods of the 3-story benchmark structure [56]. 

The comparison is show in Table 4.1 and the first three modal shapes obtained in OpenSees is 

shown in Figure 4.4. The Eigen analysis results for the OpenSees model are similar to those 

previously obtained by Y. Ohtori, R.E. Christenson and B.F. Spencer, Jr., and S.J. Dyke [70], 

therefore, the OpenSees model for the 3-story MRF structure is accurate and good for further 

analysis.  
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Mode 

Y. Ohtori, R.E. Christenson and B.F. 

Spencer, Jr., and S.J. Dyke [70] 

OpenSees Eigen 

Analysis 

Natural Frequency (Hz) 
Natural Frequency 

(Hz) 

1st 0.99 0.990 

2nd 3.06 3.057 

3rd 5.83 5.831 

Table 4.1: Modal (Eigen) analysis Comparison for 3-story MRF 

 

Figure 4.4: First three modal shapes for the 3-Story MRF 
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4.3 MATLAB-OpenSees Interface 

The seismic design of the 3-story MRF frame requires modeling considerations and 

analysis procedures which are more advanced than the standard finite element modeling used for 

the benchmark problems in Chapter 3.  These additional considerations include second-order (P-

delta) effects, incorporating geometric and material nonlinearities, formulation of plastic hinges in 

the members, and predicting nonlinear and dynamic analysis response of structures. It would be 

both impractical and significantly inefficient to manually code the necessary analysis procedures. 

Therefore, an interface was created between MATLAB and OpenSees to prompt and automate the 

OpenSees analysis, and use its results for running the optimization in MATLAB. 

 OpenSees is primarily written in the object-oriented programming language C++ and uses 

Tcl as an interpreter for performing finite element analysis. OpenSees Navigator is a MATLAB 

based graphic user interface (GUI) that does pre- and post-processing for OpenSees, and it is 

available in a content-obscured form called P-code which allows to run OpenSees Navigator inside 

MATLAB [57]. OpenSees adds commands to Tcl for modeling- to create nodes, elements, loads, 

and constraints, analysis- to specify the analysis procedure, and output specification- to specify 

what needs to be monitored during the analysis [57]. Since Tcl uses a string-based command 

language; Tcl commands are incompatible with MATLAB syntax. Therefore, to prompt OpenSees 

for analysis during the optimization procedure, the MATLAB syntax must be converted to strings, 

so they be used as Tcl scripts by OpenSees.  
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The optimization algorithm randomly generates new variables (particles) resulting in new 

member properties at every iteration. Therefore, section sizes of the members are the main 

variables that would affect the OpenSees model for performing the finite element analysis, and 

rest of the model inputs and arguments remain unchanged throughout the iterative procedure. So, 

the approach is to define a structure and its section properties in MATLAB and convert it into Tcl 

script; prompt OpenSees for performing the finite element analysis, and then extract OpenSees 

results output back into MATLAB. In this way, OpenSees can be automatically prompted for 

analysis whenever the optimization algorithm generates a new particle during the iteration, the 

procedure of which is described in the following steps: 

1) The original structure is modeled in OpenSees Navigator and its Tcl files are generated.  

2)  Create a folder and copy .M files, Tcl files, and OpenSees.exe into the same folder.    

3) Generate a string matrix that contains the new section properties of the elements. However, 

the original Tcl command or rules shall remain unchanged; therefore, all the remaining 

commands and syntax rules should be included in the string matrix. Then, the existing Tcl 

element and/or Tcl section files shall be replaced/overwritten with this matrix using the 

“dlmwrite” function in MATLAB. Note that Tcl interprets the list of arguments or a 

subsequent character separated by whitespace, and so the number of blank spaces in 

between the list of characters does not impact the execution of the commands.  

4) Prompt OpenSees for performing the analysis using the command:                       

! 𝑂𝑝𝑒𝑛𝑆𝑒𝑒𝑠. 𝑒𝑥𝑒 “𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒”. 𝑡𝑐𝑙 [57]. Note, that the filename in the second part of the 

command should be the exact name of the Tcl file.  

5) Once the OpenSees output is generated, the “dlmread” function is used to import the 

results into the MATLAB workspace.  
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Chapter 5: Seismic Design Optimization of 3-Story MRF 

5.1 Introduction 

 In this chapter, the optimization will be performed for the 3-story moment resisting frame 

(MRF) for the Design Earthquake (475-year return period) loads, or seismic hazard level with 10% 

in 50 years probability of exceedance. Three separate analysis procedures will be considered for 

the optimization: the ASCE 7-10 equivalent lateral force procedure, ASCE 7-10 linear response 

history analysis, and FEMA 356 nonlinear static pushover analysis.  

 In the proceeding sections, OpenSees modeling considerations, assumptions, analysis 

steps, and optimization methods will be presented for each of the three analysis cases. 

Additionally, the problem-specific requirements for the interface between MATLAB and 

OpenSees will be discussed for the three analysis types. Then, the considered analysis procedure 

will be performed for the baseline or original design of the 3-story MRF structure, followed by the 

optimization to obtain an optimal design of the frame. 
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5.2 Linear Static Procedure  

5.2.1 Equivalent Lateral Force Procedure (EFP):   

 The ASCE 7-10’s-EFP- was followed to perform the seismic analysis and design 

optimization of the 3-story moment resisting frame structure. Since EFP is a linear static analysis, 

an OpenSees linear elastic model of the 3-story MRF, as shown in Chapter 4 (Figure 4.3), will be 

used for performing the analysis. The base shear and the seismic design parameters required for 

the analysis procedure for the 3-story MRF are obtained as follows: 

Risk Category and Importance Factor, 𝐼𝑒: 

ASCE 7-10 categorizes buildings and other structures into four levels (I-IV) for determination of 

wind, snow, earthquake loads based on risk to human life, economic loss, mass disruption of day-

to-day civilian life or a potential threat or hazard to the community, in the event of failure of the 

structure.  Since the occupancy of the 3-story benchmark building is for office use, a risk category 

of II is chosen for the seismic design [58]. Based on this risk category, a seismic importance factor, 

𝐼𝑒 is chosen to be as 1.0 [59].   

Period Determination, 𝑇:  

The fundamental period, 𝑇 of the 3-story MRF was determined to be 1.01s from the Eigen analysis 

in Chapter 4. An upper limit for the period (𝐶𝑢𝑇𝑎 ) was determined using Eq. 2.9 which came out 

to be 0.73s; therefore 𝐶𝑢𝑇𝑎 is used for computing the seismic response coefficient, 𝐶𝑠 and seismic 

base shear, 𝑉 [27]. Note that these period values are as per the structural properties of the baseline 

or original design.  
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Seismic Design Response Spectrum:  

The ASCE 7-10 mapped spectral acceleration parameters, 𝑆𝑠 and 𝑆1can be electronically obtained 

from the United States Geological Survey (UGGS) Seismic Design Maps tool [60]. The tool 

requires the inputs including the design code reference, the building location or site coordinates, 

and the classification of the soil site. The spectral acceleration parameters and the design response 

spectrum for the 3-story MRF structure obtained from the USGS website are shown in Figure 5.1 

and Figure 5.2. The design spectral acceleration parameters 𝑆𝐷𝑆 and  𝑆𝑆 are obtained as 1.622g and 

0.853g, respectively. 

 

Figure 5.1: ASCE 7-10 Spectral Acceleration Parameters for the 3-story Benchmark Building [60] 
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Figure 5.2: ASCE 7-10 Design Response Spectrum for the 3-story Benchmark Building [60] 

Seismic Design Coefficient and Factors:  

The empirical factors required as per the seismic design criteria are obtained from ASCE 7-10 [61] 

(Appendix A). For the 3-story moment resisting frame, the response modification factor, 𝑅, 

displacement amplification factor 𝐶𝑑, and overstrength factor, Ω𝑜, were obtained to be as 8, 5.5, 

and 2.5, respectively.  

Seismic Base Shear, 𝑉: 

The effective seismic mass of the 3-story benchmark building is given as 202 kips-sec2/ft, 

which converts to a seismic weight, 𝑊 of 6500 kips. Since each MRF resists one half of the seismic 

weight of the entire structure, the seismic weight is reduced by half (𝑊=3250 kips), for the base 

shear calculation. Having obtained the values of 𝑇, 𝑆𝐷𝑆, 𝑆𝐷1, 𝑅, and I𝑒, the seismic response 

coefficient, 𝐶𝑠 is determined to be as 0.1451 as per Eq. 2.14 and in accordance with the minimum 
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and maximum limits specified in the code [30]. Thus, using Eq. 2.13, the seismic base shear, 𝑉 

comes out to be 471.5 kips. 

 The seismic and gravity analysis was performed for the baseline design of the 3-story MRF 

structure using OpenSees. The seismic story forces were determined using the vertical distribution 

of seismic base shear (Eq. 2.15 and Eq. 2.16), as summarized in Table 5.1. Note that different load 

combinations are used for beams and columns to meet the capacity design principles. For columns, 

the load combination with amplified seismic forces is considered (Eq. 2.18). For beams and story 

drift determination, basic load combination is considered. (Eq. 2.17a) The effective length factor, 

K for determining the available strengths in columns, is taken as unity as recommended in the 

AISC Seismic Provisions [62].  

Level wx (kips) hx(ft.) wxhx
k Cvx Fx (kips) 𝛀𝑶E (kips) 

Roof 1142 39 44538 0.5386 254.0 635 

Level 2 1053.6 26 27393.6 0.3158 148.9 372.25 

Level 1 1053.6 13 13696.8 0.1456 68.7 171.75 

Table 5.1: Vertical Distribution of Base Shear and Story Seismic Forces 
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 The seismic design load combinations defined in Eq. 2.17 and Eq. 2.18 were used to obtain 

the factored gravity load values, and are provided in Table 5.2. The floor dead loads and live loads 

were obtained from the ASCE 7-10 codes. Note that a factor of 0.5 is used for live loads, as the 

minimum uniformly distributed live loads for an office building in less than 100psf [29]. 

Additionally, the roof live loads are assumed to be the same as the floor live loads because of the 

penthouse located on the roof.  

Level 
Factored Dead 

Load, D (k/ft.) 

Factored Live 

Load, L (kip/ft.) 

Factored Cladding Loads 

(kips) 

Intermediate Corner 

Roof 0.82 0.3 46.49 30.34 

Floors 1.05 0.3 51.83 34.91 

Table 5.2: Gravity Loads used in the Linear Static analysis 

 The linear static analysis was performed in OpenSees and the peak roof displacement was 

determined to be 9.34 in. which corresponds to a 1.92% drift ratio. The inter-story drift for the first 

story, second story, and roof were obtained as 2.53 in., 3.57 in., and 3.23 in., respectively. The 

inter-story drift for the first, second, and roof correspond to the inter-story drift ratios of 1.62%, 

2.29%, and 2.07%, respectively. The combined column strength ratios and beam rotations obtained 

from the analysis are shown in Tables 5.3. As shown in the table, the highest combined strength 

ratio for columns was attained to be as 1.34 in member 2 which is the inner column of the bottom 

story. 
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 From the analysis, it is observed that the inter-story drift ratio limits (2.0% as per Table 

2.3) and the AISC LRFD column interaction ratios (Eq. 2.3 and Eq. 2.4) are violated for the 

baseline design. However, there is no knowledge about the assumptions, seismic design criteria or 

specifications undertaken by the engineers for the original design; therefore, the results have to be 

taken as it is. Also, since the analysis results are sensitive to selection of design parameters, as 

discussed in Chapter 7 of this study, whether the baseline design is adequate or not is a moot 

question.    

Member 
Column Strength 

Check Ratio (<1.0) 
Member 

Beam Plastic 

Rotations (rad.) 

(<0.04) 

1 1.19 16 0.029 

2 1.35 17 0.023 

3 1.34 18 0.027 

4 1.27 19 0.041 

5 0.36 20 0.029 

6 0.66 21 0.025 

7 1.02 22 0.028 

8 1.02 23 0.037 

9 0.75 24 0.03 

10 0.08 25 0.026 

11 0.37 26 0.027 

12 0.65 27 0.034 

13 0.64 - - 

14 0.45 - - 

15 0.04 - - 

Table 5.3: EFP Column Strength Design Checks and Beam Rotations   
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5.2.2 Optimization 

 For the linear static case, the HPSO algorithm was used for optimization. To implement 

the optimization algorithm to the equivalent lateral force procedure for the seismic design 

optimization of the benchmark structure, a code was developed in MATLAB that is capable of 

automating the analysis procedure using OpenSees while conforming to all the analysis 

considerations and ASCE 7-10 seismic design criteria discussed above. The three main analysis 

considerations required in the optimization procedure included period determination, calculation 

of base shear, load combinations, and drift determination.  

Period Determination: 

 It is known that natural frequencies and period of the structure depend on the stiffness 

properties of the members; therefore, the period values shall be determined at every iteration for 

every new particle generated per iteration. Thus, Eigen analysis is performed at every iteration 

using the MATLAB-OpenSees interface technique developed in Chapter 4.  

Base Shear Calculation: 

 Since the seismic response coefficient, 𝐶𝑠 relies on period determination; the base shear 

value has to be updated at every iteration (as per Eq. 2.13), due to the change in the period value. 

As a result; the OpenSees load file has to be overwritten with the updated lateral seismic forces 

values at every iteration. Thus, the applied seismic loads do not remain constant and are updated 

every time a new particle are generated during the optimization. 
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Load Combinations: 

 Two different loads combinations are considered in the above procedure, so two analyses 

were performed at every iteration, i.e., one with amplified seismic loads (Ω𝑜𝐸) to determine 

required forces in columns and second with basic load combination (1.0 𝐸) to determine beam 

rotations and story drifts.  

Drift Determination: 

 For determining compliance with story drift limits, it is allowed to determine the elastic 

drifts, 𝛿𝑥𝑒, using seismic design forces based on the computed fundamental period of the structure 

without the upper limit (𝐶𝑢𝑇𝑎) [40]. Therefore, for cases where the computed fundamental period 

exceeds the upper limit (𝐶𝑢𝑇𝑎), the seismic base shear is calculated based on the computed 

fundamental period. However, if the computed fundamental period comes out to be less than or 

equal to the upper limit ((𝐶𝑢𝑇𝑎), the base shear will be the same.  

Variable Constraints:   

 For the optimization of the frame, different variable boundaries were considered for the 

columns members to make the optimization more efficient and make the optimal design more 

feasible. Since minor axis buckling usually govern for all doubly-symmetric cross-sections; the 

most efficient column section for axial loads are those with almost equal radius of gyration values 

about both x-axis and y-axis (𝑟𝑥 = 𝑟𝑦), therefore W8, W10, W12, and W14 are typically used for 

columns. However, for the seismic design of steel buildings, W14s are the most efficient column 

sections because under seismic loads, columns experience high lateral drifts and develops 

significant moments, and W14s ae the heaviest sections available that has seismically compact 

flanges. Therefore, 36 AISC W14 section sizes were considered as discrete design variables in the 

optimization.  
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Optimization Parameters and Constraints: 

The PSO parameters and the design constraints considered for the seismic design optimization of 

the 3-story MRF structure are shown in Table 5.4. The PSO parameters were selected using the 

guess-and-check approach and were found to be the most efficient for the algorithm. The design 

constraints considered in the optimization include: peak roof drift limit, inter-story drift limit, 

combined strength ratio for columns, and beam plastic rotations specified in the AISC Seismic 

Provisions [63]. 

Problem Constraints PSO Parameters 

Variables  
273 AISC W-shapes (Beams) 

36 AISC W14s (Columns) 
No. of particles 25 

Max. Roof Drift (Ratio) 9.36 in. (2.0%) Max. Iterations 1000 

Max. Inter-Story Drift (Ratio) 3.14 in. (2.0%) 𝑤 0.8 

Beam Plastic Rotations  0.04 rad. 𝑐1, 𝑐2 2, 2 

Table 5.4: EFP Optimization Parameters and Problem Constraints  

 Optimization Results: 

 Figure 5.3 shows the convergence graph for the seismic design optimization of the of the 

benchmark building for the equivalent lateral force procedure (linear static) case. The optimal 

weight of the design was obtained to be as 91344 lb. For the optimal frame, the inter-story drifts 

are shown in Table 5.5 and, combined strength ratios and beam rotations are shown in Table 5.6. 

It can be observed that in the optimal frame, the top inter-story drift of 3.1178 in. is very close to 

the allowable inter-story drift of 3.12 in. Also, most of the bottom story columns have their 

combined strength ratios close to 1. This indicates that both story drifts and strength constraints 

equally dominate the optimal design of the structure for the linear static analysis case. The 

comparison of the baseline design and the optimal member sizes is shown in Table 5.7. It is 
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apparent that the weight of the optimal design will be more than that of the baseline design, as the 

results for the baseline design did not comply with the ASCE 7-10 seismic design criteria.   

 

Figure 5.3: HPSO graph for Seismic Design of 3-Story Benchmark Building (Linear Static Case) 

Story 
Inter-story Drifts (in.) 

Allowed = 3.12 in. 

First 2.0772 

Second 2.6362 

Roof 3.1178 

Table 5.5: Inter-Story Drifts for Optimal Design (Linear Static Case) 
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Column 

No. 

Column Strength 

Check Ratio (<1.0) 

Beam 

No. 

Beam Plastic 

Rotations 

(rad.) (<0.04) 

1 0.9045 16 0.013 

2 0.9942 17 0.013 

3 0.9927 18 0.013 

4 0.9837 19 0.027 

5 0.902 20 0.019 

6 0.6241 21 0.019 

7 0.7232 22 0.019 

8 0.7189 23 0.023 

9 0.6982 24 0.012 

10 0.5649 25 0.011 

11 0.5437 26 0.011 

12 0.639 27 0.020 

13 0.6359 - - 

14 0.6054 - - 

15 0.2558 - - 

Table 5.6 Column Strength Ratios and Beam Plastic Rotations for Optimal Design (Linear Static Case) 

 

 

 

 

 

 

 

 



68 

 

ASCE 7-10 Equivalent Lateral Force Procedure 

Group Member Baseline Design Optimal Design 

1 Column W14X257 W14X257 

2 Column W14X311 W14X426 

3 Column (Weak Axis) W14X68 W14X30 

4 Beam W33X118 W40X149 

5 Truss W21X44 W18X35 

6 Beam W30X116 W36X182 

7 Beam W24X68 W21X44 
 Weight (lb) 78096 91344 

Table 5.7 Optimal Design for 3-Story Benchmark Building (Linear Static Case) 
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5.3 Linear Dynamic Procedure 

5.3.1 Ground Motions Record 

The ground motion time history records were obtained from the Pacific Earthquake 

Engineering Research Center (PEER) website. A suite of seven LA ground motions records, as 

shown in Table 5.8 were considered for the linear response time-history or linear dynamic (LD) 

analysis of the 3-story MRF structure in OpenSees.  

EQ 

Code 
Description 

Magn

itude 

Distance 

(km) 

No. of 

Points 

Time 

Step 

(s) 

PGA 

(cm/sec2) 

PGA 

(g) 

25 fn  1994 Northridge 6.7 7.5 2990 0.005 851.62 0.87 

26 fp  1994 Northridge 6.7 7.5 2990 0.005 925.29 0.94 

33 fn  Elysian Park (simulated) 7.1 10.7 3000 0.010 767.26 0.78 

35 fn  Elysian Park (simulated) 7.1 11.2 3000 0.010 973.16 0.99 

36 fp  Elysian Park (simulated) 7.1 11.2 3000 0.010 1079.30 1.10 

37 fn Palos Verdes (simulated) 7.1 1.5 3000 0.020 697.84 0.71 

39 fn Palos Verdes (simulated) 7.1 1.5 3000 0.020 490.58 0.50 

Table 5.8 Ground Motion Records for LD Analysis  

These ground motions are scaled such that the average value of the 5 percent damped 

response spectra for the seven ground is not less than the design response spectrum (Figure 5.2) 

for the site between the periods 0.2 𝑇 and 1.5 𝑇 [43]. A MATLAB code was generated to compute 

the acceleration response spectrum for an SDOF system using Newmark’s method [64]. Then, by 

using guess-and-check approach, the scaling factors were obtained for the seven ground motion 

values such that the mean response spectrum of the seven response spectra for the scaled ground 

motions were above the design response spectrum within the required period range, as shown in 

the results in Figure 5.4. Note, the fundamental period values will change for every new particle 

generated, however, since it would be infeasible to automate this guess and check procedure, an 
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assumption is made that the mean response for every particle would always meet the criteria, or 

would never be in a period range in which the mean response is lower than the design response 

spectrum.  

 

Figure 5.4:  MATLAB Plot of Scaled EQs , Mean, and Design Acceleration Response Spectrum 

5.3.2 ASCE 7-10 Linear Response Time-History Analysis  

 The linear elastic model used in the preceding sections is used for the incremental dynamic 

or transient analysis case in OpenSees for the 3-story MRF structure. First, the load pattern for the 

time history analysis were defined by importing the scaled ground motion values path files in 

OpenSees.  The number of data points and time steps for each time series are as provided Table 

5.8. Since the acceleration time history of the recorded ground motions are in units of 𝑔,  the load 

values were factored with 386 in2/sec.  
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 The integrator type for the numerical evaluation of the dynamic response was performed 

using the Newmark method of integration. In IDA procedures, finer time step increments are 

recommended for robustness and to resolve convergence issues of the numerical integration [65]. 

Thus, the analysis increment time step was selected to be 0.001 for each transient analysis.  

 The damping was assigned to the OpenSees model using the mass and stiffness 

proportional Rayleigh damping parameters. The damping ratio for the first two modal frequencies 

were set to 5%. The Rayleigh mass proportional parameters 𝑎𝑙𝑝ℎ𝑎𝑀 and stiffness proportional 

parameter 𝑏𝑒𝑡𝑎𝐾 were determined to be 0.4699 and 0.0039, respectively for the baseline 3-story 

MRF structure.  

 The analysis was performed for the baseline benchmark structure for the seven analysis 

cases. The force responses and story drifts are multiplied by the factors  𝐼𝑒
𝑅⁄   and  𝐶𝑑

𝑅⁄ , 

respectively, for each analysis case. Then, the design forces and drifts are determined by taking an 

average of the scaled force and displacement responses obtained from the analyses. The peak roof 

displacement was found to be 12.33 in., which is approximately 32% larger than peak roof 

displacement obtained in the EFP or linear static case. Table 5.8 shows the comparison of the inter-

story drifts obtained from the transient analysis and from the linear static case (see section 5.2.1). 

The allowable inter-story drift limit for the frame is determined to be 3.9 in. Table 5.9, and Tables 

5.10 and 5.11 shows the comparison of the obtained combine column strength ratios and beam 

plastic rotations for the two analysis cases, respectively.   
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Story 

Inter-story Drifts (in.) 

EFP or Linear 

Static Analysis 

Linear Dynamic 

Analysis 

 Allowed = 3.12 in. Allowed = 3.9 in. 

1 2.5322 3.518 

2 3.5743 4.7252 

Roof 3.2335 4.0878 

Table 5.9: Inter-story Drift Comparison for Linea Static and Linear Dynamic Analysis Case 

Column Strength Check Ratio (<1.0) 

Column 

No. 

EFP or Linear 

Static Analysis 

Linear Dynamic 

Analysis 

1 1.18 1.25 

2 1.34 1.35 

3 1.33 1.35 

4 1.26 1.25 

5 0.35 0.17 

6 0.65 0.73 

7 1.01 1 

8 1.01 1 

9 0.74 0.72 

10 0.08 0.04 

11 0.37 0.46 

12 0.64 0.68 

13 0.64 0.68 

14 0.45 0.46 

15 0.04 0.03 

Table 5.10: Column Strength Ratio Comparison for Linear Static and Linear Dynamic Analysis Cases 
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Beam Plastic Rotations (rad.) (<0.04) 

Beam 

No. 

EFP or Linear 

Static Analysis 

Linear 

Dynamic 

Analysis 

16 0.029 0.022 

17 0.023 0.018 

18 0.027 0.022 

19 0.041 0.033 

20 0.029 0.022 

21 0.025 0.019 

22 0.028 0.022 

23 0.037 0.029 

24 0.03 0.023 

25 0.026 0.021 

26 0.027 0.023 

27 0.034 0.027 

Table 5.11: Beam Plastic Rotations Comparison for Linear Static and Linear Dynamic Analysis Cases 

5.3.4 Optimization  

 For linear dynamic case, the standard PSO algorithm was found to be more efficient than 

the HPSO technique, as HPSO initializes the swarm within the feasible region and therefore its 

computation time is significantly higher. A MATLAB code was developed to meet the above 

analysis considerations and the seismic design criteria for the linear response time-history 

procedures as specified in Section 2.3.4. It shall be noted that in the transient analysis case, the 

seismic forces remain constant throughout the optimization iterations unlike in the previous case 

of equivalent lateral force procedure. However, since the damping depends on the natural 

frequencies of the structure; Rayleigh damping parameters had to be determined at every iteration. 

Therefore, for every new particle, the OpenSees Tcl file containing damping parameters had to be 

overwritten following the interface procedure in Chapter 4.3.  
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 The variable and problem constraints considered in this analysis were same as the ones 

considered in the linear static case (see Table 5.3), with an exception for the inter-story drift (ratio), 

as the allowable drift limit in the dynamic procedures is 2.5% or 3.9 in. [35]. Figure 5.5 shows the 

convergence graph for the linear dynamic analysis case. The optimal weight of the design was 

obtained to be as 100182 lb which is approximately 10% higher than the optimal weight of the 

linear static case. For the optimal design, the inter-story drifts are shown in Table 5.12 and, 

combined strength ratios and beam rotations are shown in Tables 5.13 and 5.14, respectively. The 

optimized frame has the top inter-story drift of 3.864 in. which is very close to its upper bound of 

3.9 in. Also, the bottom story interior columns (Column No.2 and 3) have their combined strength 

ratios close to 1. This indicates that both story drifts and strength constraints equally dominate the 

optimal design of the structure for the linear dynamic analysis case. 

 

Figure 5.5: PSO Convergence Graph for Seismic Design of 3-Story Benchmark Building (Linear Dynamic Case) 
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Story 

Inter-story Drifts (in.) 

EFP or Linear 

Static Analysis 

Linear Dynamic 

Analysis 

 Allowed = 3.12 in. Allowed = 3.9 in. 

1 2.0772 2.3555 

2 2.6362 2.8532 

Roof 3.1178 3.8674 

Table 5.12: Inter-story Drift Comparison for Optimal Designs  

Column Strength Check Ratio (<1.0) 

Column 

No. 

EFP or 

Linear Static 

Analysis 

Linear 

Dynamic 

Analysis 

1 0.9045 0.9647 

2 0.9942 0.9982 

3 0.9927 0.9983 

4 0.9837 0.9625 

5 0.902 0.7685 

6 0.6241 0.6573 

7 0.7232 0.7228 

8 0.7189 0.7223 

9 0.6982 0.6613 

10 0.5649 0.4861 

11 0.5437 0.6972 

12 0.639 0.7851 

13 0.6359 0.7847 

14 0.6054 0.7050 

15 0.2558 0.2219 

Table 5.13: Column Strength Ratio Comparison for Optimal Designs  
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Beam Plastic Rotations (rad.) (<0.04) 

Beam 

No. 

EFP or Linear 

Static Analysis 

Linear 

Dynamic 

Analysis 

16 0.013 0.0115 

17 0.013 0.0110 

18 0.013 0.0115 

19 0.027 0.0202 

20 0.019 0.0111 

21 0.019 0.0106 

22 0.019 0.0111 

23 0.023 0.0214 

24 0.012 0.0294 

25 0.011 0.0292 

26 0.011 0.0293 

27 0.020 0.0292 

Table 5.14: Beam Rotations Comparison for Optimal Designs 
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5.4 FEMA-356 Nonlinear Static Procedure 

5.4.1 OpenSees Nonlinear Model 

The nonlinear static procedure requires a nonlinear model that directly incorporates the 

nonlinear load-deformation characteristics of individual components and elements; and explicitly 

includes their nonlinear behavior using full backbone curves including strength degradation and 

residual strengths. This is achieved with the help of advanced nonlinear modeling and analysis 

capabilities using a wide range of material models and nonlinear elements.  Thus, a separate 2-D 

nonlinear model of the 3-story moment resisting frame was built in OpenSees for the nonlinear 

static analysis case. The modeling considerations undertaken while building a nonlinear OpenSees 

model are discussed below.  

Nonlinear Material  

For the nonlinear model of the benchmark building, Steel02 is chosen which follows the stress-

strain relationship of the well-known “Guiffre-Menegotto-Pinto Model” with Isotropic Strain 

Hardening” [57]. The parameters used for this material model as shown in Figure 5.6 are selected 

as per the recommended values by one of the OpenSees developers, Dr. Fillip Filippou [66]. The 

strain hardening ratio, b is taken as 3% as specified in the FEMA-356 guidelines [67]. The 

transition parameters R0, cR1, cR2 are related to the smoothness of the transition from elastic to 

plastic regions [66].  
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Figure 5.6:  OpenSees Steel02 Material Input Parameters  

 

Nonlinear Elements: 

There are two types of nonlinear modeling approaches- one is simulating concentrated 

plasticity in the members by using rotational springs at the end, and second is distributed plasticity 

concept where the plastic behavior can be developed over the finite length of the elements. The 

main advantages of the concentrated plasticity approach are that they are simple and very 

computationally efficient; however, it requires moment-rotation relationships to be explicitly 

defined in the model for all individual members and they don’t capture P-M interaction which is 

usually critical for columns [68]. Whereas, for the distribution plasticity model the advantages 

include capturing of plasticity along the length of the member and the P-M interactions, but they 

use fiber sections, for which the number of fiber discretization can impact the results.  

The concentrated plasticity model was not considered in this study, as this would require 

explicit modeling of the moment-rotation relationships of individual beam-column connections, 

and these modeling parameters are based on experimental results. Although there are available 

tools that contain the database of these modeling parameters, however, it would have been 

computationally inefficient and impractical to consider them in the optimization process, as this 
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would have required an interface between MATLAB and the database, so that the moment-

curvature relationships can be automatically simulated in OpenSees. Therefore, distributed 

plasticity model will be used instead which is based on stress-strain relationships of fiber sections 

of individual elements. These elements can be modeled by selecting nonlinearBeamColumn 

elements in OpenSees.  

Fiber Sections 

According to Kostic and Filippou [68], discretization of wide-flange cross-sections with 12 fibers 

gives remarkable accuracies in the estimates of the local response, thus, each wide-flange I section 

used in the model is discretized into 12 fibers- 4 in each flange, and 4 along web depth.  

5.4.2 FEMA 356 Nonlinear Static Analysis 

Pushover Curve 

The pushover analysis was performed using the nonlinear OpenSees model for the benchmark 

structure, as per the analysis requirements discussed in Section 2.3.6. The pushover curve was 

obtained for the baseline MRF frame and was compared with the pushover curve obtained for the 

linear elastic model, as shown in Figure 5.7. As expected, the elastic stiffness or initial slopes of 

the two pushover curves are close. 
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Figure 5.7:  Pushover Curves for Linear Elastic and Nonlinear Model 

As seen in the above figure, the overstrength factor Ω𝑜  obtained from the design base shear 

level, 𝑉𝐷 and the maximum base shear was determined to be 2.56, which is very close to the 

empirical overstrength factor of 2.5 specified in the ASCE 7-10 code. From these comparisons, it 

can be concluded that the OpenSees nonlinear model is reasonable and fit for the nonlinear static 

analysis.  

Idealization of Pushover Curve 

As discussed in Section 2.3.6, a bilinear idealization of the pushover curve is required to 

determine effective yield strength, 𝑉𝑦 and effective lateral stiffness, 𝐾𝑒, for which the line segments 

on the idealized pushover curve must be placed using an iterative graphical procedure that 

approximately balances the areas below and above the curve. Therefore, the challenge was to 

formulate the iterative graphical procedure in MATLAB, so that the idealization procedure could 
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be automated, and the above parameters required for the nonlinear static analysis could be 

determined during the optimization.  

The main concept behind formulating the idealization procedure in MATLAB was to treat 

slopes of the two line segments as variables and perform iterations until the difference of the areas 

above and below the curve (“Net Area”) evaluated at each iteration, were minimal or close to zero. 

One considered approach involved coming up with a feasible range for each of the two slopes that 

can be discretized into 𝑁 number of increments and then evaluate the Net Area for every possible 

combination of the two slopes. Then, the pair which yields the minimum Net Area would define 

the location of the two line segments that approximately balances the areas below and above the 

pushover curve. However, this approach was very computationally intensive, as this involved 

performing computations to obtain the bounded areas  𝑁2 number of times, and yielded imprecise 

results.  

As an alternative to the above approach, the PSO optimization technique was developed 

and applied to the above problem, where the Net Area was minimized by searching for the optimal 

values of the slopes for the two line segments. The Net Area was selected as the objective value 

function and the two slopes were assigned as the variables (particles). Since there are finite number 

of solutions possible, as the line segments must be within the curve region; the variables had to be 

kept within the feasible boundaries. Therefore, to bypass the nonexistent solutions during the 

optimization procedure and to come up with the feasible ranges for the variables, the following 

were assumptions and conditions were established: 
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• The fixed points for the two line segments include the point of origin (0, 0) and the base 

shear at target displacement level, 𝛿𝑡, as per Figure 2.5.  

• The slope of the first line segment is less than or equal to the initial lateral stiffness value 

𝐾𝑖, i.e., slope of the elastic region of the pushover curve.  

• The intersection points 1, 2, and 3, as shown in Figure 5.8, shall follow the order 1 > 2 >

3, and shall be treated as optimization constraints.  

Figure 5.8 shows the comparison of the idealized pushover curves obtained from the two 

approaches along with their computational times and the obtained net area results. It is evident that 

the optimization approach was found to be highly efficient and accurate with Net Area almost 

closer to zero, than the previous approach. 

 

Figure 5.8:  Idealization of Pushover Curve Comparison 
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Target Displacement  

The idealization procedure of the pushover curve needs to know the target displacement point 

𝛿𝑡 (Figure 2.5), however the target displacement is initially unknown for the idealization procedure 

to begin with. Therefore, an iterative procedure was used, where an initial point of target 

displacement is assumed, and idealization procedure is repeated until the target displacement, 

𝛿𝑡, remains unchanged. The iteration steps can be explained as follows: 

1) Assume an initial value for target displacement, 𝛿𝑡,𝑖. This can be taken as the maximum 

displacement of the pushover curve.  

2) Perform the bilinear idealization procedure corresponding to the initial 𝛿𝑡,𝑖 

3) Determine the parameters 𝑉𝑦, 𝐾𝑒, and 𝑇𝑒, and the target displacement, 𝛿𝑡 as per Eq. 2.20 

4) Use the above target displacement 𝛿𝑡 as the new initial guess for the target displacement 

𝛿𝑡,𝑖 and repeat Steps 1-3 until 𝛿𝑡 and 𝛿𝑡,𝑖 are approximately equal.  

The above iterative procedure could make the optimization very computationally intensive. It 

was found that in most of the cases, two initial guesses or three iterations were sufficient to obtain 

the final value for 𝛿𝑡. Also, since it is almost impossible to have the two values, i.e., 𝛿𝑡,𝑖 and 𝛿𝑡 to 

be exactly equal, more number of iterations would not have made any difference, and therefore 

three iterations were enough to meet a tolerance limit of somewhere between 0 and 1. Figure 5.9 

shows the convergence of the difference between the initial and final values of target displacement 

for three iterations, and reinstates the assumptions claimed above.   
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Figure 5.9:  Convergence of Target Displacement Difference 

 Thus, following the above procedures for the baseline MRF structure, the effective yield 

strength, 𝑉𝑦, and effective lateral stiffness, 𝐾𝑒, were determined to be 445.2145 kips and 202.0139 

kips/in, respectively. Eq. 2.20 gives the effective period, 𝑇𝑒  as 1.0216 s. The response spectral 

acceleration, 𝑆𝑎 was determined to be 0.8349 using FEMA 356’s general response spectrum 

equations for the design level earthquake for the same acceleration parameters (𝑆𝑠 and 𝑆1) used in 

the EFP linear static case (Section 5.2). Using the coefficient values of 𝐶0, 𝐶1, 𝐶2 and 𝐶3 as 1.2, 

1,1, and 1, respectively, as per Eq. 2.20, the final target displacement, 𝛿𝑡 was determined to be 

10.2275 in. which corresponds to the base shear of 926.8304 kips. The member forces and 

deformations determined for the seismic forces corresponding to this base shear. For the baseline 

MRF frame, the obtained inter-story drifts, column interaction strength ratios, and beam rotations 

are compared with the same results obtained for the linear static and linear dynamic analysis cases, 

as shown in Tables 5.15, 5.16, and 5.17, respectively.  
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Story 

Inter-story Drifts (in.) 

EFP or Linear 

Static Analysis 

Linear Dynamic 

Analysis 

Nonlinear Static 

Analysis 

 Allowed = 3.12 in. Allowed = 3.9 in. Allowed = 3.9 in. 

1 2.5322 3.518 2.8458 

2 3.5743 4.7252 4.0773 

Roof 3.2335 4.0878 3.9805 

Table 5.15: Inter-story Drift Comparison for Linear Static, Linear Dynamic, and Nonlinear Static Cases 

Column Interaction Strength Check Ratio (<1.0) 

Column 

No. 

EFP or Linear 

Static Analysis 

Linear 

Dynamic 

Analysis 

Nonlinear 

Static Analysis 

1 1.18 1.25 1.05 

2 1.34 1.35 1.06 

3 1.33 1.35 1.06 

4 1.26 1.25 1.07 

5 0.35 0.17 0.46 

6 0.65 0.73 0.50 

7 1.01 1.0 0.79 

8 1.01 1.0 0.79 

9 0.74 0.72 0.55 

10 0.08 0.04 0.08 

11 0.37 0.46 0.28 

12 0.64 0.68 0.47 

13 0.64 0.68 0.47 

14 0.45 0.46 0.31 

15 0.04 0.03 0.03 

Table 5.16: Column Strength Ratio Comparison for Linear Static, Linear Dynamic, and Nonlinear Static Cases 

 

 

 

 



86 

 

Beam Plastic Rotations (rad.) (<0.04) 

Beam 

No. 

EFP or Linear 

Static Analysis 

Linear 

Dynamic 

Analysis 

Nonlinear 

Static 

Analysis 

16 0.029 0.022 0.030 

17 0.023 0.018 0.028 

18 0.027 0.022 0.030 

19 0.041 0.033 0.037 

20 0.029 0.022 0.033 

21 0.025 0.019 0.031 

22 0.028 0.022 0.033 

23 0.037 0.029 0.035 

24 0.03 0.023 0.032 

25 0.026 0.021 0.030 

26 0.027 0.023 0.032 

27 0.034 0.027 0.035 

Table 5.17: Beam Plastic Rotations Comparison for Linear Static, Linear Dynamic, and Nonlinear Static Cases 

 From the comparison of results for the three analysis cases, it is observed that the linear 

dynamic analysis would give the most conservative design, and therefore, the optimization 

weight/cost is expected to be highest for the linear dynamic case. However, it is difficult to 

conclude as to what analysis would give the least conservative design because even though the 

story drifts are least in the linear static case; the column strength ratios are higher than the nonlinear 

static case. This is because in the equivalent lateral force procedure the columns are designed with 

an empirical overstrength factor, and so one limitation of using the empirical factor is that the 

procedure estimates the force and drift responses disproportionately. Whereas, in the advanced 

analysis cases such as in LD and NLS, both of the responses are commensurate with each other, 

that is, both strength ratios and drifts are consistently higher or lower than the linear static case.   
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5.4.3 Optimization 

Like the optimization for the linear dynamic case, the standard PSO algorithm was found 

to be more efficient than the HPSO technique for this case. Therefore, the PSO algorithm was used 

to optimize the 3-story MRF structure for the nonlinear static case. A code was developed in 

MATLAB that automated the previously discussed procedures and obtained the final target 

displacement value at each PSO time step by following an iterative process as shown in Figure 

5.10.  

 

Figure 5.10:  Flow chart to obtain Final Target Displacement 

Nonlinear Static Analysis

Pushover Analysis

Assume Initial Target 
Displacement Value (𝛿𝑡𝑖)

Idealization of pushover curve 
using PSO optimization

Determine Target 
Displacement, 𝛿𝑡 using Eq. 2.21

𝛿𝑡𝑖 ≅ 𝛿𝑡

Final Target Displacement, 𝛿𝑡

No 

Yes 
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Figure 5.11 shows the convergence graph for the seismic design optimization of the of the 

benchmark building for the nonlinear static case. The optimal weight of the design was obtained 

to be as 84504 lb.  

 

Figure 5.11:  PSO Convergence Graph for 3-Story Benchmark Building (Nonlinear Static Case) 

5.5 Summary of Results 

From Table 5.18 and Table 5.19, it is observed that inter-story drifts govern the optimal 

designs only for the linear static and linear dynamic analysis; whereas, the column strengths govern 

the optimal design for all the three analysis methods. Also, the top story experiences the maximum 

inter-story drift ratio for the linear static and linear dynamic case; whereas, in the nonlinear static 

case, the maximum inter-story drift is obtained in the second story which is expected, as bottom 

stories usually experience higher inertial forces due higher story weights. Table 5.20 shows the 

beam rotations of the optimal frame from each analysis case, and it is evident that beam rotations 

does not control the optimal weight for any of the three analysis methods.  From Table 5.21, it is 

apparent that the selection of analysis method significantly influences the optimal designs. 
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Story Inter-story Drifts (in.) 

EFP or Linear 

Static Analysis 

Linear Dynamic 

Analysis 

Nonlinear Static 

Analysis 

 Allowed =3.12 in. Allowed =3.9 in. Allowed =3.9 in. 

1 2.0772 2.3555 2.1611 

2 2.6362 2.8532 3.7309 

Roof 3.1178 3.8674 3.6548 

Table 5.18: Inter-story Drift Comparison for Optimal Designs 

Column Interaction Strength Check Ratio (<1.0) 

Column 

No. 

EFP or 

Linear Static 

Analysis 

Linear 

Dynamic 

Analysis 

Nonlinear 

Static Analysis 

1 0.9045 0.9647 0.9871 

2 0.9942 0.9982 0.9986 

3 0.9927 0.9983 0.9981 

4 0.9837 0.9625 0.9999 

5 0.9020 0.7685 0.8625 

6 0.6241 0.6573 0.6517 

7 0.7232 0.7228 0.8842 

8 0.7189 0.7223 0.8840 

9 0.6982 0.6613 0.6966 

10 0.5649 0.4861 0.5138 

11 0.5437 0.6972 0.4088 

12 0.6390 0.7851 0.5991 

13 0.6359 0.7847 0.5989 

14 0.6054 0.7050 0.4346 

15 0.2558 0.2219 0.2291 

Table 5.19: Column Strength Ratio Comparison for Optimal Design 
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Beam Plastic Rotations (rad.) (<0.04) 

Beam 

No. 

EFP or Linear 

Static Analysis 

Linear 

Dynamic 

Analysis 

Nonlinear 

Static 

Analysis 

16 0.013 0.0115 0.0230 

17 0.013 0.0110 0.0203 

18 0.013 0.0115 0.0228 

19 0.027 0.0202 0.0299 

20 0.019 0.0111 0.0323 

21 0.019 0.0106 0.0322 

22 0.019 0.0111 0.0322 

23 0.023 0.0214 0.0322 

24 0.012 0.0294 0.0252 

25 0.011 0.0292 0.0231 

26 0.011 0.0293 0.0251 

27 0.020 0.0292 0.0307 

Table 5.20: Beam Plastic Rotations Comparison for Optimal Designs 

Optimal Designs Comparison 

Group Member EFP or Linear 

Static Analysis 

Linear 

Dynamic 

Analysis 

Nonlinear Static 

Analysis 

1 Column W14 X 257 W14 X 283 W14 X 283 

2 Column W14 X 426 W14 X 455 W14 X 370 

3 Column (Weak Axis) W14 X 30 W14 X 22 W14 X 30 

4 Beam W40 X 149 W40 X 167 W40 X 149 

5 Truss W18 X 35 W16 X 40 W16 X 31 

6 Beam W36 X 182 W40 X 183 W30 X 90 

7 Beam W21 X 44 W14 X 74 W30 X 90 
 

Optimal Weight (lb) 91344 100182 84504 

Table 5.21: Comparison of Optimal Designs for 3-story Benchmark Building 
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Chapter 6: Performance-Based Design Optimization of 3-Story 

MRF 

6.1 Introduction 

In this chapter, the performance-based design (PBD) optimization of the 3-story MRF is 

performed for the nonlinear static (pushover analysis) case due to its ability to determine the 

nonlinear response of structures under high earthquake intensities. The four building performance 

levels of Operational Level (OL), Immediate Occupancy (IO), Life Safety (LS), and Collapse 

Prevention (CP) can be combined with three hazard levels of Frequent Earthquake, Design 

Earthquake (DE), and Maximum Considered Earthquake (MCE), as per Figure 5.14 [69]. Since 

the benchmark office building corresponds to the Risk Category II, the objectives for its 

performance-based design of the 3-story MRF will include three performance levels- IO, LS, and 

CP.  

 

Figure 6.1:  Performance-Based Design Objectives [70] 
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6.2 PBD Optimization  

The PSO algorithm was used for the performance-based design optimization of the 3-story 

benchmark building. A code was developed in MATLAB that automated the previously discussed 

nonlinear static procedures, and conformed to the acceptance criteria specified in the performance-

based codes of FEMA-356/ASCE-41 (Section 2.3.6). The selected performance-based design 

criteria are summarized in Table 6.1. The spectral acceleration parameters for the probabilistic 

seismic hazard levels shown in Table 6.1 were obtained from the USGS website. At every 

optimization time step, three separate analyses were performed to obtain target displacements, 

member forces and drifts for the seismic forces corresponding to the three earthquake levels.   

Earthquake Levels 

Probability 

of 

Exceedance 

𝑺𝒔(𝒈) 𝑺𝟏(𝒈) 

Performance 

Level 

(Objective)  

Target 

Drift 

Ratios  

Frequent Level  
20% in 50 

years 
0.988 0.544 IO (Enhanced)  0.7% 

Design Earthquake 
10% in 50 

years 
1.622 0.853 

LS (Basic 

Safety) 
2.5 % 

Maximum Considered 

Earthquake 

2% in 50 

years 
2.433 1.279 CP (Limited) 5% 

Table 6.1: FEMA 356/ASCE 41 Performance-Based Design Criteria  

Figure 6.2 shows the convergence graph for the PBD optimization of the of the benchmark 

building for the nonlinear static case. The optimal weight of the frame was obtained to be as 91926 

lb. which shows that the optimal weight for the Enhanced Objective is 8.78% higher than the 

optimal weight for the Life Safety Objective (84504 lb.). This corroborates with the Figure 2.6 

showing the surface plots of the relative costs for different performance objectives, i.e., surface 

“e” is higher than “c”. Tables 6.2 and 6.3 shows the comparison of the inter-story drifts and column 

rotations, respectively, for the three performance levels for the optimal frame. From Table 6.2 and 

Figure 6.3, it is evident that the immediate occupancy governs among the three performance levels, 
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which validates the definition of the Enhanced objective provided in Table 2.5. Table 6.4 shows 

the comparison of the optimal designs for the Life Safety Objective (Section 5.4.3) and the 

Enhanced Objective for the nonlinear static cases.  

 

Figure 6.2:  PSO Convergence Graph for PBD of 3-Story Benchmark Building for NLS analysis 

Immediate Occupancy Life Safety Collapse Prevention  

Δ (in.) Allowed Check Δ (in.) Allowed Check Δ (in.) Allowed Check 

0.9679 1.09 OK 3.6852 3.9 OK 5.3801 7.8 OK 

1.0612 1.09 OK 3.2878 3.9 OK 4.8497 7.8 OK 

1.0073 1.09 OK 2.3997 3.9 OK 3.3048 7.8 OK 

Table 6.2: Inter-Story Drift Check for PBD Optimal Design for NLS analysis 
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Figure 6.3: Inter-Story Drift Ratios Graph for PBD Optimal Design for NLS analysis 

Col. 

No. 

Immediate Occupancy Life Safety Collapse Prevention 

Column 

Rot. 

(rad.) 

Allowed Check 

Column 

Rot. 

(rad.) 

Allowed Check 

Column 

Rot. 

(rad.) 

Allowed Check 

1 0.0047 0.0067 OK 0.0202 0.0388 OK 0.0303 0.0514 OK 

2 0.0015 0.0064 OK 0.0019 0.0374 OK 0.0021 0.0496 OK 

3 0.0015 0.0069 OK 0.0020 0.0426 OK 0.0020 0.0572 OK 

4 0.0045 0.0061 OK 0.0199 0.0355 OK 0.0296 0.0469 OK 

5 0.0082 0.0154 OK 0.0295 0.0925 OK 0.0433 0.1233 OK 

6 0.0034 0.0068 OK 0.0112 0.0401 OK 0.0163 0.0532 OK 

7 0.0011 0.0068 OK 0.0014 0.0400 OK 0.0015 0.0532 OK 

8 0.0011 0.0070 OK 0.0013 0.0425 OK 0.0014 0.0568 OK 

9 0.0033 0.0064 OK 0.0110 0.0379 OK 0.0161 0.0503 OK 

10 0.0063 0.0064 OK 0.0162 0.0382 OK 0.0233 0.0510 OK 

11 0.0065 0.0068 OK 0.0151 0.0412 OK 0.0211 0.0549 OK 

12 0.0044 0.0071 OK 0.0122 0.0424 OK 0.0178 0.0566 OK 

13 0.0044 0.0071 OK 0.0122 0.0424 OK 0.0177 0.0566 OK 

14 0.0061 0.0067 OK 0.0151 0.0402 OK 0.0210 0.0536 OK 

15 0.0066 0.0205 OK 0.0150 0.1232 OK 0.0201 0.1643 OK 

Table 6.3: Column Rotations Check for PBD Optimal Design for NLS analysis 
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Optimal Design Comparison 

Group Member 
Basic (Life Safety) 

Objective 

PBD (Enhanced) 

Objective 

1 Column W14 X 283 W14 X 311 

2 Column W14 X 370 W14 X 211 

3 Column (Weak Axis) W14 X 30 W14 X 30 

4 Beam W40 X 149 W40 X 215 

5 Truss W16 X 31 W18 X 35 

6 Beam W30 X 90 W44 X 230 

7 Beam W30 X 90 W24 X 76 
 

Weight (lb) 84504 91926 

Table 6.4: Comparison of Optimal PBD for Nonlinear Static Analysis  
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Chapter 7: Sensitivity Analysis 

7.1 Introduction 

This chapter investigates the sensitivity of the two design parameters, fundamental period, 

𝑇 and the effective length factor, 𝐾, to the optimization of the benchmark frame for the ASCE 7-

10 equivalent lateral force procedure. This was based on the finding that the codes ASCE 7-10 and 

FEMA 356 either did not agree or did not provide guidelines, on the use of the two parameters in 

their seismic design procedures. Thus, the optimization results are compared by assuming different 

values for each of these parameters.  

7.1 Fundamental Period Determination  

As discussed in Section 2.3.3, ASCE 7-10’s equivalent lateral force procedure requires 

using an upper limit for the period determination. On the other hand, FEMA-356 permits using a 

computed period from modal analysis. Therefore, to compare of the influence of using the upper 

period instead of the computed period, the optimization was performed using the equivalent lateral 

force procedure with computed period, and the obtained results were compared with the 

optimization results obtained earlier in Section 5.2.2 where the upper period was used. Figure 7.1 

shows the convergence graph of the optimization of the benchmark frame using EFP with 

computed period. The optimal weight was obtained as 90930 lb. which is very close to the optimal 

weight of 91344 lb obtained in the earlier case with a difference of only 0.5%. Tables 7.1 and 7.2 

the comparison of inter-story drifts and column strength ratios, for the two cases. From the results 

comparison, it is observed that drift values for the computer period case are farther from the upper 

limit of 3.12 in. as compared to the previous case. However, the optimal costs still end being close 

because the column strength controls in both cases, as shown in Table 6.4 
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Figure 7.1:  PSO Convergence Graph for Equivalent Lateral Force Procedure with Computed Period  

Story 

 

Story Drifts (in.) 

(Δa) = 3.12 in. 

EFP with Upper 

Period Limit 

EFP with 

Computed Period 

1 2.0772 2.4269 

2 2.6362 2.6723 

Roof 3.1178 3.0776 

 
Table 7.1: Optimal Frame’s Inter-Story Drifts Comparison for Upper Period Vs. Computed Period for EFP (LS) 

analysis 
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Column Strength Check Ratio 

Column 

No. 

EFP with 

Upper Period 

Limit 

EFP with 

Computed 

Period 

1 0.9045 0.8905 

2 0.9942 0.9995 

3 0.9927 0.9941 

4 0.9837 0.9806 

5 0.902 0.2872 

6 0.6241 0.6742 

7 0.7232 0.8445 

8 0.7189 0.8370 

9 0.6982 0.7520 

10 0.5649 0.0912 

11 0.5437 0.5843 

12 0.639 0.7174 

13 0.6359 0.7138 

14 0.6054 0.6462 

15 0.2558 0.0469 

 
Table 7.2: Optimal Frame’s Column Strength Ratio Comparison for Upper Period Vs. Computed Period 

7.2 Effective Length Factor (K) 

As discussed in Section 2.2.1, the AISC manual recommends either of the two methods for 

determining the effective length factor- Alternate Design Method or Direct Design Method. 

Whereas, the AISC Seismic Provisions recommends using 𝐾 = 1 based on the recognition that in 

the moment resisting frames, column bending moments would largest at column ends, resulting in 

reverse curvature in the column, therefore the assumption of taking 𝐾 as 1.0 would be 

conservative. The seismic procedures of ASCE 7-10 does not provide guidelines for determining 

the effective length factor (K), but the FEMA-356 allows 𝐾 to be taken as 1.0 for seismic design 

procedures.  
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Thus, to test the impact of these incongruities on the optimal design of the MRF frame, the 

optimization is performed again for the equivalent lateral force procedure using the Direct Design 

Method as opposed to the previous optimization case of Section 5.2.2 where K was taken as unity. 

Figure 7.2 shows the convergence graph of the optimization of the benchmark frame using EFP 

with AISC Direct Design Method. The optimal weight was obtained as 99633 lb. which is 

significantly higher, i.e., 9% than the optimal weight of 91344 lb. obtained in the earlier case. The 

difference is expected because the Direct Design Method requires the member stiffnesses to be 

reduced by 20% along with additional lateral notional loads. Therefore, the method results in an 

over conservative design. Tables 7.3 and 7.4 shows the comparison of inter-story drifts and column 

strength ratios, for the two cases. From the results comparison, it is observed that drift values for 

the computer period case are far from the upper limit of 3.12 in., and thus it is apparent that the 

strength design controls when AISC Direct Design Method is used.   

 

Figure 7.2:  PSO Convergence Graph for Equivalent Lateral Force Procedure with AISC Direct Design Method 
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Table 7.3: Optimal Frame’s Inter-Story Drifts Comparison for AISC Direct Design Method 

Column Strength Check Ratio 

Column 

No. 

EFP with 

K=1.0 

EFP with AISC 

Direct Design 

Method 

1 0.9045 0.8919 

2 0.9942 0.9977 

3 0.9927 0.9917 

4 0.9837 0.9646 

5 0.902 0.2954 

6 0.6241 0.6434 

7 0.7232 0.8304 

8 0.7189 0.8236 

9 0.6982 0.7082 

10 0.5649 0.0867 

11 0.5437 0.5830 

12 0.639 0.7273 

13 0.6359 0.7247 

14 0.6054 0.6354 

15 0.2558 0.0536 

 

Table 7.4: Optimal Frame’s Column Strength Ratio Comparison for AISC Direct Design Method 

 

 

 

 

Story 

 

Story Drifts (in.) 

(Δa) = 3.12 in. 

EFP with 

K=1.0 

EFP with AISC Direct 

Design Method 

1 2.0772 2.1195 

2 2.6362 2.4204 

Roof 3.1178 2.9401 
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Chapter 8: Summary and Conclusions 

8.1 Summary 

The objective of this study was to create a framework that combines metaheuristic 

algorithms with state-of-the-art finite element analysis for optimal seismic design of structures; 

enabling the consideration of advanced analysis procedures in the optimization. An existing office 

building comprising of a three-story steel moment-resisting frame was selected as a benchmark 

structure for this purpose. The optimization of the structure was performed for linear static, linear 

dynamic, and nonlinear static analysis cases. The framework enabled a study across analysis cases 

with regard to the resulting optimal seismic design. In addition, the influence of design decisions 

and sensitivity to parameter selection is assessed using the optimization framework.  

 Principles of current seismic design procedures were presented, followed by a theoretical 

background of the seismic design codes of ASCE 7-10 and FEMA-356. The PSO algorithm was 

developed in MATLAB and the code was validated through two numerical examples, which 

included optimization of a 10-bar planar truss and a six-story rigid steel frame.  

  The finite element software OpenSees was utilized to model and analyze linear, nonlinear 

and dynamic response of the structure, for which an interface between MATLAB and OpenSees 

was created. Therefore, a code was developed in MATLAB that performed the analyses using 

OpenSees and conformed to the seismic design criteria specified in the design codes. The seismic 

design optimization was performed for the three analysis cases separately, followed by the 

performance-based design optimization of the benchmark building using nonlinear static analysis. 

 Lastly, sensitivity of the two design parameters including fundamental period (𝑇) and 

effective length factor (𝐾) was evaluated by comparing the optimal designs with changed 
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parameters against the original optimization results. The optimization results and the 

computational time for each analysis case is summarized in Table 8.1. 

Optimization Case Algorithm 
Swarm 

Size 

Computation 

Time* (sec) 

Per Iteration 

Optimum 

Weight (lb) 

Governing 

Constraints** 

Linear Static HPSO 25 127.8309 91344 
Inter-story drifts, 

Column strength 

Linear Dynamic PSO 25 3633.9856 100182 
Inter-story drifts, 

Column strength 

Nonlinear Static PSO 25 197.64 84504 Column strength 

Performance-based 

Design  
PSO 25 241.3598 91926 

Inter-story drift 

(Immediate 

Occupancy) 

* 
The computation times are based on Intel i7 CPU @ 3.40 GHz Clock Speed 

and 8.00 GB Memory. 

** 
The governing constraints are picked based on the constraint which was closest 

to the upper bound value. 

Table 8.1: Optimization Results Summary 

8.2 Conclusions 

The metaheuristic algorithms including PSO and HPSO were successfully applied to the 

seismic and performance-based design of the three-story moment resisting frame for equivalent 

lateral force, linear response time-history, and nonlinear static analysis procedures, by utilizing an 

interface between MATLAB and OpenSees. Among the three analysis cases, the lowest and the 

highest optimum weights of 84505 lb and 100182 lb were obtained in the nonlinear static case and 

linear dynamic case, respectively. Based on the optimization results obtained from different 

analysis procedures, following conclusions were made: 
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ASCE 7-10 Equivalent Lateral Force Procedure (Linear Static Case): 

• The optimal weight was obtained as 91344 lb in the linear static case and was the second 

highest among the three analysis cases. The optimum design was governed by inter-story 

drifts and column strength.  

• The optimization time was lowest in the linear static case (see Table 8.1), and since this 

analysis uses a linear elastic model, the analysis is relatively simpler to perform as 

compared to the other analysis procedures.  

• Since the analysis procedure relies on the linear elastic analysis, the results are not very 

accurate. To predict the actual nonlinear response, the code scales the results by making 

the use of empirical factors such as Ω𝑜, 𝐶𝑑, etc. which leads to more conservative results 

and up to 8% higher optimum design cost.  

• The base shear calculation depends on the fundamental period; therefore, the period must 

be computed at every iteration. Because the code requires member forces and drifts to be 

determined using different fundamental period values (computed period and an upper 

bound value using approximate period), two separate analyses had to be performed. 

However, from the sensitivity analysis, it was determined that if both member forces and 

drifts were determined using the computed period value, the optimization results were very 

close with only 0.5% of difference. So, it is recommended to only use the computed period 

value to save additional steps and computation time.  

• There are no guidelines regarding the effective length factor in the ASCE 7-10 codes, and 

different values of the factor can significantly affect the optimization results as noted in the 

proceeding conclusions. 
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ASCE 7-10 Linear Response Time History Procedure (Linear Dynamic Case): 

• The optimal weight was 100182 lb and was heaviest among all the analysis cases, and the 

governing design constraints were both inter-story drifts and column strengths. 

• Since the analysis considers the dynamic response of the structure, the results are more 

accurate. However, the response depends on the suite of ground motions considered, 

therefore the optimization results could vary significantly.  

• To consider the mean response from the suite of ground motions, at least seven ground 

motion records must be considered, which makes the optimization highly computationally 

intensive- resulting in more than an hour per iteration (see Table 8.1). 

• The code requires scaling of the ground motions values to obtain suitable mean response 

spectrum that matches with the general design response spectrum. The scale factors are 

obtained using guess and check approach and can be very difficult to automate for the 

optimization.    

• Between linear static and linear dynamic procedures, the former is recommended for the 

seismic design optimization (provided the structural configurations are similar) based on 

the comparison of their computational times, conservativeness of results, and simplicity.  

FEMA-356 Nonlinear Static Procedure (Nonlinear Static Case): 

• The optimal weight was lightest among all the analyses cases, which was obtained as 84054 

lb. The optimization was found to be more governed by column strengths than drift ratios.  

• The analysis incorporates the nonlinear behavior of the individual members, and therefore 

it accurately predicts the seismic demand and is suitable for the performance-based design 

of the structure.   
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• Although, the concentrated plasticity model is comparatively more computationally 

efficient; it is inefficient to be considered in the optimization because the concentrated 

plasticity model requires moment-curvature relationship of individual members, which are 

based on various experimental results and can be difficult to simulate for optimization.  

• The analysis procedure includes iterative graphical procedure to obtain an idealized 

pushover curve. Additionally, an iterative procedure had to be performed to obtain the final 

target displacement value. This makes the analysis procedure to be complex and time 

consuming.  

Performance-Based Design (Nonlinear Static Case): 

• The Immediate Occupancy or the Enhanced performance objective governs the 

performance-based optimization with inter-story drift as the governing constraint.   

• The performance-based design optimization for the nonlinear static case would be more 

accurate than performance-based design optimization for the linear static or linear dynamic 

cases.  

• Since three target building performance levels must be considered in the design, the 

nonlinear static procedures were performed for each of the three performance levels 

making the optimization very computationally intensive.  

• It is observed that the optimal weight for the performance-based design is only 0.64% 

heavier than that of the linear static case (designed for basic Life Safety), therefore the 

performance-based design optimization is recommended over the linear static case because 

the former not only meets the basic life safety or collapse prevention criteria, but also 

controls structural and nonstructural damages for nearly the same amount of design cost.    
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AISC Effective Length Factor (K): 

• The use of effective length factor required for column designs significantly impacts the 

optimization results. By using AISC Direct Design Method, the optimum weight was found 

to be 9% heavier as compared to the design optimization where K was assumed as unity.  

• The AISC Direct Design Method results in conservative design, and if this method is used 

for drift computation as well, it will lead to even more conservative and costlier design.  

8.3 Future Work 

1. Although PSO is an effective technique, there are other metaheuristic algorithms that have 

been proven to be more robust, for which the seismic design optimization can be 

performed. Additionally, multiple-objective seismic design optimization can be performed 

using metaheuristic algorithms that can consider other design variables such as 

construction costs, labor utilization, etc.  

2. To create an optimization framework that would be more readily accepted by the design 

community, a more familiar finite element software can be integrated. SAP2000 could be 

used for performing the structural design optimization for the above analysis procedures 

by taking an advantage of its open application programming interface feature.  

3. The application can be extended to obtain optimal weights for other seismic-force resisting 

frames such as concentrically braced frames and eccentrically braced frames, and include 

3-D analysis of the structure.   

4. In FEMA 440 document, the improvement of the nonlinear static procedures has been 

presented which would be desirable to be used for the performance-based design 

optimization.   
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APPENDIX A 

 

 

Design Coefficients and Factors for Seismic Force-Resisting Systems [71]. 
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APPENDIX B 

 

 

Acceptance Criteria for Nonlinear Procedures [72]. 
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