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In this thesis, a number of techniques related to Principal Component Analysis 

(PCA) are used to derive core traffic patterns from streams of traffic data on a large 

number of road segments. Using a few number of k hidden variables, we show that 

the traffic information on the road segments can be captured by k traffic patterns. The 

dimensionality of the correlated road segments is successfully reduced from n to a 

much smaller number k by applying techniques related to Principal Component 

Analysis (PCA), where n is the number of road segments and k is the number of 

hidden variables. We use the k nearest neighbor(KNN) method to predict the values 

of the hidden variables over small time windows. As a result, we are able to forecast 

the speeds for n road segments very quickly. Our results are aimed at network-level 

and real-time prediction. In general, the computation of PCA is computationally 

demanding when n is large. A more efficient online version of PCA, called PASTd 

algorithm is used to reduce the data dimension. As a result, our forecasting method is 

efficient, flexible, and robust. 
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Chapter 1: Introduction 

1.1 Overview 

The urban transportation system involves the challenging task of transferring  

people and materials across densely populated areas. It constitutes the pumping heart 

of a city, and hence its operational efficiency directly affects the entire city. In recent 

years, along with the social and economic development and continued urbanization, 

the population and the quantity of vehicles in each city have substantially increased. 

Although continuous improvements have been made to the infrastructure of urban 

transportation systems, there is still a long way to go to satisfy the demands of people 

for transportation resources in urban areas. Owing to this, traffic congestion and 

pollution have increased, which negatively has impacted major enterprises and urban 

residents in their daily production and lives, thus resulting in a great wastes of social 

resources. The TTS (Intelligent Transport System) is a comprehensive transport 

management system used in the 21st century. Through monitoring, control and route 

guidance of operation states of vehicles on the roads, this system can improve the 

distribution of traffic flows on the urban road network, the utilization efficiency of the 

urban road network, and enhance the overall transportation efficiency of a city. 

Transport route guidance and control constitute two important parts of TTS. 

Therefore, in addition to the construction of a good urban road network for a city, 

traffic information should be broadcast in real time to ease traffic congestion and 

improve the quality of life for commuters. This makes it necessary to analyze and 

forecast  traffic flows using real-time traffic information. 



 

 2 

 

Time series analyses are used in many fields with many methods developed to 

analyze univariate time series consisting of temporal sequenced of scalars[1,2]. Some 

applications require the analysis of multi-dimensional time series, where the state of 

each time unit is indicated by a multi-dimensional vector. Specifically, in the analysis 

of urban traffic networks, the traffic state in a region with n connected links can be 

represented by a n-dimensional traffic flow vector F(t). Evaluation of the traffic 

network state and prediction of the traffic flow require analysis of how the time series 

of F(t) evolves over time. Yet the high-dimensionality of F(t) makes difficult to 

generate and predict traffic patterns in a timely fashion.  

One solution is to regard each dimension as a single time series and apply 

traditional univariate time series analysis methods. However, this method does not 

consider the underlying correlations between the different dimensions, which is of 

great importance in traffic time series analyses because the flow rates on different 

adjacent links have strong temporal relationships[3]. Thus, methods are needed to 

depict and predict the multi-dimensional time series taking into consideration the 

correlations between the dimensions. One type of analysis uses Kohonen’s self-

organizing maps (SOMs)[4,5] for the multi-dimensional time series.   

The SOMs serve as a clustering algorithm as well as a dimensionality-reduction 

technique when applied to traffic flows which allow the data to be analyzed to make 

short-term predictions. Compared to other clustering algorithms such as hierachical 

clustering or k-means clustering, the SOM method has an essential advantage of easy 

visualization, which offers an effective depiction of the traffic status by projecting the 

traffic flow vectors onto the SOM planes, while allowing topological preservation 
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ability. SOMs also outperform other linear dimensionality techniques such as  PCA, 

since it can capture the nonlinear characteristics of the traffic data and thus provide 

better prediction quality.  Chen, et. al. [6] used the SOM method to organize the 

traffic flow vectors into clusters. Several methods were presented to visualize and 

interpret these clusters, to identify the typical patterns in the traffic flow distribution, 

and to reveal basic rules for the evolution of the regional traffic status. The k-nearest 

neighbor (KNN) prediction technique is then applied to the clustering results to 

perform short-term predictions of flow throughout the whole region. Tests with real 

world traffic data revealed some interesting phenomena and promising predictions. 

These results show that the SOM method is a useful tool for time series analysis. 

Short-term prediction of traffic parameters such as volume, travel speeds and 

occupancies have been researched intensively because they offer significant 

macroscopic traffic characteristics of the transportation system. Because accurate 

prediction of these parameters is crucial for taking effective measures to relieve 

traffic congestion, a method that can improve the predictions of existing methods is 

always of interest for transportation management. To pursue greater prediction 

accuracy, one way is to improve the quality of the traffic data by creating new data 

collection and processing techniques. Moreover, it is widely recognized that the 

performance of the predictions depends not only on the quality and accuracy of the 

data collected by devices but also on the method adopted for prediction. In this sense, 

the new forecasting methods and techniques that can improve the predictions deserve 

more attention.  
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1.2 Traffic data streams  

In the late 20th century, data streams are widely used in business areas as a new 

and more realistic data model. The data streams are characterized by an almost 

unlimited data size, concept drift, rapid change, the need for rapid response, and large 

cost of random access to the data. In addition, such data contains valuable enterprise 

information, such as the operation procedures, management requirements, influencing 

factors, and variation trends, which can reflect the business operation, service 

contents, and service targets. At the same time, the wide variability of data streams 

also brought some challenges to computer storage space, computing speed and 

communication capacity.  The data mining technology has achieved substantial  

results in mining static data sets, but expanded to the dynamic data streams mining, 

the problem is still a great challenge. 

In the dynamic data streams environment, the rapid growth of data and higher 

dimensionality lead to deciding against the use of current techniques that mainly 

focus on static and lower dimensionality. 

Currently, data streams have gained considerable importance in various 

communities (theory, database, data mining network, system), and in applications 

such as network analysis, sensor network detection, target tracking, financial data 

analysis, data process and scientific research. All of these applied programs have 

several points in common: (1) large amounts of data received at a very high speed 

which makes the speed of database systems very slow in general; (2) the need of real-

time processing and mining algorithms that can make prediction in real-time( for 

example, in network intrusion detection). 
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Traffic data streams offer an important application which can lead to the 

development and application of traffic management systems and intelligent 

transportation systems and traveler information systems. The prediction should be 

based according to traffic parameter such as flow, density, speed, delay, queueing 

length and occupancy, etc. Traffic flow information is gained mainly through sensors 

installed on the roads and GPS-enabled devices resulting in a large amount data of 

dynamic traffic information collected.  

Therefore, this makes it crucial to develop algorithms that pay great attention to 

multi-dimensional, high order, random, time-varying, non-linear characteristics of 

traffic flow.     

1.3 Short- term traffic forecasting 

Since the early 1980s, short-term traffic forecasting has been an integral part of 

most Intelligent Transportation Systems (ITS). It concerns predictions made from few 

seconds to possibly few hours into the future based on current and past traffic 

information. Most of the interest has focused on developing methodologies that can 

be used to model traffic characteristics such as volume, density and speed, or travel 

times, and produce anticipated traffic conditions. The field of short-term traffic 

forecasting has been studied during the past 40 years[7]:  in the first part of its 

development, most – if not all – of the research employed ‘classical’ statistical 

approaches to predicting traffic at a single point. Later, applications of data driven 

approaches were the focal point in the literature, where a rich variety of algorithmic 

specifications – often creatively applied – were proposed. The weight placed recently 

on empirical computational intelligence-based approaches, including neural and 
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Bayesian networks, fuzzy and evolutionary techniques, can be considered as 

inevitable, particularly as most classical approaches have been shown to be ‘weak’ or 

inadequate under unstable traffic conditions, complex road settings, as well as when 

faced with extensive datasets with both structured and unstructured data. Recent 

findings support the shift of research interest towards: (i). more responsive 

forecasting schemes under non-recurrent conditions; (ii). developing prediction 

systems with increased algorithmic complexity; (iii). attempting to understand data 

coming from novel technologies and fuse multi-source traffic data to improve 

predictions; and (iv). the applicability of AI methodologies to the short-term traffic 

prediction problem. Although much work has been conducted in short-term traffic 

forecasting, there are still important research directions that will attract the interest of 

many researchers in the coming years. 

The short-term traffic forecasting interest is the direct result of an increasing 

need for developing user friendly applications which can provide accurate 

information to drivers in a timely fashion. The ability to provide such information is 

the result of phenomenal technological and computational advances that have enabled 

researchers to collect data and subsequently make prediction at very high temporal 

resolutions. Both the technological aspects of this analysis (ITS Technology) and the 

analytical (data analysis), have been the focus of countless research papers over the 

past few years. The combination of unprecedented data availability and the ability to 

rapidly process these data has brought on immense development and acceptance of 

ITS technologies. At the same time, a novel research area, based on data driven 

empirical algorithms, has been systematically growing in parallel leading to the  
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mathematical models that are based on macroscopic and microscopic theories of 

traffic flow [8-12]. This significant leap from analytical to data driven modeling has 

been marked by an overwhelming increase of Computational Intelligence (CI) – Data 

Mining (DM) approaches to analyzing the data. Researchers have moved from what 

can be considered as a classical statistical perspective (the ARIMA Family of models), 

to Neural and evolutionary computational approaches [13]. Short-term traffic 

forecasting based on data driven methods is one of the most dynamic and developing 

research arenas with enormous published literatures.  

1.4 Processing of  traffic flow data 

Traffic data information plays a very important role in our daily life. As a result, 

considerable work has been done for generating and analyzing traffic time series [3,4, 

5]. In general, we can regard traffic data as streaming data is generated at regular time 

intervals. At each time step, we receive traffic information about a large number of 

road segments, which has to be analyzed and disseminated in real time. On the other 

hand, vehicle operators would like to receive immediate up-to-date traffic summaries 

and cannot afford any post-processing[14].  

An effective way to manage our problem is to reduce the large volumes of traffic 

data into a small meaningful trends that can be updated and broadcast in real time. 

For the traffic flow data, the information for most road segments is correlated. Hence 

one possible research direction is to use clustering algorithms to group together road 

segments that follow similar traffic patterns. For example, within a group, if the speed 

of one segment decreases at a certain time step, then the speed of almost all other 

segments of the group also decrease. Instead of analyzing the traffic of the n road 
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segments, we can analyze the patterns of the k groups, where k  n. Applying self-

organizing maps (SOM) is a possible approach, as has been done in [15] for the case 

of post processing analysis. Mixture Models present good possibilities for streaming 

data analysis [16, 17].  

Short-term traffic prediction plays crucial role in intelligent transportation 

system (ITS). It refers to forecast traffic flow data for the next few minutes up to 

around 60 minutes depending on the network. With reliable forecasting data, 

administrators can manage traffic networks effectively and travelers can decide on 

departure time or travel routes easily [18]. 

Many statistical models have been proposed for short-term traffic forecasting. 

For example, time series models [19, 20], Bayesian models [21], Kalman filter 

models [22], and support vector machine regression models [23] have been widely 

applied to predict motorways and freeways traffic conditions. Neural network models 

using artificial intelligence algorithms [24, 25, 26] and unsupervised machine learning 

algorithms [27] also gain researchers’ attention recently. 

1.5 Study contents of the thesis 

1.5.1 Pattern discovery for traffic flow data 

In this thesis, we pursue a different approach based on finding k patterns (or 

hidden variables) such that the time series of the average speeds of each road segment 

can be estimated using a linear combination of these patterns. What we need is to find 

such k patterns and the corresponding weights for each pattern. In our case, we are 

given a large number n of such time series. We would like to find a small number k 
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hidden variables that can represent all the n time series as accurately as possible. We 

would like to find a method which can find patterns in online fashion with linear 

complexity, and don't need to buffer data. 

We describe two techniques to determine k critical patterns (or hidden variables) 

for a large number n road segments. These patterns can be used to reconstruct the 

traffic data for all the segments. One is based on the conventional PCA method and 

the other is based on the online PASTd algorithm. 

We also compared the performance between PCA and PASTd. The comparison 

shows that PASTd is more suitable for finding patterns in terms of accuracy and time 

efficiency. The reason is mainly because it demands low computation - O(kn) floating 

point operations. We don’t need to use the expensive SVD decomposition. Its space 

requirement  is also low since it doesn’t need to buffer any data except the mean.  

We evaluate the quality of the solutions in terms of the reconstruction error of 

the traffic information from the k patterns and in terms of time efficiency as the 

patterns are updated in real-time. The two methods described provide very good 

results in terms of reconstruction error and computational efficiency. 

1.5.2 Short-term forecasting for traffic flow data  

Until now, most models focus on motorways and freeways [11, 13]. A network-

level method is needed for better prediction. This challenge requires the prediction 

method to be efficient and scalable. Even though the number of road segments can get 

very large, the method is still able to make reliable prediction in real time.  

We successfully reduce the dimensionality of the correlated road segments from 

n to a much smaller number k by applying techniques related to Principal Component 
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Analysis (PCA), where k is the number of hidden variables. We try to predict future 

values of the hidden variables by using the k nearest neighbor(KNN) method. Then 

we are able to forecast the vehicle speeds for all the n road segments. Instead of only 

freeways, we aim at the network-level and real-time prediction. Principal Component 

Analysis (PCA) is a possible way to address this challenge.More specifically, PCA is 

able to reduce the data dimension from a large number n to a much smaller number k. 

Instead of dealing with n-dimensional traffic data, we can focus on a few k hidden 

variables. However, the computation of PCA is quite high when n is large. To solve 

this problem, we use a more efficient online version of PCA, called the PASTd 

algorithm [14] to reduce data dimension. The advantage of PASTd algorithm is that it 

is an online algorithm, in that it can incorporate new data at every time step, making 

PASTd capable of real time forecasting. Also, the relevant spatio-temporal patterns of 

the network can be inferred from a long series of historical data used as the sample 

data for KNN. Thus, our algorithm does not depend on the network structure. As a 

result, the forecasting method is efficient, flexible, and robust. 

1.6 Outline of the thesis  

    The rest of the thesis is organized as follows: Chapter 2 provides an overview of 

the PCA approach as applied to predicting traffic patterns of a complete 

transportation network. Chapter 3 introduces our method for short-term forecasting of 

traffic flows, comparing our approach with the KNN approach. Chapter 4 concludes 

with possible future research directions. 
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Chapter 2 Pattern Discovery for Traffic Flow Data. 

2.1 Introduction 

Traffic data information plays a very important role in our daily life. As a result, 

considerable work has been done for generating and analyzing traffic time series [7, 

28, 29]. In general, we regard traffic data as streaming data that is generated at regular 

time intervals. At each time step, we receive traffic information about a large number 

of road segments, which has to be analyzed and disseminated in real time. On the 

other hand, vehicle operators would like to receive immediate up-to-date traffic 

summaries and cannot afford any post-processing[30]. 

An effective way to manage our problem is to reduce the large volumes of traffic 

data into a small meaningful trends that can be updated and broadcast in real time. 

For the traffic flow data, the information for most road segments is correlated. Hence 

one possible research direction is to use clustering algorithms to group together road 

segments that follow similar traffic patterns. For example, within a group, if the 

average speed of vehicles on one road segment decreases at a certain time step, then 

the speed of almost all other segments in the group will also decrease. Instead of 

analyzing the traffic of the n road segments, we can analyze the patterns of the k 

groups, where k is much smaller than n. Applying self-organizing maps (SOM) is a 

possible approach, which has been reported in [15] for the case of post processing 

analysis. Mixture Models present good opportunities for streaming data analysis [16, 

17]. Here we pursue a different approach based on finding k patterns (or hidden 

variables) such that the time series of the average speeds of each road segment can be 
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generated using a linear combination of these patterns. What we need is to find such k 

patterns and the corresponding weights for each pattern. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: time series for one segment 

Figure 2.1 is an example of a time series of average speeds for a road segment 

in Maryland over a week. In our case, we are given a large number n of such time 

series. We would like to find a small number k hidden variables that can represent all 

the n time series as accurately as possible. The authors of [31, 32, 33] explicitly 

focus on discovering hidden variables. In CluStream [31], patterns are found by an 

offline strategy on stored data. Braid [32] determines lag correlations among multiple 

streams. StatStream [33] uses DFT to summarize streams within a finite window size. 

We would like to find a method that can find a relatively few inherent patterns in an 

online fashion with linear complexity, with no need for data buffering. 
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2.2 Principal component analysis 

The Principal Component Analysis (PCA) method is a popular tool in data 

analysis which projects the high–dimensional data onto a low-dimensional subspace 

while preserving most of the variance in the data. The method is simple and non-

parametric [30]. In essence, PCA can be applied to reduce the dimension of a 

complex data set while revealing the hidden, simplified patterns underlying the data. 

In this section, we will give a brief overview of PCA. For the notation, we use lower-

case bold to represent column vectors, upper-case bold for matrices, and plain font 

for scalars. In the following, xt = [x1,t x2,t . . . xn,t ]
T
   n  is an n-dimensional column 

vector of average speed values of the different road segments at time step t.  Xt = 

[x1x2 . . . xt] 
n t  can be viewed as an n × t matrix, where a new column is added at 

each time step t.  

There are several ways to explain the PCA technique. One possibility is to 

model the vector xt as a linear combination of k hidden variables. That is, we express 

xt = Wzt, where zt are k  hidden variables whose values depend on the time step t, and 

k « n. The matrix W is an n ╳ k orthonormal matrix to be determined. Since W is 

orthonormal, WW
T
 = Ik╳k. Hence we deduce that zt = W

T
 xt. Using this model, we 

can reconstruct each xt using tx  = WW
T
 xt. Assume we want to focus on a time 

window of size T, and that we would like to reconstruct all the data within this 

window, say XT = [x1 . . . xT ]. Then our optimization (minimizing reconstruction 

error) can be formulated as follows. 

minw ortho.  
2

1

T
Tx WW x 

 

                (1) 
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Using the Singular Value Decomposition (SVD) technique, the solution can be 

expressed as W = [w1 . . . wk] where each column wi is the eigenvector corresponding 

to i-th largest eigenvalues of XT
T

TX  . Then the hidden variables are given by zt = 

[z1,t . . . zk,t ]
T
 =

1 . . .t

T
T T

tKww x x   . Thus, for any given k < n, we can find an 

orthonormal matrix W and the k hidden variables zt to reconstruct the data.  

Another interpretation of PCA is that we want to determine an orthonormal basis 

w1, . . . , wk such that projecting the data onto this subspace will capture the maximum 

statistical variances. We can start by determining w1 such that that variance of the 

projections on this axis is as large as possible: 

 

Variance =  
2

1

1

1 T
T T

Kt

t

w x
n

wx


                           

=   1

1

1 T T
T

t t

t

w x x x x w
n 

 
  

 
     (2) 

= 1 1

Tw Sw  

 

Where    S =   1

1 TT

t tt
x x x x

n 
  is the sample convariance matrix. 

 
Then our problem becomes: 

 
max 1 1

Tw Sw   
 

s.t. 1 - 1 1

Tw w = 0                    (3) 

 

Using a Lagrange multiplier, we find that w1 is the eigenvector corresponding to 

the maximum eigenvalue of S. Similarly, we can find w2, . . . , wk, where wi is the 

eigenvector corresponding to the i-th largest eigenvalue of S. The solution is 

consistent to the first interpretation. The projection of xt onto these orthonormal basis 

is     tx =  1 1t

Tw x w + . . . +  t

T

k kw x w .  
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If we represent each n-dimensional column vector xt with all the n principal 

components, then the error 0t tx x  . However we can usually use only the first k 

principal components, where k  n, to reconstruct all the data with a very small error. 

2.3 Discovering hidden variables 

In this section, we show how to use PCA to find the most important patterns 

underlying our complex traffic data set. We first introduce a conventional PCA 

method to find the hidden variables so as to reconstruct the data set using these 

hidden variables as accurately as possible. Then we describe the online method 

which can update hidden variables at every time step with linear complexity. 

Problem Formulation Given n time series corresponding to average speeds on n 

road segments, updated at each time step t, we aim at determining k hidden variables 

zt, where k  n, such that linear combinations of these k hidden variables can be 

used to reconstruct the data matrix within any time window of size T. Thus, the 

dimension of the data set is significantly reduced. As a result, we could make more 

effective, low-cost prediction for speeds in the near future. 

2.3.1 Offline PCA pattern discovery 

As discussed in Section 2.2, we can identify the hidden variables by computing 

the eigenvectors of the sample covariance matrix of our input data. Then we can use 

the first k eigen-vectors to reconstruct the data matrix. More details are described in 

the following algorithm that generates the k hidden variables corresponding to the 

traffic data of  n  road segments over a time window of size T. 
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Algorithm 1  PCA Pattern Discovery  

 

Given: window size T, number of hidden variables k. After receiving every set of 

T streaming data vectors, we do: 

1. Organize the data into an n t matrix, i.e. XT
n k . 

 

2. Normalize XT.  xi =
 

, 1,..., ,
ii

i

x x
i n

std x


 where xi is the i-th row of XT . 

3. Calculate the k eigenvectors corresponding to the k largests eigenvalues of XT

T

TX  , i.e. w1, . . . , wk. 

4. Compute the  k hidden variables. zt =[z1,t . . . , zk,t ]= 1 . . .,, , 1,..., ,t

T T

t kw x xw t T   

where xt   is the t-th column of XT. These represent the k patterns.          

 
5. The data matrix can be reconstructed as follows:   

 

1, 1 ,... , 1,..., .t t k t kx z w z w t T     

 

The matrix W = [w1 . . . wk] 
n k  is called the weight matrix. For each 

element, , ,i jw  1 i n  ,1 j k   ,  the magnitude ,i jw
 
provides some indication 

on how much the i-th segment is dependent on the  j-th hidden variable [30]. 

We will later analyze the performance of this algorithm for different window 

sizes. As we will see, the reconstruction error is quite small even for just two hidden 

variables as long as the size of the time window is reasonably small. 

2.3.2 Online PASTd pattern discovery 
 

The previous PCA algorithm requires the buffering of the data for every time 

window and requires a significant amount of computation, namely computing the first 
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few eigen-vectors of the sample covariance matrix, which can be fairly large. We 

now describe an online method that updates the hidden variables and the weight 

matrix incrementally in linear time (as a function of the traffic information for all the 

road segments received at each time step). We use PASTd algorithm, which is based 

on adaptive filtering techniques and PCA. The PASTd algorithm has been shown to 

perform very well in a variety of settings and on different applications, such as signal 

tracking for antenna arrays and image compression [34]. 

 

Algorithm 2 PASTd Pattern Discovery 

 

0. Initialize: k orthonormal weight vectors w1(0) = [10 . . . 0]
T
 , w2(0) = [010 . . . 

0]
T
 , etc.  0 ,    1,  . . . ,  id i k  to a small positive value. Then： 

1. As each point xt arrives, set 1 tx x . 

2. For 1   i k   we perform the following assignments and updates: 

   ( ) 1T
ii iz t t w x  

     
2

 1   i i id t d t z t    

      1ii i it ze t t x w  

   
 

   
1

1i i i i

i

w t w t z t e t
d t

    

   1   ii i iz t t x x w  

 

Algorithm 2 enables the explicit computation of eigencomponents [34]. In fact, 

wi(t) is an estimate of the i-th eigenvector at time step t, and di(t) is an estimate of the 

corresponding eigenvalue of the matrix St, where 
1

T

t t t t S S x x . These eigenvalues 
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may be used to estimate the number k of hidden variables if it is not given. The use of 

forgetting factor 0 1   is intended to ensure that data matrix St is more dependent 

on the most recent data. Since the traffic data is non-stationary,   can guarantee the 

tracking ability and will give more precise estimates of the eigen-components. The 

vector ei(t) is the error between the true data and the reconstruction, and 

   i it te w . The step for updating the eigenvector wi(t) can be interpreted as a 

gradient descent method with a self-tuning step size 
 
1

id t
. 

Complexity For each n-dimensional data vector, we only need k iterations for 

updating weight vectors wi, 1 i k  . Thus, the total cost is O(nk) both in terms of 

time and of space. The update cost does not depend on time window size T. This 

significantly outperforms the conventional PCA, where the computation cost for 

eigenvalue decomposition alone is O(n
3
). 

2.4 Reconstruction results 

In this section, we show the reconstruction results by using both the classical 

PCA method and the online PASTd method. We then compare these two methods in 

terms of accuracy as well as time efficiency. In our tests, we chose n = 48 road 

segments over a whole week, which amount to 7*24 *60 = 10080 vectors each of 

dimension 48. These 48 segments were randomly chosen from all the road segments 

of the State of Maryland. The order of the days are Sunday, Monday, . . . , to Saturday. 

If any data is missing, we use the data of the previous time step to fill-in the gap. 
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2.4.1 PCA Performance 

In our test, the time window size is selected to be T = 30, meaning that we buffer 

the data and compute the covariance matrix corresponding to every 30 minutes. We 

use k = 2 hidden variables to reconstruct the data matrix within each time window. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 2: PCA reconstruction using k = 2 patterns for one road segment over a week 

 

 

 

   

 

 

 

 

 

 

 

 

Figure 2.3: PCA reconstruction using k = 2 patterns for all 48 segments over a week 
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Figure 2. 4: hidden variables for one window 

Reconstruction Results In both Figures 2.2 and 2.3, the blue line is the original data 

while the red line corresponds to the reconstructed data. Figure 2.2 shows the result 

for one road segment while Figure 2.3 shows the results for all the 48 segments. As 

we can see, our reconstruction captures most statistical variance and has small 

deviation from the true data. 

Hidden Variables Figure 2.4 shows the first two hidden variables for one window 

with size T = 30. The top plot corresponds to the first hidden variable while the 

bottom corresponds to the second hidden variable. Note that these are the hidden 

variables for the normalized data. Thus, the value of y-axis illustrates the deviation 

from the mean. Although this figure represents the patterns for only one time window, 

we find that the hidden variables for other windows follow similar patterns: the first 

hidden variable is monotonically increasing or decreasing, and the second is first 

increasing then decreasing or vice versa. This is to be somewhat expected since the 

window size is relatively small, the speed for each road segment within one window 
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does not change a lot, leading the frequency of critical patterns to be low. Due to such 

characteristics, we are able to make predictions for hidden variables. Then we can 

save a lot time and energy for prediction since we only need to deal with k hidden 

variables instead of all n road segments. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: Reconstruction error using PCA 

  
 

Impact of Parameters In this subsection, we discuss how changing the values of the 

parameters affect the performance. In our test, we vary the time window size T from 

15 minutes to 60 minutes and vary the number of hidden variables from 2 to 5. We 

evaluate the two methods in terms of the reconstruction error and computational time. 

Here, the definition of the reconstruction error is given by: 

Error = 
1

1 T

tt

t

x x
n T 



          (4) 

where ttx x is the 1l  norm between the two vectors. 
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In Figure 2.5 the x-axis represents the window size, ranging from 15 minutes to 

60 minutes, the y-axis represents the number of hidden variables, ranging from 2 to 5, 

and the z-axis represents the corresponding reconstruction error. As we can see, the 

smaller the window size and the larger the number of hidden variables, the better 

performance. This is expected since the patterns appearing over a small window size 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6: Runtime using PCA 

 

are simpler than those over a large window size. As a result, it is easier to reconstruct 

the data matrix for the smaller window. Also, the more hidden variables we use, the 

more variance we capture, and hence the smaller reconstruction error. 

In Figure 2.6, the x-axis and the y-axis have the same meaning as Figure 2.5, but 

the z-axis represents now the corresponding runtime in seconds. Note that the 

orderings along the x-axis and y-axis are different from Figure2.5. As we can see, the 

larger window size and the smaller number of hidden variables, the faster the 
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algorithm, which is to be expected. Larger window size means less update, and hence 

less time. Also, increasing the number of hidden variables consumes more time for 

any fixed window size. Thus there is a tradeoff between reconstruction error and 

runtime. However we ran our algorithm on the data for a whole week, and the worst 

case scenario only took around 2 seconds. Note that we are using a 2.6GHz processor 

with 32 GB of RAM. 

2.4.2 PASTd Performance 

For PASTd, we use k = 2 hidden variables and compute the reconstruction error. 

We update these two hidden variables and weight matrix at every time step. The 

reconstruction results are shown in Figure 2.7 and 2.9. 

 

 

 

 

 

 

 

 

Figure 2.7: PASTd reconstruction using k = 2 patterns        Figure 2.8: hidden variables over a 

 for one road segment over a week                                         week  

 

Reconstruction For the results shown in Figures 2.7 and 2.9, the blue line represents 

the original data and the red line is the reconstructed data. Figure 2.7 shows the 

reconstruction result for a single road segment, while Figure 2.9 shows the results for 

all the 48 segments. We can barely see blue lines in our figures, meaning that our 
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reconstruction is basically the same as the original data. Hence, we succeed in 

reducing the data dimension from 48 to 2 by using online PASTd method.  

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 2.9: PASTd reconstruction using k = 2 patterns for all 48 segments over a week 
         

Hidden Variables Figure 2.8 illustrates the time series of the two hidden variables 

determined over a week. The top one corresponds to the first hidden variable and the 

bottom one corresponds to the second hidden variable. As we can see from the time 

series of the 1st hidden variable, the five weekdays show similar patterns while 

weekend days show a different pattern. This can be justified by the fact that weekdays 

have obvious rush hours while weekends do not necessarily follow that pattern. Also 

the first hidden variable captures the largest variance and hence there will be 

significant differences between weekdays and weekends. Note that the second hidden 

variable, on the other hand, captures the second largest variance. As we can see, it has 

large variance during daytime and small variance around midnight. This is reasonable 
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since at midnight, we don’t expect much traffic and hence the speed is mainly 

decided by the speed limit, that is, the speed doesn’t change much. During daytime, 

there is much more traffic and the speed varies significantly, leading to more variance 

for the second pattern. 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

Figure 2.10: Reconstruction error using PASTd 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11: Runtime using PASTd 
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Impact of Parameters In PASTd, we update the weight matrix as well as hidden 

variables incrementally at each time step. The only parameter that matters is the 

number k of hidden variables. As in the previous subsection, we test the performance 

of PASTd in terms of reconstruction error and time efficiency as a function of k. 

 
Figure 2.10 shows the reconstruction error when using the PASTd method. The 

definition of the reconstruction error is similar to that used for the PCA. As we can 

see, by using a larger number of hidden variables, we can get better performance. The 

reason is that the more hidden variables we find, the more variance of the data we 

capture, and hence the smaller the reconstruction error. Note that, even for k = 2, the 

error is less than 0.3 mph. This shows that online PASTd method is quite effective in 

determining the traffic patterns. 

 
Figure 2.11 shows the runtime corresponding to different values of k using PASTd 

in seconds. As we can see, a smaller number of hidden variables leads to shorter 

runtime, which should be obvious since the complexity for updating is O(kn). Note 

that even for k = 5, the runtime is less than 1.5 seconds over a week. This means that 

we are able to update the weight matrix and hidden variables incrementally in a very 

short time. Thus, PASTd is completely suitable for realtime systems. 

Comparison with PCA We compare the performance between of PCA and PASTd 

in terms of accuracy and time efficiency. For accuracy, we choose a window size T = 

15 since small window leads to better results. For time efficiency, we pick window 

size T = 60 since a large window size needs less updating and thus takes less time. 
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Figure 2.12: Comparison for error with T = 15 in PCA 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 2.13: Comparison for runtime with T = 60 in PCA 
  

 

In both Figures 2.12 and 2.13, blue blocks represent PCA while red blocks 

represent PASTd. Figure 2.12 shows the error comparison between PCA and PASTd 

as a function of the number of hidden variables. Online PASTd outperforms classical 

PCA probably because PCA captures only the patterns in a single time window while 

PASTd incrementally updates the patterns taking into consideration the overall past 
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with much more weight assigned to the recent past. Another reason might be that 

PCA is sensitive to window size T. As we shrink to T = 10, PCA will outperform 

PASTd in that smaller window which has simpler patterns and thus easier to 

reconstruct. 

 
Figure 2.13 shows the runtime comparison between PCA and PASTd. PASTd 

beats PCA again because PASTd enjoys a linear complexity O(n) while PCA has at 

least O(n
3
). When n becomes large, the difference will be substantially larger. In 

conclusion, although online PASTd only gives estimates for eigencomponents, it is 

able to produce very good results and takes less time compared to PCA. Online 

PASTd is definitely more suitable for discovering patterns for real-time traffic 

systems. 

2.5 Conclusion 

In this section, we describe two techniques to determine k critical patterns (or 

hidden variables) for a large number n road segments. These patterns can be used to 

reconstruct the traffic data for all the segments. One is based on the conventional 

PCA method and the other is based on the online PASTd algorithm. The 

reconstruction results for both methods show that: 

 We can reduce the dimensionality of the correlated road segments from n to a 

much smaller number k. 

 We can adaptively change values of parameters to improve performance. 

 We can update the hidden variables and weight matrix efficiently. For PCA, run-

time is around 2 seconds while for PASTd the runtime is around 1 second for a 

whole week data samples of 48 road segments. 
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We also compared the performance between PCA and PASTd. The comparison 

shows that PASTd is more suitable for finding patterns in terms of accuracy and 

time efficiency. The reason is mainly because it demands low computation - O(kn) 

floating point operations. We don’t need to use the expensive SVD decomposition. 

Its space demand is also low since it does not need to buffer any data except the 

mean. We can use PASTd of travel time prediction as follows. We can choose any 

forecasting model such as AR model to predict hidden variables, and use the 

previous weight vectors to predict the speed for the next time step [30], i.e., 

    1  t f t z z  

         1 11  1  . . . 1k kt z t t z t t     x w w  

By using PASTd, we can save significantly in computational time as well as 

energy for prediction. When n is large, the advantage of PASTd will be much more 

significant. 
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Chapter 3 Short-term Forecasting for Traffic Flow Data 

3.1 Introduction 

Short-term traffic prediction plays crucial role in intelligent transportation 

system (ITS). It refers to forecasting traffic flow data for the next few minutes up to 

around 60 minutes depending on the network. With reliable forecasting data, 

administrators can manage traffic networks effectively and travelers can decide on 

departure time or travel routes more easily [18]. 

Many statistical models have been proposed for short-term traffic forecasting. For 

example, time series models [19, 20], Bayesian models [21], Kalman filter models 

[22], and support vector machine regression models [23] have been widely applied to 

predict motorways and freeways traffic conditions. Neural network models using 

artificial intelligence algorithms [24, 25, 26] and unsupervised machine learning 

algorithms [27] also have gained researchers’ attention recently. 

Although artificial intelligence algorithms can overcome several problems and 

provide black box solutions, the implementation can be complex and hard to interpret, 

and these models are difficult to extend from one application to another [35]. This 

thesis uses the k nearest neighbor model (KNN) as the forecasting method. KNN is a 

typical example of nonparametric regression method. Compared to the parametric 

models, some of which are simple to implement but do not achieves accurate 

prediction [36], the nonparametric regression method is more portable, achieves 

higher accuracy, and has a simpler structure. 

Until now, most models focus on motor-ways and freeways [35, 37]. A network-

level method is needed for better prediction. We require that the prediction method is 



 

 31 

 

efficient and scalable. Even though the number of road segments can get very large, 

the method should be able to make reliable prediction in real time. 

The remainder of this chapter is organized as follows: Section 3.2 gives a brief 

description of KNN and how we apply it to our model. Section 3.3 explains the 

specific steps of our algorithm, from the dimensionality reduction step to the 

prediction of the hidden variables. Forecasting results with horizons varying from 1 to 

60 minutes are shown in Section 3.4. The impact of parameters and the computational 

complexity of the algorithm are discussed in Section 3.5. The conclusion is addressed 

in Section 3.6. 

3.2 KNN method 

In this section, we start by giving a brief introduction about the k nearest 

neighbor (KNN) method. Then we show how to apply KNN to forecast the hidden 

variables over the next brief time horizon. To make our description clearer, we 

follow the notations described in Table 3.1. 

Symbol Description 

 

x, . . . Column vectors (lowercase boldface) 

A, . . . Matrices (uppercase boldface) 

xt The n speed values at time t 

n Number of road segments 

zt The k hidden variables at time t 

k Number of hidden variables 

knn Number of nearest neighbors in KNN 
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hf Forecasting horizon 

hp Past horizon 

l  Number of historical data 

 

Table 3.1: Description of notation 

The KNN method collects historical data as the sample database. In our case, a k-

dimensional vector zt = [z1,t . . . zk,t ] is stored, where zi,t is the i-th hidden variable 

for time step t. Then, the Euclidean distances between all sample points and current 

data are calculated to generate the knn-sample data, that is, the k nearest neighbors to 

the current data. Finally, future hidden variables are forecasted by using a weighted 

average of the KNNs. 

In our work, we found that for each day of a week, the hidden variables follow 

similar patterns. For example, in Figure 3.1 and 3.2, the first hidden variable for five 

consecutive Wednesdays look very similar to each other. This is reasonable since 

hidden variables intuitively reflect the essential patterns of vehicle speeds. As a result, 

we can forecast the hidden variables for the ( l + 1)-th Wednesday by using the hidden 

variables in the past l Wednesdays. 
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Figure 3.1: first hidden variable for Wednesdays for one county 

 

 

 

 

 

 

 

 

Figure 3.2: first hidden variable for Wednesdays for multiple counties 

In our case, we receive n speed values every minute, i.e., xt = [x1,t , . . . xn,t ]
T
 . 

Then we compute the corresponding k hidden variables zt = [z1,t , . . . zk,t ]
T
 . Since 

there are 1440 minutes in a day, we get a k1440 matrix for each day. The matrix is 

stored as historical data for KNN. After collecting historical data for l weeks, we get 

1 such matrices for each day of the week. To forecast
ft hZ 

 for the ( l + 1)-th 

Wednesday, where hf is the forecasting horizon, we first retrieve the past hf  hidden 

variables Pt,hp = 1,... p

p

k h

t h tz z


 
 
 

. The i-th row of Pt,hp means the past hp values for 

the i-th hidden variable at time step t. We apply the KNN method to each hidden 

variable respectively. Assume that the distances between current data to the nearest 

neighbors are d1, . . . , dknn, and the corresponding hidden variables are 

1, , , ,,...
kf f nni t h l i t h lz z 

.Then , fi t hz   for the ( l + 1)-th week can be forecasted as: 
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1, ,1

,

1

1

1

f

f

knn

i t hj
j

i t h
knn

j
j

z

z
d

d












       (1) 

3.3 Forecasting algorithm 

In this section, we show the specific steps needed to apply the KNN method, 

which are presented in Algorithm 1. To deal with missing data of vehicle speeds, we 

use the values at the previous time step. Thus, we have 1440 time steps for each day. 

Algorithm 1. KNN Method 

0. Initialize: w, d equal to the values from the last sample data. 

1. At time step t during ( l  + 1)-th week, get 

the l historical data    1,..., ,1
ft h tz j z j j l    . Then for 1   i k   : 

2. Compute the Euclidean distances between 

z i,t hp (l + 1), . . . , zi,t 1(l + 1) and the l historical data. 

3. Find the knn nearest neighbors with the i first knn  

shortest distances d1, . . . , dknn, the corresponding weeks are 
1l , . . . , 

knnl . 

4. Forecast the hidden variables with the horizon hf  using 

, ,1

,

1

1

1

jf

f

knn

i t h lj
j

i t h
knn

j
j

z
d

z

d












 

5. Forecast the vehicle speeds using 
f f

T

t h t hx w z   

6. Update w, d using the PASTd method and go to the next time step. 
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Combining the KNN method with PASTd algorithm, our complete forecasting 

algorithm is shown in Algorithm 2. 

 

Algorithm 2. Forcasting Algorithm 

0.    Initialize: k, knn, hp, hf, l  

1. For each time t, receive speed values n

tx  . 

2. Compute the corresponding hidden variables k

tz   by PASTd algorithm. 

3. Collect the hidden variables into a matrix for each day for consecutive l weeks 

as historical data. 

4. Forecast the hidden variable for the ( l + 1)-th week using KNN method. 

5. Forecast the speed values through the hidden variables generated at the last 

step. 

6. Compute the error between forecasting and actual speeds. 

 

The description of k, knn, hp, hf , l  can be found in Table 1. The specific steps 

of PASTd are explained in the previous chapter , which is an online algorithm whose 

cost is O(nk) both in terms of time and of space. We have shown that a few hidden 

variables are able to capture the most important patterns of traffic flow data. For each 

day, a k1440 matrix is stored. Thus, for l  consecutive weeks, the cost of storage is 

O(k l ), which is much smaller compared to the original O(n l ) since k  n. 
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 3.4 Forecasting results 

In this section, we show the forecasting results by using the proposed forecasting 

algorithm. We choose both MSE(Mean Square Error) and MAPE(Mean Absolute 

Proportion Error) as the performance measurements. The definitions of MSE and 

MAPE are: 

 
2

1

1 n

i i

i

xMSE x
n 

   

1

1
100i

n
i

i i

x
MAPE

n

x

x

 


              (2)  

       The data used to evaluate the performance of our algorithm are the vehicle speeds 

collected in Baltimore County, Maryland, which contain 1751 road segments. We set 

the speeds during the first 40 weeks in 2014 as the sample data and try to forecast the 

speeds for the 41st week. To get the best time and space efficiency, we choose k = 1, 

knn = 1, hp = 1, and test the performance by varying the forecasting horizon hf . 
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Figure 3.3: Forecasting results with hf = 60 for the first 48 road segments 

 

 

 

 

 

 

 

 

 

Figure 3.4: Forecasting results with hf = 60 for the first road segments 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Forecasting results for the first 48 road segments using historical mean 
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Forecasting Results Figure 3.3 shows the forecasting results with hf = 60 for the first 

48 road segments, where the blue line represent the actual speeds while the red line 

corresponds to the forecasting speeds. Figure 3.4 shows the results for the first road 

segment more clearly. As we can see, our forecasting algorithm captures most 

statistical variance and has small deviation from the true data. 

As a result, we reduce the data dimension from 1751 to 1. Instead of taking care 

of all the road segments, we are able to focus on just one hidden variable and forecast 

the speeds with tolerable error. Table 3.2 shows the MSE with different forecasting 

horizons. As we can see, when hf increases, MSE does not increase fast. Thus, our 

method is useful for making short-term prediction. 

 

h f 1 5 10 30 60 

MSE 5.06 6.01 6.30 7.26 8.74 

MAPE(%) 3.75 4.41 4.54 4.83 5.20 

 

Table 3.2: MSE and MAPE with k = 1, knn = 1, hp = 1 

To further show the advantage of our forecasting algorithm, we compare our 

method to the historical mean method, which also reduces the data dimension to 1. 

Figure 3.5 shows the forecasting results for historical mean method. As we can see, 

the historical mean method can barely capture the statistical variance and its 

MSE=45.60, which is much larger than ours. 
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Figure 3.6 shows the MSE during Wednesday. It can be seen that the MSE is 

larger during peak hours than off-peak hours. This is reasonable since during peak 

hours, speeds vary more significantly, making it more difficult to forecasting. On the 

other hand, Fig 3.7 shows the MSE over a whole week. Note that our week starts with 

Sunday. It can be seen that MSE is relatively small for weekends since there is not an 

obvious peak hour so the predictions are smoother than weekdays. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: MSE with k = 1, knn = 1, hp = 1, hf = 60 during Wednesday 

 

 

 

 

 

 

 

 

Figure 3.7: MSE with k = 1, knn = 1, hp = 1, hf = 60 over a week 
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Update Sample data After the ( l + 1)-th week, sample data need to be updated to 

forecast the speeds during the ( l + 2)-th week. In our algorithm, we would abandon 

the sample data at first week and add the data corresponding to the ( l + 1)-th week. 

Thus, the space to store historical data is fixed. Figure 3.8 shows the forecasting 

results for one road segment while Figure 3.9 shows the MSE for the whole week. 

The results are similar to the previous ones, which provide another validation of our 

method. 

 

 

 

 

 

 

 

 

Figure 3.8: Forecasting results with hf = 60 for one segment 
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Figure 3.9: MSE with k = 1, knn = 1, hp = 1, hf = 60 over the next week 

  

3.5 Impact of parameters 

In this section, we try to find the best parameters (k, knn, hp) for our 

algorithm. We choose both MSE and MAPE as the performance metrics. 

3.5.1.  Dense Road Segments 

The data used to evaluate the performance of our algorithm are the vehicle 

speeds collected in Baltimore County, Maryland, which contain 1751 road 

segments. We set the speeds during the first 40 weeks in 2014 as the sample data 

and try to forecast the speeds at the 41st week. We applied k nearest neighbor to 

forecast the speed. 

3.5.1.1 MSE - horizon=1 

 

knn/hp 1 2 3 4 5 

1 5.80 5.75 5.75 5.78 5.82 

2 5.75 5.72 5.73 5.76 5.80 

3 5.75 5.73 5.75 5.78 5.82 

4 5.76 5.75 5.77 5.81 5.85 

5 5.77 5.77 5.80 5.84 5.88 

 

Table 3.3: MSE with k = 1, hf =  1 
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knn/hp 1 2 3 4 5 

1 5.81 5.73 5.74 5.82 8.49 

2 5.61 5.53 5.65 6.15 6.82 

3 5.58 5.52 5.56 5.96 6.34 

4 5.59 5.50 5.66 5.84 6.10 

5 5.57 5.50 5.63 5.78 5.99 

 

Table 3.4: MSE with k = 2, hf = 1  

      

knn/hp 1 2 3 4 5 

1 6.51 6.80 6.89 7.05 9.47 

2 5.99 6.08 6.19 6.69 7.26 

3 5.87 5.96 5.99 6.26 6.62 

4 5.82 5.79 5.94 6.11 6.33 

5 5.76 5.72 5.82 5.96 6.18 

 

Table 3.5: MSE with k = 3, hf = 1 

Comment As we can see, the best performance is k = 2, which is better than k = 1. 

For k = 3, we may need more parameters (k nearest neighbors) to reach the best 

performance. The following Figures(3.10-3.12) are the forecasting results for two 

road segments with the best values for hp and knn. The top figure corresponds to the 
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road segment with the largest MSE while the bottom figure corresponds to the road 

segment  with the smallest MSE. 

 

 

 

 

 

 

 

 

 

 

Figure 3.10: Forecasting results with k = 1, hf = 1 

 

 

 

 

 

 

 

 

 

 

Figure 3.11: Forecasting results with k = 2, hf = 1 
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Figure 3.12: Forecasting results with k = 3, hf = 1 

Comment The road segments whose speeds change frequently may have larger 

MSE. However, for k = 1, even in the worst case, our method can still capture the 

speed changes and make accurate prediction very quickly. 

horizon=60 

To see the limit of our method, this time we try to predict the speeds for the 

next hour. 

knn/hp 1 2 3 4 5 

1 8.74 8.73 8.75 8.80 8.83 

2 8.64 8.63 8.65 8.68 8.72 

3 8.60 8.59 8.62 8.66 8.70 

4 8.58 8.58 8.61 8.65 8.69 

5 8.58 8.58 8.61 8.64 8.69 

 

Table 3.6: MSE with k = 1, hf = 60 
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knn/hp 1 2 3  4 5 

1 9.30 9.24 125.04  125.11 125.22 

2 13.73 26.24 55.88  52.17 41.80 

3 12.58 20.45 34.57  31.30 24.21 

4 12.11 17.24 26.72  23.89 17.76 

5 11.79 15.28 22.70  20.39 15.07 

 

Table 3.7: MSE with k = 2, hf = 60 

 

knn/hp  1 2 3  4 5 

1  9.94 9.87 125.65  125.65 125.82 

2  14.12 26.59 56.21  52.48 42.12 

3  12.90 20.70 34.81  31.52 24.47 

4  12.39 17.45 26.91  24.07 17.97 

5  12.05 15.45 22.86  20.54 15.25 

 

Table 3.8: MSE with k =3, hf = 60 

Comment From the tables above(Table 3.6-3.8), we can see that in this case,   k = 1 

gives the best and most stable performance. The reason may be that our equation is 

           1?  1 ... .k ikf f ft h z t h t z t h t w t    x w w  might be quite different 

from  fiw t h for larger i. As a result, a larger k might lead to larger error. 

Following are the forecasting results with hf = 60. 
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Figure 3.13: Forecasting results with k = 1, hf = 60 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14: Forecasting results k = 2, hf = 60      
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Figure 3.15: Forecasting results with k = 3, hf = 60 

 

Comment The forecasting results show that our method can predict the speeds with 

high accuracy (Figure 3.13-3.15). 

3.5.1.2 MAPE 

Instead of the absolute error, we also would like to see the relative error. For 

example, how far our predicted speed is from the actual speed. Thus, we choose 

MAPE to capture the performance. 

horizon=1 
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knn/hp 1 2 3 4  5 

1 4.30 4.22 4.19 4.19  4.20 

2 4.20 4.13 4.11 4.11  4.12 

3 4.17 4.10 4.10 4.10  4.11 

4 4.16 4.11 4.10 4.11  4.12 

5 4.16 4.12 4.12 4.13  4.15 

 

Table 3.9: MAPE with k = 1, hf = 1 

 

 

  

       

knn/hp 1 2 3 4  5 

1 4.14 4.05 4.04 4.05  4.09 

2 3.98 3.91 3.90 3.92  3.93 

3 3.94 3.86 3.87 3.88  3.90 

4 3.92 3.85 3.86 3.88  3.90 

5 3.91 3.86 3.87 3.89  3.91 

 

Table 3.10: MAPE with k = 2, hf = 1  
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knn/hp 1 2 3 4  5 

1 4.31 4.27 4.27 4.29  4.33 

2 4.10 4.05 4.05 4.07  4.09 

3 4.03 3.97 3.98 3.99  4.01 

4 3.99 3.93 3.94 3.96  3.99 

5 3.98 3.92 3.93 3.95  3.99 

 

Table 3.11: MAPE with k = 3, hf = 1 

 

Comment From the tables above (Table 3.9-3.11) we can see that k = 2 gives the best 

performance. For k = 3, we may need more parameters to get the best performance. 

Overall, MAPE is around 4%, meaning that the results are generally accurate.  

The following Figures(3.16-3.18) are the forecasting results for two road 

segments. The top one is the road segment with largest MAPE while the bottom one 

corresponds to the road segment with the smallest MAPE value. 

 

 

 

 

 

 



 

 50 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16: Forecasting results with k = 1, hf = 1 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.17: Forecasting results with k = 2, hf = 1 
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Figure 3.18: Forecasting results with k = 3, hf = 1 

Comment For k = 2 and k = 3, there are some unusual errors. For instance, speeds are 

negative in some time steps. The reason may be that higher order hidden variables 

change more frequently and irregularly so they are more difficult to predict. On the 

other hand, for  k = 1, we achieve the most accurate prediction. 

horizon=60 

knn/hp 1 2 3 4 5 

1 5.20 5.16 5.15 5.16 5.17 

2 5.07 5.03 5.01 5.01 5.02 

3 5.02 4.97 4.96 4.96 4.97 

4 4.99 4.94 4.93 4.94 4.94 

5 4.98 4.93 4.91 4.92 4.93 

 

Table 3.12: MAPE with k = 1, hf = 60 
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knn/hp 1 2 3 4 5 

1 5.40 5.34 5.57 5.59 5.59 

2 5.24 5.22 5.26 5.26 5.26 

3 5.16 5.13 5.14 5.14 5.13 

4 5.11 5.07 5.09 5.08 5.07 

5 5.09 5.04 5.05 5.05 5.03 

 

Table 3.13: MAPE with k = 2, hf = 60 

 

knn/hp 1 2 3 4 5 

1 5.55 5.49 5.71 5.74 5.75 

2 5.35 5.32 5.36 5.35 5.35 

3 5.25 5.21 5.21 5.21 5.21 

4 5.20 5.14 5.15 5.13 5.13 

5 5.17 5.09 5.10 5.10 5.09 

 

Table 3.14: MAPE with k = 3, hf = 60 

 

Comment From the tables above (Table 3.12-3.14) we can see that for larger 

horizons, it might be better choose k = 1, which is consistent with MSE. Even for hf  

= 60, MAPE is around 5%, showing that our algorithm is able to make accurate short-

term predictions (Figure 3.19-3.21). 
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Figure 3.19: Forecasting results with k = 1, hf = 60 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.20: Forecasting results with k = 2, hf = 60 
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Figure 3.21: Forecasting results with k = 3, hf = 60 

3.5.1.3 Conclusion 

In this section, we predict the speeds of all road segments in Baltimore county 

over a week using the k nearest neighbor method. We explore the impact of the values 

of the parameters by using the performance metrics defined by MSE and MAPE. For 

small horizon (hf = 1), k = 2 leads to the best results while for large horizon (hf = 60) 

we better choose k = 1. As for hp and knn, the tables show that hp = 2 or 3 and knn = 4 

or 5 can offer stable results. To wrap up, the best parameters in this case are  k = 1, hp 

= 2, knn = 4 for forecasting horizons from 1 to 60. 
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3.5.2.Scattered Road Segments 

In the last section, we tried to predict average speeds on the roads of only  

one county, where road segments are close to each other and have high spatial 

correlation. In this section, we used the data of three counties: Frederick, Prince 

Georges’, and Wicomico in Maryland. Again, we test our algorithm regarding 

both MSE and MAPE. 

3.5.2.1 MSE - horizon=1 

 

knn/hp 1 2 3 4 5 

1 5.77 5.92 5.86 5.89 5.90 

2 5.80 5.71 5.69 5.70 5.71 

3 5.79 5.71 5.69 5.71 5.72 

4 5.80 5.73 5.72 5.74 5.75 

5 5.83 5.77 5.76 5.78 5.79 

 

Table 3.15: MSE with k = 1, hf = 1 

 

knn/hp 1 2 3 4 5 

1 5.85 5.99 37.44 37.48 6.05 

2 5.78 10.78 14.74 14.07 11.01 

3 5.70 8.49 10.13 9.54 8.40 

4 40.45 7.46 8.45 7.92 7.33 

5 30.09 6.94 7.56 7.33 6.82 

 

Table 3.16: MSE with k = 2, hf = 1 
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knn/hp 1 2 3 4 5 

1 6.58 7.22 38.74 38.47 7.24 

2 6.22 11.43 15.42 14.56 11.60 

3 6.04 8.89 10.56 9.88 8.81 

4 40.72 7.75 8.73 8.16 7.61 

5 30.31 7.18 7.95 7.51 7.02 

 

Table 3.17: MSE with k = 3, hf = 1 

Comment From the Table(3.15-3.17), k = 1 gives the best and most stable 

performance. The reason may be that different counties result in more frequently 

changing hidden variables. This can also be seen in the following Figure(3.22-3.24). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.22: Forecasting results with k = 1, hf = 1 
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Figure 3.23: Forecasting results with k = 2, hf = 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.24: Forecasting results with k = 3, hf = 1 
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Comment For k = 2 and k = 3, there are some unusual errors. For example, the 

speeds are over 100 mph. The reason may also be the number of nearest 

neighbors and past values are too small. Only one past value is not enough. k = 

1 gives the best prediction. 

horizon=60 

 

knn/hp 1 2 3 4 5 

1 7.38 7.33 7.32 7.33 7.32 

2 7.24 7.18 7.17 7.17 7.18 

3 7.21 7.16 7.15 7.15 7.16 

4 7.21 7.16 7.15 7.16 7.17 

5 7.22 7.17 7.16 7.17 7.18 

 

Table 3.18: MSE with k = 1, hf = 60 

 

 

knn/hp 1 2 3 4  5 

1 7.95 7.92 7.88 7.92  7.90 

2 7.62 7.51 7.47 7.49  7.49 

3 7.52 7.39 7.36 7.37  7.36 

4 7.48 7.35 7.32 7.32  7.33 

5 7.46 7.33 7.30 7.31  7.31 

 

Table 3.19: MSE with k = 2, hf = 60 
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knn/hp 1 2 3 4 5 

1 8.51 8.49 8.71 8.69 8.50 

2 8.04 7.87 7.89 7.88 7.82 

3 7.85 7.65 7.66 7.64 7.60 

4 7.77 7.56 7.56 7.53 7.52 

5 7.72 7.51 7.49 7.47 7.46 

 

Table 3.20: MSE with k = 3, hf = 60 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.25: Forecasting results with k = 1, hf = 60 
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Figure 3.26: Forecasting results with k = 2, hf = 60 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.27: Forecasting results with k = 3, hf = 60 
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Comment This time(Table 3.18-3.20) k = 1, 2, 3 all give good prediction while k = 1 

is the best. As for hp and knn, it seems that hp = 3 and knn = 5 can give stable results 

(Figure 3.25-3.27). 

3.5.2.2 MAPE 

horizon=1 

 

knn/hp 1 2 3 4 5 

1 3.04 2.95 2.92 2.91 2.91 

2 2.98 2.89 2.87 2.86 2.86 

3 2.97 2.89 2.87 2.87 2.87 

4 2.98 2.90 2.89 2.89 2.89 

5 2.99 2.92 2.91 2.90 2.91 

 

Table 3.21: MAPE with k = 1, hf = 1 

 

knn/hp 1 2 3 4 5 

1 2.97 2.87 2.95 2.95 2.86 

2 2.86 2.81 2.81 2.81 2.80 

3 2.84 2.79 2.78 2.78 2.77 

4 2.92 2.78 2.77 2.78 2.78 

5 2.92 2.79 2.78 2.78 2.79 

 

Table 3.22: MAPE with k = 2, hf = 1 
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knn/hp 1 2 3 4 5 

1 3.08 3.02 3.10 3.10 3.02 

2 2.94 2.92 2.91 2.91 2.91 

3 2.90 2.86 2.85 2.85 2.87 

4 2.97 2.84 2.83 2.83 2.84 

5 2.95 2.83 2.82 2.83 2.84 

 

Table 3.23: MAPE with k = 3, hf = 1 

Comment As we can see (Table 3.21-3.23), MAPE values are less than 3%, meaning 

that overall our prediction is quite accurate. Although MSE is large in some cases, 

MAPE is generally small. If we can use some technique to avoid those unusual errors, 

the performance can be further improved. The following Figures (Figure3.28 through 

3.30) are the corresponding forecasting results. 
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Figure 3.28: Forecasting results with k = 1, hf = 1 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29: Forecasting results with k = 2, hf = 1 
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Figure 3.30: Forecasting results with k = 3, hf = 1 

horizon=60 

knn/hp 1 2 3 4 5 

1 3.65 3.60 3.59 3.60 3.60 

2 3.54 3.50 3.49 3.48 3.48 

3 3.51 3.46 3.46 3.45 3.45 

4 3.50 3.45 3.45 3.44 3.45 

5 3.50 3.45 3.44 3.44 3.44 

 

Table 3.24: MAPE with k = 1, hf = 60 
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knn/ hp 1 2 3 4 5 

1 3.79 3.76 3.74 3.74 3.74 

2 3.64 3.58 3.57 3.56 3.57 

3 3.59 3.53 3.51 3.51 3.51 

4 3.57 3.50 3.49 3.48 3.49 

5 3.56 3.49 3.47 3.47 3.47 

 

Table 3.25: MAPE with k = 2, hf = 60 

 

knn/ hp 1 2 3 4 5 

1 3.89 3.86 3.85 3.84 3.84 

2 3.72 3.65 3.64 3.63 3.63 

3 3.66 3.58 3.57 3.56 3.56 

4 3.63 3.55 3.54 3.53 3.53 

5 3.61 3.53 3.52 3.51 3.51 

 

Table 3.26: MAPE with k = 3, hf = 60 

 

Comment MAPE is around 3.5% for hf = 60(Table 3.24-3.26), showing our 

algorithm is able to predict the speeds for the next hour. As we can see, for larger 

horizons, we need to have more nearest neighbors (Figure 3.31-3.33). 
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Figure 3.31: Forecasting results with k = 1, hf = 60 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.32: Forecasting results with k = 2, hf = 60 
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Figure 3.33: Forecasting results with k = 3, hf = 60 

 

3.5.2.3 Conclusion 

For scattered road segments, our algorithm is also able to predict the speeds for 

time horizons from 1 to 60. This time, k = 1 seems to be the best choice. The reason 

may be that for scattered road segments the high order hidden variables change too 

fast. As a result, the KNN method is unable to predict those hidden variables 

accurately, leading to larger errors. However, k = 1 gives quite satisfactory results. hp 

= 3, knn = 5 are good choices for these parameters. 

3.6 Conclusion 

In this chapter, we forecast the vehicle speeds using a combination of the PASTd 

algorithm and the KNN method. Firstly, PASTd method reduces the data dimension 
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from a large number n to a much smaller k (in our test, n = 1751, k = 1). As has been 

discussed in this chapter, we can adaptively change values of parameters in PASTd 

algorithm to improve performance. Hidden variables and weight matrices are updated 

with linear complexity, which makes our algorithm time efficient. Then, we apply 

KNN method to forecast the hidden variables, and further forecast the speeds by 

multiplying weight matrices with hidden variables, i.e., 

    fz t h f z t   

         1?  1 ... kkf f fx t h z t h t z t h t    w w  

where f (t) is the forecasting method for hidden variables z(t), and  fx t h  is the 

forecasting speed at time t. We update the weight matrix W for each time step so that 

the current state can be kept current, contributing to more accurate forecasting . 

We also try to find the best parameters for our forecasting algorithm. As 

discussed in the last section, k = 1 is enough to give satisfactory results. As for the 

rest of the parameters, hp = 3, knn = 5 can provide robust results. 
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Chapter 4 Conclusion and Future Work  

4.1 Conclusion  

4.1.1 Pattern discovery for traffic flow Data  

Two techniques are used to determine k critical patterns (or hidden variables) for 

a large number n road segments. These patterns can be used to reconstruct the traffic 

data for all the segments. One is based on the conventional PCA method and the other 

is based on the online PASTd algorithm. The reconstruction results for both methods 

show that:  

• Reduce the dimensionality of the correlated road segments from n to a much 

smaller number k.  

•  Adaptively change values of parameters to improve performance.  

• Update the hidden variables and weight matrix efficiently. For PCA, runtime is 

around 2 seconds while for PASTd runtime is around 1 second for a whole week data 

samples of 48 road segments.  

We also compared the performance between PCA and PASTd. The comparison 

shows that PASTd is more suitable for finding patterns in terms of accuracy and time 

efficiency. The reason is mainly because it requires low computation - O(kn) floating 

point operations. We do not need to use the expensive SVD decomposition. Its space 

requrement is also low since it does not need to buffer any data except the mean. We 

can use PASTd for travel time prediction as follows. We can choose any forecasting 

model such as AR model to predict hidden variables, and use the previous weight 

vectors to predict the speed for the next time step, i.e.,  

    1  t f t z z  
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         1 11  1  . . . 1k kt z t t z t t     x w w  

By using PASTd, we can save significantly in computational time as well as 

energy for prediction. When n is large, the advantage of PASTd will be more 

significant. 

4.1.2 Short-term forecasting for traffic flow data 

       The vehicle speeds have been forecasted using a combination of the PASTd 

algorithm and the KNN method. First, the PASTd method reduces the data dimension 

from a large number n to a much smaller k (in our test, n = 1751, k = 1). We can 

adaptively change values of parameters in PASTd algorithm to improve performance. 

Hidden variables and weight matrices are updated in linear complexity, which makes 

our algorithm time efficient. Then, we apply KNN method to forecast the hidden 

variables, and further forecast the speeds by multiplying weight matrices with hidden 

variables, i.e., 

    fz t h f z t   

         1?  1 ... kkf f fx t h z t h t z t h t    w w  

where f (t) is the forecasting method for hidden variables z(t), and  fx t h  is the 

forecasting speed at time t. We update the weight matrix W for each time step so that 

the current state can be kept updated, contributing to more accurate forecasting.  

We also try to find the best parameters for our forecasting algorithm. As 

discussed in the last section, k = 1 is enough to give the satisfactory results. hp= 3, knn 

= 5 can provide robust results. 
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4.2 Suggestions for Future Work  

In the future, our work will focus on the following aspects: 

• Large scale. In this thesis, we test the Baltimore County, which has 1751 road 

segments. Our next step is to forecast the speeds for the whole Maryland, involving 

tens of thousands road segments.  

• Spatial correlation. The road segments we test are close to each other. This is 

why we can only use one hidden variable to forecast the whole road segments. 

However, we also need to explore the scattered road segments and see how to reduce 

the data dimensionality efficiently.  

• Improved KNN. There is an improved KNN method has been proposed, which 

takes advantage of temporal-spatial correlation. We will try to apply it and if its 

performance can beat the original KNN.  

• Performance measurement. In our experiment, we use MSE as our performance 

measurement. There are many other standards as well. We will try them to further 

validate our algorithm.  

• Travel time prediction. Our method can forecast the speeds for the next hour (hf 

= 60). Thus, we can use our algorithm to find the best way from the starting point to 

the destination. This application is very important to our daily life. 

 

※ In our study, The traffic flow data used to do our research work are from 

Maryland State. It is collected by the Vehicle Probe Project(VPP) started in July 2008. 

Here, we express our sincere thanks to VPP . A brief introduction of VPP  is given in 

an appendix. 
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Appendix: The VPP Data Set 
    

The Vehicle Probe Project started in July 2008 and its original goal was to 

enable a wide-variety of transportation operations and planning applications that 

require a high-quality data source. VPP data are generated by Global Positioning 

System (GPS) devices in vehicles. Multiple readings on a segment during a reporting 

period are aggregated to compute average travel speeds for that reporting period. 

The VPP, archived in the VPP Suite maintained by CATT Laboratory at 

University of Maryland, College Park, is facilitated by the I-95 Corridor Coalition 

and is a continuous feed of probe-based traffic data acquired from the private sector 

through contracts awarded since January 2008. The VPP contractually reports traffic 

conditions on over 7,000 miles of freeways and 32,000 miles of arteries.    

The data file downloaded from VPP Suite contains three speed values: current, 

average or historic and reference. The current speed is the speed observed on the 

given segment of road. The average or historic speed is an average of all the readings 

captured at the reporting instance over the past several weeks.    

A widely adopted road segmentation scheme called Traffic Message Channels 

(TMC). TMC divides roads from one break in access to another, and uses a unique 

code for each segment.  All VPP data files are accompanied by a TMC identification 

file, which contains the location information of the TMC codes. Probe data is 

generally aggregated to TMC codes, and reported against a TMC code for reporting 

periods. 
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Glossary 

If needed. 
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