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Due to advances in electronic technologies, many systems are becoming in-

creasingly dependent on electric power for control and safety critical features [1].

When power failures occur, fault detection and fault restoration processes are es-

sential to reestablishing the proper function of the system. This thesis presents a sys-

tem methodology that addresses fault detection and fault restoration for distributed

electric power systems and a case study on applying the developed methodology to

an aircraft electric power system.

This thesis implements sensor placement algorithms in order to obtain the

most information about the state of the system. These algorithms rely on a state

estimation algorithm developed in [21] in order to quantify the information obtained

by the sensor measurements. Then, the sensor placement and state estimation

algorithms are combined with a controller synthesis method. This results in a system

methodology that periodically monitors the system for faults and brings the system

back to safe operation.
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Chapter 1: Introduction

It has been shown that many systems such as aircraft and marine systems are

becoming increasingly dependent on electric power for control and safety critical

features [29]. This move to more-electric architectures, such as electrical power

actuators, has been motivated by advancements in electronics technology that can

result in improved reliability, life cycle cost and performance [1]. For instance, recent

advances in solid-state power electronics and reductions in the weight and volume

of controls for high-speed electric machines have enabled the utilization of electrical

power instead of hydraulic, pneumatic, and mechanical power in aircraft [30].

In this thesis, a system methodology is presented that is capable of maintaining

a highly reliable, fault tolerant and autonomously controlled electrical power system.

For instance, we show that the methodology can produce accurate fault detection

results, i.e. components with an erroneous voltage or no voltage output are identified

in 80% to 100% of all failure configurations. This methodology implements a process

that addresses fault detection and fault restoration for an electrical power system in

a closed-loop fashion such that the results from the fault detection step are passed

to and used by the fault restoration step and the process transitions from one step

to the other periodically or as needed. After accurately identifying the location of
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the fault, a plan to redistribute power is devised and the system is reconfigured back

to safe operation.

1.1 Motivation

Due to the increasing reliance of subsystems on electrical power, it is critical

the electric power system functions properly [32]. This makes knowing when failures

happen, and determining the proper response when failures occur, to be of utmost

importance. Ensuring the correct behavior of the electrical power system can be

framed as a two-step problem in which the first step involves fault detection and

the second step involves fault restoration. Fault detection deals with identifying

the components that have failures, equivalent to estimating the discrete state of the

system, while fault restoration is applied to guarantee electrical power redistribution

in order to satisfy safety requirements. Throughout this thesis, a discrete model

for the electrical power system is used in order to make integration between fault

detection and fault restoration easier and reduce the state space size as well as

computation time [31].

Efforts have been made to design fault detection methods for electrical power

systems including those that use wavelet transform, neural networks, and genetic

algorithms (GAs) combined with fuzzy logic [2]. Wavelet neural networks have been

applied to power system fault detection due to the combined advantages of the

wavelet transform and neural networks. Wavelet analysis is a powerful mathemat-

ical tool for fault signal analysis and neural networks are capable of dealing with
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pattern-recognition and self-learning [3]. For instance, artificial neural networks

(ANNs) have been used to treat fault diagnosis as a pattern-recognition problem.

After determining the network parameters and configuration, the network can be

trained with different fault patterns in order to estimate the location of the fault in

the system. The drawback of neural networks is that they come with severe work-

load for the training task, making them inefficient in real large scale power system

applications [4].

A hybrid combination of genetic algorithms and fuzzy logic has also been ap-

plied to detect faults in electrical power systems. A genetic algorithm is used to

fine-tune fuzzy parameters that determine fuzzy subsets to then construct a mem-

bership function to measure the likelihood of a possible faulty component and its

degree of membership to each of the fuzzy subsets based on states of circuit breakers

[5]. The accuracy of this algorithm relies on the fine-tuning of the fuzzy parame-

ters, which has been shown to be too time consuming for on-line use. Other fault

detection methods make use of model-based reasoning (MBR) techniques [6]. These

techniques use artificial intelligence (AI) to learn from existing models and their

diagnostics. Diagnostics are utilized to provide predictions about the behavior of

devices. Then, these predictions are compared with the results of other predictions

and observations. A discrepancy between the predictions and the observations may

be an indication of a faulty component in the system [6]. One of the major draw-

backs of this technique is the lack of reusable and extensible software tools that

would facilitate the development of MBR systems for problems within a particu-

lar engineering application. In addition, the existing models may have their own
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limitations and assumptions making them less applicable for certain problems [7].

In the area of fault restoration, various methods have been developed to re-

store the power supply to affected areas in the system after a fault occurs. One

of these methods includes a recovery path search based on the genetic algorithm.

This method formulates the fault restoration problem as a multi-objective, multi-

constrained and combinatorial problem which solves for the optimal recovery path

that minimizes the number of switch operations and power losses [8]. A drawback of

this method is local convergence which prevents the optimal strategy from achieving

the global minimum of the objective function. Another method proposed to obtain

a recovery path is based on matrix elimination. This method considers a subsys-

tem switch model and defines an incidence matrix based on the connectivity of the

subsystems. Then, by elimination of the elements where the related subsystems are

represented in the matrix, a recovery path search can be quickly obtained [9]. This

approach requires searching for a complete recovery path as far ahead as possible

to provide power restoration, making it inefficient for on-line use.

So far, various fault detection and fault restoration methods have been dis-

cussed. These methods can be applied to separately address fault detection and

fault restoration, each with advantages and drawbacks. However, fault detection

and fault restoration methods can be integrated into a process that periodically

monitors the electrical power system for faults and devises a recovery strategy as

soon as a fault is discovered. This integration facilitates the rapid exchange of

information between the fault detection and fault restoration methods. Once the

state of the system is estimated, it can be passed to the restoration method without
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extra processing, and once the restoration strategy is applied, the state estimation

method can be run again. Similarly, related work on combining offline fault-aware

task scheduling algorithms and online fault restoration algorithms for a single point

of failure is explored in [33], [34].

1.2 Thesis Contribution

This thesis presents a system methodology that combines fault detection and

fault restoration techniques in order to monitor the system for faults and restore

power for electrical power systems within the context of aircraft applications. The

proposed methodology solves the problem of detecting and handling failures holis-

tically and systematically with applicability to a wide range of electrical power

systems and minimal dependency on extra hardware. The methodology functions

in two modes. In one mode, the required pre-processing which entails determining a

sensor placement strategy for the system is performed off-line. The sensor placement

strategy relies on the results of the state estimation method which will be explained

in detail in section II. The second mode is executed on-line. While in this mode, the

methodology performs state estimation periodically to identify faulty components

in the system. The resulting state estimate is passed to the fault restoration step in

which a strategy is devised to restore power in the system according to safety and

operation requirements.

The research presented in this thesis consists of three main components: sensor

placement, state estimation, and controller synthesis. In Figure 1.1, the workflow of
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the implementation of these components with their respective inputs and outputs

is shown.

Figure 1.1: Workflow diagram implementing all the steps of the system
methodology. Blocks with dashed lines correspond to algorithms and
code developed in this thesis. Blocks with solid lines correspond to
algorithms and code developed in previous work with the corresponding
references.

The following sections provide a quick overview of related work in the areas

of sensor placement, state estimation and controller synthesis as well as a summary

of the thesis contribution to each one of these areas.

1.2.1 Sensor Placement

A significant amount of work has been done in the area of sensor placement

for different applications. For instance, the work in [10] addresses the problem

of selecting control nodes for a symmetric complex network in order to drive the
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network to a target state by optimizing a function of the observability Gramian. The

work in [11] explores some heuristics that decide on sensor placement for a power

system based on the degree of observability of the system states quantified by an

empirical observability Gramian. Both methods are shown to be computationally

demanding.

Different approaches are shown in [12], [13], and [14], in which greedy algo-

rithms with sub-optimality guarantees are provided. A drawback of most of these

approaches is that they assume a model of the system with accurate parameters,

which makes them subject to modeling errors. In addition, these algorithms may

not find the optimal solution but can guarantee a sub-optimal solution even in worst

case scenarios. For other applications of sensor placement, [15] and [16] look at the

problem of choosing sensors in Wireless Sensor Networks (WSN) with the objective

of minimizing the use of constrained resources or maximizing sensor coverage and

quality. Other applications in robotics, alternatively, look at the coupling of sensor

placement and state estimation [17].

In this thesis, we take an approach based off the theoretical concepts of the

greedy and combinatorial methods explored in [13] and [15] respectively and im-

plement sensor placement algorithms that seek to maximize a given function. Our

contribution is in the determination of this function, which is defined as the esti-

mation success ratio. The estimation success ratio is a function of the placement of

sensors which affects state estimation performance. This state estimation process

was developed in previous work [23] and will be discussed in more detail in section

II. For a given sensor placement, the value of the estimation success ratio will vary
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according to how many state configurations the state estimation process is able to

produce a unique state estimate. Modifying the sensor placement based on results

obtained from the state estimation process creates a coupling of these two algo-

rithms, which is represented by the connections between the sensor placement and

state estimation blocks as shown in Figure 1.1. The algorithms compute a sensor

placement strategy iteratively until the required number of sensors are selected or

a state estimation percentage is reached.

1.2.2 State Estimation

In the area of state estimation, some methods use optimization-based esti-

mation in which the state vector of an electrical power system is determined by a

least squares fit of nonlinear equations relating state variables (bus voltage magni-

tudes and phase angles) and measurements (voltage and current magnitudes) [18].

A drawback of these methods is that an efficient solution with global convergence

is difficult to achieve. Other methods in [19], [20] rely on hardware redundancy

in which multiple sensors and actuators are utilized to measure and determine the

state of the system. However, the extra hardware makes these methods undesirable

for aircraft applications which have restrictive weight requirements. In this thesis,

a state estimation approach developed in [21] without the drawbacks mentioned is

used and modified to work within the proposed methodology.

In this thesis, a function to systematically iterate through all possible state

configurations and obtain a state estimate for each configuration is implemented in
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Python 2.7. This function then computes and returns the estimation success ratio.

Another function is implemented to translate a state estimate to a fault detection

result in order to initialize the input to the controller synthesis. This function is

represented in the conversion to fault result block as shown in Figure 1.1.

1.2.3 Controller Synthesis

In the area of fault restoration, instead of searching for a complete recovery

path, a different strategy is utilized and incorporated to the methodology. Linear

temporal logic (LTL) language is used to automatically design a correct-by-design

controller that provides a formal guarantee of system correctness, i.e. proper power

distribution to essential components in the electrical power system. This system

correctness can be described by a set of user-defined system requirements. The

translation from these system requirements written by the user to LTL specification

language is done automatically by a Python script developed as part of the work

in [22]. This script outputs LTL specifications and converts them to generalized

reactivity (1) form, which is explained in [24]. Then, these GR(1) specifications are

passed to the controller synthesis block as shown in Figure 1.1. This synthesis is

performed using Tulip software tools. This software is explained in detail in [25].

The controller synthesized by Tulip then outputs a reactive protocol that ensures

the system can be reconfigured dynamically to maintain system correctness even in

the presence of failures as demonstrated in [22]. The reactive protocol is represented

by a finite state machine that can be used to extract a sequence of actions that will
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reconfigure the system back to safe operation.

In this thesis, the results from the state estimation method are integrated

to the controller synthesis method and a graphic simulation of the cicuit topology

changes dictated by the state transitions in the finite state machine outputted by the

controller synthesis. This corresponds to the output visualization block as shown

in Figure 1.1. A decomposition of the circuit is proposed for the implementation

of the distributed controller synthesis, including refinements for specifications to

handle the interfacing between the subcomponents. This is executed in the circuit

topology decomposition block as shown in Figure 1.1.

1.3 Thesis Overview

The scope of this thesis covers the design, simulation and results of the pro-

posed system methodology and its application to an aircraft electrical power system.

Chapter 2 provides background information on electrical power systems and presents

the problem set up. It also discusses the state estimation technique previously de-

veloped in [21] and the linear temporal logic language and formalisms used for the

reactive and distributed controller synthesis part of the methodology. The main

contribution of Chapter 3 is the presentation of the sensor placement algorithms.

Results from the algorithms are simulated on representative electrical power system

topologies. These algorithms are then compared in terms of accuracy and perfor-

mance and the chosen approach is tested further by considering unreliable readings

from sensors. Chapter 4 provides a detailed description of the system methodology
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design flow. Additionally, it gives an overview of the application of formal specifica-

tions in synthesizing centralized and distributed controllers. Finally, a case study on

applying the system methodology on an aircraft electric power system is presented in

Chapert 5 along with simulation results for centralized and distributed approaches.

Finally, Chapter 6 concludes the work and discusses directions for research in the

future. In summary, these are the key contributions of this thesis:

1. The determination of a function, which is referred to as the estimation success

ratio, for the implementation of combinatorial and greedy sensor placement

methods.

2. The integration of a given state estimation method, for which sensor place-

ment algorithms are implemented to improve its performance, and controller

synthesis methods using Linear Temporal Logic into a system methodology

that addresses the problem of fault detection and fault restoration holistically.

3. The demonstration of the application of the system methodology to a large

electric power system for aircraft.
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Chapter 2: Background

2.1 Electrical Power Systems

In this thesis, an electric power system for an aircraft is considered. This

system is composed by a certain number of generators that serve as primary power

sources to a set of loads through dedicated AC buses. Then, each AC bus delivers

power to a DC bus through a rectifier unit or a transformer rectifier unit.

To control the flow of power, the system uses contactors (high-power switches).

These contactors establish connections between components. In the case of a gen-

erator or switch failure, the system can be reconfigured by changing the open or

closed status of contactors, hence redirecting power to the different buses or loads.

A representative electrical power system topology is shown in Figure 2.1. This

topology includes a combination of generators G, contactors C, buses B, rectifier

units R and sensors S. The following is a brief description of the components used

througout this work.

Generators: AC generators can operate at either high voltages, which can

connect to the high-voltage AC buses, or low voltages, which feed directly to the

low-voltage buses.

Buses: High-voltage and low-voltage AC and DC buses deliver power to a

12



Figure 2.1: A single-line diagram of a simple circuit with AC components
and DC components. In this circuit, controllable contactors are shown
in blue (C1;C3;C4;C5;C6;C7) and uncontrollable contactors are shown
in black (C2;C8).

number of sub-buses, loads, or power conversion equipment. Buses can be essential

or non-essential depending on the power requirements on the loads. For example,

essential buses supply loads that should always remain powered, such as the flight

actuation subsystem, while non-essential buses have loads that may be shed in the

case of a fault or failure, such as cabin lighting.

Contactors: Contactors are high-power electronic switches that connect the

flow of power from sources to buses. Depending on the power status of generators

and buses, contactors can reconfigure, i.e., switch between open and closed. Con-
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tactors provide the actuation for reconfiguration of the topology of the electrical

power system. By changing the paths through which power is delivered from gen-

erators to loads, contactors are used to bring the system back to safe operation.

Throughout this thesis, the symbol for contactors should not be confused with that

for capacitors.

Transformer Rectifier Units: Rectifier Units (RUs) convert three-phase

AC power to DC power. Transformer Rectifier Units (XFMRs) combine a rectifier

unit and a step-down transformer to additionally lower the voltage.

Batteries: Batteries can be used as auxiliary generation sources. They pro-

vide short-term power during emergency conditions while alternative sources are

being brought online.

The following is a detailed description of the model of the representative elec-

trical power system in Figure 2.1 for the purpose of applying state estimation, sensor

placement and control synthesis.

2.2 Problem Description

A discrete model is considered for all electrical power systems used in this work.

Using a discrete model has the advantage of making the integration of the state

estimation and controller synthesis easier since the output of the state estimation

process becomes the input to the controller synthesis algorithm. The discrete model

of the system provides an abstract model which allows for a discrete controller

to be synthesized. Additionally, a discrete model results in a much smaller state
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space than a continuous model, which leads to a reduced computational complexity.

Therefore, continuous values of voltage and current, as well as health statuses of

components in the system are discretized before performing state estimation and

sensor placement.

Additionally, the electric power system topology can be represented by a graph

data structure G = (N , E), where N refers to the set of nodes and E refers to the

set of edges in the graph. The set of nodes N = {n1, ..., nn} includes the following

components: generators G, rectifier units R, and voltage sensors S. The set of

edges E = {e1, ..., ee} contains all contactors between components. The status of

contactors in E can either be open (0) or closed (1). All edges in the graph are

bidirectional, except for the incoming only edges on the AC side and the outgoing

only edges on the DC side of the nodes that correspond to rectifier units.

The states of generators G ∈ N and rectifier units R ∈ N are uncontrollable.

These states can take values of unhealthy (2) if the component is online and outputs

an inadmissible voltage value, healthy (1) if the component is online and outputs

the correct voltage, and offline (0) if the component does not output any voltage.

The states of sensors S ∈ N depend on the status of generators, rectifier units, and

contactors. A live path occurs when there exists a simple path in G that connects

two nodes with no offline component along the path (including end nodes) and with

all contactors in the path closed. Readings from a sensor s can take the following

values (i) improper voltage: if there is a live path between sensor s and a generator

g ∈ G, but either generator g or rectifier r ∈ R along such a path is unhealthy; (ii)

admissible voltage: if for all g ∈ G that have a live path to s, all g and all rectifier
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units along such path are healthy; (iii) or no voltage: if there exists no live path

between sensor s and any generator g ∈ G.

2.3 Dynamic State Estimation

In [21], the authors utilize software-based dynamic estimation strategies to ob-

tain high-accuracy state estimates with a limited number of sensors. The proposed

state estimation employs a greedy strategy that adaptively generates switching ac-

tions that reconfigure the system as to maximize the one-step expected uncertainty

reduction. These actions are performed by a set of controllable contactors. In the

estimation process, the state of the system is expressed as a valuation of the state

of individual components n ∈ G ∪ R and uncontrollable contactors e ∈ C' ⊆ C.

Controllable and uncontrollable contactors are user-defined and remain unchanged

throughout the estimation process. The dynamic state estimation method can be

executed by an embedded controller, which will be referred to as the fault detection

controller. This controller only controls a subset C \ C' of contactors. In Figure

2.1, controllable contactors are shown in blue and include (C1;C3;C4;C5;C6;C7).

Thus, the state estimation process runs the fault detection controller to adaptively

estimate the discrete state of the circuit. The controller takes actions like closing

or opening controllable contactors, and then reads voltage sensor measurements.

Hence, the controller can reconfigure the system and collect measurements to gain

information about the unknown state.

Let x be the state of the circuit, modeled as a random variable X that can
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only be determined by sensor measurements mapped back to a set of possible states

of the circuit. First, the circuit is assumed to be in an unknown state x0 ∈ Ω,

where Ω represents the set of all possible states. System faults are assumed to

be independent and x0 is assumed to remain fixed during the estimation process.

Let V = {(vi)i∈{0,...,t}}, represent the set of actions that can be performed on the

controllable contactors. Let Y be the set of sensor measurements, with y = µ(v, x) ∈

Y representing the unique outcome of performing action v for a system state x. For

actions {v0, ..., vt} and outcomes {y0, ..., yt} observed up until step t are represented

by the partial realization ψt = {(vi, yi)i∈{0,...,t}}.

The estimation process adaptively gets to the actual state x0. Let D(y, v) with

y = µ(v, x0) be the set of states that are indistinguishable from x0 under action v.

Let St = h(v0:t, x0) be an extension of this set containing states that produce the

same set of outcomes as x0 under the same set of actions {v0, ..., vt}. At each time

step t that a new action v′ ̸∈ ψt is taken, there exists a recursive relation between

the two sets of states:

h(v0:t ∪ {v′}, x0) = h(v0:t, x0) ∩D(µ(v′, x0), v
′), (2.1)

and St becomes:

St = ∩i∈{0,...,t}D(µ(vi, x0), vi). (2.2)

A strategy π is defined as a function of partial realizations to actions where

π(ψt) = vt+1. For an initial congifuration with x0, v0 and y0, the sequence of
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decision, measurement and update operations of the estimation process are expressed

in Equations (2.3a)-(2.3c) respectively:

vi = π(ψi−1) (2.3a)

yi = µ(vi, x0) (2.3b)

ψi = ψi−1 ∪ (vi, yi) (2.3c)

The goal is to reduce the uncertainty in the state estimate, thus minimizing

the number of indistinguishable states, by performing k ∈ {0, ..., t} actions that

maximize the objective function f . This function maps the set of actions A ⊆ V

under state x0 to reward f(A, x0), which measures the reduction in uncertainty of

X represented by the probability distribution P[x] through performing k actions:

f(v0:k, x0) = −P[Sk] = −
∑

x∈Sk

P[x]. (2.4)

Thus, the estimation will find the strategy π that allows the best expected estimate

for the state as shown in (2.4). We denote |Ṽ (π, x0)| ⊆ V the set of all the actions

performed under the strategy π, the state of the system being x0.

π∗ ∈ argmax
π

E[f(Ṽ (π, X), X)], (2.5)

subject to |Ṽ (π, x)| ≤ k for all x, and with expectation taken with respect to P[x]. A

greedy strategy is then used to select, at each step t, the action vt+1 that maximizes
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the expected one-step gain in uncertainty reduction with respect to all previous

actions:

vt+1 ∈ argmax
v∈Ṽ

E[f(v0:t ∪ {v}, X)− f(v0:t, X)|ψt]. (2.6)

The overall goal is to design a strategy the fault detection controller runs to adap-

tively estimate the discrete state of the circuit by taking actions (i.e., closing and

opening controllable contactors), and then reading voltage sensor measurements. By

changing the number and locations of sensors, it may be possible to improve state

estimation performance. In section III, a sensor placement algorithm is proposed

to determine the number of sensors and locations with the goal of maximizing the

performance of the state estimation method. The estimation process is summarized

in Algorithm 1.

Algorithm 1 Adaptive Greedy Strategy
Input: Probability measure P[x] on Ω, number of actions to perform k. The system
is in the state x0 ∈ Ω, fixed and unknown, and the controlled contactors are in some
configuration v0.
Output: Partial realization ψk and the set Sk of compatible states after k actions
are taken based on the strategy πgreedy
1: Take the measurement y0 = µ(v0, x0).
2: ψ0 = {(v0, x0)}
3: for all t ∈ {1, ..., k} do

4: vt = πgreedy(ψt−1)
5: Perform action vt
6: Take measurement yt = µ(vt, x0)
7: ψt = ψt−1 ∪ {vt, yt}
8: St = St−1 ∩D(yt, vt)
9: Compute P[x|ψt] (Bayesian update)
10: end for

11: return (ψk, Sk,P[x|ψk])
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2.4 Linear Temporal Logic (LTL)

LTL is a version of temporal logic, a specification language that can be used

to formally specify and verify behavioral properties of a system. LTL is well suited

for describing certain properties of electrical power systems and solving the type of

problems in which systems must react to a dynamic, a priori unknown environment

[27]. These systems are referred to as reactive systems. To understand how LTL

works, a brief overview of some basic definitions is presented below.

Definition 1: A system consists of a set V of variables. The domain of V ,

denoted dom(V ), is the set of valuations of V . A state of the system is an element

v ∈ dom(V ).

Definition 2: An atomic proposition is the building block of LTL. It is defined

as the statement on a valuation v ∈ dom(V ) with a unique truth value (True or False)

for a given v. Let the valuation v ∈ dom(V ) be a state of the system, and p be

an atomic proposition. Then v ! p, read v satisfies p, if p is True at that state v.

Otherwise, v ! p.

In the electric power system domain, the set of variables includes, for instance,

generator and rectifier unit statuses. Valuations of these variables include the health

values of generators and rectifier units. An atomic proposition could state that each

generator in the system be healthy as well as each rectifier unit. In addition, LTL

includes Boolean connectors like negation (¬), disjunction (∨), conjunction (∧),

material implication (→), and two basic temporal modalities next (!) and until

( U ). Using these operators and propositions, it is possible to specify a wide range
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of requirements on the desired behavior of a system and environment assumptions.

A formula is either an atomic proposition or a sentence comprised of atomic propo-

sitions connected by logical operators. For a given set π of atomic propositions, an

LTL formula is defined as follows:

1. any atomic proposition p ∈ π is an LTL formula.

2. given LTL formulas ϕ and ψ over π, ¬ϕ, ϕ∨ψ, ϕ∧ψ, !ϕ and ϕ U ψ are also

LTL formulas.

For a set of valuations V and a set π of atomic propositions over valuations v

∈ domn(V ), LTL formulas over π are interpreted over infinite sequences of states.

For instance, the formula !ϕ holds for a sequence of states at the current step

of the sequence if in the next step ϕ is true. Some formulas derived from the

formulas presented above include eventually (") and always ("). For instance, "ϕ

is equivalent to (true U ϕ). Also, the operators " and " are logical duals as ("ϕ)

is equivalent to (¬"¬ϕ) and ("ϕ) is equivalent to (¬"¬ϕ). The formula "ϕ states

that ϕ will be true at some point in the future, while "ϕ is satisfied if and only if

ϕ is true for all points.

The semantics of LTL is given as follows. Let σ = v0v1v2... be an infinite

sequence of valuations of variables in V . Let ϕ and ψ be LTL formulas. We say

that ϕ holds at position i ≥ 0 of σ, written vi |= ϕ, if and only if ϕ holds for the

remainder of the execution σ starting at position i. Then, the satisfaction of ϕ by

σ is inductively defined as:

1. for atomic proposition p, vi |= p if and only vi ! p;
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2. vi |= ¬ϕ if and only if vi " ϕ;

3. vi |= ϕ ∨ ψ if and only if vi |= ϕ or vi |= ψ;

4. vi |= !ϕ if and only if vi+1 |= ϕ; and

5. vi |= ϕ U ψ if and only if ∃ k ≥ i such that vk |= ψ and vj |= ϕ for all j, i ≤

k < j.

Based on this definition, !ϕ holds at position i of σ if and only if ϕ holds at

the next state vi+1, "ϕ holds at position i if and only if ϕ holds at every position

in σ starting at position i, and "ϕ holds at position i if and only if ϕ holds at some

position j ≥ i in σ.

Let Σ be the collection of all sequences of valuations of V . Then, the truth

value of a formula is determined by an assignment A, which is a mapping of atomic

propositions in the domain Σ to truth values: A : Σ → {0, 1}. Thus, if there are

n atomic propositions in the domain, there are 2n possible assignments for a given

formula. A formula ϕ is satisfied by an assignment A that causes the overall formula

to evaluate to true. A system composed of the variables V is said to satisfy ϕ if σ

|= ϕ for all σ ∈ Σ. A set of models Σ satisfies ϕ if every model in Σ satisfies ϕ.

2.4.1 Centralized Control Synthesis

We can now proceed to show how to use Linear Temporal Logic (LTL) to

translate system specifications to temporal logic language in order to formally state

the reactive synthesis problem. Let us define the system model as follows. The
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system variables are classified into sets of environment variables E and controlled

variables P . Let s = (e, p) ∈ dom(E)×dom(P ) be the state of the system. Consider

an LTL specification ϕ of assume-guarantee form

ϕ = ϕe → ϕs, (2.7)

where ϕe characterizes the assumptions on the environment and ϕs characterizes

the system requirements. The synthesis problem is then concerned with designing a

correct-by-construction controller that can reconfigure the electrical power system

to address different failure scenarios according to all system specifications. System

specifications are provided to define correct behaviors of the system. In addition,

the synthesis problem can be viewed as a two-player game between the environment

and the controlled plant: the environment attempts to falsify the specification in

(2.7) and the controlled plant tries to satisfy it.

The controller outputs a strategy, a partial function f : (s0s1...st−1, et) → pt,

that chooses the move of the controlled variables based on the state sequence so

far and the behavior of the environment so that the system satisfies ϕs as long as

the environment satisfies ϕe. Thus, the output of the controller will be a different

sequence of actions in each execution since the environment may be different. This

captures the reactive nature of the controller. The formula ϕ is true if ϕs is true,

and the system specifications are satisfied. When ϕe is false, i.e. the environment is

inadmissible, the synthesis problem becomes unrealizable and there is no guarantee

about the behavior of the system.
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It has been shown that the synthesis problem has a doubly exponential com-

plexity in [23]. For a subset of LTL, namely generalized reactivity (1) (GR(1)), it

has been shown that this problem can be solved in polynomial time (polynomial

in the number of valuations of the variables in E and P ) [24]. We describe GR(1)

and the need for it in more detail at the end of this chapter. GR(1) specifications

restrict ϕe and ϕs to take the following form, for α ∈ {e, s},

ϕα := ϕα
init ∧

∧

i∈Iα
1

"ϕα
1,i ∧

∧

i∈Iα
2

""ϕα
2,i, (2.8)

where ϕα
init is a propositional formula characterizing the initial conditions; ϕα

1,i are

transition relations characterizing safe, allowable moves and propositional formulas

characterizing invariants; and ϕα
2,i are propositional formulas characterizing states

that should be attained infinitely often. The GR(1) specifications are then passed

to the synthesizer available in the temporal logic planning (TuLiP) toolbox. For

a thorough description of this tool, see [25]. The synthesizer returns a finite-state

machine in which states are valuations of environment and controlled variables and

transitions are actions that the controller can take to reach a desired state.

When a controller has access to all environment and controlled variables, it

functions as a centralized controller. As the number of components increases, this

can result in a large computational complexity for the controller. In order to address

this issue, a distributed controller strategy is considered as follows.
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2.4.2 Distributed Control Synthesis

By using a distributed controller, the system is divided into subsystems and

a local controller is synthesized for each one of them. Thus, the synthesis task is

divided into smaller subproblems and the computational complexity of the problem

is reduced. Also, the distribution of power can be controlled and reestablished for

each subcomponent of the system without affecting other subcomponents, leading

to more robustness and resilience to failures. Synthesizing a local controller requires

decomposition of global specifications into local specifications. For instance, let

a system S be decomposed into S1 and S2. For i = 1, 2, let Ei and Pi be the

environment variables and controlled variables for Si such that P1 ∪ P2 = P and

P1 ∩ P2 = ∅. The overall environment assumptions ϕe and system guarantees ϕs

are distributed into the two systems S1 and S2. Let ϕe1 and ϕe2 be LTL formulas

containing variables in E1 and E2, respectively. Let ϕs1 and ϕs2 be formulas in terms

of E1 ∪ P1 and E2 ∪ P2, respectively. Then, as long as the following conditions are

satisfied, the distributed control protocol will satisfy the global specifications:

1. any sequence of actions from the environment that satisfies ϕe also satisfies

(ϕe1 ∧ ϕe2),

2. any sequence of actions of the system that satisfies (ϕs1 ∧ ϕs2) also satisfies

ϕs, and,

3. there exists two control protocols that realize local specifications (ϕe1 −→ ϕs1)

and (ϕe2 −→ ϕs2).
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By dividing the synthesis problem into smaller pieces, a distributed approach

will enable the design of flexible control architectures in terms of modularity and

integrability [26]. However, it also introduces the need for coordination between

subsystems in order to ensure that the overall problem is solved. The interaction

between subsystems may be needed for the synthesis to become realizable. This

interaction can be achieved through an extra set of local guarantees. For example,

let S1 have an extra set of local guarantees φ1 that interact with S2 as environment

assumptions denoted as φ′
1, while φ2 are the local guarantees provided by S2 that

interact with S1 as environment assumptions denoted as φ′
2. Thus, if the local

specifications in (2.9) and (2.10) hold, then the global specification ϕe −→ ϕs is

realizable.

φ′
2 ∧ ϕe1 −→ ϕs1 ∧ φ1, (2.9)

φ′
1 ∧ ϕe2 −→ ϕs2 ∧ φ2. (2.10)

2.4.3 Generalized Reactivity (1)

Using a “specify and synthesize” aproach, we can translate text-based system

specifications to a temporal logic specification language. The goal is to automatically

synthesize centralized and distributed controllers as well as to reduce the computa-

tional complexity. To do so, a fragement of LTL known as Generalized Reactivity

(1) is considered. Generally, the synthesis method for a given LTL specification ϕ

starts by constructing a Büchi automaton Bϕ, which is then determinized into a

deterministic Rabin automaton. This double translation may reach complexity of
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double exponent in the size of ϕ [27]. On the other hand, it has been shown that

realizability and synthesis problems for GR(1) specifications can be solved efficiently

in polynomial time and GR(1) is expressive enough to provide complete specifica-

tions of many designs [28]. In GR(1), the approach to solve the synthesis problem

can be viewed as the solution of a two-player game. In addition, specification of the

design to be synthesized is restricted to partial fragments of LTL and formulas in

(GR(1)) can be expressed as:

(""p1 ∧ ... ∧""pm) −→ (""q1 ∧ ... ∧""qn) (2.11)

Since the synthesis problem is framed as a two-player game between a system

and an environment, in which the realizability of an LTL formula can be reduced

to the decision of winner in the game, the goal of the system is to satisfy the

specification regardless of the actions of the environment. Let ϕ be the winning

condition, given by an LTL formula. A play σ, which is a sequence of states, is

winning for the system if it is infinite and it satisfies ϕ. Otherwise, ϕ is winning

for the environment. Then, the game is solved by attempting to decide whether the

game is winning for the environment or the system. If the environment is winning,

the specification is unrealizable. Otherwise, we can synthesize a winning strategy.

This can be characterized by the formula in (2.11) which expresses that the system

forces the game to visit p-states infinitely often and q-states infinitely often.
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Chapter 3: Sensor Placement

3.1 Overview

A significant amount of work has been done in the areas of sensor and actuator

placement for various applications. Some approaches use control theory to address

such problems. For instance, the authors in [10] look at the problem of selecting

control nodes (actuators) for a symmetric complex network in order to achieve con-

trollability to a target state. Choosing the optimal set of control nodes is framed

as a maximization among the minimum eigenvalues of the controllability Gramians

corresponding to each set of control nodes as follows,

max
K⊆{1,...,n}

λmin(WK,∞), (3.1)

where K is the set of control nodes, n refers to the number of network partitions

and WK,∞ corresponds to the controllability Gramian. In [14], the authors study

the problem of minimal actuator placement in a linear system subject to an average

control energy bound. To address this problem, they propose an algorithm that

selects a minimal number of actuators as to achieve the energy bound, which is

computed using the smallest eigenvalue of the controllability Gramian. In [11], the
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authors propose the use of the observability Gramian instead. They present some

heuristics that decide on sensor placement for a power system based on the degree of

observability of the system states quantified by an empirical observability Gramian.

Due to the reliance of these methods on the Gramian, they have been shown to be

computationally demanding. Another drawback of these approaches is that they

assume a model of the system with accurate parameters, which makes them subject

to modeling errors.

Other approaches are built on the concept of submodularity. For example,

authors in [12] present the problem of sensor selection in sensor networks and frame

it as a maximization of a submodular function over uniform matroids. The authors

demonstrate how a greedy sensor selection algorithm achieves performance within

(1 − 1

e
) of the optimal solution. In [13], a simple greedy heuristic is developed to

address the sensor and actuator placement problem for large complex networks. It

is shown that the mapping from possible placements to scalar functions of the con-

trollability and observability Gramians for the network is a modular or submodular

set function. Thus, a greedy heuristic is used to find the placements that maximize

this set function.

For the application of sensor placement in Wireless Sensor Networks (WSN),

[15] and [16] seek to choose sensor locations that will minimize the use of constrained

resources or maximize sensor coverage and quality. Other applications for sensor

placement are in robotics as presented in [17]. The authors in [17] explore the

coupling of sensor placement and state estimation. This thesis also seeks to explore

this coupling and demonstrate how sensor placement algorithms can rely on state
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estimation results for improvement. The combinatorial algorithm from [15] and

the greedy algorithm from [13] are modified and adapted to address the sensor

placement problem presented in this work due to their performance and applicability

to the sensor placement problem in discrete models of electrical power systems. A

description of the chosen algorithms is provided below.

3.2 Combinatorial Algorithm

It is shown in [15] that the combinatorial approach outperforms other algo-

rithms in choosing the optimum sensor locations in a wireless sensor network. For

this thesis, the combinatorial algorithm is adapted to choose the sensor locations

that maximize the performance of the state estimation algorithm discussed in Sec-

tion 2.3 for electrical power systems. This performance is quantified by computing

a function of the results obtained by the state estimation algorithm when run for all

possible state configurations for a given sensor placement. This function is referred

to as the estimation success ratio throughout this thesis. The estimation success

ratio is computed for a given sensor placement strategy S as follows,

f(S) =
ns

nt

, (3.2)

where ns is the number of state configurations for which the state estimation al-

gorithm returns a unique state (i.e. number of successful runs) and nt is the total

number of state configurations. The combinatorial algorithm considers all possible

combinations of the desired number of sensor nodes out of the total available sensor
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nodes and outputs the combination of sensors that results in the maximum estima-

tion success ratio. The pseudocode for the combinatorial algorithm is as follows:

Algorithm 2 Combinatorial Sensor Placement Algorithm
1: procedure maxSelection(sensors)
2: Loop through the set of all possible combinations of the sensors,

s =

(

n

k

)

where n is the total number of sensors and k is the number of required sensors
3: For each combination in s, attach the chosen sensors to the circuit configu-

ration
4: Load in the database of inverse mapping from sensor measurements to com-

patible states of the circuit for the modified configuration
5: Calculate the estimation success ratio and store it in an array
6: Select the combination of sensors for which the estimation success ratio is

maximum
7: return sensor placement strategy
8: end procedure

3.3 Greedy Algorithm

In [13], the problem of sensors and actuators placement is framed as a set

function optimization problem of the form

maximize
S⊆V, |S|=k

f(S), (3.3)

where V = {1, ...,M} is a finite set and f : 2V → R is a set function. V represents

the potential locations for the placement of sensors or actuators and f is a metric

for how controllable the system is for a given set of placements. After proving that f

is a monotone increasing submodular function, a greedy heuristic is used to obtain
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a sub-optimal solution with guaranteed worst-performance bounds. For f to be

submodular and monotone increasing, the following equations need to be satisfied

respectively:

f(A ∪ {s})− f(A) ≥ f(B ∪ {s})− f(B), (3.4)

for all subsets A ⊆ B ⊆ V and all elements s /∈ B,

A ⊆ B ⇒ f(A) ≤ f(B), (3.5)

for all subsets A, B ⊆ V .

The greedy algorithm starts with an empty set, S0 ← ∅, computes the gain

∆(a|Si) = f(Si ∪ {a})− f(Si) for all elements a ∈ V \Si and adds the element with

the highest gain

Si+1 ← Si ∪
{

argmax
a

∆(a|Si)|a ∈ V \ Si

}

. (3.6)

Thus, the greedy algorithm obtains a sensor placement strategy by making a se-

quence of choices. At each step i, it assumes that i sensor locations are fixed and

makes a greedy choice where to place the (i + 1)-th sensor. The sensor location

added at each step is the one that maximizes the gain in the estimation success

ratio. The estimation success ratio is a monotone increasing submodular function

since adding a new sensor can never reduce the amount of information obtained and

adding a new sensor to a smaller set of sensors increases the estimation success ratio

by at least as much as adding the new sensor to a superset of sensors. Moreover,
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this algorithm implements the greedy heuristic with sub-optimality guarantees as

described above. The pseudocode for the greedy estimation success algorithm is

shown in Algorithm 2.

Algorithm 3 Greedy Sensor Placement Algorithm
1: procedure greedySelection(n, k,sensors)
2: Initialize the maximum success ratio to 0.0
3: Attach the sensors in the sensor placement strategy to the circuit configura-

tion
4: Loop through each of the unselected available sensors and attach it to the

circuit
5: Load in the database of inverse mapping from sensor measurements to com-

patible states of the circuit for the modified configuration
6: Calculate the success ratio, if it is greater than the current maximum success

ratio, set it as the maximum success ratio
7: Go to the next sensor and repeat from step 4
8: Add the chosen sensor that corresponds to the maximum success ratio to the

sensor placement strategy
9: Go back to step 2 and repeat from there until k sensors are selected or the

state estimation success threshold is satisfied
10: return sensor placement strategy
11: end procedure

3.4 Experimental Results

3.4.1 Circuit Topology

The circuit in Figure 2.1 consists of basic high-voltage AC components: two

generators G1-G2 and two AC buses B1-B2, DC components: two rectifier units R1-

R2 and two DC buses B3-B4, and contactors C1-C8. Its corresponding adjacency

matrix is

A =

⎛

⎜

⎝

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 1 1 0 0 0
0 1 1 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 1
0 0 0 0 0 1 1 0

⎞

⎟

⎠
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Using matrix A, a network graph structure is created for the circuit as shown in Fig-

ure 3.1. Each component corresponds to a node in the network and each connection

between any two components corresponds to an edge in the graph.

Figure 3.1: A network graph diagram derived from a circuit topology of
Figure 2.1 with nodes 0-7 representing each of the circuit components,
i.e. node 0 represents generator G1.

3.4.2 Variables

In this model, generators and rectifier units can be in three states: offline

(0), healthy (1) and unhealthy (2). Contactors can be in two states: open (0) and

closed (1). Buses can be in two states: healthy (1) and unhealthy (0). Component

variables and status variables are distinguished by upper and lower cases, e.g., the

first generator is represented by G1, while its status is represented by g1.

The first step of the implementation is to create the databases storing the

inverse mappings from sensor measurements to compatible states of the circuit for
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each possible sensor placement configuration. For example, if a sensor were placed

at S0, then the database reads a 0 for a fault at G1. For the given circuit, it is

possible to place up to 8 voltage sensors, S0− S7.

Using the databases obtained for each sensor placement configuration, we can

execute the sensor placement algorithms which calculate the estimation success ra-

tio. For this calculation, we use two versions of the state estimation algorithm for

comparison. In one version, the algorithm uses the full greedy strategy in which all

possible configurations of the circuit components are simulated systematically. In

the other version, the algorithm uses the reduced greedy strategy in which the con-

figuration for the controlled components is fixed. The only difference between these

two versions is the number of configurations simulated to calculate the estimation

success ratio.

3.4.3 Results

In this simulation, the greedy strategy is run with a horizon length of k = 6, the

number of actions for the state estimation process. The status of each sensor is set

to healthy. The combinatorial and greedy algorithms are run in Python 2.7 on a 2.3

GHz Intel Core i7 64 bits CPU. The results are shown in Tables 3.1-3.4 for various

numbers of sensors required and a given configuration of controllable and uncon-

trollable components. In the given configuration, components (G1;G2;R1;R2;C2;C8)

are set as uncontrollable and (C1;C3;C4;C5;C6;C7) as controllable. The following

results are obtained.
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Table 3.1: Sensor placement strategy obtained by the combinatorial

algorithm with the full version of the adaptive greedy strategy.

No of Sensors Sensors Selected Success Ratio Execution Time (s)

1 S7 0.15 1660.76

2 S6, S7 0.39 5576.294

3 S5, S6, S7 0.76 11627.31

4 S4, S5, S6, S7 0.80 14651.73

5 S3, S4, S5, S6, S7 0.80 11905.79

6 S2, S3, S4, S5, S6, S7 0.80 5969.48

Table 3.2: Sensor placement strategy obtained by the combinatorial

method with the reduced version of the adaptive greedy strategy.

No of Sensors Sensors Selected Success Ratio Execution Time (s)

1 S7 0.15 28.23

2 S6, S7 0.39 90.86

3 S5, S6, S7 0.76 187.83

4 S4, S5, S6, S7 0.80 247.02

5 S3, S4, S5, S6, S7 0.80 202.99

6 S2, S3, S4, S5, S6, S7 0.80 101.53
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Table 3.3: Sensor placement strategy obtained by the greedy method

with the full version of the adaptive greedy strategy.

No of Sensors Sensors Selected Success Ratio Execution Time (s)

1 S5 0.15 1656.72

2 S5, S1 0.38 2904.79

3 S5, S1, S7 0.76 2904.79

4 S5, S1, S7, S4 0.80 4800.33

5 S5, S1, S7, S4, S6 0.80 5424.95

6 S5, S1, S7, S4, S6, S3 0.80 5722.11

Table 3.4: Sensor placement strategy obtained by the greedy method

with the reduced version of the adaptive greedy strategy.

No of Sensors Sensors Selected Success Ratio Execution Time (s)

1 S5 0.15 27.55

2 S5, S1 0.38 48.16

3 S5, S1, S7 0.76 67.46

4 S5, S1, S7, S4 0.80 74.96

5 S5, S1, S7, S4, S6 0.80 85.59

6 S5, S1, S7, S4, S6, S3 0.80 94.63
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3.5 Chosen Approach

First, it is important to note that running the sensor placement algorithms

with the reduced version of the adaptive greedy strategy for state estimation pro-

duces the same estimation ratios as those obtained by running the sensor placement

algorithms with the full version of the adaptive greedy. However, utilizing the re-

duced version of the adaptive greedy strategy leads to a much lower execution time.

In regards to the performance of the sensor placement algorithms, we can observe

that even though both sensor placement algorithms obtain the same success ratio,

the greedy algorithm performs at least twice as fast as the combinatorial algorithm.

In additon, the greedy algorithm is well-suited for addressing the problem of se-

lecting a required number of sensor locations as well as the problem of finding the

minimum number of sensor locations that would satisfy an estimation success ratio.

Meanwhile, the combinatorial algorithm is better suited for selecting the required

number of sensors. Overall, we can conclude that the greedy algorithm is better.

For the circuit in Figure 2.1, both sensor placement algorithms with both

versions of the state estimation process obtained a maximum estimation success

ratio of 0.80. This result is the same as the one obtained after placing all available

sensors and running the state estimation by brute force method (i.e. where all

possible configurations and actions are tested). Thus, for the given circuit set up,

placing all available sensors will only get the state estimation algorithm to uniquely

identify the state in 80 percent of all possible states.

To improve this percentage, we can consider changing the topology of the cir-
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cuit. For instance, we can allow some uncontrollable contactors become controllable.

When contactor C2 is set to be controllable and sensors S5 and S6 are placed in

the circuit, an estimation success ratio of 1 is obtained. The effect of allowing more

contactors to be controllable can be observed in Table 3.5, which shows the esti-

mation success ratio obtained for an increasing number of controllable contactors

and the same number of sensors (N = 4). As more contactors are set to be control-

lable, the dynamic estimation process has access to a wider range of possible actions

to reconfigure the circuit and consequently can gather more information about the

state. Hence, for a given number of sensors, the state estimation performs better

for a configuration that has more controllable contactors.

Table 3.5: Sensor placement strategy obtained by the greedy method for

various controllable and uncontrollable contactor configurations.

Controllable Contactors Uncontrollable Contactors Sensors Selected Success Ratio Execution Time (s)

C1, C2, C3, C4 C5, C6, C7, C8 S7, S6, S5, S4 0.1075 1209.82

C1, C2, C3, C4, C5 C6, C7, C8 S7, S6, S5, S4 0.225 224.85

C1, C2, C3, C4, C5, C7 C6, C8 S7, S6, S5, S4 0.80 74.71

C1, C2, C3, C4, C5, C6, C7 C8 S7, S6, S5, S4 1.0 25.62

We now present more results obtained from running the greedy algorithm for

two different contactor configurations. In the first contactor configuration, let com-

ponents (G1;G2;R1;R2;C7;C8) be set as uncontrollable and (C1;C2;C3;C4;C5;C6)

as controllable. It can be noted that the furthest contactors from the generators are
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chosen to be uncontrollable for this configuration. The results from this configura-

tion are shown in Table 3.6. In the second contactor configuration, let contactors

(C3;C4;C5;C6;C7;C8) be set as controllable. In this case the closest contactors to

the generators are chosen to be uncontrollable. The results from this configuration

are shown in Table 3.7. From these results, we can observe that choosing contactors

closer to the generators to be uncontrollable achieves a higher estimation ratio.

Table 3.6: Sensor placement strategy obtained by the greedy method

with the reduced version of the adaptive greedy strategy.

No of Sensors Sensors Selected Success Ratio Execution Time (s)

1 S7 0.20 23.16

2 S7, S5 0.25 44.3

3 S7, S6, S5 0.25 69.73

4 S7, S6, S5, S4 0.25 82.48

Table 3.7: Sensor placement strategy obtained by the greedy method

with the reduced version of the adaptive greedy strategy.

No of Sensors Sensors Selected Success Ratio Execution Time (s)

1 S7 0.07 28.76

2 S7, S1 0.30 50.91

3 S7, S1, S0 0.51 74.17

4 S7, S1, S0, S4 0.53 91.07
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3.6 Reliability Results

With the greedy algorithm as the chosen approach, we proceed to test it fur-

ther for a scenario in which selected sensors become unhealthy. In this scenario, the

greedy algorithm can be run again with new databases. These databases are ob-

tained by simulating erroneous sensor readings corresponding to unhealthy sensors.

For example, if an unhealthy sensor were placed at S0, then the database reads a 1

for a fault at G1. In this simulation, contactors (C1;C2;C3;C5;C6;C7;C8) are set as

controllable and contactor C4 is uncontrollable. Given an estimation success ratio

of 0.6, the greedy algorithm can output a new sensor placement strategy to satisfy

this ratio once sensors become unhealthy. We test this for a given sensor placement

in which sensors S7 and S4 are initially selected. The results obtained are shown in

Table 3.8 below.

When sensor S7 becomes unhealthy, the new sensor placement strategy adds

sensor S5 in order to achieve a ratio of 0.6. If instead sensor S4 becomes unhealthy,

the new sensor placement strategy adds sensors S6 and S3 in order to obtain the

same ratio. If both sensors S4 and S7 become unhealthy, then the sensor placement

strategy adds S3 and S5. From these results, we can conclude that some sensor

locations are more informative than others, for instance, when sensor S4 became

unhealthy, two more sensors were needed to reach the desired ratio as opposed to

just one more sensor when S7 became unhealthy.
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Table 3.8: Sensor Placement Strategy obtained by the greedy method

with unhealthy sensors.

Sensors Initially Selected Unhealthy sensors Sensors Newly Selected Threshold Obtained

S7, S4 S7 S5 0.6

S7, S4 S4 S6, S3 0.6

S7, S4 S7, S4 S5, S3 0.6
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Chapter 4: System Methodology

4.1 Overview

The system methodology proposed combines fault detection and fault restora-

tion techniques previously discussed. These techniques are based on formal methods

and mathematical language which allow for automatically synthesizing a correct-by-

construction control protocol that reroutes power according to system requirements.

The methodology functions in two modes: off-line mode and on-line (real-time)

mode. Figure 4.1 depicts the methodology workflow in which the first step occurs in

off-line mode and the second step occurs in on-line mode. These modes are explained

in more detail as follows.

4.1.1 Off-line mode

In this mode, the methodology performs the sensor placement algorithm to

obtain the sensor placement strategy by choosing the sensor locations that will max-

imize the percentage of state configurations for which the state estimation algorithm

is able to produce a unique state estimate. This percentage is obtained by running

the state estimation method for all possible state configurations given a fixed sensor
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Figure 4.1: Design of closed loop approach to automate a fault-tolerant
system. Sensor placement strategy is passed from off-line mode to on-line
mode in which fault detection and fault restoration are performed.

placement strategy, which is initialized with one sensor. Each time a new sensor is

added to the strategy, this percentage is recalculated using new databases required

for state estimation. These databases contain inverse mappings from sensor mea-

surements to compatible states of the system and must be rebuilt to account for

new sensor measurements. The process of generating these databases can be too

computationally demanding, therefore it is performed in the off-line mode. Once

the databases are loaded in, the state estimation is run systematically for all state

configurations and a percentage is generated. Using the percentage results, the sen-

sor placement algorithm is computed iteratively until a given number of sensors are

selected or the desired state estimation percentage is reached with the minimum

number of sensors. Then, the chosen sensors are connected to the circuit in order

to proceed to the on-line mode of the methodology.
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4.1.2 On-line mode

While in this mode, the methodology implements the state estimation method

initiated with the inverse mappings database computed for the sensor placement

strategy obtained in the off-line mode. The result from the state estimation method

is converted to a fault detection result, i.e. the state of the system lists out the

states of each component which are then mapped to statuses: healthy or unhealthy.

The state estimate is then passed to the controller synthesis method. This method

translates system requirements written in English to Linear Temporal Logic speci-

fication language. Then, it generates a control protocol that outputs a sequence of

actions (i.e. opening and closing switches) that will satisfy the given specifications

and reconfigure the system back to safe operation, if needed. After the control pro-

tocol is executed, the methodology can monitor for faults again by running the state

estimation method. In the case of sensor failures, the methodology can go from this

mode back to the off-line mode to compute a different sensor placement strategy.

4.2 Case Study

In order to implement the methodology, we examine the simple circuit topology

in Figure 2.1. First, the sensor placement strategy obtained off-line in Section 2 is

applied to the circuit. This is, sensors S4−S7, which achieved an estimation success

ratio of 1, are attached to the circuit. Next, the on-line step of the methodology

is performed. In this step, state estimation algorithm is run for the circuit with

a fixed fault configuration. The resulting state estimate is passed to the control
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synthesis method. In order to test the control synthesis method, first we define the

system variables, assumptions on admissible environments and the desired system

specifications for the circuit.

4.2.1 Variables

Variables used in this formulation are classified as environment, controlled, or

dependent.

Environment Variables: Let AC generators G1 and G2 as well as rectifier

units R1 and R2 be defined as environment variables. The health status of these

components (g1;g2;r1;r2) can each take values of healthy (1) and unhealthy (0).

Controlled Variables: Let all contactors C1-C8 be the controlled variables.

Each of the contactors (c1-c8) can take value of open (0) and closed (1).

Dependent Variables: The power statuses (b1, b2, b3, b4) corresponding to

the AC and DC buses can be either powered (1) or unpowered(0) depending on the

status of neighboring contactors and generators.

The overall goal of the controller synthesis method is to reconfigure the con-

trolled variables so that power will be delivered to buses and guarantee the system

specifications described in the next section.

4.2.2 Formal Specifications

Environment Assumption: At least one generator and rectifier unit is al-

ways healthy. Also we assume that once a generator becomes unhealthy, it will
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remain unhealthy. The specifications to accomplish this are:

"{(g1 = 1) ∨ (g2 = 1)}, (4.1)

"{(r1 = 1) ∨ (r2 = 1)}, (4.2)

"

1
∧

i=0

{(gi = 0) −→ (!(gi = 0))}. (4.3)

Unhealthy Sources: All neighboring contactors to generators and rectifier

units that become unhealthy should be set to open. Set of neighboring contactors to

generators are N (G1) = C1 and N (G2) = C2. Neighboring contactors to rectifier

units are N (R1) = {C4, C6} and N (R2) = {C5, C7}. For example, if generator

G1 becomes unhealthy, contactor C1 will be set to open. In this instance, the

specification for G1 is:

"{(g1 = 0) −→ (c1 = 0)}. (4.4)

No Paralleling of AC Sources: In Figure 2.1 there is one generator pair

{G1,G2}. We avoid instances of paralleling ac sources. For example, a live path for

the pair G1,G2 exists if contactors C1, C2 and C3 are all closed. The specification

to disallow paralleling of AC sources is:

"¬{c1 = 1 ∧ c2 = 1 ∧ c3 = 1}. (4.5)

Power Status of Buses: A bus will be powered if a live path exists between

itself and a generator. A DC bus will be powered if it is connected to a healthy
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rectifier unit and a live path exists between itself and a powered AC bus. Otherwise,

the bus will be unpowered. For instance, the specifications for AC buses B1 and B2

and DC buses B3 and B4 to be powered are:

"{(c1 = 1 ∧ g1 = 1) −→ (b1 = 1))}, (4.6)

"{(g1 = 1 ∧ c2 = 1 ∧ b2 = 1 ∧ c3 = 1)

−→ (b1 = 1)},

(4.7)

"{(b1 = 1 ∧ c4 = 1 ∧ r1 = 1 ∧ c6 = 1)

−→ (b3 = 1))},

(4.8)

"{(b2 = 1 ∧ c5 = 1 ∧ r2 = 1 ∧ c7 = 1

∧ b4 = 1 ∧ c8 = 1) −→ (b3 = 1)}.

(4.9)

Essential Buses: In this problem, we consider buses B1 and B2 to be con-

nected to safety-critical loads, and can be unpowered for no longer than two time

steps. Each increment of the clock variable θB1
and θB2

represents one time step

δ=1. If bus status B1 is unpowered, then at the next time step, clock θB1
increments

by one:

"{(b1 = 0) −→ (!θB1
= θB1

+ 1)}. (4.10)

If bus status B1 is powered, then at the next time step, reset clock θB1
to zero:

"{(b1 = 1) −→ (!θB1
= 0)}. (4.11)
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To ensure that the status of B1 is never unpowered for more than two steps, we

have:

"{θB1
≤ 2}. (4.12)

We also require that all DC buses must always remain powered by:

"{b3 = 1 ∧ b4 = 1}. (4.13)

We now turn to define the initial, transition, and goal values for the synthesis in

GR(1) form:

ϕe
i =

1
∧

i=0

{(gi = 1), (ri = 1)} (4.14)

ϕs
i =

8
∧

i=1,i ̸=3

{(ci = 0)} (4.15)

ϕe
t = ∨

1
i=0{(!¬gi), (!¬ri)} (4.16)

ϕe
g = ""(True) (4.17)

ϕs
g = ""(True) (4.18)

4.3 Results

In our simulation, the synthesis method is initiated with the following fault

configuration: G1 = 0, G2 = 1, R1 = 1, R2 = 0, C2 = 0, C7 = 1. After running

the state estimation algorithm with the reduced version of the greedy strategy, an

state estimate is obtained in 6.48s. Then, the controller synthesis is run with the
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specifications and variables set as described above. Generating the specifications

and obtaining the controller strategy took 0.58s. In this simulation, a centralized

approach is used in which the controller has access to all system variables and the

status of each of these variables is known.

The output of the controller is a Büchi automaton, i.e. a finite state machine

with states and transitions [27]. In Figure 4.2, a portion of the automaton generated

by the controller is shown. This figure shows three states, each with a set of values

for the controlled and dependent variables. These values dictate the actions that the

controller must perform until a change in the environment occurs. Such change is

captured in the transitions between a pair of states. Depending on the environment

action, the controller transitions from a set of controlled variables to another, which

guarantees that the properties of the system remain satisfied in the presence of a

change in the environment.
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Figure 4.2: Automaton generated by the controller synthesis. Only three

out of 26 states with a sample of their transitions are shown here.

In Figures 4.3 - 4.5, we show a simulation trace for the reactive controller.

Assume that at time t = 0, all components of the circuit are in a healthy state as

shown in Figure 4.3. At time t = 1, G1 and R2 become unhealthy. The controller

then outputs a sequence of actions that reconfigure the circuit by opening contactors

C2, C5 and C7 and closing contactor C3 as shown in Figure 4.4. Then at time t = 2,

G2 and R1 become unhealthy and the controller reacts by opening contactors C2,

C4 and C6 and closing contactor C3 as shown in Figure 4.5.
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Figure 4.3: State at t = 0, G1 and R2 (RU2) are healthy. Initial configuration.

Figure 4.4: State at t = 1, G2 and R1 (RU1) become unhealthy (red).

The controller opens C2, C4 and C6. It closes C3 to maintain B1 pow-

ered.
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Figure 4.5: State at t = 2, G1 and R2 (RU2) become unhealthy (red)

and the controller opens C1, C5 and C7. It closes C3 to maintain B2

powered.

4.4 Conclusion

In this chapter, the framework for translating text-based system specifications

into a temporal logic specification language is presented. Using this framework, a

controller is synthesized for the circuit in Figure 2.1. The output of the controller

is an automaton with state transitions that capture changes in the environment,

corresponding to a health status of each generator and rectifier unit. In each state of

the automaton, the closing and opening of contactors allows generators and rectifier

units to connect and disconnect from buses. Hence, the controller is guaranteed, by

construction, to satisfy the system requirements even in the presence of failures.
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Chapter 5: Results and Analysis

In this section, we present a case study on applying the proposed system

methodology to perform fault detection and fault restoration for the large circuit

topology shown in Figure 5.1. This circuit topology is adapted from a typical electric

power system for a passenger aircraft [35]. The first step in the simulation is to

determine the sensor placement strategy to obtain state estimates successfully for

as many fault configurations as needed to satisfy a given threshold. Then, the state

estimation algorithm is run for various fault configurations and the state estimates

are passed to the controller synthesis step. From this step, we obtain all correct

configurations of contactors that satisfy the system requirements provided.

The system requirements considered in this case study include safety and reli-

ability specifications. Safety specifications serve to constrain the length of time AC

buses can tolerate power shortages and ensure the non-paralleling of AC sources to

avoid synchronization problems between multiple AC generators. Reliability spec-

ifications are used to limit the number of generators with failures at each step of

the execution. The challenge in this implementation is the increased computational

complexity given the large number of states and fault configurations that need to

be accounted for. The circuit topology is described next.
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Figure 5.1: A circuit topology diagram. DC components are shown in

red and AC components are shown in black. Buses are represented as

rectangles. There are 6 generators connected to AC buses and 8 rectifier

units connected to DC buses. A distributed design decomposition is

shown using dashed rectangles. Components enclosed within the dashed

rectangles are controlled by their own respective controllers and are given

their own sensor placement strategies in the distributed approach. The

dashed arrow represents information flow, in the form of a health status

variable h, directed from subcomponent A to subcomponent B. The

solid arrow represents the physical transfer of power from subcomponent

B to subcomponent A.
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5.1 Circuit Topology

There are six AC generators G1-G6 in the top section of the circuit topoloy.

An AC bus is connected to each AC generator. There are 8 AC buses in total. The

circuit also consists of rectifier units R1-R8, each connected to a DC bus. R1 and R2

are connected to the same DC bus B3. R3 and R4 are also connected to the same

DC bus B6. All other rectifier units connect to one DC bus each. In total, there are

6 DC buses and 38 contactors. The circuit topology presented is symmetric along

contactors C8 and C34-C38 in that the right section of the circuit has the same

components and topology as the left side.

5.1.1 Subcomponents

The entire circuit is divided into four subcomponents when using the dis-

tributed approach for the implementation of the methodology. We take advantage

of the symmetric properties of the circuit and select its subcomponents accordingly.

Subcomponent A has the same components and topology as subcomponent B, while

subcomponent C has the same components and topology as subcomponent D. The

top section of the circuit is composed of subcomponents A and B. Subcomponent

C is located in the bottom right part of the circuit and subcomponent D is located

in the bottom left part of the circuit as shown in Figure 5.2.
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Figure 5.2: The circuit topology consists of subcomponents A, B, C

and D. Each subcomponent is connected to two other components.

Subcomponent C enclosed within the dashed rectangle is the mirror

image of Subcomponent D, which is not explicitly shown.

5.1.2 Variables

Environment Variables: The environment variables consist of all generators

G1-G6 and all rectifier units R1-R8. The health statuses for generators and rectifier

units can take values of healthy (1) or unhealthy (0). At each step of the simulation,

the environment variables can take a status of healthy or unhealthy subject to the

assumption that one generator in the set {G1, G2, G5} and one generator in the set
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{G3, G4, G6} remain healthy. A similar assumption is put into place for rectifier

units, at least one rectifier unit in the set {R1, R2, R5, R6} and one rectifier unit in

the set {R3, R4, R7, R8} remain healthy. These assumptions are imposed so that

the right side of the circuit as well as the left side can be kept powered at each step

independently of each other.

Controlled Variables: The controlled variables consist of all contactors C1-

C38. Contactors can each take values of open (0) or closed (1). All contactors are

assumed to be directly controlled without delays.

Dependent Variables: The power statuses (b1 − b14) corresponding to the

AC and DC buses can be either powered (1) or unpowered(0). AC and DC buses

are considered as dependent variables since their statuses can depend on the status

of neighboring contactors and generators.

In the following sections, we present the psuedocode and implementation de-

tails to perform all three steps of the methodology.

5.1.3 Fault Detection

In order to perform state estimation, we first need to determine a sensor place-

ment strategy. In the centralized approach, the sensor placement algorithm is run

for the entire circuit. In the distributed approach, the greedy sensor placement algo-

rithm is performed for each subcomponent following the procedure demonstrated in

Section 3. In order to apply the sensor placement algorithm for each subcomponent,

we simply isolate each subcomponent by opening the contactors between subcom-

58



ponents. For instance, when analyzing subcomponent A, contactors C8, C16, C24

and C34 are set to open, preventing power flow from subcomponents B or D. The

topology for subcomponent A used by the sensor placement algorithm is shown in

Figure 5.3. Similarly, when analyzing subcomponent B, its connections to subcom-

ponents A and D can be set to open and the sensor placement strategy obtained for

A can be applied to B. For subcomponent C, power can flow from A and D. Since

R5 in subcomponent C is connected to subcomponent A in way that disconnecting

it from A would make it a floating element, we include the input from A in the

analysis of C. A can be modeled as a power source in the topology of C as shown

in Figure 5.4. In this topology, contactors that connect C to D are set to open.

Since C and D have the same topology, the same sensor placement strategy can be

applied to both. Once the sensor placement strategy is determined for each subcom-

ponent, some fault configurations are simulated and the fault detection algorithm

is performed for each configuration. The pseudocode for this process is described in

Algorithm 4.

Algorithm 4 Fault Identification Algorithm
Input: Sensor placement strategy
Output: State estimate of the system

1: Attach sensors indicated by the sensor placement strategy
2: Run estimation algorithm
3: while state estimate is not unique do

4: if number of sensors available > 0 then

5: Run sensor strategy algorithm to add an extra sensor
6: end if

7: end while

8: return state estimate
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Figure 5.3: Topology of subcomponent A when disconnected from sub-

components B and C in order to apply the sensor placement and state

estimation algorithms using a distributed approach.
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Figure 5.4: Topology of subcomponent D when disconnected from sub-

component C. Subcomponent A is modeled as a power source in order

to apply the sensor placement and state estimation algorithms using a

distributed approach.

5.1.4 Fault Restoration

For the circuit in this case study, the following is a pseudocode that generates

the formal specifications as described in Section 4 to be transformed into GR(1)

specifications. Then, the controller synthesis is performed with these specifications

and we obtain a sequence of states or actions at each iteration such that the system
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satisfies the specifications over the full execution horizon. Synthesis can be per-

formed repeatedly, either periodically or when the expected environment variables

change status.

Algorithm 5 Specifications Generation Algorithm
Input: State Estimate
Output: Formal Specifications

1: Initialize system variables
2: for each generator gi, rectifier unit ri, contactor ci, bus bi and path pi do
3: envinit = {gi, ri}
4: sysinit = {ci, !cj , countbi, bi}
5: gi, ri, bi, ci and cj are set as boolean variables
6: countbi is set as an integer variable
7: ci's are set to closed, cj's are set to open to avoid parallel AC sourcing
8: Set safety assumptions and requirements:
9: syssafe = {((bigipi) −→ (bi)), paths to healthy sources guarantee power
10: (!((0 = 1)||(bigipi)) −→ (!bi)), disconnect buses
11: ((!bi) −→ (!countbi = countbi + 1)), unhealthy bus
12: ((bi) −→ (!countbi = 0)), reset count
13: (countbi ≤ 1), bus power guarantees
14: ((!gi) −→ (!ci)), disconnect unhealthy generators
15: ((!ri) −→ (!ci)), disconnect unhealthy rectifier units
16: (!((cj ∧ ck ∧ ...cn))), avoid parallel sourcing
17: (bi ≤ 1), for essential buses only, keep them on at all times
18: (countbi ≤ 1)}
19: end for

20: return formal specifications

After obtaining the formal specifications for the circuit, we use Tulip to gen-

erate a discrete controller as described in the following pseudocode:
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Algorithm 6 Controller Synthesis Algorithm
Input: Formal Specifications, specs
Output: Automaton

1: procedure synthesize(envvars, sysvars, envinit, sysinit, envsafe, syssafe)
2: Set controller to use a Moore machine which reads current state but not next

environment variable value
3: Set quantification of initial variable values
4: strategy = synth.synthesize(’omega’, specs)
5: Check realizability of output
6: return strategy
7: end procedure

5.2 Centralized Approach Results

As described in Section 4, the circuit used in this case study can be represented

as a system with environment variables E and system variables P , which include

controlled and dependent variables. In the centralized approach, it is assumed that

all system variables are known and can be accessed. In the simulation, the three

steps of the proposed methodology are run on a 2.6 GHz Intel Core i7 processor

with 16 GB memory. First, the sensor placement algorithm is run with sensors

S0−S27 as the available sensor locations. The algorithm run for more than 4 hours

without completion. This was due to the computational complexity of building

the databases for the entire circuit as required by the sensor placement and state

estimation algorithms. This challenge is overcome by opting for a distributed sensor

placement strategy which will be discussed in the next section.

The next step was to run the controller synthesis algorithm. Given envi-

ronment assumptions ϕe as in (4.1)-(4.3) as well as system assumptions ϕs as the
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conjunction of all specifications from (4.4)-(4.18) in Section 4, the synthesis problem

is to find a control protocol such that ϕ = ϕe → ϕs holds. The controller synthesis

algorithm was run for the entire circuit taking more than 10 hours after which it

was stopped without completion. Similar to the choice made for the sensor place-

ment strategy, a distributed controller synthesis strategy is considered to reduce the

computational complexity of the simulation.

Since simulation results were not attainable within a reasonable time, here we

present an example of one possible trace of the simulation: at time = 0, the statuses

of each generator G1-G6 and each rectifier unit R1-R8 are set to healthy. Contactor

statuses c1, c3, c4, c6, c8, c11, c18, c19− c24 and c34− c38 are set to closed. All other

contactors are set to open to avoid paralleling of AC sources. Setting the statuses

like this ensures that all AC and DC buses are initially powered and the power

source being used is G1. At time t = 1, the statuses for generator G1 and rectifier

unit R1 become unhealthy. This would require the controller to switch contactor

statuses c1, c4 and c6 to open while statuses c2, c5 and c7 are switched to closed in

order to keep all AC and DC buses powered.

5.3 Distributed Approach Results

5.3.1 Sensor Placement Results

In order to apply the methodology using a distributed approach, the entire

circuit is divided into four subcomponents. Then, the methodology is applied to

each subcomponent. For the sensor placement step, a state estimation threshold
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of 0.8 and a horizon length k of 5 actions are provided. For subcomponent A as

shown in Figure 5.3, contactors (C1;C2;C3;C4;C5;C7;C8) are set as controllable

while contactor C6 is set as uncontrollable. The sensors chosen by the greedy sensor

placement algorithm run for A were S5 and S6. The algorithm took 57.49 sec-

onds to build and load the databases and 7.55 seconds to output the chosen sensor

locations. This sensor placement strategy resulted in an estimation ratio of 1.0 sat-

isfying the required threshold. In addition, the sensor placement strategy for B can

be derived from the sensor placement strategy obtained for A, hence sensors S14

and S15 are chosen for B. For subcomponent C as shown in Figure 5.4, contactors

(C18;C19;C20;C21;C22;C23;C24;C25) are set as controllable. The sensors chosen

by the greedy sensor placement algorithm for C were S16, S17, S20 and S21. The

algorithm took 549.15 seconds to build and load the databases and 38.57 seconds to

output the sensors. This sensor placement strategy results in an estimation ratio of

0.8 which satisfies the required threshold. The sensor placement strategy for D can

be derived from the sensor placement strategy obtained for C, hence sensors S24

and S26 are chosen for D.

5.3.2 Fault Detection Results

For the state estimation step, state estimates are obtained for different system

configurations. The state estimation process is run first for subcomponents A and

B, and then for subcomponents C and D since these rely on information from A

and B. For subcomponents A and B, the state estimation is run for each of them
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independently after setting contactors C8 and C34 to open. Once the state estimates

are obtained for A and B, we can then proceed to use these state estimates to derive

the input to the state estimation process for C and D. For instance, if the state

estimate of A indicates that either bus B1 or B2 is powered, this will make the state

of the source connected to subcomponent C be set to healthy, otherwise it will be

set to unhealthy.

Similarly, if the state estimate of B indicates that either bus B4 or B5 in B

is powered, this will make the state of the source connected to D be set to healthy,

otherwise to unhealthy. The state estimates of A and B can be used for the state

estimation process for C and D respectively. Table 5.1 and Table 5.2 show the

results of the fault detection step for different configurations tested. The system

state shown in the first columns of Table 5.1 and Table 5.2 represents the statuses

of all circuit subcomponents in the following order: status of subcomponent A, Xa =

[g1,g2,b1,b2,r1,r2,b3]; status of subcomponent B, Xb = [g3,g4,b4,b5,r3,r4,b6]; status of

subcomponent C, Xc = [g5,sourceA,b7,b8,b9,b10,r5,r6]; and status of subcomponent

D, Xd = [g6,sourceB,b11,b12,b13,b14,r7,r8]. Thus, the system state can be represented

as X = [Xa,Xb,Xc,Xd].
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Table 5.1: State estimates for subcomponents A and B obtained by the

fault detection process.

States set for A and B State estimates Execution time (s)

Xa;Xb = 1,1,1,1,1,1,1; 1,1,1,1,1,1,0 Xa;Xb = 1,1,1,1,1,1,1; 1,1,1,1,1,1,0 14.71

Xa;Xb = 1,0,1,1,0,1,1; 0,1,1,1,1,0,1 Xa;Xb = 1,0,1,1,0,1,1; 0,1,1,1,1,0,1 7.7

Xa;Xb = 0,0,1,1,0,1,1; 0,0,1,1,1,0,1 Xa;Xb = 0,0,1,1,0,1,1; 0,0,1,1,1,0,1 0.183

Xa;Xb = 0,0,0,1,0,1,1; 0,0,1,1,0,0,1 Xa;Xb = 0,0,0,1,0,1,1; 0,0,1,1,0,0,1 0.185

Xa;Xb = 0,0,0,0,0,0,0; 0,0,0,0,1,0,1 Xa;Xb = 0,0,0,0,0,0,0; 0,0,0,0,1,0,1 0.183

Xa;Xb = 2,1,1,1,1,1,1; 1,2,1,1,2,1,1 Xa;Xb = 2,1,1,1,1,1,1; 1,2,1,1,2,1,1 2.19

Table 5.2: State estimates for subcomponents C and D obtained by the

fault detection process.

States set for C and D State estimates Execution time (s)

Xc;Xd = 1,1,1,1,1,1,1,1; 0,1,1,1,1,1,1,1 Xc;Xd = 1,1,1,1,1,1,1,1; 0,1,1,1,1,1,1,1 11.03

Xc;Xd = 2,1,1,1,1,1,1,1; 1,2,1,1,1,1,1,1 Xc;Xd = 2,1,1,1,1,1,1,1; None 6.29

Xc;Xd = 1,1,1,1,1,1,0,1; 1,1,1,1,1,1,1,0 Xc;Xd = 1,1,1,1,1,1,0,1; 1,1,1,1,1,1,1,0 9.76

Xc;Xd = 1,1,1,1,1,1,2,2; 1,0,1,1,1,1,1,0 Xc;Xd = None; 1,0,1,1,1,1,1,0 4.12

Xc;Xd = 1,1,1,1,1,1,1,2; 1,1,1,1,1,1,2,1 Xc;Xd = 1,1,1,1,1,1,1,2; 1,1,1,1,1,1,2,1 11.73

The state estimation method uniquely identified 12 out of 12 simulated states

for subcomponents A and B. On average the state estimation process took 3.9

seconds. For subcomponents C and D, the state estimation method only identified
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8 out of 10 simulated states. On average the state estimation process for C and D

took 8.58 seconds.

5.3.3 Controller Synthesis Results

After generating the LTL specifications as described in Section 4, the controller

synthesis method is first run for subcomponents A and B independently. This

required contactors C8 and C34 to be set to open. The controller synthesis took 0.48

seconds to solve for a control protocol with 25 states for each subcomponent. The

control protocol output for A keeps its DC bus B3 powered as long as one generator

and one rectifier is kept healthy at each execution step. The same occurs with B.

In this setup, subcomponents A and B can function independently supplying power

to components C and D. Figure 5.5 shows three states of a specific trace of the

automaton resulting from the control protocol for A.
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Figure 5.5: Simulation trace shows actions generated by the control

protocol for subcomponent A for different sets of inputs. The same

control protocol can be applied to subcomponent B.

We then proceed to run the controller synthesis method for subcomponents C

and D. Since subcomponent C is connected to A, A is modeled as an environment

variable sa in the controller synthesis for C. The value of sa will vary according to

the states of the AC buses in A. If both AC buses in A are unhealthy, sa will be

set to unhealthy, otherwise to healthy. An additional specification considered for

the controller synthesis for subcomponent C is that when power can be supplied

by both G5 and subcomponent A, this is when g5 is healthy and sa is healthy,

preference is given to the power flowing in from subcomponent A requiring g5 to
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be disconnected. A simulation trace of the automaton generated by the control

protocol for C is shown in Figure 5.6. The synthesis took 0.43 seconds with a total

of 17 states.

Figure 5.6: Simulation trace shows actions generated by the control

protocol for subcomponent C for different sets of inputs. The input

from subcomponent A is included as an environment variable. The same

control protocol can be applied to subcomponent D with the input from

subcomponent B modeled as an environment variable.

In the next simulation, the requirement of having at least one generator and

one rectifier unit healthy at all times in both subcomponents A and B is relaxed. In

this case, the controller synthesis is run with the requirement that only one subcom-
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ponent has at least one generator and one rectifier unit healthy at each execution

step. Therefore, the subcomponent with power at all times will supply power to the

other subcomponent. This set up is known as the master/slave setup. The sub-

component with the requirement of having at least one generator and one rectifier

unit healthy would behave as the master. Having a subcomponent acting as the

master also prevents a deadlock situation due to power being able to flow between

subcomponents in either direction. By opting for a master/slave architecture, the

master subcomponent can control the power flow in an unidirectional manner and

the slave subcomponent can only receive power from the master.

Let subcomponent B be the master and subcomponent A be the slave. By

placing the assumption that B has at least one generator and one rectifier unit, we

ensure that for any allowable sequence of environment actions, the controller is able

to supply power to subcomponent A at any step by closing contactors c8 and c34 as

needed. Health status information for G1 and G2 is sent to subcomponent B via a

health status variable h. The variable is set to 0 if neither source is healthy, and 1 if

either g1 or g2 is healthy. If health status h = 0, i.e., both g1 and g2 are unhealthy

then, whenever AC bus B4 in B is powered, c8 will be set to closed. Similarly, we

can have another health status variable h2 such that if r1 = 0 and r2 = 0, h2 will be

set to 0 causing the controller to close contactor c34. It is required to have DC buses

B3 and B6 powered at each step in the execution, with the assumption that at least

one generator and one rectifier unit in the master subcomponet is healthy at all

times. Running the controller synthesis in this setup took 1.87 seconds obtaining a

control protocol with 53 states. Some states of a simulation trace of the automaton
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generated by the resulting control protocol for B are shown in Figure 5.7.

Figure 5.7: Simulation trace shows actions generated by the control pro-

tocol for subcomponent B in a master/slave configuration for different

sets of inputs. Subcomponent B is the master and subcomponent A is

the slave.

When running the controller synthesis for subcomponents C and D combined,

the inputs from A and B are modeled as environment variables sa1, sa2, sb1 and sb2.

If AC bus B1 is healthy, then sa1 is set to healthy and is able to supply power to C

via contactor C18. If AC bus B2 is healthy, then sa2 is set to healthy and is able

to supply power to C via contactor C16. If AC bus B4 is healthy, then sb1 is set

to healthy and is able to supply power to D via contactor C17. If AC bus B5 is
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healthy, then sb2 is set to healthy and is able to supply power to D via contactor

C26. These environment variables can then be mapped to one variable sab, which

specifies whether power flows or not from either subcomponent A or B. If at least

one of the environment variables sa1, sa2, sb1 and sb2 is healthy, then sab is set to

healthy, otherwise to unhealthy. An additional specification considered here is that

when power can be supplied by sab, G5 or G6, preference is given to sab. Running the

controller synthesis method for both subcomponents C and D took 52.02 seconds

to solve for a control protocol with 209 states. Some states of a simulation trace of

the automaton generated by the resulting control protocol for C and D are shown

in Figure 5.8.
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Figure 5.8: Simulation trace shows actions generated by the control pro-

tocol for subcomponents C and D combined for different sets of inputs.

The input from subcomponents A and B are combined into a single

environment variable.

5.4 Analysis

In this section, it is demonstrated how the system methodology proposed can

perform fault detection and fault restoration for the large scale circuit in Figure 5.1.

Using a centralized approach, the sensor placement, state estimation and controller

synthesis steps of the methodology are run assuming access to all circuit components.
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However, this approach proved to be too computationally demanding, particularly

for the task of building the databases of inverse mapping from sensor measurements

to compatible states of the circuit. A distributed approach was explored and tested

in order to reduce this computational complexity. For the distributed approach, the

circuit is divided into subcomponents and the sensor placement, state estimation and

controller synthesis tasks are performed for each subcomponent separately. These

results can then be combined into fault detection and fault restoration strategies

that work for the entire circuit.

The subcomponents were chosen by taking advantage of the symmetric prop-

erties of the circuit topology. Therefore, for the circuit in Figure 5.1, four subcom-

ponents were reduced to two pairs of subcomponents with the exact same topology,

allowing for the sensor placement algorithm to be run only twice. Once the sensor

locations were decided on, fault detection is run for each subcomponent and the

state estimates are obtained within seconds. The estimation process is done in a

specific order due to the nature of the power flow in the circuit. State estimates are

obtained first for subcomponents A and B and then for subcomponents C and D.

For the controller synthesis step, applying a distributed approach required ad-

ditional refinements to the topologies of the circuit subcomponents and the system

specifications for the controller synthesis step. Subcomponents A and B were in-

cluded and modeled as power sources in the topologies of subcomponents C and D.

In addition to new elements in the subcomponent topologies, new variables were

introduced for the controller synthesis step. For instance, for the master/slave con-

figuration, a health status variable was included in the synthesis for subcomponent

75



B in order to account for its interaction with subcomponent A. Since B was set as

the master, the control protocol for B had full control of the actions on the contac-

tors connecting A and B, hence routing power from B to A when needed. This set

up was preferred over a decentralized controller design in order to prevent deadlock

situations and the need for timing specifications. This choice was made with the

goal of reducing computational complexity and state space size.

From the results obtained, it is clear that not only it is feasible to run all

the steps of the methodology using the distributed approach, it also takes much

less computational time due to smaller state spaces in each subcomponent. One of

the drawbacks of the distributed approach is having to account for refinements and

added specifications that can handle the interaction between subcomponents. This

also limits the scope of the actions the distributed controller can generate compared

to a centralized controller given that it has to satisfy some extra assumptions. For

instance, the assumption that a specific subcomponent must have at least one gen-

erator and rectifier unit healthy at all times places a restriction on how the system

is expected to behave. In such cases in which an assumption is not satisfied, the

controller would not be able to handle a system failure. Hence, there is a trade off

between computational complexity and the ability of the controller to address all

types of failures in the system.
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Chapter 6: Future Work and Conclusions

6.1 Future Work

The methodology proposed can perform fault detection and fault restoration

in a closed loop fashion in real time. There is, however, a heavy preprocessing

task of building measurement mapping databases that is performed offline. The

sensor placement algorithm relies on these databases and can run much faster if the

databases are built beforehand. Another aspect of the sensor placement algorithm

that can affect its speed is the number of contactors set as controllable. From

the results obtained, it was demonstrated that if more contactors were set to be

controllable, the estimation results would improve, but computational time would

also increase. Setting contactors as controllable was done in adhoc manner as to

optimize fault detection results and reduce computational time. Since there is a

trade off between computational time and higher estimation success ratios, machine

learning algorithms could be developed to learn how to choose these contactors for

different circuit topologies based off the results obtained by the state estimation

method.

For the application of the methodology, in particular the sensor placement

and state estimation steps, it was assumed that sensors were healthy at each step
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of the execution. Future work can relax this assumption and integrate information

about the states of the sensors in the controller synthesis in order to account for

sensors becoming unhealthy. For instance, extra set of specifications may be needed

to isolate components that are connected to faulty sensors. Some tests were run

for scenarios in which sensors become faulty and the sensor placement strategy

was changed to remove unhealthy sensors and replace them with available healthy

sensors. However, placing specifications that can react to sensor failures in case

the sensor placement strategy cannot be changed might prove to be useful. Also,

in the synthesis step, knowledge of the system states is provided but may become

unattainable due to sensor failures. Again, specifications could address these failure

cases by isolating the components with unknown states.

Another area of improvement is in the process of distributing a given topol-

ogy among subsystems and generating interface specifications. In this thesis, this

distribution and the formulation of interface specifications are done manually. A

possible solution is automatizing the generation of interface specifications as well as

the distribution process for different topologies using graph theory. For instance,

the circuit can be represented by nodes and branches and decomposed into smaller

circuits using k-factorization partition techniques. In addition to modifying the cir-

cuit toplogy, taking into account the continous dynamics of the circuit can also be

an area of future work. For this electric power system design problem, continuous

dynamics were abstracted and discretized. Other areas of future work include test-

ing the system methodology on hardware and extending the formal language used

for control synthesis algorithms to support timed logic, continuous-time specifica-
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tions and more complex system behaviors that are able to model network transients

and delays. An interface similar to PSpice can also be created to draw the circuit

topology and facilitate the abstraction from any given topology to a graph data

structure.

6.2 Conclusions

This thesis presents a system methodology that addresses fault detection and

fault restoration holistically for an electric power system by integrating three algo-

rithms: sensor placement, state estimation and reactive controller synthesis. The

methodology can function in real-time going from fault detection to fault restoration

periodically or as specified by the user. To be able to run fault detection in real-time,

the sensor placement step must occur off-line. The developed sensor placement al-

gorithm is designed to maximize the performance of the state estimation algorithm.

The results obtained by the sensor placement algorithm show that as more sensors

are added to the circuit, more state configurations can be estimated. However, the

improvement in uniquely identifying the state diminishes as more sensors are added

to the circuit demonstrating the submodularity nature of the sensor placement prob-

lem. The goal of the sensor placement algorithm is then to minimize the number

of chosen sensors as to satisfy a given state estimation performance threshold and

return if and when the state estimation stops improving. The number of sensors can

also be varied according to the weight, space and power consumption requirements

for the system. For the fault detection step, we perform discrete state estimation
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using active control of switches within the electric power system in a distributed

control architecture.

Given a sensor strategy and a state estimate, we are then able to automati-

cally synthesize a control protocol according to a set of system requirements. The

controller reacts to changes in the environment and is guaranteed, by construction,

to satisfy the desired behavior as long as the environment is admissible. The algo-

rithms are able to find a controller, if one exists, that will satisfy the specifications

given in any modeled environment. The correct-by-construction guarantees with

respect to the specification and abstraction of the synthesized controller eliminate

human-error in implementation and are more robust than a manual composition

of controllers. Overall, we demonstrate how the proposed methodology, combining

different tools and techniques, can be applied to a large circuit. It is shown that

the distributed approach makes running the methodology steps in real-time feasi-

ble. Furthermore, results obtained for each subsystem can easily be integrated and

combined in order to solve the problem for the entire circuit.
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