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The goal of computer vision research is to automatically extract high-level

information from images and videos. The vast majority of this research focuses

specifically on visible light imagery. In this dissertation, we present approaches to

computer vision problems that incorporate data obtained from alternative modal-

ities including thermal infrared imagery, near-infrared imagery, and text. We con-

sider approaches where other modalities are used in place of visible imagery as well

as approaches that use other modalities to improve the performance of traditional

computer vision algorithms. The bulk of this dissertation focuses on Heterogeneous

Face Recognition (HFR). HFR is a variant of face recognition where the probe and

gallery face images are obtained with different sensing modalities. We also present a

method to incorporate text information into human activity recognition algorithms.

We first present a kernel task-driven coupled dictionary model to represent

the data across multiple domains for thermal infrared HFR. We extend a linear

coupled dictionary model to use the kernel method to process the signals in a high



dimensional space; this effectively enables the dictionaries to represent the data

non-linearly in the original feature space. We further improve the model by making

the dictionaries task-driven. This allows us to tune the dictionaries to perform

well on the classification task at hand rather than the standard reconstruction task.

We show that our algorithms outperform algorithms based on standard coupled

dictionaries on three datasets for thermal infrared to visible face recognition.

Next, we present a deep learning-based approach to near-infrared (NIR) HFR.

Most approaches to HFR involve modeling the relationship between corresponding

images from the visible and sensing domains. Due to data constraints, this is typ-

ically done at the patch level and/or with shallow models to prevent overfitting.

In this approach, rather than modeling local patches or using a simple model, we

use a complex, deep model to learn the relationship between the entirety of cross-

modal face images. We describe a deep convolutional neural network-based method

that leverages a large visible image face dataset to prevent overfitting. We present

experimental results on two benchmark data sets showing its effectiveness.

Third, we present a model order selection algorithm for deep neural networks.

In recent years, deep learning has emerged as a dominant methodology in machine

learning. While it has been shown to produce state-of-the-art results for a variety of

applications, one aspect of deep networks that has not been extensively researched is

how to determine the optimal network structure. This problem is generally solved

by ad hoc methods. In this work we address a sub-problem of this task: deter-

mining the breadth (number of nodes) of each layer. We show how to use group-

sparsity-inducing regularization to automatically select these hyper-parameters. We



demonstrate the proposed method by using it to reduce the size of networks while

maintaining performance for our NIR HFR deep-learning algorithm. Additionally,

we demonstrate the generality of our algorithm by applying it to image classification

tasks.

Finally, we present a method to improve activity recognition algorithms through

the use of multitask learning and information extracted from a large text corpora.

Current state-of-the-art deep learning approaches are limited by the size and scope

of the data set they use to train the networks. We present a multitask learning

approach to expand the training data set. Specifically, we train the neural networks

to recognize objects in addition to activities. This allows us to expand our training

set with large, publicly available object recognition data sets and thus use deeper,

state-of-the-art network architectures. Additionally, when learning about the target

activities, the algorithms are limited to the information contained in the training

set. It is virtually impossible to capture all variations of the target activities in a

training set. In this work, we extract information about the target activities from a

large text corpora. We incorporate this information into the training algorithm by

using it to select relevant object recognition classes for the multitask learning ap-

proach. We present experimental results on a benchmark activity recognition data

set showing the effectiveness of our approach.
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Chapter 1: Introduction and Contributions

1.1 Introduction

The main goal of computer vision research is to design algorithms to extract

high-level information from images in videos. This can be achieved in many ways

such as recognizing and localizing objects in images (object detection), identifying a

person by an image of their face (face recognition), and identifying what a person in

a video is doing (activity recognition). Modern approaches to these problems train

models on large data sets of examples and then use them to extract information

from new data samples. In most cases, the models are both trained and evaluated

on visual imagery. This is due to the abundance of visual imagery sensors and their

relevance to the problems being solved.

While visual imagery is rightfully at the core of the data used to solve computer

vision problems, there are instances when other data modalities can supplement

visual training data to improve the performance of computer vision algorithms. For

example, classification of remote sensing images can be aided by additional (non-

visible) frequency bands by using hyperspectral imaging [1]. In this case, the extra

frequency bands provide more information about the scene captured by the imaging

system. In some circumstances, non-visible sensors can capture more information

1



than visible sensors. A classic example of this is in scenes with low ambient lighting.

Visible sensors rely on ambient light reflected off of objects in a scene in order to

capture them. If there is not enough ambient light, visible cameras cannot capture

meaningful information. On the other hand, infrared sensors do a much better job

of capturing information in low-light scenarios. This is because infrared light is

generally emitted from rather than reflected off of objects of interest. In scenarios

such as these, with the right algorithms, high-level information can be extracted

from infrared imagery whereas it cannot be from visible imagery.

In this dissertation, we focus on multimodal (i.e. using more than one data

modality) approaches to two computer vision problems: heterogeneous face recogni-

tion (HFR) and activity recognition. HFR is a variant of face recognition where the

probe and gallery face images are obtained with different sensing modalities. This

is of practical importance in situations where the dominant sensing modality (visi-

ble imagery) is ineffective or unavailable and other modalities such as infrared and

drawn sketeches can capture some information from the subjects face. In this dis-

sertation, we present approaches to two specific examples of this problem: thermal

infrared HFR and near-infrared HFR.

Activity recognition is the problem of recognizing human activities in videos.

We frame the problem as a classification task. Thus, we have a list of target activities

and, given a video, we must determine which of those activities it depicts. This can

be applied to robotics (helping robots to understand their environment and thus

react to it better), surveillance (sift through a large number of video streams to

detect abnormal behavior), and video-tagging (automatically tag videos to make

2



them easier to find). We do not consider the problem of activity detection and

localization, and thus assume that the majority of the video clip depicts the target

activity. In this work we attempt to extract general knowledge from text resources

and use it to guide activity recognition training algorithms.

1.2 Organization and Contributions

This dissertation contains four core chapters (Chapter 2, Chapter 3, Chapter

4, and Chapter 5). Each chapter contains an introduction to the specific problem

it addresses, work related to the contents of the chapter, the method used to solve

the problem, and experiments validating the approach. Here we briefly summarize

the chapters and the key contributions put forward in each.

1.2.1 Kernel and Task-Driven Coupled Dictionaries for Thermal In-

frared HFR

In Chapter 2, we propose a method for HFR in the thermal IR domain. Our

goal is to enable the matching of thermal infrared probe images to visible light

gallery images. This is useful in scenarios with little to no ambient illumination.

Our baseline approach uses the coupled dictionaries of Yang et al. [2] to enable cross-

modal matching. We make two improvements to the model by incorporating the

kernel method and task-driven supervision. The main contributions are as follows,

• We incorporate the kernel method into a coupled dictionary model.

• We incorporate task-driven supervision into coupled dictionary learning.
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• We apply these models to thermal IR heterogeneous face recognition.

1.2.2 Deep CNN Approach for Near-Infrared HFR

In Chapter 3, we propose a method for HFR in the near-infrared domain. Near-

infrared sensors are useful in scenes with some ambient illumination, but not enough

for traditional visible cameras. We attempt to solve this problem by using deep

convolutional neural networks to map IR and visisble face images into a common

domain where they can be directly compared. The main contributions are as follows,

• We present the first method to use a deep model to learn global features for

HFR.

• We learn coupled deep convolutional neural networks to map visible and NIR

faces into a domain-independent latent feature space where they can be com-

pared directly.

• We demonstrate how to leverage a large visible face recognition dataset to

prevent overfitting of the networks.

1.2.3 Neural Network Breadth Selection

In Chapter 4, we present a pruning algorithm to select the breadth of network

layers in deep neural networks. Deep neural networks currently provide state-of-the-

art results on virtually all machine learning problems. One unanswered question

related to deep networks is how to choose network hyperparameters (e.g. depth

and breadth). This chapter presents a method to automatically select the breadth

4



(i.e. number of neurons) of each layer in a network. The main contributions of this

chapter are as follows,

• We present a method to automatically determine the breadth of neural network

layers.

• We do this by applying group sparsity regularization.

• We show the generality of this method by applying it to near-infrared het-

erogeneous face recognition networks as well as networks trained for image

classification tasks.

1.2.4 Text Guided Activity Recognition

In Chapter 5, we present a method to incorporate information from text re-

sources into activity recognition algorithms. Most state-of-the-art approaches to

activity recognition rely on deep convolutional neural networks. One of the main

limitations of CNNs is their reliance on very large training datasets which are ex-

pensive to collect and annotate. In this work, we propose to leverage a large dataset

collected for another problem (object recognition) through multitask learning to

minimize the need for a large activity recognition dataset. We then leverage infor-

mation extracted from text to help select the optimal objects to learn to recognize

in the multitask framework. The main contributions of this chapter are as follows,

• We present a multi-task learning approach to allow activity recognition algo-

rithms to use deeper network architectures without overfitting.

5



• We show how to use information from a large text corpora to guide the multi-

task learning approach by ensuring the secondary task is relevant to the pri-

mary task.

• We achieve state-of-the-art performance on activity recognition benchmark

data sets.
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Chapter 2: Kernel and Task-Driven Coupled Dictionaries for Ther-

mal Infrared HFR

2.1 Introduction

Over the past decade, there has been a significant amount of research in the

signal processing community dedicated to sparse coding and dictionary learning.

Sparse coding refers to representing a signal as a linear combination of a small

subset of a large pool of components. It allows for a compact representation of a

rich set of signals. Dictionary learning is the process of learning a large pool of

components (dictionary atoms) that can accurately represent a set of signals in this

manner.

In recent years, sparse coding has been extended to represent phenomena

observed through multiple sensing modalities. Typically this is done by using a

single set of sparse coefficients to represent the object under observation. Domain

specific dictionaries then serve as a link between the object’s sparse codes and its

representations when viewed with the corresponding sensing modalities. Not only

does this allow the typical compactness and richness afforded by sparse coding, it

also creates a domain independent representation for the signals. Depending on
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the method used to train the dictionaries, this can facilitate the comparison of

phenomena across modalities through their sparse codes. The dictionary learning

algorithm presented by Yang et al. [3] seeks to train Coupled Dictionaries that

maximize this cross-modal ability for image superesolution.

In this work, we improve upon the coupled dictionaries presented by Yang

et al. [3] and apply them to thermal IR heterogeneous face recognition (HFR).

Thermal HFR is the problem of identifying a thermal IR face image using a gallery

of visible light face images. This is a very difficult problem because visible light

and thermal IR face images capture drastically different underlying phenomena;

visible light cameras capture light reflected off of the face while thermal IR cameras

capture light emitted from the face. Causes of variation in one domain may be

completely undetectable in the other. For example, while it is well known that

ambient illumination can have a drastic effect on visible light images, it does not

affect thermal imagery at all. Conversely, thermal IR face images are very dependent

on the temperature of the subject. A warmer face yields higher intensity values in

IR images, while visible images are essentially invariant to temperature changes.

Despite their vast differences, the two sensing methods do capture some shared

information. For example, as shown in Figures 2.1 and 2.2, the overall shape of the

face and some edge information are constant across domains. In this work, we learn

a pair of coupled dictionaries to capture how this shared information manifests

itself across domains. We can then harness this information to directly compare

thermal probe images to visible gallery images. We do this by computing the sparse

codes of thermal and visible face images, which, after training their corresponding
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Figure 2.1: Sample images from the WSRI dataset. The visible images (top) corre-

spond to the thermal images (bottom) directly below them.

dictionaries, are assumed to lie in a domain-independent latent feature space for our

application. Figure 2.3 shows a visual example of the amount of information that

can be transferred across domains.

We improve upon coupled dictionaries by applying two methods: kernelization

and task-driven supervision. In the first improvement, we learn dictionaries whose

atoms combine in a non-linear manner. While standard linear dictionaries have been

shown to provide good results, depending on the data, the linearity assumption can

be too restrictive. Kernelization allows for a richer model that can more effectively

represent real data where this is the case. To do this, for all computations, we map
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Figure 2.2: Sample images from the UND dataset. The visible images (top) corre-

spond to the thermal images (bottom) directly below them.

the signals and dictionary atoms into a high-dimensional space using a non-linear

function. We then train the dictionaries to encode signals in the high-dimensional

space. While the dictionaries are linear in the new space, they are effectively non-

linear in the original feature space. Depending on the dimensionality of the high-

dimensional space, learning the dictionaries may not be computationally feasible

using the original algorithm. We use Mercer kernels [4] to ensure the dictionary
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learning optimization problem is tractable even when the dimension of the space is

very large (possibly infinite).

The second improvement applies to scenarios where the dictionaries are used

for some objective other than the standard reconstruction task. Historically, they

have been used mainly for superresolution and image synthesis which are reconstruc-

tive in nature. In our case, the dictionaries will be used to extract features for face

recognition (classification). Typically, this would be accomplished by first train-

ing the dictionaries to perform accurate reconstruction and subsequently training

a classifier on the sparse codes obtained with the dictionaries. While this provides

good results [5], the dictionaries are not optimized for classification. Our end goal is

not to reconstruct the data, but rather to correctly identify faces. In this work, we

extend coupled dictionaries to follow the task-driven approach of Mairal et al. [6] to

optimize the dictionaries for our specific problem rather than reconstruction. This

is done by including the classifier loss function in the coupled dictionary learning

objective. Thus, when training the dictionaries, they are specifically altered to im-

prove the classification performance. This necessitates concurrently training the

dictionaries and classifier.

In summary, the main contributions of this chapter are as follows,

• We incorporate the kernel method to a coupled dictionary model.

• We incorporate task-driven supervision to coupled dictionary learning.

• We apply these models to thermal IR HFR.

The two proposed improvements (the kernel method and task-driven supervi-
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sion) are orthogonal. Thus we can improve upon the original Coupled Dictionaries

(CD) with Kernel Coupled Dictionaries (KCD), Task-Driven Coupled Dictionaries

(TCD), and the combination of the two, Kernel Task-Driven Coupled Dictionaries

(KTCD).

The remainder of the chapter is organized as follows. In Section 2.2, we review

literature related to our problem formulation and application. In Section 2.3, we

present the optimization formulation we use to learn the dictionaries. In Section 2.4,

we describe the algorithms used to solve said optimization problems. In Section 2.5,

we present experimental results validating the effectiveness of our approach. We

conclude this chapter in Section 2.6.

2.2 Related Work

In this section, we give an overview of the most relevant work on the top-

ics of coupled dictionaries, kernel dictionaries, task-driven dictionaries, visible face

recognition, thermal IR face recognition, and heterogeneous face recognition.

2.2.1 Coupled Dictionaries

Coupled dictionaries were first introduced by Yang et al. [7] to solve the prob-

lem of super-resolution. They extended their approach by first adding one [3] and

then a second [2] L1 minimization bi-level constraint to their optimization formula-

tion. Since their initial publication, many others have extended their model and/or

applied it to different problems [8,9]. Zheng et al. [9] applied coupled dictionaries to
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cross-view action recognition. Jia et al. [10] loosened the restriction of having equal

sparse codes across domains to merely have the same support across domains. They

applied their model to a variety of problems. Wang et al. [8] allowed for a linear

transformation between sparse codes across domains and applied their formulation

to image super-resolution and photo-sketch synthesis. He et al. [11] utilized a Beta

process prior to training coupled dictionaries. In this chapter we extend the work

presented in [2], but our improvements could also be applied to most other coupled

dictionary models as well.

2.2.2 Kernel Dictionaries

Many linear machine learning and data representation techniques can achieve

better results by first non-linearly mapping the data into a higher dimensional fea-

ture space. This makes the linear techniques behave as non-linear techniques in

the original feature space. For certain mapping functions, the kernel trick can then

be used to ensure the tractability of the computations [4]. This applies to sparse

coding and dictionary learning. Zhang et al. [12] use kernels for sparse coding for

a variety of applications. Gao et al. [13, 14] apply kernels to sparse coding and

dictionary learning for face recognition, image classification, and low-rank matrix

approximation. Nguyen et al. [15] do the same with a slightly different model for

digit recognition. Shrivastava et al. [16] extend kernel dictionaries further to learn

the optimal kernel function by using a multiple kernel learning framework. The

kernel model we use is most similar to the one used in [13].
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2.2.3 Task-Driven Dictionary Learning

While much of the sparse coding and dictionary learning literature has focused

on reconstructive dictionaries (i.e., dictionaries optimized to reconstruct signals as

accurately as possible), more recently dictionaries have been explicitly trained to

perform other tasks (e.g., classification, regression). Mairal et al. [6] proposed tun-

ing a dictionary for supervised classification, semi-supervised classification, and re-

gression tasks. They did this by jointly optimizing the dictionary and classifica-

tion/regression model parameters. Jiang et al. [17] further build on this model by

optimizing the dictionary to enforce label consistency for the atoms (i.e each atom

is active for relatively few classes). Wang et al. [18] attempt to improve upon sparse

representation classification (SRC) [19] by formulating the dictionary learning and

classification as a margin maximization problem. Our task-driven model extends

the algorithm in [6] to coupled dictionaries.

2.2.4 Visible Face Recognition

Visible face recognition has been extensively researched for several decades.

Prior to 2014, shallow methods (methods that don’t use deep-learning) were the

prominent methodology, many of them focusing on sparse coding and dictionary

learning. In a seminal paper, Wright et al. [19] use a lasso formulation to classify

face images. Yang et al. [20] modify [19] to use gabor features in order to both

improve performance and reduce computation time. Lu et al. [21] extend the work

of [19] to take locality into account. Arandjelovic and Cipolla [22] formulate a
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weak photometric model and a learn generic face invariant for unconstrained face

recognition in videos. Lu et al. [23] use a manifold-based method for face recognition

with only a single gallery sample per subject.

It’s worth noting that in the past few years, most face recognition algorithms

use deep CNNs trained on large datasets [24–28]. Although they are very effec-

tive, these methods require significant amounts of training data, which, due to the

relatively small number of thermal IR cameras, is not available for our problem.

2.2.5 Thermal Face Recognition

Many papers have focused on thermal IR face recognition as well. Ma et

al. [29] proposed a non-rigid face registration method using Gaussian fields criterion

and apply it to infrared face registration. Hermosilla et al. [30] evaluate a variety of

recognition methods under varying conditions for thermal face recognition. Ghiass

et al. [31] use a dual-dimension active appearance model ensemble. Hermosilla et

al. [32] combine thermal face imagery with vascular network information to improve

results of a variety of recognition methods. A more thorough review can be found

in surveys by Ghiass et al. [33, 34].

2.2.6 Heterogeneous Face Recognition

While face recognition has received a tremendous amount of attention in the

visible domain [35] and the IR domain [33,34], thermal to visible HFR has not been

researched as much.
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Bourlai et al. [36] evaluate the effectiveness of different image preprocessing

and feature extraction methods. They preprocess the images using the Single-Scale

Self Quotient Image and Difference of Gaussian Filtering. They then hand-design

features (based on Local Binary Patterns) in an attempt to make them more ro-

bust to the sensing modality shift. They compute the similarities/differences of

the features using several standard distance metrics (chi-squared, L2, L1). Choi et

al. [37,38] also bridge the domain gap with hand-crafted features. They preprocess

the images with Difference of Gaussian Filtering and extract Histograms of Oriented

Gradient as features. They then use Partial Least Squares (PLS) combined with

nearest neighbor to classify the images. They increase the classification rate by using

thermal images of non-gallery subjects as negative examples for all classes during

the PLS training. These methods ultimately rely on hand-crafted features. The

main advantage and disadvantage for these methods is the same: the same features

are used regardless of sensor. This saves on computation time as new features don’t

need to be relearned for a new sensor, but produces worse results as the features

aren’t optimized specifically for the data.

Klare and Jain [39] utilize a variety of standard preprocessing (DoG Filtering,

Center-Surround Divisive Normalization, Gaussian Filtering) and feature-extraction

(SIFT, LBP) techniques. The novelty in their work lies in the assumption that a

similarity measure within one domain corresponds to similarity within another do-

main. While this assumption may be reasonable for some domains (NIR, sketch),

it is not a good assumption for thermal infrared. Due to the different underlying

physical phenomena, a person’s face can look wildly different in two images due to
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changes in ambient lighting while maintaining a constant thermal signature. Simi-

larly, a person’s face can produce different thermal images while looking the same

in visible images. With this assumption in mind, they use the kernel similarities of

a sample to a fixed training set as the sample’s features for matching.

It is worth noting that although thermal to visible face recognition has not

specifically received much attention, the more general problem of HFR has. These

methods mostly focus on recognizing faces from near infrared (NIR) images or drawn

sketches using a visual gallery [8, 40–45]. While these papers propose many inter-

esting algorithms, they are designed for domain shifts that are less drastic than the

thermal to visible problem [46]. In Section 2.5 we compare our method to two of

those methods [8, 45] on thermal IR datasets.

2.3 Coupled Dictionary Design

Here we formulate the coupled dictionary design problems we solve to learn

the dictionaries.

2.3.1 Unsupervised Coupled Dictionary Design

For both the linear and the kernel versions, we learn the visible dictionary

Dx ∈ Rdx×K and the infrared dictionary Dy ∈ Rdy×K by solving the following

optimization problem,
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min
Dx,Dy

N∑
i=1

R(xi,Dx, z
x
i ) +R(yi,Dy, z

y
i ) + γ1‖zxi − zyi ‖22

s.t. zxi = arg min
z
R(xi,Dx, z) + λ‖z‖1,∀i

zyi = arg min
z
R(yi,Dy, z) + λ‖z‖1,∀i (2.1)

‖Dx(:, k)‖2 = 1, ∀k ∈ {1, 2, . . . , K}

‖Dy(:, k)‖2 = 1,∀k ∈ {1, 2, . . . , K},

where {(xi,yi)}Ni=1 is a set of N pairs of features extracted from corresponding

training samples from domains x and y, respectively. The features are of dimension

dx and dy. The parameter λ is a tuning parameter used to adjust the trade-off

between the representative ability and the sparsity of the sparse codes z∗i ∈ RK .

Similarly, γ1 can be used to trade-off between representative ability and continuity

across domains. For both the linear and kernel versions, R(x,D, z) is the squared

2-norm of the reconstruction error when representing the signal x with sparse codes

z and dictionary D. The two versions differ based on the space which is used to

represent the signals and dictionary atoms. In the linear version, we represent the

signals in the Euclidean space. Thus R(x,D, z) = ‖x−Dz‖22. This corresponds to

the model introduced in [2]. In the kernel version, we map the signals xi and yi (and

the dictionary atoms of Dx and Dy) into a higher dimensional feature space with a

mapping function Φ. Thus R(x,D, z) = ‖Φ(x)−Φ(D)z‖22. Although Φ can map the

signals and dictionary atoms into a space of very high (possibly infinite) dimension,

the optimization problem becomes tractable by applying the kernel trick [4]. Though

any Mercer Kernel would suffice, for our experiments, we use the Gaussian radial
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basis function (RBF) kernel.

2.3.2 Task-Driven Coupled Dictionary Design

We formulate the Task-Driven Coupled Dictionaries in a similar manner. In

addition to the training samples {(xi,yi)}Ni=1, we are also given the gallery samples

{x̂j}Mj=1 from only one modality (e.g. visible) with corresponding labels lj,

min
Dx,Dy ,W

N∑
i=1

R(xi,Dx, z
x
i ) +R(yi,Dy, z

y
i ) + γ1‖zxi − zyi ‖22

+ γ2

M∑
j=1

L̂(ẑxj , lj,w) (2.2)

s.t. zxi = arg min
z
R(xi,Dx, z) + λ‖z‖1,∀i

zyi = arg min
z
R(yi,Dy, z) + λ‖z‖1,∀i

ẑxj = arg min
z
R(x̂j,Dx, z) + λ‖z‖1,∀j

‖Dx(:, k)‖2 = 1,∀k ∈ {1, 2, . . . , K},

‖Dy(:, k)‖2 = 1, ∀k ∈ {1, 2, . . . , K},

where L̂(ẑxj , lj,w) evaluates the loss function of a classifier with parameters w for

sample j. So for example, for a binary linear support vector machine we would

have w ∈ RK and L̂(z, l, [w b]) = max(lwTz + b, 0) + ‖w‖22/M . The parameters γ1

and γ2 are used to trade-off between representative error, cross-domain discrepancy,

and classification ability. Note that, although we optimize the dictionaries and the

classifier jointly, the gallery samples cannot be used to better learn the relationship

between the domains because we do not have the corresponding thermal domain
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test probes.

2.4 Optimization Algorithm

In this section we describe the algorithms used to solve the coupled dictionary

design problems formulated in Section 2.3. We also describe all other implementa-

tion and engineering details.

2.4.1 Unsupervised Gradient Calculation

As in [2], we solve the optimization problems by stochastic gradient descent.

For a batch of unlabeled samples i ∈ S, we update the dictionaries as follows

Dx ⇐ Dx − νt(∇L)Dx/‖(∇L)Dx‖F , (2.3)

Dy ⇐ Dy − νt(∇L)Dy/‖(∇L)Dy‖F , (2.4)

where νt is the iteration dependent learning rate. (∇L)Dx = 1
|S|
∑

i∈S(∇Li)Dx and

(∇L)Dy = 1
|S|
∑

i∈S(∇Li)Dy are the average gradients of the loss function Li =

1
2
R(xi,Dx, z

x
i )+ 1

2
R(yi,Dy, z

y
i )+ γ1

2
‖zxi −zyi ‖22 over the set S with respect to Dx and

Dy. We calculate the individual gradients with the chain rule as follows

(∇Li)Dx =
∂Li
∂Dx

+
∂Li
∂zxi
· ∂z

x
i

∂Dx

, (2.5)

(∇Li)Dy =
∂Li
∂Dy

+
∂Li
∂zyi
· ∂z

y
i

∂Dy

. (2.6)
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The partial derivatives in 2.5 and 2.6 for the linear case can be calculated as

follows

∂Li
∂Dx

= (Dxz
x
i − xi)z

x
i
T ,

∂Li
∂Dy

= (Dyz
y
i − yi)z

y
i
T , (2.7)

∂Li
∂zxi

= Dx
T (Dxz

x
i − xi) + γ(zxi − zyi ), (2.8)

∂Li
∂zyi

= Dy
T (Dyz

y
i − yi)− γ(zxi − zyi ), (2.9)

∂z̃xi
∂d̃xrc

=
(
D̃T
x D̃x

)−1(
− ∂D̃T

x D̃x

∂d̃xrc
z̃xi +

∂D̃T
x

∂d̃xrc
xi

)
., (2.10)

∂z̃yi
∂d̃yrc

=
(
D̃T
y D̃y

)−1(
−
∂D̃T

y D̃y

∂d̃yrc
z̃yi +

∂D̃T
y

∂d̃yrc
yi

)
. (2.11)

The kernel version is a bit more involved, but still straight forward. Let us

rewrite Dx in vector row and vector column formats as follows,

Dx =



dx11 dx12 · · · dx1K

dx21 dx22 · · · dx2K

...
...

. . .
...

dxn1 dxn2 · · · dxnK


=



(ex1)T

(ex2)T

...

(exn)T


(2.12)

=

[
dx1 dx2 · · · dxK

]
,

and let

Ax = K(Dx,Dx) =

[
ax1 ax2 · · · axK

]
. (2.13)

Lastly, define g
(ij)
x as

g(rc)
x = − 1

σ2
(exr − dxrc). ∗ axc , (2.14)
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where .∗ signifies the element-wise product operator. Also define the corresponding

variables for the y domain. The gradients in (2.5) and (2.6) for the kernel version

can then be computed as follows

∂Li
∂dxrc

= zxicz
xT
i g(rc)

x +
1

σ2
(dxrc − xir)k(x,dxc )z

x
ic, (2.15)

∂Li
∂dyrc

= zyicz
yT
i g(rc)

y +
1

σ2
(dyrc − yir)k(y,dyc)z

y
ic, (2.16)

∂Li
∂zyi

= Axz
x
i − k(xi,Dx) + γ1(z

x
i − zyi ), (2.17)

∂Li
∂zyi

= Ayz
y
i − k(yi,Dy)− γ1(zxi − zyi ) (2.18)

∂z̃xi
∂d̃xrc

= Ã−1x

(
− ∂Ãx

∂d̃xrc
z̃xi +

∂k(xi, D̃x)

∂d̃xrc

)
. (2.19)

∂z̃yi
∂d̃yrc

= Ã−1y

(
− ∂Ãy

∂d̃yrc
z̃yi +

∂k(yi, D̃y)

∂d̃yrc

)
, (2.20)

where, with slight abuse of notation, zxic and zyic are the cth elements of zxi and zyi ,

respectively, and xir and yir are the rth elements of xi and yi, respectively.

These equations determine the gradients of the non-zero sparse coefficients

with respect to the active dictionary atoms. As in previous similar methods [3, 6]

the remaining gradient values are set to zero.

2.4.2 Task-Driven Gradient Calculation

As in the unsupervised case, we perform a stochastic gradient descent to solve

the dictionary learning optimization. Samples chosen from the training set have no

effect on the supervised loss function; therefore the gradients for these samples can

still be calculated by (2.5) and (2.6).
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Samples chosen from the gallery only affect the supervised loss function L̂. We

calculate the gradient with

(∇L̂j)Dx =
∂L̂j
∂Dx

+
∂L̂j
∂zxj
·
∂zxj
∂Dx

. (2.21)

The dictionary Dx has no direct influence on L̂j (it only affects it indirectly

through ẑxj ). Thus the first term
∂L̂j

∂Dx
= 0. The first factor of the second term is the

gradient of the loss function of a classifier with respect to a data point. This can be

calculated for most standard classification algorithms (e.g. SVM, logistic regression,

etc.). The second factor of the second term is the same as in the unsupervised setting

and is calculated by (2.10) and (2.19) for the linear and kernel cases, respectively.

Samples taken from the gallery exist exclusively in the x domain. The y

domain dictionary Dy does not impact the sparse representation for any of theses

samples. Therefore, we have

(∇L̂j)Dy = 0. (2.22)

In the unsupervised algorithm, we first learn the dictionaries and then train a

classifier to be optimal for those dictionaries. In the task-driven case, we cannot learn

the optimal dictionaries without the optimal classifier and vice versa. Therefore we

train the coupled dictionaries and the classifier at the same time. Thus, in addition

to updating the dictionaries, we must also update the classifier parameters W. We

do this according to
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W⇐W − νt(∇L̂)W/‖(∇L̂)W‖F , (2.23)

where (∇L̂)W = 1

|Ŝ|

∑
j∈Ŝ(∇L̂j)W is the average gradient of the loss function over

the set Ŝ with respect to the classifier parameters. In this chapter, we use a linear

one-versus-all support vector machine as a classifier, so the parameters W are the

coefficients describing the separating hyperplanes for each of the gallery subjects.

2.4.3 Implementation Details

2.4.3.1 Preprocessing and Feature Extraction

We preprocess and extract features from face images with a four stage process

initially described in [38]. First we align and crop the images based on four manually

labeled fiducial points (the center of each eye, tip of the nose, and center of the

mouth). Next, we filter the images with a Difference of Gaussian (DOG) filtering

process defined as follows

IDOG(x, y|σ0, σ1) = [N(x, y;σ0)−N(x, y;σ1)] ∗ I(x, y), (2.24)

where IDOG is the filtered image, I is the input image, N(x, y, σ) is a zero-correlation

2D Gaussian kernel with zero mean and standard deviation σ. Third, we normalize

the contrast of each image according to the following equation,

IC(x, y) = τ tanh

(
IDOG(x, y)

τ

)
, (2.25)

24



where IC is the contrast normalized image, IDOG is the input filtered image, and

τ is a constant (set to 15 in this work). Finally, we extract Histogram of Oriented

Gradient (HOG) features [47] from the contrast normalized images. Figures 2.4 and

2.5 show sample images after the first three steps.

2.4.3.2 Patch Based Dictionaries

Ideally we would like to learn dictionaries that can represent entire face images

with a single set of sparse coefficients (i.e., the input samples to the dictionary

learning algorithm would be face images). Many sparse coding face recognition

algorithms take this approach and achieve good results [12,19,48]. This works well

for the standard face recognition problem because the dictionary is learned on the

same subjects that it will be tested on. The dictionary only needs to represent those

specific subjects well. In our scenario, the set of training subjects and the set of

gallery subjects are disjoint, therefore our dictionaries must generalize to arbitrary

subjects. To achieve this we would need to provide the dictionary learning algorithm

with significantly more training subjects than in previous work. Unfortunately, the

large amount of data required prohibits us from taking this approach, and we cannot

train coupled dictionaries for the entire face.

Instead, we opt to train patch-wise coupled dictionaries. Rather than having

a set of sparse coefficients represent a corresponding pair of face images, we have

them represent corresponding patches within those images. Intuitively, we are ac-

knowledging that, for any reasonable amount of training data, faces are too unique
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to an individual to be able to train dictionaries that generalize to arbitrary subjects.

We use patches instead because they are more general; two very different faces may

share similar parts (e.g. eyes, eyebrows, nose, lips, etc). Thus, patch-wise dictio-

naries learned on one set of subjects could then be usefully applied to another set

of subjects.

More concretely, training the dictionaries on patches helps us to provide suffi-

cient data for the training algorithm in two ways. The first is that there are many

patches per image; the number of samples in our training set is multiplied by the

number of patches per image. The second is that patches have smaller dimension

and consequently exponentially fewer possible variations. This allows the coupled

dictionaries to consist of fewer atoms with much smaller dimensionality. Since the

dictionaries have significantly fewer parameters, fewer data samples are required

to obtain good generalization. We further reduce the dimension of the features

extracted from patches using the principle component analysis (PCA).

Although we learn the coupled dictionaries from image patches, we still want

to train a classifier on the entirety of the face images. Thus, we concatenate the

sparse codes of all the patches within an image to form the features used for training

the classifier.

2.4.3.3 Optimization Details

We solve the optimization problems using mini-batch stochastic gradient de-

scent. For the unsupervised case, we initialize the dictionaries randomly and nor-
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malize their atoms. For each iteration, we estimate the gradients of the objective

function using (2.5) and (2.6) with ten randomly chosen pairs of corresponding

images from the training set. We then update the dictionaries by taking a step

in opposite direction of the gradient with a iteration-dependent step-size. Finally,

we renormalize the atoms of both dictionaries. We continue this process until we

converge on a solution. The pseudo-code for this algorithm is shown in Algorithm

1.

Algorithm 1 Unsupervised Dictionary Learning

Randomly initialize Dx and Dy

t⇐ 1

repeat

Randomly choose S ⊂ {1, 2, . . . , N}

for i ∈ S do

(∇Li)Dx ⇐ ∂Li

∂Dx
+ ∂Li

∂zxi
· ∂z

x
i

∂Dx

(∇Li)Dy ⇐ ∂Li

∂Dy
+ ∂Li

∂zyi
· ∂z

y
i

∂Dy

end for

(∇L)Dx ⇐ 1
|S|
∑

i∈S(∇Li)Dx

(∇L)Dy ⇐ 1
|S|
∑

i∈S(∇Li)Dy

Dx ⇐ Dx − νt(∇L)Dx/‖(∇L)Dx‖F

Dy ⇐ Dy − νt(∇L)Dy/‖(∇L)Dy‖F

Normalize atoms of Dx and Dy

t⇐ t+ 1

until convergence
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The task-driven algorithm, shown in Algorithm 2, is slightly different. As

in the unsupervised case, we solve the optimization by batch stochastic gradient

descent. Rather than initializing randomly, we initialize with the solution to the

unsupervised problem. We then initialize the classifier to be optimal for the un-

supervised dictionaries. When selecting the random batch, we choose half of the

samples from the training set and half of the samples from the gallery set. We

estimate the gradients using (2.5) and (2.6) for the training samples and (2.21) and

(2.22) for the gallery samples. In addition to updating the dictionaries, we also

update the classifier parameters in each iteration based on the gallery samples in

the batch.

We found that running the optimization for 1000 iterations was sufficient for

convergence. Following [6], for each iteration t, we set the learning rate to νt =

ρmin(1, to/t). This gives us a constant step size of ρ for the first t0 iterations

followed by a slow decrease over time. In our experiments, we use a one-versus-

all linear Support Vector Machine (SVM) as a classifier. We found it beneficial to

retrain the SVM periodically (every 200 iterations) during the gradient descent. The

efficiency of SVM training algorithms [49] enables us to do this without significantly

slowing down the optimization.

2.5 Experiments

For all experiments, we partition the dataset into a training set to learn the

dictionaries and a testing set (gallery and probe images) to test the classification
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Algorithm 2 Task-Driven (Supervised) Dictionary Learning

Initialize Dx and Dy with unsupervised dictionaries

t⇐ 1

repeat

Randomly choose S ⊂ {1, 2, . . . , N}

for i ∈ S do

(∇Li)Dx ⇐ ∂Li

∂Dx
+ ∂Li

∂zxi
· ∂z

x
i

∂Dx

(∇Li)Dy ⇐ ∂Li

∂Dy
+ ∂Li

∂zyi
· ∂z

y
i

∂Dy

end for

Randomly choose Ŝ ⊂ {1, 2, . . . ,M}

for j ∈ Ŝ do

(∇L̂j)Dx =
∂L̂j

∂Dx
+

∂L̂j

∂zxj
· ∂z

x
j

∂Dx

Calculate (∇L̂j)W

end for

(∇L)Dx ⇐ 1
|S|
∑

i∈S(∇Li)Dx + γ2
|Ŝ|

∑
j∈Ŝ(∇L̂j)Dx

(∇L)Dy ⇐ 1
|S|
∑

i∈S(∇Li)Dy

(∇L̂)W ⇐ 1

|Ŝ|

∑
j∈Ŝ(∇L̂j)W

Dx ⇐ Dx − νt(∇L)Dx/‖(∇L)Dx‖F

Dy ⇐ Dy − νt(∇L)Dy/‖(∇L)Dy‖F

W⇐W − νt(∇L̂)W/‖(∇L̂)W‖F

Normalize atoms of Dx and Dy

t⇐ t+ 1

until convergence
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WSRI UND NV-MW NV-LW

PLS [38] 83.7 41.0 82.4 70.4

Deep CNN [45] 42.5 26.2 - -

SCDL [8] 94.6 52.1 87.8 88.3

CD 93.1 50.0 89.5 89.4

TCD 93.1 50.5 90.3 89.1

KCD 95.6 51.4 92.4 93.0

KTCD 95.9 52.0 93.2 93.3

Table 2.1: Comparison of algorithm performance by dataset.

performance. In order to mimic real-world scenarios (one likely will not have access

to a thermal gallery), none of the subjects in the gallery and probe images are

present in the training set. This forces us to generalize the dictionaries to arbitrary

subjects rather than overfitting to the ones they are trained on. We evaluate the

effectiveness of our approach on three datasets: WSRI Dataset, UND Collection

X1 [50,51], and NVESD Dataset [52].

2.5.1 Wright State

The WSRI Dataset contains corresponding visible light and mid-wave infrared

(MWIR) images. It was acquired at the Wright State Research Institute (WSRI) at

Wright State University using a Basler A202k visible camera and a FLIR Systems

SC6700 MWIR camera. It was initially collected to study how thermal face images

(and the underlying physical phenomena that they capture) change after subjects
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Dataset WSRI UND NV-MW NV-LW

Dictionary Size 30 20 20 20

λ .1 .1 .1 .1

γ1 8 2 8 8

γ2 .65 .65 .65 .65

σ 1.5 1.5 .9 .9

Table 2.2: Parameter values used to generate results in Table 1.

perform different tasks (e.g. exercise, counting backwards, time-lapse etc.). We have

repurposed a subset of the dataset to be used for Thermal to Visible face recognition.

The portion we use contains 64 subjects. For each subject we have between

14 and 33 (25 on average) pairs of face images (one visible and one IR) taken at the

same time. The visible images are 1004×1004 pixels and the IR images are 512×640

pixels. Sample images are shown in Figure 2.1. After preprocessing, aligning, and

cropping the faces based on manually labeled fiducial points, the final size of the

images (shown in Figure 2.4) from both modalities is 390×470 pixels. We use a grid

of 143 overlapping 64×64 pixel patches to extract features. For all experiments on

this dataset we randomly choose ten subjects to serve as the dictionary training set

and use the remaining 54 subjects as the gallery and test probes. We repeat this

process ten times and report the average results over all experiments.
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2.5.2 Notre Dame

The University of Notre Dame (UND) Collection X1 [50, 51] contians corre-

sponding visible light and long-wave infrared (LWIR) images. It was collected using

a Merlin uncooled LWIR camera and a high resolution visible color camera. Initially

the visible and IR images are 1200×1600 pixels and 320×240 pixels, respectively

(shown in Figure 2.2). After aligning and cropping, the final images (examples

shown in Figure 2.5) are 110×150 pixels. We use a grid of 88 overlapping 24×24

pixel patches to extract features. The lower resolution and relatively poor quality

of the LWIR images makes this data set significantly more difficult (and arguably

closer to a real-world scenario) than the WSRI dataset. This is especially appar-

ent when comparing the preprocessed images (see Figure 2.5) to those from the

WSRI dataset (see Figure 2.4). The WSRI dataset shows significantly more detail,

especially around the eyes, nose, and mouth.

The dataset comes split into a training set and a testing set. The training

set consists of 159 subjects with one pair of images per subject. The testing set

consists of 82 subjects with between 4 and 40 (average 28) image pairs per subject.

We use the visible images of the testing set as our gallery and the LWIR images of

the testing set as our probe images. We repeat all experiments ten times and report

the average results. Although we use the same training and testing sets for each

trial, results vary due to the combination of the random dictionary initialization

and non-convexity of the optimization problems.
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2.5.3 Night Vision

The Night Vision (NV) dataset [52] is a portion of the data collected in a joint

effort between the Night Vision Electronic Sensors Directorate (NVESD) of the U.S.

Army Communications-Electronics Research, Development and Engineering Center

(CERDEC) and the U.S. Army Research Laboratory. The portion we used contains

50 captured with visible, mid-wave infrared, and long-wave infrared cameras. Half

of the subjects have two images from each sensor each while the other half have

four images from each sensor for a total of 150 image pairs. After alignment and

cropping, the images are 174×174 pixels. We use a grid of 169 overlapping 24×24

pixel patches to extract features. We randomly partition the dataset into a ten-

subject training set to train the dictionaries and a 40-subject gallery set to test

their performance. As with our other experiments, we perform the experiment ten

times and report the average results.

2.5.4 Discussion

The results of our methods and the parameters used to achieve them are

presented in Tables 2.1 and 2.2 respectively. In addition to comparing the four

variants described in this chapter (CD, TCD, KCD, and KTCD), we also compare

to three other methods. The first method we compare to is the PLS-based approach

[38]. The PLS-based approach suffers from not explicitly learning the relationship

between domains. Although they attempt to learn it implicitly by training with

negative thermal samples along with visible ones, the model simply cannot learn as
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much information about the domain shift as dictionary-based methods can. Thus

the PLS method performs worse than the dictionary learning methods.

The second method we compare to is a deep convolutional neural network

approach [45]. Although it produces state-of-the-art results for near infrared face

images, it performs very poorly on the thermal infrared datasets we use in this

chapter. This is because the method assumes a certain level of similarity between

the two domains. While this is fine for near IR imagery, thermal IR imagery is

too different than visible light imagery, and causes the method to fail. We could

not evaluate this algorithm on the Night Vision datasets because they have too few

images to train deep convolutional neural networks without overfitting.

The third method, semi-coupled dictionary learning (SCDL) [8], is a variant of

dictionary learning that allows for a linear transformation between the sparse coef-

ficients of the two domains rather than fixing them together. As one would expect,

this improves upon standard coupled dictionaries (CD) on the larger datasets (WSRI

and UND) due to the extra degrees of freedom allowed by the linear transformation.

On the other hand, the extra degrees of freedom allows the model to overfit on

the smaller datasets (NV-MW, NV-LW), and it ends up performing slightly worse

than standard coupled dictionaries. The method presented in this chapter (KTCD)

provides the benefits of both algorithms. By using kernels, it allows for a more

complex representation of the data. At the same time, due to the kernel trick, it

has the same number of degrees of freedom as linear dictionaries, which prevents

them from overfitting. Additionally, learning task-driven dictionaries incorporates

extra discriminative information specific to the gallery. The combination of the two
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allows KTCD to perform the best across all datasets.

2.5.5 Parameters

As in most machine learning algorithms, our method requires the selection of

several parameters. In this section, we examine the effect that varying their values

has on the face recognition performance.

2.5.5.1 Dictionary Size

In Figure 2.6 we examine the performance variation for different dictionary

sizes. Ultimately, our algorithms are not very sensitive to this parameter. Even

with dictionaries as small as five atoms, the results are virtually unchanged. This is

due to the patch-wise nature of our approach. Even though each patch is encoded

by a few sparse coefficients, the concatenation of the codes of all patches provides

a rich representation for the face images. This robustness allows us to not spend

time identifying the optimal dictionary size when applying our algorithms to new

datasets.

2.5.5.2 Parameter γ1

Figure 2.7 shows the effects of varying γ1 on the WSRI and UND datasets,

respectively. These plots show the importance of the coupling effect of the dictio-

nary learning algorithm. As γ1 tends toward zero, the coupling weakens, and the

identification rate drops.
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2.5.5.3 Training Subjects

As shown in Figure 2.8, the dictionary learning algorithms need very little

data to reach the saturation point of their performance. On the WSRI dataset

(Figure 2.8 (a)), the performance reaches that point with only six subjects. This

is because each subject provides about 25 image pairs on average, and each image

pair provides 143 patch pairs. Thus six subjects provide more than 20,000 training

samples. On the other hand, the UND dataset (Figure 2.8 (b)) requires 70 subjects

worth of data. This is because there is only one image pair for each training subject.

2.5.5.4 Parameter σ

Of all the parameters, the performance is most sensitive to changes in the

kernel width σ. As shown in Figure 2.9 small changes to σ can cause a significant

drop in performance. In general, finding an optimal kernel and its parameter(s)

for a particular dataset is a problem unto itself [53]. We leave the issue of optimal

kernel learning for coupled dictionaries to future work.

2.5.5.5 Parameter λ

As shown in Figure 2.10, varying λ over commonly used values has a moderate

effect on the performance. Greater λ values (and sparser codes) tend to decrease

the performance. This is because the data is simply to complex to be represented

by codes that are that sparse. While denser codes produce better results, they also

slow down the learning algorithm by increasing the dimension of the matrix D̃T
x D̃x
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which needs to be inverted. It is worth noting that, while all of the algorithms

perform worse as λ increases, the kernel methods are more robust to this variation

than their linear counterparts.

2.5.5.6 Parameter γ2

The parameter γ2 controls the trade-off between the unsupervised objective

function and the classifier objective function. As shown in Figure 2.11, changing

it has little effect on the overall performance. This is because the task-driven im-

provement only modestly increases the overall performance. There are two reasons

for this. The first reason is the use of patches rather than entire face samples.

As described in subsection 2.4.3.2, we are designing general dictionaries that can

be applied to all patches for arbitrary subjects. Unfortunately, features that are

discriminative for a patch at one location on one subject’s face may not be discrim-

initive at another location on another subject’s face. It’s not always possible to learn

features for patches that are both general and discriminative because they may not

exist. Essentially our need to have general dictionaries handcuffs the task-driven

algorithm and dampens the improvement it provides.

The second reason is that we must balance between two objectives: classifica-

tion and consistency across domains. Consider the work of Mairal et al. [6]. They

optimize dictionaries for the task at hand. This works for the single domain case

because the dictionary has only one objective. Standard dictionaries have one ob-

jective (reconstruction) and Mairal’s dictionaries have one objective (task at hand).
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Alternatively, coupled dictionaries are trained to optimize for two objectives: re-

construction error and cross-modal discrepancy. While we would like to focus our

dictionaries on classification, we still must ensure the dictionaries enforce consistency

of sparse codes across domains. If we sacrifice too much of the cross-domain consis-

tency, the chasm between the two sensing modalities will cripple our classification

performance regardless of how low we make its objective function.

2.5.6 Alignment Sensitivity

Face alignment is a key component of virtually all face recognition algorithm.

In this chapter, we rely on four manually labeled landmarks (two eyes, nose, and

mouth) to align our images. In real-world scenarios, manually labeling each image

may not be feasible and a landmark detection algorithm must be used. In order to

simulate this setting, we run experiments on images that have been aligned based

on incorrect landmark points. Specifically, we add zero mean Gaussian noise to each

coordinate of each manually labeled landmark, realign the images based on those,

and then reevaluate the performance. Tables 2.3 and 2.4 show the performance

degradation for various levels of noise. Note that the UND images have a much

lower resolution than the WSRI images, so a single pixel (and thus a single pixel

error) represents a larger portion of the face. Thus UND images are more sensitive

to misalignment than the WSRI images. Additionally, when only using four land-

marks for alignment, an error in one coordinate of one point can cause significant

performance problems. In a real-world scenario, a larger set of landmarks could be
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Noise std. (pixels) CD TCD KCD KTCD

0 93.1 93.1 95.6 95.9

2 92.2 92.4 94.1 94.3

4 88.6 88.7 90.2 90.5

6 82.1 82.3 84.7 84.8

Table 2.3: Alignment sensitivity on the WSRI dataset.

Noise std. (pixels) CD TCD KCD KTCD

0 50.0 50.5 51.4 52.0

1 43.2 43.6 44.9 45.1

2 31.0 31.0 33.1 33.8

3 23.3 24.1 25.2 25.6

Table 2.4: Alignment sensitivity on the UND dataset.

used to mitigate the effects of a few erroneous values.

2.5.7 Path Forward

Although progress has been made towards practical thermal face recognition

algorithms, there are still many steps to be taken to get there. One of the most

glaring weaknesses in current thermal face recognition research is the reliance on

substandard datasets. Compared to other domains (visible light, near IR), thermal

IR datasets are very small in both number of subjects and total images. Not only

does this more closely mimic real world scenarios, it also enables the use of powerful

algorithms that require large amounts of training data such as convolutional neural
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networks. Additionally, current datasets are obtained in controlled settings with

limited pose variation. Only so much value can be obtained from datasets that

don’t accurately represent real-world scenarios. Larger, more challenging datasets

is the best path forward towards the application of thermal face recognition systems.

2.6 Conclusion

In this chapter, we have presented two improvements to coupled dictionar-

ies. In the first, we map the data into a high-dimensional feature space before

learning the dictionaries. This enables us to learn dictionary atoms that combine

non-linearly. We then use the kernel trick to make the dictionary learning tractable.

In the second improvement, we fine tune the dictionaries for classification rather

than reconstruction. We do this by concurrently training the dictionaries and the

classifier.

We have applied our dictionary learning algorithms to three thermal to visible

face recognition datasets: WSRI, UND-X1, and NV. We present results that measure

the improvement that our algorithms provide over the original coupled dictionaries,

semi-coupled dictionaries, a deep neural network approach and a PLS-based thermal

to visible recognition algorithm. While our algorithms provide some improvement,

the performance on the more realistic UND dataset is still quite poor. There is still

much to be done to solve this challenging problem.
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Figure 2.3: For this figure we trained coupled dictionaries on pixel values of visible

and infrared image patches. We use the pixel values as features (as opposed to

the HOG features used in the rest of the experiments) in order to demonstrate the

ability of coupled dictionaries visibly. The left most column shows the preprocessed

visible (top) and corresponding IR (bottom) patches. The middle column shows the

reconstructions of the left-column patches from their respective sparse codes and

domain dictionaries. The image on the right shows the reconstruction of the visible

patch from the sparse codes of the IR patch using the visible domain dictionary.

The similarity between the right and top middle patches demonstrates the ability

of coupled dictionaries.
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Figure 2.4: Preprocessed and aligned sample images from the WSRI dataset. The

visible images (top) correspond to the thermal images (bottom) directly below them.
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Figure 2.5: Preprocessed and aligned sample images from the UND dataset. The

visible images (top) correspond to the thermal images (bottom) directly below them.
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(a) (b)

Figure 2.6: Performance for varying number of dictionary atoms on the WSRI (a)

and UND (b) datasets.

(a) (b)

Figure 2.7: Performance for varying values of γ1 on the WSRI (a) and UND (b)

datasets.
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(a) (b)

Figure 2.8: Performance for varying number of training subjects on the WSRI (a)

and UND (b) datasets.

(a) (b)

Figure 2.9: Performance for varying values of λ on the WSRI (a) and UND (b)

datasets.
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(a) (b)

Figure 2.10: Performance for varying kernel widths on the WSRI (a) and UND (b)

datasets.

(a) (b)

Figure 2.11: Performance for varying values of γ2 on the WSRI (a) and UND (b)

datasets.
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Chapter 3: Deep CNN Approach for Near-Infrared HFR

3.1 Introduction

In recent years, a significant amount of research in the computer vision com-

munity has focused on Heterogeneous Face Recognition [54]. The objective of HFR

is to be able to perform face recognition with probe images captured via alternative

sensing modalities. Due to the ubiquity of visible cameras, virtually all face galleries

are comprised of visible light images. Thus the main challenge of HFR is enabling

the cross-domain comparison of probe images to visible-light gallery images. Most

works address this problem by selecting [55, 56] or learning [57, 58] features that,

among other things, are more invariant across domains than raw pixels. While

these methods achieve some degree of success, due to data constraints, the features

used are almost always local in nature or learned using shallow models.

Considering that most HFR datasets have large feature dimension (at least

100x100 pixels) and only a moderate number of images for training (fewer than

10000), any attempt to learn global features with deep models will likely overfit

to the training set. To get around this problem, HFR algorithms learn features to

represent patches rather than whole images. This alleviates the data constraints in

two ways: by increasing the number of training samples (because there are multiple
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patches per image) and by decreasing the feature dimension (because patches are

smaller than whole images). Although some works do consider global features [57,

58], the limited training data restricts them to using simple models.

While learning local features and using simple models make HFR more tractable,

recent computer vision research has shown that global features and deep models tend

to outperform local features and shallow models. Even just using a simple spatial

pyramid approach (i.e. a naive globalization of a local histogram feature) can im-

prove system performance for many applications [59]. This is especially true for

current state-of-the-art algorithms in face recognition, which use deep networks to

extract global representations for face images. This allows for a richer representa-

tion that can model the face as a whole rather than as a collection of parts. In this

work, we show how to use deep learning to leverage a large visible face recognition

dataset to learn global features for HFR.

Deep networks perform well due to their ability to learn information from

extremely large (sometimes unlabeled) datasets. In fact, the recent surge in deep

learning research was spurred in part by the breakthrough method of Hinton et

al. [60] to initialize deep networks. They proposed to greedily pretrain the layers

of a network with a generative model. This helps the stochastic gradient descent

learning algorithm by guiding it towards better local minima [61]. In the case where

there is limited training data, it also helps to prevent overfitting. In this work, we

propose to adapt the same paradigm to HFR. Like [60], we initialize networks using

the abundant data (labeled visible faces) and then tweak them with the scarcer

application-specific data (labeled/corresponding visible and infrared faces).
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More specifically, our approach is as follows. We first train a deep convolutional

neural network on a large visible face dataset for identification. We then use the

trained network to initialize networks that will be used to extract features from

visible and near-infrared images for HFR. Finally, we further optimize the HFR

networks on the HFR training data to couple their output features, making them

suitable for cross-modal face recognition.

The main contributions of this chapter are as follows:

• We present the first method to use a deep model to learn global features for

HFR.

• We learn coupled deep convolutional neural networks to map visible and NIR

faces into a domain-independent latent feature space where they can be com-

pared directly.

• We show how to leverage a large visible face recognition dataset to prevent

overfitting of the networks.

The remainder of the chapter is organized as follows. In Section 3.2 we review

relevant HFR, face recognition, and deep learning literature. In Section 3.3 we

describe our approach. In Section 3.4 we provide implementation and engineering

details. In Section 3.5 we present experimental results and discuss their implications.

In Section 3.6 we describe three improvements we made to our baseline method. In

Section 3.7 we present experiments we performed to evaluate those improvements.

Finally, we conclude the paper in Section 3.8.
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3.2 Related Work

3.2.1 NIR-Vis Face Recognition

HFR has been extensively researched over the past decade, with NIR being

one of the most prominent alternative sensing modalities. Here we briefly describe

some recent works on the subject. Klare and Jain [39] use kernel similarities to a

set of training subjects as features. Zhu et al. [56] propose a new feature descriptor

and a transductive model for domain-adaptive matching. Yi et al. [58] use restricted

Boltzmann machines to reduce the domain difference locally and ignore initial PCA

coefficients to do the same globally. Jin et al. [62,63] learn local features to represent

images consistenly across domains and discriminatively within each domain. Juefei-

Xu et al. [57] use cross spectral joint dictionaries to reconstruct visible light images

from near IR images and vice-versa. They then compare images directly. A common

drawback of all these methods is they do not use a deep, global representation of

face images, which has been shown to produce superior results for face recognition.

3.2.2 Deep Learning Face Recognition

Face recognition has been researched heavily for decades [35]. With few ex-

ceptions [64] recent state-of-the-art algorithms have been dominated by deep con-

volutional neural networks trained on extremely large datasets to produce global

feature representations. Taigman et al. [24] were the first to train a deep neural

network for face recognition. They trained on the private Social Face Classifica-
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tion dataset which contains 4.4 million labeled images of 4030 subjects. They used

convolutional, locally connected, and fully connected layers in their network. Addi-

tionally they fine-tune the parameters for verification with a siamese network. They

extended their work in [25] and increased the dataset size to 500 million images of

10 million subjects. Sun et al. [26,65–67] make a variety of adjustments to improve

the performance of deep networks for face recognition including a joint verification-

identification loss function, different network architectures, and Bayesian metric

learning. They use the private CelebFaces [65] (202,599 images of 10,177 subjects)

and WDRef [68] (99,773 images of 2,995 subjects) datasets to train their networks.

They also use convolutional, locally connected, and fully connected layers. Parkhi

et al. [28] learn a feature embedding by using a triplet loss function. They also de-

tail the steps they took to create their 2.6 million image dataset. Schroff et al. [27]

leveraged a 200 million images of 8 million subjects to train a network. This has

the best performance to date on Labeled Faces in the Wild (LFW) [69], a standard

unconstrained face recognition benchmark.

3.2.3 Distillation

Distillation was first introduced by Hinton et al. [70] as a means to condense an

ensemble of neural networks into a single neural network by extracting information

from network logits. It has since been used by Gupta et al. [71] to help train in

modalities with limited training data. Su and Maji [72] take a similar approach

when training a model for use with low quality data.
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3.3 Our Method

3.3.1 Network Structure and Initialization

The network structure we use throughout this work (detailed in Table 3.1)

is from the Googlenet [73] family of networks (i.e. deep with small convolutional

filters). It is comprised of five major sections connected in series. Each section

contains the following in order: a convolutional layer, a rectified linear unit layer, a

second convolutional layer, a second rectified linear unit layer, and a max pooling

layer. The only exception is that the fifth (and last) pooling layer is an average

pooling layer. The output of the last section is fed to a fully connected layer whose

output is evaluated by a softmax loss function for identification. We build the

network entirely of convolutional layers (as opposed to locally and fully connected

layers) to minimize the number of parameters so as to reduce the risk of overfitting.

This is not a concern during initial training, but can become an issue when tweaking

the network for HFR due to limited HFR training data.

We train the network with the standard stochastic gradient descent (SGD) and

backpropagation on the CASIA WebFace Database [74]. It is comprised of 494,414

images of 10,575 subjects, which is large enough to provide sufficient generalization.

We held out 10,000 images for validation purposes and, after training, the network

was able to classify 80 percent of them correctly. We also test the network on

Labeled Faces in the Wild (using the negative distances of pool5 layer features as

similarity scores) and achieved 96 percent accuracy. While not state-of-the-art on
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LFW, the network is more than good enough to serve as an initialization for our

HFR application. Within-domain identification experiments on the HFR training

data yield greater than 99.5 percent accuracy for both visible and near-infrared

images. Furthermore, it has significantly fewer parameters than state-of-the-art

networks, which lowers the risk of overfitting when adapting the network for HFR.

For the remainder of this paper, we will refer to this network as IDNet.

3.3.2 HFR Networks

While we would ultimately like to learn a network for identification on infrared

faces, we do not have access to infrared face images of probe subjects for training.

Instead, we train two networks for cross-modal verification: VisNet (for visible im-

ages) and NIRNet (for near infrared images). We initialize these networks as copies

of IDNet, with the exclusion of the fully connected softmax classifier. The fully

connected layer contains more parameters than the rest of the network combined,

so removing it helps to prevent overfitting. Additionally, the outputs of the fully

connected layer are each highly tuned for a specific subject in the WebFace dataset,

and are not likely to generalize well to arbitrary subjects. After removing layer fc6,

the last layer of each network is pool5 and the output of each is one 320-channel

pixel.

We train VisNet and NIRNet to couple their output features by creating a

siamese network [75, 76] as shown in Figure 3.3. Although we initialize them with

the same values, unlike the normal use of a siamese network, we do not force the two
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Name Type Filter Size Stride Output Size Params

conv11 Convolution 3× 3× 32 1 100× 100× 32 288

Section 1 conv12 Convolution 3× 3× 64 1 100× 100× 64 18.4K

pool1 Max Pooling 2× 2 2 50× 50× 64 0

conv21 Convolution 3× 3× 64 1 50× 50× 64 36.7K

Section 2 conv22 Convolution 3× 3× 128 1 50× 50× 128 73.7K

pool2 Max Pooling 2× 2 2 25× 25× 128 0

conv31 Convolution 3× 3× 96 1 25× 25× 128 111K

Section 3 conv32 Convolution 3× 3× 192 1 25× 25× 192 166K

pool3 Max Pooling 2× 2 2 13× 13× 192 0

conv41 Convolution 3× 3× 128 1 13× 13× 128 221K

Section 4 conv42 Convolution 3× 3× 256 1 13× 13× 256 295K

pool4 Max Pooling 2× 2 2 7× 7× 256 0

conv51 Convolution 3× 3× 160 1 7× 7× 160 369K

Section 5 conv52 Convolution 3× 3× 320 1 7× 7× 320 461K

pool5 Avg Pooling 7× 7 1 1× 1× 320 0

fc6 Fully Connected 10575 3.38M

cost Softmax 10575 0

Table 3.1: IDNet layer details
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halves of the network to share weights during training. This allows the networks

more freedom to capture features that manifest differently in visible and NIR images.

We use the contrastive loss [76] of the outputs of the VisNet and NIRnet as the loss

function for the network. The contrastive loss L on vectors x,y ∈ Rn can be written

as follows,

L(x,y) =


‖x− y‖22 if lx = ly

max(0, (p− ‖x− y‖2))2 otherwise

(3.1)

where x and y have respective labels lx and ly, and p is a tuneable parameter.

Minimizing the contrastive loss makes the distance between images of the same

subject as small as possible while ensuring images of different subjects are at least

a distance of p away from each other.

As with IDNet, we train using stochastic gradient descent and calculate the

gradients using the backpropagation algorithm. Whereas in the IDNet training a

sample consists of a visible image and its corresponding identity label, here, a sample

consists of a visible image, an infrared image, and a binary label indicating whether

the images depict the same subject.

3.4 Implementation Details

3.4.1 Image Preprocessing

We perform very minimal image preprocessing. We first align all faces using

[77] from the Dlib C++ library [78]. This method works well on NIR images in
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Figure 3.1: Aligned and cropped Webface images.

addition to visible ones. Next we crop the faces and resize them to be 100×100

pixels. We then convert the images to gray-scale and subtract the mean face image

of the WebFace dataset. We do not scale or filter the images in any way. Sample

aligned and cropped images (prior to mean subtraction) are shown in Figures 3.1

and 3.2.

3.4.2 IDNet Details

We train IDNet using the Caffe [79] deep learning framework for 200,000 iter-

ations with a batch size of 256 images. We initially set the learning rate to be .01

and reduce it by a factor of ten every 80,000 iterations. We set the momentum to .9
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Figure 3.2: Aligned and cropped NIR-VIS 2.0 face images. The top row is visible-

light and the bottom row is near-infrared.
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Figure 3.3: Network Diagram

and the weight decay to .0005. We use a single NVIDIA 12GB GeForce GTX Titan

X GPU to train IDNet which takes approximately two days.

3.4.3 HFR Details

When training the HFR networks, we are given training data consisting of a

set of labeled visible faces and a set of labeled infrared faces. None of the subjects

in the testing set are present in the training set. We use all possible same-subject

visible-infrared image pairs as positive samples. Because there are significantly more

different-subject image pairs, we do not use all of them, but rather we balance our

training set by including the same number of negative samples as positive samples.

We choose the different-subject pairs randomly.

While training IDNet from scratch takes two days, tweaking VisNet and NIR-
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Net can be done much quicker with IDNet as a good initialization point. This allows

us to choose some parameters by cross-validation. For all experiments we use a batch

size of 64 image pairs. For the learning rate policy, we halve the learning rate every

1000 iterations and set the momentum to .9. We found that both the loss function

and performance saturated before 4,000 iterations, allowing us to train the network

in about 20 minutes. Parameters we choose with cross-validation include the initial

learning rate, the weight decay, the contrastive loss parameter, and the distance

metric used for nearest neighbor classification (`2-norm, `1-norm, or cosine).

Although we generate as many training samples as possible while maintaining

a balanced dataset, the HFR network training is still prone to overfitting due to too

little data and too many parameters. We alleviate the overfitting problem by forcing

the convolution kernels of some of the network layers to maintain the original IDNet

values. This reduces the number of parameters the training algorithm must learn,

lessening the amount of training data needed.

Ideally we would determine which layers to fix entirely through cross-validation.

Unfortunately, with each half of the network having 10 convolutional layers, there

are 210 × 210 ≈ 106 combinations to test (where a combination indicates for each

layer whether it will be fixed to its initial value or allowed to float during training).

Instead, we use intuition to select a small subset and cross-validate over those. We

first assume that if one layer in a section is fixed, then the other must be fixed as

well (i.e. if conv32 in VisNet is fixed, then conv31 in VisNet must also be fixed). We

then further assume that at least one of the first and last sections must be floating

(i.e. not fixed) and that all floating layers in a network must form a contiguous
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NIR-VIS 2.0 Rank 1 Std. Dev. FAR=.001

IDNet 58.6 2.0 39.0

CDFL [62] 71.5 1.4 55.1

LMCFL [63] 75.7 2.5 55.9

[57] 78.5 1.67 85.8

C-CBFD [80] 81.8 2.3 47.3

[58] 86.2 0.98 81.3

Our Method 87.5 0.83 76.1

Table 3.2: Performance on View 2 of CASIA NIR-VIS 2.0 Face Database

block. Our assumptions reduce the combinations from more than a million down to

the 81 shown in Table 3.4.

3.5 Experiments and Discussion

3.5.1 NIR-VIS 2.0

The CASIA NIR-VIS 2.0 database [82] is the largest publicly available NIR

HFR dataset. It contains 17,580 total images of 725 subjects. The dataset contains

two views: View 1 for algorithm development and parameter tuning, and View 2

for performance reporting. View 1 contains separate testing (probe/gallery) and

training sets with different subjects. The training set has 2,480 visible images and

6,270 NIR images of 357 subjects. The testing set has 6123 NIR probe images of

the remaining 358 subjects and one visible gallery image per subject. View 2 has 10
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HFB Rank 1 FAR=.01 FAR=.001

IDNet 80.9 70.4 36.2

P-RS [39] 87.8 98.2 95.8

C-DFD [81] 92.2 85.6 65.5

THFM [56] 99.28 99.66 98.42

[58] 99.38 - 92.25

Our Method 97.58 96.9 85.0

Table 3.3: Performance on View 2 of CASIA HFB Face Database

NIR-VIS 2.0 View 1 Floating NIRNet Sections

Identification Rate 1 1-2 1-3 1-4 All 2-5 3-5 4-5 5

1 71.8 81.4 86.5 87.8 87.8 87.9 87.4 85.8 83.4

1-2 80.7 81.5 85.7 87.6 87.5 87.7 87.6 85.6 82.3

1-3 86.2 85.7 83.4 82.5 83.0 83.1 81.8 79.9 78.9

Floating 1-4 86.1 86.7 82.0 77.0 73.5 73.7 72.6 70.7 70.2

VisNet All 85.8 86.8 82.0 72.5 61.1 61.2 60.1 58.8 60.9

Sections 2-5 85.7 86.6 81.7 73.3 61.2 61.2 59.7 58.6 60.9

3-5 86.0 86.2 80.9 72.0 60.3 60.7 59.8 58.6 60.6

4-5 85.5 86.0 80.4 71.0 61.1 61.1 59.7 60.9 60.0

5 84.9 85.5 82.3 71.5 62.0 61.3 62.2 59.8 60.1

Table 3.4: View 1 performance variation based on which sections of NIRNet and

VisNet are altered during training. The rest of the sections are fixed to their initial

IDNet values.
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sub-experiments each of which has the same setup as View 1 with slightly different

numbers of images. NIR-VIS 2.0 is by far the most difficult NIR HFR dataset. In

particular, the combination of pose variation, large gallery size, and single gallery

image per subject make the dataset challenging. We view this dataset as the most

relevant to real-world scenarios due to these challenges. Table 3.2 shows our method

outperforms all others on View 2 of this dataset. Additionally, the ROC curve on

View 2 is shown in Figure 3.4.

3.5.2 HFB

The CASIA HFB dataset [83] is an older and thus more widely used NIR

HFR dataset. It has 5,098 total images from 200 subjects. It has a similar protocol

setup to NIR-VIS 2.0 (View 1 for tuning parameters, ten View 2 experiments for

reporting results). View 1 (and each experiment in View 2) split the dataset into

100 training subjects and 100 testing subjects. In View 1, the training set contains

1,036 visible images and 1,438 NIR images, and the testing set contains 1,059 visible

gallery images and 1,542 NIR probe images. The experiment protocols in View 2

have similar statistics. HFB is less challenging than NIR-VIS 2.0 because there are

fewer gallery subjects and multiple gallery images per subject. Additionally, there

is significantly less pose variation in HFB as there is in NIR-VIS 2.0. These factors

make HFB less relevant to real world applications. It’s worth noting one aspect

of HFB that makes it more difficult to train with: the relatively small number of

training subjects. Models are more likely to fit to those specific subjects rather than
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generalizing. Our results on View 2 of HFB and those of other methods are shown

in Table 3.3 and our ROC curve is shown in Figure 3.5.

3.5.3 Layer Fixing Cross-validation

Table 3.4 shows the results of a cross-validation experiment used to choose

which VisNet and NIRNet layers to alter during training. In addition to useful

information for parameter selection, it also provides insight into the strengths and

weaknesses of learning local and global features (see Table 3.5 for the localness of

the features output by different network layers). The configurations that train only

local features (the four in the upper left corner) perform significantly worse than

those that consider global features. This supports our claim that it is important to

learn features with a deep, global model. In the same vein, the configurations that

produce the best results almost all allow learning in section 4 or section 5 in either

VisNet or NIRNet. This shows that learning global features with a deep model

can improve HFR performance. Additionally, the bottom right quadrant of the

table shows the difficulty in learning global features and why they are generally not

used in HFR. Any configuration where both nets have one of their two highest level

sections (4 and 5) floating causes the network to overfit and perform poorly. This is

how any deep approach to HFR would perform given the limited training data. We

avoid this problem by fixing the high-level layers of one of the network halves to the

strong initialization, yielding the performance shown in the upper right and bottom

left quadrants. Without the IDNet initialization (i.e. with random initialization),
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we would have to train every layer of both VisNet and NIRNet, which yields an

identification rate of 61.1 percent.

Another point that can be inferred from Table 3.4 is the relative importance

of altering VisNet versus altering NIRNet. While the difference is usually small, it

is generally better to alter more layers of NIRNet and leave more layers of VisNet

fixed. This can be seen by comparing the identification rate of a combination with

the that of the combination with swapped NIRNet and VisNet floating sections

(swapping the row and column values on the table). For example, the performance

when allowing all NIRNet sections and VisNet sections 1-2 to float is 87.5 percent,

while the swapped version (NIRNet 1-2 and all sections of VisNet float) correctly

identifies at a slightly lower rate (86.8 percent). Intuitively this makes sense as

IDNet was initially trained to extract discriminative features from visible images

and thus does not need to be tweaked as much when being used for that purpose.

3.5.4 Gallery Size

While the NIR-VIS 2.0 and HFB databases provide excellent benchmarks for

NIR HFR, they do not cover all real-world scenarios. For example, it is possible

to have a gallery of thousands or more subjects. In this section, we examine how

the performance degrades with increasing gallery size. To accomplish this task, we

append visible face images (one per subject) from the WebFace dataset used to train

IDNet to the NIR-VIS 2.0 galleries. This provides a simulation of a situation with

significantly more subjects. The results in Figure 3.6 show that our method is fairly
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Layer Region Size

Input 1× 1

pool1 6× 6

pool2 16× 16

pool3 36× 36

pool4 76× 76

pool5 100× 100

Table 3.5: Sizes of image regions that affect features in a given layer. Each feature

in a layer in the first column encapsulates visual information from an image region

of corresponding size from the second column.

robust to the increased gallery size.

3.6 Improvements

In this section, we describe three methods that improve the performance of

our baseline approach. First, we use cross-modal distillation to leverage more in-

formation from the initialization network. In the baseline approach, the networks

are trained so that images of the same subject are close together and images of dif-

ferent subjects are farther apart. Cross-modal distillation attempts to enforce the

following principle: if a subject looks similar/dissimilar to another subject in the

visible domain, then the same degree of similarity should hold in the IR domain. As

shown in Figure 3.7, this is achieved by training the IR network to reproduce the

visible network’s logits (classification scores before the softmax output) which can
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Figure 3.4: ROC Curve for CASIA NIR-VIS 2.0 dataset.
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Figure 3.5: ROC Curve for CASIA HFB dataset.
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be thought of as similarity scores to the initialization subjects. This allows the IR

network to ”distill” information from the visible domain network.

The second proposed improvement is to replace the `2 distance metric with

the `1 distance metric in the contrastive loss during training. This prevents a few

feature components from dominating the optimization and allows all the features

learned by the initialization network to have comparable effects during the HFR

training.

The third improvement we present is to use a better initialization network.

We accomplish this by training the initialization network for over twice as many

iterations. This yields a more thoroughly trained network with more meaningful,

discriminative features for identifying faces.

3.6.1 Cross-modal Distillation

The first method we use to improve performance is cross-modal distillation.

The main assumption is that if a subject looks similar or dissimilar to another

subject in visible imagery, that should carry over into the near-infrared imagery.

Cross-modal distillation does this by using information about the initialization sub-

jects in the pretrained network. While that information is not included in any

dataset, we can infer it from the initialization network output logits.

The initialization network is trained to recognize 10,575 celebrities from their

face images. Given a face, this is done by calculating similarity scores (sometimes

called logits) for each possible celebrity in the dataset. The network classifies the
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face image as belonging to the celebrity with the highest score. The network can

perform this operation on any face image, regardless of the subject in the image.

While it is not useful for recognition of subjects which are not in the initialization set

(like our test and training set subjects), the logits still contain valuable information

about the appearance of the face. They can be thought of as a rough estimate for

how similar the input face is compared to the celebrity faces in the visible domain.

A high logit indicates the input face looks very similar to the celebrity while a low

logit indicates the opposite.

As shown in Figure 3.8, we incorporate this extra information into our algo-

rithm by adding a second contrastive loss function that takes the logits as inputs.

This contrastive loss operates only on same-subject pairs, so it essentially performs

regression on the logits. Basically, we’re trying to ensure that the infrared network

can recreate the logits that are generated by the visible network. The idea is that

in order to accomplish this task, the network is forced to learn more disciminative

features in the convolutional layers of the network. Also note that, as with the con-

volutional weights, the weights of the fully connected layers are initialized with the

corresponding values in the initialization network. Without the pretrained values,

the computed logits would be meaningless.

3.6.1.1 Engineering Details

We make a few notable changes in the training algorithm due to the incorpora-

tion of cross-modal distillation. First, due to the large number of parameters in the
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fully connected layers (see Table 3.1), we do not allow them to be adjusted during

HFR optimization. Additionally, we found that when training with distillation on

the HFB dataset, we did not have to fix as many of the convolutional layers (i.e. the

model didn’t overfit as easily with distillation). We attribute this to relatively low

number of training subjects (100) in the HFB dataset. The additional information

from the CASIA WebFace subjects helped to improve generalization.

3.6.2 Contrastive Loss Metric

The second adjustment we make to improve performance is a change in the

metric used by the contrastive loss. In the original work, only the Euclidean norm

is used with the contrastive loss. On the other hand, when testing, Reale et al.

[45] cross-validated over three distance metrics to compare face images (`1, `2, and

cosine). We thought it might be beneficial to cross-validate over the distance metric

used in the contrastive loss as well.

In this work, we only cross-validate over the `1 and `2 norms. When using the

`1 norm, the constrastive loss is computed as follows,

L(x,y) =


‖x− y‖1 if lx = ly

max(0, p− ‖x− y‖1) otherwise,

.

This gives the training algorithm more flexibility to tailor the networks for the

data. It turns out that in virtually all experiments, the `1 norm provides the best

results. We believe it tends to be a better fit for this data because it prevents a
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few feature components from dominating the optimization. By this we mean that

the gradient passed backwards by a given feature component no longer depends on

the components magnitude. For example, consider the `2 norm. One component of

gradient of the `2 norm squared is equal to that component itself. Because of this,

components that naturally have a larger discrepancy across domains will have an

undue effect on the network parameters when their gradients back-propagated. The

gradient of the `1 norm, on the other hand, is merely the sign of each component

and does not depend on the magnitude of the components at all. This prevents a

few components from dominating the optimization, allowing for a better solution.

Since we are using two contrastive loss functions (the original one and the one

for distillation), we also used cross-validation to determine the distance metric for

the distillation loss function. In that case, the `2 distance yielded better results.

3.6.3 Improved Initialization

The third adjustment we make to improve performance is by providing the

networks with a better initialization. Generally, a simple way to improve perfor-

mance of any deep network is to train it for longer. Usually this will achieve a

small increase in performance. In our case, extra training of the HFR networks does

not change the performance much because of the limited amount of training data

available.

While we do not have sufficient cross-modal training data to warrant training

the HFR networks for more iterations, we do have a large initialization dataset
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(CASIA Webface). Thus we train the initialization network for a longer period of

time (450,000 iterations vs 200,000 iterations). This makes the initialization learn

more effective features for recognizing faces (83% vs 80% recognition rate on a

validation set from CASIA Webface) and therefore increases the HFR performance.

3.7 Improved Results

We present the results of evaluations of five variants of our method (each

method individually, all three together, and the original method as a baseline) in

Tables 3.6 and 3.7. From the results, it is clear that all three methods have a positive

effect on the recognition performance.

Of the three methods, distillation provides a more modest increase in perfor-

mance, though it is comparable to the other two on the HFB dataset. We attribute

this to the smaller number training subjects and images in HFB. This makes infor-

mation about additional subjects (through distillation) more valuable. On the other

hand, NIR-VIS 2.0 provides more training subjects and images. Thus, the train-

ing algorithm does not benefit as much from information about additional subjects.

The other two methods (`1 metric and better initialization) help the training on

both datasets, with the better initialization adding a noticeably bigger performance

boost in both cases. This demonstrates the remarkable ability of deep networks to

soak up information even after they have already been trained for a long time.

Finally, it is clear that the best performance is achieved when all three meth-

ods are used together. The recognition rates are improved from 97.58% to 99.52%
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HFB Rank 1 FAR=.01 FAR=.001

Baseline [45] 97.58 96.9 85.0

Distill 98.55 94.7 81.2

L1 Loss 98.68 95.0 82.6

Better Init. 99.08 97.7 87.7

All Three 99.52 98.6 91.8

Table 3.6: Performance of our algorithms on View 2 of CASIA HFB Face Database

NIR-VIS 2.0 Rank 1 Std. Dev. FAR=.001

Baseline [45] 87.1 0.88 74.5

Distillation 87.5 1.04 76.1

L1 Loss 89.4 1.23 79.5

Better Init. 90.8 0.79 77.9

All Three 92.6 0.64 81.6

Table 3.7: Performance of our algorithms on View 2 of CASIA NIR-VIS 2.0 Face

Database

and from 87.1% to 92.6% on the HFB and NIR-VIS 2.0 datasets respectively. Ad-

ditionally, the verification rates increase from 85.0 to 91.8 and from 74.5 to 81.6.

3.8 Conclusion

In conclusion, we have presented a novel approach to NIR HFR. We have

proposed to use convolutional neural networks to learn deep, global features that

74



capture discriminative information in NIR and visible face images. Moreover, we

coupled the networks so they produce domain-independent features that can be

compared directly. We prevented overfitting by initialization with a visible face

identification network trained on a very large visible face dataset. We evaluated

our approach on two benchmark databases and additionally investigated how our

method scales with larger gallery sizes. We proposed three improvements to our

baseline method and evaluated their effectiveness as well.
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Figure 3.7: Top: Architecture of baseline method. Bottom: Architecture of the

proposed network adding a second loss measuring difference of the logits of the two

networks to the baseline architecture.
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Chapter 4: Neural Network Breadth Selection

4.1 Introduction

Virtually all machine learning methods entail choosing a model and using a

training algorithm to learn model parameters from data. In most cases, one must set

the values of one or more hyper-parameters for the model and/or algorithm. Deep

networks are no different. When there are only a few hyper-parameters and training

is relatively fast, cross-validation can be used to select optimal values for the hyper-

parameters. If cross-validation is too slow, ad hoc methods must be used instead.

Deep learning methods fall into the latter category as they have several hyper-

parameters for both the model (layer types, nodes per layer) and training algorithm

(learning rate, learning policy, weight decay, momentum, etc.) and generally take a

significant amount of time to train.

In this work, we provide a method to reduce the complexity of hyper-parameter

selection in deep networks. More specifically, we show how to use group lasso regu-

larization [84] to select the appropriate breadth (number of hidden nodes) for each

convolutional and fully connected layer of the network. The group lasso penalty en-

courages parameters to be group sparse (i.e. blocks of the parameters are zeroed).

Thus, by incorporating it into the standard backprop [85] stochastic gradient descent
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(SGD) and organizing the parameters into blocks based on the hidden node they

compute, the optimization will automatically zero out unnecessary hidden nodes.

As shown in Figure 4.1, we can then simply remove the zeroed out nodes to obtain

a smaller network.

Choosing the appropriate number of nodes for each layer is important. hav-

ing too few nodes can overly simplify the model, restricting it from capturing the

full complexity of the task at hand. This can cause the network to perform sub-

optimally. On the other hand, unnecessary nodes require extra computational power

to calculate and necessitate more space in memory to store both the extra model

parameters and the extra features for each sample. Additionally, having too many

nodes yields an overly complex model that can be more prone to over-fitting. This

is of particular importance when fine-tuning with limited data as in the problem we

focus on: NIR Heterogeneous Face Recognition.

4.2 Related Work

Despite the ubiquity of deep neural networks and the importance of this prob-

lem, to the best of our knowledge it has not been addressed beyond an ad hoc

approach. Some methods have attempted to solve the related problem of making

deep networks smaller. Liu et al. [86] sparsely decompose the filters of convolu-

tional neural networks in order to reduce the redundancy of their parameters. Yang

et al. [87] use kernel methods in place of fully connected layers to greatly reduce

the necessary number of parameters. Moczulski et al. [88] introduce a new module
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Figure 4.1: A visualization of our method.

consisting of diagonal matrices and the discrete cosine transform to reduce the num-

ber of parameters in networks while maintaining good performance. Lebedev and

Lempitsky [89] use a method similar to ours to speed up convolution by sparsifying

the footprints of convolution filters. Our method can also be used shrink/speed up

deep networks, though our primary objective is to determine the optimal network

structure.

4.3 Our Method

4.3.1 Formulation

Deep networks are trained by using SGD to solve the following optimization

problem,
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min
W

1

M

M∑
i=1

L(xi,W ) + λR(W ),

where W represents the model parameters, M is the number of training sam-

ples, xi is a training sample, L is a loss function, R is a regularization function,

and λ is a constant referred to as the weight decay. Let W be the set of parameter

matrices W(i) ∈ RNi×Ki where Ni is the number of hidden nodes in layer i and Ki

is number of parameters required per node for layer i. Traditionally, the squared

Euclidean norm is used for the regularization function R. In this case, R can be

written as follows,

R(W ) =
∑

W(i)∈W

1

2
‖W(i)‖2F =

∑
W(i)∈W

Ni∑
j=1

1

2
‖w(i)

j ‖22,

where w
(i)
j ∈ RKi is the jth row of W(i).

While the squared Euclidean norm generally works well for optimizing a given

network, we want to encourage our training algorithm to use fewer nodes than it

begins with. To do this, instead of using the Euclidean norm, we propose to use the

group lasso penalty (sometimes called the mixed `1/`2 norm) as follows,

R(W ) =
∑

W(i)∈W

2‖W(i)‖`1/`2 =
∑

W(i)∈W

Ni∑
j=1

2‖w(i)
j ‖2.

The group lasso penalty encourages the solutions to be group sparse (i.e. entire

blocks of parameters are set to zero). In our case we have organized the parameters

so that each block corresponds to a single hidden node. Thus, training with the

group lasso penalty will cause the parameters entire nodes to be zeroed out, after
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which they can simply be removed from the network.

Our learning algorithm can be summarized as follows. We train a given net-

work using group lasso regularization. We then remove any zeroed hidden nodes.

Finally, we continue training the altered network using the squared Euclidean norm

regularization to tweak the network and boost performance.

4.3.2 Explanation

The optimization is set up as a balancing act between reducing the loss function

and reducing the number of nodes with the weight decay determining how far that

balance should skew towards one side or another. The parameters of nodes that

do not contribute much to keeping the loss function low have relatively small loss

function gradients. Over time, the regularization function gradient dominates for

these parameters and they eventually go to zero. On the other hand, the parameters

of nodes which greatly contribute to maintaining a small loss have much larger loss

function gradients. Over the course of the optimization, the loss function gradients

of these parameters dominate and they will not be set to zero.

It is informative to compare the gradients of the squared Euclidean and the

group lasso regularization functions to gain a more detailed understanding of our

method. In the squared Euclidean case, the gradient for w
(i)
j (the parameters of a

given node) is calculated as follows,

∇1

2
‖w(i)

j ‖22 = w
(i)
j .
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The squared Euclidean gradient effectively reduces each parameter by a fixed

percentage (hence the term weight decay). Without the loss function gradients, the

optimization will simply step towards 0 a fixed fraction of the distance. This has the

effect of ensuring no parameter gets too big while also offering very little incentive

to shrink already small parameters.

The group lasso gradients are calculated as follows,

∇2‖w(i)
j ‖2 =

w
(i)
j

‖w(i)
j ‖2

.

As with the squared Euclidean gradient, the group lasso gradient steps to-

wards 0. The difference is in the magnitude of that step. The squared Euclidean

regularization mandates stepping a fixed percentage of the distance, whereas the

group lasso simply steps a fixed amount regardless of the distance to 0. In the Eu-

clidean case, as parameters of less important nodes shrink, the regularization affects

them less and so they stop shrinking before they get to 0. On the other hand, group

lasso always effects all filters the same amount, so less important filters will continue

shrinking until they are zeroed out. A side-effect of the the group lasso penalty is

that nodes with large parameters are not reined in as much as they would be in the

Euclidean case. This leads to some filters with larger parameters. To counteract

this, we use both the group lasso and squared euclidean norms for regularization.
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4.3.3 Gradient Existence

The gradient of the group lasso penalty does not exist when the norm of a

block is zero. This can be problematic as the goal of our method is to ensure some

blocks have that exact property. We found it easiest to avoid this problem by adding

a small constant ε to all norm calculations as follows,

∇2‖w(i)
j ‖2 ≈

w
(i)
j

‖w(i)
j ‖2 + ε

.

For small ε, this leaves the gradient virtually unchanged most of the time

(when the norm is not close to zero) and ensures it is defined at w
(i)
j = 0.

4.4 Experiments

As a sanity check, we first test our method on the MNIST handwritten digit

classification dataset. We then use it to shrink a visible face recognition network,

which in turn we use as an initialization network for Near-infrared Heterogeneous

Face Recognition.

4.4.1 MNIST

The MNIST handwritten digit recognition dataset [90] consists of 70,000 (60,000

for training, 10,000 for testing) 28x28 pixel images labeled based on the numerical

digit (0-9) they depict. We use the network structure and solver parameters from

the mnist example in the Caffe deep learning framework. The network structure is
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shown in Table 4.4.1.

We run experiments with a range of ten different weight decays (log space

between .0001 and .004). We take results of these experiments and produce plots

showing the trade-off between classification rate and resource usage (shown in Fig-

ures 4.2 and 4.3).

Figure 4.2 shows that the number of parameters can be reduced by about two

thirds with very little change in performance. Figure 4.3 shows a slightly different

picture, where the performance tails off a bit more quickly with less computational

power (measured in multiplication operations required to classify a single image).

This is because there are significantly more unnecessary nodes in the fully connected

layer of the original network compared to the convolution layers and fully connected

layers use more parameters but require less computation than convolution layers.

The breakdown of the extent to which each layer shrinks is shown in Figure 4.4

where a larger fraction of convolution nodes are retained compared to fully connected

nodes. The main take-away from this experiment is that if a network has too many

nodes in a layer, Group Lasso regularization can automatically identify and shrink

the layer without negatively affecting performance.

4.4.2 Face Recognition Initialization

While our ultimate goal is to improve the performance of deep heterogeneous

face recognition from Chapter 2, we accomplish this by first shrinking the initializa-

tion network provided to the algorithm. This removes unnecessary filters, making
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Layer Type Dimensions Stride

Conv 5×5×20 1

Max Pool 2×2 2

Conv 5×5×50 1

Max Pool 2×2 2

Fully Connected 500 -

ReLU - -

Fully Connected 10 -

Softmax 10 -

Table 4.1: Caffe MNIST Network

the network less prone to overfitting.

As in Chapter 2, we initially train the deep convolutional neural network shown

in Table 3.1 to perform face recognition on the CASIA WebFace Database [74] for

200,000 iterations. Before using this network for Cross-Spectrum Face recognition,

we first examine the properties of the trained and shrunk networks. Table 4.2

shows which layers shrank and which did not. It is interesting that the layers that

compute lower-level features (i.e. towards the bottom of the network) seem to be

more susceptible to being shrunk. This is most likely due to the fact that high-level

features are significantly more complicated than low-level features and thus there

are many more possible features for them to recognize. This is despite the fact that

the lower level layers have fewer nodes to begin with.
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Nodes Remaining After Shrinkage

Weight Decay 0 .0005 .0010 .0015 .0020

conv11 32 17 8 7 7

conv12 64 34 17 14 13

conv21 64 60 35 22 19

conv22 128 128 115 71 51

conv31 96 94 94 92 83

conv32 192 192 192 192 192

conv41 128 106 106 105 105

conv42 256 256 256 255 233

conv51 160 123 123 119 116

conv52 320 320 320 320 320

Table 4.2: Face recognition layer-wise shrinkage
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Figure 4.2: Trade-off between the number of network parameters and classification

rate on the MNIST dataset. Note the number of parameters in the original network

is 430,500.

To ensure that the shrinkage does remove too many nodes from the networks,

we examine their performance on a visible face recognition task. Before training

the networks, we removed a 10,000 image validation set from the CASIA WebFace

dataset. Figure 4.5 shows the ability of the networks to classify the validation set

images for varying weight decays. It is clear that even the smallest non-zero weight

decay value (.0005) removes enough nodes to hamper recognition. This is most likely
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Figure 4.3: Trade-off between the number of multiplications per image and classifi-

cation rate on the MNIST dataset. Note the number of multiplications required in

the original network is 2,293,000.

due to the large number of subjects in the dataset (10,575), which necessitates fine-

grained classification and thus a complicated network. As we will show in Section

4.4.3, this is not an issue for HFR because the fine-grained classification problem is

dwarfed by the cross-domain gap. Also, having a smaller network helps to reduce

overfitting in the data-constrained HFR scenario.
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4.4.3 NIR Heterogeneous Face Recognition

We test our algorithm on the two Near-infrared Heterogeneous Face Recog-

nition (HFR) datasets used in Chapter 2: the CASIA NIR-VIS 2.0 database [82]

and the CASIA HFB dataset [83]. After training our initialization networks and

removing nodes, we follow the rest of the algorithm from Chapter 2 and perform

heterogeneous face recognition on two datasets. Performance on View 1 of the

datasets are shown in Figures 4.6 and 4.7. For both datasets, it is clear that for

the optimal weight decay (.0005), there is a negligible effect on the data set perfor-

mance. As the weight decay increases and the initialization networks get smaller,

the performance eventually decreases.

After optimizing hyper-parameters on View 1, we then evaluate our approach

on View 2 of both datasets. Table 4.3 shows that we achieve the best performance

to date on the NIRVIS 2.0 dataset. We outperform the previous state-of-the-art

by 2.8 percent. Table 4.4 shows that, although we do not achieve state-of-the-art

results, we do improve upon the previous deep learning approach of Chapter 2.

4.5 Conclusion

We have presented a method that uses the group lasso penalty to remove

unnecessary hidden nodes from a deep neural network. It works by enforcing group

sparsity in the network parameters to zero out hidden nodes which do not provide

much contribution. The method can be used to make a network smaller without

sacrificing performance and to help determine the optimal number of hidden nodes
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NIR-VIS 2.0 Rank 1 Std. Dev. FAR=.001

CDFL [62] 71.5 1.4 55.1

LMCFL [63] 75.7 2.5 55.9

[57] 78.5 1.67 85.8

C-CBFD [80] 81.8 2.3 47.3

[58] 86.2 0.98 81.29

Chapter 2 87.5 0.83 76.1

Our Method 89.7 1.06 77.0

Table 4.3: Performance on View 2 of CASIA NIR-VIS 2.0 Face Database

HFB Rank 1 FAR=.001

P-RS [39] 87.8 95.8

C-DFD [81] 92.2 65.5

THFM [56] 99.28 98.42

[58] 99.38 92.25

Chapter 2 97.58 85.0

Our Method 98.34 87.5

Table 4.4: Performance on View 2 of CASIA HFB Face Database
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for each layer. Finally, we used our method to shrink the initialization network of a

NIR HFR algorithm and improved upon the state-of-the-art for that problem.
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Figure 4.4: Trade-off between the number of nodes in each layer and classification

rate on the MNIST dataset. Black lines connect data points collected from the

same network. Note that the initial number of nodes for the FC3, Conv2, and

Conv1 layers are 500, 50, and 20 respectively.
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Figure 4.5: Trade-off between the recognition rate of the initial network on the

validation set and weight decay on the CASIA WebFace dataset.
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Figure 4.6: Trade-off between the recognition rate and initialization network weight

decay on View 1 of the NIR Vis 2.0 dataset.
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Figure 4.7: Trade-off between the recognition rate and initialization network weight

decay on View 1 of the HFB dataset.

96



Chapter 5: Text Guided Activity Recognition

5.1 Introduction

In recent years, a significant amount of research in the computer vision commu-

nity has focused on human activity recognition. The objective of this research is to

be able to automatically recognize and understand what humans depicted by a video

are doing. In this work, human activity recognition is formulated as a classification

problem (i.e. given a short video clip, which activity in a given set is depicted). This

problem is important for several applications including robotics (helping robots to

understand their environment and thus react to it better), surveillance (sift through

a large number of video streams to detect abnormal behavior), and video-tagging

(automatically tag videos to make them easier to find).

Most state-of-the-art approaches to this problem train deep convolutional neu-

ral networks (CNN) to classify videos based on their raw pixels and/or extracted

features. One prominent method, the two-stream approach [91], trains one network

to classify single frames and a second network to classify short snippets of optical

flow features. At test time, the outputs of the two networks are fused by averaging

the prediction probabilities. In this work, we build off of the two-stream method.

The main limitation of deep learning approaches to this problem is their de-
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pendence on the size and scope of the training data set. It is important to have

a large labeled training set to fully take advantage of the power of deep neural

networks. In some scenarios, it may not be feasible to attain a large enough data

set because it is slow and expensive to collect and label videos. Although state-of-

the-art methods achieve good results on benchmark data sets, due to limited data,

they cannot use the deepest network architectures (state-of-the-art for many other

problems) without overfitting. Furthermore, regardless of the size of the data set,

it is virtually impossible to guarantee that all variations of the target activities are

captured by the data set.

In this work, we attempt to address these problems with text-guided multitask

learning. Text-guided multitask learning helps the neural network training algorithm

in two ways. First it allows us to use a large image recognition data set to boost

the amount of training data we have. Second, it allows us to incorporate general

knowledge about target activities that may not be fully apparent from the training

videos.

More specifically, we train our network to simultaneously perform object recog-

nition in addition to activity recognition. This allows us to leverage the ImageNet

data set [92], which provides us with significantly more training data. We further

improve upon the multitask learning approach by mining a large text corpora to

determine the most relevant objects to our activity recognition task. Essentially, we

are trying to incorporate general knowledge about the activities from an external

source (text corpora) into our training algorithm. Our text-guided multitask learn-

ing approach allows us to use much deeper networks than current methods in the
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literature without overfitting and thus achieve higher recognition rates.

The remainder of this chapter is organized as follows. In Section 5.2 we detail

other relevant published methods. In Section 5.3 we describe our method in more

detail. In Section 5.4 we describe experiments we ran to evaluate our method and

to compare it to other methods in the literature.

5.2 Related Work

In this section we detail some work related to activity recognition and the

approach we take to solve it. This section is by no means exhaustive, but provides

a good sampling of other previously published methods.

5.2.1 Activity Recognition

Due to the rise in popularity of deep learning, many recent activity recognition

approaches have used deep convolutional neural networks. We base our method off

of the two-stream approach [91], which uses two networks trained to classify frames

and optical flow features. Temporal Segment Networks [93], which also use the

two-stream approach, incorporate longer term temporal information by grouping

frames from different portions of the video during training. We incorporate tem-

poral segment networks into our approach as well. Karpathy et al. [94] apply deep

learning to a very large dataset. In addition standard convolutional neural networks,

three-dimensional convolutional neural networks [95–97] have been used for activity

recognition to great effect.
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5.2.2 Multitask Learning

Multitask learning was first proposed by Caruana [98]. Multitask learning

works by traing a single model to perform multiple related tasks, resulting in im-

proved performance on both tasks. It has been used for a variety of machine learn-

ing problems including face recognition [99], tracking [100], and image classifica-

tion [101]. Since it is such a general approach, it also has been applied to problems

outside of computer vision such as in bioinformatics [102].

5.2.3 Imagery/Text Related Work

There has been a significant amount of work done that examines the relation-

ship between images/video and text. Much work has been done on the task of video

captioning [103,104]. Ths work attempts to automatically describe the contents of a

video with text. Recently, visual question answering [105] has become a very popular

problem in the computer vision community. This involves generating text answers

to text questions about the content of images. Text grounding [106] in images has

also received some attention. The goal of grounding is to localize the portion of

an image that represents a text phrase. One commonality of all text related work

in the computer vision community is that it uses text related to a specific piece of

data (i.e. image, video, image set, etc.). In this chapter, we propose using text to

learn general information about the task at hand, and then use that information to

improve performance. To the best of our knowledge, we are the first to investigate

this approach.
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5.3 Our Method

In this section, we describe our approach in more detail. First, we describe

the baseline two-stream approach. Next, we describe how we incorporate multi-task

learning into that approach. After that, we discuss how we incorporate general

knowledge from text to improve the multi-task learning framework. Finally, we

describe more specific technical and engineering details about our algorithm.

5.3.1 Two-stream Approach

As implied by its name, the two-stream approach trains two networks to clas-

sify a video based on two different data streams: the spatial stream (raw frames)

and the temporal stream (optical flow features). The spatial network is trained to

classify a single frame, while the temporal network is trained to classify short (10

frames) snippets of optical flow features. The original two-stream approach used

the VGG 2048-M network architecture as shown in Figure 5.1, but since then many

other network architectures have been used within the same approach to great effect.

At test time, a set of equally spaced frames and optical flow snippets are

extracted from a test video and evaluated by the networks to generate prediction

probabilities. The probabilities are then fused by a weighted average (generally

slightly giving more weight to the temporal network) and the activity is selected by

taking the probability with the maximum value.
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Figure 5.1: Baseline two-stream approach.

5.3.2 Multitask Learning

In order to bolster the amount of training data available to our training algo-

rithm, we use multitask learning when training the spatial network. Specifically, we

train it to perform object recognition on ImageNet images in addition to activity

recognition on frames. As shown in Figure 5.2, we share all layers of the network

between the two tasks aside from the task-specific softmax classifiers.

Multitask learning was originally formulated to learn multiple tasks on the

same set of data, but it is common to associate only a subset of the target tasks

with portions of the data if they are not fully annotated for each task. In our

case, our data sets are only annotated for a single task (videos frames for activity

recognition and ImageNet images for object recognition), thus each data sample is

only associated with a single loss function. While this aspect may not be in spirit

with the original formulation of multitask learning, it still helps to improve activity

recognition performance due to the large number of shared layers (all but one) and

the relevance of the two tasks to each other.
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Figure 5.2: Multitask approach.

Another way to think about the multitask learning approach is as an extension

of the standard pretraining method. Rather than training a network from scratch

(randomly initialized parameter weights), virtually all computer vision deep learning

algorithms (including activity recognition) initialize with a network pretrained to

perform object recognition on ImageNet images. In our case, when we begin train-

ing the network for activity recognition, we also continue the object recognition

pretraining. This acts as a regularization for the network parameters, preventing

them from overfitting to the activity recognition task.

5.3.3 Incorporation of Text

We further improve upon our multitask learning approach by extracting infor-

mation from text resources and incorporating it into the training algorithm. Specif-

ically, we use Word2Vec [107] to determine which objects in the ImageNet data set
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are most commonly associated with our target activities. We then train the object

recognition task to only recognize those relevant objects.

Word2Vec is an algorithm that embeds words and phrases into a vector space

based on their usage in a large text corpora. Words that are used in similar contexts

will be closer together in the vector space. In this work we use this embedding to

determine which ImageNet objects are associated with our target activities.

In order to select the relevant objects, we compute the similarity between the

text label of each target activity and each ImageNet class. Let f be a function

learned by Word2Vec to map strings into a vector space. We approximate the

relevance between a target activity x and an ImageNet class y with the cosine

similarity of their vector space representations as follows,

s(x, y) =
f(x) · f(y)

‖f(x)‖2‖f(y)‖2
.

We then approximate the overall relevance of an ImageNet class y to the set

of target activities X as the sum of the relevances of y to each activity x ∈ X,

r(y) =
∑
x∈X

s(x, y).

We do this for all ImageNet classes. We then select the most relevant classes

(those whose relevance score is numerically highest) to use in our training algorithm

and discard the rest.
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5.3.4 Engineering Details

In this work, we use the ResNet family of networks for our network architec-

ture. We run experiments using ResNet 50, ResNet 100, and ResNet 152. This is

in contrast to previous approaches which use shallower networks. Our multitask

approach acts as a regularization, enabling us to use the deeper, better-performing

ResNet networks. All networks are initialized by pretraining on the 1000 ImageNet

challenge classes.

When using text to select the most relevant ImageNet classes to recognize,

one must determine how many of them to select. There is no clear answer to this

question, so we err on the side of caution and use the 1000 most relevant classes.

We also experiment with using fewer (500) and more (2000) and found there was

little change to the recognition rate.

We train our networks with stochastic gradient descent on single GPU (NVIDIA

TITAN X or NVIDIA 1080) systems. Due to the depths of the networks used and

the memory limitations of the GPUs (12 GB and 8 GB), we were forced to use small

batch sizes of 64, 48, and 32 frames/images for ResNet 50, ResNet 101, and ResNet

152 respectively. When training in the multitask setting, we split the batch size

between activity recognition frames and ImageNet images. We found that splitting

the batch approximately evenly between the two (i.e. giving equal weight to the

two objectives) provided the best activity recognition performance. And, of course,

when training the baseline approach (without multitask learning), each batch con-

sists entirely of activity recognition frames.
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We incorporate the Temporal Segment Network (TSN) of [93] training method

when training our networks. This introduces some long-term temporal information

about the videos, and thus improves the performance. One side effect of this method

is that the size the activity recognition frames portion of the batch must be a multiple

of the selected number of segments. Through experimentation, we determine the

optimal number of segments to be three, and thus the size of the activity recognition

portion of the batch must be a multiple of three. So for example, when training

the ResNet 50 network, our total batch size is 64. Ideally we would split it evenly

to have 32 activity recognition samples and 32 ImageNet samples, but 32 is not a

multiple of three. Instead we use 33 activity recognition samples and 31 ImageNet

samples.

When training ResNet 50, we initialize the learning rate to .001. We divide it

by 10 after 10,000 and 13,000 iterations and train for 15,000 iterations in total. Due

to the smaller batch sizes, we initialize the learning rates for the ResNet 101 and 152

network architectures to .0005. For ResNet 101, we divide it by 10 after 13,000 and

18,000 iterations and train for 20,000 iterations in total. For ResNet 152, we divide

it by 10 after 28,000 and 36,000 iterations and train for 40,000 iterations in total.

For all experiments, we set the weight decay to be .0001. During training of all

three architectures, we place dropout layers just before the final softmax classifiers.

We set the dropout rate to .25 (i.e. keep 75% of features).

We only perform two preprocessing on video frames. First we subtract a mean

pixel from each pixel in the image. Then we select a random window from the target

frame. The window’s width and height are randomly and independently selected
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(from a uniform distribution) to be between 168 and 256 pixels. Once the width

and height are selected, the location of the window within the image is selected

at random (again, from a uniform distribution). Finally, the window is resized to

224×224 pixels and fed into the network. The random window selection process

helps to generate more variation in the training data to reduce the risk of over-

fitting. We perform slightly different preprocessing to the ImageNet images. We

still subtract the pixel mean, but select a sub-image by simply choosing a random

224×224 window from the image. We can use a simpler window selection with Im-

ageNet because it contains many more images which are uncorrelated (unlike video

frames which are highly correlated). At test time, we use the standard approach

of generating predictions for 25 evenly spaced frames. For each frame, we generate

predictions from 10 different 224×224 pixel windows: one from each corner of the

frame, one from the center of the frame, and then a horizontally flipped version of

each of those. For each video we end up with 250 probability predictions for each

of the classes. We average them and predict the activity with the highest value.

In this work, we use a pre-trained Word2Vec model. It was trained on an

internal Google data set of news articles containing a billion words [107].

5.4 Experiments

We evaluate the performance of our approach on the UCF 101 dataset [108].

It contains a variety of activities including playing various sports, playing musical

instruments, and many common indoor and outdoor tasks.
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Network Baseline Multitask Multitask + Text

ResNet 50 81.3 84.0 85.1

ResNet 101 82.6 85.3 86.9

ResNet 152 83.1 86.0 87.5

TSN [93] 85.7 - -

Table 5.1: Performance of our algorithm on the UCF 101 data set.

We run experiments on three different ResNet networks (ResNet 50, ResNet

101, and ResNet 152) under three different settings (baseline, multitask, multitask

with text). The baseline approach is the standard method without multitask learn-

ing. The multitask approach randomly selects 1000 ImageNet categories to learn

to recognize for the secondary objective. The multitask with text approach uses

Word2Vec to select the 1000 most relevant ImageNet categories as described in

Section 5.3.3.

The prefusion results for the spatial stream are shown in Table 5.1. From

the results, it is clear that using the ResNet networks with the baseline approach

provides worse performance than the state-of-the-art methods. This is because the

state-of-the-art methods use shallower networks which are not as prone to overfit-

ting. When we incorporate multitask learning, the performance increases to about

the current state-of-the-art. And finally, when we also incorporate text-guided su-

pervision, we are able to outperform the state-of-the-art by a few percent.
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5.5 Conclusion and Future Work

In this chapter we have shown how to leverage information extracted from text

resources to improve the performance of deep convolutional neural network based

activity recognition classifiers. We do this by using Word2Vec to identify objects

most commonly associated with the target activities and then training the network

to recognize those objects in addition to classifying the frames of activity videos.
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Chapter 6: Summary and Future Work

6.1 Summary

While much of computer vision research focuses exclusively on visible light

imagery, there are many problems for which alternative data modalities can be used

either in place of or as a supplement to visible images and videos. In this dissertation

we presented several algorithms for scenarios for which this is the case. Specifically,

we focused on heterogeneous face recognition and activity recognition.

In Chapter 2, we presented a method to represent data across multiple domains

for thermal infrared HFR. Specifically, we extended a linear coupled dictionary

model to use the kernel method. Additionaly, we altered the training algorithm

to incorporate task-driven supervision. The kernel task-driven coupled dictionaries

generated by these two improvements outperformed algorithms based on standard

coupled dictionaries on thermal infrared to visible face recognition.

In Chapter 3, we presented a deep learning-based approach to NIR HFR. This

deep convolutional neural network-based approach modeled faces as a whole rather

than a collection of patches. We showed how to leverage a large visible image face

dataset to prevent overfitting of the model and presented experimental results on

two benchmark data sets showing its effectiveness.
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In Chapter 4, we presented a method to automatically determine the number

of nodes in each layer of a neural network. We did this by replacing the standard

weight decay with a group lasso penalty. We discussed some engineering details of

using this method and applied it to deep networks for NIR HFR as well as other

computer vision problems.

In Chapter 5, we presented a method to improve activity recognition algo-

rithms through the use of multitask learning and information extracted from a large

text corpora. We first used multitask learning to train neural networks to recognize

objects in addition to activities. We then used information about the target activi-

ties from a large text corpora to determine the best object classes for the secondary

task to recognize.

6.2 Future Work

6.2.1 Deep Heterogeneous Face Recognition

To this point, our work on deep heterogeneous face recognition has only used

discriminating feed forward neural networks. Recently, a significant amount of re-

search in the machine learning community has focused on learning generative models

with generative adversarial networks (GAN) [109]. In the future, we plan to extend

our approach by exploring the use of deep generative models. This could allow us

to, at the very least, generate artificial training data to improve our algorithm’s

performance. It could potentially even allow us to synthesize faces across domains.
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6.2.2 Text Guided Multitask Learning

Going forward, we will attempt to improve upon our text guided activity

recognition method in several ways. The most obvious way is to apply our method

to the temporal stream in addition to the spatial stream. It cannot be directly

applied as is because no publicly available data sets exist for optical flow features

of objects. While it cannot be directly applied, there are reasons to believe it

could be applied with some alterations. Previous work [110] has shown that fusing

the two-streams part of the way through the networks can increase the activity

recognition performance. In that case, our multitask learning approach could be

used to regularize the fused network instead of just the spatial network. Additionally,

it has been shown that initializing the temporal network with the spatial network

can increase the temporal recognition rate [93]. This suggests that there are some

similarities between the two domains, and, since multitask learning helps the spatial

domain, it may also help the temporal domain.

In addition to applying our method to the temporal stream, in the future we

will also attempt to incorporate other tasks in the multitask learning framework.

For example, human detection would almost certainly help in recognizing human

activities. Another task that could be beneficial is semantic segmentation. Finally,

we could simply incorporate audio data into the recognition algorithm. This could

be a third stream or perhaps be fused with the other two streams. Finally, we will

also try to apply this approach to solve other problems. While we have shown some

success in applying this method to activity recognition, it may also help improve
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deep learning-based algorithms for other computer vision problems such as object

localization.
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