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One foundational goal of artificial intelligence is to build intelligent agents

which interact with humans, and to do so, they must have the capacity to infer

from human communication what concept is being referred to in a span of symbols.

They should be able, like humans, to map these representations to perceptual in-

puts, visual or otherwise. In NLP, this problem of discovering which spans of text

are referring to the same real-world entity is called Coreference Resolution. This

dissertation expands this problem to go beyond text and maps concepts referred to

by text spans to concepts represented in images. This dissertation also investigates

the complex and hard nature of real world coreference resolution. Lastly, this dis-

sertation expands upon the definition of references to include abstractions referred

by non-contiguous text distributions.



A central theme throughout this thesis is the paucity of data in solving hard

problems of reference, which it addresses by designing several datasets. To investi-

gate hard text coreference this dissertation analyses a domain of coreference heavy

text, namely questions present in the trivia game of quiz bowl and creates a novel

dataset. Solving quiz bowl questions requires robust coreference resolution and world

knowledge, something humans possess but current models do not. This work uses

distributional semantics for world knowledge. Also, this work addresses the sub-

problems of coreference like mention detection. Next, to investigate complex visual

representations of concepts, this dissertation uses the domain of paintings. Map-

ping spans of text in descriptions of paintings to regions of paintings being described

by that text is a non-trivial problem because paintings are sufficiently harder than

natural images. Distributional semantics are again used here. Finally, to discover

prototypical concepts present in distributed rather than contiguous spans of text,

this dissertation investigates a source which is rich in prototypical concepts, namely

movie scripts. All movie narratives, character arcs, and character relationships, are

distilled to sequences of interconnected prototypical concepts which are discovered

using unsupervised deep learning models, also using distributional semantics. I con-

clude this dissertation by discussing potential future research in downstream tasks

which can be aided by discovery of referring multi-modal concepts.
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Chapter 1: Introduction

In the real world, humans have a strong ability to know from the context of a

conversation, what they are talking about. While engaging in discourse (discourse

being any text with more than one sentence) humans do not specify word-by-word

what entity, event, or concept they are referring to, especially in conversations, and

this does not prove to be a barrier to comprehension for the listener. In NLP, a

reference is a symbolic relationship between a linguistic expression and a concrete

object or a concept. This thesis tackles this problem of inferring what is being

referred to.

For example, let us look at the sentence:

Marty assured Doc Brown that he ought to have faith in him

In this sentence, the first ‘he’ refers to Marty, while the second ‘he’ refers to Doc

Brown. In NLP this problem of resolving which spans of text refer to the same

real world entity is called coreference resolution. In the field of linguistics, this task

is related to the theory of binding (Büring, 2005) which investigates what relations

exist between these coreferent text spans. In this sentence, both the ‘he’s are called

anaphora while ‘Marty’ and ‘Doc Brown’ are called antecedents. Thus, coreference

resolution, alongside some other related problems, is also called anaphora resolution.
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Just like anaphora, there can be text spans before their referent mentions in the text

and these are called cataphora. Anaphora can be pronouns, nouns, or long phrases.

This is an important phenomenon to be investigated because this is how discourse

is constructed and understood.

However, coreference resolution is not the only kind of interesting problem in

resolving references. References may not be to concrete objects but could be oblique

associations. References may be to entities described through some other form of

representation, like images. In this thesis I expand on the definition of references

to include references to concepts which are abstractions like themes, archetypes, or

topics, represented not by contiguous spans of text but rather by words dispersed

over documents.

I present in this thesis an investigation of multiple reference problems in var-

ious kinds of data. I investigate coreference resolution in a domain rich with hard

coreference problems of the kind humans can and do solve routinely but which cur-

rent systems fail gracelessly at. I investigate why that happens and how datasets

can reflect the kind of variety of referential problems humans solve in discourse. I

demonstrate how distributional semantics can be used to help solve such problems.

I also investigate the side problems of mention detection and bridging anaphora.

Aside from text reference, in this thesis I investigate the problem of spans of

text referring to depictions in atypical images, i.e. I extend the problem to make

it multimodal. Finally, I expand upon the conventional definition of reference and

investigate how spans of text can refer to prototypical concepts (abstractions) rather

than concrete entities, each concept defined by discontinuous text spans, which is
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different from referring mentions which are contiguous spans. I present methods of

discovering these concepts and matching them to text spans.

1.1 What are we talking about?

When humans talk about the world, meaningfully, they need to have a mental

mechanism of what talking about something is. Thus, humans refer to objects (and

concepts). In semantics, references are relations existing between various kinds of

representations and concrete objects or abstractions. These representations/tokens

do not need to be text based, they can be images, or even mental states. A lot of

the work on reference in semantics is concerned with the mechanism of reference,

i.e. why does a word attach to an object? Data driven methods in NLP leave out

the question of why something is a reference but focus on which token is a reference

to what. This work, maps references from both tokens in text as well as images, and

when it addresses images it has to infer from tokens what might indicate a reference

relation.

Furthermore, all attachments between tokens and objects are not references.

References differ from denotations (Engelbretsen, 1980), which are simple expres-

sions between concepts in language and entities in the world. References depend on

context as well as who is speaking, making the task more complex. If a reference

uniquely identifies a thing in the world, like a proper noun or a pronoun with a

determiner, it is called a definite reference. But references could also be indefinite,

i.e. not care about the identity of the entity. These often use indefinite articles with

3



the NP.

What of entities which are not concrete? While the field of reference does make

allowances for fictional named objects, say, a dragon, with some philosophers claim-

ing there is a reference here (Meinong, 1960), and others claiming if not a reference,

at least meaning exists (Quine et al., 2013), this work expands on the definition

of reference to include mappings from tokens to unstated abstractions, which are

not necessarily named entities. It does this because when humans talk of the world

they also obliquely refer to such abstractions and these unstated abstractions are

a part of the shared knowledge. Thus, if the context of a section of text indicates

that it is talking about “tragedy”, without explicitly referring to a tragic entity, for

the purposes of this work it is a reference from that text section to the concept of

tragedy.

The way references are investigated as an NLP research problem currently

leaves a lot to be desired if compared to the capabilities humans have. For ex-

ample, humans can use implicit understandings, common sense, world knowledge,

and semantic reasoning to infer on the fly what is being referred to (Ng, 2010).

Here, world knowledge is defined as knowledge which has nothing to do with lin-

guistic competence (which includes semantics) but rather shared information (Clark

and Marshall, 1978) between about how the world (or even some shared fictional

frame) works (Hobbs, 1987). For example, humans know that dragons fly, despite

there being no real entity of dragon. This kind of knowledge is vital for resolving

references.

Humans can detect much more than coreferrent spans of text in an “is-a”
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relationship (also called an identity relationship), they can infer many kinds of

semantic relationships and for much more than just entities, they can infer what

topic, event, concept, or prototype is being referred to. One such kind of reference

is called Bridging Anaphora (Clark, 1975).

For example, let us look at these two sentences:

I heard you went to the Thai restaurant this morning? Oh yes, the waiter

is from our school!

In this small conversation between two people, it is obvious that the waiter

being referred to in the second sentence is one who works in said Thai restaurant.

Although this fact is not explicitly stated, the speaker of the second sentence assumes

that since it is common knowledge that waiters work at restaurants, and since the

sentence immediately follows the one where such a restaurant is mentioned, it need

not be stated again. This kind of reference is different from the Identity Anaphora

of the last example.

Moreover, in their daily interactions, humans use visual information alongside

world knowledge. When two humans talk of some phenomenon which just happened,

they do not need to mention in precise words the descriptions of what they observed.

It is assumed that the listener will be able to infer a lot from shared knowledge.

Humans use descriptions in natural language text of visual scenes in order to convey

an understanding of the world to other humans, and are able to resolve successfully

which parts of their descriptions match what parts of their vision and vice versa.

Similarly, over large spans of text, humans can infer themes, prototypes, and
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other kinds of abstractions which are referred repeatedly if obliquely, even if these

concepts are not directly mentioned by name. For example, a human can tell from a

story that certain spans of text in it has some reference to the concept of “tragedy”,

indicated by the presence of certain words, even if there is no explicit sentence stating

that it is tragic. In discourse humans can easily infer that certain prototypical

concepts exist and where they are being referred. Hence, as mentioned before, this

work expands the conventional usage of the term reference. Also, it is evident that

to do the more conventional kind of reference resolution, a shared knowledge of

context is needed which can be provided by this expanded definition.

For autonomous systems to interact successfully with humans, to engage in id-

iomatic discourse, they need to solve reference to entities and concepts robustly. This

is necessary for tasks like question answering (Morton, 1999) and entailment (Mirkin

et al., 2010) which depend on knowing what is being talked about. The importance

of this problem is not limited to human-AI interaction either. Tasks like opinion

analysis (Ding and Liu, 2010), if done with sophisticated questionnaires with un-

structured data need to know who has what opinion on which subject, a reference

heavy task.

Robust multi-modal reference resolution makes it easy to annotate large datasets,

something that has become important for data hungry machine learning research.

It is easier for human annotators to convey information about images or videos in

natural language instead of complicated annotation tags and thus, it is possible to

scale vision datasets if the annotations are in natural language. In order to use vi-

sual or linguistic concepts to regularise the training of any vision model in machine
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learning, reference resolution across modalities becomes essential.

1.2 Current Methods

Current work in text based anaphora resolution in NLP focuses largely on en-

tity resolution and not much on other kinds of related phenomena. This is primarily

due to a limitation of datasets, an artefact of decisions made during the MUC-6 con-

ference in ‘95 (MUC-6, 1995) which had very specific requirements, and thus research

into many areas of reference is disincentivised. Even within entity coreference res-

olution, the current datasets of OntoNotes, ACE, and MUC described in MUC-7

(1997) and Pradhan et al. (2011), do not cover a wealth of problems which humans

solve on a regular basis to complete downstream tasks. The history of coreference

resolution research, especially in English, with respect to both policy and available

data has had a tangible effect of restricting the problem to what this work calls

“newswire” data, i.e. data obtained from journalistic and related sources. This has

created a monoculture, and human discourse is richer than what is reflected in such

data. This dissertation attempts to rectify this.

The current data driven methods (Björkelund and Kuhn, 2014; Durrett and

Klein, 2013, 2014; Fernandes et al., 2012), as opposed to past rule-based meth-

ods (Lee et al., 2011; Pradhan et al., 2011), to solve entity coreference resolution

depend on first finding mentions, i.e. spans of text which may refer to some real

world entity, and then grouping these mentions into clusters. These current methods

can be broadly divided into two groups, the first kind goes through the mentions
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one at a time, each mention either starting its own cluster or being ranked against

all the previous discovered mentions to assign one cluster which is similar enough to

it as its cluster. The process continues until all the mentions have been evaluated

and clustered. This method is called mention ranking. The second class of methods

finds for all possible pairs of mentions a binary decision of whether or not they are

coreferent. Then the binary linkages are clustered. This method is thus called pair-

wise classification. Other methods for mention clustering do exist like antecedent

trees but they can be considered an extension of these two methods.

Generally, the process of first finding mentions and then clustering them is

pipelined, though joint models include Durrett and Klein (2014) and Peng et al.

(2015). In current methods, mention detection is an ignored problem, generally a

rule based method with very high precision and very low recall (Durrett and Klein,

2013) is used which creates many spurious mentions. The second step of the pipeline,

namely clustering, is also used to weed out the spurious mentions by not assigning

them to any clusters. This class of methods has a lot of problems, one of which is that

it ignores the question of “what is a mention?” by marking every possible nominal or

pronominal phrase as a candidate whereas, as I show in this work, what a mention is

differs widely among datasets and domains and depends primarily on “what we are

talking about”, i.e. what referring entities are interesting to the downstream task.

This has a lot to do with what the annotators agree on, and has consequences for

domain adaptation problems, and incorporating generalised world knowledge into

coreference resolution. For example, a dataset built around literature will have to

decide whether entities mentioned in conversations between two characters count as
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“real” entities. To further complicate this problem, the largest dataset for entity

coreference, Ontonotes, is not annotated for mentions which are not coreferrent with

any other mention, thus lacking a vital tool which could have been used to train data

driven mention detectors, at least for that domain. While there have been efforts to

incorporate semantic information into models optimised for this kind of data, the

performance gains were small as there was a lack of datasets which needed world

knowledge to solve the sort of coreference humans can solve. Consequently, there is

a lack of research in models attempting to solve such problems. This dissertation

addresses these issues.

As mentioned before, humans can resolve bridging anaphora with as much

facility as identity anaphora. This is an extremely hard problem with current meth-

ods reaching nowhere near human performance. There are few datasets like IS-

Notes (Markert et al., 2012) and SciCorp (Rösiger, 2016) where bridging information

is reliably annotated which makes the task of investigating new methods, especially

deep learning methods which are data hungry, very difficult. Existing models split

the task into two parts, the first being discovering which mentions are anaphors,

and the second finding which antecedent matches the anaphor. Current methods

generally ignore the first part of the process with the notable exception Hou et al.

(2013a) which solves the first stage with a cascading collective classification model

and the second stage with a joint inference model, reaching the performance of rule

based systems (Hou et al., 2014). In this work I investigate both the stages of this

pipeline.

The current methods in machine learning which employ both images and text
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are generative for the text, they are about creating linguistic descriptions of im-

ages (Chen and Zitnick, 2014; Chen et al., 2015; Donahue et al., 2014; Karpathy

and Fei-Fei, 2014; Mao et al., 2014; Vinyals et al., 2014; Xu et al., 2015) instead

of using the complex relations in text to inform the learning of vision tasks. Thus,

current methods tend to ignore the knowledge present in the conceptual scaffolding

of language. Neither is the generation done in a coreferent manner, rather state-of-

the-art systems are used to generate object classes and objecthood locations from

within the image (this too is generally separate) and this data is used along with an

bidirectional RNN to represent the object features and text descriptions in the same

space, thus achieving alignment, and then using that to train an RNN to generate

sentences. The text itself is treated as raw and semantic groupings within the text

are completely ignored. This work on the other hand uses groupings of coreferent

text to constrain the recognition task in images which aids in the identification of

hard to recognise images, namely paintings.

I have discussed the idea of referring to concepts rather than entities. Humans

can infer if a block of text refers to some kind of concept, and more importantly, if

it is a repeating theme over a body of text, for example a book. For discovery of

such prototypical concepts, the only method available was adapting temporal topic

models like the HTMM (Gruber et al., 2007) to infer bags of words as topics, a

mixture of which would be distributed over the document. The temporal nature of

the HTMM, unlike other topic models like the LDA (Blei et al., 2003) ensures that

the inferred topics are sequential in nature, thus reflecting the assumption that con-

cepts in certain kind of text, like narratives, follow one another in order. Recently,
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an unsupervised deep neural network model has been developed called the Relation-

ship Modelling Network (RMN) (Iyyer et al., 2016), which can, given suitable data

extracted from narrative text (say, a novel), generate a list of prototypical concepts,

with each pairwise relationship between two characters being a sequence of some of

these concepts. The limitation of the RMN is that it assumes that these relation-

ship prototypes occur in isolation in the text from other kinds of concepts. In real

narratives, prototypical concepts are interconnected, for example, the relationship

prototype of “death”, would be influenced by the character prototype of “sadness”,

which in turn could be influenced by the global theme of “war”, in a novel which

refers to these concepts in its text. This work extends the RMN to a joint model

which can deal with multiple kinds of prototypes.

1.3 Contribution and Roadmap

In this thesis I build multiple datasets which are used to investigate novel

problems of reference discovery, especially the kind of hard and interesting reference

problems which are not reflected in current datasets and not solved by current

methods. I demonstrate the need for better methods to solve these problems on such

data, and build them. I solve reference problems in three domains, namely, hard

text coreference, analysing (atypical) images using referential texts, and discovering

references to prototypical concepts.

In addition to these being hard, they are a unique take on existing problems

and have research consequences in other areas, for example, distilling narratives
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as chains of prototypes can be used to aid recommendation. Similarly, current

deep learning methods with images and text are data hungry, and are brittle when

faced with small datasets of sufficiently different images like paintings or cartoons.

Current work with images and text is generative, focused on generating text captions

to images, while in Chapter 4 I investigate the use of language for retrieving and

ranking atypical images. These methods are organised into three chapters plus a

background chapter to ease comprehension. I end by presenting some potential

future research directions for these problems.

Chapter 2 presents the background information needed for this dissertation. It

goes over in detail the problem on coreference resolution, and the work done

on it both past and contemporary. It explains the parts of the pipeline used

in current approaches to the problem. The chapter covers the methods for

mention detection and all the methods for grouping those mentions into coref-

erent clusters. The the chapter delves into various machine learning concepts

which have been referred to in the following chapters, namely distributional

semantics, deep networks, multimodal architectures, sequence labelling, and

topic modelling, as understanding these methods is needed for this disserta-

tion. The next chapters discuss my contribution.

Chapter 3 focuses on the domain of Quiz Bowl, a factoid question answering game

of trivia whose questions are rich with referent phrases, and thus humans need

to do coreference resolution on them to answer these questions. I review the

current datasets and evaluation metrics, followed by an explanation of why

the current material in both data and models do not a cover a vast scope in
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the interesting phenomena occurring in coreference resolution. Then, I build

a new dataset from the domain of quiz bowl, and demonstrate the inadequacy

of current methods to solve such coreferences and the need for investigating

the problem of world knowledge. Then, I design a simple method to solve

such coreference with the help of distributional semantics. Then the chapter

tackles the problem of bridging anaphora, describing its existing datasets and

methods used to solve it. I investigate the utility of embeddings for bridging

resolution, analogous to the method employed for coreference. Barring the

experiments on bridging which is unpublished, most of the material comes

from Guha et al. (2015), a work in which I am the primary contributor.

Chapter 4 motivates the need for extending the problem of reference to images.

In it I review current methods which use images with language. I design

a method for retrieving and ranking complex images based on groupings

of coreferent text found in image descriptions. I build a complex image

dataset which requires real world knowledge to understand which is adapted

to a problem of retrieval and ranking. I solve this problem by a method

which infers visual properties from text using distributional semantics. I

also describe another interesting dataset, which comprises of complex images

and referential text and how it can be used to investigate the problem of

hard multi-modal references. The material in this chapter comes from two

published works, Guha et al. (2016) and Iyyer et al. (2017).

Chapter 5 deals with concepts which are not entities, and thus cannot be referred

to by contiguous spans of text. Instead they are “prototypes”, like themes
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of a narrative, events in a character arc, or relationships between characters,

etc. In this chapter I expand upon the conventional usage of reference from

referencing concrete entities, to referencing abstractions or concepts which

are also required to interpret discourse (and other references in it). Humans

regularly figure out what part of a text (or spoken dialogue) refers to what

prototypical concept. In this chapter I design a dataset from movie scripts,

as movies are rich in such concepts. I describe a model which can be used

to discover such prototypes from narrative text, then I design an adaptation

of this model into a joint model which discovers multiple categories of inter-

related prototypical concepts from the movie script data. Then, I perform

experiments demonstrating the utility of discovering these prototypical ref-

erences. The joint model is unpublished work, done in collaboration with

Dr. Ferhan Ture of Comcast Research in which my contribution is primary,

namely the model and the majority of the analysis. The RMN model on

which the model is based comes from Iyyer et al. (2016).

In Chapter 6 I conclude by a summary of this work and describe the potential

future avenues of this research.
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Chapter 2: Background Machine Learning Concepts for Reference

Resolution

In this chapter I provide the background information of relevant past and

present work and briefly explain some machine learning concepts which will be

useful to understand the thesis. I first explain in detail what the problem of reference

resolution is and what subprocesses it involves. Next, to do hard reference problems,

systems need a mechanism to embed a feature which captures world knowledge, and

thus, this chapter describes word embeddings, which give a sense of how “similar”

two words are. In this thesis I also extend the problem of references to the domain

of vision, and for that I describe the current work which involves both vision and

text, and to understand that I present machine learning systems used for computer

vision. All these concepts are described briefly in the following sections. These

concepts are interconnected, for example joint vision and language systems use both

convolutional neural networks and sequence labelling. Reference resolution systems

also use sequence labelling. All three use vector representations. I begin with

describing existing work in coreference resolution.
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2.1 Coreference Resolution: Past and Present

As mentioned in the introduction, the general body of work in coreference

resolution treats it as a pipeline with mention detection followed by various methods

of clustering those mentions into coreferent groups. There is one major exception

to this: Peng et al. (2015) which treats both the tasks as a joint model. This model

splits the mention detection task into two, finding the “head” of the mention (the

head is the parent node in the dependency parse of a phrase) and finding the whole

mention. This model after finding all the possible mention head candidates feeds

them into a model which jointly decides whether each head is a mention head and

its similarity to other heads, and only after this coreference is done are the complete

mentions determined. However, most coreference resolution models are not joint

and the mention detection is a separate earlier step described next.

2.1.1 Current Approaches in Mention Detection

The earlier works in statistical coreference resolution assumed that the men-

tions are noun phrases, as in Cardie et al. (1999) and Ng and Cardie (2002). Later,

various sequence labelling statistical methods (Florian et al., 2004, 2006) were used

for mention detection with the ace (Doddington et al., 2004) dataset. Mention

detection is a hard task and the lack of singleton annotations and detailed men-

tion type annotations in the currently used and larger Ontonotes dataset (Pradhan

et al., 2011) unlike the past ace dataset incentivises rule based methods like the

mention detection methods in Lee et al. (2011), Lee et al. (2013), or Durrett and
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Klein (2013). In general, aside from Peng et al. (2015) there is paucity of recent

work in mention detection relative to work in mention clustering.

The recent rule based systems follow the method which the Berkeley Corefer-

ence system (Durrett and Klein, 2013) uses. It marks three kinds of spans, proper

mentions, pronominals, and all maximal NP projections. Proper mentions are dis-

covered by Named Entity Recognition (ner gold annotations are provided in the

Ontonotes dataset) with all NER types being proper mentions aside from those

labelled CARDINAL, QUANTITY, or PERCENT. Pronominals and maximal NP

projections are obtained via pos tags and parse trees, also provided in gold anno-

tations. This method is based on the Stanford rule based coreference system (Lee

et al., 2011) aside from any mechanism to weed out the spurious mentions thus gen-

erated. Some systems (Björkelund and Farkas, 2012; Rahman and Ng, 2009) do try

to learn spuriousness in a data driven fashion but this is not considered necessary

by present systems as the next step in the pipeline is trained not to put any of these

spurious candidates in clusters.

Thus, current methods concentrate on a high precision mention candidate

generation with a low recall, followed by a high recall clustering procedure to address

the noise. This class of methods have a flaw. As Peng et al. (2015) point out, current

systems suffer significantly in evaluation metrics when running on system generated

mentions. Recently, due to the advent of various deep learning models in NLP

tasks there has been work done to rule out spurious mentions in a data driven

manner (Wiseman et al., 2015). These methods take raw, unconjoined features as

input and attempt to find if the mention is an anaphor. Of course the same method

17



can be used to rank the potential antecedent of an anaphoric mention as described

in the next section.

2.1.2 Current Approaches in Mention Ranking vs. Pairwise Classifi-

cation

Once the mentions are detected the task is to cluster them into coreferent

groups. The methods to do this can be divided broadly into two categories as

described in the introduction, namely mention ranking and pairwise clustering as

shown in Figure 2.1. Another class of methods exists called antecedent trees which

encodes all antecedent decisions for all anaphora but it can be considered an exten-

sion of mention ranking. While these approaches to coreference resolution vary a

lot in their modelling of the problem, Martschat and Strube (2015) unify them by

treating the problem as one of structured prediction with latent variables.

Currently, mention ranking is achieved in two ways. In some works (Durrett

and Klein, 2013; Wiseman et al., 2015) the mentions are compared against all the

previous mentions individually, and the one with the highest rank tells which clus-

ter the current mention belongs to. In other works (Björkelund and Kuhn, 2014;

Wiseman et al., 2016) the mentions are not compared against individual mentions,

but features obtained from previous clusters themselves to get the cluster with the

highest rank and assigning the mention to it. The difference between these two

approaches is illustrated in Figure 2.2. It has been long assumed that the “global”

features of the cluster might give better ranking, than just ranking individually with
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Figure 2.1: Pairwise classification vs. ranking of mentions among candidate an-
tecedents. In the former there is a binary decision over all possible mention pairs
but in the latter for a given mention the last mentions are considered in a sequence
and only one is chosen.

local features per mention, but only in this recent work has the performance of the

second type of ranking been better.

Generally, two kinds of raw feature sets are used in this task, the basic features

which are obtained from the mention itself like type, number, gender, animacy, head

word, etc. and the pairwise features which are obtained from the pair of mentions

in consideration, like, are the two mention candidates in the same sentences, do

their heads match, etc. Due to the manner in which pairwise features are computed

it is more likely to do mention ranking with mentions rather than entire clusters.

As pointed out in Wiseman et al. (2016) cluster level features are hard to define,

because clusters are of different sizes. This was solved in this particular work by

running an RNN over the vector representations (vector representations are defined

in section 2.2) of mentions in a cluster, in sequence, and using the hidden state of
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Figure 2.2: Mention ranking via comparing to individual mentions vs. comparing
to entire clusters. In the former during the ranking process a mention is compared
individually to previous mentions in a sequence using features inherent to the two
mentions in question, but in the latter the mention to be considered is not compared
to previous individual mention but to coreference chains already formed, and aside
from features obtained from the mention, features at cluster level are used.

the RNN as the cluster feature. RNNs are described in subsection 2.5.2.

Another work which should be mentioned here is Durrett and Klein (2014)

which also uses a joint model, namely doing Named Entity Recognition, entity

linking, and mention clustering at the same time. Named Entity Recognition is

essentially classifying mentions on semantic types. Entity linking is an allied problem

to coreference resolution which involves linking a mention in text to a set of entities

in a knowledge base. In the past entity linking was used for coreference, as well as

coreference used for resolving ambiguity of semantic types or entity links, while this

model does these three allied tasks at the same time.
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Now let us discuss another way of clustering mentions. In pairwise classifica-

tion as opposed to mention ranking the same feature sets are used but instead of

giving scores to all the mentions against one mention, all possible pairs are given a

binary decision (as is present in Chapter 3), and then clustering is done using that

information. Clustering algorithms may vary for this task but usually some variant

of best-first or closest-first is applied to the list of pairs. While it looks easier than

mention ranking there are chances of more spurious linkages in the clustering. Men-

tion pair models have another weakness, the sheer majority of negative examples

for the pairwise instances in the training task make learning a robust classification

model difficult, and it is easy to overfit to all negative decisions. To address this,

these methods do resampling (Geibel and Wysotzki, 2003) and negative examples

are taken only from a small neighbourhood of one mention, reducing the negative

examples overall and improving performance. As this introduces cost sensitivity to

learning, pairwise models do not need additional cost functions.

While this is one improvement on the mention ranking model, the pairwise

model does not capture the comparison of scores between antecedents (or antecedent

clusters) which the mention ranking model does and which reflects the online nature

of natural language. A point of note here is that the same feature sets are used in

both mention ranking and pairwise models. In both methods raw features have been

seen to be not very useful for coreference resolution. However, conjoining the features

with each other leads to massive improvements in all models, and thus state of the

art systems rely on manual (Durrett and Klein, 2013) or automatic (Björkelund and

Kuhn, 2014; Fernandes et al., 2012) conjunction schemes. Our method in Chapter 3
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uses a manual scheme. An alternative to conjunction schemes is representation

learning (Wiseman et al., 2015) but this has the disadvantage of being complex and

requires pre-training for the feature representations.

2.2 Word Vector Representations

In all the following chapters there is a need for some measure of semantic

similarity among phrases, a useful tool to do that is a kind of vector representation

of words which which is a kind of shared world knowledge. Semantic similarity

involves similarity in meaning, for example a car is more similar to a bus, than a

carrot. A mechanism to obtain such representations is word embeddings (Mikolov

et al., 2013; Pennington et al., 2014) (also called distributional semantics). These

methods create vectors for words wherein the distance between two vectors cap-

tures the likelihood of them appearing in the same neighbourhood. While vector

space models have existed since the nineties (Schütze, 1993), recent development in

deep learning and existence of large text corpora make it possible to make improved

embeddings reflecting similarity, compared to earlier methods like LSA (Landauer,

2006). Common methods used currently include the Continuous Bag of Words

Model (CBOW) and the skip gram model. A skip gram model has for input, a

one-hot vector representation of a word and as the output a series of one-hot vec-

tors representing its neighbourhood. One-hot vectors are vocabulary length binary

vectors with each dimension a separate word. As shown in Figure 2.3 the model

predicts, given a word, its neighbourhood. The CBOW model is the opposite, given
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Figure 2.3: The skipgram model from Mikolov et al. (2013)

a vector representation of a neighbourhood, it attempts to predict the word.

Once trained, the hidden layer in this neural network captures word co-occurrence

or the likelihood that the word it formed from will occur in a particular neighbour-

hood. This hidden layer is then used as the vector representation for this word

instead of its one-hot vector fed to the model. This allows these vectors to take

a real value as opposed to a binary one, and more importantly, words which are

“similar” tend to cluster in this low dimensional space. This happens because if

there is large enough data with billions of word, taken from real world sources like

the internet, words which occur in each other’s neighbourhood often will capture

some kind of real world similarity. These word vectors can be used in many NLP

tasks requiring neural networks which need some kind of vector representation of

words. Where vector representation of collection of words, or phrases, are needed,

something as simple as averaging the vectors for the individual words might work,

although there are more sophisticated techniques.
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2.3 Convolutional Neural Networks

Another neural network which will useful to know about to understand systems

which use language and vision together, which I will describe in the next section, is

the CNN (Krizhevsky et al., 2012). CNNs are used generally in vision architectures.

CNNs are quite similar to ordinary neural networks used for classification tasks, i.e.

each neuron is a matrix which gets an input as a vector, performs a dot product,

and put a non-linear function over it. In a neural network a layer is made of a set

of neurons and the network itself comprises of a set of layers where each neuron

is connected to all the neurons in the previous layer but are independent to other

neurons of the same layer. The last layer is the output layer. For training, the input

layer is fed a vector, while the edge weights of all the connections are altered till the

output layer matches the instance label. This training ends when there isn’t a need

to alter the weights any more. However, regular neural networks do not work well

with images as the vector sizes are so large, that to have every layer fully connected

to the previous ones means an intractable amount of parameters and a tendency for

overfitting. This is called the curse of dimensionality.

A CNN is a variant of this which takes advantage of the localised nature of

pixels in images, i.e. the fact that the visual field of one neural need not cover the

entire image, to solve the dimensionality problem. Every neuron is influenced only

by a limited region of the image and these regions overlap. This is accomplished

via a special layer called the convolution layer in which a neuron is only connected

to a small region of the layer before it instead of all the neurons. This is done by
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Figure 2.4: An image of a bird is filtered with multiple layers of convolution, ac-
tivation, and pooling. The layers are represented as 3d instead of 2d because the
depth represents the set of features each layer can learn. After all the abstractions
have been learnt the layers are flattened and fed into fully connected layers like a
standard neural network, hereupon they go through the softmax layer and yield
decisions on the categories. The diagram is a simplified representation of common
CNNs present in works like Krizhevsky et al. (2012)

convolving a small learnable filter as a sliding window across the entire previous

layer computing dot products of a neuron with those of the previous layer under

that filter. There are a number of these filters whose comprise the Feature Map.

The more filters there are the more features are being extracted from the last layer,

and thus the model is better. The number of filters in this feature map is called

its depth, the size of the window is called its stride, and there is a third parameter

which decides the padding of these filters. All the weights of all the filters in the

feature map are learnt at training. Figure 2.4 demonstrates the basic architecture

of the CNN.
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In CNNs aside from these convolutional layers, there are a few fully connected

layers, and there are other special purpose layers like layers with element-wise acti-

vation functions and layers for downsampling. Thus a CNN has four kinds of layers

which work in conjunction. The CNN takes an image, each convolutional layer pro-

duces higher and higher abstractions of it, then the signals pass through a few fully

connected layers, and the final layer gives the category, in case of a classification op-

eration, or the results of the penultimate layer is used as the features for some other

vision or multi-modal operation as described in the next section. Because of the

convolutional layers the number of parameters are smaller and the CNNs become

computationally tractable. Aside from being used to classify images, the penulti-

mate layer of CNN architectures can be used as a feature vector for downstream

tasks. These tasks include ones which use language and vision together.

2.4 Current Approaches in Vision with Text

The majority of past work in computer vision has been about labelling pixels

with fixed visual categories. Thus, previous work has included segmentation, seman-

tic segmentation, object detection, and scene understanding. With the advent of

deep networks like CNN described in section 2.3, and GPU computational strength

these tasks have been done with high degree of accuracy. Despite the rapid ad-

vance of these deep networks and independent excellence in each of the above tasks,

they still lack an ability to have a robust understanding of semantic and other re-

lationships of the artefacts in a visual scene to each other and to the scene, which
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involves not just recognition and localisation of scene components like objects but

also parsing their interrelations, as well as the non object parts of the scene.

This is a known problem, and one method of generating sophisticated repre-

sentations of images is by combining the label complexity of generating sequences

for an image (captioning) with the label density, or discovering multiple labels per

image. Thus all the components in the scene can be described by complex text cap-

tions. This is known as the “dense captioning task” (Johnson et al., 2015) by some

groups, though it can be argued that a complete semantic understanding is greater

than learning dense enough captions. Generating dense captions of images has be-

come extremely popular recently (Chen and Zitnick, 2014; Karpathy and Fei-Fei,

2014; Mao et al., 2014; Vinyals et al., 2014; Xu et al., 2015) after the advent of deep

networks and resources such as the imagenet (Deng et al., 2009), MSCOCO (Chen

et al., 2015), flickr dataset (Rashtchian et al., 2010; Young et al., 2014) etc. The way

this is done is often like this, first recognition models trained on the imagenet give

object recognitions from an image from a set of fixed object classes as described in

the previous section. In certain models the object classes are not required but the

matrix of the penultimate layer which serves as a feature vector for that particular

image. In train time, an RNN, a model described in section 2.5.2 which essentially

predicts sequences of tokens, is fed captions and the image feature vector till it learns

what caption occurs with what kind of image. In test time this multi-modal RNN

is fed only the image feature vector and it creates a new sequence off tokens, or a

caption, for that image. While there are slight variances in these caption genera-

tion frameworks, a multi-modal RNN architecture, or a neural network analogous to
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that, is the commonality between all these models. Since they use text as a purely

generative task, and do not look at text to guide the output of the vision task,

this way of generating captions does not actually use the full potential of human

language to do vision tasks better.

There are very few models which do reference between spans of text and visual

entities (Kong et al., 2014) or anything which attempts to utilise complex natural

descriptions and semantics to aid vision tasks. Text has been used to weakly su-

pervise vision tasks like learning correspondence between words and video clips (Yu

and Siskind, 2013), words and action models (Ramanathan et al., 2013), or jointly

learning language and perception models (Matuszek et al., 2012). Very few works

try to relate semantics with vision retrieval (Lin et al., 2014) and even less has been

done to use semantic understanding of text to improve anything more complex than

tag generation or object classification, like jointly doing semantic segmentation, ob-

ject detection, and scene understanding etc (Yao et al., 2012). This work attempts

to address this by doing retrieval a hard vision task with word embeddings.

2.5 Sequence Labelling

One other concept which this thesis uses often, both as a component of joint

language vision systems as in the last section, and also as in systems which only

use text, is sequence labelling. In machine learning sequence labelling is one of the

many pattern recognition tasks that is used to find out given a sequence of inputs

what label should be assigned to which input. Sequence labelling techniques are
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used in many NLP problems, and in the context of this thesis this is used in the

mention detection task in the next chapter. Sequence labelling is done via many

techniques like linear CRFs and RNNs and their analogues.

2.5.1 Conditional Random Fields

In machine learning, generative models are models that generate the observed

data from random using a statistical model, also they model the joint probability

between inputs and outputs. Discriminative models on the other hand model the

posterior probability, that is given such and such input what is the expected output.

The Conditional Random Field (CRF) (Lafferty et al., 2001) is a discrimina-

tive model. It is a variant of a Markov network and is a conditional probability

distribution on an undirected graph. While a classifier can predict one class vari-

able, a probabilistic graphical model (PGM) can model many variables which are

interdependent. The CRF specifically, is a conditional variant of undirected graph-

ical models (Markov Random Fields), which are generative, i.e. the CRF graphs

make the independence assumption for the output variables, but not the input. The

reason a discriminative model has an advantage over a generative one for certain

tasks is because it is hard to represent multiple interacting features or dependencies

of the observations if they are long range.

For our purposes, I describe the linear version of the the CRF. This is just like

an HMM (Eddy, 1996) aside from the fact that it is discriminative and supports

arbitrary features. In an HMM the observation at a time depends on only that par-
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ticular state, this is called the Markov property (also used in subsection 2.6.1). This

is a non reflective of real world sequences where an observation can be dependent

on features from previous states. Unlike the HMM a linear CRF has access to the

entire observation sequence till the given time, so unlike the HMM it can model

overlapping dependent features while modelling a sequence.

Thus, given a sequence of textual words it can infer what their transition

probabilities are, and what their label probabilities are, which is what is needed

for the task of finding labels of a sequence of word. Of course instead of only one

feature, the token itself, other sequential features like the pos tag of the token, or

its dependency relation can also be used. The only drawback of this method is, as

the words themselves are purely symbols with no meaning in themselves, the graph

cannot model things like inter-word similarity while modelling the sequence. For

that a neural network based method is needed where the words are not tokens but

vectors. One such model is the RNN.

2.5.2 Recurrent Neural Networks

The RNN is a neural network, that analogous to a linear CRF, considers the

order of the input signals and is thus suitable for sequence labelling. In an RNN a

sequence of text, represented as vectors, yields a vector as the hidden state repre-

senting the sequence, and a softmax layer over this hidden state predicts the output

layer. Every hidden state for every token depends on the vector representation of

the current input token and the vector which is previous hidden state, thus the
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Figure 2.5: Sequence labelling via recurrent neural network

RNN reads a sentence left to right, as shown in the Figure 2.5. The hidden state is

computed as a non-linear function (like tanh) over the vector composed of the hid-

den state of the previous token and the vector representation of the current input.

Then, the entire model is trained.

Once trained the model can eat any sequence of tokens and find the probability

of what token comes after and also the label at each. However, basic RNNs suffer

from the vanishing gradient problem, i.e. due to the sequence of layers at every

token, the signal starts becoming weak. To overcome this problem which occurs with

long text sequences, variants of RNN, like the Long Short Term Memory (LSTM),

are used which have mechanisms to prevent backpropagated errors from vanishing,

even over long sequences.

Aside from being used in joint vision-language models as described in the

last section, RNNs can be used to convert sequences to vectors. This will be used

in Chapter 5 in a neural network model which finds references to concepts from

documents. An analogous task is done by a generative model in the next section.
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2.6 Topic Models

Topic models are a class of statistical methods in machine learning which

assume that there are a bunch of hidden or latent topics in a set of documents, and

all words in them belong with a certain probability to each of these topics. This

is useful as using these models one can discover these unnamed topics which can

be used in various downstream applications. In the context of this thesis topics are

analogous to abstractions which we want to discover.

In topic models, each topic can be described by a list of probabilities over

the entire vocabulary of the document set, and each word in the documents can be

given one topic of which it has the maximum probability. Having discovered these

hidden topics, each document thus can also be described as a combination of topic

probabilities. For example in the Figure 2.6 a topic model using a commonly used

algorithm Latent Dirichlet Allocation or LDA (Blei et al., 2003) is run on the text

of the AP corpus, it discovers a a few topics and assigns each word with one. Topic

models can be used to discover concepts distributed over text.

The way topic models work, they consider each document a “bag of words”,

i.e. the order of words in them is not important, they explain these collections of

words by discovering the unobserved groupings that may generate these collections.

In NLP this is an example of a generative model, i.e. a statistical model which

randomly generates observed data values given some latent (hidden) variables. This

is useful for this thesis because it is not only interested in discovering spans of text

referring to real world entities, it is also interested in expanding the definition of
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Figure 2.6: An article from the Associated Press corpus run with a topic model using
the LDA algorithm (Credit: David M. Blei) demonstrating some topics discovered
and how tokens in the article are assigned those topics.

reference to include what “concept” the spans might be referring to. The concepts

are analogous to topics. However, with the kind of text this work deals with, and

the kind of concepts spans in such text refer to, the order, or sequence of words is

important because we might want to make assumptions about how those concepts

influence the existence of succeeding concepts. There are variants of topic models

which account for this. One variant uses the Markov property, also used by HMMs

described in 2.5.1.
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Figure 2.7: Two portions of text from the beginning and end of a NIPS paper being
assigned topics via an HTMM topic model. Because the model assumes that topics
of contiguous text must be similar, it is a good model to perform text segmentation.
In this example, all of the front part and some of the last part is assigned a topic
which has mathematical terms, whereas the part of the text with acknowledgements
and the one with references are assigned two different topics (Credit: Amit Gruber)

2.6.1 Markov Topic Models

The assumption of topic models that the order of the words is irrelevant causes

problems for the task of reference detection of concepts because the presence of a

concept in a sentence in some structured text is not independent of what text came

before or after, and also the model needs to consider the sequential property of

these sentences. For example, in narrative text, a “sad” sentence must have had

text before it which caused its words to have that theme, and the sentences following

will have themes whose existence is influenced by this reference. One class of topic

models which can address this are Markov topic models, like the HTMM (Gruber

et al., 2007) which assume that the topic assignments form a Markov chain, and

thus the existence of one topic or concept is influenced by existence of other topics

before it.

As shown in the Figure 2.7 if the assumption is that sentences refer to the

same topics and adjacent sentences are likely to have same topics, then this model

is useful for neatly breaking the text into sequential topics.
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2.7 Summary

In this chapter I have discussed the various background machine learning con-

cepts needed to understand the following chapters of this thesis. This included a

description of current work in coreference, the methods used therein for the various

stages of the coreference pipeline, vector representations of words and how they are

generated using neural networks, deep learning vision architectures and how they

intersect with models which work on text, statistical methods for sequence labelling,

using both neural networks and probabilistic graphical models, and topic models and

their temporal variants. The next chapter describes my work in discovering hard

coreference chains requiring world knowledge from a new coreference data source.
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Chapter 3: Discovering Referring Entities and Related Problems

In Chapter 2 I describe the current body of work in both mention detection

and resolution. In this chapter, I first talk about the issues with the existing sources

of data used sources for coreference resolution.1 Then I build a better dataset which

captures the kind of problems this work wishes to investigate. After that I present

our own methods for end-to-end resolution which uses distributional semantics. Fi-

nally, I present experiments for using a similar method to investigate the harder

phenomena of bridging references.

3.1 Quiz Bowl Data

As mentioned briefly in the introduction, many current limitations of coref-

erence resolution research in text, namely, restricting the problem to easy entity

centric coreference, is due to the both the lack of diverse datasets and the absence

of datasets which have hard coreference problems. There are three major English

1Aside from the section at the end about Bridging Anaphora which is work in preparation,
most of this chapter comes from the published work called “Removing the Training Wheels: A
Coreference Dataset that Entertains Humans and Challenges Computers” published in NAACL,
2015. The authors of this work are Anupam Guha, Mohit Iyyer, Danny Bouman, and Jordan Boyd-
Graber. In this work my contribution is primary, namely the annotation of the dataset, the active
learning method for selecting instances to annotate, experiments with both the mention detection
via a sequence labelling method and clustering, and using similarity as a means of incorporating
world knowledge
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datasets for this task, namely muc (MUC-6, 1995; MUC-7, 1997), ace (Dodding-

ton et al., 2004), and Ontonotes (Pradhan et al., 2011), and their data sources and

annotation conventions have had consequences in shaping the problem.

3.1.1 Issues with Current Datasets and Approaches

Newswire text, defined as text obtained from journalistic and allied sources,

like broadcast conversations, is widely used as training data for coreference resolution

systems. The standard English datasets used in the muc (MUC-6, 1995; MUC-7,

1997) and CoNLL shared tasks (Pradhan et al., 2011) contain such text while

the ace (Doddington et al., 2004) dataset, though it has non newswire text as

well, focuses on specific entity types instead of general coreference. Even in the new

Ontonotes dataset version, which has a pivot corpus from non newswire sources, and

more telephonic conversations, there is a severe lack of hard coreference examples,

i.e. coreferences which need more than lexical and semantic features, like shared

world knowledge which appears in all kinds of human discourse.

It must be mentioned here that some large annotated coreference datasets in

other languages are not newswire centric. ANCOR_centre (Muzerelle et al., 2014),

the French dataset is based on conversational text while the Polish PCC (Ogrod-

niczuk et al., 2013) dataset has 14 different text genres. However the Japanese

Kyoto corpus (Kawahara et al., 2002), the Spanish and Catalan ANCORA (Taulé

et al., 2008), the Japanese NAIST dataset (Iida et al., 2007), the Czech PDT (Hajič

et al., 2017), the German TüBa-D/Z (Telljohann et al., 2004), and the German
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DIRNDL (Björkelund et al., 2014) are all all based on news sources indicating a

monoculture of newswire in NLP research across languages.

Current systems are not able to solve hard coreference in the manner humans

can because they are evaluated on data which isn’t representative of the range in

human ability to solve hard coreference resolution. This skews the research towards

building models with lexical and at best semantic features, ignoring the need for

knowledge.

Newswire like text is sparse in anaphoric mentions, and those that it has

are mainly identity coreferences and appositives. In the CoNLL 2011 shared

task (Pradhan et al., 2007) based on OntoNotes 4.0 (Hovy et al., 2006),2 there are

2.1 mentions per sentence; in the next section I present a dataset with 3.7 mentions

per sentence.3 In newswire text, most nominal entities (not including pronouns)

are singletons; in other words, they do not corefer to anything. OntoNotes 4.0 devel-

opment data contains 25.4K singleton nominal entities (Durrett and Klein, 2013),

compared to only 7.6K entities which corefer to something (anaphora). On the

other hand, most pronominals are anaphoric, which makes them easy to resolve as

pronouns are single token entities. While it is easy to obtain a lot of newswire data,

the amount of coreferent-heavy mention clusters in such text is not correspondingly

high, and text where coreference is among text spans which are not pronouns is

even lower. In human coreference by contrast an entity can be referred to in various

2As our representative for “newswire” data, the English portion of the Ontonotes 4.0 contains
professionally-delivered weblogs and newsgroups (15%), newswire (46%), broadcast news (15%),
and broadcast conversation (15%).

3Neither of these figures include singleton mentions, as OntoNotes does not have gold tagged
singletons. Our dataset has an even higher density when singletons are included.
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NW Later, [they]1 all met with [President Jacques Chirac]2. [Mr. Chirac]2 said
an important first step had been taken to calm tensions.

NW Around the time of the [Macau]1 handover, questions that were hot in [the
Western media]2 were “what is Macaense”? And what is native [Macau]1
culture?

NW [MCA]1 said that [it]1 expects [the proposed transaction]2 to be completed
no later than November 10th.

QB As a child, [this character]1 reads [[his]1 uncle]2 [the column]3 [That Body
of Yours ]3 every Sunday.

QB At one point, [these characters]1 climb into barrels aboard a ship bound for
England. Later, [one of [these characters]1]2 stabs [the Player]3 with a fake
knife.

QB [One poet from [this country]2]1 invented the haiku, while [another]3 wrote
the [Tale of Genji ]4. Identify [this homeland]2 of [Basho]1 and [Lady
Murasaki]3.

Table 3.1: Three newswire sentences and three quiz bowl sentences with annotated
coreferences and singleton mentions. These examples show that quiz bowl sentences
contain more complicated types of coreferences that may even require world knowl-
edge to resolve.

ways, not necessarily using pronouns.

Current work in coreference resolution have downplayed the need world knowl-

edge, due to not as much improvement on attempting to use semantic and world

knowledge features (Durrett and Klein, 2013) compared to improvements obtained

from better syntactic features. Before that, works like Daumé III and Marcu (2005)

tried word clustering for world knowledge which led to methods like Web n-gram

features (Bansal and Klein, 2012). In this work I show how using simple distri-

butional semantics (word embeddings which reflect world knowledge by leveraging

neighbourhood of words in large corpora) massively increases performance, in part

because because of a change in datasets. Systems trained on news media data for

a related problem—entity extraction—falter on non-journalistic texts (Poibeau and

Kosseim, 2001). This discrepancy in performance can be attributed to the stylistic
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conventions of journalism also known as Style Guides. Journalists are instructed

in these style guides, for example, to limit the number of entities mentioned in

a sentence to aid comprehension of their audience, and there are strict rules for

referring to individuals (Boyd et al., 2008). Furthermore, writers cannot assume

that their readers are familiar with all participants in the story, which requires that

each entity is explicitly introduced in the text (Goldstein and Press, 2004). These

constraints make for easy reading by design and, as a side effect, easy coreference

resolution. Unlike this simplified “journalistic” coreference, everyday coreference

relies heavily on inferring the identities of people and entities in language, which

requires substantial world knowledge.

3.1.2 Quiz Bowl data and Annotation

One example of such data comes from a game called quiz bowl. Quiz bowl is

a trivia game where questions are structured as a series of sentences, all of which

indirectly refer to the answer. Each question has multiple clusters of mutually-

coreferent terms, and one of those clusters is coreferent with the answer. Figure 3.1

shows an example of a quiz bowl question where all answer coreferences are marked.

A player’s job is to determine the entity referenced by the question.4 Each

sentence contains progressively more informative references and more well-known

clues. For example, a question on Sherlock Holmes might refer to him as “he”,

“this character”, “this housemate of Dr. Watson”, and finally “this detective and

4In actual competition, it is a race to see which team can identify the coreference faster, but
we ignore that aspect here.
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[The Canadian rock band by [this name]] has released such albums as Take A Deep Breath,
Young Wild and Free, and Love Machine and had a 1986 Top Ten single with Can’t Wait For the
Night. [The song by [this name]] is [the first track on Queen’s Sheer Heart Attack]. [The novel
by [this name]] concerns Fred Hale, who returns to town to hand out cards for a newspaper
competition and is murdered by the teenage gang member Pinkie Brown, who abuses [the title
substance]. [The novel] was adapted into [a 1947 film starring Richard Attenborough]; [this]
was released in the US as Young Scarface. FTP, identify [the shared name of, most notably, [a
novel by Graham Greene]].

Figure 3.1: An example quiz bowl question about the novel Brighton Rock. Every
mention referring to the answer of the question has been marked; note the variety
of mentions that refer to the same entity and the variety of ways in which an entity
can be referred to.

resident of 221B Baker Street”. While quiz bowl has been viewed as a classification

task (Iyyer et al., 2014), previous work has ignored the fundamental task of coref-

erence. Nevertheless, quiz bowl data are dense and diverse in coreference examples.

For example, references within references, called nested mentions, which are difficult

for both humans and machines, are very rare in the newswire text of OntoNotes—

0.25 mentions per sentence—while quiz bowl contains 1.16 mentions per sentence

(Figure 3.2). Examples of nested mentions can be seen in in Table 3.1. Since quiz

bowl is a game, it makes the task of solving coreference interesting and challenging

for an annotator. I create a new dataset based from this domain thus altering the

nature of the coreference resolution task.

Each document is a single quiz bowl question containing an average of 5.2

sentences. While quiz bowl covers all areas of academic knowledge, this work fo-

cuses on questions about literature from (Boyd-Graber et al., 2012), as annotation

standards are more straightforward.

This webapp (Figure 3.3) allows users to annotate a question by highlighting

a phrase using their mouse and then pressing a number corresponding to the coref-
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Figure 3.2: Density of quiz bowl vs. CoNLL coreference both for raw and nested
mentions.

erence group to which it belongs. Each group is highlighted with a single color in

the interface distinguishing the coreference chains. The webapp displays a single

question at a time, and for some questions, users can compare their answers against

gold annotations by the authors. The annotators are provided with the ability to see

if their tags match the gold labels for a few documents as a mechanism was needed

to help them learn the annotation guidelines as the annotators are crowdsourced

volunteers. This improves inter-annotator agreement.

The webapp was advertised to quiz bowl players before a national tournament

and attracted passionate, competent annotators preparing for the tournament. A

leaderboard based on mentions tagged was implemented to encourage competitive-

ness, and prizes were given to the top five annotators.

Users are instructed to annotate all authors, characters, works, and the answer
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to the question (even if the answer is not one of the previously specified types of

entities). This work considers a coreference to be the maximal span that can be

replaced by a pronoun.5

As an example, in the phrase this folk sermon by James Weldon Johnson, the

entire phrase is marked, not just sermon or this folk sermon. Users are asked to

consider appositives as separate coreferences to the same entity. Thus, The Japanese

poet Basho has two phrases to be marked, The Japanese poet and Basho, which both

refer to the same group.6 Users annotated prepositional phrases attached to a noun

to capture entire noun phrases.

5The instruction was phrased in this way to allow the educated but linguistically unsavvy
annotators to approximate a noun phrase.

6The datasets, full annotation guide, and code can be found at http://www.cs.umd.edu/

~aguha/qbcoreference.
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Figure 3.3: The webapp to collect annotations. The user highlights a phrase and then assigns it to a group (by number).
Showing a summary list of coreferences on the right significantly speeds up user annotations.
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Titular mentions are mentions that refer to entities with similar names or the

same name as a title, e.g., “The titular doctor” refers to the person “Dr. Zhivago”

while talking about the book with the same name. For our purposes, all titular

mentions refer to the same coreference group. While the annotators do mark all

anaphora, cataphora, and coreferring noun phrases, they are not instructed to mark

split antecedents as it was considered too complex for the scope of this work, though

split antecedents are present in such data. Split antecedents are non contiguous

mentions that referred to by a single anaphor; for example, in the sentence Romeo

met Juliet at a fancy ball, and they get married the next day, the word they refers

to both Romeo and Juliet, and these are the antecedents which are not-contiguous,

therefore split. Currently, this webapp cannot tag these cases. The annotation does

not distinguish between coreference and bound variables. A bound variable is an

antecedent, which unlike an anaphor is indefinite. For example in the phrase “every

office got its desk”, “its” doesn’t refer to a particular office and is thus a bound

variable and not an anaphor. Bound variables are practically not present in quiz

bowl due to the nature of the text so this wasn’t a problem.

To illustrate how popular the webapp proved to be among the quiz bowl com-

munity, 615 documents were tagged by seventy-six users within a month. The top

five annotators, who between them tagged 342 documents out of 651, have an inter-

annotator agreement rate of 87% with a set of twenty author-annotated questions

used to measure tagging accuracy. Agreement here looks at complete mention span

matches instead of only head matches, but does not do chance correction as this is

not a classification task.
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Number of . . . Quiz bowl OntoNotes

documents7 400 1,667
sentences 1,890 44,687
tokens 50,347 955,317
mentions 9,471 94,155
singletons8 2,461 0
anaphora 7,010 94,155
nested mention 2,194 11,454

Table 3.2: Statistics of both our quiz bowl dataset and the OntoNotes training data
from the CoNLL 2011 shared task.

This work only considers documents that have either been tagged by four or

more users with a predetermined degree of similarity and verified by one or more

author (150 documents), or documents tagged by the authors in committee (250

documents). Thus, the gold dataset has 400 documents.

Both the quiz bowl dataset and the OntoNotes dataset are summarized in

Table 3.2. If coreference resolution is done by pairwise classification, this dataset has

a total of 116,125 possible mention pairs. On average it takes about fifteen minutes

to tag a document because often the annotator will not know which mentions co-

refer to what group without using external knowledge, solving the coreference chains

on this data is hard for humans as well. OntoNotes is 18.97 times larger than our

dataset in terms of tokens but only 13.4 times larger in terms of mentions.9 Next, I

describe a technique that allows this webapp to choose which documents to display

for annotation.

7This number is for the OntoNotes training split only.
8OntoNotes is not annotated for singletons.
9These numbers do not include singletons as OntoNotes does not have them tagged, while ours

does.
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3.1.2.1 Active Learning

Active learning is a technique that alternates between training and annotation

by selecting instances or documents that are maximally useful for a classifier to

learn (Settles, 2010). Because of the large sample space and amount of diversity

present in the data, active learning helps us build our coreference dataset. To be

more concrete, the original corpus contains over 7,000 literature questions, and it

would be prudent to tag only the useful ones. Since it can take a quarter hour to tag

a single document and the authors wanted at least four annotators to agree on every

document included in the final dataset, annotating all 7,000 questions is infeasible.

I follow the work of Miller et al. (2012), who use active learning for document-

level coreference rather than at the mention level. Starting from a seed set of a

hundred documents and an evaluation set of fifty documents I sample 250 more

documents from our set of 7,000 quiz bowl questions.10 I use the Berkeley coref-

erence system (described in the next section) for the training phase. In Figure 3.4

the effectiveness of our iteration procedure can be seen. Unlike the result shown

by Miller et al. (2012), it is observed that for this dataset voting sampling beats

random sampling, which supports the findings of Laws et al. (2012).

Voting sampling works by dividing the seed set into multiple parts and using

each to train a model. Then, from the rest of the dataset this method selects the

document that has the most variance in results after predicting using all of the

models. Once that document gets tagged, it is added to the seed set, retrain, and

10These were documents tagged by the quiz bowl community, so I didn’t have to make them
wait for the active learning process to retrain candidate models.
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Figure 3.4: Voting sampling active learning works better than randomly sampling
for annotation.

repeat the procedure. This process is impractical with instance-level active learning

methods, as there are 116,125 mention pairs (instances) for just 400 documents.

Even with document-level sampling, the procedure of training on all documents

in the seed set and then testing every document in the sample space is a slow

task. Batch learning can speed up this process at the cost of increased document

redundancy; I choose not to use it because I want a diverse collection of annotated

documents.

Active learning’s advantage is that new documents are more likely to contain

diverse (and thus interesting) combinations of entities and references, which an-

notators noticed during the annotation process. Documents selected by the active

learning process were dissimilar to previously-selected questions in both content and

structure.
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3.1.3 A Simple Mention Detection and Clustering Model

First I run the Berkeley coreference system (Durrett and Klein, 2013) on our

dataset to show that models trained on newswire data cannot effectively resolve

coreference in quiz bowl data, and thus the domains are sufficiently different. Train-

ing and evaluating the Berkeley system on quiz bowl data also results in poor perfor-

mance.11 This result motivates us to build a simple end-to-end coreference resolu-

tion system that includes a data-driven mention detector (as opposed to Berkeley’s

rule-based one) and a simple pairwise classifier. Using our mentions and only six

feature types, this method is able to outperform the Berkeley system on this data.

Finally, I explore the linguistic phenomena that make quiz bowl coreference so hard

and draw insights from our analysis that may help to guide the next generation of

coreference systems.

3.1.3.1 Evaluating the Berkeley System on Quiz Bowl Data

I use two publicly-available pretrained models supplied with the Berkeley coref-

erence system, Surface and Final, which are trained on the entire OntoNotes 4.0

dataset. The difference between the two models is that Final includes semantic

features. This work reports results with both models to see if the extra semantic

features in Final are expressive enough to capture quiz bowl’s inherently difficult

coreferences. I also train the Berkeley system on quiz bowl data and compare the

performance of these models to the pretrained newswire ones in Table 3.3. Our re-

11This work uses default options, including hyperparameters tuned on OntoNotes 4.0
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sults are obtained by running a five-fold cross-validation on our dataset. The results

show that newswire is a poor source of data for learning how to resolve quiz bowl

coreferences and prompted us to see how well a pairwise classifier does in compar-

ison. To build an end-to-end coreference system using this classifier, the method

needs to know which parts of the text are “mentions”, or spans of a text that refer

to real world entities. In the next section I talk about the mention detection system.

3.1.3.2 A Simple Mention Detector

As mentioned before the Berkeley system does rule-based mention detection to

detect every NP span, every pronoun, and every named entity, which leads to many

spurious mentions. This process is based on an earlier work of Kummerfeld et al.

(2011), which assumes that every maximal projection of a noun or a pronoun is a

mention and uses rules to weed out spurious mentions. Instead of using such a rule-

based mention detector, our system follows the lead of much earlier work like Florian

et al. (2006) and detects mentions via sequence labelling, as detecting mentions is

essentially a problem of detecting start and stop points in spans of text. This

also works for nested mentions, as instead of just detecting start and stop points,

it ends up detecting combinations of states and stop, treating each combination

as a sequence label. This work solves this sequence tagging problem using the

mallet (McCallum, 2002) implementation of conditional random fields (Lafferty

et al., 2001) which is described in Chapter 2 Section 2.5.1. The labelling technique

I use with the sequence labels is analogous to one used for bio markers (Ratinov
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Figure 3.5: Features and BIO labels for our mention detector

and Roth, 2009). The features it uses, as shown in Figure 3.5, which are similar to

those used in Kummerfeld et al. (2011), are:

• the token itself

• the part of speech

• the named entity type

• a dependency relation concatenated with the parent token12

Using these simple features, this work obtains surprisingly good results. When

comparing the detected mentions to gold standard mentions on the quiz bowl dataset

using exact matches, the results are 76.1% precision, 69.6% recall, and 72.7% F1

measure. Now that high-quality mentions have been detected, each pair of mentions

is fed into a pairwise mention classifier.

12These features were obtained using the Stanford dependency parser (De Marneffe et al., 2006).
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muc

System Train P R F1

Surface OntoN 47.22 27.97 35.13
Final OntoN 50.79 30.77 38.32

Surface QB 60.44 31.31 41.2
Final QB 60.21 33.41 42.35

Table 3.3: The top half of the table represents Berkeley models trained on OntoNotes
4.0 data, while the bottom half shows models trained on quiz bowl data. The
muc F1-score of the Berkeley system on OntoNotes text is 66.4, which when com-
pared to these results prove that quiz bowl coreference is significantly different than
OntoNotes coreference.

However, there is a massive scope of improvement here. Our mention detector

is missing out of almost 30% mentions which are anaphoric, and the only reason it

ties with the rule based system is because the rule based system doesn’t attempt to

do better on recall. Since our system cannot find such a large number of mentions

which have coreferents the downstream classifier can not evaluate on those, and thus

potentially could have done better. There is also potential work in this sub-problem

to ‘hallucinate” mentions in the Ontonotes dataset which have not been annotated,

i.e. the singleton mentions using something like scheduled sampling. A method

like that might make it possible to have enough singleton and anaphoric mentions

(though noisy) from a large dataset to design a more robust mention detector.

3.1.3.3 A Simple Coref Classifier

I follow previous pairwise coreference systems (Ng and Cardie, 2002; Uryupina,

2006; Versley et al., 2008) in extracting a set of lexical, syntactic, and semantic
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features from two mentions to determine whether they are coreferent. For example,

if Sylvia Plath, he, and she are all of the mentions that occur in a document, our

classifier gives predictions for the pairs he—Sylvia Plath, she—Sylvia Plath, and

he—she.

Given two mentions in a document, m1 and m2, this method generates the

following features and feed them to a logistic regression classifier:

• binary indicators for all tokens contained in m1 and m2 concatenated with

their parts-of-speech

• same as above except for an n-word window before and after m1 and m2

• how many tokens separate m1 and m2

• how many sentences separate m1 and m2

• the cosine similarity of word2vec (Mikolov et al., 2013) vector representations

of m1 and m2; these vectors are obtained by averaging the word embeddings for

all words in each mention. This work uses publicly-available 300-dimensional

embeddings that have been pretrained on 100B tokens from Google News.

• same as above except with publicly-available 300-dimensional GloVe (Penning-

ton et al., 2014) vector embeddings trained on 840B tokens from the Common

Crawl

The first four features are standard in coreference literature, while the word

embedding similarity scores increase our F-measure by about 5 points on the quiz

53



bowl data. Since they have been trained on huge corpora with billions of words, the

word embeddings allow us to infuse some sense of world knowledge into our model;

for instance, the vector for Russian is more similar to Dostoevsky than Hemingway.

Given enough text data to train these word embeddings on, they start reflecting

some knowledge about the world.

muc bcub ceafe

Model Mentions P R F1 P R F1 P R F1

QB Final Berkeley 60.2 33.4 42.4 56.9 21.1 30.7 56.9 13.0 21.2

QB Final CRF 56.9 29.6 38.9 50.6 18.7 27.2 51.7 12.7 20.4
LR CRF 67.0 72.4 67.8 59.2 78.6 63.9 58.7 48.6 49.2

QB Final Gold 70.2 40.2 49.6 88.5 64.7 74.2 56.5 80.0 65.7
LR Gold 58.8 56.8 57.8 68.1 74.8 70.4 73.3 76.1 74.2

Table 3.4: Comparison of the lr pairwise classifier to the Berkeley QB Final system.
The bolded values are the highest in every column. All models are trained and
evaluated on quiz bowl data via five fold cross validation on F1, precision, and
recall. Berkeley/crf/Gold refers to the mention detection used, lr refers to our
logistic regression model and QB Final refers to the Berkeley model trained on quiz
bowl data. Our model outperforms the Berkeley model on every metric when using
our detected crf mentions. When given gold mentions, lr outperforms Berkeley
QB Final in five of nine metrics.

Table 3.4 shows that our logistic regression model (lr) outperforms the Berke-

ley system on numerous metrics when trained and evaluated on the quiz bowl

dataset. Precision, recall, and F1, metrics are used applied to muc, bcub, and

ceafe measures used for comparing coreference systems.13 The results show that

this lr model outperforms Berkeley by a wide margin when both are trained on the

13The muc (Vilain et al., 1995) score is the minimum number of links between mentions to
be inserted or deleted when mapping the output to a gold standard key set. bcub (Bagga and
Baldwin, 1998) computes the precision and recall for all mentions separately and then combines
them to get the final precision and recall of the output. ceafe (Luo, 2005) is an improvement on
bcub and does not use entities multiple times to compute scores.
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mentions found by our mention detector (crf). For four metrics, the crf mentions

actually improve over training on the gold mentions.

Why does the lr model outperform Berkeley when both are trained on our

quiz bowl dataset? I hypothesize that some of Berkeley’s features, while helpful

for sparse OntoNotes coreferences, do not offer the same utility in the denser quiz

bowl domain. Compared to newswire text, our dataset contains a much larger

percentage of complex coreference types that require world knowledge to resolve.

Since the Berkeley system lacks semantic features let alone any feature to reflect

world knowledge, it is unlikely to correctly resolve these instances, whereas the

pretrained word embedding features give our lr model a better chance of handling

them correctly. Another difference between the two models is that the Berkeley

system ranks mentions as opposed to doing pairwise classification like our lr model,

and the mention ranking features may be optimized for newswire text.

3.1.4 Why Quiz Bowl Coreference is Challenging and Interesting

While models trained on newswire falter on these data, is this simply a domain

adaptation issue or something deeper? Let us look at some examples that the Final

model of Berkeley coref gets wrong.

This writer depicted a group of samurai’s battle against an imperial.

For ten points, name this Japanese writer of A Personal Matter and

The Silent Cry.

While the model identifies most of pronouns associated with Kenzaburo Oe

55



(the answer), it cannot recognize that the theme of the entire paragraph is building

to the final reference, “this Japanese writer”, despite the many Japanese-related

ideas in the text of the question (e.g., Samurai and emperor). The model simply

has no mechanism to learn the association between these phrases, as none of its

features captures “Japanese-ness”. Unless the dataset has these kinds of problems,

it will not be revealed that models need mechanisms to learn these kinds of features.

Final also cannot reason effectively about coreferences that are tied together

by similar modifiers as in the below example:

That title character plots to secure a “beautiful death” for Lovberg by

burning his manuscript and giving him a pistol. For 10 points, name

this play in which the titular wife of George Tesman commits suicide.

While a reader can connect “titular” and “title” to the same character, Hedda

Gabler, the Berkeley system fails to make this inference cause of its reliance on hard

lexical features.

These data are a challenge for all systems, as they require extensive world

knowledge. For example, in the following sentence, a model must know that the

story referenced in the first sentence is about a dragon and that dragons can fly.

The protagonist of one of this man’s works erects a sign claiming that

that story’s title figure will fly to heaven from a pond. Identify this

author of Dragon: the Old Potter’s Tale

While word embeddings do capture this kind of knowledge, the method relies

on something primitive like co-occurrence, and it can be observed why there is a
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need for better machine learning methods to learn such specialised knowledge and

representations for using such knowledge. These methods can work alongside non

ML solutions like knowledge sources.

Humans solve cases like these using a vast amount of external knowledge, but

existing models lack information about worlds (both real and imaginary) and thus

cannot confidently mark these coreferences. In the next section I discuss similarly

hard text reference problems, this time dealing with associations instead of identities.

3.2 Investigating Bridging Anaphora

A discussion on complex reference resolution in text is incomplete without de-

scribing the problem of bridging resolution and the problems encountered in solving

it. As mentioned in the previous chapter, resolution in text could be about identity,

which is coreference resolution, but it can also be about association, i.e. semantic

relations other than “is-a” relation. These are bridging relations. This concept was

first stated by Clark (1975) whose work made a distinction between definite descrip-

tions referring to previously mentioned entities. It also distinguished these relations

as direct or indirect. These definitions are now considered inadequate as the things

being referred to need not be an entity in the first place.

For the purposes of this discussion, I take the definition from the work of Hou

et al. (2013b) that any text reference relation that is not coreference or comparison

is bridging. This could cover a large range. For example, an anaphor in a bridging

relationship could be non definite:
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I am going to cook lunch. I will fry some vegetables

In this text lunch is in a bridging relationship with some vegetables but not a

coreference. In addition “some vegetables” is not a definite NP. The problem is

made further complex by the fact that the antecedent need not be an entity. For

example:

I am going to cook. The pot is on the stove

In this text the pot is in a bridging relationship with the verb cook. For the purposes

of this discussion antecedents are restricted to entities. The rest of the structure of

this problem is the same as coreference, i.e. there are anaphora and antecedents.

Unlike coreferece, cataphora are not encountered. This problem is much more dif-

ficult than coreference as there are no clear syntactic clues to demonstrate clearly

the existence of these relations, unlike coreference where good results can be ob-

tained from only syntactic surface features as demonstrated in the Surface variant

of Durrett and Klein (2013).

Because of the nature of bridging, and unlike coreference, there are significant

differences between the anaphora and the antecedents, which prompt us to address

them separately. Thus, the procedure for discovering bridging relations is often:

• find all the spans of text which are mentions (this is the same as coreference

resolution)

• find which mentions are anaphors, by doing a binary classification on each

• for every anaphor thus detected, find which of the antecedent candidates before
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it has a bridging link to it

3.2.1 Current Datasets and Methods for Bridging Anaphora

There is a lack of datasets in the study of bridging. The first dataset with

annotations for bridging is the Vieira/Poesio dataset (Poesio et al., 2002) which has

thirty three articles from the Penn Treebank corpus (Marcus et al., 1993) annotated.

However, future authors have disagreements with the annotation in this dataset as

hard coreferences are also annotated as bridging. Another dataset is the GNOME

corpus (Poesio, 2004) which has only five hundred sentences from two domains.

However, the authors of this work limited the kinds of bridging relationships they

wanted to annotate in order to preserve inter annotator agreement, and thus only

three kind of bridging relationships were annotated, leading to only 153 instances

in the dataset which is too small for most machine learning models. Then there

is the Switchboard Corpus (Godfrey et al., 1992) a portion of which annotated

for Information Status by Nissim et al. (2004), which had among its types four

subtypes related to bridging. A major flaw of this dataset is that the antecedent

information of the anaphors is not annotated, and thus it cannot be tested on. There

are some non-English datasets like DIRNDL (Björkelund et al., 2014) with around

three thousand sentences and the large Prague Dependency Treebank (Hajič et al.,

2017), which has been annotated for bridging relations by Nedoluzhko et al. (2009)

with over 8000 bridging annotations.

The most recent datasets are ISNotes (Markert et al., 2012) annotated in 2012
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and SciCorp (Rösiger, 2016) in 2016. SciCorp is made from 14 full length science

papers from two genres with 890 and 599 instances of bridging in them respectively.

ISNotes is made from a subset of OntoNotes, namely 50 texts taken from the Wall

Street Journal portion of this dataset. Thus, it has only a very small fraction of the

size of OntoNotes. Even compared to the quiz bowl dataset built in the last section,

itself small and from specialised data, ISNotes has about a fifth of the mentions. It

has a total of 663 bridging anaphors. Thus, there is an absence of any dataset with

enough bridging instances to run a robust machine learning method on it, let alone

data hungry deep learning methods.

Due to there not being enough data to train sophisticated learning systems,

until 2015 rule based systems like (Hou et al., 2014) performed better on the task.

Also, for the same reason, one should not learn models with all possible anaphor-

antecedent candidate pairs, as there will be so many negative examples that the

model will always give a negative result. In the work of Hou et al. (2013b) it is

demonstrated that one can limit the number of antecedents of a particular anaphor

by taking a window of only two sentences prior to the one the anaphor is on. In the

ISNotes dataset this window covers 76.9% of anaphors having an antecedent in this

range.

3.2.1.1 Anaphora Recognition

As mentioned earlier, the first step in detecting bridging relations is to find the

mentions analogously to the coreference task. Then I find which of these mentions
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are anaphors. A lot of early work in bridging (Lassalle and Denis, 2011; Markert

et al., 2003; Poesio and Vieira, 1998; Poesio et al., 2004) assumed the gold data for

this step as well. Early works (Rahman and Ng, 2012) in this sub problem reported

different range of results as the Switchboard corpus and the ISNotes corpus have

different definitions of what information state type even counts as bridging.

Various classification methods are used, of note is the Cascading Collective

Classification method of Hou et al. (2013a) which is motivated by the fact that bridg-

ing anaphors are so rare, even among the “mediated” information state category of

the ISNotes dataset, mediated mentions being mentions which are neither new, nor

old (old mentions are coreferent). Mediated mentions have, aside from bridging

anaphors, comparative mentions, world knowledge mentions, aggregate mentions,

and function mentions.

The classification method used by Hou et al. (2013a) has binary classifiers for

each of the five categories using SVMs, which predict labels in a row. If a class is

true, it is assigned, if not the next binary classifier is used. If all of them report

false, then a multi class framework is used. Their model used a wide variety of

features which incorporated lexical features from previous works (Nissim, 2006) like

mention matches, length, determiners, grammatical role, type of the noun phrase

etc. Because the model is cascading they could use features for the other four classes

to root out the bridging relations, for example a frequent proper name could indicate

world knowledge, while a dependency on a changing verb could indicate a function.

The authors use features from (Markert et al., 2012) as their baseline and show that

this cascading model is better than a simple classifier on their feature set, which by
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itself also outperforms their baseline.

3.2.1.2 Bridging Resolution

The second task in the pipeline is for each anaphor to select from the candidate

antecedents the ones having a bridging relationship. As this is a difficult task, various

authors restrict the problem to make it tractable, but that leads to the problem of

not being able to evaluate and compare past systems. For ISNotes dataset, the

data driven system which has the fewest constraints and achieves state-of-the-art

is Hou et al. (2013b) while the rule based variant is Hou et al. (2014). Even for

these systems the metric chosen is lax compared to the ones used in coreference,

the metric measures how many anaphors are correctly connected to any correct

antecedent. Also, these systems rely on all gold annotation for mention spans and

other information. The Hou et al. (2013b) system uses 18 features which aside

from lexical and syntactic features uses WordNet to get part-of semantic relations

and semantic class, preposition patterns, verb patterns, and a score for saliency.

Because detecting a bridging resolution is so hard, these features cannot be learnt

from raw text, at least with the amount of annotated data present, and thus hand

crafting is required. The model they used is based on a generative model called the

Markov Logic Network (Domingos and Lowd, 2009). In short, MLNs are a way

to combine first order logic with Probabilistic Graphical Models. Using an MLN

it is possible to model bridging at the global level over the text. Every feature is

associated with a “well formed formula” and each of these formulas is associated
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with a weight.14 These weights are learnt from the training data. With the use

of some hard constraints like each anaphor having only one antecedent and the

antecedents for the anaphor are only taken from the antecedent pool for it, the

MLN based model is able to learn weights between antecedents themselves, and

anaphors and antecedents at the global level. The accuracy metric for this model

is 41.32% while similar features used in pairwise models give results in the range of

29.11% to 33.94% demonstrating the need for joint inference in these problems.

3.2.2 Bridging Anaphora and Word Embeddings

As mentioned before, bridging anaphora needs a significantly greater amount

of shared world knowledge to solve compared to identity coreference resolution, and

hence the difficulty of current models to find good results. In such a scenario can

word embeddings still be useful? Here I perform two simple experiments to deter-

mine if word embeddings, learnt from suitably large corpus, give results comparable

to existing models, in the same manner they helped in the coreference resolution

model. The experiments cover the two stages of the process, namely detecting which

mentions are anaphors and subsequently what antecedents link to those anaphors.

To evaluate the embeddings vs. external knowledge sources with handcrafted fea-

tures, no other external resource or semantic relations are used which are used in

the state of the art systems (Hou et al., 2013a,b). Both experiments are done on

the ISNotes dataset to compare with the state of the art methods.

14In first-order logic a well formed formula is a finite sequence of logical symbols formed from
the alphabet of a formal language
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In the first experiment to determine which mentions are bridging mentions, I

treat it like a multi class classification problem using a simple LR model, with eight

different classes, new mentions, old mentions, and the six types of mentions neither

new nor old as defined in the ISNotes dataset. For baseline, aside from the state-

of-the-art Hou et al. (2013a) which uses cascading classification, I also compare it

with the older work of Nissim (2006). I use 10 fold cross validation.

For this task each mention is assigned one out of eight class labels and has

these features:

• The length of the mention in tokens

• The averaged word vector over all tokens in the mention

• The averaged word vector over all tokens in the document

• binary indicators for all tokens contained in the mention span concatenated

with their parts-of-speech

• same as above but with a window of five tokens before and after the mention

The results can be seen in table 3.5. The F1 measures compare the state-of-

the-art model with our method. While our model predictably is beaten by the state

of the art, the results indicate that by just themselves word embeddings do capture

some useful knowledge for this task.

I also designed a pairwise classification model for the next step, analogous to

the one used in coreference. The candidate antecedents were selected only from

two sentences prior to the one containing the anaphor to limit the negative training
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Nissim Hou et al. Our Method

Mention types P R F1 P R F1 P R F1

Old 85.1 82.7 83.9 82.2 87.2 84.7 75.0 72.5 73.1

Med/worldKnowledge 62.3 64.4 63.3 67.2 77.2 71.9 51.5 57.0 54.1
Med/syntactic 41.6 59.7 49.0 81.6 82.5 82.0 62.3 59.7 61.5
Med/aggregate 28.4 36.8 32.1 63.5 77.9 70.0 49.7 47.8 48.7
Med/function 0.0 NA NA 67.7 72.1 69.8 68.9 30.7 42.5
Med/comparative 0.4 7.7 0.7 86.6 78.2 82.2 65.5 54.9 59.8
Med/bridging 4.4 23.0 7.4 44.9 39.8 42.2 34.5 26.5 30.0

New 82.7 62.3 71.1 83.0 78.1 80.5 71.1 78.5 74.6

Table 3.5: Comparison of the best cascading minority preference system bridging
anaphora detection model with our LR model which uses GloVe (Pennington et al.,
2014) word vectors as a feature

examples. Even then the ratio of negative training examples to positive was 18:1.

The classification itself was done by a simple LR model. In this model, given that

m1 is the anaphor in question and m2 the candidate antecedent, the features used

are:

• binary indicators for all tokens contained in m1 and m2 concatenated with

their parts-of-speech

• same as the above but with a window of 5 tokens on both sides of m1 and m2

• distance in tokens between m1 and m2

• distance in sentences between m1 and m2

• lengths in tokens for m1 and m2

As this is a harder task and there are absolutely no semantic features, or even

any sophisticated lexical features present in the state-of-the-art model, the model
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performed poorly compared to the last step, though better than random (1/18).

While the F1 measure of the negative examples in 96.4% the F1 measure of positive

examples is 0.095%. Then, to the same set of features with added three more features

• the cosine similarity of GloVe (Pennington et al., 2014) vector representations

of m1 and m2

• the average over all tokens vector representation of m1

• the average over all tokens vector representation of m2

Just adding these word embeddings increases the F1 measure of positive exam-

ples from 0.095% to a range of 15.6% to 21.1%, depending on the parameters of the

classifier. Thus, while nowhere near the hand crafted features of the state-of-the-art

model, even here word embeddings do capture a sense of world knowledge and are

useful for discovering text references.

3.3 Summary

In this chapter I have discussed in detail the various sub problems which oc-

cur in coreference resolution, namely mention detection, and resolution, and allied

problems like bridging anaphora. I described the current work which exists in these

problems. I introduce a dataset which demonstrates the kind of hard and inter-

esting coreference problems humans can solve and which benefits more from world

knowledge sources like Wikipedia. I analysed why data sources from newswire are

inadequate for the problem and demonstrate that such a dataset is sufficiently dif-
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ferent from existing data and merits investigation. I also demonstrated that current

models do not work well with such data, and I describe why this is so.

In this chapter I provided a small foray into using world knowledge by way

of word embeddings which help our very simple model match performance with

sophisticated ones. Then, I present some qualitative examples of what kinds of

instances are present in our dataset which current models fail at. I also present

a literature survey on the work done in the related problem of bridging anaphora

resolution. I show that even for this task word embeddings are useful. I discuss how

to extend this work into more generalised and human like coreference resolution,

and how to better do the various subtasks, in Chapter 6.
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Chapter 4: Analysing Atypical Images Via Multimodal References

In this chapter I first present our motivation for mapping references to entities

present in text to regions in images. Then, I describe work on atypical images

in which I use references to perform an understanding task (in the sense not just

identities of visual artefacts but their locations, properties, etc. are inferred from

text) structured as a ranking/retrieval problem in a dataset made of images of

paintings which I have built.1 This work addresses the unavailability of large

datasets for atypical images (in this case paintings) by acquiring and using knowledge

to interpret what is going on in the various regions of the paintings, in order to do

the retrieval problem. Then, I describe another dataset of complex images with

referential text, this time of comic books.2

1The painting dataset and the associated task in this chapter are from the published work
called “A Distorted Skull Lies in the Bottom Center... Identifying Paintings from Text Descrip-
tions” published in NAACL, Human-Computer QA Workshop, 2016. The authors of this work
are Anupam Guha, Mohit Iyyer, and Jordan Boyd-Graber. In this work my contributions are
primary and include designing the dataset and its annotation, the inference of visual classes from
text embeddings without learning, which is a novel method, as well as the bipartite method used
in the task

2The comic book dataset is from the published work called “The Amazing Mysteries of the
Gutter: Drawing Inferences Between Panels in Comic Book Narratives” published in CVPR 2017.
The authors of this work are Mohit Iyyer*, Varun Manjunatha*, Anupam Guha, Yogarshi Vyas,
Jordan Boyd-Graber, Hal Daumé III, and Larry Davis. In this work I’m a second author. My
contributions, aside from aiding the primary authors to build the dataset, is devising a method
to detect and remove advertisement pages from the dataset, and doing data analysis on intra and
inter-panel transition metrics.
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4.1 Why extend the problem of coreference resolution to vision?

In Chapter 2 Section 2.4 I describe past and current work in computer vision

when the methods involve human language. Why is language important? Humans

solve complex vision problems using knowledge of contexts entities exist in, obtained

via language, by continuously doing multi modal coreference resolution. What this

means is, a human knows what to look for while engaging in vision tasks, and often

this knowledge of what to expect is codified in concepts which are transmitted as

shared world knowledge using language. Biological visual perception is a feedback

driven system (Gilbert and Li, 2013) which refines its interpretation iteratively.

Human vision, particularly, does not operate in isolation from global context or

semantics. In its infancy, a human is a sensorimotor agent, it uses fast and dirty

vision without abstract concepts, but within 8 months an infant is able to sequence

discrete visual stimuli and associate it with auditory input sequences (Kirkham

et al., 2002) and displays capacity to detect structure from vision. By 18 months

language is used to form abstract categorical representations of spatial relations in

vision (Casasola, 2005).

In contrast to the biological top down systems with mechanisms for seman-

tic backflow existing, current machine learning vision models lack the backflow of

information needed to augment their weights. For vision models, there is a need

for a conceptual scaffold of world knowledge which can be used to refine them. For

example, giraffes are not usually observed in kitchens, so if a state of the art cate-

gory detector for images upon running on an image of a kitchen is showing a giraffe
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in it, not only is it probably failing, it is failing “gracelessly”. The problem is not

that deep learning vision systems fail at times, the problem is they give incorrect

results in a manner which does not make sense, if a human observer has certain

world knowledge.

To illustrate this I take two publicly available vision APIs, CRFasRNN (Zheng

et al., 2015), which is a semantic segmentation system, i.e. a system where each

pixel is labelled with a category resulting in regions being discovered in the image

corresponding to categories, and CLARIFAI (Sood, 2017) which simply tells which

categories it detects in the image. I run the image of a tank in a an open field with

camouflage in Figure 4.1 and observe the inaccuracies. Now a human might also

do an error in understanding such a complex image, but I am more interested in

the nature of the errors the systems makes. Observe the boat, cow, and flower-pot

regions being discovered. I know from world knowledge it is unlikely for a boat, a

cow, and a flowerpot to be in an image in those positions. Similarly, the category

detector detects categories like “abandoned”, “broken”, “rusty”, which do not go

together with the semantic segmentation categories.

What can deep networks do to change this? I posit that research in this area

needs to design deep neural networks which at training time suppress those parts

of the competing abstractions of the signals at the lower layers of the network,

which do not make sense with high level context. This cannot be done without the

knowledge of what relations of categories make sense. I call this representation of

knowledge a conceptual scaffold. In this thesis I claim that such world knowledge

needed to create a conceptual scaffold can be inferred from unconstrained natural
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Figure 4.1: An image of a tank camouflaged run through the publicly available
CRFasRNN semantic segmentation and the CLARIFAI visual category detection
system

language, because natural language descriptions are easier to obtain than specific

hard annotation labels. This is our motivation for acquiring text which describes

what is going on in an image, and also which parts of the text refer to which parts

of the image, thus extending the problem of referring concepts to become multi

modal. Our goal in doing this is to influence vision research to use more knowledge

to regularise their learning systems.

4.2 Hard Images: The Painting Dataset

As mentioned before the current methods depend completely on identification

of correct object classes and recognition from images. This is a brittle methodology

in several respects. It makes the system completely reliant on individual classifica-
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tion for objects which may be incorrect. Humans do not use vision like this, they use

context to identify objects in their field of vision (Torralba et al., 2006), i.e. humans

are armed with the knowledge of what is expected to be observed in what context

when observing a scene. They can also predict object motion using cognitive ex-

pectations (Kowler, 1989). From a pragmatic standpoint the flaw of this method is

that both the closed set of categories needs to be large enough that retraining isn’t

often needed, and the images themselves be not too much of a domain mismatch to

certain categories of natural images which the main large datasets are composed of.

Annotating large image datasets with hundreds of thousands to millions of images

is a non trivial task. So how does one solve a vision problem for an image which

humans can understand despite not seeing many instances of something like it?

This work calls these complex images. An example of such complexity is in

paintings where humans are able to identify extremely varied visual representations

of real world images. These representations vary a lot painter to painter, and style

to style, and sometimes look significantly different from the real world images of

objects they are based on. In isolation humans might not able to identify individual

objects present in these paintings but given the entire painting which presents those

objects in relation to each other, spatially and otherwise, they are able to understand

them, even if the style of the painting diverges from a realistic depiction. Other

domains of such hard images are cartoons in comics (work described in Section 4.4)

and sketches (Eitz et al., 2012). While humans generally have no problems in

understanding these, current machine learning systems cannot generalise from real

world images to these domains.
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One method which humans use to learn usual co-occurrence of objects in

vision and the contexts in which they appear is through language descriptions, i.e.

humans use language to convey to each other what they are likely to see together in

a complex image from one of the domains described above. This method is a visual

analogue of the task of coreference resolution, because a human learns what part of

a complex image, given the context around it should refer to what real world entity,

even if the representation of it is not visually accurate. Hence, a domain is needed

which is hard for present models to segment, understand, recognise objects in, etc.

but possible to describe using language and then possible to do the aforementioned

task using multi-modal coreferences between the images and languages. The dataset

I build in this chapter is a spiritual sibling of (Kong et al., 2014) where a three

dimensional scene dataset with descriptions is used. The domain I choose for this

dataset is paintings. One of the reasons for choosing this domain, aside from the

ones listed above, is the fact that quiz bowl, discussed in the last chapter, has a lot

of questions on the topic of art, and thus it is relatively easy to get questions based

on artwork which are descriptive .

Our dataset comprises of 128 unique paintings. These paintings are hand

annotated using the labelme (Russell et al., 2008) webapp with contours of objects

in them, and each object is assigned one out of a set of fixed classes which are

organised in an hierarchical ontology. This ontology is based on the class tree of

imagenet so that experiments can be done with networks pre trained on imagenet

classes. Also, every painting is accompanied by one or more text descriptions.

Spans of text which are coreferent to each other are first annotated and then these
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Figure 4.2: An annotated example of the painting The Ambassadors (1533) by Hans
Holbein

coreference chains which refer to objects in the painting are annotated. Figure 4.2

shows an example of one annotated painting. These descriptions are also obtained

from quiz bowl questions (same domain as in Chapter 3) and thus are full of non

descriptive noisy text which do not refer to anything visual in the painting, like

text talking about the painter or the time period. This leads to retrieving a correct

painting from this dataset a very hard task if only raw text is used.

This dataset is useful to test vision tasks as it is harder and qualitatively

different than datasets made of natural images. An example of what happens when

a current CNN trained for the Imagenet 1000 class object detection problem is run

on one of the paintings is shown in Figure 4.3.

From a human perspective the painting in Figure 4.3 is easy to understand
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Figure 4.3: Running the RCNN system with an pretrained VGG architecture on the
painting Christina’s World (1948) by Andrew Wyeth

and the objects in it easy to recognise. This work is interested in developing vision

architectures capable of doing standard tasks on such images, and for that it is

necessary to take help of the semantics of the image.

4.3 Recognition Constrained on Semantics of an Ontology

I define the problem as one of retrieval and ranking which is a common image

task. Given a set of descriptions of paintings, and having the images of the paintings,

how to get the painting being closest to a description. To make the task even more

difficult the textual descriptions contain a lot of noise and without a lot of training

data and with a large number of possible paintings this is not an easy problem

to solve as with a classifier. However, I solve this problem with via the classes of

objects in the paintings which have similarities in the semantic domain to what the

texts describe.

Our method assumes that the groups of coreferent text in the description might
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describe an object in a painting as coreferent groups by definition refer to entities

and in the case of paintings some of those entities are what is present visually in the

paintings while other entities may be non-visual. If the ontology of object classes

used to segment in the painting is constrained, then a bipartite mapping can be made

between visual objects present in a painting, obtained via semantic segmentation,

and the various groups of coreferent texts, if a unified vector representation could be

made of these two. The beauty of bipartite matching lies in the fact that there can

be groups of coreferent text that do not describe objects in the paintings (like text

describing the painter) and that is okay as the bipartite matching is looking for the

maximum number of matches between a candidate painting and a description, and

the method will take the painting with the maximum number of matches in with a

description as the solution for it.

Our method also matches not just object categories between the text and

image, but also visual properties of these objects in relation to the image, like

location, number, etc. Thus, while the ranking problem is solved, the method is also

partially understanding the complex images, discovering not only object categories

from descriptive text, but their visual properties.

4.3.1 Inferring Visual Properties from Coreference Chains and Bi-

partite Matching

In order to do bipartite matching between descriptions and candidate paint-

ings, one needs two sets of lists from each, comprising of lists of class, location,

76



Figure 4.4: Using word vector representations from coreferent groupings in a de-
scription to deduce object class and attributes by cosine similarity

and number present in a description or a painting. To do that I first need to find

what class matches a coreference chain in semantic vector space where they can be

compared. I use word vector embeddings which have been described in Section 2.2

of Chapter 2. I use the publicly available 300 dimensional word2vec trained on

Google news. The method averages over all the vector representations of words in a

coreferent chain to get one vector per reference cluster in a piece of text, similarly,

for every object class in the ontology I obtain a lexicon describing that object class

via synonyms, hyponyms etc. (hyponyms are used so that the word vector is influ-

enced by vectors of more specific classes, these are chosen according to the object

category tree the paintings have) and average a word vector over it. Since distance

between word vectors represent similarity this conversion of both visual and text

data to word vectors presents an opportunity to first discover what visual class is

most similar to a coreference chain, as demonstrated in Figure 4.4.
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Figure 4.5: Using word vector representations of words in phrases describing objects
to classify their coarse object classes.

The first experiment is to find if these vectors from text are good matches to

the vectors for the visual classes. Using euclidean match between these two sets of

vectors reveal that the they are surprisingly robust.

Figure 4.5 shows the confusion matrix for classification for coarse object classes,

i.e. classes on the top of the ontology whereas Figure 4.6 shows the confusion ma-

trix for the fine object classes. The reason for considering both the coarse and fine

object class is to make the bipartite matches of the next step more robust, i.e. even

if the object detected from the coreference chain in the text is not specifically the

one in the painting, if it is in its vicinity in the ontology tree, then the method still

obtains a weak match.

Now that one can infer which object class each coreference chain corresponds to

78



Figure 4.6: Using word2vec representations of words in a phrase, extracted from a
description, to classify which visual object class, of fine granularity in this ontology,
is being referred by it. Despite the specificity of some of these object classes and
the vagueness of these descriptions most of the classes are detected correctly. The
errors, like descriptions of farms being misclassified as ground, or those of shrubs as
grass, also make sense.

it is possible to do bipartite matching as shown in Figure 4.7. A maximum bipartite

match consists of finding the maximum number of matches between two lists such

that no two matches share an endpoint. As the method has lists of objects for every

painting, and lists of inferred objects from every description, it is possible to do

bipartite matching to discover which painting gives the best match for a particular

description. This is the second step of our experiment. When this is done the

method obtains for 42% of the descriptions in the dataset the correct painting.
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Figure 4.7: Bipartite matching between a description with that of a painting. From the painting annotations of objects are used
to extract properties like their location and number while the gold object categories are used, from the description coreference
chains are used to deduce class, location, and number using word embeddings. Matches may be bad individually as the
descriptions may indicate a similar object class or a less specific object class in the ontology, but using multiple matches good
retrieval results are obtained.
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Feature P R F1

Coarse object class 0.72 0.38 0.45
Fine object class 0.72 0.60 0.60
Object location 0.32 0.25 0.24
Object number 0.96 0.81 0.88

Table 4.1: Individual metrics of classes and features detected by word embeddings
from coreference chains describing objects

However, these results can be improved. The painting annotations do not

provide us just the class of the objects in them, it is possible to use the geometry

of the object annotations to infer the location of it with respect to the painting,

as well as the number of objects per class in the painting. These visual properties

can also be inferred from the coreference chains in the text descriptions, and using

these extended properties the bipartite matching procedure is improved. In order

to discover spatial properties from embeddings, I make a list of words describing

cardinal locations, like TOP, BOTTOM, RIGHT, LEFT, CENTRE, etc., and find

word vectors corresponding to each of these labels, and on the description side the

method deduces from the adjectives present in the coreferent group if there are any

words describing its spatial direction with similar word embeddings. I take care to

ensure that these direction words are relative to the whole painting and not relative

to some other object in the painting and the method infers this using the IN pos tag

and its proximity to another coreferent group describing an object. Similarly, it is

possible to deduce from coreference chains, the whether the objects they describe are

singular or plural. The Table 4.1 shows the classification results for both the object

classes and their attributes using word embeddings of their textual descriptions.
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Figure 4.8: Using word vector representations of coreference chains to infer the
location of the object being described by them compared to the true location of the
object in the painting

The direction words obtained thus from the description prove to be extremely

effective in judging the spatial location of the object for the four cardinal directions

while due to the vagueness of descriptions (and often incorrectness) it is harder to

deduce more specific directions like top-left, top-right etc (Figure 4.8 and Table 4.1).

Word vectors obtained from the coreferent groupings are also robust enough to detect

the number of objects as shown in Figure 4.9.

4.3.2 Performance in the Retrieval Task

Using these features in conjunction, over 61.7% of the descriptions are correctly

identified as shown in Table 4.2 with their paintings. This is much higher than what

can be achieved on such a small dataset with no training or fine tuning using a

conventional method. To evaluate this result I use a baseline trained on extra text
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Figure 4.9: Using word vector representations of coreference chains to infer the
number of objects being described by them compared to the visual number of objects

Method accuracy

dan 59.4%
ArtMatch: fine objects 42.0%
ArtMatch: all objects 58.6%
ArtMatch: objects+attributes 61.7%
ArtMatch+dan 65.7%

Table 4.2: Our system vs the blind baseline. dan is trained on 503 questions but
has no visual information. ArtMatch has visual features from paintings but no
training data. Combining both leads to a significant increase in performance.

descriptions of paintings, but not vision (which is called the blind baseline). In

this baseline I use 503 extra training descriptions of the same set of paintings to train

a question answering model with the set of painting names as the possible answers.

Thus, unlike our system which has no training data, I provide the blind baseline

with text training dataset. The model I use for training this QA task is the Deep

Averaging Network (Iyyer et al., 2015). A dan is a neural network which averages

the word embeddings of the various words in a sentence without considering their
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order, thus it takes all the words as an unordered tuple, then passes them through

a couple of hidden layers before predicting the category with a softmax layer. This

model thus can be used for question answering if the answers are finite. Because

a dan uses word embeddings and it has extra data, the model outperforms our

system, but when I combine the two systems the results further improve, indicating

that the two models, one with no learning data but inferences from embeddings, and

one which is blind to vision annotations but text training data are, are discovering

different things.

I present a brief error analysis here. In 34 questions the dan fails but Art-

Match succeeds. For many of these, the dan fails because it overfits to common

clues. Given a test question about Melencholia I, the dan answers Madonna with

the Long Neck, as the training questions about both paintings repeatedly mention

a female figure and cherubs. However, the question also mentions geometric fig-

ures, the spatial locations of which enable ArtMatch to answer correctly. In 31

questions ArtMatch fails but dan succeeds. Some of these questions contain text

constructs such as the painter’s name that are repeated in both training and test

questions, which makes it easy for the dan to solve (e.g., “Identify this most famous

work of Claude Monet”). In other cases, ArtMatch answers incorrectly because

of spurious matches due to substantial visual similarity between various objects in

paintings. For example, in a question about The Holy Trinity by Masaccio, “St.

John” is assigned the close but incorrect class of “statue” while “Jesus” is correctly

identified as a person. Further confused with spatial similarities between the paint-

ings, ArtMatch’s answer is Supper at Emmaus, which has Jesus but no St. John.
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In other cases, peripheral similarity leads to the central mismatch being overlooked.

Here, I will discuss the limitations of the painting dataset. Due to the complex

nature of annotation, as well as the rarity of unique quiz bowl questions referring to

unique paintings this is an extremely small dataset, and while the annotations are of

high quality, they are far too few to be used for data hungry deep learning models.

Aside from this dataset there was no dataset of atypical or hard images (sufficiently

different from natural images to be a challenge for existing multi modal frameworks)

alongside text to be used for similar research in models operating between language

and vision. And yet there is a need for such data, because humans can solve such

problems with fluency. To address this, I present another dataset of atypical images

alongside accompanying text described in the next section.

4.4 Comic Book Dataset

Here I introduce briefly another dataset of atypical complex images existing

alongside text, namely one made from comic books called COMICS, which is rel-

evant to this problem of references between text and images, and was built with

my collaboration. One of the primary motivations for building this dataset was the

difficulty which neural networks face for paucity of data for such complex images.

Comic books solve the problem because, a) a lot of them exist in the public domain,

b) they are by their very nature multi-modal with text alongside images, and c) a lot

of information in comics is not directly portrayed visually, but is inferred “between”

panels by the reader, or what is called the gutter. This makes for interesting and
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complex experiments which do not get addressed because of lack of datasets. Have

a look at one pair of panels from this dataset in Figure 4.10. This kind of reference

problem is hard to solve.

Comics are sequential art (Eisner, 1985) which go through a narrative through

a list of panels, each having images and/or text. Before the COMICS dataset was

built, there were a few comic datasets (Guérin et al., 2013; Matsui et al., 2016)

but they are too small to run any sophisticated machine learning experiments on.

In contrast, COMICS is obtained from 3948 publicly available comic books, and

their 198,000 pages, from which 1.2 million panels have been extracted using panel

segmentation. This panel segmentation was done using deep learning in which 500

pages were manually annotated for panels. From each panel, the text boxes have

been detected, again using a simple neural network. The primary authors and

I annotated 1500 panels with text boxes to train. This resulted in almost 2.5

million text boxes. On these text boxes Optical Character Recognition (OCR),

namely Google’s Cloud Vision OCR, run on these textboxes. I also eliminated

those pages from the comic books which had advertisements instead of comics by

making a simple bag of words based advertisement detector from the OCR text and

annotating a the adverts in a thousand pages. COMICS is one of the, if not the

largest, multimodal dataset of images and corresponding text in existence.

The COMICS dataset also has some dataset analysis, namely panel type and

panel transition information. In brief, panels in a comic book can be of certain

types depending on what content they have, they could be dominated by the text,

or by the image, or the text and the image could be independent, or they could be
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Figure 4.10: An example of a panel pair from the COMIC dataset. The panels have
been detected by a segmenting neural network, as has the text boxes and OCR has
been done on this. Using that data is it possible to infer who Kurt refers to in the
second panel? Why do we know that the soldier is not Kurt? This is similar to the
reference problem in paintings, where you need to match coreference chain entity
with pixel blob, and it is impossible to correctly solve who Kurt is purely visually,
without modelling sophisticated world knowledge.

interdependent. These categories are obtained from the work of McCloud (1993)

which analyses comics. Similarly, the manner in which panels transit, i.e. how

narrative goes from panel to panel can also be classified into certain categories.

These transitions can be, for example, action to action, where the characters remain

the same but the action differs, or they could be from scene to scene, where the entire

scene changes, etc. 250 randomly panel pairs were annotated for their inter-panel

transit and their intra-panel type, and found out while the transition types are more
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evenly distributed, almost all intra-panel classes are those where text and image are

interdependent, this signifying the relevance of this dataset to our work which needs

a strong relationship between the images and the accompanying text. Because the

text almost always is interdependent with what is going on in the image, future

work can use this dataset to design hitherto unexplored experiments on multimodal

reference.

4.5 Summary

In this chapter I have provided two complex vision datasets made out of paint-

ings and comics, and for the first one, with the usage of word embeddings, described

a simple method to refer visual properties to coreference chains. I described a rank-

ing/retrieval task, and using bipartite matching between two lists of averaged out

word vectors, one obtained from lexicons of object classes of the paintings, another

obtained from the coreference chains of the description, retrieved the correct paint-

ings. I thus motivate the kind of research work needed to use more world knowledge

while performing vision task. I also introduce a large multimodal dataset of atypi-

cal images and accompanying text obtained from comic books. In Chapter 6 I talk

about the future avenues for extending this work and how the COMICS dataset

can be used to detect various kind of multimodal references.
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Chapter 5: Discovering References to Prototypical Concepts in Movie

Scripts

Till now, this thesis has dealt with concepts which can be referred to by

contiguous text spans. However, I expand the conventional definition of references

to associations which are more complicated: first, what is being referred to are not

concrete entities but abstract concepts, and second, the references to concepts are

not present in the text as contiguous spans but as discontinous distributions over

larger spans in the body of text. Thus, these concepts are latent, analogous to topics

in topic models described in Chapter 2, but different from something like LDA in

the sense that their position in the text is relevant, the text isn’t treated as a bag

of words.

Consider themes in a narrative, like action, romance, sadness, etc. A large

enough body of narrative text will have multiple oblique references to such themes

present in every sentence, though not mentioned directly in words. In this work I

expand the idea of reference like this, because for an intelligent agent it is necessary

to know what abstract concepts are present in various spans in discourse to not

just understand what is being talked about, but also correctly resolve more concrete

references. Discovering these concepts and how they are referred to in important for
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machine understanding of such complex text. Knowledge of what theme is under

discussion in which sentences also serves as shared knowledge for downstream tasks.

This chapter investigates the narrative text present in movie scripts, tries to discover

what prototypical concepts may exist in them, and then tries to find which span

refers to what concepts.

5.1 Current Approaches in Prototype Discovery

The idea of prototypical concepts in narrative text has long been around in

computational linguistics, specifically in computational literary analysis, and re-

cently, some datasets and methods have emerged in the area (Bamman et al.,

2014a,b; Chaturvedi et al., 2016; Flekova and Gurevych, 2015). Often, these meth-

ods focus on solving characteristics of entities or events in a narrative. In previous

work, classifiers have been proposed to learn character archetypes (Flekova and

Gurevych, 2015), or relationships between pairs of characters (Chaturvedi et al.,

2016) in a narrative. There has been work done to construct social networks from

narratives as well (Elangovan and Eisenstein, 2015; Srivastava et al., 2016). Re-

cently, there has been work which recognises that these prototypes might not remain

constant over the entire text, for example, the relationship types between pairs of

characters alters in time (Iyyer et al., 2016).

A close analogue of this problem is topic modelling (Blei et al., 2003). Topic

models are machine learning methods to describe a collection of documents in terms

of abstract “topics” wherein each word is assigned one of these latent topics. Topic
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models in the past have been used to understand large text corpora (Dou et al.,

2013; Gretarsson et al., 2012; Nguyen et al., 2014). Generally, topic models like

the LDA (Blei et al., 2003), which learns a topic distribution per document, do not

consider the sequential nature of text, but a class of topic models like the hidden

topic Markov Model (Gruber et al., 2007) does that. The HTMM (described in

Section 2.6.1 of Chapter 2) has a temporal component which makes sure that the

topic of the current span is similar to the topic of the last one, and thus, the topics

change smoothly over the document. As this work is interested in narrative text, it

is essential that any model has the assumption that whatever prototypical concept

a span refers to, will not change abruptly in the next span.

5.2 Our baseline: Relationship Modelling Network

I define the task as characterising each abstract concept by a distribution

over the vocabulary, and assign reference from each sentence/span to a concept

or a distribution over the set of the concepts. One model that emerges close to

what a task like this needs is the RMN.1 This model is similar to deep recurrent

autoencoders like Li et al. (2015) and to neural topic models (Das et al., 2015).

It is a model which takes as its input a set of documents, where each document

is a subset of spans obtained from a narrative. The spans are those which refer

1The Relationship Modelling Network comes from the paper titled “Feuding Families and For-
mer Friends: Unsupervised Learning for Dynamic Fictional Relationships” published in NAACL
2016. The authors of this work are Mohit Iyyer, Anupam Guha, Snigdha Chaturvedi, Jordan
Boyd-Graber, and Hal Daumé III. In this work my contributions are designing experiments to test
whether the topics can detect positive vs. negative, as well as in evaluating the results. The Joint
Modelling Network which is an extension of the RMN is unpublished. In that work my contribu-
tion is primary, both in the model itself, adapting a dataset to work for it, and in evaluating the
results The JMN work is done in collaboration with Dr. Ferhan Ture of Comcast Research
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to two characters in the document, thus one document can be thought of as the

history of the relationship of the pair of characters. The model assumes there are

prototypical relationship types which every document is a sequence of. It discovers

a) a list of these prototypical relationships over the dataset, and b) the prototypical

relationship distribution per span. Thus, every relationship can be described as a

trajectory of dynamically altering prototypes.

The model itself is a neural network which takes as its input a word vector

representation of the span, the two characters in it, and the name of the book.

These vectors are composed in the next layer, which gives it to a customised RNN

layer. This layer, being recurrent, ensures the hidden state will get modified by the

previous hidden state from the previous span (ensuring “smoothness”, analogous to

the HTMM). Then the hidden state is multiplied to a matrix initialised randomly,

and the result is forced to be similar to the original vector. Thus, over time, the

matrix has per row a vector which in word embedding space is a prototype of all the

spans. The matrix, now a list of prototypes, is called the descriptor matrix. Because

the model gives a distribution on this matrix for every hidden state, every span can

be assigned one of the descriptors. Thus, each document can be represented as a

descriptor trajectory. This process can be seen in Figure 5.1.

While in Iyyer et al. (2016) this model was used to discover relation prototypes

for movies, it can be easily adapted for any other kind of prototypes in any other

narrative text. After all if you replace spans with specifically two characters, to all

the spans with only one character, you discover concepts which can, as a trajectory

descrive all possible character arcs. If you take all possible spans in a narrative
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rt = RTdt

Mrs. Reilly looked at her son slyly and asked, 
"Ignatius, you sure you not a communiss?" 
"Oh, my God!" Ignatius bellowed. "Every 
day I am subjected to a McCarthyite 
witchhunt in this crumbling building. No!"

Mrs. Reilly Ignatius “A Confederacy
  of Dunces”

ht = f(Wh · [vst
; vc1

; vc2
; vb])

vst vc1
vc2 vb

dt�1

R

dt = ↵ · softmax(Wd · [ht; dt�1])+

(1 � ↵) · dt�1

: previous state

: descriptor
   matrix

: reconstruction
   of input span

: distribution over        
  descriptors

Figure 5.1: Relationship Modelling Network from Iyyer et al. (2016). In this model
the input vectors get averaged, then go to the hidden layer which is influenced by
the last stage, and then get multiplied by the descriptor matrix to get reconstructed.
Each row of R trains to be a descriptor (credit: Mohit Iyyer)

without the character labels, you discover concepts which describe the narrative

trajectory itself. However this model has one flaw. It assumes that these prototypes

occur in isolation. In the relationship discovery case for example, this model com-

pletely ignores all other sentences of the narrative. I present an extension of this

model, which discovers multiple classes of prototypes at the same time, and does
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away with the independence assumption. I use that model to analyse movie scripts.

5.3 Joint Modelling Network

A narrative is an interplay of interdependent prototypes. For example, a

narrative may have some global themes, i.e. concepts which are referred to by all

the sentences of all the documents in the dataset being investigated. It may also

have character arc prototypes, i.e. concepts being referred to only by those sentences

which refer to one character in the narrative. If it has the global theme of “war”

(i.e. general sentences referring to the “war” concept) and the character prototype

of “tragedy” (i.e. sentences particular to one character referring to the “tragedy”

concept), these prototypes will influence each other’s occurrence. Similarly, the

character arc prototypes may affect the relationship descriptors, the kind which the

RMN discovers. If a character is in a “tragedy”, their relationship descriptor with

another character at that moment in the text will get suitably influenced. This idea

is the basis of the joint neural network and is illustrated in Figure 5.2.

Figure 5.2: Example of sequential prototypical concepts of different types that occur
in a movie script and how they influence each other

94



First, I alter the RMN to work for different kinds of prototypical concepts.

One RMN is altered to a Universal Modelling Network, i.e. it takes all sentences

from all narratives in the dataset instead of selected spans for relationship arcs like

the RMN did, finding global themes across complete narratives and assigning each

sentence in them with a global theme. Another RMN is changed to a character

arc modelling network. It is fed sets of sentences which contain only one character

reference, and this learning concepts which define character arcs. The third RMN is

unaltered. Now these models are connected. The hidden layer of the universal model

becomes the “history layer” for the character model. This means, the reconstructed

vector from the universal model at that point in the narrative, is the history of all

global themes that occurred till then. When running the character model, when it

runs an iteration for a certain character, it takes that history vector as an input to

its hidden layer.

Similarly, the reconstruction vectors the character model generates, become

character history, and when the relationship model operates for a pair of characters,

it takes those two vectors representing the history of the character till that point,

as additional inputs. The joint model is illustrated in Figure 5.3

There is another small change from the RMN. The three components of the

JMN are deeper, the universal network has three extra hidden layers, while the other

two networks have two extra layers each. This is needed as the data obtained from

the movie scripts is less coherent than the literature data the RMN is designed for,

on deepening the model the results improve but training becomes slower. All the

layers have dropout (randomly dropping units from the network during training)
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Figure 5.3: Connecting three RMNs into a Joint Modelling Network where the
reconstruction vectors of the more general model serves as the history vector of the
more specific one. To ease training (as the models use different subsets of the spans
in a narrative), the reconstruction vectors are cached while training the more general
models, and then reused while training the specific ones.

which prevents this network from overfitting. I do not alter the loss function from

what is used in the RMN but the hyperparameters need to be empirically altered

as the text in movie scripts is different from that of novels which the RMN was

trained on. Also, I built a more sophisticated version of the JMN in which the

descriptor dictionary is a 3d tensor rather than 2d. The model does not compute a

distribution over a set of embeddings as it did in the RMN, but two distributions,

one which selects a slice of the 3d dictionary and another which selects the row. The

altered dictionary, instead of learning a list of prototypes, learns a list of prototype

groupings, with each group having sub prototypes. For example topics related to

“police”, “military”, and “war” might fall under one large prototype with three

separate sub-prototypes. The way this works in the model is that the output of
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the RNN layer (a softmax) gets converted to two dense layers (both softmax, so we

get two distributions from one) one of which picks the slice (the depth) of the 3d

dictionary, and the other picks the row (the breadth) from that slice.

5.4 Experiments and Results

The dataset I built for this task is based on the UCSC movie dataset (Hu et al.,

2013; Lin and Walker, 2011; Walker et al., 2011) which contains 962 movie scripts.

This dataset was extremely noisy as it split the dialogue part of the script out of

the descriptive part via a rule based script which only looked at stylistic clues like

whitespaces. While I do want the data to be devoid of dialogue text, the disorganised

nature of script formats mean that often errors will seep in, compounding the noise

heavy nature of movie script text which is filled with jargon phrases which doesn’t

have anything to do with the narrative. Heavy preprocessing was done to reduce the

noise. After this, all stopwords, words which are too rare (appearing in less than 5%

spans), etc. are removed from the text. As with the RMN, the Book-NLP (Bamman

et al., 2014b) pipeline is run to identify characters and which sentences have what

characters. Then all the data is divided into evenly sized spans with character

information. This dataset is further trimmed into the three different kind of data

to be fed into the three parts of the model. Again, filtering is used to remove spans

which have low information, or which have characters/relationships occurring too

few times, any character occurring less than five times is not considered for the

character arc data, and any pairwise relationship occurring less than five times is
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Figure 5.4: Universal prototypes, character arc prototypes, and relationship de-
scriptors obtained from the JMN. Five top prototypes are shown. The crossed out
prototypes are the ones which do not make good descriptors.

not considered for the relationship data. Due to the small size of the dataset, such

text spans consisting of fleeting characters or relationships will lead the model to

overfit and thus should be removed.

I run the JMN on this data. The top five descriptors by probability of the three

dictionaries learnt are shown in Figure 5.4. As can be seen, the character prototypes

are more personal than the universal prototypes as expected. Some non-relationship

like themes are also obtained in the relationship prototypes. Also, because of the

nature of the data, it is impossible to filter out all names of characters, leading to

it forming its own prototype group.

Because this work is the first of its kind in movie script understanding, it is

hard to evaluate empirically, but since the claim is that these prototypes can be

used to obtain an understanding of movies based on prototypes, I built a simple

recommendation experiment to see if the themes discovered can be used to recom-
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mend movies, by doing sequence analysis. If two movies have the longest common

local sub-sequences of prototypes, obtained via the Smith-Waterman algorithm, (a

weighted sum over the three kinds of prototypes), then it must be similar to another

movie based on the content of the script.

Recommendation systems are a large area of research, and are largely of two

types, content based (Basu et al., 1998; Pazzani and Billsus, 2007; Van den Oord

et al., 2013) and collaborative filtering (Herlocker et al., 2000; Huang et al., 2007;

Sarwar et al., 2001). Content based systems base their recommendations on the

profile of the user (actions, view history etc.) and the profile of the item (movie

tags). Collaborative filtering (CF) methods on the other hand make predictions

about the interest of one user based on data of other users. Historically, these

systems use millions of user ratings to recommend items to users. Some of the

datasets used for movie recommendation tasks are the MovieLens dataset (Harper

and Konstan, 2016; Sarwar et al., 2000) which has 26 million ratings for 45,000

movies by 270,000 users, and the Netflix dataset (Bennett et al., 2007) which has

more than a 100 million ratings. CF involves working with a two dimensional space

of users and movies populated by ratings. The experiments can be predicting a

rating for a movie for a given user, or for one user to use the rating data to generate

top N recommendations per movie using some kind of similarity metric like cosine

similarity or Pearson correlation (Benesty et al., 2009). These tasks are testable as

the datasets used for them have rating information per user, so some random rows

of the table can be used as a test set, also by removing some movies per user from

the train set, it can be found whether the top N prediction for that user has that
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movie or not.

Instead of top N movies per user using the ratings data, it is also possible

to compute top N movies similar to a movie, simply by considering the distance

between two movies as a function of the various user ratings. Given the millions of

ratings present in these datasets the results from this are high quality. This is called

Item-Item collaborative filtering (Deshpande and Karypis, 2004; Linden et al., 2003;

Sarwar et al., 2001). Variations of the KNN algorithm (Koren, 2010) can be used

to compute this with various similarity metrics. A point must be remembered here,

this measure of similarity based on user ratings, is by convention, as two movies

can be widely dissimilar in its contents and yet be highly rated by the same kind of

audience.

However, a significant problem in this direction of research is the cold start

problem, i.e. if all you have is the script of a movie, but no user ratings yet, let

alone millions of ratings, is it possible to recommend it usefully? This is a significant

problem as recommendation systems must deal with new movies. In that scenario a

partial content based solution is to measure similarity over robust tag information.

The MovieLens dataset for example, uses machine learning generated weights for a

set of 1128 tags called genome tags (Vig et al., 2012) for a large subset of movies it

has, and each movie can be described as a 1128 dimensional vector, and a similarity

metric between two movies can be computed. The performance of this is near

rating based methods. The genome tag model and similar extensions of traditional

tagging involves getting thousands of users to carefully tag movies and is only a

partial solution to the cold start problem.
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It is evident that the kind of similarity based on the script which JMN finds is

not the same as the kind of similarity collaborative filtering methods find. However,

I posit that there is some correlation between the two that JMN will give better than

naive results, useful in cold start. To compare JMN against rating based systems

as well as a tag based system I take from the Movie Lens dataset rating data for

those movies which are present in my dataset, and obtain an overlap of 943 movies.

I also take genome tag information from the Movie Lens dataset and obtain an

overlap of 845 movies there. As there are no “gold recommendations” I assume

that the recommendations given by gold rating data as the one to compare against.

Using the gold rating information, I use a modified KNN algorithm (Koren, 2010)

with Pearson’s correlation, to obtain top 10 movies per movie. This I consider the

true recommendations based on ratings and measure against the top 10 movie list

obtained via JMN.

As there are cases in which one has ratings for a movie by some but not all

users, (a partially blind scenario), I also compare against top 10 results per movie

using CF based methods, in which I do 10 fold cross validation. This is to see if our

rating blind method can be useful as compared to partially blind sophisticated rec-

ommendation methods using predicted ratings instead of gold ratings. The methods

I use are two baseline methods present in Koren (2010), which are similarity mea-

sures trying to predict rating of a user and movie, minimising the objective function

∑
rui∈Rtrain

(rui − (µ+ bu + bi))
2 + λ (b2u + b2i ) where µ is the average rating, bu + bi

are the sum of user and movie bias, using SGD (Gardner, 1984) and ALS (Takane

et al., 1977) respectively. Aside from the baselines I compare against improved ver-
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sion of SVD (Mnih and Salakhutdinov, 2008) which can be seen in Koren et al.

(2009), a collaborative filtering algorithm based on Non-negative Matrix Factoriza-

tion (NMF) (Zhang et al., 2006), and I also compare these results against predicting

top 10 movie similarity using genome tags described earlier.

The evaluation metric I use to compare two sets of top N results is the Hit

Rate (Deshpande and Karypis, 2004). The Hit Rate is simply the total number

of times a recommendation for a movie present in the gold data is present in the

recommendation set for the movie generated by the method divided by the total

number of recommendations in the gold data. The hit rate does not take into account

the position of the recommendation, so I use another metric called the Average

Reciprocal Hit Rank (Deshpande and Karypis, 2004) which instead of increasing

the count by 1 every time a hit occurs, increases it by a fraction representing the

position of the hit in the top 10.

The results of this evaluation can be seen in Table 5.1. JMN beats the naive

baselines and is comparable with the NMF, it cannot beat the more sophisticated

SVD or the genome tags. Thus, the JMN is useful in the cold start scenario but not

if there is partial rating data.

It is useful to have a look at the results being generated by JMN which are not

recommended by the ratings based methods to see what it considers as similarity.

Some interesting examples of movies the sequence similarity metrics considers close

to a movie chosen can be seen in Table 5.2

These recommendations provide some interesting insights. For Fargo this

model recommended two other Coen brothers movies without knowing the director,
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Method Hit Rate ARHR

JMN 0.041 0.014

Baseline1 0.038 0.012
Baseline2 0.046 0.010
NMF 0.040 0.024
SVD 0.305 0.113

Genome 0.260 0.104

Table 5.1: Performance of JMN generated recommendation, blind to ratings, as
measured by hit rate and average reciprocal hit rank, against gold ratings based
KNN generated recommendations. Compared to this are four, 10 fold cross vali-
dated, ratings based methods, and genome tag based recommendations. JMN does
better than the two baselines and the NMF method, but worse than the SVD and
genome based method, indicating that it cannot compete with SoTA ratings based
methods if ratings based recommendations are considered gold, but can be used in
cold start scenarios.

Movie Top 10 recommendations based on JMN prototypes

Fargo Thunder Heart, Brick, Terminator,
Bad Day at Black Rock, The Big Lebowski,
The Lady Killer, Fatal Instinct,
The Shipping News, Fight Club, Take Shelter

Prometheus Lost in Space, Aliens, The Abyss,
Mission To Mars, Avatar,
Ghost Ship, Tron,
Pitch Black, Alien, Transformers

Stranger on the Train Someone Watch Over Me, New York Minute,
Dog Day Afternoon, 12 Monkeys, Jimmy and Judy,
His Girl Friday, Unknown,
Gothika, Frances, Rear Window

Table 5.2: Three examples of top ten movies in the dataset having the longest
common sub-sequences of prototypes with the given movie discovered by the joint
modelling network
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because movies produced by the duo have similar kinds of prototypes which indi-

cates black comedy. The second row has a lot of dark space themed movies, and

Prometheus is considered a sequel to the Alien franchise by Ridley Scott, a subtlety

the model catches. In the third example, Hitchcock’s Rear Window is suggested

based on Strangers on a Train. Thus, this kind of discovery of prototypical con-

cepts can be used to understand complicated discourse like a movie script. This

work, including the recommendation experiments were done in collaboration with

Dr. Ferhan Ture of Comcast Research.

Can JMN predict the tags themselves? This is in interesting question because

while it is possible for all movies to be manually tagged for genres if the number is

low, there might be certain plot specific qualities users might be interested in for

which it will be hard to maintain a list. Movies with chase sequences for example

could be a genre, which would not be otherwise tagged. I do another experiment

using movie genre data which is obtained from human tagging for each movie in

the dataset. We choose the eight most popular genre tags for testing on. Movies

can have one or more genres out of these eight. The experiment is whether the

archetypes predicted for each movie can correctly predict its genre by training a

binary classifier for each. This is an interesting experiment as it can not only help

with content based recommendation systems described earlier but also can help with

tasks related to context or sentiment. The classifier I use is logarithmic regression

along with feature selection, which uses F value between feature and label to choose

which ones to use for the final set. The feature set itself is composed of unigrams,

bigrams, and trigrams obtained from the descriptions of the movies in terms of
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Feature set F1 measure per genre

Indy Drama Thriller Horror Romance Fantasy Mystery Comedy

Baseline1 0.602 0.774 0.583 0.703 0.568 0.770 0.515 0.613
Baseline2 0.200 0.467 0.423 0.700 0.410 0.700 0.436 0.543

C prots. 0.630 0.799 0.651 0.754 0.717 0.812 0.618 0.721
R prots. 0.609 0.764 0.583 0.697 0.665 0.788 0.564 0.671
U prots. 0.597 0.790 0.665 0.773 0.739 0.821 0.622 0.736
R+C prots. 0.630 0.799 0.651 0.754 0.717 0.812 0.618 0.721
U+C prots. 0.630 0.799 0.651 0.754 0.715 0.816 0.618 0.721
U+R prots. 0.612 0.776 0.587 0.701 0.665 0.789 0.566 0.679
All prots. 0.630 0.799 0.651 0.754 0.715 0.812 0.619 0.721

Table 5.3: Performance of genre prediction for the various kinds of prototype features
used. For a prototype or a set of prototypes in sequences, unigrams, bigrams, and
trigrams are made, feature selection is used and the best ones are fed into a LR
classifier. The prototypes used can be universal, character arc, or relationships, and
any combinations of the three. Only the F1 measure is used here. The universal
prototypes are the best to predict movie genre.

sequences of prototypes, with different experiments for each of the prototype class

taken individually or some combination of them. The results for genre prediction

can be observed in Table 5.3.

A baseline is needed to compare against, and as there is none available for

such a task I create two simple baselines. This first baseline, for a genre, takes

its binary classification in the training set and applies it to the test set. That is,

if most of movies in the training set are comedies, assume all test set movies are

comedies. As the dataset is extremely imbalanced this simple baseline results in

extremely high performance. The second baseline takes all the words in a script,

filters them through the same process used to create the dataset, and uses all the

filtered words as a bag of words model to predict whether or not the genre exists

for the movie. For classification it uses an SVM with L1 regularisation with the
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best possible parameters. This baseline gives worse results than the majority one.

But the model I have created which is trained on n-grams of prototypes gives better

results beating both the baselines for all genres. It can be observed that the universal

prototypes by themselves are best to predict movie genres.

5.5 Summary

In this chapter I introduce the framework of prototypical concept discovery

wherein each sentence in narrative text refers to some latent concept. This is anal-

ogous to topic modelling, but with the added constraint of temporal smoothness. I

described the only model which does this discovery in a semi supervised manner,

but only for one prototype class independent of any other, namely the Relationship

Modelling Network, and I extended it into a joint model which uses the hidden layers

of the network discovering one prototype class to serve as the history feature of an-

other prototype class. Using this model I deconstructed movie scripts into chains of

universal prototypes, character arc prototypes, and relationship prototypes. Using

the results thus obtained I found which movies have longest common subsequences

of these concepts, and manually examined these, and observed the capacity of these

concepts to capture sophisticated notions of similarity. In Chapter 6 I suggest future

work of using references to oblique concepts together with references to entities, in

a joint manner.
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Chapter 6: Conclusion

To conclude this thesis I will summarise all of my contribution and then give

a few directions of potential future research.

6.1 Summary

This thesis investigates the problem of reference, in different settings, by using

various data sources, machine learning systems and word embeddings. Reference

can be about spans of text referring some common entity, the most common kind of

coreference resolution problem. Reference can also be about spans of text referring

to entities not in an identity, but in an association relation. This is called bridg-

ing anaphora resolution. References can be about regions in images, analogous to

the visual property of object-hood matching spans in their text descriptions, and

finally, in this thesis I expand upon the conventional definition of reference from

contiguous text spans referencing concrete entities, to distributions of text referenc-

ing abstractions or concepts. These concepts are distributed artefacts like themes

and prototypes, and discovering which span refers to what concept is also necessary

for understanding discourse. In this thesis I cover briefly all these topics and devise

data and methods to investigate them.
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Hard reference problems of various kinds need some notion of world knowledge

to be solved properly. For coreference resolution the existing datasets, being based

on newswire, do not reflect these interesting problems which humans are able to

solve. I address this by designing a dataset collected from a coreference rich domain

which comprises of questions needing humans to do coreference on the fly to solve.

I provide the annotation mechanism and the guidelines needed to do so. I address

the sub problem of mention detection by using sequence labelling instead of the

prevalent rule based approach. To incorporate world knowledge to this problem

in a data driven manner, I take the aid of skip-gram learnt word embeddings and

discover that it does perform well in this setting compared to existing systems. I

also describe the bridging problem, describe existing methods for it, and test if word

embeddings are useful for them.

Then, I build a multi-modal dataset of paintings annotated with object con-

tours, which refer to spans of text in questions about them. I treat this like a

ranking problem and use bipartite matching to discover which painting is referred

to by which question, having obtained coreference chains in the text and gold an-

notations of objects in the images. I infer visual properties from coreference chains

using word embeddings. I demonstrate how this usage of knowledge obtained from

text sources in the vision setting is useful. I also describe a large dataset based on

comic books with accompanying text. Next, I describe a method which discovers

multiple prototypical concepts in a joint fashion by taking an existing neural net-

work model and extending it. I use this model to find which span in a movie script

refers to what latent themes of different classes. Having deconstructed the movies
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into sequences of prototypes I analyse using subsequence analysis which movies

are “similar” to one given, having the same sequence of themes. I also use these

sequences to predict movie genre.

6.2 Future Directions of Research

The work in this thesis can be extended in several different directions, both in

better methods and in more interesting problems to do with difficult reference.

6.2.1 Reference-Specific Word Embeddings

Throughout this thesis I have used word embeddings to get an idea of “sim-

ilarity” without rigorously defining what this similarity is. While this worked for

these problems, a solution of reference cannot be done without word vectors actually

encoding world knowledge, which is only obliquely captured by the concept of neigh-

bourhood. There has been work done recently (Hill et al., 2016) which re-evaluates

the concept of similarity (and distinguishes it from the concept of association) for

semantic models. This can be used to evaluate improved distributional semantic

models. One possible method (Xu et al., 2014) of creating embeddings incorporat-

ing more world knowledge is to obtain relational and categorical knowledge from

artefacts like knowledge graphs and use that to improve embeddings models. Also,

it is possible to design word embeddings specifically for tasks like coreference res-

olution, by using a cheap rule based resolver on a large enough text corpus, then

incorporating the coreference chains into the model to learn word embeddings. These
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embeddings then should not be evaluated by similarity metrics but by a reference

specific metric, dependent on the task being performed.

6.2.2 Joint Vision-Text Coreference for Atypical Images

The COMICS dataset introduced in this thesis is a source of another research

direction. Since the text present in comic textboxes is simple and has direct refer-

ences to objects in the panels, it should be used to aid comic understanding. The

obvious reference task is to detect which are the characters in the comic in vision,

segment them, and jointly discover which text box refers to which character (and is

spoken by which character). This task is interesting as well as reasonably ambitious,

there has been no work yet in multi-modal coreference in atypical images. However,

this task becomes very complex because of two reasons. First, comic understanding

for humans is very context heavy, as the artist often leaves out significant details

between panels for the imagination of the reader. The text being dialogue will

also often lack clues to point what entity/character is being referred, because it

is commonsense knowledge for the reader. Secondly, the vision part of comics till

now how proven somewhat resistant to deep neural networks, as the experiments in

Iyyer et al. (2017) which used VGG-16 features demonstrated. The inconsistency

in artistic style in the medium also contributes to this problem. To solve the first

challenge, external sources of knowledge is required, and to solve the second (as

well as any end-to-end system for other atypical images like paintings), models are

needed which separate the style of the image from its semantic content. For this past
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works on artistic style like Gatys et al. (2016) might be useful in conjunction with

transfer learning, as image datasets exist with category/object/scene annotations

and perhaps once artistic style is separated domain adaptation be possible.

6.2.3 End to End Reference on Raw Text

The tasks of coreference and bridging resolution are analogous, as they differ

only in what kind of antecedents are matched with the anaphor mention. Similarly,

there are other kinds of mentions in text as well, and all of these are interrelated. A

joint model which does mention detection and at the same time assigns each mention

to its category, as well as forms reference links would be better than models which

do all these tasks piecemeal. To do this task, several things are required. First, a

larger section of OntoNotes needs to be annotated with mediated links information

than ISNotes has. This is essential in order to train any neural network model

of sophistication, or really using embeddings in conjunction with lexico-semantic

features. Second, the model as it will go from mention to mention must be a ranking

model rather than a pairwise, and because some of the reference links will be sparse,

it should be using cluster level global features like Wiseman et al. (2016). Third, as

OntoNotes lacks singleton information, which would be needed to make the mention

detection robust, a certain part of the dataset should be annotated with singletons,

using which the rest can be detected. Lastly, this should be a joint model with a

task like entity linking, in the manner of Durrett and Klein (2014) but unlike that

system it should use embeddings to do the linking, thus leveraging Wikipedia for
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more world knowledge. Here it should be mentioned that the older ACE dataset can

be useful as it has mention class information which OntoNotes lacks. This direction

of research is quite ambitious but would result in an end-to-end robust reference

framework which is needed for many downstream tasks.

6.2.4 Prototypical Concepts in Text and Vision

In this thesis I built a model to discover which span in narrative text referred

to what kinds of prototypical concepts and how those sets of concepts influence

each others existence. This problem can be extended to the visual domain. Visual

representations, aside from definite objects, also has prototypical concepts which are

not apparent. For example, the sepia tone in movie frames indicates a scene from

the past, the seemingly chaotic scribbles in a comic panel connotes sound effects or

movements of objects in it, or the jagged edges in a piece of contemporary art denotes

a specific concept the painter wants to convey. These things are hard to discover

by themselves, let alone in a semi supervised fashion, but they can be discovered

if the model also takes in text references. For example, if the frames of the movie

have corresponding lines of script, or text from the subtitles, the frames themselves

are converted to a vector, and along with the text vector are fed into a suitably

altered variant of the JMN it is possible to obtain a dictionary of visual themes,

each defined by a cloud of words. Similarly, themes from comic book panels can

also be discovered given enough panel data and accompanying text. Thus, with the

aid of text it may be possible to discover latent concepts hidden in frames or panels
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which would aid understanding tasks. This is a novel direction for investigating

creative media.

6.2.5 Investigations in Event Coreference

I end this thesis by talking about event coreference, a topic which has been

very sparsely covered in the field compared to entity coreference. Event coreference

involves finding links between text spans which refer to real world events (this is

more of an artefact of datasets, the actual events need not be real world, but the

current data is based on newswire). To be specific most of the task boils down to

finding correspondence bewtween trigger phrases and the entire event in text. There

is only one prominent event coreference dataset, the EventCorefBank (ECB) with

482 texts (and its extension ECB+ with 502 additional texts) (Bejan and Harabagiu,

2010; Cybulska and Vossen, 2014). These texts cover 43 real world topics. Parts

of the ACE 2005 dataset and the english part of OntoNotes has event information

annotated. More recently the KBP corpus (Mitamura et al., 2015) has been created

to address some of the weaknesses of the previous datasets. State of the art event

resolutions systems Lu and Ng (2016); Lu et al. (2016) on this corpus have CEAFE

F1 scores in the low 40s indicating significant scope of improvement.

From the point of view of this thesis, event coreference is an interesting route

for future research because events, real world or not, are accompanied by multimodal

forms of representation and require world knowledge to detect or understand. Also,

on a smaller scale events are analogous to actions/activities in more constrained
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settings, like events happening in cooking videos described via text, detecting which

would be useful for the kind of reference tasks this thesis investigates. Event coref-

erence also has significance for future research on the comic panels as well because

certain concepts like event triggers carry over to that setting. Also, current re-

search on event coreference lacks neural network approaches, and thus there is the

opportunity of trying joint models with more mature architectures.
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Judith Muzerelle, Anäıs Lefeuvre, Emmanuel Schang, Jean-Yves Antoine, Aurore
Pelletier, Denis Maurel, Iris Eshkol, and Jeanne Villaneau. Ancor centre, a large
free spoken french coreference corpus: description of the resource and reliability
measures. In International Language Resources and Evaluation, 2014.
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treebank: Annotating german with a context-free backbone. In In Proceedings
of the Fourth International Conference on Language Resources and Evaluation.
Citeseer, 2004.

Antonio Torralba, Aude Oliva, Monica S Castelhano, and John M Henderson. Con-
textual guidance of eye movements and attention in real-world scenes: the role of
global features in object search. Psychological review, 113(4):766, 2006.

Olga Uryupina. Coreference resolution with and without linguistic knowledge. In
International Language Resources and Evaluation, 2006.

Aaron Van den Oord, Sander Dieleman, and Benjamin Schrauwen. Deep content-
based music recommendation. In Advances in neural information processing sys-
tems, pages 2643–2651, 2013.

Yannick Versley, Simone Paolo Ponzetto, Massimo Poesio, Vladimir Eidelman, Alan
Jern, Jason Smith, Xiaofeng Yang, and Alessandro Moschitti. Bart: A modular
toolkit for coreference resolution. In Proceedings of the Association for Computa-
tional Linguistics, 2008.

Jesse Vig, Shilad Sen, and John Riedl. The tag genome: Encoding community
knowledge to support novel interaction. ACM Transactions on Interactive Intel-
ligent Systems (TiiS), 2(3):13, 2012.

Marc Vilain, John Burger, John Aberdeen, Dennis Connolly, and Lynette
Hirschman. A model-theoretic coreference scoring scheme. In Proceedings of the
conference on Message understanding, pages 45–52, 1995.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and tell:
A neural image caption generator. arXiv preprint arXiv:1411.4555, 2014.

Marilyn Walker, Ricky Grant, Jennifer Sawyer, Grace Lin, Noah Wardrip-Fruin, and
Michael Buell. Perceived or not perceived: Film character models for expressive
nlg. Interactive Storytelling, pages 109–121, 2011.

Sam Wiseman, Alexander M Rush, Stuart M Shieber, and Jason Weston. Learn-
ing anaphoricity and antecedent ranking features for coreference resolution. In
Proceedings of the Association for Computational Linguistics, 2015.

Sam Wiseman, Alexander M Rush, and Stuart M Shieber. Learning global features
for coreference resolution. arXiv preprint arXiv:1604.03035, 2016.

Chang Xu, Yalong Bai, Jiang Bian, Bin Gao, Gang Wang, Xiaoguang Liu, and
Tie-Yan Liu. Rc-net: A general framework for incorporating knowledge into word
representations. In Proceedings of the 23rd ACM International Conference on
Conference on Information and Knowledge Management, pages 1219–1228. ACM,
2014.

127



Kelvin Xu, Jimmy Ba, Ryan Kiros, Aaron Courville, Ruslan Salakhutdinov, Richard
Zemel, and Yoshua Bengio. Show, attend and tell: Neural image caption genera-
tion with visual attention. arXiv preprint arXiv:1502.03044, 2015.

Jian Yao, Sanja Fidler, and Raquel Urtasun. Describing the scene as a whole: Joint
object detection, scene classification and semantic segmentation. In Computer
Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pages 702–
709. IEEE, 2012.

Peter Young, Alice Lai, Micah Hodosh, and Julia Hockenmaier. From image de-
scriptions to visual denotations: New similarity metrics for semantic inference
over event descriptions. Transactions of the Association for Computational Lin-
guistics, 2:67–78, 2014.

Haonan Yu and Jeffrey Mark Siskind. Grounded language learning from video
described with sentences. In ACL (1), pages 53–63, 2013.

Sheng Zhang, Weihong Wang, James Ford, and Fillia Makedon. Learning from
incomplete ratings using non-negative matrix factorization. In Proceedings of
the 2006 SIAM International Conference on Data Mining, pages 549–553. SIAM,
2006.

Shuai Zheng, Sadeep Jayasumana, Bernardino Romera-Paredes, Vibhav Vineet,
Zhizhong Su, Dalong Du, Chang Huang, and Philip HS Torr. Conditional ran-
dom fields as recurrent neural networks. In Proceedings of the IEEE International
Conference on Computer Vision, pages 1529–1537, 2015.

128


	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	What are we talking about?
	Current Methods
	Contribution and Roadmap

	Background Machine Learning Concepts for Reference Resolution
	Coreference Resolution: Past and Present
	Current Approaches in Mention Detection
	Current Approaches in Mention Ranking vs. Pairwise Classification

	Word Vector Representations
	Convolutional Neural Networks
	Current Approaches in Vision with Text
	Sequence Labelling
	Conditional Random Fields
	Recurrent Neural Networks

	Topic Models
	Markov Topic Models

	Summary

	Discovering Referring Entities and Related Problems
	Quiz Bowl Data
	Issues with Current Datasets and Approaches
	Quiz Bowl data and Annotation
	A Simple Mention Detection and Clustering Model
	Why Quiz Bowl Coreference is Challenging and Interesting

	Investigating Bridging Anaphora
	Current Datasets and Methods for Bridging Anaphora
	Bridging Anaphora and Word Embeddings

	Summary

	Analysing Atypical Images Via Multimodal References
	Why extend the problem of coreference resolution to vision?
	Hard Images: The Painting Dataset
	Recognition Constrained on Semantics of an Ontology
	Inferring Visual Properties from Coreference Chains and Bipartite Matching
	Performance in the Retrieval Task

	Comic Book Dataset
	Summary

	Discovering References to Prototypical Concepts in Movie Scripts
	Current Approaches in Prototype Discovery
	Our baseline: Relationship Modelling Network
	Joint Modelling Network
	Experiments and Results
	Summary

	Conclusion
	Summary
	Future Directions of Research
	Reference-Specific Word Embeddings
	Joint Vision-Text Coreference for Atypical Images
	End to End Reference on Raw Text
	Prototypical Concepts in Text and Vision
	Investigations in Event Coreference


	Bibliography

