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In this dissertation, I develop model-assisted estimators for estimating the
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Chapter 1: Introduction

In this dissertation, I use time-to-event models to develop model-assisted

estimators that can be used to estimate the proportion, p(t) of the population that

have experienced an event by some time t. Many surveys collect the time at which

a sampled unit experiences a given event. As an example, consider the National

Longitudinal Study of 1972 conducted by the National Center for Education

Statistics (https://nces.ed.gov/surveys/nls72/), which surveyed a nationally

representative sample of high school 12th graders. One item collected during

follow-up interviews was the date after graduation at which each respondent was

hired for his or her first full-time job. From this, we can estimate the proportion of

people who were 12th graders in 1972 who were hired within five years of

graduation. Another example is the Survey of Income and Program Participation

(SIPP), which measures how long individuals participate in various government

assistance programs like Medicaid, Supplemental Nutrition Assistance Program

(SNAP), Housing Assistance, Supplemental Security Income (SSI), and Temporary
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Assistance for Needy Families (TANF) (Irving and Loveless, 2015). The Panel

Survey of Income Dynamics (PSID, https://psidonline.isr.umich.edu/), conducted

by the University of Michigan, is another longitudinal survey that has collected

data on employment, income, wealth, expenditures, health, marriage, childbearing,

child development, philanthropy, education, since 1968. The Health and Retirement

Study (HRS, http://hrsonline.isr.umich.edu/) is also a large longitudinal, panel

survey done by the University of Michigan to collect aging, income, biomarker, and

other health data. Many different endpoints can be derived from both PSID and

HRS that can be used in time-to-event modeling.

The proportion of a given population that has experienced an event by time t

can be estimated using a π-estimator1 (Särndal et al., 1992) as follows:

p̂π(t) = N−1
∑
i∈s

π−1i I{Ti≤t}, (1.1)

where N is the size of the finite population, s is the set of units sampled from the

population, πi is the probability of selection for unit i, Ti is the time at which the

event happened and I{Ti≤t} is the 0-1 indicator for whether the event happened before

time t. If the survey closes out before all units have experienced a given event, then

1The π-estimator is sometimes referred to as the Horvitz-Thompson estimator (Horvitz and
Thompson, 1952)

2



Ti is only observed for Ti less than or equal to the time of observation to. This means

that Ti is right censored for units for which Ti ≥ to and when t > to the π-estimator

cannot be used to estimate p(t).

Often covariate data are available on the sampling frame for all population

units. When this is the case, the π-estimator only takes advantage of this information

if the covariate data are used in the sample design. Model-assisted estimators can

leverage covariate data by using models to predict p(t). These models can reduce

the sampling variance without the risk of inducing a large amount of bias when the

model is misspecified.

I propose new, extended versions of Generalized Difference Estimators (GDEs)

and Model Calibrated Estimators (MCEs) to estimate p(t) as follows:

p̂GDE(t) = N−1

(
N∑
i=1

p(t|zi, θ̂) +
∑
i∈s

π−1i

[
I{Ti≤t} − p(t|zi, θ̂)

])
(1.2)

and

p̂MCE(t) = p̂π(t) +N−1

(
N∑
i=1

p(t|zi, θ̂)−
∑
i∈s

π−1i p(t|zi, θ̂)

)
B̂, (1.3)

where p(t|zi, θ̂) is the prediction of p(t) from a time-to-event model based on

covariates z, and B̂ is a calibration adjustment which is a modification of the

calibration adjustment proposed by Wu and Sitter (2001). It should be noted that

3



the zi’s need to be avalible for all members of the finite population. These

estimators are doubly-robust in the sense of being consistent if the assisting model

is correctly specified or if the inclusion probabilities used in (1.2) and (1.3) provide

design-consistent estimators. Thus, the work here is related to and extends the

double robustness literature in biostatistics (e.g., see Scharfstein et al. (1999);

Van der Laan and Robins (2003)).

This dissertation is laid out as follows. Chapter 2 reviews the literature on to

model-assisted estimation, time-to-event models, and models for survey data, which

are all fundamental concepts for this dissertation. Chapter 3 shows that p̂GDE and

p̂MCE and their respective variance estimators are design consistent. Chapter 4

presents a simulation study that explores the properties of p̂GDE and p̂MCE.

Chapter 5 presents an application of these new estimators to the Nurses’ Health

Study. Finally, Chapter 6 provides some concluding remarks as well some possible

extensions of this work.

4



Chapter 2: Literature Review

In this chapter, I review the prerequisite information for developing

model-assisted estimators using time-to-event models with applications to complex

survey data. Section 2.1 reviews model-assisted estimation, including the

Generalized Regression Estimator (GREG), Calibration estimators, GDEs, and

MCEs. Section 2.2 reviews time-to-event models, including Proportional Hazard

Models (PHMs), Accelerated Failure Time Models (AFTMs) and Threshold

Regression Models (TRMs), including how to estimate the cumulative hazard from

these models. Finally, Section 2.3 reviews methods for fitting time-to-event models

to complex survey data.

2.1 Model Assisted Estimation

For the general model-assisted approach, a model is fit using auxiliary

information x, observed for every unit in the population, as predictors of a variable

of interest y only observed for the units in sample. This model is then used to

5



predict y for every unit in the population. Sample values are then used again to

protect against model misspecification (Särndal et al., 1992). The classic example

of a model-assisted approach is the GREG, which uses a linear model to predict a

continuous variable y for the population. The GREG is discussed further in Section

2.1.1. Deville and Särndal (1992) develop a larger class of model-assisted estimators

called calibration estimators, which include GREG estimators. Calibration

estimators are discussed in Section 2.1.2. Wu and Sitter (2001) consider a few

model-assisted approaches using Generalized Linear Models (GLMs) in single-stage

sampling. This work is extended by Kennel (2013) to two-stage sampling.

2.1.1 Generalized Difference Estimator (GDE)

The general framework for the GDE presented by Wu and Sitter (2001) for the

population mean of variable yi is as follows:

ˆ̄YGDE = N−1

(
N∑
i=1

µ(xi, θ̂) +
∑
i∈s

1

πi

[
yi − µ(xi, θ̂)

])
, (2.1)
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where µ(xi, θ̂) is the model prediction for yi based on a vector of auxiliary variables

xi using the following common working model:

E[yi|xi] = µ(xi, θ),

V [yi|xi] = v2i σ
2

(2.2)

for i = 1, 2, . . . , N . In this model, the yi’s are independent, θ is a p× 1 vector, θ and

σ2 are unknown superpopulation parameters, µ(xi, θ) is a known function of xi and

θ, and vi is some function of xi. Examples of vi would be vi = xi or x2i where xi is

on of the components of xi.

If µ(xi, θ̂) is taken to be a standard linear model, then ˆ̄YGDE is the classic

GREG:

ˆ̄YGDE = N−1

(
N∑
i=1

x′iθ̂ +
∑
i∈s

π−1i

[
yi − x′iθ̂

])
, (2.3)

where θ̂ = (X′Π−1QX)−1X′Π−1Qy, Π is the diagonal matrix of πi’s, and Q is the

diagonal matrix of the 1/v2i σ
2’s specified by the working model. A common working

model for a ratio estimator is a follows:

E[yi|xi] = βxi,

V [yi|xi] = σ2xi.

(2.4)
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In this case, v2i = xi.

Wu and Sitter (2001) consider estimators where µ(xi, θ̂) is a GLM for one-stage

sampling fit using a design consistent estimator of θ. Kennel (2013) extends this work

for GLMs to two-stage cluster samples.

Wu and Sitter (2001) and Kennel (2013) prove that the GDE is design

consistent under the conditions that if for a sequence of populations indexed by j in

which both the sample size nj and the population size Nj approach infinity as

j →∞, then:

(i) θ̂ = θN + Op

(
n−1/2

)
and θN → θ, where θN is the finite population value for

the parameter and θ is its underlying constant value;

(ii) for each xi, ∂µ (xi, k) /∂k, where k is one of the components of θ, is continuous

in k, |∂µ (xi, k) /∂k| ≤ h (xi, θ) for all values k in a neighborhood of θ, and

N−1
∑N

i=1 h (xi, θ) = O(1);

(iii) the basic design weights, di = π−1i , satisfy that the π-estimator for certain

population means are asymptotically normally distributed.

Theorem 1. If a common working model is used to construct ˆ̄YGDE and conditions

(i)-(iii) hold, then

ˆ̄YGDE = ˆ̄Yπ +Op

(
n−1/2

)
, (2.5)
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where ˆ̄Yπ is the π-estimator of the finite population mean Ȳ . Thus, ˆ̄YGDE is design

consistent.

Proof. Since (2.1) can be rewritten as

ˆ̄YGDE = ˆ̄Yπ +

(
N−1

N∑
i=1

µ(xi, θ̂)−N−1
∑
i∈s

diµ(xi, θ̂)

)
, (2.6)

it suffices to show that

(
N−1

N∑
i=1

µ(xi, θ̂)−N−1
∑
i∈s

diµ(xi, θ̂)

)
= Op

(
n−1/2

)
. (2.7)

Now applying a Taylor series approximation to µ(xi, θ̂) at θ̂ = θN , we get

µ(xi, θ̂) = µ (xi, θN) +

[
∂µ (xi, k)

∂k

∣∣∣
θ∗

]′
(θ̂ − θN), (2.8)

where θ∗ ∈ (θ̂, θN) or (θN , θ̂). Now by (2.8) and conditions (i) and (ii),

N−1
N∑
i=1

µ(xi, θ̂) = N−1
N∑
i=1

µ(xi, θN) +Op

(
n−1/2

)
, (2.9)

N−1
∑
i∈s

diµ(xi, θ̂) = N−1
∑
i∈s

diµ(xi, θN) +Op

(
n−1/2

)
. (2.10)
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Note that because of condition (iii)

N−1
N∑
i=1

µ(xi, θN)−N−1
∑
i∈s

diµ(xi, θN) = Op

(
n−1/2

)
. (2.11)

Now by putting together (2.9), (2.10), and (2.11) we get

(
N−1

N∑
i=1

µi(xi, θ̂)−N−1
∑
i∈s

diµi(xi, θ̂)

)
= Op

(
n−1/2

)
(2.12)

as desired.

To show design consistency of the variance estimator of ˆ̄YGDE an additional

condition is necessary:

(iv) for each xi, ∂2µ (xi, k) /∂k∂k′ where k is one of the components of θ, is

continuous in k and |∂2µ (xi, k) /∂k∂k′| ≤ g (xi, θ) for all k in a neighborhood

of θ and N−1
∑N

i=1 g (xi, θ) = O(1).

Theorem 2. If a common working model is used to construct ˆ̄YGDE and conditions

(i)-(vi) hold, then the approximate design variance of ˆ̄YGDE is

V
(

ˆ̄YGDE

)
=̇N−2

N∑
i<j

(πiπj − πij)
(
ei
πi
− ej
πj

)
, (2.13)

where πij is the joint probability of selecting the ith and jth units, and ei = yi −
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µ(xi, θN). This can be estimated by

V̂
(

ˆ̄YGDE

)
=̇N−2

s∑
i<j

(
πiπj − πij

πij

)(
êi
πi
− êj
πj

)
, (2.14)

where êi = yi − µ(xi, θ̂).

Proof. Using (i), (ii), (iv) and applying a Taylor series second order approximation

to µ(xi, θ̂) at θ̂ = θN , we get

µ(xi, θ̂) = µ (xi, θN) +

[
∂µ (xi, k)

∂k

∣∣∣
θ∗

]′
(θ̂ − θN)

+ (θ̂ − θN)′
[
∂2µ (xi, k)

∂k∂k′

∣∣∣
θ∗

]
(θ̂ − θN),

(2.15)

where θ∗ ∈ (θ̂, θN) or (θN , θ̂), and
[
∂2µ(xi,k)
∂k∂k′

∣∣∣
θ∗

]
is the p×p matrix of second derivatives

evaluated at θ∗. Now by (2.15) and condition (iv),

N−1
N∑
i=1

µ(xi, θ̂) =N−1
N∑
i=1

µ(xi, θN)

+

{
N−1

N∑
i=1

∂µ (xi, k)

∂k

∣∣∣
θ∗

}′
(θ̂ − θN) +Op

(
n−1
)
,

(2.16)
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N−1
∑
i∈s

diµ(xi, θ̂) =N−1
∑
i∈s

diµ(xi, θN)

+

{
N−1

∑
i∈s

di
∂µ (xi, k)

∂k

∣∣∣
θ∗

}′
(θ̂ − θN) +Op

(
n−1
)
.

(2.17)

By conditions (i) and (iii), (θ̂ − θN) = Op

(
n−1/2

)
, and

{
N−1

N∑
i=1

∂µ (xi, k)

∂k

∣∣∣
θ∗

}
−

{
N−1

∑
i∈s

di
∂µ (xi, k)

∂k

∣∣∣
θ∗

}
= Op

(
n−1/2

)
. (2.18)

Therefore, by combining (2.16) and (2.17) we get

N−1
N∑
i=1

µ(xi, θ̂)−N−1
∑
i∈s

diµ(xi, θ̂) =N−1
N∑
i=1

µ(xi, θN)

−N−1
∑
i∈s

diµ(xi, θN) +Op

(
n−1
)
.

(2.19)

Using (2.19) to replace θ̂ with θN in

ˆ̄YGDE = ˆ̄Yπ +

(
N−1

N∑
i=1

µi

(
xi, θ̂

)
−N−1

∑
i∈s

diµi

(
xi, θ̂

))
, (2.20)
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we get

ˆ̄YGDE = ˆ̄Yπ +

(
N−1

N∑
i=1

µi (xi, θN)−N−1
∑
i∈s

diµi (xi, θN)

)
+Op

(
n−1/2

)
= N−1

N∑
i=1

µi (xi, θN) +N−1
∑
i∈s

di [yi − µi (xi, θN)] +Op

(
n−1/2

)
.

(2.21)

Finally, by noticing that N−1
∑N

i=1 µi (xi, θN) is constant, the asymptotic variance

of ˆ̄YGDE is the asymptotic variance of the π-estimator of the population total i.e.,

ei = yi − µ (xi, θN). It now follows that the asymptotic variance estimator of ˆ̄YGDE

is the asymptotic variance estimator of a π-estimator of the estimated total of the

residuals, êi = yi − µ(xi, θ̂).

Theorems 1 and 2 show that the GDE is design consistent and that the

aysmptotic variance and its estimator are equivalent to those of the π-estimator of

the total of the residuals.

2.1.2 Model Calibration Estimator (MCE)

Another estimator proposed by Wu and Sitter (2001) is the MCE. This

estimator is based on the traditional calibration estimator proposed by Deville and
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Särndal (1992). The general form of a calibration estimator is

ˆ̄YCal = N−1
∑
i∈s

wiyi, (2.22)

where wi satisfies the constraint

∑
i∈s

wixi = X (2.23)

while minimizing the average deviation of the calibration weights wi from design

weights di under some distance metric Φs. A common distance metric, and the

metric discussed by Wu and Sitter (2001), is the Chi-squared distance measure:

Φs =
∑
i∈s

(wi − di)2

diqi
(2.24)

for some set of known qi’s which are independent of di (Deville and Särndal, 1992;

Wu and Sitter, 2001). This distance measure results in the following estimator of

ˆ̄YCal also known as the GREG:

ˆ̄YCal = N−1
∑
i∈s

wiyi

= ˆ̄Yπ +N−1
(
X − X̂π

)
B̂,

(2.25)
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where X̂π =
∑

i∈s dixi and B̂ = [
∑

i∈s diqixixi
′]−1

∑
i∈s diqixiyi (Deville and Särndal,

1992; Wu and Sitter, 2001).

The MCE uses model predictions in the constraints; ˆ̄YMCE = N−1
∑

i∈swiyi is

subject to the following constraints:

∑
i∈s

wi = N, (2.26)

∑
i∈s

wiµ(xi, θ̂) =
N∑
i=1

µ(xi, θ̂). (2.27)

The MCE substitutes the X and X̂π into equation (2.25) with model predictions and

adjusted B̂N to include constraint (2.26)

ˆ̄YMCE = ˆ̄Yπ +N−1

(
N∑
i=1

µ(xi, θ̂)−
∑
i∈s

diµ(xi, θ̂)

)
B̂N , (2.28)

and

B̂N =

∑
i∈s diqi

(
µ(xi, θ̂)− µ̄

)
(yi − ȳ)∑

i∈s diqi

(
µ(xi, θ̂)− µ̄

)2 , (2.29)

where ȳ =
∑

i∈s diqiyi/
∑

i∈s diqi and µ̄ =
∑

i∈s diqiµ(xi, θ̂)/
∑

i∈s diqi. Wu and Sitter

(2001) also consider a MCE without constraint (2.26). This new estimator ˆ̄Y ∗MCE
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replaces B̂ with

B̂∗N =

∑
i∈s diqiµ(xi, θ̂)yi∑

i∈s diqi

(
µ(xi, θ̂)

)2 . (2.30)

It should be noted that the GDEs are a special case of MCEs where B̂N = 1.

Because of this, Theorem 1 can be generalized to show that ˆ̄YMCE and ˆ̄Y ∗MCE are

design consistent by noting that B̂N and B̂∗N are equal to OP (1). Now by defining BN

and B∗N as the value of B̂N and B̂∗N when s is the entire finite population, Theorem

2 can be generalized by noting that B̂N = BN + op(1) and B̂∗N = B∗N + op(1) and

substituting yi − µ(xi, θN)BN or yi − µ(xi, θN)B∗N for ei in the variance formula and

by substituting yi−µ(xi, θN)B̂N or yi−µ(xi, θN)B̂∗N for êi in the variance estimator.

Wu and Sitter (2001) consider the relationship between ˆ̄YGDE and ˆ̄YMCE under

simple random sampling. They show that the variance of ˆ̄YMCE is less than or equal

to the variance of the ˆ̄YGDE. Also, they show that if the relationship between x and

y is not strong, then even under the true model ˆ̄YGDE could have a larger variance

than the π-estimator, and the ˆ̄YMCE generally has a variance less than or equal to

the variance of the π-estimator.

The GDE and MCE have been extended to include nonparametric and

semiparametric models such as neural networks (Montanari and Ranalli, 2005),

penalized spline regression (McConville and Breidt, 2013), generalized additive

models (Opsomer et al., 2007), and lasso regression (McConville et al., 2017). For
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an overview of this work see Breidt and Opsomer (2017).

2.2 Time-to-Event Models

For this dissertation, only continuous time-to-event models will be considered.

This section covers three such models:

1. Proportional Hazard Models (PHMs),

2. Accelerated Failure Time Models (AFTMs), and

3. Threshold Regression Models (TRMs).

Both parametric and semiparametric PHMs and AFTMs will be considered. Section

2.2.1 reviews PHMs, Section 2.2.2 reviews AFTMs, and, finally, Section 2.2.3 reviews

TRMs.

2.2.1 Proportional Hazard Models (PHMs)

Like many approaches to modeling time-to-event, or survival, data, PHMs

model time-to-event data through the hazard function. Based on a set of covariates

Z, the hazard function is defined as

h (t, z|θ) = h0 (t) g (θ′z) , (2.31)
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where h0(t) is the baseline hazard when z = 0 and g(θ′z) is a parametric function

where g(0) = 1. When h0(t) also has a parametric specification, the PHM is

considered parametric. If h0(t) is left unspecified, then the PHM is considered

semiparametric. Both cases will be discussed later in this section.

Generally, g(θ′z) is defined as

g(θ′z) = exp(θ′z) = exp

(
p∑

k=1

θkzk

)
, (2.32)

so the hazard model becomes

h(t, z|θ) = h0(t)exp

(
p∑

k=1

θkzk

)
. (2.33)

This is referred to as a PHM, since the hazard ratio of individuals with covariates z

and z∗ is

Hazard Ratio =
h (t, z|θ)
h (t, z∗|θ)

=
h0 (t) exp (

∑p
k=1 θkzk)

h0 (t) exp (
∑p

k=1 θkz
∗
k)

= exp

(
p∑

k=1

θk (zk − z∗k)

)
.

(2.34)

Note that h0 (t) cancels and the hazard ratio is constant, and thus the hazard
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functions are proportional (Klein and Moeschberger, 2003). The proportional

hazard assumption is rarely found in nature (Klein and Moeschberger, 2003; Lee

and Whitmore, 2010). There are ways to mitigate this by using stratified PHMs or

time dependent covariates (Klein and Moeschberger, 2003).

2.2.1.1 Parametric PHM

PHMs can be fit using a traditional maximum likelihood estimation (MLE)

framework if both h0 (t|α) and g (θ′z) are parametric (Lawless, 2003b). In the general

case, time-to-event with right censoring has a likelihood that can be expressed as

L (θ|c,x) =
n∏
i=1

f (ti,xi|θ)ci S (ti,xi|θ)1−ci . (2.35)

Or equivalently since we know f(t) = h(t)S(t),

L (θ|c,x) =
n∏
i=1

h (ti,xi|θ)ci S (ti,xi|θ), (2.36)

where f (ti,xi|θ) is the probability density function (p.d.f),

F (ti,xi|θ) =
∫ ti
0
f (ti,xi|θ) dt is the cumulative density function (c.d.f.), and

S(ti,xi|θ) = 1 − F (ti,xi|θ) is the survival function of the distribution (Klein and

Moeschberger, 2003). The term ci is the event indicator and is equal to 1 if the
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event is observed for the ith and 0 if the case is right censored. Considering the

formulation of the PHM seen in equation (2.33), now it can be shown that

S (t, z|θ) = [S0 (t)]exp θ
′z , (2.37)

where S0 (t) is the baseline survival function (Hosmer et al., 2008). It now follows

that the log-likelihood is

ln [L (θ)] =
n∑
i=i

ci ln [h0 (ti)] + ciθ
′zi + eθ

′zi ln [S0 (ti)]. (2.38)

Using this log-likelihood, θ and the variance covariance matrix of θ̂ can be estimated

using the standard MLE procedures discussed in Section 2.3.1 (Hosmer et al., 2008).

An example of a parametric PHM is the following Weibull distribution specification:

h (t, z|θ) =
δ

g (θ′z)

[
t

g (θ′z)

]δ−1
=
(
δtδ−1

)
g (θ′z)

−δ
, (2.39)

where δ is known as the shape parameter (Hosmer et al., 2008). One common way

of specifying g (θ′z) in a proportional hazard context is to let g (θ′z) = exp(θ′z)

(Lawless, 2003b). To put this in the standard formulation of the PHM seen in

equation (2.31),

h (t, z|θ) = δtδ−1e−δθ
′z = h0 (t) eθ

′∗z, (2.40)
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so θ∗ = −δθ and h0 (t) = exp (−δθ0)tδ−1. It should be noted that a Weibull regression

can be specified so that it is an AFTM, which is discussed in section 2.2.2.

2.2.1.2 Semiparametic PHM

The semiparametic version of a PHM is one of the most widely used

time-to-event models because of the flexibility gained by not needing to specify the

distribution of the baseline hazard. These are sometimes referred to as Cox models

since they were first proposed by Cox (1972). Standard MLE methods cannot be

used if the baseline hazard does not have a parametric specification, since

maximizing the log-likelihood as seen in (2.38) requires the baseline hazard to be

defined (Hosmer et al., 2008). Because of this, an alternative method for estimating

θ was developed. These models are fit using partial likelihood (Cox, 1972, 1975).

The partial likelihood for the standard formulation of the PHM seen in equation

(2.32) is

lp (θ) =
n∏
i=1

[
eθ
′zi∑n

j=1 Yj (θ, ti) eθ
′zj

]ci
, (2.41)

where Yj (θ, ti) = 1{ei≥t}. Yi (θ, t) indicates if the ith case is at risk at time t, then

the log partial likelihood is

ln [lp (θ)] =
n∑
i=1

ci

{
θ′zi − ln

[
eθ
′zi∑n

j=1 Yj (θ, ti) eθ
′zj

]}
. (2.42)
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Using this log partial likelihood θ, the variance covariance matrix of θ̂ can

be estimated by maximizing the partial likelihood (Hosmer et al., 2008), which is

discussed in Section 2.3.2.1. It should be noted that this formulation of the partial

likelihood only works if there are not ties in the ti’s (Hosmer et al., 2008). In the

case of ties, approximations of the partial likelihood have been proposed by Breslow

(1974) and Efron (1977).

Using counting process theory, Andersen and Gill (1982) provide asymptotic

results for θ estimated through the maximum partial likelihood for PHMs.

2.2.2 Accelerated Failure Time Models (AFTMs)

One straight-forward way to consider modeling the time-to-event T is to

consider a log-linear formulation

ln (T ) = θ′z + ε. (2.43)

A model that can be expressed in this form is called an AFTM 1, because the effect of

covariates is to accelerate or decelerate the time-to-event (Hosmer et al., 2008). Wei

(1992) argues that AFTMs are easily interpreted since covariates have a direct effect

1Accelerated Failure Time Models are also sometimes refered to as Accelerated Life Models (Cox
and Oakes, 1984) of Log-Location-Scale Regression Models (Lawless, 2003b).
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on failure times. Their ease of interpretation may make AFTMs preferable to PHMs.

Cox also has stated that a parametric approach such as a Weibull model, which is

typically expressed as an AFTM, is preferable to the semiparametric version of the

PHM he developed, especially when predicting a single patient’s outcome (Reid,

1994).

2.2.2.1 Parametric AFTM

Most of the commonly used parametric time-to-event models are AFTMs.

The exponential,Weibull, Log-normal, Log-logistic, gamma, inverse Gaussian, and

generalized gamma models are all AFTMs. Equation (2.43) is usually generalized

to include a shape parameter σ such that

ln (T ) = θ′z + σε. (2.44)

The models differ based on the distribution assumed for ε. For example, if ε follows a

logistic distribution, then the model in (2.44) becomes a log-logistic model (Hosmer

et al., 2008). Parametric AFTMs can be fit, under right censoring, using the same

formulation of the likelihood used for the parametric PHM in (2.35).
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For a log-logistic model the survival function can be written as

S (t, z|σ, θ) =

[
1 + exp

(
e (t, z|θ)

σ

)]−1
, (2.45)

where e (t, z|θ) = ln (t)− θ′z is the residual. Using this survival function we now can

see that the log-likelihood is

ln [L (σ, θ)] =
n∑
i=1

ci

{
− ln (σ)−

(
ei (t, z|θ)

σ

)
+ 2 ln [S (ti, zi|σ, θ)]

}

+ (1− ci) ln [S (ti, zi|σ, θ)] .

(2.46)

Using this log likelihood, θ, σ, and the variance covariance matrix of θ̂ and σ̂ can be

estimated using the standard procedures used in MLE as discussed in section 2.3.1

(Hosmer et al., 2008).

2.2.2.2 Semiparametric AFTM

After the development of the semiparametric PHM (Cox, 1972) an analogous

form of an AFTM was developed. Louis (1981) first developed a semiparametric

formulation of the AFTM for a single treatment variable. Later Tsiatis (1990) and

Wei (1992) generalized this to a multiple random variables setting.

Semiparametric AFTMs were put into a rank base inference framework by Jin
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et al. (2003). To do this we need to use the counting process formulation of AFTMs.

A counting process is stochastic process {N (t), t ≥ 0} for which meets the following

criteria:

1. N (t) ≥ 0,

2. N (t) is an integer for all values of t,

3. If s ≤ t thenN (s) ≤ N (t).

We define N (e)
i (θ, t) = ci1{ei≤t}, and Y

(e)
i (θ, t) = 1{ti≥t}, the counting process and

the risk indicator on the residual scale. It now follows that

S(0) (θ, t) = n−1
n∑
i=1

Y
(e)
i (θ, t) , S(1) (θ, t) = n−1

n∑
i=1

Y
(e)
i (θ, t) zi, (2.47)

and the estimating equations for θ take the form

Uφ (θ) =
n∑
i=1

ciφ {θ, ei (θ)}
[
zi −

S(1) (θ, t)

S(0) (θ, t)

]
= 0, (2.48)

or

Uφ (θ) =
n∑
i=1

∫ ∞
−∞

φ {θ, ei (θ)}
[
zi −

S(1) (θ, t)

S(0) (θ, t)

]
dN (e)

i (θ, t) = 0. (2.49)

Two standard choices of the weight function φ {·} are φ {·} = 1, which results in the

log-rank statistic (Mantel, 1966), or φ {·} = S(0), which results in a Gehan statistic
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(Gehan, 1965; Jin et al., 2003). Setting these estimating equations to zero and solving

for θ results in an estimate of θ, denoted as θ̂φ.

It can be shown that the vector n
1
2

(
θ̂φ − θ

)
is asymptotically normal with

mean zero and a covariance matrix A−1φ BφA
−1
φ , where

Aφ = lim
n→∞

n−1
n∑
i=1

∫ ∞
−∞

φ {θ, ei (θ)}
[
zi −

S(1) (θ, t)

S(0) (θ, t)

]⊗2{
λ′ (t)

λ (t)

}
dN (e)

i (θ, t) , (2.50)

and

Bφ = lim
n→∞

n−1
n∑
i=1

∫ ∞
−∞

φ2 {θ, ei (θ)}
[
zi −

S(1) (θ, t)

S(0) (θ, t)

]⊗2
dN (e)

i (θ, t) . (2.51)

In these equations, λ (·) is the common hazard function of the error terms and λ′ (t) =

dλ (t) /dt (Jin et al., 2003). Jin et al. (2003) go on to show how simplifications arise

when a Gehan weight function is used.

2.2.3 Threshold Regression

Unlike the PHM and AFTM which directly estimate the hazard function, the

TRM comes from the stochastic process of survival and time-to-event analysis

(Aalen et al., 2008). The TRM as laid out by Lee and Whitmore (2006) is based on

a latent Wiener process and an Inverse-Gaussian First-Hitting-Time Model
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(FHTM)2. It should be noted that threshold regression can be based on other

underlying stochastic processes, but for this research is limited to the Wiener

process formulation.

TRMs are useful in the analysis of time-to-event data, because unlike other

methods they attempt to model an underlying latent stochastic process, and they

separate the association of covariates on initial health status from the association of

covariates on the change in health status over time.

2.2.3.1 First-Hitting-Time Models (FHTMs)

FHTMs are defined by a stochastic process {X (t) , t ∈ T , x ∈ X} with an initial

value X (0) = x0, where T is the time space, X is the state space of the process, and

a subset B of the state space is called the boundary. If it is assumed that the x0 is

not in B, then the FHTM is

S = inf {t : X (t) ∈ B} . (2.52)

In other words, S is the first instance when the stochastic process encounters the

boundary. S is referred to as the threshold state, from which threshold regression

gets its name (Lee and Whitmore, 2006).

2First-Hitting-Time Models are also sometimes referred to as first-passage-time models.
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An example of a FHTM is a Bernoulli process with a negative binomial first-

hitting-time. This is the number of independent trials that it takes to get m successes

when there is a p probability of success on each independent trial. In this case, the

stochastic process X (t) is the number of successes in t independent trials. The

boundary in this case is B = {x : x > m− 1} and x0 = 0. The number of coin

flips needed to get m heads is an example of a model that has this type of FHTM.

For additional examples of FHTMs see Section 3 of Lee and Whitmore (2006) and

Section 11.5.1 of Lawless (2003b). For a general overview of FHTMs in the context

of survival analysis see Aalen and Gjessing (2001).

2.2.3.2 Wiener Process

A Wiener process, also sometimes called Brownian motion, is a stochastic

process W (t) for t ∈ [0,∞), which takes on values from the real numbers and

meets the following criteria:

1. W (0) = 0,

2. W (t) has independent increments (i.e., W (t2) −W (t1) and W (t4) −W (t3)

are independent random variables if 0 ≤ t1 < t2 ≤ t3 < t4), and

3. The increment W (t2)−W (t1) is normally distributed with
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(a) E [W (t2)−W (t1)] = 0,

(b) V ar [W (t2)−W (t1)] = t2 − t1.

It follows that W (t) ∼ N (0, t).

Wiener processes can be generalized to incorporate a parameter for an initial

starting value x0, a drift µ, and a diffusion coefficient σ2 defined as

X (t) = x0 + µt+ σW (t) . (2.53)

Using the criteria above, E [X (t)] = x0 + µt and V ar [X (t)] = σ2t. So µ can be

seen as the mean change in X (t) and σ is the variance of X (t) from time t to t+ 1

(Cox and Miller, 1965). The terms µ and σ2 are referred to as the infinitesimal mean

and variance, respectively. This formulation of a Wiener process is referred to as a

generalized Wiener process.

If x0 > 0, then the FHTM distribution is an Inverse Gaussian distribution.

That is, at time k when X (k) ≥ 0 the distribution of k has the p.d.f.

f
(
k|µ, σ2, xo

)
=

x0√
2πσ2k3

exp

[
(x0 + µk)2

2σ2k

]
(2.54)
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and the c.d.f.

F
(
k|µ, σ2, x0

)
= Φ

[
x0 + µk√

2σ2k

]
+ exp

(
−2x0µ

σ2

)
Φ

[
µk − x0√

σ2k

]
(2.55)

for −∞ < µ < ∞, σ2 > 0, x0 > 0, where Φ (·) is the c.d.f. of the standard normal.

It should be noted that although there are three parameters, there are only two free

parameters, which can be written as µ/σ and x0/σ (Chhikara, 1988).

If µ ≤ 0 it has been shown that P (k <∞) = 1. Now if µ > 0, then the c.d.f.

above is improper with P (k =∞) = 1− exp ((−2x0µ) /σ2) (Cox and Miller, 1965).

This becomes important for threshold regression as it acknowledges the possibility

that some cases may be cured. In other words, a case can have a positive probability

that it will not die (or experience whatever event is being modeled). These are

sometimes referred to as cure-rate models.

2.2.3.3 Threshold Regression Models (TRMs)

A TRM is based on a FHTM. As mentioned earlier, the standard formulation

of threshold regression is based on a generalized Wiener process and an inverse

Gaussian FHTM although other threshold regression models can be formulated

using other underlying stochastic processes such as a gamma process (Lawless and

Crowder, 2004) or an Ornstein-Uhlenbeck process (Aalen and Gjessing, 2004; Erich

30



and Pennell, 2015). In the standard formulation of threshold regression, the

underlying Wiener process is assumed latent. This assumption allows µ and x0 to

be scaled such that σ = 1. This simplifies the p.d.f. and c.d.f. in (2.54) and (2.55)

to

f (k|µ, xo) =
x0√
2πk3

exp

[
(x0 + µk)2

2k

]
(2.56)

and

F (k|µ, x0) = Φ

[
x0 + µk√

2k

]
+ exp (−2x0µ) Φ

[
µk − x0√

k

]
(2.57)

for −∞ < µ < ∞, x0 > 0, where Φ (·) is the c.d.f of the standard normal. Both µ

and x0 are linked to the regression covariates z and u, respectively. The identity link

function is used for µ as follows:

µ = β′z = β0 + β1z1 + . . .+ βhzh. (2.58)

A log-link function is used for x0 as follows:

ln (x0) = ζ ′u = ζ0 + ζ1u1 + . . .+ ζpup. (2.59)

It should be noted that z and u need not have the same covariates but may overlap.

This allows for the capture of different associations for the initial health status and
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the drift toward death (or away from death if there is a positive probability of being

cured). For the ith case µ, x0, and k are identified as µ(i), x
(i)
0 , and k(i). Since

not all cases have an observed death, k(i) is right censored. In light of this, each

case i = 1, . . . , n1 when death is observed contributes f
(
k(i)|µ(i), x

(i)
0

)
to the sample

likelihood and each case that is censored i = n1 + 1, . . . , n1 + n2 contributes the

survival probability S
(
k(i)|µ(i), x

(i)
0

)
= 1−F

(
k(i)|µ(i), x

(i)
0

)
to the sample likelihood.

This gives us the following log-likelihood

ln [L (β, ζ)] =

n1∑
i=1

ln
[
f
(
k(i)|µ(i), x

(i)
0

)]
+ ln

[
S
(
k(i)|µ(i), x

(i)
0

)]
. (2.60)

Finally, likelihood estimates of β and ζ are obtained as explained in Section 2.3.1.

2.2.4 Cumulative Hazard Estimation

The cumlative hazard Λ (t) has to be estimated for every unit i in the population

for a specific time t, where:

Λ (t) =

∫ t

0

λ (k) dk. (2.61)

When a parametric time-to-event model, such as Weibull, Lognormal, or

Wiener-Process-Based Threshold Regresson, is used, then λ̂i

(
t|zi, θ̂

)
is known, and
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Λ̂i

(
t|zi, θ̂

)
can be estimated as follows:

Λ̂i

(
t|zi, θ̂

)
=

∫ k

0

λ̂i

(
k|zi, θ̂

)
dk. (2.62)

A standard way to estimate the baseline hazard is to use a Breslow type

estimator (Breslow, 1972, 1974; Lin, 2007). The Breslow type estimator was first

proposed for the PHM by Breslow (1972, 1974), then it was adapted to the AFTM

by Tsiatis (1990).

The Breslow type estimator is based on the Nelson-Aalen estimator (Aalen

et al., 2008). The Nelson-Aalen estimator is a nonparametric estimator of the

cumulative hazard.

Λ̂ (t) =
n∑
i=1

1(Ti≤t) (1− ci)∑n
j=1 1(Tj≥Ti)

, (2.63)

where Ti is the time of event, or the censoring time for unit i, and ci is the censoring

indicator (Nelson, 1969, 1972). The Nelson-Aalen estimator can now be expressed

in counting process notation as

Λ̂ (t) =
n∑
i=1

∫ t

0

dNi(k)∑n
j=1 Yj(k)

, (2.64)

where Ni(t) is the counting process which counts the number of events observed by
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the ith unit by time t, and Yi(t) is an indicator that unit i is at risk at time t (Aalen,

1975, 1978).

This section only focuses on the PHM. For the PHM, Λ̂i(t|zi, θ̂) now simplifies

to

Λ̂i

(
t|zi, θ̂

)
=

∫ t

0

λ̂i

(
k|zi, θ̂

)
dk

=

∫ t

0

λ0 (k) eziθ̂dk

= eziθ̂
∫ t

0

λ0 (k) dk

= eziθ̂Λ̂i,0 (t) .

(2.65)

Estimate θ using the partial likelihood method proposed by Cox (1972, 1975), i.e.,

maximizing

lp (θ) =
n∏
i=1

[
eθ
′zi∑n

j=1 Yj (θ, ti) eθ
′zj

](1−ci)
. (2.66)

Using the θ̂ which maximizes the partial likelihood, we get the Breslow type estimator

of

Λ̂i,0 (t) =
n∑
i=1

∫ t

0

dNi(k)∑n
j=1 Yj(k)eziθ̂

. (2.67)

If θ and Λ0 are estimated simultaneously using the maximum likelihood framework,
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then the joint likelihood of θ and Λ0 is

L (θ,Λ0) =
n∏
i=1

[
eziθλ0 (Ti)

](1−ci)
exp

[
−
∫ Ti

0

eziθλ0 (t) dt

]
. (2.68)

If λ0(·) is assumed to be piecewise constant between uncensored failure times, then θ

and Λ0 are maximized by the partial maximum likelihood estimates and the Breslow

type estimator in equation (2.67) (Tsiatis, 1981; Andersen and Gill, 1982; Lin, 2007).

2.3 Models for Survey Data

The methods presented in Section 2.2 will not provide design consistent

estimators of θ. This section will review the adjustments that need to be made to

produce design consistent parameter estimates for the time-to-event models

presented in Section 2.2.

2.3.1 Pseudo Maximum Likelihood Estimation (PMLE)

Pseudo Maximum Likelihood Estimation (PMLE) is the standard method in

the complex survey literature to estimate design consistent estimates of regression

parameters. In the context of survival data, the PMLE method has been used for

the Weibull AFTM model (Lawless, 2003a) and for TRMs (Li et al., 2015).

35



2.3.1.1 Parameter Estimation Using PMLE

It is useful to discuss MLE where the likelihood function can be constructed

from a p.d.f. for a finite population as follows:

L (θ) =
N∏
i=1

f (xi|θ) (2.69)

The full sample MLEs can be obtained by maximizing the log-likelihood, which

converts the product of the p.d.f.’s above into a sum of log p.d.f.’s:

ln [L (θ)] =
N∑
i=1

ln [f (xi|θ)] (2.70)

The maximization of the log-likelihood can be achieved by solving estimating

equations. If we define ui (θ) = ∂
∂θ

ln [f (xi|θ)], then the full finite population

estimating equations are defined as

U (θ) =
N∑
i=1

ui (θ) = 0. (2.71)

Note that the p.d.f. needs to be differentiable for these estimating equations to

exist. The solution to these estimating equations that maximize L (θ) is referred

to as the population MLE (θ̂MLE). This maximization might be found using the
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Newton-Raphson method when second moments of U (θ) exist.

For a probability sample selected from a finite population with the selection

probability πi for the ith unit, PMLEs can be obtained. This is done by constructing

a likelihood function from the sample as follows:

Lπi (θ) =
n∏
i=1

f (xi|θ)π
−1
i , (2.72)

because conceptually the ith unit represents π−1i units in the finite population. The

contribution of the ith unit to the likelihood is f (xi|θ)π
−1
i . It follows that the log-

likelihood becomes

ln [Lπ (θ)] =
n∑
i=1

π−1i ln [f (xi|θ)], (2.73)

and the estimating equations are now

Û (θ) =
n∑
i=1

π−1i ui (θ) = 0. (2.74)

The solution to this system of estimating equations Û (θ) is the PMLE (θ̂PMLE)

(Skinner, 1989; Fuller, 2011). It should be noted that the estimating equations are

π-estimators of totals (Särndal et al., 1992), So, for sample designs with design-

consistent π-estimators of totals, Û (θ) is a consistent estimator for U (θ). Note

that this can be generalized to incorporate weights other than π−1i which induce
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design-consistent estimators of totals and thus Û (θ) is a consistent estimator for

U (θ) (Fuller, 2011). It also should be noted that the θ̂PMLE is not an exact MLE in

that it does not share some of the asymptotic properties of MLE, such as efficiency.

Additionally, θ̂PMLE is not generally unique like a MLE, since there can be more

than one consistent estimator of U (θ) (Skinner, 1989).

2.3.1.2 Variance Estimation Using PMLE

Again, it is useful to first discuss MLE. The standard asymptotic estimator

V
(
θ̂MLE

)
, the covariance matrix of θ̂MLE, is the inverse of the full sample

information matrix I
(
θ̂MLE

)−1
, where

I (θ) = − ∂

∂θ
ln [L (θ)] =

∂U (θ)

∂θ
. (2.75)

An estimator for V
(
θ̂MLE

)
that is more robust to some types of model

misspecification is the sandwich estimator defined as

V̂
(
θ̂MLE

)
= Î

(
θ̂MLE

)−1
V̂L

(
U
(
θ̂MLE

))
Î
(
θ̂MLE

)−1
, (2.76)

where V̂L

(
U
(
θ̂MLE

))
is the linearized variance estimator of U(θ̂), which is calculated
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as follows

V̂L

(
U
(
θ̂MLE

))
= N

N∑
i=1

ui
(
θ̂MLE

)
ui
(
θ̂MLE

)′
, (2.77)

Note that both of these estimators assume independent observations (Skinner, 1989).

This can be generalized to PMLE. In the case of θ̂PMLE, Taylor series linearization is

needed to incorporate the complex sample design into the estimation of the covariance

matrix V̂
(
θ̂PMLE

)
using the sandwich estimator. This is done by substituting Û (θ)

for U (θ) to get

V̂
(
θ̂PMLE

)
= Î

(
θ̂PMLE

)−1
V̂L

(
Û
(
θ̂PMLE

))
Î
(
θ̂PMLE

)−1
, (2.78)

where

Î (θ) = − ∂

∂θ
Û (θ) , (2.79)

and V̂L(Û(θ̂PMLE)) is the linearized variance estimator of Û (θ) given the complex

design. Using sample estimates in (2.79) when computing the Fisher information

has better conditional properties when compared to using expected values (Efron

and Hinkley, 1978). It also should be noted that this is not the only way to obtain

design-consistent variance estimates (Skinner, 1989). Replication methods could also

be used. For more information about replication methods, see (Wolter, 1985).

The design consistency of θ̂PMLE, asymptotics and design consistency of the
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sandwich estimator are discussed by Binder (1983) and Fuller (2011).

2.3.2 Semiparametric Time-to-Event Models

The estimation of design consistent estimators of θ is fairly straightforward and

similar to PMLE, but the steps to show design consistency are more involved than

PMLE.

2.3.2.1 PHM

The estimating equations for the PHM discussed in section 2.2.1 can be

expressed for a finite population with N cases as

U (θ) =
N∑
i=1

ci

[
zi −

S(1) (θ, t)

S(0) (θ, t)

]
, (2.80)

where

S(0) (θ, t) = N−1
N∑
i=1

Yi (θ, t) e
θ′zi , S(1) (θ, t) = N−1

N∑
i=1

Yi (θ, t) e
θ′zizi. (2.81)

40



Within the PMLE context, probabilities of selection, πi, can be inserted to adjust

for only observing the sample

Û (θ) =
n∑
i=1

π−1i ci

[
zi −

Ŝ(1) (θ, t)

Ŝ(0) (θ, t)

]
, (2.82)

where

Ŝ(0) (θ, t) = N−1
n∑
i=1

π−1i Yi (θ, t) e
θ′zi , Ŝ(1) (θ, t) = N−1

n∑
i=1

π−1i Yi (θ, t) e
θ′zizi

(2.83)

The solution to the system of equations Û (θ) = 0, where Û (θ) is defined in (2.82),

is the design consistent estimator of θ. The design consistency of θ̂ does not follow

from the PMLE case.

Equations (2.81) and (2.82) can be written in terms stochastic integrals as

follows:

U (θ) =
N∑
i=1

∫ ∞
−∞

[
zi −

S(1) (θ, t)

S(0) (θ, t)

]
dNi (t) , (2.84)

and

Û (θ) =
N∑
i=1

∫ ∞
−∞

ξi
πi

[
zi −

Ŝ(1) (θ, t)

Ŝ(0) (t)

]
dN̂i (t) , (2.85)

where Ni (t) = ci1{ti≤t} is the standard counting process, N̂ (t) =
∑n

i=1 π
−1
i Ni (t) is

the π-estimator of N (t) =
∑N

i=1Ni (t), and ξi is 1 if the ith unit is in sample and 0
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if it is not.

It is necessary to define the following terms:

s(0)(θ, t) = lim
N→∞

S(0)(θ, t), s(1)(θ, t) = lim
N→∞

S(1)(θ, t)

g(t) = lim
N→∞

N (t) , a = lim
N→∞

N−1
N∑
i=1

∫ ∞
0

zi(t)dN̂i (t) .
(2.86)

Now N−1U(θ) converges to

u(θ) = a−
∫ ∞
0

s(1)(θ, t)

s(0)(θ, t)
dg(t), (2.87)

which is also the probability limit of N−1Û(θ) (Lin, 2000). It now can be shown

using Lemma 3.1 in Andersen and Gill (1982) that θ̂ is a consistent estimator for θ

and that θ̂ and θ converge to the same limit (Lin, 2000).

Lin (2000) also provides a design consistent estimator of the baseline hazard:

Λ̂i,0

(
t, θ̂
)

=
n∑
i=1

∫ t

0

dN̂i (t)
Ŝ(1) (θ, t)

. (2.88)

The consistency of this estimator follows given the consistency of θ̂, Ŝ(1) (θ, t) ,and

N̂ (t) Lin (2000).
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2.3.2.2 AFTM

Design consistent estimation of semiparametric AFTMs has not appeared in

the survey literature. There has been work in the case control literature (Kong

et al., 2004; Kong and Cai, 2009; Chiou et al., 2014, 2015) for a simple random

sample, stratified simple random sample, and stratified simple random cluster

sample. These methods use weighted estimating equations similar to the method

used by Binder (1992) and Lin (2000). A weighted sandwich estimator is proposed

for estimating the variance covariance matrix. The asymptotics are only worked

out for the superpopulation based on the work of Hájek (1960, 1964) and not for

design consistency.

Although these methods could possibly be altered for the complex survey

context, additional theory will need to be developed to show design consistency

akin to the work of Binder (1983, 1992) and Lin (2000).
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Chapter 3: Theory

In this chapter, I develop the theory for model-assisted GDEs and MCEs for

time-to-event data. This chapter provides the asymptotic results for GDEs and

MCEs estimators constructed using time-to-event models.

As noted earlier the proportion of a given population that has experienced an

event by time t can be estimated using a π-estimator as follows:

p̂π(t) = N−1
∑
i∈s

π−1i I{Ti≤t}, (3.1)

where N is the size of the finite population, s is the set of units sampled from the

population, πi is the probability of selection for unit i, and Ti is the time at which

the event happened. As previously mentioned, the survey closes out before all units

have experienced a given event, then Ti is only observed for Ti less than or equal

to the time of observation to. This means that Ti is right censored for units for

which Ti ≤ to, and, when t > to, the π-estimator cannot be used to estimate p(t).
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Additionally this estimator cannot be used if any units are censored before time t.

From a modeling perspective, if auxiliary variables are available, then there

are two approaches that can be used to estimate p(t). One approach is to fit a

model to predict I{Ti≤t} directly using a binary response model such as a logistic

model. However, when T is right censored, this approach will only work for t ≤ to.

Additionally, it estimates p(t) for only one value of t, thus a model needs to be

estimated for each desired t. Another approach is to use a model to predict Ti,

then estimate p(t) using the predicted Ti’s. This can be done by noting that p(t) is

the cumulative distribution function of T (F (t)), so estimating p(t) is equivalent to

estimating F (t). Thus p(t) can be estimated by the empirical distribution function

of the predicted Ti’s. Using this approach of modeling T when T is censored requires

the use of time-to-event models which can account for the censoring. There are two

benefits of using this approach instead of modeling I{Ti≤t} directly. The first is that

only one model needs to be fit to obtain an estimate of p(t) for a t ≥ 0. The second

is that the estimation of p(t) is not limited to cases where t ≤ to.

These two modeling approaches can be used to construct GDE and Model

Calibrated (MCE) estimators (Wu and Sitter, 2001) to estimate p(t) for a given

t ≤ to. The work of Wu and Sitter (2001) and Kennel (2013), discussed in Chapter

2, can be used to construct GDE and MCE estimators of p(t) when GLMs are used
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to model I{Ti≤t} or T . As mentioned above, a GLM cannot be used to predict T and

estimate p(t) with the empirical distribution function of the Ti’s if T is censored.

Standard time-to-event models such as a PHMs can be used to develop GDEs

and MCEs for predicting p(t) for t ≤ to. Here, AFTMs, THMs based on an Inverse-

Gaussian FHTMs, and both parametric and semiparametric PHMs are considered.

These models can be used to directly estimate p(t). The PHMs and AFTMs model

the hazard function λ(t), then a standard transformation is used to estimate p(t).

In the case of the TRMs, the underlining stochastic process which generates T is

modeled to estimate p(t). More about these models can be found in Chapter 2.

This chapter is laid out as follows: Section 3.1 reviews how p(t) can be

estimated using PHMs, AFTMs, and TRMs; Section 3.2 presents the Generalized

Difference and Model Calibrated point and variance estimators constructed using

time-to-event models; finally, Section 3.3 provides the asymptotic results for the

Generalized Difference and Model Calibrated point and variance estimators.

3.1 Estimating p(t|Z)

A standard use of time-to-event models is to predict the failure probability p(t)

for an individual at some time t given some vector of covariates Z. The survival

failure probability can be estimated using the time-to-event models discussed in
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Chapter 2. PHMs and AFTMs model time-to-event data through the hazard function

λ(t|θ, Z). Once the hazard function is estimated, since we know that p(t) = F (t),

F (t) = 1− S(t), S(t) = exp(−Λ(t)), and Λ(t) =
∫ t
0
λ(t), p(t|Z) can be estimated as

follows:

p(t|θ̂, Z) = 1− exp

(
−
∫ t

0

λ(t|θ̂, Z)dt

)
. (3.2)

For TRMs based on an Inverse-Gaussian FHTM, p(t) can be estimated using the

c.d.f. of the Inverse-Gaussian distribution as follows:

p(t|µ̂, x̂0,M, U) = Φ

[
x̂0 + µ̂t√

2t

]
+ exp (−2x̂0µ̂) Φ

[
µ̂t− x̂0√

t

]
, (3.3)

where µ̂ = β̂′m and x̂0 = exp(ζ̂ ′u). In this formulation θ = (β, ζ) and Z = [M,U ].

As noted in Chapter 2, m and u need not have the same covariates but may overlap.

Details on how β and ζ are estimated can be found in Chapter 2, Section 2.2.3.

3.2 Time-to-Event GDEs and MCEs

Following the formulation found in Wu and Sitter (2001), GDEs and MCEs

can be constructed using the estimates of p(t) found in Section 3.1 as follows:

p̂GDE(t) = N−1

(
N∑
i=1

p(t|zi, θ̂) +
∑
i∈s

π−1i

[
I{Ti≤t} − p(t|zi, θ̂)

])
(3.4)
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and

p̂MCE(t) = p̂π(t) +N−1

(
N∑
i=1

p(t|zi, θ̂)−
∑
i∈s

π−1i p(t|zi, θ̂)

)
B̂, (3.5)

where B̂ is a calibration adjustment similar to what is proposed by Wu and Sitter

(2001) and discussed in Chapter 2.

Two calibration adjustments will be considered which are adapted from Wu and

Sitter (2001). The first adjustment, B̂, is derived subject to the following constraints:

∑
i∈s

wi = N, and (3.6)

∑
i∈s

wip(t|zi, θ̂) =
N∑
i=1

p(t|zi, θ̂). (3.7)

B̂ can be calculated as

B̂ =

∑
i∈s π

−1
i

(
p(t|zi, θ̂)− p̄

) (
I{Ti≤t} − Ī

)
∑

i∈s π
−1
i

(
p(t|zi, θ̂)− p̄

)2 , (3.8)

where Ī =
∑

i∈s π
−1
i I{Ti≤t}/

∑
i∈s π

−1
i , and p̄ =

∑
i∈s π

−1
i p(t|zi, θ̂)/

∑
i∈s π

−1
i . The

second adjustment, B̂∗, which can also be used in (3.5), is derived subject to only

one constraint: ∑
i∈s

wip(t|zi, θ̂) =
N∑
i=1

p(t|zi, θ̂). (3.9)
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B̂∗ can be calculated as

B̂∗ =

∑
i∈s π

−1
i p(t|zi, θ̂)I{Ti≤t}∑

i∈s π
−1
i

(
p(t|zi, θ̂))

)2 . (3.10)

Similar to Theorem 2 in Chapter 2, the asymptotic design variance of p̂GDE(t)

is

V (p̂GDE(t)) =̇N−2
N∑
i<j

(πiπj − πij)
(
ei
πi
− ej
πj

)
, (3.11)

where πij is the joint probability of selecting the ith and jth units and ei = I{Ti≤t} −

p(t|zi, θN). This can be estimated by

V̂ (p̂GDE(t)) =̇N−2
N∑
i<j

(
πiπj − πij

πij

)(
êi
πi
− êj
πj

)
, (3.12)

where êi = I{Ti≤t} − p(t|zi, θ̂). The asymptotic variance p̂MCE(t) is obtained by

setting ei = I{Ti≤t}−(p(t|zi, θN))BN in equation (3.11), and the estimated asymptotic

variance is obtained by setting êi = I{Ti≤t} − (p(t|zi, θ̂))B̂ in equation (3.12), where

B̂ is given by either (3.8) or (3.10). Theory for these estimators is provided in the

next section.
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3.3 Theoretical Results

This section provides asymptotic results for both the p̂GDE(t) and p̂MCE(t)

estimators and their respective variance estimators, where the underlying model is

a time-to-event model. Specifically, results are shown for parametric AFTM, TRM

based on an Inverse-Gaussian FHTM, and both parametric and semiparametric

PHMs. For the semi-parametric PHMs, I address the case where the baseline

hazard is estimated using a Breslow type estimator (Breslow, 1972, 1974; Lin,

2007). It will be shown that both p̂(t)GDE and p̂(t)MCE are design consistent, and

that the asymptotic variance estimators V [p̂GDE(t)] and V [p̂MCE(t)] are design

consistent.

3.3.1 Design Consistency of p̂GDE(t) and p̂MCE(t)

To prove design consistency of p̂GDE(t) for a fixed t, assume that if, for a

sequence of populations indexed by j in which both the sample size nj and the

population size Nj approach infinity as j →∞, then:

(i) θ̂ = θN + Op

(
n−1/2

)
and θN → θ, where θN is the finite population values of

the parameter, and θ is its underlying constant value;

(ii) for each zi and a fixed t, ∂p(t|zi, γ)/∂γ, where γ is one of the components of
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θ, is continuous in γ, and |∂p(t|zi, γ)/∂γ| ≤ g (t, zi, θ) for all values γ in a

neighborhood of θ and N−1
∑N

i=1 g (t, zi, θ) = O(1); and

(iii) the basic design weights, di = π−1i , satisfy that the π-estimators for certain

population means are asymptotically normally distributed.

These are similar to the assumptions made by Wu and Sitter (2001) and Kennel

(2013).

In the context of the parametric PHM, AFTM, and TRM, assumption (i)

follows from the same argument as found in Wu (1999) since θ̂ is estimated using

PMLE. For the semiparametric form of the PHM, where θ̂ is estimated using the

method found in Binder (1992) and Lin (2000), (i) follows from the fact that N1/2(θ̂−

θ) is asymptotically zero-mean normal (Lin, 2000). It should be noted that the

normality of N1/2(θ̂ − θ) has only been shown for one-stage Bernoulli and stratified

simple random sample designs (Lin, 2000).

Asumption (ii) that for each zi and a fixed t ∂p(t|zi, γ)/∂γ is continuous in γ

is also reasonable. For the TRM model, it is clear that ∂p(t|zi, γ)/∂γ is continuous

in γ in a neighborhood of θ = (β, ζ) since

p (t|µ̂, x̂0) = Φ

[
x̂0 + µ̂t√

2t

]
+ exp (−2x̂0µ̂) Φ

[
µ̂t− x̂0√

t

]
, (3.13)
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where µ̂ = β̂′z and x̂0 = exp(ζ̂ ′u).

For the parametric AFTM, since λ(t|z, θ̂) = λ0(te
θ̂′z)eθ̂

′z,

p(t|θ̂, Z) = 1− exp

(
−
∫ t

0

λ(k|θ̂, Z)dk

)
= 1− exp

(
−
∫ t

0

λ0(ke
θ̂′z)eθ̂

′zdk

)
= 1− exp

(
−Λ0(te

θ̂′z)
)
,

(3.14)

where Λ0(t) =
∫ t
0
λ0(k)dk is the cumulative hazard function. So for ∂p(t|zi, γ)/∂γ to

be continuous in γ, ∂Λ0(ke
γ̂′z)/∂γ must be continuous in γ, which is true for most

standard parametric AFTM model formulations.

For parametric PHMs, λ(t|z, θ̂) = λ0(t)e
θ̂′z, and

p(t|θ̂, Z) = 1− exp

(
−
∫ t

0

λ(k|θ̂, Z)dk

)
= 1− exp

(
−
∫ t

0

λ0(k)eθ̂
′zdk

)
= 1− exp

(
−Λ0(t)e

θ̂′z
)
.

(3.15)

Since Λ0(t) does not depend on θ̂, it is generally true that ∂p(t|γ̂, Z)/∂γ is continuous

in γ.

For a semiparametric PHM estimating Λ0(t) using the Breslow estimator, Λ0(t)

52



is now dependent on θ. The Breslow estimator is:

Λ0(t, θ̂) =
∑
i∈s

π−1i ∆iI{Ti≤t}∑
j∈s π

−1
j Yj(t)eθ̂

′zj
, (3.16)

where Yj(t) indicates if the jth unit is at risk at time t. Now ∂Λ0(t, γ̂)/∂γ is continuous

in γ, since Λ0(t, γ̂) is the sum of a known number of fractions in which the numerator

is constant and the denominator is the sum
∑

j∈s π
−1
j Yj(t)e

γ′zj , which is differentiable

with respect to γ.

Since ∂Λ0(t, γ̂)/∂γ is continuous in γ, it is clear that ∂p(t|γ̂, Z)/∂γ is continuous

in γ, since

p(t|θ̂, Z) = 1− exp

(
−
∫ t

0

λ(k|θ̂, Z)dk

)
= 1− exp

(
−
∫ t

0

λ0(k)eθ̂
′zdk

)
= 1− exp

(
−Λ0(t, θ̂)e

θ̂′z
)
.

(3.17)

Finally, assumption (iii) that the basic design weights, di = π−1, satisfy that the

π-estimators for certain population means are asymptotically normally distributed,

is true for common sample designs, including simple random sample and stratified

simple random sampling with or without replacement, and multistage designs in

which the first-stage units are selected with replacement.
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Theorem 3. If p̂(t)GDE is constructed using a time-to-event model where (i)-(iii)

hold, then for a fixed time t

p̂(t)GDE = p̂π(t) +Op

(
n−1/2

)
, (3.18)

where p̂π(t) is the π-estimator of the finite population proportion pN(t). Thus p̂GDE(t)

is design consistent.

Proof. Since (3.4) can be rewritten as

p̂GDE(t) = p̂π(t) +N−1

(
N∑
i=1

p(t|zi, θ̂)−
∑
i∈s

dip(t|zi, θ̂)

)
, (3.19)

it suffices to show that

(
N−1

N∑
i=1

p(t|zi, θ̂)−N−1
∑
i∈s

dip(t|zi, θ̂)

)
= Op

(
n−1/2

)
. (3.20)

Now using assumptions (i) and (ii) and applying a Taylor series approximation to

p(t|zi, θ̂) at θ̂ = θN , we get

p(t|zi, θ̂) = p(t|zi, θN) +

[
∂p(t|zi, γ)

∂γ
|θ∗
]′

(θ̂ − θN), (3.21)
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where θ∗ ∈ (θ̂, θN) or (θN , θ̂). Now by (2.8) and assumptions (i) and (ii),

N−1
N∑
i=1

p(t|zi, θ̂) = N−1
N∑
i=1

p(t|zi, θN) +Op

(
n−1/2

)
, (3.22)

and

N−1
∑
i∈s

dip(t|zi, θ̂) = N−1
∑
i∈s

dip(t|zi, θN) +Op

(
n−1/2

)
. (3.23)

Note that because of condition (iii)

N−1
N∑
i=1

p(t|zi, θN)−N−1
∑
i∈s

dip(t|zi, θN) = Op

(
n−1/2

)
(3.24)

Now by putting together (3.22), (3.23), and (3.24), we get

(
N−1

N∑
i=1

p(t|zi, θ̂)−N−1
∑
i∈s

dip(t|zi, θ̂)

)
= Op

(
n−1/2

)
, (3.25)

as desired.

It should be noted that p̂GDE(t) is a special case of p̂MCE(t), where B̂N = 1.

Because of this, Theorem 3 can be generalized to show that p̂MCE(t) and p̂∗MCE(t)

are design consistent by noting that B̂N and B̂∗N are both OP (1).
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3.3.2 Design Consistency of V̂ [p̂GDE(t)] and V̂ [p̂MCE(t)]

To show design consistency of the variance estimators an additional is necessary

condition:

(iv) for each zi, ∂
2p(t|zi, γ)/∂γ∂γ′, where γ is one of the components of θ, is

continuous in γ, |∂2p(t|zi, γ)/∂γ∂γ′| ≤ h (zi, θ) for γ in a neighborhood of θ,

and N−1
∑N

i=1 h (xi, θ) = O(1).

The assumption that for each zi ∂
2p(t|zi, γ)/∂γ∂γ′ is continuous in γ is

reasonable. For the TRM it is clear that ∂2p(t|zi, γ)/∂γ∂γ′ is continuous in γ since

p (t|µ̂, x̂0) = Φ

[
x̂0 + µ̂t√

2t

]
+ exp (−2x̂0µ̂) Φ

[
µ̂t− x̂0√

t

]
, (3.26)

where µ̂ = β̂′z and x̂0 = exp(ζ̂ ′u). For the parametric AFTM,

λ(t|z, θ̂) = λ0(te
θ̂′z)eθ̂

′z and p(t|θ̂, z) is given by (3.14). So for ∂2p(t|zi, γ)/∂γ∂γ′ to

be continuous in γ, ∂2Λ0(ke
γ̂′z)/∂γ∂γ′ must be continuous in γ, which is true for

most standard parametric AFTM formulations. For parametric PHMs

λ(t|z, θ̂) = λ0(t)e
θ̂′z and p(t|θ̂, z) is given by (3.15). Since Λ0(t) does not depend on

θ̂, it is generally true that ∂2p(t|zi, γ)/∂γ∂γ′ is continuous in γ. Finally, for

semiparametric PHMs, estimating Λ0(t) using the Breslow estimator (3.16), Λ0(t) is

now dependent on θ. Now ∂2Λ0(t, γ̂)/∂γ is continuous in γ since Λ0(t, γ̂) is the sum
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of a known number of fractions for which the numerator is constant and the

denominator is the sum
∑

j∈s π
−1
j Yj(t)e

γ′zj , which is twice differentiable with

respect to θ.

Since ∂2Λ0(t, γ̂)/∂γ∂γ′ is continuous in γ, it is clear that ∂2p(t|γ̂, Z)/∂γ∂γ′ is

continuous in γ considering the form of p(t|θ̂, z) in (3.16).

Theorem 4. If p̂GDE(t) is constructed using a time-to-event model where (i) ∼

(iv) hold then for a fixed time t, then the approximate design variance estimator of

p̂GDE(t) is

V (p̂GDE(t)) =̇N−2
N∑
i<j

(πiπj − πij)
(
ei
πi
− ej
πj

)
, (3.27)

where πij is the joint probability of selecting the ith and jth units and ei = I{Ti≤t} −

p(t|zi, θN). This can be estimated by

V̂ (p̂GDE(t)) =̇N−2
s∑
i<j

(
πiπj − πij

πij

)(
êi
πi
− êj
πj

)
, (3.28)

where êi = I{Ti≤t} − p(t|zi, θ̂).

Proof. Using assumptions (i), (ii), (iv) and applying a Taylor series second order
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approximation to p(t|zi, θ̂) at θ̂ = θN , we get

p(t|zi, θ̂) = p(t|zi, θN) +

[
∂p(t|zi, γ)

∂γ

∣∣∣
θ∗

]′
(θ̂ − θN)

+ (θ̂ − θN)′
[
∂2p(t|zi, γ)

∂γ∂γ′

∣∣∣
θ∗

]
(θ̂ − θN),

(3.29)

where θ∗ ∈ (θ̂, θN) or (θN , θ̂) and
[
∂2p(t|zi,γ)
∂γ∂γ′

∣∣∣
θ∗

]
is the p×p matrix of second derivatives

evaluated at θ∗. Now, by (3.29) and assumption (iv),

N−1
N∑
i=1

p(t|zi, θ̂) =N−1
N∑
i=1

p(t|zi, θN)

+

{
N−1

N∑
i=1

∂p(t|zi, γ)

∂γ

∣∣∣
θ∗

}′
(θ̂ − θN)

+Op

(
n−1
)

(3.30)

and

N−1
∑
i∈s

dip(t|zi, θ̂) =N−1
∑
i∈s

dip(t|zi, θN)

+

{
N−1

∑
i∈s

di
∂p(t|zi, γ)

∂γ

∣∣∣
θ∗

}′
(θ̂ − θN)

+Op

(
n−1
)
.

(3.31)
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By assumptions (i) and (iii), (θ̂ − θN) = Op

(
n−1/2

)
, and

{
N−1

N∑
i=1

∂p(t|zi, γ)

∂γ

∣∣∣
θ∗

}
−

{
N−1

∑
i∈s

di
∂p(t|zi, γ)

∂γ

∣∣∣
θ∗

}
= Op

(
n−1/2

)
. (3.32)

Therefore, by combining (3.30) and (3.31) we get

N−1
N∑
i=1

p(t|zi, θ̂)−N−1
∑
i∈s

dip(t|zi, θ̂)

= N−1
N∑
i=1

p(t|zi, θN)−N−1
∑
i∈s

dip(t|zi, θN) +Op

(
n−1
)
.

(3.33)

Using (3.33) to replace θ̂ with θN in

p̂GDE(t) = p̂π(t) +

(
N−1

N∑
i=1

p(t|zi, θ̂)−N−1
∑
i∈s

dip(t|zi, θ̂)

)
, (3.34)

we get

p̂GDE(t) = p̂π(t) +

(
N−1

N∑
i=1

p(t|zi, θN)−N−1
∑
i∈s

dip(t|zi, θN)

)
+Op

(
n−1/2

)
= N−1

N∑
i=1

p(t|zi, θN) +N−1
∑
i∈s

di
[
I{Ti≤t} − p(t|zi, θN)

]
+Op

(
n−1/2

)
.

(3.35)

Finally, by noticing that N−1
∑N

i=1 p(t|zi, θN) is constant, the asymptotic
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variance of p̂GDE(t) is the asymptotic variance of the π-estimator of the population

total of the ei = I{Ti≤t} − p(t|zi, θN). It now follows that the asymptotic variance

estimator of p̂GDE(t) is the asymptotic variance estimator of a π-estimator of the

estimated total of the êi = I{Ti≤t} − p(t|zi, θ̂).

Further, Theorem 4 can be generalized by noting that B̂N = BN + op(1) and

B̂∗N = B∗N + op(1) and substituting I{Ti≤t} − p(t|zi, θN)BN or I{Ti≤t} − p(t|zi, θN)B∗N

for ei in the variance formula and I{Ti≤t} − p(t|zi, θ̂)BN or I{Ti≤t} − p(t|zi, θ̂)B∗N into

the variance estimator.
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Chapter 4: Simulation Study

In the previous chapter, I developed GDEs and MCEs using time-to-event

models. In this chapter, I conduct a simulation study to evaluate the performance

of these estimators by manipulating the:

• Correlation between ln(T ) and predictor Z,

• Distribution of T , the time to an event,

• Amount of censoring, %C,

• Sample size, n,

• Prevalence of the event at time t in the finite population, pN(t).

The simulations are limited to GDEs and MCEs constructed using

Lognormal, Wiebull and semiparametric PH models. These estimators are

compared to traditional estimators: the π-estimator, the GREG, GDE and MCEs

constructed from a Logistic model.
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This chapter is organized as follows: Section 4.1 describes how the finite

populations were generated. Section 4.2 describes the sample design used in this

simulation study. Section 4.3 describes how the estimators used in the simulation

study were constructed. Section 4.4 presents the criteria used to evaluate the

estimators, Section 4.5 reviews the results of the simulation study. Finally, Section

4.6 discusses the results of the simulation study.

4.1 Populations

Four types populations were generated: Lognormal (LOG1), Lognormal with a

squared term (LOG2), Weibull with a common baseline hazard (WCB), and Weibull

with a mixture of two baseline hazards (WMB). Finite populations withN = 100, 000

were generated from independent-identically distributed samples from:

ln(T ) = θ0 + θ1X + θ2Z + θ3Z
2 +W, (4.1)

where θ0 = θ1 = θ2 = 1, and Z was generated from a gamma distribution with shape

and scale parameters equal to one. For the LOG1 and LOG2 populations, W was

drawn from a normal distribution with mean zero, standard deviation σ, and X = 0.

For the LOG1 populations θ3 = 0 and for the LOG2 populations θ = 4. For the
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WCB and the WMB populations, W was drawn from a generalized extreme value

distribution with the location parameter and shape parameters set to zero and shape

parameter σ. For the populations which have a common baseline hazard X = 0. For

populations with a mixture of two baseline hazards, X was drawn from a Bernoulli

distribution with p = 0.4.

In all four cases, σ was set to generate finite populations in which the correlation

between ln(T ) and Z was a given ρ. Nine populations were generated by crossing the

LOG1,LOG2, WCB, and WMB distributions with the correlations ρ = 0.8, 0.6, 0.4.

For each population, three sets of censored values of T and censor indicators

were derived as follows:

T̃
(j)
i = min(Ti, Qj), (4.2)

c
(j)
i = I{Ti≤Qj} (4.3)

for j = 1, 2, 3, where Qj is the jth finite population quartile. This generated censored

values of T such that 75%, 50%, or 25% of the cases in the population were censored

in the sense that there is no observation after time to = Qj.
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4.2 Sample Design

For this simulation a stratified simple random sample design was used. Units

were stratified based on the value of Z. The units were sorted in ascending order

based on Z, then the first 10,000 were assigned to stratum 1, the next 20,000 were

assigned to stratum 2, the next 30,000 were assigned to stratum 3, and the last 40,000

were assigned to stratum 4. Two sample sizes were used: n = 200, 1000. Sample was

allocated equally to each strata, i.e., nk = n/4 for all k. For each population-sample

size combination, L = 10, 000 samples were drawn.

4.3 Estimators

For each sample, nine time-to-event models were fit, one for each of the

Lognormal, Weibull, and semiparametric PH models with the censoring conditions

75%, 50%, and 25%. All of the models were fit with an intercept and one predictor,

Z. For each model, three types of model assisted estimates of p(t) were calculated,

a GDE and the two MCEs presented in Chapter 3, Section 3.2. These are denoted

as GD, MC1, and MC2 for the remainder of this chapter. MC1 is the MCE with

one constraint defined by (3.9) in Section 3.2, and MC2 is the MCE estimator with

two constraints defined by (3.6) and (3.7) in section 3.2. With all of the
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combinations of models and types of model assisted estimators, this results in 9

estimators of p(t).

Estimates were then generated using each of these 9 estimators of p(t) for three

values of t. The three values of t were selected such that the finite population value

of p(t) was 0.75, 0.50, and 0.25. It should be noted that for 75% censoring only

p(t) = 0.25 could be estimated. Likewise for 50% censoring, only p(t) = 0.50 or

p(t) = 0.25 could be estimated. This resulted in 54 estimates for each sample.

Additionally, to compare these methods with existing methods, five other

estimators were used: the π-estimator; a GREG; and GD, MC1 and MC2 based on

a Logistic model with an intercept and one predictor, Z. This resulted in another

30 estimates for each sample and a total of 84 estimates per simulated sample.

4.4 Evaluation Critera

The following criteria were used to evaluate the performance of the time-to-

event based GDE and MCE: efficiency, bias, and performance of variance estimators.

4.4.1 Efficiency

To evaluate the efficiency of time-to-event based GDE and MCE the root mean

squared error (RMSE) of these estimators was compared to the π-estimator. The
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simulated RMSE at a fixed time t was estimated as follows:

RMSE =

(
L−1

L∑
k=1

[p̂k(t)− pN(t)]2
) 1

2

, (4.4)

where L represents the 10,000 simulations, p̂k(t) is the estimate of pN(t) for

the kth simulation, and pN(t) is the finite population value of p(t). To compare the

simulated RMSE of an estimator A with the RMSE of the π-estimator, the percent

reduction in RMSE (∆RMSE) was calculated as follows:

∆RMSE = 1−
(
RMSEA
RMSEπ

)
, (4.5)

4.4.2 Bias

Two measures were calculated to evaluate the bias of GDE and MCE that

were derived from time-to-event models. The first measure is the simulated Relative

Bias (RB). The RB compares the magnitude of the simulated bias of an estimator

relative to the finite population value that is being estimated. The RB was calculated

as follows:

RB =
1

L

L∑
k=1

(
p̂k(t)− pN(t)

pN(t)

)
. (4.6)

The second measure is the Bias Ratio (BR). The BR compares the magnitude
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of the simulated bias of an estimator to the magnitude of the simulated standard

error of the same estimator. The BR is calculated as follows:

BR =
L−1

∑L
k=1 [p̂k(t)− pN(t)](

L−1
∑L

k=1 [p̂k(t)− p̄(t)]2
) 1

2

, (4.7)

where p̄(t) = L−1
∑L

k=1 p̂k(t). For confidence intervals to cover at the desired rate,

BR must converge to 0 with increasing sample size in addition to p̂k(t) − pN(t)

converging to 0.

4.4.3 Performance of Variance Estimators

Two measures were calculated to evaluate the performance of the Generalized

Difference and Model Calibrated variance estimators presented in Chapter 3. The

first measure is the Variance Ratio (VR), which is the ratio of the simulation mean

of the estimated sampling variance to the simulated variance of the estimator. The

VR evaluates on average how well the variance estimator estimates the simulated

variance of the estimator. This was calculated as follows:

V R =
L−1

∑L
k=1 V̂k(p̂(t))

L−1
∑L

k=1 [p̂k(t)− p̄(t)]2
. (4.8)

67



The variance estimator for each p̂k(t) was defined in Section 3.2. The second measure

is confidence interval coverage. For each simulation, the 95% normal approximation

confidence interval was calculated as

CIi =

(
p̂i(t)− 1.96

√
V̂i(p̂i(t)), p̂i(t) + 1.96

√
V̂i(p̂i(t))

)
. (4.9)

From this, a binary variable Ci was calculated as follows:

Ci =


1 if pN(t) ∈ CIi

0 otherwise

. (4.10)

Finally, the confidence interval coverage rate (CR) was calculated as

CR = L−1
L∑
k=1

Ck. (4.11)

4.5 Results

The simulation results for the LOG1, LOG2, WCB, and WCM were strikingly

similar. As such, I only show the LOG1 populations results here. Tables with the

results for the LOG2, WCB, and WCM populations are located in Appendix A.
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4.5.1 Bias

Table 4.1 and Table 4.2 show the simulated percent RBs for the Lognormal

populations with n = 200 and n = 1, 000, respectively. There are a few general

conclusions that can be drawn from these tables:

1. The percent RBs were small (at most 0.5%);

2. The estimators based on time-to-event models had RBs similar to the

π-estimator; and

3. For n = 200, the Logistic model based Generalized Difference Estimator (LG-

GD) tended to have larger RB than the other estimators, but this difference is

not meaningful.

Table 4.3 and Table 4.4 show the simulated BRs for the Lognormal populations

with n = 200 and n = 1, 000, respectively. There are a a few general conclusions

that can be drawn from these tables:

1. The BRs were small (at most 0.079);

2. The estimators based on time-to-event models had BRs similar to the

π-estimator;
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3. The BRs indicate that variance is the major driver of MSE for time-to-event

model-based estimators.

There was only a small amount of bias in any of the estimators used in this simulation.

The RBs were much smaller than those seen in the simulation performed by Wu and

Sitter (2001) which reported relative biases as high as 5.71%. Because all estimators

were essentially unbiased, selection of an estimator can be based on RMSE and

confidence interval coverage, at least in the circumstances studied here
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4.5.2 Efficiency

An estimators reduction in RMSE when compared to the π-estimator was

affected by three conditions: the correlation between ln(T ) and predictor Z, sample

size, and prevalence of the event in the finite population.

Generally, the distribution of T did not have a noticeable effect on the any of

estimators tested in this simulation, the exception being percent reduction in RMSE

when compared to the π-estimator when p(t) = .75 and ρ = 0.8, which was as high

as 16.99%. Although the magnitude of the reductions were larger in some cases, the

conclusions drawn are the same.

Table 4.5 and 4.6 provide the simulated reductions in RMSE when compared

to the π-estimator for the Lognormal populations with n = 200 and n = 1, 000,

respectively. There are a number of conclusions that can be drawn from these tables:

1. The time-to-event model-based estimators never underperformed the

π-estimator.

2. The time-to-event model-based estimators never underperformed, and in

many cases outperformed, the GREG and Logistic-based GD, MC1, and MC2

estimators (LG-GD, LG-MC1, LG-MC2).

3. The reductions in RMSE for the nine estimators based on time-to-event models
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were similar.

4. The reduction in RMSE for the nine estimators based on time-to-event models

and the GREG were positively correlated with p(t).

5. The reduction in RMSE for the nine estimators based on time-to-event models,

the GREG, and the MC1-LG were positively correlated with ρ.

6. The reduction in RMSE for the nine estimators based on time-to-event models

and the GREG were not negatively affected by small sample sizes.

7. Reduction in RMSE for GD, MC1, and MC2 were substantially reduced when

prevalences were estimated using the logistic model when n = 200.

8. The amount of censoring did not affect the performance of any of the

estimators.
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As mentioned above, because of the similarity in the performance of the time-

to-event based estimators, only the Lognormal GD (LN-GD) is presented in Figures

4.1-4.6. In Figure 4.2, only the LN-GD and GREG are presented, because the LN-

GD, Logistic GD (LG-GD), Logistic MC1 (LG-MC1), and Logistic MC2 (LG-MC2)

performed similarly.

Figure 4.1: Percent reduction in RMSE as a function of p(t): Lognormal population,
ρ = 0.8, 25% censoring, n = 200
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Figure 4.2: Percent reduction in RMSE as a function of p(t): Lognormal population,
ρ = 0.8, 25% censoring, n = 1, 000

In Figure 4.1 and 4.2 it can be seen that for ρ = 0.8 and n = 200 or n = 1, 000

the LN-GD outperformed the GREG by about 4 percentage points for all of p(t), and

the GREG estimator performed worse than the π-estimator for smaller values of p(t).

Additionally, while the LN-GD, LG-GD, LG-MC1, and LG-MC2 performed similarly

for n = 1, 000, for n = 200 the LN-GD outperformed the LG-GD, LG-MC1, and LG-
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MC2, with the LG-MC1 performing the best. For n = 200, the LG-GD performed

worse than the π-estimator for some values of p(t).

Figure 4.3: Percent reduction in RMSE as a function of p(t): Lognormal population,
ρ = 0.6, 25% censoring, n = 200
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Figure 4.4: Percent reduction in RMSE as a function of p(t): Lognormal population,
ρ = 0.6, 25% censoring, n = 1, 000

In figures 4.3 and 4.4, it can be seen that, for ρ = 0.6 and n = 200 or n = 1, 000,

once again the LN-GD outperforms the GREG by about 1.5 percentage points for

all of p(t). Once again, for n = 200, the LN-GD outperformed the LG-GD, LG-

MC1, and LG-MC2 with the LG-MC1 performing the best. For n = 200, LG-GD

performed worse then the π-estimator for all values of p(t). For n = 1, 000, the LN-
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GD performed at least as well as the LG-GD, LG-MC1 and LG-MC2 for all p(t), and

outperformed all three estimators for p(t) = .75, with the LG-GD underperforming

the π-estimator by almost 6%.

Figure 4.5: Percent reduction in RMSE as a function of p(t): Lognormal population,
ρ = 0.4, 25% censoring, n = 200
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Figure 4.6: Percent reduction in RMSE as a function of p(t): Lognormal population,
ρ = 0.4, 25% censoring, n = 1, 000

In Figures 4.5 and 4.6, it can be seen that for ρ = 0.4 and n = 200 or n = 1, 000

the LN-GD and GREG performed similarly. For n = 200 and n = 1, 000, the LN-

GD performed at least as well as the LG-GD, LG-MC1 and LG-MC2. For n = 200

and n = 1, 000, the LN-GD performed at least as well as the LG-GD, LG-MC1

and LG-MC2 for all p(t) and outperformed all three estimators for p(t) = .75, with
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the LG-GD underperforming the π-estimator by more than 8% and the LG-MC2 by

more than 3%.

Overall, the LN-GD outperformed the GREG for larger values of ρ. The LN-

GD performed at least as well as, and in many cases better than, the LG-GD,

LG-MC1, and LG-MC2. The LN-GD performed better for smaller sample sizes than

the LG-GD, LG-MC1, and LG-MC2. Frequently, the LG-MC2 and LG-GD did not

perform as well as the other estimators and performed worse than the π-estimator.

It should be noted that we did not explore wheither ther RMSEs were

statistically different from each other. To do this the standard error of the RMSE’s

would need to be calculated. To do this we could estimate a standard error by

taking bootstrap samples of the simulates.

4.5.3 Performance of Variance Estimators

Table 4.7 and Table 4.8 show the simulated VRs for the Lognormal populations

with n = 200 and n = 1, 000, respectively. These tables show VRs close to one for

all of the estimators. This tells us that on average the asymptotic variance estimate

was equivalent to the empirical variance of the estimators seen in the simulation.

Table 4.9 and Table 4.10 show the simulated 95% confidence interval coverage

for the Lognormal populations with n = 200 and n = 1, 000, respectively. These
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tables show that all of the estimators provided nominal coverage. Additionally, for

all the estimators, the coverage was similar to the π-estimator’s coverage. Given that

the VRs were near 1 and each p̂(t) estimator was approximately unbiased, the fact

that the confidence intervals covered pN(t) at the desired rate is not surprising.
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4.5.4 Computational Problem with the Logistic Estimators

The LG-MC1 and LG-MC2 had some simulated samples excluded from the

analysis, because for a small portion of the samples the estimate of p(t) was greater

than 1 or less than 0. Knowing that p(t) ranges from 0 to 1 these estimates did

not seem reasonable. Moreover, these estimates were not just slightly outside this

range, they were usually greater than 1010 or less than 10−10. This was caused by

the calibration adjustment, B̂ diverging to either positive or negative infinity. This

was not an issue with any of the other estimators used in these simulations, even

the time-to-event MCE. Table 4.11 shows how many samples were thrown out for

each population. The most severe problem occurred for the Weibull Population 2

with ρ = 0.6 where 331 (or 3.31%) of the samples could not be used. Although the

computational problems were rare, the fact that they occur at all is another reason

to avoid estimating pN(t) using a logistic model. The problems with the logistic

model-calibrated approach are caused by some combinations of covariates all having

the event or not having the event. The fitting alogrithm sends one or more of the

parameter estimates to ±∞. In this case we have a single continuous predictor. A

potential fix is to combine levels of factors or in this case discretize the continuous

predictor to create mixtures of events and non-events.
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4.6 Discussion

This simulation study shows that the time-to-event based MCE and GDE

performed just as well, if not better than, the current methods for all of the

conditions tested. The time-to-event based MCE and GDE provided reductions in

RMSE without inducing much, if any, bias, and the asymptotic variance estimator

performed well. The time-to-event MCE did not perform any better than the GDE,

even when the relationship between Z and ln(T ) was weak. This is contrary to the

results in Wu and Sitter (2001), where MCE outperformed GDE for all ρ. The

reductions in RMSE, compared to the π-estimator, were positively correlated with

p(t), which is consistent with the results in Wu and Sitter (2001). There were

meaningful reductions in RMSE compared to the π-estimator for larger values of t.

The GREG, LG-GD, or LG-MC2 often had a RMSE larger than the

π-estimator. The Logistic based estimators were negatively affected by the small

sample size of n = 200, especially the LG-GD. Wu and Sitter (2001) assert that the

MCE should never have RMSE greater than the π-estimator. These simulations

showed that the LG-MC2 can have RMSE greater than the π-estimator. It should

be noted that the MC estimators seemed more robust in protecting against larger

RMSE than the π-estimator, especially LG-MC1. When the LG-GD was less
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efficient than the π-estimator the LG-MC1 and LG-MC2 were more efficient than

the LG-GD under every condition. This was especially true for n = 200. In

addition, the LG-MC1 and LG-MC2 occasionally provided estimates that were

greater than 1 or less than 0, which were not valid values for p(t). This was not

seen for any of the other estimators in the simulation study.

In sum, these simulations showed that time-to-event based MCE and GDE can

provide reductions in RMSE over the π-estimator for large values of p(t) without

causing any issues with bias. These reductions were at least as large as, if not

larger than, current methods, and the estimators generally outperformed current

methods for small sample sizes. In addition, the variance estimator presented in this

dissertation performed well and provided nominal coverage.
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Chapter 5: Nurses’ Health Study Application

In this chapter, I apply the previously developed GD and MC estimators to data

from the Nurses’ Heath Study (NHS). This application shows how these estimators

can be used to estimate the proportion of a population who have experienced an

event, in this case death, using only a sample of the population. This application

uses the same estimators and evaluation criteria used in Chapter 4. A subset of the

NHS population is used as a finite population from which samples are repeatedly

selected for a simulation study.

This chapter is laid out as follows: Section 5.1 provides background about the

NHS, Section 5.2 discusses how the finite population was constructed using NHS

data, Section 5.3 discusses the sample design used for this application, Section 5.4

discusses the models used in this application, Section 5.5 presents the results from,

and lastly, Section 5.6 discusses the results.
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5.1 About the Nurses’ Health Study

The NHS is based on a panel of over 120,000 female nurses that has been

followed since the mid-1970s. Originally, the NHS focused on the long-term effects

of oral contraceptives. Although this is still a main focus of the NHS, the NHS now

also focuses on smoking, cancer, and heart disease. It asks about lifestyle factors,

such as nutrition and quality of life. It also collects information on more than 30

diseases.

The target population for the NHS is female registered nurses in the 11 most

populated states who were married and ages 30-55 in 1976. The frame was

constructed using membership roles from nursing boards who agreed to participate

in the NHS. In 1976, the 238,026 nurses on the frame were mailed an initial

questionnaire. Of these, 121,700 nurses returned a completed questionnaire and

were enrolled in the study. Every other year since 1976, study participants have

received a follow-up questionnaire to collect information about disease and

health-related topics. In addition, biological samples have been collected from

subsamples of the panel. More information about the NHS can be found at

http://www.nurseshealthstudy.org.
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5.2 Finite Population Creation

The finite population used in this application represents a subset of the NHS

population. The population is similar to other studies that used time-to-event models

to study the incidence of lung disease. One used semiparametric PH models (Bain

et al., 2004) and one used TR models (Lee et al., 2010). This extract contained

information from 1986 through 2012. To be eligible for the population, a panel

participant had to meet the following criteria:

• Alive in 1986,

• Not diagnosed with cancer prior to 1986 (with the exception of non-melanoma

skin cancer)

• Known smoking status in 1986,

• Known pack years in 1986,

• Known body mass index (BMI) for at least one year during 1986 to 2012

Pack years is calculated by multiplying the packs of cigarettes smoked per day by

the number of years that a person smoked. One pack year is equal to smoking 20

cigarettes per day for one year. BMI is equal to a person’s weight in kilograms
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divided by the square of the person’s height in meters. This resulted in a finite

population of 103,878 nurses. The following variables were retained on the file:

• Death indicator (died between 1986 and 2012)

• Age at death (in years, to the tenth of a year)

• Age in 1986 (in years, to the tenth of a year)

• BMI for every observation between 1986 and 2012 (based on height reported

in 1976)

• Smoking status in 1986 (Current Smoker, Past Smoker, Never Smoked)

• Pack years smoked as of 1986 (365 packs to a pack year)

The following variables were derived from these variables:

• BMI in 1986, where missing values of BMI were imputed using the BMI closest

to 1986 that was observed

• A six level classification of BMI (Underweight, Normal, Overweight, Class 1

Obesity, Class 2 Obesity, Class 3 Obesity)

• A four level classification of BMI, which groups all three levels of obesity into

one category (Underweight, Normal, Overweight, Obese)
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• A three level classification of age in 1986 (<50, 50 to 60, >60)

• Years to death after 1986 calculated to the tenth of a year (with a value of 26

if alive in 2012)

5.3 Sample Design

Two stratified simple random sample designs were used in this simulation study.

The first had three strata based on the three levels of smoking status. The second

had 36 strata formed by crossing smoking status, age group, and four level BMI.

Both of these designs used strata that are related to death, with the 36 strata design

expected to be more effective in reducing variance for estimates of the proportion of

persons experiencing the event. Tables 5.1-5.3 show the counts and row percentages

of smoking status, age group, and six level BMI crossed with the death by 2012

indicator in the finite population.

Table 5.1: Smoking Status by Death Indicator: Counts and Row Percentages (as of
2012)

Alive Deceased
Status Count % Count %

Never Smoked 37,789 80.00 9,445 20.00
Current Smoker 13,698 61.81 8,463 38.19
Past Smoker 26,277 76.20 8,206 23.80
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Table 5.2: Age Group by Death Indicator: Counts and Row Percentages (as of 2012)

Alive Deceased
Age Count % Count %

<50 36,077 91.09 3,531 8.91
50-60 31,286 61.81 11,243 26.44
>60 10,401 47.84 11,349 52.16

Table 5.3: BMI by Death Indicator: Counts and Row Percentages (as of 2012)

Alive Deceased
BMI Classification Count % Count %

<18.5 Underweight 816 56.78 621 43.22
18.5-24.9 Normal Weight 42,302 77.79 12,079 22.21
25.0-29.5 Overweight 22,991 74.08 8,043 25.92
30.0-34.9 Class 1 Obesity 8,133 70.57 3,392 29.43
35.0-39.9 Class 2 Obesity 2,532 66.21 1,292 33.79
≥ 40.0 Class 3 Obesity 990 59.03 687 40.97

For all three variables, the Chi-squared test of independence rejected the null

hypothesis of independence for α = 0.01. The finite population sample size was

large, meaning that very small differences could be detected. Because of this, the

Chi-squared test might not be the best way to evaluate the usefulness of these

variables for stratification. There is variation in the percentage of nurses who have

died across subgroups, which suggests that these variables have some predictive

value in predicting death by 2012 and, thus, also time to death.
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Two sample sizes were used to mimic the simulation study in Chapter 4. For

each sample design, samples of 216 and 1,008 were selected. These total samples

were allocated equally to each of the 36 strata. For the total sample size of 216,

simple random samples of 6 persons were selected without replacement from each

stratum. For the total sample size of 1008, 28 persons were selected per stratum.

5.4 Model Development

As with the simulation study, five different models were fit to calculate p̂(t), the

proportion of the population who had died at or before time t, which in this study

was the year 2012 or 26 years after the recruitment of the nurses population. As

in Chapter 4, the five models were a Linear model, Logistic model, Weibull model,

Lognormal model, and semiparametric proportional hazard model. All five models

were fit using the same set of predictor variables: smoking status, BMI, BMI squared,

age, pack years, and pack years squared. The squared term for BMI was used to

account for the fact that both small and large values of BMI result in higher risk of

death. In an attempt to reduce collinearity between BMI and BMI squared, mean

BMI was subtracted from BMI before it was squared.
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Figure 5.1: Pack Years by Death Indicator

The box plot of pack years is displayed in Figure 5.1. This box plot shows

that death generally seems more likely among nurses with more pack years by 1986.

A squared term was introduced, because in similar studies it was thought that an

increase in smoking has a negative effect on time to death, but this effect moderates

for higher levels of pack years (Lee et al., 2010). As with BMI squared, mean pack

years was subtracted from pack years before it was squared to reduce collinearity

between pack years and pack years squared.

The use of variable selection procedures might be a refinement that was not
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explored in this dissertation. This would add complications to variance estimation

since reflecting the covariate selection variability is difficult. Replication where

covariate selection is done separately for every replicate would be a possible way to

capture the sample-to-sample variation in which covariates are selected.

5.5 Results

For this application, as with the simulations in Chapter 4, 10,000 samples

were drawn for each of the four sample design-sample size combinations. The same

14 estimators used in Chapter 4 were used here to estimate the percentage of the

population that had died by the end of 2012, i.e., pN(26) ≈ 0.25. Table 5.4 shows the

results using the same five metrics used in Chapter 4 for each estimator and sample

design - sample size combination.

5.5.1 Bias

Similar to the findings in Chapter 4, all of the estimators were approximately

unbiased. (See the rows in Table 5.4 for %RB) Also, the RBs in this application

were much smaller that those in Wu and Sitter (2001), who reported RBs as high as

5.71%. A few general conclusions can be drawn from Table 5.4:

1. % RBs for all of the estimators were small (at most 0.9%).
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2. Estimators based on time-to-event models had % RB similar to the π-estimator.

3. BRs for all of the estimators were small (at most 0.067).

4. Estimators based on time-to-event models had BRs similar to the π-estimator.

5. Estimators based on logistic models had larger % RBs and BRs than all of the

other estimators, with the LG-GD having the largest % RB and BR, but the

difference is not meaningful.

Because all estimators were essentially unbiased, selection of an estimator can be

based on RMSE and confidence interval coverage, at least in this application.

5.5.2 Efficiency

Table 5.4 shows that the performance of the nine time-to-event model based

estimators was similar. (See the rows in Table 5.1 for VR) Therefore, for simplicity,

only the LN-GD is compared to the current methods when examining efficiency.
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Figure 5.2: Simulated Percent Reduction of RMSE Relative to the π-estimator by
Sample Size and Strata

Figure 5.2 shows the percent reduction in RMSE of each of the estimators

compared to the π-estimator. Negative values mean that an estimator had a larger

RMSE than the π-estimator. The LN-GD and GREG outperformed the estimators

based on logistic models for every condition. The LG-GD estimator had significantly

larger RMSEs than the π-estimator. Similar to the Chapter 4 simulation study, the

LG-MC2 underperformed the π-estimator for one combination (n = 216, 36 strata)
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and had little if any gains for the other combinations. This finding is contrary to the

assertions of Wu and Sitter (2001).

Figure 5.2 shows the importance of number of strata on the LN-GD and the

GREG. For both estimators, the percent reduction in RMSE for samples with three

strata is four times larger than the RMSE for samples with 36 strata. Hence, for the

GREG and LN-GD to see significant reductions in RMSE covariates need to be used

that are not in the sample design. In the 36 strata design, BMI, age, and smoking

status were used to define the strata. Besides that fact that continuous versions of

BMI and age were used in the model, pack years was the only new information. In

the 3 strata design, only smoking status was used to define the strata. This means

that the BMI, age, and pack years were all providing new information that was not

part of the sample design.

5.5.3 Performance of the Variance Estimator

Table 5.4 shows that when n=1008 the VRs were close to 1 for all of the

estimators. This was also seen in Chapter 4, and it tells us that on average the

asymptotic variance estimator was equivalent to the empirical variance of the

estimator. Additionally, the simulated 95% confidence interval provided nominal

coverage. This is not surprising, since all of the estimators were approximately
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unbiased and the VRs were close to 1.

For n=218, the VRs were somewhat less than 1 for all of the estimators,

except the π-estimator. The VRs were around 0.95. This means that the variance

estimators on average underestimated the empirical variance by about 5%.

Therefore, the simulated 95% confidence interval coverage was slightly less than

nominal coverage. The undercoverage was not large. The coverage for all of the

estimators other than the π-estimator was around 0.94, suggesting that the

variance estimator might have been sensitive to sample size.
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5.5.4 Computational Problems with the Model Calibrated Logistic

Estimators

Similar to the Chapter 4 simulation study, the LG-MC1 and LG-MC2 had

some simulated samples were excluded from analysis, because p̂(t) was less than 0

or greater than 1. This affected only a small proportion of the samples. Since it was

known that p(t) ranges from 0 to 1, these estimates were not reasonable. As was

seen previously, these estimates were not just slightly outside of range, they were

usually greater than 1010 or −1010. This was caused by the calibration adjustment,

B̂, diverging to either positive or negative infinity. As in the Chapter 4 simulation

study, this issue did not affect any of the time-to-event model based MCEs. Table 5.5

shows the number of simulates thrown out for each set of conditions. The problems

with the logistic model-calibrated approach are caused by some combinations of

covariates all having the event or not having the event. The fitting alogrithm sends

one or more of the parameter estimates to ±∞. A potential fix is to combine levels

of factors to create combos where there is a mixture of events and non-events

The number of simulates excluded was influenced by number of strata and sample

size. A smaller sample size and fewer strata resulted in more excluded simulates, i.e.,
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Table 5.5: Number of Simulations out of 10,000 where the Model Calibrated Logistic
Estimate was Greater than 1 or Less than 0

n Strata MC1 MC2

216 3 146 146
216 36 81 81

1,008 3 12 12
1,008 36 6 6

a less efficient design, resulted in more simulates beingexcluded. The most severe

problem was with n = 216 and 3 strata, where 146 (or 1.46%) of the simulates

could not be included. Although this computational problem was rare, the fact that

it happened at all is another reason not to use LG-MC1 and LG-MC2 to estimate

pN(t).

5.6 Discussion

The application of the time-to-event based GDEs and MCEs to the NHS data

showed that these estimators performed better than current methods under all of

the conditions tested. The GREG performed almost as well as the time-to-event

based GDEs and MCEs. Both the GREG and the estimators based on time-to-

event models were approximately unbiased and outperformed the π-estimator. For

this application, these estimators were clearly the best options with a slight edge to

the time-to-event GDEs and MCEs. The only drawback was the slight confidence
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interval undercoverage when using the 36 strata design with a sample size of n = 216.

The logistic-based estimators performed poorly under every condition, with

the LG-GD underperforming the π-estimator by more than 7 percentage points with

respect to RMSE. With the estimators based on a logistic model performing poorly

with respect to the reduction in RMSE, and the computational issues with the LG-

MC1 and LG-MC2, it is clear that estimators based on a logistic model were not a

good choice for the NHS data.

Perhaps the most important finding from this application is that the

time-to-event based GDEs and MCEs performed particularly well when model

information was not also used in the sample design. Therefore, for these estimators

to perform well generally, covariates are needed that are both predictive of

time-to-event and not used in the sample design. This might happen as in this

application, when the sample was poorly designed creating an inefficient sample. It

might also happen when good covariate information is not available at the time of

data collection but is available after data collection. For example, when covariate

information is obtained from administrative records, the lag time between the

survey data collection and the acquisition, preparation, and linking of

administrative data can be lengthy. Another example is a longitudinal survey

where the sample is drawn at the beginning of a panel and covariates are collected
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sometime after the panel is originally fielded. Additionally, it might happen when

the survey was designed to estimate some outcome other than death.
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Chapter 6: Conclusions

In this dissertation, I proposed a new class of model-assisted estimators for

estimating the proportion of the population that has experienced an event by some

time t. I used time-to-event models to develop GDEs and MCEs. These estimators

are an extension of the model-calibrated estimators proposed by Wu and Sitter

(2001). When constructing a GDE or MCE, the probability that an event has

occurred at or before time t must be estimated for each sampled and nonsampled

unit. These estimates, {p̂(t|zi)}Ni=1, depend on fitting a model to predict the event

probability for each combination of covariates, zi, that occurs in the population.

It was proved that under some general regularity conditions both the GDEs

and MCEs are design consistent. Additionally, it was proved that the proposed

asymptotic variance estimators for the GDEs and MCEs are also design consistent.

Through simulation, it was shown that time-to-event model-based GDEs and

MCEs were approximately unbiased for all conditions tested. Additionally, these

estimators were at least as efficient as the existing model-assisted estimators and
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the π-estimator and in many situations outperformed existing methods. As

expected, the reductions in RMSE increased as the correlation between the

predictors in the model and the time to event increased. The reduction in RMSE

was positively correlated with the proportion of the population that experienced

the event. Finally, the asymptotic variance estimator for the proposed estimators

was on average equal to the empirical variance of the estimators seen in the

simulation. Because of this and the fact that the GDEs and MCEs were

approximately unbiased, the confidence intervals provided nominal coverage. These

simulations also showed that using logistic model-based GDEs and MCEs can

caused both computational issues as well as poor performing estimators.

Estimators based on lognormal, Weibull, and semiparametric PH models were not

vulnerable to these problems.

An application to the NHS confirmed the findings from the simulation study

that these estimators are approximately unbiased, at least as efficient as the existing

methods, and in many situations outperform existing methods. The application

showed that there is a relationship between the sample design and the time-to-event

model-based GDEs and MCEs for reducing RMSE. When covariates used in the

model were not used in the sample design, the time-to-event model based GDEs and

MCEs provided larger reductions in RMSE.
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This dissertation adds to the toolkit available to survey practitioners for

estimating the proportion of the population that has experienced an event after a

specified amount of time has elapsed. This is especially important for panel surveys

in that a these estimators can be used to leverage covariate information from

administrative sources. Since they have been shown to be design consistent and

approximately unbiased, these estimators can be used without the risk of

introducing bias, and the effectiveness of these estimators can be evaluated based

on reductions in variance. Because of this, the effectiveness of these estimators can

be evaluated during post data collection processing.

There are some important considerations when using time-to-event

model-based GDEs and MCEs. First, these estimators can only be used if

covariates are available for each unit in the entire population. Second, to see the

most gains in efficiency, the covariates need to be predictive of time-to-event and

not used in the sample design. Third, the expected proportion of the population

that has experienced the event needs to be large. Finally, the time to event needs

to be censored at the same time t for all of units.

There are many ways that this work could be expanded. It could be extended

for left or interval censoring; this dissertation focused on commonly used time-to-

event models under right censoring. The simulations could be expanded to include
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TRMs, models with time-varying covariates, and semiparametric AFTMs, to name

a few. Although the design consistency of the GDEs and MCEs and asymptotic

variance estimators covers a wide range of models, the simulations were limited to

only a few models. Additionally, the simulations could be expanded to explore the

effect of model misspecification on these estimators. Here, the time-to-event model-

based GDEs and MCEs performed similarly. Model misspecification might cause the

estimators to perform differently. There is some evidence to support this given the

logistic model based GDEs and MCEs findings.

One of the issues with using p̂GDE(t) and p̂MCE(t) is that the censoring has to

happen at a given t for all units. This can be restrictive. In some applications

censoring might happen at different times. For example, when estimating the

proportion of first time mothers who stopped breastfeeding by one year after birth.

The 1979 Panel of the National Longitudinal Survey of Youth collected information

on pregnancies and breastfeeding from female respondents. Since all of the women

in this survey did not give birth on the same day, the time at which a woman could

be censored, i.e., still breastfeeding at time of data collection, varies (Klein and

Moeschberger, 2003).

To deal with this variation in censoring time, p̂GDE(t) and p̂MCE(t) need to be

modified. I propose the following modification.
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One way to calculate survival time, and thus failure time, is to use a Kaplan-

Meier estimator of S(t) (Kaplan and Meier, 1958).

SKM(t) =


1 if t < t1

∏
ti≤t

[
1− di

ri

]
if t1 ≤ t

, (6.1)

where t1 < t2 < . . . are the distinct event times, di is the number of events at time

ti, and ri is the number of units who have not experienced the event or have not

been censored at time ti. Since we know that p(t) = F (t) = 1−S(t), a Kaplan-Meier

based estimate of p(t) can be written as follows:

pKM(t) =


0 if t < t1

1−
∏

ti≤t

[
1− di

ri

]
if t1 ≤ t

. (6.2)

In the case of sample surveys, SKM(t), can be calculated by estimating di and ri

using π-estimators (Korn and Graubard, 1999), giving us the following estimator of

pN(t)

p̂KM(t) =


0 if t < t1

1−
∏

ti≤t

[
1− d̂i

r̂i

]
if t1 ≤ t

, (6.3)
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where d̂i and r̂i are the π-estimators of di and ri, respectively. Since
∑n

i=1 π
−1
i = N̂ ,

p̂KM(t) = N̂−1
n∑
i=1

π−1i p̂KM . (6.4)

From this we can form new GDEs and MCEs:

p̂∗GDE(t) = N̂−1

(
N∑
i=1

p(t|zi, θ̂) +
∑
i∈s

π−1i

[
p̂KM(t)− p(t|zi, θ̂)

])
, (6.5)

and

p̂∗MCE(t) = p̂KM(t) + N̂−1

(
N∑
i=1

p(t|zi, θ̂)−
∑
i∈s

π−1i p(t|zi, θ̂)

)
B̂, (6.6)

where B̂ is a calibration adjustment similar to what is proposed by Wu and Sitter

(2001) and discussed in Chapter 2. Since p̂KM(t) provides a value for every case

at a fixed time t, censored or not, p̂∗GDE(t) and p̂∗MCE(t) can accommodate varying

censoring times. Another advantage of using p̂∗GDE(t) and p̂∗MCE(t) is that these

estimators can handle panel attrition. Traditionally, this would be handled via a

weighting adjustment.

Some of the theoretical work presented in Chapter 3 could possibly be

modified to incorporate p̂∗GDE(t) and p̂∗MCE(t), but this will not be straightforward.

In addition, simulation work would need to be done to explore the properties of

these new estimators.
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In summation, time-to-event model-based GDE and MCE increase efficiency

without inducing much bias. As with other model-assisted approaches these

estimators effectively use models to improve efficiency over the π-estimator with

little risk of inducing bias. They are an effective way to leverage covariate

information for surveys that collect time-to-event data.
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Appendix A: Simulation Tables

A.1 Weibull Populations with a Common Baseline Hazard

A.1.0.1 Relative Bias
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A.1.0.3 Percent Reduction of RMSE Relative to the π-estimator
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A.2 Weibull Populations with a mixture of two Baseline Hazards

A.2.0.1 Relative Bias
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A.2.0.2 Bias Ratio
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A.2.0.4 Variance Ratio
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A.2.0.5 Confidence Interval Coverage

A.3 Lognormal Populations with Z2 term

A.3.0.1 Relative Bias
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