
ABSTRACT

Title of dissertation: MULTIMODAL BIOMEDICAL DATA
VISUALIZATION: ENHANCING NETWORK,
CLINICAL, AND IMAGE DATA DEPICTION

Hsueh-Chien Cheng, Doctor of Philosophy, 2017

Dissertation directed by: Professor Amitabh Varshney
Department of Computer Science

In this dissertation, we present visual analytics tools for several biomedical

applications. Our research spans three types of biomedical data: reaction networks,

longitudinal multidimensional clinical data, and biomedical images. For each data

type, we present intuitive visual representations and efficient data exploration meth-

ods to facilitate visual knowledge discovery.

Rule-based simulation has been used for studying complex protein interactions.

In a rule-based model, the relationships of interacting proteins can be represented

as a network. Nevertheless, understanding and validating the intended behaviors in

large network models are ineffective and error prone. We have developed a tool that

first shows a network overview with concise visual representations and then shows

relevant rule-specific details on demand. This strategy significantly improves visual-

ization comprehensibility and disentangles the complex protein-protein relationships

by showing them selectively alongside the global context of the network.

Next, we present a tool for analyzing longitudinal multidimensional clinical

datasets, that we developed for understanding Parkinson’s disease progression. De-

tecting patterns involving multiple time-varying variables is especially challenging

for clinical data. Conventional computational techniques, such as cluster analysis

and dimension reduction, do not always generate interpretable, actionable results.

Using our tool, users can select and compare patient subgroups by filtering patients

with multiple symptoms simultaneously and interactively.

Unlike conventional visualizations that use local features, many targets in

biomedical images are characterized by high-level features. We present our research

characterizing such high-level features through multiscale texture segmentation and

deep-learning strategies. First, we present an efficient hierarchical texture segmenta-

tion approach that scales up well to gigapixel images to colorize electron microscopy

(EM) images. This enhances visual comprehensibility of gigapixel EM images across

a wide range of scales. Second, we use convolutional neural networks (CNNs) to au-

tomatically derive high-level features that distinguish cell states in live-cell imagery

and voxel types in 3D EM volumes. In addition, we present a CNN-based 3D seg-

mentation method for biomedical volume datasets with limited training samples.

We use factorized convolutions and feature-level augmentations to improve model

generalization and avoid overfitting.

VISUALIZATION OF COMPLEX BIOMEDICAL DATA :
NETWORK, CLINICAL, AND IMAGERY DATA

by

Hsueh-Chien Cheng

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2017

Advisory Committee:
Professor Amitabh Varshney, Chair/Advisor
Dr. Antonio Cardone
Professor Joseph JaJa
Professor Dana Nau
Professor Matthias Zwicker

c© Copyright by
Hsueh-Chien Cheng

2017

Acknowledgments

I would like to express my sincere gratitude to my advisor, Dr. Amitabh

Varshney, for his support and insights. It has been a pleasure and honor to work

with him. I could not have imagined having a better advisor and mentor for my

Ph.D. studies.

I would also like to thank Dr. Joseph JaJa, Dr. Dana Nau, Dr. Matthias

Zwicker, and Dr. Antonio Cardone for their scholarly guidance towards the comple-

tion of my dissertation.

I am grateful to my collaborators for offering their expertise: Dr. Martin

Meier-Schellersheim, Dr. Bastian R. Angermann, and Dr. Fengkai Zhang for de-

signing rule-based protein interaction models; Dr. Lisa M. Shulman, Dr. Rainer

von Coelln, Dr. Ann L. Gruber-Baldini for clinical reasoning with patient data; Dr.

Alan Faden, and Dr. Bogdan Stoica for visualizing live-cell imagery; and Dr. Kedar

Narayan and Dr. Sriram Subramanian for acquiring and analyzing microscopy im-

ages. I appreciate their invaluable feedback and contributions to my Ph.D. studies.

I would like to say a big thank you to everyone in the Graphics and Visual

Informatics Laboratory: Horace, Sujal, Eric Krokos, Ruofei, Xuetong, Xiaoxu, Shuo,

Tara, Eric Lee, and Sida.

Finally, I would like to thank my family for encouraging me to pursue my

passion and career. Their love and support have been the best gift I will ever

receive.

ii

Table of Contents

Acknowledgements ii

Table of Contents iii

List of Tables vi

List of Figures vii

1 Introduction 1
1.1 Visualization of Rule-based Reaction Networks 1
1.2 Visualization of Temporal Changes in High-dimensional Clinical Data 3
1.3 Biomedical Image Understanding . 6

1.3.1 Visualization of Microstructures in Gigapixel Microscopy Images 6
1.3.2 Visualization of Live-cell Imagery 8
1.3.3 Deep-learning-assisted Volume Visualization 10
1.3.4 CNN-based Segmentation of Volumetric Microscopy Images . 12

2 Visualization of Rule-based Reaction Networks 15
2.1 Introduction . 15
2.2 Related Work . 17
2.3 Simmune Framework . 19

2.3.1 Visual Representation of Reaction Rules 20
2.4 Visual Analytics Tool: Simmune NetworkViewer 24

2.4.1 Network Graph . 24
2.4.2 Visual Representation of Network Graph 26
2.4.3 User Interactions . 32
2.4.4 Implementation . 36

2.5 Case Study . 37
2.6 Conclusions and Future Work . 42

3 Visualization of Temporal Changes in High-dimensional Clinical Data 44
3.1 Introduction . 44
3.2 Related Work . 48
3.3 Preliminary Study . 51
3.4 Data . 55
3.5 Visual Analytics Tool: Winnow . 56

iii

3.5.1 Outcomes Panel . 58
3.5.2 Demographics Panel . 60
3.5.3 Analytics Panel . 62
3.5.4 Implementation . 63

3.6 Case Study . 63
3.6.1 Questions . 64
3.6.2 Discussion . 68

3.7 Conclusions and Future Work . 69

4 Overview of Biomedical Images and Convolutional Neural Networks 71
4.1 Introduction . 71
4.2 Background . 72

4.2.1 Biomedical Images . 72
4.2.2 Convolutional Neural Networks (CNNs) 73

5 Visualization of Microstructures in Gigapixel Microscopy Images 79
5.1 Introduction . 79
5.2 Related Work . 83

5.2.1 Texture Analysis . 83
5.2.2 Image Segmentation . 85

5.3 Joint Intensity-texture Histogram . 87
5.4 Graph-based Multiscale Segmentation 89
5.5 Hierarchical Microstructures Exploration 92
5.6 Experiments . 93

5.6.1 Dataset 1: Zebrafish . 94
5.6.2 Dataset 2: Armadillidiidae . 98
5.6.3 Processing Time . 99
5.6.4 Discussion . 99

5.7 Conclusions and Future Work . 100

6 Visualization of Live-cell Imagery 102
6.1 Introduction . 102
6.2 Related Work . 105

6.2.1 Convolutional Neural Networks 105
6.2.2 3D Convolutional Neural Networks 106
6.2.3 Data . 107

6.3 CNN-based Feature Extraction . 107
6.4 User-mediated Color Annotation . 110

6.4.1 Color-based Annotation . 110
6.4.2 User-mediated Color Assignment 111
6.4.3 Similarity-based Feature Reordering 113
6.4.4 Vector Quantization . 114

6.5 Cell-state Trajectory Visualization . 115
6.6 Results and Discussion . 117

6.6.1 Results . 118

iv

6.6.2 Discussion . 118
6.7 Conclusions and Future Work . 121

7 Deep-learning-assisted Volume Visualization 123
7.1 Introduction . 123
7.2 Related Work . 125

7.2.1 Volume Visualization . 125
7.3 Motivation . 127

7.3.1 Conventional Volume Visualization Design 129
7.3.2 Deep-learning-assisted Visualization Design 133

7.4 CNN-based Feature Extraction . 135
7.5 Marching-cubes-based Visualization 137
7.6 User-mediated Voxel Classification 140

7.6.1 Similarity-based Feature Reordering 140
7.6.2 Vector Quantization . 143
7.6.3 Hierarchical Volume Exploration 145

7.7 Results and Discussion . 146
7.7.1 Segmentation Performance Measure 146
7.7.2 Dataset 1: Bacteria . 147
7.7.3 Dataset 2: Hippocampus . 153
7.7.4 Dataset 3: Multimodal Brain Tumor Image Segmentation

Benchmark (BRATS) . 156
7.7.5 Discussion . 158
7.7.6 Rendering Speed and Computation Time 160

7.8 Conclusions and Future Work . 161

8 CNN-based Segmentation of Volumetric Microscopy Images 164
8.1 Introduction . 164
8.2 Related Work . 166

8.2.1 CNN-based Volume Segmentation 166
8.2.2 Factorized Convolutions . 167
8.2.3 Augmentations . 168

8.3 Network Architecture . 169
8.4 Factorized Convolution . 172
8.5 Feature-level Augmentation . 173
8.6 Jaccard Index-based Loss . 176
8.7 Results and Discussion . 177
8.8 Conclusions and Future Work . 181

9 Conclusions and Future Work 182

List of Publications 185

Bibliography 187

v

List of Tables

1.1 Segmentation results obtained by U-Net and eight network variants
(A–H). The number of parameters is in millions. 13

2.1 The icons used for different molecule component states and binding
site statuses. 21

3.1 List of the 16 outcome measures and six domains of PD in our study. 57
3.2 Outcome measures that are significantly different (p < 0.05) by gen-

der at year three (Y3) . 67

5.1 The images used in the experiment. Sizes are measured in gigapixels. 93
5.2 The running time (m) of four most time-consuming processes and the

total running time of the proposed method. 99

7.1 The architecture of the CNN . 136
7.2 The quality measures of the segmentation results for the bacteria and

hippocampus datasets. Numbers separated by slashes correspond to
different postprocessing techniques (none / class prior / fitted trans-
formation). 150

8.1 Segmentation results obtained by U-Net and eight network variants
(A–H). The number of parameters is in millions. 178

vi

List of Figures

1.1 The circular layout of a network put IL4 at the center and other nodes
from the center to the peripheral with respect to their distances to IL4. 2

1.2 Our visual analytics tool, Winnow, consists of three panels: the Out-
comes panel (left), the Demographics panel (top right), and the an-
alytics panel (bottom right). The colors represent the gender of pa-
tients (magenta for females and blue for males). 5

1.3 With our visualization tool, users can change the color highlights by
traversing the segment hierarchy; adjacent segments are assigned dis-
tinguishable colors such that they are discernible at coarse resolutions. 7

1.4 The change in color (from green to red) of cell 39 from frame 49 to
frame 54 suggests that the cell is dying. 9

1.5 (a) Before spectral ordering, the similarity matrix, in which a bright
pixel represents a pair of highly correlated features, does not show
apparent pattern. After spectral ordering, highly correlated features
are closer to each other. (b) The arbitrary order of features does not
exploit the correlation among features, thus leading to broken sur-
faces. The spectrally ordered features allow creating a visualization
that reveals the cytoplasm of the cell. 11

1.6 The segmentation generated by model H, which uses 3D convolutions,
is comparable to the ground truth; the segmentations generated by
model D and U-Net [1], both use 2D convolutions only, misclassify
the non-mitochondria region near the top left corner as mitochondria. 14

2.1 (a) A complex association where the two complexes on the left-hand
side, Ligand and Rec inactive, bind and produce a Ligated Receptor

complex. (b) A complex dissociation where Ligated Receptor on
the left-hand side splits into a Ligand and a Rec inactive com-
plex. (c) A complex transformation where the reacting complex
LigReg Gab GDP transforms into the product complex LigRec Gabg GTP. 23

2.2 Overview of a G-protein network with 19 nodes and 29 edges created
with a model that consists of 8 complex species and 11 complex re-
actions. Complex species nodes are displayed with the iconographic
representation used in the Simmune framework. Intermediate nodes
are displayed as small arrows indicating direction of reactions. 25

vii

2.3 After specifying the reference species IL4, the network can be reor-
ganized using level-based and circular layout. (a) The corresponding
reference node IL4 is placed at the top level; the other nodes are ar-
ranged with respect to their distances to the reference node. (b) The
corresponding reference node IL4 is placed at the center; the other
nodes are arranged with respect to their distances to the reference
node. 29

2.4 (a) With the search term “gdp”, the matching complex LigRec Gab GDP

is highlighted in yellow. The non-matching complex species LigRec Gabg

has a matching complex and is therefore colored in light blue. (b) The
complex species and complexes that contain the molecule Ligand are
highlighted in yellow. 32

2.5 (a) The three complex species nodes show the three involved com-
plexes, Ligand, Rec inactive and Ligated Receptor, after the com-
plex association receptor ligation (shown in Figure 2.1a) is se-
lected. (b) A hovering frame shows the two involved complexes,
LigRec Gab GDP and LicRec Gabg GTP, after the complex transfor-
mation Receptor mediated Galpha GDP GTP exchange (shown in
Figure 2.1c) is selected. 34

2.6 After selecting the complex Rec inactive, the related edges gener-
ated by the two reaction rules in Figure 2.1a and Figure 2.1b are
highlighted. Because other edges in the network remain unchanged,
the visualization shows that Rec inactive participates in the two
aforementioned reactions only. 35

2.7 A search is performed on the complex species Receptor to find com-
plexes with an “off” state in the intracellular molecule component.
The edges are highlighted to show that three reactions contain a re-
actant or product complex with an “off” state in the intracellular
molecule component. 36

2.8 The complex species EGFR has five binding sites, four of them (e.g.
with indices 1 – 4) can be used to bind adaptors. Three molecule com-
ponent states, “bndPLCg992”, “bndPLCg1173” and “bndSHC1148”
accommodate the binding constraints reported in [2], which are de-
scribed as rules defining which adaptors can bind simultaneously to
the EGFR. 38

2.9 (a) Two states “bndPLCg992” and “bndPLCg1173”, represented as
red and blue squares, have to be “off” for PLCγ1 to be able to bind
to site pY992. (b) All three states “bndPLCg992”, “bndPLCg1173”
and “bndSHC1148”, represented as red, blue and green squares, have
to be “off” for PLCγ1 to be able to bind to site pY1173. 39

2.10 The network contains 17 nodes and 18 edges created from 11 com-
plex species and 6 complex reactions. Here we select the complex
association rule described in Figure 2.9a. 40

viii

2.11 (a) After specifying a search constraint where the state “bndPLCg992”
is on, the visualization shows that PLCγ1 cannot bind to site pY992/pY1173.
(b) After specifying a search constraint where the state “bndSHC1148”
is on, the visualization shows that PLCγ1 cannot bind to site pY1173. 41

3.1 This screenshot of Winnow shows the results based on the Parkin-
son’s Progression Markers Initiative (PPMI) dataset (Section 3.4).
Winnow consists of three panels: the Outcomes panel (left), the De-
mographics panel (top right), and the analytics panel (bottom right).
Here 55 patients (out of 320) with low baseline REM sleep behavior
disorder (RBDQ < 5) and high RBDQ (RBDQ ≥ 5) at the third
annual visit are selected. The colors represent the gender of patients
(magenta for females and blue for males). 47

3.2 (a) Our early attempt created a hierarchy of clusters to allow splitting
and merging of clusters following a pre-generated hierarchy. Never-
theless, the parallel set visualization of two sibling clusters: cluster #3
(figure (b)) and cluster #12 (figure (c)), are difficult to interpret even
with three dimensions. 53

3.3 After using the bottom histogram for selecting patients with the most
rapid progression in the motor domain (∆(UPDRS3) > 12), the cor-
responding plot of UPDRS3 in the outcomes panel shows only the
109 matching patients, represented by the lines with steep upward
slopes. The mean UPDRS3 at Y3 of the group of selected patients
(right arrow) is greater than that of the total patient sample (left
arrow). 60

3.4 Users can filter the 109 previously selected patients (in Figure 3.3) by
gender by clicking the corresponding bar in the demographics panel.
After selecting female patients (left) with unusually rapid changes
in cognitive function as measured by SDM (center), users can then
change the color scheme to explore the year of birth of the selected
patients (right). 61

3.5 After applying the gender filter, the plots show that female patients
(top) have comparable motor symptoms (UPDRS3) and general PD
severity (T-UPDRS) at BL and less severe symptoms at Y3 than
male patients (bottom). For semantic fluency (SFT), female patients
show less severe symptoms both at baseline and Y3. Arrows mark
the mean values at Y3 for the males and females. 66

3.6 (a) A filter that selects patients with increasingly greater baseline
RBDQ. (b) As the filter moves to select patients with more severe
baseline RBDQ (top 50%, 25%, and 10% from left to right), the
mean T-UPDRS at Y3 increases from 50.17 to 53.65 and 58.54. . . . 68

4.1 Three nonlinear activation functions: sigmoid (blue), hyperbolic tan-
gent (orange), and rectify (green). 75

ix

4.2 The techniques used in MRBrainS segmentation challenge shift from
Random Forest (blue) and SVM (green) to deep-learning-based tech-
niques (orange) from 2013 to 2016. Lower scores indicate higher per-
formance. 77

5.1 The running time (m) of our hierarchical segmentation algorithm is
considerably lower than F&H [3] and FSEG [4]. Both image size (x-
axis) and time (y-axis) are in log scale. For large images, F&H and
FSEG terminated prematurely because of insufficient memory. 81

5.2 An overview of the segment tree building procedure. Noise-resistant
local binary patterns and superpixels are generated for each tile at all
pyramid levels. A hierarchical graph-based segmentation subdivides
each parent segment into child segments. 82

5.3 This example shows the calculation of LBP8,1 using eight sample
values, g1 to g8, taken on a unit circle (left). With the values shown
in the right hand side, the corresponding LBP is a binary string
10001111, which is 143 in decimal (right). 84

5.4 The two-dimensional projections (d–f) show the distribution of sam-
ple blocks of (a) intestine, (b) cartilage, and (c) muscle tissues. The
projections are obtained by MDS analysis based on the pairwise dis-
tances computed using (d) LBP, (e) NRLBP, and (f) joint distribution
of intensity and NRLBP. 89

5.5 (a) The dissimilarity of two adjacent superpixels (represented by edge
weight) is calculated as the chi-square distance of two corresponding
joint histograms. (b) The edge between the blue and red segments
is eligible to merge the two segments if its weight w6 is less than or
equal to min(max(w1, w2, w3) + τ(4),max(w4, w5) + τ(3)). 91

5.6 The 11 types of tissues in the zebrafish embryo (P4). Image courtesy
of Faas et al. [5]. 94

5.7 With our visualization tool, clicking the yellow segment in the first
row subdivides the top-right region of the zebrafish embryo into seg-
ment 5 (blue) and segment 6 (dark slate gray). Another click on
segment 5 subdivides segment 5 into segment 26 (brown) and seg-
ment 32 (red). 96

5.8 The texture differences in the down-sampled grayscale images are
more distinguishable with color highlights. First column shows the
boundary between the muscle, intestine, and pronephric duct tissues;
second column shows the boundary between muscle tissues. 97

5.9 First column shows the separation of region with spikes in the leg
from abdomen; second column shows the segmentation of protopod,
pleomeres, and pleopods. 98

x

6.1 This example shows (a) an out of focus image and (b) a in focus
image taken at the same time (t = 1) but at a different depth. The
out of focus image provides much less useful information because the
features are blurry. 108

6.2 Our CNN has three groups of layers. Each group includes two convo-
lutional layers (red), each with 64 kernels, followed by a max-pooling
layer (blue) that reduces the spatial resolution (including depth) by
half. For simplicity the drawing only shows the x and y spatial di-
mensions, omitting the depth dimension. The outputs of the first and
second fully-connected layers (green) are 200 and 2 dimensional; they
correspond to the high-level pixel representations for visualization
and the probabilities of cell states. 109

6.3 After extracting 200 deep features, we assign each pixel p a color
(Rp, Gp, Bp, Ap) based on the user-defined transfer function, which
can be easily modified after the 200 features are spectrally ordered
along the x-axis. 111

6.4 The change in color (from green to red) of cell 39 from frame 49 to
frame 54 suggests that the cell is dying. 112

6.5 This example shows the 200×200 feature-to-feature similarity matrix,
in which bright entries indicate similar feature pairs, created using
(a) arbitrary order and (b) spectral order. Similar features are closer
to each other after organizing features in the spectral order, thus
resulting in large bright regions in the similarity matrix. 115

6.6 (a) The state change of a cell is visualized as a segmented line. The
change in color from green to red indicates a state change of cell 39
from live to dead between frame 49 and 54. (b) The change in color of
cell 39 can also be visualized separately with three lines, representing
the RGB values over time. Here we can see the state change happens
inside of the orange box. 116

6.7 This example shows the color annotations in four time points (a) 12,
(b) 49, (c) 54, and (d) 78. Most cells are alive (green) at time point
12. They die (red) gradually in subsequent time points (i.e. 49, 54,
and 78). Cell 39 (white arrow), which changes color from green to
red, is dead sometime during frame 49 and 54. 119

6.8 Our visualization allows users to select and compare cell trajectories
without consulting different frames. This example shows three cells
with distinct trajectories. Cell 3 stays alive whereas cells 38 and 39
died at specific frames, hinted by the drop in color green (and the
growth in color red). 120

7.1 (a) Conventional workflow requires users to adjust both the feature
space and the configuration. (b) Our deep-learning-assisted approach
derives from labeled examples a feasible feature space automatically,
effectively removing the need for an user-defined feature space. 128

xi

7.2 (a) In the hippocampus dataset, we find it challenging to differen-
tiate mitochondrial regions (orange) from non-mitochondrial regions
using conventional intensity-based feature spaces. (b) The ground
truth mitochondria. (c) The isosurface of isovalue 112, which is the
average intensity value of mitochondria, does not correspond well to
the boundary of mitochondria. In fact, no single isovalue would be
suitable for differentiating the mitochondria (c.f. Figure 7.3a). (d)
Our visualization result is comparable to the ground truth because it
is based on a feasible feature space derived automatically. 130

7.3 (a) The overlap in the intensity histogram shows that we cannot ex-
tract the mitochondria precisely using a single isovalue. The density
plots, in which higher saturation indicates higher density, show that
(b) intensity and gradient, and (c) seven selected Haralick features do
not help extract the mitochondria either. The seven Haralick features
are projected onto the first two principal components, “PC 1” and
“PC 2”, obtained using principal component analysis. 132

7.4 Our proposed deep-learning-assisted approach first extracts high-level
features from a trained CNN. We then use vector quantization to
encode the extracted high-dimensional features of each voxel by the
nearest centroid found using k-means clustering. Users modify the vi-
sualization result, which is generated by a marching cubes-based ren-
dering, either by editing the characteristic feature vector of a target
subvolume or exploring a pre-generated subvolume hierarchy semi-
automatically. 134

7.5 Because the high dimensionality of feature space, we generate a binary
scalar field by comparing the dot product of the characteristic feature
vector u and the feature vector v of each voxel with a threshold t.
After that we apply the conventional marching cubes algorithm on
the binarized volume. 138

7.6 (a) Before spectral ordering, the similarity matrix, in which a bright
pixel represents a pair of highly correlated features, does not show
apparent pattern. After spectral ordering, highly correlated features
are closer to each other. (b) A simple characteristic feature vector.
(c) The arbitrary order of features does not exploit the correlation
among features, thus leading to broken surfaces. The spectrally or-
dered features allow creating a visualization that reveals interesting
structures using the same characteristic feature vector. 142

7.7 The size of codebook k in VQ controls the amount of information
loss. The zoom-in views shown in (b–e) are generated from the same
subvolume (red box in (a)) in the bacteria dataset with k ranges from
64 to 512. When k = 64, the view shows a noticeable disparity near
the center of the spore (black box in (b)). The results in (c–e) are
comparable without significant visual differences. 144

xii

7.8 (left) The bacteria dataset is divided into the left and right halves
for training and testing. (right) Both the spores (green) and the
vesicles (yellow arrow) in the two sporulating bacteria are low in in-
tensity. Because the difference in intensity between a spore and other
structures (e.g. vesicle and cytoplasm) can be small, conventional
intensity-based feature spaces will not differentiate them well. 149

7.9 This example shows the spore (green) in (b) the ground truth labels
and the segmentation results (c) generated without postprocessing,
and postprocessed with (d) class prior and (e) fitted transform for the
raw image in (a). Simply scaling the predicted probability by class
prior resulted in many false negatives for the spore class. In contrast,
the data-driven fitted transformation of probability is more robust
and generates a result comparable to the ground truth. 151

7.10 (a) The visualization of the spores in the bacteria dataset generated
using the deep-learning-assisted approach. We show in the next two
figures (b) the spore and (c) the cell wall of a bacterial cell. By
rendering both semi-transparent surfaces at a time, (d) the composite
result shows both the spore and the cell wall. (e) The characteristic
feature vectors used to generate the green (t = 0.36) and orange
(t = 0.46) surfaces. 152

7.11 (left) The hippocampus dataset consists of two volumes for training
and testing (not shown here), both of the same size. (right) Both
the mitochondria (orange) and membranes (yellow arrow) are low in
intensity, thus making them inseparable using intensity-based features.153

7.12 (a) Within the non-mitochondria region (outside of the orange re-
gions), subregions with noticeably different characteristics can be
identified. (b) The extracted deep features enable the detection of
the non-mitochondria regions without membranes (blue subvolumes
in the left). (c) The two characteristic feature vectors correspond to
the mitochondria (orange, t = 63), and the non-mitochondria regions
without membranes (blue, t = 49) in the composite visualization. . . 155

7.13 A slice in the volume for the (a) T1, (b) T1c, (c) T2, and (d) Flair
channels. (e) The ground truth labels of the necrosis (red), edema
(green), non-enhancing tumor (blue), and enhancing tumor (yellow). . 157

7.14 (a) The visualization of ground truth labels. (b) The composite re-
sult generated using the semi-automatic method. (c) The binary tree
allows hierarchical exploration of the volume. The four child subvol-
umes (represented by the leaf nodes) are created by partitioning the
parent subvolume (represented by the purple node). 159

7.15 (a) The reconstruction error of vector quantization decreases as the
size of codebook (i.e. number of clusters) increases. (b) Larger code-
book requires much more time running k-means and VQ. 162

xiii

8.1 The CNN contains the encoding part and the decoding part. The
numbers enclosed in the parentheses represent the numbers of output
feature maps. A “/2” or “x2” indicates a change in spatial resolution
after the (blue) block. See Figure 8.2 for details of each type of blocks.170

8.2 The (a) input block, (b) encoding block, and (c) decoding block used
in our CNN. We use batch normalization (BN) [6], Parametric Rec-
tified Linear Unit (PReLU) [7], and dropout [8] in the three building
blocks. 171

8.3 We replace the subsampling (top-right) by the stochastic downsam-
pling (bottom-right) when the encoding block reduces spatial reso-
lution. This stochastic operation introduces augmentations at the
feature level inside of a residual block. 174

8.4 We can control the degree of augmentation by varying the value of
t. Here we compare the result of (a) conventional subsampling and
(b–d) stochastic downsampling with increasing value of t. The mean
error (ME) comparing (a) and (b–d), caused by the stochasticity,
increases from (b) 7.11, (c) 8.23, to (d) 11.33. Pixel values are in the
scale of [0, 255]. 175

8.5 This example compares the segmentation results of U-Net (orange),
2D CNN (model D, green), and 3D CNN (model H, blue), with the
ground truth (purple). The 3D CNN showed promising result in
which the errors are mostly near the ambiguous object boundaries. . 180

xiv

Chapter 1: Introduction

In this dissertation, we present visual analytics tools and computational tech-

niques for various types of complex biomedical data, including protein reaction net-

works, longitudinal multidimensional clinical data, and microscopy images. For each

type of data, we present visualization strategies and techniques to address the chal-

lenges arising from unique data characteristics and properties. As data rapidly grow

in size, there is an increasing need for visual analytics methods that combine the

complementary strengths of computational techniques and human vision for iden-

tifying patterns and anomalies in large datasets. By keeping users in the cycle of

knowledge discovery, the analysis is driven both by the data and by the knowledge,

hypotheses, and intuitions of domain experts. Such a close collaboration between

a computer and a human will lead to a better understanding of data and generate

relevant insights.

1.1 Visualization of Rule-based Reaction Networks

In Chapter 2, we present Simmune NetworkViewer for exploring, validating,

and debugging rule-based protein reaction models. These models contain rules that

define the dynamics of protein interactions; the triggering of one rule can trigger a

1

Figure 1.1: The circular layout of a network put IL4 at the center and other nodes
from the center to the peripheral with respect to their distances to IL4.

chain of other rules. For example, after binding with a ligand, a receptor can raise

its energy level and subsequently trigger a series of intracellular signals. Visual-

izing network models is challenging because of the numerous potential interactions

among various proteins. Furthermore, these interactions are better interpreted when

presented alongside the global context of the model. Although several existing vi-

sualization tools targeted rule-based models, they require users to read textual rule

specifications to extract relevant rule-specific information. This requirement limits

the efficiency and efficacy of these tools, especially for users who are not expert

modelers.

2

Instead of using textual representations, our approach for rule representations

is a visual and symbolic one (Figure 1.1). This way, users can extract relevant

information intuitively. Based on this visual representation, we create concise vi-

sualizations showing the inter-relationships of various interacting components. In

our network visualization, we show only a simplified network overview after omitting

rule-specific details, and then present those details only upon request; this detail-on-

demand strategy presents information selectively and directly on top of the network

view, thus enabling users to comprehend and compare rules and their pre- and post-

conditions in the global context of network. We have shown that our tool improves

the comprehensibility of complex network models. For example, Figure 1.1 shows

that, in the cytokine signaling model, the nodes interacting with IL4 are near the

center whereas those interacting with IL7 are in the peripheral; the positions of

nodes reveal the implemented behaviors in the model.

1.2 Visualization of Temporal Changes in High-dimensional Clinical

Data

In Chapter 3, we present Winnow for visualizing longitudinal multidimensional

Parkinson’s disease data. In this dataset, each patient at a time point is represented

as a high-dimensional feature vector, which corresponds to the severity of various

symptoms. A straightforward way of analyzing such data is applying clustering

and dimension reduction techniques. The unique challenge in analyzing clinical

data, however, is the gap between computational techniques and clinicians, who

3

are usually unfamiliar with those techniques. In our preliminary study, we found

that conventional computational techniques do not always generate interpretable or

clinically meaningful results. This finding is consistent with past studies that showed

the instability of existing pure data-driven Parkinson’s disease analyses. Without

engaging clinicians more in the cycle of knowledge discovery, this gap will continue to

impede the exploration of potential patterns that lead to actionable clinical results.

In this study, we collaborated with Dr. Lisa Shulman, Dr. Ann Gruber-Baldini,

Dr. Rainer von Coelln, and other clinicians and neurologists to close this gap. We

design an interactive tool, Winnow, that facilitates clinicians to investigate data

with minimal training and technical background. Winnow generates simple and

intuitive visual representations to engage clinicians more in the analysis. By repre-

senting patients as lines connecting two endpoints, each corresponds to a time point,

users can easily inspect disease progression visually by looking at the slope of lines

(top left in Figure 1.2). The lines are color-coded to facilitate the comparison of

patients in different demographic groups (e.g. female and male). Winnow supports

highly flexible and interactive filtering of patients based on multiple variables. For

example, REM sleep behavior disorder (RBD) is an important preclinical marker

for early diagnosis of Parkinson’s disease. The muscles of patients diagnosed with

RBD remain active during sleep; this abnormal behavior causes patients to act out

their dreams. In Figure 1.2, we select 55 patients (out of 320) with low baseline

RBD questionnaire (RBDQ) and high RBDQ at the third annual visit. We evaluate

Winnow with example case studies analyzing a public Parkinson’s disease dataset

and show promising results.

4

Fi
lt

er

B
as

ic
 s

ta
ti

st
ic

s

H
is

to
gr

am
 o

f
ch

an
ge

N
u

m
b

er
 o

f
p

at
ie

n
ts

 b
y

ge
n

d
er

B
as

ic
 a

n
al

yt
ic

 r
es

u
lt

s

A
 r

ap
id

ly
 p

ro
gr

es
si

n
g

p
at

ie
n

t Se
ve

re

M
ild

G
et

ti
n

g
w

o
rs

e
G

et
ti

n
g

b
et

te
r

F
ig

u
re

1.
2:

O
u
r

v
is

u
al

an
al

y
ti

cs
to

ol
,

W
in

n
ow

,
co

n
si

st
s

of
th

re
e

p
an

el
s:

th
e

O
u
tc

om
es

p
an

el
(l

ef
t)

,
th

e
D

em
og

ra
p
h
ic

s
p
an

el
(t

op
ri

gh
t)

,
an

d
th

e
an

al
y
ti

cs
p
an

el
(b

ot
to

m
ri

gh
t)

.
T

h
e

co
lo

rs
re

p
re

se
n
t

th
e

ge
n
d
er

of
p
at

ie
n
ts

(m
ag

en
ta

fo
r

fe
m

al
es

an
d

b
lu

e
fo

r
m

al
es

).

5

1.3 Biomedical Image Understanding

In the rest of this dissertation (Chapters 4–8), we focus on biomedical im-

age analysis, which is especially challenging because biomedical images have low

signal-to-noise ratio and contrast. In Chapter 4, we briefly review these challenges

and introduce convolutional neural networks (CNNs), which we use extensively as

classifiers and feature extractors in Chapters 6–8.

1.3.1 Visualization of Microstructures in Gigapixel Microscopy Im-

ages

In Chapter 5, we address a common problem when exploring gigapixel images:

the disparity between screen and image resolution. In practice, users would first

inspect an image at low resolution and then zoom-in to specific regions of interest

for high-resolution details. Such an exploration method is a compromise at best

because zooming in and out routinely is tedious and inefficient, especially for large

images. Furthermore, this routine is ineffective for texture analysis because relevant

texture information is lost after downsampling–users would not notice regions with

subtle texture differences when viewing at low resolution. Because many targets

in biomedical image analysis are distinguishable only by their microstructures and

textures, we must address the resolution disparity problem when inspecting gigapixel

biomedical images visually.

We present a visualization that highlights texture differences across various

6

5

Root

6

26

34

...

Figure 1.3: With our visualization tool, users can change the color highlights by
traversing the segment hierarchy; adjacent segments are assigned distinguishable
colors such that they are discernible at coarse resolutions.

7

scales based on a highly efficient hierarchical segmentation method. The segmen-

tation method at each scale partitions the adjacency graph of superpixels into seg-

ments, thus reducing the memory footprint. We assess the similarity of a pair of

adjacent superpixels based on the joint distribution of intensity and noise-resistant

local binary patterns; we empirically show that this combination of features im-

proves the separation of different microstructures in electron microscopy images.

We assign different colors to adjacent segments such that texture differences can be

seen even when viewing at low resolutions. Using our visualization tool, users can

interactively and hierarchically inspect alternative segmentations at different scales.

For example, in Figure 1.3, clicking the yellow segment in the first row subdivides

the top-right region of the zebrafish embryo into segment 5 (blue) and segment 6

(dark slate gray). This exploration strategy helps users locate regions of interest

more efficiently.

1.3.2 Visualization of Live-cell Imagery

In Chapter 6, we present visualization techniques for time-lapse live-cell im-

agery. As a common practice in live-cell imagery, multiple images are taken at

various depths at each time point to accommodate for vertical cell movements and

focus drift problem. For a specific time point, however, only a few (in-focus) images

are useful; the rest of the images provide little additional value and can be safely

discarded. Visually inspecting all images (of various depths) at a time point is dif-

ficult because of the inflated data size. In addition, inspecting all frames from the

8

t = 49 50 51

525354

Figure 1.4: The change in color (from green to red) of cell 39 from frame 49 to frame
54 suggests that the cell is dying.

beginning to the end leads to a huge cognitive load. For example, users must track

cell movements and detect cell states (e.g. alive or dead) simultaneously.

We use 3D convolutions in a CNN to learn features across different depths for

detecting cell states. Because of the redundancy at each time point, the CNN must

learn to extract and combine only useful information. After training, we use the

CNN as a feature extractor that generates deep features corresponding to high-level

concepts related to cell states. Based on these deep features, we build visualizations

that depict changes in cell states, which are difficult to describe using hand-crafted

and conventional local features. Although the CNN-derived features are abstract,

we show that users can still design useful visualizations when the extracted features

are organized based on pairwise similarities. Our visualization represents cell states

using colors assigned by a user-mediated method that converts deep features into

colors; the generated color annotations facilitate the identification of cells that went

from live to dead. For example, the change in color annotations in Figure 1.4

9

indicates that the cell died between time points 49 and 52.

1.3.3 Deep-learning-assisted Volume Visualization

In Chapter 7, we present a similar CNN-based technique for volume visual-

ization. Conventional techniques rely on handcrafted, local features to distinguish

voxels that belong to different objects and structures. For example, intensity and

gradient magnitude are used for separating two objects of different intensity values.

Nevertheless, many complex structures in biomedical volumes can be separated only

by high-level features. This lack of separation challenges the creation of informative

visualizations with which users can inspect different structures visually. Further-

more, configuring the volume visualization requires significant computations and

user interactions. As a result, interactive volume visualization remains a challeng-

ing problem for large, complex volumetric datasets.

To alleviate the need for handcrafted, local features, we extract deep features

derived from a trained CNN. Based on this CNN-based voxel representation, we use

the marching-cubes algorithm to extract surfaces of complex objects after classify-

ing voxels based on a user-defined configuration. We apply the same technique that

organizes features into an accessible order to facilitate the definition of such config-

urations. For example, Figure 1.5 shows that the surface of the cytoplasm of a cell

can be depicted easily when the extracted features are organized by their similar-

ity. Alternatively, we present a hierarchical exploration method that groups similar

voxels using spectral clustering. This way, we further simplify user interactions

10

(a) Similarity matrix (Left: arbitrary order. Right: spectrally ordered)

(b) Visualization (Left: arbitrary order. Right: spectrally ordered)

Figure 1.5: (a) Before spectral ordering, the similarity matrix, in which a bright
pixel represents a pair of highly correlated features, does not show apparent pattern.
After spectral ordering, highly correlated features are closer to each other. (b)
The arbitrary order of features does not exploit the correlation among features,
thus leading to broken surfaces. The spectrally ordered features allow creating a
visualization that reveals the cytoplasm of the cell.

11

to expanding and collapsing trees that correspond to splitting and merging groups

of voxels. We implement our volume rendering method on a GPU, thus allowing

changing the configurations at interactive speed. We show that our visualization

technique is successful in depicting complex objects (e.g. cytoplasm in Figure 1.5)

in multiple datasets that are challenging for conventional methods.

1.3.4 CNN-based Segmentation of Volumetric Microscopy Images

Finally, in Chapter 8, we present techniques to improve CNN-based segmenta-

tion of volumetric images when given scarce training samples. Although CNNs have

been successful in natural image applications, part of the success is attributed to

large natural image datasets, which enable the training of large and deep CNNs with

numerous trainable parameters. Applying CNN techniques to biomedical images is

particularly challenging because of the limited size of training data; the scarcity

is, however, inevitable because both collecting biomedical images and labeling tar-

get structures are time-consuming and expensive. Conventional data augmentation

techniques expand the training set by generating similar samples from existing ones.

Nevertheless, standard operations such as random rotation and scaling may generate

samples that are inappropriate for biomedical applications.

Instead of data augmentations, we present a stochastic downsampling tech-

nique to perform augmentations at the feature level. This augmentation technique

adds spatial distortions directly to the features inside of a residual block and can

be used together with data-level augmentations. In Table 1.1, we show empirically

12

Table 1.1: Segmentation results obtained by U-Net and eight network variants (A–
H). The number of parameters is in millions.

Model #Parameters Precision Recall Jaccard

U-Net [1] 36.97M 99.3 / 94.8 99.7 / 87.6 99.0 / 83.5

A (2D, Full, –) 1.68M 99.5 / 91.4 99.5 / 91.6 99.1 / 84.4
B (2D, Full, A) 1.68M 99.5 / 93.0 99.6 / 90.8 99.1 / 85.0
C (2D, Fact., –) 0.60M 99.6 / 91.9 99.5 / 93.1 99.2 / 86.1
D (2D, Fact., A) 0.60M 99.6 / 92.5 99.6 / 93.1 99.2 / 86.5

E (3D, Full, –) 4.94M 99.7 / 92.5 99.6 / 93.9 99.3 / 87.2
F (3D, Full, A) 4.94M 99.6 / 93.2 99.6 / 93.4 99.3 / 87.5
G (3D, Fact., –) 0.63M 99.7 / 92.7 99.6 / 93.9 99.3 / 87.4
H (3D, Fact., A) 0.63M 99.6 / 95.0 99.7 / 93.3 99.4 / 88.9

* The numbers separated by slashes correspond to the results for non-
mitochondria (left) and mitochondria (right)

** The best results are marked in bold.

that the feature-level distortions introduced by stochasticity can improve segmenta-

tion performance significantly. The results also favor factorized convolutions, which

reduce the number of parameters significantly by using only low-rank kernels, thus

improving model generalization and prevent overfitting. In addition, our segmen-

tation results suggest that, although using more parameters, 3D convolutions that

combine information along all three spatial dimensions (including the z-axis) are

superior to 2D convolutions (model E–H v.s. model A–D in Tabel 1.1, see also

Section 8.7). For the tested dataset, the 3D CNNs always outperform the 2D coun-

terparts in both precision and recall regardless of the different settings. Figure 1.6

shows an example where 2D CNNs misclassify a non-mitochondria region in the top

left corner as mitochondria.

13

U-Net
Model D
Model H

Ground truth

Figure 1.6: The segmentation generated by model H, which uses 3D convolutions,
is comparable to the ground truth; the segmentations generated by model D and
U-Net [1], both use 2D convolutions only, misclassify the non-mitochondria region
near the top left corner as mitochondria.

14

Chapter 2: Visualization of Rule-based Reaction Networks

2.1 Introduction

Network representations of complex cell-biological signaling processes contain

numerous interacting molecular and multi-molecular components that can exist in,

and switch between, multiple biochemical and/or structural states. Showing the

interaction categories (i.e. associations, dissociations, and transformations) in such

networks is nontrivial because their specifications involve information such as reac-

tion rates and conditions with regard to the states of the interacting components.

The additional complexity in network presentation leads to the challenge of hav-

ing to reconcile competing visualization objectives: providing a high-level overview

without omitting relevant information, and showing interaction specifics without

overwhelming users with too much detail displayed simultaneously.

Existing tools typically address this challenge by splitting the information into

several categories that are rendered separately through combinations of visualiza-

tions and/or textual and tabular elements; this strategy requires network modelers

to consult several sources to obtain comprehensive insights into the underlying as-

sumptions of the model. As model complexity grows, the cognitive load of analyzing

the inter-relationships among interacting components also grows significantly. By

15

taking advantage of the visual language of the Simmune Modeler, an integration of

these two aspects (i.e. overview and interaction specifics) into a single display can

help relieve the hustle. The Simmune package [9, 10, 11] is a framework of com-

puter programs that allows researchers to build, simulate, and analyze quantitative

models of cellular signaling processes. Because users can create models in Simmune

using only iconographic symbols, the software is easily accessible to both theorists

and non-theorists. In contrast to other approaches, the native representation of the

reaction rules here is thus a visual, symbolic one. This visual representation allows a

highly efficient method for rendering protein reaction networks, addressing the pre-

eminent challenge for network visualization, namely combining high-level overviews

with details provided on-demand.

In the following, we present our visual analytic tool, Simmune NetworkViewer,

for the visualization of protein reaction networks. This tool first creates a general

network view showing all user-defined molecular complexes and the features de-

termining their possible states (e.g. the potential to carry phosphorylations or to

assume specific conformations). These complex prototypes, or, in the language of

Simmune, complex species, that do not carry any particular states are linked by the

biochemical network resulting from the structural interaction possibilities among

their molecular binding sites. Within this view, users can select reactions to access

details such as the particular states the participating complexes are in when the

reactions occur and what their resulting states are; those details provide complete

specifications of reaction rules embedded directly into the network view without

context-switching. Users can also search for reaction rules that meet specific crite-

16

ria, such as belonging to a certain reaction category or including certain types of

reacting species. Importantly, the tool presents search results as an overlay on top of

the network view, thereby showing the reactions within their biochemical contexts.

2.2 Related Work

Software tools such as Cytoscape [12], Osprey [13], and VisANT [14] are widely

used to analyze genetic networks and pathways. These tools provide a variety of

filtering methods and visualizations for visual inspection. Typically, the networks

being analyzed consist of nodes (e.g. genes) that are connected by lines if they

represent entities that show correlated behavior.

Other methods have been developed specifically for visualizing cell biological

protein reaction networks where the nodes can contain additional inner structure

and the links between them indicate biochemical processes. For example, nodes and

links in a network can represent multi-molecular complexes and their reactions. The

Systems Biology Graphical Notation (SBGN) [15] project, for example, provides

a well-documented standard for visualizing biological processes, including protein

interactions. It offers three different views that visualize aspects such as the flow of

information (activity flow), entity relationship diagrams and can provide diagrams

giving information about the sequence of biochemical modifications components in

the network undergo.

Molecular Interaction Maps (MIMs) [16, 17] aim at combining as much infor-

mation as possible in a single diagram. However, a comprehensive visualization of

17

all reactions, including involved binding sites, molecular states, and the precondition

and postcondition for the reactions is possible only for rather small networks. For

large networks, users have to simultaneously trace multiple lines to infer complete

reaction specifications; this requirement can render the process of parsing complex

interaction diagrams cumbersome.

Much of the complexity of reaction networks arises from the fact that molecules

and pairwise molecular interactions frequently participate as elements in several

multi-molecular complexes. Reducing model definitions back to this fundamen-

tal level, rule-based modeling approaches offer concise ways to specify molecular

interactions, their conditions and consequences [18, 10, 19]. Several iconographic

representations of such rules have been suggested [20, 21, 22].

Using the rule-based BioNetGen language (BNGL) [18], the visualization tool

RuleBender [23] addresses the conflict between readability and completeness by

linking a contact map depicting possible interactions between molecular binding

sites with BNGL code elements of the full rule set from which the contact map is

derived. Their approach represents a significant step forward but comes at the cost

that the visualization itself contains only part of the information. Interactions and

states have to be selected to access additional information via the textual mode of

BNGL. Users are thus required to learn the model description language, which may

impede communication between modeling experts and experimental biologists not

familiar with BNGL. Another rule-based approach, Extended Contact Maps [24],

provides more detailed information but also follows the strategy of omitting reaction

aspects in favor of increased readability. The additional information that is necessary

18

to understand a particular reaction can be retrieved from accompanying textual

explanations of the labels in the map.

The rxncon software [25] takes a modular approach to visualizing reaction net-

works at various levels of complexity by separating elemental reactions - that take

molecular complexes as input and modify them through reactions - from contin-

gencies that specify under which conditions these reactions may occur. Based on

various ways of combining the information in these two categories, the rxncon soft-

ware can generate several different pathway visualizations, including SBGN based

graphs, with varying degree of completeness with regard to rendering the assump-

tions of the underlying models. This modular approach results in highly efficient

visualizations of various aspects of interaction networks. Nevertheless, users have

to consult reaction graphs or reaction lists together with contingency lists to fully

access the conditions for and the consequences of reactions.

The approaches discussed so far have in common that their network visual-

izations either become very complicated as models grow or (for the rule-oriented

approaches) that they separate the display of molecular reactions from the informa-

tion regarding the conditions under which those reactions occur.

2.3 Simmune Framework

Our network visualization is built upon the iconographic symbols used in the

Simmune framework. The Simmune framework consists of several modeling tools

including a tool for specifying molecular properties and interactions (the Simmune

19

Modeler), a cell morphology design application, and a simulator. Using the graphical

interface of the Simmune Modeler [22], researchers define molecules, their compo-

nents (sub-domains) and binding sites as well as interactions between such binding

sites and how they depend on the states of the interacting molecules. In the follow-

ing, we briefly introduce the visual language and the terminologies in the Simmune

Modeler using a simple ligand-receptor reaction model as an example. In this ex-

ample, a receptor is embedded into the cytoplasmic membrane and consists of an

extracellular and an intracellular domain. When the extracellular domain binds to

its ligand, the intracellular domain switches its state from inactive to active, al-

lowing it to interact with other molecules inside of the cell, thereby initiating an

intracellular signaling process.

2.3.1 Visual Representation of Reaction Rules

The Simmune Modeler uses unique symbols to represent molecules, molecules

components, and binding sites. To represent different molecule component states

and binding site statuses Simmune uses the icons listed in Table 2.1. Molecule

components can be assigned several squares representing state variables that can

be “on”, “off” or “don’t care” and may represent, for example, phosphorylations

or conformational states, depending on the nature of the molecules and their in-

teractions. Circles represent binding sites (with site indexes displayed inside the

circles). A filled circle represents a bound site, possibly with a blue line connecting

the other bound site when specified. Future releases of the Simmune Modeler and

20

Table 2.1: The icons used for different molecule component states and binding site
statuses.

Molecule component state Icon

Undefined (complex species only)
On
Off
Don’t care

Binding site status Icon

Undefined (complex species only)
Bound
Unbound
Don’t care

the NetworkViewer will support alternative symbolic representations using icon li-

braries based on existing visualization approaches such as the one used in the STKE

database of signaling pathways (http://stke.sciencemag.org/cm/), or the SBGN

style [26].

A complex species comprises a specific set of structurally identical complexes

that are constructed with the same set of molecules and binding site interactions.

Within a species, the complexes differ only with regard to the states of their com-

ponents. We can therefore consider a complex species to be a prototype describing

a particular set of complexes that are structurally identical, whereas a complex is

an “instance” of the complex species it belongs to. This hierarchy of structural and

state-specific information about molecular complexes is critical for the Simmune

NetworkViewer to generate concise reaction network visualizations. In the rest of

this chapter, “species” and “complex species” are used interchangeably.

Simmune builds reaction networks automatically from the specification of bi-

molecular reaction rules. Depending on their characteristics, reaction rules belong

21

http://stke.sciencemag.org/cm/

into one of the three categories: complex association, complex dissociation, and

complex transformation. Although reaction rates are crucial to the specification, we

omit them here for simplicity.

For example, receptor ligation is an association reaction where a ligand binds

a receptor, inducing a change in the receptor’s conformational and functional state.

Figure 2.1a shows a complex association where the Ligand binds the extracellular

domain of the Rec inactive complex and produces the Ligated Receptor com-

plex. The receptor’s intracellular molecule component state changes from “off” to

“on”, reflecting the change in the receptor’s state from inactive to active. For consis-

tency, we refer to “complexes” even if they consist of single molecules when defining

reactions.

Ligand dissociation is a reaction that dissociates the ligand from the receptor

by removing the bond between them. Figure 2.1b shows a complex dissociation

where the reacting complex Ligated Receptor breaks into two product complexes,

the Ligand and the Rec inactive complex, after the bond between the receptor

and the ligand is dissolved. The receptor’s molecule component state changes from

“on” to “off” to reflect its deactivation.

To include an example of molecule transformation reaction, we allow the intra-

cellular domain of the activated (ligand-bound) receptor to interact with a G-protein

and enzymatically catalyze the replacement of Guanine Diphosphate (GDP) at the

G-proteins’ Gα subunit through Guanine Triphosphate (GTP). Figure 2.1c shows

the visual representation of this complex transformation mediated by the receptor

that changes the Gα state from GDP to GTP. This is reflected by the switch of the

22

+ →

(a) Complex association

→ +

(b) Complex dissociation

→

(c) Complex transformation

Figure 2.1: (a) A complex association where the two complexes on the left-hand
side, Ligand and Rec inactive, bind and produce a Ligated Receptor com-
plex. (b) A complex dissociation where Ligated Receptor on the left-hand side
splits into a Ligand and a Rec inactive complex. (c) A complex transformation
where the reacting complex LigReg Gab GDP transforms into the product complex
LigRec Gabg GTP.

23

“GTP” state (i.e. represented by the square in the horizontal ellipse depicting Gα)

from “off” to “on”.

2.4 Visual Analytics Tool: Simmune NetworkViewer

2.4.1 Network Graph

The Simmune NetworkViewer generates and visualizes a network graph, which

is a directed bipartite graph composed of two categories of nodes: complex species

nodes and intermediate nodes, the latter representing reactions. The total number

of nodes in the graph thus equals the number of complex species plus the number

of reactions.

In the network graph, there exists an edge between an intermediate node

and a species node if and only if the corresponding reaction involves, as reactant

or product, a complex of the corresponding species. If the involved complex is a

reactant (e.g. in the left-hand side of the reaction), the edge goes from the species

node to the intermediate node. If that complex is a product (e.g. in the right-hand

side of the reaction scheme), then the edge goes from the intermediate node to the

species node.

The example G-protein model encompasses eight complex species and eleven

reactions, including those mentioned previously in Figure 2.1. The corresponding

Figure 2.2 shows a network graph with 19 nodes and 29 edges. We will describe the

layout and visual design in detail later.

24

Figure 2.2: Overview of a G-protein network with 19 nodes and 29 edges created
with a model that consists of 8 complex species and 11 complex reactions. Com-
plex species nodes are displayed with the iconographic representation used in the
Simmune framework. Intermediate nodes are displayed as small arrows indicating
direction of reactions.

To optimize the efficiency of displaying network information the viewer uses

two main layout principles:

1. Create a node for each complex species instead of each complex with specific

biochemical properties.

Creating nodes for all biochemically (as opposed to structurally) distinct com-

plexes and linking them through arrows indicating reactions would frequently

generate an overwhelming number of nodes in the network graph with severely

limited readability and strong node overlap. Because complexes of the same

species are merely different in the molecule component states and binding site

statuses, we can present only the complex species within the network overview,

25

and provide complex- and reaction-specific information upon user request.

2. Introduce intermediate nodes to represent reactions.

In principle, reactions could be indicated as edges between complex species

nodes. Doing so would, however, result in confusing edges when there are

multiple reaction rules between a pair of complex species. This is quite a

common situation because pairs of molecular complexes may have multiple

interaction possibilities that are modulated by their biochemical properties.

2.4.2 Visual Representation of Network Graph

Node representation

We display complex species nodes using the iconographic representation used

in the Simmune modeling framework, thereby providing a concise and consistent

visualization. The name of a species is shown under the corresponding species node.

We use small arrows to represent intermediate nodes functioning as reaction handles.

The arrows also serve as indications of the direction of reactions. See Figure 2.2 for

an example.

Edge representation and layout

We use different hues to distinguish types of reactions and variation in color

saturation (i.e. from less saturated to more saturated) to indicate the direction of

edges. As a default, we use green for complex associations, orange for complex dis-

sociations, and purple for complex transformations. See Figure 2.2 for an example.

26

However, users can freely specify colors for different types of reactions.

A highlighted edge has greater opacity and width. The tool tip on an edge

shows the reaction rate of the corresponding reaction.

Each edge is rendered as a Bézier curve. Edges that represent complex asso-

ciations or dissociations have one of their endpoints pointing to the binding sites

involved in related reactions. Note that complex transformations do not involve any

binding sites, therefore related edges point to the center of species nodes.

For example, in Figure 2.2, the species node Receptor has two binding sites.

Five edges, representing five reactions, connect the species node Receptor: three

edges point to the first binding site and two edges point to the second.

Network layout

The NetworkViewer provides three network layout types: non-hierarchical lay-

out, level-based layout, and circular layout. Whereas the non-hierarchical layout

provides a general overview of networks, exploiting the hierarchy in networks and

reorganize network layout accordingly is useful in creating meaningful visualizations.

Similar to the orderly MIMs proposed in [27], we construct level-based and circu-

lar layout based on the hierarchy generated after defining a reference point in the

network. Users may switch among different layouts depending on the analysis they

wish to perform.

27

Non-hierarchical layout

We use the NEATO [28] layout algorithm of Graphviz [29] to generate a po-

sitional layout for the nodes in the network. After experimenting with different

overlap removal techniques available in Graphviz, we choose to eliminate overlaps

by incorporating overlap removal constraints into the layout algorithm. A non-

hierarchical layout of the network graph created from the G-protein model is shown

in Figure 2.2.

Level-based layout

In the level-based layout, nodes are arranged into levels with respect to their

distances to the user-selected reference complex species node. Nodes with smaller

distances (defined as the minimal number of reactions that lead from a complex to

the reference node) are positioned closer to the top of the layout. The level layout is

generated with the help of the DOT [30] layout algorithm of Graphviz. Figure 2.3a

shows the level layout of a cytokine signaling model, incorporating receptors and

downstream effectors for IL4 and IL7, with a reference species node IL4. The two

cytokines, IL4 and IL7, and their respective receptors can be easily differentiated by

color. The result of the level-based layout automatically separates the interacting

species by the type of cytokines – those interacting with IL4 on the top and those

interacting with IL7 at the bottom.

28

(a
)

L
ev

el
la

yo
u

t
(b

)
C

ir
cu

la
r

la
yo

u
t

F
ig

u
re

2.
3:

A
ft

er
sp

ec
if

y
in

g
th

e
re

fe
re

n
ce

sp
ec

ie
s
I
L
4
,

th
e

n
et

w
or

k
ca

n
b

e
re

or
ga

n
iz

ed
u
si

n
g

le
ve

l-
b
as

ed
an

d
ci

rc
u
la

r
la

yo
u
t.

(a
)

T
h
e

co
rr

es
p

on
d
in

g
re

fe
re

n
ce

n
o
d
e
I
L
4

is
p
la

ce
d

at
th

e
to

p
le

ve
l;

th
e

ot
h
er

n
o
d
es

ar
e

ar
ra

n
ge

d
w

it
h

re
sp

ec
t

to
th

ei
r

d
is

ta
n
ce

s
to

th
e

re
fe

re
n
ce

n
o
d
e.

(b
)

T
h
e

co
rr

es
p

on
d
in

g
re

fe
re

n
ce

n
o
d
e
I
L
4

is
p
la

ce
d

at
th

e
ce

n
te

r;
th

e
ot

h
er

n
o
d
es

ar
e

ar
ra

n
ge

d
w

it
h

re
sp

ec
t

to
th

ei
r

d
is

ta
n
ce

s
to

th
e

re
fe

re
n
ce

n
o
d
e.

29

Circular layout

In the circular layout, the reference complex species node is fixed at the center

and the rest of the nodes are arranged on concentric circles around this center.

Similar to the criteria used in the level-based layout, nodes with smaller distances are

positioned closer to the center (i.e. on a concentric circle with a smaller radius). We

calculate the position of nodes in the circular layout with a conversion from Cartesian

to polar coordinate given the result of the level-based layout. See Figure 2.3b for

an example of the circular layout of the cytokine model with cytokine IL4 and its

interacting species closer to the center, and cytokine IL7 and its interacting species

on the periphery.

Passing estimates of node sizes to Graphviz allows the layout algorithms to

minimize node overlap. Users can resolve residual overlap manually by adjusting

the positions of nodes. In the models we tested, we found that users can resolve

overlap in a short time.

The NetworkViewer saves the manually-adjusted layout as well as other visual

attributes such as edge width in an auxiliary file, which, when provided along with

the model file, guides the NetworkViewer to generate identical visualization using

the stored configuration. We note that the functionality to save the changes to the

automatically generated visualization may also help to convey information (e.g. for

emphasizing certain network sections) as part of remote collaborations.

30

Tree view and reaction list

In addition to the aforementioned graphical network display, we show the

species-complex hierarchy in a tree view. In another panel, we list all reactions

grouped into the three reaction types (associations, dissociations, transformations).

Selections performed in the tree view and reaction list are carried over into the

graphical network display.

Filtering

The NetworkViewer facilitates locating relevant complexes and/or complex

species in the tree view by allowing users to filter by either (1.) complex name or

(2.) component molecules.

1. The NetworkViewer highlights complexes and complex species whose names

contain the specified term in yellow. When a complex species does not contain

the term in its name but one of its child complexes does, the complex species is

shown in light blue to indicate that it has at least one matching child complex

that might be hidden in the collapsed list. See Figure 2.4a for an example of

filtering by the term “gdp”.

2. The NetworkViewer highlights complexes and complex species that contain

the specified molecule in yellow. For example, Figure 2.4b shows that only

three complex species: Ligand, Ligated Receptor and LigRec Gabg contain

the molecule Ligand. Note that a complex contains a molecule if and only if

31

(a) Filter by name (b) Filter by molecule

Figure 2.4: (a) With the search term “gdp”, the matching complex LigRec Gab GDP

is highlighted in yellow. The non-matching complex species LigRec Gabg has a
matching complex and is therefore colored in light blue. (b) The complex species
and complexes that contain the molecule Ligand are highlighted in yellow.

its species contains that molecule too.

2.4.3 User Interactions

After the initial automated layout process, the network graph (see the example

shown in Figure 2.2 and Figure 2.3) provides an overview of the network model

that offers an accessible abstraction at species level. Different types of specific

information are presented upon user request.

Within the layout, a complex species usually interacts only with complex

32

species nearby. Users can zoom in and move to specific regions of interest. To

focus on a complex species it can be selected by either clicking the complex species

node in the network display or the corresponding item in the tree view. The selected

complex species and the reactions in which it is involved are highlighted.

Reactions can be selected by clicking intermediate nodes (representing the

reactions) in the network, or items in the reaction list. The NetworkViewer indicates

selected reactions by highlighting all the related edges.

When the selected reaction is a complex association or a complex dissocia-

tion, the involved complex species nodes are depicted with their molecular states

and binding site statuses according to the specified reaction rule. For example,

the binding sites that prior to a selected association were unbound are now linked

through bonds. The names of the complexes are added to the labels in blue beneath

the name of the species. See Figure 2.5a for an example. If the selected reaction

is a complex transformation, a hovering frame, as shown in Figure 2.5b, shows the

initial and product complex.

A typical user query consists of identifying which reactions a particular com-

plex is involved in. After the complex has been selected in the tree view it is

highlighted in network visualization along with its reactions.

For example, in Figure 2.6, after selecting the complex Rec inactive the

NetworkViewer highlights two reactions, which are shown in Figure 2.1a and Fig-

ure 2.1b, that involve Rec inactive.

33

(a) Select a complex association

(b) Select a complex transformation

Figure 2.5: (a) The three complex species nodes show the three involved com-
plexes, Ligand, Rec inactive and Ligated Receptor, after the complex asso-
ciation receptor ligation (shown in Figure 2.1a) is selected. (b) A hovering
frame shows the two involved complexes, LigRec Gab GDP and LicRec Gabg GTP,
after the complex transformation Receptor mediated Galpha GDP GTP exchange

(shown in Figure 2.1c) is selected.

34

Figure 2.6: After selecting the complex Rec inactive, the related edges generated
by the two reaction rules in Figure 2.1a and Figure 2.1b are highlighted. Because
other edges in the network remain unchanged, the visualization shows that Rec

inactive participates in the two aforementioned reactions only.

Searches can also be performed for complexes of a complex species that match

a particular set of states. Such set of states could, for example, be combinations

of phosphorylations on molecules carrying multiple phosphorylation states. The

NetworkViewer finds and shows all reactions having a reactant or product complex

that matches the constraint.

The complex species being searched is marked by a red border. Users can

change the search constraint by clicking the squares that represent the states. The

complexes that match the specified set of molecule component states will be selected.

During the search both states “on” and “off” will match a user-defined query state

“don’t care”. Figure 2.7 shows a search on the complex species Receptor. The

35

Figure 2.7: A search is performed on the complex species Receptor to find com-
plexes with an “off” state in the intracellular molecule component. The edges are
highlighted to show that three reactions contain a reactant or product complex with
an “off” state in the intracellular molecule component.

specified search constraint is an “off” state in the intracellular molecule component.

Three complexes, Rec inactive, Receptor 2 and Rec inactive unbound, match

the constraint. The matching complexes are involved in three reactions that are

highlighted in the display.

2.4.4 Implementation

Simmune NetworkViewer is implemented in C++ and is released under a

download agreement with the Simmune project1 for academic use2.

1http://www.niaid.nih.gov/labsandresources/labs/aboutlabs/lsb/Pages/

simmuneproject.aspx
2The software may not be used for commercial purposes without prior permission from the

NIAID Office of Technology Development. (Commercial license)

36

http://www.niaid.nih.gov/labsandresources/labs/aboutlabs/lsb/Pages/simmuneproject.aspx
http://www.niaid.nih.gov/labsandresources/labs/aboutlabs/lsb/Pages/simmuneproject.aspx

2.5 Case Study

To illustrate some of the capabilities of the NetworkViewer, we apply the

tool to explore a model for the binding of the Epidermal Growth Factor Receptor

(EGFR) to its binding partners. EGF provides proliferation, differentiation and

survival signals and the membrane-bound EGF receptor is associated with several

types of cancer if its expression or activation changes erroneously. The model we

developed is based on the work by Hsieh et al. [2] addressing the possibility of

multiple adaptors to bind to the same phosphorylated EGFR cytoplasmic (intracel-

lular) domain simultaneously as opposed to competitively (or sequentially). Note

that these constraints regarding the possible combinations of molecular interactions

were obtained using coarse-grained modeling and may, thus, contain methodological

artifacts. But our goal here is to illustrate the application of the NetworkViewer

for visualizing networks based on interaction rules and the proposed constraints are

very well suited to be implemented in a rule-based model. Following [2], an EGFR

cytoplasmic domain in our model has four binding sites, 992, 1068, 1148 and 1173

that, when phosphorylated at the tyrosine residues, can mediate interactions with

adaptor molecules Grb2, PLCγ1, Stat5 and Shc. For our model, we assume that

the sites are, indeed, tyrosine-phosphorylated and assign the names pY992, pY1068,

pY1148 and pY1173 to the sites, where the pY stands for Tyrosine-phosphorylated.

Note that a more complete model of the EGF receptor would have to take into

account that the receptor undergoes ligand-induced dimerization prior to activation

(phosphorylation).

37

Stat5 and Grb2 can bind to site pY992 and pY1068, respectively. PLCγ1

can bind to pY992 or pY1173. Shc can bind to pY1148 or pY1173. These six

interaction possibilities were translated into visually encoded reaction rules using the

Simmune Modeler. In [2], the authors reported several binding constraints in this

system. For example, once an adaptor PLCγ1 binds to pY992 or pY1173, it prevents

another PLCγ1 from binding to the other, remaining, site. To accommodate these

constraints in our model, we assigned two molecule component states “bndPLCg992”

and “bndPLCg1173” to the EGFR species indicating whether a PLCγ1 is bound to

either one of the two binding sites pY992 and pY1173, respectively. An additional

state “bndSHC1148” is needed for the constraint that the binding of Shc to site

pY1148 and the binding of PLCγ1 to site pY1173 are mutually exclusive. See

Figure 2.8 for the visual representation of the complex species EGFR.

Figure 2.8: The complex species EGFR has five binding sites, four of them (e.g. with
indices 1 – 4) can be used to bind adaptors. Three molecule component states,
“bndPLCg992”, “bndPLCg1173” and “bndSHC1148” accommodate the binding
constraints reported in [2], which are described as rules defining which adaptors
can bind simultaneously to the EGFR.

38

+ →

(a) Binding to site pY992

+ →

(b) Binding to site pY1173

Figure 2.9: (a) Two states “bndPLCg992” and “bndPLCg1173”, represented as red
and blue squares, have to be “off” for PLCγ1 to be able to bind to site pY992. (b)
All three states “bndPLCg992”, “bndPLCg1173” and “bndSHC1148”, represented
as red, blue and green squares, have to be “off” for PLCγ1 to be able to bind to site
pY1173.

The conditions for binding of PLCγ1 to the EGFR using the two possible

sites are depicted in Figure 2.9. PLCγ1 can only bind to EGFR when both molecule

component states “bndPLCg992” and “bndPLCg1173” are “off”. After ligation, the

corresponding state – pY992 or pY1173, depending on which site PLCγ1 has bound

to, switches to “on”, thereby blocking the other site for a second PLCγ1 molecule.

As depicted in Figure 2.9b “bndSHC1148” must be in the “off” state to permit the

binding of PLCγ1 to site pY1173.

After loading the model into the NetworkViewer, the network overview in

Figure 2.10 shows the possible reactions between the adaptors and the EGFR as

well as the binding sites these reactions involve. For example, PLCγ1 can bind

39

Figure 2.10: The network contains 17 nodes and 18 edges created from 11 com-
plex species and 6 complex reactions. Here we select the complex association rule
described in Figure 2.9a.

in two ways to the EGFR using two different binding sites. After selecting the

corresponding intermediate node, the display shows that the binding of PLCγ1 to

site pY992 changes the state “bndPLCg992” from “off” to “on”.

We now verify the binding constraints in this model by searching for eligible

rules given specific states of the EGFR. For example, whenever the state “bnd-

PLCg992” is “on”, no second PLCγ1 can bind to the EGFR (Figure 2.11a). Simi-

larly, whenever the state “bndSHC1148” is “on” PLCγ1 cannot bind to site pY1173

(Figure 2.11b). Moreover, Shc cannot bind to site pY1148 either when the state

“bndSHC1148” is “on”. Because an “on” state of “bndSHC1148” indicates that

Shc is already bound to site pY1148, there cannot be another Shc binding to the

same site.

40

(a
)

S
ea

rc
h

fo
r

“
b

n
d

P
L

C
g9

92
”

is
on

(b
)

S
ea

rc
h

fo
r

“b
n

d
S

H
C

11
48

”
is

on

F
ig

u
re

2.
11

:
(a

)
A

ft
er

sp
ec

if
y
in

g
a

se
ar

ch
co

n
st

ra
in

t
w

h
er

e
th

e
st

at
e

“b
n
d
P

L
C

g9
92

”
is

on
,

th
e

v
is

u
al

iz
at

io
n

sh
ow

s
th

at
P

L
C
γ

1
ca

n
n
ot

b
in

d
to

si
te

p
Y

99
2/

p
Y

11
73

.
(b

)
A

ft
er

sp
ec

if
y
in

g
a

se
ar

ch
co

n
st

ra
in

t
w

h
er

e
th

e
st

at
e

“b
n
d
S
H

C
11

48
”

is
on

,
th

e
v
is

u
al

-
iz

at
io

n
sh

ow
s

th
at

P
L

C
γ

1
ca

n
n
ot

b
in

d
to

si
te

p
Y

11
73

.

41

2.6 Conclusions and Future Work

In this chapter, we introduced the NetworkViewer as part of the Simmune

modeling framework. The NetworkViewer provides an interactive network model

visualization that facilitates efficient exploration of models built with the Simmune

Modeler using the same visual language. Exploiting the hierarchical nature of the

reaction network model, the NetworkViewer creates a compact model overview, in

which only the complex species and complex reactions are displayed as nodes. User

interaction activates the presentation of detailed information about, for instance,

the molecule component states of a complex participating in a particular reaction.

The case study of a simple model of interactions among the EGFR cytoplasmic

domain and its binding partners illustrates how the network overview and user

interaction options of the NetworkViewer can be used for an efficient navigation

of model components and interaction conditions, here provided as adaptor binding

constraints.

Our current method for visualizing biochemical reaction networks is still in-

complete in the sense that the actual rate at which a reaction is occurring not

only depends on its rate constant but also on the concentrations of the reacting

complexes. We will address this issue by incorporating simulation results into the

network visualization. This obviously adds another level of complexity and the kind

of information that will be visualized has to be selected carefully. The biologically

relevant dynamical information will typically be at the level of patterns of states of

molecular complexes or specific state sets and not on the structural level of complex

42

species. Thus, displaying the complete dynamical state of a simulated model will be

impractical and the viewer will have to dynamically select the most relevant aspect

of information in a context-dependent way.

Currently, the NetworkViewer only displays reaction networks created with the

Simmune Modeler. However, Simmune will soon be able to import rule-based models

encoded in the upcoming SBML3 multi (multi-state, multi-component) standard3.

At that point, the NetworkViewer can be used to visualize any rule-based model

generated by approaches adhering to this standard.

3http://sbml.org/Documents/Specifications/SBML_Level_3/Packages/Multistate_

and_Multicomponent_Species_(multi)

43

http://sbml.org/Documents/Specifications/SBML_Level_3/Packages/Multistate_and_Multicomponent_Species_(multi)
http://sbml.org/Documents/Specifications/SBML_Level_3/Packages/Multistate_and_Multicomponent_Species_(multi)

Chapter 3: Visualization of Temporal Changes in High-dimensional

Clinical Data

3.1 Introduction

Parkinson’s disease (PD) is a chronic neuro-degenerative disorder character-

ized by gradual progression. Whereas motor impairments are the most recognized

symptoms of PD, there is increasing recognition of the importance of a range of non-

motor symptoms including cognitive decline, sleep disturbance, and depression [31].

For example, the presence of inter-relationships between clinical subgroups and dis-

ease progression is supported by the discovery that patients with greater postural

instability and gait difficulty tend to have faster rates of progression and greater

cognitive decline [32]. This paradigm shift has resulted in large datasets with di-

verse clinical and biologic markers [33]. For example, at the University of Maryland

PD Center, we have collected 15 years of heterogeneous and multidimensional data

(e.g. clinical and genomics) on 2, 500 PD patients across 20, 000 office visits.

The expanded scope of disease beyond traditional motor symptoms raises

the complexity of analysis significantly. These large multidimensional longitudinal

datasets need new tools to identify disease subtypes and patterns of disease progres-

44

sion across diverse biomarkers, outcomes, and demographic subgroups. Conducting

longitudinal studies of multidimensional data is challenging because of the limited

human capacity to comprehend numerous interactions among a large number of

variables. The immense cognitive load of such complex tasks causes these analyses

to be time-consuming and ineffective. To address this challenge, many computa-

tional techniques such as data clustering and dimensionality reduction have been

developed [34, 35]. Clustering techniques group similar data points (patients) into

clusters based on specific criteria defined in a high-dimensional space. Dimension

reduction techniques transform high-dimensional data points into low-dimensional

representations that preserve crucial information required to proceed with the in-

tended analysis.

Although these computational techniques provide a data-driven, objective per-

spective generated mathematically and statistically, they do not generate clinically

meaningful results because clinical insight and experience with the domains is dis-

connected from the analysis. In addition, in some cases the stability of these results

is questionable. For example, PD subtypes generated by cluster analysis were found

to be inconsistent in various studies [36]. The results generated by pure data-driven

approaches can therefore be misleading without proper clinical interpretation. We

had a similar experience when we applied computational techniques in our prelim-

inary studies, where the results were inaccessible to clinicians and not clinically

relevant. This observation led us to believe that the most useful tools should be in-

tuitive, interactive, and generate results interpretable by clinicians. This tool should

allow clinicians to efficiently sift through arrays of longitudinal data, identify pat-

45

terns, and generate hypotheses, which can then be subjected to rigorous statistical

analysis.

In this chapter, we present a preliminary analysis of a public PD dataset

with our tool Winnow (Figure 3.1) to study patterns of disease progression between

time points. As a visual analytics tool, Winnow presents complex data in a way

that facilitates detection of patterns and anomalies by the human eye. In contrast

to the fully-automatic analysis conducted with computational techniques, visual

analytics tools allow users to interactively explore the data through dynamic filtering

and subgrouping. By interacting with intuitive visual representations, users can

generate clinically relevant hypotheses and insights that are not easily accessible

with conventional approaches.

Winnow visualizes multiple selected outcome measures simultaneously to en-

able the investigation of inter-relationships across outcome measures in various do-

mains. By representing each patient as a line defined by the values of a selected

outcome measure recorded at the first and second time points, the slope of lines

indicates the rate of disease progression of the corresponding outcome. We also

show a histogram of disease progression to facilitate the selection of fast- and slow-

progressing patients. All visualizations are color-coded by demographic character-

istics of patients (e.g. gender) to foster understanding of demographic-related ques-

tions such as whether female and male patients progress differently with respect to

specific outcomes. The panels in Winnow are linked together to provide consistent

visualizations during data exploration.

We have made our design choices in Winnow based on the feedback obtained

46

Fi
lt

er

B
as

ic
 s

ta
ti

st
ic

s

H
is

to
gr

am
 o

f
ch

an
ge

N
u

m
b

er
 o

f
p

at
ie

n
ts

 b
y

ge
n

d
er

B
as

ic
 a

n
al

yt
ic

 r
es

u
lt

s

A
 r

ap
id

ly
 p

ro
gr

es
si

n
g

p
at

ie
n

t Se
ve

re

M
ild

G
et

ti
n

g
w

o
rs

e
G

et
ti

n
g

b
et

te
r

F
ig

u
re

3.
1:

T
h
is

sc
re

en
sh

ot
of

W
in

n
ow

sh
ow

s
th

e
re

su
lt

s
b
as

ed
on

th
e

P
ar

k
in

so
n
’s

P
ro

gr
es

si
on

M
ar

ke
rs

In
it

ia
ti

ve
(P

P
M

I)
d
at

as
et

(S
ec

ti
on

3.
4)

.
W

in
n
ow

co
n
si

st
s

of
th

re
e

p
an

el
s:

th
e

O
u
tc

om
es

p
an

el
(l

ef
t)

,
th

e
D

em
og

ra
p
h
ic

s
p
an

el
(t

op
ri

gh
t)

,
an

d
th

e
an

al
y
ti

cs
p
an

el
(b

ot
to

m
ri

gh
t)

.
H

er
e

55
p
at

ie
n
ts

(o
u
t

of
32

0)
w

it
h

lo
w

b
as

el
in

e
R

E
M

sl
ee

p
b

eh
av

io
r

d
is

or
d
er

(R
B

D
Q
<

5)
an

d
h
ig

h
R

B
D

Q
(R

B
D

Q
≥

5)
at

th
e

th
ir

d
an

n
u
al

v
is

it
ar

e
se

le
ct

ed
.

T
h
e

co
lo

rs
re

p
re

se
n
t

th
e

ge
n
d
er

of
p
at

ie
n
ts

(m
ag

en
ta

fo
r

fe
m

al
es

an
d

b
lu

e
fo

r
m

al
es

).

47

from data scientists and clinicians in a long-term collaboration following the guide-

lines of Multi-dimensional In-depth Long-term Case studies (MILC) [37]. One ex-

ample of the design choices we collaboratively made is reducing the complexity of

visualization by choosing clinically relevant features, thus improving the usability

of the tool. Clinical investigators want the opportunity for “hands-on” experience

with clinical datasets to explore data based on experiential intuition. We repeatedly

found the interpretability of results to be the top priority for the clinicians.

3.2 Related Work

Data Clustering

Clustering techniques reveal patterns by grouping similar data points together.

These techniques create another layer of abstraction on top of the raw high-dimensional

data, thus allowing users to inspect the clustering results without directly addressing

the high dimensionality of the data. Because the grouping of data points is based on

an explicitly defined similarity function, defining a reasonable function is key to the

success of clustering analysis. Typical k-means algorithm [38] defines dissimilarity

of two high-dimensional points as the Euclidean distance between them. Density-

based techniques such as OPTICS [34] rely on a neighborhood function to determine

whether two data points are (similar) neighbors. Spectral clustering [39] requires

a similarity function in constructing the adjacency graph. In practice, different

similarity functions may lead to distinct results.

Nevertheless, the similarity of two data points is subjective, application-dependent,

48

and usually difficult to define especially for high-dimensional data. This difficulty

is fundamental because typical distance functions (e.g. Euclidean distance) fail to

measure similarity precisely in high-dimensional space, a known problem referred

to as the “curse of dimensionality”. In an exploratory clinical analysis that lacks

a well-defined disease model, the limited interpretability of clustering results also

aggravates the generation of clinically relevant, actionable results.

Dimension Reduction

Dimension reduction techniques reduce data dimensionality while maintain-

ing certain relationships among data points with respect to specific criteria. Prin-

cipal component analysis (PCA) finds a series of mutually orthogonal principal

components that account for the most variance in the data. Locally linear em-

bedding (LLE) [40] and Laplacian Eigenmaps [35] first construct a neighborhood

representation, typically based on pairwise Euclidean distances, and then derive a

low-dimensional space that preserves local distances among neighboring data points.

A neural network that learns to reconstruct the original high-dimensional training

data from the derived low-dimensional latent variables can also be used for reducing

data dimensionality [41].

All these techniques share similar limitations with clustering techniques such

as requiring an explicitly-defined similarity function and limited interpretability of

results. Whereas each principal component generated by PCA represents a lin-

ear combination of variables, the clinical meaning of adding (or subtracting) two

49

clinically-unrelated features from different domains is unclear. The results gener-

ated by LLE and Laplacian Eigenmaps provide little clue for further interpretation.

In fact, even extending a low-dimensional space derived by LLE or Laplacian Eigen-

maps to include a new data point is non-trivial. The latent variables found by

neural-network-based techniques are usually cryptic unless the training data are

already labeled, which is not the case for exploratory analysis.

High-dimensional Data Visualization

High-dimensional data visualization creates a visual abstraction of high-dimensional

data such that patterns and anomalies can be detected by the human eye. Several

successful visualizations of high-dimensional data such as the scatter plot matrix

(SPLOM) [42] and parallel coordinates [43] have been widely applied. A SPLOM

organizes scatter plots generated for each dimension pair as the elements inside a

matrix; this layout facilitates efficient scanning of correlations between dimension

pairs. A parallel coordinates visualization represents dimensions as individual paral-

lel lines (axes); a data point is therefore represented as a segmented line connecting

each point in order from the first axis to the last. Clusters of data points can there-

fore be visually detected as clusters of lines. Spreadsheet-based approaches that

associate groups of cells with various types of visual representations can also help

understand complex inter-relationships in heterogeneous datasets [44]. In contrast

to the automatic analysis of computational approaches, data visualization can be

easily combined with user interactions (e.g. brushing and linking) to allow inter-

50

active data exploration via filtering and zooming in and out of specific subsets of

data.

The amount of information that can be displayed in a single visualization is,

however, limited by the screen size and the perceptual capability of the human

visual system. Such limitations can cause usability issues that adversely affect the

efficacy of visual analytics tools. For example, visualizing all pairs of dimensions in a

SPLOM is increasingly unrealistic as dimensionality grows. The parallel-coordinates

visualization is incomprehensible even with a moderate number of dimensions. Bet-

ter visual design strategies such as reordering dimensions [45], subsampling [46], and

edge bundling [47] improve visual quality, but in general visualizing high-dimensional

data remains a challenging task.

3.3 Preliminary Study

The Multi-dimensional In-depth Long-term Case studies (MILC) method [37]

evaluates the efficacy of visualization tools using various approaches, such as in-

terviews and observations, while collaborating closely with expert users. Here we

describe the MILC we conducted as a preliminary study in the development of a

clinician-friendly visual analytics tool.

We formed a multi-disciplinary research group of data scientists, database

specialists, neurologists, and biostatisticians in 2015, targeting the analysis of the PD

data collected at the University of Maryland PD Center. Group members included

movement disorder specialists (neurologists) with extensive expertise in PD but

51

little experience with visualization tools. In contrast, other group members with

computational backgrounds were only familiar with computational and visualization

techniques.

During each group session, a visualization tool or a new version of a tool

based on previous group discussion was presented. Users then attempted to apply

the tool for routine analysis tasks or confirming/rejecting PD-related hypotheses.

The comments and feedback from users were recorded by the observers while they

interacted with the tool.

Early in the project, we focused on identifying novel multi-domain PD sub-

types to extend the recognized motor-based subtypes [48]. Our first attempt (April,

2015) was an interactive hierarchical clustering method based on OPTICS [34]. We

implemented an interactive tool that enables users to explore alternative cluster-

ing results in a pre-generated hierarchy of clusters (Figure 3.2a). We then tried a

series of dimension reduction techniques including PCA, LLE [40], Laplacian Eigen-

maps [35], and t-Distributed Stochastic Neighbor Embedding [49] to reveal possible

low-dimensional representations that lead to visually apparent clusters of patients.

Common issues in all the above attempts were the limited interpretability

of the results and the lack of flexibility for clinicians to steer and manipulate the

analysis as desired. The goals from the clinician’s perspective were to 1) visualize

data on patient signs and symptoms in ways that align with their experience and

2) enable a simple hands-on interrogation of data to pose questions and generate

hypotheses. We tried to improve user-friendliness by visualizing the constituent

patient clusters but without success because of the complexity introduced by high

52

(a) Cluster hierarchy

(b) Cluster #3

(c) Cluster #12

Figure 3.2: (a) Our early attempt created a hierarchy of clusters to allow splitting
and merging of clusters following a pre-generated hierarchy. Nevertheless, the par-
allel set visualization of two sibling clusters: cluster #3 (figure (b)) and cluster #12
(figure (c)), are difficult to interpret even with three dimensions.

data dimensionality.

For example, one of our early attempts created parallel sets visualizations for

each cluster. The visualizations containing overlapping lines are, however, difficult

to read even with only three dimensions (Figure 3.2b and 3.2c). The lack of flexibility

is related to the limited capacity for user interventions in these techniques–the only

way users can modify the results is through reconfiguring the parameters of the

applied computational techniques. Furthermore, these two issues of interpretability

and flexibility are related and may exacerbate each other. For example, one would

not know how to modify the parameters of OPTICS without a proper interpretation

of the results.

Acknowledging the obstacles in our group’s process, we developed two key

53

strategies: 1) switching to a simpler PD dataset and 2) organizing two half-day

group retreats (July and August, 2016). We chose to use the Parkinson’s Progression

Markers Initiative (PPMI) dataset (Section 3.4) because it is a smaller, simpler,

and more structured dataset with a well-defined protocol, thus allowing us to find

patterns more easily with less interference from noise. Unlike the University of

Maryland PD dataset, PPMI patients are more homogeneous (recently diagnosed

and untreated at enrollment) and are assessed at more standardized intervals (every

six months).

A consultant with expertise in applied biostatistics and modeling (Dr. Søren

Bentzen) was invited to attend the retreats for a fresh perspective and to recharge

the group dynamic. After a lively discussion, the major result of the first retreat

was a preliminary sketch of Winnow, a clear breakthrough to achieve our goals. As

compared to the previously developed methods, Winnow’s data visualization is clin-

ically intuitive and invites the hands-on experience that clinicians seek. In addition

to Winnow’s approach, we also discussed the following computational techniques for

future extensions.

• Clustering analysis that groups patients by their temporal characteristics (e.g.

multiple cross-sectional clustering or clustering the change in clinical features).

• Supervised learning methods that predict a user-defined rate of disease pro-

gression based on multiple outcome measures.

• Statistical methods, for example multivariate regression analysis, that prove

or disprove hypotheses generated by users.

54

These techniques provide complementary strength to the visual analytics approach

of Winnow. We also reached consensus to add a biomarkers panel in the future

to include data from genomics, imaging, serology, and cerebrospinal fluid. Group

members had mixed reactions on the importance of interactivity to a successful tool;

although most members ranked interactivity high on the list of key components,

some prioritized a robust data model or user-friendly interfaces over interactivity.

Based on the results of the first retreat, we designed an interactive visualization

tool with the features found to be useful for clinicians. The second retreat was held

in August, 2016 to present the first version of Winnow and to review its strengths

and weaknesses. The group was unanimous in their positive assessment of the

intuitiveness of the data visualization and the capacity for simple interaction with

the data by users without intensive training (e.g. selecting patient subgroups and

outcomes for analysis). We later developed new features proposed in the second

retreat, including statistical tests for group comparisons. We describe the design of

Winnow in Section 3.5.

3.4 Data

We present the following examples and case studies using data obtained from

the Parkinson’s Progression Markers Initiative (PPMI) database [50] (www.ppmi-

info.org/data). The PPMI dataset contains patient and clinician-reported outcome

measures as well as genetics, imaging and serologic data collected over a five-year

period since 2010. As of now, more than 400 PD patients have been enrolled in

55

the study. The PPMI is an ongoing study with patient records being updated on a

rolling basis. Here, we use the data downloaded on March 2nd, 2017. For up-to-date

information on the PPMI study, visit www.ppmi-info.org.

We selected the 16 outcome measures listed in Table 3.1 that were collected

when patients were enrolled (BL) and at their third annual follow-up visit (Y3) to

study disease progression. The MDS-UPDRS (Movement Disorders Society-Unified

PD Rating Scale) measures PD severity and the other measures are selected from

the autonomic, cognitive, sleep, behavior, and disability domains. We chose the

third instead of the fifth annual visit to generate a representative set of data with

a sufficient number of patients. We excluded patients with missing or incomplete

data (e.g. enrolled for less than three years) from our analysis. In summary, a total

of 320 patients (90 female, 211 male and 19 unknown) born between 1927 and 1979

were included. Each patient is represented by 34 features (16 outcome measures

collected at BL and Y3, and two demographic attributes). The outcome measures

are aggregated scores calculated from sets of items from validated questionnaires.

3.5 Visual Analytics Tool: Winnow

Figure 3.1 shows a screenshot of Winnow consisting of three panels: the out-

comes panel (left), the demographics panel (top right), and the analytics panel

(bottom right). The number near the top shows the total number of selected pa-

tients (55 in Figure 3.1). We also provide the option for descriptions of the selected

ranges of the currently applied filters in a tooltip (not shown here).

56

T
ab

le
3.

1:
L

is
t

of
th

e
16

ou
tc

om
e

m
ea

su
re

s
an

d
si

x
d
om

ai
n
s

of
P

D
in

ou
r

st
u
d
y.

D
om

a
in

O
u

tc
om

e
M

ea
su

re
D

es
cr

ip
ti

on
R

an
ge

P
D

S
ev

er
it

y
:

M
o
to

r
&

N
on

-M
o
to

r

M
D

S
-U

P
D

R
S

P
a
rt

I
(U

P
D

R
S

1)
N

on
-m

ot
or

as
p

ec
ts

of
ex

p
er

ie
n

ce
s

of
d

ai
ly

li
v
in

g
0–

52

M
D

S
-U

P
D

R
S

P
a
rt

II
(U

P
D

R
S

2)
M

ot
or

as
p

ec
ts

of
ex

p
er

ie
n

ce
s

of
d

ai
ly

li
v
in

g
(d

is
ab

il
it

y
)

0–
52

M
D

S
-U

P
D

R
S

P
a
rt

II
I

(U
P

D
R

S
3)

M
ot

or
ex

am
in

at
io

n
fo

r
si

gn
s

of
P

D
0–

13
2

M
D

S
-U

P
D

R
S

T
ot

a
l

S
co

re
(T

-U
P

D
R

S
)

G
en

er
al

P
D

se
ve

ri
ty

:
su

m
of

M
D

S
-U

P
D

R
S

P
ar

t
I-

II
I

0–
23

6

A
u

to
n

o
m

ic
A

u
to

n
o
m

ic
S

ca
le

fo
r

O
u

tc
om

es
in

P
D

(S
C

O
P

A
-A

U
T

)
A

u
to

n
om

ic
sy

m
p

to
m

s
in

P
D

0–
75

C
og

n
it

iv
e

H
o
p

k
in

s
V

er
b

al
L

ea
rn

in
g

T
es

t
(H

V
L
T

)
V

er
b

al
sh

or
t-

te
rm

m
em

or
y

an
d

n
ew

le
ar

n
in

g
0–

12

B
en

to
n

J
u
d

gm
en

t
of

L
in

e
O

ri
en

ta
ti

on
(J

O
L

O
)

V
is

u
os

p
at

ia
l

p
er

ce
p

ti
on

an
d

or
ie

n
ta

ti
on

0–
30
∗

S
em

an
ti

c
F

lu
en

cy
(S

F
T

)
S

em
an

ti
c

an
d

p
h

on
et

ic
m

em
or

y
>

0∗

L
et

te
r

N
u

m
b

er
S

eq
u

en
ci

n
g

(L
N

S
)

A
tt

en
ti

on
,

w
or

k
in

g
m

em
or

y,
an

d
v
is

u
os

p
at

ia
l

ab
il

it
y

0–
21
∗

S
y
m

b
ol

D
ig

it
M

o
d

al
it

ie
s

T
es

t
(S

D
M

)
P

ro
ce

ss
in

g
sp

ee
d

0–
11

0
∗

M
on

tr
ea

l
C

o
gn

it
iv

e
A

ss
es

sm
en

t
(M

oC
A

)
G

lo
b

al
co

gn
it

iv
e

ev
al

u
at

io
n

0–
30
∗

S
le

ep

E
p
w

o
rt

h
S

le
ep

in
es

s
S

ca
le

(E
S

S
)

D
ay

ti
m

e
sl

ee
p

in
es

s
0–

24

R
a
p

id
E

ye
M

ov
em

en
t

S
le

ep
(R

E
M

)
B

eh
av

io
r

D
is

o
rd

er
Q

u
es

ti
o
n

n
ai

re
(R

B
D

Q
)

A
b

n
or

m
al

b
eh

av
io

rs
d

u
ri

n
g

R
E

M
sl

ee
p

0–
13

B
eh

av
io

r
G

er
ia

tr
ic

D
ep

re
ss

io
n

S
ca

le
(G

D
S

)
D

ep
re

ss
iv

e
sy

m
p

to
m

s
in

th
e

el
d

er
ly

0–
15

S
ta

te
-T

ra
it

A
n

x
ie

ty
In

ve
n
to

ry
(S

T
A

I)
S

ta
te

an
d

tr
ai

ts
of

an
x
ie

ty
in

ad
u

lt
s

40
–1

60

D
is

ab
il

it
y

M
o
d

ifi
ed

S
ch

w
ab

&
E

n
gl

an
d

A
ct

iv
it

ie
s

of
D

ai
ly

L
iv

in
g

(S
E

A
D

L
)

In
d

ep
en

d
en

t
an

d
d

ep
en

d
en

t
fu

n
ct

io
n

of
d

ai
ly

ac
ti

v
it

ie
s

0–
10

0∗

∗
L

ow
er

sc
o
re

in
d

ic
a
te

s
m

or
e

se
ve

re
sy

m
p

to
m

.
F

or
al

l
ot

h
er

s,
h

ig
h

er
sc

or
e

in
d

ic
at

es
m

or
e

se
ve

re
sy

m
p

to
m

s.

57

3.5.1 Outcomes Panel

Each selected outcome measure corresponds to two plots in the outcomes panel:

one showing the values at BL and Y3 (top) for each individual patient, and the other

showing the number of patients with a certain amount of change between BL and

Y3 as a stacked histogram (bottom). In the top plot, each patient is represented by

a line connecting the values of that outcome measure at BL and Y3 for that patient.

Using this visual representation, changes in values correspond to the slope of lines,

whose differences can be detected efficiently by human eye [51]. We reverse the

positive direction of axes in the plots, if needed, such that a positive slope always

indicates PD progression (from mild to severe symptoms). Therefore, a line with a

steep upward slope shows the corresponding patient is experiencing rapid progression

on that outcome measure. This axis reversal is applied to Benton Judgment of Line

Orientation (JOLO), Semantic Fluency (SFT), Letter Number Sequencing (LNS),

Symbol Digit Modalities Test (SDM), Montreal Cognitive Assessment (MoCA), and

Modified Schwab & England Activities of Daily Living (SEADL) where higher scores

indicate milder symptoms (marked with an asterisk in Table 3.1).

Although the slope of lines can be easily seen for a moderate number of lines

(patients), the difficulty in locating individual lines increases significantly with the

degree of occlusion. We therefore also show the number of patients with a certain

amount of change between BL and Y3 in a stacked histogram in the bottom plot

to provide a summary of disease progression. A similar axis reversal is applied to

the histograms such that a bar on the right represents more rapid progression. In

58

both the top and bottom plots, the colors of lines and bars are determined by the

selected demographic attribute in the demographics panel (Section 3.5.2).

Users can select a subset of patients by dragging the target interval on the

target axis. During selection, all plots, including the ones in the demographics panel,

are updated interactively to reflect the latest selected patients through brushing and

linking. We show the mean and standard deviation of the values at BL, Y3, and

the changes in between the two for the total sample and for the selected patients to

allow for easy comparison.

For example, users can select the rapidly progressing patients whose UPDRS3

(motor exam) score increased by more than 12 over three years in the bottom his-

togram (bottom of Figure 3.3). After applying the filter, the 109 selected patients

are represented by lines with steep upward slopes in the top plot (right of Fig-

ure 3.3). The mean UPDRS3 at Y3 for the selected patients (38.85, right arrow in

Figure 3.3), is higher than the mean UPDRS3 at Y3 for the total patient sample

(28.39, left arrow in Figure 3.3).

59

28.39

38.85

Figure 3.3: After using the bottom histogram for selecting patients with the most
rapid progression in the motor domain (∆(UPDRS3) > 12), the corresponding plot
of UPDRS3 in the outcomes panel shows only the 109 matching patients, represented
by the lines with steep upward slopes. The mean UPDRS3 at Y3 of the group of
selected patients (right arrow) is greater than that of the total patient sample (left
arrow).

3.5.2 Demographics Panel

The demographics panel shows the gender and the year of birth in two individ-

ual histograms (top right of Figure 3.1). Instead of showing every year as a separate

bar in the histogram, which would result in a crowded visual display, the years are

grouped into decades to facilitate interpretation of age distribution and efficient use

of the limited screen space.

The color scheme used in Winnow is determined by the selected demographic

attribute. For example, when gender is selected, the lines (top plot) and bars (bot-

tom plot) in the outcomes panel are colored in magenta and blue for female and male

60

Figure 3.4: Users can filter the 109 previously selected patients (in Figure 3.3) by
gender by clicking the corresponding bar in the demographics panel. After selecting
female patients (left) with unusually rapid changes in cognitive function as measured
by SDM (center), users can then change the color scheme to explore the year of birth
of the selected patients (right).

patients, respectively. Users select a subset of patients with respect to a particular

demographic attribute by clicking the corresponding bar.

For example, users can select the 24 female patients from the previously se-

lected 109 rapidly progressing patients using the demographics panel (left of Fig-

ure 3.4). After applying the gender filter, the mean value of ∆(SDM) is −3.33

(comparable to the decline of −3.36 before filtering by gender); this shows that the

female patients in the selected cohort progress similarly to the mean total sample

in terms of cognitive function as measured by SDM.

Users can also identify female patients with the most rapid progression in

SDM. For example, they can select the four patients with ∆(SDM) < −16.62,

which is more than one standard deviation from the mean, represented by lines

with significantly steeper slopes when compared with other female patients (center

61

of Figure 3.4). If we select those four patients and switch from gender to year of

birth in the demographics panel, we see that these four patients were born between

1940 and 1960, corresponding to ages between 56 to 76 years (right of Figure 3.4).

3.5.3 Analytics Panel

The analytics panel shows the relationships between pairs of variables through

statistical analysis (bottom right of Figure 3.1). The first tab shows the correlation of

a pair of outcomes evaluated by the Spearman’s rank correlation; a high correlation

coefficient for a pair of outcomes indicates that patients with severe symptoms in one

outcome are likely to show severe symptoms in the other outcome; similarly, those

with low on one outcome are likely to be low on the other. The second tab shows

the p-values of the Mann-Whitney test comparing the distributions of outcomes

in the selected patients and the remainder of the patients in the total sample; an

outcome has a low p-value when its distributions are different in the selected patients

and the remainder of the patients. Both the Spearman’s rank correlation and the

Mann-Whitney test are non-parametric. The variable tested can be selected from

the values at BL, Y3, or the change in values from BL to Y3.

In the following example we use the Mann-Whitney test to compare the

changes in values between two groups: The 109 fast-progressing patients with respect

to UPDRS3 (selected in Figure 3.3) and the remainder of the patients (n = 211).

The result shows, beside the trivial case comparing ∆(UPDRS3) in the two groups,

the other two UPDRS sub-scales (∆(UPDRS1) and ∆(UPDRS2)–non-motor symp-

62

toms and disability) have low p-values (p < 0.05). Other variables with low p-values

in increasing order are ∆(GDS), ∆(SDM), ∆(SCOPA-AUT), ∆(SEADL), ∆(STAI),

and ∆(LNS), associated with a range of domains (behavior, cognitive, autonomic,

and disability). In summary, disease progression in motor functions is associated

with progression of autonomic dysfunction, cognitive decline, depression, anxiety,

and disability.

3.5.4 Implementation

Winnow is implemented in JavaScript (frontend) and Python (backend). Users

can conveniently run Winnow on modern browsers without installation through a

link to the website1.

3.6 Case Study

We now summarize two case studies we conducted with Winnow. The results

shown in this section are for demonstration only. Analyses with Winnow are in-

tended to uncover promising relationships between a range of outcome measures

for selected patient subgroups. These analyses are for the purpose of generating

hypotheses and need to be reproduced in future studies.

1http://hccheng.pythonanywhere.com/vis/

63

http://hccheng.pythonanywhere.com/vis/

3.6.1 Questions

We have identified two clinically relevant questions about disease progression

in PD with input from our clinical experts.

Q1 Does gender affect Parkinson’s disease severity at year three?

Q2 Does the baseline severity of REM sleep behavior disorder (RBDQ) affect year

three outcomes?

In the following we assess the effect of grouping using the Cohen’s d [52],

which is the difference between two sample means divided by the pooled standard

deviation:

d =
x1 − x2√

σ2
1+σ

2
2

2

, (3.1)

where xi and σi are the mean and standard deviation of the i-th group. A Cohen’s

d of value 0.2, 0.5, or 0.8 suggests a small, medium, or large magnitude of relation-

ship, respectively [52]. We use Cohen’s d to provide a different but complementary

perspective on group differences in addition to the rank-based Mann-Whitney test.

Q1: Does gender affect Parkinson’s disease severity at year three?

Gender differences in PD-related symptoms have been studied in the past. For

example, RBD (REM sleep behavior disorder) was shown to be more prevalent in

male patients than female patients [53]. A thorough review of gender differences in

64

cognitive functions can be found in [54]. In the following analysis, we first applied

a filter in the demographics panel and then used the plots in the outcomes panel to

investigate various outcome measures at Y3 (Figure 3.5).

For UPDRS3 in the motor domain, female patients have a mean value of 25.89

at Y3 (first plot in the top of Figure 3.5) and males have a mean value of 29.36 at

Y3 (first plot in the bottom of Figure 3.5). Therefore, comparing female with male

patients, females have less severe motor symptoms than males at Y3 (d = 0.27). The

Mann-Whitney test shows a significant difference (p = 0.003, shown in Table 3.2)

between the female and male patients. Other measures that significantly differ by

gender at Y3 are listed in Table 3.2, including measures in the cognitive, sleep,

and disability domains. Male patients show more severe symptoms than females

in eight out of the nine outcome measures (marked in bold in Table 3.2). These

seven outcomes are UPDRS2, UPDRS3, and T-UPDRS (general PD severity), SFT,

MoCA and SDM (cognition), ESS (sleep), and SEADL (disability).

Q2: Does the baseline severity of REM sleep behavior disorder (RBDQ)

affect year three outcomes?

In this question, we investigate how the baseline severity of REM sleep behav-

ior disorder (measured by RBDQ) affects the severity of outcomes in other domains

over three years. We approached this question by selecting patients with increasingly

severe REM sleep behavior disorder (greater values of RBDQ) at BL and comparing

the severity of the other outcomes at Y3.

65

Figure 3.5: After applying the gender filter, the plots show that female patients (top)
have comparable motor symptoms (UPDRS3) and general PD severity (T-UPDRS)
at BL and less severe symptoms at Y3 than male patients (bottom). For semantic
fluency (SFT), female patients show less severe symptoms both at baseline and Y3.
Arrows mark the mean values at Y3 for the males and females.

66

Table 3.2: Outcome measures that are significantly different (p < 0.05) by gender
at year three (Y3)

Domain
Outcome Mean value at Y3

p-value
Measure Female male

PD Severity:
Motor &
Non-Motor

UPDRS2 6.98 9.31 < 0.001

T-UPDRS 41.07 46.71 0.001

UPDRS3 25.89 29.36 0.003

Cognitive

SFT∗ 53.13 45.98 < 0.001

JOLO∗ 11.80 12.98 < 0.001

MoCA∗ 27.08 25.94 < 0.001

SDM∗ 42.48 38.19 0.006

Sleep ESS 6.49 7.49 0.013

Disability SEADL∗ 89.06 87.49 0.021

∗ Lower score indicates more severe symptom.

After applying a filter on baseline RBDQ with a cut-off value of four (Fig-

ure 3.6a), the mean values of T-UPDRS (PD severity) at Y3 is 50.17 for the top

50% of patients for RBDQ at BL (left of Figure 3.6b), and 39.96 for the bottom

50% of patients for RBDQ at BL (not shown here). These results show that for pa-

tients with greater baseline REM sleep behavior disorder, their general PD severity

(T-UPDRS) is more severe at the third annual follow-up visit (d = 0.57).

In fact, if we use the analytics panel to compare the top and bottom 50%

of baseline RBDQ ratings, the Mann-Whitney test shows that the distributions of

nearly all outcome measures at Y3 are significantly different (p < 0.05) between the

two groups except for a single cognitive measure, the semantic fluency test (SFT).

These results show that the baseline severity of REM sleep behavior disorder is an

important predictor of three-year outcomes across all the domains. Further studies

67

50%

25%

10%

(a) Filtering base-
line RBDQ

50.17
53.65

58.54

(b) Increasing mean T-UPDRS at Y3 from 50% to top 10% of
patients (left to right)

Figure 3.6: (a) A filter that selects patients with increasingly greater baseline RBDQ.
(b) As the filter moves to select patients with more severe baseline RBDQ (top 50%,
25%, and 10% from left to right), the mean T-UPDRS at Y3 increases from 50.17
to 53.65 and 58.54.

are needed to investigate this important finding.

The difference in outcomes at Y3 between patients with more and less baseline

REM sleep behavior disorder becomes even more apparent if we adjust the filter to

select increasingly greater RBDQ ratings at BL (Figure 3.6a). The patient groups

with the top 50%, 25%, and 10% baseline RBDQ ratings have increasingly greater

mean values of T-UPDRS at Y3 (50.17, 53.65, and 58.54 from left to right in Fig-

ure 3.6b). In summary, these results show a positive correlation between the severity

of baseline REM sleep behavior disorder and the severity of multiple other domains

at year three, indicating that the baseline severity of REM sleep behavior disorder

is an important predictor of Parkinson’s disease progression.

3.6.2 Discussion

Winnow enables clinicians and scientists to interactively and flexibly query

complex and high-dimensional datasets with minimal training. This hands-on ex-

68

perience is critical for clinicians to generate hypotheses and to discover actionable,

clinically-relevant results. Currently hypotheses are investigated with basic statis-

tics; in the future we plan to use Winnow as an interface for complex analytic

methods, such as supervised learning. For example, users can define patient sub-

groups with distinct profiles of progression in Winnow and then use these defined

subgroups as the targets for supervised learning methods.

Based on the features of the dataset used in our examples, our analysis is

limited to three years of longitudinal data. Whereas Winnow currently supports

comparing two groups of patients (selected and unselected), future modification will

enable selecting and switching between multiple patient groups to allow more sophis-

ticated comparisons. In addition to the outcome measures used in our preliminary

study, biologic data (e.g. genomics and serologic markers) may enable more precise

and reliable groupings.

3.7 Conclusions and Future Work

Over the last 25 years, chronic medical conditions have been redefined with an

expanding scope of symptoms and biologic disease markers. These advances have re-

sulted in complex multidimensional clinical datasets. Such datasets pose substantial

opportunities for discovery, but also pose unique challenges for traditional analysis.

Parkinson’s disease (PD) is a key example of these challenges–a complex progressive

neurodegenerative disorder with rapidly expanding biologic data including genetics,

imaging, and serologic markers. Because the diverse symptoms of PD progress over

69

different timeframes, and are likely to vary in different patient subgroups, novel

tools and approaches are needed to capitalize on the large, multidimensional, and

longitudinal datasets available today.

In this chapter we present Winnow, a visual analytics tool that is intuitive,

interactive and insightful for both scientists and clinicians. The design of Win-

now is based on an intensive long-term collaboration between experts from diverse

backgrounds. Winnow is a significant step to conduct complex analysis on existing

databases that are necessary to advance the study of chronic medical conditions.

We are designing more concise and scalable visualizations by grouping similar

patients in the outcomes panel and creating a graph-based representation summa-

rizing the changes in outcomes [55]. We are also working on extending Winnow

to incorporate new emerging biomarkers including genetics, imaging, serology, and

biosensor metrics. The extension will also include a machine learning module to

perform automatic data analysis.

70

Chapter 4: Overview of Biomedical Images and Convolutional Neu-

ral Networks

4.1 Introduction

So far, we have presented our visual analytics tools for protein reaction net-

works and longitudinal multidimensional clinical data. In the rest of the disserta-

tion, we focus on visualizations for biomedical images. Although human eyes can

detect various features, from low level ones such as edges and corners to textures

and even higher level concepts, inspecting images visually is both ineffective and

inefficient. We therefore designed visualization and computational techniques for

various biomedical image understanding applications.

In the following (Section 4.2), we first introduce the background for biomed-

ical images and convolutional neural networks (CNNs), which is a specific type of

neural network we used throughout the rest of this chapter. We present the unique

characteristics of biomedical images and the challenges related specifically to their

analysis, and the basics operations and terminologies in CNNs. We then present

our studies on the visualization of gigapixel images (Chapter 5), time-lapse images

(Chapter 6), and volumetric images (Chapter 7). Finally, we present a CNN-based

71

segmentation for volumetric images (Chapter 8).

4.2 Background

4.2.1 Biomedical Images

Major breakthroughs in the pursuit of higher image resolution have enabled

more accurate diagnoses and further understanding of biology. For example, modern

cryo-electron microscopes capture images at high resolution on the scale of few

nanometers to a couple of angstroms. At this resolution, researchers can now study

biological structures at molecular scale, such as the ligand-protein complexes [56].

In the rest of the dissertation, we focus on three types of biomedical images:

electron microscopy (EM) images, confocal fluorescence microscopy images, and

magnetic resonance imaging (MRI). Depending on the imaging technology used,

they can be further separated into sub-categories. For example, EM can be fur-

ther categorized into transmission electron microscopy (TEM), which is based on

transmitted electrons, and scanning electron microscopy (SEM), which is based on

scattered electrons.

In contrast to natural images, many biomedical images are captured in 3D

to enable the study of structural morphology and geometry of target objects such

as brain tissues and subcellular organelles. For example, focus ion-beam scanning

electron microscopy (FIB-SEM) generates high-resolution 3D volumes that have led

to innovations in many biological systems [57]. Volumetric biomedical images are,

however, usually anisotropic because of technical limitations: the resolution along

72

the z-axis is usually much lower than that in the xy-plane (the imaging plane). When

the discrepancy in resolution is insignificant, we can afford to reduce the resolution

along the xy-plane to match that of the z-axis; when the z-axis resolution is orders

of magnitude lower, we cannot apply such a reduction because it removes valuable

high-frequency signals from the data.

Another significant difference between natural images and biomedical images

lies in the number of channels. Typical natural images contain three color channels

(i.e. red, green, and blue). Typical EM images are single-channel. For confocal

fluorescence microscopy images, the channels depend on the dyes used (e.g. green

fluorescent protein). MRI images usually contain multiple channels (e.g. T1 and

T2) to differentiate various types of tissues.

In addition, the signal-to-noise ratio of biomedical images is significantly lower

than that of natural images. The significant noise hampers precise depictions of

objects, especially near object boundaries that are already ambiguous because of the

irregular shapes of objects. Inconsistent illumination condition is also a prevalent

and inevitable problem in biomedical images. Although denoising and normalizing

early in the image processing pipeline can alleviate those problems, in practice

designing robust computational methods for biomedical images remains challenging.

4.2.2 Convolutional Neural Networks (CNNs)

Recently, deep-learning-based methods, or convolutional neural networks (CNNs)

specifically, have clinched top places in major computer vision competitions such as

73

ImageNet [58] for image classification and Pascal Visual Object Classes (VOC) [59]

for semantic segmentation. The state-of-the-art methods for image recognition now

achieve an accuracy comparable to humans; this remarkable achievement is a mile-

stone in the pursuit of machine intelligence in the last few decades.

A typical feed-forward CNN consists of a sequence layers (from bottom to top),

each performing specific operations. A layer is trainable if the weights (associated

with neurons) in that layer are subjected to adjustment during training. Convolu-

tional and fully-connected layer are two most common types of trainable layers. In

a convolutional layer, a kernel is a trainable tensor that defines the filtering weights.

For example, a 2D convolutional layer slides k kernels (i.e. Wm,1,Wm,2, · · · ,Wm,k)

over the input 3D tensor U of size x×y×m, where x and y correspond to the spatial

dimensions, and m denotes the number of input feature maps (or, channels). After

filtering the input tenser U with the kernels Wm,k, the layer outputs a 3D tensor V ,

which is connected to the next layer. The i-th output feature map Vi is calculated

as Vi =
∑

mWm,i ∗Um + bi, where bi denotes the associated bias term. The filtering

can be selectively applied to neurons separated by a predefined distance referred

to as stride. In contrast to convolutional layers that connect neurons in a local

neighborhood, a fully-connected layer calculates the value of an output neuron as

a weighted sum of all the input neurons; the fully-connected layers are also used in

conventional multilayer perceptrons.

A nonlinear activation function converts the values in an output feature map

Vi into corresponding neuron responses; such an activation mechanism simulates

artificially the activation of neuron cells and injects nonlinearity into the model.

74

-2

-1

0

1

2

-2.5 -2 -1.5 -1 -0.5 0.5 1 1.5 2 2.5

Sigmoid

Hyperbolic Tangent

Rectify

Figure 4.1: Three nonlinear activation functions: sigmoid (blue), hyperbolic tangent
(orange), and rectify (green).

Common activation functions are sigmoid, hyperbolic tangent, and rectify (Fig-

ure 4.1). Different activation functions are preferred depending on the targeting

output distribution. For example, the hyperbolic tangent function with a range of

(0, 1) can be used when we want the output to represent a probability value.

Non-trainable layers, such as spatial pooling layers, always perform the same

predefined operation. For example, a max-pooling layer always outputs the maxi-

mum values within a local neighborhood by filtering the input tensor with a max-

imum filter. Usually, a pooling layer is used to reduce the spatial dimension in

subsequent layers by setting a stride larger than one. Pooling layers also add more

nonlinearity to the network if the operation used is nonlinear (e.g. maximum or

minimum).

During training, a solver adjusts the trainable parameters in a CNN by a

backward pass (i.e. backpropagation), which follows a forward pass of training

75

samples from the bottom layer to the top layer; the adjustment is based on gradients

calculated from a user-defined loss function. Depending on the application, common

loss functions include binary cross-entropy and mean squared error.

Though CNN architecture varies from one design to another, most common

networks resemble that of AlexNet [60]. AlexNet has seven trainable layers, in-

cluding five convolution layers and two fully-connected layers. Three max-pooling

layers progressively reduce the spatial resolution of deeper layers (i.e. layers near

the top). Current research in deep learning is towards building deeper and deeper

networks for increasingly complex problems. Nevertheless, increasing the number of

layers (and also the number of trainable parameters) can deteriorate performance.

This deterioration is related to the vanishing gradient problem, which challenges the

tuning of deep layers, or the overfitting problem, where the model simply learns the

input samples.

CNNs for Biomedical Images

As a general machine learning technique, CNN has the potential multidisci-

plinary impact beyond natural images. For example, deep learning may improve the

accuracy of the clinical diagnoses provided by computer-aided diagnosis systems in

recognizing tumorous tissues in mammography images.

In fact, an encouraging trend has started to emerge in the biomedical im-

age analysis community. For example, in three consecutive years from 2014 to

2016, an increasing number of participants (i.e. three, five and nine) have applied

76

deep-learning-based methods in the Brain Tumor Image Segmentation Challenge

(BRATS) [61]. Another example is the MRBrainS segmentation challenge [62], in

which challenge leaders switch their choice of classifier from Random Forest and

Support Vector Machine (SVM) (blue and green in Figure 4.2, respectively) to

deep-learning-based techniques (orange in Figure 4.2) in 2016.

Nov-2013 Jun-2014 Jan-2015 Jul-2015 Feb-2016 Aug-2016

Date

0

50

100

150

200

250

300

350

400

S
co

re

SVM
Deep-learning

Random Forest
Others

Figure 4.2: The techniques used in MRBrainS segmentation challenge shift from
Random Forest (blue) and SVM (green) to deep-learning-based techniques (orange)
from 2013 to 2016. Lower scores indicate higher performance.

The general guidelines in designing CNNs, such as alleviating the vanishing

gradient problem, speeding up convergence, and multiscale analysis, are independent

of applications. For example, several recent studies on biomedical image segmen-

tation [63, 64, 65] have reported superior performance by combining fully convo-

lutional networks [66] with residual networks [67]; both techniques were developed

originally for natural images. Nevertheless, biomedical images are different from

77

natural images in many aspects (e.g. anisotropicity and low signal-to-noise ratio,

c.f. Section 4.2.1). In addition, annotated biomedical datasets are scarce and rel-

atively small in size if compared with natural image datasets. Different designs of

CNN might be needed to address these application-specific challenges.

78

Chapter 5: Visualization of Microstructures in Gigapixel Microscopy

Images

5.1 Introduction

Advances in high-resolution imaging technology allow researchers to see fine

details of objects. As technology pushes the limits of image resolution, the widening

gap between image and screen resolutions has brought new challenges for image

analysts. For example, visually inspecting a 281-gigapixel microscopy image [5] on

an ordinary four-megapixel screen would require repeatedly zooming in and out of

the image. This routine is especially tedious at the beginning of exploring the image

when analysts have yet to decide which specific targets to focus on. The analysis of

gigapixel images therefore requires intense human-computer collaboration, especially

in non-trivial analyses that are laborious even for moderate-sized images.

Many examples of such demanding analyses involve texture detection, which

is paricularly challenging because of the complex nature of textures. Besides the

complexity in modeling textures computationally [68], visually inspecting textures

in large images is also difficult because different textures can easily become indistin-

guishable when high-frequency signals are removed after downsampling. Analysts

79

are therefore faced with two conflicting operations: 1) zooming in to specific re-

gions of the image for the high-resolution details required in texture analysis, and

2) zooming out for a global view that puts the target microstructures in a better

context [69, 70].

Although the conflicts caused by resolution disparity aggravate image under-

standing, additional visual cues such as color [69] and depth [71] can enhance human

perception of images. In the past, specialized lighting functions [72] and clustering

techniques [73] have been used to assign colors and opacities that highlight brain mi-

crostructures in volumetric data. Studies in visual psychophysics have also revealed

that human eyes are naturally more efficient in processing colors than textures [51].

Therefore, in this work, we use colors to highlight texture differences and facilitate

the search for distinct textures and microstructures in large images. Whereas the

resolution disparity problem is inevitable when exploring large images, texture dif-

ferences that are less apparent at a given resolution stand out more easily because

the color-based highlights are more salient to human eyes

We address the following challenges. First, conducting texture analysis on

gigapixel images is extremely computationally expensive. Existing segmentation

algorithms that model an image as a grid graph (e.g. F&H [3]) or a feature matrix

(e.g. FSEG [4]) can handle only small images because of the excessive memory usage

(circles and crosses in Figure 5.1). Second, the textures of interest are not discernible

at all scales. The need for finding and visualizing texture differences across scales

in large gigapixel images calls for an efficient segmentation procedure and a flexible

interaction component to enable manual exploration of gigapixel images.

80

0.0625

0.125

0.25

0.5

1

2

4

8

16

32

64

128

0.001 0.004 0.016 0.063 0.250 1.000 4.000

Ti
m

e
 (

m
)

Image size (GPs)

F&H FSEG Proposed method

Figure 5.1: The running time (m) of our hierarchical segmentation algorithm is
considerably lower than F&H [3] and FSEG [4]. Both image size (x-axis) and time
(y-axis) are in log scale. For large images, F&H and FSEG terminated prematurely
because of insufficient memory.

We design our gigapixel-scale segmentation algorithm that addresses the two

challenges (triangles in Figure 5.1). We apply an efficient hierarchical segmentation

algorithm to identify regions with different textures at various scales (Section 5.4)

based on the joint distribution of intensity and noise-resistant local binary pattern

(Section 5.3). Similar to previous research on gigapixel images [69, 74, 75], we use

a Gaussian pyramid as the multiscale image representation. A tile-based storage

divides each pyramid level into a set of rectangular tiles of size 1024 × 1024, al-

lowing efficient loading of relevant regions in the image pyramid at various scales.

In addition, we apply a superpixel segmentation and model the image as a less

memory-demanding graph of superpixels. Our hierarchical texture-based segmenta-

tion identifies regions that differ in texture, starting from the most downsampled,

lowest-resolution level all the way to the base, full-resolution level in the pyramid.

81

An analogy of such coarse-to-fine process can be found in human response to visual

stimuli, in which coarse information enters the system first, providing cursory inter-

pretation, which is then followed by processing specific, detailed information [76].

Yes

No

Start

Finished all
levels?

End

Input image Hard drive

-1

1

1 1

-1 0

1 1

Image pyramid

Feature extraction

Superpixel

Parent segment Child segmentsGraph-based segmentation

Figure 5.2: An overview of the segment tree building procedure. Noise-resistant
local binary patterns and superpixels are generated for each tile at all pyramid
levels. A hierarchical graph-based segmentation subdivides each parent segment
into child segments.

At each level of the hierarchical segmentation, we use an unsupervised graph-

based segmentation procedure to subdivide all segments into child segments. Fig-

82

ure 5.2 shows an overview of the system, which includes the image pyramid building,

the feature and superpixels generation, and the hierarchical segmentation. The hi-

erarchy formed by segments across different scales can be represented as a segment

tree, which facilitates the multiscale exploration of alternative segmentations inter-

actively. During user interaction, segments are colored differently to allow visual

detection even when zooming out. Based on the color-based highlights, users can

decide whether they need to split a segment further (Section 5.5). Such a user-

mediated approach may significantly reduce the time needed to locate regions with

texture differences, reveal ones that could otherwise be overlooked, and lead to a

more thorough exploration.

5.2 Related Work

5.2.1 Texture Analysis

Texture analysis has received much attention in image processing and com-

puter vision, yet it remains a difficult problem because of its complexity. Tuceryan

and Jain grouped texture analysis methods into four categories: statistical, geomet-

rical, model-based, and signal processing-based methods [68]. Statistical methods

describe texture using statistics derived from the intensity distribution in a local

neighborhood. For example, Haralick features [77] are statistics (e.g., correlation

and entropy) calculated from co-occurrence matrices. Geometrical methods describe

texture as a spatial distribution of texture primitives, identified as homogeneous re-

gions [78] or edges [79]. Model-based methods create generative image models, such

83

g2

g6

g4 g0

g3 g1

g5 g7

gc 1

Example:

223

118

35 248

121 230

75 205

120

LBP8,1

114

67 239

245

= (143)10

g7 ≥ gc g0 ≥ gc

LBP8,1 = (10001111)2

Figure 5.3: This example shows the calculation of LBP8,1 using eight sample values,
g1 to g8, taken on a unit circle (left). With the values shown in the right hand side,
the corresponding LBP is a binary string 10001111, which is 143 in decimal (right).

as fractal model [80], that can synthesize the observed intensity distribution. Signal

processing-based methods perform analysis after extracting features from filtered

images [81, 82, 83].

Inspired in part by Haralick features, the local binary pattern (LBP) method [84,

85] labels a pixel based on the relationships between the intensity value of that pixel

and the intensity values of its neighbors. These local patterns serve as low-level tex-

ture primitives that, as opposed to the high-level primitives such as edges, contain

local information at pixel level.

An LBP, denoted by LBPP,R, is represented as a binary string of length P ,

in which each bit encodes the relationship between the intensity value of the center

pixel and the intensity value of the neighbors, which are R pixels away from the

84

center. When a neighboring pixel has value greater than or equal to that of the

center pixel, the corresponding bit is one (otherwise, it is zero). Figure 5.3 shows

an example of the calculation of LBP8,1. With P equals eight, the binary string

is eight bit long, representing 256 possible patterns. A 256-bin LBP histogram

summarizing the frequency of patterns in a region describes the texture of that

region. The distance measure of two LBP histograms therefore represents the texture

dissimilarity between two corresponding regions.

A number of variants have been proposed to improve the classic LBP method.

Instead of using a predefined set of “uniform” patterns [85], the dominant (i.e. most

frequent) patterns contain more textural information [86]. Magnitude components

can provide complementary information to the original LBP, thus improving the

capability in discerning subtle patterns [87]. Local ternary pattern (LTP) is more

resistant to noise after adding a third state to explicitly represent uncertainty caused

by noise [88]. Noise-resistant local binary pattern (NRLBP) maps the third (uncer-

tainty) state in LTP into candidate uncertainty-free patterns and use soft histograms

to accumulate the occurrences of candidate patterns after mapping [89].

5.2.2 Image Segmentation

Supervised image segmentation extracts knowledge (e.g. property of classes

of tissue [90]) from labeled samples in the training phase and then generates seg-

mentation in the testing phase based on the training feedback. Having high-quality

training data, therefore, is a precondition for a successful segmentation. The need

85

for training samples, however, limits supervised approaches to applications with

readily available samples, which is uncommon because labeling is tedious and labor-

intensive.

Unsupervised segmentation, on the contrary, detect boundaries directly based

on distribution of pixels in target images. The lack of a priori information, however,

adds another layer of difficulty. Conventional unsupervised clustering methods such

as k-means [91] or fuzzy c-means [92] can be adapted to solve segmentation problems.

A number of graph-based methods formulate the image segmentation problem

as a graph cut problem, minimizing cost functions such as normalized cut [39] and

min-max cut [93]. In general, finding these graph cuts requires solving hard opti-

mization problems (e.g., NP-complete or NP-hard) and therefore restricts their use

to small graphs (or images) because of the lengthy computation time. Felzenszwalb

and Huttenlocher propose an efficient segmentation based on the minimum span-

ning tree of the graph representing an image [3]. In practice, the method runs in

near-linear time with respect to the number of pixels. Such efficiency enables seg-

mentation at video rate and segmentation of larger images. However, as we discuss

earlier (cf. Figure 5.1), this algorithm does not scale up to gigapixel images.

Because many image processing tasks are complex, they become easily in-

tractable for large images. Superpixel algorithms generate an initial segmentation

of the image by grouping pixels into regions called superpixels to simplify subse-

quent operations. Superpixel algorithms are therefore often used as a preprocessing

step for computationally demanding tasks [94, 95, 96]. Targeting efficient gener-

ation of compact regular-shaped superpixels, the simple linear iterative clustering

86

(SLIC) [97] method uses a variant of k-means clustering to generate high-quality

results compared with state-of-the-art algorithms.

Because segmenting images is computationally demanding, we cannot directly

apply existing algorithms to large gigapixel images. By segmenting progressively

from low to high resolution levels in the scale-space pyramid as well as using the

superpixel representation, we reduce the required memory to a manageable size and

carry out large-scale image segmentation.

5.3 Joint Intensity-texture Histogram

We use the joint histogram of intensity and noise-resistant local binary pattern

(NRLBP) [89], which is a variant of local binary pattern (LBP) [84, 85], to identify

texture differences. An LBP, LBP (P,R), is a binary string of length P in which

each bit encodes the sign of the difference between the intensity value of the center

pixel and the intensity value of a neighboring pixel R pixels away from the center.

Nevertheless, this binary encoding is prone to noise that causes unstable sign of

intensity differences. Local ternary pattern (LTP) [88] alleviates the sensitivity to

noise by a ternary encoding that uses the third state to represent situations when

the intensity difference is less than a predefined threshold. NRLBP [89] treats the

third state of LTP as a wild card that can map to either zero or one. Each ternary

encoding of LTP therefore corresponds to a specific set of conventional uniform

LBPs [85] after mapping the wild cards to zero or one.

The LBP-based features describe textures based on intensity differences in-

87

stead of actual intensity values. Nevertheless, intensity values are important at-

tributes in many applications, including the analysis of microscopy images in this

work because tissues of the same type may fall in a specific range of intensity values.

By combining intensity with NRLBP, we use the joint distribution of intensity and

NRLBP to improve the descriptive power. The joint histogram divides the intensity

range [0, 255] into eight non-overlapping bins and uses a separate bin for each pat-

tern of NRLBP. We use the chi-square distance χ2(x, y) to compare two normalized

intensity-NRLBP joint histograms x and y; χ2(x, y) is defined as:

χ2(x, y) =
∑
i,j

(xi,j − yi,j)2

xi,j + yi,j
, (5.1)

where xi,j and yi,j are the values of bin (i, j) in x and y, respectively.

Figure 5.4 shows the power of the intensity-NRLBP joint histograms by vi-

sualizing the result of multidimensional scaling (MDS) [98] with the intestine (Fig-

ure 5.4a), cartilage (Figure 5.4b), and muscle (Figure 5.4c) tissue samples. Each

sample of size 256 × 256 is divided into 8 × 8 blocks (each of size 32 × 32), which

are projected to a two-dimensional space based on the pairwise chi-square distances

computed using LBP (Figure 5.4d), NRLBP (Figure 5.4e), and the joint distribution

of intensity and NRLBP (Figure 5.4f). By modeling noise explicitly, NRLBP sepa-

rates the blocks of different tissue types better than LBP. Using the joint distribution

of intensity and NRLBP further separates the blocks into three distinguishable clus-

ters, one for each tissue type. Throughout this work, we use the NRLBP based on

LBP8,1.

88

(a) Intestine (×) (b) Cartilage (·) (c) Muscle (◦)

(d) LBP (e) NRLBP (f) Intensity+NRLBP

Figure 5.4: The two-dimensional projections (d–f) show the distribution of sample
blocks of (a) intestine, (b) cartilage, and (c) muscle tissues. The projections are
obtained by MDS analysis based on the pairwise distances computed using (d) LBP,
(e) NRLBP, and (f) joint distribution of intensity and NRLBP.

5.4 Graph-based Multiscale Segmentation

For large images, working directly at the pixel level is prohibitive because of

the computational burden. Instead, we perform the actual texture segmentation at

the superpixel level. Because the number of superpixels is two orders of magnitude

smaller than the number of pixels, the computational burden becomes less of an

issue.

We use the simple linear iterative clustering (SLIC) [97] to efficiently seg-

ment each image tile into superpixels of size about 500 pixels. The SLIC generates

89

regular-shaped superpixels and therefore avoids the bias introduced by the irregular

distribution of nodes in a graph, which may diminish the quality of graph-based

segmentation techniques [96]. We set the compactness to ten to generate results

with a balanced shape regularity and boundary accuracy. The superpixel extraction

is repeated for each pyramid level independently.

Given the superpixels, we first construct a superpixel adjacency graph G and

then partition G into disjoint connected components. Each connected component

corresponds to a segment that differs from its neighboring segments in texture. An

edge in G is assigned a weight representing the texture dissimilarity (Equation 5.1)

between the corresponding pair of superpixels (Figure 5.5a). Because a tile-based

image representation is used here, constructing G requires iterating over all the tiles,

connecting vertices within the same tile as well as vertices that lie on the boundary

of adjacent tiles.

After constructing G, we use a modified version of the efficient graph-based

segmentation (F&H) [3], originally formulated to work at the pixel level, to parti-

tion G. Starting from having each vertex being its own connected component, the

algorithm examines all edges in a non-decreasing order with respect to edge weights.

Given that the two end nodes of the edge under inspection belong to the connected

components C1 and C2, these two connected components are merged if that edge has

a weight less than or equal to a threshold min{diff(C1) + τ(|C1|), diff(C2) + τ(|C2|)}.

Here diff(C) denotes the internal difference of C, calculated as the largest edge

weight in the minimum spanning tree of C (Figure 5.5b). Function τ(|C|) = k
|C| , in

which k is a constant and |C| denotes the number of vertices (superpixels) in the

90

Distance

Intensity-NRLBP
joint histogram

(a) Building graph

w3
w4

w1 w2 w6

w5 w3
w4

w1 w2 w6

w5

(b) Merging two segments

Figure 5.5: (a) The dissimilarity of two adjacent superpixels (represented by edge
weight) is calculated as the chi-square distance of two corresponding joint his-
tograms. (b) The edge between the blue and red segments is eligible to merge
the two segments if its weight w6 is less than or equal to min(max(w1, w2, w3) +
τ(4),max(w4, w5) + τ(3)).

91

connected component C; τ(|C|) decreases as connected component C grows. Setting

k to a larger value leads to larger segments consisting of more superpixels.

5.5 Hierarchical Microstructures Exploration

The hierarchical segmentation procedure starts from the coarsest resolution

and gradually moves to finer resolutions (i.e. from top to bottom level in the Gaus-

sian pyramid). We first create a separate graph for each segment obtained in the

previous (low resolution) level and then apply the aforementioned graph-based seg-

mentation procedure to subdivide that segment. The hierarchical approach estab-

lishes the parent-child relationships between segments, which can be represented as

a tree of segments across scales.

Because superpixels are generated independently before applying the hierar-

chical segmentation, the boundaries of segments at a previous (low resolution) level

may not align perfectly with the superpixels in the following (high resolution) level.

We address this inconsistency using a majority vote to assign superpixels in the

child level to a parent segment.

After building the segment tree, each intermediate segmentation consists of

the segments that correspond to the leaf nodes in the pruned segment tree. We

use a hierarchical exploration strategy similar to Ip et al. [99] and build a tool that

allows users to unfold a leaf node by clicking on the corresponding segment. The

newly-added child nodes of that unfolded leaf node become the leaf nodes in the

updated pruned tree, leading to the subdivision of the clicked segment. The colors

92

Table 5.1: The images used in the experiment. Sizes are measured in gigapixels.

Image Height Width Size Levels

P1. Small fly 5,632 11,776 0.06 5
P2. Armadillidiidae 18,176 8,960 0.16 6
P3. Ant holding a fly 12,544 18,944 0.23 6
P4. Zebrafish embryo [5] 49,152 122,880 6.04* 8

* The original resolution is 281 gigapixels.

of segments reflect the changes made to the tree interactively.

5.6 Experiments

The proposed method was applied to four images. The largest image (P4)

is the zebrafish embryo image downloaded with the Journal of Cell Biology (JCB)

DataViewer1; the remaining three (P1–P3) were taken from the GigaPan website.

Table 5.1 summarizes the size of the images and the number of pyramid levels. We

downsampled P4 from the original resolution of 281 gigapixels to 6.04 gigapixels to

reduce processing time.

P1–P3 were acquired with a scanning electron microscope (SEM); P4 was

acquired with a transmission electron microscope (TEM). A typical SEM image

shows the sample surface characteristics with a large depth of field, which provides

a three-dimensional sense of the surface. On the other hand, TEM images capture

the internal structure at high resolution by transmitting electron beams through a

thin specimen. Here we report only the selected visualizations generated using P2

and P4.

1http://v.jcb-dataviewer.glencoesoftware.com/webclient/img_detail/201/

93

http://v.jcb-dataviewer.glencoesoftware.com/webclient/img_detail/201/

Figure 5.6: The 11 types of tissues in the zebrafish embryo (P4). Image courtesy of
Faas et al. [5].

5.6.1 Dataset 1: Zebrafish

The embryo sample used in P4 consists of eleven types of tissues (Figure 5.6):

brain, cartilage, eye, intestine, liver, muscle, notochord, olfactory pit, pancreas,

pronephric duct, and yolk. We compare our results with tissue boundaries manually

marked by domain experts [5] in the following.

Figure 5.7 shows an example of the hierarchical segmentation of P4. For sim-

plicity, only part of the whole segment tree is shown. In the first row the root node,

which represents the whole image, unfolds into node 5 and node 6 that correspond

to segments 5 and 6 in the second row. Segment 5 further subdivides into child

segments including segments 26 and 34 in the third row. In the segment tree, each

node (except for the root) corresponds to a segment obtained through the graph-

based segmentation. The tree edges between nodes 5 and 26 and nodes 5 and 34

represent the parent-child relationships between them.

94

The user interaction facilitates the reconfiguration of the segment tree follow-

ing the steps from the first row to the third row in Figure 5.7. Initially, the segment

tree contains only one (root) node, which corresponds to the yellow segment. Upon

clicking the yellow segment, the root node unfolds into its child nodes (e.g. nodes

5 and 6). The two nodes correspond to two segments (blue and dark slate gray) in

the second row; the dark slate gray segment contains eye tissues. Another click on

the blue segment in the second row further subdivides the blue segment into a few

smaller child segments (e.g. the red and brown segments in the third row). The click

triggers the unfolding of node 5 into its children nodes 26 and 34 in the segment

tree. If the users keep unfolding node 34 (and its child), they can eventually reach

the visualization shown in the first column of Figure 5.8, which separates the muscle

tissue from the intestine tissue.

Many tissues in the image, such as the muscle, intestine, and pronephric duct

tissues (first column of Figure 5.8), are indistinguishable at low resolution. Users

can hardly detect the subtle differences in texture because the high-frequency infor-

mation is missing after zooming out. Our method, by enabling user intervention,

provides corresponding color-based highlighting such that the muscle-intestine tissue

boundaries are easily observable. The muscle tissues can also be split into several

regions separated by a thin dark boundary (second column of Figure 5.8).

95

5

Root

6

26

34

...

Figure 5.7: With our visualization tool, clicking the yellow segment in the first row
subdivides the top-right region of the zebrafish embryo into segment 5 (blue) and
segment 6 (dark slate gray). Another click on segment 5 subdivides segment 5 into
segment 26 (brown) and segment 32 (red).

96

MuscleMuscle

IntestineIntestine

Pronephric
duct

Pronephric
duct

MuscleMuscle

IntestineIntestine

Pronephric
duct

Pronephric
duct

MuscleMuscle

MuscleMuscle

Figure 5.8: The texture differences in the down-sampled grayscale images are more
distinguishable with color highlights. First column shows the boundary between the
muscle, intestine, and pronephric duct tissues; second column shows the boundary
between muscle tissues.

97

PleomeresPleomeres

PleopodsPleopods

ProtopodProtopod

PleomeresPleomeres

PleopodsPleopods

ProtopodProtopod

Figure 5.9: First column shows the separation of region with spikes in the leg
from abdomen; second column shows the segmentation of protopod, pleomeres, and
pleopods.

5.6.2 Dataset 2: Armadillidiidae

P2 is an image of an Armadillidiidae woodlouse. Part of the jointed leg has

many dark spikes settled on the surface (first row of Figure 5.9). These spikes result

in change of texture. Nevertheless, such change can be easily overlooked at low

resolution because the abdomen part is also dark. The different coloring resulting

from the proposed method hints the texture differences in the two adjacent regions.

The second row of Figure 5.9 shows the segmentation result of protopod, pleomeres,

and pleopods.

98

Table 5.2: The running time (m) of four most time-consuming processes and the
total running time of the proposed method.

Image NRLBP SLIC Build graph RAG/tree Total

P1 0.08 0.22 0.65 0.12 1.10
P2 0.21 0.52 1.13 0.29 1.55
P3 0.25 0.74 1.58 0.42 3.05
P4 8.99 16.22 50.94 18.70 96.79

5.6.3 Processing Time

Table 5.2 shows the total processing time for the hierarchical segmentation.

For all images (P1–4), over half of the time was spent on constructing the graph,

which involves creating the joint intensity-NRLBP histograms and calculating the

edge weights (χ2 in Equation 5.1). The processing time reported here is based on

an Intel Xeon 2.6GHz CPU. It has been shown that the calculation of LBP and

χ2 can be substantially accelerated on a GPU [100]. We expect a similar degree of

acceleration when we migrate the calculation from CPU to GPU.

5.6.4 Discussion

Lighting conditions influence segmentation results significantly because incon-

sistent lighting induces a shift in intensity values and therefore leads to considerably

different intensity-NRLBP joint distributions. As a result, two regions of the same

texture with different lighting conditions may end up being marked with distinct

signatures. Such inconsistent lighting is especially apparent in SEM images that

contain occlusions and shading. In addition, perspective distortion prevents pre-

cise texture description. Re-adjusting the lighting condition or using the earth

99

mover’s distance may improve the segmentation quality, thus leading to more accu-

rate boundaries in the visualization.

A limitation of the hierarchical segmentation is that the segmentation of cur-

rent level is based on the results of preceding levels. Errors in earlier stages therefore

propagate to subsequent levels. A possible fix to this problem is including another

bottom-up pass or interleaving top-down and bottom-up passes. Nevertheless, the

computation load would increase dramatically with the number of passes. Also, we

could start from some level in the middle of the pyramid if we know in advance the

level range in which textures of interest are best separable. Limiting segmentation

to those levels reduces the errors possibly introduced by segmenting in other irrele-

vant levels. However, doing this requires hints from users that may not be available

in an exploratory context.

5.7 Conclusions and Future Work

The disparity between image size and screen resolution poses new challenges

to the analysis of subtle microstructures. This work presents a method to assist

exploration and analysis of gigapixel images by highlighting regions with different

textures. We use a multiscale hierarchical image segmentation algorithm to iden-

tify regions that differ in texture based on the joint distribution of intensity and

noise-resistant local binary pattern. These segments across resolutions are orga-

nized into a tree to facilitate the exploration of intermediate segmentation results

interactively. The texture-based color highlights provide visual feedback to assist

100

users in determining which parts of the image need more detail.

In this work, the texture descriptor is hand-crafted specifically for the targets

in images. A possible future extension of this work is to identify robust texture

and non-texture descriptors for evaluating similarity between the segments, so as to

detect similar objects and structures. We will introduce the method we developed

to derived useful features automatically using machine learning techniques in the

next two sections.

101

Chapter 6: Visualization of Live-cell Imagery

6.1 Introduction

Many studies of complex biological systems rely on live-cell imagery to mea-

sure, qualitatively and quantitatively, temporal changes in cell structure and be-

havior. These biologically-relevant changes, such as protein concentration, cell mor-

phology, and geometry, are closely related to cell proliferation and cell life cycle.

Several studies have shown that traumatic brain injury (TBI) causes progressive

neurodegenerative changes and consequent dysfunction. However, the underlying

mechanisms of such changes are not yet completely understood. Recent clinical

studies on adult mice have linked TBIs to microglial activation, which was found

to last for years after the initial brain trauma in human subjects as well [101].

Furthermore, it has been shown that, after TBI, the expression of several proteins

increases significantly (e.g., cyclin G1, phosphorylated retinoblastoma, E2F1 and

proliferating cell nuclear antigen, poly ADP-ribose polymerase) [102, 103]. The

identification of highly expressed proteins upon TBI has enabled the definition of

possible therapeutic strategies to reduce TBI-induced neuronal death [102]. In gen-

eral, a better knowledge of neuronal death mechanisms, and in particular of the

proteins involved, could lead to more effective therapeutics for TBI-induced neu-

102

rodegenerative pathologies. In this work, we focus on identifying neuronal death

with live-cell, time-lapse imagery.

Besides the challenges in recognizing complex objects in microscopy images,

analyzing live-cell images is particularly difficult because active cells can move in

all directions when the images are acquired. When a cell moves vertically across

different focal planes, we need to adjust the focus of the microscope to capture

crisp images of that cell. Furthermore, slight changes in the focus over time, a

phenomenon referred to as focus drift, may degrade the image quality significantly.

A common practice to accommodate for cell movements and focus drift is taking

multiple images at various focal planes (or depths) at each time point; this practice

ensures all cells are in-focus in at least some of the images. For a cell at a given

time point, we need only a small number of in-focus images to determine the state

of the cell and discard the other blurry, out-of-focus images.

In the past few years, convolutional neural networks (CNNs) have been suc-

cessful in many biomedical applications such as microscopy image segmentation [104]

and subcellular feature detection [105]. Most modern network architectures resem-

ble that of AlexNet [60], which interleaves convolution layers and pooling layers to

reduced spatial resolutions progressively. This arrangement allows the network to

learn higher-level features in deeper (later) layers by combining lower-level features

in shallower (earlier) layers.

In contrast to the work that applies 3D convolutions to address the temporal

dimension of videos [106, 107], here we use 3D convolutions to combine features along

the (third) dimension formed by the depths of various imaging focal planes. The

103

CNN therefore must learn to differentiate in-focus images from out-of-focus ones,

and then selectively combine information useful for predicting cell states. Because

the features of a layer are built upon those of the previous layer, the CNN-derived

features should describe a cell from increasingly higher levels as we go deeper into

the network. Ideally, we would want to use the (deep) features to identify potential

intermediate states between the transition of cell states (from alive to dead). These

intermediate states can then be used to create a graph-based visualization summa-

rizing cell state transitions [55]. As a first step, we present here a user-mediated

color assignment scheme based on deep features, and then use the assigned colors

in our visualization.

We use 3D CNNs to determine the cell state independently at each time point

(Section 6.3). Targeting exploratory data analysis, we build an interactive visual-

ization tool that annotates cells by a user-defined transfer function, which maps

abstract features representing cell characteristics to semantically-meaningful colors

(Section 6.4). This color assignment scheme allows users to create informative vi-

sualizations despite their limited understanding of the underlying abstract features,

such as the deep features derived automatically by CNNs and other sophisticated

features. The tool also creates a visual summary to identify when and which cells

change their states without inspecting each frame (Section 6.5). Although many

studies have exploited the power of CNNs for computer vision applications, there

have been hardly any studies that explore the potential of CNNs for visualization.

Here, we use these deep features as a set of robust features that allow our color

assignment scheme to create annotations depicting high-level concepts, which are

104

not easily defined by hand-crafted features and conventional low-level features [99].

6.2 Related Work

6.2.1 Convolutional Neural Networks

Most ordinary CNN architectures more or less resemble the basic construct

of AlexNet [60] but differ in depth. For example, GoogLeNet [108] has 22 train-

able layers, much deeper than AlexNet, which has seven trainable layers. At this

scale of depth, kernel sizes have to be kept small to maintain a manageable model

complexity. This limitation in kernel size does not restrict the power of CNNs. In

fact, deliberately stacking multiple convolutional layers with small kernels leads to

a large receptive field, which is comparable to that of a large kernel but with fewer

parameters [109]. Although research in complex problems tends to create deeper

networks, simply stacking convolutional layers in a CNN does not always lead to

better performance because of the increased model complexity. Addressing the de-

ficiency of conventional CNNs, a 152-layer residual network [67] shows significant

improvement over the state-of-the-art architectures.

Given a sequence of training examples, the training procedure starts with a

forward pass through the network, calculates a loss value with respect to certain

criteria, and then adjusts the weights associated with the neurons in the network

accordingly by the backpropagation algorithm. Training a CNN appropriately can

be challenging because of problems such as overfitting and premature convergence,

which deteriorate performance significantly. Dropping connections between random

105

neurons (i.e. removing them from the network temporarily) avoids co-adaptations

among them [8], thereby reducing the chance of overfitting but also slowing down

convergence. The slow convergence of CNNs is partly due to the frequent changes in

the distribution of a layer’s input during training. Batch normalization [6] addresses

this problem by normalizing each feature independently to have a zero sum and unit

variance distribution.

6.2.2 3D Convolutional Neural Networks

Although most studies involving CNNs have focused on images, recently CNNs

have also been successfully applied to videos. Videos can be regarded as frame stacks

along the temporal dimension, which can be treated as an additional spatial dimen-

sion [106] with 3D convolution (compared to 2D convolution for 2D images). Various

ways of combining information across frames have been tested [110], which show a

slightly better performance using 3D convolution. A CNN with 3D convolution is

shown to outperform existing techniques, including other CNN-based approaches, on

various recognition and classification tasks in large video collections [107]. Learning

from entire videos instead of reduced video clips demonstrates substantial improve-

ment over past methods [111]. Besides videos, the third dimension in 3D convo-

lutions can also be used to address the spatial relationships for 3D data. Several

groups have used 3D convolutions for segmentation and detection of target objects

in volumetric electron microscopy images [112, 64, 113, 114]. Other groups have

used 3D convolutions for 3D shape retrieval and completion [115, 116].

106

6.2.3 Data

We use a time-varying dataset that contains 86 microscopy images of adult

mice neurons taken every 15 minutes. The live cells in the first two time points are

manually labeled. Each image has two channels: the ordinary phase contrast channel

and the fluorescence channel, which measures the mitochondrial potential. For each

time point, ten images of size 1024×1024 are captured at different focal planes. The

data at a time point t can be regarded as a stack of ten images of different depths.

In summary, the dataset is a 5D dataset of dimensions (t, x, y, depth, channel) =

(86, 1024, 1024, 10, 2).

For example, in Figure 6.1 we compare two images, one out-of-focus and one in-

focus, captured at the same time point but at a different depth. Both channels in the

out-of-focus image (Figure 6.1a) are blurry, obscuring the details in cell structures

that are critical to determining cell states. On the other hand, the in-focus image

(Figure 6.1b) provides much more information with respect to the detail interior

structures of the cells and the distribution of mitochondrial potential.

6.3 CNN-based Feature Extraction

We use depth as the third dimension for the 3D convolution [106, 107] in ad-

dition the typical x and y spatial dimensions in our CNN. Similar to the way spatial

information is combined in the x and y dimensions, the depth dimension of the ker-

nels combines features derived from images taken at different focal plane planes. In

the following, we describe the architecture of CNN for predicting the cell state of the

107

(a) t = 1, depth = 4, channel = 1(left); 2(right)

(b) t = 1, depth = 7, channel = 1(left); 2(right)

Figure 6.1: This example shows (a) an out of focus image and (b) a in focus image
taken at the same time (t = 1) but at a different depth. The out of focus image
provides much less useful information because the features are blurry.

108

16

16

16

16

32

32

32

32

200

16

16

8

8

3
3

4
4

8

8

8

8

64 64

64 64 64

64 64 64
64

2

Figure 6.2: Our CNN has three groups of layers. Each group includes two convo-
lutional layers (red), each with 64 kernels, followed by a max-pooling layer (blue)
that reduces the spatial resolution (including depth) by half. For simplicity the
drawing only shows the x and y spatial dimensions, omitting the depth dimension.
The outputs of the first and second fully-connected layers (green) are 200 and 2 di-
mensional; they correspond to the high-level pixel representations for visualization
and the probabilities of cell states.

center pixel that resides in a 4D input patch of dimensions (x, y, depth, channel) =

(65, 65, 10, 2). The input patches are sampled from the image stack at a given time

point.

The CNN is composed of three groups of layers, each containing two 3× 3× 3

convolutional layers with 64 kernels followed by a 2× 2× 2 max-pooling layer that

reduces the spatial resolution in all three dimensions (including depth) by half.

The last pooling layer (of the third group) is followed by the first fully-connected

layer with 200 neurons, which are then connected to the second fully-connected layer

that outputs the prediction probability of cell states. In this work, we solve a binary

classification problem (i.e. live cell versus dead cells and others), and therefore the

number of outputs of the second fully-connected layer equals two. See Figure 6.2

for a graphical representation.

We apply batch normalization [6] to all convolutional layers and a dropout [8]

109

of probability 0.5 for the first fully-connected layer. We use Parametric Rectified

Linear Unit [7] as the activation function except for the second fully-connected layer,

which uses sigmoid activation to generate output between 0 and 1. After training

the CNN, our color assignment scheme uses the 200 outputs extracted from the first

fully-connected layer as the pixel representation.

6.4 User-mediated Color Annotation

6.4.1 Color-based Annotation

The visual annotations used in our visualization tool distinguish cells of differ-

ent states by colors, which provide salient visual hints to users. The tool tracks and

establishes the correspondence of cells across different time points to allow coherent

cell annotations over time. In time-lapse live-cell imaging, cell tracking and lineage

construction is a complex problem that requires a global context for long-term inter-

relationship across various frames [117]. Because neurons in our target dataset do

not undergo cell division, we can use an object tracker without lineage construction.

Here we choose Kernelized Correlation Filter (KCF) [118] to track cell movements

in adjacent frames. Individual KCF trackers, one for each cell, update the positions

of the bounding boxes frame-by-frame and construct the complete paths of cell

movement. The initial cell bounding boxes in the first frame are labeled manually.

Expert biologists have visually verified the correctness of both the initial bounding

boxes and the tracking results.

110

Abstract features in spectral order

(r128, g128, b128)

(Rp, Gp, Bp, Ap)

w128

p = (p0, p1, …, p199)

Transfer function

Color assignment

Figure 6.3: After extracting 200 deep features, we assign each pixel p a color
(Rp, Gp, Bp, Ap) based on the user-defined transfer function, which can be easily
modified after the 200 features are spectrally ordered along the x-axis.

6.4.2 User-mediated Color Assignment

We now describe a user-mediated color assignment scheme (Figure 6.3) to

convert the 200 deep features, extracted from a trained CNN, into the colors used

in our visualization. In the following we use (p0, p1, · · · , p199) to denote the L2-

normalized features extracted for a pixel p. Each deep feature pi is assigned a

weight wi, whose value is determined by the curve given the control points. Each

control point is associated with a color assigned by users. After interpolation the

curve therefore creates a transfer function that defines a mapping from i to the

corresponding color (ri, gi, bi) and weight wi. The color assigned to the pixel p,

denoted by (Rp, Gp, Bp), is generated by a weighted average of (ri, gi, bi) using piwi

as the weight (Equation 6.1, Gp and Bp are calculated similarly). The i-th feature

will contribute more to the aggregated color of p when pi and wi are larger. The

opacity assigned to the pixel p, denoted by Ap, is the sum of the weights used in color

aggregation. The opacity Ap represents the importance of the pixel p in comparison

111

t = 49 50 51

525354

Figure 6.4: The change in color (from green to red) of cell 39 from frame 49 to frame
54 suggests that the cell is dying.

with other pixels.

Rp =
199∑
i=0

(piwi)ri (6.1)

Ap =
199∑
i=0

piwi (6.2)

Finally, we calculate the color of a bounding box by blending the colors of the

pixels inside of the bounding box with respect to their opacities. By augmenting the

bounding boxes with the calculated composite colors, we can effectively annotate

cells by their characteristics. For example, the transfer function in Figure 5.2 leads

to the annotations in Figure 6.4, in which the change in color matches the change

in the appearance of a cell that died between frames 49 and 54.

112

6.4.3 Similarity-based Feature Reordering

With the design widget, users can assign colors and weights to nearby features

in groups based on their proximity along the x-axis. Nevertheless, the high-level

features extracted from the CNN are 200-dimensional. Further, some, but not all,

of the extracted features could be closely related to each other. If two unrelated

features (e.g. i- and j-th feature) are in close proximity along the x-axis of the

design widget (Figure 6.3), assigning different colors (e.g. (ri, gi, bi) and (rj, gj, bj))

and weights (e.g. wi and wj) to them may be difficult. In the worst case, such

overhead could even overshadow the benefits of applying the deep-learning-assisted

approach.

A proper ordering of features will therefore reduce the complexity of transfer

functions; for example, users can define the same transfer function using far less

control points. We address this usability issue by spectral ordering [119] features

along the x-axis in Figure 6.3 based on pairwise feature-feature similarity such that

similar (dissimilar) features are near (away) from each other. For example, dissimilar

features located in the left and the right end of x-axis can be assign distinct colors

separately (i.e. red and green) in Figure 6.3. The similarity-based ordering therefore

accelerates the design of transfer functions.

The spectral ordering of features consists of the following steps. First, We start

with a feature-by-pixel matrix M and compute a similarity (adjacency) matrix A

by multiplying the matrix by its transpose, resulting in a feature-to-feature matrix:

A = MM>. Second, we calculate a diagonal matrix D, in which the diagonal

113

elements D(i, i) is the sum of the i-th row vector of A. The Laplacian matrix L

is then calculated as L = D − A. Based on the Laplacian matrix L, we calculate

the eigenvector associated with the second smallest non-negative eigenvalue (the

Fiedler vector). After calculating the Fiedler vector, we sort the original ordering of

features in the input matrixM using the values in the Fiedler vector. The result is an

ordering of features where neighboring features are similar. The Fiedler vector and

other eigenvectors associated with small eigenvalues also form the basis of spectral

clustering [39].

We compare the similarity matrix of the 200 features before and after spectral

ordering in Figure 6.5. With an arbitrary order, the features are disorganized as

the bright entries, indicating similar feature pairs, scatter all over the matrix (Fig-

ure 6.5a). After spectral ordering, the bright entries are mostly near the top-left

and bottom-right corners (Figure 6.5b). Similar features therefore locate in the left

and the right along the x-axis (or the top and the bottom along the y-axis) of the

similarity matrix.

6.4.4 Vector Quantization

The color assignment scheme requires all 200 features to update the assigned

color when the transfer function changes. This requirement imposes a huge memory

burden. For example, we would need 69 gigabytes of memory to load the features

for all the 86 time points in our dataset. We could assign colors offline but that

would compromise interactivity, which we consider crucial in the visual reasoning

114

(a) Arbitrary order (b) Spectral order

Figure 6.5: This example shows the 200×200 feature-to-feature similarity matrix, in
which bright entries indicate similar feature pairs, created using (a) arbitrary order
and (b) spectral order. Similar features are closer to each other after organizing
features in the spectral order, thus resulting in large bright regions in the similarity
matrix.

process. As a result, we apply vector quantization using an incremental k-means

algorithm [120] to create a codebook with k codewords (the centroids of clusters).

After quantization, we need only a single index into the codebook to represent a

pixel instead of the original 200 features. Throughout this work, we use k = 256

such that the indices of codewords are one byte in size.

6.5 Cell-state Trajectory Visualization

The visualization we have presented in Figure 6.4 is still a frame-by-frame

playback of cells between two time points. Inspecting all frames visually may be-

come tedious and ineffective as the number of frames grows. Here we assume that

cell positions are unrelated to their states and use the position in screen space to

represent the trajectory of change in cell states, leading to a visualization that shows

115

a summarization over a period of time (Figure 6.6).

(a) Trajectory of a cell

(b) Color change over time

Figure 6.6: (a) The state change of a cell is visualized as a segmented line. The
change in color from green to red indicates a state change of cell 39 from live to dead
between frame 49 and 54. (b) The change in color of cell 39 can also be visualized
separately with three lines, representing the RGB values over time. Here we can see
the state change happens inside of the orange box.

The 2D layout of cells is determined as follows. We use the color histogram of

pixels enclosed in the bounding box as cell representation at a specific time point.

The dissimilarity between a pair of cells is assessed using the Earth mover’s distance

(EMD) of the corresponding pair of color histograms. We use the average EMD of

three pairs of histograms (i.e. R, G, and B) as the final dissimilarity between pairs of

116

cells. Given the pairwise dissimilarity matrix, we can now create a 2D layout of cells

such that similar (or dissimilar) cells are closer (or farther) through multidimensional

scaling [98]. After obtaining the 2D coordinates of cells, the trajectory of a cell is

represented as a segmented line formed by segments connecting the cells in adjacent

frames (Figure 6.6a). The grayscale levels (white to black) of segments represent

the progress of time. For example, Figure 6.6a shows the trajectory of cell 39, which

starts dying around frame 49 (c.f. Figure 6.4). Between frame 49 and 54 the location

of cell 39 in the 2D layout changes from the bottom left to the top right while its

color changes from green to red. Based on this visual representation, we build an

interactive visualization tool that allows users to select cells with similar trajectory

profiles. The tool also shows the change in color over time (Figure 6.6b). From left

to right, color lines depict the changes in red, green, and blue over time for cell 39.

During the time period within the orange box, the rising red line and the falling

green line indicate the death of that cell.

6.6 Results and Discussion

We implemented our CNN using the Caffe framework [121]. We used a total

of 400K samples, divided equally between the two classes (i.e. live cells and others),

to train the CNN. We used a stochastic gradient descent solver with 0.9 momentum

and 0.0005 decay to minimize binary cross-entropy loss. The training procedure

ends after 240K iterations using a batch size of 50.

117

6.6.1 Results

Most color-based annotations are consistent with the changes in cell states.

Figure 6.7a–6.7d show the augmented frames at t = 12, 49, 54, and 78, respectively.

Users can quickly identify which cells are dead by the color of their bounding boxes.

Figure 6.8 shows the trajectories of cells 3, 38, and 39. Because the color assigned to

cell 3 is always green, users can easily conclude that cell 3 stays alive from the first

time point to the last. Both cells 38 and 39 died at some point but their trajectory

profiles differ significantly. By looking at the color lines (top of Figure 6.8), we

observe that the green line of cell 38 stays low and never grows back again once

it starts decreasing. The green line of cell 39, however, shows a jagged pattern.

After having a closer look in Figure 6.4 and Figure 6.7, we believe the fix-sized

bounding boxes we used caused the jagged pattern because the bounding box no

longer tightly fits cell 39 after it died. As a result, the bounding box inevitably

includes many pixels that belong to the background, thereby introducing noise into

our color assignment scheme. A dynamically sized bounding box or, even better,

cell segmentation would alleviate this problem.

6.6.2 Discussion

Extracting features from our CNN requires a significant amount of time, about

one hour per frame using an NVIDIA GTX 970 GPU. Instead of using the current

CNN architecture that outputs features pixel-by-pixel, we can use the concept of

fully convolutional network [66] to output features of nearby pixels together in one

118

(a) t = 12 (b) t = 49

(c) t = 54 (d) t = 78

Figure 6.7: This example shows the color annotations in four time points (a) 12, (b)
49, (c) 54, and (d) 78. Most cells are alive (green) at time point 12. They die (red)
gradually in subsequent time points (i.e. 49, 54, and 78). Cell 39 (white arrow),
which changes color from green to red, is dead sometime during frame 49 and 54.

119

Figure 6.8: Our visualization allows users to select and compare cell trajectories
without consulting different frames. This example shows three cells with distinct
trajectories. Cell 3 stays alive whereas cells 38 and 39 died at specific frames, hinted
by the drop in color green (and the growth in color red).

120

forward pass, avoiding redundant computation.

Though we tested the summarization-based visualization using only one time-

varying dataset, we can repeat the same procedure for multiple datasets and create

summary of the whole collection. This summary has many potential applications,

such as analyzing the changes of cell behavior under different treatments.

In general, the high-level representations we extracted using the deep-learning

approach can also serve as input to design other application-dependent visualizations

for live-cell imagery. As microscopy data grows in size, appropriate visual represen-

tations that can provide a high-level summary are becoming ever more important

to the analysis of complex data. The techniques and visualizations introduced here

can facilitate the understanding of large complex time-varying data and lead to new

findings and insights.

6.7 Conclusions and Future Work

We present a method that uses 3D CNN to detect and depict temporal changes

in cell states in live-cell images. Based on the abstract features derived directly from

the data, we build a visual analytics tool that allows users to create comprehensive

color-based annotations of cells. Our tool also creates a summarization-based visu-

alization that shows the change of a cell over time as a segmented line. This static

2D layout allows users to compare cells or search for cells with similar trajectory

profiles. The promising results show that our tool can improve the understanding

of complex time-varying datasets.

121

We plan to work with biomedical experts and apply the same analyses to

other live-cell image datasets. We also plan to extend our deep-learning-assisted

techniques for multi-dimensional volume visualization applications [72, 73]. We will

show our preliminary result on volume rendering in the next section.

122

Chapter 7: Deep-learning-assisted Volume Visualization

7.1 Introduction

Volume visualization typically involves three steps. First, users define the cri-

teria (e.g. intensity and texture) that distinguish the structures of interest (e.g. soft

tissue and bone). Second, based on these user-defined criteria, users choose an ap-

propriate set of per-voxel features that span the low-dimensional subspace in which

one can look for desirable solutions (i.e. visualizations). Finally, users interact with

the visualization tool to create and modify the solutions. In the past, handcrafted

features that correspond to specific user-defined criteria (e.g. size [122, 123], tex-

ture [124], and visibility [125]) have been successfully used as volumetric features for

the second step. Nevertheless, as the complexity of the user-desired criteria grows,

finding features that precisely describe the characteristics of the target structures

becomes increasingly challenging. Conventional handcrafted features no longer suf-

fice because they are defined locally without addressing the relationships among

voxels in the global context, often crucial to characterizing complex structures.

Although the high structural complexity significantly hinders the manual search

for suitable feature spaces in the second step of the current visualization workflow,

users can still provide valuable domain knowledge in a different way. From a machine

123

learning point of view, the criteria that distinguish different structures can be implic-

itly defined by a large number of examples that include as many structural variants

as possible. In this paper, we present our approach in which we train a CNN as if we

were solving a classification problem based on a given set of examples. After training,

the CNN automatically derives a high-level data representation, thus creating a fea-

sible feature space for the visualization of complex structures. Despite improvements

in user interfaces [126, 127, 128] and semi-automatic techniques [129, 99], current

methods proceed with the assumption that a suitable feature space is explicitly de-

fined, not automatically learned. In contrast, the proposed deep-learning-assisted

approach automatically creates a high-dimensional feature space in a data-driven

way without an explicit specification from the user (Section 7.4).

In the derived feature space, voxels with similar characteristics are in close

proximity. These similar voxels can therefore be described and selected for visual-

ization with a representative characteristic feature vector, which essentially defines

a point in the high-dimensional space. We can therefore extracting surfaces from

voxels defined in a high-dimensional feature space (Section 7.5). We first convert

the feature space to a binary scalar field and then extract a triangular mesh from

that binary scalar field using the conventional marching cubes algorithm [130]. Sim-

ilar to the conventional method, the binary scalar field is obtained by thresholding

an intermediate scalar field, defined by the user through the design widget. This

conversion can be done efficiently on a GPU with little computational overhead.

However, the characteristic feature vector becomes complicated to modify as

its dimensionality grows. Previous work alleviates this problem by designing visual-

124

izations in a reduced space with manageable complexity [127, 131]. In this work, we

present two techniques for this design problem. The first one reorders the features

with respect to their similarity (Section 7.6). With this improved, similarity-aware

feature layout, the conventional design widget can select groups of similar voxels in

the original space without dimensionality reduction. This is complementary to the

dimension-reduction-based techniques. The second one is a semi-automatic tech-

nique that generates a hierarchy of volume visualizations for users to choose from,

thus providing another layer of abstraction on top of the high-dimensional feature

space (Section 7.6.3).

Although modern rendering techniques and hardware can now render volumet-

ric data interactively, we still need a suitable feature space that facilitates natural

differentiation of target structures and an intuitive and interactive way for users

to design visualizations. This paper presents our initial explorations in using deep

learning methods to assist the design of volume visualizations. We expect that the

techniques presented in this work will be useful in many visual computing tools for

designing informative visualizations.

7.2 Related Work

7.2.1 Volume Visualization

Typical volume rendering techniques can be grouped into two categories: di-

rect and indirect volume rendering. Direct volume rendering (DVR) techniques,

such as volume ray-casting [132], compose a result image by aggregating the colors

125

and opacities of relevant voxels calculated using a user-defined transfer function.

Indirect volume rendering (IVR) techniques first generate geometric primitives as

an intermediate representation and then render those primitives using conventional

3D computer graphics. For example, the marching cubes algorithm [130] extracts a

triangular mesh that represents an isosurface in a structured grid.

Despite different ways of composing result images, DVR and IVR techniques

all require a feature space suitable for the visualization criteria. Simple structures

that are distinguishable by intensity values can be extracted and visualized as cor-

responding isosurfaces [130] following the IVR framework. In many applications,

however, the complex structures and their surroundings are indistinguishable based

on a single isovalue; these structures may be better extracted as subvolumes com-

posed of voxels with intensity values contained in an interval [133, 134].

Whereas typical IVR techniques extract geometric primitives from a scalar

field formed by intensity values, DVR techniques rely on a transfer function, some-

times defined in an alternative feature space derived from the intensity, to assign

distinct colors and opacities to different structures. Common features such as gradi-

ent magnitude [126] and curvature [135] allow distinguishing regions with significant

local changes in intensity. Other specialized features are used for structures with

specific characteristics. For example, twenty texture features have been used to

identify voxels with texture differences [124]. Evaluating the size of structures in

scale-space at each voxel creates a scale field that can be used to highlight structures

of different sizes [122]. An alternative way to assess structure sizes is by searching

in all directions for neighboring voxels with similar intensities [123].

126

Whereas most volume visualizations are done manually, semi-automatic tech-

niques automate specific time-consuming procedures to accelerate the design. Can-

didate isosurfaces that correspond to meaningful structure boundaries can be se-

lected automatically based on gradient magnitudes [136]. Exploiting the proxim-

ity of voxels in the feature space, many semi-automatic techniques use clustering

algorithms to group similar voxels, thus reducing the complexity of visualization

design [129, 99].

A prerequisite of successful volume visualizations, including those created by

semi-automatic techniques, is that the selected feature space must differentiate the

target structures. Finding such a feature space is therefore critical for volume vi-

sualization design. Nevertheless, existing feature spaces, including those formed by

texture features, are too local to reliably differentiate complex structures when given

only limited context around each voxel. In this work, we address this limitation by

forming a feature space based on high-level features extracted automatically from

a trained CNN. Based on the derived feature space, we then create visualizations

following the IVR framework.

7.3 Motivation

Visualization is crucial to the analysis of volumetric data yet its design remains

labor-intensive. Conventional design workflow assumes a feasible feature space with

which users, after some trial and error, will eventually find configurations suitable

for the target structures. Nevertheless, so far the feature space is always hand-

127

Visualization

Intensity
Gradient

Te
xt

ur
e

Shape

Configuration

...

Volumetric data

(a) Conventional workflow
High-dimensional abstract space Configuration

VisualizationVolumetric data
Convolutional

neural network

(b) Proposed workflow

Figure 7.1: (a) Conventional workflow requires users to adjust both the feature space
and the configuration. (b) Our deep-learning-assisted approach derives from labeled
examples a feasible feature space automatically, effectively removing the need for an
user-defined feature space.

crafted with respect to specific application-dependent criteria. This manual pro-

cedure limits the feature space to incorporate only local features because of the

limited capability of human to comprehend and integrate non-local properties de-

fined in high-dimensional spaces. As structural complexity grows, the assumption

of having a feasible feature space is increasingly unrealistic. When the visualization

result does not suffice, users are faced with the non-trivial choice to modify the

feature space, the configuration, or both in the worst case (Figure 7.1a).

This observation motivates our deep-learning-assisted approach that learns a

feasible feature space automatically when provided enough examples of the target

128

structures. This approach adopts a workflow that effectively replaces the manual

search of a feasible feature space by the concrete labeling of samples followed by

deep learning (Figure 7.1b). In contrast to crafting features in a high-dimensional

abstract space, the labeling task is much easier for typical users, who are domain

experts familiar with the data but have limited knowledge about computational

techniques.

7.3.1 Conventional Volume Visualization Design

With imaging modalities such as X-Ray and computed tomography, struc-

tures of different intrinsic material densities (e.g. soft tissue and bone) are distin-

guishable by their distinct intensity values. This characteristic allows conventional

intensity-based feature spaces to separate these structures effectively. For example,

the boundaries of bone may correspond well to a certain isosurface. With other

modalities, such as electron microscopy, the type of structures to which a voxel be-

longs is seldom decided solely by the voxel’s intensity value without consulting the

arrangement of the neighboring voxels. Large intra-class variations further compli-

cate the decision. In addition, gradient only describes local changes in intensity

values and lacks the capability of depicting the boundary of complex structures.

As a result, intensity and gradient do not provide enough information for designing

informative visualizations for complex structures.

For example in Figure 7.2 we compare the meshes formed by the ground truth

labels of mitochondria (Figure 7.2b), generated using the conventional marching

129

(a) Raw image (b) Ground truth

(c) Isosurface (isovalue = 112) (d) Our visualization

Figure 7.2: (a) In the hippocampus dataset, we find it challenging to differentiate
mitochondrial regions (orange) from non-mitochondrial regions using conventional
intensity-based feature spaces. (b) The ground truth mitochondria. (c) The isosur-
face of isovalue 112, which is the average intensity value of mitochondria, does not
correspond well to the boundary of mitochondria. In fact, no single isovalue would
be suitable for differentiating the mitochondria (c.f. Figure 7.3a). (d) Our visual-
ization result is comparable to the ground truth because it is based on a feasible
feature space derived automatically.

130

cubes algorithm (Figure 7.2c), and generated using our deep-learning-assisted ap-

proach (Figure 7.2d) for the hippocampus dataset (c.f. Section 7.7.3). Although

the mitochondria are typically low in intensity, many non-mitochondria voxels, for

example those belonging to the membranes, are also low in intensity (Figure 7.2a).

As a result the isosurface of isovalue 112, which is close to the average intensity

value of mitochondria, does not map precisely to boundaries of mitochondria, thus

creating an incomprehensible visualization with severe occlusions of various struc-

tures. In contrast, our derived feature space leads to a visualization of mitochondria

comparable to the ground truth labels.

The previous example shows the deficiency of conventional feature spaces in

depicting complex structures. In fact, a significant overlap of the two types of voxels

(i.e. mitochondria and non-mitochondria) in the intensity histogram confirms that

we cannot obtain clear boundaries using a single isovalue (Figure 7.3a). Adding

gradient magnitude as a second dimension does not improve separation in the den-

sity plot either (Figure 7.3b). Besides intensity and gradient magnitude, Haralick

features [77], a set of texture features calculated from a small local neighborhood,

also lack the power of depicting mitochondria although they have been successful

for other structures in computed tomography and magnetic resonance images [124].

Here we calculate seven Haralick features (i.e. energy, inertia, inverse difference

moment, entropy, correlation, contrast, and sum of entropy) with the same configu-

ration used in [124]. After projecting the voxels onto 2D using principal component

analysis, the large overlapping near the center shows that the selected Haralick

features do not separate the mitochondria from the rest of the image (Figure 7.3c).

131

0 50 100 150 200 250

Intensity

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

P
ro

p
o
rt

io
n

Non-mitochondria
Mitochondria

(a) Intensity histogram

0 50 100 150 200 250

Intensity

0

5

10

15

20

25

30

35

G
ra

d
ie

n
t

M
a
g
n
it

u
d
e

Non-mitochondria
Mitochondria

(b) Density plot of intensity and gradient magnitude

10 5 0 5 10

PC 1

10

5

0

5

10

P
C

 2

Non-mitochondria
Mitochondria

(c) Density plot of seven Haralick features after PCA

Figure 7.3: (a) The overlap in the intensity histogram shows that we cannot extract
the mitochondria precisely using a single isovalue. The density plots, in which higher
saturation indicates higher density, show that (b) intensity and gradient, and (c)
seven selected Haralick features do not help extract the mitochondria either. The
seven Haralick features are projected onto the first two principal components, “PC
1” and “PC 2”, obtained using principal component analysis.

132

7.3.2 Deep-learning-assisted Visualization Design

Previous studies on the hippocampus dataset have shown that features de-

picting both the complex shape of the mitochondria and the contextual information

around voxels perform better in segmentation [137]. If we were to apply the conven-

tional design workflow to create visualizations that show mitochondria and other

complex structures presented in this paper, users would need to define such sophis-

ticated features themselves. Although there may exist a combination of novel and

established features properly configured for those specific targets, searching manu-

ally for that combination is time-consuming and challenging. On the contrary, our

proposed approach uses a CNN to perform that search effectively and automati-

cally. Users can therefore focus on creating useful volume visualizations based on

the derived feature space.

Our deep-learning-assisted approach extracts high-level features (i.e. deep

features) from a trained CNN (top of Figure 7.4). We first train the proposed

CNN as if we were solving a voxel-wise classification problem. Because CNNs are

powerful in finding suitable application-dependent features, we use those features to

distinguish voxels that belong to various complex structures during rendering. The

extracted deep features correspond to much higher level concepts when compared

with local features such as gradient magnitude or textures, thus improving their

capability in discerning complex structures.

Based on the derived feature space, we address practical issues when creating

volume visualizations using deep features (bottom of Figure 7.4). Even for moderate-

133

Patches

Volumetric
data

Trained CNN

Marching cubes-based rendering
Semi-automatic exploration

Spectrally-ordered features

Characteristic feature vector

1 3 2

Interpolate

High-level features

Index: 1 32 ...

Vector quantization

A B

C

Centroids
A
B
C

1 32

Figure 7.4: Our proposed deep-learning-assisted approach first extracts high-level
features from a trained CNN. We then use vector quantization to encode the ex-
tracted high-dimensional features of each voxel by the nearest centroid found using
k-means clustering. Users modify the visualization result, which is generated by
a marching cubes-based rendering, either by editing the characteristic feature vec-
tor of a target subvolume or exploring a pre-generated subvolume hierarchy semi-
automatically.

134

sized volumetric data, the high dimensionality of features could be overwhelming

because of the limited memory available to a GPU. Therefore, we use vector quan-

tization to compress the features to a manageable size. Furthermore, because the

features that form the high-dimensional feature space are not independent, we ap-

ply a spectral method to reorder them. After feature reordering, users can easily

change the visualization by modifying a characteristic feature vector through a sim-

ple design widget. We also use a semi-automatic method to accelerate the design

of volume visualization by pre-generating a tree of visualizations, with which users

can explore the volumetric data hierarchically and interactively.

7.4 CNN-based Feature Extraction

The high-level features are extracted from a CNN, which contains three groups

of convolutional layers (Table 7.1). The network is similar to the previous one we

used in Section 6 except that here we use 2D convolutions and the first convolu-

tion has a stride of two. Because of the stride-two convolution, this CNN reduces

resolution more aggressively than the previous one. In each group, we stack two

convolutional layers with 3× 3 kernels to resemble the reception field of a 5× 5 ker-

nel but with fewer trainable parameters. We perform batch normalization for all the

convolutional layers. Also, we use dropout [8] with a probability of 0.5 for the first

fully-connected layer. The first fully-connected layer contains 200 neurons, which

connect to neurons in the second fully-connected layer. Each neuron in the second

fully-connected layer corresponds to an individual class in the data. We chose the

135

Table 7.1: The architecture of the CNN

Layer #channels #neurons Kernel stride

Convolutional 64 32× 32 3× 3 2
Convolutional 64 32× 32 3× 3 1
Max-pooling 64 16× 16 2× 2 2

Convolutional 64 16× 16 3× 3 1
Convolutional 64 16× 16 3× 3 1
Max-pooling 64 8× 8 2× 2 2

Convolutional 64 8× 8 3× 3 1
Convolutional 64 8× 8 3× 3 1
Max-pooling 64 4× 4 2× 2 2

Fully-connected 200 1× 1
Fully-connected #classes 1× 1

values of parameters based on the results of our preliminary study conducted using

the target datasets. For other datasets, we may need to adjust these parameters

depending on the complexity of target classes for better performance.

The training data to the CNN is a 65 × 65 patch centered at a voxel sample

selected at random. We draw 400K voxels divided equally among the classes to

avoid the majority class from dominating other classes during training. We use a

batch size of 200 and train a total of 60K iterations. After 2K iterations the training

set is resampled to learn from diverse examples. We use ADADELTA solver [138]

with a momentum of 0.9 and a decay of 0.0005 during training.

The input volume is padded with reflection about the edges before generating

patches to accommodate for boundary cases where the sampled voxel is near an edge.

Because the structures of interest in the target datasets are rotation-invariant, such

padding affects minimally the performance of the CNN.

The CNN trained with balanced classes tends to overestimate the probability

136

of the minority class in the testing stage because of the significant disparity in abun-

dance between the training data, which contain equal amounts of samples among

voxel classes, and the testing data, which would have the actual class distribution.

Such a class imbalance is increasingly problematic as the disparity grows.

Because the degree of class imbalance in the datasets we used is moderate, a

simple way to address this problem is by multiplying the predicted probability of

each class by the corresponding prior probability, thereby scaling down the predicted

probability of the minority class. We have also implemented the postprocessing

technique used in [104], which finds a monotonic cubic polynomial to match the

predicted probability and the prior probability. Instead of having a constant scaling

factor (i.e. the class prior), this technique transforms the predicted probability in

a data-driven way that allows the setting of variable scaling factors with respect to

the probability values.

7.5 Marching-cubes-based Visualization

We adapt the conventional marching cubes algorithm [130], which extracts

isosurfaces from a scalar field (e.g. intensity), to instead extract surfaces based on a

high-dimensional feature space. Given an isovalue, the conventional method converts

the input scalar field into a binary one using the isovalue as a threshold, which

essentially defines the cut-off value of two target structures. The marching cubes

algorithm then iterates over the set of cubes, each represented by the values of its

eight bounding voxels in the binary scalar field, and accumulates the corresponding

137

Characteristic feature vector

ui ui+1

u = (u1 u2 ... u200)

0

1

1

0

0

0

0

0

v = (v1 v2 ... v200)
u v > t.

Feature vector

Figure 7.5: Because the high dimensionality of feature space, we generate a binary
scalar field by comparing the dot product of the characteristic feature vector u and
the feature vector v of each voxel with a threshold t. After that we apply the
conventional marching cubes algorithm on the binarized volume.

triangles based on the eight bits representation. Because in this work the input is

a multiscalar field formed by the high-dimensional feature space, we describe in the

following a method that converts the input multiscalar field to a binary scalar field

with which the marching cubes algorithm can extract surfaces as usual (Figure 7.5).

Assuming that each voxel is represented by a 200-dimensional feature vector

v = (v1 v2 · · · v200), we can decide whether two voxels belong to the same structure

by calculating their dot product and compare it with a threshold t. Following

the same intuition, we can also decide whether a voxel belongs to a user-defined

structure, which is specified by a characteristic feature vector u = (u1 u2 · · · u200).

The value of a voxel v in the binary scalar field, used as the input for the marching

138

cubes algorithm, is calculated as:

f(u,v) =

1, if u · v ≤ t

0, otherwise.

(7.1)

The extracted surface changes with the (binary) value of f(u,v), which is controlled

by the characteristic feature vector u and the value of threshold t. Users can interac-

tively configure u and t as well as the color and opacity of the corresponding surface

(used for blending multiple semi-transparent surfaces) using the design widget.

The marching cubes algorithm is highly parallelizable because each cube can

be processed independently. Our GPU-based parallel implementation uses the his-

togram pyramid data structure [139] to allow the query of a triangle’s location in

the volume and the query of the triangle indices (if any) inside of a specific cube.

In a histogram pyramid, each space-partitioning square cell stores the number of

triangles in the corresponding partition. The levels from the bottom to the top of

the pyramid represent the volumetric data at increasingly lower spatial resolutions.

When constructing the pyramid, a cell stores the sum of eight corresponding cells

(i.e. 2 × 2 × 2) in the previous (bottom) level. Both queries require a top-down

traversal of the pyramid, which only takes a constant time that is logarithmic to

the size of spatial dimension (or linear to the height of pyramid). For visual appeal,

we smooth the extracted triangular mesh by moving each vertex to the average lo-

cation of its adjacent vertices in the mesh. During mesh smoothing the query of

adjacent vertices is done by first fetching a list of triangles in the current cube and

139

its neighboring cubes (through the second type of queries) and then inspecting each

edge of the fetched triangles. We use two vertex buffers to store vertex positions

before and after the smoothing. After each smoothing iteration, we swap the two

vertex buffers to avoid expensive data movement.

7.6 User-mediated Voxel Classification

Using the the 200-dimensional features extracted from the CNN, we will face

the same problems in Section 6.4.3, namely the problem of disorganized features and

excessive memory usage. Here we address them with similar methods: reordering

the abstract features based on feauture-feature similarity and vector quantization.

7.6.1 Similarity-based Feature Reordering

The order of features in conventional volume visualization designs is usually

straightforward and less of a concern because of the low dimensionality of feature

spaces. Here we organize the abstract features by their similarities such that users

can assign similar weights (e.g. ui and uj) in the characteristic feature vector to two

similar features (e.g. i and j-th features).

Using the same spectral ordering method in Section 6.4.3, we create a Lapla-

cian matrix L based on feature-feature similarity. Instead of calculating the Fiedler

vector of L, here we calculate that of the normalized Laplacian matrix L, which is

more robust to non-regular graphs [140]; the normalized Laplacian matrix is calcu-

lated as L = D−
1
2LD−

1
2 . The rest of the procedure (i.e. reordering features based

140

on the values in the Fiedler vector) remains the same.

We use the following example to show the effect of organizing deep features into

the spectral order (Figure 7.6). A bright pixel in the 200 × 200 similarity matrix

marks a pair of highly correlated features (Figure 7.6a). Many pairs of the 200

features are indeed highly correlated because many pixels are bright. Nevertheless,

an arbitrary order of features does not take advantage of such correlations, resulting

in a disorganized similarity matrix (left of Figure 7.6a). The spectrally ordered

similarity matrix puts similar features closer together, resulting in large bright blocks

of various sizes along the diagonal (right of Figure 7.6a). An accessible feature order

therefore allows selecting similar voxels using fewer control points in the design

widget.

Reordering features into this accessible form is a crucial step. In this example,

we use the same characteristic feature vector, which simply specifies an increasing

weight from the first (leftmost) to the last (rightmost) feature (Figure 7.6b), and

compare the visualization results obtained before and after reordering features. An

arbitrary feature order does not exploit the similarity among features and creates

surfaces that are broken into small pieces, which do not correspond well to specific

structures (left of Figure 7.6c). In contrast, the spectrally ordered features are

highly structured such that even a simple characteristic feature vector can reveal

some interesting structure (right of Figure 7.6c).

141

(a) Similarity matrix (Left: arbitrary order. Right: spectrally ordered)

(b) Characteristic feature vector (t = 0.65)

(c) Visualization (Left: arbitrary order. Right: spectrally ordered)

Figure 7.6: (a) Before spectral ordering, the similarity matrix, in which a bright pixel
represents a pair of highly correlated features, does not show apparent pattern. After
spectral ordering, highly correlated features are closer to each other. (b) A simple
characteristic feature vector. (c) The arbitrary order of features does not exploit the
correlation among features, thus leading to broken surfaces. The spectrally ordered
features allow creating a visualization that reveals interesting structures using the
same characteristic feature vector.

142

7.6.2 Vector Quantization

Interactive rendering of volumetric data based on high-dimensional voxel rep-

resentations can be prohibitive because the inflated data size may exceed the mem-

ory size on modern GPUs. Directly using 20-dimensional texture features has been

shown to be effective previously on small datasets (less than 8.4 million voxels) [124].

Nevertheless, in this paper we use 200-dimensional features and validate our tech-

nique on much larger datasets (over one hundred million voxels). Suppose each

feature is stored as a four-byte floating point number, loading all 200 features would

require 80 gigabytes of memory per hundred million voxels. The high storage de-

mand far exceeds the capability of modern consumer-level graphic cards.

Possible solutions to this problem are out-of-core rendering and data com-

pression. As in Section 6.4.4, we use vector quantization (VQ) to compress the

high-dimensional feature vector v using incremental k-means algorithm [120]. Each

voxel is encoded by the index of the nearest cluster centroid (among the k code

words in the codebook) according to the L2 distance. During rendering, voxels are

decoded by referencing the codebook.

Reconstruction using VQ, which is a lossy compression technique, inevitably

introduces information loss. The codebook size k is closely related to the recon-

struction error of VQ. Choosing a k too small will lead to excessive information

loss such that the reconstructed feature vectors (i.e. the cluster centroids found by

k-means) do not well approximate the actual feature vectors. On the other hand,

choosing a k too large will inflate the size of the codebook and require much more

143

(a) Visualization (k = 256)

(b) k = 64 (c) k = 128

(d) k = 256 (e) k = 512

Figure 7.7: The size of codebook k in VQ controls the amount of information loss.
The zoom-in views shown in (b–e) are generated from the same subvolume (red box
in (a)) in the bacteria dataset with k ranges from 64 to 512. When k = 64, the view
shows a noticeable disparity near the center of the spore (black box in (b)). The
results in (c–e) are comparable without significant visual differences.

computation. A similar information loss introduced by dimension reduction tech-

niques has been shown to be tolerable when simplifying the feature space of volume

rendering [127, 131]. In the following, we will evaluate how information loss affects

the quality of visualizations created using our deep-learning-assisted approach.

In Figure 7.7 we visually evaluate the quality of the visualization results with

various codebook sizes k. In this example, we use a subvolume containing a sporu-

lating bacterium of the bacteria dataset (Figure 7.7a). By comparing the results

shown in Figure 7.7b–7.7e, the only visually apparent difference is near the center

of the spore, where a small region is excluded from the spore, when k = 64 (black

box in Figure 7.7b); the other three results are comparable despite the difference in

k (Figure 7.7c–7.7e). Throughout this work, we choose k = 256 such that the code

can be stored in eight bits, exactly the same size as the intensity values.

144

If an outlier voxel is replaced by the centroid of the assigned cluster, calculated

as the representative for the majority voxels in that cluster, the error leads to an

effect similar to a low-pass filter. These outliers, possibly anomalies or infrequent

patterns in the data, will be problematic if they should be presented (instead of

filtered out) in the visualization. In our applications that focus on creating a general

view of the data, the low-pass filtering effect does not obstruct the understanding

and interpretation of the visualization results.

7.6.3 Hierarchical Volume Exploration

The extraction of surfaces based on a user-defined characteristic feature vector

is flexible in identifying various groups of voxels. Nevertheless, even after reorder-

ing features, configuring the characteristic feature vector can still be tedious. In

the past, we have used recursive segmentation of intensity-gradient 2D histogram

to group similar voxels into a hierarchy [99]. Here we develop a similar semi-

automatic method to explore volumetric data by exploiting voxel similarities in

high-dimensional feature spaces. This method allows users to efficiently visualize a

small set of surfaces in a pre-calculated hierarchy.

Given the result of VQ, we perform binary partition recursively to the adja-

cency graph based on the L2 distance of the k centroids using spectral clustering [39].

The first binary partition creates two sets of centroids, each corresponds to a group

of voxels. Subsequent partitions further subdivide a target set of centroids into two

disjoint sets. We organize the partition results into a binary tree, in which a parent

145

node represents the union of the two corresponding groups of voxels represented by

the two child nodes. The group of voxels represented by a node defines a surface

that can be extracted by the marching cubes algorithm. Based on the binary tree,

users can select any nodes to interactively and hierarchically explore the volumetric

data. For example, selecting a child node of a parent node shows the subdivision of

the surface that corresponds to the parent node.

7.7 Results and Discussion

We implemented the CNN using the Caffe framework [121]. The GPU-based

parallel implementation of the marching cubes-based volume rendering is imple-

mented using OpenGL and OpenCL1. The feature reordering and compression are

implemented in MATLAB and Python, respectively. The training time reported

in the following is based on a computer with an Intel Xeon 2.6 GHz CPU and an

NVIDIA GTX 970 GPU. The training of the CNN took about 2.5 hours; the train-

ing needs to be done only once for the training dataset. After training the CNN,

the extraction of deep features given new unseen data (i.e. forward pass of a trained

CNN) took 3.4 minutes per million voxels.

7.7.1 Segmentation Performance Measure

The segmentation performance is evaluated by three established performance

measures, namely the VOC score [59], the Rand index [141] and the adjusted Rand

index [142]. We also compare the effectiveness of two postprocessing techniques

1https://www.khronos.org/opencl/

146

using these performance measures.

The VOC score is calculated as VOC = TP
TP+FP+FN

, where TP, FP, and FN de-

note the number of true positives, false positives, and false negatives, respectively.

The VOC score penalizes classifiers with high FP rates, therefore distinguishes rea-

sonable classifiers from classifiers that predict the same class all the time. We

calculate class-wise VOC to evaluate the segmentation quality for each class indi-

vidually.

The Rand index (RI) and adjusted Rand index (ARI) assess segmentation

quality based on the portion of agreements among all pairs of n voxels. The RI

is calculated as RI = a+b

(n
2)

, where a and b denote the number of voxel pairs that

belong to the same and different segments in the ground truth and the generated

segmentation. The ARI measures to what extent the segmentation is better than a

random segmentation in terms of RI. We calculate both the RI and ARI to evaluate

the overall segmentation quality, complementary to the class-wise VOC score.

7.7.2 Dataset 1: Bacteria

The first dataset contains one volume of size 1150× 450× 400 at resolution

12nm× 12nm× 12nm. The original anisotropic volume resolution is 3nm× 3nm× 6nm [143].

With this dataset researchers study the sporulation of B. subtilis [144], a common

rod-shaped gram positive bacterium.

Sporulation (i.e. formation of an endospore) is a unique survival mechanism

triggered by certain bacteria in response to environmental stressors such as nutrient

147

depletion. Once initiated, the process of sporulation includes a series of events that

are tightly regulated both genetically and temporally. This temporal process results

in a sequence of well-defined and replicable morphological states [144], commencing

with the asymmetric division of the mother cell, and culminating in the release of a

mature spore. The course of cell development is thus of great interest to biologists

and is often studied in the model system of B. subtilis.

This dataset is manually labeled with four classes: Resin, cell wall, spore, and

others.

1. Resin: The dark region in the background.

2. Cell wall: The bright thin layer separating the interior of a bacterium and

the surrounding resin.

3. Spore: The large dark oval-shaped structure inside of a sporulating bacterium.

The intensity value and shape of a spore change over time, depending on the

life cycle stage of the bacterium. In this dataset, only about 20% of the

bacteria are sporulating.

4. Others: All the other unlabeled subcellular features (e.g. vesicles and cyto-

plasm).

Figure 7.8 shows an example of two bacterial cells with the aforementioned

structures of interest. Nevertheless, because the bacteria are oriented differently,

the appearance of these structures when projecting onto a 2D plane can be sig-

nificantly different. We divide the original image stack into two sets of equal size

148

575 575

450

400

Figure 7.8: (left) The bacteria dataset is divided into the left and right halves
for training and testing. (right) Both the spores (green) and the vesicles (yellow
arrow) in the two sporulating bacteria are low in intensity. Because the difference in
intensity between a spore and other structures (e.g. vesicle and cytoplasm) can be
small, conventional intensity-based feature spaces will not differentiate them well.

575× 450× 400, one for training and validation, and the other for testing.

In the following, we evaluate the quality of the segmentation results and com-

pare the effectiveness of the two postprocessing techniques that address the class

imbalance problem. In the training volume of the bacteria dataset, the proportion

of (resin, cell wall, spore, others) is (0.472, 0.119, 0.034, 0.374), respectively. Because

of the scarcity of the spores (0.034), we expect an overestimation of the abundance

of spores in the testing stage. Interestingly the result shows that simple postprocess-

ing using class prior can actually deteriorate segmentation performance. Table 7.2

compares the performance measures obtained with and without postprocessing. For

the bacteria dataset, using class prior as the scaling factor of predicted probability

overestimated the effect of class imbalance and scaled down the predicted probabil-

ity of minority classes (i.e. spore) too much, resulting in a significant drop in recall

for the spore class (from 0.881 to 0.718).

Figure 7.9 shows a concrete example comparing the segmentation results (Fig-

ure 7.9c–7.9e) of the input image (Figure 7.9a) with the ground truth (Figure 7.9b).

149

Table 7.2: The quality measures of the segmentation results for the bacteria and
hippocampus datasets. Numbers separated by slashes correspond to different post-
processing techniques (none / class prior / fitted transformation).

Class Precision Recall VOC
B

ac
te

ri
a

Resin 0.996 / 0.995 / 0.995 0.992 / 0.993 / 0.993 0.988 / 0.989 / 0.989
Cell wall 0.931 / 0.963 / 0.943 0.956 / 0.918 / 0.946 0.893 / 0.887 / 0.894

Spore 0.813 / 0.947 / 0.860 0.881 / 0.718 / 0.842 0.733 / 0.690 / 0.741
others 0.964 / 0.941 / 0.959 0.953 / 0.979 / 0.963 0.921 / 0.922 / 0.925

average 0.970 / 0.970 / 0.971 0.969 / 0.969 / 0.971 0.943 / 0.941 / 0.945

Rand Index (RI) Adjusted RI (ARI)
overall

0.969 / 0.969 / 0.971 0.934 / 0.934 / 0.937

H
ip

p
o
ca

m
p

u
s Non-mito. 0.999 / 0.994 / 0.991 0.959 / 0.989 / 0.993 0.958 / 0.983 / 0.985

Mito. 0.571 / 0.820 / 0.873 0.984 / 0.900 / 0.847 0.566 / 0.752 / 0.754

average 0.976 / 0.985 / 0.985 0.960 / 0.984 / 0.985 0.937 / 0.971 / 0.972

Rand Index (RI) Adjusted RI (ARI)
overall

0.923 / 0.969 / 0.971 0.670 / 0.835 / 0.838

Applying postprocessing using class prior resulted in a significant increase in false

negatives (Figure 7.9d) than before postprocessing (Figure 7.9c), therefore lowered

the VOC score of the spore class from 0.733 to 0.690. In contrast, the fitted transfor-

mation postprocessing is more robust in handling various classes because it derives

suitable scaling factors in a data-driven way (Figure 7.9e). Given this flexibility,

the fitted transformation increased the VOC scores of all four classes as well as the

RI and ARI even though the scores are only marginally better than those without

postprocessing.

Having validated the segmentation results, we next present our results on vol-

ume visualization using the extracted deep features. We have shown in Section 7.3.1

that conventional feature spaces are ineffective for complex structures. We will now

show our deep-learning-assisted approach is effective for complex structures.

150

(a) Raw image

(b) Ground truth (c) None

(d) Class prior (e) Fitted transform

Figure 7.9: This example shows the spore (green) in (b) the ground truth labels and
the segmentation results (c) generated without postprocessing, and postprocessed
with (d) class prior and (e) fitted transform for the raw image in (a). Simply scaling
the predicted probability by class prior resulted in many false negatives for the spore
class. In contrast, the data-driven fitted transformation of probability is more robust
and generates a result comparable to the ground truth.

For example, the two characteristic feature vectors shown in Figure 7.10e cor-

respond the surfaces extracted for the spores (Figure 7.10a and Figure 7.10b) and the

cell walls (Figure 7.10c), respectively. Combining the two extracted surfaces leads

to a composite visualization showing both structures (Figure 7.10d). The close re-

lationships between the semantics and the derived deep features are attributed to

the semantic information, in the form of the voxel classes, users provide to the CNN

in the training stage. Grouping semantically-related features together in the design

widget with spectral ordering facilitates the editing of characteristic feature vectors

to target voxels with specific semantics. Further studies are needed to examine the

constituents of these semantically-coherent features and whether they can be reused

for building visualizations for different target structures.

151

(a) All spores in the bacteria dataset

(b) Spore (c) Cell wall (d) Composite result

(e) Characteristic feature vectors

Figure 7.10: (a) The visualization of the spores in the bacteria dataset generated
using the deep-learning-assisted approach. We show in the next two figures (b) the
spore and (c) the cell wall of a bacterial cell. By rendering both semi-transparent
surfaces at a time, (d) the composite result shows both the spore and the cell wall.
(e) The characteristic feature vectors used to generate the green (t = 0.36) and
orange (t = 0.46) surfaces.

152

165

768

1024

Figure 7.11: (left) The hippocampus dataset consists of two volumes for training
and testing (not shown here), both of the same size. (right) Both the mitochondria
(orange) and membranes (yellow arrow) are low in intensity, thus making them
inseparable using intensity-based features.

7.7.3 Dataset 2: Hippocampus

The second dataset2 [145, 137] contains two volumes of hippocampus, each

of size 1024× 768× 165 and resolution 5nm× 5nm× 5nm. Abnormal changes in

morphology and spatial distribution of mitochondria are known to be related to

cancer and neurodegenerative diseases such as Parkinson’s disease [146]. Better

visualization and segmentation of mitochondria are therefore crucial to the study of

these diseases. Both volumes in this dataset contain manually-labeled mitochondria

(Figure 7.11). All the other structures are considered as non-mitochondria.

Previous studies have shown that contextual features improve segmentation

quality over standard features including intensity histogram, gradient magnitude,

and texture-related features calculated locally [137]. Similar to the high-level fea-

tures derived by CNNs, the contextual features describe relationships among voxels

2http://cvlab.epfl.ch/data/em

153

http://cvlab.epfl.ch/data/em

in a large neighborhood, thereby allowing them to depict more precisely the struc-

tures of mitochondria. Nevertheless, the contextual features are handcrafted instead

of automatically learned.

We use the first volume for training and validation, and the second volume for

testing. The first volume is divided into the training and the validation sets of size

768× 768× 165 and 256× 768× 165, respectively.

The second part of Table 7.2 shows that the postprocessings are much more

influential in addressing the class imbalance problem in the hippocampus dataset,

where the mitochondria occupy about four percent of the voxels in the training

volume. After applying the two postprocessing techniques, the precision for mito-

chondria increased significantly whereas the recall decreased only moderately. As a

result, the VOC scores of mitochondria increased from 0.566 to 0.752 (class prior)

and 0.754 (fitted transformation). Both postprocessing techniques generated VOC

scores that are higher than 0.741, which is the state-of-the-art previously reported

in [137]. Overall, the RI and ARI both improved substantially after postprocessing.

Compared with the bacteria dataset, the postprocessing has a larger impact

on performance in the hippocampus dataset than that in the bacteria dataset. Such

a difference occurred because more voxels have similar predicted probabilities for

both classes in the hippocampus dataset. After adjusting the predicted probabil-

ities, more voxels in the hippocampus dataset change their predicted class from

mitochondria (minority class) to non-mitochondria (majority class).

We have shown that the visualization results of the bacteria dataset (c.f. Fig-

ure 7.10) indicate that the derived deep features are semantically meaningful. In that

154

(a) Raw image (b) Composite result

(c) Transfer function

Figure 7.12: (a) Within the non-mitochondria region (outside of the orange regions),
subregions with noticeably different characteristics can be identified. (b) The ex-
tracted deep features enable the detection of the non-mitochondria regions without
membranes (blue subvolumes in the left). (c) The two characteristic feature vectors
correspond to the mitochondria (orange, t = 63), and the non-mitochondria regions
without membranes (blue, t = 49) in the composite visualization.

example, the features align closely with the classes assigned by users. For a voxel

class with large intra-class variations, the derived deep features may each detect

only a subset of the variants in the same class. For solving a classification problem,

the CNN aggregates these features in the last fully-connected layer to detect that

specific class as a whole. For creating interesting visualizations, we can use these

features targeting different sets of voxels to show subclasses within a user-assigned

class.

For example in Figure 7.12b, the mitochondria (orange) and the non-mitochondria

155

regions in the left (blue) correspond to the orange and blue characteristic feature

vectors (Figure 7.12c). Although the same (non-mitochondria) class is assigned to

both non-mitochondria regions in the left and right during training, the CNN de-

rived different features for them because of their distinct appearance. In the left

the single largest non-mitochondria region is bright and uniform, whereas the non-

mitochondria regions in the right consist of small bright regions separated by dark

membranes. As a result, the blue characteristic feature vector generates only the

surface in the left.

7.7.4 Dataset 3: Multimodal Brain Tumor Image Segmentation Bench-

mark (BRATS)

The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) [61]

contains MRI images taken with glioma patients. Here we report results generated

with the dataset released with the MICCAI 2013 data challenge3. In this dataset,

each sample volume consists of four channels, namely the T1, T1c, T2, and Flair

channels. All samples in the training set are manually labeled. In clinical prac-

tice, physicians decide the tissue types based on the results of multiple channels to

diagnose more precisely. The structures of interest in this dataset are the edema,

necrosis, non-enhancing and enhancing tumor. The boundaries between abnormal

tissues and normal tissues (e.g. the gray matter, the white matter and the cere-

brospinal fluid) are usually ambiguous. Figure 7.13 shows an example of the four

channels and the four types of abnormal tissues. Typical volumes are cube-shaped,

3http://braintumorsegmentation.org/

156

(a) T1 (b) T1c

(c) T2 (d) Flair

(e) Ground truth

Figure 7.13: A slice in the volume for the (a) T1, (b) T1c, (c) T2, and (d) Flair
channels. (e) The ground truth labels of the necrosis (red), edema (green), non-
enhancing tumor (blue), and enhancing tumor (yellow).

composed of about six to eight million voxels, resampled and registered into 1mm

isotropic resolution.

Here we report the visualization results based on the deep features extracted

from a recently published CNN-based method [147], which is designed specifically for

the BRATS dataset. Instead of training from scratch, we use the trained CNN model

provided by the authors of the original study as a feature extractor that generates

256 deep features4 for each voxel. We focus on showcasing the application of our

visualization design given an alternative high-dimensional feature space, which in

this case is also derived by a trained CNN model.

4Output of the second fully-connected layer (layer 10 in the original paper).

157

The visualization presented here is created for a sample with a diagnosis of

high-grade gliomas (i.e. HG 0011) in the BRATS dataset (Figure 7.14). Following

the hierarchical exploration procedure from the top to the bottom of the tree, the

final four surfaces correspond to four leaf nodes in the binary partition tree (Fig-

ure 7.14c). Comparing the composite result (Figure 7.14b) created with the four

surfaces obtained using the semi-automatic method with the ground truth (Fig-

ure 7.14a), we can see some inconsistencies near the center of the tumorous region.

For example, the yellow region (enhancing tumor) that wraps around the red region

(necrosis) is more apparent in our composite result. These inconsistencies are due

to the difficulty in precisely identifying the ambiguous boundaries between tissues

of different types.

In fact, the BRATS dataset is so challenging that the evaluation of segmenta-

tion performance is done after merging multiple voxel classes (e.g. complete tumor

for all four classes and core tumor for the three classes excluding edema [61]). We

can also flexibly choose to visualize the complete tumor by selecting the purple

node (top left corner of Figure 7.14c), which represents the union of the four child

subvolumes represented by the leaf nodes.

7.7.5 Discussion

As more and more research applied CNN-based method to this dataset recently

(from three in 2014 to nine in 2016), we expect the derived high-level features to be

more powerful in the future. Our deep-learning-assisted approach will continue to

158

(a) Ground truth (b) Composite result

(c) Nodes and corresponding surfaces

Figure 7.14: (a) The visualization of ground truth labels. (b) The composite result
generated using the semi-automatic method. (c) The binary tree allows hierarchical
exploration of the volume. The four child subvolumes (represented by the leaf nodes)
are created by partitioning the parent subvolume (represented by the purple node).

benefit from the advances in the deep learning methods. Another interesting remark

in applying our deep-learning-assisted approach to multimodal data is that the in-

teractions among the four different channels are addressed by the first convolution

layer. Therefore, the final deep features we extracted are derived both from a larger

159

context and across various channels. Combining information across channels is cru-

cial to effectively visualize multimodal data. In particular for MRI, using the joint

histogram of multiple channels as the feature space has been shown to be effective

in showing normal tissues such as cerebrospinal fluid and gray matter [148]. For the

tumorous tissues targeted here, the deep features may provide the required context

information and descriptive power that lead to better visualizations.

7.7.6 Rendering Speed and Computation Time

Our deep-learning-assisted volume visualization introduces extra steps to de-

code each voxel and create the binary scalar field if compared with the conventional

marching cubes algorithm. In our implementation referencing a codebook, which

maps the code of a voxel to its corresponding feature vector v, is a simple texture

look-up. Updating the binary scalar field requires re-evaluating Equation 7.1, which

can be calculated in parallel efficiently by vector arithmetic in the GPU.

We measure the rendering speed with an NVIDIA Quadro K6000 GPU5. For

a volume with 43 million voxels, our GPU-based volume renderer can render sur-

faces of similar size (470k triangles) about 45 and 40 frames per second using the

conventional marching cubes algorithm and our deep-learning-assisted approach, re-

spectively. Five iterations of smoothing of the mesh with 470k triangles took about

0.26 second, which is too slow if we perform smoothing every time the mesh changes

during user interaction. Consequently, we perform mesh smoothing optionally.

Figure 7.15 shows the mean and mean squared error (Figure 7.15a) and the

5This is different from the NVIDIA GTX 1070 used for training the CNN.

160

time to perform k-means clustering and VQ with k ranging from 32 to 512 (Fig-

ure 7.15b). Here we measure error as the L2 distance between the actual and

reconstructed vectors. As the value of k increases, both errors decrease exponen-

tially, whereas the running time increases linearly. The reconstruction error for the

BRATS dataset is larger than the other two datasets possibly because the BRATS

dataset is multimodal with large intra-class variations.

7.8 Conclusions and Future Work

Designing volume visualizations is challenging because the current workflow

requires users to explicitly define a feasible feature space for the target structures.

Existing studies have focused on visualizing structures based on specific handcrafted

local features. As the complexity of structures increases, the difficulty of defining a

suitable feature space also increases significantly.

In this work, instead of relying on handcrafted features, we use convolutional

neural networks (CNNs) to derive automatically useful features from the data. In

contrast to the local features that have been used in the past, the features extracted

from the CNNs depict high-level concepts that are difficult to describe by local

features. We organize the extracted high-dimensional abstract features by spectral

ordering such that similar abstract features are close together in the design widget,

thereby facilitating interactive exploratory visualization. In addition, we present a

semi-automatic technique that creates a binary tree of volume visualizations, which

allow users to hierarchically explore volumetric data by traversing the tree.

161

32 64 128 256 512

Number of clusters

3

4

5

6

7

8

9

10

11

12

M
e
a
n
 e

rr
o
r

(M
E
)

20

40

60

80

100

120

140

160

M
e
a
n
 s

q
u
a
re

d
 e

rr
o
r

(M
S
E
)

MSE

MSE

MSE

ME

ME

ME
Bacteria

Hippocampus

BRATS

(a) Reconstruction error

32 64 128 256 512

Number of clusters

0

5

10

15

20

ti
m

e
-p

e
r-

m
e
g
a
v
o
x
e
l
(s

)

k-means
VQ

(b) Running Time

Figure 7.15: (a) The reconstruction error of vector quantization decreases as the
size of codebook (i.e. number of clusters) increases. (b) Larger codebook requires
much more time running k-means and VQ.

We have used a simple CNN for feature extraction and voxel-by-voxel seg-

mentation. In the next section, we further improve segmentation performance by

applying modern CNN architecture [66] and 3D convolutions to further address the

spatial relationships among voxels. In the future, we plan to combine features from

162

different layers in the CNN to design visualizations at various granularities, possibly

showing substructures within a structure.

163

Chapter 8: CNN-based Segmentation of Volumetric Microscopy Im-

ages

8.1 Introduction

Recently, convolutional neural networks (CNNs) have been successfully applied

to segment natural image datasets such as the Pascal Visual Object Classes (VOC)

dataset [59]. Typical training of a CNN requires many labeled samples (e.g. 6929

labeled images in Pascal VOC 2012) that cover a wide variety of the target objects.

The diversity of training samples is crucial for the CNNs to learn the actual data

distribution. Nevertheless, microscopy image datasets contain considerably fewer

labeled samples, usually no more than a few hundred, because of the high costs in

collecting and labeling microscopy images. Whereas deeper CNNs have achieved

better performance in the past, the scarce training data increasingly raises the risk

of overfitting and limited generalization as model complexity grows.

Data augmentations directly address the scarcity of training samples by gen-

erating additional similar samples from the existing ones. Standard augmentation

operations such as random rotation, scaling, and cropping have been shown to im-

prove prediction accuracy for image classification [60]. Nevertheless, these opera-

164

tions implicitly assume specific properties (e.g. rotation- and scale-invariance) of

the target objects in the data; these assumptions are not always realistic or valid in

applications other than classifying objects in natural images. Although augmenta-

tion methods such as elastic transform have been used for CNN-based segmentation

of EM and MRI images [1, 63]. To the best of our knowledge, there has been no

systematic evaluation on data augmentations for microscopy image segmentation.

Besides using the application-dependent data augmentations, we approach the

problem by finding suitable CNN architectures for volumetric segmentation in gen-

eral. Both 2D networks, which treat the volume as a stack of image slices and

segment slice-by-slice, and 3D networks that directly describe the spatial relation-

ships in all three spatial dimensions reported promising results in the past. One

severe drawback of 2D networks is that they only address the spatial relationships

within a slice and do not exploit information across slices. On the other hand,

the power of 3D convolutions comes at the expense of a significant increase in the

number of parameters, which may result in overly complicated networks and po-

tential risk of overfitting. In the past, factorized CNNs that use only low-rank

filters instead of full-rank ones were shown to create simplified models that reduce

computation, avoids overfitting, and improves generalization for image classifica-

tion problems [149]. Although factorizations appear to be powerful for applications

with scarce training data, their effectiveness in volumetric segmentation is yet to be

studied.

Given the strengths and drawbacks for both 2D and 3D networks, in this

chapter we study how they compare with each other empirically in terms of seg-

165

mentation performance for EM datasets. We design and evaluate the performance

of 2D and 3D CNNs (Section 8.3) that use factorized convolutions (Section 8.4) and

online feature-level augmentations (Section 8.5). We modify the shortcut connec-

tion in residual blocks [67, 150] to perform online feature-level augmentations by

combining features sampled from a controlled random neighborhood. Finally, we

train the CNNs with a Jaccard index-based loss function (Section 8.6) to alleviate

the class imbalance problem, which is also aggravated by the limited training data.

Our experimental results show that the factorized 3D CNN with online feature-

level augmentations performed the best among nine variants of CNN architectures,

including the widely used U-Net [1].

8.2 Related Work

8.2.1 CNN-based Volume Segmentation

The existing CNN-based volume segmentation methods can be grouped into

two. The first group of methods [151, 152, 147, 153, 154] train the network to solve a

classification problem: determining the class of the center pixel when given a patch

of neighboring pixels surrounding it. The surrounding pixels in an input patch offer

the context information from which the CNNs can derive useful features for pre-

dicting the class for the center pixel. The final segmentation results are created by

repeatedly classifying each pixel independently. This problem formulation allows

reusing the successful CNN architecture designed for natural image classification–a

series of convolution layers with few pooling layers mixed in between, and finally

166

a couple of fully-connected layers to combine various signals into one final predic-

tion [60].

The second group of methods, the fully convolutional networks, recognize that

much of the computation is redundant when calculating the convolution for nearby

pixels and modify the CNN architecture to reuse intermediate information instead

of recalculating it in every independent iteration [66]; this modification accelerates

both the training and testing by orders of magnitude. Nevertheless, reusing common

information requires including neighboring pixels in the same training iteration;

such spatial dependency poses an additional limitation on the diversity of training

samples [155]. Because the training data for biomedical applications is already

relatively small in practice, further reducing diversity risks overfitting the model.

A typical fully convolutional network consists of an encoding module for learn-

ing increasingly higher-level features at a progressively reduced spatial resolution

followed by a decoding module for restoring the spatial resolution back (or closer)

to the original one [66, 1]. This architecture has been found to be effective and

has been adopted and extended in various studies [63, 64, 156]. An alternative to

the typical design is omitting the decoding module and make up for the lost spatial

resolution at the testing stage by overlapping patches [114].

8.2.2 Factorized Convolutions

Learning low-rank filters is an active research topic in computer vision. Re-

placing 2D convolutions by consecutive 1D convolutions (i.e. vertical then horizontal

167

or horizontal then vertical) shows slightly worse performance with a speed-up fac-

tor of 1.6 [157]. Whereas filters that depict useful features may be non-separable,

an objective function that penalizes high-rank filters can be used to encourage the

learning of low-rank filters [158]. Reconstructing known filters by low-rank approxi-

mations shows similar performance with less parameters, effectively simplifying the

model [158, 159]. Various ways to approximate known filters were used together

with a layer-by-layer fine-tuning method to achieve comparable performance [160].

Instead of approximating known filters, training networks with only low-rank filters

can reduce computation, number of parameters, and even improve accuracy [149].

In summary, using low-rank filters in CNNs effectively decreases number of

parameters, possibly improving model generalization and preventing overfitting,

thus increasing accuracy. Factorized convolutions can therefore benefit applications

where training samples are scarce.

8.2.3 Augmentations

The most common ways to augment training data for image recognition ap-

plications are horizontal reflection and random cropping. A small color variation,

calculated from a combination of the first three principal components, is also an effec-

tive way to expand the training set if the class of an object is invariant to slight color

variations [60]. An elastic transform, which distorts images locally with an offset

field, is shown to improve segmentation performance for electron microscopy [1, 63].

Although data augmentations are successful in various applications, they must gen-

168

erate samples that appear to be drawn from the data distribution.

Instead of modifying the training samples, several alternative methods have

been proposed to perform augmentations from a different perspective. Fractional

pooling that distorts pooling results locally with a stochastic sampling pattern is

shown to improve performance [161]. By purposely adding wrongly-labeled training

samples, the CNN can be regularized from the loss level [162].

8.3 Network Architecture

Our architecture of the CNNs follows the fully convolutional network [66]

that takes an input image and outputs the corresponding dense prediction, of the

same spatial resolution as the input image. For simplicity, we describe only the 2D

version of the CNNs here; for 3D CNNs, replace the relevant components by the 3D

counterparts (e.g. 2D by 3D convolutions).

The CNN contains the encoding and the decoding part that gradually de-

creases and increases spatial resolution, respectively (Figure 8.1). The decoding

part, which is shown to be less influential to the overall segmentation performance [163],

has much fewer parameters than the encoding part. The CNN consequently has an

asymmetric structure as opposed to the symmetric U-Net [1].

We use batch normalization (BN) [6], Parametric Rectified Linear Unit (PReLU) [7],

and dropout [8] in the building blocks shown in Figure 8.2. The operations in dashed

lines in Figure 8.2b and Figure 8.2c (e.g. downsample, upsample, and 1× 1 convo-

lution) are applied only when the spatial dimension changes to match the spatial

169

EncodeBlock(40, /2)

DecodeBlock(64, x2)

EncodeBlock(48)

EncodeBlock(56)

EncodeBlock(64)

EncodeBlock(72, /2)

EncodeBlock(80)

EncodeBlock(88)

EncodeBlock(96)

EncodeBlock(104)

EncodeBlock(120)

EncodeBlock(128)

EncodeBlock(32)

EncodeBlock(24)

InputBlock(16, /2)

DecodeBlock(64)

DecodeBlock(64)

DecodeBlock(64)

DecodeBlock(64)

DecodeBlock(32, x2)

DecodeBlock(32)

DecodeBlock(32)

TransposedConv(2, x2)

En
co

d
in

g

D
eco

d
in

g

Figure 8.1: The CNN contains the encoding part and the decoding part. The
numbers enclosed in the parentheses represent the numbers of output feature maps.
A “/2” or “x2” indicates a change in spatial resolution after the (blue) block. See
Figure 8.2 for details of each type of blocks.

170

dimension before summing the feature maps.

Input

2x2 Pooling

3x3 Conv, /2

BN

PReLU

Concatenate

(a) Input block

BN

PReLU

3x3 Conv

BN

PReLU

3x3 Conv

Sum

Dropout
Downsample

1x1 Conv

(b) Encoding block

Sum

Dropout

BN

PReLU

1x1 Conv

BN

PReLU

3x3 Conv

BN

PReLU

1x1 Conv

Upsample

1x1 Conv

(c) Decoding block

Figure 8.2: The (a) input block, (b) encoding block, and (c) decoding block used in
our CNN. We use batch normalization (BN) [6], Parametric Rectified Linear Unit
(PReLU) [7], and dropout [8] in the three building blocks.

Given the input images, we first concatenate the result of max-pooling with

the result of stride-two convolution in the input block (Figure 8.2a). The following

encoding blocks are implemented as pre-activate residual blocks [150] (Figure 8.2b).

In each block, we stack two 3× 3 convolutional layers to enlarge the receptive field

with a manageable increase in the number of parameters [109]. The number of fea-

ture maps is increased by eight after each encoding block (left column of Figure 6.2)

to avoid a sudden increase in the number of feature maps [164]. We use the same

zero-padding strategy along the feature dimension [164] for the shortcut connections

when the number of feature maps changes (white encoding blocks in Figure 6.2).

When spatial resolution decreases (blue encoding blocks in Figure 6.2), the short-

cut connections combine features after applying downsampling and linear projection

171

(i.e. 1 × 1 convolution). We will elaborate more on modifying the downsampling

operation to perform feature-level augmentations later in Section 8.5.

In the decoding part, we use the conventional bottleneck blocks [150], which

perform convolutions in a reduced intermediate space created by projection, to fur-

ther reduce the number of parameters (Figure 8.2c). When spatial resolution in-

creases (blue decoding blocks in Figure 6.2), we replace the 3× 3 convolution by a

stride-two 3× 3 transposed convolution [66] to double the spatial resolution.

8.4 Factorized Convolution

Although 3D convolutions are powerful in describing the relationships among

objects along the z-axis, they use 3D kernels that contain an order of magnitude

more parameters than 2D kernels. For example a 3 × 3 kernel has nine weights

whereas a 3 × 3 × 3 kernel has 27 weights. The significant amount of parameters

in 3D CNNs may cause the model to overfit the training data and degrade its

performance during testing. When only given a limited amount of training data,

the overfitting problem is a major concern, especially for the 3D CNNs.

Factorized convolutions that approximate a full-rank 2D kernel with multiple

low-rank kernels have been shown to reduce computation without compromising

performance [149]. Using low-rank kernels reduces the number of parameters. For

example, the total number of parameters decreases from nine to six after replacing

a 3× 3 full-rank kernel by a 1× 3 and a 3× 1 rank-1 kernel. Here we replace the m

feature maps generated by the 3× 3 full-rank convolution in an encoding block by

172

the concatenation of two rank-1 convolutions, each outputs m
2

feature maps. The

same strategy is applied to the full-rank 3D kernels.

8.5 Feature-level Augmentation

Data augmentation is a common practice to enlarge the training set. Assuming

that the target structures are rotation-invariant, we flip the image along the x- and

y-axes (and z-axis too in the 3D CNNs) to create more training samples. We also

apply elastic deformation [1], which is a commonly used deformation technique for

creating realistic tissue images with variations.

Besides the aforementioned data-level augmentations, we modify the residual

block to perform online augmentation at the feature-level when downsampling. This

idea is motivated by the fractional max-pooling [161], which creates a random spatial

sampling pattern to allow non-integer strides when pooling. Because the sampling

pattern varies in each iteration, the same input creates a large set of candidate

results, distorting the results in all subsequent layers. Here we apply a similar idea

and implement the downsampling used in shortcut connections as a random spatial

subsampling (Figure 8.3). Whereas the original design adds the input feature maps

at specific locations (e.g. all odd rows and odd columns when stride equals two) to

the results of convolution [67], we apply a sampling strategy to allow the flexibility

of selecting from a local neighborhood. This flexibility introduces augmentations at

the feature level and can be used together with other data-level augmentations.

The stochastic sampling pattern is generated by first partitioning each spatial

173

Subsampling

t

t

Stochastic downsampling

BN

PReLU

3x3 Conv, 2

BN

PReLU

3x3 Conv

Sum

Dropout
Downsample

1x1 Conv

Figure 8.3: We replace the subsampling (top-right) by the stochastic downsampling
(bottom-right) when the encoding block reduces spatial resolution. This stochastic
operation introduces augmentations at the feature level inside of a residual block.

dimension of the input feature maps into non-overlapping regions of size t and then

selecting t
s

samples randomly inside of each region (bottom right of Figure 8.3). The

samples selected for all spatial dimensions are combined into a complete sampling

pattern that outputs feature maps with spatial resolutions identical to that created

by subsampling with stride s (top right of Figure 8.3). In fact, subsampling can

be regarded as a special case of the stochastic downsampling by fixing the samping

pattern. With a fixed stride s, the parameter t controls the degree of randomness

in the sampling pattern; a larger t leads to a more aggressive augmentation because

the summation operation in the residual block can combine more distant neurons.

174

(a) Conventional subsampling (b) t = 4; ME = 7.11

(c) t = 8; ME = 8.23 (d) t = 16; ME = 11.33

Figure 8.4: We can control the degree of augmentation by varying the value of t.
Here we compare the result of (a) conventional subsampling and (b–d) stochastic
downsampling with increasing value of t. The mean error (ME) comparing (a) and
(b–d), caused by the stochasticity, increases from (b) 7.11, (c) 8.23, to (d) 11.33.
Pixel values are in the scale of [0, 255].

In this work we choose t = 4. During testing, we replace this stochastic operation

by an average pooling of the same stride s for a deterministic behavior.

We compare the effect of t by fixing s to two (i.e. reduce spatial resolution

by half) in the stochastic downsampling in Figure 8.4. The results in Figure 8.4b–

d show increasingly larger distortion as the value of t increases from 4 to 16. If

we compare these three images with additional local distortion with the result of

175

subsampling (Figure 8.4a), the mean error also increases with the value of t (from

7.11 to 8.23 and 11.33 for t = 4, 8, 16).

8.6 Jaccard Index-based Loss

Class imbalance is a severe problem in training with scarce samples of the

minority classes. Training a CNN with ordinary loss functions, such as the binary

cross-entropy loss, usually ends up with a model that overestimates the prevalence

of majority classes (e.g. low precision) and ignores the minority classes (e.g. low

recall). Although training with balanced samples followed by postprocessing the

prediction probabilities during testing reported promising results in the past [151],

this procedure does not exploit the actual class distributions during training and

relies on an ad-hoc postprocessing to readjust the probabilities.

In this work, we use an alternative loss function based on Jaccard index, which

is also used to measure segmentation performance. For a class i, the Jaccard index-

based loss lJacc is calculated as:

lJacc(p, y, i) = 1.0−

∑
j

pij · yij + C∑
j

pij +
∑
j

yij −
∑
j

pij · yij + C

where pij denotes the predicted probability of the j-th voxel belonging to class i,

and yij is the one-hot encoding of the ground truth labels that equals one if and

only if the j-th voxel belongs to class i. The constant C, which we set to 1.0 in

this work, represents a smoothing term and prevents dividing by zero. Because our

target segmentation problem is a binary one, we use only the lJacc of the minority

176

class (i.e. lJacc(p, y, 1) assuming that the minority class is labeled as one) as the final

loss function. The average lJacc of all classes can be used in multiclass segmentation.

8.7 Results and Discussion

We evaluate our CNNs with the same mitochondria dataset [165] (c.f. Sec-

tion 7.7.3); this dataset contains two fully-labeled volumes, each of size 1024×768×

165, obtained using an electron microscope. The target objects in this dataset are

the mitochondria, which are dark objects of oval or elongated shape. The training

volume contains only 42 (complete and partial) mitochondria. The CNNs are trained

to solve a binary segmentation problem (i.e. mitochondria and non-mitochondria)

with a significantly imbalanced class distribution (about 5% mitochondria).

The input samples are random patches of size 256× 256 (2D), extracted from

the xy-plane, and 128× 128× 96 (3D). We ensure that the sampled patches contain

mitochondria pixels (or voxels) near the center to avoid training with a minibatch

consists of patches that are almost exclusively non-mitochondria pixels (or voxels).

All CNNs are trained using the stochastic gradient descent solver with 0.9 momen-

tum and L2 regularization based on the Jaccard index-based loss. We set the batch

size to 24 (2D) and three (3D) and train for 30K iterations. The learning rate starts

from 0.05 (2D) and 0.1 (3D) and is multiplied by 0.1 at 50% and 75% of the it-

erations. The dropout rate is set to 0.1. All parameters are set according to our

preliminary experiments. We implement all the CNNs using Theano [166] and train

them using an NVIDIA GTX1070 GPU with cuDNN library. The training took five

177

Table 8.1: Segmentation results obtained by U-Net and eight network variants (A–
H). The number of parameters is in millions.

Model #Parameters Precision Recall Jaccard

U-Net [1] 36.97M 99.3 / 94.8 99.7 / 87.6 99.0 / 83.5

A (2D, Full, –) 1.68M 99.5 / 91.4 99.5 / 91.6 99.1 / 84.4
B (2D, Full, A) 1.68M 99.5 / 93.0 99.6 / 90.8 99.1 / 85.0
C (2D, Fact., –) 0.60M 99.6 / 91.9 99.5 / 93.1 99.2 / 86.1
D (2D, Fact., A) 0.60M 99.6 / 92.5 99.6 / 93.1 99.2 / 86.5

E (3D, Full, –) 4.94M 99.7 / 92.5 99.6 / 93.9 99.3 / 87.2
F (3D, Full, A) 4.94M 99.6 / 93.2 99.6 / 93.4 99.3 / 87.5
G (3D, Fact., –) 0.63M 99.7 / 92.7 99.6 / 93.9 99.3 / 87.4
H (3D, Fact., A) 0.63M 99.6 / 95.0 99.7 / 93.3 99.4 / 88.9

* The numbers separated by slashes correspond to the results for non-
mitochondria (left) and mitochondria (right)

** The best results are marked in bold.

to six hours (2D) and eight to ten hours (3D).

The results in Table 8.1 show the performance of U-Net [1] and eight vari-

ants of CNNs. The baseline 2D (model A) and 3D (model E) CNNs that use

full-rank kernels and conventional subsampling-based shortcuts are represented by

(2D, Full, –) and (3D, Full, –). The variants that use factorized convolutions and

online feature-level augmentations are indicated by “Fact.” and “A”, respectively.

We use the Jaccard index of mitochondria as the representative measure for overall

segmentation quality.

U-Net is a fully convolutional network with an equal amount of trainable pa-

rameters in the encoding and decoding parts. Because of the large numbers of

feature maps as well as the symmetric structure, U-Net has significantly more pa-

rameters than our baseline 2D CNN (model A). Despite using considerably fewer

178

parameters, model A performed better than U-Net (84.4 vs. 83.5). The superior

performance-per-parameter ratio of model A is a result of both the asymmetric struc-

ture that focuses on the encoding part and residual learning that uses parameters

more effectively than conventional models.

Overall, the 3D CNNs (E–H) showed better segmentation performance than

the 2D CNNs (A–D). Even when the numbers of parameters are comparable, the 3D

CNNs (G and H) performed much better than the 2D CNNs (C and D). The results

suggest that the 2D CNNs are largely limited by the lack of contextual information

across the z-axis. For example, Figure 8.5 shows the segmentation results of the 80th

slice. The 3D CNN (model H) predicted accurately when the 2D CNNs (U-Net and

model D) were unsuccessful e.g. false positive near the top-left corner (U-Net and

model D) and false negative near the top-right corner (U-Net). This suggested

that information along the z-axis is especially critical for ambiguous voxels that are

difficult to delineate when viewed slice-by-slice.

Our observations for factorizations are consistent with the previous stud-

ies [149]: factorized CNNs offer similar (G vs. E) or better performance (C vs.

A, D vs. B, and H vs. F) than the non-factorized ones. In fact, in three out of four

cases factorization increased the Jaccard index of the foreground class by more than

one percent. The results suggest that the factorized CNNs can still learn mean-

ingful high-level features even though each low-rank kernel is less powerful than

the full-rank one. The networks with feature-level augmentations performed either

slightly better (B vs. A, D vs. C, and F vs. E) or much better (H vs. G) than

the ones without such augmentations. The promising results show that feature-level

179

U-Net
Model D
Model H

Ground truth

Figure 8.5: This example compares the segmentation results of U-Net (orange),
2D CNN (model D, green), and 3D CNN (model H, blue), with the ground truth
(purple). The 3D CNN showed promising result in which the errors are mostly near
the ambiguous object boundaries.

augmentations in the residual blocks can introduce a suitable degree of distortion

controllable using only one parameter t.

We also assess the effect of elastic deformation by training model H without

it. Surprisingly, without such deformation the Jaccard indices for both classes (99.4

and 88.8) remain competitive. Because elastic deformation can disrupt the smooth

mitochondria boundaries and introduce noise in object shapes, its adverse effect

may offset the benefits of augmentations. We will need a specialized augmentation

procedure to achieve the full potential of data-level augmentations.

180

Our best segmentation result (model H) has a VOC score [59] of 94.2. A re-

sult of 94.8 is reported in [165], which combines the strengths of kernelized features,

extracted by a two-stage training, and subgradient method. In contrast to their

sophisticated method, our CNNs are trained end-to-end. Furthermore, many errors

made by a machine classifier are due to the inconsistency near the ambiguous ob-

ject boundaries in the subjective, human-labeled ground truth of this dataset [137].

Figure 8.5 confirms that most errors indeed happened near the boundaries of mito-

chondria.

8.8 Conclusions and Future Work

In this work, we address the challenge of training convolutional neural networks

(CNNs) with scarce training data. We compare the performance of various 2D

and 3D CNNs trained with limited training samples. Based on the result of our

experiments, we found that the 3D CNNs outperformed the 2D ones by a significant

margin. Factorized convolutions and online feature-level augmentations improved

segmentation performance the most when used together. Our best model (with

factorized 3D convolutions and feature-level augmentations) performed significantly

better than U-Net [1].

We plan to apply semi-supervised learning and generative models to further

address the problem of scarce training samples. We are also interested in applying

deep learning approaches for visual knowledge discovery for biomedical datasets [99,

72].

181

Chapter 9: Conclusions and Future Work

In this dissertation, we summarized our visual analytic tools for various types

of biomedical data. For NetworkViewer, we embed visual representations of protein

reaction rules directly inside of the network display. This strategy allows users to

always put the relevant rule-specific details in the context of the global network. For

Winnow, we visualize the change of disease severity in multiple domains simultane-

ously and support interactive filtering of patients such that clinicians can interrogate

their data visually.

We also studied various ways to visualize biomedical images, addressing com-

putational challenges that arise from the unique characteristics of such images. We

developed an efficient segmentation method for gigapixel images, whose results are

later used for highlighting texture differences across multiple scales. We later alle-

viated the need for hand-crafted features and used features derived automatically

by a CNN when building visualization. We exploit the similarities among abstract

features to facilitate the creation of visualizations based on pixel (voxel) representa-

tions in this high-dimensional abstract feature space. We showed promising results

when applying similar procedures in creating visualizations for time-lapse images

and volumetric images. Finally, we designed CNNs that are suitable for applica-

182

tions where training data is limited. We showed that CNNs that used factorized

3D convolution and feature-level augmentations performed that best among several

variants.

Although our visualization tools are designed for specific types of data, such

as protein reaction networks and Parkinson’s disease clinical data, our tools can be

extended to support other data sources with similar characteristics (e.g. network

graph and longitudinal data). For example, Winnow can be applied to analyze other

chronic diseases.

We used features extracted from a trained CNN for visualization design; the

training procedure, however, still requires labeled samples from which the CNN can

learn to adjust the parameters. In the future, we can apply unsupervised learning

that derives features directly from unlabeled raw data [41, 167, 168, 169, 170]. This

way we avoid the time-consuming labeling task, which remains a major bottleneck in

many biomedical applications. The pure data-driven, unsupervised approach may,

however, create features that do not align with the users’ needs. By combining

supervised and unsupervised techniques, semi-supervised approaches may derive

features suitable for the target task with a minimal number of labeled samples [170].

We approached the problem of scarce training samples from a different per-

spective because conventional data-level augmentation techniques do not always

generate similar variants from existing biomedical images. More recently, genera-

tive adversarial networks (GANs) [171, 172] have been applied as generative models

for computer vision applications. In fact, a couple of studies have focused on syn-

thesizing biomedical images using GAN [173, 174]. As a possible future direction,

183

we can significantly expand the training set by integrating the generative model into

the training procedure, potentially leading to better performance.

184

List of Publications

1. Hsueh-Chien Cheng, Antonio Cardone, Somay Jain, Eric Krokos, Kedar Narayan,
Sriram Subramaniam, and Amitabh Varshney. Deep-learning-assisted volume vi-
sualization. IEEE Transactions on Visualization and Computer Graphics, Octo-
ber 2017, accept after minor revision.

2. Eric Krokos, Hsueh-Chien Cheng, Jessica Chang, Celeste Lyn Paul, Bohdan
Nebesh, Kirsten Whitley, and Amitabh Varshney. Enhancing deep learning with
visual interactions. ACM Transactions on Interactive Intelligent Systems, July
2017, submitted.

3. Hsueh-Chien Cheng, Rainer von Coelln, Ann L. Gruber-Baldini, Lisa M. Shul-
man, and Amitabh Varshney. Winnow: Interactive visualization of temporal
changes in multidimensional clinical data. Journal of Biomedical and Health In-
formatics, September 2017, invited to submit to a special issue for best papers
in ACM-BCB.

4. Hsueh-Chien Cheng, Rainer von Coelln, Ann L. Gruber-Baldini, Lisa M. Shul-
man, and Amitabh Varshney. Winnow: Interactive visualization of temporal
changes in multidimensional clinical data. In Proceedings of ACM Conference on
Bioinformatics, Computational Biology, and Health Informatics, Boston, MA,
August 2017.

5. Hsueh-Chien Cheng, Antonio Cardone, Eric Krokos, Bogdan Stoica, Alan Faden,
and Amitabh Varshney. Deep-learning-assisted visualization for live-cell images.
In Proceedings of IEEE International Conference on Image Processing, Beijing,
China, September 2017.

6. Hsueh-Chien Cheng and Amitabh Varshney. Volume segmentation using con-
volutional neural networks with limited training data. In Proceedings of IEEE
International Conference on Image Processing, Beijing, China, September 2017.

7. Hsueh-Chien Cheng, Antonio Cardone, and Amitabh Varshney. Interactive ex-
ploration of microstructural features in gigapixel microscopy images. In Pro-
ceedings of IEEE International Conference on Image Processing, Beijing, China,
September 2017.

8. Hsueh-Chien Cheng, Bastian R. Angermann, Fengkai Zhang, and Martin Meier-
Schellersheim. NetworkViewer: Visualizing biochemical reaction networks with

185

embedded rendering of molecular interaction rules. BMC Systems Biology, 8(1):
70, June 2014.

9. Udayan Khurana, Viet-An Nguyen, Hsueh-Chien Cheng, Jae-wook Ahn, Xi Chen,
and Ben Shneiderman. Visual analysis of temporal trends in social networks using
edge color coding and metric timelines. In Proceedings of IEEE International
Conference on Social Computing, pages 549–554, Boston, MA, October 2011.
IEEE.

186

Bibliography

[1] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional
networks for biomedical image segmentation. In International Conference on
Medical Image Computing and Computer-Assisted Intervention, pages 234–241.
Springer, 2015.

[2] Ming-yu Hsieh, Shujie Yang, Mary Ann Raymond-Stinz, Jeremy S Edwards, and
Bridget S Wilson. Spatio-temporal modeling of signaling protein recruitment to
EGFR. BMC Systems Biology, 4:57, 2010.

[3] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Efficient graph-based image
segmentation. International Journal of Computer Vision, 59(2):167–181, 2004.

[4] Jiangye Yuan, Deliang Wang, and A.M. Cheriyadat. Factorization-based tex-
ture segmentation. IEEE Transactions on Image Processing, 24(11):3488–3497,
November 2015.

[5] Frank G. A. Faas, M. Cristina Avramut, Bernard M. van den Berg, A. Mieke
Mommaas, Abraham J. Koster, and Raimond B. G. Ravelli. Virtual nanoscopy:
Generation of ultra-large high resolution electron microscopy maps. The Journal
of Cell Biology, 198(3):457–469, June 2012.

[6] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. In Proceedings of International
Conference on Machine Learning, pages 448–456, 2015.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into
rectifiers: Surpassing human-level performance on imagenet classification. In
Proceedings of IEEE International Conference on Computer Vision, pages 1026–
1034, 2015.

[8] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan Salakhutdinov. Dropout: A simple way to prevent neural networks from
overfitting. The Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[9] M. Meier-Schellersheim, X. Xu, B. Angermann, E.J. Kunkel, T. Jin, and R.N.
Germain. Key role of local regulation in chemosensing revealed by a new molec-
ular interaction-based modeling method. PLoS Computational Biology, 2(7):e82,
2006.

187

[10] M. Meier-Schellersheim, I.D.C. Fraser, and F. Klauschen. Multiscale modeling
for biologists. Wiley Interdisciplinary Reviews: Systems Biology and Medicine,
1(1):4–14, 2009.

[11] Bastian R Angermann, Frederick Klauschen, Alex D Garcia, Thorsten Prustel,
Fengkai Zhang, Ronald N Germain, and Martin Meier-Schellersheim. Compu-
tational modeling of cellular signaling processes embedded into dynamic spatial
contexts. Nature Methods, 9(3):283–289, 2012.

[12] P. Shannon, A. Markiel, O. Ozier, N.S. Baliga, J.T. Wang, D. Ramage,
N. Amin, B. Schwikowski, and T. Ideker. Cytoscape: A software environment
for integrated models of biomolecular interaction networks. Genome Research,
13(11):2498–2504, 2003.

[13] B.J. Breitkreutz, C. Stark, and M. Tyers. Osprey: A network visualization
system. Genome Biology, 4(3):R22, 2003.

[14] Z. Hu, J. Mellor, J. Wu, and C. DeLisi. VisANT: An online visualization and
analysis tool for biological interaction data. BMC Bioinformatics, 5(1):17, 2004.

[15] Nicolas Le Novère, Michael Hucka, Huaiyu Mi, Stuart Moodie, Falk Schreiber,
Anatoly Sorokin, Emek Demir, Katja Wegner, Mirit I. Aladjem, Sarala M.
Wimalaratne, Frank T. Bergman, Ralph Gauges, Peter Ghazal, Hideya Kawaji,
Lu Li, Yukiko Matsuoka, Alice Villéger, Sarah E. Boyd, Laurence Calzone,
Melanie Courtot, Ugur Dogrusoz, Tom C. Freeman, Akira Funahashi, Samik
Ghosh, Akiya Jouraku, Sohyoung Kim, Fedor Kolpakov, Augustin Luna, Sven
Sahle, Esther Schmidt, Steven Watterson, Guanming Wu, Igor Goryanin, Dou-
glas B. Kell, Chris Sander, Herbert Sauro, Jacky L. Snoep, Kurt Kohn, and
Hiroaki Kitano. The systems biology graphical notation. Nature Biotechnology,
27(8):735–741, August 2009.

[16] Kurt W. Kohn, Mirit I. Aladjem, John N. Weinstein, and Yves Pommier. Molec-
ular interaction maps of bioregulatory networks: A general rubric for systems
biology. Molecular Biology of the Cell, 17(1):1–13, 2006.

[17] Augustin Luna, Evrim I Karac, Margot Sunshine, Lucas Chang, Ruth Nussinov,
Mirit I Aladjem, and Kurt W Kohn. A formal MIM specification and tools for
the common exchange of MIM diagrams: An XML-Based format, an API, and
a validation method. BMC Bioinformatics, 12:167, 2011.

[18] James R. Faeder, Michael L. Blinov, and William S. Hlavacek. Rule-based
modeling of biochemical systems with BioNetGen. In Ivan V. Maly, editor,
Systems Biology, volume 500, pages 113–167. Humana Press, Totowa, NJ, 2009.
ISBN 978-1-934115-64-0 978-1-59745-525-1.

[19] Jérôme Feret, Vincent Danos, Jean Krivine, Russ Harmer, and Walter Fontana.
Internal coarse-graining of molecular systems. Proceedings of the National
Academy of Sciences, 106(16):6453–6458, 2009.

188

[20] James R. Faeder, Michael L. Blinov, and William S. Hlavacek. Graphical rule-
based representation of signal-transduction networks. In Proceedings of ACM
Symposium on Applied Computing, SAC ’05, pages 133–140, New York, NY,
USA, 2005. ACM. ISBN 1-58113-964-0.

[21] Bin Hu, G. Matthew Fricke, James R. Faeder, Richard G. Posner, and
William S. Hlavacek. GetBonNie for building, analyzing and sharing rule-based
models. Bioinformatics, 25(11):1457–1460, January 2009.

[22] F. Zhang, B. R. Angermann, and M. Meier-Schellersheim. The Simmune Mod-
eler visual interface for creating signaling networks based on bi-molecular inter-
actions. Bioinformatics, 29(9):1229–1230, 2013.

[23] Adam M. Smith, Wen Xu, Yao Sun, James R. Faeder, and G. Elisabeta Marai.
RuleBender: Integrated modeling, simulation and visualization for rule-based
intracellular biochemistry. BMC Bioinformatics, 13(Suppl 8):S3, 2012.

[24] Lily A. Chylek, Bin Hu, Michael L. Blinov, Thierry Emonet, James R. Faeder,
Byron Goldstein, Ryan N. Gutenkunst, Jason M. Haugh, Tomasz Lipniacki,
Richard G. Posner, Jin Yang, and William S. Hlavacek. Guidelines for visualiz-
ing and annotating rule-based models. Molecular BioSystems, 7(10):2779–2795,
2011.

[25] Carl-Fredrik Tiger, Falko Krause, Gunnar Cedersund, Robert Palmer, Edda
Klipp, Stefan Hohmann, Hiroaki Kitano, and Marcus Krantz. A framework
for mapping, visualisation and automatic model creation of signal-transduction
networks. Molecular Systems Biology, 8:578, April 2012.

[26] Martijn P van Iersel, Alice C Villéger, Tobias Czauderna, Sarah E Boyd,
Frank T Bergmann, Augustin Luna, Emek Demir, Anatoly Sorokin, Ugur Do-
grusoz, Yukiko Matsuoka, Akira Funahashi, Mirit I Aladjem, Huaiyu Mi, Stu-
art L Moodie, Hiroaki Kitano, Nicolas Le Novère, and Falk Schreiber. Software
support for SBGN maps: SBGN-ML and LibSBGN. Bioinformatics, 28(15):
2016–2021, August 2012.

[27] Kurt W Kohn, Mirit I Aladjem, John N Weinstein, and Yves Pommier. Net-
work architecture of signaling from uncoupled helicase-polymerase to cell cycle
checkpoints and trans-lesion DNA synthesis. Cell Cycle, 8(14):2281–2299, July
2009.

[28] S. North. Drawing graphs with NEATO. http://ftp.graphviz.org/pdf/

neatoguide.pdf, April 2004.

[29] John Ellson, Emden Gansner, Lefteris Koutsofios, Stephen C. North, and Gor-
don Woodhull. Graphviz–Open source graph drawing tools. In Petra Mutzel,
Michael Jünger, and Sebastian Leipert, editors, Proceedings of International

189

http://ftp.graphviz.org/pdf/neatoguide.pdf
http://ftp.graphviz.org/pdf/neatoguide.pdf

Symposium on Graph Drawing, Lecture Notes in Computer Science, pages 483–
484, Berlin, Heidelberg, January 2002. Springer. ISBN 978-3-540-43309-5 978-
3-540-45848-7.

[30] E.R. Gansner, E. Koutsofios, S.C. North, and K.-P. Vo. A technique for drawing
directed graphs. IEEE Transactions on Software Engineering, 19(3):214–230,
March 1993.

[31] Lisa M. Shulman, Robin Leifert Taback, Judy Bean, and William J. Weiner.
Comorbidity of the nonmotor symptoms of Parkinson’s disease. Movement Dis-
orders, 16(3):507–510, 2001.

[32] D. J. Burn, E. N. Rowan, L. M. Allan, S. Molloy, J. T. O’Brien, and I. G. McK-
eith. Motor subtype and cognitive decline in Parkinson’s disease, Parkinson’s
disease with dementia, and dementia with Lewy bodies. Journal of Neurology,
Neurosurgery, and Psychiatry, 77(5):585–589, May 2006.

[33] Roxanne E. Jensen, Nan E. Rothrock, Esi M. DeWitt, Brennan Spiegel, Car-
ole A. Tucker, Heidi M. Crane, Christopher B. Forrest, Donald L. Patrick, Rob
Fredericksen, Lisa M. Shulman, David Cella, and Paul K. Crane. The role of
technical advances in the adoption and integration of patient-reported outcomes
in clinical care. Medical Care, 53(2):153–159, February 2015.

[34] Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, and Jörg Sander.
OPTICS: Ordering points to identify the clustering structure. In Proceedings
of ACM SIGMOD International Conference on Management of Data, SIGMOD
’99, pages 49–60, New York, NY, USA, 1999. ACM. ISBN 1-58113-084-8.

[35] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality
reduction and data representation. Neural Computation, 15(6):1373–1396, 2003.

[36] Stephanie M. van Rooden, Willem J. Heiser, Joost N. Kok, Dagmar Verbaan,
Jacobus J. van Hilten, and Johan Marinus. The identification of Parkinson’s dis-
ease subtypes using cluster analysis: A systematic review. Movement Disorders:
Official Journal of the Movement Disorder Society, 25(8):969–978, June 2010.

[37] Ben Shneiderman and Catherine Plaisant. Strategies for evaluating information
visualization tools: Multi-dimensional in-depth long-term case studies. In Pro-
ceedings of the International Conference on Advanced Visual Interfaces, pages
1–7. ACM, 2006.

[38] Stuart Lloyd. Least squares quantization in PCM. IEEE Transactions on
Information Theory, 28(2):129–137, 1982.

[39] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8):888–
905, 2000.

190

[40] Sam T. Roweis and Lawrence K. Saul. Nonlinear dimensionality reduction by
locally linear embedding. Science, 290(5500):2323–2326, December 2000.

[41] Geoffrey E. Hinton and Ruslan R. Salakhutdinov. Reducing the dimensionality
of data with neural networks. Science, 313(5786):504–507, July 2006.

[42] William C. Cleveland and Marylyn E. McGill. Dynamic Graphics for Statistics.
CRC Press, Inc., Boca Raton, FL, USA, 1st edition, 1988. ISBN 978-0-534-
09144-6.

[43] Alfred Inselberg. The plane with parallel coordinates. The Visual Computer,
1(2):69–91, August 1985.

[44] Amitabh Varshney and Arie Kaufman. FINESSE: A financial information
spreadsheet. In Proceedings of IEEE Symposium on Information Visualization,
pages 70–71. IEEE, 1996.

[45] Wei Peng, Matthew O. Ward, and Elke A. Rundensteiner. Clutter reduction in
multi-dimensional data visualization using dimension reordering. In Proceedings
of IEEE Symposium on Information Visualization, pages 89–96, 2004.

[46] Geoffrey Ellis and Alan Dix. Enabling automatic clutter reduction in parallel
coordinate plots. IEEE Transactions on Visualization and Computer Graphics,
12(5):717–724, 2006.

[47] Hong Zhou, Xiaoru Yuan, Huamin Qu, Weiwei Cui, and Baoquan Chen. Visual
clustering in parallel coordinates. Computer Graphics Forum, 27(3):1047–1054,
2008.

[48] J. Jankovic, M. McDermott, J. Carter, S. Gauthier, C. Goetz, L. Golbe, S. Hu-
ber, W. Koller, C. Olanow, I. Shoulson, M. Stern, and C. Tanner. Variable
expression of Parkinson’s disease: A base-line analysis of the DATATOP cohort.
Neurology, 40(10):1529–1534, October 1990.

[49] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE.
Journal of Machine Learning Research, 9(Nov):2579–2605, 2008.

[50] Parkinson Progression Marker Initiative. The Parkinson Progression Marker
Initiative (PPMI). Progress in Neurobiology, 95(4):629–635, December 2011.

[51] Hans-Christoph Nothdurft. The role of features in preattentive vision: Compar-
ison of orientation, motion and color cues. Vision Research, 33(14):1937–1958,
September 1993.

[52] Jacob Cohen. Statistical power analysis. Current Directions in Psychological
Science, 1(3):98–101, June 1992.

[53] Asako Yoritaka, Hideki Ohizumi, Shigeki Tanaka, and Nobutaka Hattori.
Parkinson’s disease with and without REM sleep behaviour disorder: Are there
any clinical differences? European Neurology, 61(3):164–170, 2009.

191

[54] Ivy N. Miller and Alice Cronin-Golomb. Gender differences in Parkinson’s
disease: Clinical characteristics and cognition. Movement Disorders, 25(16):
2695–2703, December 2010.

[55] Robert Patro, Cheuk Yiu Ip, Sujal Bista, Samuel S. Cho, D. Thirumalai, and
Amitabh Varshney. MDMap: A system for data-driven layout and exploration
of molecular dynamics simulations. In Proceedings of IEEE Symposium on Bio-
logical Data Visualization, pages 111–118, 2011.

[56] A. Bartesaghi, A. Merk, S. Banerjee, D. Matthies, X. Wu, J. L. S. Milne, and
S. Subramaniam. 2.2 {{\AA}} resolution cryo-EM structure of {{β}}-
galactosidase in complex with a cell-permeant inhibitor. Science, 348(6239):
1147–1151, June 2015.

[57] Kedar Narayan and Sriram Subramaniam. Focused ion beams in biology. Nature
Methods, 12(11):1021–1031, October 2015.

[58] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein,
Alexander C. Berg, and Li Fei-Fei. ImageNet large scale visual recognition chal-
lenge. International Journal of Computer Vision, 115(3):211–252, 2015.

[59] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and
Andrew Zisserman. The pascal visual object classes (VOC) challenge. Interna-
tional Journal of Computer Vision, 88(2):303–338, 2010.

[60] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet classifi-
cation with deep convolutional neural networks. In Proceedings of the Annual
Conference on Advances in Neural Information Processing Systems, pages 1097–
1105, 2012.

[61] Bjoern H. Menze, Andras Jakab, Stefan Bauer, Jayashree Kalpathy-Cramer,
Keyvan Farahani, Justin Kirby, Yuliya Burren, Nicole Porz, Johannes Slotboom,
Roland Wiest, Levente Lanczi, Elizabeth Gerstner, Marc-André Weber, Tal Ar-
bel, Brian B. Avants, Nicholas Ayache, Patricia Buendia, D. Louis Collins, Nico-
las Cordier, Jason J. Corso, Antonio Criminisi, Tilak Das, Hervé Delingette,
Çağatay Demiralp, Christopher R. Durst, Michel Dojat, Senan Doyle, Joana
Festa, Florence Forbes, Ezequiel Geremia, Ben Glocker, Polina Golland, Xiao-
tao Guo, Andac Hamamci, Khan M. Iftekharuddin, Raj Jena, Nigel M. John,
Ender Konukoglu, Danial Lashkari, José Antonió Mariz, Raphael Meier, Sérgio
Pereira, Doina Precup, Stephen J. Price, Tammy Riklin Raviv, Syed M. S. Reza,
Michael Ryan, Duygu Sarikaya, Lawrence Schwartz, Hoo-Chang Shin, Jamie
Shotton, Carlos A. Silva, Nuno Sousa, Nagesh K. Subbanna, Gabor Szekely,
Thomas J. Taylor, Owen M. Thomas, Nicholas J. Tustison, Gozde Unal, Flor
Vasseur, Max Wintermark, Dong Hye Ye, Liang Zhao, Binsheng Zhao, Darko Zi-
kic, Marcel Prastawa, Mauricio Reyes, and Koen Van Leemput. The multimodal
brain tumor image segmentation benchmark (BRATS). IEEE Transactions on
Medical Imaging, 34(10):1993–2024, October 2015.

192

[62] Adriënne M Mendrik, Koen L Vincken, Hugo J Kuijf, Marcel Breeuwer,
Willem H Bouvy, Jeroen De Bresser, Amir Alansary, Marleen De Bruijne, Aaron
Carass, Ayman El-Baz, and others. MRBrainS challenge: Online evaluation
framework for brain image segmentation in 3T MRI scans. Computational In-
telligence and Neuroscience, 2015.

[63] Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi. V-Net: Fully con-
volutional neural networks for volumetric medical image segmentation. arXiv
preprint arXiv:1606.04797, 2016.

[64] Tom Brosch, Lisa Y. W. Tang, Youngjin Yoo, David K. B. Li, Anthony Tra-
boulsee, and Roger Tam. Deep 3D convolutional encoder networks with shortcuts
for multiscale feature integration applied to multiple sclerosis lesion segmenta-
tion. IEEE Transactions on Medical Imaging, 35(5):1229–1239, May 2016.

[65] Hao Chen, Xiaojuan Qi, Lequan Yu, and Pheng-Ann Heng. DCAN: Deep
contour-aware networks for accurate gland segmentation. arXiv preprint
arXiv:1604.02677, 2016.

[66] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional net-
works for semantic segmentation. In Proceedings of IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 3431–3440, 2015.

[67] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition, 2016.

[68] Mihran Tuceryan and Anil K. Jain. Texture analysis. In Handbook of Pattern
Recognition and Computer Vision, pages 207–246. World Scientific, 1998.

[69] Cheuk Yiu Ip and Amitabh Varshney. Saliency-assisted navigation of very large
landscape images. IEEE Transactions on Visualization and Computer Graphics,
17(12):1737–1746, 2011.

[70] Roy A. Ruddle, Rhys G. Thomas, Rebecca Randell, Philip Quirke, and Darren
Treanor. The design and evaluation of interfaces for navigating gigapixel images
in digital pathology. ACM Transactions on Computer-Human Interaction, 23
(1):5:1–5:29, January 2016.

[71] Sujal Bista, Ícaro Lins Leitão da Cunha, and Amitabh Varshney. Kinetic depth
images: Flexible generation of depth perception. The Visual Computer, pages
1–13, May 2016.

[72] Sujal Bista, Jiachen Zhuo, Rao P. Gullapalli, and Amitabh Varshney. Visual-
ization of brain microstructure through spherical harmonics illumination of high
fidelity spatio-angular fields. IEEE Transactions on Visualization and Computer
Graphics, 20(12):2516–2525, December 2014.

193

[73] Sujal Bista, Jiachen Zhuo, Rao P. Gullapalli, and Amitabh Varshney. Visual
knowledge discovery for diffusion kurtosis datasets of the human brain. In Vi-
sualization and Processing of Higher Order Descriptors for Multi-Valued Data,
pages 213–234. Springer, Cham, 2015.

[74] P. Bajcsy, A. Vandecreme, J. Amelot, J. Chalfoun, M. Majurski, and M. Brady.
Enabling stem cell characterization from large microscopy images. Computer,
49(7):70–79, July 2016.

[75] Raphaël Marée, Löıc Rollus, Benjamin Stévens, Renaud Hoyoux, Gilles Louppe,
Rémy Vandaele, Jean-Michel Begon, Philipp Kainz, Pierre Geurts, and Louis
Wehenkel. Collaborative analysis of multi-gigapixel imaging data using Cy-
tomine. Bioinformatics, 32(9):1395–1401, May 2016.

[76] Shaul Hochstein and Merav Ahissar. View from the top: Hierarchies and reverse
hierarchies in the visual system. Neuron, 36(5):791–804, December 2002.

[77] Robert M. Haralick. Statistical and structural approaches to texture. Proceed-
ings of the IEEE, 67(5):786–804, 1979.

[78] Fumiaki Tomita, Yoshiaki Shirai, and Saburo Tsuji. Description of textures
by a structural analysis. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 4(2):183–191, March 1982.

[79] M. Tuceryan and AK. Jain. Texture segmentation using Voronoi polygons.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(2):211–
216, February 1990.

[80] B.B. Chaudhuri and N. Sarkar. Texture segmentation using fractal dimension.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(1):72–77,
January 1995.

[81] Anil K. Jain and Farshid Farrokhnia. Unsupervised texture segmentation using
Gabor filters. In Proceedings of IEEE International Conference on Systems,
Man, and Cybernetics, pages 14–19, 1990.

[82] M. Unser. Texture classification and segmentation using wavelet frames. IEEE
Transactions on Image Processing, 4(11):1549–1560, November 1995.

[83] Adrien Depeursinge, Antonio Foncubierta-Rodriguez, Dimitri Van de Ville, and
Henning Müller. Multiscale lung texture signature learning using the Riesz trans-
form. In Proceedings of International Conference on Medical Image Computing
and Computer-Assisted Intervention, volume 15, pages 517–524, 2012.

[84] Timo Ojala, Matti Pietikäinen, and David Harwood. A comparative study of
texture measures with classification based on featured distributions. Pattern
Recognition, 29(1):51–59, 1996.

194

[85] T. Ojala, M. Pietikäinen, and T. Maenpaa. Multiresolution gray-scale and
rotation invariant texture classification with local binary patterns. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 24(7):971–987, 2002.

[86] S. Liao, M.W.K. Law, and A.C.S. Chung. Dominant local binary patterns for
texture classification. IEEE Transactions on Image Processing, 18(5):1107–1118,
2009.

[87] Zhenhua Guo, L. Zhang, and D. Zhang. A completed modeling of local bi-
nary pattern operator for texture classification. IEEE Transactions on Image
Processing, 19(6):1657–1663, 2010.

[88] Xiaoyang Tan and B. Triggs. Enhanced local texture feature sets for face
recognition under difficult lighting conditions. IEEE Transactions on Image
Processing, 19(6):1635–1650, 2010.

[89] Jianfeng Ren, Xudong Jiang, and Junsong Yuan. Noise-resistant local binary
pattern with an embedded error-correction mechanism. IEEE Transactions on
Image Processing, 22(10):4049–4060, October 2013.

[90] K. Mosaliganti, A. Gelas, A. Gouaillard, and S. Megason. Tissue level seg-
mentation and tracking of biological structures in microscopic images based on
density maps. In Proceedings of IEEE International Symposium on Biomedical
Imaging: From Nano to Macro, pages 1354–1357, 2009.

[91] Tse-Wei Chen, Yi-Ling Chen, and Shao-Yi Chien. Fast image segmentation
based on K-Means clustering with histograms in HSV color space. In Proceedings
of IEEE Workshop on Multimedia Signal Processing, pages 322–325, 2008.

[92] Zhiding Yu, Oscar C. Au, Ruobing Zou, Weiyu Yu, and Jing Tian. An adaptive
unsupervised approach toward pixel clustering and color image segmentation.
Pattern Recognition, 43(5):1889–1906, 2010.

[93] C.H.Q. Ding, Xiaofeng He, Hongyuan Zha, Ming Gu, and H.D. Simon. A min-
max cut algorithm for graph partitioning and data clustering. In Proceedings of
IEEE International Conference on Data Mining, pages 107–114, 2001.

[94] Horst Wildenauer, Branislav Mičuš́ık, and Markus Vincze. Efficient texture
representation using multi-scale regions. In Proceedings of Asian Conference on
Computer Vision, pages 65–74, 2007. ISBN 978-3-540-76385-7 978-3-540-76386-
4.

[95] A Levinshtein, S. Dickinson, and C. Sminchisescu. Multiscale symmetric part
detection and grouping. In Proceedings of IEEE International Conference on
Computer Vision, pages 2162–2169, September 2009.

[96] Cevahir Cigla and A. Aydin Alatan. Efficient graph-based image segmentation
via speeded-up turbo pixels. In Proceedings of IEEE International Conference
on Image Processing, pages 3013–3016, 2010.

195

[97] R. Achanta, A Shaji, K. Smith, A Lucchi, P. Fua, and S. Süsstrunk. SLIC super-
pixels compared to state-of-the-art superpixel methods. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 34(11):2274–2282, November 2012.

[98] Joseph B. Kruskal and Myron Wish. Multidimensional Scaling. Sage Publica-
tions, Beverly Hills, 1978. ISBN 978-0-8039-0940-3.

[99] Cheuk Yiu Ip, Amitabh Varshney, and Joseph JaJa. Hierarchical exploration
of volumes using multilevel segmentation of the intensity-gradient histograms.
IEEE Transactions on Visualization and Computer Graphics, 18(12):2355–2363,
2012.

[100] S. Yi, I. Yoon, C. Oh, and Y. Yi. Real-time integrated face detection and
recognition on embedded GPGPUs. In Proceedings of IEEE Symposium on Em-
bedded Systems for Real-Time Multimedia, pages 98–107, October 2014.

[101] David J. Loane, Alok Kumar, Bogdan A. Stoica, Rainier Cabatbat, and Alan I.
Faden. Progressive neurodegeneration after experimental brain trauma: Associ-
ation with chronic microglial activation. Journal of Neuropathology and Experi-
mental Neurology, 73(1):14–29, January 2014.

[102] Bogdan A. Stoica, David J. Loane, Zaorui Zhao, Shruti V. Kabadi, Marie
Hanscom, Kimberly R. Byrnes, and Alan I. Faden. PARP-1 inhibition attenuates
neuronal loss, microglia activation and neurological deficits after traumatic brain
injury. Journal of Neurotrauma, 31(8):758–772, April 2014.

[103] Shruti V. Kabadi, Bogdan A. Stoica, David J. Loane, Tao Luo, and Alan I.
Faden. CR8, a novel inhibitor of CDK, limits microglial activation, astrocytosis,
neuronal loss, and neurologic dysfunction after experimental traumatic brain
injury. Journal of Cerebral Blood Flow and Metabolism, 34(3):502–513, March
2014.

[104] D. Ciresan, U. Meier, and J. Schmidhuber. Multi-column deep neural networks
for image classification. In Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition, pages 3642–3649, June 2012.

[105] Dan C. Cireşan, Alessandro Giusti, Luca M. Gambardella, and Jürgen Schmid-
huber. Mitosis detection in breast cancer histology images with deep neural net-
works. In Proceedings of International Conference on Medical Image Computing
and Computer-Assisted Intervention, pages 411–418. Springer, 2013.

[106] Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 3D convolutional neural
networks for human action recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 35(1):221–231, January 2013.

[107] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar
Paluri. Learning spatiotemporal features with 3D convolutional networks. In
Proceedings of IEEE International Conference on Computer Vision, pages 4489–
4497, 2015.

196

[108] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-
novich. Going deeper with convolutions. In Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, pages 1–9, September 2014.

[109] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. In Proceedings of International Conference on
Learning Representations, 2015.

[110] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and Li Fei-Fei.
Large-scale video classification with convolutional neural networks. In Proceed-
ings of IEEE Conference on Computer Vision and Pattern Recognition, pages
1725–1732, June 2014.

[111] Yue-Hei Ng, Matthew Hausknecht, Sudheendra Vijayanarasimhan, Oriol
Vinyals, Rajat Monga, and George Toderici. Beyond short snippets: Deep net-
works for video classification. In Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition, pages 4694–4702, 2015.

[112] Kisuk Lee, Aleksandar Zlateski, Ashwin Vishwanathan, and H. Sebastian Se-
ung. Recursive training of 2D-3D convolutional networks for neuronal boundary
detection. In Proceedings of the Annual Conference on Advances in Neural Infor-
mation Processing Systems, NIPS’15, pages 3573–3581, Cambridge, MA, USA,
2015. MIT Press.

[113] Qi Dou, Hao Chen, Lequan Yu, Lei Zhao, Jing Qin, Defeng Wang, Vincent CT
Mok, Lin Shi, and Pheng-Ann Heng. Automatic detection of cerebral microbleeds
from MR images via 3D convolutional neural networks. IEEE Transactions on
Medical Imaging, 35(5):1182–1195, May 2016.

[114] Konstantinos Kamnitsas, Christian Ledig, Virginia F.J. Newcombe, Joanna P.
Simpson, Andrew D. Kane, David K. Menon, Daniel Rueckert, and Ben Glocker.
Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion
segmentation. Medical Image Analysis, 36:61–78, February 2017.

[115] Abhishek Sharma, Oliver Grau, and Mario Fritz. VConv-DAE: Deep volumet-
ric shape learning without object labels. In Proceedings of European Conference
on Computer Vision Workshops, pages 236–250. Springer, Cham, October 2016.

[116] Yueqing Wang, Zhige Xie, Kai Xu, Yong Dou, and Yuanwu Lei. An efficient
and effective convolutional auto-encoder extreme learning machine network for
3d feature learning. Neurocomputing, 174, Part B:988–998, January 2016.

[117] Kang Li, Mei Chen, and Takeo Kanade. Cell population tracking and lin-
eage construction with spatiotemporal context. In Proceedings of International
Conference on Medical Image Computing and Computer-Assisted Intervention,
pages 295–302. Springer, Berlin, Heidelberg, October 2007.

197

[118] João F. Henriques, Rui Caseiro, Pedro Martins, and Jorge Batista. High-
speed tracking with kernelized correlation filters. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 37(3):583–596, March 2015.

[119] Bojan Mohar. Laplace eigenvalues of graphs—a survey. Discrete Mathematics,
109(1):171–183, November 1992.

[120] David Sculley. Web-scale k-means clustering. In Proceedings of the Interna-
tional Conference on World Wide Web, pages 1177–1178. ACM, 2010.

[121] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional
architecture for fast feature embedding. In Proceedings of the ACM International
Conference on Multimedia, pages 675–678, 2014.

[122] Carlos Correa and Kwan-Liu Ma. Size-based transfer functions: A new vol-
ume exploration technique. IEEE Transactions on Visualization and Computer
Graphics, 14(6):1380–1387, 2008.

[123] S. Wesarg, M. Kirschner, and M. F. Khan. 2D histogram based volume visu-
alization: Combining intensity and size of anatomical structures. International
Journal of Computer Assisted Radiology and Surgery, 5(6):655–666, 2010.

[124] J.J. Caban and P. Rheingans. Texture-based transfer functions for direct
volume rendering. IEEE Transactions on Visualization and Computer Graphics,
14(6):1364–1371, November 2008.

[125] Carlos Correa and Kwan-Liu Ma. Visibility histograms and visibility-driven
transfer functions. IEEE Transactions on Visualization and Computer Graphics,
17(2):192–204, February 2011.

[126] Joe Kniss, Gordon Kindlmann, and Charles Hansen. Multidimensional trans-
fer functions for interactive volume rendering. IEEE Transactions on Visualiza-
tion and Computer Graphics, 8(3):270–285, 2002.

[127] Xin Zhao and Arie E. Kaufman. Multi-dimensional reduction and transfer
function design using parallel coordinates. In Proceedings of IEEE International
Conference on Volume Graphics, pages 69–76, 2010.

[128] R. Maciejewski, Yun Jang, Insoo Woo, H. Jänicke, K.P. Gaither, and D.S.
Ebert. Abstracting attribute space for transfer function exploration and design.
IEEE Transactions on Visualization and Computer Graphics, 19(1):94–107, Jan-
uary 2013.

[129] Ross Maciejewski, Insoo Woo, Wei Chen, and David S. Ebert. Structuring
feature space: A non-parametric method for volumetric transfer function gen-
eration. IEEE Transactions on Visualization and Computer Graphics, 15(6):
1473–1480, 2009.

198

[130] William E. Lorensen and Harvey E. Cline. Marching Cubes: A high resolution
3D surface construction algorithm. In Proceedings of the Annual Conference on
Computer Graphics and Interactive Techniques, SIGGRAPH ’87, pages 163–169,
New York, NY, USA, 1987. ACM. ISBN 978-0-89791-227-3.

[131] Han Suk Kim, Jürgen P Schulze, Angela C Cone, Gina E Sosinsky, and
Maryann E Martone. Dimensionality reduction on multi-dimensional transfer
functions for multi-channel volume data sets. Information Visualization, 9(3):
167–180, 2010.

[132] J. Kruger and R. Westermann. Acceleration techniques for GPU-based volume
rendering. In Proceedings of IEEE Conference on Visualization, pages 287–292,
Washington, DC, USA, 2003. ISBN 978-0-7695-2030-8.

[133] Issei Fujishiro, Yuji Maeda, Hiroshi Sato, and Yuriko Takeshima. Volumetric
data exploration using interval volume. IEEE Transactions on Visualization and
Computer Graphics, 2(2):144–155, 1996.

[134] P. Bhaniramka, Caixia Zhang, Daqing Xue, R. Crawfis, and R. Wenger. Vol-
ume interval segmentation and rendering. In Proceedings of IEEE Symposium
on Volume Visualization and Graphics, pages 55–62, October 2004.

[135] Gordon Kindlmann, Ross Whitaker, Tolga Tasdizen, and Torsten Moller.
Curvature-based transfer functions for direct volume rendering: Methods and
applications. In Proceedings of IEEE Conference on Visualization, pages 513–
520, 2003.

[136] Thomas Gerstner. Multiresolution extraction and rendering of transparent
isosurfaces. Computers & Graphics, 26(2):219–228, April 2002.

[137] Aurélien Lucchi, Carlos Becker, Pablo Márquez Neila, and Pascal Fua. Ex-
ploiting enclosing membranes and contextual cues for mitochondria segmenta-
tion. In Proceedings of International Conference on Medical Image Computing
and Computer-Assisted Intervention, pages 65–72, 2014.

[138] Matthew D. Zeiler. ADADELTA: An adaptive learning rate method.
arXiv:1212.5701 [cs], December 2012.

[139] Christopher Dyken, Gernot Ziegler, Christian Theobalt, and Hans-Peter Sei-
del. High-speed marching cubes using HistoPyramids. Computer Graphics Fo-
rum, 27(8):2028–2039, December 2008.

[140] Fan RK Chung. Spectral Graph Theory, volume 92. American Mathematical
Soc., 1997.

[141] William M. Rand. Objective criteria for the evaluation of clustering methods.
Journal of the American Statistical Association, 66(336):846–850, 1971.

199

[142] Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal of Clas-
sification, 2(1):193–218, December 1985.

[143] Kedar Narayan, Cindy M Danielson, Ken Lagarec, Bradley C Lowekamp, Phil
Coffman, Alexandre Laquerre, Michael W Phaneuf, Thomas J Hope, and Sriram
Subramaniam. Multi-resolution correlative focused ion beam scanning electron
microscopy: Applications to cell biology. Journal of Structural Biology, 185(3):
278–284, March 2014.

[144] Irene S. Tan and Kumaran S. Ramamurthi. Spore formation in Bacillus sub-
tilis. Environmental Microbiology Reports, 6(3):212–225, June 2014.

[145] A. Lucchi, Yunpeng Li, and P. Fua. Learning for structured prediction using
approximate subgradient descent with working sets. In Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition, pages 1987–1994, June
2013.

[146] Angela C. Poole, Ruth E. Thomas, Laurie A. Andrews, Heidi M. McBride,
Alexander J. Whitworth, and Leo J. Pallanck. The PINK1/Parkin pathway
regulates mitochondrial morphology. Proceedings of the National Academy of
Sciences of the United States of America, 105(5):1638–1643, February 2008.

[147] Sergio Pereira, Adriano Pinto, Victor Alves, and Carlos A. Silva. Brain tu-
mor segmentation using convolutional neural networks in MRI images. IEEE
Transactions on Medical Imaging, 35(5):1240–1251, May 2016.

[148] Joe Kniss, Jürgen P. Schulze, Uwe Wössner, Peter Winkler, Ulrich Lang, and
Charles Hansen. Medical applications of multi-field volume rendering and VR
techniques. In Proceedings of the Joint Eurographics - IEEE Conference on Vi-
sualization, VISSYM’04, pages 249–254, Aire-la-Ville, Switzerland, Switzerland,
2004. Eurographics Association. ISBN 978-3-905673-07-4.

[149] Yani Ioannou, Duncan Robertson, Jamie Shotton, Roberto Cipolla, and An-
tonio Criminisi. Training Convolutional Neural Networks with Low-Rank Filters
for Efficient Image Classification. In Proceedings of International Conference on
Learning Representations, 2016.

[150] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings
in deep residual networks. In Proceedings of European Conference on Computer
Vision, pages 630–645, 2016.

[151] Dan Ciresan, Alessandro Giusti, Luca M. Gambardella, and Jürgen Schmidhu-
ber. Deep neural networks segment neuronal membranes in electron microscopy
images. In Proceedings of the Annual Conference on Advances in Neural Infor-
mation Processing Systems, pages 2843–2851, 2012.

[152] Alexander Brebisson and Giovanni Montana. Deep neural networks for
anatomical brain segmentation. In Proceedings of IEEE Conference on Com-
puter Vision and Pattern Recognition Workshops, pages 20–28, 2015.

200

[153] Pim Moeskops, Max A. Viergever, Adrienne M. Mendrik, Linda S. de Vries,
Manon J. N. L. Benders, and Ivana Isgum. Automatic segmentation of MR brain
images with a convolutional neural network. IEEE Transactions on Medical
Imaging, 35(5):1252–1261, May 2016.

[154] Mohammad Havaei, Axel Davy, David Warde-Farley, Antoine Biard, Aaron
Courville, Yoshua Bengio, Chris Pal, Pierre-Marc Jodoin, and Hugo Larochelle.
Brain tumor segmentation with deep neural networks. Medical Image Analysis,
35:18–31, January 2017.

[155] Aayush Bansal, Xinlei Chen, Bryan Russell, Abhinav Gupta, and Deva Ra-
manan. PixelNet: Towards a general pixel-level architecture. arXiv preprint
arXiv:1609.06694, 2016.

[156] Hao Chen, Qi Dou, Lequan Yu, and Pheng-Ann Heng. VoxResNet: Deep
voxelwise residual networks for volumetric brain segmentation. arXiv preprint
arXiv:1608.05895, 2016.

[157] Franck Mamalet and Christophe Garcia. Simplifying ConvNets for fast learn-
ing. In Proceedings of International Conference on Artificial Neural Networks,
Lecture Notes in Computer Science, pages 58–65. Springer, Berlin, Heidelberg,
September 2012. ISBN 978-3-642-33265-4 978-3-642-33266-1.

[158] Roberto Rigamonti, Amos Sironi, Vincent Lepetit, and Pascal Fua. Learning
separable filters. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2754–2761, 2013.

[159] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up convo-
lutional neural networks with low rank expansions. In Proceedings of the British
Machine Vision Conference, May 2014.

[160] Emily Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus.
Exploiting linear structure within convolutional networks for efficient evaluation.
In Proceedings of the Annual Conference on Advances in Neural Information
Processing Systems, NIPS’14, pages 1269–1277, Cambridge, MA, USA, 2014.
MIT Press.

[161] Benjamin Graham. Fractional max-pooling. arXiv preprint arXiv:1412.6071,
2014.

[162] Lingxi Xie, Jingdong Wang, Zhen Wei, Meng Wang, and Qi Tian. DisturbLa-
bel: Regularizing CNN on the loss layer. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 4753–4762, 2016.

[163] Adam Paszke, Abhishek Chaurasia, Sangpil Kim, and Eugenio Culurciello.
ENet: A deep neural network architecture for real-time semantic segmentation.
arXiv preprint arXiv:1606.02147, 2016.

201

[164] Dongyoon Han, Jiwhan Kim, and Junmo Kim. Deep Pyramidal Residual
Networks. arXiv preprint arXiv:1610.02915, 2016.

[165] Aurélien Lucchi, Pablo Márquez-Neila, Carlos Becker, Yunpeng Li, Kevin
Smith, Graham Knott, and Pascal Fua. Learning structured models for seg-
mentation of 2-D and 3-D imagery. IEEE Transactions on Medical Imaging, 34
(5):1096–1110, 2015.

[166] The Theano Development Team, Rami Al-Rfou, Guillaume Alain, Amjad
Almahairi, Christof Angermueller, Dzmitry Bahdanau, Nicolas Ballas, Frédéric
Bastien, Justin Bayer, Anatoly Belikov, and others. Theano: A Python
framework for fast computation of mathematical expressions. arXiv preprint
arXiv:1605.02688, 2016.

[167] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-
Antoine Manzagol. Stacked denoising autoencoders: Learning useful represen-
tations in a deep network with a local denoising criterion. Journal of Machine
Learning Research, 11(Dec):3371–3408, 2010.

[168] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In
Proceedings of International Conference on Learning Representations, 2014.

[169] Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo Larochelle, and
Ole Winther. Autoencoding beyond pixels using a learned similarity metric. In
Proceedings of International Conference on Machine Learning, pages 1558–1566,
2016.

[170] Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, and
Brendan Frey. Adversarial autoencoders. In Proceedings of International Con-
ference on Learning Representations, 2016.

[171] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversar-
ial networks. In Proceedings of the Annual Conference on Advances in Neural
Information Processing Systems, pages 2672–2680, June 2014.

[172] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation
learning with deep convolutional generative adversarial networks. In Proceedings
of International Conference on Learning Representations, November 2015.

[173] Dong Nie, Roger Trullo, Caroline Petitjean, Su Ruan, and Dinggang Shen.
Medical image synthesis with context-aware generative adversarial networks.
arXiv:1612.05362 [cs], December 2016.

[174] Pedro Costa, Adrian Galdran, Maria Inês Meyer, Michael David Abràmoff,
Meindert Niemeijer, Ana Maria Mendonça, and Aurélio Campilho. Towards
adversarial retinal image synthesis. arXiv preprint arXiv:1701.08974, 2017.

202

	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Visualization of Rule-based Reaction Networks
	Visualization of Temporal Changes in High-dimensional Clinical Data
	Biomedical Image Understanding
	Visualization of Microstructures in Gigapixel Microscopy Images
	Visualization of Live-cell Imagery
	Deep-learning-assisted Volume Visualization
	CNN-based Segmentation of Volumetric Microscopy Images

	Visualization of Rule-based Reaction Networks
	Introduction
	Related Work
	Simmune Framework
	Visual Representation of Reaction Rules

	Visual Analytics Tool: Simmune NetworkViewer
	Network Graph
	Visual Representation of Network Graph
	User Interactions
	Implementation

	Case Study
	Conclusions and Future Work

	Visualization of Temporal Changes in High-dimensional Clinical Data
	Introduction
	Related Work
	Preliminary Study
	Data
	Visual Analytics Tool: Winnow
	Outcomes Panel
	Demographics Panel
	Analytics Panel
	Implementation

	Case Study
	Questions
	Discussion

	Conclusions and Future Work

	Overview of Biomedical Images and Convolutional Neural Networks
	Introduction
	Background
	Biomedical Images
	Convolutional Neural Networks (CNNs)

	Visualization of Microstructures in Gigapixel Microscopy Images
	Introduction
	Related Work
	Texture Analysis
	Image Segmentation

	Joint Intensity-texture Histogram
	Graph-based Multiscale Segmentation
	Hierarchical Microstructures Exploration
	Experiments
	Dataset 1: Zebrafish
	Dataset 2: Armadillidiidae
	Processing Time
	Discussion

	Conclusions and Future Work

	Visualization of Live-cell Imagery
	Introduction
	Related Work
	Convolutional Neural Networks
	3D Convolutional Neural Networks
	Data

	CNN-based Feature Extraction
	User-mediated Color Annotation
	Color-based Annotation
	User-mediated Color Assignment
	Similarity-based Feature Reordering
	Vector Quantization

	Cell-state Trajectory Visualization
	Results and Discussion
	Results
	Discussion

	Conclusions and Future Work

	Deep-learning-assisted Volume Visualization
	Introduction
	Related Work
	Volume Visualization

	Motivation
	Conventional Volume Visualization Design
	Deep-learning-assisted Visualization Design

	CNN-based Feature Extraction
	Marching-cubes-based Visualization
	User-mediated Voxel Classification
	Similarity-based Feature Reordering
	Vector Quantization
	Hierarchical Volume Exploration

	Results and Discussion
	Segmentation Performance Measure
	Dataset 1: Bacteria
	Dataset 2: Hippocampus
	Dataset 3: Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)
	Discussion
	Rendering Speed and Computation Time

	Conclusions and Future Work

	CNN-based Segmentation of Volumetric Microscopy Images
	Introduction
	Related Work
	CNN-based Volume Segmentation
	Factorized Convolutions
	Augmentations

	Network Architecture
	Factorized Convolution
	Feature-level Augmentation
	Jaccard Index-based Loss
	Results and Discussion
	Conclusions and Future Work

	Conclusions and Future Work
	List of Publications
	Bibliography

